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SUMMARY 

  

 All substances above zero kelvin temperature emit fluctuating electromagnetic 

waves due to the random motions of charge carriers. Controlling the spectral and 

directional radiative properties of surfaces has wide applications in energy harvesting and 

thermal management. Artificial metamaterials have attracted much attention in the last 

decade due to their unprecedented optical and thermal properties beyond those existing in 

nature. This dissertation aims at tailoring radiative properties at infrared regime and 

enhancing the near-field radiative heat transfer by employing metamaterials.   

 A comprehensive study is performed to investigate the extraordinary 

transmission, negative refraction, and tunable perfect absorption of infrared light. A 

polarizer is designed with an extremely high extinction ratio based on the extraordinary 

transmission through perforated metallic films. The extraordinary transmission of 

metallic gratings can be enhanced and tuned if a single layer of graphene is covered on 

top. Metallic metamaterials are not the unique candidate supporting exotic optical 

properties. Thin films of doped silicon nanowires can support negative refraction of 

infrared light due to the presence of hyperbolic dispersion. Long doped-silicon nanowires 

are found to exhibit broadband tunable perfect absorption.   

 Besides the unique far-field properties, near-field radiative heat transfer can be 

mediated by metamaterials. Bringing objects with different temperatures close can 

enhance the radiative heat flux by orders of magnitude beyond the limit set by the Stefan-

Boltzmann law. Metamaterials provide ways to make the energy transport more efficient. 

Very high radiative heat fluxes are shown based on carbon nanotubes, nanowires, and 

nanoholes using effective medium theory (EMT). The quantitative application condition 

of EMT is presented for metallodielectric metamaterials. Exact formulations including 

the scattering theory and Green’s function method are employed to investigate one- and 



 xviii 

two-dimensional gratings as well as metasurfaces when the period is not sufficiently 

small. New routes for enhancing near-field radiative energy transport are opened based 

on proposed hybridization of graphene plasmons with hyperbolic modes, hybridization of 

graphene plasmons with surface phonon modes, or hyperbolic graphene plasmons with 

open surface plasmon dispersion relation. Noncontact solid-state refrigeration is 

theoretically demonstrated to be feasible based on near-field thermal radiation.  

 In addition, the investigation of near-field momentum exchange (Casimir force) 

between metamaterials is also conducted. Simultaneous enhancement of the near-field 

energy transport and suppress of the momentum exchange is theoretically achieved. A 

design based on repulsive Casimir force is proposed to achieve tunable stable levitation. 

The dissertation helps to understand the fundamental radiative energy transport and 

momentum exchange of metamaterials, and has significant impacts on practical 

applications such as design of nanoscale thermal and optical devices, local thermal 

management, thermal imaging beyond the diffraction limit, and thermophotovoltaic 

energy harvesting. 

 

 

 

 



 

1 

CHAPTER 1 

INTRODUCTION 

  

Thermal radiation is one of the most general phenomena in the universe. Any 

materials at temperatures higher than absolute zero emit electromagnetic waves due to the 

thermal fluctuations of free charges or ions. As one of the two fundamental modes of heat 

transfer, thermal radiation plays an important role in many engineering applications or 

instruments, such as combustion, heat management of space crafts, nonintrusive 

temperature measurement, high temperature heat exchangers, and waste heat harvesting 

[1-3]. Thermal radiation is also pertinent to our daily life, e.g., the sunshine we can 

observe is due to the thermal radiation of the sun. The thermal equilibrium achieved 

through the radiative energy exchange between the sun and the earth enables a suitable 

surface temperature of the earth for us to live.  

With the advances of nanofabrication and characterization techniques in the past 

30 years, people start to go beyond conventional bulk materials for the pursuit of tunable 

radiative properties to meet different needs. A particular kind, metamaterials, artificial 

nanostructures with subwavelength scale of units, have attracted much attention in the 

past two decades due to the exotic optical, electric, and thermal properties [4-7]. Both 

spectral and directional radiative properties can be mediated by patterning bulk materials 

into metamaterials, and this technique has wide applications in solar energy harvesting, 

radiation cooling, sensing, thermophotovoltaic (TPV) devices, subwavelength thermal 

imaging, and so forth. Thermal emission of  periodic metamaterials is governed by the 

Stefan-Boltzmann law for the total emissive power and by Planck’s law for spectral 
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emission, modified by the corresponding surface emissivity [1, 2]. However, at the 

micro- and nanoscales, when the geometric dimension is comparable to the characteristic 

wavelength of thermal radiation Th B( = ),c k T wave interference and photon tunneling 

must be considered and the resulting radiative energy exchange can greatly exceed the 

limit set by blackbodies [3]. Besides energy, photons also possess momentum. Indeed, 

the momentum exchange always accompanies the near-field radiative energy transport. 

The momentum exchange between macroscopic bodies is also called Casimir force, 

originally discovered in 1948 [8], which asserts that there exists an attractive force 

between two neutral conductors separated by vacuum at zero absolute temperature. The 

near-field energy transfer and Casimir interaction of metamaterials may exhibit 

extraordinary properties beyond the capabilities of bulk materials.   

 

1.1 Tailoring Radiative Properties at Infrared Regime by Metamaterials 

The radiative properties of a medium especially at the infrared wavelengths 

explicitly or implicitly indicate its thermal and electric properties. Interactions of 

metamaterials with electromagnetic waves enable unprecedented control of radiative 

properties, such as extraordinary transmission, negative refraction, and perfect absorption. 

Resonance excitations enable extreme light confinements, making nanoscale light 

manipulations beyond the diffraction limit possible. In addition, the strong light-matter 

interaction helps to design compact nanodevices and relieves the difficulty of the 

integration of bulky optical devices.  

It was found that perforated films can support extraordinary optical transmission 

(EOT) with efficiencies that are orders of magnitude beyond geometry-based classic 
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theory [9]. This interesting phenomenon has received extensive attention due to the wide 

applications of designing lab-on-chip optic devices, such as polarizers, filters, and sensors. 

Around the same time, double negative materials with simultaneously negative values of 

permeability and permittivity are experimentally demonstrated [10], although envisioned 

by Veselago in 1968 [11]. Double negative materials possess novel optical properties, 

such as negative refraction, reversal of Doppler shift, and realization of perfect lens. 

Nevertheless, the loss of double negative materials is very high since resonances need to 

be excited. Novel metamaterials with low loss are desired and are attracting much 

attention.   

Increasing materials’ absorptance has attracted considerable interest due to the 

wide applications, such as solar cells, spectroscopic and thermophotovoltaic (TPV) 

systems, free space dissipaters, and bolometers [1-3]. Spectrally and spatially coherent 

absorbers or emitters can be achieved by exciting surface plasmon or phonon polaritons 

[4-6], photonic crystals [7,8], resonance microcavities [9,10], and Fabry-Perot type 

resonances [11,12]. The resonance emission or absorption peaks are usually sensitive to 

the incidence angle and polarization. Due to increasing energy needs and environmental 

concerns, many efforts are still needed to design wavelength-selective and broadband 

diffuse absorbers/emitters, which are important for enhancing TPV cell efficiency for 

harvesting waste heat as well as for improving thermal management in space.  

 

1.2 Near-Field Radiative Energy Transport by Metamaterials 

The fluctuation-dissipation theorem (FDT) attributes the origin of thermal 

emission as due to the random motion of charges, which in turn, produces a fluctuating 
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current [12, 13]. Fluctuational electrodynamics, which combines FDT with Maxwell’s 

electromagnetic wave theory, is able to describe both the far-field and near-field thermal 

radiation phenomena. While the time average of the electromagnetic field due to the 

randomly fluctuating current is zero, the energy density can be very high near the surface 

and the Poynting vector depends on the correlation of the fluctuating currents. When two 

objects are placed in close proximity, evanescent waves with large wavevectors can 

tunnel through the space that separates the objects. This provides additional modes or 

heat transfer channels beyond what are available between objects placed far apart [14, 

15].  

FDT was developed in the late 1950’s and applied to calculate near-field radiation 

between parallel plates in late 1960’s. Furthermore, the theoretical prediction was 

evidenced by experiments performed early 1970’s, in spite of limited geometric 

arrangements and separation distances. It is not until the turn of the 21
st
 century when 

near-field thermal radiation begins to receive a great deal of attention. Research on 

nanoscale thermal radiation lags behind for more than a decade than that on 

micro/nanoscale heat conduction and convection that have become active since early 

1990’s [16, 17]. Understanding near-field thermal radiation between nanostructures not 

only has a great interest from the fundamental physics aspect, but also has promising 

applications such as energy harvesting, local thermal control and management, thermal 

modulation, nanoscale infrared imaging and mapping, and nanomanufacturing [5, 18-21]. 

Metamaterials open new possibilities to enhance the radiative heat flux, improve the 

efficiency of near-field energy harvesting, and realize novel contactless thermal devices.  
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1.3 Near-Field Momentum Exchange (Casimir Force) by Metamaterials 

Since being discovered in 1948 [8], the Casimir effect has attracted intensive 

attention especially in the last two decades when it has gone through significant 

progresses benefiting from current nanofabrication techniques and development of new 

calculation methods [13, 22-27]. Recent experimental setups and computational 

capabilities are able to consider complex geometries beyond simple planar configurations 

[28-39], two-dimensional (2D) materials [40-45], and effects of thermal fluctuations [46-

51]. Nevertheless, the basic mechanism of these different Casimir interactions is the 

same, a dispersion force induced by quantum and thermal fluctuations. The changing of 

quantized electromagnetic field in the vacuum gap due to presence of boundary 

conditions is attributed to the usual attraction force between neutral objects; otherwise no 

force will exist given that there are no real photons (0 K) or fields according to classical 

electrodynamics. Despite its quantum nature, the Casimir interaction is a macroscopic 

phenomenon and has played an important role in condensed matter physics, particle 

physics, as well as cosmology [22]. The attractive Casimir force per unit area between 

two perfect metals at  0 K is given as  2 4
C 240F c d  , where d is the gap spacing, 

is reduced Planck constant, c is the speed of light in vacuum [8]. Its magnitude 

increases quickly with decreasing gap spacing, and the corresponding pressure exerted is 

even larger than atmospheric pressure at d = 10 nm. This nontrivial long-range interaction 

will cause the malfunctioning of microelectromechanical systems (MEMS) and 

nanoelectromechanical systems (NEMS) due to the induced stiction and friction 

problems. As a result, it may impede on Moore’s law, which says that the packing density 

of transistors doubles approximately every two years. The near-field momentum 
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exchange between metamaterials is nontrivial, and they may provide approaches to 

relieve the stiction problem.  

 

1.4 Outline 

This thesis is divided into 7 chapters. Chapter 2 gives an introduction of some 

theoretical backgrounds including the effective medium theory (EMT), hyperbolic 

metamaterials, and fundamentals of near-field thermal radiation and Casimir force. 

Chapter 3 covers the unusual radiative properties at infrared regime theoretically 

achieved by appropriately designed metamaterials, such as highly efficient polarizer, 

blocking-assisted transmission, negative refraction, and tunable perfect absorption. 

Chapter 4 discusses the near-field radiative heat transfer between metamaterials based on 

EMT and gives its quantitative validity condition for multilayered metamaterials. Chapter 

5 presents the enhanced near-field thermal radiation by metamaterials based on exact 

formulations, and new physical mechanisms to improve near-field heat transfer are 

proposed. The manipulation of Casimir force between metamaterials including 

suppressing the Casimir force and applying repulsive Casimir force to realize stable 

levitation is covered in Chapter 6. Finally, chapter 7 presents the overall conclusion of 

this work and potential for future continuation of this work. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

 

This Chapter provides the approaches and concepts needed for the calculation and 

understanding both the far-field and near-field radiative properties of metamaterials. In 

Sec. 2.1, the effective medium theory is introduced and applied to obtain the anisotropic 

dielectric function of different metamaterials including nanowires, nanoholes, multilayers, 

and gratings. Section 2.2 introduces the concept of hyperbolic metamaterials briefly, and 

the difference between two types of hyperbolic dispersions is discussed. The 

fundamentals and formulations to calculate the near-field energy transport and 

momentum exchange are covered in Sec. 2.3 and 2.4, respectively.   

 

2.1 Effective Medium Theory 

Metamaterials are constructed of at least two different materials in order to realize 

exotic optical, electric or thermal properties. However, when the characteristic dimension 

of considered metamaterials (period P) is considerably smaller than the wavelength () of 

the incident radiation, the essentially inhomogeneous medium can be treated as an 

effective medium with a homogeneous dielectric function. The Maxwell-Garnett (MG) 

theory and the Bruggeman (BR) approximation are two homogenization methods that 

have been widely used for obtaining approximate dielectric functions of an 

inhomogeneous medium with different material constituents based on field averaging. 

The MG theory is used in this dissertation, since it is valid for dilute nanoscale structures 

such as carbon nanotubes, nanowires, and silver nanorods [52-57]. 
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In the MG theory, the effective properties of a composite medium are obtained by 

treating one constituent of the composite as the host and all other constituents as 

embedded grains (fillers), which are not in contact with one another. Four different 

nanostructures, i.e., doped silicon nanowires, nanoholes, multilayers, and one-

dimensional (1D) gratings as shown in Figure 2.1, are taken as examples to show how to 

use EMT to obtain their effective dielectric functions.  

 

 

 
Figure 2.1 Four different nanostructures: nanowires, nanoholes, multilayers, gratings. 

 

 

For D-SiNWs, vacuum is treated as the host with D-Si as the filler. For D-SiNHs 

on the other hand, D-Si is the host. When the electric field is along the optical axis (z 

direction), the dielectric function for both nanowires and nanoholes is given as 

 D-Si1z f f     (2.1) 

Here, z  is essentially governed by a diluted Drude model, since it is just the weighted 

average of the dielectric functions of doped silicon and vacuum. Note that Eq. (2.1) can 

be obtained from different effective medium approximations and should be valid for any 

f. The Drude model of D-Si may be written as 2 2
p( ) / ( )i        , where   is a 
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high-frequency constant, p  is the plasma frequency, and   is the scattering rate [58]. 

The plasma frequency for D-SiNWs is f  times that of D-Si; and the high-frequency 

term for D-SiNWs is (1 )f f    , which varies from 1 for f = 0 to   for f = 1. When 

the electric field is perpendicular to the optical axis, the ordinary dielectric function x , 

which is equal to y , of nanowires is governed by [55]  

 D-Si D-Si
,NW

D-Si D-Si

1 ( 1)

1 ( 1)
x

f

f

   
 

  



 
 (2.2) 

Note that ,NWx  given above can be expressed as a Lorentz model, and detailed 

derivations can be found from [55]. From a physical point of view, it is because the free 

electrons in nanowires are bounded by surrounding vacuum [54]. It is assumed that Eq. 

(2.2) is applicable to any f until it reaches the maximum limit of /4, when the diameter 

of the Si wire is the same as the period of the unit cell. This is a reasonable assumption as 

long as the Si wires are separated from each other. For nanoholes, Si should be treated as 

the host and the vacuum holes should be treated as the filler. In this case, ,NHx  can be 

calculated from the Maxwell-Garnett theory as follows 

 
 

 
D-Si

,NH D-Si
D-Si

2

2
x

f f

f f

  
  

  
 (2.3) 

Unlike in the case of nanowires, ,NHx  is dominated by a modified Drude model 

prescribed by Eq. (2.3), because free electrons in the nanohole structure are not bounded 

due to the interconnection of the doped silicon material. 

The dielectric functions of the D-Si/Ge multilayer in orthogonal directions are 

given by 
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  O Ge D-Si1 f f      (2.4a) 

 
 

Ge D-Si
E

D-Si Ge1 f f

 
 

   
 (2.4b) 

Here, O  (ordinary) and E  (extraordinary) are the dielectric functions for 

electric field perpendicular and along the optical axis, respectively. Note that for the 

multilayer configuration, Ox y      and Ez   . The above dielectric functions also 

apply to 1D gratings but with Oz    instead. It should be noted that for the multilayered 

structure, both the Maxwell-Garnett and Bruggeman effective medium approaches give 

the same expressions, i.e., Eqs. (2.4a) and (2.4b). Detailed discussions of the effective 

medium approximations can be found from Refs. [59, 60]. 

 

2.2 Hyperbolic Metamaterials 

According to EMT, multilayers, nanowires, and nanoholes can be homogenized 

into a uniaxial medium. And, such a uniaxial anisotropic medium can be characterized by 

a dielectric tensor diag( O , O , E ). When the dielectric functions for both directions are 

positive (negative), the material is called dielectric (metal). When the anisotropic optical 

responses to orthogonal directions are so extreme that the corresponding dielectric 

functions have different signs. This kind of metamaterials is called hyperbolic 

metamaterials (HMMs) due to the supporting of hyperbolic dispersions, in contrast to 

elliptic dispersions of conventional isotropic or anisotropic materials. To be more 

specific, when O  > 0 and E  < 0 (where prime denotes the real part), the material is 

named as type I HMMs, the reverse scenario is called type II HMMs [61]. 
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One distinguishing feature of hyperbolic metamaterials is that the anisotropic 

hyperbolic dispersion is open rather than closed. The supported photonic density of states 

is diverging rather than being finite, and the electromagnetic waves with high 

wavevectors can be supported to be propagating. Subsequently, hyperbolic metamaterials 

enable many exciting applications such as negative refraction, subwavelength imaging, 

nanolithography, ultrafast spontaneous emission, and super-Plancian thermal radiation 

[61, 62]. Type I HMMs, such as nanowires [63, 64] and metal-dielectric multilayers [65], 

have been demonstrated to support low-loss negative refraction in the visible range. 

Substituting metallic nanostructures with doped semiconductors may extend the negative 

refraction to the infrared regime. Super-Planckian thermal radiation were theoretically 

demonstrated based on type I HMMs [66-68]. The investigation of type II HMMs in 

terms of the potential of enhancing near-field radiative heat transfer is recently conducted 

by us [69].  

Graphite and CNT are examples of type II and type I HMMs, respectively, and 

their dielectric functions are given by Figure 2.2. The dielectric functions of graphite at 

room temperature for electromagnetic waves from near infrared to millimeter region are 

obtained from Refs. [70, 71], and their real parts are shown in Figure 2.2 (a). Two type II 

hyperbolic regions are delineated:  one at angular frequencies below 2.1×10
13

 rad/s (due 

to free electrons) and the other ranging from 3.0×10
13

 rad/s to 1.8×10
14

 rad/s (associated 

with the interband transition). The effective dielectric functions of CNTs are shown in 

Figure 2.2 (b). Two type I hyperbolic bands are identified: a low frequency region at 

angular frequencies from 1.4×10
13

 rad/s to 2.1×10
13

 rad/s and the other from 3.0×10
13

 

rad/s to 1.3×10
14

 rad/s. 
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Figure 2.2 Dielectric functions (real part only) for ordinary and extraordinary 

waves. (a) Graphite. (b) CNT with the filling ratio of 0.05 and alignment factor of 0.98. 

 

 

2.3 Fundamentals of Near-Field Thermal Radiation 

As is well known, thermal radiation is originated from fluctuating currents due to 

thermal motion of charge carriers as shown in Figure 2.3. Fortunately, these chaos like 

fluctuating currents can be quantified in terms of the optical response (dielectric function) 

of emitters [72]. For an anisotropic, local, and nonmagnetic medium with time-reversal 

symmetry at local thermal equilibrium, the correlation function of fluctuating currents 

can be expressed as [12, 13, 73] 

    
   

   0* 4 , ,
, ,

ik
i k

T
J J

    
         



r
r r r r  (2.5) 

where subscripts i or k refer to the vector component, < > represents ensemble average, 

  is the mean energy of a Planck oscillator that is a function of frequency  and 

temperature T [3], 0  is the vacuum permittivity, ik  is the imaginary part of the 

dimensionless dielectric tensor component, and   r r  or     is the Dirac delta 

function indicating spatial or temporal incoherence, respectively. For isotropic media, 
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ik ik       where   is the imaginary part of the dielectric function and ik  is the 

Kronecker delta. The near-field radiative heat flux between two anisotropic media, at 

temperatures of T1 and T2, respectively, separated by a vacuum spacing as illustrated in 

Figure 2.3 is given as 

 *

0

1
Re[ ( , ) ( , )]

2
q d



     E r H r  (2.6) 

where the integrand is the Poynting vector component perpendicular to the interface. For 

the parallel-plate configuration, the Poynting vector in the vacuum gap is independent of 

the location since there is no dissipation or dispersion. The electric and magnetic fields 

can be expressed by corresponding dyadic Green function and fluctuating currents [3], 

and combining with Eqs. (2.5) and (2.6), the radiative heat flux can be written as 

 

   

 

1

2
0

0

* *

, , ,

2, ,
2

   Re ( )E H E H
xi yk yi xki

i k x zV

k

y

k
q d

j G G G G

T

dV

T




      


 
   



















 (2.7) 

Here, 0 /k c   is the wavevector in vacuum with c being the speed of light in vacuum, 

1j   , V   is the source region (emitter), and the electric dyadic Green function EG  

and magnetic dyadic Green function HG  relate the electric field in the vacuum gap to the 

unit source current in the emitter [3]. The calculation of dyadic Green function for 

general anisotropic medium has been a mature technique and can be obtained using 

various methods such as eigenfunction expansion, matrix formulation, and Fourier 

transform method [74]. For more general anisotropic materials with a non-unity 

permeability tensor ik , an extra term similar to Eq. (2.5) but with permittivity tensor 
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changed to be corresponding permeability without correlations between electric and 

magnetic currents should be added into the right side of Eq. (2.5) [13, 75, 76]. As a result, 

magnetic metamaterials will provide an extra channel taking into account magnetic 

surface plasmon resonance (featured with oscillating currents at the interface of vacuum 

and magnetic materials rather than oscillating charges as the case of common surface 

resonances for TM waves) associated with TE waves for radiative energy exchange [13, 

75-78]. 

 

 

 
Figure 2.3 Near-field thermal radiation between anisotropic materials with 

arbitrary shapes 

 

 

2.3.1 Near-Field Thermal Radiation between Anisotropic Medium 

For planar anisotropic materials, q can be expressed in another way based on k-

space integration instead of the volume integration by employing the scattering theory 

[68, 79] 

      3 0
1

0
2

0
, ,

1
, ,

8
x y x yq d k k dkT dkT

  
       


    (2.8) 

where xk  and yk are the transverse wavevector in x and y direction, respectively, and 

( , , )x yk k   is called the energy transmission coefficient or photon tunneling probability. 
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Equation (4) can be obtained by recasting the spatial dyadic Green functions into k-space 

Green functions using the Fourier transform. The energy transmission coefficient can be 

expressed in a matrix formulation as [68, 79] 

  
0

* * *
2 2 1 1 0

2* * *
2 2 1 1 0

Tr ( ) ( ) ,            
, ,

Tr ( ) ( ) ,   z
x y

k d

k
k k

e k


     
 

   
     
 

I R R D I R R D

R R D R R D

 (2.9) 

where  2 2
x yk k    is the magnitude of the lateral wavevector, d is the vacuum gap 

between the two semi-infinite media, 2 2
0 0zk k   is the z-component wavevector in 

vacuum, and the star means Hermitian adjoint. When 0k  , 0zk  is purely imaginary and 

photon tunneling can occur at close proximity, resulting in significant enhancement of 

radiative transfer especially when surface modes or hyperbolic modes exist, as will be 

discussed later. The 2 × 2 Fresnel’s reflection matrix for incidence from vacuum to 

medium i = 1 or 2 is expressed as 

 
ss sp

ps pp

i i

i i i

r r

r r

 
 
 
 

R  (2.10) 

The element sp
ir  represents the case of cross-polarization when an incident wave 

with s polarization becomes p polarized after being reflected by medium i, and this rule 

applies to other three terms. These reflection coefficients can be obtained by applying 

boundary conditions that tangential electric and magnetic fields are continuous across 

each interface. For uniaxial media with optical axis lying vertically or horizontally, 

explicit expressions of reflection coefficients can be found in Ref. [68]. The matrix D is a 
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Fabry-Pérot-like term considering scattering interactions in the vacuum cavity between 

the two anisotropic media and is given by Refs. [66, 68, 79] 

  0
1

2
1 2

zjk d
e


 D I R R  (2.11) 

Note that Eq. (2.8) holds for general materials with arbitrary permittivity and 

permeability, although the expressions for the transmission coefficients are more 

complicated for magnetic materials. For isotropic media with both electric and magnetic 

responses, the formulations can be found in Refs. [75-77].   

 

2.3.2 Near-Field Thermal Radiation between Periodic Metamaterials 

The calculation of near-field thermal radiation between periodic metamaterials is 

complex compared with homogeneous isotropic or anisotropic medium. In this 

dissertation, semi-analytical and numerical methods are used to consider 1D and 2D 

metamaterials, respectively, and will be discussed in this section.  

(a) Rigorous coupled-wave analysis (RCWA) 

Bimonte and Santamato [80] related the fluctuating electromagnetic fields outside 

a hot surface at thermal equilibrium to only its scattering properties such as reflection 

coefficient. As a result, the heat transfer between two nonequilibrium objects can be 

predicted based only on their scattering coefficient since objects radiate independently 

[81]. The formula for near-field heat transfer between two 1D gratings as shown in 

Figure 2.4 is given as [82, 83]  

      
/

1 23 0 0 0

1
, , , ,

2

p

x y x yq T T d k k dk dk
  
         


    (2.12) 

where p is the period in the x direction, and the kx is folded into the first Brillouin zone.  
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Figure 2.4 Near-field energy transport and momentum exchange between 1D gratings. 

The expression of energy transmission coefficient  , ,x yk k   is shown as [82-84] 

 

 

    *
1 2, , Trx yk k   DW D W  (2.13a) 

  
1

1 2


 D I S S  (2.13b) 

 
pw pw ew ew* *

1 1 1 1 11 1 1 1
+

   
     W S S S S  (2.13c) 

 
pw pw ew ew* *

2 2 2 2 21 1 1 1
+     W S S S S  (2.13d) 

where 1 1S R  and 0 0
2 2

z zik d ik d
e eS R . Here, 1R  and 2R  are the reflection matrices for 

medium 1 and medium 2 that are obtained by using the rigorous coupled-wave analysis 

(RCWA). The basic idea is that the fields for homogenous layer and grating region are 

written as Rayleigh expansions and Fourier series, respectively. Employing boundary 

conditions by making tangential fields equal will help to obtain every unknown Rayleigh 

terms which constitute 1R  and 2R . Operators 
 

 pw ew

1 1 identifying propagating and 

evanescent modes are presented in Ref. [83]. This is a k-space method based on scattering 

theory, and is mainly for 1D periodic photonic crystals. It can be extended for arbitrary 
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2D periodic or aperiodic metamaterials though the memory requirement will arise 

tremendously.  

