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SUMMARY

High-powered and high-energy density electronics are becoming more common

with advances in computing, electric vehicles, and modern defense systems. Appli-

cations like these require efficient, compact, and economical heat exchanger designs

capable of extremely large heat fluxes. Phase-change cooling methods allow for these

characteristics; however, the design and optimization of these devices is extremely

challenging. Numerical simulations can assist in this effort by providing details of

the flow that are inaccessible to experimental measurements. One such system of

interest to this work is acoustically enhanced nucleate boiling, which is capable of

dramatic increases in the Critical Heat Flux (CHF). The focus of the present work

is the development of a numerical simulation capable of predicting the behavior of

acoustically enhanced nucleate boiling up to the CHF.

A general-purpose wavelet-adaptive Direct Numerical Simulation (DNS) that runs

entirely on the Graphics Processing Unit (GPU) architecture has been developed in

this work to allow accurate, error-controlled simulation of a wide range of applications

with multiphase flow at all Mach numbers. This work focuses on the development

of a high-order simulation framework that can adequately address the challenges

posed by acoustically enhanced nucleate boiling processes. Nucleate boiling in the

presence of acoustic fields suffers from a large disparity of important time scales,

namely the acoustic time scale and the convective time scale near the incompressible

limit. To address this issue, the compressible Navier-Stokes equations are solved using

a preconditioned dual-time stepping method to allow for accurate simulation of the

flow for all Mach numbers, everywhere in the domain. The governing equations are

solved on a wavelet-adaptive grid that provides a direct measure of local error and

xiv



is adapted at every time step to follow the evolution of the flow for a significant

reduction in computational resources and expense. The use of the wavelet-adaptive

grid and the dual-time stepping method together allows for rigorous error control

in both space and time. All components of this simulation have been redesigned

and optimized for efficient implementation on the GPU architecture to offset the

overhead of grid adaptation and further reduce time-to-solution. The development of

the high-performance, error-controlled computational framework and its verification

and validation is presented.
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CHAPTER I

INTRODUCTION

High-powered and high-energy density electronics are becoming more common with

advances in computing, electric vehicles, and modern defense systems. Applications

like these require efficient, compact, and economical heat exchanger designs that al-

low for extremely large heat fluxes. Air cooling and single-phase liquid cooling have

limitations in heat flux capacity due to size constraints, natural convection, and/or

pumping losses, with heat flux limits substantially lower than what is possible with

phase-change (i.e., boiling and/or condensation) processes. Phase change provides

a significant improvement to the overall heat transfer of a heat exchanger by taking

advantage of cooling fluids with a large latent heat of vaporization to remove a large

amount of heat at an approximately constant temperature. A comparison of the var-

ious cooling methods is presented in Table 1. Phase-change cooling devices, without

optimization, can provide stable cooling for heat fluxes of approximately 115 W/cm2

with a wall superheat of approximately 15 K, resulting in a heat transfer coefficient

of approximately 75,000 W/m2K. While this is a substantial improvement over air

and liquid cooling, there is demand for even larger heat flux removal from emerg-

ing electronic devices while reducing power requirements [Capozzoli and Primiceri

(2015) [18]]. One of the main limitations of phase-change cooling technologies is the

Critical Heat Flux (CHF) which is the peak heat flux before the device transitions

from nucleate boiling to film boiling. This transition in the boiling process is often

catastrophic, resulting in severe overheating, since the resulting vapor film acts as

a thermal insulator, and there is hysteresis in attempting to return to the preferred

nucleate boiling state. While the CHF limitation cannot be removed completely, heat
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exchanger designs can be optimized to maximize the CHF to allow for a much wider

range of safe operation. Improvements to heat exchanger design for increased CHF

has been observed experimentally but many questions remain unanswered about the

fundamental mechanisms that allow for these improvements and how to use them to

further optimize heat exchanger design [Dhir (2006) [32], Cooke and Kandlikar (2011)

[21], Douglas et al. (2012) [34]].

The remainder of this introduction is intended as a high-level overview of the mo-

tivations and direction of this work.

Table 1: Various cooling methods with their typical heat transfer coefficients [Incr-

opera et al. (1996) [52], Boziuk et al. (2010) [13]]

Cooling Method h (W/m2K)

Natural Convection - Air 2-25

Forced Convection - Air 25-250

Natural Convection - Liquid Water 50-1,000

Forced Convection - Liquid Water 100-20,000

Nucleate Boiling - Water 2,500-100,000

Enhanced Nucleate Boiling (µ-channels+acoustics) - Water ∼ 220, 000

The mechanistic prediction of nucleate boiling has been pursued through the de-

velopment of empirical correlations since the mid-20th century. These often are only

valid over small operating ranges and require knowledge about the nucleation site dis-

tribution on a particular working surface, which limits the reliability and usefulness

of the correlation as a predictive tool [Dhir (2006) [32]]. There are many physical

processes occurring in nucleate boiling that make it difficult to build a model that

captures the full range of behavior in this system. These processes include, but are

not limited to, transient conduction in the solid and fluid, evaporation at the bubble
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base on the solid (i.e., microlayer evaporation), evaporation/condensation on the in-

terface of the bubble, thermocapillary convection, bubble-motion-induced convection,

bubble departure size and frequency, and nucleation site activation that depends on

heat transfer in both the fluid and solid heater. These processes span a large range

of spatial and time scales that makes it difficult, if not impossible, to measure them

without disturbing the flow due to the physical size of measurement devices.

There exist a number of methods for enhancing the heat transfer characteristics

of a device, including textured or micro-machined surfaces that increase surface area

and influence the hydrodynamics, surface coatings that affect surface tension and

contact angles, nano/micro-porous structures, and acoustic forcing of the liquid-vapor

interface [Das et al. (2009) [23], Boziuk et al. (2010) [13], El-Genk and Ali (2010)

[37]]. These enhancement methods can be used individually or in conjunction to

increase the heat transfer capability of a particular device, but their use adds further

complexity to the system and the resulting non-linear interactions are not currently

well understood.

Acoustic forcing of nucleate boiling is of particular interest to the present work.

One way to obtain an understanding of this complicated system with its intricate

coupling of many physical processes is through the use of a numerical simulation.

Thus, the main focus of this work is to develop a numerical simulation of acoustically

forced nucleate boiling with a sufficient level of accuracy and real-time performance

that can be used to gain insight into the many complicated physical processes involved

in this enhanced boiling system.

The status quo of the boiling research community was assessed by Dhir (2006)

[32], and in addition to noting the limitations of the existing empirical models, Dhir

offered insight (and hope) into how Direct Numerical Simulation (DNS) can be used

to further progress and develop improved boiling models. Dhir also commented on

the assumption of many models that sub-processes act independently, which ignores
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the non-linear interaction dynamics of multiple nucleation sites and bubbles. This

can be addressed more readily in numerical simulation than in experiment since the

nucleation sites can be specified directly by the simulation to study their interdepen-

dence.

Much of the existing work in the DNS of nucleate boiling, e.g., [Son and Dhir

(1999) [104], Juric and Tryggvason (1998) [58]], solves the incompressible Navier-

Stokes equations and uses a Boussinesq approximation for the buoyancy forces in

natural convection. These assumptions may be violated or become inaccurate when

there is excessive wall super-heating or sub-cooling of the ambient working fluid, when

pressure variations created by channel pressure drops or surface tension in small bub-

bles create density variations in the vapor phase, and/or when acoustic forcing is

applied. The incompressible assumption does not allow for acoustic waves in the

solution, nor does it capture the bulk mode of oscillation in bubbles. There have

been some studies using the weakly compressible form of the Navier-Stokes equations

[Paolucci (1982) [84]], which improves the situation by capturing the bulk mode of

bubble oscillation and eliminates the risk of violating the Boussinesq approximation;

however, it is not sufficient for the simulation of nucleate boiling with acoustic en-

hancement since the weakly compressible form does not capture acoustics. The fully

compressible form of the governing equations permits acoustic waves in the solution,

and it allows for the use of advanced equations of state for increased fidelity. At

the present time, there are no known studies of nucleate boiling using the fully com-

pressible form of the Navier-Stokes equations. The present work will fill this gap in

knowledge by producing a numerical simulation of a fully compressible flow system.

This simulation will reduce the assumptions in the underlying equations and produce

a result that is more faithful to the underlying physics of the system.

The choice of the numerical methods and their implementation in the simulation
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are affected by the physics of the system, the desired accuracy, and the type of com-

puting hardware that the simulation will be run on. To be effective, a simulation needs

to faithfully reproduce the physics through the proper choice of governing equations,

choice of discretization techniques, and the efficient implementation of discretization

methods on a given computing architecture. Historically, efficient implementation

simply required optimization for the minimum number of operations when computers

were single-threaded; however, modern computing architectures such as the Central

Processing Unit (CPU), many-core (e.g., Xeon Phi), and Graphics Processing Unit

(GPU) architectures operate with O(10), O(102), and O(105) concurrent threads, re-

spectively. Depending on the choice of computing architecture, different choices of

numerical methods are needed to take advantage of the resources of the dramatically

different underlying architectures to obtain maximum performance. A particular nu-

merical method often has order-of-operation dependencies that may limit the amount

of parallelism that can be exposed, and in the case with many threads, it may be best

to optimize not just for the minimum number of operations but also for the maximum

number of concurrent threads to reduce the overall time-to-solution. This parallelized

numerical method should still solve the governing equations with sufficient accuracy

for the end application. This requires a more coupled approach to simulation devel-

opment than in years past. It requires knowledge of the problem from the physics,

applied mathematics, and computer science perspectives in order to create a high-

fidelity simulation that runs efficiently on these modern computing architectures. It

is crucial that equal emphasis be placed on each of these three disciplines since a

shortcoming in any single area can affect the overall performance of the simulation.

With the choice of equations to describe the underlying physics decided with

acoustics in mind, the method of discretization of the equations for numerical solution

needs to be specified. The underlying physics are important in this choice since the

processes involved span a large range of length and time scales, which can be expensive
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to resolve numerically. The disparity of scales in the boiling process suggests the use of

adaptive methods to reduce computational expense. In this work, a wavelet-adaptive

finite-difference method is chosen for the work savings from the reduced grid point

count relative to a uniform grid with the finest resolution, and for the data locality

that finite differences offer for computational performance. The grid is updated at

every time step to evolve with the solution features, and the wavelet-adaptive method

provides a mechanism for rigorous local error control. The GPU architecture is chosen

for its potentially large performance advantage over the CPU architecture, even with

multi-threading and vectorization. At the beginning of this work, the many-core

architecture (e.g., Xeon Phi) was not yet readily available, but it may be another

viable option for future work. A major challenge in this work was to implement the

wavelet transform and finite differences on a sparse grid in a way that is efficient on

the GPU architecture.

The compressible Navier-Stokes equations have numerical problems at low Mach

numbers due to the pressure singularity problem [Tannehill et al. (2012) [88]]. Stiff-

ness arises in low-speed flows due to the disparity in the eigenvalues (i.e., the acoustic

speed vs. the convective speed) as the Mach number approaches zero. This results

in an ill-conditioned system that is not only increasingly expensive to solve, but one

in which the pressure and density become decoupled. To circumvent this problem, a

dual-time stepping method with preconditioning is used to correct for the pressure

singularity and remove the stiffness in the coupled set of equations. The challenge

with this dual-time stepping method is that it must be implemented to work effec-

tively with the wavelet-adaptive method and to run efficiently on the GPU.

In the present simulation framework for multiphase flows with phase-change, the

multiphase flow characteristics of the problem, i.e., the interface tracking, normal vec-

tor, and interface curvature calculations, will be performed using a level-set method.
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The approach taken in the present work is to define a diffuse interface of user-

prescribed thickness that the adaptive-grid fully resolves throughout the simulation.

With the level of refinement possible with the adaptive grid, the interface thickness is

set to be much smaller than the bubble diameter. This thin but fully resolved inter-

face allows for a high order of accuracy to be maintained everywhere in the domain.

The surface tension forces on the interface are implemented through a continuum

surface force method that uses an approximate delta function of commensurate order

of accuracy with the discretization of the governing equations to maintain the overall

order of accuracy of the simulation.

The choice of wavelet-adaptive grids, dual-time stepping, and preconditioning with

the compressible form of the Navier-Stokes equations, and the diffuse interface model

with appropriate order-of-accuracy to match the rest of the simulation are meant to

work together to provide an error-controlled framework for the simulation of multi-

phase flow with phase change and surface tension. The wavelet-adaptive grid enforces

local error tolerances, the dual-time stepping procedure provides a mechanism for con-

trolling the relative tolerance of the residuals of each equation to improve the control

of error in time, and the diffuse interface with appropriate discretization maintains

the overall accuracy of the scheme for multiphase flows with surface tension. Each

of these methods was also chosen with the GPU architecture in mind. They were

efficiently implemented in a simulation that runs completely on a single GPU with

high performance in both memory use and execution time.

This document is organized in a way that follows the development process for

the general purpose simulation that will handle a variety of single- and multi-phase

flows at all Mach numbers, including nucleate boiling with acoustic forcing. The mo-

tivation and choice of methods has been outlined above, and the literature review in

Chapter 2 will further reinforce the need for high-fidelity simulation to gain a better

understanding of the fundamental mechanisms in nucleate boiling. In Chapter 3, the
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simulation development is documented by first introducing the wavelet-adaptive grid

on the GPU for high-speed compressible flows (i.e., no preconditioning or level-set

included). Next, Chapter 4 introduces the dual-time stepping method with pre-

conditioning for computation of low-Mach number flows and covers the additional

development that was needed to allow the dual-time stepping method and precon-

ditioning to be implemented on wavelet-adaptive grids and to perform efficiently on

the GPU. The final development stage in Chapter 5 introduces the level-set method

and realistic equations of state for multiphase flow. At the end in Chapter 6, final

remarks are made about the overall performance and applicability of this approach

for simulation of for general multiphase flows and nucleate boiling with and without

acoustic enhancement.
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CHAPTER II

LITERATURE REVIEW

A brief survey of the tumultuous history of boiling and associated hydrodynamic

theory is provided here to give some perspective on the current state of boiling re-

search. An exhaustive history of boiling, covering the years 1732–1985, is presented

by Lienhard and Witte (1985) [70]. The first widely credited study of boiling dates

back to 1756, where Leidenfrost placed drops of water into a heated spoon at varying

temperatures and measured the time to evaporation. He noticed that spoon tempera-

tures with small superheating values caused the droplets to evaporate in seconds, but

at very high temperatures (i.e., large superheating values) the droplets would dance

around and take more than a minute to evaporate. This is attributed to the large

temperature difference between the spoon and the droplet saturation temperature

that allows a vapor film to be created and maintained between the metal and liquid,

which acts as a thermal insulator that reduces the heat transfer to the liquid drop

compared to the higher heat transfer caused by convection of the liquid in direct con-

tact with the metal. Additionally, the vapor has lower viscosity than the liquid which

reduces friction and allows for the dancing-like motion. The support of a droplet on

its own vapor is now called the Leidenfrost effect and corresponds to points on the

boiling curve at or above the Leidenfrost Point, which is also the minimum heat flux

point on the boiling curve that would be discovered later by Nukiyama [Nukiyama

(1934) [80]] (see Figure 1). This effect was first observed by Boerhaave in 1732, but

the detailed investigation was done by Leidenfrost (1756) [67].

In 1934, Nukiyama (1934) [80, 100] recreated the Leidenfrost experiment with

a thin horizontal wire submerged in water. The wire acted as the heater and a

9



Figure 1: The boiling curve with hysteresis is shown as a function of wall superheat.
The upper segment of the curve is the nucleate boiling regime, and the lower segment
of the curve is the film boiling regime. The transition region with abrupt changes be-
tween nucleate and film boiling is indicated with dashed lines, and it follows different
paths depending on if it is approached from the nucleate or film boiling side.

resistance thermometer simultaneously, which provides both the heat flux and wall

superheat. His results found a large hysteresis loop depending on the direction of

travel along the boiling curve. The transition from the peak heat flux to film boiling

was accompanied by a sudden temperature jump of roughly 1000 K. If the heat

flux was reduced gradually to return to nucleate boiling, the wall superheat dropped

suddenly below a certain point. This work is typically considered the first modern

quantitative treatment of boiling [Lienhard and Witte (1985) [70]] and resulted in the

development of a boiling curve that is now common in undergraduate heat transfer

texts [Incropera et al. (1996) [52]], as shown in Figure 2.

At very low wall superheats on the boiling curve (see Figure 1), near the saturation

temperature of the liquid, there is little or no bubble formation and the heat transfer

is dominated by natural convection. As the heat flux is further increased, the wall
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superheat increases and bubbles begin to nucleate. Initially, nucleate sites appear

across the surface but become more active and interact more as the wall becomes

more superheated. As the peak heat flux is approached, the jets and vapor columns

start to impede the inflow of fresh liquid to the wall and intermittent patches of film

boiling begin to appear. This is called transition boiling. If the wall super heat is

further increased, past the CHF, there is a sudden transition to complete film boiling

along the heater surface. To recover from this transition, the wall superheat must

be decreased until the vapor film suddenly collapses and the flow returns to nucleate

boiling. Applications with two-phase heat exchangers typically attempt to avoid the

transition from nucleate to film boiling since it is accompanied by a large jump in

surface temperature due to the vapor film acting as a thermal insulator.

Figure 2: Typical continuous boiling curve for water at atmospheric pressure. The
heat flux is shown as a function of wall superheat.

The transition region of the boiling curve has been very difficult to study due

to the tendency to transition quickly and the resulting difficulty in controlling the

power input to the electric heater used in experiments [Lienhard and Witte (1985)

[70]]. There are concerns about the accuracy of the shape of the boiling curve that

is commonly illustrated in textbooks [Incropera et al. (1996) [52]] and similarly

illustrated in Figure 2. Nukiyama had hypothesized that if he were able to truly

control the heat flux and temperature independently, it may be possible to follow
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the transition region in experiment [Nukiyama (1934) [80, 100], Lienhard and Witte

(1985) [70]]. This was thought to be partially confirmed by Drew and Mueller (1937)

[35] who more accurately controlled the temperature of the heated surface and thus

were able to measure a few points along the transition region. These events appear to

have set the classical image of the boiling curve with a continuous transition region in

the minds of many researchers [Lienhard and Witte (1985) [70]]. Doubts about Drew

and Mueller’s experiment to truly independently control the wall temperature have

been cast by [Lienhard and Witte (1985) [70]]. Drew and Mueller were not the only

investigators to find evidence for what they thought should exist. Farber and Scorah

(1948) [39, 70] claimed to have followed the continuous transition through “artful

manipulation of the electric supply - something that no investigator has subsequently

been able to do” [Lienhard and Witte (1985) [70]].

This first successful experiment to map out the transition region was performed

by Sarkurai and Shiotsu (1974) [94] using a closed-loop control system to maintain

the heater temperature in a much more precise and accurate way. This eliminated

the “artfulness” of the approach and offered more confidence in the repeatability

of the experiment to the boiling community. They found something much different

than previously reported. Their results showed a significant hysteresis loop in the

boiling curve and not a continuous path, as illustrated in Figure 1. They were not

able to trace a complete path through the transition region even with their more

advanced heater temperature control system. Additionally, they pointed out that

the lower segment illustrated in Figure 1 is really a locus of averages of film and

transition boiling occurring over the surface of the heated wire. Lienhard and Witte

(1985) [70] attribute the misconception of a continuous transition region to Drew

and Mueller’s work, which in turn caused many other researchers to search for and

incorrectly find evidence of the continuous transition. Lienhard and Witte explain

how this misconception persisted for so long, while acknowledging their advantage
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of 30 years of hindsight, by pointing to the work of Kuhn (1970) [63] that found

historical precedent in the pattern of researchers repeatedly seeing what they expect

to see in experiments based on preconceptions.

In search of a better understanding of the physics of boiling, Bonilla and Perry

(1941) [10, 70] made the first observation that the escape of vapor from a heater

surface will impede the inflow of liquid and compared it to the flooding (i.e., forcing

gas up through a liquid) of a distillation column. In the 1940’s, Kutateladze, a Rus-

sian engineer, began studying burnout in boiling flows and drew similar conclusions

about the hydrodynamic behavior of flooding. This appears to be the precursor to the

work of Zuber and Tribus (1959) [131], which also drew from the findings of Chang

(1957) [19], and which noted that there appeared to be a correlation between the

shape of an interface in film boiling and the thermo-convective instability based on

the wavelengths predicted and observed in film boiling. The combination of working

with Chang (with his insights about the hydrodynamic stability of boiling flows) and

Zuber’s fluency in Russian (that allowed him access to Kutateladze’s work) appears

to have been the spark that inspired Zuber’s doctoral research [Lienhard and Witte

(1985) [70]]. Additionally, there were advances in the analysis of interfacial stability

around that time (post-WWII), and Liendhard and Witte indicate that the conver-

gence of all of these events motivated Zuber’s PhD thesis on the “Hydrodynamic

Aspects of Boiling Heat Transfer”. This is the first major work on the hydrodynamic

stability of boiling, which produced a theoretical prediction of CHF.

Zuber and Tribus identified three hydrodynamic interfacial instabilities in boiling;

the surface-tension driven instability of a cylindrical interface, the gravitationally

driven instability of a liquid over a vapor (i.e., Rayleigh-Taylor instability), and the

shear-flow instability of liquid and vapor moving in parallel opposite directions (i.e.,

Kelvin-Helmholtz instability). Zuber’s ambitious thesis (1959) [131] covered the entire

boiling regime with chapters: 1) “A Review of Nucleate Boiling,” 2) “The Problem of
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Bubble Growth,” 3) “Hydrodynamic Aspects of Nucleate Boiling,” 4) “Hydrodynamic

Aspects of Transitional Boiling,” 5) “The Minimum Heat Flux Density in Transitional

Boiling From a Horizontal Surface,” and 6) “The Critical Heat Flux in Boiling From a

Horizontal Surface.” An important aspect of Zuber’s work is that he not only wanted

to correlate data but predict it too. Although much of Zuber’s work was later proven

piece-by-piece to not be completely correct by subsequent researchers, it did set the

foundation for much of the correlations and mechanistic models that followed. It is

still worth mentioning some of the highlights from his large body of work.

