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𝐋𝑝  Plastic velocity gradient in current configuration 

𝒎𝜶  Slip plane normal of slip system α 

𝒎𝟎
𝜶  Slip plane normal of slip system α in intermediate configuration 

𝑵  Total fatigue life 

𝑵𝒊𝒏𝒄 Number of cycles to crack the particle leading to dominant fatigue 

crack  

𝑵𝒏𝒖𝒄 Number of cycles to create a crack within the matrix adjacent to 

incubated particle 

𝑵𝑴𝑺𝑪  Microstructurally small crack life 

𝑵𝑷𝑺𝑪  Physically small crack life 

𝑵𝑳𝑪  Long crack life 

𝒔𝜶  Slip direction vector of slip system α 

𝒔𝟎
𝜶  Slip direction vector of slip system α in intermediate configuration 

𝐓   Second Piola-Kirchhoff stress tensor in intermediate configuration 
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SUMMARY 

The objective of this work is to provide various improvements to the modeling 

and uncertainty quantification of fatigue lives of materials as understood via simulation 

of crystal plasticity models applied to synthetic microstructure instantiations. Given the 

broad scope of this thesis and the nature of scientific advances, this work builds on the 

work of many previous students. Calibrated material models developed by Musinski, 

Smith, and Hennessey for IN100, Ti64, and Al 7075-T6 were repeatedly used for many 

development and exploratory stages. Fatigue indicator parameter responses were 

characterized for several material models, morphologies, and loading conditions. Crack 

propagation methods from Castelluccio and Musinski were combined with improved 

geometric basis to better study stress redistribution effects and crack propagation through 

multiple grains while retaining a mesoscale level of computational efficiency. A model 

was implemented to describe crack nucleation behavior in Al 7075-T6 using a crack 

simulation strategy and fractured constituent particles. Fatigue lives were then simulated 

for various multi-axial stress states, with noteworthy differences between the fatigue 

model presented in this thesis, and the earlier work of Hennessey. These differences are 

presented in the Gamma Plane construct of Brown and Miller. 

The major contributions of this work are the computational frameworks 

developed for continued advances in the field of crystal plasticity and fatigue, the 

reformulation and application of a fatigue crack growth model for Al 7075-T6, and the 

generalization of the crack propagation and information exchange required for crack 

propagation simulations in crystal plasticity models. These methods as well as the 

software developed and released will facilitate more rapid advancements in the field of 

crystal plasticity models, especially as applied to high cycle fatigue. 
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CHAPTER 1: INTRODUCTION 

1.1: Introduction 

The past decade has seen large advances in computational techniques, especially 

those concerning the prediction of the fatigue lives of various metal alloys under complex 

loadings. With an improvement in ability to represent physical processes of damage in 

metals, particular import should be placed on the increased pace and understanding with 

which data can be generated and analyzed for these specialized models. This work 

presents several fundamental improvements to a material model, demonstrates new 

techniques of analyzing statistical information related to metal fatigue, and discusses an 

improved computational framework to increase the pace of development for new material 

research directions. This work first begins with a summary of fatigue research and crystal 

plasticity modeling approaches since both are utilized throughout the text. Particular 

attention is paid to those mechanisms that are relevant to material system models 

incorporated into this work. 

1.2: Fatigue 

To understand material models of fatigue, their development, and applications, it 

is important to first understand the mechanical processes that drive fatigue failure of 

metals. Fatigue is the form of material failure caused by repeated application of cyclic 

loadings. The fatigue life of a component expresses the number of loading cycles 𝑁 

required to cause failure of a component based on the application of some design criteria. 

Accurate prediction of component lives can lead to significant savings, both monetarily 

and in the form of human lives saved by the prevention of catastrophic failures. Fatigue 

failures have been estimated by Reed et al. [1] to cost as much as 4% of the U.S. 

economy. One particular industry that sees the application of advanced materials in 
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situations where design for fatigue is of the utmost importance is the aerospace industry. 

Failure of components can have catastrophic consequences and because of the 

importance of weight, large gains can be realized if components are operated closer to 

yield, thus lowering the expected fatigue lives. The aerospace industry has seen the 

development of many exotic materials for structural and propulsion related components. 

Initial research and useful methods in fatigue design focused primarily on 

phenomenological models informed by macroscale properties and loading conditions. 

One of the first successful characterizations of the fatigue life of materials is the stress-

life approach pioneered by Wöhler [2] and refined by Basquin [3]. This approach is still 

used to estimate fatigue lives in many applications. 

Deterministic relationships of macroscopic parameters have often been found to 

not be entirely sufficient to describe material behavior, however. Indeed, since fatigue 

lives can be observed over a very large range (multiple orders of magnitude) depending 

on the applied loadings, there are several stages of crack growth with various competing 

mechanisms that must occur before ultimate failure occurs. These stages are typically 

divided as follows: crack formation, microstructurally small crack growth (MSC), 

physically small crack growth (PSC), and mechanically long crack growth (MLC) which 

together constitute the total life of that specimen. These stages are typified by the size, 

expressed in terms of a multiple of microstructural features, over which similar crack 

propagation models may be applied. While the transitions between the various crack 

stages are relatively ambiguous, crack formation is typically considered over the first 

grain or cracked inclusion, MSC is generally considered to extend from 3-10 grain 

barriers, PSC up to 0.5-1 mm, and MLC for the remainder of the part life [4]. 

Furthermore, microstructurally small cracks are distinct from microstructurally short 

cracks in that the former requires all crack dimensions to be less than some threshold 

size, while the latter is accepted if only one crack dimension meets this criterion. This 
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work will only consider microstructurally small cracks and not treat the somewhat 

distinct problem of microstructurally small cracks. 

 

Figure 1. Microstructurally small (left) and short (right) cracks [5]. 

 

The total life may be expressed mathematically as the summation of the number 

of cycles to cause fatigue failure 𝑁𝑡𝑜𝑡𝑎𝑙 appears as follows 

 total FOR MSC PSC LCN N N N N      (1)  

where 𝑁𝐹𝑂𝑅 is the number of cycles to crack incubation, 𝑁𝑀𝑆𝐶  is the number of cycles 

spent in microstructurally small crack growth, 𝑁𝑃𝑆𝐶 is the number of cycles spent in 

physically short crack growth, and finally 𝑁𝐿𝐶 is the number of cycles spent in long crack 

growth. It is the final regime that is best understood and represented well by 

phenomenological models such as the Paris law.  

1.2.1: Fatigue Crack Formation 

Prior to crack propagation, however, a fatigue crack must form within the 

material. This process often occurs near geometric and microstructural stress 

concentrations. Fatigue crack formation can have several different mechanisms 

depending upon the material system of interest. Indeed, several competing mechanisms 

may arise in the same material system. The aluminum alloy 7075-T6, for instance, has a 

relatively high volume fraction of constituent particles whose debonding and fracture 

behavior can provide significant stress raisers for crack propagation into the metallic 

matrix. While Xue et al. [6] and Weiland et al. [7] observed particle debonding in this 

material, crack propagation did not occur from these sites. Thus, constituent particle 
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cracking is the primary crack formation site for Al 7075-T6. This effect is typically 

observed in ambient environments, with corrosive environments generally providing 

more optimal crack formation sites in the form of pits. For ambient environments, 

cracked particles provide nearly exclusive crack formation sites as reported by many 

researchers [6-9]. The composition of such cracked particles is generally observed as 

being Fe-rich such as Al7Cu2Fe. Multiple researchers have observed the population of 

these particles during loading with particular attention paid to differentiating factors in 

the cracked and uncracked populations. These observations indicate a significant 

correlation of cracking probability to particle size [10, 11]. This has been surmised by 

Bozek et al. [10] to be caused by the higher probability of inherent flaws in larger 

particles. These flaws lead to stress concentrations and cracking of the brittle constituent 

particles. Cracking of these constituent particles is often directly observed or assumed to 

occur during the first application of load [6, 9, 10]. 

 

Figure 2. Cracked constituent particle (left) and corrosion pit (right) as crack 

formation sites in Al 7075-T6 [12]. 

 

Localization factors such as grain orientation, neighbor disorientation, and 

inclusions can also contribute to cyclic plasticity and the formation of persistent slip band 

(PSB) structures. This can provide a competing mechanism for crack formation in alloys 
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with significant impurities like Al 7075-T6 or be the primary crack formation mechanism 

for purer alloys such as those used in turbine applications. For example, Li et al. [13] 

corroborated earlier observations of crack formation exclusively at inclusions for low 

temperatures, but demonstrated that at elevated temperatures, the formation of PSB also 

provided crack formation sites in Al 7075-T6. In all metals, surface features can also 

contribute significantly to the overall fatigue life and scatter. PSB interaction with the 

free surface can create sharp extrusions and intrusions, which are crack precursors. In 

addition, residual stress effects, geometric stress concentrations, and inclusion density 

can drive fatigue crack formation near the surface [14]. Cyclic plastic strain can also 

induce subsurface fatigue crack formation. Intragranular PSB can form due to 

impingement of slip at grain boundaries and can contribute to fatigue crack formation and 

early growth. 

1.2.2: Microstructurally Small Crack Growth 

Microstructurally small cracks are defined by all crack dimensions being less than 

a threshold size based on microstructural features [5]. The crack and crack tip plastic 

zone can similarly be contained within a single grain or extend into a small number of 

grains. This contributes to microstructural features such as grain anisotropy and limited 

available slip systems near the crack front, producing large variations in crack growth 

rate. In addition to being highly variable, fatigue crack growth rates can greatly exceed 

predicted values using long crack formulations due to under predicting the crack tip field 

intensity [15]. 

Crack tip interaction with grain boundaries has been observed to induce 

significant retardation of surface crack growth rate. Many researchers have attributed this 

effect to grain boundary disorientation. More recently, observations using marker band 

growth e.g. by Burns et al., as well as other techniques, have allowed the measurement of 
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internal crack growth rates [12, 16]. These observations indicate that microstructural 

features may not impede crack growth as strongly as previously thought [12].  

 
 

Figure 3. Fluctuations of crack growth rate in Al 2024-T3 (b) as a function of the 

surface crack position (a) as reproduced from [17].  

 

The process of MSC can be further subdivided into the shear-dominated regime of 

Stage I, where cracks tend to propagate along individual slip planes, and thus are highly 

dependent on crystallographic orientation, and the later Stage II process, which tends to 

occur along maximum principal stress planes and across multiple slip systems. The 
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transition between these mechanisms is not significantly understood with some materials 

exhibiting almost no Stage I behavior [18, 19]. Recent efforts by Künkler et al. [20] and 

others have demonstrated the activation of additional slip systems near the crack tip as 

load or crack length increase. These models have been demonstrated to have good 

agreement with experimental surface crack growth for 2D applications, however, the 

application of such models remains relatively limited in 3D. Johnston [21] applied a three 

dimensional model of crack propagation using a nodal release and element contact 

approach to determine crack propagation behavior in Al 7075-T651 single crystals. 

Significant differences in crack plane orientation were observed between plane strain and 

plane stress loadings and between single crystals of different orientation.   

 

Figure 4. X-ray microtomography imaged crack surface (green) in Al 2024, with 

grain boundaries (gold) decorated using Ga [22]. 
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Figure 5. Surface crack growth as observed and predicted by Künkler et al. [20]. 

 

Li [23] proposed an extension of the traditional two stage propagation model with 

additional geometric consideration. This improvement mirrors experimental observation 

of Neumann [24, 25] in single crystals. Li proposes that Stage II is still a shear dominated 

process, with alternating crack advances along crystallographic planes of relatively equal 

Schmid factors. The total crack tip displacement vector 𝛥CTD̅̅ ̅̅ ̅̅ ̅̅  is a summation of the 

contribution of the individual slip plane sliding displacements 𝛥CTSD̅̅ ̅̅ ̅̅ ̅̅ ̅. Li [23] also 

provides a description for an intermediate Stage I extended crack growth period during 

which significantly unequal contributions from a primary and secondary slip system 

sliding displacements sum to the total crack tip displacement.  
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Figure 6. Geometric representations of Stage I, Stage I extended, and Stage II crack 

growth contributions from two active slip systems adapted from [23].   

 

In addition to characterization of crack growth by relative growth planes, the total 

life of the part may be characterized by the number of cycles to failure. Common regimes 

include low cycle fatigue (LCF), typically less than 104 cycles; high cycle fatigue (HCF), 

typically taken as 104-108 cycles; and very high cycle fatigue (VHCF). Mostly studied 

using ultrasonic application of loading cycles, this regime can extend past traditional 

ideas of a threshold stress and produce fatigue lives on the order of 109 number of cycles 

[26]. Low cycle fatigue can generally be well expressed by macro-scale plasticity using a 

Coffin-Manson [27, 28] relationship for the plastic strain range Δ𝜀𝑝 is the plastic strain 

range, 𝜀𝑓
′  is the fatigue ductility constant, and 𝑐 is the material fatigue exponent. 

  '

2

cp

f N





     (2)  

Since MSC and crack formation can consume ~90% [29, 30] of fatigue life in 

HCF, modelling of MSC (and thus local microstructure) is imperative to predict life 

scatter typically observed at the specimen level.  Chan et al. [31] calculated path 

dependent 𝛥J-integrals from stereoimaged CTD fields. These integrals exceeded far-field 
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estimates, an effect observed by Lankford [8] and Akiniwa [17] in the form of higher 

crack growth rates than those extrapolated from long crack growth data. Chan et al. [31] 

suggested a 𝛥CTD based correlation to crack growth rate as a more fundamental 

parameter for MSC. The crack tip displacement has also been proposed as an analogous 

driving force metric to the 𝛥𝐽-integral [32].  

1.2.3: Damage Parameters 

Various modeling efforts have been made to introduce parameters that describe 

processes involved in fatigue crack formation and MSC. Multiaxial loading conditions 

coupled with varying load ratios are beyond the predictive capabilities of traditional 

stress and strain metrics for fatigue lives [33]. Many recent, successful models 

incorporate the consideration of a critical plane on which fatigue damage is concentrated. 

Brown and Miller [34] determined that the plane of maximum shear strain range 𝛥𝛾𝑚𝑎𝑥 

best represented the crack propagation process. Initially, this criteria was expressed as an 

iso-life function of the strain range normal to maximal shear plane 𝛥𝜀𝑛. This term 

provides the physical basis for increased dislocation emission and crack propagation rates 

with higher imposed normal displacements. 

  max nf        (3)  

 One of the more prominent improvements to the concept of the critical plane 

approach was developed by Fatemi and Socie. Fatemi and Socie [35] expressed a 

modified parameter which accounts for both plastic strain and stress, i.e., 

 
2

1
p n

max max
FS

y

DP k
 



 
  

 
 

    (4)  

where the Fatemi-Socie parameter is denoted 𝐷𝑃𝐹𝑆, 
Δ𝛾𝑚𝑎𝑥

𝑝

2
 is the maximum plastic shear 

strain range, 𝑘 is a stress sensitivity parameter, 𝜎𝑚𝑎𝑥
𝑛  is the peak normal stress to the 

plane of maximum shear strain range, and 𝜎𝑦 is the yield stress. The value of the 
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Macaulay bracket 〈𝑥〉 term has the greater of 0 or the interior value. The tensile stress 

normal to the crack plane serves the same purpose as the 𝛥𝜀𝑛 term of the initial Brown 

and Miller parameter by increasing the damage parameter value to account for reduced 

frictional effects and thus increased crack propagation rate. 

The initial formulation of these damage parameters was posed at the macroscopic 

scale. However, when averaged over a finite fatigue damage process volume at the 

microstructure scale [36], these values are referred to as a fatigue indicator parameter 

(FIP) [37]. The Fatemi-Socie FIP (FS FIP) is formulated as 

 

* *

1
2

p n

max max
FS

y

kFIP
 



 
  

 
 

    (5)  

with the asterisk * indicating that volumetric averaging should be performed. 

Fundamental properties of the FS FIP were examined by McDowell and coworkers [18, 

32] which showed good agreement with 𝛥J integral approaches experimental results of 

multiaxial fatigue. The application of the FS FIP has been further justified by Przybyla 

and coworkers for both Ni-base superalloys (IN100) [38] and Ti-6Al-4V (Ti-64) [39]. 

More recently it has been observed that the FS FIP provides good agreement with crack 

tip displacements (CTD) in different alloyed materials. Castelluccio and McDowell [40] 

applied this method to develop a mesoscale crack model in RR 1000. Due to preferential 

use of the FS FIP, further references to specific FIP responses will refer to the FS FIP 

unless otherwise noted. 

FIPs have also been applied to predict fatigue crack formation. Tanaka and Mura 

[41] derived a model for dislocation accumulation. Chan [42] and Shenoy et al. [43] 

extended this work to provide a parameter for crack formation based on continuum 

simulations.  

  
2g

FOR

gr

a
N FIP

d


     (6)  
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Size dependence of the slip accumulation process is incorporated via the size of the 

current grain 𝑑𝑔𝑟. Castelluccio [40] incorporated low disorientation neighbor grains to 

contribute additional length to the 𝑑𝑔𝑟 term due to observed “super-grain” crack 

formation behavior in the RR1000 alloy. Calibration of the model is achieved via the 𝑎𝑔 

term, which measures the mechanical irreversibility of the slip accumulation process. 

 

Figure 7. Nucleation microstructure and damage parameter averaging area as 

employed by Hochhalter et al. [44]. 

  

Of particular relevance to this thesis is a series of papers by Bozek et al. [10, 44, 

45] who studied the formation of fatigue cracks at constituent particles in Al 7075-T651. 

This series covers constituent particle cracking probability, geometric considerations of 

fatigue crack formation at cracked particles, and a proposed damage parameter for 

modeling the number of cycles to extend a crack into the surrounding matrix. Several 
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damage parameters were studied over the course of this work including slip based metrics 

and the FS FIP. All damage parameters were averaged over a finite process area 

constrained by the limitation of the accuracy of the finite element method (FEM) model 

used, as well as the physical damage zone caused by a small crack. The proposed 

parameter with best agreement to experimentally observed crack nucleation lives includes 

the maximum shear strain over all slip systems 𝛥𝐷1
𝑚𝑎𝑥 as well as the accumulation per 

load cycle 𝛥𝐷1
𝑚𝑎𝑥.   
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1
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
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
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  


    (7)  

 These values are taken at the radial position of maximal 𝛥𝐷1
𝑚𝑎𝑥 over the semicircular 

averaging surface area. Again, a tangential stress term 𝜎𝜃𝜃
𝑚𝑎𝑥is used to incorporate the 

cumulative damaging effect of the opening of the crack surface relative to this maximum 

accumulation direction. Both 𝜎𝜃𝜃
𝑢𝑙𝑡 and 𝛼 are fitting parameters used to describe the stress 

dependence of the nucleation process. 

 In addition to crack formation, the FS FIP demonstrates good agreement with the  

Δ𝐶𝑇𝐷̅̅ ̅̅ ̅̅ ̅̅  expressions previously related to crack growth rate. Castelluccio and McDowell 

[46] established the relationship of the crack tip displacement magnitude Δ𝐶𝑇𝐷 and the 

FS FIP averaged along a banded region in Cu. The banded region exhibits features of a 

sufficient averaging domain for reduced (though not eliminated) mesh sensitivity, with 

the resultant values having good agreement with the observed Δ𝐶𝑇𝐷 values over a range 

of load mixity and amplitudes.  
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Figure 8. Mesh with highlighted slip band utilized by Castelluccio and McDowell 

[46] to obtain 𝚫𝑪𝑻𝑫 to FIP relationships for a Cu single crystal. 

 

 The resulting relationship is shown to be nearly linear in nature, with 𝑏 ≈ 1.1 for 

the relationship  

  
b

FIP C CTD      (8)  

with 𝐶 being an additional fitting parameter for the correlation. This relationship has been 

applied successfully to a mesoscale propagation model with accurate predictions of the 

fatigue lives for both RR1000 [47], Al 7075-T6 [48], and an adapted formulation applied 

to IN 100 [49]. 

 In addition to the study performed by Castelluccio and McDowell, Rovinelli et al. 

[50] studied various FIP forms (including those of Hochhalter et al.) and their energetic 

equivalents. These simulations were conducted in varying instantiations of cylindrical 

IN100 specimens under uniaxial tension with static cracks. The energetic equivalent of 

the FS FIP was observed to vary with predictable and expected patterns while interacting 

with microstructural features such as grain boundaries of varying misorientation. This 
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parameter is also shown to relate to crack length in a similar manner to traditional crack 

growth rate factors such as Δ𝐾. 

1.2.4: Long Crack Growth 

Following crack growth beyond several (3-10) microstructural barriers in spacing, 

the growth is referred to as PSC. In this stage, crack growth is still strongly influenced by 

plasticity induced closure and is often treated by elastic-plastic fracture mechanics 

(EPFM). Dowling and Begley [51] proposed the 𝛥J-integral as a parameter to incorporate 

crack length and load conditions and relate them to crack growth rate via the material 

constants 𝐶 and 𝑚.  

  
m

J
da

C
dN

      (9)  

This equation is an extension of the Paris law used to describe crack growth rate via 

linear-elastic fracture mechanics (LEFM). This is one of the most important historical 

relationships of crack growth, and is still used in many forms today [52-54]. 

  
m

K
da

C
dN

      (10)  

In this relationship, 𝐶 and 𝑚 are material constants used to fit to experimental data and 

Δ𝐾 is the change in stress intensity factor over a loading cycle. This equation, applied by 

Paris et al. [55] has been utilized countless times, with many efforts being made to 

correlate different loading conditions to the same nominal crack growth rate formulation. 

Indeed, early research efforts into MSC depict crack growth rates as a function of Δ𝐾, 

even though many assumptions are invalidated for cracks below ~10 grain diameters in 

length [5, 8]. 

1.3: Crystal Plasticity 

Fatigue can be understood to have defining characteristics, and thus require 

models and understanding of material behavior, across multiple length scales [56]. 
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Crystal plasticity models have become widely used to predict various features of 

polycrystalline deformation, including texture development [57] forming limits [58], and 

fatigue response [14, 46, 59, 60]. These models apply continuum assumptions to 

decompose deformation along crystallographic slip planes. Hochhalter et al. [44] and 

Dixit and Dixit [61] estimate these assumptions to be valid for models with elements on 

the order of 1 μm and but break down as one approaches element size of nm. Shenoy et 

al. [43] also note that for materials forming PSB, the element size should be no smaller 

than the PSB width. These restrictions are sufficient since the models considered in this 

work are simulated in volumes of 10-600 μm sidelength with fewer than 106 elements.  

While the primary emphasis of this work is not in the constitutive calibration of a 

specific material model, all of the analysis is conducted from simulations of crystal 

plasticity codes within finite element method (FEM) frameworks. These types of models 

are referred to as crystal plasticity finite element method (CPFEM) models. Specifically, 

all material models used in this work are implemented in the user material subroutine 

(UMAT) of Abaqus. Several assumptions, as well as the results discussed depend upon a 

fundamental understanding of the continuum mechanics approach used to model 

polycrystalline behavior, thus the basic framework for crystal plasticity modeling will be 

reproduced in a limited fashion here. For additional details about numerical schemes, 

model forms, and the history of crystal plasticity models see the extensive summary of 

McDowell [56]. 

For implementation in finite element method (FEM) codes, a relationship must be 

devised between the material deformation and the stress state. Following traditional 

continuum mechanics of large deformations, the total deformation gradient is a tensor 

which maps an infinitesimal neighborhood of the material point in the initial reference 

frame (vector 𝑑𝐱) to the deformed configuration as 𝑑𝐲, i.e. 

 d d y F x     (11)  
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A fundamental assumption of the crystal plasticity method is the multiplicative 

decomposition of the total deformation gradient into elastic-plastic constituent tensors. 

This decomposition follows from works by Bilby et al. [62] and Lee [63]. 

 
e p F F F     (12)  

Figure 9 illustrates the concept of the total deformation tensor as interpreted as a series of 

deformations by the plastic deformation gradient 𝐅𝑝 into the intermediate configuration 

and by the elastic deformation gradient 𝐅𝑒 from the intermediate configuration to the 

current, deformed configuration. Particular note should be made about the importance of 

the intermediate configuration in the following crystal plasticity formulation. 

 

Figure 9. Multiplicative decomposition of the elastic-plastic deformation gradient 

adapted from [64]. 
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In the same way, the plastic deformation rate may be related to the plastic velocity 

gradient by the following equation.  

  
1 e p
  L F F L L     (13)  

Since this is the fundamental relation of the deformation to the constitutive model, the 

material time derivative of the plastic deformation gradient was proposed by Asaro [65] 

to be related to the shearing rates on the individual slip systems by 

 0 0

n
p


  




 

  
 
F s n     (14)  

where 𝛾̇𝛼 is the shearing rate on the 𝛼 slip system, 𝐬0
𝛼 is the slip direction vector and 𝐧0

𝛼 

is the slip plane normal vector, both in the intermediate configuration. This continuum 

mechanics approach of expressing slip on the various slip planes as an internal state 

variable is perhaps the most fundamental concept of crystal plasticity models.  

 With this fundamental relationship of the deformation in place, an expression 

relating the deformation to the resolved shear stresses on each system must be made. This 

parameter forms the relationship from stress state back to deformation rate and is 

necessary for implementation in FEM. The process begins by considering the plastic 

velocity gradient 𝐋𝟎
𝒑

 in the intermediate coordinate system as a function of the previously 

expressed variables. 