(b) Finite-difference time-domain (FDTD) method 

Equation 2.7 can be generally applied to arbitrary nanostructures as long as the 

dyadic Green functions are determined. One way to obtain the Green’s functions is to use 

the finite-difference time-domain (FDTD) method based on a brute-force approach [85, 

86]. Basically, one electric dipole considering three different orientations is placed inside 

the source, and then the corresponding electric or magnetic dyadic Green function is 

obtained by dividing the Fourier transform of the time-dependent electric field or 

magnetic field over that of the current induced by the dipole. The calculation should be 

repeated by scanning the dipole over the whole source region. As a result, the calculation 

is computationally intensive since the number of dipoles can be very large to guarantee 

sufficient accuracy in the solutions. 

 Alternatively, by using Langevin approach, a fluctuating term is added to 

Newton’s equation of motion, which can be solved directly by FDTD to get the radiative 

heat flux [87-90]. Treating charge carriers as damped harmonic oscillators driven by an 

external field E and a random force representing uncorrelated thermal fluctuations, the 

polarization equation can be expressed as follows [88-90]. 

 
2

2
02

( )
d d

t
dtdt

     
P P

P E K  (2.14) 

where P is the polarization, γ is the frictional coefficient, ω0 is the resonance frequency, σ 

is the strength related to conductivity, and K is the random force term. The correlation 

function of K can be found by combining Eq. (2.5) with the Fourier transform into time 

domain as shown in Refs. [88-90]. Though volume integration is circumvented, this is a 
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statistical method (Monte Carlo) using randomly generated current distributions, and the 

obtained heat flux should be ensemble averaged over many (such 50) independent 

simulations until the solution converges.  

 

2.4 Fundaments of Casimir Force 

Near-field thermal radiation and Casimir interactions are two of the few 

macroscopic manifestations of quantum mechanical electromagnetic fluctuations. The 

Casimir force per unit area between isotropic substrates separated by a fluid can be 

described by the general Lifshitz’s theory as [91-93] 

 

2p p2s s
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1 20 1 21 1
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k dk d
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 
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 
    
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    (2.15) 

where 2 2
x yk k   is the tangential wavevector, 2 2 2

zn f nk c    is the vertical 

wavevector of the intervening fluid, subscripts “s” and “p” represent s- and p-polarization 

waves. r1 and r2 are the Fresnel reflection coefficients evaluated at Matsubara frequencies 

for the fluid interface with substrate 1 and 2, respectively. Equation (2.15) holds if the 

substrate is a three-layer structure provided the reflection coefficient is obtained using 

Airy’s formula [3].  

For calculating the Casimir force or momentum exchange between 1D gratings as 

shown in Figure 2.4, the semi-analytical RCWA is used again. Assuming the top and the 

bottom grating are in thermally equilibrium having the same temperature of T. The 

Casimir force in the z direction per unit area can be calculated using exact scattering 

theory based on the following expression [29, 32, 47]:  
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where the prime in the summation operator means the n = 0 term should be taken with a 

factor of 0.5. Both quantum and thermal fluctuations are taken into account, so the 

summation should be exerted over Matsubara frequencies 2n Bi i nk T   , where n is 

an integer ranging from 0 to infinity and Bk  is the Boltzmann constant. The default 

temperature T is set to be 300 K. Matrix nM  can be described by reflection coefficients 

1R  and 2R  at Matsubara frequencies [47], which consider all possible polarization states 

and are obtained by using the RCWA for specified xk  and yk  values [47, 83, 84, 94, 95]. 

It takes about one hour to calculate the Casimir force between the two gratings with 

specific geometric parameters at a certain gap distance using a dual eight core XEON E5-

2687W workstation. 
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CHAPTER 3 

UNUSUAL RADIATIVE PROPERTIES OF METAMATERIALS AT INFRARED 

REGIME 

 

Metamaterials enable unprecedented control of light propagation and absorption. 

The infrared regime is mainly forced since this is where the thermal radiation of practical 

devices mainly exists.  Chapter 3 presents some unusual radiative properties achieved at 

infrared regime by appropriately designing metamaterials. Section 3.1 presents a design 

of wide-angle broadband polarizers in the near infrared region with both good 

transmission and extremely high extinction ratio. In Sec. 3.2, covering 1D and 2D Ag 

gratings with a single-layer graphene is found to counterintuitively increase the 

transmission several fold in certain wavelength region, and the underlying mechanism for 

this counterintuitive blocking-assisted transmission is attributed to the excitation of a 

localized resonance. Section 3.3 theoretically demonstrates metal-free all-angle negative 

refraction with low loss in the mid-infrared region using D-SiNW arrays.  In Sec. 3.4, a 

tunable perfect absorption is theoretically demonstrated. Section 3.5 briefly summarizes 

the main contribution of this chapter.   

 

3.1 A Highly Efficient Polarizer 

Polarizers play an important role in optical devices and systems, such as the 

Faraday isolators, modulators, fiber-optic networks, as well as imaging and laser systems. 

High-efficiency near-infrared polarizers are especially important for laser systems and 

optical communications. Compared with conventional bulky polarizers, such as calcite 
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prisms and pile of plates, which are difficult to integrate with other components, wire-

grid polarizers can be used to produce compact and integrated optical devices. 

Anodization and elctrodeposition [96], e-beam lithography [97, 98], interference 

lithography [99], and nanoimprint lithography [100, 101] have already been used to 

fabricate wire-grid polarizers applicable to the near-infrared region. The performance of a 

polarizer can be characterized by a high transmittance for one polarization and very low 

transmittance for another polarization. Appropriate lateral shift is suggested to enhance 

the transmission of double-layer periodic gratings at certain wavelength region [99, 102-

105]. Chan et al. [105] experimentally demonstrated an extraordinary transmission for 

transverse magnetic (TM) waves in a double-layer grating nanostructure. Yang and Lu 

[106] designed an extra-broadband polarizer by incorporating dual-layer aluminum 

grating on both sides of the CaF2 substrate. This structure was predicted to have an 

extinction ratio, the ratio of transmittance for TM waves to that of TE (electric field is 

perpendicular to the incidence plane) waves, exceeding 10
7
 and transmission over 64 % 

in the wavelength () region from 0.3 to 5 m. The highest extinction ratio was predicted 

to be 10
9
 at  = 5 m [106]. Peltzer et al. [107] designed and fabricated a near-infrared 

polarizer with a theoretically predicted extinction ratio as high as 10
11

 in a narrow 

spectral region. 

Here, a design of a broadband polarizer with high transmittance (near 90 %) and 

extremely high extinction ratio (exceeding 10
16

) for 1.6 m <  < 2.3 m is proposed. 

The structure proposed is based on a 1D double-layer structure, which is periodic along 

the x direction and extends to infinity in the y direction, as shown in Figure 3.1(a). A thin 

SiO2 (glass) spacer is sandwiched between two identical silver gratings, which are shifted 
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laterally by half the period. In other words, the centerlines of the ridges in the top grating 

coincide with those of the slits in the bottom grating. The structure is characterized with a 

base set of parameters given in the following: the period P = 500 nm, spacer thickness ts 

= 30 nm, Ag grating thickness tm = 400 nm, and slit width Wg = 150 nm. Radiation is 

incident from air at an incidence angle of i . The analysis is based on FDTD method 

using a commercial package (Lumerical Solutions, Inc.) and RCWA algorithm [104, 

108]. The dielectric function of Ag as a function of the angular frequency  is obtained 

using the Drude model: 2 2
Ag p( ) / ( )i         with a scattering rate 

132.7 10  rad/s   , plasma frequency 16
p 1.39 10  rad/s   , and a high-frequency 

constant 3.4   [109]. For SiO2, the refraction index is taken as 1.43 with negligible 

loss in the considered wavelength region from 1 to 3 m [110]. 

 

 

 
Figure 3.1 The proposed nanostructure and its performance as an IR polarizer: (a) 

Schematic of a period of the double-layer grating; (b) Spectral transmittance for TM 

waves and the extinction ratio at normal incidence; (c) Contour plot of the transmittance 

as a function of the wavelength and angle of incidence for TM waves. The parameters 

used for the calculation are P = 500 nm, tm = 400 nm, ts = 30 nm, and Wg = 150 nm. 

 

 

Figure 3.1(b) shows the calculated transmittance for TM waves at normal 

incidence using both FDTD and RCWA methods, which give essentially the same results, 
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as well as the extinction ratio calculated with RCWA. Transmittance higher than 89 % is 

predicted in a broad wavelength region from 1.6 to 2.3 m. The extinction ratio is 

surprisingly high, exceeding 3×10
16

 across the aforementioned spectral region with high 

transmittance. For a homogeneous Ag thin film, the normal transmittance is lower than 

10
16

 with a film thickness of 400 nm and lower than 10
20

 with a thickness of 500 nm. 

Therefore, it is not surprising why the transmittance of the proposed structure is so low 

for TE waves. Due to the extremely low transmittance values for TE waves, results 

obtained from the FDTD simulation tend to fluctuate and are not reliable because of the 

numerical errors. However, the RCWA algorithm uses double-precision data type. The 

accuracy of the RCWA model is limited only by the number of diffraction orders used. 

By increasing the number of diffraction order, convergence can be reached even with 

ultralow transmittance values. The transmittance for a homogeneous film predicted using 

RCWA is essentially the same as that calculated from thin-film topics at extremely low 

transmittance (down to 10
30

). It should be noted that the extremely high extinction ratio 

will be important for devices or systems that require ultrahigh polarization purity such as 

high power laser systems and high contrast modulators. If used in Faraday isolators, the 

proposed polarizer will help to suppress the back light completely, given that 

transmittance down to 10
11

 is still measurable [111]. The transmittance spectra are 

featured with two peaks labeled as P1 and P2. Note that P1 is at  = 1.69 m with T = 

97.3 % and P2 is at  = 2.10 m with T = 97.4 %. Moreover, in the high transmission 

regime, the average reflectance for TM waves is only 3.6 % (the maximum value is about 

8.1 %). On the other hand, the reflectance for TE waves is greater than 99.5 % in the 
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aforementioned region. Therefore, the proposed structure can also be used as a 

polarization-selective beamsplitter [112].  

Figure 3.1(c) displays the transmittance contour as a function of the wavelength 

and incidence angle. Note that the plane of incidence is always perpendicular to the y-

axis to avoid conical refraction when depolarization can occur [108]. It can be seen that 

the transmittance is still high until the incidence angle exceeds 60°. It should be noted 

that the transmittance for TE waves (not shown) remains to be extremely low at oblique 

incidence. That means the polarizer has a large angle tolerance, which makes it useful not 

only for well collimated beams, but also for diverging and converging beams. The two 

peaks approach each other with increasing incident angles and finally merge together 

when the incidence angle exceeds 25°. 

For practical applications, the proposed structure may be fabricated onto a 

suitable substrate material such as SiO2 or CaF2. If the slit region is filled with a dielectric 

rather than air, the fabrication process will not be too difficult because similar structures 

have been fabricated by others [105, 107, 113, 114]. High performance is still expected 

when the slit region is filled with a dielectric material, although some tuning of the 

parameters is necessary for wavelength selection. Moreover, the dielectric in the silt 

region (different from the material used as the spacer) could be removed by wet etching 

in the final step if necessary. Attention is now turned to the underlying mechanisms that 

give rise to the high and broadband transmission for TM waves. 

Extraordinary transmission through double-layer gratings with or without lateral 

shift has been investigated by many researchers [99, 103, 106, 115-117]. Different 

mechanisms were used to explain this phenomenon, such as coupled surface plasmons, 
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waveguide modes, or Fabry-Perot resonances. Recently, Huang and Peng [118] put 

forward a general charge-oscillation theory to explain the extraordinary transmission 

through various sub-wavelength decorated metallic structures. Nonetheless, few of them 

could predict the location of the transmission peak quantitatively. Here, the two 

transmission peaks are attributed to magnetic polaritons (MPs) which refer to the 

coupling between the external electromagnetic waves and the induced current loop in a 

micro/nanostructure [104, 119]. Two simple inductor-capacitor (LC) circuit models are 

developed after carefully analyzing the magnetic field distribution and current density 

vectors in the near-field regime to quantitatively predict the locations of the transmission 

peaks P1 and P2, respectively, as shown in Figure 3.2. 

For the first peak (P1), the dimensionless field distribution is shown in Figure 

3.2(a) with color denoting 
2

0/yH H  and arrows representing the current density vectors. 

Here, 0H  is the amplitude of the magnetic field for the incident wave. There exists strong 

field enhancement in the slit and the SiO2 spacer region but not in the overlapping area 

between the top and bottom gratings. Following the current density vectors distribution, a 

LC model shown in Figure 3.2(c) is developed to predict the resonance wavelength for 

P1. Note that the field distributions in the top and bottom slits are almost the same due to 

the structure symmetry, so that only one LC circuit either in the top or bottom slit region 

is needed to predict the resonance wavelength (or frequency). The simple LC circuit 

model assumes that MPs are localized without coupling to each other. The inductances 

are given as follows: 
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where 0 and 0 are the permeability and permittivity of vacuum, respectively, and l is 

the structure thickness in the y direction. Here, e,1L , e,2L , and e,3L  are the kinetic 

inductances that account for the contribution of drifting electrons, while m,2L  and m,3L  

are the mutual inductances between parallel plates [104, 119]. It is assumed that all 

induced electric current in the metal flows within a penetration depth defined as 

/ 4    , where  is the extinction coefficient of Ag [3]. In Figure 3.2(c), Cg1 and Cs 

are the parallel-plate capacitances of the gap (slit) and spacer, respectively, and are given 

as 

 
2 0 d g1 0 m

g1 s
g s

( 2 )
    and    

4

c P W lc t l
C C

W t

  
   (3.4) 

where d  is the permittivity of SiO2. The coefficients c1 and c2 take into account the 

nonuniform charge distribution and are often treated as adjusting parameters [104, 119, 

120]. In the present study, good agreement between the resonance wavelengths calculated 

by the rigorous numerical solutions and the LC model are obtained using c1 = c2 = 0.6. 

The reason that c1 is less than 1 is due to the nonuniform distributions of the field and 

current density in the slit region. The reason that c2 is close to 0.5 is because only part of 

the overlapping region between the upper and lower gratings is included in the LC circuit. 
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The MP resonance condition in this LC circuit can be determined by zeroing the total 

impedance, and then the (angular) resonant frequency is obtained as follows. 

 p1
s g1 1 2 2 3

2 1 1

2 2 2C C L L L L

 
   

     

 (3.5) 

 

 

 
Figure 3.2 The enhancement of the magnetic field and current loop when the MPs are 

excited and the simple LC circuit models: (a,b) 
2

0/yH H  for P1 and P2, respectively. 

(c,d) LC models for P1 and P2, respectively. 

 

 

For the second peak (P2), the dimensionless field distribution is shown in Figure 

3.2(b), which is featured with the strong field confinement in the whole spacer and slit 
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region. The current density in the spacer between the region where the top and bottom 

gratings overlap is so large that the impedance could be neglected. Consequently, it 

appears as if the side wall of the bottom grating is extended all the way to the top grating, 

as illustrated in the LC model shown in Figure 3.2(d). Here, the slit or gap capacitance 

Cg2 considering this extending effect is given as 

 3 0 m 4 0 s
g2

g g

dc t l c t l
C

W W
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   (3.6) 

Similar to c1 and c2 in the previous model, c3 and c4 are introduced to account for 

the nonuniform charge distribution and are taken as adjustable parameters. Good 

agreement between the resonance wavelengths predicted by the LC model and the 

rigorous solutions is obtained with c3 = 0.3 and c4 = 1. The reason that c3 is much smaller 

than c1 can be explained as due to the fact that the electromagnetic fields are confined 

mainly in the region close to the spacer when P2 is excited. Inside the spacer region, 

however, the field is greatly enhanced and almost uniformly distributed so that c4 should 

be close to 1. The resonance frequency for P2 of this circuit is given as 

 p2
g2 1 3

1

( 2 )C L L
 


 (3.7) 

The resonance wavelengths predicted by the LC models are 1.674 m (P1) and 

2.298 m (P2), which agree well with the values of 1.685 m (P1) and 2.195 m (P2) 

obtained by numerical simulations. It should be noted that the maximum absorptance in 

the high transmittance band is only 3.2 %; therefore, the strong field confinement mainly 

helps light to penetrate through this structure. The LC models not only provide a physical 
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interpretation of the extraordinary transmission, but also allow quantitative predictions of 

the geometric effect on the resonance condition as discussed in the following. 

It is important to understand the dependence of transmittance on the various 

geometric parameters in order to design polarizers suitable for specific applications. This 

is done by varying some parameters while fixing the rest as in the base set mentioned 

before. The results are shown in Figure 3.3, where the color contours are from the full-

wave numerical simulations and the dashed lines are from the LC circuit models. The 

circle and triangle marks indicate the excitation of P1 and P2, respectively, with the base 

set of parameters. When the Ag grating thickness tm increases, the high transmittance 

region will redshift (i.e., toward longer wavelengths), as shown in Figure 3.3(a). Similar 

trends have been observed earlier [103]. The peak wavelengths can be well predicted by 

the LC models. The redshift for P1 (or P2) can be understood based on the increasing 

capacitance Cg1 (or Cg2) and inductance L3 with tm. Note that the extinction ratio also 

increases with tm, since the transmittance for TE waves will decrease as tm increases. 

Therefore, even greater extinction ratio could be obtained with the proposed structure at 

slightly longer wavelengths. When tm is on the order of 100 nm (not shown in the figure), 

the trends for P1 and P2 are the same but the deviation of the LC circuit model from the 

full-wave calculation becomes large. This could be due to the different field distributions 

because the slit region becomes very wide and shallow. Furthermore, when the metal 

thickness is comparable to the penetration depth in Ag, which is on the order of 10 nm, 

the deviation of LC model from the full-wave calculation becomes prominent. For this 

case, the current will flow through the whole metallic layer and the LC circuit models 

must be modified to consider such effect.  
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Figure 3.3(b) shows that when the spacer thickness ts is reduced, P1 will redshift 

but P2 will blueshift and they will degenerate into one peak when ts < 20 nm. For P1, the 

spacer capacitance Cs increases with decreasing ts, so that the resonance wavelength will 

increase. For P2, on the other hand, Cg2 decreases with decreasing ts due to the second 

term, so that the resonance wavelength will also decrease. When ts exceeds 50 nm, the 

LC model predictions start to deviate from the full-wave simulation. In this case, near-

field coupling between the top and bottom grating becomes weak. Furthermore, the field 

distributions may largely deviate from those for the base parameters, resulting in a 

breaking down of the LC circuit models. 

 

 

 
Figure 3.3 The effect of certain geometric parameters on the normal transmittance for TM 

waves using the parameters given in Figure 3.1 as the base set: (a) Ag grating thickness 

tm ; (b) Spacer thickness ts ; (c) Period P by keeping g / 0.3W P  ; (d) Grating strip width 

gP W . Note that the circle and triangle marks indicate the locations of P1 and P2, 

respectively, according to the base parameters. 
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To study the scaling effect, both the slit width Wg and the period P are changed, 

while their ratio is fixed to be 0.3. When the structure is scaled down, a broader high 

transmission region is obtained as shown in Figure 3.3(c). On the other hand, the two 

peaks merge when P > 600 nm. The LC models agree reasonably well with the full-wave 

results, except when the period is less than 300 nm. For very small P, the penetration 

depth in Ag may become comparable with the width of the ridge, so that the field for 

different periods may couple with each other. 

The effect of slit width Wg is also examined by fixing the grating period and other 

parameters and the results are shown in Figure 3.3(d), where the abscissa is the ridge 

width (P – Wg). When P – Wg > 350 nm, the two peaks further split and the enhancement 

of transmittance with reducing slit width for some wavelengths is counter-intuitive. For 

broadband polarizer, the performance is still good when P – Wg = 400 nm (i.e., with a slit 

width of 100 nm only). For even smaller slit width, the structure can be used as a narrow 

band polarizer. Blocking-enhanced transmission has been predicted in 1D double-layer 

gratings [103, 121] and experimentally demonstrated for a 2D periodic structure [113]. 

Because the LC models were developed considering the field distributions using the base 

parameters, large deviations occur when P – Wg is far away from 350 nm. The agreement 

in the predicted trends suggests that the excitation of MPs is still responsible for the 

transmission enhancement of the two branches. However, more suitable LC circuit may 

need to be developed according to the field distributions. It should be noted that a weak 

branch appears in the wavelength range from 1 to 1.5 m when P – Wg > 400 nm. This 

branch can be quantitatively explained with a LC model considering the coupling 
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between the top and bottom gratings in the spacer region where the ridges overlap, 

although the details are not shown here. 

 

3.2 Blocking-Assisted Transmission 

In stark contrast to opaque metallic films, perforated films might support EOT 

with efficiencies that are orders of magnitude beyond geometry-based classic theory. This 

interesting EOT phenomenon has received extensive attention since the seminal work [9]. 

Simple metallic 1D gratings and 2D pillar arrays exhibit EOT, and the transmittance is 

usually broadband in the low-frequency region since no resonances are excited. However, 

this property impedes the above nanostructures to be used as sensors or color filters in 

long wavelengths although extraordinary transmission is supported. Graphene, a 2D 

layered material with carbon atoms arranged in a honeycomb lattice, exhibits metallic 

behavior when chemical doping or electric gating is applied [122-124]. This 2D Dirac 

material supports unprecedented optical properties beyond conventional metals such as 

extreme light confinement, low loss, high carrier mobility, and tunable graphene plasmon 

frequency ranging from near-infrared to terahertz [125]. The section theoretically 

demonstrates that it is possible to achieve resonance transmission of simple 1D gratings 

and 2D pillar arrays in the infrared wavelength region by depositing monoatomic layer of 

graphene. The blockage of this 2D conductive film can counterintuitively enhance the 

transmission performance. 

Consider a graphene-covered 1D Ag grating as shown in Figure 3.4 (a). The 

grating or slit array is periodic along the x direction and extends to infinity in the y 

direction with a period P, height h, and slit width b. The incidence angle is , and thus the 
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incident wavevector can be written as 0 0( sin ,0, sin )k k     with k0 as the wavevector in 

the free space. Only TM waves with magnetic field along the y direction are considered 

since the transmittance for TE waves is essentially zero for 1D grating. In the mid-

infrared wavelength region, the optical response of 1D metal grating to TE waves can be 

approximated by a diluted Drude model weighted by the volume filling ratio [68], and 

this metallic response precludes the penetration through of TE waves.  

 

 

 
Figure 3.4 (a) Schematic of graphene-coated 1D Ag grating. Only TM wave is considered. 

Note that  is the incidence angle, P the period, b the slit width, and h the grating height; 

(b) LC model for prediction of the resonance wavelength. 

 

 

Optical conductivity of graphene  , which  includes both interband and intraband 

(Drude-like) contributions, depends on the chemical potential μ, electron scattering time 

, and temperature T, and is given as  [126, 127] 

 Inter Drude( , , ) ( , , )T T         (3.8) 
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where ( ) sinh( / ) / [cosh( / ) cosh( / )]B B BG k T k T k T      . The graphene conductivity 

used in this work is calculated by setting = 10
-13

 s and temperature T = 300 K. The 

chemical potential μ can be tuned by chemical doping or electrostatic gating.  

The computation for 1D grating and 2D nanopillars is based on RCWA and FDTD, 

respectively. Besides, equivalent circuit models are employed to help to elucidate the 

underlying mechanism for the blocking-enhanced transmission. The LC model 

corresponding to Figure 3.4 (a) can be described as in Figure 3.4 (b). The air inside the 

slit acts as a dielectric capacitor with a capacitance of 0C hl b  , where l is a prescribed 

length in the y direction. The Ag walls around the slit and graphene serve as conductors, 

and their kinetic inductances are determined by [128, 129] 
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where   is the penetration depth expressed as  / (4 )   that takes into account the 

effective cross-section area for the induced current. Note that  is the wavelength in 

vacuum and  is the extinction coefficient of Ag. Coefficient c1 is introduced because the 

length of graphene involved in the resonance is longer than the slit width due to the finite 

cross-section width of current in the slit wall. It could be affected by the slit width or 

period; however, 1 1.3c   is chosen in the present study as a reasonable representative 

value. The mutual inductance is given as m 0 2L hb l  [128, 130], where 0  is the 
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permeability of vacuum. This LC model can be confirmed by the distribution of current 

density shown in the next section. By zeroing the total impedance 

 2 1
Ag G m2 2i L L L C     , the resonance wavelength of MP can be obtained as  

  MP 0 Ag G m2 2 2c L L L C      (3.13) 

Figure 3.5 (a) gives the transmittance for plain and graphene-coated grating at 

normal incidence with P = 1000 nm, b = 50 nm, h = 200 nm, and μ = 0.8 eV. The 

transmittance of plain grating is much greater than the filling ratio of the slit area 0.05 

and monochromatically increases with wavelength. Nevertheless, the transmission 

selectivity is too poor to make 1D grating available as color filters or sensors in the long 

wavelength. When the wavelength is much longer than the period, according to effective 

medium theory [55, 68, 131], 1D and 2D nanopillars can be homogenized as uniaxial 

materials with optical axis lying tangentially and longitudinally, respectively. At normal 

incidence, the wavevector in the longitudinal direction (z axis) depends only on the 

effective dielectric function in the tangential direction. For both 1D nanopillars (only for 

TM waves) [68] and 2D nanopillars [55, 131], the imaginary part of this effective 

dielectric function approaches to zero especially with increasing wavelengths. That is 

because at low frequencies (long wavelengths), Ag acts like a perfect conductor with 

diminishing electric fields inside. Thus the electric field is nontrivial only in the slit 

region. Then nanopillars behave as a dielectric with low loss and a finite thickness, as a 

result, the transmittance of plain grating is high, and tends to further increase with 

wavelength. After depositing atomic thin graphene layer, a resonance transmission is 

clearly shown with a peak near  = 10 m. A transmission preference occurs in contrast 
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to the previous incoherent transmittance. For wavelengths ranging from 5 to 13.5 m, 

covering the Ag grating with graphene improves its transparency. The maximum 

transmittance reaches 0.81 at  = 9.72 m, 3.5 times as high as that of the plain grating. 