In Zuber’s third chapter, he analyzes the problem of vapor removal from the heater

surface. In analogy to a submerged orifice in a distillation column, he identifies stages

in the progression from low-heat flux nucleate boiling to the approach to the CHF

and transition. At very low vapor generation rates, he considers bubble formation

to be a problem of hydrostatics where the bubble diameter is independent of the

vapor generation rate. It is assumed that after each bubble pinch-off the liquid near

the nucleation site comes to rest, thus each new bubble departure initially looks the

same as the previous (uninfluenced by previous states). As the vapor generation rate

increases, bubble pairs are formed from a nucleation site and they touch during ascent,

with the first assuming a hemispherical shape and the second vertically elongated.

Further increases in vapor generation rate cause the coalescence to take place closer

to the nucleation site, until the coalescence occurs directly at the nucleation site. An

additional increase in vapor generation rate causes a pair of already coalesced bubbles

to coalesce (i.e., double coalescence), eventually leading to a continuous turbulent

vapor jet. The hypothesis is that the vapor jets over a heater surface become unstable

and collapse, causing burnout [Zuber (1959) [131]]. Jumping ahead to Zuber’s sixth

chapter, a prediction of maximum heat flux was developed by assuming that the

nature of CHF is governed by the Rayleigh-Taylor and Kelvin-Helmholtz instabilities.

Zuber noted that the phenomenon of transitional boiling “bears similarity to a release
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of bubbles with variable frequency from a set of regularly spaced orifices of fixed

geometry” and that this is due to Rayleigh-Taylor instability. Using this observation,

he assumes the vapor columns near CHF have diameter λ0/2 and spacing λ0, where λ0

is the critical wavelength of the Rayleigh-Taylor instability. The Kelvin-Helmholtz

stability of the cylindrical jet is analyzed to find when it will collapse, and Zuber

formed an expression for the heat flux density at CHF based on this finding. As the

final part of the transition, when two vapor jets begin to interfere with each other,

the flow of liquid toward the surface is interrupted and a vapor patch (i.e., patch of

transitional boiling) is formed. This progresses to a fully developed stable film as the

heat flux is further increased.

Lienhard and Witte counted eight basic problems with Zuber’s analysis [Lienhard

and Witte (1985) [70]]. These will not be recounted here, except to say that a number

of incorrect assumptions were made. There was a divide between the many supporters

and skeptics of Zuber’s hydrodynamic theory for many years. A large variability in

the experimental data was present because not all of the important factors, such as

heater size and gravity (acceleration), had been accounted for by the boiling research

community. This made it difficult to determine who was right. Berenson (1960) [5]

did a considerable amount of work in resolving the problems found in Zuber’s thesis

work (1959) [131]. He was able to show that Zuber’s prediction of the maximum

heat flux at CHF was correct for a sufficiently large heater, i.e., an infinite heater.

This was an assumption in Zuber’s original analysis, but it was not made clear in his

thesis.

Lienhard and Witte comment on Zuber’s work and give due credit by citing Kuhn’s

analysis of scientific progress by quoting “that good ideas are seldom completely cor-

rect in their original presentations.” Zuber’s work shed new light on the problem of

boiling and others began to think about it in new ways that allowed progress to be

made. The above discussion also gets to the root of the motivation for the present
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work, which is to develop a high-fidelity numerical simulation that makes a minimum

number of assumptions about the flow. This will allow accurate numerical experi-

ments to be performed, provide valuable data currently inaccessible to experiments,

help to verify (or not) current boiling models, and potentially guide the development

of new, improved boiling models.

The present work is not the first numerical investigation of boiling. One of the

earliest is the numerical simulation of bubble evolution over a heated surface by

Lee and Nydahl (1989) [66]. They performed an axisymmetric simulation that used

an elliptic grid generation technique to map a Cartesian computational grid onto

the complex computational domain, which consisted of the working fluid (pool), the

bubble void (excluded from the computational domain), and the microlayer region

underneath the bubble. Using this simulation they were able to determine significant

heat flux contributions attributed to different physical mechanisms and their percent-

age contribution to the overall heat flux. Their findings indicate that the microlayer

contributes roughly 87% of the enhanced heat transfer (over convection alone), micro-

convection (i.e., enhanced convection due to bubble growth and motion) is negligible,

and the heat transfer following bubble departure accounts for approximately 13% of

the enhanced heat transfer. The analysis was performed for water over a flat plate

at atmospheric pressure and 8.5 K wall superheat. Several assumptions and simpli-

fications were made in their work to make the problem more tractable, including:

1) constant properties, 2) bubble thermodynamic equilibrium, 3) negligible evapora-

tive resistance, 4) an isothermal wall, 5) negligible free convection, 6) no-slip velocity

boundary condition around the perimeter of the bubble, and 7) specified bubble and

microlayer shape. The microlayer shape was prescribed using the formulation from

Cooper and Lloyd (1969) [22].

In an improved simulation, Welch (1998) [124] directly simulated the liquid and

vapor flow with conjugate heat transfer in the solid heater. The simulation was
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implemented using a finite volume scheme with front tracking and a moving mesh.

The work was presented as progress towards a full simulation of the development

of a microlayer and concluded that the numerical tool developed could “eventually

facilitate a deeper understanding of nucleate bubble growth as the hydrodynamics

and the bubble shape can be obtained as part of the solution.” Unfortunately, it

appears that there is no continuation of this work in the literature.

Juric and Tryggvason (1998) [58] developed an explicit front tracking method to

simulate film boiling. The explicit front tracking method generates a mesh on the

interfacial boundary between two fluid domains that are coupled through the use

of interfacial boundary conditions. This provides a sharp interface to implement

accurate boundary conditions and allows for very good mass conservation. They

compared the numerical results to experimental correlations and found reasonable

agreement. They concluded with mention of future plans for making some minor

modifications to allow the technique to be applied to nucleate boiling and to the

transition region of the boiling curve.

The first complete numerical simulation of bubble growth was performed by Son

et al. (1999) [104]. In contrast to Welch (1998) [124], Son et al. use a fixed Cartesian

grid with a level-set method to implicitly track the interface. Additionally, Son et

al. does not include the solid heater in the computational domain, replacing it with

a fixed wall temperature boundary condition. The microlayer between the bubble

and the heater surface is not directly resolved. Instead, a lubrication model is used

to approximate its behavior and influence on the macro-region of the fluid (i.e., the

microlayer model is solved based on inputs from the simulation and feeds back to the

simulation through a boundary condition specified near the interface). This model

captures the large contribution of the microlayer to the overall heat flux while reducing

the computational expense since the thin microlayer region does not require additional

grid points. With wall superheats between 7–8 K, they determined that the heat flux
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contribution from the microlayer is approximately 20%, which is much different than

the 87% found by Lee and Nydahl [66].

Tryggvason et al. (2008) [114] reported on simulations based on the future plans

in Juric and Tryggvason (1998) [58]. In this brief work, they simulated the evolution

and detachment of vapor bubbles from prescribed nucleation sites on a flat surface.

Example solutions were presented to demonstrate the simulation capabilities without

verification. The paper was part of a conference proceeding that provided an update

on their progress and plans to parallelize the solver for larger numbers of nucleation

sites to study nonlinear interactions between nucleation sites.

More recent work by Dhir et al. (2012) [31] performed micro-gravity experiments

on the International Space Station and compared the data with numerical results

from the simulation developed in Son et al. (1999) [104] run with matching condi-

tions. In these experiments perfluoro-n-hexane was used as the working fluid under

pressures ranging from 51–243 kPa. Under micro-gravity conditions the bubbles re-

main attached to the flat heater surface with a spherical cap shape, and there is

essentially no natural convection. The experiments applied very low heat fluxes be-

tween 0.01–1.3 W/cm2 over long bubble growth periods on the order of 100 s. In

these experiments, they showed comparisons of the experimentally determined heat

flux and the numerical results as a function of radius from the center of the bub-

ble contact patch. Inside of the bubble (vapor) region, they indicate a heat flux of

4× 10−4 W/cm2. A peak heat flux of 574 W/cm2 is shown at the contact line in the

numerical solution, but there is no comparison with the experiment due to the limited

resolution in the experimental setup. In the liquid region, there is roughly a factor

of two difference between the experimental and numerical results. They mention the

uncertainty in heat flux measurement ranges from 26% to 1.6% over the heat flux

input range of 0.01–1.3 W/cm2. The prediction of heat flux over the heater surface

appears to be inconclusive inside the bubble with significant differences in the liquid
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region; however, the simulation results appear to capture the spherical cap bubble

shape and volume well.

Dhir et al. (2013) [30] provides a review of the progress in numerical simulation of

nucleate boiling with an emphasis on his work with collaborators. Most of the simu-

lations cited in Dhir et al. (2013) [30] use a fixed wall temperature (i.e., prescribed

superheat), with the exception of Aktinol and Dhir (2012) [2] that includes the ther-

mal response of the solid. These simulations are in general qualitative agreement

in the evolution of the bubble size and shape throughout the growth and pinch-off

phases. Dhir’s simulation of saturated film boiling on a horizontal cylinder gives Nus-

selt number results within approximately 10% of experimental correlations by Sakurai

et al. (1990) [93]. In the future, they plan to perform full three-dimensional simu-

lations of nucleate boiling. Their previous attempts at 3D simulation were severely

limited due “to the enormous computing power required and the corresponding mem-

ory requirements.” They estimate approximately 109 grid points for a cubical domain

with a side length of 2.5 cm with water at standard atmospheric pressure and grav-

ity. With this estimate of the problem size for a full 3D simulation, they specifically

state that serial computations are insufficient and that parallel computations would

be required to solve this problem in a reasonable amount of time.
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CHAPTER III

HIGH-MACH NUMBER COMPRESSIBLE FLOW

3.1 Introduction

The high heat flux capability of sub-cooled nucleate boiling makes it an attractive

method for cooling in many applications, such as high-speed microprocessors, power

generation systems, and the motion control systems of hybrid electric vehicles, for

example. One limit on the performance of this boiling process is the Critical Heat

Flux (CHF) limit, which is an upper bound on the heat flux for any particular system.

Above this limit, nucleate boiling undergoes a transition to film boiling where a thin

insulating vapor layer appears between the heated surface and the cooling fluid, which

then leads to a catastrophic increase in the temperature of the heated surface. Many

passive and active control methods have been proposed with the goal of increasing

the CHF by delaying the transition to film boiling, thus enabling safe operation of the

system at significantly higher heat fluxes. Passive methods include textured boiling

surfaces, such as open microchannels etched into the heated surface. Active meth-

ods use forced convection, jets, sprays, acoustic forcing, and/or a variety of external

forcing methods to increase the heat transfer coefficient and CHF. In electronics cool-

ing applications, passive flow control is of particular interest since it requires less

energy, provides improved reliability compared to active flow control methods, and

requires no user input during operation. While there are many experimental studies

that quantify the effects of these boiling enhancement techniques, there are still many

unanswered questions regarding the fundamental physics that enable the improved

boiling characteristics. This is mainly due to difficulties in obtaining experimental

measurements without disrupting the flow and with the extremely small length scales
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of critical flow features, namely the thin microlayer region near the contact line of

a vapor bubble on the heated surface. Additionally, many of the mechanistic boil-

ing models that have been proposed in attempts to explain the CHF transition do

not account for all of the physical processes involved, or treat them as independent

processes, when they actually form a highly coupled non-linear system. Thus, there

is a need for high-fidelity numerical simulations closely coupled with detailed exper-

iments to provide additional insight into the boiling process. This could then lead

to improved mechanistic models for the prediction of boiling behavior over a larger

parameter regime than current models [Dhir (2006) [32]].

Numerical simulations of nucleate boiling are extremely challenged by the time-

dependent, three-dimensional, multiscale nature of the thermal-fluid processes in-

volved. Length scales range up to six orders of magnitude from the mesoscale associ-

ated with the heater itself down to the microscale associated with the sharp, localized

property variations across the vapor-liquid interface of the vapor bubbles. These bub-

bles can also move in a time dependent, almost chaotic way throughout large portions

of the domain during the course of a simulation, and their location is typically not

known before the start of the simulation. Thus, a successful boiling simulation must

have extremely fast execution times and be capable of very fine, localized spatial reso-

lution. Fast execution times require parallel computation, while fine spatial resolution

requires large uniform grids, large unstructured grids, or time-dependent, spatially

adaptive grids. A structured, time-dependent, adaptive grid is preferred for several

reasons: it reduces overall memory requirements, maintains predictable memory ac-

cess patterns, and significantly reduces the number of required computations while

still maintaining Single Instruction, Multiple Data (SIMD) parallelism. All of these

features contribute to an improvement in the total execution time of the simulation.

The multiphase flow simulation presented in this work uses a wavelet-adaptive

grid with finite differences to achieve the required spatial resolution along with strict
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error control on the solution. A wavelet-adaptive grid is capable of resolving length

scales spanning six orders of magnitude and can realize grid point reduction (com-

pression) ratios up to O(105) for solutions with highly localized structures compared

to a uniform grid with a resolution equal to the finest wavelet scale present. Tra-

ditional Adaptive Mesh Refinement (AMR) techniques implement ad hoc indicators

to identify regions that require refinement. The error these indicators introduce to

the solution is not well-defined, and so a posteriori approaches to estimate the error

are required. In addition, ill-behaved mesh refinement in the vicinity of a fluid-fluid

interface can cause instability problems for interfacial flows. These problems could

be unphysical forcing of the instability by perturbations in the solution due to grid

changes near the interface, or the refinement criteria not requiring sufficient reso-

lution, and/or numerical diffusion to prevent the onset of an unphysical interfacial

instability. Wavelets alleviate these problems through the use of Lagrange interpo-

lating polynomials that provide a well-defined measure of local error. In addition,

relating wavelets to the finite difference formulation of the derivatives provides a sin-

gle parameter (tolerance) that controls the point-wise magnitude of the error in both

the values and derivatives of the solution. This tolerance is then used to determine

the local level of grid refinement. The wavelet-adaptive grid is updated at every time

step in the solution to ensure that the error tolerance and the correct level of grid

refinement is always maintained. The result is that these wavelet simulations can be

performed with a priori control over the error in the solution rather than specifying

a grid and determining the error a posteriori.

In place of the typical grid independence study needed for structured or unstruc-

tured grids, a wavelet-adaptive grid only requires a test of the adapted solution’s

sensitivity to the user-specified wavelet tolerance. This reduces the number of runs

needed to provide accurate results and increases overall confidence in the solution.
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The sensitivity study on the user-prescribed wavelet tolerance is necessary to deter-

mine the system’s global sensitivity to the controlled local error.

Wavelet-based methods were initially used to solve PDEs with a Galerkin ap-

proach [Bertoluzza et al. (1994) [6]]. Wavelets and their companion scaling functions

were used as basis functions to expand the solution and the problem was rewrit-

ten in terms of the expansion coefficients. Here, derivatives were performed using

the wavelet and scaling basis functions directly and the number of grid points used

was reduced with wavelet coefficient thresholding. While successful, this approach

has difficulties in treating non-linear terms (e.g., real fluid properties) and irregu-

lar boundaries, although several techniques have been developed to circumvent these

problems [Schneider and Vasilyev (2010) [96]]. Wavelet collocation methods were in-

troduced to more easily treat non-linear terms and finite domains. The collocation

method operates on the function values at each grid point rather than on the wavelet

coefficients (i.e., they solve in physical space rather than wavelet space), and this

results in a more efficient method that requires fewer operations per grid point [Vasi-

lyev and Bowman (2000) [119]]. The most recent wavelet methods use wavelets to

adapt the grid and finite differences on the adapted grid to evaluate derivatives using

physical values. The evaluation of finite difference stencils on a wavelet-adapted grid

is much less expensive than performing derivatives using the wavelet basis functions

directly, largely due to serial data dependencies in the wavelet operations. The com-

bination of wavelet-adapted grids and standard finite-difference techniques applied

in physical space allows for an optimum sparse grid representation of the solution

(i.e., maximum grid compression for a given error tolerance) together with increased

computational efficiency [Schneider and Vasilyev (2010) [96]].

The performance of the wavelet-adaptive method is significantly enhanced if it

is implemented using High-Performance Computing (HPC) hardware. The path for-

ward for HPC, at least until the end of the decade [Ahern et al. (2011) [1], Wells
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(2015) [125]], relies on the Graphics Processing Unit (GPU) and many-core proces-

sor architectures. GPUs currently offer the highest peak theoretical double-precision

floating point performance and memory bandwidth [AMD (2016) [3], Intel (2016)

[53], NVIDIA (2016) [81]]. For these reasons, the present wavelet-adaptive multi-

phase flow simulation was designed and implemented from the ground up to run

entirely on a GPU. Note that this design avoids all of the communication bottlenecks

in data transfer that may occur between the CPU host and the GPU.

This is the first of three chapters that present the development of a complete direct

numerical simulation of nucleate boiling with acoustic forcing. This GPU-based mul-

tiphase flow simulation uses the compressible form of the governing equations, a finite

difference formulation for the derivatives, and a wavelet-adaptive grid to achieve the

required spatial resolution with strict error control on the solution. The motivation

behind this approach is to faithfully capture the system’s essential physics while mini-

mizing the number of assumptions and artificial treatments, such as incompressibility,

constant fluid properties, and explicit source terms at the liquid-vapor interface that

enforce conservation of mass, momentum, and energy. This multiphase simulation

is a robust solver for flows at all Mach numbers. It handles incompressible flows by

solving the compressible form of the Navier-Stokes equations with a preconditioned

dual-time stepping method. The simulation also implements a fully resolved, diffuse,

fluid-fluid interface with a user-defined thickness. It uses high-order finite differences

to maintain accuracy near these interfaces, thereby eliminating the need to apply

ad-hoc corrections for conserved quantities at the interface.

This chapter is organized as follows. The governing equations are outlined in

§ 3.2 and details of the wavelet method are described in § 3.3. The mathematical

verification of the wavelet and derivative calculations is presented in § 3.4, along

with three verification test cases for fully compressible flows. Finally, the parallel

performance of the wavelet finite-difference method on the GPU is discussed in § 3.5
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and conclusions are given in § 3.6.

Chapter 4 of this thesis will describe the use of a preconditioned, dual-time step-

ping method to compute transient, non-isothermal, single-phase flows approaching

the incompressible limit. The efficacy of this technique combined with a wavelet-

adaptive grid on a GPU will be fully explored. Chapter 5 will introduce the level-set

method to model fluid-fluid interfaces and the implementation of general equations

of state to produce a full nucleate boiling simulation with acoustic forcing. The per-

formance of this simulation and its accuracy compared to experimental results will

be fully documented.

3.2 Governing Equations

In these simulations, the physics for the evolution of a compressible, viscous flow is

governed by the following set of conservation equations for mass, momentum, energy,

and species transport.

∂ρ

∂t
+
∂ρuj
∂xj

= 0 (1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+ ρgi (2)

∂ρE

∂t
+

∂

∂xj
[(ρE + p)uj] = − ∂qj

∂xj
+
∂uiτij
∂xj

+ ρuigi (3)

∂ρYk
∂t

+
∂ρujYk
∂xj

= −∂Jk,j
∂xj

(4)

Here, ρ is the density, ui is the velocity vector, p is the pressure, τij is the viscous

stress tensor, gi is the acceleration of gravity vector, E is the total specific energy

defined as the sum of the specific internal and kinetic energy (E = e + 1
2
uiui), and

qj is the heat flux. In the last equation for species transport, Yk is the mass fraction

for the kth species and Jk is the diffusive flux of species Yk. The sum of the mass
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fractions of all species must be identically equal to one. There are two methods to

ensure this [Poinsot and Veyante (2005) [89]]. The first is to explicitly track the

density (Equation 1) and N − 1 species, where the final component is calculated as

YN = 1−
∑N−1

m=1 ρmYm. This lumps the accumulation of rounding and other errors into

the last (Nth) species, which is often chosen as an inert component (e.g., nitrogen)

to minimize the effect of this error accumulation. The second method is to introduce

correction velocities to ensure not only the global conservation of mass but the mass

of each of the species. The first method is sufficient for the demonstration cases in

this chapter; however, for different conditions, it may become necessary to include

correction velocities.

These conservation equations are augmented by a set of constitutive equations for

the viscous stress, heat flux, and mass diffusion. The results in this work employ a

Newtonian fluid model and Fick’s law for diffusion, although other models can be

implemented. Thermodynamic properties will use an equation of state appropriate

to the material. For example, air will be modeled as a calorically perfect ideal gas.

3.3 The Wavelet-Adaptive Method

3.3.1 Background

The ultimate goal of a functional representation of a given data set is to represent

the data with as few bits or points as possible. Wavelets are one way to accomplish

this. They date back to the early 1900’s with the introduction of the Haar wavelet (a

localized step function) [Haar (1910) [50]]. Wavelets and their associated transforms

represent a natural progression from the earlier Fourier and sliding-window Fourier

transforms. A Fourier transform provides frequency information about a signal or

function, but no correlation to its temporal location. The sliding-window extension

provides information about both time and frequency; however, the window length

places limits on the frequency resolution, necessitating a trade-off between frequency
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and spatial resolution. Wavelets offer improved resolution in both the time and fre-

quency domains. The wavelet transform utilizes specific basis functions that are

dilated and shifted to multiple levels of resolution on a signal, an image, or a solu-

tion to a PDE. The principle idea of the transform is to find a correlation between

the data points so that a smaller number of points can be used to reconstruct the

original data using the wavelet basis functions, either exactly or to within a specified

accuracy. Typically, the data reduction is achieved if the data points in the set are

well correlated. The transform is called “lossy” if the reconstruction thresholds the

data and replaces “small” coefficients with zeros. This recreates the data with a small

error that is less than a specified tolerance.