   0
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p p p   








  L F F s n     (15)  

The current configuration velocity gradient 𝐋𝒑 is then 

  
1

0

p e p e


  L F L F     (16)  

with the elastic velocity gradient 𝐋𝒆 similarly expressed  

  
1

e e e


 L F F     (17)  

The combined value 𝐋 is related to the total deformation gradient by  
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1e p    L L L F F     (18)  

The elastic strain tensor can then be constructed using the previous relationships. As in 

many material models, the plastic strains must be removed and only the elastic strains are 

considered when calculating the stress state.  The elastic Green strain tensor 𝐄𝒆 is 

constructed by  

  
T1

2

e e e   
  

E F F I     (19)  

where 𝐈 is the second rank identity tensor. The second Piolo-Kirchhoff 𝐓 stress tensor in 

the intermediate configuration is then expressed as  

 : eCT E     (20)  

Finally, the Cauchy stress tensor 𝜎 in the current configuration is  
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The stress state may then be related to the occurrence of slip in the modeled slip 

systems. The resolved shear stress on each slip system is  

  0 0:     s m     (22)  

An iterative or explicit solver may then be applied with the definition of a flow rule and 

the shear strain rate 𝛾̇𝛼 on each slip system. Specific flow rules are discussed in this work 

in the context of the material models applied to various problems throughout the work. 

In addition to the treatment of single grain response, models may also be 

considered to address grain boundary interactions. The most commonly used treatment of 

grain boundaries is in fact to neglect explicitly treating grain boundaries. Instead, 

compatibility of deformation is enforced via FEM in elements of neighboring grains [56]. 

This approach can be justified by the lack of information, and significant modeling 

complexity involved in grain boundary behavior in many materials. Soh [66] proposed 

the use of multi-grain elements to model boundary behavior (relatively) independent of 
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mesh density. Barbe et al. [67] found that the use of reduced integration elements coupled 

with the stair stepped nature of grain boundaries in a voxelated mesh may overestimate 

stress/strain values at grain boundaries. Héripré et al. [68] also demonstrated the potential 

for FEM grain boundary geometry to modify the location of the maximum stress 

responses. This information is included to acknowledge explicitly any deficiencies of the 

models utilized in this work, which do not explicitly treat grain boundaries and 

exclusively use the voxelated mesh representation and the inherent stair-stepped 

boundaries this produces. 

1.4: Synthetic Microstructures and Statistical Volume Elements 

In addition to the necessity of appropriate modeling techniques, effort must be 

made to ensure that simulated volumes are equally representative of those found in real 

material systems. Throughout this text, the concept of a synthetic microstructure will be 

used to describe volumetric instantiations described by a microstructure function and 

constructed from a set of target statistics, ideally quantified by direct observation of 

desired material systems.  

The concept of a “microstructure function” representing the spatial distribution of 

a microstructure instantiation has been developed over a series of publications [69-72]. 

These descriptors have been applied to many process-structure-property relationships and 

material design applications. The microstructure function 𝑚𝐬
𝐡 may be considered for all 

spatial locations 𝐬 in the volumetric space Ω with a material state vector 𝐡 in the 𝑧 

dimensional space 𝐻. The microstructure function then represents the probability of 

finding a local state in the observation window. This broad definition of the 

microstructure function includes continuous and discrete material descriptors. To reduce 

this theoretically infinite state space, the microstructure representations discussed in this 

work will consider spatial variation of only two parameters: phase and crystallographic 

orientation. All models in this work use integers for the phase state, indicating only a 



 

21 

 

single phase may exist at any given location in the defined microstructure function. The 

very concept of a microstructure function lends itself to a voxelated discretization of the 

material volume. A voxel, as the 3D equivalent of the pixel, may be considered as a 

rectangular prism which contains a single representative value.  

With the concise representation of the distribution of microstructure states, 

description and interpretation of spatial statistics used to characterize different 

microstructures becomes significantly easier. While traditional statistical representations 

of microstructures rely on univariate distributions particularly at an ensemble level, e.g. 

grain size distributions, there exist more accurate spatial statistics to characterize 

microstructures. The concept of a two-point statistic [73] is particularly useful to this 

work, and therefore mentioned explicitly. This statistic is defined over the Ω space with a 

finite number of spatial locations 𝑆 as 
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The joint probability of finding state 𝐡 at the location 𝐬 and state 𝐡′ at location 𝐬 + 𝐭 is 

the value 𝑓𝐭
𝐡𝐡′. Note that this value is typically computed over a periodic space such that 

𝐭 spans the same possible coordinates as 𝐬.  
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Figure 10. Two point spatial statistic for the cross-correlation of a two-phase 

microstructure function. 

 

The concept of a representative volume element (RVE) extends naturally from the 

notion of a microstructure function. An RVE may be defined for material structure and 

material property statistics. The most prominent definition of the RVE size, known as the 

Hill condition, may be stated as: 

“a sample that (a) is structurally entirely typical of the whole mixture on average, 

and (b) contains a sufficient number of inclusions for the apparent overall moduli to be 

effectively independent of the surface values of traction and displacement, so long as 

these values are macroscopically uniform.” [74]. 

By expanding the (b) definition to include any material response of interest, the 

RVE size becomes a function of the response type. Lacy et al. [75] have demonstrated 

that statistical homogeneity may not be achievable for certain damage parameters, and 

that indeed characterization should consider gradient values. This concept has been 

extended with the work of Przybyla and McDowell [39] to statistically characterize 

material properties in the region of significant damage via the use of marked correlation 
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functions. Gitman et al. [76] demonstrated that the existence of an RVE size for a 

computational model may not be present (or be prohibitively large) based on work with 

composite simulations and stress/strain response. These studies indicate that the RVE can 

be very large for high cycle fatigue (HCF); in fact, it can exceed the laboratory specimen 

or component scales. Often times the very definition of an RVE becomes unclear under 

complex loading conditions with stress concentration factors since it is impossible for the 

entire specimen to be subject to the same nominal stress-state [60]. In such cases, it is 

instructive to consider the random (aleatory) variability associated with randomness of 

microstructure (both intrinsic and extrinsic attributes) at length scales well below the 

laboratory specimen scale. 

Modeling approaches may address the problem of intractable computation for 

properties with prohibitively large RVE size by the application of an ensemble of 

statistical volume elements (SVE). This approach has been used to quantify macroscopic 

properties [77], spatial distributions of stress/strain [78], and fatigue responses [43, 79]. 

By allowing for fluctuations in the individual SVE response, computational times may be 

significantly reduced while still providing a convergent description of the property of 

interest.  

 RVE may also be of interest as described by the spatial statistics representing a 

microstructure of interest. This may be seen as an extension of the (a) definition from the 

Hill condition. Theoretically, this definition can be applied to any statistical measure. 

Since a finite number of samples are taken to approximate the population, a convergence 

threshold must be applied to create a definition for the RVE. This simple definition also 

neglects uncertainties associated with the construction of the idealized definition of the 

typical microstructure desired, e.g. the parameters of a statistical distribution used to 

represent the grain sizes observed in a material.  
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1.5: Thesis Outline 

As significant effort is expended in the development of accurate crystal plasticity 

models and analysis techniques become more intricate, the benefit of developing 

standardized protocols and frameworks becomes more tangible. This work contributes to 

the body of knowledge regarding the interpretation of extreme value results using FIPs 

and the selection of simulation parameters independent of the chosen model. Additional 

model developments provide more accurate life predictions of the Al 7075-T6 alloy 

under a variety of loading conditions. The functionality of all of the included work is 

demonstrated within an automated framework for crystal plasticity simulations. This 

framework, which includes support for multiple material models and analysis methods, is 

intended to advance the pace of development within the McDowell group and the 

Georgia Tech materials simulation community. 

This work began with an introduction of the basic material and modeling 

considerations employed in this paper. A summary of the fundamental basis of the 

mechanical response of metals in fatigue was presented to contextualize the material 

responses, modeling strategies, and analysis techniques presented in this work. Special 

attention was paid to the fundamental processes of fatigue crack formation and 

microstructurally small growth in various metal alloy systems. Similarly, the 

computational techniques applied to microstructure sensitive models were introduced and 

discussed. The continuum mechanics framework for crystal plasticity models was 

presented as these models are utilized throughout this work to simulate material 

responses correlated to fatigue damage. 

Chapter 2 introduces a new, automated material simulation pipeline. This pipeline 

has been developed around the abundance of crystal plasticity models developed within 

the McDowell group. Various aspects of the design of this pipeline are discussed and a 

relatively complete documentation of features and options is provided. This pipeline is 

applied to the simulations conducted throughout the remainder of this work. In addition, 
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the analysis and plotting discussed in this thesis are incorporated in the various Python 

modules that compose the entire pipeline. 

Following the discussion of CPFEM and development of an automated simulation 

framework, application of extreme value distributions for fatigue resistance 

characterization is discussed in Chapter 3. This method of ranking microstructures is then 

used to analyze the fatigue responses for two material models under varied loading 

amplitudes with the intent of constructing a response surface for the variability of 

decision making across various simulation parameter ranges. Statistical adjustments will 

be made to the extreme value distributions to compare across unequal SVE sizes. 

This treatment of extreme value responses prompted investigation of the life-

limiting distribution of FIPs as a material response. Chapter 4 follows the investigation 

into the behavior of the cumulative distribution functions (CDF) of FIPs. Following this 

investigation, a new characterization method describing the extreme values of FIP 

responses is then proposed. This characterization and extrapolation method is used to 

compare microstructure fatigue rankings across a variety of materials, crystallographic 

textures, and simulation parameters. Sensitivities of extreme value rankings are also 

presented for comparison with the previously developed SVE maximum approach to 

extreme value distribution construction. 

Chapter 5 introduces a new mesoscale crack propagation model, which has been 

developed to retain desirable traits of methods utilized by Musinski and Castelluccio. 

This method also benefits from the application of improved geometric rigor and the 

incorporation of a nucleation simulation phase. Taken together, the fatigue model may be 

used to predict fatigue lives in the Al 7075-T6 material system. 

In Chapter 6, this new method is calibrated and employed to predict fatigue life 

responses in synthetic microstructure instantiations of rolled Al 7075-T6. Extensive 

comparison is made to experimental data, especially that of Zhao and Jiang [80] to 

emphasize the applicability of the presented models over a wide range of loading 
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conditions and amplitudes. In addition, slip system activation ahead of propagating 

cracks was briefly investigated for the Ohno-Wang model. Finally, multiaxial fatigue 

response surfaces were constructed and compared for two separate fatigue model forms. 

Differences in the response surfaces may be traced to various fatigue model properties 

and calibrations while clearly demonstrating the importance in capturing material 

behavior and the limitations of models when predicting fatigue response in varying load 

conditions. 
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CHAPTER 2: AUTOMATED SIMULATION PIPELINE 

2.1: Motivation 

As models improve in predictive capability and as computational resources 

increase, computer-automated design tools become feasible to apply to material design 

scenarios. These tools are increasingly powerful and have been used in various 

disciplines to improve performance metrics and reduce design time while affording 

researchers and practitioners time to dedicate towards other skilled tasks [81-83]. Many 

of these techniques require significant knowledge of the system to be optimized. This 

information may be in the form of a database, surrogate model, or models evaluated 

during optimization. Optimization and design tasks are thus aided by the standardization 

of simulation routines and analysis methods, particularly when the data of interest are 

distributions of values obtained to multiple synthetic reconstructions of material volumes. 

In the domain of material design and development, an important thrust of recent 

research efforts has been the Materials Genome Initiative (MGI) [84], announced by the 

White House Office of Science and Technology Policy in an effort to preserve strategic 

superiority in materials development in the United States of America. Materials 

development has traditionally required significant trial-and-error and been the source of 

many redundancies in research efforts, something that can be improved with iterative 

design processes using simulations to limit experimental data sets required. One of many 

efforts to improve development rates is the Materials Project [85] which includes a 

collaborative database with the desire to produce and validate data on demand for design 

exploration. We seek to similarly pursue MGI objectives by extending and improving 

toolchains with a focus on materials design. 

Initial motivation and funding for the development of this automated simulation 

pipeline was provided by Dassault Systèmes Simulia Corp. with the original intent to 
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provide a suite of tools to support rapid analysis of the fatigue sensitivities of crystal 

plasticity models. Continued development has occurred with increased efforts to provide 

documentation and support for various material models, post-processing methods, and 

simulation strategies. To facilitate the organization, development, and maintenance of 

code, all of the software produced in this group has been version controlled using the Git 

version control system. The software repository is located on an enterprise version of 

GitHub maintained locally at Georgia Tech. The McDowell-Lab organization now 

maintains control of several repositories for material models and simulation packages, 

with the intent of open-sourcing projects when feasible. 

2.2: Simulation Modules 

The main goal of the automated simulation pipeline is to provide intuitive and fast 

initiation and management of many simulations required to gather comparative statistics 

on fatigue in different material models. To facilitate this, the core functionality of the 

software is broken down into four Python [86] modules, each dedicated to a logically 

distinct portion of the pipeline as depicted in Figure 11. The following paragraphs 

provide an overview of the functionality and interdependence of these modules as well as 

any external software used. The reader is also encouraged to reference APPENDIX A and 

the formal documentation files located on the McDowell-Lab repositories for additional 

information.  

The overall structure of the pipeline reflects the ad-hoc development approach 

combining functionality of codes from various students into a unified environment. The 

overall structure strives to be highly flexible by using good coding practice and small, 

highly specific functions. The Python language was chosen to reflect this flexible 

scripting desirability as well as having several advantages particularly for the academic 

environment including, but not limited to, free use (no license required), compatibility 
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(across operating systems), ease-of-use, and large number of available packages for 

scientific computing. 

 

Figure 11. Overview of the Automated Simulation Pipeline modules and 

organization. 

 

2.2.1: Microstructure 

The first stage in any crystal plasticity simulation is instantiating the desired 

synthetic microstructure. Associated functions are contained in the microstructure.py 

module. The synthetic representation of the material system includes statistical data e.g. 

texture, grain sizes, aspect ratios, as well as higher order spatial statistics [87-89]. Each of 
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these factors can have a profound impact on the simulated material response as indicated 

in this work and the work of many others e.g. [10, 90]. The internal storage of the 

microstructure ms is a NumPy [91] array (ndarray) with 3 dimensions representing, in 

order, the x, y, and z volumetric locations within the microstructure. Each index stores an 

associated grain number 𝑔 ∈ [0, 𝑛 − 1], and must be accompanied by ndarrays 

orientations and phases containing the orientation and phase for each grain. This 

information is inherently organized in a voxelated representation which has been 

commonly used for many crystal plasticity simulations of the McDowell group and others  

[40, 59, 70, 79]. Since it is difficult for a single research group or individual to keep pace 

with the developmental needs associated with synthetic microstructure generation of 

increasing fidelity, a third party tool is primarily used for microstructure reconstruction. 

Dream.3D [92] is used due to its catalog of extensive plugins, rapid adoption in 

the community, and open-source nature. This software also uses a voxelated 

representation internally and optimizes synthetic microstructures to a variety of input 

statistics including grain size and shape, phase volume fraction and crystal orientation 

and misorientation [89, 93]. The primary use case is the instantiation of multiple 

synthetic microstructures via the PipelineRunner.exe distributed with Dream.3D. The 

microstructure.py module also contains functions for reading and writing phase, 

orientation and grain assignments from VTK, OIM, and internal text formats. Since there 

are several ways to represent crystallographic orientations [94], an internal standard of 

the Bunge-Euler angles (expressed in radians) is selected for consistency in the pipeline. 

This is consistent with the selection of rotation standard used by Dream.3D. Finally, 

resampling of the voxelated microstructure may be performed in this step to reduce data 

density. The average time taken in this step is several seconds per microstructure. A 

100x100x100 element microstructure consisting of four textured phases and 3500 grains 

was produced in less than 25 seconds. 
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Figure 12. 2D cross-sections of the 3D voxelated representation of a synthetic 

microstructure (left) and subsampled representation (right). 

 

2.2.2: Meshing 

 The next step in the pipeline is the transition of the voxelated microstructure 

representation to a mesh suitable for simulation in the FEM. Such a mesh requires 

material assignments and nodal connectivity for each element. The functions relevant to 

mesh operations are contained in meshing.py. Each element has an associated grain 

number in the ndarray el_grains while the nodal connectivity for each element is 

assigned in the elements ndarray. Since material properties are assigned on a grain-by-

grain basis, a grain_el dictionary is also constructed. The keys to this dictionary are the 

grain numbers with the number -1 reserved for Abaqus material behaviors such as 

elasticity or isotropic plasticity. During pipeline execution, the selected material module 

determines the specific implementation of this behavior. Material modules and their 

functionality are detailed in the section entitled Material Repositories. Having obtained 

the microstructure information, there are two main methods of constructing a suitable 

FEM mesh. 
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 The first, and most common, method of mesh construction is a voxelated mesh 

constructed from the voxelated microstructure representation and size information. Using 

this method the number of FEM elements in each is determined by the shape (number of 

elements per dimension) and size (extents of the mesh in each direction) to create a 

prismatic mesh with an arbitrary number of elements and aspect ratios. In addition to the 

trivial structured mesh possible by a fully dense microstructure, meshes can be 

constructed with missing elements to create various stress intensification features such as 

cracks, notches, and through holes. The generic implementation of this requires the 

construction of a mask (ndarray of the same dimensions as ms) of Boolean values True 

where the element should remain in the mesh, and False where the element should not. 

The nodes are placed if any of the potentially connected elements are True in the mask, 

or if a mask is not provided. Finally, brick elements are assigned nodal connectivity 

based on the created node numbers and the inherent structure to a voxelated mesh for 

each of the eight nodes required. A cubic mesh with no holes (worst case) for a mesh of 

125,000 elements is generated in less than one second. 

 

Figure 13. 2D cross section of a 3D voxelated, masked FEM mesh. 

 

 The second meshing strategy requires a mesh generated from another source. A 

common use case is the input of an .inp file describing the mesh geometry, in which case 
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the node spatial position and element connectivity are read in directly from the mesh file. 

Note that node and element numbers are adjusted to a 0-based index (native Python 

indexing convention). To facilitate automation and flexibility in the pipeline, the ability 

to generate several different mesh geometries using Abaqus [95] scripting is included. 

These geometries include the same notch, hole, and crack geometries discussed 

previously. 

 

Figure 14. Overlay of microstructure (left) on unstructured mesh (right) as viewed 

from the z-axis. 

 

 Once the mesh information is read into the pipeline, a process referred to as 

overlaying the mesh occurs. This process links the microstructure information to the 

mesh to allow FEM simulation. Arbitrary placement of the microstructure within the 

mesh volume is accomplished by provided offsets from the mesh origin. By default, the 

microstructure is centered within the mesh volume. With the relative spatial locations set, 

overlaying is accomplished by computing which microstructure voxel that contains the 

coordinate of each element centroid. If this location is contained within the 

microstructure, an index of ms is computed and the grain value from this index is 

assigned to the element. Alternatively, if the centroid location is outside of the 



 

34 

 

microstructure, a grain value of -1 is assigned. Assigning a default grain value outside of 

the allowable range is used to create a material set with behavior differing from that of 

the UMAT. This feature may be particularly useful to reduce the computational effort 

required to simulate large components by having simple linear elasticity or isotropic 

plasticity outside of the microstructure region. Reading and overlaying a mesh of 125,000 

elements is accomplished in less than 3 seconds. 

A final feature of the meshing module is the ability to generate banded meshes to 

support the mesoscale fatigue crack growth algorithms of Hennessey and Castelluccio 

[47]. To band the microstructure, a bandwidth is supplied along with the crystallographic 

planes and grain orientations. For every element, the distance to a crystallographic plane 

passing through the grain centroid is computed. Elements are assigned a layer based on 

the bandwidth interval within which they reside for each plane computed. An example of 

a banded mesh is presented below. This feature is provided to retain backwards 

compatibility with codes previously used in the McDowell group. A mesh of 125,000 

elements is banded in less than 15 seconds.  

 

Figure 15. Example banded mesh. Different colors indicate different layers for a 

single crystallographic plane. Grain boundaries may be observed where a transition 

in the plane orientation occurs. 
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2.2.3: Simulation 

The third module required for pipeline execution is the simulation.py module. 

This module contains functions specific to simulation parameters for specific FEM 

software as well as executing simulations and downloading results from a remote cluster. 

Prior to these functions being executed, any material and mesh specific parameters 

should be written to the corresponding simulation files. 

All simulations belonging to the same batch have the same loading conditions and 

mesh, with only the microstructure instantiations differing. To accommodate this, a 

common loading file, loads.inp, is created to contain the applied loading steps, output 

requests, and boundary conditions. Arbitrary loading conditions are described by defining 

the components of the displacement tensor for the extents of the geometry. Any 

displacement not explicitly defined by the user is left unconstrained by the applied 

boundary conditions (allowed to displace freely). Displacements are solved for by a 

modified version of the deformation gradient definition where u is the displacement 

vector for a loaded node, (F-I) is the displacement tensor defined by the user, and X is 

the reference location of the node. 

    u F I X   (24)  

The logic of whether a displacement is applied (𝑎 = 1) or not (𝑎 = 0) may be defined as 

follows, where M is the logic tensor with value 1 where a displacement value was 

modified by the user and 0 elsewhere. The vector location V follows the same naming 

convention as the node labeling used for the application of boundary conditions. This 

convention has a 0 for the innermost or a 1 for the outermost node along this dimension, 

e.g. V010 is the node along the y-axis from the origin and V011 is the node at the corner 

of the face containing the y and z axes. See Figure 17 for further clarification. 
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These displacements are then applied to the outermost nodes of the mesh, V000, 

V001, V010, V011, V100, V101, V110, and V111. Rigid body modes are eliminated by 

setting the V000 (origin) node to have 0 displacement and the axis nodes (V001, V010, 

V100) to have 0 displacement out of axis.  

The displacement tensor is defined in a normalized manner, with the amplitude 𝜀𝑎 

and the load ratio 𝑅𝜀 = 𝜀𝑚𝑎𝑥  𝜀𝑚𝑖𝑛⁄  being used to find the actual displacement values 

during loading. Currently the pipeline only supports quasi-static loading with a strain rate 

of 10-3 1/s. The time for each step is found using this strain rate and the applied strain. 

Finally, the output request interval may be defined by the user, since this can significantly 

impact computational time and storage required. These and other loading parameters are 

displayed for clarity in Figure 16. 

 

Figure 16. Loading steps and parameters for pipeline execution. 

 

Additional node sets describe opposing faces and edges and are labeled according 

to a standard used by Przybyla and other previous students of the McDowell group [40, 

79] which allows for clear, concise labeling and application of common boundary 

conditions encountered in crystal plasticity simulations. 
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Figure 17. Node sets used for applying loads and boundary conditions. 

 

Currently, several different boundary conditions are supported in the pipeline, in 

any combination. The currently supported boundary conditions are flat (faces remain 

parallel to initial orientation), periodic, and free. The periodic boundary conditions are 

most common to crystal plasticity modelling and are used to emulate the behavior of a 

subsurface material volume and improve the convergence rate to macroscopic material 

properties [79, 96]. These boundary conditions enforce equal displacements across 

opposing faces by the use of zero-valued linear systems of equations (Abaqus boundary 

condition standard). This condition ensures the deformed volume can be tessellated in the 

chosen direction, thus the displacements are periodic. This condition should be utilized in 

conjunction with periodic microstructures. 

The zero sum equations require a consistent number of variables, thus, each 

paired node set must contain an equal number of nodes. For periodic boundary 

conditions, this has the implication that the periodicity of the boundary conditions should 



 

38 

 

match the periodicity of the mesh (nodal positions matching across opposite faces). This 

condition is satisfied for the prismatic meshes used in this work, however, there does 

exist a general formulation which can be implemented for non-periodic meshes at the 

expense of significant complexity [97]. Another shortcoming of the current 

implementation is that all node sets are required to have at least one element such that the 

boundary conditions do not break. This restriction can be relaxed with additional effort. 

For additional detail on the equations used to generate periodicity using the listed node 

sets, see Przybyla [64]. Finally, a list of simulation files is compiled including main_[0-

9]⟨1,⟩.inp, loads.inp, UMAT, and a remote execution script. A Python package, Paramiko 

[98], is used to ssh to the remote cluster, upload the files, and submit the execution script 

remotely. 

 

2.2.4: Post-Process 

The fourth module, post_process.py, is not explicitly integrated into the usual 

operation of the pipeline. Instead, this module is designed to provide users with a means 

of analyzing common forms of data generated by crystal plasticity simulations e.g., FIP 

files. This means that functions are readily available to integrate into user-developed 

automation suites incorporating the pipeline to facilitate design and automated analysis in 

one iterative loop. In addition, functions are provided to facilitate plotting common forms 

of data to reduce redundant efforts. 

 

2.2.5: Pipeline 

While the previous modules have been introduced with a logical ordering to the 

data created and utilized, they do not contain the functionality to automate the execution 

of multiple crystal plasticity simulations. The functions required to perform these 

automation tasks are contained in the pipeline.py module. The two core functions of this 



 

39 

 

module are doe_runner and pipeline_runner. The pipeline_runner takes in a Parameter 

object along with several flow control arguments. This function utilizes the building 

blocks presented above to prepare crystal plasticity simulations as specified. Upon 

completion, the current batch will be finished with preparations and either residing solely 

on the local machine or submitted for simulation on the remote cluster. The other 

function, doe_runner, is the only function to interface directly with user inputs. This 

function relies upon the existence of a file, DOE.csv, in the root of a directory that 

determines the specific simulation configurations to execute.  