This anomalous improvement is robust and alignment-free compared with using double-

layer grating since graphene is a continuous sheet. The reflectance at 9.72 m (not 

shown) is reduced substantially from 0.76 to 0.02, leading to an antireflection effect. The 

absorptance (A) of the plain grating is negligible (not shown) but increases to 0.17 at the 

resonance after being covered with graphene. Note that the absorptance of free-standing 

graphene is very low (less than 1%) in the mid-infrared region, suggesting that gratings 

can significantly enhance graphene absorption. This might be important for improving 

the performance of graphene-based optical devices relying on its absorption properties 

such as ultrafast optoelectronics enabled by the vanishing effective mass of free carriers 

in graphene. Similar phenomena of enhancing the absorption of graphene have recently 

been demonstrated in the visible and near-infrared region [132, 133]. Away from the 

resonance with wavelengths longer than 13.5 m, coating metallic graphene will 

deteriorate the transmittance. This is not surprising since doped graphene is essentially a 

thin metallic film and has a low transmittance in the far-infrared region.  

Figure 3.5 (b) displays the transmittance contour of 1D grating, showing the 

dependence on both the wavelength and incidence angle, while other parameters are the 

same as those used in Figure 3.5 (a). Clearly, the wavelength of the transmission peak is 

insensitive to the incidence angle; this is a distinct characteristic of magnetic polariton 

(MP) [129, 134-137], which will be further confirmed by the field and current density 

distribution. MP is the strong coupling between the magnetic resonance inside a 
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micro/nanostructure and the external electromagnetic waves. The time-varying magnetic 

field parallel to the y-direction creates an oscillating current loop in the x-z plane, which 

generates a localized enhanced electromagnetic field that indicates diamagnetic response 

[32]. Another interesting feature is the broadband high transmittance close to grazing 

incidence. This is associated with deep metallic gratings and has been explained 

previously based on either spoof surface plasmons [138] or impedance matching [139].  

 

 

 
Figure 3.5 (a) Normal transmittance and absorptance spectra for plain and graphene-

covered gratings; (b) Contour plot of the transmittance as a function of wavelength and 

incidence angle. The parameters are P = 1 m, b = 50 nm, h = 200 nm, μ = 0.8 eV. 

 

 

The magnetic field and current density vectors near the slit are shown in Figure 

3.6 (a) to elucidate the underlying mechanism for the anomalous blocking-assisted 

transmission. The contour is for 
2

0/yH H  and black arrows represent the instantaneous 

current density vectors. Note that z = 0 and z = 0.2 m denote the upper and lower 

boundaries of the Ag grating, respectively. Large field enhancement exists in the slit 

region (0.025 < x < 0.025 m) especially near the graphene, suggesting a localized 
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resonance. High field concentration can also be seen from the contour plots of electric 

fields as shown in Figure 3b. The relative field amplitude in the incident vacuum region 

is close to one, suggesting that the reflection is very small. The current density in the 

graphene is very high and is denoted as the white arrows pointing left. There is a 

displacement current in the air gap pointing right as indicated in Figure 3.6 (a). Combined 

with the counter-parallel current density vectors in Ag, it can be seen that a closed current 

loop is formed around the slit region as indicated by the oval, manifesting the existence 

of a magnetic resonance. The distribution of the current density vectors agrees with the 

LC model given in Figure 1b, which is thus reasonable to be used for predicting the MP 

resonance wavelength.  

 

 

 

Figure 3.6 (a) Enhancement of the magnetic field 
2

0/yH H  at 9.72 m where MP 

resonance is excited. (b) Enhancement of the electric field 
2

0/E E with black arrows as 

the electric field vectors.  
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The resonance wavelength predicted by the LC models given in Eq. (3.13) is 9.57 

m, which agrees well with 9.72 m obtained by numerical simulations. The insensitivity 

of resonance transmission to the incident angle as shown in Figure 3.5 (b) can be 

explained by Eq. (3.13) since there are no terms related to . Therefore, the transmission 

peak is due to the excitation of MP resonance. This MP resonance is not achievable in the 

infrared region without the coated single layer graphene sheet, which provides the 

dominant inductance required for the LC resonance. Strong localized field in the slit 

region due to resonance excitation helps photons pass through and reduces the reflection 

[129]. Note that graphene has been demonstrated to tune the resonances of metallic 

antennas since evanescent waves with large-wavevectors can couple with the graphene 

plasmons [140, 141]. Graphene ribbons or gratings can launch graphene plasmons 

directly to achieve some resonance effects since the momentum mismatch can be 

provided by the surface diffraction [142, 143]. The angle-insensitive MP resonance 

assisted by graphene at low frequencies discussed here is different from the above-

mentioned scenarios.  

The effects of various geometric parameters and chemical potential of graphene 

on the transmittance at normal incidence are shown in Figure 3.7 by changing one 

parameter while maintaining other parameters at the default values as those in Figure 3.4 

(a). The prediction from the LC model as indicated by the cross mark generally agrees 

well with that from the RCWA. As shown in Figure 3.7 (a), the resonance wavelength 

monotonically increases with grating height. This trend can be easily predicted by Eq. 

(3.13) since both AgL  and C increase with h. With increasing chemical potential, the 

number of free electrons in graphene increases, leading to a higher conductivity. Then LG 
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decreases; according to Eq. (3.13), this gives a blueshift of MP resonance as shown in 

Figure 3.7 (b). With increasing chemical potential, the coherence (Q factor) is improved 

with smaller full width at half maximum. By employing complex nanopillars with 

different parameters, such as chemical potentials and grating height, used in neighboring 

periods [144-146], the transmission can be tuned to be multiband to meet different 

demands. 

 
Figure 3.7 Normal transmittance contours with varying parameters: (a) Grating height; (b) 

Chemical potential; (c) Period; (d) Slit width. 

 

 

Figure 3.7 (c) illustrates the effects of period on the transmittance. The 

transmission peak is not sensitive to the period, and this can be explained by the LC 

model since MP is a localized resonance and there are no terms related to the period in 

Eq. (3.13). Similar results were found in [130] for deep gratings without graphene 
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coverage. The bandwidth of the transmittance peak is tunable and becomes narrower at 

larger P. This phenomenon is desired for filters that allow radiation in certain desired 

wavelength region to pass. However, the transmission intensity will deteriorate to some 

extent at large period while keeping the same slit width. Another tunable parameter is the 

slit width, whose effect is shown in Figure 3.7 (d). The transmission peak appears to be 

insensitive to b and this can also be predicted by the LC model. Note that the capacitance 

C is inversely proportional to b
 
while both LG and Lm are linearly proportional to b.  

Given that LAg is small compared with LG, the resonant wavelength should be almost 

independent of b according to Eq. (3.13). The deviation between the LC model and 

RCWA simulations may be due to the approximation of c1, as well as the nonuniform 

charge distribution that could affect the gap capacitance [35]. Overall, the simple LC 

model not only provides a physical interpretation of the anomalous transmission, but also 

allows quantitative understanding of the dependence of the resonance condition on the 

geometric and materials properties. 

The imaginary part of the conductivity of doped graphene is positive, leading to a 

negative real part of the dielectric permittivity according to the finite-thickness model 

[35]. Therefore, doped graphene has a metallic characteristic. One might wonder whether 

the previously discussed blocking-assisted resonance transmission will hold if graphene 

is replaced by a thin layer of conventional metal film. As shown in Figure 3.8 (a), similar 

anomalous transmittance phenomenon is supported in a narrower band when a Ag film 

with various thicknesses is deposited on the top side of the grating. Assuming the bulk 

dielectric function applies to thin Ag film without considering the increased scattering 

rates due to electron collisions with boundaries, the peak transmission calculated using 
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RCWA occurs at  = 3.54 m for a thickness of 0.5 nm as shown in Figure 3.8 (a). This 

is in good agreement with the value of 3.76 m predicted by Eq. (3.13) where LG 

becomes 

 
Ag1

2 2 2
0 Ag Ag

c b

ld



     

, where d is the thickness of the Ag film. The agreement 

in the resonance wavelength between LC model and exact numerical method holds for 

different film thicknesses as shown in Figure 3.8 (b). Decreasing Ag film thickness will 

redshift and broaden the transmission as shown in Figure 3.8 (a), which is similar to the 

effect of decreasing graphene chemical potential as shown in Figure 3.7 (b). This is due 

to the increased kinetic inductance of Ag film. Increasing Ag thickness will have the 

opposite effect. The transmission peak can be easily tuned by controlling the thickness of 

Ag film, but it should be noted that fabrication of a uniform suspended Ag film of sub-

nanometer thickness across the slit region is very challenging with present-day 

technologies. Therefore, doped graphene has advantageous over metallic films in terms 

of enhancing the transmission magnitude and coherence of gratings or slit arrays since its 

fabrication and transfer techniques have been successfully demonstrated. 

Covering graphene on both sides of the Ag grating can lead to similar resonance 

transmission as show in Figure 3.9a for different chemical potentials at normal incidence. 

The chemical potential is assumed to be the same for both the top and bottom graphene. 

The resonance wavelength increases with decreasing chemical potential, which has the 

same trend as Figure 3.7 (b). The field plot for μ = 0.8 eV at resonance wavelength of 

6.87 m is given in Figure 3.9 (b), which clearly shows that there are two split localized 

resonances excited near the bottom and top graphene sheet respectively. As indicated by 

the arrows, two identical current loops but with opposite directions are supported. The 
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LC model in Figure 3.4 (b) and Eq. (3.13) can be used directly to predict the resonance 

position considering that half of the total grating height should be used. The resonance 

peak is then predicted to be 6.68 m. This agrees with the peak location occurring at  = 

6.87 m obtained by using RCWA as shown in Figure 3.9 (a). The peak transmittance is 

still around 80%, but the resonance wavelength decreases by approximately 2  from 

9.72 m to 6.87 m after covering graphene on both sides. This is because the 

capacitance is reduced by 50% while the total kinetic inductance barely changes due to 

the dominant contribution of graphene, whose inductance is independent of the grating 

height. These examples not only help further demonstrate the validity of the LC model 

and confirm the MP resonance excitation, but also suggest alternative methods for tuning 

the transmission peaks. 

 

 

 
Figure 3.8 (a) Transmittance spectra when covering a thin Ag film of various 

thicknesses on top of the Ag grating; (b) The resonance wavelength versus film thickness 

obtained by using exact method and LC model. 

 



 45 

 
Figure 3.9 (a) Transmittance spectra for Ag grating with graphene coverage on both 

sides; (b) Magnetic field at resonance peak of 6.87 m. 

 

 

The aforementioned blocking-assisted transmission is supported only by TM 

waves for 1D grating while the transmittance of TE waves is so small that adding 

graphene will have negligible effects. As a result, the proposed structure can be used for 

polarizers with better performance than plain 1D Ag grating. Nevertheless, for some 

applications such as transparent electrodes, polarization-insensitivity might be desired, 

otherwise half of the total energy will be lost. This necessitates the analysis of 2D pillars 

whose schematic is shown in Figure 3.10 (a). Px (bx) and Py (by) are the period (slit width) 

in the x and y directions, respectively, and h2 is the grating thickness. Figure 3.10 (b) 

gives the transmission of plain and graphene-covered 2D pillar arrays at normal incidence 

with Px = Py = 1 m, bx = by = 0.05 m, and h2 = 0.2 m for different values of chemical 

potentials. Similar anomalous enhanced transmission over plain 2D pillar arrays can be 

clearly observed by coating a single layer of graphene sheet. The transmission 

performance of 2D pillar arrays does not change much compared with 1D counterparts at 
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the same geometric parameters and graphene chemical potential. One distinction from 1D 

grating is that there is no difference between TE and TM waves at normal incidence for 

2D pillars due to the structure symmetry. Therefore, graphene-covered 2D metallic 

grating can be used for transparent electrodes, filters, or sensors with no polarization 

preference.  

Similar blocking-assisted transmission by graphene can be found in 

subwavelength gratings made of other metals (Au or Al) or doped semiconductors (such 

as doped silicon) or polar materials (such as SiC), although the results are not presented 

here. Depositing graphene or atomically thin metal film on one side or two sides of the 

grating helps to excite and tune the resonances, whose net effects are not limited to 

enhancing the transmission and coherence. Meanwhile, the light is concentrated in a 

small slit region beyond the diffraction limit [147]. This might assist the light 

management of long wavelengths in deep subwavelength scale and enhance matter-wave 

interactions, such as Raman scattering, spontaneous emission, and nonlinear processes, 

by using simple 1D or 2D gratings.  In addition, devices such as polarizers or filters based 

on the proposed configuration is very thin, only about 2% of the wavelength, and thus 

can be easily incorporated with other compact optical devices. It can also work 

independently when mounted on different transparent substrates in the infrared region 

such as silicon.   
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Figure 3.10 (a) Schematic of graphene-covered 2D pillar arrays with periods and slit 

widths in x and y directions as Px, Py, bx, by. h2 is the grating height. (b) Transmittance of 

plain and graphene-covered 2D pillar arrays at normal incidence for different chemical 

potentials. 

 

 

3.3 Loss-Assisted Negative Refraction 

Negative refraction has attracted much attention in recent years due to its potential 

applications for flat lens and sub-diffraction imaging [3, 148, 149]. Double negative 

materials (DNG) with both permeability and permittivity being negative have been 

realized to bend light negatively by using artificial nanostructured metamaterials, such as 

combinations of split-ring resonators and nanowires [10, 150], nanostrip pairs [151], and 

fishnet structures [152-154]. DNG was experimentally demonstrated by Shelby et al. 

[150] in the microwave region; and since then, the desire for sub-diffraction imaging with 

higher resolution triggered interest to extend negative refraction to the near-infrared [152] 

and visible region [153, 154]. For more information, one could refer to recent review 

papers [148, 155, 156]. Nevertheless, since resonance is usually needed to obtain 

negative permeability, losses are usually too high for it to be used in practical optical 

devices. Besides, the performance sustains only for narrow ranges of wavelengths and 

incidence angles due to the conditions required to excite magnetic resonances. Single 
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negative material (SNG) with only the permittivity being negative, such as thin silver 

films, could also support negative refraction [157-159], but the light penetration depth is 

very small because only evanescent waves can exist in these materials.  

More recently, uniaxial materials with permittivities having different signs for 

ordinary (electric field is perpendicular to the optical axis) and primary extraordinary 

waves (electric field is parallel to the optical axis), also known as hyperbolic or indefinite 

metamaterials, were proposed as good candidates for all-angle negative refraction [160]. 

Focusing and negative refraction have been experimental demonstrated in the visible and 

microwave region using either one-dimensional metal-dielectric multilayers[161] or 

metallic nanowires [63, 162]. By employing multilayered hyperbolic metamaterials based 

on doped semiconductors, all-angle negative refraction has also been realized in the mid-

infrared [163] and more recently near-infrared regions. Nevertheless, for multilayered 

metamaterials, the negative refraction performance is narrow-band, and a Lorentzian 

resonance generally needs to be excited to obtain the negative permittivity for primary 

extraordinary waves while no resonances are needed for nanowires [162].  

Here, low-loss negative refraction is demonstrated for all angles and in a broad 

wavelength range based on doped silicon nanowire (D-SiNW) arrays with hyperbolic 

dispersion. The mid-infrared region is of interest due to potential applications for near-

field radiation heat transfer analysis [66, 158], thermal imaging [164], and designing flat 

lenses and collimators for the infrared region. The mechanism for low-loss is explained 

by using loss-enhanced transmission, along with impedance matching and the absence of 

resonances. The proposed structure only uses doped silicon, which is abundant and 
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cheap; besides, Si is nontoxic and has relatively mature processing technology and better 

integration compatibility with nanoelectronics over metals. 

The diameter and thickness of the nanowires are d and H, respectively. A plane 

electromagnetic wave is incident from air at an incidence angle of0. The array period is 

a thus the volume filling ratio can be calculated by 2 20.25 /f d a  . D-SiNW arrays are 

a mixture of air and nanowires. However, when the characteristic dimension of nanowires 

d is considerably smaller than the wavelength of the incident light, the inhomogeneous 

medium can be treated as an effective medium with a homogeneous dielectric function. 

This has been verified by FDTD method [165] and finite-element method (FEM) [162]. 

Only TM waves with magnetic field perpendicular to the plane of incidence are 

considered in this work. In this case, the anisotropic dielectric function of the D-SiNW 

array is a second-order tensor [165, 166] : 
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The dispersion relation of the effective homogeneous medium is given as 
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 (3.15) 

Let x x xi       and z z zi      . When 0 and 0x z     , negative energy refraction 

will be supported.[65, 162]. The wavelength-dependent x  and z  are shown in Figs. 

3.11 (a) and (b), respectively, for different doping levels when the volume filling ratio f is 

set as 0.1 (default in this paper).  
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Figure 3.11 Effective permittivities of D-SiNW arrays with f = 0. 1. (a) Real part of 

permittivity for primary ordinary wave; (b) Real part of permittivity for primary 

extraordinary wave; (c) Imaginary part of permittivity for primary ordinary wave; (d) 

Imaginary part of permittivity for primary extraordinary wave. 

 

 

Note that x  is almost a constant near 1.2 across the whole wavelength range, 

though there is a Lorentz resonance featured with higher absorptance and a small bump 

of x . On the other hand, z  decreases monotonously with increasing wavelength. The 

transition wavelength at which z = 0 is denoted as T . It can be seen that T  = 8.581 

m and 2.767 m and for doping level N equal to N1 = 10
20

 cm


 and N2 = 10
21

 cm


, 
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respectively. Therefore, high doping levels will blueshift the transition, so will increasing 

the volume filling ratio though not shown here. The values of x  and z  are shown in 

Figs. 3.11 (c) and (d), respectively. It can be seen that x  is almost negligible even when 

Lorentz resonances occur. Note that z  is much greater than x  , especially at higher 

doping levels due to the increased number of free carriers. At first glance, this seems to 

be an undesired feature as a large z  implies high loss for primary extraordinary waves. 

However, as to be shown later, higher loss actually can help enhance the transmission at 

oblique incidence, i.e., reducing the loss in this type of hyperbolic metamaterial. 

The tangent of the refraction angle for the wavevector is ktan / Re( )x zk k   and 

that for the Poynting vector  can be expressed as 

 s
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S k

S k
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where xS  and zS  are the components of the Poynting vector S, and zk  can be solved 

from Eq. (3.15) as 2
0 0( / )sinz x x zk k       since 0 0sinxk k  . It should be noted 

that both the Poynting vector and wavevector will be positively refracted when the 

wavelength  is shorter than the transition wavelength for given doping level and filling 

ratio. The isofrequency contour in this case is elliptic since both z  and x  are positive. 

When  = 10 m, due to the hyperbolic dispersion, negative refraction of the Poynting 

vector occurs for both doping levels at any oblique incident angle, as shown in Figure 

3.12 (a). For N = N2, the magnitude of s  becomes much smaller with a maximum of 

1.5°, meaning that the waves will propagate nearly parallel to the nanowires inside the D-

SiNW array for any incidence angles. This phenomenon makes the array act as an optical 
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collimator, which could find potential applications in sensors and detectors to increase 

the acceptance angles. The collimation effect has recently been shown in epsilon-near-

zero (ENZ) metamaterials [167] ; however, it will be difficult to fabricate broadband 

ENZ materials. 

The dimensionless hyperbolic isofrequency contour is given in Figure 3.12 (b) for 

N = N1 and = 10 m to theoretically demonstrate the negative refraction of the Poynting 

vector, which is normal to the isofrequency surface. As the incident angle increases, s  

increases monotonically and gradually reaches the maximum for 0 90   . Note that the 

propagation loss, determined by Im(kz) is very small, even though the values of z  as 

shown in Figure 3.11 (d) are quite large. The mechanism will be explained later.  

 

 

 
Figure 3.12 (a) Refraction angles for wavevector and Poynting vector versus incidence 

angle for 10 μm  ; (b) Normalized hyperbolic isofrequency contour for N = N1 and = 

10 m, where Re(kz) and Im(kz) are for D-SiNW array. 

 

 

The field distribution can be obtained by FDTD for a Gaussian beam incident 

from air. Consider a D-SiNW array with thickness H = 20 m and N = N1, the magnetic 
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field distributions are shown in Figs. 3.13 (a) and (b) using the commercial FDTD 

software (Lumerical Solutions, Inc.) with a Gaussian beam with a width of 20 m at  = 

10 m and 0  = 20°. The interface between air and the D-SiNW array is delineated as 

thin horizontal lines at z = ±10 m.  Figure 3.13 (a) is for the actual 3D nanowires 

structures with a = 2 m and f = 0.1 (i.e., d = 714 nm). Some vertical fringes represent 

the boundary between individual D-SiNWs and air. The field distribution obtained by 

FDTD using effective permittivity tensor is shown in Figure 3.13 (b) and the result agrees 

well with that in Figure 3.13 (a). The beam is clearly shown to be bended negatively in 

the nanowire array and the agreement between Figs. 3.13 (a) and (b) confirms the 

applicability of the anisotropic effective medium approach. Note that thinner nanowires 

will be necessary for EMT to be applicable at shorter wavelengths. The reflection loss is 

relatively small due to the good impedance matching between air and D-SiNW arrays.
 

This can be understood by the fact that x  is close to 1 and 1x   in the hyperbolic 

dispersion region as shown in Figure 3.11. 

 

 

 
Figure 3.13 Dimensionless magnetic field amplitude |H| obtained by FDTD for a 

Gaussian beam at 0 = 20
o
 and = 10 m: (a) with the actual nanowire structure for a = 2 

m; (b) with the effective permittivities.  
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The figure of merit (FOM) given in the following was introduced by Hoffman et 

al.[65] to describe the performance of a hyperbolic metamaterials in terms of light 

propagation 
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A high FOM means that waves can propagate more freely with less loss inside the 

medium. This definition takes into account the dependence of loss on specific 

propagating direction. FOMs for different doping levels when 0  is at 20° and 60° are 

shown in Figure 3.14. Note that when N = N1, negative refraction starts from T = 8.581 

m as marked by the square symbols. With N = N1, the FOM value at  = 10 m and 0 = 

20° is 23.4, which is greater than those reported earlier [65, 163]. It can be seen that FOM 

increases monotonously with wavelength to more than 100 at  = 20 m. For hyperbolic 

materials made with nanowires, the Lorentz resonance is away from the wavelengths at 

which negative refraction occurs, implying that lower loss or less absorption can be 

achieved [162]. Note that the FOM values are much higher for N equal to N2 than N1. 

This is counterintuitive since the loss is much higher (i.e., z  is much greater) for N = N2 

than N = N1. For N = N2, the FOM at 0 = 20° and  = 10 m reaches 219, which is more 

than one order of magnitude greater than the previously reported values for multilayered 

hyperbolic metamaterials based on all semiconductors [65, 163]. The mechanism of loss-

assisted FOM or transmission at oblique incidence is elucidated next. 
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From Figs. 3.11 (a) and (c), when T   , x  could be one or even three orders of 

magnitude less than x  especially for longer wavelengths. As a result, x  can be 

neglected and kz can be simplified as  

2 2 2
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1 sin 1 sin sinz z
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 (3.18) 

Figs. 3.11 (b) and (d) show that z  is much smaller than 2 2
z z    ; thus, the second term 

inside the square root is much less than 1. Therefore,  
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 (3.19) 

 

 

 
Figure 3.14 FOM as a function of wavelength at two incidence angles, 0  = 20° and 60°, 

for doping levels N1 = 10
20

 cm


 and N2 = 10
21

 cm


. The squares denote the transition 

wavelength for N1. 
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For T   , 
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 << 1 especially with high doping levels; therefore, the FOM can 

be approximated as follows when 0 0   
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It can be shown that for given 0  and z , the FOM will increase with z  as long as 

z z    , which is satisfied here. For N = N2, z << z  and thus 2
0FOM 2 / sinz    at 

oblique incidence. In this case, the FOM will depend only on z  at a given 0 . Since 

D-Siz f    , higher doping concentrations, i.e., larger D-Si  and z , will lead to an 

enhanced FOM. It can be shown that Eq. (3.20) is a good approximation of the exact 

FOM. For example, compared with exact values of 23.3 and 219.1, the simplified 

formula predicts FOMs of 27.1 and 291.0 for doping levels N1 and N2, respectively, when 

 = 10 m and 0  = 20º. The agreement holds for other doping levels and incident angles 

as long as 0  is not too small. For near normal incidence, loss is dominated by x , i.e., 

ordinary waves. While Eq. (3.20) breaks down for very small 0 , Eq. (3.17) is applicable 

to normal incidence, at which FOM /n n   where  and n n   are the real and imaginary 

parts of the ordinary refractive index, respectively. 

While simple, Eq. (3.20) provides a physical insight into the loss-enhanced 

transmission and may be useful for estimation of FOM in practical design. This counter-

intuitive loss-assisted FOM or transmission has been recently shown for ENZ 

metamaterials [167, 168]. Higher doping concentrations can increase both FOM and 
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transmission for sufficiently large 0 . Moreover, with increasing doping level, s  will be 

significantly reduced and highly efficient collimators can be obtained. The doping 

concentration may be adjusted to achieve a desired FOM and s  in a suitable wavelength 

region to meet the requirements for specific applications.  

 

3.4 Tunable Perfect Absorbers 

A number of groups have demonstrated the use of metamaterials as coherent 

absorbers or emitters [169-174]. Nevertheless, different resonance peaks can interact with 

each other and thus reduce the absorption. Carbon nanotubes exhibit high absorptance 

over a broad range of wavelengths [52, 53, 175-178]. However, the absorption by carbon 

nanotubes tends to cover an overly broad spectral range that is not tunable. Therefore, 

realizing omnidirectional wavelength-selective absorbers with good tunability is still a 

challenge. 

In this section, the radiative properties of D-SiNW arrays are theoretically 

investigated for wavelength selective, broadband ominidirectional absorbers (or emitters) 

operating near room temperature. Using silicon as the base material has many advantages 

due to its abundance, nontoxicity, and mature manufacturing and process technology. A 

number of techniques have been developed to fabricate SiNWs. Examples are the vapor-

liquid-solid (VLS) process [179-182], physical and chemical vapor deposition [183, 184], 

electrodeposition [185], and the combination of patterning and catalytic etching [186-

188], which allows wafer-scale fabrication of aligned SiNW arrays with defined shape, 

diameters, period, filling ratio, doping level and even growth direction. Since the doping 

concentration strongly affects the infrared absorption of bulk silicon and the effective 
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radiative properties of nanowire arrays depend strongly on the geometric properties and 

filling ratio, D-SiNW arrays may allow for flexible control of the infrared radiative 

properties. EMT is applied together with anisotropic thin-film optics to calculate the 

radiative properties. The FDTD method is also used to validate the EMT approach. 

The basic structure of the D-SiNW array on a silicon film is shown in Figure 3.15. 