Wavelets have a long history in signal and image processing [Daubechies (1996)

[26], Mallat (2008) [73]], and an analogy can be drawn between the pixels of an

image and the points of a grid used to solve a PDE. Much like JPEG2000 wavelet

compression [Skodras et al. (2001) [102]], a wavelet transform is used to compress

solution data on an adaptive grid, although different wavelet basis functions more

suitable to solving PDEs than image compression are used. This was demonstrated

in the prior work of [Vasilyev and Bowman (2000) [119], Paolucci et al. (2014)

[85], Holmstrom (1999) [51], Griebel and Koster (2000) [49]] who showed that the

solution to a finite-difference, time-dependent simulation on a wavelet-adaptive grid

can be successfully and automatically compressed as the solution evolves in time.

This essentially moves points from smooth regions to regions with sharper gradients

where more resolution is required, thus allowing the use of larger simulation domains

and/or the resolution of finer details within a fixed memory budget.

The wavelet method used in this work is developed on a dyadic grid, which in-

herently provides multiple levels of resolution. The base (coarsest) grid is labeled

J0 and each successive grid level doubles the resolution of the previous level up to a

maximum level Jmax. To provide context for the wavelet decomposition of a function
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(or a solution to a PDE) on this dyadic grid, a set of function spaces Vj ∈ L2(R) are

defined where j ∈ N [Daubechies (1992) [25]]. This set of function spaces is nested

according to the relation

V J0 ⊂ V J0+1 ⊂ · · · ⊂ V j ⊂ · · · ⊂ V Jmax−1 ⊂ V Jmax . (5)

In addition, each of the spaces Vj+1 comprises two complementary subspaces Vj and

Wj, i.e.,

Vj+1 = Vj ⊕Wj. (6)

The basis functions for the space Vj are the scaling functions φj while the wavelet

functions ψj are the basis functions for the complementary space Wj. In first-

generation wavelet methods, the scaling and wavelet functions at each level of reso-

lution are created through successive translations and dilations of “mother” func-

tions and the Fourier transform is used to develop the associated wavelet trans-

forms. As a result, first-generation wavelets require periodic or infinite domains.

Second-generation wavelets [Sweldens (1998) [107], Vasilyev and Bowman (2000)

[119], Wirasaet (2007) [126]] alleviate this finite-domain restriction by allowing the

use of modified scaling and wavelet functions that are not based on simple translations

and dilations of a mother function. The construction methods for second-generation

wavelets are done entirely in the spatial domain and so complex domains, non-uniform

dyadic grids, and boundaries can be handled and a wide range of wavelet bases can

be used.

One such construction method for second-generation wavelets is partly based on

the work of [Deslauriers and Dubuc (1989) [29]] who were the first to define a recursive

procedure for interpolating function values onto a dyadic grid, a process called the

interpolating subdivision scheme. The left side of Figure 3 illustrates this recursive

refinement procedure using 4th-order Lagrange interpolating polynomials. The right

side of Figure 3 introduces and defines the concept of a detail, which is the difference
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between the original and interpolated (predicted) function value. The detail is an

essential element of the forward and inverse wavelet transforms that are discussed in

§ 3.3.2. This recursive refinement procedure generates what Deslauriers and Dubuc

called the fundamental solution, but which is now more generally known as the scaling

function [Sweldens (1998) [107]]. The interpolating subdivision scheme has a strong

link to modern wavelet methods and is discussed in detail by [Donoho and Yu (1999)

[33]].

Figure 3: Left: An example of the interpolating subdivision scheme on a dyadic grid

using a cubic interpolating polynomial. Right: The definition of the detail. The

original coarse values are shown in black, the cubic interpolating polynomial and the

predicted value is shown in red, and the original value at the finer resolution is shown

in blue. The detail is defined by the difference between the original and predicted

values.

Solving PDEs on finite domains is the primary focus of the present work and

so second-generation wavelets along with the lifted wavelet construction process will

be used. The lifted wavelet construction process has two steps and builds on the

Deslauriers-Dubuc interpolating wavelets and scaling functions that are, in turn, the

autocorrelation of the Daubechies scaling functions [Mallat (2008) [73]].
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The first step, called the predict step, interpolates from a coarse grid to the next

finer grid using Lagrange interpolating polynomials of order p as shown in Figure 3

and computes the wavelet coefficients (the details) for the coarse grid points. The

second step, called the update step, interpolates the details using the grid points on

the finer grid back down to the coarse grid and computes new coefficients for the

scaling functions at the coarse grid. This second step, also called the lifting step,

creates a wavelet of order p with p vanishing moments (see the example in Figure 4).

The vanishing moments in the wavelet prevent a loss of information when coars-

ening the grid (e.g., removing every other point) by preserving the mean, variance,

and higher moments of the solution [Sweldens (1998) [107]]. This reduces the possi-

bility of significant aliasing effects that could lead to incorrect solutions [Vasilyev and

Bowman (2000) [119]].

Although the scaling and wavelet basis functions are crucial to the development

and functional analysis of the wavelet method, they are never computed directly in

the wavelet construction process outlined above. Instead, given the function values

on the finest grid, the forward wavelet transform computes all of the scaling and

wavelet coefficients through successive applications of Lagrange interpolating poly-

nomials starting at the grid level just below the finest grid. This is particularly

convenient since the dyadic structure of the grid allows the interpolation weights

to be precomputed to reduce the number of operations at run time [Sweldens and

Schroder (2000) [109]]. Similarly, the inverse wavelet transform computes all of the

function values on the finest grid starting with the full set of scaling and wavelet

coefficients. For reference, Figure 4 shows an explicit representation of the 4th-order

scaling and wavelet functions. Both of these functions have compact support, which

is an important property that allows for efficient parallel computation of the forward

and inverse wavelet transforms.
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Figure 4: The 4th-order scaling function (left) and wavelet
function (right) computed from a single nonzero coefficient
using lifted, 4th-order Lagrange interpolating polynomials in
the inverse wavelet transform.

3.3.2 Mathematical Description

The second-generation wavelets used in the current work are constructed using lifted,

pth-order Lagrange interpolating polynomials. The following summary of the con-

struction process closely follows the work and notation of Sweldens (1998) [107] and

Vasilyev and Bowman (2000) [119].

A given function f(x) is expanded in a wavelet multiresolution representation to

a finite level of resolution using a set of scaling and wavelet basis functions as follows:

fJmax(x) =
∑
k∈κ

c0kφ
0
k(x) +

Jmax−1∑
j=0

∑
k∈κ

djkψ
j
k(x), (7)

where κ is the set of grid points used to represent the function.

Note that in a dyadic grid, the set of points at each finer level contain all the

points from coarser levels in addition to its own. An important aspect for notation

is that every other point is a point that also belongs to coarser levels with the points

in between existing at the current level. More formally, this is described as

xjk = xj+1
2k (8)

f(xjk) = f(xj+1
2k ). (9)

Equations 8 and 9 simply describe the nestedness of the grid levels, and the relation-

ship and indexing of even and odd points and function values on adjacent levels of
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resolution.

Using this notation, the scaling coefficients at the maximum level of resolution are

given by

cJmaxk = f(xJmaxk ). (10)

The fast wavelet transform is performed using the following two equations in a recur-

sive manner down to the base level J0

djk = cj+1
2k+1 −

∑
l

wjk,lc
j+1
2k+2l (11)

cjk = cj+1
2k +

∑
l

w̃jk,ld
j
k+l (12)

where wjk,l are the interpolation coefficients for the scaling functions, w̃jk,l are the

interpolation coefficients for the wavelet functions, and l is the local interpolation

index.

Similarly, the inverse transform is performed recursively up from the base level

using

cj+1
2k = cjk −

∑
l

w̃jk,ld
j
k+l (13)

cj+1
2k+1 = djk +

∑
l

wjk,lc
j+1
2k+2l (14)

with the end result for the function values given by

f(xJmaxk ) = cJmaxk . (15)

The critical step in adapting the grid and compressing the data is thresholding.

Here, any wavelet coefficient less than the user-specified wavelet tolerance ε is set to

zero. After this thresholding process, the resulting approximation function denoted

with the ≥ subscript is represented as

fJmax≥ (x) =
∑
k∈κ

c0kφ
0
k(x) +

Jmax−1∑
j=0

∑
k∈κ

djkψ
j
k(x). (16)
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Thresholding can be performed on wavelet coefficients using either absolute or

relative tolerances. In many cases, where the governing equations are solved in di-

mensionless form, an absolute comparison is sufficient. If a disparity in the magnitude

of function values exists, then a relative tolerance is preferred.

For more details, comprehensive discussions on the use of wavelet methods for

the solution of PDEs can be found in the work of [Holmstrom (1999) [51], Vasilyev

and Bowman (2000) [119], and Paolucci et al. (2014) [85]]; and more generally, the

development of the wavelet method is discussed by [Daubechies (1992) [25], Sweldens

(1998) [107], and Mallat (2008) [73]].

3.3.3 Implementation

Up until this point the discussion has been limited to wavelet transforms in one

dimension. Wavelets can be constructed in multiple dimensions, called non-separable

wavelets, or constructed from tensor products of one-dimensional scaling functions

and wavelets, called separable scaling functions and wavelets. The non-separable

wavelet method generally provide better reconstruction of the solution [Tymczak et

al. (2002) [115]], especially in directions diagonal to the grid, but separable wavelet

methods require fewer points in cache (i.e., shared and local memory) at any given

time, and thus give higher performance on current computing hardware. The work

presented here exclusively uses separable wavelets. For clarity, 4th-order wavelets will

be used to demonstrate the algorithm, but the idea extends to wavelets of higher

order.

A dataset of dimension d represented with separable wavelets uses 2d − 1 wavelet

families, (i.e., three wavelet families in 2D and seven in 3D). The wavelet families

resulting from the tensor product of scaling and wavelet functions are listed in Table

1 [Nejadmalayeri et al. (2015) [79], Vasilyev (2003) [118]]. In 2D, Figure 5 illustrates

the data dependencies of the direction-by-direction computation in the tensor product
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wavelet transform, which is important for efficient implementation of the transform.

Table 2: Wavelet families in 2D and 3D.

ψµ,ji,k (x) =


ψji (x)φjk(y), µ = 1

φji (x)ψjk(y), µ = 2

ψji (x)ψjk(y), µ = 3

ψµ,ji,k,m(x) =



ψji (x)φjk(y)φjm(z), µ = 1

ψji (x)φjk(y)ψjm(z), µ = 2

ψji (x)ψjk(y)φjm(z), µ = 3

φji (x)ψjk(y)ψjm(z), µ = 4

φji (x)φjk(y)ψjm(z), µ = 5

φji (x)ψjk(y)φjm(z), µ = 6

ψji (x)ψjk(y)ψjm(z), µ = 7

Figure 5: Wavelet families on a 2D grid are shown with the point
belonging to each family shaded in a darker color and its depen-
dencies drawn in a lighter shade of the same color. Individual
Family 1, Family 2, and Family 3 points are shown from left-to-
right. Rows and columns containing no data dependencies for any
of the three highlighted points have been omitted for clarity.

The higher dimensional fast wavelet transforms are performed by applying the

1D Lagrange interpolations in a sequence over the number of dimensions to form the

multi-dimensional wavelets from a tensor product of 1D scaling and wavelet functions.

In performing the two-dimensional fast wavelet transform at a particular grid level,

every row and column are operated on to calculate the wavelet coefficients for Family

1, Family 2, and Family 3 points. Family 1 and Family 2 are aligned with the x- and

y-axes, respectively, so they behave the same way as in the 1D wavelet transform;

however, Family 3 is different in that it requires data from the coarser level and
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the same level of resolution. After the transform is performed over each direction,

the same sequence is applied on the next grid level. The forward transform starts

the operation at the finest level and works towards the coarsest level. The inverse

transform is applied in a similar manner to the forward transform, except that the

operations are done in the exact reverse order starting from the coarsest grid to the

finest. The serial pseudo code for the forward and inverse transforms is shown in

Algorithms 1 and 2.

Algorithm 1 Forward Wavelet Transform

1: for each level j = Jmax − 1 : −1 : J0 do
2: for each direction n = 1:d do
3: Predict : djk = cj+1

2k+1 −
∑

l w
j
k,lc

j+1
2k+2l

4: Update: cjk = cj+1
2k +

∑
l w̃

j
k,ld

j
k+l

5: end for
6: end for

Algorithm 2 Inverse Wavelet Transform

1: for each level j = J0 : 1 : Jmax − 1 do
2: for each direction n = d:-1:1 do
3: Undo Update: cj+1

2k = cjk −
∑

l w̃
j
k,ld

j
k+l

4: Undo Predict : cj+1
2k+1 = djk +

∑
l w

j
k,lc

j+1
2k+2l

5: end for
6: end for

The pseudo code in Algorithms 1 and 2 ignores the complexity of parallel imple-

mentation. However, the forward and inverse wavelet transforms are readily paral-

lelized in a vectorized (SIMD) manner for all points existing on level j and requiring

operations in direction n. One important decision in the design of the wavelet trans-

form algorithms for parallel operation on a GPU is data organization for higher-order

wavelets in higher dimensions. This can take the form of one-dimensional or multi-

dimensional tiling of the data in memory. GPU shared memory and register allocation

sizes are small relative to the large number of concurrent threads, and they perform
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best when the interior data region is large compared to the halo region on the bound-

ary of the data. To illustrate this, consider a wavelet with a stencil width of six points,

which requires three halo points on each direction. A single Family 7 point in 3D

requires a 6x6x6 tile (216 points), which is a significant portion of the shared memory

available while maintaining full occupancy on current GPU architectures [NVIDIA

(2016) [81]]. For a 3x3x3 block of interior points (27 points), a 9x9x9 tile (729 total

points) is required in shared memory, which uses nearly all of the available shared

memory while maintaining a block size of 256 and 100% occupancy. The fraction of

points belonging to the interior is 0.037, which indicates poor data reuse and shared

memory performance. In contrast, a 1D tile containing 250 interior points and 6

halo points has an interior point fraction of 0.977. The much larger interior point

fraction for 1D tiling versus multi-dimensional tiling indicates that 1D tiling would

give better GPU shared memory performance. The 1D tile approach also comple-

ments the tensor product construction of the multi-dimensional wavelets used in this

work. Thus, the GPU-parallelized algorithms were designed using the 1D tile shared

memory optimization.

The dynamically evolving wavelet-adaptive grid used during the time integration

of a set of PDEs is implemented using the forward wavelet transform and a sequence

of deletion and inclusion steps. Given a set of existing points with specified function

values at all levels of resolution, the forward wavelet transform calculates the wavelet

coefficients for all points. The thresholding step marks for deletion all those points

whose wavelet coefficient is less than the user-prescribed wavelet tolerance ε. It is

important to note that these points are merely marked for deletion and not actually

deleted at this point. Any point may potentially be added back to the set in the next

two steps of the algorithm. The points retained after the thresholding step together

with the points at the coarsest grid level are called the set of essential points.

Next, a zone of buffer points is populated around all of the essential points in
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order to allow the solution of the PDEs to evolve and/or sharpen over a single time

step. This is the only part of the algorithm that allows for grid refinement. The buffer

zone width is chosen based on how much the solution can evolve in one time step,

which is typically limited by the Courant-Friedrichs-Lewy (CFL) number of unity in

time-accurate transient simulations. For this reason, the buffer zone is created by

considering each essential point and including immediately adjacent points on the

same level and one level finer in all directions [Vasilyev and Bowman (2000) [119]].

Note that if the wavelet coefficient on a buffer point does not become significant after

a time integration step, it may simply be deleted in the next threshold operation.

The PDEs are solved on each of the essential and buffer points. This typically

requires the computation of various spatial derivatives and in this work finite dif-

ferences are used. To provide support for these calculations, derivative points are

inserted into the grid at each level of resolution, if they do not already exist. These

points are initialized with zero wavelet coefficients. It is important to note that when

physical values are computed for these points with the inverse wavelet transform, the

values are interpolated to within the specified wavelet tolerance ε.

The operations used to select the essential, buffer, and derivative points are purely

local and so the resulting set of points may not include all of the points necessary for

wavelet interpolation. The next step is to add in all of the necessary interpolation

support points for all of the point sets in a recursive identification procedure starting

from the highest level. This procedure is called the reconstruction check [Vasilyev

and Bowman (2000) [119]]. Once done, any remaining essential points still marked

for deletion are actually deleted from the set. The inverse wavelet transform is then

applied to the final set of points to recover the physical values on the wavelet-adaptive

grid.

The PDEs of interest to this work are the governing equations described in Equa-

tions 1-4. These equations are solved using the method of lines by computing the
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right-hand-side of the governing equations on each of the essential and buffer points.

All derivatives are computed using a centered finite difference scheme, with biased

stencils near the boundaries, and with a user-defined order. The resulting system of

ordinary differential equations is shown in Equation 17 with obvious notation.

∂u

∂t
= G(t,u) (17)

These equations are integrated in time for a high-speed compressible flow problem

using either the explicit second- and third-order Total Variation Diminishing (TVD)

Runge-Kutta schemes from Gottlieb and Shu (1998) [48] or the low-storage Runge-

Kutta schemes from Kennedy et al. (2000) [60].

The overall time-dependent wavelet-adaptive solver algorithm is outlined in Algo-

rithm 3. The grid is adapted after every global time step, but remains fixed during

the advancement of Equation 17. When using the Runge-Kutta integration schemes,

the grid is held fixed for all intermediate stages in a global step.

Algorithm 3 Time-dependent wavelet-adaptive solver outline.

1: Given ε and tfinal
2: for m=0 to tfinal do
3: Solve Equation 17 with a suitable time integration scheme
4: Perform forward wavelet transform
5: Threshold wavelet coefficients
6: Insert buffer zone points
7: Insert derivative points
8: Perform reconstruction check to ensure interpolation support on all point sets
9: Delete remaining thresholded points
10: Perform inverse wavelet transform
11: end for

3.3.4 Grid Compression

The first characteristic of the wavelet-adaptive grid that will be demonstrated is grid

compression. Figure 6 shows the result of applying the 1D wavelet transform on

an approximate Heaviside step function. The approximation is a hyperbolic tangent
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function defined on the domain x = [0, 1] with a finite transition region. A wavelet

tolerance of ε = 10−4 was used in the transform. The red grid points indicate the

essential points retained by the wavelet transform. The black grid points are the

excluded points in a uniform grid at each level. In this test case, 69 essential points

were used in the wavelet grid to represent this function compared to a uniform grid

at the highest level of 8,193 points, for a compression ratio of 118.

Figure 6: A one-dimensional hyperbolic tangent function with its as-
sociated wavelet adaptive grid. The wavelet tolerance is ε = 10−4.

To visually demonstrate the large span of length scales resolvable with the wavelet

method, a 2D multiscale test function is defined in Equation 18 to contain significant

features on length scales varying by six orders of magnitude. The wavelet representa-

tion of the function (wavelet tolerance ε = 10−7) is shown in Figure 7. The smaller-

scale features of the result are made visible by zooming in on individual peaks that

have the same base function defined on a smaller length scale and centered on the

peak. The wavelet representation contains significant wavelet coefficients on length

scales varying by six orders of magnitude. There are approximately 3.3 million to-

tal points in the wavelet grid compared to a uniform grid of 983, 0412 points, for a

compression ratio of O(105).
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Figure 7: The 2D multiscale demonstration function used to demonstrate

the ability of the wavelet-adaptive grid to capture length scales varying

by six orders of magnitude.

f(x, y) = cos(40πx) cos(40πy) exp(−64
√
x2 + y2)+

0.05 cos(1200πx) cos(1200πy) exp(−25000
√
x2 + y2)+

0.002 cos(30000πx) cos(30000πy) exp(−1500000
√
x2 + y2)

(18)

To demonstrate the compression capabilities in 3D, the example function described

by Equation 18 is extended to a third dimension, as shown in Equation 19. Typically,

a function is visualized in three spatial dimensions by mapping the function value

to a color at each point. In this case, however, the ray-casting technique of Meyer-

Spradow et al. (2009) [75] is used to more effectively highlight the structure of the

solution, as shown in Figure 8. This technique highlights regions of specified gradient

magnitudes, which produces an effect similar to iso-surfaces located in regions with

larger gradients. The relationship between this visualization technique and the one

used in Figure 7 is illustrated in Figure 9. Due to the size of the 3D solution and

memory limitations, symmetry is used to reduce the domain size by a factor of 8, while

the following results are calculated for the full domain. There are approximately 2

billion total points (250 million per octant) in the wavelet grid compared to a uniform

grid of 983, 0413, for a compression ratio of O(108). This 3D function demonstrates the

compression capabilities of the wavelet-adaptive grid for solution fields with extremely
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localized features; however, it should be noted that the compression ratio tends to

decrease as finer scales occupy a larger fraction of the domain. The compression

performance will depend on the physics of problem being solved.

f(x, y) = cos(40πx) cos(40πy) cos(40πz) exp(−64
√
x2 + y2 + z2)+

cos(1200πx) cos(1200πy) cos(1200πz) exp(−25000
√
x2 + y2 + z2)+

cos(30000πx) cos(30000πy) cos(30000πz) exp(−1500000
√
x2 + y2 + z2)

(19)

Figure 8: The 3D multiscale demonstration function used to demonstrate

the ability of the wavelet-adaptive grid to capture length scales varying

by six orders of magnitude. The volume rendering (generated by the

Voreen framework of Meyer-Spradow et al. (2009) [75]) highlights selected

gradient magnitudes of Equation 19.

41



Figure 9: An illustration of the relationship between the 2D and 3D mul-

tiscale demonstration functions and visualization techniques. The volume

rendering highlights selected gradient magnitudes of Equation 19, which

in effect is similar to highlighting iso-surfaces of the function. The ability

to visualize locations of steep gradients (e.g., density) in a volume is well-

suited to displaying the liquid-vapor interface in nucleate boiling problems.

The volume rendering is shown on the left, a 2D example is recovered by

extracting the plane at z = 0 (middle), and the visualization technique

used in Figure 7 maps function values on the plane to the z-coordinate

(right).