Execution of the pipeline is performed via the command line and the only 

mandatory argument is the path in which to operate. The final directory in this path 

becomes a unique identifier of the simulations performed and a matching results directory 

is created on the remote cluster. A Parameter object is constructed which parses the 

DOE.csv file and the doe_runner iterates over each configuration line, creating 

simulation files in directories numbered 𝑖 = 0,1, … , 𝑛 − 1. For documentation regarding 

these objects and user parameters, please see the included documentation files. The 

pipeline_runner is executed for each configuration to create a batch of simulations. If the 

user desires, all of the configurations may be submitted simultaneously in a so called 

“batch mode” or pause for successful completion of the previous batch. In either case, 

eventually the doe_runner must eventually reach a polling mode. During this mode, the 

doe_runner sleeps for a set period of time (currently 30 seconds) before resuming 

execution and querying the cluster for the number of simulations in progress. This is 

accomplished by ssh-ing into the remote cluster and executing a command, which counts 

jobs remaining in the queue that match the current DOE name. This cycle of sleeping 

allows for minimal processor overhead while remote jobs are executed so that the user’s 

machine is not negatively impacted. Upon completion of a batch of simulations, the 

results are downloaded to the local user's machine in the corresponding directory and 

further post-processing can be performed. This entire process retains traceability without 



 

40 

 

becoming cumbersome to the user. There is not the high overhead of interfacing with a 

database and learning a new schema, instead the files are located in a directory of the 

same name on the remote cluster and the user’s local machine. Finally, the selected 

configuration options are retained in the root directory in the form of the DOE.csv, 

presenting an easy interpretation of past simulations. 

2.3: Material Repositories 

In addition to the core pipeline and its repository, each material model supported 

by the pipeline is also maintained in a standalone repository. Because of this loosely 

structured approach, there exist some dependencies that are not immediately apparent. 

These dependencies are highlighted in Figure 18, which also depicts the requisite folder 

hierarchy of local repositories. Both the pipeline and material repositories must reside in 

the parent GitHub folder. Currently, material and application paths (e.g. GMSH, 

Dream.3D, etc.) are expressed relative to the pipeline repository (PythonScripting) to 

respect user PATH variables and folder structures. 

 

Figure 18. Example material repository structure with required files. 
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The following files are required in each material repository. 

 Material module (Ex. Ti64.py): Must be named the same as the material 

repository. Contains functions to write material information and request 

SDV outputs to the Abaqus .odb file. 

 config.txt:  Colon delimited list of configuration options loaded before the 

pipeline prepares simulations for this material. See pipeline.py for use 

cases of various configuration options. Options for material or general 

configuration may be seen in the section Summary of Features and 

Parameters. 

 Remote Submission Script (e.g. ABAQUSjob.pbs): A template script to 

execute simulations involving the material model. This needs to include 

initialization of the module environment, creating a scratch directory, 

executing the simulation, and extracting any necessary information. 

During pipeline execution multiple batches of simulations may be performed. 

Prior to each batch execution, the requisite material module is loaded from the 

appropriate repository. The file config.txt is also parsed to provide additional parameters 

and override pipeline defaults where appropriate. This combination allows for extended 

functionality of the pipeline specific to individual material models and simulation 

parameters. 

2.4: Summary of Features and Parameters 

While it is anticipated that the pipeline will continue to grow in function and 

potentially be restructured, a thorough documentation of the options available to the user 

to configure simulations is presented as a representative snapshot of the current time. For 

up to date documentation, see the pipeline repository, and specifically the Parameters 

object in the pipeline.py module for updated information. The following is a list of 
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options exposed to the user in the DOE.csv file. The list is broken down by parameters, 

these are further enumerated by the input type, and an explanation of the current 

functionality. Each parameter is the heading of a column in DOE.csv. Each batch (row) 

in DOE.csv can define the option or leave it blank (empty string) to progress with the 

default option. 

 num_runs: Integer 

o Number of microstructure instantiations to simulate with the current 

parameters 

 size: comma separated list of Floats 

o Geometric extents of the microstructure and, if linked, mesh in mm 

o List is in order x, y, z 

 shape: comma separated list of Integers 

o Number of voxels in each dimension 

o List is in order x, y, z 

 sve_periodic: Boolean, optional 

o Defaults to True 

o Flags Dream.3D to allow periodicity in microstructure instantiation 

 sve_banded: Boolean, optional 

o Defaults to False 

o Produces banded mesh and requisite files, see [47, 48] 

 sve_band_thickness: Float, optional 

o Required for banded mesh 

o Determines the banding thickness in mm 

 mesh: String 

o Determines the meshing type applied 

o Must be one of voxel, tet, or repeat_inp 
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 ms: String 

o Determine source of microstructure descriptions 

o Must be one of: dream3d, copy_previous, read_existing, or 

single_crystal(𝜙1, 𝛷, 𝜙2) 

 mat: String 

o Material repository name to utilize for batch simulations 

o Case sensitive 

 load_i_ 

o repeats: Integer 

o r: Float 

o msc: Boolean 

 Evaluate MSC cracking via mesoscale or other crack propagation 

routine at the conclusion of this loading application 

o 𝐸𝑖𝑗: Float 

 Relative in-phase loading displacement for the equivalent direction 

o a: Float 

 Strain amplitude in mm/mm 

 

Additionally, the configuration file supports several options which may be used to 

configure pipeline behavior for the user’s specific computer and remote cluster setup. 

These options may also be redefined in each material repository. The config.txt file is a 

colon-delimited file with the following options: 

 MaxRunningOnCluster: pipeline repository 

o Courtesy limit to not overload queue and run out of Abaqus tokens 

o Will pause job submission if the current number of jobs exceeds this value 

 PiplineRunner_ 



 

44 

 

o v4: pipeline repository 

o v6: pipeline repository 

o Relative path of the Dream.3D application PipelineRunner to processs 

synthetic microstructure for the appropriate version number 

 gmsh: pipeline repository 

o Relative path of the Gmsh executatble 

 Server: pipeline repository 

o Cluster supporting qsub and ssh 

 DataMover: pipeline repository 

o Optional remote login which supports faster data download and movement 

operations 

 IncludeFiles: material repository 

o Comma separated lsit of files with fixed names that remain constant for all 

of the microstructures to be simulated in a batch. 

 InstantiationFiles: material repository 

o Comma separated list of filename 1, extension 1, filename 2, extension 2, 

… Specific microstructure instantiation numbers are inserted between the 

filename and the extension during pipeline execution prior to upload for 

remote execution. 

 UMAT: material repository 

o UMAT filename in the current folder 

 Pipeline: material repository 

o Dream.3D pipeline located in this folder, if not included a default pipeline 

will be run from the pipeline repository. 

 PBS: material repository 

o Name of the remote submission script located in this directory. 
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Finally, there are several pipeline options that are supplied as command line 

arguments. These arguments are: 

 b: batch mode 

o executes all lines of the DOE.csv simultaneously 

 o: offline 

o Does not attempt to contact the remote cluster 

o Does not upload or execute simulation files 

 r: resume 

o repeats the execute of the DOE resuming at the supplied configuration 

number 

 v: verbose 

o Supplies additional information to the user during runtime 

2.5: Conclusions 

The framework for an automated crystal plasticity simulation pipeline has been 

presented. While not a formal documentation of the data structures and dependencies, the 

intent is to provide a brief introduction and point interested users to the formal, up to date 

documentation on the Github repository. The intent of this pipeline is to streamline 

simulation and development of new capabilities within the McDowell group and beyond. 

The scripting tools provided here and flexible structure should facilitate reduced startup 

time. Future chapters will not explicitly mention the use of the pipeline, however it 

should be apparent that the amount of data generated and analyzed was greatly facilitated 

by the use of the pipeline. All simulations and material models used in this work are 

supported within this framework. The compilation of such resources should significantly 

reduce the effort required to add data to existing simulation studies and build additional 

features to improve model fidelity and data analysis rigor. 
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CHAPTER 3: SENSITIVITY ANALYSIS OF FATIGUE IN CRYSTAL 

PLASTICITY MODELS 

3.1: High Cycle Fatigue as an Extreme Value Problem 

One of the most important research efforts in quantifying fatigue processes is that 

of Freudenthal and Gumbel [99], interpreting fatigue damage processes as a continuous 

survival function. This survival function expresses the cumulative frequency of the 

number of surviving samples as a function of the number of cycles. Obtaining statistically 

significant numbers of fatigue specimens is costly due to extensive experimentation 

required. Instead, modeling approaches have been introduced to facilitate the 

understanding of fatigue in terms of extreme value distributions. Many researchers have 

attempted to relate fatigue lives to distribution of initial defects [100-103]. Other efforts 

have considered competing fatigue mechanisms to explain increased life scatter and 

differences in observed fatigue behavior [36, 104, 105].  

One particular method of fatigue analysis using crystal plasticity simulations that 

has become increasingly prevalent, especially within the McDowell group, is the use of 

FIP based extreme value statistics gathered from the ensemble of SVE. The FIP response 

is calculated for all locations in the FEM mesh, with the maximum FIP from each SVE 

then compiled into a list of maxima. This concept of selecting extrema from equal sized 

samples forms the basis for extreme value theory. In the derivation by Gumbel [106], 

individual samples 𝑋𝑖 are independently identically distributed (IID) from a known 

cumulative distribution function 𝐹𝑋(𝑥) which may be referred to the as the underlying 

distribution in this work. The following formulations will only consider the extreme 

value theory in terms of the life limiting (maximum) values. For an ensemble of 𝑛 SVE, 

the maximum 𝑌𝑛 is expressed 
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  1 2, , ,n nY max X X X    (26)  

where 𝑋1 to 𝑋𝑛 are the individual SVE maximum FIP values. The cumulative distribution 

𝐹𝑌𝑛
 expresses the probability of finding a 𝑌𝑛 less than the value 𝑦. 

    1 2, , ,
nY n nF P Y y P X y X y X y         (27)  

Finally, for univariate distributions, it has been shown that there are three extreme 

value distributions to which this extreme value distribution can converge [107]. The set 

of all distributions for which the tail behavior converges to one of these three 

distributions is referred to as the domain of attraction for that distribution. Przybyla [64] 

studied the behavior of the ensemble FIP maximum introduced above. The Type III, or 

Weibull, extreme value distribution was deemed inappropriate to fit given the inability to 

define a true maximum response value [39]. The Type I Gumbel distribution was found 

to better fit the extreme behavior of various FIP values when compared to the Type II 

Fréchet distribution [108]. The probability density function (PDF) of a Gumbel 

distribution is given by  
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where 𝜇𝐺 is the characteristic largest value of 𝑋𝑛 and 𝜎𝐺 is a measure of dispersion. Both 

values may be fit with a least-squares regression after transforming the data with natural 

logarithms [60]. Such a transformation is also useful for plotting and verifying the 

goodness of fit for the Gumbel distribution to the extreme value observed. The linear 

transformation for the Gumbel distribution is of the form 
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G G

F y





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which is useful for plotting the distribution linearly and performing regression. MATLAB 

[109] was used to provide confidence intervals of the fitted parameters using maximum 
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likelihood estimation (MLE). These fitted parameters may then be correlated with 

microstructure parameters, marked correlation functions, and fatigue responses to guide 

engineering design based on the probability of extreme events. 

 Within this framework of extreme values, there are several mechanistic 

justifications for various averaging volumes. Shenoy et al. [43] indicate the applicability 

of FEM volumes on the order of slip bands to be valid for conducting fatigue simulations. 

Castelluccio and McDowell [46] also observed slip band and grain size averaging 

volumes and their impact on FIP values, noting that the maximum values tend to occur 

near grain boundaries. Diard et al. [59] utilized an averaging volume of approximate 

grain size but which did not extend into the neighboring grains. Due to these 

observations, several different averaging schemes will be investigated to ascertain their 

effect on the extreme value responses. 

3.2: Sensitivity Analysis Procedure 

While the use of SVE and FIP extreme distributions has begun to permeate the 

literature, little effort has been expended to understand how the selected simulation 

parameters influence decision making for fatigue resistance. In the existing literature, 

SVE size has been selected based on a justification of convergence of local plastic strain 

response and cyclic FIPs. While it has been demonstrated at the single SVE level that 

these values do not reach convergence [60], the impact on extreme value distributions has 

been thus far neglected. Establishing a knowledge base regarding the behavior of FIPs, 

extreme value decision-making, and comparative strategies becomes increasingly 

important as design for fatigue resistance expands in scope and research is conducted by 

and across different groups. While single studies tend to compare fatigue response for 

varied materials across a constant set of simulation parameters, there is the potential for 

independent researchers to desire to correlate results across different literature sources 

that have utilized varying simulation parameters. This work aims to inform this ability to 
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standardize information exchange and explore the limitations of extreme value FIP 

analysis over a range of simulation parameters.  

All meshes in this study will be cubic to reduce dimensionality of the design 

space. This assumption matches many simulations conducted using crystal plasticity 

models because specimen geometry is not considered, and it is instead desirable to 

measure the bulk response. Measuring the bulk response is also facilitated by the use of 

the aforementioned periodic boundary conditions. This assumption is also necessitated by 

the work of  Przybyla et al. [108], who demonstrated that the application of  the Gumbel 

distribution to extreme value analysis of FIPs is only valid in the case of periodic 

boundary conditions. Traction free surfaces greatly change the deformation at the 

boundary and thus present differing regions of FIP responses, which breaks down some 

of the assumptions inherent in the extreme value analysis. These boundary conditions can 

also introduce competing mechanisms of fatigue that are not investigated in this study. 

Instead, the intent is to understand, for subsurface volumes, the variation of extreme 

value distributions from simulation parameters. 

An initial investigation was funded by Dassault Systèmes Simulia Corp to study 

the impact of different simulation parameters. This investigation used a Latin Hypercube 

DOE over a larger parameter space than the one presented in this work. This fact, 

coupled with the inclusion of strain amplitude as a variable in the DOE, contributed to 

relatively high uncertainties and made drawing definite conclusions impossible. This 

work addresses some of the previous shortcomings by analyzing the responses over a Full 

Factorial DOE for the following parameters. 

The first sensitivity parameter 𝛿 is the number of average grain diameters along 

the SVE sidelength. This parameter is commonly used in RVE convergence studies to 

represent the number of nearest neighbor effects necessary to obtain convergence. This 

parameter also serves as a proxy measurement for the total number of grains in the 

simulated volume. Increasing number of grains will improve fitting of the 
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crystallographic orientation, misorientation, and grain size distributions. This parameter 

is used such that the conclusions should be independent of the grain size studied. 

The second parameter 𝐸𝑔 is the number of voxels across an average grain 

diameter. Again, this is a linear parameter intended to represent potential strain gradient 

effects developing within grains as the mesh undergoes refinement. This parameter has 

been investigated by Castelluccio and McDowell [110] for a limited set of SVE, but not 

at the ensemble level. Again, this value is held constant for all three spatial dimensions, 

and a normalized value chosen to reflect the general applicability of the results to any 

grain size and mesh size.  

The applied strain amplitude 𝜀𝑎 is the final parameter for this investigation. 

Different applied strain amplitudes are desired since strain localization has been observed 

to be a function of the applied strain, i.e., as applied strain increases, the heterogeneity of 

plasticity tends to decrease. This transition has been linked to the scatter in fatigue lives 

associated with HCF and ultimately the transition to LCF and more homogenous 

plasticity. To study these effects, two loading conditions were modeled for each material 

system. One, to represent VHCF, is chosen as 0.35𝜀𝑦 and the other, for HCF, is selected 

as 0.7𝜀𝑦 where 𝜀𝑦 is the strain at macroscopic yield. If observations are consistent across 

the widely varying plasticity regions encompassed by these loading conditions, it may be 

reasonably assumed that they are consistent conclusions across the parameter space 

relevant to fatigue simulations. To limit the size of this initial investigation, all loads are 

fully reversed 𝑅𝜀 = −1. All loads are applied for three cycles to approximate steady state 

values [39]. 

For consistency of language, a “configuration” is a unique combination of the 

above parameter values. In addition, two different types of sensitivity studies were 

conducted. The first type utilizes the subsampling routine discussed previously to conduct 

simulations across the range of configurations while utilizing ostensibly the “same” 
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microstructures. The idea of this study is to provide a baseline by reducing the aleatoric 

uncertainty associated with the number of samples in each batch. A Kolmogorov-

Smirnov (KS) test was used to test whether the distributions of FIPs were drawn from the 

same distribution for all configurations of a given type (same, unique). For both materials 

studied, the “nominally same” simulations were more closely related for all but one of the 

configurations examined. For this reason, unless otherwise noted, the batches referred to 

in the results are from the “nominally same” microstructure simulations. 

 

Table 1. KS test statistics for “nominally same” and “uniquely generated” 

microstructure batches compared to the highest fidelity reconstruction 

(Configuration 9). 

 
Ti64 IN100 

 
Ɛa=0.35Ɛy Ɛa=0.35Ɛy Ɛa=0.7Ɛy Ɛa=0.7Ɛy Ɛa=0.35Ɛy 

Configuration 
# 

Uniquely 
Generated 

Nominally 
Same 

Nominally 
Same 

Nominally 
Same 

Uniquely 
Generated 

1 5.28E-02 2.24E-02 2.02E-02 1.52E-01 3.12E-01 

2 6.35E-02 1.89E-02 1.37E-02 8.13E-02 3.09E-01 

3 3.56E-02 1.97E-02 1.48E-02 9.25E-02 2.43E-01 

4 3.18E-02 9.07E-03 2.20E-02 7.61E-02 3.04E-01 

5 2.17E-02 8.43E-03 1.19E-02 8.12E-02 2.36E-01 

6 6.28E-03 8.89E-03 6.08E-03 2.44E-02 6.51E-02 

7 3.48E-02 2.38E-03 2.17E-03 6.72E-02 2.44E-01 

8 1.57E-02 1.57E-03 1.38E-03 6.10E-02 8.60E-02 

9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 

 Two different material systems will be investigated to ascertain the general 

applicability of the results presented here as well as any discrepancies. For each material 

system, several response variables will be considered. The first response is the coefficient 

of variance for the stress observed at the peak imposed strain. The coefficient of variation 

is a standard statistical measure for a normally distributed property and may be expressed 

by the ratio of the standard deviation to the mean  

 vc



   (30) 
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where 𝜎  is the standard deviation of the variable in question and 𝜇 is the mean. Since this 

variable will be used to quantify many relative uncertainties, the subscript will denote the 

variable of interest, e.g. 𝑐𝜎 is the coefficient of variation for the peak stress. This is 

similar to many macroscopic convergence measures used in other sources [111, 112].  

In addition, the extreme value distribution parameters and their coefficient of 

variation will be studied for distributions fitted to extreme values arising from different 

averaging schemes. Przybyla [64] demonstrated the reduction in sensitivity of extreme 

value distributions by averaging over a grain-size-equivalent volume. These volumes 

should be determined by the damage process relevant to the material, e.g., slip bands in 

recent work by Castelluccio [40]. The importance of this consideration is also noted by 

Shenoy et al. [43]. The first type of value reported is the “element” FIP with Gumbel 

parameters 𝜇𝑒𝑙𝑒𝑚𝑒𝑛𝑡 and 𝜎𝑒𝑙𝑒𝑚𝑒𝑛𝑡. Since reduced integration elements (C3D8R) are used 

for all of the studies in this work, this computation is performed at the single integration 

point in the center of each element. The second type of averaging volume discussed is a 

“grain equivalent volume” with parameters 𝜇𝑘𝑒𝑟𝑛𝑒𝑙 and 𝜎𝑘𝑒𝑟𝑛𝑒𝑙. This volume is averaged 

by using a Gaussian kernel with the standard deviation set such that two standard 

deviations on each side will average over the mean grain diameter. A coarser application 

of grain equivalent averaging volume may also be applied in the form of cubic volumes 

with the number of elements selected to approximate the average grain diameter. 

Parameters for this averaging method are 𝜇𝑐𝑢𝑏𝑒 and 𝜎𝑐𝑢𝑏𝑒 The final averaging type, 

“grain averaged,” is the mean response over all elements in each grain with parameters 

𝜇𝑔𝑟𝑎𝑖𝑛 and 𝜎𝑔𝑟𝑎𝑖𝑛. 
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Figure 19. FIPs averaged over grain equivalent volumes for two representations of 

the same nominal microstructure. 

  

SVE parameter selection will inherently generate a non-constant number of FIP 

responses from which to select the maximum. Since extreme value distributions are 

fundamentally linked to this sample size, it is relevant to observe the response variable 

behavior before and after adjusting for this statistical effect. The term observation 

window will be used to differentiate this sample size from other sampling sizes involved 

in this work. This term, often used for observation of particles or voids in steel 

assessment, is equivalent to the observation time frame in extreme wind measurements, 

and several sources note a procedure for adjusting the extreme value distribution to 

account for differing observation windows. While this procedure can be found in several 

sources, the formulation used by Beretta et al. [104] is reproduced below for consistency 

in extreme value fatigue failure applications. First, the ratio of the observation sizes is 

expressed as  
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where 𝑌02 and 𝑌01 are the sizes of the observation windows and 𝑉 is the size ratio. The 

redefinition of the actual Gumbel distribution must necessarily be expressed as  

     
02 01

V

Y YF x F x   (32) 

conditional on the independence of the observation windows, and the individual samples 

contained within. This results in a shift of 

          
2 1

ln ln ln ln ln
O OY YF x V F x        (33) 

for plotting the distributions of the extremes in a linear fashion. Gumbel parameters 

adjusted in this manner will be referred to as “adjusted” distribution parameters. All 

adjusted distributions are constructed with some “target” observation window size that 

will depend on the type of value used to construct the extreme value distribution. 

Selection of target sizes is discussed further alongside the results. 

3.3: Ti64 Case Study 

The first material system observed is the Titanium alloy Ti-6Al-4V (Ti64) using 

the power law model calibrated by Smith [113]. The reader is referred to the work of 

Smith for additional details on the implementation of the crystal plasticity model and 

material system. This study simulates the 𝛽-annealed microstructure with random texture, 

which will simply be referred to as Ti64 in this work.  A log-normal grain size 

distribution was also applied for this material system with 𝜇ln = 4.064 and 𝜎ln = 0.2462 

such that the average grain size is 60 µm and the standard deviation is 15 µm as 

determined by Smith [113], i.e.,   

  
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A full factorial DOE was selected to capture any potential interaction effects 

between the parameters and allow for response surface construction. The selected 

configurations are shown in Table 2. Example microstructures for each configuration can 

be seen in Figure 20 to demonstrate the subsampling in three dimensions as well as the 

effect of varying the two variables studied. Twenty microstructures were simulated for 

each configuration. This is near the limit observed by Przybyla and McDowell [60] as 

having good agreement with the extreme value distribution. Following simulation, this 

was found to be a sufficient number of SVE for all configurations.  

Table 2. List of configurations for the Ti64 sensitivity DOE. 

Configuration # Nominal number of grains 

per SVE sidelength 

𝛿 

Elements per average grain 

diameter 

𝐸𝑔 

1 3 4 

2 3 5 

3 3 7 

4 5 4 

5 5 5 

6 5 7 

7 7 4 

8 7 5 

9 7 7 

 

The first parameter 𝑐𝜎 is very well behaved. For both the high and low strain 

cases, this variable decreases with increasing 𝛿 and shows no trend in 𝐸𝑔. Indeed, the 

behavior is well fit by several other studies of macroscopic stiffness convergence such as 

that of [70]. These results are entirely anticipated as they exhibit features observed by 

many researchers about the convergence of stress/strain response as a function of SVE 
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size such as Barbe et al. [67] whose results indicate a relative insensitivity of the 

stress/strain distributions to the mesh refinement for a constant SVE volume. Extensive 

analysis is not presented on the 𝑐𝜎 response since this has been well studied in the 

literature, instead this was predominantly used to verify the general trends in the SVE 

reconstructions and simulations. Data is included in  APPENDIX B. 

 

Figure 20. Example meshes for nine configurations of Ti64 sensitivity DOE. 

 

Less well studied is the fatigue value sensitivities with respect to simulation 

parameters. Unfortunately, the Gumbel distribution parameters are not particularly well 
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behaved in raw or adjusted form. For all of the extreme FIPs studied, the distribution 

parameters are outside of the 95% confidence bounds of at least one other simulation 

configuration. This is also true of the adjusted distributions. Due to the large number of 

responses considered, representative responses are selected for reproduction here. All 

error bars plotted are the 95% confidence interval for each parameter as estimated from 

the MLE routine. 

 

Figure 21. Behavior of 𝝁𝒌𝒆𝒓𝒏𝒆𝒍 from Ti64 simulations at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 
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Figure 22. Behavior of 𝝁𝒌𝒆𝒓𝒏𝒆𝒍 from Ti64 simulations at 𝜺𝒂 = 𝟎. 𝟕𝜺𝒚. 

 

Correction using the statistical methods previously introduced does not 

adequately shift the distribution values, and in fact creates many problems in the data set. 