The top and bottom medium are air (medium 1 and 4). Here, H2 and H3 are the thickness 

of the nanowire array film and silicon film, respectively. When H3 = 0, it becomes a free-

standing D-SiNW array. This configuration can be viewed as if the nanowires are on a 

dielectric substrate with a refractive index close to 1.  The diameter of the nanowires is d. 

It is assumed that the D-SiNWs form a periodic array with spacing of a in both the x- and 

y-directions. Thus the volume filling ratio can be calculated by 2 20.25 /f d a  . A plane 

electromagnetic wave is incident from medium 1 at an incidence angle of 1 , as 

illustrated in Figure 3.15. EMT treats medium 2 (D-SiNW array) as a homogeneous 

uniaxial medium whose optical axis is coincident with the z-axis. 

 

 

 
Figure 3.15 Schematic of a D-SiNWs array (medium 2) on a Si film (medium 3), where 

the top and bottom media (1 and 4) are assumed to be air: (a) cross-section view; (b) top 

view. 
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In order to verify the aforementioned theoretical model used to predict the 

absorptance of D-SiNWs, a comparison is made with the full-wave solution using a 

commercial FDTD package. In the FDTD simulation, it is assumed that a = 100 nm and d 

is determined from the filling ratio f used in the EMT calculation. Figure 3.16 compares 

the absorptance calculated from the EMT and anisotropic thin-film optics with that from 

FDTD for a free-standing D-SiNW array (i.e., H3 = 0). The SiNW array has a height of 

H2 = 100 m and a doping concentration of N = 10
20

 cm
3

. The comparison result is 

shown in Figure 3.16 (a) for the normal incidence when the SiNW array has volume 

filling ratios of 0.15 and 0.3. The FDTD simulation and the theoretical model agree with 

each other well, despite very small relative differences in the long wavelength region.  

 

 

 
Figure 3.16 Comparison of the spectral absorptance of a free-standing D-SiNWs array, 

with H2 = 100 m and N = 10
20

 cm


, predicted from the EMT and FDTD: (a) normal 

incidence for filling ratios f = 0.15 and 0.30; (b) incidence angle at 30 deg for both TE 

and TM waves with f = 0.15. 

 

 

Both methods show that nearly perfect absorption with an absorptance exceeding 



 60 

99% for f = 0.15 from 4.8 to 7.8 m, which could hardly be obtained by exciting 

plasmonic resonances. If the nanowire length is changed to 50 m, the agreement (not 

shown here) is also good. In order to further verify the anisotropic dielectric function 

model, Figure 3.16 (b) compares the absorptance at 1 = 30 deg for both polarizations 

with that obtained from FDTD. The agreement is also very good for 1 = 30 deg. While 

the agreement somewhat deteriorate at 1 = 80 deg (not shown), the results are still 

reasonable to confirm that the EMT model used here is reliable. Therefore, the 

anisotropic model with MG theory can accurately predict the radiative properties of D-

SiNW arrays with small filling ratios in a wide angles of incidence in the wavelength 

region of interest ( >> d). Because FDTD is computationally expensive and takes 

several orders of magnitude more time than EMT, in particular for calculating the 

absorptance at oblique angles, the EMT is employed in the following sections to calculate 

the optical radiative properties of D-SiNWs. 

The effective refractive indices (n) and extinction coefficients (k) for both 

ordinary and extraordinary waves are plotted in Figure 3.17 for the D-SiNW array for f = 

0.15 and N = 10
20

 cm
3

. The calculated optical constants (n and k) for silicon with the 

same doping level are also shown for comparison. Note that nE and kE exhibit similar 

trends to those of doped silicon. The refractive index has a minimum and the extinction 

coefficient increases with wavelength. This is expected because the dielectric function for 

extraordinary waves can be obtained by diluting that of bulk doped silicon according to 

Eq. (4). On the other hand, the refractive index is around 1 and the extinction coefficient 

is generally much smaller for ordinary waves. However, there is a prominent peak in the 

extinction coefficient, which is responsible for the absorption peak in Figure 3.16.  
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Following Wang [57], the dielectric function for ordinary waves given in Eq. (3) can be 

rearranged into a Lorentz oscillator model using Eq. (10): 
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In the above equations,   can be treated as a high-frequency constant, p1  is the 

effective plasma frequency,  and r  is the oscillator resonance frequency. 

 

 

 
Figure 3.17 Optical constants of doped silicon and D-SiNWs for both ordinary and 

extraordinary wave with volume filling ratio as 0.15, doping level as 10
20

 cm


: (a) the 

refractive index; (b) the extinction coefficient. 
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The effect of volume filling ratio and doping concentration on the resonance 

frequency or wavelength can be assessed according to Eq. (3.22c), and the result is 

shown in Figure 3.18 for f = 0.15 and 0.3. The resonance wavelength decreases from 

about 20 m with N = 10
19

 cm
3 

to 2 m with N = 10
20

 cm
21

. When the filling ratio 

increases, the resonance wavelength increases slightly. However, the filling ratio has 

strong effect on the plasma frequency which is related to the oscillation strength and 

allows the bandwidth to be modified to some extent. Therefore, the radiative properties of 

D-SiNWs may be tailored by varying the doping concentration or the filling ratio. 
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Figure 3.18 Dependence of the resonance wavelength on doping concentration for f = 

0.15 and 0.30. 

 

 

The absorptance of a free-standing D-SiNW array with H2 = 100 m and f = 0.15 

is compared with that of a D-Si film of the same thickness as shown in Figure 3.19, with 

a doping concentration is 10
20

 cm
3

, at normal incidence. At such a high doping level, a 
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100-m D-Si film is essentially opaque. Thus the absorptance of the D-Si film is the 

same as that of bulk D-Si, which is 1 – R. The reflectance of Si has a dip between 5-6 m 

close to the valley of the refractive index shown in Figure 3.17 (a), resulting in a peak in 

the absorptance spectrum. On the other hand, the reflectance of D-SiNWs is suppressed 

to be less than 2% (not shown) and subsequently, A  1 – T. The near-zero reflectance 

can be explained by the index match between air and the D-SiNW array whose (ordinary) 

refraction index (nO) is close to unity. In the short wavelength region (1 m << 4 m), 

the absorptance of the D-SiNW array is smaller than that of D-Si due to the smaller kO, 

i.e., the lack of absorption. There is a broadband near-unity absorptance region around 

the resonance wavelength, due to the reflection suppression and small penetration depth. 

At even longer wavelength, the absorptance of the D-SiNW drops again, which is 

consistent with the reduction of the extinction coefficient toward longer wavelengths as 

shown in Figure 3.17 (b).  

 

 

 
Figure 3.19 Absorptance at normal incidence for a free-standing D-SiNW array (f = 0.15) 

compared to a D-Si film with the same thickness (100 m) and doping concentration of 

10
20

 cm
3

. 
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In order to investigate the effects of incidence angle and polarization, the 

absorptance contours for TE and TM waves are plotted in Figure 3.20 (a) and (b), 

respectively. The absorptance is close to unity for both polarizations at wavelengths 

between 5 and 8 m and is insensitive to the incidence angle, indicating that the SiNW 

array is a quasi-diffuse perfect absorber or emitter in this wavelength region. The 

absorption bandwidth is broader for TM waves than for TE waves at oblique angles. The 

high absorption for TM waves is because the extinction coefficient of a uniaxial medium 

is higher for extraordinary waves when the electric field is parallel to the wires or optical 

axis. The contour plot also shows some interference fringes for TE waves. These fringes 

are not seen in the absorption contour for TM waves since the waves cannot reach the 

other interface due to the high absorption in the D-SiNW array. The omnidirectional 

broadband absorbers with tunable operating wavelengths based on D-SiNWs may have 

important applications in energy harvesting devices, infrared filters, and radiation 

detectors. 

 

 

 
Figure 3.20 Contour plots of the absorptance as a function of wavelength and incidence 

angle for (a) TE waves; (b) TM waves. 

 



 65 

 

From the comparison between D-SiNWs and D-Si, it is clear that large 

transmission for D-SiNWs and large reflection for D-Si are the main factors for 

preventing them being more absorbing. When D-SiNWs are deposited on a D-Si film, it 

can be expected that a larger absorption could be obtained by compensating the 

drawbacks with each other. This is demonstrated in Figure 3.21 (a) with both the EMT 

approach and FDTD simulation, using the following parameters, f = 0.3, H2 = H3 = 100 

m, and N = 6×10
19

 cm
3

 for both D-SiNWs and D-Si. These two methods agree with 

each other well, except at the short wavelength cutoff, where interference effects are very 

strong. Interestingly, between 5 and 13 m, EMT cannot predict the oscillations obtained 

from FDTD. This is due to the large absorption coefficients predicted by EMT, as shown 

in Figure 3(b), resulting in small penetration depths in the D-SiNW array and thus 

eliminating the interference effect. However, FDTD is a full wave solution that could 

account for wave diffraction. Beyond 13 m, both methods are in excellent agreement. It 

can be seen that absorptance exceeding 0.9 can be achieved from 3 to 17 m wavelength. 

The influence of D-Si substrate thickness is shown in Figure 3.21 (b). The absorptance 

improves significantly in the long wavelength region with a D-Si substrate of 10 m 

thick. Further increase in the substrate thickness, i.e., increasing H3 from 10 to 100 m, 

only improves the absorptance in the short wavelength region. In the long wavelength 

region, the absorption is not enhanced when H2 is varied from 10 to 100 m. This is 

because the penetration depth of D-Si in the long wavelength region is very small due to 

the large extinction coefficient; therefore, larger substrate thickness does not change the 

absorptance.  



 66 

 

 

 
Figure 3.21 Spectral absorptance for D-SiNWs on D-Si substrate at normal incidence:                 

(a) comparison of the EMT and FDTD results (note that the y-scale is from 0.7 to 1.0); 

(b) effect of substrate thickness. 

 

Moreover, the broadband absorber based on D-SiNWs on a D-Si film is 

insensitive to both the incident angle and polarization status. In order to clearly show the 

influences of incident angle and polarizations, the directional distribution of absorptance 

for both TE and TM wave at three representative wavelengths:  = 6, 10 and 16 m is 

shown in Figure 3.22. The absorptance is close to unity for both TM and TE waves, 

though the interferences for TE waves are more obvious and TM waves have a little bit 

higher absorption. The high absorption does not begin to drop until 70 deg or so for both 

polarizations. Similar results can be obtained at other wavelengths in the considered 

spectral region and are not shown here. Note that the absorptance may be optimized by 

varying the thicknesses of D-SiNWs and D-Si substrate, the doping levels, and the 

volume filling ratio. The omnidirectional high absorptance from the D-SiNWs on a D-Si 

film structure could be realized in a broad spectral range and thus mimics the quasi-

blackbody behavior, which may have applications for bolometers and spacer emitters. 
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Figure 3.22 Angular dependence of the absorptance for both TE (right side) and TM (left 

side) waves at representative wavelengths. The blue dotted curve is for = 6 m, red 

solid curve is for 10 m, and black dashed curve is for 16 m. 

 

3.5 Summary 

This chapter conducts a comprehensive investigation of the far-field radiative 

properties of metallic nanostructures. The major findings are summarized in the 

followings.  

A design of broadband polarizers in the near infrared region is proposed with both 

good transmission and extremely high extinction ratio. The good performance holds until 

60°. MPs are responsible for the high transmission and two simple LC models are 

developed to predict resonant transmission peaks quantitatively. The geometric 

parameters, such as grating thickness, spacer thickness, and period could be tuned for 

different applications. The design of high-performance polarizers, beamsplitters, filters, 

and transparent electrodes will be benefited. 
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Covering 1D and 2D Ag gratings with a single-layer graphene is found to 

counterintuitively increase the transmission several fold in certain wavelength region. 

Transmission preference can be obtained by exciting resonances which are not available 

in the long wavelength for simple 1D and 2D gratings. The enhancement is robust and 

alignment-free, and can be actively tuned by changing the chemical potential of graphene 

through electric gating. Coating graphene on both sides of the Ag grating provides 

another way to tune the resonance transmission. The anomalous blocking-assisted 

transmission is attributed to the excitation of MP, a localized resonance. A simple LC 

model is presented to quantitatively predict the wavelength of the transmittance peak for 

different geometric parameters and graphene chemical potentials. Replacing graphene by 

atomically thin metallic film will have similar effects though the fabrication is 

formidable. Covering graphene helps to enhance the transparency, improve the 

transmission coherence, and light confinement in nanoslits.  

Metal-free all-angle negative refraction with low loss is theoretically 

demonstrated in the mid-infrared region using D-SiNW arrays. The performance is 

broadband and there is no upper limit for  since the hyperbolic dispersion will hold as 

long as T   . FDTD is used for the verification of negative refraction and effective 

anisotropic medium. The mechanism of loss-enhanced transmission is elucidated using 

an approximate expression of FOM. The proposed structure can achieve good tunability, 

by varying the doping concentration or volume filling ratio, to satisfy different specified 

needs. This helps to design low-loss flat lens for near-field thermal imaging and infrared 

collimators with large acceptance angles.  
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The spectral and directional radiative properties of D-SiNWs are investigated 

based on EMT of uniaxial medium and verified using the FDTD simulation. 

Omnidirectional wavelength-tunable wideband infrared absorbers have been theoretically 

predicted using D-SiNW arrays. Increasing the nanowire length will result in a 

broadening of the absorption plateau, while increasing the doping concentration can shift 

the plateau to short wavelengths. The composite of D-SiNWs and D-Si substrate acts as a 

quasi-blackbody, with an absorptance greater than 0.9 at wavelengths from 3 to 17 m. 

Furthermore, the absorptance is insensitive to the incident angle and polarization status. 

These structures may be further optimized to enhance absorption considering different 

doping levels between the nanowire and substrate, as well as gradient doping levels along 

the nanowires. New routes are opened for achieving novel and highly efficient infrared 

absorbers and emitters for applications in thermal imaging, spectroscopic system, 

harvesting radiant energy, bolometers, and heat dissipaters in free space.   
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CHAPTER 4 

NEAR-FIELD RADIATION OF METAMATERIALS BASED ON 

EMT AND ITS QUANTITATIVE VALIDITY CONDITION 

 

In this chapter, EMT combined with FDT is used to calculate the near-field 

radiative heat flux between different metamaterials. In Sec. 4.1, four practically 

achievable nanostructures based on doped silicon are investigated for enhancement of 

near-field radiative heat transfer. Different mechanisms for the enhancements are 

identified. In Sec. 4.2, the near-field blackbody phenomena with perfect photon tunneling 

having near-unity probability across a broad frequency region and over a large k-space is  

theoretically demonstrated based on graphene-covered doped-silicon nanowires. Sec. 4.3, 

presents the quantitative condition of when EMT can be used, followed by a brief 

summary in Sec. 4.4.   

 

4.1. Enhanced Thermal Radiation by Patterning Doped Silicon at the EMT 

limit 

Near-field radiative heat transfer has attracted significant attention in recent years 

due to its wide potential applications in microscale thermophotovoltaic (TPV) cells  [20, 

189-194], thermal imaging [195, 196], non-contact thermal rectifiers [197-201], thermal 

modulators [202-204], and local thermal management [205, 206]. Planck’s law of 

blackbody radiation breaks down when two objects at different temperatures are placed 

close enough, i.e., at a distance close to or smaller than the characteristic wavelength of 

thermal radiation. At nanometer distances, near-field radiative heat transfer could be 
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orders of magnitude greater than that between two blackbodies, especially when surface 

plasmon polaritons (SPPs) or surface phonon polaritons (SPhPs) are excited [3, 13].  

Large heat transfer coefficients are desired for increased power throughput or heat 

dissipation in energy harvesting or cooling applications, respectively. However, the 

super-Planckian thermal radiation enabled by surface modes (either SPPs or SPhPs) is 

usually narrowband and has high-loss due to the inherent resonance effects, thus 

precluding more efficient heat transport. Reducing material loss (e.g., by reducing the 

electron scattering rate) could increase the cutoff wavevector and thus helps to improve 

near-field heat transfer [207, 208]. Another method to obtain higher radiative heat flux is 

to broaden the super-Planckian radiation band with the help of the resonance-free 

hyperbolic modes [66, 67, 209]. Hyperbolic dispersion or hyperbolic modes may exist in 

natural or artificial anisotropic materials in certainty frequency regions, where the 

electromagnetic waves with large transverse wavevector can propagate inside the 

hyperbolic metamaterials, unlike surface modes where the electromagnetic waves 

propagate only along the interface and decay into both media. Hyperbolic metamaterials, 

no matter whether they exist in nature (such as graphite) or are artificially synthesized, 

exhibit hyperbolic dispersion only in certain frequency ranges and are not ideally lossless 

[67, 69, 209, 210]. Therefore, achieving a great enhancement of near-field radiative 

thermal transport beyond bulks for more efficient thermal transport or heat dissipation is 

still a challenge. 

 Doped silicon (D-Si) has been shown to support surface modes in the infrared 

spectrum and can enhance near-field radiative transfer [211, 212] to similar magnitude as 

those for SiC and SiO2 based on narrowband phonon modes. Furthermore, the doping 
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level can be varied to tune the far-field radiative properties [55] or near-field heat transfer 

[213]. Recent studies have shown that doped Si nanowires can enhance near-field 

radiation over bulk by several times [214]. Additionally, doped Si nanowires can exhibit 

hyperbolic modes and support negative refraction in a broad frequency range [54]. 

Different techniques have been successfully demonstrated to create controlled silicon 

nanostructures. It is envisioned that D-Si nanostructures may allow near-field radiative 

heat transfer to be significantly enhanced by enabling hyperbolic modes or by reducing 

loss for surface modes.  

Four practically achievable nanostructures based on D-Si are considered here as 

shown in Figure 4.1, namely, nanowires, nanoholes, multilayers, and 1D gratings. 

Fluctuation-dissipation theorem is used to calculate the near-field and far-field radiative 

transfer, assuming that the nanostructures can be treated as an effective homogeneous 

medium with anisotropy.  

Note that the minimum f for aligned D-SiNHs is (1 – π/4), and the maximum f for 

aligned D-SiNWs is π/4, due to the geometrical limitations of the circular holes and 

wires, assuming the 2D lattice to be square. The dielectric function of Ge is largely 

independent of wavelength in the infrared region, and can be approximated as a constant 

with Ge 16  . EMT is used to obtain the anisotropic dielectric function and is combined 

with fluctuational electrodynamics to calculate the near-field radiative heat transfer 

coefficient. The aforementioned nanostructures are treated as homogenous uniaxial 

materials; this assumption is valid when the gap distance is much greater than the period 

of nanostructures. In the present study, the period of nanostructures is assumed to be 

sufficiently small, so that EMT can be applied to both the far and near fields. 
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Figure 4.1 Schematics of two semi-infinite nanostructured metamaterials separated by a 

vacuum gap at a distance d: (a) D-SiNWs; (b) D-SiNHs; (c) multilayers composed of D-

Si and Ge, which is modeled as a dielectric; (d) 1D gratings composed of D-Si and Ge. 

 

 

The heat transfer coefficient at temperature T between two anisotropic planar 

media separated by a vacuum gap d can be calculated from Biehs et al. [38] 
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 (4.2) 

For an anisotropic medium, cross-polarization can exist and, in general, sp 0r   

and ps 0r  . For aligned nanowires, nanoholes, and multilayer structures, the optical axis 

is in the z direction; subsequently, sp ps 0r r  . Thus, the transmission factor  is 
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independent of the azimuthal angle and can be written as      s p, , , ,           , 

where [24, 44] 

  
0

0 0

2 22 22
0

22 2 22
0

      1 1 ,            
,

4 Im( ) 1 ,     

z

z z

ik d
j j

j

k d ik d
j j

r r e k

r e r e k


  
           

       

 (4.3) 

Here, j is for s or p polarization, and Im denotes the imaginary part. It should be 

noted that for a single polarization, the transmission factor is from 0 to 1. For s-polarized 

waves, the refraction in the uniaxial material is the same as in an isotropic medium with 

ordinary properties, since the electric field is perpendicular to the optical axis (z 

direction). Therefore, the s-polarization Fresnel coefficient rs becomes 
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For p polarization, the Fresnel coefficient rp can be expressed as follows for uniaxial 

medium whose optical axis is parallel to the z axis 
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For gratings, cross-polarization must be considered and the transmission factor 

can be determined based on the matrix formulation [215]. Considering the azimuthal 

angle  , the angle between plane of incidence and the x-z plane as defined in Figure 4.1 

(d), the Fresnel reflection coefficients can be explicitly expressed as follows [216] 
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2

01 /zn k   . The expressions given above agree with the formulation given in 

Rosa et al. [215], except with a sign difference in the cross-polarization terms spr  and psr  

due to the different definition of the rotation (azimuthal) angle. The plane of incidence is 

perpendicular to optical axis when 0  and 180    , and parallel to optical axis at 

90  and 270    . It should be noted that integration over azimuthal angles is necessary 

since Fresnel’s coefficients depend on  , unlike in multilayer and other configurations. 

When the gratings are aligned as shown in Figure 4.1 (d), the relationship of azimuthal 

angles for the two gratings is 2 1   . If there is a relative rotation angle   between the 

two gratings, then 2 1    . If the two gratings are identical and aligned, 1R  and 2R  

are transpose of each other, since ss ss( ) ( )r r   , pp pp( ) ( )r r   , 

sp sp ps( ) ( ) ( )r r r      , and ps ps sp( ) ( ) ( )r r r      . The results have been verified 

by comparison with Biehs et al. [202]. 

All the calculations are for room temperature with T = 300 K. Only n-type D-Si is 

considered in this work, while similar results can be obtained for p-type D-Si, though not 

shown in this work. In most of the calculations, the doping concentration is set to N = 

10
20

 cm
3

, which will be the default value unless otherwise specified. The radiative heat 
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transfer coefficient versus the filling ratio of D-Si for the four nanostructures at a distance 

d = 10 nm is shown in Figure 4.2. The radiative heat transfer coefficient is normalized to 

that of bulk D-Si in order to show the enhancement or reduction of heat transfer by the 

nanostructures. Note that the heat transfer coefficient for bulk D-Si at this distance with 

the same doping level is 5022 W/m
2
-K, which is 820 times the value between two 

blackbodies (i.e., 34 T  where  is the Stefan-Boltzmann constant). The enhancement of 

heavily doped Si is due to surface waves [211-213]. Figure 4.2 suggests that D-SiNWs 

with f = 0.05 can achieve an enhancement factor of 12.5 over bulk D-Si. With the 

nanowires, the predicted heat transfer coefficient exceeds 60000 W/m
2
-K at d = 10 nm, 

making D-SiNWs very attractive for applications ranging from high-efficiency near-field 

radiative cooling to local heating. The enhancement over bulk by nanoholes increases 

with decreasing f and reaches the maximum of 11.3 times when f = 1 – π/4. For 1D 

gratings, the calculation is based on 0    unless otherwise specified since the 

alignment case yields the maximum heat transfer. For 1D gratings, there is a slight 

enhancement when f > 0.2 and the maximum enhancement is around f = 0.4 with a ratio 

bulk/h h  = 1.19. However, the near-field radiative transfer coefficient between two 

multilayers is always smaller than that of the bulk and increases monotonously with f. 

Therefore, multilayer structures are not as effective in terms of enhancing near-field 

radiative transfer at ambient temperature at deep submicron gap distances. Similar trends 

can be obtained for d = 100 nm with reduced heat flux, although the results are not shown 

here. 

In order to see whether the performance achieved with these nanostructures will 

still hold at different gap distances, relative heat transfer coefficient is plotted in Figure 
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4.3 (a). The filling ratios for nanowires and 1D gratings are taken as the optimized value 

at d = 10 nm, i.e., f = 0.05 and 0.4, respectively. For clearer comparison between 

multilayers and 1D gratings, the filling ratio is also chosen as 0.4 for multilayers. The 

filling ratio of nanoholes is taken as 0.3 based on practical consideration to stay away 

from the physical limitation. It is interesting to note that in the far field, multilayers give 

slightly higher heat transfer coefficient than nanoholes or 1D gratings. Among all the 

structures, D-SiNWs result in the largest heat transfer coefficient at any gap distance.  

 

 

 
Figure 4.2 Ratio of the heat transfer coefficient of the nanostructures to bulk doped 

silicon and a gap distance of 10 nm.  

 

 

The absolute heat transfer coefficients for all cases shown in Figure 4.3 (a) are 

plotted in Figure 4.3 (b), where the values for bulk D-Si and the far-field blackbody limit 
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are also shown. It can be seen that in the far field, the heat transfer coefficient between D-

SiNWs is very close to that between blackbodies due to the good impedance matching 

and thus low reflectivity. D-SiNWs can yield a super-Planckian behavior when the gap 

distance is below 6 m, while for D-Si the heat transfer coefficient exceeds the 

blackbody limit only when d < 0.8 m. Therefore, nanowires can be used to extend the 

super-Planckian radiative transfer to micrometer gap distances and subsequently may 

benefit energy harvesting between micrometer gap distances. Meanwhile, nanoholes, 

multilayers, and gratings also extend near-field enhancement at greater gap distances 

though not as high in magnitude as nanowires. This could greatly relieve the fabrication 

barriers of near-field TPV cells. 

 

 

 
Figure 4.3 Heat transfer coefficients versus gap distance: (a) the ratio to bulk D-Si for 

each nanostructure with a selected filling ratio; (b) the absolute h values.  

 

 

The mechanisms of near-field radiative heat transfer are elucidated to understand 

the performance of different nanostructures. Both nanowires and nanoholes could achieve 

an enhancement about one order of magnitude at tens of nanometer distances. The real 



 79 

parts of the anisotropic dielectric functions of D-SiNWs with f = 0.05 and D-SiNHs with 

f = 0.3 are plotted in Figure 4.4. For D-SiNW, the real part of x  is almost a constant 

close to 1 and independent of wave frequency due to the small filling ratio. The 

imaginary part (not shown) of x  is generally much smaller than 1. Hence, for ordinary 

waves, the effective optical properties of the nanowire medium is essentially a dielectric. 

On the other hand, the effective dielectric function of the nanowires for extraordinary 

waves is described by the dilute Drude model and is therefore metallic. When 

0 and 0x z    , as shown in the shaded region of Figure 4.4 (a), the dispersion relation 

becomes hyperbolic with negative energy refraction (type I). For D-SiNHs, as shown in 

Figure 4.4 (b), both x  and z  are negative at the frequency region lower than 2.44×10
14

 

rad/s. A narrow hyperbolic band, also type I, exists between 2.44×10
14

 rad/s and 

2.74×10
14

 rad/s as shown in the shaded region in Figure 4.4 (b). 