Figure 10 illustrates the effectiveness of wavelets to isolate detail in a 2D image

from a nucleate boiling experiment. The grayscale images on the right show the mag-

nitudes of the wavelet coefficients on each level of resolution throughout the domain.

Each quadrant of this wavelet decomposition plot has a one-to-one correspondence to

the 2D wavelet families enumerated in Table 2 and is related to the vertical (Family

1), horizontal (Family 2), and diagonal (Family 3) features of the original image. Each

upper-left quadrant in the wavelet decomposition plot contains the decomposition of

the next finer level, and each level of the wavelet transform picks up additional finer

details in the boiling image. The scaling and wavelet operations can also be inter-

preted as low- and high-pass filters applied between adjacent levels of resolution. This

representation stems from the early development of wavelet methods and their roots
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in signal and image processing [Mallat (2008) [73]]. The wavelet decomposition plot

highlights the localization of grid refinement about the liquid-vapor interface and the

sparseness of the grid over the remainder of the domain. The localized structures of

bubble formations in nucleate boiling make it a prime candidate for effective wavelet

representation.
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Figure 10: Multi-level wavelet representation of a 2D image from a nucleate boiling
experiment with a small heater placed in the middle of a water tank [Boziuk and
Glezer (2013) [14]]. The lower-left image shows the original nucleate boiling image
with a vapor plume rising due to buoyancy effects. The lower-right image shows the
results of multi-level wavelet decomposition. The upper-right shows a schematic of the
separation of points by 2D wavelet family in the multi-level wavelet decomposition.
The number preceded by ‘L’ indicates the level and the number preceded by ‘F’ is
the wavelet family.
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3.4 Verification and Validation

3.4.1 Error Properties

The error caused by compressing a data set with an adaptive wavelet transform and

then reconstructing the values with an inverse transform is demonstrated using the

test function defined in Equation 20 and shown in Figure 11. This function was chosen

because it requires additional levels of refinement with the scaling and wavelet basis

functions used in this work, in contrast to a polynomial function of lower order than

the scaling and wavelet basis functions. Additionally, Equation 20 was used by other

research groups [Holmstrom (1999) [51], Vasilyev (2003) [118], Wirasaet (2007) [126],

Paolucci et al. (2014) [85]], so the various results can be easily compared. This test

function demonstrates the wavelet reconstruction error relative to the user-prescribed

error tolerance and the derivative convergence properties.

f(x, y) = exp{−200[(x− 1

2
)2 + (y − 1

2
)2]}+

1

5
sin(2πx) sin(2πy) (20)

Figure 11: (Left) The 2D reconstruction test function. (Right) The wavelet-
adaptive grid point representation of the test function separated by local resolu-
tion levels.

The quality of the wavelet representation is controlled by the user-defined wavelet
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tolerance ε. This control involves a trade-off between grid compression and recon-

struction accuracy. The left side of Figure 12 shows the maximum absolute error as

a function of the wavelet tolerance for wavelets of order 4–10. The solid line is the

one-to-one correspondence between the maximum error and the wavelet tolerance.

The right side of Figure 12 is a plot of the maximum error versus the number of

essential points retained by the wavelet transform for the different wavelet orders.

The reconstruction error decreases and the number of points retained increases as the

wavelet tolerance is decreased.

The derivative error is measured by comparing the discrete derivative values (using

a centered finite difference formulation with the same order as the wavelets) to the

evaluated analytical derivative of Equation 20. The same procedure is repeated for

the second derivative. The results for the maximum error and the number of essential

points required to represent the solution for wavelets and finite difference formulations

of order 4–10 are shown in Figure 13. The same trends are seen as in the error for the

function, but the error is about an order of magnitude higher for the first derivative

for a given number of points and almost seven orders of magnitude higher for the

second derivative. The overall order of accuracy of the method can be limited by

either the wavelet or finite difference order of accuracy. While the order of accuracy

of the wavelets and finite differences can be varied independently, the case where the

two orders of accuracy are commensurate is shown here.

Figures 12 and 13 show that higher-order wavelets and finite differences produce

much less error with significantly fewer grid points compared to lower-order wavelets.

This reduces the compute time for higher-order wavelets due to the lower point count,

but this benefit is somewhat offset by the increased number of time steps required

for higher-order finite difference formulations due to the Courant–Friedrichs–Lewy

stability condition. Depending on the time integration scheme used and the problem

being solved, there is an optimum trade-off between the order of accuracy and this
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time-step restriction to obtain the minimum time-to-solution. The 8th-order wavelets

require two orders of magnitude fewer points than 4th-order wavelets, but the increase

in order only stiffens the domain of dependence requirement for hyperbolic problems

by a factor of two for interior points. It should be noted that this effect is worsened if

the same order of accuracy for the finite differences is maintained all the way to the

boundaries through the use of biased stencils. In the context of domain decomposition

and larger parallel computations, this optimum will be affected and will tend to favor

a lower-order stencil than in the single-GPU case due to halo region sizes associated

with each stencil size. This effect will be investigated in future work.

Higher-order wavelets allow error tolerances to be prescribed closer to machine

precision while maintaining a smaller grid size, which is desirable from both compu-

tational performance and accuracy perspectives. This is demonstrated using wavelet

and finite difference representations of varying but equal orders for the test function

defined by Equation 20 with the specified wavelet tolerance fixed at 10−12. The total

grid point count and the relative extent of each point type for various wavelet orders

is shown in Figure 14. This shows the potential work savings of higher-order wavelets

since the point count is reduced by a factor of 500 going from a 4th to a 10th-order

wavelet for this test case.

The next three subsections present the results from three validation problems used

to demonstrate the accuracy of the compressible part of the wavelet-based solver. All

of these test cases use 4th-order wavelets and 4th-order finite differences. The accuracy

of the derivatives near the boundaries is maintained using biased 4th-order stencils in

these locations. The wavelet tolerance is ε = 10−4.

The computing performance of the compressible part of the wavelet-based solver

when higher-order wavelets and finite differences are used will be discussed in § 3.5 of

this chapter.
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(a) (b)

Figure 12: (Left) The maximum absolute error versus the user-prescribed wavelet tol-
erance for various wavelets orders. The solid line is a one-to-one relationship between
the two values. (Right) The maximum absolute error versus the number of essential
points, indicating that higher-order wavelets provide significantly better compression
of the solution. The convergence rate for each order matches the expected slope.

Figure 13: (Left) The maximum absolute first-derivative error
versus the number of essential points. (Right) The maximum
absolute second-derivative error versus the number of essential
points. The convergence rate for each order matches the expected
slope.
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Figure 14: The point-type characteristics required to hold a
wavelet tolerance of 10−12 by setting ε with varying, but equal
orders for the wavelets and the finite difference formulations us-
ing the test function defined by Equation 20. (Left) The relative
point-type population versus wavelet order. This indicates the
relative memory cost for the different points. Since an individ-
ual point may serve several purposes depending on neighboring
points (e.g., being an essential point and a derivative point re-
quired by a neighbor), the categorization priority is determined
with essential points leading and derivative interpolation support
being last. The legend indicates the priority level with the most
important at the top and proceeding in descending order. (Right)
The total number of points versus the wavelet order.
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3.4.2 Shock Tube Problem

A common numerical benchmark for compressible flow solvers is the flow in a shock

tube. Figure 15 shows a simple schematic of this experiment consisting of a pipe with

a diaphragm in the middle separating a gas with a high pressure and density on the

left and the same gas at a low pressure and density on the right.

When the diaphragm is released, a shock front occurs between the high- and low-

density gases at the diaphragm location. The shock moves to the right compressing

the low-density gas, while a rarefaction wave moves to the left expanding the high-

density gas. In between these two waves there is a contact interface between the two

original gases.

Driving Gas Driven Gas

Diaphragm

Adiabatic
Reflecting

Wall

Adiabatic
Reflecting
Wall

Figure 15: A simplified schematic of a shock tube experiment is shown. The di-
aphragm is broken (removed) instantaneously at the simulation start time.

For an inviscid, non-conducting fluid, the flow is governed by the compressible

Euler equations, which have an analytical solution that was studied in great detail

by Sod (1978) [103]. This problem is now commonly referred to as the Sod Shock

problem. The inviscid solution has the rarefaction wave and true discontinuities for

the contact interface and the shock, all moving at specific speeds. The details of

the analytical solution can be found in Sod (1978) [103]. For a real gas, with small

but finite values for viscosity and thermal conductivity, the location and motion

of the characteristic flow features still follow the inviscid model, but the property

discontinuities now have a finite thickness.

In the present test case, air is modeled as a two-component (79N2:21O2), calori-

cally perfect ideal gas with the viscosity and thermal conductivity of air at 20 °C. The

mass diffusion of each species into the mixture is modeled using a Schmidt number
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of 0.7. The flow is one dimensional to compare with the analytical solution and so

viscous interactions with the sidewall of the tube are ignored. The tube ends are

adiabatic and perfectly reflecting. The initial conditions from Paolucci et al. (2014)

[85] are a uniform initial temperature of 300 K, a high pressure of 1000 kPa, and a low

pressure of 100 kPa. The initial pressure at the diaphragm position was smoothed

using a hyperbolic tangent function with a characteristic dimensionless width of 10−3.

The shock tube has a length of 0.001 m, and the simulation was run up to 49.987 µs,

which is enough time to clearly identify the rarefraction wave, the contact disconti-

nuity, and the shock front before reaching the end of the shock tube.

All of the results from the 1D wavelet simulation compared very well to the in-

viscid analytical solution. For example, both density profiles are shown in Figure

16. Note that the wavelet simulation has fully resolved the contact and shock layer

thicknesses using 10 levels of grid refinement. The transition region at the contact

discontinuity arises from two sources. First, the continuous initial smoothing func-

tion had a transition region thickness on the order of 0.005. Second, the presence of

viscous and mass diffusion cause further spreading of the transition region over the

entire duration of the simulation. At this point in time, the transition region thick-

ness has increased by a factor of 5, to about 0.025. These physical diffusion effects

also operate in the shock layer region, except that the shock counteracts the effects

of diffusion due to the nonlinear-steepening of the wave [Toro (2013) [112]]. In this

example, 193 grid points were required to represent the solution compared to 15,361

points in a uniform grid, resulting in a compression factor of 80.

To fully verify that the wavelet simulation worked correctly in all directions, the

same problem was run with the 1D flow aligned in the x-, y-, and z-directions. The

results were identical in all cases.

The Sod Shock problem has traditionally been used to measure the performance

of numerical methods in capturing the correct locations of shocks fronts and other
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features in compressible flows. In particular, it highlights the amount of artificial

viscosity required by shock-capturing schemes near the shock and contact disconti-

nuities. In the wavelet simulation, these features were fully resolved without the use

of any shock capturing schemes or artificial viscosity.

Figure 16: The computed density profile for the 1D flow in a shock
tube compared to the analytical result for one instant in time. The
contact discontinuity is enlarged in the upper-right plot, and the shock
is enlarged in the lower-right plot. Note the difference in length scales
in the enlarged plots.

3.4.3 Richtmyer-Meshkov Instability

The Richtmyer-Meshkov instability occurs when a planar shock wave accelerates an

interface between two fluids of different densities. When the shock interacts with a

bubble of lighter fluid, the instability is directly forced by the baroclinic torques caused

by the misalignment of the density and pressure gradients at the interface. The re-

sulting motion of the interface later develops into secondary shear-driven instabilities.

This problem is presented here as a qualitative assessment of the wavelet simulation’s

ability to capture the essential physics of a complex multispecies compressible flow,

and its ability to provide significant grid compression during the evolution of the

solution.

The physical domain for this 2D simulation is shown in Figure 17. The non-

dimensional height and width of the domain is one unit by four units, respectively.
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The top and bottom boundaries are symmetry planes (lines), and the left and right

boundaries are rigid, adiabatic walls. A helium bubble with a diameter equal to one is

located as shown in the figure. It is surrounded by air and the density ratio between

the two gases is approximately 8. The instability is driven by a normal shock wave,

initiated just before the helium bubble by the bursting of a thin diaphragm. The

initial conditions for this flow are the the same as in the previous Sod Shock problem.

Helium Bubble Air

Th, Ph Tl, Pl

Adiabatic

Reflecting

Wall

Adiabatic

Reflecting

Wall

Driving Gas Driven Gas

Figure 17: A simplified schematic of the Richtmyer-Meshkov instability problem in
a shock tube with a helium bubble surrounded by air. The diaphragm is broken
(removed) instantaneously at the simulation start time.

Figure 18 shows a snapshot of the density field a short time after the shock wave

has passed the bubble. The bubble itself has been split into two pieces connected by a

thin interface. Interfacial motions caused by secondary shear-induced instabilities can

also be observed. The structure and evolution of this simulated flow is in qualitative

agreement with the helium-air experiment in Giordano and Burtschell (2006) [46].

The wavelet-adapted grid at this time required approximately 820,000 points com-

pared to about one billion for a uniform grid with the finest resolution, for a com-

pression ratio of 1205.
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Figure 18: The density field in the Richtmyer-Meshkov insta-
bility arising from a 2D, viscous, shock-bubble interaction.
At this time, the initially circular helium bubble has been ef-
fectively split into two separate bubbles and secondary shear-
induced interfacial instabilities have occurred. While solved
non-dimensionally, if the domain is scaled to a one meter
length, the finest grid spacing would be 15 µm. The top por-
tion of the plot shows the wavelet-adaptive point representa-
tion of the density and the bottom shows the reconstructed
density field on a uniform grid.

3.4.4 Supersonic Flow Over a 2D Wedge

The supersonic flow of an inviscid, non-conducting, perfect gas over a 2D wedge with

a half-angle of δ is the last numerical validation problem. This flow has an analytical

solution, which makes it useful for this purpose. The test configuration is shown in

Figure 19, in which the flow is from left to right and the wedge half-angle is 15°.

The wavelet simulation of this steady flow ignores viscous effects at the top and bot-

tom walls and uses simple inflow and outflow conditions at the left and right walls,

respectively. The computational expense of this simulation was decreased by using

a first-order upwind stabilization scheme [Swanson and Turkel (1992) [106]]. This

scheme introduces numerical dissipation to the solution, which artificially limits the

required resolution near the oblique shocks. The strict error-control properties of the

wavelet simulation are diminished as a result; but this trade-off between computa-

tion expense and resolution shows the flexibility of the simulation to choose between

accuracy and larger domain sizes on a problem-by-problem basis.
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State 1 State 2

Oblique Shock

α
δ

Figure 19: The 2D wedge configuration in a numerical supersonic wind tunnel exper-

iment.

The explicit, analytical oblique shock wave relations for this problem can be found

in Zucrow and Hoffman (1976) [132]. For reference, the oblique shock wave angle

relations are shown in Figure 20 for a range of wedge half-angles and free stream

Mach numbers.

Figure 20: The oblique shock wave angle for

a range of free stream Mach numbers and

wedge half-angles.
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The simulation was run to steady state for a given inlet (free stream) Mach num-

ber. The angle α of the attached oblique shock was then measured, and the pressure,

density, and temperature ratios across the shock were evaluated. Also, the minimum

free stream Mach number leading to the formation of a detached bow shock was

determined.

Figure 21 shows a Schlieren plot of the density field for a wavelet simulation with

a free stream Mach number of 1.8. The plot shows the magnitude of the density

gradient and highlights the shock structure in the flow. The wavelet adapted grid for

this case required approximately 5.7 million points compared to about 450 million for

a uniform grid with the finest resolution used, for a compression ratio of O(102).

Figure 21: Numerical Schlieren plot for a 2D supersonic flow

over a 15° wedge at a free stream Mach number of 1.8.

Results from the wavelet simulation for three different free stream Mach numbers

are tabulated in Table 3 and compared to the analytical results. The simulation

results are in excellent agreement with the analytical values (in parentheses). As

shown in Figure 20, the oblique shock waves detach from the wedge at some mini-

mum Mach number. This detachment and the subsequent formation of a bow shock

is predicted by the wavelet simulation near the expected Mach number. Note that

small deviations between the quantities of interest are expected since the analytical
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solution is for a thermally non-conducting, inviscid, perfect gas, while the numerical

solution includes these physical diffusion effects. In particular, viscous effects near

the stagnation point at the front of the wedge have a larger range of influence at the

lower Mach numbers tested.

Table 3: Tabulated results for the 2D supersonic flow over a wedge with a half-

angle of 15° for a range of free stream Mach numbers. The analytical results are in

parentheses.

Free Stream Mach Number Pressure Ratio Temperature Ratio Density Ratio Shock Angle (°)

1.6 - - - detached X

1.62 2.280 (2.277) 1.289 (1.285) 1.769 (1.772) 63.1 (63.3)

1.7 2.151 (2.150) 1.262 (1.261) 1.704 (1.705) 56.2 (56.0)

1.8 2.135 (2.138) 1.259 (1.258) 1.696 (1.699) 51.3 (51.3)

3.5 Performance

The performance of the wavelet-adaptive method on the GPU architecture is strongly

dependent on optimization for thread-level or Single Instruction Multiple Data (SIMD)

parallelism. GPUs work particularly well for uniform grid applications since memory

locations of neighboring points can be directly computed and all points within a ker-

nel typically perform the same operations, thus avoiding warp divergence. Adaptive

methods lose some of these benefits since neighboring points are not known a pri-

ori. As a result, special care is needed when implementing these methods in order

to minimize warp divergence and maximize memory-access coalescence. GPUs also

require a large number of active threads to effectively hide memory latency. Thus,

GPU performance has a significant dependence on problem size up to a certain point,

at which the performance starts to scale more linearly with total point count.

The problem size performance of the wavelet-adaptive method is measured using

the elapsed wall time during one global time step in the evolution of an array of

cylindrical shocks (i.e., an extension of the 1D shock tube problem) to systematically

vary the problem size with the number of grid refinement levels maintained at 10

57



additional levels. The performance is measured with all levels of resolutions up to

the finest levels containing points. The grid refinement level is held fixed since the

wavelet transform requires more work as the number of refinement levels increases,

as can be seen in Algorithm 1. Thus, the fixed resolution level allows the problem

size dependence in the wavelet method to be isolated. The elapsed wall time for the

computation is normalized by the corresponding value for the smallest problem size

considered of approximately 75,000 points. Problems smaller than this are relatively

simple, such as linear heat diffusion in two dimensions, and are easily (and more

quickly) solved using uniform grid methods. Note that above this minimum problem

size, the streaming multiprocessors on the GPU are fully occupied to ensure effective

utilization of the available GPU resources by hiding memory latency.

Figure 22 shows the performance for the wavelet-adaptive method with varying

problem sizes. The most notable result is the super-linear scaling with problem size

that remains constant. This trend indicates higher computational efficiency with

larger problem sizes on the GPU and efficient use of the GPU cache system.

The normalized wall time performance of the wavelet solver for the 2D Richtmyer-

Meshkov instability problem versus the level of grid refinement from a base grid of

65x17 is shown in Figure 23. This is compared to a uniform grid solver on the

same problem with equivalent resolution. For this case, the normalization reference

point is the value at the intersection of the two performance curves. The GPU-

based uniform grid solver used in this comparison has the same code base as the

wavelet solver, but all of the wavelet operations (and overhead) are disabled so it

is equally well-optimized for the GPU to establish a fair comparison to the wavelet-

adaptive method. At problem sizes near the size of the base grid and the first few

levels of refinement, the simulation may run up to four times faster on uniform grids

than on wavelet-adaptive grids because of the additional overhead required by the
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Figure 22: Super-linear scaling for
varying problem size at a fixed num-
ber of refinement levels. The refer-
ence curve has a slope of unity.

Figure 23: Comparison of the nor-
malized run times for GPU-based
wavelet-adaptive grids and uniform
grids of equivalent resolution. The
test case uses the 2D Richtmyer-
Meshkov instability problem with a
base grid of 65x17. The dotted line
is an extrapolation based on the to-
tal point count.
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wavelet transforms for adapting the grid. However, the performance for the wavelet-

adaptive method is better after five levels of refinement (corresponding to uniform

grids with approximately 106 points). After six levels of refinement, the uniform

grid problem at an equivalent resolution to the wavelet-adaptive grid required too

many points to fit in the available GPU memory. The uniform grid wall time was

then linearly extrapolated past this point based on the assumption that all streaming

multiprocessors on the GPU are fully occupied and that the number of additional

compute blocks is proportional to the number of points. At eleven levels of refinement

(obtained with a wavelet tolerance of ε = 10−4), the wavelet simulation runs about

100 times faster than an equivalent uniform grid simulation (if adequate memory

was available to run it). This increased performance at high refinement levels is

also indicated in Figure 22 because the grid point count increases with the level of

refinement.

For 3D problems, the performance is even better. The grid refinement level nec-

essary to favor wavelet-adaptive grids is smaller since the total point count increases

as n3, where n is the node count along each domain dimension, and the trade-off

point (i.e., the intersection of the curves) occurs near the same value for the total

point count. A well-resolved, uniform grid problem size in 3D could easily surpass the

available GPU memory making such simulations impossible to perform. The wavelet-

adaptive method allows these larger problems to be solved on a reasonable amount of

computing hardware and at a significantly reduced cost. This makes 3D simulations

much more accessible to the average user.

Further performance savings can be realized by increasing the order of accuracy

of the wavelet-adaptive method. This is illustrated using the 2D Richtmyer-Meshkov

instability problem with higher-order wavelets and finite difference formulations. In

the following results, the finite difference order of accuracy is always commensurate

to the wavelet order of accuracy. The wall time performance relative to 4th-order
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accuracy is shown in Figure 24. The wall time increases by a factor of 2.5 going from

4th- to 10th-order accuracy. However, the total point count decreases by a factor of

500 as shown in Figure 14. The net effect is that higher-order accuracy reduces the

overall cost of the wavelet simulation due to the large reduction in the number of

points required to represent the solution.