In addition to providing poor agreement with the reconstructed mean, the statistical 

adjustment for sample size does not explain the observed shift in the 𝜎𝐺 parameter as 

demonstrated in Figure 23. These variations can be significant (on the order of the 

variations in 𝜇𝐺) and not explained simply by a change in sample size. This would tend to 

indicate a violation of the underlying assumptions.  
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Figure 23. Behavior of 𝝈𝒌𝒆𝒓𝒏𝒆𝒍 from Ti64 simulations at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 

 

Figure 24. Behavior of 𝝁𝒈𝒓𝒂𝒊𝒏 from Ti64 simulations at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 

 

Of particular interest is the response of the grain equivalent averaged FIPs. These 

results provide a significant challenge in analyzing in the extreme value framework as the 

assumption of IID samples from the underlying distribution is now violated. This 
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indicates that the adjustment of observation window should instead account for the 

averaging volume. For the nominally same microstructures it appears that the 

subsampling method leaves a larger than desired number of small grains. By contrast, the 

uniquely generated microstructures have a nearly constant packing factor relative to the 

number of cubic grains in the space. Note that the results are presented using only the 

average values for the 20 microstructure instantiations; however, the actual number of 

grains fluctuates from sample to sample which makes the selection of an observation 

window for correction more difficult.  

  

Table 3. Number of grains observed in nominally same and uniquely generated 

microstructures. 

Configuration 
Number of Cubic 

Grains 

Average Number 
of Grains 

(Nominally Same) 

Average Number of 
Grains 

(Uniquely Generated) 

1 27 92.3 51.9 

2 27 104 51.8 

3 27 116.5 52.25 

4 125 337.8 237.95 

5 125 394 232.85 

6 125 398.9 239.45 

7 343 652.25 645.9 

8 343 652.25 639.25 

9 343 652.25 651.05 

 

Using the expected or actual grain numbers, it is apparent that the strategy does 

not fully compensate for the differences in extreme value distributions. For instance, the 

conclusions are different depending on the target window size. This is due to the non-

constant 𝜎𝐺 term which should nominally be the same for extreme values distributions 

constructed from IID samples of the same underlying distribution. This presents a 

significant complication in successfully adjusting the distributions to a target size. 
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Figure 25. Behavior of adjusted 𝝁𝒌𝒆𝒓𝒏𝒆𝒍 with target size of 1000 grains. Samples 

from nominally same Ti64 microstructures at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 

 

Figure 26. Behavior of adjusted 𝝁𝒌𝒆𝒓𝒏𝒆𝒍 with target size of 1000 grains. Samples 

from uniquely generated Ti64 microstructures at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 
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Figure 27. Behavior of adjusted 𝝁𝒌𝒆𝒓𝒏𝒆𝒍 with target size of 200 grains. Samples from 

uniquely generated Ti64 microstructures at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 

  

To understand the role of uncertainty in informing potential decisions, the 

coefficient of variance was also studied for each simulation configuration. This response 

has relatively little sensitivity to the selection of simulation parameters, indicating that 

the convergence of the extreme value distribution is not strongly linked to the SVE over 

the ranges of parameters studied. This is encouraging as it indicates that fundamental 

changes in the SVE behavior are not occurring and that the relatively inexpensive 

simulations may be equally representative of the fatigue response. In general, all values 

for 𝑐𝑥 remain relatively constant across all configurations. The one exception for Ti64 is 

depicted in Figure 28 which shows a very slight reduction of ~10% with an increasing 

number of elements. 
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Figure 28. Behavior of adjusted 𝒄𝝁𝒌𝒆𝒓𝒏𝒆𝒍
 with target size of 200 grains. Samples from 

uniquely generated Ti64 microstructures at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 

 

3.4: IN100 Case Study 

The second material studied in this work is the Nickel-base superalloy, IN100. 

This alloy is commonly found in aerospace turbine applications. Details on modeling 

efforts and material features may be found in [43, 49, 60]. A log-normal grain size 

distribution was also applied for this material system with 𝜇ln = 2.9895 and 𝜎ln =

0.1115 such that the average grain size is 20 µm and the standard deviation is 4 µm as 

utilized by Przybyla [64]. The maximum values of the 𝛿 and 𝐸𝑔 parameters were reduced 

slightly since the material model proves significantly more computationally intensive 

than the previously studied Ti64 model.  
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Table 4. List of configurations for the IN100 sensitivity DOE. 

Configuration # 𝛿 𝐸𝑔 

1 3 4 

2 3 5 

3 3 6 

4 4 4 

5 4 5 

6 4 6 

7 5 4 

8 5 5 

9 5 6 

 

The conclusions of the IN100 investigation are very similar to those of the 

aforementioned Ti64 study. That is to say, the Gumbel parameters do not display 

significant, nor consistent correlation to the parameters studied. Similarly, the statistical 

adjustments for number of observations do not account for the differences in Gumbel 

parameter values. Again, several plots are reproduced below as representative samples 

and the remainder of the data is presented in APPENDIX B. 



 

65 

 

 

Figure 29. Behavior of 𝝁𝒌𝒆𝒓𝒏𝒆𝒍 from IN100 simulations at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 

 

Figure 30. Behavior of 𝝁𝒌𝒆𝒓𝒏𝒆𝒍 from IN100 simulations at 𝜺𝒂 = 𝟎. 𝟕𝜺𝒚. 

 

In the particular response highlighted in Figure 29 and Figure 30, opposite trends 

are observed for the high and low strain cases. In this case, it is likely that in the low 

strain case, plasticity is only being developed at the grain boundary, and thus adding 
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elements in the interior of the grain suppresses the total response. The statistical 

adjustment will not account for this difference, e.g. assuming a target size greater than the 

current number of samples, the adjustment magnitude will be smaller if the number of 

samples (elements in this case) is closer to the target.  

3.5: Conclusions 

This chapter presented the results of sensitivity analysis for the extreme value 

problem of fatigue as applied to two material systems. For both IN100 and Ti64 systems, 

direct relationships between simulation parameters 𝛿 and 𝐸𝑔 to Gumbel distribution 

parameters do not appear viable given the seemingly random occurrences of outlier 

values. The inability to provide consistent correlations for these responses as a function 

of simulation parameters indicate the presence of additional confounding variables, 

which should be further investigated. In addition, the relative uncertainties of the extreme 

value distributions constructed do not appear to have significant correlation with any of 

the variables studied. In other words, while the scale and location (𝜎 and 𝜇) variations are 

not well understood, the extreme value distributions they describe are well behaved for 

all SVE sizes studied. This indicates that the SVE size and mesh density necessary to 

construct an appropriate extreme value distribution are satisfied in the region studied and 

no additional benefit is obtained from this perspective by increasing computational effort. 

It is noted that these observations were obtained for equiaxed grains with random texture, 

the simplest of morphologies. 

In addition to the analysis of Gumbel distribution parameters as fitted to SVE 

extreme FIP values, statistical adjustments were performed to these values to correct for 

the inherent differences in the extreme value sample size (number of elements/grains) by 

shifting the location parameter 𝜇 according to a selected target sample size. These 

adjustments are relatively standard in the realm of extreme value statistics; however, they 

do not yield correct results when applied to the extreme value distributions constructed in 
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this study. Gumbel distribution parameter orderings for the nine configurations studied 

were observed to differ based on the target adjustment size. These results are not 

indicative of a fundamental fatigue response for the material of interest. Instead, 

consistent conclusions cannot be drawn for different SVE configurations in these material 

systems. It should also be noted that changes in grain morphologies, e.g. increase in grain 

size, may change the parameters 𝛿 and 𝐸𝑔 for a constant SVE configuration, and thus 

particular care should be taken in drawing conclusion for fatigue resistance as a function 

of the material morphology and texture. As observed, large fluctuations can occur and 

provide erroneous conclusions for extreme value distributions constructed from SVE 

maximum FIP values in these cases. This motivates a different approach to quantifying 

the extreme value behavior, one that is based on an invariant property of the selected 

microstructure and material model. 
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CHAPTER 4: MESH INSENSITIVE METHOD FOR APPLYING 

EXTREME VALUE FATIGUE LIFE ESTIMATES 

4.1: Convergence of FIP Distribution 

One of the most important assumptions for the convergence of an extreme value 

distribution is that all samples are selected from the same underlying distribution. For 

reference, see the introduction in High Cycle Fatigue as an Extreme Value Problem. This 

underlying distribution dictates the form of extreme value distribution obtained in the 

limit as the sample size increases [114]. Rankings of fatigue resistance should ultimately 

be based on this underlying distribution, ideally an invariant response of the material for 

a consistent loading and sufficiently converged mesh. Similar distributions have been 

used in various fatigue analysis methods, e.g., the fatigue assessment proposed by 

Wormsen et al. [115] for a loaded component experiencing spatially varying stresses.  

This approach considered the volumetric probability of the number of defects in 

conjunction with the probability of stresses exceeding the critical stress dictated by the 

defect density. By assessing the life limiting behavior as a function of both probabilities, 

the overall probability of part survival may be estimated. 

Additionally, while works such as [39] and [113] have treated FEM simulations 

as SVE and captured extreme values for comparison, little effort has been made to 

characterize the FIP distributions and apply a formal definition for which microstructure 

meshes may be considered suitable SVE of fatigue response. Many research efforts have 

instead considered the convergence of local plasticity, maximum averaged FIP value, or 

macroscopic response in the determination of SVE simulation size [60, 116]. These 

approaches follow logically from the formal definition of the RVE by Hill [74]. 

Several other works, however, have directly addressed the distribution of damage 

criteria. Shenoy et al. [43] computed such a distribution for a limited set of simulation of 
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IN100 for the purposes of a life distribution prediction. Trias et al. [78] considers the 

distribution of stress/strain field of composites as additional convergence criteria to the 

Hill condition. Diarde et al. [59] and Barbe et al. [67] studied the stress distributions of 

crystal plasticity models as a function of the SVE size and mesh resolution. Distributions 

were found to have good agreement down to a resolution such that each grain was only 

represented by a single element. Castelluccio and McDowell [46] also made general 

observations about the distribution of FIPs using various averaging schemes and under 

various levels of refinement. Coarse microstructure representations were generally 

concluded to be acceptable for use in crystal plasticity models given the lack of treatment 

of grain boundaries and slip bandwidth. These results were not used to make any 

statement about the appropriateness of the coarsely meshed volumes as SVE, nor the 

transition towards an RVE with increasing volume. A more formal discussion of the role 

of SVE and RVE definitions and characterization of FIP behavior as applied to extreme 

value problems is warranted, however. Applying the notion of an RVE as a function of 

the FIP distribution logically yields the following: 

 The RVE of fatigue represents the volume for which the FIP distribution 

is entirely representative of the population. 

 A volume should be considered an SVE of fatigue if an ensemble of these 

volumes estimates the true FIP distribution without diverging, but instead 

remains within a small neighborhood of the true distribution as additional 

SVE are added to the ensemble. 

This first statement is likely to require infeasibly large computational volumes as 

discussed in the introduction to Synthetic Microstructures and Statistical Volume 

Elements. The second statement is an intentionally weak claim given the lack of 

information about various factors influencing the potential distribution of FIPs, e.g. grain 

boundary treatments, mesh refinement, n-neighbor effects, etc. Both statements can be 

examined within the context of the previously discussed FIP distributions from sensitivity 
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analysis of extreme value distributions. Additional FIP distributions, generously provided 

by Matthew Priddy and funded by NSF GOALI Program (CCMI-1333083), will also be 

utilized in the following discussion. This database consists of four textures and three 

loading conditions of uniaxial strain along the x, y, z SVE axes at 𝜀𝑎 = 0.5%. Each load 

condition and texture was simulated for 100 instantiations of 213 elements. The 

considered textures are Basal, Transverse, Random, and Actual (taken from EBSD scans 

of Ti64). FIP distributions referenced are taken over grain-size equivalent averaging 

volumes using a cubic averaging method. 

 

 

Figure 31. Example pole figures for the (from left to right) Basal, Transverse, 

Random and Actual textures utilized in this work [113]. Note that pole figure axes 

are labelled according to SVE axes for comparison to applied loading. 

 

Unless otherwise noted, all distributions shown are the empirical cumulative 

distribution function (CDF) estimated from element averaged FIPs for reduced 

integration elements (C3D8R). The Kaplan-Meier estimator is used to construct the CDF. 

Each SVE thus contributes a number of samples equal to the number of elements used in 

the mesh and the total distribution represents that volumetric probability of the 

distribution of FIP values. These distributions span several orders of magnitude, thus are 

best viewed on a log scale. To accommodate this plotting, all FIP distributions are plotted 

with all 0 value FIPs removed. The relative percentage of 0 value FIPs remains relatively 

constant for individual SVE of a configuration and for all configurations at the same 

loading condition. For the randomly textured sensitivity data, it is evident that the 
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distributions are all of similar form. At the higher strain levels, a more homogenous 

distribution of plasticity is observed (the CDF is more vertical, indicating a higher 

probability density in this region). These observations are consistent for the life limiting 

tails of the distribution as well. 

 

Figure 32. FIP distributions for 9 configurations of the same nominal 

microstructures of randomly textured Ti64 at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 
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Figure 33. 99.9% tail of the FIP distributions for 9 configurations of the same 

nominal microstructures of randomly textured Ti64 at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 

 

Figure 34. FIP distributions for 9 configurations of the same nominal 

microstructures of randomly textured Ti64 at 𝜺𝒂 = 𝟎. 𝟕𝜺𝒚. 
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Figure 35. 99.9% tail of the FIP distributions for 9 configurations of the same 

nominal microstructures of randomly textured Ti64 at 𝜺𝒂 = 𝟎. 𝟕𝜺𝒚. 

 

While these FIP distributions are relatively comparable, the KS-test rejects the 

notion that these samples are randomly selected from the same distribution by any 

rational threshold (𝑝 < 10−4). The tail ordering is not significantly correlated with the 

number of elements, grains, nor mesh refinement in each SVE, however. 

While Figure 32 - Figure 35 were for the same target microstructure and texture, 

Figure 36 provides a reference for FIP variations of various textures for the same 

material. It is observed that the scatter in FIP distributions is significantly larger when the 

texture is varied and the simulation parameters are held constant than when the 

simulation parameters are varied for a randomly textured microstructure. This is a 

desirable trait, as uncertainty associated with the decision variable (FIP distribution) 

should be minimal in comparison to the variation due to different inputs (textures) to 

confidently inform design decisions. 
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Figure 36. FIP distributions for four textures of Ti64 with y-axis 

tension/compression at 𝜺𝒂 = 𝟎. 𝟕𝟓𝜺𝒚. 

 

If stress gradient and mesh refinement lead to a shift in FIP distribution, reduced 

fidelity models should not remain in a stable region around the refined simulation. 

Configuration 1 Table 2 and a new configuration of 500 µm sidelength composed of 

1000 elements (𝛿 = 8. 3̅ and 𝐸𝑔 = 1.2) were repeated for 100 instantiations to explore 

potential divergence in the distributions. These configurations will be referred to as Small 

Configuration 1 and Small Configuration 2, respectively. The convergence of each FIP 

distribution to the “true” distribution, constructed from the total FIPs for 40 instantiations 

of Configuration 9, is presented in Figure 37. 
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Figure 37. Convergence of FIP distributions for 123 15 µm (top) and 103 50 µm 

element (bottom) meshes of randomly oriented Ti64 grains as compared to 40 SVE 

of 493 8.5 µm elements. 

 

Instead of producing a divergence, both reduced fidelity models remain in a 

neighborhood of the “true” distribution. Indeed, the convergence of the poorest 

morphological reconstruction is more rapid and remains closer to the “true” distribution. 

Even with the average 2 elements per grain, the overall distribution is captured quite 

accurately. While this is a toy problem and not demonstrative of intragranular stress 

gradients and grain boundary slip transfer, these results may indicate (for this particular 

material and model) that the convergence is determined primarily by sampling from the 

full orientation and misorientation space. That is to say, by sampling across more grains 
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and not requiring higher fidelity meshes it appears that the convergence rate to the true 

volumetric distribution of FIPs may be increased. It is also important to note that these 

initial conclusions were drawn from the simplest of grain morphologies (equiaxed) and 

crystallographic texture (random). 

4.2: Tail Behavior of FIP Distributions 

Since extrapolation of observations is critical to predict the scatter in fatigue lives, 

quantification of the tail behavior of the FIP distributions is desirable. Moriarty et al. 

[117] conducted extensive work in extrapolating wind loadings and the associated fatigue 

spectrum from limited simulations of observed wind loading data on turbines. Maximum 

loadings over a 99% threshold were fit to various distributions and the estimated return 

periods compared. A similar method may be used to characterize and extrapolate the 

finite FIP observations from crystal plasticity simulations. Quantification and 

characterization of the tail behavior by a standardized probability distribution reduces the 

amount of information required to build a useful database of fatigue resistances of 

simulated materials while also providing a reliable means of extrapolating values. 

The work of Przybyla and McDowell [39] clearly established the FS FIP response 

from periodic crystal plasticity simulations as belonging to the Gumbel domain of 

attraction. Since an exponential tail typifies these underlying distributions, it is most 

desirable to fit the tails with an exponential function. Indeed, a Gamma distribution (a 

generalization of the exponential distribution with a shape parameter) is found to provide 

a satisfactory fit for the tails of the FIP distributions of all simulations conducted. As in 

previous distributions, the 𝜇𝑔 parameter locates the distribution, 𝜎𝑔 scales the 

distribution, and 𝛼 describes the shape of the distribution and Γ(𝑥) is the Gamma 

distribution. The probability distribution of this three-parameter form is found in 

Equation (35). 
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  (35) 

 The following figures are provided to emphasize the closeness of both the 

distributions constructed from the same SVE parameters as well as the degree to which 

the Gamma distribution consistently describes the tail behavior. Specific information 

about the goodness of fit and distribution parameters may be found in APPENDIX C. 

 

Figure 38. Gamma distribution fits for 9 configurations of the same nominal 

microstructures of randomly textured Ti64 at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 
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Figure 39. Gamma distribution fits for 9 configurations of the same nominal 

microstructures of randomly textured Ti64 at 𝜺𝒂 = 𝟎. 𝟕𝜺𝒚. 

 

Figure 40. Gamma distribution fits for 9 configurations of the same nominal 

microstructures of randomly textured IN100 at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 
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Figure 41. Gamma distribution fits for 9 configurations of the same nominal 

microstructures of randomly textured IN100 at 𝜺𝒂 = 𝟎. 𝟕𝜺𝒚. 

 

Figure 42. Gamma distribution fits for FIP tails of four textures of Ti64 under 𝜺𝒂 =
𝟎. 𝟕𝜺𝒚 x-axis strain. 

 

 For the randomly textured simulations, neither the tail length nor any of the 

simulation parameters have significant correlation to the distribution parameters. If the 
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sampled FIP distributions are indeed not randomly sampled from the same distribution, 

some neglected factor must be causing the variance in tail and overall distribution 

behavior. Since the tail behavior is well behaved and described by the chosen distribution 

form, a sufficient description of the fatigue resistance appropriate for extrapolation can be 

contained in a concise, and easily presented manner. 

 

Figure 43. Gamma distribution fits for 100 SVE of Small Configuration 1 and Small 

Configuration 2 randomly textured Ti64 at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 

 

As was previously observed at the overall FIP convergence level, the reduced 

fidelity SVE behaves similarly at the tail. Both configurations are accurately fit by 

parameters within the range previously fit for FIP distributions of more realistic 

morphological reconstructions. The similar results across vastly different simulation 

parameters indicate a relative insensitivity to the selected mesh. This fact is useful when 

selecting mesh configurations to use in parametric studies or optimization problems 

requiring large numbers of material simulations. The absolute characterization of fatigue 

resistance by the FIP distribution may be performed (with relatively minor uncertainties) 

with significantly less computational expense. 
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While the total number of SVEs is relatively high for the sampled small 

configurations, it is pertinent to note that the total number of FIP samples for Small 

Configuration 2 is still less than the total number of samples from the 20 largest SVE in 

Configuration 9. Indeed, the total 105 elements in is still less than the 1.25x105 elements 

from a single SVE at Configuration 9. The variance of the tails is depicted in Figure 44  

when compared with the combined distribution of Small Configuration 2. It is important 

to note that even though Configuration 9 samples an average of 650 grains in each SVE, 

the scatter observed between the SVE tails is relatively high. This is likely attributable to 

the fact that each tail is composed fewer grain responses compared to the total number of 

samples. For Configuration 9, 1452 elements are represented in the 20 tails with only 401 

grains being sampled. These samples thus contain the covariance imposed by the similar 

intensification features (e.g. neighbor orientation, Schmid factors, etc.) and the 

compatibility of deformation from the FEM. This rough analysis also neglects other 

potential covariant features including neighboring grains that are also contained in the 

tail. 
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Figure 44. Comparison of empirical CDF of 20 SVE at Configuration 9 (blue) and 

the combined empirical CDF of 100 Small Configuration 2 (red) randomly textured 

Ti64 at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 

 

In addition to the observations of the individual element FIPs, it is desirable to 

characterize the behavior of the tails of the various averaging methods. Compared to the 

previous simulations for which all configurations had relatively constant curvature, the 

averaged FIP distribution tails demonstrate significant differences in both location and 

shape. This is because the relative independence of FIP samples is reduced by the 

averaging method. For smaller simulation volumes, the 99.9% tail of 20 SVE may 

contain only 2-3 full averaging volumes, whereas for the larger SVE, this is mitigated 

with the tail containing samples from significantly more (10-15) full grain equivalent 

volumes. If fitted distributions are used to sample via Monte-Carlo methods the extreme 

value behavior for comparison, significant differences will arise due to the drastically 

difference tail shape. In addition to the change in tail shape, the relative scatter of the 

location 𝜇𝑔 is not reduced when compared to the element FIP values, thus limiting the 
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improved power of averaged FIPs when volumetric distributions are compared between 

simulation configurations.  

 

Figure 45. 99.9% tail of the Gaussian averaged FIP distributions for 9 

configurations of the same nominal microstructures of randomly textured Ti64 at 

𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 

 

Figure 46. 99.9% tail of the cube averaged FIP distributions for 9 configurations of 

the same nominal microstructures of randomly textured Ti64 at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 
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Taking into account the previous observations for the Ti64 and IN100 models, a 

third material, Al 7075-T6, was also used to observe FIP tail behavior. This model and 

morphology is described in depth in Chapters 5 and 6. The textured material was loaded 

in RD-ND shear and RD tension/compression to see if a consistent shift in FIP 

distribution is observed under varied loadings. Twenty SVE were simulated for each 

configuration. 

 

Table 5. List of configurations for the Al 7075-T6 FIP comparison. 

Configuration # 𝛿 𝐸𝑔 

1 4 5 

2 8 2.5 

3 16 1.25 

 

 

Figure 47. 99.9% tail of the element FIP distributions for 3 configurations of Al 

7075-T6 at 𝜺𝒂 = 𝟎. 𝟕𝜺𝒚 in the RD. 
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Figure 48. 99.9% tail of the element FIP distributions for 3 configurations of Al 

7075-T6 at 𝜸𝒂 = 𝟎. 𝟕𝜺𝒚 in the RD-ND plane. 

 

Several important observations can be made from this data. The Gamma 

distribution still appears to provide an accurate representation of the FIP tail behavior. In 

addition, the relative ordering of the configurations is not consistent, though the total 

scatter in the distributions is relatively minimal. Even with these relatively minute 

differences in distribution (~5%), it is important to note that the uncertainty inherent in 

the tail fitting process is significantly less than the uncertainty due to the limited number 

of influencing features (e.g. orientation, disorientation, etc.) sampled in the SVE. 

Furthermore, the uncertainty associated with the experimental CDF as a predictor of the 

true CDF is complicated by the covariance involved in the sampling from the underlying 

FIP distribution caused by the process of synthetic microstructure reconstruction and 

CPFEM simulation for each SVE. This is observed in the fact that the individual SVE 

distributions, displayed in Figure 44, are noticeably different in shape from the total 

empirical CDF. This difference is also rejected by statistical tests such as the KS test. The 

uncertainties associated with the empirical CDF and the covariance in the sampling of 
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individual SVEs should be addressed in further works quantifying the distribution of FIPs 

in various materials. 

4.3: Proposed Mesh Insensitive Fatigue Comparison 

As previously discussed, several different fields utilize extreme value 

distributions in various ways to extrapolate various behaviors. It is useful to discuss the 

behavior of FIP observations as compared to these more traditional fields. For particle 

counting methods, there is an inherent link between the observation window and the 

resolution with which a particle may be described based on limitations of laboratory 

equipment. For FIP responses, the finite resolution obtainable by a microscope appears to 

be analogous to the total number of elements in the FEM mesh. Likewise, the observed 

area may be equated to the simulated volume. 

There is no inherent advantage in particle counting to treat the combination of 

multiple small observation windows as a single, larger window so long as each 

observation window is already of sufficient size to observe the largest particle (of the 

considered type). The stitching together of multiple observation windows may be equated 

to simulating a larger SVE with consistent element size. Increasing the simulated volume, 

however, can more accurately capture long range spatial ordering and misorientation 

distributions while reducing potential boundary value effects. Both aspects can contribute 

to shifts in the FIP distribution [46]. 

To take advantage of this fact, the well-defined tail behavior, and desirability of 

conducting a reduced number of SVE simulations, a new method of comparing fatigue 

driving forces is proposed. The proposed method retains the ability to characterize fatigue 

response through extreme value distributions and return periods, reduces uncertainties 

associated with limited quantity of SVE simulations, and provides the ability to compare 

more easily, fatigue responses arising from varied simulation sources. 

The proposed method can be performed as follows: 
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 Construct the empirical CDF of FIPs from multiple SVE simulations. 

 Characterize the tail distribution. 

 Use Monte Carlo sampling to construct an extreme value distribution from 

the averaged distribution and fitted tail. 