Figure 4.5 displays the contour plots of the transmission factors for p-polarization 

at d = 10 nm for both D-SiNWs and D-SiNHs corresponding to the dielectric functions 

shown in Figure 4.4. The contribution of s-polarization to near-field radiation is 

negligible. For D-SiNWs, as shown in Figure 4.5 (a), in the broad hyperbolic band below 

1.72×10
14

 rad/s, as delineated by the arrows between the white line and the horizontal 

axis, both negative refraction and high-β propagating waves will be supported. As 

mentioned previously, the heat transfer coefficient between D-SiNWs at d = 10 nm 

reaches 12.5 times that between bulk D-Si. This is due to the broad hyperbolic band that 

allows photons to tunnel through the vacuum gap at very large  values and in a broad 

spectral region. In the case of hyperbolic modes, propagating waves exist in the 
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anisotropic medium; on the other hand, surface modes are manifested by evanescent 

waves in both media. 

 

 

 
Figure 4.4 The effective dielectric functions (real part only) for (a) the D-SiNWs at f = 

0.05 and (b) D-SiNHs with f = 0.3. 

 

 

 
Figure 4.5 Contour plots of the energy transmission factor for p-polarization p ( , )    of 

(a) D-SiNWs and (b) D-SiNHs for d = 10 nm. 

 

 

As shown in Figure 4.4 (b), both x  and z  of D-SiNHs are negative at 

frequencies lower than 2.44×10
14

 rad/s. Therefore, coupled SPPs could be excited about 

the frequency corresponding to  Re 1x z    , which is m 2.24×10
14

 rad/s in this 
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case. The SPP dispersion relation for two metallic uniaxial media separated by a small 

gap exhibits a high-frequency branch ( m ) and a low-frequency branch ( m ). 

Both of the dispersion curves share the same asymptotic limit of m  at infinite 

wavevector (i.e.,  ). For the low-frequency branch, surface charges are symmetric 

and the magnetic fields at the interface are in phase. The opposite is true for the high-

frequency branch. The coupled-SPP dispersion can be obtained by zeroing the 

denominator of  p ,   . For the symmetric modes or low-frequency branch, the 

dispersion relation can be expressed as follows [69, 214] 

 
2 2
0 z0

z0 coth
2x x z

k ik d
k

  
   

    
 (4.9) 

The dispersion relation of the asymmetric modes is written by substitute “tanh” for the 

“coth” in Eq. (4.9). For real values of   and  , solution of the SPP dispersion relation 

exists only when there is no loss. In the case with low loss, damping effect can be 

included, resulting in a peak broadening. When loss is very high, interpretation becomes 

difficult. It has been shown that near-field radiative heat transfer can still be enhanced 

about the surface plasmon frequency m  for both isotropic and anisotropic materials. 

This can also be seen in Figure 4.5 (b) where the cutoff wavevector is large near m . 

Note that the cutoff wavevector is defined as the maximum  value beyond which the 

contribution to near-field heat transfer can be essentially neglected (or is a small 

percentage of the integral over ). By finding the minimum in the denominator of 

 p ,   , the symmetric coupled-SPP dispersion is obtained and plotted in Figure 4.5 (b) 

as the black dashed curve, which agrees with the contour of transmission factor 
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reasonably well. The asymmetric branch is expected to lie between m  and the 

hyperbolic region if there were no loss. However, when loss is considered, there exist no 

minimum in the denominator of  p ,    in this region for real values of   and  . The 

enhancement in  p ,    in this region mostly comes from the large numerator of 

 p ,   . It seems that only the symmetric modes are excited in the considered case. For 

this reason, the asymmetric dispersion is not shown in Figure 4.5 (b). The contribution of 

the symmetric modes ( m ) to the heat transfer coefficient is 71.5%. The contribution 

from frequencies ranging from 2.24×10
14

 to 2.44×10
14

 rad/s is 14.2%. Whether the 

excitation is classified as SPPs or not, evanescent waves and phonon tunneling still exist 

in this frequency region [217]. Note that hyperbolic modes (2.44×10
14

 rad/s <  < 

2.74×10
14

 rad/s) contribute 10.8% to the heat transfer coefficient. Therefore, coupled 

SPPs or surface modes are largely responsible for the near-field heat transfer 

enhancement in D-SiNHs. While coupled-SPP modes can also exist between D-Si, due to 

the high loss in the bulk material, high  p ,    occurs at relatively small  values. The 

cutoff wavevector increases with reducing material loss [207, 208]. At the resonance 

frequency (2.88×10
14

 rad/s), the imaginary part of the dielectric function of D-Si is nearly 

twice of  O EIm    at 2.24×10
14

 rad/s. Therefore, the number of contributing modes of 

low-loss D-SiNHs is much greater than that of D-Si, resulting in a much greater 

enhancement of near-field thermal radiation. 

The effective dielectric functions of D-Si/Ge multilayers with f = 0.4 are shown in 

Figure 4.6 (a) (only the real part). When 0x   and 0z  , the dispersion becomes 

hyperbolic (type II), as shown in Figure 4.6 (a)  in the shaded area at frequencies below 
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1.55×10
14

 rad/s. The p-polarization transmission factor  p ,    is shown in Figure 4.6 

(b)  and the contribution from s-polarization to heat transfer is negligibly small at 

nanometer distances. In the multilayer configuration, type II hyperbolic materials do not 

yield negative refraction. Another uniqueness of type II hyperbolic modes is that 

 p ,    becomes non-trivial only when  is greater than the critical wavevector 

cr 0 Ek k  [218]. When crk  , propagating hyperbolic modes will be supported with 

a high transmission factor in a broadband region independent of type I or type II. 

Therefore, the spectral heat flux can be enhanced over bulks in a broad band due to the 

high transmission factor for large  in either type of hyperbolic mode. Nevertheless, due 

to losses, the transmission factor decreases much faster for multilayer structure than for 

nanowires or nanoholes at large  values.  Furthermore, in the high frequency region 

outside the hyperbolic band, especially near the surface resonance frequency of D-Si 

(2.90×10
14

 rad/s), the spectral flux between multilayered structures is much less than that 

between bulks. The overall effect is that the enhancement of heat transfer in the low-

frequency region cannot compensate for the reduction in the high-frequency region, 

resulting in a net reduction of radiative heat transfer coefficient over bulk D-Si. The ratio 

bulkh h is 0.65 for multilayers with f = 0.4. Nevertheless, with increasing gap distance, 

the heat transfer coefficient for bulk D-Si decreases faster than that for multilayers as 

shown in Figure 4.3. For multilayers with f = 0.4, bulkh h  when d exceeds 120 nm and 

bulk2h h  in the far field. 
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Figure 4.6 (a) Effective dielectric function of D-Si/Ge multilayers with f = 0.4; (b) 

contour plots of the p-polarization transmission factor at d = 10 nm. 

 

 

The heat transfer mechanisms between gratings are more complicated. For 

nonmagnetic materials, s-polarized waves generally cannot excite surface modes except 

for the case with negative-permeability metamaterials [75]. However, for 1D gratings 

when the azimuthal angle is nonzero, s-polarized incident waves can also excite SPPs 

since there will be a magnetic field along the grooves and a wavevector component 

perpendicular to the grooves [219]. When the gratings are homogenized as an anisotropic 

medium, the nanoscale radiative transfer is governed by the transmission factor and more 

specifically by Fresnel’s reflection coefficients when 0k  . A close examination of 

Eq. (4.8) suggests that the cross-polarization terms are negligibly small when 0k  . 

Therefore, polarization coupling will contribute little to the radiative heat transfer in the 

deep submicron region. Furthermore, regardless of the azimuthal angle, ssIm( )r  quickly 

approaches zero as 0/ k  increases. Hence, the contribution of s-polarization to 

nanoscale radiation is also negligible. Figure 4.7 shows the contours of the p-polarization 

transmission factor for f = 0.4 and d = 10 nm integrated over the azimuthal angle for 
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aligned and cross gratings, respectively. The shapes for   = 0° and 90° are similar with 

slightly larger transmission factors and cutoff wavevectors for the aligned case. Note that 

the ordinary and extraordinary dielectric functions are the same as shown in Figure 4.6 

(a) for multilayers, except that for gratings Oz    and x  and y  depends on the 

rotation angle. Compared with Figure 4.6 (b), gratings can increase the transmission 

factor toward large  values over multilayers, especially near the frequency of 1.5 × 10
14

 

rad/s. The reason is due to the large Im(rpp) and subsequently larger transmission 

coefficients (ξp) for gratings. Therefore, the near-field radiative transfer of gratings is 

more than those of bulk D-Si and multilayers.  

 

 

 
Figure 4.7 Contours of the transmission factor for p-polarization integrated over the 

azimuthal angle with d = 10 nm between aligned 1D gratings: (a) parallel aligned gratings 

with a relative rotation angle 0   ; (b) perpendicularly aligned gratings with  90   . 

 

 

The relative heat transfer coefficient as a function of relative rotation angle of the 

gratings is shown in Figure 4.8 for d = 10 nm and f = 0.4. It can be seen that h 

monotonically decreases as   is increased from 0° to 90° due to symmetry breaking. It 

has been proposed that 1D gratings may potentially be used as non-contact thermal 

modulators. Note that the maximum modification with D-Si/Ge multilayer is about 10%, 
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much lower than those with Au and SiC [202]; this is presumably due to the large 

scattering rate in D-Si. 
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Figure 4.8 The near-field heat transfer coefficient for d = 10 nm as a function of the 

relative rotation angle of the gratings when f = 0.4. 

 

 

 

 4.2 Perfect Photon Tunneling by Hybridization of Hyperbolic Modes with 

Graphene Plasmons 

Radiative heat transfer between macroscopic bodies in the far field will achieve 

the maximum value if every photon emitted by one substance with any direction can be 

totally absorbed by the other body, indicating that the photon transmission probability is 

unity. These two substances are called blackbodies, and the radiative heat transfer 

between them is governed by the well-known Stefan-Boltzmann law, an upper limit for 

propagating modes [3]. Capturing incident photons with near-unity efficiency is also a 
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desire in the near field due to the wide potential applications of near-field thermal 

radiation in local thermal management, thermal imaging [195, 220], contactless thermal 

modulators [197, 221], and thermophotovoltaic (TPV) cells [190, 194]. 

Tunneling of evanescent modes enables the radiative heat flux to be several orders 

of magnitude higher than that between far-field blackbodies, especially when surface 

modes are excited [3, 18, 222, 223]. Due to its unique characteristics, graphene can 

support surface plasmons with low loss and excellent tunability ranging from near-

infrared to terahertz frequencies [224]. Graphene has been reported to tailor the near-field 

heat transfer [225-228], and improving the efficiency of TPV cells [194, 229]. However, 

the near-unity photon tunneling probability occurs only in narrow wavevector or k-space 

range, where coupled SPPs are excited. Hyperbolic materials, featuring unbounded 

density of states, have been shown to enhance the photon tunneling probability [66-69, 

230]. However, since hyperbolic modes are resonance free, the tunneling probability 

unavoidably decays with increasing k. By combining graphene plasmons and hyperbolic 

modes, this work demonstrates photon tunneling with near-unity probability across a 

broad frequency range and large k-space.  

The geometric arrangement of near-field thermal radiation between graphene-

covered D-SiNW arrays is illustrated in Figure 4.9. Coating graphene on the top of 

silicon nanowires is a mature technology [231]. The optical conductivity of graphene 

    can be found in Refs. [127, 194]. For convenience, the relaxation time is fixed to 

be = 10
-13

 s considering electron-phonon and electron-defects scattering [232], while  

is adjusted to maximize the performance. 
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The calculated heat transfer coefficient h between graphene-coved D-SiNWs with 

d = 200 nm, f = 0.02, and µ = 0.3 eV is 614.7 W/m
2
-K, which is 4.5 times as large as that 

for D-SiNWs. In order to unveil the underlying mechanism for this enhancement, the 

photon tunneling probability for p-polarization is plotted in Figure 4.10 for D-SiNWs, 

suspended graphene, and graphene covered nanowires for p-polarization evanescent 

modes. Note that the contributions to near-field radiative transfer from both the 

propagating and s-polarized evanescent waves are negligible compared to that of p-

polarization evanescent waves capable of supporting hyperbolic or surface modes. As 

shown in Figure 4.10 (a) by the color contour, the photon tunneling probability is much 

higher in the hyperbolic band than that in the non-hyperbolic region at frequencies 

exceeding 1.02×10
14

 rad/s. Due to the broadband hyperbolic modes, h for D-SiNWs 

achieves 135.3 W/m
2
-K, which is 21 times greater than the blackbody limit of 3

SB4 T  

where SB  is the Stefan-Boltzmann constant. Nevertheless,  p ,    inevitably 

decreases with increasing β due to the exponential decay factor of 02 zk d
e


 in the 

numerator since no resonance is excited.  

Figure 4.10 (b) gives p  for suspended graphene sheets without substrates using 

µ = 0.3 eV. There exist two distinct bands with large tunneling probability. These two 

bands, splitting at low β values and merging together at a large β, are associated with the 

coupled SPPs caused by the graphene. The dispersion relation can be obtained by zeroing 

the denominator of p  and is given as [233] 

 0 0

0

1 coth ,  symmetric branch
2

z zk ik d  
   
  

 (4.10) 
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 0 0

0

1 tanh ,  antisymmetric branch
2

z zk ik d  
   
  

 (4.11) 

 

 

 
Figure 4.9 Schematic of near-field radiative heat transfer between graphene-covered 

semi-infinite doped silicon nanowires separated by a vacuum gap of distance d. 

 

 

The low-frequency symmetric branch and the high-frequency antisymmetric 

branch are shown as the white lines in Figure 4.10 (b) and match well with the peaks in 

p . Instead of decaying exponentially with β, the tunneling probability is almost unity 

when either Eq. (4.10) or Eq. (4.11) is satisfied. The diminishing denominator can 

compensate the decay factor 02 zk d
e


 in the numerator, enabling a large tunneling 

probability at large  values. The coupled SPPs have a dominant contribution to the near-

field radiative heat transfer. As a result, the calculated heat transfer coefficient for two 

free-standing graphene sheets at d = 200 nm is as high as 453.7 W/m
2
-K, even larger than 
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that for D-SiNWs. However, the near-unity tunneling probability occurs in narrow 

bands only. 

When graphene covers the D-SiNWs for both the emitter and receiver, as shown 

in Figure 4.10 (c), p  is very high across a broad frequency range up to 1.5×10
14

 rad/s 

and a large k-space up to 20k0. All the photons emitted in this regime will be absorbed, 

which is the blackbody behavior in the near field. As a result, the heat transfer coefficient 

of this hybrid structure could achieve 614.7 W/m
2
-K, much larger than that for plain D-

SiNWs or suspended graphene sheets alone.  

 

 

 
Figure 4.10 Photon tunneling probability for p-polarization at d = 200 nm (a) Two D-

SiNWs with f = 0.02 without graphene. (b) Suspended graphene with a chemical potential 

of 0.3 eV. (c) Graphene-covered D-SiNWs. (d) Photon tunneling probability at ω = 

5×10
13

 rad/s. 
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The variation of p  with   can be more clearly seen by comparing the three 

configurations at ω = 5×10
13

 rad/s, which lies in the hyperbolic region, as illustrated in 

Figure 4.10 (d). The tunneling probability of the resonance-free hyperbolic D-SiNWs 

decays quickly with increasing  ; while that for the suspended graphene sheets has two 

resonance-like near-unity peaks. Interestingly, p  for graphene-covered D-SiNWs can 

exceed 0.95 up to  = 15k0. However, with further increasing β, the tunneling probability 

for graphene-covered D-SiNWs decreases rapidly and becomes lower than that between 

D-SiNWs for   > 20k0. When 0 0 0c k   , pr  = 1 with a zero imaginary part. 

Subsequently, the photon tunneling probability becomes zero. Therefore, adding 

graphene suppresses phonon tunneling for very large   values, as can be seen from 

Figure 4.10 (d). Nevertheless, the contribution by the perfect photon tunneling region 

dominates the near-field radiative transfer, resulting in a net enhancement. 

Note that the graphene coverage does not always improve heat transfer [226]. For 

very small µ, coupling between graphene plasmons and hyperbolic modes becomes so 

weak that the improvement diminishes. Since   generally increases with µ, more modes 

are adversely affected if µ is too high, leading to a deterioration of heat transfer 

performance. For a given filling ratio and specified gap distance, there exists an optimal 

chemical potential that allows near-perfect photon tunneling to be achieved in a broad 

frequency and wavevector ranges. The filling ratio can have a significant influence on the 

near-field radiative transfer as demonstrated previously without graphene coverage.
 
For 

very small f, the nanowire density is so dilute that the heat flux between graphene-

covered nanowires approaches to that for suspended graphene. Too high a filling ratio 
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makes both O  and E  negative such that no hyperbolic modes and hybridized perfect 

tunneling can occur. In the present study, f is chosen to be 0.02, which allows great 

enhancement of near-field radiation over a large distance range.  

Figure 4.11 (a) plots the heat transfer coefficient of D-SiNWs and graphene-

covered nanowires at the optimal chemical potential given in Figure 4.11 (b), considering 

only p-polarized evanescent modes. The minimum d used here is 100 nm to ensure EMT 

is valid given that practical nanowire diameter cannot be infinitesimal. By optimizing the 

chemical potential, the inclusion of graphene can improve the near-field heat transfer 

between D-SiNWs. Heat transfer coefficient for graphene-covered D-SiNWs lies between 

that for D-SiNWs and the theoretical limit of hyperbolic materials given by [66] 

 
2
B

limit 2

ln(2)

12

k T
h

d
  (4.12) 

 

 

 
Figure 4.11 (a) Heat transfer coefficient vs. gap distance for D-SiNWs, graphene-covered 

D-SiNWs with optimal chemical potential, and the theoretical limit for hyperbolic 

metamaterials; (b) Enhancement of the heat transfer coefficient. 

 

 

The ratio of heat transfer coefficient for graphene-covered D-SiNWs to the near-
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field limit is plotted in Figure 4.11 (b). With increasing gap distance, the heat transfer 

coefficient gets closer to the near-field limit. Note that Eq. (4.12) is a theoretical limit 

only for hyperbolic materials rather than a physical upper limit for all materials. From 

Figure 4.11 (b), the optimal chemical potential increases monotonically with d from 100 

nm to 1 m. With decreasing gap distances, the number of contributing modes increases 

towards high  region in the k-space. In order to postpone the suppression region to larger 

β, the conductivity of graphene needs to be reduced according to the zero photon 

tunneling condition. This explains why the chemical potential should decrease with gap 

spacing. 

 

4.3 Quantitative Validity Condition of EMT for Metallodielectric 

Metamaterials 

Homogenization based on EMT has been widely used in combination with 

fluctuational electrodynamics to predict the near-field heat flux for designing the 

aforementioned thermal management devices due to its simplicity and low computational 

demand [66, 67, 69, 202, 203, 208, 234-236]. The characteristic thermal wavelength 

governed by Wien’s law is indeed much greater than the structure unit cells. However, in 

the near field, large wavevector modes featured with small effective wavelength are not 

negligible, since these modes could effectively tunnel through the vacuum gap and may 

even become the dominant contribution to the heat flux. Hence, the applicability of EMT 

needs to be carefully examined in the near-field regime. Orlov et al. [237] noticed a 

strong nonlocal response when SPPs are exited at the interface between metal and 

dielectrics. Liu and Shen [230] showed that EMT will overestimate near-field radiative 

heat flux between a SiC film and metal nanowire arrays at small gap distances using the 
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Wiener Chaos expansion method. Tschikin et al. [210] pointed out that EMT may fail to 

predict the radiative transfer at small spacing when surface phonon polaritons (SPhP) 

exist between the layers on both sides of the vacuum gap. In general, for the EMT to be 

valid, the gap distance should be much greater than the period of the unit cell [208]. 

Nevertheless, quantitative criteria describing when EMT can be applied in predicting 

near-field heat transfer are desirable in order to choose the most effective methods for use 

in design calculations. 

The objective of this section is to investigate the application condition of EMT in 

predicting near-field radiative heat transfer between multilayered metamaterials as shown 

in Figure 4.12. In addition to considering different filling ratios and gap distances, 

different configurations for the two layers adjacent to vacuum are considered, namely, 

metal-metal (MM), metal-dielectric (MD), and dielectric-dielectric (DD). The 

fluctuational electrodynamics is used to calculate near-field radiative transfer between 

planar structures. The approximate results based on homogenized effective media are 

compared with the exact calculations employing the transfer matrix formulation for 

multilayered structures. 

For  f = 0.5 and 0.8, the dielectric function components as a function of the 

angular frequency  are plotted in Figure 4.13, where type I ( 0,  0x z     ) and type II 

( 0,  0x z     ) hyperbolic regions are identified [234]. It is noted that when f = 0.8, in 

the region between type I and II bands, both x  and z  are negative as shown in Figure 

4.13 (b). Therefore, coupled SPPs may be supported and the surface resonance frequency 

corresponds to  Re 1x z    . 
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Figure 4.12 Illustration of radiative heat transfer between two multilayered metamaterials. 

 

 

 

 

 
Figure 4.13 Effective dielectric function components for (a) f = 0.5 and (b) f = 0.8. 

Shaded regions denote hyperbolic dispersion (type I or type II). 

 

 

Figure 4.14 plots the near-field radiative heat transfer versus the gap distance for 

three configurations (MM, DM, and DD) and the homogenized effective medium 
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described by EMT, for both s- and p-polarizations with f = 0.5 and 0.8, respectively. In 

the present study, the unit cell period P is set to be 100 nm, and the number of periods of 

both the emitter and the receiver is 40, which is sufficient for each structure to be 

approximate as semi-infinite. This is due to the small penetration depth in the near-field, 

and more details can be found from Ref. [238]. The temperatures T1 and T2 are taken as 

300 K and 0 K, respectively. Since the characteristic wavelength for thermal radiation (on 

the order to 10 m) is much greater than the period, it is expected that heat flux 

calculated from the exact method for different configurations and that predicted by EMT 

should agree when d P . This is exactly what is observed from Figure 4.14. for both 

polarizations and different filling ratios when d approaches 10P or 1000 nm, although 

reasonable agreement can be seen as early as d = 100-300 nm. When d is comparable 

with or smaller than P, however, the heat fluxes deviate significantly for different 

configurations especially for p-polarization. Interestingly, EMT could still predict the 

amount of heat flux for a certain configuration and polarization status, even at nanometer 

gap distances. 
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Figure 4.14 Total near-field radiative heat flux for different configurations as a function 

of gap distance: (a) s-polarization, f = 0.5; (b) s-polarization, f = 0.8; (c) p-polarization,           

f = 0.5; (d) p-polarization, f = 0.8. 

 

 

When d is smaller than P, the s-polarization heat flux for MD and DD 

configurations starts to deviate from the EMT predictions, as shown in Figure 4.14 (a) 

and 4.14 (b). However, the heat flux for MD configuration agrees well (within 2.4%) 

with the EMT prediction for any gap distances. In general, the deviation of heat flux 

between different configurations and EMT prediction is relatively small for s-polarization 

(< 20% for f = 0.5 and < 11% for f = 0.8). This could be explained by the fact that no 

surface modes or hyperbolic modes are supported for s-polarized waves, so that only low-
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 modes with large effective wavelength contribute to the flux. Hence, the deviation from 

the exact multilayer calculation and EMT is insignificant even at nanoscale distances. 

Furthermore, the effective permittivity for s-polarized waves (ordinary) is a weighted 

average of D-Si and Ge. As a result, compared to MM and DD, the MD configuration is 

physically more similar to the homogenized effective structure. This might be the reason 

why the heat flux for MD configuration agrees very well with that predicted by EMT. As 

shown in Figure 4.15 (a), good agreement between MD and EMT exists across the whole 

frequency region. While Figure 4.15 (a) is for a specific set of d and f, the spectral 

behaviors are similar for other distances and filling ratio for s-polarization. It should be 

noted that, at small gap distances, the heat flux by s-polarized waves saturates and 

reaches nearly a constant. The contribution to the overall heat flux by s-polarized waves 

becomes significantly smaller than that by the p-polarized waves, which can support 

surface and hyperbolic modes.  

 As shown in Figs. 4.14 (c) and 4.14 (d), the p-polarization heat flux deviates 

most significantly among the three configurations toward nanometer distances, as 

expected. What is surprising is that the heat flux predicted by EMT agrees well with that 

of MM configuration even at a nanometer gap distance. This is actually a coincidence. As 

revealed by Figure 4.15 (b) for d = 10 nm and f = 0.5, EMT over and under predicts the 

spectral flux of MM at lower and higher frequencies, respectively. However, the total 

heat flux is almost the same between these two cases. Such coincidence does not exist 

when D-Si is replaced by SiC due to the fact that SPhPs in SiC and hyperbolic modes 

with SiC/Ge multilayers are narrowband. It can be seen from Figure 4.15 (b) that the heat 

flux predicted by EMT is always higher than those for MD and DD. With increasing gap 
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distances, the deviation of spectral heat flux among different configurations reduces. This 

can be seen from Figure 5, which shows the spectral heat flux for p-polarization at d = 

100, 200, and 300 nm. In general, as the gap distance increases, the agreement between 

EMT and the exact calculation for all three cases becomes better. The question is how 

large the gap distance needs to be to make the spectral heat flux for different 

configurations converge within, for example, 10%. 

 

 

 
Figure 4.15 Spectral near-field radiative heat flux for different configurations at gap 

distance          d = 10 nm for f = 0.5: (a) s-polarization; (b) p-polarization.  

 

 

 

To elucidate the underlying mechanism for the agreement or disagreement of the 

heat fluxes for p-polarization, contour plots are generated in Figure 4.16 for different 

cases, to show the dependence of transmission coefficient p  on the lateral wavevector  

and angular frequency  for f = 0.5 and d = 10 nm. As shown in Figure 4.16 (a) for EMT, 

large   modes with high transmission coefficients are supported in both the type I and 

type II hyperbolic regions. Unlike the type I hyperbolic band, modes with cr    for 

type II band are evanescent with near zero transmission coefficients and thus contribute 
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little to the heat flux [69].  Similar shapes appear for MM, MD, and DD configurations 

since, for small   values with large effective wavelength, EMT is valid and the 

transmission coefficient is almost the same independent of configurations. For large   

values, EMT breaks down and the transmission coefficient depends heavily on specific 

configurations, as shown by Figure 4.16 (b), Figure 4.16 (c) and Figure 4.16 (d) for MM, 

MD, and DD configurations, respectively. The heat flux for MM configuration is the 

largest due to strong coupling of SPP with the surface resonance frequency around 

3.0×10
14

 rad/s.  DD configuration has the lowest heat flux since the distance between 

metallic D-Si layers of the emitter and receiver increases to P + d and thus the coupling 

of SPP becomes weak. As d becomes sufficiently large, coupled SPPs become weak and 

the transmission coefficients become independent of the configuration. The requirement 

that the differences between various configurations become negligible will be discussed 

next, focusing on p-polarization only. 