It should be noted that the performance benefit of a higher-order wavelet method

running on a single GPU may not translate to multi-GPU implementations. There

are additional communication expenses between the multiple GPUs and so the overall

performance will largely depend on the ability to hide this communication expense by

overlapping the computation time. Due to larger stencils and larger halo region sizes,

a higher-order wavelet method may prematurely limit strong scaling performance for

multi-GPU implementations. This will be investigated further in future work.

Figure 24: The performance of the
wavelet solver on the 2D Richtmyer-
Meshkov instability problem versus
the order of accuracy of the wavelets
and finite-difference stencils. The
wavelet and derivative stencil sizes
corresponding to higher-order ac-
curacy require additional computa-
tional overhead.
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3.6 Conclusions

The current work is the first known entirely GPU-based wavelet-adaptive compressible-

flow solver that completely avoids data transfers over the PCI-express bus during

solving. The first working version of the solver was presented by Forster and Smith

(2014) [41]. Other groups [Rossinelli et al. (2011) [92]] investigated the acceleration of

wavelet-adaptive-grid frameworks by offloading some of the work to GPUs. However,

that approach incurs significant overhead with PCI-express bus transfers between

the host CPU and the GPU, although Rossinelli et al. (2011) [92] and Van Rees et

al. (2013) [117] hide much of this overhead (˜75%) with concurrent and expensive

multiphysics calculations on the CPU.

A data set with localized features can be accurately resolved with a wavelet-

adaptive multiresolution representation using a smaller number of points compared

to a uniform grid with the same resolution. A 1D example of a step function showed

a compression ratio of 118. Similar examples for 2D and 3D showed compression

ratios up to O(105) and O(108), respectively. These large grid compression ratios

significantly reduce memory requirements and the number of computations required

during a simulation of a set of PDEs. This means that a wavelet-adaptive grid on

a desktop workstation with a single GPU can represent highly resolved solutions to

complex three dimensional PDE problems that would otherwise be inaccessible.

The numerical accuracy of the wavelet representation of a test function and the

finite difference evaluations of its derivatives was verified. The function error scales

almost linearly with the user-specified wavelet tolerance and can reach to almost

machine precision with wavelets of order 8–10. Another benefit of high-order wavelets

is the reduction in the number of points needed to represent the function. This number

decreased by a factor of 500 going from 4th- to 10th-order wavelets. The same trends

were seen for the derivative error in the function using finite difference formulations

with the same order of accuracy as the wavelets. The absolute errors though were
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an order of magnitude higher for the first derivative and up to seven orders higher

for the second. The sensitivity of the solution with respect to the wavelet tolerance

ε depends on the physics of the problem, and the error can be controlled by varying

this single parameter.

The GPU-based, wavelet-adaptive, compressible-flow solver was shown to perform

well on several compressible, high-Mach number flows. These validation cases showed

that the solver could resolve all of the relevant flow features to within an accuracy

measured by the user-specified wavelet tolerance. An important feature of these

problems, in relation to ultimately solving multiphase flow problems, is that they

demonstrate the ability to efficiently capture shock waves and contact discontinuities

in the solution.

The GPU-based, wavelet-adaptive, compressible-flow solver was compared to a

uniform grid finite-difference, compressible-flow solver that also runs entirely on the

GPU. With the 2D Richtmyer-Meshkov instability problem as a test case, the time-

to-solution for the GPU-based simulation was two orders of magnitude faster that the

uniform grid solver, with three orders possible at maximum resolution. While this is

a projection due to memory limitations when using uniform grids, part of the moti-

vation behind the wavelet method is to create an optimized grid to reduce memory

requirements so that larger problems can be solved with the available memory. Fig-

ure 23 shows the extent to which this is possible. By comparing the performance of the

traditional uniform grid solver and the wavelet-adaptive-grid solver, the reader can

estimate the possible performance gains based on their own particular solver choices

and hardware configurations for various applications based on the performance of

existing finite-difference simulations.

In the comparison of the GPU-based uniform grid solver and the GPU-based

wavelet-adaptive solver, it was observed that the wavelet-adaptive, finite-difference

method has an order of magnitude lower average throughput of grid points per unit of
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time than the uniform grid solver running on the same GPU. The lower performance

is caused by the computing overhead from GPU warp divergence and data lookup.

This extra work is more than offset by the reduced problem sizes offered by the grid

compression from the wavelet-adaptive method. These results show that the wavelet-

adaptive solver performs well on a GPU, a modern hardware architecture that relies

heavily on SIMD parallelism and use of reduced cache sizes. This is a important step

forward in the continued growth of wavelet-adaptive methods for use in advanced

HPC systems.
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CHAPTER IV

ALL-MACH NUMBER COMPRESSIBLE FLOW

4.1 Introduction

Multiphase flows contain a variety of physical processes, including vaporization, con-

densation, turbulence, and flow and interfacial instabilities. These complex flows may

be nearly incompressible or experience significant compressibility effects as in high-

speed flows, sometimes within a single domain. Historically, these two Mach number

regimes required the use of separate solvers to efficiently and accurately handle the

physical problem. This separation creates difficulties if the two regimes occur within

a single domain, which is the case for the problem of nucleate boiling with acoustic

forcing of the liquid-vapor interface introduced in Chapter 3 of this thesis, which cov-

ers the development of the wavelet-adaptive compressible solver that runs entirely on

the GPU architecture.

The present chapter extends the work from Chapter 3 to adapt it to solving the

compressible Navier-Stokes accurately at all Mach numbers, which is made possible

with the introduction of a dual-time stepping method with preconditioning. This

work continues towards the end goal of a GPU-based all-Mach number solver for

multiphase flows with phase change that may have physical processes with disparate

spatial and temporal scales. The disparity in temporal scales is efficiently handled us-

ing a preconditioned dual time-stepping procedure combined with a spatially adaptive

flow solver implemented entirely on the Graphics Processing Unit (GPU) architecture

using the Wavelet-Adaptive Multiresolution Representation (WAMR). The focus of

the present work is on the verification of the solver for flows approaching the incom-

pressible limit. The benefits of dual-time stepping are three-fold: 1) it allows for
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the solution of nucleate boiling with and without acoustics using the same solver; 2)

it complements the error control of the wavelet-adaptive spatial discretization since

it allows for strict error control over the residuals of the equations during the ad-

vancement of physical time; and 3) the implicit dual-time stepping procedure can be

efficiently implemented on the GPU architecture.

Direct numerical simulation of multiphase flows, particularly low-speed compress-

ible flows, require numerical methods that accurately discretize the governing equa-

tions in a stable manner and are minimally dissipative. Additionally, the co-located

grid arrangement used in this work suffer from odd-even decoupling in the incom-

pressible limit, which requires special care and is addressed in this chapter. The

typical numerical errors present in such simulations consist of truncation and aliasing

errors. Aliasing error was first pointed out by Phillips (1959) [87] and was attributed

to the non-linear convective terms of the Navier-Stokes equations combining two low-

wavenumber modes in a way that generates higher wavenumber modes than the grid

can resolve. These high-wavenumber modes are interpreted by the grid as long-wave

solution features. Such solution features are completely unphysical and numerical

in nature because the underlying grid cannot support wavelengths in the flow that

are less than two grid spacings. A carefully designed numerical scheme should either

dampen or inherently cancel these discretization errors from the convective term in

order to provide a stable and physically correct solution.

The convective term in the Navier-Stokes equations can take on several different

forms that are analytically equivalent, including the advective, divergence, skew-

symmetric, or rotational form; however differences arise when they are discretized,

and they can take on significantly different properties. On uniform grids and with

the skew-symmetric convective operator, Kwak et al. (1975) [64] showed that the

integral primary and secondary conservation properties (i.e., momentum and kinetic

energy) are discretely preserved. Blaisdell (1991) [8] demonstrated the numerical
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differences between the advective and skew-symmetric forms and identified aliasing

errors that occur in the advective form. Zang (1991) [129] showed that the rotational

form also suffers from aliasing errors while the skew-symmetric form provided better

performance. Blaisdell et al. (1996) [9] demonstrated that the skew-symmetric form

provides some cancellation of aliasing errors through numerical tests and Fourier anal-

ysis. The improved numerical properties of the skew-symmetric form are important in

constructing a minimally dissipative simulation since they reduce the observed alias-

ing error and reduce the reliance on dissipative filtering techniques. It was pointed

out in Canuto et al. (2012) [17] that aliasing errors are reduced with increasing grid

resolution; however, even with wavelet-adaptive grids it is better to prevent the prob-

lem to the largest extent possible using more sophisticated discretization techniques

rather than relying on brute force to fix the problem through grid adaptation alone,

since the latter method can be prohibitively expensive in 3D. In addition, higher-order

finite differences exhibit more aliasing as they approach spectral-like behavior [Des-

jardins et al. (2008) [28]], which reinforces the need to use the skew-symmetric form

of the convective term. Thus, the present work addresses the issue of discretization

error by solving the skew-symmetric form of the compressible Navier-Stokes equations

on a wavelet-adaptive grid.

In addition to reducing aliasing error, it is used to avoid the odd-even decoupling

behavior associated with non-staggered grids with a co-located variable arrangement

and to reduce aliasing errors with high-order spatial discretization. This avoids the

need for explicit filtering [Cook and Cabot (2005) [20]] and/or a Rhie-Chow type

interpolation procedure that implicitly adds high-order artificial dissipation [Rhie

and Chow (1983) [91], Shen et al. (2001) [99], Date (2003) [24], Zhang et al. (2014)

[130]]. The skew-symmetric form allows for the use of less numerical dissipation than

the divergence form of the convective term requires, which is important for the study

of multiphase flows with interfacial instabilities (e.g. nucleate boiling) since artificial
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dissipation can prevent the formation or significantly alter the long-time behavior of

the flow and interfacial instabilities.

The time integration scheme used in this work is the preconditioned dual-time

stepping technique first introduced by Jameson (1991) [54] and improved upon by

Buelow (1995) [16] and Oefelein (1997) [82] to solve the compressible Navier-Stokes

and Euler equations at low Mach numbers with non-uniform grids and real fluid prop-

erties. Since the compressible form of the governing equations permit acoustic waves,

solving at low Mach numbers creates stiffness due to the disparity of the convective,

diffusive, and acoustic time scales. Depending on the physics of the problem and the

quantities of interest, it may be desirable to take the maximum allowable time steps

to sufficiently resolve the physics at one of those time scales. This requires the use of

an implicit time integration scheme, which can provide a time accurate solution for

the physical processes that are temporally fully resolved but neglect the time accu-

racy of the faster processes. An example of decoupled time scales would be the small

effect of acoustics on low-speed flow over an airfoil where only the accuracy of the

convective time scale is of interest. In addition to selectively resolving physical time

scales, it is also necessary to precondition the system of equations to allow for the

accurate solution at very low Mach numbers (e.g., Ma = 10−6). This dual-time step-

ping procedure also requires some modifications to work with the wavelet-adaptive

grid and to perform well on the GPU architecture.

The next chapter in this thesis extends the present work to include a level-set

model for multiphase flows. The end result will be a temporally and spatially accurate

multiphase simulation of the compressible Navier-Stokes equations at all Mach num-

bers. This simulation will use existing numerical techniques that have been carefully

modified and designed to work together to provide accurate solutions and reduced

simulation times on modern GPU computing hardware. The objective at the end

of this three-part series is to perform high-fidelity simulation of low- and high-speed
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compressible, multiphase flows within the same solver, particularly for applications

of nucleate boiling flows with acoustic interfacial forcing. Note that for such flows,

the compressible form of the Navier-Stokes equations is actually more faithful to the

underlying physics of the problem than the incompressible formulation, particularly

when the operating conditions may violate the assumptions of the Boussinesq ap-

proximation and/or when acoustic effects are significant. The performance of this

minimally dissipative, wavelet-adaptive, co-located finite-difference solver on GPU

architectures is a crucial step in the path towards exascale computing.

4.2 Governing Equations

In these simulations, the physics for the evolution of a compressible, viscous flow is

governed by the following set of conservation equations for mass, momentum, energy,

and species transport. These are the same equations as those in Chapter 3 § 3.2, but

the skew-symmetric form of the convective terms are used here.

∂ρ

∂t
+
∂ρuj
∂xj

= 0 (21)

∂ρui
∂t

+
1

2

(
∂ρuiuj
∂xj

+ uj
∂ρui
∂xj

+ ρui
∂uj
∂xj

)
= − ∂p

∂xi
+
∂τij
∂xj

+ ρgi (22)

∂ρE
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(
∂ρEuj
∂xj

+ uj
∂ρE

∂xj
+ ρE

∂uj
∂xj

)
+
∂puj
∂xj

= − ∂qj
∂xj

+
∂uiτij
∂xj

+ ρuigi (23)

∂ρYk
∂t

+
1

2

(
∂ρYkuj
∂xj

+ uj
∂ρYk
∂xj

+ ρYk
∂uj
∂xj

)
= −∂Jj,k

∂xj
(24)

Here, ρ is the density, ui is the velocity vector, p is the pressure, τij is the viscous

stress tensor, gi is the acceleration of gravity vector, E is the total specific energy

defined as the sum of the specific internal and kinetic energy (E = e + 1
2
uiui), and

qj is the heat flux. In the last equation for species transport, Yk is the mass fraction
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for the kth species and Jj,k is the diffusive flux of species Yk. Identically, the sum

of the mass fractions must be unity. To ensure this k − 1 species are explicitly

tracked, and the final component is calculated as Yk = 1 −
∑k−1

m=1 ρmYm. This final

component is typically chosen to be an inert component (e.g., nitrogen) in the mixture

to minimize the effects from accumulation of numerical error arising during species

transport [Poinsot and Veynante (2005) [89]].

These conservation equations are augmented by a set of constitutive equations for

the viscous stress, heat flux, and mass diffusion. Thermodynamic properties will use

an equation of state appropriate to the material. For example, air could be modeled

as a calorically perfect ideal gas.

4.3 Numerical Methods

4.3.1 Wavelet-Adaptive Method

The governing equations 21–24 are discretized using a wavelet-adaptive grid and a

centered finite difference scheme is used for the derivatives. The present work uses

second-generation wavelets implemented through a Fast Wavelet Transform that uses

pth-order Lagrange interpolating polynomials to determine the wavelet coefficients.

The method is discussed in detail in Chapter 3 of this thesis. The result of that

work is a GPU-based wavelet-adaptive solver for high-speed, compressible flows; a

traditional, explicit, compressible flow solver.

4.3.2 Dual-time Stepping

To develop a GPU-based wavelet-adaptive solver for low-speed compressible and in-

compressible flows, a preconditioned dual-time stepping method is introduced to allow

accurate solutions to very low Mach number flows (e.g. 10−7 ≤ Ma ≥ 10−2). This

mach number range is not accessible to a traditional explicit compressible solver like

the one developed in Chapter 3.

The dual time-stepping approach, also known as pseudo-transient continuation,
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allows for implicit integration of the physical-time system of equations while main-

taining the simplicity and computational performance characteristics of an explicit

scheme [Buelow (1995) [16], Kelley and Leyes (1996) [59], Oefelein (1997) [82]]. This

is achieved by introducing a pseudo-time derivative to the system of time-dependent

Partial Differential Equations (PDEs). The pseudo-time derivative goes to zero in the

pseudo-time, steady-state limit of the modified system, which then recovers the origi-

nal time-dependent system. Since only the pseudo-steady-state condition of the mod-

ified system is important in recovering the original system, the system of equations in

pseudo-time can be modified (without loss of accuracy) to optimize the convergence

to steady-state in fewer pseudo-time iterations [Jameson (1991) [54], Jameson (2015)

[55]]. The accelerated convergence is achieved through a preconditioning step that

modifies the characteristics (i.e., propagation speeds) of the pseudo-transient system

to alleviate stiffness and improve the condition number of the system to allow for more

efficient time marching in pseudo-time. This approach can be a good alternative to

more general non-linear implicit solvers since the dual time-stepping method takes

into account the underlying structure of the PDEs and can succeed where standard

implicit solvers may stagnate around local minima [Kelley and Leyes (1996) [59]].

Additionally, the preconditioner contains the “Mach-squared” factor that is observed

in asymptotic analysis of the governing equations in the incompressible limit [Muller

(1998) [78], Oefelein (1997) [82]], which allows the solution of the compressible form

of the governing equations at all Mach numbers.

The GPU architecture is particularly sensitive to memory access patterns and

has limited cache per thread compared to other current HPC architectures [Woolley

(2013) [127]]. These characteristics allow GPUs to work well with explicit solvers,

but their performance is less than ideal for non-linear implicit solvers because of the

sparse matrix and general matrix preconditioning algorithms that are used [Saule et

al. (2013) [95], Li and Saad (2013) [69]]. This decline in performance is largely the
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result of memory latency problems. In contrast, the dual time-stepping procedure is

especially attractive for use with the GPU architecture because it avoids these latency

bottlenecks while maintaining the high-performance characteristics (e.g., data access

patterns) of explicit methods. Thus, dual time stepping offers the stability of implicit

time integration methods together with improved convergence rates in pseudo-time

using specialized preconditioning.

At each physical time step, the preconditioned pseudo-time system is integrated to

steady-state to recover the original time-dependent equations. The process is repeated

at each physical time step until the end of the simulation. This process requires an

inner pseudo-time integration loop inside of the physical time integration, and this is

illustrated in Figure 25.

Figure 25: Dual time-stepping schematic. The advancement of physical-time is ini-
tiated with the specification of the initial conditions and is advanced through an
implicit integration formulation until the final simulation time. Within each physical
time step, another pseudo-time system of equations (original equations with a pseudo-
time derivative and modified to remove stiffness) is integrated in pseudo-time until
the original system of equations is satisfied at the n + 1 phsyical time. Steady-state
of the pseudo-time system is determined by a user-defined tolerance and the pseudo-
time integration is terminated once the maximum residual of the original system of
equations is decreased below this tolerance.
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Equation 25 introduces the pseudo-time derivative, and it is written in flux vector

notation and assumes the divergence form of the convective terms for convenience and

clarity; however, all of the concepts are immediately applicable to the skew-symmetric

form of the equations presented in Equations 21-24. Each of the vectors are defined

in Equation 26.

Γ
∂Q

∂τ
+
∂U

∂t
+
∂E

∂x1
+
∂F

∂x2
+
∂G

∂x3
= 0 (25)

Q = { p, u, v, w, T, Yk }T

U = { ρ, ρu, ρv, ρw, ρEt, ρYk }T

E = { ρu, ρuu+ p− τ11, ρuv − τ12, ρuw − τ13, (ρEt + p)u, ρYku }T

F = { ρu, ρvu− τ12, ρvv + p− τ22, ρvw − τ23, (ρEt + p)v, ρYkv }T

G = { ρu, ρwu− τ13, ρwv − τ23, ρww + p− τ33, (ρEt + p)w, ρYkw }T

(26)

Here, Q is the vector of primitive variables, U is the vector of conserved variables,

E is the vector of fluxes in the x1-direction, F is the vector of fluxes in the x2-direction,

G is the vector of fluxes in the x3-direction, Γ is the preconditioning matrix, τ is

the pseudo-time, p is the pressure, T is the temperature, and {u, v, w} are the

components of the ui velocity vector. The remaining variables are consistent with the

governing equations defined in Equations 21-24.

The modified system of equations is defined in terms of primitive variables, Q,

for three reasons. First, the primitive variable formulation in terms of pressure and

temperature simplifies fluid property calculations with multiple species since a non-

linear iterative solve for temperature from energy can be avoided. The second reason

is in the formulation of the preconditioning matrix, where the pressure variable helps

isolate and eliminate the pressure singularity problem at low Mach numbers. The

final reason has to do with stiff equations of state. For example, in the case of liquid
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water it is easier to accurately determine the density from the pressure rather than

trying to evaluate the pressure from the density. This is because the large physical

stiffness (i.e., ∂p/∂ρ) of liquid water combined with a density-based equation of state

will magnify small numerical errors in the density field during the evaluation of the

pressure. As a result, large variations in the calculated pressure can be observed.

Equation 25 can be rearranged to place all of the physical terms and the inverse

preconditioning matrix on the Right-Hand Side (RHS), as shown in Equation 27. The

RHS contains the residual of the original equations and it is driven to zero (within a

user-specified tolerance) as the modified system is marched towards steady-state and

the pseudo-time derivative approaches zero. This process requires a suitable approx-

imation of the physical time derivative. In this work, the physical time derivative

is approximated with the 2nd-order Backwards Difference Formulation (BDF) shown

in Equation 28. This particular scheme is chosen for the compromise of low-storage

requirements, formal order of accuracy, and its large absolute stability region in the

complex domain. Alternative approximations can be made, and this has been inves-

tigated by Jameson (2015) [55].

∂Q

∂τ
= −Γ−1

(
∂U

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z

)
(27)

∂U

∂t
=

1

∆t

(
3

2
Un+1 − 2Un +

1

2
Un−1

)
(28)

The physical time derivative approximation requires the storage of the solution

at previous time steps, which creates some difficulty for a wavelet-adaptive grid that

can change at every time step. This problem is addressed using a sliding window

where the grid for the set of stored solutions at the three different times is formed

so that all of the grid points at the n + 1 time step are present in the two previous

time steps. This is easily and efficiently achieved by feeding the wavelet coefficients

from the stored solutions and the current solution through the thresholding operation
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where wavelet interpolation will reconstruct the missing points in the grids of the

earlier time steps. This method provides additional control over retaining grid points

from previous times that are not present in the grid at the n + 1 time step through

specification of the wavelet tolerance for each grid. The reconstruction of missing grid

points at subsequent time steps is illustrated in Figure 26.

The rest of the wavelet-adaptive procedure remains unchanged from Chapter 3 of

this thesis. The buffer zone extent remains unchanged even for physical acoustic and

convective CFL numbers larger than unity since the grid is adapted at each iteration

of the inner loop, which is required to take a pseudo-time step with a modified-CFL

number of less than or equal to unity. This work assumes a physical CFL number

of less than or equal to unity since the goal is to obtain time-accurate solutions of

multiphase flows. It should be noted that there are multiple CFL numbers, both

acoustic and convective, depending on the time scale of interest, and the physical

time step should be chosen accordingly. Additionally, one needs to consider the von

Neumann Number (VNN) to account for the diffusion velocities in a similar manner.