By constructing and explicitly addressing the underlying FIP distribution, the 

method reinforces the source of fatigue comparisons.  In addition, convergence of this 

distribution from multiple SVEs is more closely coupled with the definition of the SVE 

as discussed previously. Characterization and presentation of the tail distributions creates 

a low cost method of presenting and reproducing fatigue information for a variety of 

uses. Coupled with a simple plot of the overall FIP distribution, comparisons to literature 

become significantly easier and entire datasets may be recovered for additional analysis. 

Finally, this proposed method decouples the sample size for the extreme value 

distribution and the SVE size. Previously these two values were constrained to be the 

same value by virtue of selecting the maximum values on a per SVE basis. Decoupling 

the sizes relaxes the need to adjust Gumbel distribution parameters to make comparisons 

between fatigue driving forces in different materials. For instance, if a data set is 

provided in 1,000,000 element simulations, there is significant computational cost to 

construct a similar data set with a new material for comparison. Instead, it should be 

apparent from the previous sections that this level of mesh refinement (or volume size) is 

not necessary to describe the fatigue behavior of the material and we may instead 

estimate the fatigue resistance for comparison with significantly cheaper simulations. In 

addition to reducing computational costs by means of cheaper individual simulations, 

computational costs may also be reduced by minimizing wasted simulations. SVE of 

different configurations may still provide useful estimates of the FIP empirical CDF and 

thus be used to improve the empirical CDF estimate. 

By sampling from the total distribution instead of the individual SVE, the new 

method does not reflect the spatial covariance of FIPs present due to the grain 
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orientations. These spatial correlations have been well studied in works by Przybyla and 

McDowell and indeed, the data required to reconstruct them is still included in any SVE 

of reasonable fidelity used with the proposed method. Additionally, the incorporation of 

uncertainty is no longer directly attributable at the extreme value distribution with 

appropriate confidence intervals yielded from the maximum likelihood estimation of the 

Gumbel parameters. Uncertainty must instead be addressed at the FIP distribution level, 

with confidence intervals placed on the distribution and the parameters of the fitted tail 

distribution. Once confidence intervals have been established on the underlying 

distribution, Monte-Carlo sampling may be used to estimate the true extreme value 

distribution with associated confidence intervals. 

4.4: Comparison of Fatigue Performance for Textured Ti64 

To illustrate the application of the proposed fatigue simulation approach, a series 

of simulations of variously textured Ti64 were considered. For a baseline, the traditional 

method of constructing and extreme value distribution from the SVE maximum FIP 

values is presented in Figure 49. 
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Figure 49. Comparison of extreme value distributions from 100 SVE in each of x (a) 

y (b) and z-axis (c) loading conditions of basal, transverse, random and actual 

textures using the SVE maximum FIP. 

 

In this comparison of the fatigue resistance of the various Ti64 textures, it is 

apparent that the Gumbel distribution for the extreme FIPs is not a good representation of 

the extreme behavior of the transverse texture. This type of kinked curve is typically 

observed in materials where multiple mechanisms are competing to drive the fatigue 

behavior. Methods of treating this behavior as a single distribution include the competing 

risks and mixture models [104]. Indeed, there appear to be two distinct classes of FIP 

distributions from the SVE simulated as evidenced in Figure 50. It is unknown if a local 

minimum in the reconstruction process or some other phenomenon led to the significant 

covariance present in the samples. The three remaining textures appear to exhibit random 

behavior with central tendencies along the entire CDF. The relative spread of the tails for 

(a) (b) 

(c) 
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all other textures are less than ½ the range (on the log plot) of the transverse textured 

ln(FIP) tails. 

  

Figure 50. FIP distributions for 100 SVE of transverse texture Ti64 in x-axis 

tension/compression. 

 

Fundamentally, however, it is undesirable to consider FIP distributions in this 

manner. Specifically, the volumetric occurrence of FIP values should be related to the 

fatigue lives. Weighting the occurrence of low and high FIP microstructures equally does 

not facilitate an accurate distribution of damage for the purposes of fatigue design. The 

probability of failure should instead be linked directly to the total volumetric FIP 

distribution as constructed from the ensemble of instantiation values. 

This can be demonstrated using the proposed method with a sampling size less 

than the SVE size of 9261 elements. A sample size of 1000 elements is selected a 

baseline given the performance of the reduced fidelity meshes considered in the previous 

sections.  
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Figure 51. Comparison of extreme value distributions from 100 SVE in each of x (a) 

y (b) and z-axis (c) loading conditions of basal, transverse, random and actual 

textures using Monte-Carlo sampled values from the empirical CDF. 

 

It is apparent that the relative ranking of the microstructures remains the same 

after the transformations by the proposed method. The linearized plot for the transverse 

texture extreme values is now indeed linear. This is because the new samples are 

randomly selected from the underlying distribution and the tail of the transverse texture 

distribution remains in the domain of attraction for the Gumbel distribution. On the other 

hand, if the detection of a competing risks failure behavior is desirable, the presented 

method will likely not provide the appropriate response, and instead a method based on 

individual SVE extremes should be considered. 

In addition to the study of varied microstructures, it is desirable for the new 

method to obtain invariant results across a wide range of mesh parameters. To ascertain 

the effectiveness of the proposed method, this same method was repeated for 

(a) (b) 

(c) 
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configurations and load conditions in the sensitivity analysis. Again, a sample size of 

1000 was used for each SVE equivalent sample with the Gumbel distribution constructed 

from 50 SVE equivalent samples. These constructed distributions show remarkably lower 

sensitivity to the SVE parameters. This is because the underlying covariance has been 

removed and the values are now IID from the same underlying distribution. For Monte-

Carlo samplings of the same underlying distribution, estimates of the true Gumbel 

distribution would be obtained in the limit. For the observed distributions, the relative 

distribution differences (as previously noted) will now determine the differences in 

observed behavior. 

Upon application of the proposed method, the following results were obtained. 

The HCF Ti64 configurations had a maximum relative error of 89% for 𝜎𝑒𝑙𝑒𝑚𝑒𝑛𝑡 and 

27% for 𝜇𝑒𝑙𝑒𝑚𝑒𝑛𝑡 compared to the >300% for the estimates from SVE maximum values 

when excluding the outlier of >10000%. VHCF of Ti64 had relative errors of 48% and 

27% for 𝜎𝑒𝑙𝑒𝑚𝑒𝑛𝑡 and 𝜇𝑒𝑙𝑒𝑚𝑒𝑛𝑡 respectively. IN100 demonstrated significant correlation 

in the FIP distributions to the SVE parameters, and the results of this are higher relative 

errors of 96% and 138% for 𝜎𝑒𝑙𝑒𝑚𝑒𝑛𝑡 and 𝜇𝑒𝑙𝑒𝑚𝑒𝑛𝑡 respectively. The correlation of the 

distribution tails creates a deterministic correlation in the respective extreme value 

distributions, with the highest element configuration (Configuration 9) have less than ½ 

the location as the lowest element configuration (Configuration 1). For HCF IN100 

simulations, however the correlation is no longer apparent and the relative errors are 

significantly reduced to 26% and 13% respectively. While the errors presented are the 

maximum values for each simulation model and load, they indicate significantly 

improved agreement between the model parameters. It is estimated that with additional 

SVE these values may continue to converge. This can be captured by measuring the 

convergence of the distribution based on certain distance metrics, however, estimating 

the uncertainty for a fixed number of SVE is a significantly more challenging 

proposition. This is especially true because, as has been previously established, the 
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individual SVE sample distributions are not IID from the overall distribution and the 

ensemble distributions have greater differences than can be attributed to sampling error. 

This invalidates many traditional methods of dealing with uncertainty in distributions e.g. 

the Kaplan-Meier estimator for survival functions. Further work will be necessary to 

characterize the uncertainties associated with the proposed method. 

4.5: Conclusions 

In this chapter, the fundamental behavior of FIP distributions was investigated. It 

was observed that the distributions tend to be very well behaved, following similar trends 

across different instantiations. In addition, distributions were observed to be more similar 

for ensembles of SVE with the same nominal microstructure, indicating that larger 

numbers of SVE will be required to produce a converged distribution. The sampled 

distributions do appear to be reasonable approximations of the true, underlying 

distribution, however. In addition to the mean behavior, the life limiting tails were 

investigated. It is observed that for all load conditions studied across three material 

models and multiple textures, the tail of the empirical CDF appears to be well described 

by the Gamma distribution. Parameter values are found to have little correlation to the 

simulation values used to construct them, with the exception of the VHCF simulation of 

IN100. This particular load and material model has a left shift in FIP values with an 

increasing number of elements in the tail, thus producing non-conservative fatigue life 

estimates. 

In addition to the observations of the underlying distributions, a new method was 

proposed with which to analyze and rank microstructure fatigue response. The Monte-

Carlo based method was demonstrated to perform well on two data sets. For the 

comparison of multiple textures of Ti64, this method was found to rank microstructures 

in a similar fashion the previously utilized method with no loss of generality. In addition, 

the new method provides a reasonably reliable method of obtaining similar Gumbel 
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parameter estimates from simulations utilizing a wide range of SVE parameters. These 

results are more in line with a fundamental fatigue process and hold for HCF and VHCF 

simulations of Ti64, as well as HCF simulations of IN100. The exception cases appear to 

be related to the aforementioned shift in values with increasing number of elements, the 

cause of which is yet unknown. While additional research is necessary, this work 

provides a fundamental investigation into the role of the SVE and its construction 

parameters in terms of fatigue simulations using crystal plasticity models. 
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CHAPTER 5: POINT PROPAGATION FATIGUE MODEL 

5.1: Introduction 

Aluminum alloy 7075-T6 is an Al-Zn-Mg-Cu alloy designed for aerospace 

applications. The T6 designates a peak aged alloy developed for optimal precipitate 

hardening, and is often used in rolled plate applications. Of particular concern to the 

modelling efforts of this paper are the constituent particles that develop from impurities 

introduced during alloying and processing. These constituent sizes are typically on the 

order of  1-50 µm [118]. The constituents are still smaller than the average grain sizes 

observed for this material and consist of a relatively small volume fraction. Since SVE 

size is selected to allow relatively coarse grain definitions to capture multiple grain in a 

computationally efficient manner, the further refinement necessary to explicitly model 

constituents is not desirable. Instead, a homogenized material model was developed and 

calibrated by Hennessey [48] as part of previously contracted work with NAVAIR. The 

constitutive model form was carefully selected considering empirical cyclic 

ratcheting/mean stress relaxation, local plasticity, and cyclic stress/strain curves. 

Additional details concerning the process of selecting and fitting an appropriate model 

may be found in the work of Hennessey [48]. 

The selected model adheres to a standard power law flow rule 
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where 𝛼 is the current slip system, 𝛾̇(𝛼) is the shear strain rate on this slip system, 𝛾̇0
(𝛼)

 is 

the reference shear strain rate, 𝜏(𝛼) is the shear stress, 𝜒(𝛼) is the back stress, and 𝑔(𝛼) is 

the drag stress. The current model implements the flow rule on the 12 octahedral slip 
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systems <110> (111). The Ohno-Wang (OW) [119] form of evolving back stress was 

selected to better capture mean stress effects  and is formulated as follows 
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where ℎ𝑖 and 𝑟𝑖 capture the hardening and recovery and 𝑚𝑖 is the OW exponent relating 

the different powers of the hardening and recovery terms. This model has a constant drag 

stress 

 0g    (38)  

Fatigue calibration by Hennessey was performed using the mesoscale approach 

introduced by Castelluccio [40] with the development of improved methodology to 

incorporate Stage II crack growth along multiple slip systems. The final fatigue 

calibration and crack growth formulations are reproduced in Figure 52 and Equations 

(39) - (44) respectively. 

  
     total inc nuc MSC PSC LCN N N N N N    

  (39)  

The crack growth law includes several terms comprising the life of the part until failure 

𝑁𝑡𝑜𝑡𝑎𝑙. The first step is the fracturing of the constituent particle necessary to create a 

dominant fatigue crack 𝑁𝑖𝑛𝑐. This work considers two definitions of the nucleation life 

𝑁𝑛𝑢𝑐. The first term was used by Castellucio and Hennessey and considers the number of 

cycles until the formation of a crack within a nucleant grain based on a simplified 

dislocation model by Tanaka and Mura [41]. This method assumes the crack length at 

nucleation is the entire slip band across the nucleant grain. 
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The second definition of 𝑁𝑛𝑢𝑐 used is the number of cycles required to extend the 

crack from the incubated particle into the surrounding grain. This definition is used by a 



 

97 

 

series of papers by Bozek and Hochhalter et al. [10, 44, 45]. Differing definitions are also 

used by Xue et al. [120] who consider  𝑁𝑖𝑛𝑐 to be the number of cycles during which the 

particle is cracked and the crack extends through the initial notch root influence, thus any 

reference to the early stages of crack growth will be explicit in definition used. 

 

Figure 52. Final calibration of mesoscale crack propagation method as applied to 

uniaxial (left) and shear (right) loadings compared to experimental data from [80]. 

 

For each of the previous implementations of the mesoscale crack growth law, 

incremental crack advances were considered on a grain by grain level. Grains are divided 

into “bands” parallel to the slip planes and only those bands adjacent to the current crack 

are considered for advancing. Crack advancement thus occurs in discrete, grain-by-grain 

increments whose incremental length is expressed by  

 b

b

V
a

t
    (41)  

where 𝑉𝑏 is the volume of the cracked band and 𝑡𝑏 is the thickness of the band. FIPs are 

computed on a per-slip-system basis with averaging over the band volume. The 

computation of each slip system FIP𝛼 may be found using 
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where the slip Δ𝛾𝑝
𝛼 and the resolved shear stress σ𝑛

𝛼 are now computed for the slip system 

instead of the total plastic strain tensor. The local MSC growth rate 
𝑑𝑎

𝑑𝑁
 on slip system 𝛼 

has been expressed as 

  FSi th

msc

da
A FIP a CTD

dN



    (43)  

where 𝜙 is the irreversibility constant of 0.35 based on the argument by Xue et al. [120], 

𝛽𝑖 is an influence coefficient for low misorientation neighbors, 𝐴FS is a calibration 

parameter for the FIP which is a function of the normalized distance 𝑎 to the next grain 

boundary, and Δ𝐶𝑇𝐷𝑡ℎ is the threshold crack tip displacement for crack propagation. This 

expression can be integrated analytically to form an expression for the number of cycles 

𝑁 to crack the considered band within a grain. The values 𝑐1 and 𝑐2 are functions of the 

above variables for brevity and 𝐷𝑠𝑡 is the current band diameter computed by the same 

process as Equation (41) 
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 In order to model cracks and stress redistribution within volume elements of Al 

7075-T6, Hennessey applied an isotropic damage method introduced by Castelluccio to 

this material model within the Abaqus UMAT procedure. By interfacing with the 

UEXTERNALDB call via the COMMON_BLOCK variables, an array of cracking states 

is read in from a text file. For more information on this procedure see Hennessey [48]. 

For damaged elements, the stiffness tensor 𝐶 is proportionally reduced using the damage 

value 𝑑 according to 

 (1 )dC d C   (45)  

This damage state variable is allowed to evolve as a function of time and the stress 

normal 𝜎𝑛 to the crack plane for this element. The value of the damage rate 𝑣 was 

selected to maximize numeric stability and ensure damage fully evolves within a single 
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loading cycle. The damage at a time 𝑡 + Δ𝑡 for a previous time 𝑡 and time step Δ𝑡 may be 

expressed by the following 
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This method allows the cracked volume to recover stiffness in tension to better model 

potential crack closure and sliding effects. A maximum damage value 𝑑 = 0.99  is 

imposed to facilitate FEM convergence and has by shown by Castelluccio [47] to be 

sufficient for stress redistribution and propagation methods. 

5.2: Crack Formation: Incubation and Nucleation 

For Al 7075-T6, the total process of crack formation may more accurately be 

described by the summation of two separate processes: crack incubation and crack 

nucleation. Crack incubation is the process by which the constituent particles are cracked, 

providing a site for crack extension into the matrix or nucleation. These two phases of 

crack growth are closely related and thus will be discussed together in the context of this 

work. Several investigations to the micromechanisms of fatigue for Al 7075-T6 indicate 

that the dominant fatigue cracks almost exclusively begin at cracked constituent particles 

ranging between 1-50 µm and being predominantly Fe-rich Al7Cu2Fe. Xue et al. [6] note 

that all samples incubated cracks at fractured constituent even in the presence of other 

significant stress concentrations such as an oxide film. These results are consistent with 

those of Harris and Bozek et al. [10, 11]. The particles tend to be significantly stiffer than 

the surrounding matrix with a Young’s Modulus of approximately 160 GPa, elongated 

aspect ratios strongly oriented in the rolling direction as well as being broken into multi-

particle stringers, and constitute approximately 2% of the alloy by volume [87, 121]. 
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Figure 53. Particle distribution in “stringers” along rolling direction from [122]. 

 

In addition to contributing to particle shape and spatial distribution, the rolling 

process also cracks between 2-7% of particles prior to loading [10, 11]. Particles tend to 

fracture due to stress concentrations at inherent flaws leading to a crack plane 

perpendicular to the principal direction. This fracture probability has also shown strong 

correlation with the particle alignment to the loading direction [11, 123]. Much study has 

been performed for fracture probabilities and sensitivities as a function of particle and 

loading properties, however, these explorations have primarily focused on LCF. Since the 

stresses experienced in HCF are significantly less, and the direct application of previous 

studies was not possible, the assumption is made for an initial nucleation calibration that 

in HCF the cracks nucleate at particles cracked during rolling with a crack plane 

perpendicular to the rolling direction. 

Since nucleation life can consume upwards of 80% of specimen life in the HCF 

regime, a calibration procedure was undertaken similar to that of Hochhalter et al. [44, 

120]. To perform this calibration, an isotropic, linear-elastic phase with 𝐸 = 160 GPa 
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and 𝜈 = 0.29 was implemented in the UMAT based on estimated values by [6, 10]. The 

stiffness reduction method used to model a crack in the crystal plasticity code is also 

applied to this new particle phase.  

 

Figure 54. Nucleation calibration mesh with fractured particle. 

 

Crack nucleation simulations isolate a single particle in a single crystal matrix. 

Five dominant orientations were selected to capture variations due to local grain 

orientation (shown by some simulations to have a secondary effect) [10, 124]. A 

relatively small computational volume and periodic boundaries mimic potential short 

range interaction effects between particles. Nucleation lives for the purposes of 

calibration are estimated from a series of experiments by Zhao and Jiang [80] under 

different load conditions. Shear nucleation lives were initially assumed to reflect the 

same proportion of the total lives from uniaxial tests estimated by Xue et al. [120]. Based 

on the aforementioned observations regarding particle fracture frequency, especially the 

limited information available at low amplitudes, it is assumed that this 
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incubation/nucleation estimate from Xue et al. will potentially also include some of the 

crack growth life as well. 
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Following the results of a multi-part study conducted by Bozek et al. [10, 44, 45] 

several different damage parameters were investigated for potential correlation with 

nucleation lives and incorporation into a reduced fidelity FEM mesh. The following 

damage parameters are recorded at the crack mouth of the fractured particle for each 

simulation and the maximum values are used to correlate with fatigue lives. 
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Nucleation simulations were conducted at 7 different loading conditions across a 

the range studied by Zhao and Jiang [80]. Four simulations were conducted in fully 

reversed tension/compression (0.8, 0.5, 0.4, .02%), and three in fully reversed shear (0.8, 

0.6, 0.4%). In addition to studying the damage parameters directly, the ratcheting (cyclic 

accumulation) of each parameter was also studied. This was motivated by the findings of 
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Hochhalter et al. and the final nucleation calibration reproduced in Equation (54) (See 

section 1.2.1: for a description of the simulations and explanation of variables). 
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In the findings of the current work, 𝐷3, or the total accumulated slip, is the only 

parameter found to provide significant correlation to the nucleation estimates. A least 

squares regression was used to fit a power law relationship between the crack mouth 

averaged parameter and the average estimated nucleation lives. Initial calibration 

attempts, coupled with previously estimated MSC growth cycles indicated that using the 

formulation by Xue et al. to estimate nucleation lives provided a non-conservative total 

life estimate. Thus, assuming that the number of cycles required to detect the noticeable 

drop in stress behavior will include some of the crack propagation stage as well as the 

inherent scatter in fatigue lives, a knockdown factor of 0.5 was applied before arriving at 

the final calibration presented below. It is likely that the over estimation of the trendline 

compared to the LCF values are due to the prevalence of multisite crack formation not 

captured in the present model. 
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Figure 55. Calibration of estimated nucleation lives to parameter 𝑫𝟑. 

 

In addition to the estimates of nucleation provided by Xue et al., a comparison is 

also made to an observed particle nucleation life at 0.4% strain claimed by Tokaji et al. 

[125] to occur at 5,670 cycles. This estimated nucleation life is slightly less than the 

minimum predicted nucleation life of 6,930 cycles from five distinct orientations. 

This calibration indicates that the assumed initial crack plane in the nucleant 

particle could represent a potential retarding factor for crack nucleation in shear of Al 

7075-T6, which to the author’s knowledge has not been previously discussed.  To verify 

this initial crack plane and the intrinsic effect on the fatigue lives of the alloy, an 

additional investigation was performed to study the sensitivity of the various damage 

parameters to the load condition and crack angle. An ellipsoidal particle aligned in the y-

direction with 𝑎 = 10𝜇m and  𝑏 𝑎⁄ = 𝑐 𝑎⁄ = 0.5 is used represent a typical fractured 

particle within a single crystal matrix, similar to the previous study. Cracks through the 

center of the particle with angles of 0, 11.25, 22.5, 33.75, and 45° to the rolling direction 

are applied using the same stiffness reduction technique and again the damage parameters 

are studied over three simulated loading cycles for representative loads of 0.4% for 

uniaxial and 0.2% for shear. 
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Figure 56. Nucleation parameter fields around the cracked particle for uniaxial 

loading of 0° crack (a) shear loading of 0° crack (b) uniaxial loading of 45° crack (c) 

and shear loading of 45° crack (d).  

 

(a) (b) 

(c) (d) 
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Figure 57. Damage parameters as a function of crack inclination angle for applied 

shear (a) and uniaxial (b) load conditions. 

 

Both the uniaxial and shear simulations have a strong negative trend for 

nucleation parameter as a function of crack angle. Both loading conditions show scatter 

in the nucleation parameter on the order observed for the different crystallographic 

orientations. This represents a potentially compounding factor for fatigue life scatter, as 

anticipated by experimental observations by multiple authors [10, 11, 126] with 

distributions of particle crack angles being centered along principal stress direction. 

Interestingly, the trend for uniaxial and shear are relatively similar. This conflicts with 

the initial assumption that the crack orientation from processing provides a mechanism 

for the retardation of nucleation onset. 

It is important to note that these conclusions are not definitive. The voxelated 

mesh and damaged element approach to crack modeling provides a reasonable estimate 

but are not appropriate to capture crack sliding friction. The return to initial stiffness 

when the crack plane is under compression may overestimate the sliding friction of the 

crack and in turn, underestimate the accumulated slip neighboring the crack mouth. 
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5.3: Crack Propagation 

As in any field attempting to model complex phenomena, assumptions must be 

made. For HCF, one assumption that is commonly applied is the existence of a single, 

dominant crack for a given volume instantiation. This is often assumed due to explicit 

stress raisers or more involved assumptions about nucleation location and interaction 

distance between propagation cracks. These factors, coupled with the relatively high 

percentage of total life (~90%) spent in the microstructurally small crack growth regime, 

indicate that the life-limiting crack will not experience significant interaction effects or 

crack coalescence during the MSC growth phase [127, 128]. Conversely, high frequency 

multi-site crack initiation and propagation dominated fatigue lives in LCF limit the 

application of these assumptions and more complex models must be developed to 

consider these factors. 

Any crack propagation approach must address three core problems to be able to 

advance the crack in space and thus in simulation time. These three features are common 

across the mesoscale crack propagation approach of Castelluccio and Hennessey as well 

as the post-processing radial crack propagation of Musinski [49] and will be addressed 

for the selected method used in this work. These three core attributes are: 

 Crack extension algorithm 

 Local crack propagation rate 

 Local crack propagation plane 

The selection of the base crack extension algorithm will likely inform the 

approaches selected for the remaining features and will be addressed first. This selection 

will also determine calibration strategies required, crack growth statistics, and any 

assumptions that must be made. The extension algorithm devised for this work is similar 

to that of Musinski in that a perimeter of distributed points are propagated radially 

outwards with local sensitivity to the crack growth rate and plane. In the chosen 

approach, however, explicit modelling of the crack is performed during the simulation by 
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the aforementioned damage application method. Conducting crack extension and explicit 

modeling during simulation has the benefit of incorporating stress redistribution effects 

into the following crack propagation steps. Similar methods have been applied for more 

simplified material models in 3D (e.g. XFEM) as well as with crystal plasticity in 2D 

[129], and have demonstrated this dependence. 

This compares favorably to the implicit application of stress intensification as a 

post-processing step requiring extensive calibration that may still lack sufficient 

description of the local microstructure and loading conditions to adequately capture stress 

redistribution effects. The main drawback is the additional computational time required 

for each additional stress redistribution step compared to a constant number of steady 

state cycles simulated for the post-processing application. The same is true, however, for 

the mesoscale extension algorithm used by Castelluccio and Hennessey, which also must 

approximate FIP redistribution through the interior of grains. Such a calibration should 

not be necessary if sufficient mesh density is used. 