According to the Bloch theorem, the Bloch wavevector bk  for a one-dimensional 

photonic crystal is governed by [218] 
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where 2 2
0m mk    and 2 2

0d dk     are the z-component wavevectors for D-Si 

and Ge, respectively. It can be shown [218] that under the approximations, 
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which is the dispersion relation for a uniaxial medium with a z-component wavevector, 

z bk k . The general requirement for these approximations to be valid is that the z-

component wavevectors ( , ,  and z m dk   ) be much smaller than P
1

. For small  values, 

the z-component of the wavevector is on the same order of the magnitude as the 

wavevector. Therefore, the criterion for Eq. (4.14) to be valid is P  . This explains 

why the agreement in different configurations is good in Figure 6 for small  values. In 

the far field, propagating waves exist in vacuum so that 0/ 1k  , local EMT is usually a 

good approximation without considering spatial effect. 

 

 

 
Figure 4.16 Transmission coefficient contours ( , )p   for (a) effective medium, 

different hyperbolic region are delineated; (b) MM; (c) MD; (d) DD. 
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It is noted that when 1.05x  , the deviation between 21 / 2x  and cos( )x  is 

10%. When 0.75x  , the deviation between x and sin( )x  is 10%. After further numerical 

calculations and verifications considering complex variables, it is shown that the 

following criteria allow Eq. (4.14) to approximate Eq. (4.13) fairly accurately within 

about 10%: 

 1.05, 0.75,  and 0.75z m dk P P P      (4.15) 

For large  values (as usually is the case in the near field), zk  as well as  and m d   in 

Eq. (4.15) are proportional to . Thus, additional criteria in terms of  are needed to 

evaluate when EMT is a good approximation. 

It is well known that SPP/SPhP-based surface modes can have a dominant 

contribution to the heat flux due to the high density of states [240-242]. The number of 

contribution modes achieves the maximum value when  Re 1      at the singularity 

of SPP dispersion relation  0 1k      for two semi-infinite media consisting 

vacuum and an isotropic medium [207, 243]. For 0k  ,    1 1 1 2pr i         

when 1 i      . Thus, the transmission coefficient can be simplified as 

  
2 2 2 2 2 2

16
,

2(4 ) (1 4 / )
p d de e  
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 (4.16) 

The cutoff wavevector cut  may be assessed from the following condition with 90% of 

the integral, i.e., a 10% relative error: 
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The result gives cut d as a function of  , as shown in Figure 4.17 for   from 0.01 to 

100. The values of   at the surface resonance frequency SP  for different real materials 

commonly used in thermal radiation lies in the range from 0.01 to 100. However, the 

relationship between cut  and   is neither intuitive nor convenient. The least-squares 

method is used to obtain a simple equation by fitting the numerical results given as  

 
0.21

2.55
cut

d
 


 (4.18) 

As shown in Figure 4.17, the agreement between Eq. (4.18) and the exact calculations is 

very good. Hence, Eq. (4.18) provides an easy way to evaluate cut  and is applicable to 

most materials supporting surface modes. Because cut  is the largest at the surface 

resonance frequency, in general, [0, ]cut   will contribute to more than 90% to the 

spectral heat flux. 
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Figure 4.17 Loss-dependent cut-off wavevector at the surface resonance frequency. 
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For near-field radiative transfer between two uniaxial anisotropic materials, 

surface resonance is excited when  Re 1x z     with both  and x z    being negative 

[66]. The corresponding frequency is the surface resonance frequency SP  for uniaxial 

materials. Then, the cutoff wavevector at surface resonance becomes  

 
0.21

2.55
cut

u d
 


 (4.19) 

where  Imu x z     is evaluated at SP . For small values of  , an approximation of 

cut was given by Biehs et al. [15] as  (1/ ) ln 2 /d   based on the peak of the 

transmission coefficient where  2 2 2 1d
p pr r e     [14]. Here,  and p pr r   are the real 

and imaginary parts, respectively, of the Fresnel reflection coefficient for p-polarization. 

However, the integrand to calculate the radiative heat flux is  ,    rather than 

 ,    due to axial symmetry. When   is very small,  ,    could still be neglected 

even though  ,    achieves the maximum value of unity. Similarly, at large  , 

 ,    is non-negligible even if  ,    is far less than 1. Nevertheless, 

 (1/ ) ln 2 /cut d     is still reasonable for very small   (with an offset) but will fail 

when   is comparable to or greater than 2. With increasing loss, the cutoff wavevector 

decreases so that the contribution of surface modes will deteriorate.  In other words, 

reducing the material’s optical loss helps enhance radiative heat flux. 

Attention is now paid to cut  for hyperbolic modes. At large , the transmission 

coefficient for hyperbolic metamaterials is given as 
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Compared with surface modes, the uniqueness of hyperbolic modes lies in the 

propagating nature of electromagnetic waves for large wavevectors due to the hyperbolic 

dispersion relation. Hence, the hyperbolic modes are essentially special frustrated total 

internal reflection modes [66]. For sufficiently large ,   2 2, 4 d
p pr e     . Then, the 

cutoff wavevector for hyperbolic mode can be assessed by letting 
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From Eq. (4.21), one obtains 

 
1.94

cut
d

   (4.22) 

Equation (4.22) is similar to the cutoff wavevector obtained for spontaneous emission 

enhancement of hyperbolic metamaterials in the literature [218] and is about three times 

that obtained by [66] based on the peak of energy transmission coefficient. It can be seen 

from Eq. (4.22) that cut  for hyperbolic modes is independent of frequency and loss, 

although  ,p    is sensitive to frequency. Hence, the number of contributing modes is 

sensitive to frequencies in the hyperbolic region. This is completely different from the 

case of surface modes for which the number of modes decreases rapidly as the frequency 

is away from SP . This is one of the reasons why the radiative heat flux based on surface 

modes tends to be narrowband or even monochromatic, while that based on hyperbolic 

modes could have a broadband super-Planckian behavior in the whole hyperbolic region. 



 106 

If the Bloch dispersion relation could be effectively described by EMT up to the 

cutoff wavevector, then EMT should be valid in calculating the near-field radiative heat 

flux. For generalized SPP modes, m d i      and z x zk i     when 

0, 0,  and 0x zk       . Combining these quantities with Eq. (4.19) and Eq. (4.15) 

gives the validity condition of EMT for calculating near-field radiative heat flux at SPP 

resonances as follows: 

  0.21 0.21/ max 2.43 ,  3.40  x z u ud P         (4.23) 

As an example, consider f = 0.8, a surface mode occurs at SP 2.58×10
14

 rad/s with u  

equal to 6.24. The maximum value of x z   is 0.71 in the region where coupled SPPs 

are supported. As a result, Eq. (4.23) becomes 2.31d P  . In this case, the spectral heat 

fluxes (in pW/m
2
 per rad/s) for different configurations are: SEMT is 5.17, SMM = 4.93, SMD 

= 5.08, and SDD = 5.29 at SP . The maximum relative error of EMT in predicting the 

heat flux is 4.7%. Since the cut-off wavevector usually achieves the maximum value at 

the surface resonance frequency, Eq. (4.23) should be safe to use for other spectral 

regions as well. For example, when d = 231 nm, the total heat flux QEMT is 2771 W/m
2
, 

QMM = 2800 W/m
2
, QMD = 2741 W/m

2
, and QDD = 2699 W/m

2
. The maximum relative 

error of EMT is only 2.6%. Hence, in practice, if Eq. (4.23) is satisfied, using EMT to 

calculate heat flux will result in an error usually much less than 10%. 

For hyperbolic modes, when 0  and 0x zk     , m d i      and 

z x zk    . Hence, Eq. (4.15) can be rewritten as 

 1.05  and  0.75x z P P       (4.24) 
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Combining Eq. (4.15) and Eq. (4.22), one obtains 

  / max 1.85 ,  2.59x zd P     (4.25) 

As long as Eq. (4.25) is satisfied, EMT should be reasonably accurate for 

calculating the near-field radiative heat flux in the hyperbolic region. For instance, the 

effective medium is hyperbolic at ω = 10
14

 rad/s with f = 0.5, and 0.97x z   . 

Therefore, Eq. (4.25) requires 2.59d P . For P = 100 nm, d = 259 nm, the spectral 

fluxes (in pW/m
2
 per rad/s), SEMT is 10.4, SMM = 10.7, SMD = 10.2, and SDD = 9.92. The 

maximum relative error of EMT is only 1.9%. This justifies that Eq. (4.25) can guarantee 

that the EMT is reliable in predicting the near-field radiative heat transfer for hyperbolic 

modes. It should be noted that the above criteria hold for regions that do not support 

either the surface or hyperbolic mode since large   modes will have negligible 

contributions. 

 

4.4 Summary 

This chapter investigates the near-field radiation between nanostructures in the 

limit when the period is sufficiently small. The main contributions are summarized in the 

followings.  

Different practically achievable nanostructures based on doped silicon are 

investigated for enhancement of near-field radiative heat transfer at ambient temperature. 

Three out of the four configurations (D-SiNWs, D-SiNHs, and D-Si gratings) can 

enhance radiative heat transfer over bulk D-Si from tens of nanometers to the far field. 

The fourth configuration, multilayers, can also give a radiative heat flux that is almost 

twice as large as that between bulks in the far field. It is predicted that D-SiNWs and D-



 108 

SiNHs can provide an enhancement over bulks by more than one order of magnitude in 

the deep submicron gap region, due to broadband hyperbolic modes and low-loss surface 

modes, respectively. These two configurations can be designed with optimal doping and 

geometrical criteria. The mechanism of near-field radiative transfer between gratings 

made of D-Si and Ge is also investigated. It is found that s-polarization and polarization 

coupling are negligible for near-field heat transfer analysis at deep submicron distances. 

Thus, the dominating mechanism for near-field radiation between gratings is the same as 

for other nonmagnetic materials; that is, the nontrivial transmission coefficients at large 

transverse wavevectors are enabled by p-polarized waves. The alignment between 

gratings has a relatively small effect on the near-field radiative transfer for D-Si/Ge 

gratings.  

The near-field blackbody phenomena with perfect photon tunneling having near-

unity probability across a broad frequency region and over a large k-space is theoretically 

demonstrated based on graphene-covered doped-silicon nanowires. As a result, the near-

field radiative heat transfer coefficient achieves as high as 80% of a theoretical limit of 

hyperbolic materials. The underlying mechanism is due to hybridization of graphene 

plasmons and hyperbolic modes. So, a new way of achieving greatly enhanced photon 

tunneling is provided. This hybrid system will benefit the design of nanostructures in 

applications such as more efficient non-contact thermal management and microgap 

thermophotovoltaics. 

The applicability of EMT to predict near-field radiative heat flux is evaluated by 

comparison with exact solutions for metal-dielectric multilayered metamaterials, where 

the layers adjacent to vacuum can be of different combinations. EMT is found to be able 
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to predict the s-polarized radiative heat flux for MD configuration at any gap distance, 

while some deviation exists for MM and DD configurations. For p-polarized waves, the 

cutoff wavevectors are quantitatively obtained for surface modes and hyperbolic modes 

in order for the EMT to be able to predict near-field radiative heat flux to within 10%. 

Combining the cutoff wavevectors with the criteria under which the Bloch dispersion can 

be approximated by the dispersion relation of a uniaxial anisotropic medium, a criterion 

is obtained for the ratio of d to P so that EMT can reliably predict the near-field radiative 

heat flux. The methodology may be extended to give the validity condition of EMT in 

predicting near-field thermal radiation for other types of metamaterials, such as 

nanowires and gratings.  
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CHAPTER 5 

ENHANCED NEAR-FIELD RADIATION BY METAMATERIALS 

USING EXACT FORMULATIONS 

 

Based on exact formulations, chapter 5 presents new routes to enhance the near-

field radiative heat flux. Section 5.1 demonstrates that the heat flux between corrugated 

silica can be enhanced by more than one order of magnitude when covered with a 

graphene sheet on top of the grating on each side of the vacuum gap due to the 

hybridization of graphene plasmons with surface phonon modes. In Sec. 5,2, patterning 

thin films of moderate thicknesses into 1D and 2D metasurfaces is found to increase the 

heat flux for the first time. The underlying mechanism is due to the excitation of 

hyperbolic modes featured with high LDOS in a broad frequency and k-space regime. 

Section 5.3 presents a giant enhancement of near-field radiative heat flux over more than 

one order of magnitude by patterning graphene sheets into ribbon arrays to support 

hyperbolic graphene plasmons. In Sec. 5.4, the electroluminescent refrigeration rate is 

found to be enhanced by more than two orders of magnitude by pushing the hot object 

into the diode’s close proximity. The underlying mechanism is attributed to the photon 

tunneling of evanescent waves. Section 5.5 briefly summarizes the main contributions of 

this chapter.  

 

5.1. Graphene-Assisted Near-Field Radiation between Polar Grating 

Silica is one of the best well known thermal emitters due to its two narrow band 

thermally excited surface phonon polariton (SPhP) modes. Unfortunately, corrugated 
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silica can hardly have a better performance than bulk silica since the radiative transfer is 

local due to the short lateral propagation length of SPhPs [83]. In this section we show 

that covering a single layer graphene can relieve this problem due to the low loss and 

long propagation length of graphene plasmons.  

The schematic of thermal radiation between considered graphene-covered 

gratings separated by a vacuum gap of d is depicted in Figure 5.1. The temperatures of 

the emitter and receiver are set around room temperature with T1 = 310 K and T2 = 290 

K, respectively. The dielectric function of fused silica (SiO2) is obtained from Ref. [110]. 

 

 

 
Figure 5.1 Schematics of radiative heat transfer between graphene-covered silica gratings 

separated by a vacuum gap of d. P is period, W is grating width, L is corrugation depth, 

and T1 = 310 K, T2 = 290 K. 

 

 

The radiative heat flux between graphene-covered grating and bulk silica (f = W/P 

= 1) at gap distance of 100 nm is shown in Figure 5.2 (a) as a function of . The 

maximum heat flux for graphene-covered bulk silica is 22.7 kW/m
2
 around  = 0.28 eV, 

which is nearly four times as large as that between bulk silica, shown as the horizontal 
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dashed line. Further increasing or reducing  will deteriorate the performance or even 

make graphene-covered silica inferior to bulk silica in terms of near-field heat flux. 

Nevertheless, for different gap distances, the chemical potential can in general be 

optimized to improve the heat transfer performance of bulk silica. Even greater heat flux 

is obtained for graphene-covered grating using f = 0.4, P = 500 nm, and L = 500 nm with 

a peak at about  = 0.2 eV.  

 

 

 
Figure 5.2 (a) Radiative heat flux between graphene-covered bulk silica as a function of 

chemical potential at d = 100 nm; (b) Spectral heat flux for four configurations. 

 

 

The spectral heat fluxes for bulk silica, suspended graphene sheets, graphene-

covered bulks, and graphene-coated gratings are plotted in Figure 5.2 (b) at d = 100 nm 

for comparison. The chemical potential of graphene is chosen as 0.3 eV, and grating 

parameters remain the same as for Figure 5.2 (a). The spectral heat flux between bulk 

silica is featured with two narrow peaks while suspended graphene has a broadband 

behavior. The heat flux between graphene-coated silica is feature with three wide bands, 

allowing the total flux to reach 22.6 kW/m
2
, which is much greater than the value of 5.84 
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kW/m
2
 between bulk silica. It should be noted that the heat flux between plain silica 

gratings is generally lower than that between bulk silica with a total heat flux of 2.74 

KW/m
2
. Hence, the spectral heat flux between silica gratings is not shown in Figure 5.2 

(b). When the silica grating is covered by a graphene sheet on both side of the emitter and 

receiver, the total heat flux is enhanced by more than one order of magnitude to 31.0 

KW/m
2
. This is about 37% greater than that for graphene-covered bulk silica. As shown 

by Figure 5.2 (b), the largest difference of graphene-covered grating from graphene-

covered bulk lies in the region between 1.6×10
14

 and 2.1×10
14

 rad/s where graphene 

plasmons are seriously suppressed by bulk silica (as to be discussed later). However, for 

graphene-covered gratings, the suppression is relieved. This is not surprising since 

geometrically 60% percent of graphene is not in contact with silica and thus the 

deterioration of graphene plasmons caused by silica in the above-mentioned frequency 

region will be lessened. 

The underlying mechanism for the great enhancement enabled by graphene-

covered bulk silica is explored next considering the interplay between graphene plasmons 

and silica phonon modes. For sub-micron gap distance, contributions of both propagating 

modes and the s-polarization evanescent modes become negligible compared with p-

polarization evanescent waves capable of supporting surface modes. The p-polarized 

energy transmission coefficient  ,p    for evanescent modes is given as [3, 244] 

   0 0
22 2 22

0, 4 Im( ) 1 ,     z zk d ik d
p p pr e r e k

          (5.1) 

where the Fresnel coefficient pr  for graphene-covered isotropic substrates is given in 

Refs. [194, 226] and 0zk is the z-component of the wavevector. The contour plots for the 
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p-polarization energy transmission coefficient  ,p    are shown in Figure 5.3 (a), (b), 

and (c) for bulk silica, suspended graphene, and graphene-covered silica, respectively. As 

shown in Figure 5.3 (a), two narrow band SPhP modes dominantly contribute to the 

radiative heat flux of bulk silica, as has been well understood [3, 240]. The energy 

transmission coefficient for suspended graphene sheets is featured with two branches as 

shown in Figure 5.3 (b) due to coupling of SPPs. The dispersion relation of the coupling 

SPPs can be obtained by zeroing 0221 zik d
pr e  and the details have been discussed in Ref. 

[233]. The low-frequency symmetric and the high-frequency antisymmetric branches are 

shown as white lines, which cross over broad bands and tend to merge together at large 

 . These two branches of coupling surface modes match well with the peaks of energy 

transmission coefficient contour in Figure 5.3 (b). It is clear that the broadband graphene 

plasmons and narrow band phonon resonance modes contribute predominantly to the heat 

transfer performance for graphene and silica, respectively.  

 

 

 
Figure 5.3 (a) Energy transmission coefficient contour of p-polarization at d = 100 nm for 

bulk silica; (b) Suspended graphene; (c) Graphene-covered silica. 

 

 

When graphene is coated on silica, as shown in Figure 5.3 (c), the interplay 

between graphene plasmons and silica phonon resonance modes leads to three wide 

bands featured with high energy transmission coefficient. The lower frequency band up 
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to 7×10
13

 rad/s is mainly due to graphene plasmons. Silica is a dielectric with very small 

loss in this region, thus supports a much lower spectral heat flux than graphene. 

Nevertheless, the presence of the silica dielectric improves photon tunneling over 

suspended graphene as shown in Figure 5.2 (b). Near the first surface resonance 

frequency of silica at 9.3×10
13

 rad/s, the spectral heat flux is notably deteriorated 

compared with that for bulk silica. This is presumably because the resonant photon 

tunneling for silica is truncated by the presence of graphene at very large β modes. Due to 

the modification of the Fresnel coefficient by graphene, pr  becomes close to one with 

diminishing imaginary part at extremely large β, leading to zero energy transmission 

coefficient. Nevertheless, the presence of graphene results in a broader middle band from 

1.0×10
14

 to 1.6×10
14

 rad/s, where silica behaves as a dielectric and the presence of 

graphene greatly improves the energy transmission coefficient. On the other hand, Figure 

5.3 (c) shows that the graphene plasmon modes are entirely suppressed in the region from 

1.6×10
14

 to 2.1×10
14

 rad/s, leading to the abrupt drop of spectral heat flux in this region 

as shown in Figure 5.2 (b). The third band in Figure 5.3 (c) ranges from 2.1×10
14

 to 

2.5×10
14

 rad/s and is similar to phonon resonance band of silica. The presence of 

graphene plasmon enhances photon tunneling at frequencies close to but away from the 

phonon resonance of silica with the price of suppressing the phonon resonance mode at 

very large β. The overall improvement outweighs the deterioration as can be seen from 

Figure 5.2 (b) for this band. Comparing Figs. 5.2 (a) with 5.2 (c), it can be seen that the 

two narrow SPhP bands in silica turns out to be three wide hybridized bands with 

graphene, leading to nearly fourfold increase of radiative heat flux.  

As discussed previously, graphene-covered grating can further enhance near-field 
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radiative heat transfer. However, its energy coefficient is not plotted in Figure 5.3 for 

direct comparison since it would require a 3D contour plot depending on both kx and ky, 

and besides, the modes are folded in the first Brillouin zone. Nevertheless, it can 

quantitatively understood that the significant enhancement is largely in the frequency 

region between 1.6×10
14

 and 2.1×10
14

 rad/s. When some part of the graphene is not in 

direct contact with silica, the suppression of graphene plasmon is diminished.  

The radiative heat flux between gratings and micro-objects can be predicted by 

geometry-based Derjaguin’s proximity approximation (PA) [83]. For 1D gratings, the PA 

can be written as 

  1PA r gQ fQ f Q    (5.2) 

where rQ and gQ represent the plane-plane heat flux for the ridge and groove region, 

respectively. Figure 5.4 gives the heat flux for plain and graphene-covered silica gratings 

as a function of the volume filling ratio of silica, using both the exact calculation and PA. 

The gap distance and chemical potential remain at 100 nm and 0.3 eV, respectively. Both 

the period and the corrugation depth are chosen as 500 nm. From Figure 5.4, the heat flux 

of plain silica grating almost linearly increases with f, and the agreement between PA and 

exact method is very good. Therefore, the radiative heat transport or photon tunneling 

between plain silica gratings tends to be a local phenomenon due to the short lateral 

propagating length of surface phonon modes [83]. A disadvantage of local heat transfer is 

that gratings can hardly perform better than the counterpart bulks. Nevertheless, 

depositing a graphene sheet on top of the grating will make the heat transfer much more 

efficient and nonlocal. As shown in Figure 5.4, the heat flux for graphene-covered 

corrugated silica is much greater than that without graphene. Besides, the heat flux does 
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not increase linearly with f according to PA, which significantly underestimates the heat 

flux for filling ratio less than 1. The nonlocal behavior could be because graphene 

plasmons have low loss and thus have lateral propagation length close to or longer than 

the period.  

 

 

 
Figure 5.4 Near-field heat flux for plain and graphene-covered silica gratings at different 

filling ratios when d = 100 nm, P = 500 nm, L = 500 nm, f = 0.4. 

 

 

Besides enhancing radiative heat transfer and breaking PA, it is worth noting that 

the presence of graphene helps relieve the performance sensitivity of silica gratings to the 

lateral shift between emitters and receivers, leading to robust thermal management 

devices. Misalignment will harm near-field heat transfer due to symmetry breaking and 

thus bad coupling of surface modes. The maximum misalignment or the minimum heat 

flux occurs when the emitter and receiver are laterally displaced by a half period. For 

example, at f = 0.2 the heat flux for a half period displacement is 728 W/m
2
, which is 
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only 42% of that for the aligned case. When graphene is covered, this ratio increases to 

84%. Similar results are obtained for f = 0.4, for which the ratio of heat flux for 

maximum misaligned gratings to that for aligned gratings increases from 59% to 77% 

with the presence of graphene.  

 

5.2 Near-Field Thermal Radiation between Metasurfaces 

Metasurfaces, planar metamaterials with subwavelength thicknesses, have been 

extensively investigated for far-field manipulation of light propagation, polarization 

states, and absorption in an unprecedented way,[245-249] and have some peculiar 

advantages over conventional metamaterials, such as less volumetric propagation loss, 

relative easy fabrication, and compatible integration with other nanodevices. However, 

their near-field radiative properties have not been investigated. Several groups have 

calculated near-field radiative heat transfer between structured materials, but rarely 

considered thin metamaterials. For instance, Guérout et al. theoretically demonstrated 

enhanced radiative heat transfer of gold nanostructures over bulk gold [82]. Liu et al. 

proposed to increase near-field radiative heat flux between polar gratings by covering 

graphene [84]. Chalabi et al. examined the effects of different shapes and the spatially 

resolved near-field radiative heat flux [250, 251]. An open question is whether the 

radiative heat flux of thin films can be further increased by pattering them into 

metasurfaces. 

The schematics of near-field thermal radiation for considered 1D and 2D periodic 

metasurfaces are shown in Figs. 5.5 (a) and (b), respectively. The temperatures of the top 

and bottom metasurfaces, which have identical geometry and are separated by a vacuum 

gap of d, are T1 = 310 K and T2 = 290 K, respectively. The period, width, and thickness 
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of the patterned metasurfaces are denoted by P, W, and h. The unit cell of 2D metasurface 

contains a square nanopillar, while that of 1D metasurface contains a beam extending to 

the infinity in the y direction, i.e., 1D gratings. 

 

 

 
Figure 5.5 Schematic of near-field radiation between (a) 1D and (b) 2D metasurfaces. 
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Figure 5.6 Radiative heat flux as a function of the volume filling ratio at P = 100 nm, d = 

100 nm, and h = 400 nm. 
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Figure 5.6 gives the radiative heat flux for both configurations with varying 

volume filling ratios. The volume filling ratio f is defined as W/P and W
2
/P

2
 for 1D and 

2D metasurfaces, respectively. The geometric parameters are taken as P = 100 nm, d =      

100 nm, and h = 400 nm. These values are used as default in this work unless otherwise 

specified. The radiative heat flux between thin films (f = 1) of the same thickness (h = 

400 nm) is denoted by the dash-dotted line and is 1860 W/m
2
. This value exceeds that 

between bulk doped silicon of 1629 W/m
2 

and is more than 15 times that between 

blackbodies. The underlying mechanism for the enhancement can be attributed to the 

coupling of SPPs inside the thin film, as discussed in Ref. [252] although different 

materials were used. Patterning the film into 1D metasurface can enhance thermal 

radiation for all practical volume filling ratios. Interestingly, while the 2D metasurface 

yields a radiative heat flux higher than that of thin films at moderate filling ratios, it does 

not support a heat flux as high as that of the 1D metasurface. Beyond f = 0.36, 2D 

patterning will deteriorate the radiative transfer as shown in Figure 5.6. The EMT 

approximation, which is valid only when P is sufficiently small, overpredicts the heat 

flux for both 1D and 2D configurations. The disagreement between the exact method and 

EMT is expected to be diminished when reducing the period, as was demonstrated for 

multilayered metamaterials [253]. The optimal heat flux supported by 1D and 2D 

metasurfaces reaches 10.79 kW/m
2
 and 3.17 kW/m

2
, respectively. Reducing P is 

expected to further increase the radiative flux. As indicated by the dashed and dotted 

curves predicted by EMT, the maximum possible heat flux of 1D and 2D configurations 

is 22.11 kW/m
2
 and 9.16 kW/m

2
, respectively. These values are about twelve and five 
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times as large as that between two films with the same thickness. Therefore, patterned 

thin metamaterials may increase the heat flux over the counterpart thin films and bulks. 
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Figure 5.7 Effects of period on the radiative transfer of metasurfaces for f = 0.16. 