Figure 26: The backwards difference formulation for the time derivative requires grid
points to exist at a particular location in space and at each time step used in the time
derivative approximation. The grid is adapting at every time step throughout the
solution process, and these grid points may or may not be present at previous times.
If they are missing, they need to be wavelet-interpolated, within the user-specified
tolerance, from neighboring data at the same time step. This figure illustrates the
data dependency on previous grids and solutions, and the red points indicate possible
missing points in the BDF approximation.

The pseudo-time integration loop, also known as the inner loop, uses an explicit
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time integrator. Alternative methods for inner loop integration have been investigated

by Oefelein (1997) [82], and Jameson (1991) [54], but in the context of GPU-based

solvers explicit formulations are preferred over implicit for computational performance

as discussed above. A 4th-order Runge-Kutta scheme is preferred for the inner loop

due to its compromise of storage requirements, accuracy, and stability for larger step

sizes, but lower order Runge-Kutta schemes work as well. The stability region of

some Runge-Kutta methods are shown in Figure 27 and the 4th-order Runge-Kutta

stages and Butcher coefficients are shown in Equation 29. Note that the stability

range of the 4th-order Runge-Kutta scheme allows for CFL numbers of greater than

unity, which is acceptable for the inner loop since only the steady-state condition of

the pseudo-time system is of interest. It is also possible to increase the buffer region

around essential points in the wavelet grid to allow for larger-than-unity CFL pseudo-

time steps. While this would help to reduce the number of inner loop iterations, the

cost (i.e., memory requirements) of doing so is prohibitively expensive.

Figure 27: The absolute stability regions are shown for the (left) 1st-order Runge-Kutta
method, (middle) 2nd-order Runge-Kutta method, and (right) 4th-order Runge-Kutta
method. The stable region is highlighted in yellow. The 4th-order Runge-Kutta scheme
provides the largest absolute stability region and the highest accuracy of the methods
considered here.
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Q0 = Qm

Q1 = Q0 +
1

2
∆τL(Q0)

Q2 = Q0 +
1

2
∆τL(Q1)

Q3 = Q0 + ∆τL(Q2)

Qm+1 = Q0 +
1

6
∆τL(Q0) +

1

3
∆τL(Q1) +

1

3
∆τL(Q2) +

1

6
∆τL(Q3)

(29)

The superscript n is reserved for physical time step indexing (see Equation 28)

while the superscript m is reserved for pseudo-time step indexing (see Equation 29).

The Un+1 solution used in the construction of Qm at the beginning of each outer

loop (i.e., physical time step) is initialized by simply copying the Un solution. Using

a linear extrapolation from the Un and Un−1 solutions was investigated, but it was

found that negative densities and mass fractions were sometimes estimated, depending

on the solution and the time derivatives of the solution vector. Copying the previous

solution proved to be more robust and did not measurably affect the average number

of iterations compared to the linear extrapolation.

4.3.3 Preconditioning

Following the work of Oefelein (1997) [82], a single parameter preconditioner is used

for real fluids assuming a generalized compressibility model. This allows for optimiz-

ing the preconditioning for a variety of simulation conditions and a wide range of

working fluids. The preconditioner from Oefelein (1997) [82] is presented in Equation

30. In this work, an analytical inverse preconditioning matrix was derived for an ar-

bitrary number of species, as shown in Equation 32. This explicit form of the inverse

preconditioning matrix avoids the need to numerically invert the non-symmetric, non-

positive definite, non-banded, preconditioning matrix for general systems with varying

numbers of species. The result is an improvement in the accuracy, robustness, and

computational efficiency of the algorithm, especially with an increasing number of
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species.

The impact of this result is significant for the GPU performance since a generalized

matrix inversion routine would require too many registers (cache) to allow full occu-

pancy since each grid point requires a matrix inversion. This can be demonstrated

by considering two examples, one with two-component 3-dimensional flow and the

other being the reacting 3-dimensional flow of hydrogen and oxygen with 9 species

[Oefelein (1997) [82]]. These systems of equations would require a 6x6 matrix inverse

(36 elements) and a 13x13 matrix inverse (169 elements), respectively. Each thread on

current GPUs can only store 16 double-precision numbers in registers before reduced

processor occupancy is required due to resource constraints, which is far less than ei-

ther example matrix size. With the analytical inverse shown in Equation 32, only the

non-zero entries in the matrix need to be calculated in the preconditioning function,

and these can be done in stages to further reduce resource requirements for improved

GPU performance. Since preconditioning is a completely local operation (i.e., not

requiring information from neighboring grid points), the order that the grid points are

processed does not matter, so the data access is completely coalesced for maximum

performance. The result is that the preconditioning accounts for less than 1% of the

total wall time per physical simulation time step, and the computational performance

of the explicit time stepping that is used in the inner loop remains unchanged. The

overall performance of the method will be discussed in the next section.
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Γ =
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. . .
...

γYN−1
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0 0 0 −ρYN−1

T
ZT −ρYN−1R1 + ρ · · · −ρYN−1RN−1


(30)

Here, γ is the ratio of specific heats, ht is the total enthalpy, cp is the specific heat

capacity at constant pressure, Z is the compressibility factor, R is the gas constant,

and the remaining variables are defined in Equation 31.

β =
γεc2

1 + (γ − 1)ε

ZT =

[
1 +

T

Z

(
∂Z

∂T

)
p

]

Rk =
Rk −RN

R

[
1 +

R

(Rk −R)Z

(
∂Z

∂Yk

)
p,T,Yj ,...(j 6=k)

]

Rk =
ZRu

Wk

R =
N∑
i=1

RkYk

Hk = hk − hN

(31)
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The term β/γ that appears in Equation 30 and Equation 32 allows for the modified

propagation speed of acoustic waves in the pseudo-time system to reduce the stiffness

at low Mach numbers. The term ε is varied based on local conditions to minimize the

disparities in the characteristics of the governing equations and bring the condition

number of the modified Jacobian matrix as close to unity as possible. The stiffness is

considered to be completely removed (i.e., all characteristics propagate at the same

speed) when the condition number is unity, which means a single global time step

is sufficient for all of the characteristics. In the case of Ma = 1 flow, ε evaluates

to unity, and the preconditioning matrix simplifies to the unmodified transformation

matrix that simply converts between primitive and conserved variables. In the case

of low Mach number flows and a physical CFL time that is large with respect to the

acoustic time scale, ε is based on a few criteria relating to the local Mach number,

the unsteadiness of the problem, and the relative importance of viscous effects (i.e.,

the resulting diffusion velocities relative to the acoustic and convective propagation

speeds). The choice of ε requires a careful analysis of the eigenvalues of the system

of governing equations to design the preconditioning factors, shown in Equation 33,

to optimize the condition number at all flow conditions. This work has been carried

out in detail by Buelow (1995) [16] and Oefelein (1997) [82]. The choice of ε in this

work is based on the results in Oefelein (1997) [82] and summarized in Equation 33.
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εinviscid =


ε2 : M ≤ εmin

2M2 : εmin < M < 1

1 : M ≥ 1

εunsteady =
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c2

[(
Lx1
∆tπ

)2

+

(
Lx2
∆tπ

)2
]

+M2
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(
u2δx1(δx1 − 1)

u2(δx1 − 1) + c2
,
v2δx2(δx2 − 1)

v2(δx2 − 1) + c2

)
ε = min (1.0, max (εinviscid, max (εunsteady, εviscous)))
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(
ν,

ν

Pr
,
ν

Sck

)
1

u

CFL

V NN

δx2 = max

(
ν,

ν

Pr
,
ν

Sck

)
1

v

CFL

V NN

(33)

Here, ν is the kinematic viscosity, Pr is the Prandtl number relating heat and

momentum diffusion, Sck is the Schmidt number for the kth-species that relates the

mass diffusion to the momentum diffusion. εmin is typically restricted to a minimum

of 10−8 ≤ εmin ≤ 10−5 to prevent dividing by zero near stagnation points. This

choice does not affect the physical solution, but it may have an influence on the

convergence rate of the inner loop at the slowest moving parts of the flow field. These

preconditioning factor criteria account for the effects of momentum, energy, and mass

diffusion processes on the overall convergence rate.

4.3.4 Performance

The overall performance of the preconditioned dual-time stepping method is strongly

dependent on the problem being solved, the quantities of interest, and the required

tolerance on the residuals. For time-accurate simulations, it has been the author’s

experience that the reduction in physical time steps through larger CFL numbers is

generally accompanied by an increase in the number of inner-loop iterations required
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for convergence of the residuals to some extent. The improvement in time-to-solution

generally increases as the convective speeds decrease. It should be noted that phys-

ical diffusive effects are relatively small in the applications considered here, and the

preconditioning can have a large effect in reacting flow where very large gradients in

species concentration (i.e., large diffusion velocities) can be generated. The tolerances

held for high accuracy even in the very low-speed regions of the flow in this work have

an impact on the number of inner-loop iterations that may be larger than other use

cases for dual-time stepping seen in the literature. Like other non-linear solvers, it is

expected that the iteration count for convergence will increase as tolerances are made

more stringent. The preconditioned dual-time stepping method is always much faster

in finding steady-state solutions than the explicit compressible solver. Additionally,

the direct comparison of the implicit dual-time stepping method with an explicit

integration method is an “apples-to-oranges” comparison since the preconditioned

dual-time stepping method can obtain highly accurate solutions to even the lowest

speed flows (e.g., Ma 10−8). Such solutions are simply not possible to find using an

explicit time integrator for the compressible form of the Navier-Stokes equations due

to the pressure singularity problem as the Mach number approaches zero.

The physical time derivative calculation and the preconditioning step accounts for

less than 1% of the total wall time per physical simulation time step, and the compu-

tational performance of the explicit time stepping that is used in the inner loop has

remained unchanged. Thus, the overall computational expense of the preconditioned

dual-time stepping method is competitive with the explicit schemes introduced in

Chapter 3 of this thesis. This removes the bottleneck from the computing architec-

ture that is commonly seen with implicit methods on parallel computing architectures.

The overall computational expense of the implicit dual-time stepping method relative

to an explicit integration is effectively a function of the problem-dependent number

of inner-loop iterations required for convergence. With this in mind, the cost of

83



the preconditioned dual-time stepping method relative to explicit integrators can be

characterized by Equation 34.

∆twall,implicit = ∆twall,explicit

(
CFLexplicit
CFLimplicit

)
Ninner (34)

Here, ∆twall,implicit is the wall time required to solve a given problem to the

final simulation time by the implicit, preconditioned dual-time stepping method,

∆twall,explicit is the wall time required to solve a given problem to the final simulation

time by an explicit time integrator, CFLexplicit is the maximum acoustic CFL number

allowed by the explicit time integrator stability, CFLimplicit is the CFL number chosen

to be unity for the time scale of interest (e.g., acoustic, convective, or diffusive scales)

for time-dependent problem or very large (e.g., CFL̃1000) for steady-state problems,

and Ninner is the number of inner loop iterations required to reach convergence.

4.4 Verification and Validation

Chapter 3 of this thesis provided verification of the accuracy of the wavelet recon-

struction of a function at any point in the domain to the user-prescribed tolerance,

convergence of the derivative operators, and the solution of high-speed, viscous, mul-

tispecies compressible flow test cases. This chapter provides verification for the so-

lution of the compressible Navier-Stokes equations in the low-Mach number regime

using dual-time stepping and preconditioning. This builds towards the full verifi-

cation and validation of an all-Mach number compressible flow solver that will be

applied to low-speed multiphase flows and presented in Chapter 5 of this thesis.

The lid-driven cavity flow demonstrates that the compressible Navier-Stokes equa-

tions can be solved accurately at very low Mach numbers (i.e., nearly incompressible

flow), the isentropic vortex test case highlights the dissipation properties of the nu-

merical method since there is no physical dissipation, and the Taylor-Green vortex

demonstrates that the solver can be applied to fully resolve complex flow problems
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that are sensitive to the accuracy and dissipation properties of the method.

The isentropic vortex test case highlights the dissipation properties of the numer-

ical method since there is no physical dissipation, the lid-driven cavity flow demon-

strates that the compressible Navier-Stokes equations can be solved accurately at

very low Mach numbers (i.e., nearly incompressible flow), and the Taylor-Green vor-

tex demonstrates that the solver can be applied to fully resolve complex flow problems

that are sensitive to the accuracy and dissipation properties of the method.

4.4.1 Lid-Driven Cavity

A common numerical benchmark to demonstrate the accuracy of an incompressible

flow solver is the flow inside a rectangular cavity with a sliding lid. A simplified

schematic of this problem configuration is shown in Figure 28. While this test prob-

lem has been solved and published by numerous authors, the present work will be

compared to the original finite difference computations of Ghia et al. (1982) [44] and

the more accurate spectral results from Botella and Peyret [11]. Note that Ghia et

al. (1982) [44] and Botella and Peyret (1998) [11] solved the incompressible form

of the Navier-Stokes equations, while the present work solves the fully compressible

form of the equations with a lid speed that corresponds to a Mach number of 0.001

in order to limit the effects of compressibility. The equations of motion for the flow

are discretized using 4th-order accurate finite differences over the interior and at the

boundaries for all operators. The finest grid resolution is limited to 2872 to prevent

excessive refinement near the corner singularities and the relative wavelet tolerance

is held to 10−8.
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Figure 28: An idealized configuration of a 2D lid-driven cavity flow. The velocity
conditions are provided in the diagram, and all of the walls are treated as adiabatic.

The present results for contours of velocity magnitude with a lid Reynolds number

Re = 1000 are shown in Figure 29. The expected flow pattern with a primary

clockwise vortex and the two secondary corner vortices are displayed. The Mach

number of the flow throughout the domain is in the range 0 ≤ Ma ≤ 0.001, which

demonstrates the ability of the present preconditioned dual-time stepping method to

accurately solve for very low-Mach number flows.

Figure 29: (Left) Velocity magnitude contours for Re = 1000 and Ma = 0.001.
(Right) Selected streamlines to show primary and secondary vortices.
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The results for Re = 1000 from Ghia et al. (1982) [44], Botella and Peyret (1998)

[11], and the present work are shown in Figure 30 and tabulated in Tables 4 and 5.

All of the solutions are in close agreement, although there are some small differences

between the two benchmark solutions and the present work. The average relative dif-

ference in the horizontal and vertical velocities along the two centerlines is about 3%,

with a maximum difference of 9% near the bottom wall, and 6% near the left and right

side walls. Differences of this size are expected due to the different numerical methods

used, the special treatment of the singularities in Botella and Peyret (1998) [11], and

mostly because the present work solves the compressible Navier-Stokes equations. A

compressible flow will behave slightly differently compared to an incompressible flow

near the corner lid singularities. In particular, near the upper-right corner where

the moving lid meets the stationary side wall the fluid density will increase and the

resulting wall jet will behave differently compared to the incompressible case. This

slight difference will also influence the resulting flow field in the main body of the

cavity, especially near the side and bottom walls as seen here.

Figure 30: Velocities in a 2D lid-driven cavity with Re = 1000 and Ma = 0.001
based on the lid velocity. (Left) Vertical velocity along the horizontal centerline.
(Right) Horizontal velocity along the vertical centerline.
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Table 4: Tabulated vertical velocity along the cavity’s horizontal centerline for a a

2D lid-driven cavity with Re = 1000 and Ma = 0.001 based on the lid velocity.

x1 vGhia vBotella vwavelet

0 0 0 0

0.0312 0.21388 0.2279225 0.2148416

0.0391 0.27669 0.2936869 0.2777784

0.0469 0.33714 0.3553213 0.3373287

0.0547 0.39188 0.4103754 0.3911639

0.0937 0.51550 0.5264392 0.5124237

0.1406 0.42665 0.4264545 0.4198815

0.1953 0.31966 0.3202137 0.3134421

0.5000 -0.02526 -0.0257995 -0.0265117

0.7656 -0.32235 -0.3253592 -0.3205919

0.7734 -0.33075 -0.3339924 -0.3287515

0.8437 -0.37095 -0.3769189 -0.3657670

0.9062 -0.32627 -0.3330442 -0.3191815

0.9219 -0.30353 -0.3099097 -0.2962649

0.9297 -0.29012 -0.2962703 -0.2828520

0.9375 -0.27485 -0.2807056 -0.2676048

1 0 0 0
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Table 5: Tabulated horizontal velocity along the cavity’s vertical centerline for a a

2D lid-driven cavity with Re = 1000 and Ma = 0.001 based on the lid velocity.

x2 uGhia uBotella uwavelet

1 1 1 1

0.9766 0.65928 0.6644227 0.6602701

0.9688 0.57492 0.5808359 0.5756969

0.9609 0.51117 0.5169277 0.5108458

0.9531 0.46604 0.4723329 0.4653779

0.8516 0.33304 0.3372212 0.3294523

0.7344 0.18719 0.1886747 0.1842142

0.6172 0.05702 0.0570178 0.0546180

0.5000 -0.06080 -0.0620561 -0.0625550

0.4531 -0.10648 -0.1081999 -0.1079387

0.2813 -0.27805 -0.2803696 -0.2786154

0.1719 -0.38289 -0.3885691 -0.3777638

0.1016 -0.29730 -0.3004561 -0.2821754

0.0703 -0.22220 -0.2228955 -0.2064348

0.0625 -0.20196 -0.2023300 -0.1867353

0.0547 -0.18109 -0.1812881 -0.1667220

0 0 0 0

The lid-driven cavity was chosen as a test problem because it is a popular bench-

mark flow and it clearly demonstrates the ability of the preconditioned dual-time

stepping method to solve for an incompressible flow. However, the advantage of hav-

ing a wavelet adaptive grid was negligible for this particular problem. This is largely

due to the ill-posed velocity boundary conditions on the lid, and secondarily due to

the relatively small grid dimensions that were required to obtain an accurate solution;
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a grid size that did not leave much room for grid coarsening. The ill-posed boundary

conditions in this problem produce singularities in each of the upper corners where the

moving lid and the stationary wall velocity conditions are in conflict. When the lid is

impulsively started from rest at t = 0, relatively large pressure pulses emanate from

the lid and the top corners. The physical CFL number was chosen to be large to reach

steady-state more quickly, and the dissipative properties of the BDF time integration

scheme helped to eliminate these high-wavenumber initial transients. However, be-

fore that occurred these initial transient pressure pulses were reflected across the

cavity many times and temporarily required grid refinement nearly everywhere in

the domain. This behavior is typically not an issue for compressible flow solvers in

well-posed problems with consistent boundary and initial conditions; however, it can

be a problem in some cases (like the lid-driven cavity problem) because unlike the

incompressible Navier-Stokes equations, acoustics are permitted in these compressible

flow solutions.

The next two test cases in this work will clearly demonstrate both the effective-

ness of wavelet-adaptive grids combined with the preconditioned dual-time stepping

method and the accuracy of the flow solver.

4.4.2 Isentropic Vortex Transport by a Uniform Flow

The problem of a translating isentropic vortex in an inviscid fluid is a convenient test

case to measure the artificial dissipation present in a numerical scheme. The vortex

remains unchanged during the flow, aside from a pure translation, and so the final

vortex can be directly compared to the initial vortex. A survey of several vortex test

configurations can be found in Spiegel et al. (2015) [105]. The test case used here is

from Wang et al. (2013) [123]. This particular case uses the lowest Mach number out

of all the surveyed cases, thus it is the most demanding test for an all-Mach number

compressible flow solver. The flow configuration is a rectangular domain, as shown
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in the schematic in Figure 31. The fluid is air.

Isentropic Vortex

U∞

Figure 31: Vortex configuration in a uniform flow field of air.

The initial conditions for the flow are provided in Equation 35.

u = U∞ + δu

v = δv

T = T∞ − δT

P = ρRgasT

ρ = ρ∞

(
T

T∞

)1/(γ−1)

M∞ =
U∞√

γRgasT∞

δu = −(U∞β)
x2 − x2c

R
exp

(
−r2

2

)
δv = (U∞β)

x1 − x1c
R

exp

(
−r2

2

)
δT =

1

2cp
(U∞β)2 exp(−r2)

r =

√
(x1 − x1c)2 + (x2 − x2c)2

R

(35)

Here, u is the local velocity in the x1-direction, v is the local velocity in the x2-

direction, U∞ is the freestream velocity in the x1-direction, T is the temperature, P is

the pressure, ρ is the density, γ is the ratio of specific heats, and cp is the specific heat

capacity at constant pressure. Quantities with an infinity subscript are free stream

quantities and M∞ is the freestream Mach number. The quantities δu, δv, and δT are

the velocities and temperature related to the isentropic vortex flow, x1c is the vortex

center in the x1-direction, x2c is the vortex center in the x2-direction, r is the radial
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position from the vortex center, R is the characteristic length scale of the vortex, and

β is the vortex strength.

Air is modeled as an ideal gas with γ = 1.4, Rgas = 287.15 J/kg-K, and cp =

γ/(γ−1)Rgas. The rectangular computational domain has (x1, x2) ∈ [0, 16L]×[0, L],

with L = 0.1. The vortex is located at (x1c, x2c) = (0.05, 0.05) with a size R = 0.005

and strength β = 1/50. The freestream flow conditions are set at P∞ = 105 N/m2,

T∞ = 300 K, and M∞ = 0.05.

The work reported by Wang et al. (2013) [123] used periodic boundary conditions

from the left to right walls and from the top to bottom walls. In the present work,

the top and bottom walls are rigid, the left boundary is an inlet with the freestream

conditions, and the right is prescribed as an outflow boundary. The domain size is

very large compared to the size of the vortex and this change in boundary conditions

does not affect the flow. The equations are discretized using 4th-order accurate finite

differences over the interior and at the boundaries for all operators. The relative

wavelet tolerance is held to 10−8.

The time period flow this flow as defined by Wang et al. (2013) [123] is ts = L/U∞.