                   

Figure 58.  2D illustration of the point propagation method with initial distribution 

of points (left) and at a later time (right) with the previously occupied element 

(black) now being damaged. 

 

With the basic method selected, a detailed pseudocode implementation of the 

propagation and simulation coupled system is presented in Figure 60. Crack propagation 
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can only occur after the initial seeding of points in crack plane. This plane must be 

carefully selected since the propagation direction (Figure 59) is sensitive to crack plane 

normals approximately parallel to the tangential direction 𝐝𝛉. The plane in which the 

propagation points are seeded is selected such that the normal direction is parallel to the 

eigenvector associated with the maximum principal stress. This selection best 

approximates the Stage II crack propagation plane. Since a cyclic stress state must be 

established, at least one loading cycle is necessitated. 

Crack propagation occurs using a local coordinate system defined by the crack 

plane and point seeding location. For each sensing point along the crack perimeter, the 

radial direction 𝐫 and tangential direction 𝐝𝛉, are known as well as the seeding plane of 

the crack 𝐧𝐜. Following computation of the intermediate Stage II propagation plane, the 

propagation direction 𝐩 is found by the following 

 int p dθ n   (56)  

with the direction corrected to ensure propagation with increasing crack length (away 

from the crack center). This formulation ensures that the propagation remains radial in 

nature with deviations in crack height arising from the propagation plane. The 

propagation rate may then be applied to this local direction along with a number of cycles 

to determine the final point location. 

 



 

110 

 

 

Figure 59. Crack propagation direction p selection from local crack plane normal 

nint using local coordinate system r, dθ, nc. Crack plane normal determined by Stage 

I or Stage II approach. 

 

Figure 60.  Point propagation pseudocode for crack extension during simulation.  

 

The crack propagation method is implemented within the same framework as the 

mesoscale propagation approach by the use of a Python script providing crack 

information to the UMAT via the UEXTERNALDB. Local stress, strain, and FIP fields 

are used to inform a single step of the crack propagation method. The new crack 

geometry is conveyed through an updated cracked_elem.txt file with cracked elements 
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and crack plane normal used to perform damage updates. The cycle is repeated with the 

newly damaged elements creating stress redistribution and updating the field values to 

inform the next crack propagation step. This information exchange is illustrated in Figure 

61. 

Once the nucleation step with crack seeding has occurred the FIP fields inform 

the crack propagation by Figure 60. The mesoscale propagation distance 𝑑𝑚 is the 

average propagation distance allowed in a single crack step. In a voxelated mesh, this is 

set to the element sidelength to ensure the perimeter does not expand by more than one 

element in each direction. In addition, since connectivity information is only directly 

stored for neighboring elements in the mesh, the outer loop minimizes the possibility of a 

point becoming “lost” by propagating beyond a neighboring element. In the event of a 

“lost” point, the entire mesh is searched to find the enclosing element. 



 

112 

 

 

Figure 61.  Flowchart of crack propagation simulation information exchange 

between Python and Abaqus UEXTERNALDB [48]. 

 

An additional feature of the Python implementation of the crack propagation 

method is that simulation states are only required as text files. This allows for the 
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application to uncracked data sets as a post-processing analysis similar to the method 

detailed by Hennessey [48]. This is mostly useful for debugging and development as the 

FIPs are lower without the intensification caused by simulating the crack.  

Impetus for selecting an improved propagation method was provided when 

attempting to obtain crack path statistics by applying the methods of Hennessey to 

determine geometric properties of Stage II propagation behavior in Al 7075-T6. Since the 

mesoscale algorithm does not have a true definition of a crack front, various crack shapes 

were obtained which are not noted in the literature. Often void-like arrangements of 

fractured grains or large bifurcated paths may be observed. In addition, the incremental 

crack length shown in equation (41) is not physically representative of the total crack 

length, as evidenced by the fact that simulated cracks are grown to length of 80 µm 

within a 50 µm volume. This problem is avoided by explicitly modeling the perimeter of 

propagating points in the selected method. 
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Figure 62. Poorly defined crack propagation paths created by the mesoscale 

propagation algorithm. 

 

Discussion of the selected method would be remiss without mentioning the 

negative features of the approach. Since the crack propagation plane and rate are selected 

locally and the mesh density determines an extension distance, mesh refinement could 

potentially have a significant impact on propagation simulations. This is especially 

problematic for the same reason that explicit integration schemes are discouraged for 

numeric solvers of partial differential equations (PDE). Since the solution varies in space, 

insufficient meshing density could cause problems typically associated with a stiff PDE 

such as overshooting and a lack of convergence to true value (crack plane). These 

concerns must be weighed with the computational efficiency of the model as well, though 

the mesoscale crack propagation distance may be selected to balance mesh fidelity, stress 

redistribution, and propagation behavior. In addition, some more advanced crack metrics 



 

115 

 

such as roughness may be gathered using this method, however a lack of appropriate 

crystallographic information coupled with experimental data preclude the validation of 

such statistics. 

The second fundamental question to answer is the determination of the local crack 

propagation rate. Since the selected encapsulating approach attempts to redistribute 

stresses at a consistent, if not infinitesimal, manner, the method to determine crack 

propagation rate can be somewhat simplified. Inheriting a model, which can trace its 

origins to the RR1000 model of Castelluccio, the initial crack growth rate formulation 

appeared in equation (43) with several extraneous terms. Crack growth rate in RR 1000 is 

accelerated in grains of larger diameter, in addition to being influenced by low-

misorientation neighbors to effectively create super-grain structures, which act to 

increase crack growth rate further. These effects are incorporated into the crack growth 

law via the 𝛽𝑖 term, which is computed using 

 
1 n

j j

i st ndref
jgr

D D
d

 
 

  
 

   (57)  

In this formulation, 𝑑𝑔𝑟
𝑟𝑒𝑓

 is the reference grain diameter for calibration, 𝑗 indexes over 

neighboring bands with  𝐷𝑔𝑟
𝑗

 being the neighbor band length and 𝜔𝑗 = 〈1 −
𝜃𝑑𝑖𝑠

20
〉 is the 

disorientation factor and 𝐷𝑠𝑡 is the current grain diameter. 

Exploration of the literature regarding crack growth rates in Al 7075-T6 does not 

indicate a strong correlation between crack growth rate and average grain size. Donnelly 

and Nelson [130] observed no significant impact on grain size relative to crack 

propagation for rotating specimens and a grain size ratio of 1:4 in the propagation 

direction. Zurek et al. [131] discovered a secondary influence of grain size on 

propagation rate, mostly attributed to the development of crack closure and residual 

stresses near the surface. These effects diminished under decreasing load amplitude and 

could likely be captured by the propagation through appropriately modeled grains with 
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the proposed method. Thus, the inclusion of a grain size dependent factor is not deemed 

necessary. Furthermore, since the subgrain propagation is explicitly modeled, the 

normalized crack length factor and thus the scaling function for the subgrain 𝐹𝐼𝑃(𝑎) is 

not necessary as well. Finally, the misorientation factor is also assumed to be addressed 

to a greater extent by the compatibility of grain boundary deformations in the crystal 

plasticity model. 

As previously mentioned, the ∆𝐶𝑇𝐷 value has been found to be a fundamental 

parameter linked to crack growth rate. This fundamental relationship is often used to train 

additional correlations to account for stress redistribution either in post-processing [49] or 

over larger grain-sized increments in crack growth [47]. Due to the inherent ability of the 

crack propagation method to capture some of these influences during the FEM simulation 

via stress redistribution, only the most fundamental relationship is retained between 

∆𝐶𝑇𝐷 and FIP. This leads to the following crack growth formulation 

   th

msc

da
A FIP CTD

dN



    (58)  

To better approximate the finite volume over which the crack propagation process 

takes place, neighbor weights based on relative distance within the mesh and an 

averaging scheme is used to represent the non-local crack growth. Neighbor weights 

𝑤𝑖+𝑛 found for a sensing point at location 𝐱𝑖 and nearest point at 𝐱𝑖+𝑛 are related by the 

following formula with the 𝑑𝑤 value selected to represent a process distance less than one 

half the average ND grain thickness (12 um). 
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The final feature to be addressed is the selection of the local crack plane. Given 

the early transition to Stage II crack propagation observed by various sources [8, 132] for 

Al 7075-T6, it is desirable to capture the behavior of multiple activated slip systems to 
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describe an intermediate crack propagation direction. Musinski and Hennessey have used 

such a method for addressing combined crack propagation rates using a weighted 

averaging scheme where 𝐧𝐼𝑁𝑇 is the intermediate plane selected as the weighted average 

from 𝑛 candidate slip systems with slip plane normals 𝐧𝑖. Here the weights are 

determined by the crack driving force for each candidate plane FIP𝑖. 
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n   (60)  

The method has a fundamental geometric flaw, however. Since the Hessian form 

of the plane may be equally described by 𝐧 and – 𝐧, two possible intermediate crack 

planes arise. The representation of slip plane normals may not be known a-priori by the 

crack propagation algorithm, thus this must be treated in a general sense. A consequence 

of this indeterminate expression of the intermediate plane is the selected plane may not 

maximize the crack growth rate. In this case, the propagation would occur across a large 

misorientation in planes. This is undesirable as observations indicate that crack 

propagation across large misorientations is highly unfavorable [8, 133]. This problem is 

created by the indeterminate expression of the plane normal in 3D and is illustrated in 

Figure 63. Of the two 𝐧𝐼𝑁𝑇 one clearly reflects a more realistic interpretation of weighted 

plane averaging process. A formulation is introduced which alleviates this indeterminate 

nature and ensures the creation maximal propagation planes from the candidate slip 

planes. 
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Figure 63. Two possible intermediate crack planes using the weighted normal 

method caused by the indeterminate direction of the individual crack plane 

normals. 

 

First, a series of propagation vectors are constructed from the candidate planes 

and propagation rates and sorted by magnitude 

 
1 2,  i i n

i

da

dN
   V n V V V   (61)  

Working from the highest propagation rate to lowest, the candidate vectors are added to 

the total propagation vector such that the sum always increases.  
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  (62)  

The intermediate plane normal is extracted as the unit vector parallel to the net 

propagation vector. 

 ,

,
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  (63)  

Finally, the effective crack propagation rate as projected onto the selected intermediate 

plane may be determined by the norm of the final propagation vector. 

 
,INT N

INT

da

dN
 V   (64)  
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Initial application of the new crack propagation method has yielded encouraging 

results. Several crack propagation paths are reproduced to demonstrate the general 

behavior of the method. Note that for both shear and uniaxial load conditions, the Stage II 

crack propagation plane is well preserved in that they both appear to propagation 

predominantly in the plane of maximum normal stress. 

 

Figure 64. Simulated crack using Stage II point based propagation at 0.4% strain 

amplitude tension-compression 𝑹𝜺 = −𝟏 in the y-axis. Color-coding indicates iso-life 

contours. 
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Figure 65. Simulated crack using Stage II point based propagation at 0.4% strain 

amplitude in XY-shear with 𝑹𝜺 = −𝟏. Color-coding indicates iso-life contours. 

 

 

 

Figure 66. 𝝈𝟐𝟐 response during crack propagation simulation. Displacements 

exaggerated to highlight the highly distorted crack elements. 

 

It is apparent that the new crack propagation method significantly improves the 

physical basis of crack propagation. The new method and accompanying stress 
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redistribution appear to better capture the Stage II crack behavior. Further exploration of 

these methods will be performed in later sections. 

5.4: Conclusions 

In this chapter, a new method for crack propagation was proposed and the 

implementation explained. This new method combines a radial crack propagation with 

explicit crack modeling to capture stress redistribution effects. An additional geometric 

constraint was introduced to handle the construction of an intermediate slip plane in 3D 

to best match the physics of slip transfer. These combined methods will be calibrated and 

used to study crack behavior in Al 7075-T6 in the next chapter.  
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CHAPTER 6: MICROSTRUCTURALLY SMALL FATIGUE CRACK 

GROWTH MODELING IN AL 7075-T6 

6.1: Synthetic Microstructure Representation 

Since crystallographic texture and grain morphology have a significant impact on 

MSC growth, it is desirable to represent the experimental morphology more accurately 

before attempting to assess fatigue lives that may be dependent upon load orientation and 

microstructural features. Previously for Al 7075-T6, microstructures were instantiated 

using a separate code, which constructed equiaxed, randomly textured grains. With the 

introduction of the material simulation pipeline, it is relatively simple to incorporate 

additional information into the fatigue simulations of Al 7075-T6. 

 

Figure 67. Sample rolled microstructure and associated target pole figure. 

 

Using Dream.3D, a description of the rolled microstructures commonly associated 

with Al7075-T6 was developed from various experimental observations. Zhao and Jiang 

[80] note equiaxed grain sizes from 10 µm to 40 µm perpendicular to the rolling 

direction, with a rolling direction grain size of approximately 70 µm. From these 

observations as well as those of Turkmen et al. [134], an average grain size of 15 µm was 
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chosen with an aspect ratio of 7:1:1 for the R:T:N directions respectively. In addition, the 

pole figures of both Turkmen et al. [134] and Narayanan et al. [135] were used to create a 

rough approximation of the texture developed in rolled 7075-T6 aluminum. A log-normal 

grain size distribution was again assumed with a standard deviation of 4 µm. Dream.3D 

was used to create simulated microstructures with an axis orientation function aligning 

the a-axis of the ellipsoidal grain to the rolling direction of the simulated volume with a 

noise factor to represent imperfectly aligned grains. Uniaxial simulations are typically 

loaded in the RD to match experiments performed by Zhao and Jiang [80] and others 

which impose load along the RD. Misorientation and neighbor size distribution were 

assumed to reflect statistical averages as calculated by Dream.3D given a lack of 

experimental observations readily available in the literature. A sample microstructure is 

depicted in Figure 67.  

 

6.2: FIP Intensification under Varied Load Conditions Due to Stringer Distribution 

In addition to the reformulation of the nucleation simulation, additional 

parameters were investigated to ascertain the impact on the difference in observed fatigue 

lives between the uniaxial and shear load conditions. Given the consistent application of 

uniaxial loads applied to the RD and the highly anisotropic distribution of constituent 

particle stringers in the material, it was hypothesized that these distributions may 

contribute an accelerative growth factor for uniaxial loading that is not reflected in the 

present propagation calibration.  

To accurately represent the spatial distribution of particles in the alloy, a 

neighborhood optimization routine developed by David Turner of the Kalidindi group at 

Georgia Tech was used. The functionality of this tool is described in depth in [136], 

however the core functionality is to use information from three orthogonal planes to 

optimize a microstructure instantiation to match individual pixel (microstructure 
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function) neighborhood values. Microstructure scans from Rollet et al. [87] were used to 

represent the particle distribution along the RD-ND, RD-TD, and TD-ND planes. 

Since the reconstruction is a volumetric region, the 2-point statistics are likewise 

volumetric. For comparison the 2-point statistics of the exemplar images, 2D slices of the 

3D statistics are taken in the RD-TD plane. The set of statistics on a plane through the 

center of the 3D space of 2-point statistics represent correlations between locations whose 

spatial locations differ only within the plane, and do not have any displacement in the 

remaining dimension. This allows direct comparison of the microstructure scans and 

reconstruction. Figure 68 compares the auto-correlation of the particle phase along the 

rolling direction (x-direction of the reconstruction) for 10 reconstructions and 6 exemplar 

scans. 

 

Figure 68. Validation of the particle stringer reconstruction using 2-point statistics. 

Note that confidence bounds capture the majority of the sampled microstructure 

scans from varied sources [11, 87]. First neighbor effects are well captured in the 74-

124 region. 
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A crystal plasticity simulation of the 200x200x200 element reconstruction 

generated would be intractable with the computational resources available. In addition, 

the stress states are expected to be dominated by the relatively high stiffness contrast (~2) 

between the particle and matrix phases. Material Knowledge System methods (MKS) 

have demonstrated successful application to material systems with this range of elastic 

modulus contrast [72]. Ongoing research is being performed to investigate calibrations of 

higher order statistics to perform localization of non-linear phenomena and higher 

contrast materials. These models have significant additional complexity and require 

significantly larger amounts of data to calibrate. Since the behavior of interest occurs 

primarily in the HCF regime with relatively small strains, a simpler form of localization 

will be applied treating the material as linear elastic [72]. 

Influence coefficients were calibrated for all six components of the strain tensor 

using 213 element delta microstructures (single particle phase at the center of the matrix 

phase). Following validation of the method as applied to five random microstructures of 

the same size, the influence coefficients were padded to allow for prediction of the full 

2003 reconstruction volume. 
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Figure 69. Relative errors of MKS prediction compared to crystal plasticity 

simulation of 𝜺𝟐𝟐 (loading direction) for each element in five validation 

microstructures of size 21x21x21. 

 

A simple isotropic hardening law is applied to fit the small amounts of plasticity 

that develops in HCF. The von-Mises stress is used to interpolate the expected plastic 

strain, from which the Fatemi-Socie FIP is calculated on an element by element basis. 

The total distribution of FIP values may then be used as a comparative measure of the 

anisotropic constituent stringers impact on the fatigue life of the alloy. 
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Figure 70. FS FIP intensification near particle stringers under uniaxial loading of 

0.2%. 

 

Figure 71. FS FIP intensification near particle stringers under shear loading of 

0.4%. 
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As anticipated, the particle presence produces an intensification effect in both 

loading conditions. As the distance from the particle increases, the FIP distribution 

condenses to a far-field impulse function (omitted for clarity). Note the presence of 

secondary peaks for both the uniaxial and shear load conditions. These peaks indicate the 

different intensification levels produced by the particle stringers. For uniaxial loading the 

ratio is ~1.5x while for shear the ratio is closer to 1.25x. Unfortunately, while the 

anisotropic particle distribution appears to produce a stronger intensification effect for 

uniaxial loading when compared to the shear load case, the effect is still relatively mild 

compared to the overall shift in fatigue life distributions between the two loading 

conditions. While it would be possible to introduce a knockdown of fatigue lives based 

on extracting an intensification value from the MKS simulation of an imposed load 

condition and the mean free path of particles along the crack path, the overall effect 

should be negligible and is ignored for the remainder of the simulations presented in this 

work.  

6.3: Fatigue Calibration 

Once the appropriate level of model detail is determined, calibration, sensitivity 

analysis, and predictions can be performed using the desired model form. As a summary, 

the current propagation model in Al 7075-T6 will consider nucleation at previously 

cracked particles and propagation through a crystal plasticity model calibrated to the 

homogenized response. Explicitly modeled particles will not be considered during the 

propagation step as this would require significant additional complexity and 

computational costs, while initial investigations indicate that the overall effect is likely 

negligible. 

Since the nucleation calibration was linked with the nucleation parameter 

selection, the last remaining step is the calibration of the propagation parameters. The 

current model only has a single free parameter, thus a calibration similar to the method 
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utilized by Hennessey is performed. A crack propagation rate of 2.14x10-3 µm/cycle is 

used based on the observations by Tokaji et al. [132] for cracks growing under 𝑅𝜀 = −1 

and 𝜎𝑚𝑎𝑥 = 270 MPa. A fully reversed strain controlled loading of 0.4% amplitude is 

used to match the experimental loading. Five calibration microstructures were used and 

the resulting average propagation FIP value found to be 2.5x10-4. This value is combined 

with the constants of calibration 𝜙 = 0.35 (Xue et al. [120] and McDowell et al. [128]) 

and Δ𝐶𝑇𝐷𝑡ℎ = 2.86x10−4μm, the Burgers vector for pure FCC Al [120]. Solving for the 

fatigue coefficient yields 𝐴 = 25.6 μm. 

Following the calibration of both the nucleation and propagation laws, the 

prediction of total fatigue lives can be compared to experimental data. Once again, the 

extensive work of Zhao and Jiang [80] provides a large dataset, produced by consistently 

applied methodology, with which to compare the recalibrated fatigue lives. For these 

macroscopic experiments, fatigue lives are reported as the number of cycles until 

specimen failure (in two pieces), while simulation fatigue lives are estimated using a 

single model propagating a crack to 60 µm as per Hennessey [48]. 
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Figure 72. Comparison of uniaxial fatigue lives as predicted from simulation and 

observed by Zhao and Jiang [80]. 

 

Figure 73. Comparison of shear fatigue lives as predicted from simulation and 

observed by Zhao and Jiang [80]. 
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It is evident that, following the introduction of the nucleation simulations and a 

new propagation model, fatigue life predictions in uniaxial and shear loading conditions 

are well fit to the experimental data. The previously conservative estimates of shear 

fatigue lives are now the same order of magnitude as those observed experimentally. In 

addition, the uniaxial predictions appear to reflect both average response as well as the 

fatigue scatter associated with the data. It also appears that the introduction of the 

nucleation simulation provides a potential explanatory mechanism for the difference in 

fatigue lives under 𝑅𝜎 = 0 loadings. The estimated simulation lives for these loadings are 

in good agreement with the mean and scatter of the experimental fatigue lives. 

 

6.4: Fatigue Life Sensitivities 

Computational models always present a tradeoff between fidelity and 

computational intensity. For FEM simulations, the computational cost may be considered 

in terms of wall time (actual simulation time to completion) or the CPU-time (adjusted by 

number of CPUs), associated with the simulation. With a constant material model, an 

increased number of elements (or higher order elements) will produce a greater ability to 

capture gradient effects on the interior of the simulated volume. Increased mesh 

refinement in fatigue simulation can lead to greater resolution of crack paths, improved 

crack closure, stress redistribution, and eventual convergence of simulation properties. 

Specific issues relevant to the crack nucleation and propagation will be discussed 

separately, with additional discussion on methods to reduce computational costs while 

retaining good agreement with higher resolution models. 

 Nucleation simulations involve a single particle embedded in the Al 7075-T6 

matrix. Because of the relative size of these features (grain size typically exceeds particle 

size by an order of magnitude) only a few grains are required at most to represent the 

local state. Such a volume does neglect the nearest neighbor affects such as grain 
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misorientation, however for cracked particles, it can be assumed that the crack drives the 

notch root deformation to a much larger extent. Reduced mesh density simulations of 

10x20x10 elements were compared to the initial calibration simulations of 20x40x20. 

The relative error is presented for each load condition and grain orientation.  

 

Figure 74. Relative difference in 𝑫𝟑
̅̅ ̅̅  for five random orientations and nine 

calibration load conditions. 

 

 It is apparent that a reduced fidelity model introduces significant bias into the 

results. All but three of the 45 simulations had lower values in the low resolution SVE 

simulations. It is hypothesized that the voxelated nature of the mesh leads to a smaller 
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sampling of the possible stress states relative to the crystallographic orientations. This is 

caused by the voxelated nature of both meshes and thus the smaller mesh contains fewer 

samples. Assuming a constant distribution of values around the crack perimeter, there 

will be higher variance in the smaller sample size. In addition, the maximum value was 

reduced by an average of 65% in the smaller mesh. 

While the results indicate that the nucleation simulations are indeed sensitive to 

the choice in mesh size for all considered loading conditions, the relative error in life 

predictions is significantly smaller. This is influenced by the fact that the nucleation 

simulations with larger relative errors are at the LCF where propagation dominates the 

predicted lives. While the intermediate fatigue lives are still overpredicted by a 

significant margin when compared to the initial calibration with the higher SVE 

resolution, these lives are still within the experimental data scatter. 

 

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

R
e

la
ti

ve
 E

rr
o

r

Load Condition



 

134 

 

Figure 75. Relative difference in total predicted fatigue lives for five random 

orientations and nine calibration load conditions. 

 

While the relatively high sensitivity of nucleation has been well established, the 

overall sensitivity is acceptable when compared to experimental data. The lower fidelity 

model is thus considered appropriate for the construction of a Γ-plane requiring hundreds 

of simulations. See the section entitled Multiaxial Fatigue: Gamma Plane Case Study for 

further information. Further reduction in model fidelity is not desirable, given the already 

large concessions in accuracy and precision. In addition, the lower fidelity models 

represent only 1.5 CPU-hours of computational time and four elements across the particle 

diameter. 

 Similar mesh sensitivity is worth considering in the context of the propagation 

approach developed for this material system. To isolate the effects of mesh resolution on 

the crack propagation results, five microstructures were simulated with varying levels of 

subsampling such that propagation occurs in a nominally similar FIP field. The total 

volume remains constant with a sidelength of 30 µm. For the observed microstructures, 

the crack growth rates are quite similar to the higher fidelity meshes. The crack length 

remains constant for some of the simulations after the points propagate outside of the 

volume. Proximity to the volume boundary also has a negative effect on the crack growth 

rate, one that will be addressed with the addition of elastic elements to model a larger 

volume for propagation without significant additional computation. 

 The mesoscale propagation distance is typically linked to the mesh resolution to 

take advantage of stress redistribution and local variations in crack plane. This variable 

was also studied, with the results for a single microstructure highlighted in Figure 77. It is 

evident that while differences in the mesoscale distance may not affect the initial crack 

propagation rate, they can change the sensitivity to local microstructure. For several of 

the intermediate values (𝑑𝑚 = 3,4 µm), the larger distance propagated before stress 
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redistribution does not accurately reflect the change in crack propagation rate when 

crossing the grain boundary (𝑎 = 22 µm). For this reason, 𝑑𝑚 is currently linked to the 

element sidelength for voxelated meshes. 