 

 

The effects of period are shown in Figure 5.7 for f = 0.16 with other geometric 

parameters remaining the same. With decreasing period, the radiative heat flux for both 

configurations based on exact methods approaches the values predicted by corresponding 

EMT as expected. As an example, the heat flux of 2D metasurface at P = 50 nm is 4.26 

kW/m
2
, which is 25% less than that predicted by EMT. This discrepancy further 

decreases at small P. At P = 10 nm, the heat flux for 1D metasurface is 13.6 kW/m
2
, 

which is essentially the same as that from EMT. With increasing P, the heat flux 

decreases and will eventually approach to the limit governed by the proximity 

approximation based on pair-wise addition, i.e., the heat flux of thin films multiplied by a 
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factor of f. Metasurfaces support a higher radiative heat flux than thin films unless the 

period exceeds 900 nm and 150 nm for 1D and 2D configurations, respectively. 

Understanding the underlying mechanism of the enhancement enabled by metasurfaces 

and the reason why 1D metasurface has a higher radiative heat flux than the 2D 

counterpart is necessary before turning this technique into practical applications. 

The highest radiative heat flux for metasurfaces occurs when P becomes 

arbitrarily small when the periodic patterned structures can be homogenized as a thin 

layer of anisotropic effective medium characterized by EMT. The effective medium 

corresponding to both 1D and 2D metasurfaces is uniaxial with one distinction that the 

optical axis of homogenized 1D effective medium lies horizontally (the y direction) while 

that for 2D effective medium lies vertically (the z direction). The effective dielectric 

functions for ordinary O  and extraordinary E  can be calculated using expressions 

given in Refs. [253]. Then, the dielectric tensor of 1D and 2D effective medium is 

diag( E , O , O ) and diag( O , O , E ), respectively. The calculated values for the real 

parts of O  and E  as functions of the angular frequency are plotted in Figure 5.8 (a) for 

f = 0.16 and at a temperature of 300 K. It is assumed that the slight perturbation of 

temperature for the two metamaterials does not affect their dielectric functions. At 

frequencies below 2.46×10
14

 rad/s, the dielectric functions of orthogonal directions have 

opposite signs, implying that a hyperbolic dispersion is supported [68]. Therefore, both 

1D and 2D metasurfaces are hyperbolic metamaterials (HMM) with a thickness of h. For 

p-polarized electromagnetic waves with high-k, evanescent waves in conventional elliptic 

materials become propagating. The evanescent waves in the vacuum are coupled with the 

propagating high-k modes inside the HMM, leading to broadband high local density of 
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states (LDOS) [61]. This is the basic mechanism for the efficient radiative transfer 

supported by 1D and 2D metasurfaces.  

 

 

 
Figure 5.8 (a) Real part of the effective dielectric function for orthogonal directions for f  

= 0.16, the shaded region supports hyperbolic dispersion; (b) Photon tunneling 

probability at d = 100 nm when the period approaches to zero for 1D thin HMM; (c) 2D 

thin HMM. 

 

 

To further confirm this scenario, the photon tunneling probability (defined in the 

section of METHODS) for homogenized effective medium of 1D and 2D metasurfaces is 

shown in Figs. 5.8 (b) and 5.8 (c), respectively. Only p-polarization is considered since 

waves of s-polarization support neither surface nor hyperbolic modes and thus have 

negligible contributions for mesoscopic gap distances. As seen from Figure 4b, large 

photon tunneling probabilities are supported mainly in the hyperbolic region, which has a 

major contribution to the radiative heat flux between 1D metasurfaces. Similar 

phenomenon can be found for 2D metasurfaces as shown in Figure 5.8 (c), but the photon 

tunneling probability at low frequencies is quite small. This is why 1D metasurface gives 

rise to a higher heat flux than the 2D counterparts as observed in Figs. 2 and 3. At higher 

frequencies, the imaginary part of 2 2
2D 0 O O Ezk k      becomes large due to the 

increase of k0 and decrease of E , then the field will decay so rapidly that 
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 2Dexp 2 0zik h  . As a result, thin 2D HMM behaves as bulks as long as h is not too 

small. 

On the contrary, the photon tunneling probability of 1D thin HMM remains high 

at low frequencies as shown in Figure 4b. The longitudinal wavevector inside 1D HMM 

is given as [55] 

    2 2 2 2O
z1D O 0

E

cos sink k
 

      
 

 (5.3) 

where   is the angle between the optical axis and the normal of plane of incidence, and 

should be integrated from 0 to π/2 to calculate the radiative heat flux [68]. For low 

frequencies and high-k modes, kz1D becomes i  for 0   and O E    (the same as 

kz2D) for   = π/2. When 2   , kz1D is purely real if losses are not considered, and only 

purely hyperbolic modes, featured with slow decay, are present. When 0  , kz1D is 

purely imaginary and thus electromagnetic waves are not propagating but evanescent in 

1D HMM, and pure surface modes featured with fast decay are excited due to the 

negative sign of E . The above two scenarios can be confirmed from the surface 

resonance dispersion at the interface of vacuum and the effective anisotropic 1D grating, 

obtained from pole of the reflection coefficient as 

 
 

 

 2 2
E 0 E E 0 1D E

2 2
E 0 0 1D E 0 E

( )( )sin

( )( )cos 0

z z z z z z

z z z z

k k k k k k

k k k k k

   

     
 (5.4) 

where 2 2
E E 0zk k   , 2 2

0 0zk k  . It can be found that at 2   , Eq. (5.4) 

cannot be satisfied, demonstrating the lack of surface modes. For 0  , Eq. (5.4)  

becomes 0 E E 0z zk k   , which is exactly the same with the dispersion of surface 
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modes at the interface of the vacuum and a homogeneous metallic media characterized by 

E , and the resonance frequency lies at E 1   . When   lies between the two extremes, 

both hyperbolic and surface modes are supported in 1D HMM. In general, for any 

moderate value of  , the imaginary part of kz1D is larger than that of kz2D due to the small 

magnitude of 1/2
E
 , resulting in a more rapid decay. Therefore, the penetration depth for 

1D thin HMM will be smaller, and a relative insensitivity of the heat flux of 1D thin 

HMM to the film thickness compared with 2D thin HMM is expected.  

The thickness effects are shown in Figure 5.9 for different configurations. The 

radiative heat flux of 2D thin HMM increases monotonically with the thickness no matter 

when P is equal to 100 nm (exact Green’s function method) or approaches zero (EMT 

limit). As discussed in Figure 5.8 (c), the low radiative flux of 2D thin HMM at small 

thicknesses is attributed to the poor photon tunneling at low frequencies. Thin films, on 

the other hand, tend to have an opposite rend. With decreasing thickness, the radiative 

heat flux for thin films monotonically increases due to the strengthened coupling of SPPs 

until the thickness is about 3 nm. For such small thicknesses, patterning thin films into 

2D HMM will not lead to any increase but instead will reduce the heat flux by orders of 

magnitude compared even with the radiative heat flux of the films multiplied by f, the 

proximity approximation limit. As confirmed by both exact scattering theory and EMT, 

the radiative heat flux of 1D thin HMM has a weak dependence on the thickness due to 

the small penetration depth. It has a peak at h = 50 nm, which can be attributed to the 

coupling of surface modes, like thin films. The peak is small since only a part of the 

modes belongs to SPPs.  



 126 

0

5

10

15

20

25

0 500 1000 1500 2000

1D, exact

1D, EMT

2D, exact

2D, EMT

thin film

R
a

d
ia

ti
v
e

 h
e

a
t 
fl
u

x
 q

, 
k
W

/m
2

Thickness h, nm
 

Figure 5.9 Near-field radiative heat flux as a function of the thickness for different 

configurations at d = 100 nm. 

 

 

Optimal 1D and 2D HMMs with small periods provide higher radiative heat flux 

than thin films when h exceeds 15 nm and 170 nm, respectively, as indicated by the EMT 

curves. However, for smaller thicknesses, the radiative heat flux of thin films is the 

highest. The maximum q at d = 100 nm supported by thin films and 1D HMM is 24.4 

kW/m
2
 (h = 3 nm) and 24.0 kW/m

2
 (f = 0.04, semi-infinite), respectively. Indeed, the 

photon tunneling probability approaches to the theoretical limit of unity when coupled 

SPPs are excited though ranging over a narrow k-space band [68]. One the other hand, 

the coupling of high-k waves with the hyperbolic modes is weak although in a broad k-

space range. The photon tunneling probability will inevitably exponentially decay with 

tangential wavevectors since no resonances are excited to offset this decaying trend [131, 

254]. Nevertheless, this balance is reversed for larger gap spacing. For example, at d = 
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1000 nm, the maximum q supported by thin films with varying thicknesses is 266 W/m
2
 

while that for 1D HMM and 2D HMM is 380 W/m
2
 and 352 W/m

2
, respectively.  

 

5.3 Giant Enhancement of Nanoscale Thermal Radiation Based on 

Hyperbolic Graphene Plasmons 

Despite that SPPs and hyperbolic material dispersions can lead to a high near-

field radiative heat flux, both mechanisms have some limitations impeding a further 

increase of the heat flux. In Sec. 4.2, the hybridization of graphene plasmons and 

hyperbolic dispersion of doped silicon nanowires is proposed to overcome shortcomings 

of both modes. In this section, a totally different way is presented. The near-field 

radiative heat flux between graphene sheets is found to be further increased by more than 

one order of magnitude by patterning them into graphene ribbons. The mechanism is 

attributed to hyperbolic graphene plasmons that can boost the DOS in a board band to 

enhance the near-field energy transfer. 

The near-field radiative transfer between two aligned graphene ribbon arrays 

separated by a vacuum gap of d is schematically shown in Figure 5.10 (a). The ribbon 

arrays are periodic in the x direction with a period P and width W, and extend to infinity 

in the y direction. One of the ribbon arrays is identified as the emitter that is at a 

relatively higher temperature and the other as the receiver. In the present study, the 

temperatures of the emitter and receiver are set around room temperature with T1 = 310 K 

and T2 = 290 K, respectively. 
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Figure 5.10 (a) Schematic of near-field radiative heat transfer between periodic graphene 

ribbon arrays. (b) Ratio of the near-field radiative heat flux between graphene ribbons (q) 

to that for graphene sheets ( shq ). 

 

 

When the gap distance is much greater than the period of the graphene ribbons, to 

a certain extent, the calculation can be simplified based on the effective medium theory 

(EMT) [253]. Then, the graphene ribbon array can be homogenized into an anisotropic 

surface or 2D material, and its effective optical conductivity becomes a diagonal ( 2 2 ) 

tensor, diag(σx, σy), due to the different optical responses corresponding to the direction 

of the electric field. Based on the field average, σx and σy can be expressed as [255] 

  
(1 )

C
x

Cf f


 

   
 (5.5) 

and y f    (5.6) 

where f is the filling ratio defined as W/P, and 
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 (5.7) 
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is a static approximation considering the coupling of evanescent waves between adjacent 

unit cells. The calculation of near-field radiative heat flux between such anisotropic 

surfaces can be found in Refs. [68, 202]. 

The normalized near-field radiative heat flux between graphene ribbon arrays to 

that for graphene sheets is given in Figure 5.10 (b) for different gap distances at P = 20 

nm, f = 0.2. Clearly, according to the exact formulations, the ratio of the heat flux with 

graphene ribbons to that with graphene sheets can reach 15.3 at d = 15 nm and is still 

more than 3 folds when d increases to 100 nm. Take d = 50 nm as an example, the near-

field radiative heat flux between graphene sheets is already as high as 14.4 kW/m
2
, about 

120 times larger than the blackbody limit, due to the excitations of graphene plasmons 

along the graphene sheet. After pattering graphene into ribbons, the radiative heat flux 

further increases to be 122.8 kW/m
2
, more than 1000 times higher than that for 

blackbodies. This giant enhancement may offer possible benefits to energy harvesting of 

thermal radiation by increased heating rate capability, potential thermal management 

enhancements, and augmented noncontact temperature measurement. When the gap 

distance is several times greater than the period, EMT predicts the real heat flux well, as 

has been quantitatively shown in Ref. [253].  Nevertheless, the enhancement induced by 

surface patterning becomes trivial and even adverse for large gap distances (the reason 

will be discussed later).  

To explore the physical mechanism of the giant enhancement, consider the 

dispersion of SPPs at the interface between vacuum and the effective graphene ribbon 

arrays. Following the work of Patel and Grbic [256], the dispersion relation can be 

obtained from the pole of the reflection coefficient, and is given as 
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 2 2 2 2 2 2 2 2
0 0 0 0 0 0 02 ( ) 2 ( ) ( 4) 0x x y y x y x yk k k k k k k k                (5.8) 

where 0  is impedance of the vacuum. For graphene sheet, σx =  σy = σ, Eq. (5.8) 

recovers to the familiar dispersion of graphene, given as [126] 

 2 2
0 0 02k k    (5.9) 

where 2 2
x yk k    is the magnitude of the transverse wavevector. For a certain 0k  (or 

frequency ), the allowed values of xk  and yk  define the DOS, which is limited to the 

circle with a radius as 0 02k   . At moderate f, 2
0x y    is three orders of magnitude 

smaller than unity and thus can be neglected. When Im(σx) and Im(σy) have different 

signs, Eq. (5.8) becomes a hyperbolic equation without limitation on the allowed values 

of xk  and yk , suggesting that the allowed DOS becomes infinite. Therefore, it is 

expected that the radiative heat flux will further increase when the graphene plasmons 

dispersion becomes hyperbolic. Note that the resonance-based hyperbolic surface modes 

obtained here are in stark difference from the hyperbolic modes supported by 

metamaterials like metallic nanowires [257], for which the denominator of the reflection 

coefficient is nonzero so that no resonances are excited.  

The anisotropic optical conductivities for orthogonal directions are plotted in 

Figure 5.11 (a). Im(σy) remains positive in the whole frequency regime of interest, where 

the dominant contribution to the optical response of doped graphene comes from the 

scattering of free electrons. In the x direction, free electrons are confined in the ribbon, 

and Im(σx) is positive only for high frequencies and turns to be negative when the 

frequency is reduced to below the transition point of about 1.5×10
14

 rad/s. Figure 5.11 (b) 
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shows the spectral radiative heat flux for different configurations at d = 50 nm. Simple 

EMT can approximately predict the radiative heat flux across the whole frequency 

regime. It can be seen that it is the regime supporting hyperbolic graphene plasmons that 

a large enhancement of the radiative heat flux over graphene sheets exists. This low 

frequency regime up to the transition point contributes to more than 80% of the whole 

heat flux, confirming the vital role played by hyperbolic surface modes.  

 

 

 
Figure 5.11 (a) Effective optical conductivity of graphene ribbons for different directions. 

Here, the unit of the surface conductivity is millisiemens. (b) Spectral radiative heat flux 

for different configurations. 

 

 

To further confirm the above analysis, contours of the energy transmission 

coefficient at 5×10
13

 rad/s for graphene sheets and graphene ribbon arrays are plotted in 

Figs. 5.12 (a) and 5.12 (b), respectively. As shown in Figure 5.12 (a), large energy 

transmission coefficient exists only around two bright annuluses. The isofrequency curve 

of SPPs at the vacuum-graphene interface given by Eq. (5.9) is denoted as the white 

dashed circle with a radius of 0 4.6k  . When two graphene sheets are in close 
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vicinity, this circle splits into two branches due to the coupling effects. The dispersion 

relations of the coupled graphene plasmons are given as [131] 

  0 0

0

1 coth ,  outer circle, symmetric branch
2

z zk ik d  
   
  

 (5.10) 

 0 0

0

1 tanh ,  inner circle, antisymmetric branch
2

z zk ik d  
   
  

 (5.11) 

According to equations (5.10) and (5.11), the radius of the split two circles at the 

specified frequency becomes 0k = 24.7 and 2.5, respectively. They are in good 

agreement with the two bright rings in Figure 5.12 (a). 

As shown in Figure 5.12 (b), the regime featured with energy transmission 

coefficients for graphene ribbon arrays is no longer circles but hyperbolic lines. For high-

k waves with 0xk k  and 0yk k , the dispersion relation of effective graphene ribbon 

arrays presented in Eq. (5.8) can be approximated by its asymptote, given as [255] 

 0 2 2
0

4
1x

y x
y y

k k k


   
  

 (5.12) 

Equation (5.12) is represented by the white dashed curve on Figure 5.12 (b) at  = 5×10
13

 

rad/s. It can be seen that they qualitatively agrees with the contour plot, confirming the 

transition from circular to hyperbolic relationship by pattering graphene into ribbons. 

Note that mode couplings lead to two split branches in the energy transmission 

coefficient contour in each quadrant as can be seen from Figure 3b. Since the hyperbolic 

curve is open, ideally, there is no limit on the DOS. Practically, the hyperbolic 

relationship will not hold when  goes to infinity [253]. Nevertheless, Figure 5.12 (b) 

clearly shows that hyperbolic graphene plasmons can couple with extremely high-k 
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waves with 0k  exceeding 300. On the other hand, the maximum   value for near-field 

coupling with graphene sheets is only about 30. That is why graphene ribbon arrays 

support a much higher near-field radiative heat flux than counterpart graphene sheets. In 

terms of near-field enhancement, there is a drawback of hyperbolic graphene plasmons, 

that is, the coupling with low-k waves is rather weak. As shown in Figure 5.12 (b), the 

energy transmission coefficient is low when   is smaller than 2
0 01 4 ( )yk    , the 

intercept of Eq. (5.12) with the coordinate axis. When the gap distance increases, the 

value of cutoff   decreases, and low-k waves will play a more important role in radiative 

transfer [253]. Therefore, pattering graphene will actually reduce the heat flux at large 

gap distances, as already shown in Figure 5.10 (b).  

 

 

 
Figure 5.12 Energy transmission coefficient contours at ω = 5×10

13
 rad/s for (a) graphene 

sheets and (b) graphene ribbon arrays. 

 

 

One may further question whether the giant enhancement holds for different 

filling ratios and periods. As can be seen from Figure 5.13 (a), the enhancement holds for 

almost all practical filling ratios. Certainly, when f is infinitely small, the radiative heat 
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flux will diminish, and when f approaches unity, the radiative heat flux between ribbon 

arrays recovers to that for graphene sheets. Therefore, an optimal f featured with the 

maximum radiative heat flux is expected to exist. The optimal f is around 0.04 and 0.20 

when d is equal to 20 nm and 50 nm, respectively. The sign of Im(σy) remains positive 

and does not change with f since Im(σy) is linearly proportional to Im(σ). σC  is much 

smaller than σ, so that different values of / (1 )f f  at moderate f hardly change the sign 

of Im(σy). Therefore, hyperbolic graphene plasmons and large enhancement of the 

radiative heat flux will be supported for a broad range of f. Greater enhancement occurs 

at d = 20 nm than at 50 nm. The underlying reason is attributed to the weak coupling of 

hyperbolic SPPs with low-k waves, as previously discussed. As shown in Figure 5.13 (b), 

the maximum sh/q q  is 8.5 as denoted by the black square. This occurs when P 

approaches zero, which is the limit when EMT becomes accurate. With increasing period, 

the enhancement over graphene sheets deteriorates. This is because when the period 

becomes comparable to or larger than the gap spacing, EMT fails and the hyperbolic 

dispersion of graphene ribbon plasmons does not support a large heat flux. When the 

period is sufficiently large, the radiative heat flux between graphene ribbon arrays is 

expected to be the value obtained by multiplying the filling ratio with that for graphene 

sheets. Generally speaking, the period should be smaller than the gap distance in order to 

achieve significant heat flux enhancement. 

In practical applications, the ribbon arrays will be deposited on certain substrates. 

If the substrate is a dielectric material with close to unity dielectric function, like porous 

polymers, the excitation of hyperbolic graphene plasmons and all the results presented 

will not be affected. However, if the substrate supports SPPs or SPhPs (i.e., surface 
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phonon polaritons), like polar SiC and SiO2, the hybridization of the hyperbolic graphene 

plasmons with surface plasmon or phonon modes may be expected [84]. The substrate 

effect as well as for two graphene ribbon arrays that are not aligned may be further 

investigated. Note that the local dielectric function of graphene is assumed to be 

applicable to graphene ribbons. Quantum size effects and edge shapes may affect the 

optical response of graphene ribbons. Nevertheless, according to first principle 

calculations [258], if the ribbon width is larger than several nanometers, the local 

dielectric function still holds. As can be seen from Figure 5.13, large enhancements can 

be achieved for ribbon width ranging from several nanometers to a few hundred of 

nanometers.  

 

 

 
Figure 5.13 The radiative heat flux ratio for different values of (a) filling ratio f and            

(b) period P, while other parameters are fixed. The square mark in (b) is calculated from 

EMT. 
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5.4 Enhanced Electroluminescent Refrigeration Enabled by Near-Field 

Photon Tunneling 

When applying a forward bias to a p-n diode, electrons and holes will be driven 

into the junction area with at least some of them recombining radiatively. If the energy 

carried by these output photons is higher than the input electric power, a cooling process 

called electroluminescence refrigeration occurs through pumping heat from the lattice 

[259, 260]. This solid-state refrigeration technique has several unique advantages over 

conventional thermoelectric refrigerators, such as higher efficiencies even close to the 

Carnot limit, easier integration with other optoelectronic devices, and broader operation 

temperature. A recent direct experimental observation of the refrigeration effect, although 

with a small refrigeration rate, retriggered people’s interest [261]. In the past several 

decades, there have been some models proposed to simulate and predict the potential of 

biased semiconductors in refrigeration [262-269]. Berdahal [263] discussed the 

refrigeration effect from a biased junction to an external object of different temperatures 

considering only radiative recombination and assuming the extraction efficiency to be 

unit. Later, several groups studied the cooling effect induced by biasing semiconductor 

junctions considering various nonradiative recombination [262, 264-269]. Oksanen and 

Tulkki [270] investigated the refrigeration power density between two diodes under 

thermally non-equilibrium. However, most previous works only consider propagating 

waves. This is appropriate only when the biased junction and the ambient are far enough, 

for which the extra energy transfer channel via evanescent waves is lost. Besides, few of 

them consider the contributions of low-frequency phonon modes or intraband transitions, 
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which inexorably always lead to a flux flowing from the hot side to the cold side and thus 

offset the refrigeration effect. 

As has been discussed before, recent experimental and theoretical work have 

demonstrated that when the gap distance between two objects of different temperatures is 

smaller than the characteristic wavelength, the radiative energy exchange rate can be 

orders of magnitude larger than the blackbody limit due to the photon tunneling of 

evanescent waves [3, 12, 13, 79, 88, 196, 222, 271-278]. Similarly, when the biased low-

temperature junction is in a close proximity with a substrate of ambient temperature, 

evanescent waves may tunnel through and play an important role in mediating both the 

efficiency and refrigerate rate of the biased junction [279]. Chen et al. [279] investigated 

the heat transfer from a forward-biased junction to a higher temperature object 

considering contributions of evanescent waves and phonon modes, and found that 

refrigeration effects against a temperature difference of 10 K exist only when the gap 

separation ranges from tens to hundreds of nanometers, but did not consider the Planck 

radiation of regimes outside the active layer. Here, based on a more practical design and 

delicate choices of materials, the refrigeration rate is improved by more than one order of 

magnitude and predicted to exist from near- to far-field for certain range of temperature 

differences.  

  The considered configuration is schematically shown in Figure 5.14. The bottom 

object (emitter) is a standard GaSb p-i-n junction sandwiched by a top Ag strip and 

bottom Ag substrate acting as the anode and cathode, respectively. The top object 

(receiver) is a Ge film with a thickness of hGe on the Ag substrate. Unless specified, the 

thickness of p-typed doped GaSb hp = 0.1 m, n-type doped GaSb hn = 0.1 m, intrinsic 
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GaSb hi = 1 m, and hGe = 500 m. The bottom and top objects separated by a gap 

distance of d hold a low temperature of T1 and high temperature T2 = 300 K, respectively.  

 

 

 
Figure 5.14 Schematic of a forward-biased p-i-n GaSb diode separated with a Ag 

substrate with Ge deposited on top with a gap distance of d. 

 

 

The optical constants of Ge is tabulated in Ref. [110]. The dielectric function of 

Ag is obtained using a simple Drude model: 2 2
Ag p1 / ( )i       with a scattering 

rate 132.73 10  rad/s    and plasma frequency 16
p 1.37 10  rad/s    [3]. The dielectric 

function of GaSb for ultraviolet and visible wavelengths is from Ref. [110]. For near-

infrared regime, the optical constants are obtained from Ferrini et al. [280]. The refractive 

index and extinction coefficient for mid-infrared regime come from Ref. [110] and Ref. 

[281], respectively. For long wavelengths beyond 30 m, a Lorentz model is used to 

predict the dielectric function 2 2 2 2( ) ( )L Tj j           [282], where  = 

14.63,  =3.35×10
11

 rad/s, T = 0.0286 eV, and L = 0.0298 eV. For p- and n-doped 

GaSb, an extra Drude term 

2

2

15.1 p

Dj



   

is added to consider the contributions from free 
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electrons induced by doping, where the plasma frequency p and scattering rate D , 

corresponding to a Zn-doped p-type GaSb at the doping level of 1.3×10
17

 cm
-3

, are 138 

cm
-1

 and 114 cm
-1

, respectively [283]. n-type GaSb may have different values of plasma 

frequency and scattering rate since the effective mass of holes and electrons may be 

different or the two doping levels are different. However, in order to make later analyses 

easier, we assume the n-type and p-type GaSb have the same dielectric function.  

When externally applying a voltage through the electrodes on the emitter, let’s 

assume the voltage V only appears across the active intrinsic GaSb layer. Inside the active 

regime, photons above the bandgap achieve equilibrium with the biased conduction and 

valence band through radiative generation and recombination. As a result, the photons 

emitted have a nonzero chemical potential of qE, where q is the elementary charge [284]. 