The test case was run for a time of 73.5ts. The duration of the simulation was simply

limited by the available computing resources; otherwise, the simulation could have

been run for a longer time period. The global kinetic energy conservation error

increased linearly over the duration of the simulation for a maximum relative error

of 1.1 × 10−3. The solution in the present work is inviscid, and there is no artificial

dissipation added to the central difference scheme and the time step was chosen with

a physical CFL of unity that also provides almost no numerical diffusion in this case.

This combined with very slight indications of the long-term instability described in

Wang et al. (2013) [123] may explain the very small increase in the global kinetic

energy over the long duration of the simulation. The vortex shape is well-preserved,

even at late times. The contour plots of the kinetic energy at the initial and final
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times are shown side-by-side in Figure 32. The error levels are low in comparison

with the high-order methods in the literature surveyed by Spiegel et al. (2015) [105].

Figure 32: The kinetic energy contours of the initial (left) and final (right) states are
shown with the freestream velocity component removed from the calculations to show
the vortex structure more clearly. There is a very small visible difference between the
two, which appears as a slight misalignment of the contours in the vertical direction.

4.4.3 Taylor-Green Vortex

The nearly incompressible Taylor-Green vortex is a popular turbulent cascade model

that tests a simulation’s ability to capture vortex dynamics, vortex decay, and a

transition to turbulence [Taylor and Green (1937) [110], Boyd (2001) [12], DeBonis

(2013) [27]]. The problem is initialized with a periodic set of large vortices in the

domain that contain a prescribed amount of kinetic energy. Since there is no external

forcing on the system the flow will eventually dissipate all of the initial kinetic energy

to reach a final quiescent steady state. The flow field evolves with the larger vortices

interacting, rolling up, stretching, and finally breaking down into turbulence. The

size and structure of the vortices depends on the Reynolds number and tends to create

smaller scales as the Reynolds number is increased.

The present test case is run at a Reynolds number of 400 and Mach number of

0.1 with the initial conditions shown in Equation 36. The adaptive grid requires only

approximately 9% of the points that would be required with a uniform grid with an
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equivalent peak resolution of 4813. The relative wavelet tolerance is prescribed at

10−4. The symmetry of the problem is utilized to reduce the computational expense

by simulating one octant of the domain, for a domain size of [0, π]3. The equations

were discretized using 4th-order accurate finite differences over the interior and at the

boundaries for all operators.

u(x, t0) = sin
(x1
L

)
cos
(x2
L

)
cos
(x3
L

)
v(x, t0) = − cos

(x1
L

)
sin
(x2
L

)
cos
(x3
L

)
w(x, t0) = 0

p(x, t0) = p0 +
ρ

16

[
cos
(

2
x1
L

)
+ cos

(
2
x2
L

)] [
cos
(

2
x3
L

)
+ 2
]

(36)

The kinetic energy dissipation rate and iso-surfaces of vorticity magnitude have

been provided in previous studies by other researchers at a Reynolds number of 400

[Brachet et al. (1983) [15], Yang and Pullin (2011) [128]]. Results have been reported

from both compressible and incompressible simulations, and they compare well due

to the low Mach number of Ma = 0.1. The results from Yang and Pullin (2011) [128]

were found using a pseudo-spectral simulation on a uniform grid with a 16th-order

exponential filter to dealias the solution. This numerical approach was applied to

solving a Lagrangian-like formulation of the flow to evolve a Vortex-Surface Field

(VSF). Owing to the fast convergence rates of the pseudo-spectral method, the se-

lective (high-order) dealiasing filter, and the VSF formulation, their results provide

a highly accurate, fully resolved baseline that is considered the reference solution for

this work.

The kinetic energy dissipation rate versus time and a volume rendering of kinetic

energy values near the peak dissipation rate are shown in Figure 33. The results are

in close agreement with those of Yang and Pullin (2011) [128]. As pointed out by

Shu et al. (2005) [101], it is important to realize that agreement in integrated global

quantities can be misleading since these quantities do not assess local error and may
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appear to be close even though the flow is under-resolved. This point is addressed

in the present work because the wavelet transform quantifies the local error at every

time step, thus ensuring that local accuracy is maintained in addition to the global

accuracy assessed by the time trace of the kinetic energy dissipation rate shown in

Figure 33.

Figure 33: The Taylor-Green vortex at Re = 400 and Ma = 0.1. (Left) The kinetic
energy dissipation rate ε as a function of time scaled on the convective time scale
t. (Right) The three-dimensional volumetric field of kinetic energy near the peak
kinetic energy dissipation rate (t = 7). The Voreen framework is used to generate
the volume renderings presented in this work [Meyer-Spradow et al. (2009) [75]].

The evolution of the vorticity magnitude iso-surfaces are reported in Figure 34.

The instances in time and iso-surface values are chosen for direct comparison to Yang

and Pullin (2011) [128]. Both the kinetic energy dissipation rate and the vorticity

magnitude iso-surfaces agree closely with the results from Yang and Pullin (2011)

[128].
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Figure 34: The evolution of the iso-surfaces of the vorticity magnitude |ω| in the
Taylor-Green vortex at Re = 400. The iso-surface locations have been reported at
specific values and times for comparison to the work of Yang and Pullin (2011) [128].
(a) t = 0, ω̂ = 0.6, (b) t = 1.5, ω̂ = 0.9, (c) t = 3, ω̂ = 0.6, (d) t = 4.5, ω̂ = 0.2,
(e) t = 5, ω̂ = 0.2, (f) t = 7, ω̂ = 0.6. ω̂ is the vorticity magnitude scaled by the
maximum value in the domain at each instant in time.
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4.5 Conclusions

The present work is the first to demonstrate an error-controlled, wavelet-adaptive,

all-Mach number solver that has been designed from the ground-up to run effectively

on the GPU architecture. The numerical methods were carefully chosen and devel-

oped to achieve both spatial and temporal error control while still maintaining high-

performance for both compressible and nearly incompressible flows. HPC hardware

is evolving to promote more thread-level parallelism, and the need for tightly cou-

pled development of the numerical methods and their implementation on a particular

hardware platform is becoming more important since even the most accurate solver is

less useful if it cannot perform well on modern computing platforms. Likewise, even

the fastest solver is less than useful if it does not provide sufficiently accurate results

for a particular application. Modern simulation development requires careful design

from the applied mathematics, physics, and computer science perspectives.

The three verification test cases presented in this chapter demonstrated the low-

dissipation properties and high accuracy of the wavelet-adaptive, preconditioned,

dual-time stepping flow solver in the low-Mach number regime. Several modifications

to existing techniques were implemented in order to accomplish this. First, the quasi-

skew-symmetric form of the convection terms in the governing equations was used to

prevent the odd-even decoupling seen in other co-located grid solvers. The wavelet-

adaptive grid helps to protect against a pitfall of using the skew-symmetric form

on under-resolved grids in which a significant amount of energy and other conserved

quantities is aliased to higher wavenumbers and subsequently dissipated [Kennedy and

Gruber (2008) [61]]. With the resolution provided by the wavelet-adaptive grid, the

dissipation of these aliasing errors had minimal impact on the solutions. Secondly, the

physical time derivative approximation for the dual-time stepping procedure requires

storage of previous solutions that each have a different adaptive grid configuration

from the current solution. This required modifications to the wavelet-adaptive grid
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strategy to ensure that all of the grid points are present to perform the point-wise

time derivative calculations. Finally, an analytical inverse preconditioning matrix

was derived for an arbitrary number of species in order to make the preconditioning

efficient on the GPU architecture with its limited amount of cache per thread. Prior

to this development, the preconditioning matrix required a numerical inverse to be

performed at each grid point, which is very resource intensive. The savings in com-

puting time from using the analytical inverse increases as the number of transport

equations (e.g., number of species) increases.

Chapter 5 of this thesis will describe the final steps in the development of the

wavelet method for use in a nucleate boiling simulation with acoustic forcing. It will

describe the addition of a level-set formulation to model a multiphase flow and the use

of general equations of state to properly enforce the mass, momentum, and energy

balances on fluid-fluid interface. This final combination of numerical techniques is

a novel approach in the development of a direct numerical simulation of nucleate

boiling with acoustic forcing. It offers high resolution and fidelity to the underlying

physics of the simulation and significantly reduced compute times for the simulation

of complex, 3D, multiphase flows on a single workstation.
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CHAPTER V

LOW-SPEED MULTIPHASE COMPRESSIBLE FLOW

5.1 Introduction

Multiphase flows arise in a number of applications, such as shock-droplet (bubble)

interactions, droplet impact, droplet atomization, film boiling, and nucleate boiling.

In most of these applications, the calculation of the effect of surface tension on the

motion of the interface is required in order to accurately represent the physics of

the system. To do this, numerical methods must be implemented to compute and

track the location of the interface, to determine the normal-vector orientation, and

to compute the curvature of the interface.

Interface tracking techniques generally fall into two categories: 1) explicit front-

tracking where the grid points follow the interface in a Lagrangian fashion, and 2)

implicit interface tracking where the location of the interface is computed directly on

an Eulerian grid. The level-set method is one form of implicit interfacing tracking

that uses a higher-dimensional representation of the interface in the form of a signed-

distance field. The main advantage of this method is that topological changes of the

interface are handled automatically. In contrast, explicit methods require remeshing

or mesh modification around topological changes, such as bubble merging or pinch-

off. The choice of which method to use in the present work must also consider the

computational performance of its implementation on the GPU architecture and its

compatibility with the wavelet-adaptive finite-difference method developed in the two

previous chapters.

There have been many successful implementations of explicit front tracking tech-

niques, such as the work by Unverdi and Tryggvason (1992) [116] for isothermal flows
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and Juric and Tryggvason (1998) [58] for boiling flows, and they have achieved very

high accuracy. Their work treats the fluid-fluid interface with a Lagrangian moving

mesh moving with the local flow velocity to avoid mass loss due to numerical diffusion.

They define a small transition region for fluid properties about the explicitly tracked

interface. This is in contrast to the level-set method, where the entire domain is

treated as one continuous fluid with a rapid transition in properties across the inter-

face that is advected in an Eulerian framework. An additional benefit of Tryggvason’s

implementation (2010) [113] is that subgrid (e.g., lubrication approximation) mod-

els can be used in place of fully resolving small gaps between bubbles and/or walls

with reasonable accuracy for large problems. Despite the success of the front-tracking

method, this approach is not used in the present work due to the incompatibility with

the structured, Cartesian wavelet-adaptive grid and the goal of efficiently perform-

ing simulations on the GPU architecture. Instead, the level-set method is used to

continue the development of a GPU-based, wavelet-adaptive, multiphase flow solver.

The level-set method as introduced by Osher and Sethian (1988) [83] uses the zero

level set of a field of signed-distance values (defined as the distance to the nearest

interface) to represent the interface. The motion and possible deformation of the

interface is performed by the flow advecting the signed-distance field. Because of the

form of this simple advection process, many numerical techniques developed for the

discretization of hyperbolic conservation laws can be used.

As the signed-distance field is advected by the flow it remains reasonably accu-

rate through periods of small deformation. However, over time the signed-distance

field becomes inaccurate, especially for large deformations. This occurs because the

signed-distance is not a conserved quantity. As the signed-distance field deteriorates

over time, the accuracy of normal vector and curvature calculations based on this

field also deteriorates. This problem can be remedied by periodically reinitializing

the signed-distance field. Reinitialization can be done in a number of ways, including
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fast-marching methods [Sethian (1996) [98]] or PDE-based reinitialization [Peng et al.

(1998) [86]]. These methods reconstruct the signed-distance field in a narrow band

about the interface while keeping the interface stationary during reinitialization. The

reason for only reinitializing in a narrow band about the interface is because this is

the only region where normal vectors and curvature need to be calculated (and are

well-defined). Thus, the method can be made more computationally efficient by not

recomputing the signed-distance everywhere in the domain. PDE-based reinitializa-

tion is chosen in the present work due to the ease of parallel implementation and the

simplicity of the approach.

Once the location of the interface is defined it must be modeled in the equations of

motion. The sharp interface model includes the interface as a 2D surface in the flow

with boundary conditions across the surface used to connect the two fluids and to

account for surface tension and phase change. This model creates a singularity in the

flow domain, which must be addressed in a numerical simulation. Sharp interfaces

have been approximated by many researchers. One successful method introduced

by Fedkiw et al. [40] is the Ghost Fluid Method. This method was designed for

compressible two-phase flow to eliminate the oscillations across the interface caused

by the discontinuous nature of the sharp transition. This method also uses a constant

extrapolation across the interface, which is a concern with the higher-order, error-

controlled framework developed in the present work.

The diffuse interface model avoids this singularity by approximating the interface

as a narrow, finite, and continuous transition between the two fluids. This model

creates some ambiguity in where to apply the surface tension forces since there is no

longer a sharp boundary. Thus, surface tension is applied in a narrow band about

the interface as determined by an approximate delta function. If a numerical method

can fully resolve this transition region, any problems with the discontinuity that are

seen in a sharp interface model will not appear. Since a wavelet-adaptive grid can
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provide this level of resolution, the diffuse interface model will be used in the present

work.

The implementation of the diffuse interface model is based on a simple idea; create

an interfacial transition region that is fully resolvable by the wavelet-adaptive grid.

The width of the transition region is chosen by the user as a compromise between

interface thickness and the computational expense incurred by the local level of res-

olution required about the interface. The order of accuracy (related to the number

of moments preserved) of the delta function used to include surface tension forces

is commensurate with the overall order of accuracy of the rest of the discretization

methods used (i.e., wavelet, finite-difference derivative, and boundary condition or-

ders of accuracy). Since the wavelet-adaptive method in the present work allows for

a very large amount of local refinement at the interface while maintaining reasonable

computational expense, the use of the diffuse interface model will maintain the high

overall order of accuracy of the framework developed in the present work.

Finally, the properties of the fluids on each side of the interface are determined

by separate equations of state. The property transitions across the interface are pre-

scribed as a mass-weighted average, where the mass fraction is approximated by a hy-

perbolic tangent function to provide a smooth transition through the diffuse interface

that is fully resolvable by the wavelet-adaptive grid. The compressible formulation

of the Navier-Stokes equations allows a single equation of state to be used, but at

the present time there is not a known fluid model that is accurate enough to handle

the dense liquid, transition, and superheated vapor regions and is computationally

suitable for the large number of evaluations that are required throughout the course

of a simulation, particularly for water. Thus, when using separate equations of state

for each fluid, source terms arising from the liquid-vapor phase change must be added

to the governing equations.

The incorporation of the level-set method for diffuse interfaces, surface tension,
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and phase-change source terms completes the development of the GPU-based, error-

controlled wavelet-adaptive finite-difference multiphase flow simulation started in

Chapter 3. In this development, numerical techniques were chosen, improved, and

implemented to work together to create a novel high-performance simulation that

runs entirely on the GPU architecture, an essential element in the current path to

predictive exascale computing [Ahern et al. (2011) [1]].

5.2 Governing Equations

In these simulations, the physics for the evolution of a compressible, viscous flow

is governed by the same equations as those in Chapter 4 § 4.2, including the quasi-

skew-symmetric form of the convective terms. To allow for a multiphase flow, the

momentum equation is modified to include a surface-tension force and the level-set

advection equation is included in the set, as shown.

∂ρui
∂t

+
1

2

(
∂ρuiuj
∂xj

+ uj
∂ρui
∂xj

+ ρui
∂uj
∂xj

)
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∂xi
+
∂τij
∂xj
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∂t
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(
uj +

ṁ

ρ
n̂j

)
∂φ

∂xj
= 0 (39)

Here, ρ is the density, ui is the velocity vector, p is the pressure, τij is the viscous

stress tensor, gi is the acceleration of gravity vector, σ is surface tension, κ is the in-

terface curvature, φ is the signed-distance field, δ(φ) is the approximate delta function

for applying surface tension forces in the diffuse interface model, ṁ is the mass flux

across the interface, hfg is the latent heat of vaporization, and c is the specific heat
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capacity at constant pressure, and n̂i is the normal vector to the interface. Equation

39 is used to advect the level-set field φ, and φ is used in the normal-vector and cur-

vature calculations to include the surface tension force in the momentum equations

37.

These conservation equations are augmented by a set of constitutive equations for

the viscous stress, heat flux, and mass diffusion. Thermodynamic properties will use

an equation of state appropriate to the material. For example, air could be modeled

as a calorically perfect ideal gas.

The smooth property transition across the interface is defined by Equation 40.

H =
1

2

(
tanh

2x

δi
+ 1

)
(40)

Here, H is an approximate, smooth Heaviside function, and δi is the interface

width.

The approximate delta function is defined by Equation 41.

δ(ξ) =

 1− 1
2
|ξ| − |ξ|2 + 1

2
|ξ|3 : 0 ≤ |ξ| ≤ 1,

1− 11
6
|ξ|+ |ξ|2 − 1

6
|ξ|3 : 1 ≤ |ξ| ≤ 2

(41)

Here, ξ is the normalized signed distance. The width of the approximate delta

function and the property (interface) transition width are chosen to be the same size.

5.3 Numerical Methods

5.3.1 Wavelet-Adaptive Method

The governing equations 21–24, along with the surface tension modifications in 37 and

the level-set equation 39 are discretized using a wavelet-adaptive grid and a centered

finite difference scheme is used for the derivatives. The present work uses second-

generation wavelets implemented through a Fast Wavelet Transform that uses pth-

order Lagrange interpolating polynomials to determine the wavelet coefficients. The
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method is discussed in detail in Chapter 3 of this thesis. The result of that work and

its further development in Chapter 4 is a GPU-based wavelet-adaptive flow solver for

compressible and incompressible flows at all Mach numbers.

To develop a GPU-based wavelet-adaptive solver for low-speed, compressible, mul-

tiphase flows, the level-set method is described in the next section.

5.3.2 Level-set Method

The level-set method captures the interface implicitly using a signed-distance field,

with the interface defined by the zero level set. The evolution of the interface shape

is handled by advecting the signed-distance field using Equation 39. The interface

bounds a region Ω ⊂ R3 (e.g., a droplet or bubble), and the level-set function has the

following properties, which are defined in Equation 42.

φ(x, t) < 0 for x ∈ Ω

φ(x, t) ≥ 0 for x 6∈ Ω

(42)

As the signed-distance field is advected by the flow it gradually loses its signed-

distance property and needs to be reinitialized. This is achieved by solving Equation

43.

∂φ

∂τ
+ sgn (φ0) (∇φ− 1) = 0 (43)

Here, τ is a fictitious time for propagating the distance calculation away from the

interface, and sgn (φ0) is a one-dimensional smeared sign function that is approxi-

mated numerically as shown in Equation 44.

sgn (φ0) =
φ0√

φ2
0 + (∇x)2

(44)

As Equation 43 is solved towards steady-state in the fictitious time, the level-set

value is restored throughout the domain along the normal direction away from the
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interface location. This occurs because Equation 43 assumes a unit velocity in the di-

rection away from the interface, and the distance is simply the amount of time it takes

for the propagated signed-distance to reach each grid point. Periodic reinitialization

of the signed-distance field allows for continued accurate normal vector and curvature

calculations for implementing surface tension forces. Rather than solving all the way

to steady-state in fictitious time, the reinitialization is solved over a shorter duration

that allows the signed-distance to propagate over a narrow band about the interface,

only where normal vector and curvature calculations are needed. This requires fewer

iterations and reduces computational expense.

In the diffuse interface model surface tension appears in the momentum Equation

37. Here an approximate delta function spreads the surface tension forcing over

the width of the diffuse interface. The singular surface tension force term can be

approximated to an order of accuracy (i.e., the number of discrete moments preserved)

that matches the spatial discretization of the governing equations [Waldon (1999)

[122], Tornberg and Engquist (2004) [111]]. This is important to ensure the surface

tension force is accurately distributed about the interface as a source term to regain

the same integral force as with a sharp interface method and the surface tension error

converges at the correct rate with grid refinement.

The level-set advection equation is discretized using a 5th-order Weighted Essen-

tially Non-Oscillatory (WENO) scheme [Jiang and Shu (1995) [57]] to handle the

discontinuous signed-distance function. This is needed since the level-set advection

equation has a hyperbolic form with no dissipation that allows true discontinuities to

develop in the signed-distance field. Only the level-set advection term is discretized

using the 5th-order WENO scheme. The rest of the governing equations are discretized

using high-order central differences as previously discussed.
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5.4 Verification

Chapter 4 of this thesis provided verification of the accuracy of the wavelet-adaptive,

compressible flow solver combined with the preconditioned dual-time stepping method

to solve for very low-Mach number flows; solutions not attainable using explicit time

integration on the compressible Navier-Stokes equations. This section demonstrates

the accuracy of the all-Mach-number flow solver combined with the level-set method

and a diffuse interface model to implement surface tension and phase change for the

solution of multiphase flows.

Three verification problems were chosen to demonstrate the various aspects of

this multiphase implementation. The 3D level-set advection test demonstrates that

the interface is accurately tracked through large deformations without excessive mass

loss or tearing of the interface. The free droplet oscillation problem tests the ability

of the method to capture interfacial dynamics. Lastly, the problem of 3D bubble

growth in a quiescent superheated fluid highlights the accuracy of the phase-change

implementation. The test problems from this chapter together with the previous

two chapters completes the verification of all components in the wavelet-adaptive

compressible flow simulation for multiphase flows.

5.4.1 3D Level-set Advection Test

The test problem developed for level-set methods by LeVeque (1996) [68] is used here.

The flow field given by Equation 45 is prescribed in a unit domain. This vortical flow

causes deformations in the x1− x2 plane and the x1− x3 plane. A spherical interface

of radius 0.15 is placed in the flow at (0.35, 0.35, 0.35) and the simulation is run until

time t = 3. The prescribed vortices cause the sphere to be stretched, flattened, and

curled over on itself as it translates.
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u(x) = 2 sin2 (πx1) sin (2πx2) sin (2πx3)

v(x) = − sin2 (πx2) sin (2πx1) sin (2πx3)

w(x) = − sin2 (πx3) sin (2πx1) sin (2πx2)

(45)

Enright and Fedkiw (2002) [38] used this test problem with a 1003 uniform grid

with and without Lagrangian particle corrections for Eulerian advection errors. At

the maximum time, the deformation causes the thinnest region to be approximately

1 grid spacing on the uniform grid. The standard level-set method (with no particle

corrections) fails severely with a large mass loss and many holes present in the de-

formed shape. With particle corrections, there are still holes in the shape, but the

error is maintained at a much lower level. At the maximum deformation, t = 3, the

reported errors for mass loss are 49% and 1.9% for the standard level-set and particle

level-set methods, respectively.