 

Figure 76. Crack propagation sensitivity to mesh resolution for five microstructures. 
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Figure 77. Crack propagation sensitivity to choice of mesoscale propagation 

distance. 

 

In addition to mesh resolution, FIP intensification (for cracks of same length and 

microstructure) will be a function of the total percentage of the simulation volume 

cracked. This has been solved analytically for penny-cracks in a semi-infinite medium, 

however brief justification of the use of a larger bounding volume to appropriately model 

the stress intensification is provided in Table 6. As mentioned previously, the automated 

simulation pipeline supports basic Abaqus material definitions outside of the defined 

crystal plasticity region. This allows for a reduction of the simulation cost while 

preserving the crack propagation metrics relative to a large volume with crystal plasticity 

in the entire region. Five validation microstructures were examined across the loading 

amplitudes studied in this work and the results are presented in Figure 78. The elastic 

material definition was chosen to reflect the bulk properties of Al 7075-T6 with 𝐸 =

70 GPa and 𝜈 = 0.345. In addition to changing the crack propagation value by less than 

5% the replacement of the far field region with elastic elements reduces the runtime by an 

average of 40%. 

 

Table 6. Crack propagation metrics in crystal plasticity, crystal plasticity with 

elastic padding, and a smaller crystal plasticity volume for two crack sizes. Cracks 

modeled with the elastic stiffness degradation method. 

Crack 

Size 

(μm) 

Total 

Sidelength 

(μm) 

Crystal 

Plasticity 

Region 

(μm) 

𝐹𝐼𝑃𝑝=2 𝐹𝐼𝑃𝑝=1 𝐷3 

20 92 92 2.67E-03 2.94E-03 1.05E-03 

20 92 44 2.71E-03 2.96E-03 1.05E-03 

20 44 44 1.36E-03 1.40E-03 6.17E-04 

12 92 92 7.45E-04 3.76E-03 1.11E-03 

12 92 44 7.39E-04 3.66E-03 1.09E-03 

12 44 44 6.20E-04 3.00E-03 9.07E-04 
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Figure 78. Comparison of crack propagation values (𝑭𝑰𝑷𝒑=𝟏) between partially 

elastic and full crystal plasticity simulations for varying loads. 

 

6.5: Stage II Propagation Analysis 

In addition to the sensitivities of the established propagation and nucleation 

methods, fundamental material behavior and influence on model behavior can be 

established. Of particular interest to Al 7075-T6 crack propagation is the activation of 

additional slip systems under load.  Since the crack propagation algorithm constructs an 

intermediate plane from the weighted average (correcting for propagation direction) 

between two or more slip systems, it is desirable to quantify this behavior especially with 

regards to applied load. Six representative loads were studied with three microstructures 

each and the distribution of sensed FIPs was sampled along the crack front for each 

simulation. This yields a sampling of ~100 elements for each load condition. The relative 

slip system activation is studied across all slip planes, all slip systems, and the selected 

two propagation slip systems. Slip planes are the most concise to represent visually, 

requiring only three series on each chart. In addition, the slip system contains a 
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significant amount of redundant information as the three slip systems on each octahedral 

slip plane inherently decompose the total slip (and thus the total FIP) for each. For this 

reason, only the propagation and slip plane plots will be presented here. 

 

 

Figure 79. Slip plane ratios for three microstructures under 𝜺𝒂 = 𝟎. 𝟐%  and 𝑹𝜺 =
−𝟏 tension/compression. 
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Figure 80. Slip plane ratios for three microstructures under 𝜺𝒂 = 𝟎. 𝟓%  and 𝑹𝜺 =
−𝟏 tension/compression. 

 

Figure 81. Slip plane ratios for three microstructures under 𝜺𝒂 = 𝟎. 𝟖%  and 𝑹𝜺 =
−𝟏 tension/compression. 

 

Figure 82. Slip plane ratios for three microstructures under 𝜸𝒂 = 𝟎. 𝟒%  and 𝑹𝜺 =
−𝟏 simple shear. 
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Figure 83. Slip plane ratios for three microstructures under 𝜸𝒂 = 𝟎. 𝟔%  and 𝑹𝜺 =
−𝟏 simple shear. 

 

Figure 84. Slip plane ratios for three microstructures under 𝜸𝒂 = 𝟎. 𝟖%  and 𝑹𝜺 =
−𝟏 simple shear. 

 

Neither the shear nor uniaxial loading condition demonstrates a consistent pattern 

for the shift in slip plane FIP ratios with increasing strain. The uniaxial propagation slip 
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system ratio, however, demonstrates a clear trend of decreasing FIP ratios with increasing 

applied load. This is consistent with previous results explored by Hennessey using the 

mesoscale crack propagation algorithm. This observation indicates that propagation more 

similar to Stage I (single dominant slip system) is occurring with higher imposed loads, 

which is counterintuitive and may indicate a need for further material model recalibration 

focused on multiple slip system activation and the effects on crack propagation. 

In addition to the quantification of FIP ratios, a qualitative assessment of the 

choice of slip systems to average may also be considered. Both Musinski and Hennessey 

have selected the two highest FIP slip systems which occur on different planes to average 

the crack growth. As demonstrated previously, however, there is a non-negligible 

activation of the third slip plane which could shift the selected crack path. This is 

investigated by applying the crack propagation method to a static FIP field (not 

considering damaged elements, and thus stress redistribution) and observing the 

constructed crack path. Crack propagation was reevaluated in several microstructures 

with Figure 85 and Figure 86 being representative samples of the crack propagation 

variations. 

 

Figure 85. Crack propagation comparison using two (left) and four (right) active 

slip planes under 𝜺𝒂 = 𝟎. 𝟒%  and 𝑹𝜺 = −𝟏 tension/compression in the y-axis. 
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Figure 86. Crack propagation comparison using two maximally active slip systems 

(left) and two maximally active slip planes (right) under 𝜺𝒂 = 𝟎. 𝟒% and 𝑹𝜺 = −𝟏 

tension/compression in the y-axis. 

  

It is evident that the crack propagation remains relatively constant across the 

conditions studied. The substitution for total slip plane FIPs for the slip system FIPs 

produces an entirely negligible change in the crack propagation. Likewise, the use of the 

additional slip systems appears to produce a slightly more planar crack, though the effect 

is overall minimal. It is unclear at this point as well, whether the inclusion of additional 

slip systems is realistic or not. Such conclusions would likely require additional 

experimental data consisting of crack surface measurements and local crystallographic 

orientation for comparison with simulated results. 

6.6: Multiaxial Fatigue: Gamma Plane Case Study 

Substantial value is added by microstructure-sensitive computational fatigue 

approaches such as that developed here in terms of predicting the effects of combined 

stress state in fatigue over the full range of conceivable stress states. This is obviously 

intractable to pursue with physical experiments, which instead serve to validate regions 

of predicted behavior (e.g. uniaxial, shear, biaxial). 

The Gamma Plane (Γ-plane) is a construct of Miller and Brown [34] that 

describes iso-life contours for general multiaxial surface strain states of the form  
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  (65)  

where ordered principal strains 𝜀1 ≥ 𝜀2 ≥ 𝜀3 are used to describe macroscopic strain (i.e., 

polycrystalline aggregate) response. The bounds of the wedge depend on the Poisson 

ratio at a given loading, thus for the purposes of presenting a comparative, non-distorted 

Γ-plane, the ordered principal plastic strains 𝜀1
𝑝 ≥ 𝜀2

𝑝 ≥ 𝜀3
𝑝
 will be used. For the 

construction of the Γ-plane, the biaxial loadings are divided into two cases, those for 

which the maximum cyclic plastic shear strain range involves planes that extrude and 

intrude relative to the free surface (Case B), considered by Brown and Miller to drive 

cracks into the bulk, and those for which the maximum plastic shear strain range is 

parallel to the surface of the volume (Case A). 

 

Figure 87. Planes of maximum shear and crack growth directions from bulk strains 

[34]. 

 

For the initial construction of a Γ-plane, the mesoscale algorithm constructed and 

calibrated by Hennessey is used. Since this approach is only tractable to approximately 

100 µm, the definition of specimen life will be the number of cycles required to reach a 
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crack length of 60 µm. This is consistent with the fatigue lives presented by Hennessey 

[48] and with the knowledge that MSC consumes a large portion of the fatigue life for 

this material [120]. In the case of macroscopic failure, a definition of failure to specimen 

in two pieces or, for strain controlled cases, a specific reduction in stiffness may be used 

to define failure [137]. 

Since the parameter of interest, fatigue lives, is not analytically formulated, an 

integration for iso-life contours cannot be directly constructed. Instead, discretely 

sampled points must be relied upon to construct the underlying response surface, from 

which the iso-life contours may be extracted. The methodology for extracting the 

response surface is consistent with the SVE simulations strategies discussed earlier in this 

work. In addition to the non-representative nature of the volumes for fatigue, it is 

desirable to further reduce computational time expended for reconstructing the entire 

surface. This requires both a reduced simulation volume and mesh density and ultimately 

introduces variation in the plastic strain (response coordinate) and crack growth (response 

value) for the same applied nominal strain. 

It would be beneficial if one of these uncertainties could be eliminated for the 

purposes of response surface construction. An assumption was made that the plastic 

strains would vary significantly less than the inherent variability of fatigue. Since these 

relative uncertainties are not known a priori, the assumption was verified upon the 

conclusion of the simulation DOE. Indeed, over the load amplitudes studied, the principal 

plastic strain values have a mean coefficient of variation of 4% and a maximum 

coefficient of variation of 15% for any nominal applied load. The simplification in the 

form of scatter in the data allows for the use of a powerful interpolation package in the 

form of the Scikit-learn [138] Gaussian Process Regression (GPR) package. GPR is 

variously referred to as Kriging in other works. This method has the benefit of explicitly 

capturing uncertainty in the sampled space using “nuggets” with the following 

formulation. 
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where 𝜎𝑖 is the standard deviation of the ith average response, 𝑦𝑖.  

 

Figure 88. Comparison of true variability and condensed variability for the 

construction of a fatigue response surface. 

 

Each shear direction (Case-A or Case-B) is simulated at multiple points by 

varying the biaxial load ratio and the load intensity. Each sample point consists of the 

same three microstructure instantiations to capture some of the variability inherent in 

fatigue. A response surface is then fit to each of the Case A and Case B conditions and 

each response surface is used to plot constant endurance contours. Both contours are then 

combined into a single plot. The response surface methodology used is known as Kriging 

or Gaussian Process Regression and is fit using the average of the simulated endurance 

for each sampled load condition. The Scikit-learn package [139] was used to incorporate 

uncertainty into the response surface and not strictly conform to the average response 

recorded. A further description of the algorithms used and their performance may be 

found online and in the cited paper [139, 140].  
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Load conditions for these conditions were applied to the RD-TD plane, with the 

remaining faces allowed to deform freely. Calculation of the Γ-plane was conducted with 

simulations of SVE size 40 µm and mesh size of 5 µm. Such a volume is justified in the 

work of Hennessey [48], and additional verification by the author. Reduction of 

computational time is particularly desirable due to the multitude of load conditions 

required to construct a realistic response surface. This particular construction required 

450 simulations to sample the relatively limited range desired. This task is not tractable if 

each simulation requires hundreds of CPU-hours, but becomes feasible when each 

simulation requires the ~5 CPU-hours of the reduced fidelity mesh. 

Several interesting features may be observed from the constructed plot. Even at 

the small simulated volumes studied and with a crack propagation algorithm calibrated to 

limited macroscopic fatigue data, the differences in loading effects between Case A and 

Case B loading are apparent. In addition, the shape of the iso-life contours are not 

constant at varying levels of plastic deformation, nor is the shape that of equal endurance 

independent of biaxiality ratio. Both features demonstrate the importance of a calibrated 

crystal plasticity model to capturing the varied loading and their impacts on fatigue 

indicator parameters used in the mesoscale model. It is especially interesting to note that 

the Case B contours have the opposite curvature when compared to those predicted by 

McDowll and Berard [32] using an integration of the macroscopic FS FIP.  This is likely 

due to the implementation of discrete nucleation and propagation portions of the 

mesoscale fatigue model. The Case A contours are within the predicted shape and relative 

position when compared to the McDowell and Berard integrations. 
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Figure 89. Γ-plane for 7075-T6 Al depicting iso-life contours based on response 

surface fitting to previously calibrated model. Squares are sampled loadings for 

Case A, points are the sampled loadings for the Case B. The unlabeled portion of the 

same color contour is the Case A branch. 

 

While performing additional simulations to resolve the upper right corner of the 

response surface it was observed that the chosen SVE size (40 µm) is no longer a good 

approximation of an RVE when examining the bulk plastic strain response. Variations of 

the plastic strain ranges 
𝜀1

𝑝
−𝜀3

𝑝

2
  and 

𝜀1
𝑝

+𝜀3
𝑝

2
   from multiple SVEs as compared to a single 

SVE prediction of these responses begin to vary greater than 10%. Later creation of Γ-

planes from recalibrated models should account for this by utilizing a larger simulated 

volume (RVE of average plastic strain) at higher applied loadings. 

A necessary feature of the current construction of Γ-planes has been the 

imposition of continuity of the life contours from Case A to Case B. Since GPR is only 
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intended to interpolate response values, the upper boundary between Case A and Case B 

contains additional uncertainty since no sample points lie exactly on this boundary. In 

order to rectify this, the response surface for Case A is fed the predicted life values on the 

upper boundary from the Case B surface (found to have less uncertainty along this 

boundary). These points are visible as small boxes on the upper boundary in Figure 89. In 

addition, to ensure the coincidence of contours, nugget𝑖 = 0 for each of these predicted 

points. This restricts the interpolation function of Case A to pass exactly through the 

mean life prediction from the Case B response surface at these points. 

An additional observation on the construction of the Γ-planes involves the 

limitations of the linear nature of the construct. Since the bounding wedge is dependent 

upon the Poisson Ratio and the axes reflect the plastic strain values, a linear scale is 

desired to maintain a logical shape for interpreting the biaxial loading ratios. This 

conflicts with a potential desire to observe the variation in multiaxial fatigue lives at 

vastly different strain ranges. To preserve the linear nature of Figure 89 and other Γ-

planes it is advised that if a large range of imposed strains is to be studied, that multiple 

planes are constructed and used to view the different ranges of fatigue lives. 

Following the successful application of the Γ-plane construct to the previously 

calibrated, mesoscale fatigue algorithm, an application of the calibrated nucleation and 

perimeter propagation fatigue algorithm presented in this work is also reproduced. Given 

the success of the previous representative fatigue simulations, similar parameter selection 

was utilized with the reduced volumes for the newer propagation method justified in the 

previous sections. Propagation volumes of 55 µm sidelength with 11 elements per side 

were selected and reduced nucleation mesh of 10x20x10 elements and a volume of 

10x20x10 µm were used. To couple the two simulations necessary to express the fatigue 

life, the subsampling method was applied to the propagation microstructure and the 

cracked particle inserted in the center of the volume. While the pipeline has the capability 

to support particle orientation variation and crack inclination, for the purposes of this 
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exploration, a constant particle orientation in the RD and crack plane normal to the RD 

are used. 

 

Figure 90. Nucleation mesh (left) constructed by subsampling the propagation 

microstructure (right) and inserting a cracked particle. Grain 50 is highlighted in 

both meshes along with the particle in the nucleation mesh. 

 

 Again, a constant set of microstructures (four) was selected to represent some of 

the inherent fatigue variability. Loading conditions were once again confined to a region 

𝜀𝑎 ∈ [0.3%, 0.5%] and ratios of principal surface strains 𝝃 ∈ [−1,1] to construct the 

response surface. This second Γ-plane has demonstrably different behavior than the first. 

Most especially it is noted that the 𝝃 = −1 (x-axis, Case A) have shifted significantly to 

the right. This is entirely expected due to the new calibration and improved predictive 

capabilities in shear loading. Additionally, the new calibration shifted the Case B 

contours to the right for the longer life contours. This reflects the change from being a 

relatively conservative life prediction in VHCF to one more reflective of the experimental 

scatter. 
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The distortions in the Case B contours may have several causes. Because the 

explicit particles used to predict nucleation are coarsely represented in the voxelated 

mesh, crack mouth displacements may not be accurately captured, resulting in the 

oscillating contours. In addition, the relatively coarse sampling of the Γ-plane space may 

lead to fluctuations in the sampled function, although fitting parameters were selected to 

minimize this. Overall, the Γ-plane reflects the predictive capabilities of the model to 

describe fatigue responses in a repeatable manner across a wide variety of loading 

conditions infeasible for experimental observations. This Γ-plane also reflects the more 

accurate description of the material system, as explained previously. Crystallographic 

texture can contribute significantly to fatigue lives and is a potential factor in explaining 

the difference in observed response surface shape. The anisotropy of any FIP response 

would directly contribute to a change of shape in the iso-life contours. 
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Figure 91. Γ-plane for 7075-T6 Al depicting iso-life contours based on response 

surface fitting to currently calibrated model. Squares are sampled loadings for Case 

A, points are the sampled loadings for the Case B. The unlabeled portion of the 

same color contour is the Case A branch. 

  

6.7: Conclusions 

In this chapter, multiple improvements to the calibration of Al 7075-T6 fatigue 

model were demonstrated. Particle stringers were investigated, and eventually dismissed, 

as a primary cause of the discrepancy in shear fatigue lives. Calibration of the fatigue 

model was performed with the new propagation method and more realistic synthetic 

microstructures. Sensitivities to various simulation parameters were investigated for this 

new model. While the nucleation model was determined to be highly sensitive to mesh 

refinement, the propagation method is found to be relatively insensitive to mesh 

refinement and selection of mesoscopic propagation distance over the ranges 
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investigated. Stage II FIP ratios were also studied in the context of the newer propagation 

approach. Results are not as drastic as those observed by Hennessey, but the anticipated 

trend of increasing FIP ratios under increased load was not observed for the range of 

loads studied. Finally, the new nucleation and propagation approaches were used to 

construct a Γ-plane and compare to the Γ-plane constructed from the calibrated mesoscale 

fatigue model of Hennessey. The two surfaces indicate significantly differently multiaxial 

fatigue responses for the same material, highlighting the importance of the selection of 

fatigue modeling approaches. Both of these surfaces may be useful in predicting Al 7075-

T6 fatigue responses for loading conditions not reported in the literature. 
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CHAPTER 7: CONCLUSIONS AND DIRECTIONS FOR FUTURE 

RESEARCH 

7.1: Summary 

This work presents the results of the application of a newly developed automated 

simulation pipeline for crystal plasticity models to several different problems in fatigue. 

A scripting environment with support for many common features in crystal plasticity 

simulations was introduced with the intent of reducing the time and effort required by 

individuals to specialize code to particular problems. The automation framework was 

presented to utilize many of these individual functions to prepare, simulate, and analyze 

large quantities of crystal plasticity simulations for the purposes of fatigue analysis. The 

framework of the pipeline and scripting environment were provided to encourage future 

researchers to contribute to the consistent application and development of standards for 

crystal plasticity simulations. 

This pipeline was used to simulate and evaluate the sensitivities of the extreme 

value distribution framework for comparing fatigue resistance as a function of simulation 

parameters. Since the extreme FIPs from individual SVE instantiations consistently 

converge to Gumbel distributions, responses were evaluated in the form of the Gumbel 

distribution parameters. Traditionally, averaging methods have been used to reduce mesh 

sensitivity and provide a more realistic interpretation of extreme values arising in fatigue, 

so values were averaged for individual grains, grain equivalent volumes, and cubic 

volumes. The current method SVE maximum construction of extreme value distributions 

was demonstrated to be highly sensitive to the simulation parameters selected, regardless 

of the averaging scheme chosen. Traditional statistical methods were found to be unable 

to compensate for the differences in Gumbel parameters for meshes ranging in size from 
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123 to 493. These observations were consistent across two materials (Ti64 and IN100) as 

well as two load amplitudes relative to the yield strain (𝜀𝑎 = 0.35𝜀𝑦 and 𝜀𝑎 = 0.7𝜀𝑦). 

To investigate the cause of these statistical anomalies, the underlying distribution 

of FIPs was studied for simulations of reduced integration elements (C3D8R). While the 

KS test rejected the notion that FIP distributions for the same material and load condition 

(different mesh configurations) were randomly sampled from the same distribution at a 

99% confidence level, the nominal behavior of the FIPs including the FIP tails is 

remarkably similar. Further quantification of the behavior of the tails of FIPs discovered 

that for the load conditions (fully reversed shear and tension/compression) and materials 

(Al 7075-T6, IN100, and Ti64) considered, the tail behavior was adequately described by 

the three-parameter Gamma distribution. Since the Gamma distribution falls within the 

domain of attraction for the Gumbel distribution, this explains earlier observations about 

the convergence of the SVE extreme values converging to a Gumbel distribution. While 

FIP values from a single integration point are well behaved, averaging schemes 

significantly change the observed distribution of FIPs. These changes are not consistent 

across all simulation parameters and invalidate several statistical assumptions relating to 

the independently drawn samples from an underlying distribution. 

A new method was proposed to characterize and compare fatigue resistance in 

standardized way. Monte Carlo samplings of the FIP experimental CDFs and Gamma 

distribution tails were performed to construct Gumbel distributions. The distribution 

parameters exhibited no significant correlation to SVE parameter selection. 

Characterizing the tails in a consistent manner allowed for extrapolation of FIP 

distributions at higher return periods, as well as a reduction in data dimensionality. This 

reduction in dimensionality coupled with characterization of FIP behavior has potential 

implications for future material design methods. 

In addition, the automated simulation pipeline was utilized to investigate fatigue 

crack formation and growth in the Al 7075-T6 material system. A parameter based on the 
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total accumulated slip averaged over the crack mouth of the nucleant particle was 

demonstrated to explain the differences in fatigue lives for samples experiencing uniaxial 

loadings compared to shear loadings. This nucleation parameter was also found to 

provide a potential explanatory mechanism for the effect of mean strain on the fatigue 

lives of Al 7075-T6. Stage II crack propagation was reevaluated following the 

development of a new propagation method. Geometrical considerations were highlighted 

in the development of this model to improve fundamental adherence to material behavior 

and increase model fidelity by removing ambiguity in the determination of the 

intermediate crack propagation plane. This crack propagation method was found to be 

relatively insensitive for mesh refinement for comparisons of total crack length. This 

result was anticipated following the analysis that the volumetric FIP distribution was 

found to be relatively mesh insensitive and the FS FIP is used as a surrogate measure for 

the crack propagation rate. 

The new fatigue model was coupled with improved reconstruction morphology 

and crystallographic texture and calibrated to more accurately match experimental 

specimens of Al 7075-T6. Multiaxial fatigue simulations were conducted to construct Γ-

Plane sections for a previous fatigue crack growth model, and the newly introduced 

model with the explicit consideration of crack nucleation at particles and a point 

propagation model for fatigue crack growth. It was demonstrated that significant 

differences in fatigue life estimation of the multiaxial response surface arise based on the 

differences in model form, even when calibrated to the same data. These fatigue model 

forms may lead to significant differences in design conclusions drawn from newly 

predicted loading conditions. 

7.2: Directions for Future Research 

It is desired that the most important contribution of this work is the transparency 

of the data and tools utilized within. With the development of the automated material 
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simulation pipeline, verification and improvements to the methodology presented in the 

work may occur at a more rapid pace. With this normal obstacle of research reduced, 

contributions to the pipeline should improve data generation and analysis rates within the 

material simulation community. Significant work can still be performed to expand the 

functionality of the pipeline, especially when considering different microstructure 

instantiation tools such as 2-point statistics optimization routines and other, more 

specialized, software. Additionally, improvements to the meshing capabilities such as the 

ability to produce smooth grain boundary meshes will allow free meshing routines to 

construct meshes that more efficiently capture complex morphologies such as smaller 

particles embedded in a coarser grain matrix. A final desired improvement is the 

incorporation of more flexible post-processing methods to handle data from simulations 

utilizing linear or quadratic elements. 

The data generated from these simulations should also be discussed to provide a 

standard means of storing useful information, which may be shared between individual 

researchers and organizations. Small, local databases as well as large, remote databases 

may be useful to address scaling beyond the current organized folder structure that, while 

simple to visualize and interact with via file manager applications, can provide 

complications with traceability and significantly reduce access time and portability of 

data. Standardized schema can be developed internally and externally using SQL 

databases. With data stored in a standardized, flexible format, a greater degree of 

automation can be achieved utilizing these datasets. This organization should also be 

extended to software developed as well. Sufficient safeguards must be developed to 

ensure that insufficient knowledge of crystal plasticity simulations does not lead to 

incorrect data generation. 

While FIP distributions were observed for a variety of loading conditions, crystal 

plasticity models, and textures, further research into the general applicability of the 

Gamma distribution tail characterization is desirable. Statistical and physical 
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investigation into the introduction of biases caused by sampling and ensemble of SVE 

instead of a single RVE would be of great value to quantifying the uncertainty for the 

total FIP distribution. Previously developed marked correlation functions or higher order 

spatial statistics and principal component analysis could be applied to understand the 

characteristics that shift the constructed FIP distributions. Quantifying uncertainty 

associated with sampling the FIP distribution may be utilized in scenarios requiring 

robust designs. These studies can help to reduce the computational effort required to 

simulate vast regions of feasible microstructures as well as standardize the data necessary 

to facilitate the construction of databases of explored material designs. 