The grid refinement for this test problem in the present work was limited to six

levels of refinement on top of a base grid of 163, for a maximum resolution equivalent to

9613. This was chosen to limit computational expense, additional levels of resolution

would improve accuracy at an increased cost. The initial and final state are shown

in Figure 35. At the maximum time there are no holes in the interface and the mass

loss is 1.5%. The wavelet-adaptive grid uses approximately 2% of the possible 9613

at the finest uniform grid (for a compression ratio of approximately 50) while holding

a wavelet tolerance of 10−3.
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Figure 35: The 3D Level-set deformation test demonstrates
the ability of the method to capture large deformations and
narrow regions without excessive mass loss that is common
in under-resolved simulations. The color of the zero-level-set
iso-surface indicates the velocity magnitude to provide some
depth and help distinguish overlapping regions of the plot.

5.4.2 Free Oscillating Droplet

Analytical solutions for the small-amplitude oscillations of droplets and bubbles were

developed by Lamb (1881) [65] for the inviscid case and Prosperetti (1980) [90] for

the viscous case. The initial configuration of the droplet in this test problem is shown

in Figure 36. In this test case, a liquid droplet with a density of 1000 kg/m3 and

dynamic viscosity of 10−3 Pa-s is surrounded by an ideal gas with a density of 1 kg/m3

and dynamic viscosity 10−5 Pa-s, resulting in a density ratio of 1000:1 and viscosity

ratio of 100:1. The speed of sound in the liquid and gas is approximately 1500 m/s

and 347 m/s, respectively. The liquid is described by a stiffened gas equation of state

[Glaister (1988) [47]]. The mean droplet diameter is 0.002109 m (determined from

the volume of the initial deformed shape), and the surface tension coefficient is 0.07

N/m. The oscillation frequency of the droplet is 110.0 Hz, as predicted by Prosperetti

(1980) [90] and given by Equation 46.
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Figure 36: A schematic of the cross section of the initial deformed droplet (solid) and
the final spherical equilibrium state (dashed).

ω2
n = n(n− 1)(n+ 2)

σ

ρR3

βn = (n− 1)(2n+ 1)
ν

R2

fn =
1

2π

√
w2
n − β2

n

(46)

The oscillation frequency in the wavelet simulation was determined by finding the

times corresponding to the maximum deformation amplitude along a principle axis

of the droplet and then measuring the period. The observed oscillation frequency

was 109.5 Hz, which is within 0.45% of the predicted frequency. When the droplet

reached steady state, the pressure jump due to surface tension of the spherical drop

was measured to be within 0.1% of the value predicted by Equation 47.

∆P =
2σ

R
(47)

5.4.3 Bubble Growth in a Quiescent Superheated Liquid

The growth of a bubble in a superheated liquid has an approximate analytical result

provided by the work of Mikic et al. (1970) [76], which makes this problem a useful

verification test case for the heat transfer and phase-change aspects of the simulation.

In this problem, a bubble with an initial diameter of 0.002 m is seeded in a uni-

formly superheated liquid under quiescent conditions. The system is approximately

110



liquid water and water vapor at a pressure of 1.66 bar. The density ratio is approx-

imately 1000:1. The latent heat of vaporization is prescribed as 2257 kJ/kg. The

liquid is superheated by 30 K, and the surface tension is neglected to more closely

match the assumptions of the analytical solution.

Figure 37: A cross section of the initial (solid) and final (dashed) configurations of
a spherical bubble in a superheated liquid in a 3D domain. The arrows indicate the
bubble growth, and the bubble remains spherical as it grows.

For reference, the analytical result from Mikic et al. (1970) [76] is given in Equa-

tion 48.

R+ =
2

3

[(
t+ + 1

)3/2 − (t+)3/2 − 1
]

R+ =
R

B2/A

t+ =
t

B2/A2

A =

√
2

3

(T − Tsat)hfgρv
Tsatρl

B =

√
12

π
Ja2αl

(48)

Here, R+ is the dimensionless bubble radius, t+ is the dimensionless time, Tsat is

the saturation temperature at the pressure far from the bubble, T∞ is the temperature

of the liquid far from the bubble, ρ is the density, c is the specific heat capacity of

the liquid, hfg is the latent heat of vaporization, and α is the thermal diffusivity. The
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subscripts l, v, and sat indicate liquid, vapor, and saturation properties, respectively.

The Jakob Number is defined by Equation 49.

Ja =
ρlcl(T∞ − Tsat)

ρvhfg
(49)

The results from the present simulation closely match the analytical result of

Mikic et al. (1970) [76], as shown in Figure 38. Some differences stem from the initial

conditions, since the simulation starts with a finite-sized bubble and the analytical

result starts from a zero radius, and the initial temperature near the liquid-vapor

interface was approximated with a hyperbolic tangent function for a smooth radial

profile.

Figure 38: Bubble-radius growth over time for Ja = 55.8 and the properties matching
the simulation parameters listed above.

5.5 Single-Bubble Nucleate Boiling

The wavelet-adaptive multiphase flow solver was designed to address problems in

boiling. This capability is demonstrated in this section using the problem of nucleate
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boiling of a single bubble over a flat plate with a prescribed wall superheat. The

working fluid is water at a pressure of 1.66 bar, the liquid region is modeled using the

stiffened gas equation of state, and the vapor region is modeled as an ideal gas. The

density ratio is approximately 1000:1 and the viscosity ratio is 100:1. The surface

tension coefficient is 0.07 N/m, gravity is 9.81 m/s2, and the wall superheat is 8 K.

The results of this demonstration are shown in Figure 39.

Figure 39: Evolution of single-bubble nucleate boiling with a contact angle of 90°.
The left half of each plot shows the mass fraction with the liquid in black and vapor
in grey. The right half of each plot shows the adapted grid.

5.6 Conclusions

The present work is the first known demonstration of a GPU-based, wavelet-adaptive,

all-Mach number, compressible, multiphase flow solver. The solver uses a diffuse

interface model with surface tension and phase change, while interfacial motion is

computed using the level-set method. The accuracy and performance of the single-

phase, compressible flow solver was addressed in Chapter 3 and Chapter 4.

For the multiphase, compressible flow solver, the accuracy of the level-set method

was assessed using a common deformation test from the level-set literature. The

results show very good mass conservation while the wavelet-adaptive grid reduced
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the grid-point population to 2% of that required by an equivalent uniform grid at the

finest resolution of the wavelet grid. The maximum mass loss is 1.5%, which is slightly

better than the results from the particle level-set method used in the comparison.

The droplet oscillation problem demonstrates the ability of the simulation to

accurately capture droplet interface dynamics. The resulting oscillation frequency

is within 0.45% of the analytical solution for small-amplitude oscillations, and the

steady-state Young-Laplace pressure jump is within 0.1% of the predicted value for

a spherical droplet. The diffuse interface approach, in conjunction with a wavelet-

adaptive grid and a preconditioned, dual-time stepping method, allows for a stable

solution of these multiphase flows at large density ratios of O(103); ratios typical of

water and air.

The problem of bubble growth in a superheated liquid demonstrates the accuracy

of the method for phase-change applications. The results of the simulation are rea-

sonably close to the analytical result of Mikic et al. (1970) [76] when considering the

differences between the two models.

Each component of the multiphase flow solver has now been verified, and the

simulation has the capability to solve for multiphase flows at all Mach numbers with

and without phase change. This capability will allow simulations of nucleate boiling

in the presence of acoustic fields to be performed. In turn, the will enable the study

of enhanced heat transfer mechanisms and the optimization of new, enhanced, heat

exchanger designs.
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CHAPTER VI

CONCLUDING REMARKS

The present work is the first known wavelet-adaptive, all Mach-number, multiphase

flow solver designed and built to run exclusively on a single GPU. The design com-

pletely avoids data transfers over the PCI-express bus during solving, which results

in greatly improved execution and memory performance. The single-phase version of

this flow solver was presented earlier by Forster and Smith (2014) [41]. This solver is

a significant improvement over the work of other groups [Rossinelli et al. (2011) [92]]

that investigated the acceleration of wavelet-adaptive-grid frameworks by offloading

some of the work to GPUs. However, that approach incurs significant overhead with

PCI-express bus transfers between the host CPU and the GPU, although Rossinelli

et al. (2011) [92] and Van Rees et al. (2013) [117] hide much of this overhead (˜75%)

with concurrent and expensive multiphysics calculations on the CPU.

Chapter 3 demonstrated that a data set with localized features can be accurately

resolved with a wavelet-adaptive multiresolution representation using a smaller num-

ber of points compared to an equivalent uniform grid at the highest resolution. A 1D

example of a step function showed a compression ratio of 118. Similar examples for

2D and 3D showed compression ratios up to O(105) and O(108), respectively. These

large grid compression ratios significantly reduce memory requirements and the num-

ber of computations required during a simulation of a set of PDEs. This means that

a wavelet-adaptive grid on a desktop workstation with a single GPU can represent

highly resolved solutions to complex three dimensional PDE problems that would

otherwise be inaccessible.

The numerical accuracy of the wavelet representation of a test function and the
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finite difference evaluations of its derivatives was verified. The function error scales

almost linearly with the user-specified wavelet tolerance and can reach to almost

machine precision with wavelets of order 8–10. Another benefit of high-order wavelets

is the reduction in the number of points needed to represent the function. This number

decreases by a factor of 500 going from 4th- to 10th-order wavelets. The same trends

were seen for the derivative error in the function using finite difference formulations

with the same order of accuracy as the wavelets. However, the absolute errors were

an order of magnitude higher for the first derivative and up to seven orders higher

for the second. The sensitivity of the solution with respect to the wavelet tolerance

ε depends on the physics of the problem, and the error can be controlled by varying

this single parameter.

The GPU-based, wavelet-adaptive, compressible flow solver was compared to a

uniform-grid, finite-difference, compressible flow solver that also runs entirely on the

GPU. With the 2D Richtmyer-Meshkov instability problem as a test case, the time-

to-solution for the GPU-based simulation was two orders of magnitude faster that

the uniform-grid solver, with three orders possible at maximum resolution. While

this is a projection due to memory limitations when using uniform grids, part of the

motivation behind the wavelet method is to create an optimized grid to reduce mem-

ory requirements so that larger problems can be solved with the available memory.

Figure 23 shows the extent to which this is possible. By comparing the performance

of the traditional uniform-grid solver and the wavelet-adaptive solver, the reader can

estimate the possible performance gains based on their own particular solver choices

and hardware configurations for various applications based on the performance of

their existing finite-difference simulations.

In the comparison of the GPU-based, uniform-grid solver and the GPU-based,

wavelet-adaptive solver, it was observed that the wavelet-adaptive, finite-difference

method has an order of magnitude lower average throughput of grid points per unit of
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time than the uniform-grid solver running on the same GPU. The lower performance

is caused by the computing overhead from GPU warp divergence and data lookup.

This extra work is more than offset by the reduced problem sizes offered by the grid

compression from the wavelet-adaptive method. These results show that the wavelet-

adaptive solver performs well on a GPU, a modern hardware architecture that relies

heavily on SIMD parallelism and use of reduced cache sizes. This is a important step

forward in the continued growth of wavelet-adaptive methods for use in advanced

HPC systems.

The three verification test cases presented in Chapter 4 demonstrated the low-

dissipation properties and high accuracy of the wavelet-adaptive, preconditioned,

dual-time stepping flow solver in the low-Mach number regime. Several modifications

to existing techniques were implemented in order to accomplish this. First, the quasi-

skew-symmetric form of the convection terms in the governing equations was used to

prevent the odd-even decoupling seen in other co-located grid solvers. The wavelet-

adaptive grid helps to protect against a pitfall of using the skew-symmetric form

on under-resolved grids in which a significant amount of energy and other conserved

quantities is aliased to higher wavenumbers and subsequently dissipated [Kennedy and

Gruber (2008) [61]]. With the resolution provided by the wavelet-adaptive grid, the

dissipation of these aliasing errors had minimal impact on the solutions. Secondly, the

physical time derivative approximation for the dual-time stepping procedure requires

storage of previous solutions that each have a different adaptive grid configuration

from the current solution. This required modifications to the wavelet-adaptive grid

strategy to ensure that all of the grid points are present to perform the point-wise

time derivative calculations. Finally, an analytical inverse preconditioning matrix

was derived for an arbitrary number of species in order to make the preconditioning

efficient on the GPU architecture with its limited amount of cache per thread. Prior

to this development, the preconditioning matrix required a numerical inverse to be
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performed at each grid point, which is very resource intensive. The savings in com-

puting time from using the analytical inverse increases as the number of transport

equations (e.g., number of species) increases.

For the multiphase, compressible flow solver presented in Chapter 5, the accu-

racy of the level-set method was assessed using a common deformation test from

the level-set literature. The results show very good mass conservation while the

wavelet-adaptive grid reduced the grid-point population to 2% of that required by an

equivalent uniform grid at the finest resolution of the wavelet grid. The maximum

mass loss is 1.5%, which is slightly better than the results from the particle level-set

method used in the comparison.

The droplet oscillation problem demonstrates the ability of the simulation to

accurately capture droplet interface dynamics. The resulting oscillation frequency

is within 0.45% of the analytical solution for small-amplitude oscillations, and the

steady-state Young-Laplace pressure jump is within 0.1% of the predicted value for

a spherical droplet. The diffuse interface approach, in conjunction with a wavelet-

adaptive grid and a preconditioned, dual-time stepping method, allows for a stable

solution of these multiphase flows at large density ratios of O(103); ratios typical of

water and air.

The problem of bubble growth in a superheated liquid demonstrates the accuracy

of the method for phase-change applications. The results of the simulation are rea-

sonably close to the analytical result of Mikic et al. (1970) [76] when considering the

differences between the two models.

Extensive verification was performed throughout the development of the wavelet-

adaptive, multiphase flow solver to verify the mathematical correctness of the wavelet-

adaptive grid, derivative operations, time integration, compressible flow formulation

for high-Mach number flows, preconditioned dual-time stepping method for low-Mach

number compressible flows, and low-Mach number compressible multiphase flows with
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surface tension and phase change. The flow solver demonstrated good error-control

properties and low dissipation errors while providing significant grid compression for

reduced computational expense. This makes the simulation well-suited for predicting

the behavior of nucleate boiling near the CHF, as well as a general purpose simulation

for many other multiphase flows with or without interfacial instabilities.

The present work represents several significant advances in the design and use of

simulations for high-performance computing.

1. An improved wavelet implementation that is efficient and runs entirely on the

GPU architecture to avoid the PCI-express bottleneck for maximum perfor-

mance.

2. Modifications to the wavelet-grid adaptation to allow the incorporation of the

dual-time stepping method.

3. The use of the dual-time stepping method to augment the error control provided

by wavelets to obtain rigorous error control in both space and time dimensions.

4. A new derivation of an analytical inverse preconditioning matrix for general-

ized equation of states using the compressibility factor and the transport of an

arbitrary number of species. This inverse avoids costly, large numerical matrix

inversions at every grid point and makes preconditioning efficient on the GPU

architecture with limited register and shared memory resources.

5. A diffuse interface representation for compressible flows that uses a carefully

selected combination of existing methods to maintain the high overall accuracy

of the error-controlled framework developed for the wavelet-adaptive grid.

6. A simulation development through a tightly coupled, multidisciplinary approach

that investigated the problem from the physics, applied mathematics, and com-

puter science perspectives and allowed for the creation of a high-performance,
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error-controlled, simulation framework for a wide variety of multiphysics flow

problems with high orders of accuracy.

6.1 Recommendations for Future Work

The next obvious step is to modify the simulation developed in this work that allows

very large problems to be solved on a single GPU and make it work with many GPUs

for even larger problems and higher resolution (i.e., weak scaling) or solving the same

problem size more quickly (i.e., strong scaling). The main challenge here, and with

any adaptive grid simulation, will be load balancing to prevent an imbalance in work

that may leave some compute nodes or GPUs idle while others are still finishing their

partition of the work.

At the outset of the present work, GPUs were the only accelerator or large-core

count device available as an alternative to the CPU; however, now there are competing

computing hardware platforms, such as the many-core Intel Xeon Phi architecture.

Future work should include a comparative study to determine which architecture is

the most efficient architecture for sparse, adaptive grids. Both GPUs and many-core

architectures are being incorporated into upcoming supercomputers and are in the

roadmap for exascale computing [Binkley (2016) [7]]. HPC hardware architectures are

evolving quickly, and it is likely best to update simulation codes to be portable to run

on more than one architecture since they will both be prominent in supercomputing

for many years to come. One such recent interface for hardware portability is the

Kokkos library [Edwards et al. (2014) [36]].

Advanced equations of state could further improve the fidelity of multiphase flow

simulations. GPUs offer the possibility of implementing equations of state that may

have previously been too costly to compute in a simulation previously. This is due to

the large compute intensity (i.e., the number of floating point operations per load from

global memory) required to keep the floating point processing units busy. The extra
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computation cost may be hidden by potentially reducing the number of otherwise

wasted clock cycles while the processors wait for new data from global memory.

The dual-time stepping method may benefit from implicit time integration schemes

in the inner loop for multiphase flows with surface tension. Large surface tension

coefficients can create stiffness and increase the number of iterations required for con-

vergence at each physical time step. The implicit integration of pseudo-time may

reduce the overall work and time-to-solution by reaching steady-state in the modi-

fied system of equations in significantly fewer iterations. For low-speed flows without

acoustics, it would be beneficial to use a strictly low-Mach number formulation of

the Navier-Stokes in place of the all-Mach number formulation for further reduced

computational expense.
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separable Multiwavelets in Multiple Dimensions,” Journal of Computational
Physics, vol. 175, 2002.

[116] Unverdi, S. O. and Tryggvason, G., “A front-tracking method for viscous,
incompressible, multi-fluid flows,” Journal of computational physics, vol. 100,
no. 1, pp. 25–37, 1992.

[117] Van Rees, W. M., Rossinelli, D., Hadjidoukas, P. E., and Koumout-
sakos, P., “High performance cpu/gpu multiresolution poisson solver.,” in
PARCO, pp. 481–490, 2013.

[118] Vasilyev, O. V., “Solving Multi-dimensional Evolution Problems with Local-
ized Structures using Second Generation Wavelets,” International Journal of
Computational Fluid Dynamics, vol. 17, pp. 151–168, Mar. 2003.

[119] Vasilyev, O. V. and Bowman, C., “Second-Generation Wavelet Collocation
Method for the Solution of Partial Differential Equations,” Journal of Compu-
tational Physics, vol. 165, pp. 660–693, Dec. 2000.

[120] Vermeire, B. C., Witherden, F. D., and Vincent, P. E., “Problem c3.
3 report: Direct numerical simulation of the taylor green vortex,” 2014.

[121] Vermeire, B. C., Zwanenburg, P., and Nadarajah, S., “Higher order
workshop 3: Problem c3. 3 direct numerical simulation of the taylor-green vor-
tex,” 2014.

130



[122] Waldon, J., “On the approximation of singular source terms in differential
equations,” Numerical Methods for Partial Differential Equations, vol. 15, no. 4,
pp. 503–520, 1999.

[123] Wang, Z., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary,
A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H., and
others, “High-order cfd methods: current status and perspective,” Interna-
tional Journal for Numerical Methods in Fluids, vol. 72, no. 8, pp. 811–845,
2013.

[124] Welch, S. W., “Direct simulation of vapor bubble growth,” International
Journal of Heat and Mass Transfer, vol. 41, no. 12, pp. 1655–1666, 1998.

[125] Wells, J., “Preparing Scientific Software for Exascale DOE s Office of Science
Computation User Facilities,” tech. rep., U.S. Department of Energy, Oak Ridge
National Laboratory, 2015.

[126] Wirasaet, D., Numerical solutions of multi-dimensional partial differential
equations using an adaptive wavelet method. PhD thesis, University of Notre
Dame, 2007.

[127] Woolley, C., “GPU Optimization Fundamentals,” tech. rep., NVIDIA, 2013.

[128] Yang, Y. and Pullin, D. I., “Evolution of vortex-surface fields in viscous
TaylorGreen and KidaPelz flows,” J. Fluid Mech, vol. 685, pp. 146–164, 2011.

[129] Zang, T. A., “On the rotation and skew-symmetric forms for incompressible
flow simulations,” Applied Numerical Mathematics, vol. 7, no. 1, pp. 27–40,
1991.

[130] Zhang, S., Zhao, X., and Bayyuk, S., “Generalized formulations for the
rhie-chow interpolation,” Journal of Computational Physics, vol. 258, pp. 880–
914, 2014.

[131] Zuber, N., “Hydrodynamic aspects of boiling heat transfer (thesis),” tech.
rep., California. Univ., Los Angeles; and Ramo-Wooldridge Corp., Los Angeles,
1959.

[132] Zucrow, M. J. and Hoffman, J. D., “Gas dynamics, vol. i,” John Wiley
and Sons, New York, pp. 112–115, 1976.

131



VITA

Christopher J. Forster received his B.S.M.E. and M.S.M.E. degrees from California

Polytechnic State University, San Luis Obispo, where he studied turbomachinery,

propulsion systems, and computational fluid dynamics and heat transfer. In 2009,

he started in the Fluid Mechanics Research Laboratory at the Georgia Institute of

Technology to conduct research in the areas nucleate boiling, heat exchanger opti-

mization, and numerical analysis of multiphase flows. He is currently a Department

of Energy Office of Science fellow and visiting researcher at the Combustion Research

Facility at Sandia National Laboratories in Livermore, California.

132