Implementation of improved nucleation and propagation models in Python scripts 

that are decoupled from the UMAT should facilitate more rapid adoption of crack 

propagation simulations and more rapid study of crack driving forces across various 

material models. These scripts can be further generalized to study Stage II propagation at 

a more fundamental level in simulated microstructures. Additional simulations should be 

performed to study the effect of stress redistribution during crack advance, grain 

boundary slip transfer and various flow rules and internal state variable evolution models. 

Comparing these results with existing and newly acquired experimental data could 

provide significant additional insight into the processes of microstructurally small crack 

growth. 

As has been alluded to numerous times throughout this thesis, the improvements 

made to crystal plasticity fatigue simulations by this work have potential applications in 

material design processes. In addition to the work presented in this thesis, significant 

progress has been made to provide an open source implementation of the Inductive 

Design Exploration Method (IDEM) [141] which will enable the more rapid application 

of robust design principles to materials development. This framework provides the ability 

to address design challenges commonly occurring in materials design while incorpating 

Type 1, Type 2, and Type 3 model uncertainty. The incorporation of the automated 
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material simulation pipeline, improved crack propagation method, and Al 7075-T6 

nucleation simulations could provide future avenues for materials design projects 

associated with this material system, however future work must also address and quantify 

the sources of uncertainty at each stage of simulation. 
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APPENDIX A 

Reference File Formats 

Several file types are read and written by many different parts of the automated 

material simulation pipeline as well as miscellaneous scripts and applications used across 

the McDowell group. While the author has attempted to consolidate these interfaces into 

cross-functional modules, redundant code will always exist. The following contains a 

documentation of the various file types and data formats used by the new modules and 

several legacy codes. Files with a numeric link to a specific instantiation will be denoted 

using the number sign #. During execution of simulations, some of these files may have 

the identifying number stripped and later appended to retain compatibility during 

simulation, but reintroduce traceability upon completion. Formatting for each line will 

use Python print formatting to be explicit. 

 

 Common_block_Alv02.txt 

o Linked by compiler for UMAT and UEXTERNALDB of Al 7075-T6 

o Fortran variable declarations and allocations 

 CRACK_ARRESTED_#.txt 

o Read by UEXETERNALDB of Al 7075-T6 to indicate completion of 

crack propagation as signaled by Python 

o Empty text file 

 cracked_elem_#.txt 

o Written by Python crack propagation or meshing.py to determine current 

cracked elements and planes 

o Space separated file of format “%d  %f  %f  %f” of element number, x, y, 

and z respectively to define crack plane for damaged elements 

 CrackGrowth_py_#.txt 

o Written by Python crack propagation and read by post_process.py 

o Space separated file of format “%f      %f” for cycles and length 

respectively 
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 d_gr_nd_#.txt 

o Contributions to band length from low misorientation neighbors 

o Deprecated 

 Definitions.txt 

o Written by simulation.py and linked by compiler for UEXTERNALDB of 

Al 7075-T6 

o Defines all fatigue and material constants for UEXTERNALDB 

o eval_life_array() – loading steps at which crack extension will be 

evaluated and cracked elements updated prior to the application of load 

 El_pos_#.txt 

o Written by meshing.py and read by various scripts 

o Space separated file of format “Elem%d %f %f %f” for element number, 

x, y, z coordinates of the centroid of the element  

 Element_Volume_#.txt 

o Written by meshing.py 

o “%f” element volume in mm3 for each element 

 FIP_MSC#_el_#.txt 

o Written by UEXTERNALDB and read by Python crack propagation 

o Space separated file of format “%d %d %d %f“ for element number, slip 

system number, grain number, and FS-FIP 

 FIP_Nuc_el_#.txt 

o Written by UEXTERNALDB and read by Python crack propagation 

o Space separated file of format “%d %d %d %f %d “ for element number, 

slip system number, grain number, FS-FIP, and number of elements in the 

band 

 Geom_Def_#.txt 

o Written by meshing.py and linked by compiler for UEXTERNALDB of 

Al 7075-T6 

o Defines a number of geometry related values such as number of elements 

 Grains_#.txt 

o Written by meshing.py and read by various scripts 
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o Comma separated file of format “%f, %f, %f” for grain volume, 𝜙1, Φ, 

and 𝜙2 as defined by Bunge-Euler angles in radians 

 Neighbors_el_#.txt 

o Written by meshing.py and read by various scripts 

o Comma separated file of format “%d, %d, …, %d” 

o Each row contains the numbers of the neighboring elements with 0 

indicating no neighbor 

o Considers all elements sharing a single vertex or more 

 trial_elem_grains_#.txt 

o Written and read by microstructure.py 

o First line is ex,ey,ez(,x,y,z) – parentheses optional 

o Second line is of format “%d,%d,%d(,%f,%f,%f)” for number of x, y, and 

z elements and optionally the x, y, and z geometry size 

o Following lines are the grain number ∈ [1, 𝑛] for each element in Fortran 

numbering order (meaning flattened list with 3D indices increasing fastest 

in the first index) 

 trial_EulerAngles_#.txt 

o Written and read by microstructure.py 

o First line is number of grains 

o Two lines of headers 

o Space separated file of format “%d %f %f %f” for grain number starting at 

1, 𝜙1, Φ, and 𝜙2 as defined by Bunge-Euler angles in degrees 

 trial_Phases_#.txt 

o Written and read by microstructure.py 

o First line is “Grain Phase” 

o Following lines are grain phase integers ∈ [1, 𝑛] 
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APPENDIX B 

Table 7. Ti64 responses for nine configurations at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 

Config. 𝒄𝝈 𝝁𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝝈𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝒄𝝁𝒆𝒍𝒆𝒎𝒆𝒏𝒕
 𝒄𝝈𝒆𝒍𝒆𝒎𝒆𝒏𝒕

 𝝁𝒈𝒓𝒂𝒊𝒏 𝝈𝒈𝒓𝒂𝒊𝒏 𝒄𝝁𝒈𝒓𝒂𝒊𝒏
 𝒄𝝈𝒈𝒓𝒂𝒊𝒏

 

1 2.53E-02 1.09E-15 7.44E-16 1.62E-01 1.60E-01 1.74E-16 1.35E-16 1.85E-01 1.54E-01 

2 2.49E-02 1.65E-15 1.19E-15 1.72E-01 1.58E-01 1.71E-16 1.04E-16 1.45E-01 1.63E-01 

3 2.44E-02 2.73E-15 2.35E-15 2.06E-01 1.45E-01 3.23E-16 3.42E-16 2.53E-01 1.48E-01 

4 2.09E-02 3.15E-15 2.75E-15 2.08E-01 1.53E-01 6.56E-16 9.73E-16 3.55E-01 1.38E-01 

5 2.07E-02 4.33E-15 3.45E-15 1.90E-01 1.56E-01 3.38E-16 3.04E-16 2.14E-01 1.42E-01 

6 2.07E-02 8.39E-15 7.06E-15 2.01E-01 1.49E-01 3.45E-16 2.62E-16 1.81E-01 1.48E-01 

7 2.06E-02 3.67E-15 2.37E-15 1.54E-01 1.56E-01 4.21E-16 3.73E-16 2.12E-01 1.46E-01 

8 2.07E-02 4.21E-15 2.17E-15 1.23E-01 1.58E-01 3.60E-16 2.86E-16 1.90E-01 1.49E-01 

9 2.07E-02 1.27E-14 9.77E-15 1.83E-01 1.49E-01 4.25E-16 3.99E-16 2.24E-01 1.43E-01 

 

Table 8. Ti64 responses for nine configurations at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚 cont. 

Config. 𝝁𝒄𝒖𝒃𝒆 𝝈𝒄𝒖𝒃𝒆 𝒄𝝁𝒄𝒖𝒃𝒆
 𝒄𝝈𝒄𝒖𝒃𝒆

 𝝁𝒌𝒆𝒓𝒏𝒆𝒍 𝝈𝒌𝒆𝒓𝒏𝒆𝒍 𝒄𝝁𝒌𝒆𝒓𝒏𝒆𝒍
 𝒄𝝈𝒌𝒆𝒓𝒏𝒆𝒍

 

1 3.30E-16 2.54E-16 1.84E-01 1.56E-01 1.35E-16 1.08E-16 1.90E-01 1.53E-01 

2 5.14E-16 3.92E-16 1.82E-01 1.57E-01 1.29E-16 9.49E-17 1.76E-01 1.58E-01 

3 9.15E-16 9.29E-16 2.43E-01 1.41E-01 1.26E-16 1.19E-16 2.25E-01 1.41E-01 

4 8.34E-16 8.55E-16 2.45E-01 1.45E-01 3.49E-16 3.39E-16 2.32E-01 1.47E-01 

5 9.80E-16 7.01E-16 1.71E-01 1.54E-01 2.51E-16 1.59E-16 1.51E-01 1.62E-01 

6 2.20E-15 1.74E-15 1.89E-01 1.52E-01 2.32E-16 1.77E-16 1.82E-01 1.46E-01 

7 1.06E-15 7.39E-16 1.66E-01 1.56E-01 4.49E-16 2.99E-16 1.59E-01 1.61E-01 

8 1.27E-15 7.48E-16 1.40E-01 1.58E-01 3.57E-16 2.30E-16 1.54E-01 1.56E-01 

9 3.50E-15 2.27E-15 1.54E-01 1.56E-01 4.61E-16 2.88E-16 1.49E-01 1.62E-01 
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Table 9. Ti64 responses for nine configurations at 𝜺𝒂 = 𝟎. 𝟕𝜺𝒚. 

Config. 𝒄𝝈 𝝁𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝝈𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝒄𝝁𝒆𝒍𝒆𝒎𝒆𝒏𝒕
 𝒄𝝈𝒆𝒍𝒆𝒎𝒆𝒏𝒕

 𝝁𝒈𝒓𝒂𝒊𝒏 𝝈𝒈𝒓𝒂𝒊𝒏 𝒄𝝁𝒈𝒓𝒂𝒊𝒏
 𝒄𝝈𝒈𝒓𝒂𝒊𝒏

 

1 4.41E-02 2.52E-06 1.56E-06 1.48E-01 1.60E-01 8.41E-07 6.23E-07 1.77E-01 1.46E-01 

2 3.80E-02 2.83E-06 1.46E-06 1.23E-01 1.58E-01 8.31E-07 6.36E-07 1.83E-01 1.39E-01 

3 3.77E-02 3.82E-06 1.74E-06 1.08E-01 1.67E-01 7.68E-07 4.10E-07 1.27E-01 1.49E-01 

4 3.24E-02 3.92E-06 1.50E-06 9.08E-02 1.66E-01 1.18E-06 7.52E-07 1.52E-01 1.48E-01 

5 2.95E-02 6.21E-06 3.01E-06 1.16E-01 1.47E-01 1.74E-06 1.49E-06 2.04E-01 1.40E-01 

6 2.98E-02 7.20E-05 1.12E-04 3.71E-01 1.40E-01 1.36E-06 8.39E-07 1.47E-01 1.46E-01 

7 2.06E-02 5.83E-06 1.89E-06 7.73E-02 1.60E-01 1.02E-06 3.48E-07 8.09E-02 1.56E-01 

8 2.07E-02 6.30E-06 1.73E-06 6.52E-02 1.63E-01 9.12E-07 2.17E-07 5.66E-02 1.68E-01 

9 2.06E-02 4.14E-05 6.50E-05 3.76E-01 1.37E-01 9.59E-07 1.80E-07 4.46E-02 1.70E-01 

 

Table 10. Ti64 responses for nine configurations at 𝜺𝒂 = 𝟎. 𝟕𝜺𝒚 cont. 

Config. 𝝁𝒄𝒖𝒃𝒆 𝝈𝒄𝒖𝒃𝒆 𝒄𝝁𝒄𝒖𝒃𝒆
 𝒄𝝈𝒄𝒖𝒃𝒆

 𝝁𝒌𝒆𝒓𝒏𝒆𝒍 𝝈𝒌𝒆𝒓𝒏𝒆𝒍 𝒄𝝁𝒌𝒆𝒓𝒏𝒆𝒍
 𝒄𝝈𝒌𝒆𝒓𝒏𝒆𝒍

 

1 9.50E-07 5.18E-07 1.30E-01 1.66E-01 4.40E-07 2.52E-07 1.36E-01 1.62E-01 

2 1.13E-06 4.79E-07 1.01E-01 1.73E-01 3.92E-07 1.78E-07 1.08E-01 1.66E-01 

3 1.68E-06 8.68E-07 1.23E-01 1.67E-01 4.37E-07 2.73E-07 1.49E-01 1.53E-01 

4 1.50E-06 5.97E-07 9.46E-02 1.60E-01 6.98E-07 2.51E-07 8.56E-02 1.63E-01 

5 2.72E-06 1.77E-06 1.56E-01 1.44E-01 7.59E-07 3.79E-07 1.19E-01 1.51E-01 

6 1.49E-05 2.12E-05 3.41E-01 1.39E-01 1.43E-06 1.58E-06 2.65E-01 1.39E-01 

7 2.24E-06 6.81E-07 7.22E-02 1.61E-01 9.76E-07 3.56E-07 8.68E-02 1.55E-01 

8 2.57E-06 6.55E-07 6.05E-02 1.68E-01 8.93E-07 2.42E-07 6.44E-02 1.74E-01 

9 7.68E-06 7.95E-06 2.48E-01 1.38E-01 1.13E-06 5.63E-07 1.19E-01 1.46E-01 
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Table 11. IN100 responses for nine configurations at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 

Config. 𝒄𝝈 𝝁𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝝈𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝒄𝝁𝒆𝒍𝒆𝒎𝒆𝒏𝒕
 𝒄𝝈𝒆𝒍𝒆𝒎𝒆𝒏𝒕

 𝝁𝒈𝒓𝒂𝒊𝒏 𝝈𝒈𝒓𝒂𝒊𝒏 𝒄𝝁𝒈𝒓𝒂𝒊𝒏
 𝒄𝝈𝒈𝒓𝒂𝒊𝒏

 

1 6.56E-02 2.06E-08 5.90E-09 6.78E-02 1.72E-01 5.15E-09 2.21E-09 1.02E-01 1.50E-01 

2 9.09E-02 2.65E-08 1.23E-08 1.11E-01 1.58E-01 5.25E-09 2.30E-09 1.04E-01 1.52E-01 

3 7.55E-02 2.79E-08 9.77E-09 8.30E-02 1.77E-01 5.09E-09 1.92E-09 8.97E-02 1.68E-01 

4 4.65E-02 2.63E-08 5.87E-09 5.29E-02 1.71E-01 6.88E-09 3.22E-09 1.12E-01 1.42E-01 

5 1.74E-02 2.79E-08 1.31E-08 1.12E-01 1.55E-01 4.71E-09 1.58E-09 7.93E-02 1.68E-01 

6 6.41E-02 2.30E-08 1.14E-08 1.18E-01 1.58E-01 3.70E-09 2.26E-09 1.46E-01 1.50E-01 

7 4.12E-02 2.69E-08 1.18E-08 1.04E-01 1.59E-01 6.51E-09 2.54E-09 9.29E-02 1.63E-01 

8 1.53E-02 2.48E-08 1.03E-08 9.87E-02 1.73E-01 4.43E-09 2.55E-09 1.37E-01 1.61E-01 

9 4.70E-02 3.39E-08 3.37E-08 2.38E-01 1.43E-01 2.47E-09 8.11E-10 7.83E-02 1.59E-01 

 

Table 12. IN100 responses for nine configurations at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚 cont. 

Config. 𝝁𝒄𝒖𝒃𝒆 𝝈𝒄𝒖𝒃𝒆 𝒄𝝁𝒄𝒖𝒃𝒆
 𝒄𝝈𝒄𝒖𝒃𝒆

 𝝁𝒌𝒆𝒓𝒏𝒆𝒍 𝝈𝒌𝒆𝒓𝒏𝒆𝒍 𝒄𝝁𝒌𝒆𝒓𝒏𝒆𝒍
 𝒄𝝈𝒌𝒆𝒓𝒏𝒆𝒍

 

1 7.96E-09 3.29E-09 9.86E-02 1.50E-01 4.39E-09 1.74E-09 9.47E-02 1.50E-01 

2 1.07E-08 4.34E-09 9.65E-02 1.61E-01 4.66E-09 1.37E-09 6.98E-02 1.72E-01 

3 1.21E-08 4.11E-09 8.08E-02 1.77E-01 4.10E-09 1.24E-09 7.19E-02 1.78E-01 

4 9.66E-09 1.94E-09 4.74E-02 1.67E-01 5.14E-09 9.14E-10 4.18E-02 1.80E-01 

5 9.57E-09 2.73E-09 6.75E-02 1.73E-01 4.13E-09 1.23E-09 7.03E-02 1.72E-01 

6 8.18E-09 3.31E-09 9.63E-02 1.63E-01 2.85E-09 1.36E-09 1.14E-01 1.60E-01 

7 1.05E-08 5.20E-09 1.18E-01 1.49E-01 5.66E-09 2.38E-09 1.00E-01 1.55E-01 

8 8.96E-09 4.20E-09 1.12E-01 1.66E-01 3.70E-09 1.82E-09 1.17E-01 1.66E-01 

9 9.18E-09 6.31E-09 1.64E-01 1.49E-01 2.44E-09 1.01E-09 9.93E-02 1.52E-01 
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Table 13. IN100 responses for nine configurations at 𝜺𝒂 = 𝟎. 𝟕𝜺𝒚. 

Config. 𝒄𝝈 𝝁𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝝈𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝒄𝝁𝒆𝒍𝒆𝒎𝒆𝒏𝒕
 𝒄𝝈𝒆𝒍𝒆𝒎𝒆𝒏𝒕

 𝝁𝒈𝒓𝒂𝒊𝒏 𝝈𝒈𝒓𝒂𝒊𝒏 𝒄𝝁𝒈𝒓𝒂𝒊𝒏
 𝒄𝝈𝒈𝒓𝒂𝒊𝒏

 

1 6.19E-02 3.11E-03 6.17E-04 4.72E-02 1.66E-01 1.33E-03 4.99E-04 8.92E-02 1.54E-01 

2 6.31E-02 3.38E-03 6.27E-04 4.51E-02 1.71E-01 1.37E-03 6.75E-04 1.20E-01 1.58E-01 

3 6.18E-02 3.56E-03 7.05E-04 4.70E-02 1.59E-01 1.45E-03 5.63E-04 9.23E-02 1.62E-01 

4 5.69E-02 3.31E-03 6.51E-04 4.67E-02 1.62E-01 1.45E-03 6.93E-04 1.14E-01 1.50E-01 

5 3.99E-02 3.50E-03 4.58E-04 3.18E-02 1.70E-01 1.54E-03 8.13E-04 1.29E-01 1.60E-01 

6 6.85E-02 3.73E-03 5.36E-04 4.61E-02 2.26E-01 1.38E-03 5.35E-04 1.25E-01 2.13E-01 

7 5.58E-02 3.78E-03 6.83E-04 4.63E-02 1.94E-01 8.99E-04 2.38E-04 6.78E-02 1.99E-01 

8 3.35E-02 4.54E-03 7.29E-04 4.94E-02 2.11E-01 9.97E-04 3.33E-04 1.03E-01 2.08E-01 

9 6.09E-02 4.68E-03 7.75E-04 4.69E-02 1.95E-01 8.69E-04 2.30E-04 7.47E-02 2.07E-01 

 

Table 14. IN100 responses for nine configurations at 𝜺𝒂 = 𝟎. 𝟕𝜺𝒚 cont. 

Config. 𝝁𝒄𝒖𝒃𝒆 𝝈𝒄𝒖𝒃𝒆 𝒄𝝁𝒄𝒖𝒃𝒆
 𝒄𝝈𝒄𝒖𝒃𝒆

 𝝁𝒌𝒆𝒓𝒏𝒆𝒍 𝝈𝒌𝒆𝒓𝒏𝒆𝒍 𝒄𝝁𝒌𝒆𝒓𝒏𝒆𝒍
 𝒄𝝈𝒌𝒆𝒓𝒏𝒆𝒍

 

1 1.34E-03 5.56E-04 9.89E-02 1.48E-01 5.69E-04 1.86E-04 7.78E-02 1.60E-01 

2 1.60E-03 4.70E-04 7.15E-02 1.70E-01 5.08E-04 1.57E-04 7.54E-02 1.74E-01 

3 1.85E-03 5.30E-04 6.83E-02 1.58E-01 5.14E-04 1.92E-04 8.91E-02 1.56E-01 

4 1.35E-03 4.59E-04 8.12E-02 1.52E-01 5.99E-04 2.13E-04 8.46E-02 1.53E-01 

5 1.67E-03 3.13E-04 4.55E-02 1.88E-01 5.68E-04 1.24E-04 5.29E-02 1.82E-01 

6 1.88E-03 3.48E-04 5.94E-02 2.31E-01 5.10E-04 1.04E-04 6.50E-02 2.59E-01 

7 1.78E-03 4.84E-04 6.99E-02 1.80E-01 8.21E-04 2.25E-04 7.05E-02 1.88E-01 

8 2.41E-03 4.64E-04 5.90E-02 2.28E-01 9.13E-04 2.66E-04 8.93E-02 2.22E-01 

9 2.45E-03 5.20E-04 6.01E-02 1.91E-01 7.92E-04 1.75E-04 6.23E-02 2.21E-01 
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APPENDIX C 

Table 15. Gamma distribution fits to 99.9% FIP tails for nine configurations of Ti64 

at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 

Config. 𝜶 𝝁𝒈 𝝈𝒈 𝑹𝟐 

1 7.09E-01 6.38E-16 7.70E-16 9.32E-01 

2 7.42E-01 6.38E-16 8.98E-16 9.83E-01 

3 6.04E-01 6.22E-16 1.10E-15 9.66E-01 

4 6.20E-01 5.50E-16 1.20E-15 9.14E-01 

5 6.11E-01 5.19E-16 1.21E-15 9.67E-01 

6 7.20E-01 6.03E-16 1.12E-15 9.74E-01 

7 7.13E-01 4.58E-16 8.98E-16 9.77E-01 

8 7.56E-01 4.78E-16 8.11E-16 9.88E-01 

9 6.32E-01 5.23E-16 1.33E-15 9.76E-01 

 

Table 16. Gamma distribution fits to 99.9% FIP tails for nine configurations of Ti64 

at 𝜺𝒂 = 𝟎. 𝟕𝜺𝒚. 

Config. 𝜶 𝝁𝒈 𝝈𝒈 𝑹𝟐 

1 8.84E-01 1.57E-06 9.59E-07 9.89E-01 

2 7.65E-01 1.35E-06 9.79E-07 9.94E-01 

3 8.87E-01 1.48E-06 9.91E-07 9.96E-01 

4 8.09E-01 1.30E-06 9.96E-07 9.97E-01 

5 8.00E-01 1.55E-06 1.23E-06 9.92E-01 

6 5.46E-01 1.53E-06 2.82E-06 9.20E-01 

7 7.99E-01 1.42E-06 1.08E-06 9.95E-01 

8 8.00E-01 1.45E-06 1.09E-06 9.97E-01 

9 7.33E-01 1.50E-06 1.38E-06 9.89E-01 
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Table 17. Gamma distribution fits to 99.9% FIP tails for nine configurations of 

IN100 at 𝜺𝒂 = 𝟎. 𝟑𝟓𝜺𝒚. 

Config. 𝜶 𝝁𝒈 𝝈𝒈 𝑹𝟐 

1 8.99E-01 1.39E-08 5.21E-09 9.83E-01 

2 7.69E-01 1.44E-08 7.06E-09 9.74E-01 

3 8.00E-01 1.42E-08 6.14E-09 9.95E-01 

4 9.17E-01 1.43E-08 4.81E-09 9.94E-01 

5 8.00E-01 1.20E-08 5.69E-09 9.95E-01 

6 9.23E-01 9.27E-09 3.92E-09 9.96E-01 

7 8.70E-01 1.29E-08 5.44E-09 9.95E-01 

8 8.00E-01 1.02E-08 4.98E-09 9.97E-01 

9 8.00E-01 5.76E-09 3.66E-09 9.82E-01 

 

Table 18. Gamma distribution fits to 99.9% FIP tails for nine configurations of 

IN100 at 𝜺𝒂 = 𝟎. 𝟕𝜺𝒚.  

Config. 𝜶 𝝁𝒈 𝝈𝒈 𝑹𝟐 

1 1.10E+00 2.43E-03 4.19E-04 9.87E-01 

2 9.58E-01 2.50E-03 4.46E-04 9.92E-01 

3 9.72E-01 2.49E-03 5.10E-04 9.94E-01 

4 9.37E-01 2.20E-03 4.47E-04 9.94E-01 

5 1.03E+00 2.26E-03 4.17E-04 9.98E-01 

6 1.16E+00 2.21E-03 3.97E-04 9.97E-01 

7 9.39E-01 2.31E-03 5.27E-04 9.95E-01 

8 9.63E-01 2.43E-03 5.96E-04 9.94E-01 

9 9.50E-01 2.41E-03 5.73E-04 9.96E-01 

 

Table 19. Gamma distribution fits to 99.9% FIP tails for four textures of Ti64 at 

𝜺𝒂 = 𝟎. 𝟕𝟓𝜺𝒚. 

Texture 𝜶 𝝁𝒈 𝝈𝒈 𝑹𝟐 

Basal 9.36E-01 6.21E-07 2.41E-07 9.97E-01 

Transverse 8.00E-01 8.90E-07 4.27E-07 9.97E-01 

Random 8.00E-01 1.13E-06 5.02E-07 9.95E-01 

Actual 9.59E-01 3.08E-06 1.28E-06 9.99E-01 
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