Photons outside the active regime or below the energy bandgap neither interact with the 

biased electron-hole system nor have enough energy to excite the interband transitions. 

Therefore, they are in equilibrium with the lattice instead, leading to a conventional 

Planck distribution with a vanishing chemical potential. Subsequently, the mean energy 

of Planck’s oscillator depends on the position and frequency and can be given as 

  
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,otherwise
e 1

B

B

gqV k T

qV k T

h z h h

z T E





      

   


 

 (5.13) 

where the angular frequency g = 1.103×10
15

 rad/s corresponds to the bandgap energy of 

GaSb which is 0.726 eV.  

Since there is a nonuniform distribution of the chemical potential of photons due 

to the nonequilibrium set by the applied voltage, Kirchhoff’s law cannot be directly 
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applied to characterize the far-field radiative properties of a biased junction, nor is the 

scattering theory directly applicable to the near-field radiative properties. Here the dyadic 

Green function method combined with the fluctuation-dissipation theory is used to 

calculate the radiative heat transfer considering radiation with zero and nonzero chemical 

potentials. Random currents caused by thermal motion of the charge carriers are 

attributed to the emitted electromagnetic waves. The correlation of these random currents 

is given by the fluctuation-dissipation theory as [12, 285] 

   
   

   0* 4 , , , ,
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ik
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         



r
r r r r  (5.14) 

where subscripts i or k refer to the vector component, 0  is the vacuum permittivity, ik  

is the imaginary part of the dielectric tensor component, and   r r  or     is the 

Dirac delta function indicating spatial or temporal incoherence, respectively. For 

isotropic media, ik ik       where   is the imaginary part of the dielectric function and 

ik  is the Kronecker delta [3, 12]. Note that Eq. (5.14) is applicable to consider both low 

and frequency photons inside and outside the active regime, provided  , , ,z T E  is 

modified accordingly.   

The electric field and magnetic field at any position r are related to the source 

current at r  by the corresponding electric and magnetic dyadic Green’s function 

( , , )EG r r  and ( , , )HG r r  [3] 
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The radiative heat flux from the biased emitter to the receiver 1 2Q   can be obtained as  
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The radiative energy flux from the receiver to the emitter 2 1Q   can be obtained 

similarly, and the net energy exchange flux is 12 1 2 2 1Q Q Q   . ( , , )EG r r  and 

( , , )HG r r  for this multilayer setup are obtained analytically by transfer matrix method 

[190, 286, 287].  

Besides the energy exchange to the receiver, there is an extra electric power input to the 

emitter, which can be expressed as VJt. Assuming there is no current leakage caused by 

recombinations outside the active layer, Jt = Jr+Jnr, where Jr and Jnr consider the 

contributions from radiative and nonradiative recombination, respectively.  Employing 

the reciprocity principle of Green’s function, Jr can be simply expressed as 
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Assuming GaSb has a high quality and only Auger effect contributes to the nonradiative 

recombination. Therefore, Jnr can be expressed as 

 2
nr i i( )( )n pJ qh C n C p np n    (5.18) 

The Auger coefficient 0 n pC C n C p  is taken as 5×10
-30

 cm
6
s

-1
 and the intrinsic carrier 

density ni = 1.5×10
12

 cm
-3

 [288]. Then the net power output from the emitter is  
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 net 12 tQ Q EJ   (5.19) 

The refraction index and extinction coefficient of intrinsic and doped GaSb as 

well as Ge are shown in Figure 5.15. It can be seen that the Drude term modifies the 

optical response of GaSb only for low frequency regime below 3×10
14

 rad/s, as expected. 

Below ωg, the net spectral energy exchange between the emitter and receiver is negative 

since T1 < T2, and thus the conventional Planck’s oscillator  1, , ,z T E  is smaller 

than  2, , ,z T E  . However for high frequencies above the bandgap energy, the heat can 

flow in an opposite direction from the cold emitter to the hot receiver when 

 1, , ,z T E  is larger than  2, , ,z T E  , i.e., 1

2

(1 )
T

E
q T


  . Figure 5.16 (a) shows the 

net power output from the emitter Qnet as a function of the applied voltage E for d = 10 

m and T1 = 290 K, which lies in the far-field and further increasing d will hardly affect 

Qnet as will be shown later. As expected, in order to get refrigeration effects (positive 

Qnet), the applied E should be large enough so that the positive spectral energy exchange 

above the bandgap can at least compete with the low frequency negative values. If E is 

very large but still far below the lasing threshold  g q , it can be found that EJt scales 

with 13 2 BqE k TEe while Qnet scales with 1BqE k Te , leading to a negative Qnet at a large E, as 

can be seen from Figure 3a. The maximum far-field refrigeration rate against a 

temperature difference of 10 K is 7.86 W/m
2
 occurring at E = 0.50 V.  
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Figure 5.15 Optical response of intrinsic GaSb, doped GaSb, and Ge. (a) Refraction 

index. (b) Extinction coefficient. 

 

 

Pushing the two objects into the close proximity with d = 100 nm, as shown in 

Figure 5.16 (b), Qnet versus E has a similar trend but the maximum refrigeration rate is 

enhanced by more than two orders of magnitude to 1548 W/m
2
. This is because for large 

gap separations, only propagating waves contribute to the energy exchange and 

refrigeration effect while for small d, evanescent waves start to tunnel through and play a 

dominant role especially for nanometer gap distance. Similar photon tunneling effects 

have been demonstrated to lead to highly efficient nanoscale thermal radiation beyond 

Planck’s law [66-68, 95, 131, 235]. Compared with the previous work by Chen et al. 

[279], the maximum refrigeration rate is improved by more than one order of magnitude 

and the refrigeration effect against a temperature difference of 10 K is extended to the 

far-field. The main mechanism for this improvement lies in the good match of optical 

response of GaSb and Ge above the bandgap while a mismatch of phonon or plasmon 

modes below the bandgap, as can be clearly seen from Figure 5.15 (b).  
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Figure 5.16 The net power output from the biased diode as a function of applied voltage 

for (a) d = 10 m and (b) d = 0.1 m. 

 

 

Figure 5.17 (a) gives the maximum refrigeration rate as a function of the gap 

distance, obtained by optimizing the applied voltage E for each d. The maximum 

refrigeration rate stays positive for all the gap distances, demonstrating the refrigeration 

capability of the proposed design ranging from near-field to far-field. When d is larger 

than 5 m, Qnet approaches a constant and will be independent of the gap distance. This 

regime is called far-field since both interference and photon tunneling effects are 

negligible. With decreasing d, a wavy feature shows up due to the interference effects, 

which appear when d is in the same magnitude of the interested wavelength (1.7 m 

corresponding to the bandgap). Further decreasing d, a dip occurs at 0.7 m. In order to 

explore the underying mechanism, Figure 5.17 (b) presents the spectral radiative energy 

exchange between the emitter and the receiver at E = 0.5 V for different gap distances. 

Compared with d = 10 m, it can be found that the spectral energy exchange at d = 0.7 

m for high frequencies above the bandgap stays almost the same but is enhanced greatly 

for low frequencies. It is not surprising since the gap distance of 0.7 m although much 
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smaller than the wavelength (around 10 m) where phonon or plasmon modes play a 

dominant role is still comparable to the bandgap wavelength, meaning that 0.7 m lies in 

the near-field regime for phonon or plasmon modes but still in the far-field regime to 

some extent for high frequencies. As a result, the negative energy exchange below the 

bandgap is enhanced while the positive one above the bandgap does not change much, 

leading to the shrinking refrigeration rate. Reducing d down to 0.1 m, the negative low 

frequency energy exchange is further enhanced but the positive high frequency energy 

exchange is improved more prominently, leading to the increased refrigeration rate, as 

shown in Figure 5.17 (a).   

 

 

 
Figure 5.17  (a) The maximum net power output from the biased diode versus the gap 

distance. (b) The spectral radiative energy exchange between the diode and the top Ge-

Ag object at different gap distances with E = 0.5 V.  

 

  

The previous analysis is only for the temperature difference of 10 K, so, one may 

wonder what the maximum achievable temperature difference can be achieved through 

this electroluminescence refrigeration technique (assuming T2 is a constant of 300 K). 

The maximum net power output from the emitter versus the temperature difference at d = 
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10 m and 0.1 m is given in Figure 5.18 (a) and 5.18 (b), respectively. With increasing 

temperature difference or the decrease of T1, the difference between 

1( )
1 (e 1)BqE k T

 and 21 (e 1)Bk T
 at a certain E shrinks so that the positive energy 

exchange at high frequencies decreases while the negative energy exchange at low 

frequencies is enhanced, leading to low refrigeration rate. When the net energy exchange 

is not large enough to compensate the input electric power, the net power output becomes 

negative and there will be no refrigeration but heating. The maximum temperature 

difference occurs when the net power output is zero. For d = 10 m, the maximum 

temperature difference is 16.6 K, beyond which the heat starts to flow in rather than 

being extracted out. Pushing the emitter and receiver into the near-field with a gap 

distance of 100 nm, the maximum temperature difference achievable is increased to be 

25.2 K. The much higher refrigeration rate at 0.1 m means that the positive high 

frequency energy exchange flux is much larger than its negative counterpart. Therefore, 

there is no wondering why the maximum temperature difference rises so that the negative 

energy exchange can be enhanced greatly enough to compete with the high positive flux. 

It is also worth to note that for a temperature difference different from 10 K, the 

refrigeration effect may not show up for all gap distances. For example, for T1 = 280 K, 

the net refrigeration rate is negative in the far-field, and becomes positive only when the 

gap distance is smaller than 0.176 m. So, near-field radiation can also make the 

otherwise heating effect into refrigeration.     
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Figure 5.18  The maximum net power output from the biased diode as a function of the 

temperature difference for (a) d = 10 m and (b) d = 0.1 m. 

 

 

5.5 Summary 

This chapter studies the near-field thermal radiation between various 

nanostructures based on exact approaches. The major finds are summarized in the 

followings.  

The exact calculation of the near-field radiative heat transfer between graphene-

covered silica gratings demonstrates that the heat flux between corrugated silica can be 

enhanced by more than one order of magnitude when covered with a graphene sheet on 

top of the grating on each side of the vacuum gap. It is found that depositing graphene 

makes the local radiative heat transport between silica gratings nonlocal, and the 

performance sensitivity to lateral shift can also be greatly relieved. Similar observations 

can be expected for other polar materials supporting narrow band SPhP, such as SiC and 

MgO. The proposed design can be used to achieve highly efficient heat dissipation, 

increase the power output of thermophotovoltaic cells, and improve the contrast of non-

contact thermal modulation. 
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The near-field radiative heat transfer of 1D and 2D metasurfaces is investigated 

based on the exact methods and EMT approximation. The photon tunneling probability 

between thin films is high only when resonances are excited over narrow k-space regime. 

Patterning thin films of moderate thicknesses into 1D and 2D metasurfaces can increase 

the heat flux. The underlying mechanism is due to the excitation of hyperbolic modes 

featured with high LDOS in a broad frequency and k-space regime. The radiative heat 

flux for thin 2D HMM increases monotonically with the thickness while the heat flux for 

thin 1D HMM is not as sensitive to the thickness and is higher than that of 2D HMM due 

to the relatively rapid decay of high-k modes supported by surface waves.  

A giant enhancement of near-field radiative heat flux over more than one order of 

magnitude is predicted at nanoscale distances based on exact formulations by patterning 

graphene sheets into ribbon arrays. The underlying mechanism is that the originally 

closed circular isofrequency dispersion of graphene plasmons is opened to be hyperbolic, 

leading to broadband singularities of DOS. The hyperbolic graphene plasmons can couple 

strongly with extremely high-k modes but weakly with low-k waves, enabling very 

efficient radiative energy transport mainly at small gap distances. The fundamental 

understanding of near-field thermal radiation between graphene ribbon arrays is deepened, 

and a new route for further enhancing the radiative heat flux is presented.  

The electroluminescent refrigeration of a proposed practical design is investigated 

by employing the fluctuation-dissipation theory and the dyadic Green’s function method. 

Pushing the cold forward biased diode and a hot object into the near-field regime with a 

gap distance of 100 nm, the refrigeration power rate is enhanced by more than two orders 

of magnitude. The operation range of the temperature difference is also broadened from 
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16.6 K to 25.2 K. Moreover, the unachievable refrigeration effect in the far-field may be 

possible by reducing the gap distance down to the near-field.  



 150 

CHAPTER 6 

MANIPULATION OF CASIMIR FORCE BY METAMATERIALS 

 

In previous two chapters, we tried to enhance the near-field thermal radiation by 

metamaterials for application in energy harvesting and thermal management. The Casimir 

interaction, arising from momentum exchange between fluctuating electromagnetic 

waves, always accompanies near-field heat transfer [22, 23, 93]. Subsequently, in 

practical applications of microelectromechanical systems (MEMS) and 

nanoelectromechanical systems (NMES) for thermal management, the Casimir stiction 

between working parts has to be considered even in the vacuum. Indeed, the Casimir 

force can be as large as 130 kPa at a gap spacing of 10 nm, and thus could cause a failure 

of mesoscopic systems and devices [8]. Section 6.1 demonstrates enhanced near-field 

energy transport and suppressed momentum exchange simultaneously. In Sec. 6.2, a 

design of achieving tunable levitation based on repulsive Casimir force is proposed, 

followed by a brief summary in Sec. 6.3.  

 

6.1. Enhanced Near-Field Thermal Radiation and Reduced Casimir Stiction 

Between Doped-Si Gratings 

A high near-field radiative heat flux is usually desired due to wide applications in energy 

harvesting and thermal management. However, the momentum exchange (small Casimir stiction) 

is often preferred in the practical applications of MEMS devices. So, the question is: can we 

realize them simultaneously although they seem to be controversy? The schematic of 

considered nanostructure is shown in Figure 6.1, where P is the period, W is the grating 
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width, and H is the grating thickness. Note that   is the lateral displacement between the 

two gratings with identical geometry. In all the calculations, temperatures of the emitter 

and receiver are set to T1 = 310 K and T2 = 290 K, respectively. The following geometric 

parameters are chosen as the default values unless otherwise specified: P = 200 nm, d = 

400 nm, f = 0.2, H = 1 m, and   = 0 (aligned case).  

 

 

 
Figure 6.1 Schematic of near-field energy transfer and momentum exchange between two 

one-dimensional doped-silicon gratings with a lateral displacement of  . 

 

 

The radiative heat flux between two gratings as a function of the filling ratio is 

plotted in Figure 6.2 (a), while other geometric parameters are set as the default values. 

When f = 1, both results reduce to the case for two planar substrates (bulk doped silicon) 

for which the near-field heat flux is 294 W/m
2
. The radiative heat flux predicted by PA 

decreases linearly as f is reduced, which is in opposite to the trend calculated by the 

scattering theory (exact). When f = 0.05, the heat flux achieves a maximum value of 1154 
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W/m
2
, which is 20.7 times as large as what is predicted by PA, breaking down the 

assumption of localized radiative transport. Further decreasing f will result in a reduction 

of the heat flux. Of course, f = 0 implies the situation between two planar media with a 

gap distance d + 2H and both the exact solution and PA method give the same result. 

However, even though the filling ratio is as small as 0.01, the heat flux is enhanced to 

over 1000 W/m
2
 as predicted by the scattering theory. The radiative heat transfer for 

doped-silicon gratings is very efficient with higher heat flux at any practical filling ratio 

than that for bulk doped silicon. This is in contrast to aligned gratings made of polar 

materials, such as silica, which have been demonstrated to support localized heat 

transport due to the short lateral propagation length of surface phonon modes [83]. For 

this reason, PA works well for aligned silica gratings and, as such, silica nanostructures 

can barely outperform bulk materials in terms of near-field radiative heat transfer [83, 

84]. For doped-silicon gratings, reducing the filling ratio can result in an enhancement of 

more than two orders of magnitude over that predicted by the geometry-based PA. 

As shown in Figure 6.2 (b), the near-field heat flux increases with the grating 

depth according to the exact solution, while PA predicts an opposite trend. When H is 

close to zero, the calculated radiative heat flux based on the exact solution recovers the 

value of 294 W/m
2
, i.e., between two planar substrates. The heat flux between gratings 

increases slowly and tends to saturate when the grating thickness exceeds 10 m, 

suggesting that the radiation penetration depth of the grating film is on the order of 

several micrometers. When H is further increased, the substrates beyond the grating 

region contribute little to near-field radiative transfer.  
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Figure 6.2 Radiative heat flux as a function of (a) filling ratio /f W P  and (b) grating 

height H, calculated from both the scattering theory (indicated as exact) and the PA 

method for aligned gratings. 

 

 

The near-field radiative heat flux between gratings based on the scattering theory 

is compared with the predictions from EMT and PA as shown in Figure 6.3. In order to 

identify the region where doped-silicon gratings perform better than bulk counterparts, 

the radiative heat flux for bulk doped silicon is also shown in Figure 6.3. The effect of 

period on the calculated heat flux is shown in Figure 6. 3 (a), in which d, f, and H are kept 

at the default values of 400 nm, 0.2, 1 m, respectively. The predicted heat fluxes by 

EMT and PA are independent of the period for aligned identical gratings and thus are flat 

lines. Interestingly, as the period decreases, the heat flux predicted by the scattering 

theory (exact) approaches and finally coincides with that by EMT. For example, when P 

= 20 nm the heat flux from the exact solution is 941.54 W/m
2
, which is essentially the 

same as the EMT prediction of 941.58 W/m
2
. With decreasing period and the width of 

the gratings, it becomes difficult for waves to sense the small features and, therefore, 

homogenizing the grating as an effective medium becomes more reasonable. Similar 

observations were shown for metallodielectric metamaterials in Ref. [253], where 
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quantitative criteria for the validity of EMT in predicting radiative heat transfer between 

multilayers are given.  

On the other hand, if the period becomes large enough, the radiative heat transfer 

is expected to achieve the value predicted by PA due to the negligible interactions 

between different unit cells nearby. At P = 20 m, the heat flux of 96.0 W/m
2
 as 

predicted by the scattering theory is only slightly higher than the PA limit of 93.3 W/m
2
. 

The exact solutions lie between the upper asymptotic line governed by the EMT limit and 

the lower asymptotic line governed by the PA limit. Corrugating bulk doped silicon helps 

to enhance the radiative heat flux for small periods, where the many-body interactions 

between neighboring unit cells become nontrivial.  

 

 

 
Figure 6.3 Comparison of heat flux calculated from the scattering theory with EMT, PA 

limit, and bulks. (a) Effects of period for d = 0.4 m; (b) Effects of gap distance at P = 

0.2 m. 

 

 

The near-field radiative heat flux for gap distance varying from 10 nm to 10 m is 

shown in Figure 6.3 (b) when other geometric parameters are fixed at the default values. 

The agreement between the scattering theory and EMT is excellent when d > 0.6 m. The 
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reason is that the number of contributing modes decreases with increasing gap spacing 

[207, 253]. Then, at large d, the major contribution comes from low-k modes with longer 

effective wavelengths. EMT is valid when the effective wavelength is greater than the 

period. However, when the gap spacing exceeds 10 m, beyond the characteristic 

wavelength of thermal radiation, photon tunneling effects become weak and the radiative 

heat flux will converge to the far-field values when the energy transfer is dominated by 

propagating modes and independent of the gap spacing anymore.  

With decreasing d, the exact solution deviates from the EMT result but 

approaches the PA prediction. Hence, the near-field radiative heat transfer tends to be 

localized at small gap spacing since the field will be highly confined due to the dominant 

contribution of high-k modes. Figure 3b also demonstrates that for the chosen values of f, 

H, and P, doped-silicon gratings outperform the bulk counterparts in terms of the heat 

transfer enhancement for d > 15 nm. Another interesting phenomenon is that the near-

field heat flux of doped-silicon grating exhibits a power law close to d
1

 for sub-micron 

gap spacing rather than the well-known d
2

 (obtained by assuming p-polarized waves 

have dominant contributions [289]) as is the case for both bulk and homogenized media 

supporting surface resonances. 

The underlying mechanism for the efficient radiative heat transfer is further 

explored by considering the spectral distribution, effective dielectric functions, and 

contour plot of the energy transmission coefficient. Using the default values, the exact 

solution gives a heat flux of 736 W/m
2
, which is about eight times as high as the PA limit 

and 78% of the EMT limit. The heat flux spectra predicted by the three methods are 

plotted in Figure 6. 4 (a). It can be seen that the spectral heat flux predicted by the 
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scattering theory is much higher than that by PA from 3×10
13

 rad/s to 3×10
14

 rad/s. The 

surface resonance mode of doped Si lies at 2.88×10
14

 rad/s [68], where there is a small 

rise in the PA prediction. However, this feature does not show up according to the exact 

solution and EMT, both of which give very similar trend in the spectral heat flux. The 

reason is further explored by considering the dielectric functions predicted by EMT.  

 

 

 
Figure 6.4 (a) Spectral radiative heat flux predicted by the scattering theory, EMT, and 

PA with the default parameters; (b) Effective dielectric functions for orthogonal 

directions for doped silicon gratings with f = 0.2. 

 

 

The real parts of the dielectric function in orthogonal directions, O  and E , are 

shown in Figure 6.4 (b). When O  and E  have different signs, the dispersion becomes 

hyperbolic with unbounded density of states [61, 67]. As a result, high-k modes become 

propagating in the homogenized grating region. The local density of states (LDOS) 

becomes high, leading to broadband efficient photon tunneling [66]. The hyperbolic band 

ranges from very low frequencies to 2.58×10
14

 rad/s as denoted by the shaded region in 

Figure 6.4 (b).  
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The energy transmission coefficient contour for 0yk   and 0 /xk P    based 

on the scattering theory and EMT is given in Figure 6.5 (a) and Figure 6.5 (b), 

respectively. Because the cutoff wave vector for hyperbolic modes, defined as 1.94/d 

[253], is less than 2π/P, only modes in the first Brillouin zone have nontrivial 

contributions to the radiative heat flux and the folding of other diffraction orders has 

negligible contributions. For EMT, the calculation is set to 0    and 0 / P   , in 

which case the cross-polarization terms become zero. The energy transmission coefficient 

considers both s and p polarizations and hence the upper limit is two instead of one [68]. 

The agreement of the energy transmission coefficient predicted by both the scattering 

theory with the EMT is quite good. For s-polarized waves at frequencies below 2.58×10
14

 

rad/s where O 0  , the gratings behave like a metal and give a very small  . At high 

frequencies, the energy transmission coefficient for s-polarized waves is large for 

propagating waves since O  is greater than zero and O  is small. However, photon 

tunneling for s-polarized waves contributes little to near-field radiation because of the 

negligibly small energy transmission coefficient (or tunneling probability). Attention is 

now paid to p-polarized waves as discussed next. 

When 0yk  , the reflection coefficient at the interface between vacuum and 

homogenized gratings for p-polarized waves is given as [68, 216] 
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 (6.1) 

Only ppr  is considered since neither s-polarized waves nor polarization coupling effects 

are important for high-k evanescent waves [68]. Considering E  (the imaginary part) is 
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close to zero though not shown here, E  can be replaced by its real part E  and Eq. (6.1) 

can be recast as follows:  
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r
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    
 (6.2) 

Note that for evanescent waves the imaginary part of ppr  must not be zero in 

order for the   to become nontrivial [68]. For the high-frequency region beyond the 

hyperbolic band, O 0   and O  is negligible, as a result, 2 2
0 Oxk k   becomes purely 

imaginary when 0xk k  is greater than O , which is about 1 as shown in Figure 4b. The 

result is a very low tunneling probability at high frequencies. For propagating waves at 

high frequencies,  can still be large for p-polarized waves due to the dielectric behavior 

for both ordinary and extraordinary waves. Even though the combination of s- and p-

polarized waves gives large   values (1.0 to 1.8) in this region, the contribution from the 

high-frequency region to the total radiative heat flux is less than 10%.  

In the hyperbolic region, O 0   and O  is large, so that 2 2
0 Oxk k   has a 

dominant real part at low frequencies, leading to nontrivial energy transmission 

coefficients of evanescent waves. Doped-silicon gratings exhibit the unique property of 

hyperbolic modes with large photon tunneling probability in a broad frequency band. 

This is the main reason for the enhancement of near-field radiation by gratings over bulk 

doped silicon. As shown in Figure 6.5, even in the hyperbolic region,   is very small for 

low- xk  modes. When the hyperbolic film representing the grating region is thin, smaller 

than the penetration depth of the slow-decaying low- xk  modes, the film becomes 
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transparent. Due to the metallic feature of the doped-silicon substrate, the resulting   is 

very small in the hyperbolic band for low xk  values. This has been confirmed by 

calculations with increasing H, which results in higher energy transmission coefficient for 

low- xk  modes (although not shown here).  

 

 

 
Figure 6.5 Contour plots of the energy transmission coefficient at 0yk   for the default 

parameters: (a) Exact solution based the scattering theory using RCWA; (b) EMT by 

setting 0  . 

 

 

It is worth noting that thin-film effects also play a role such that the doped-silicon 

substrates act together with the hyperbolic film to enhance near-field heat flux for high-

xk modes. The demonstrated hyperbolic nature may come from the coupling with short-

range SPPs [290]. The slight difference between Figure 6.5 (a) and Figure 6.5 (b) is that 

the hyperbolic band featured with a large energy transmission coefficient is slightly 

broader for an effective medium described by EMT, suggesting that the hyperbolic 

dispersion at large wave vectors fails to hold for actual doped-silicon grating. This 

explains why EMT tends to predict a higher radiative heat flux than the exact solution. 

Similar phenomena have been noticed in multilayered metamaterials [61, 210, 253]. 
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Overall, it can be clearly seen that the photon tunneling is effective in the hyperbolic 

region with a large number of xk  modes except those very close to the light line. That is 

the reason why doped-silicon gratings support a much higher heat flux than bulk 

materials. Furthermore, since high xk  modes become propagating in the gratings and the 

propagation length can exceed one period, near-field radiative transport with doped-

silicon gratings tends to be delocalized;  this explains why PA fails as the period becomes 

sufficiently small. 

The formula for predicting the Casimir stiction between doped Si grating based on 

the scattering theory has been given in Sec. 2.4. The dielectric function of doped silicon 

at the imaginary frequency i    is given as [291] 

  
 

22
0

2 2
0

10.835
1.035

p
    

   
 (6.3) 

Note that the first two terms on the right side of Eq. (6.3) are the high-frequency 

dielectric response of silicon and are independent of the doping level. Here, 0 = 

6.6×10
15

 rad/s is a fitted resonance frequency used to describe the interband transition for 

intrinsic silicon [291]. The last term of Eq. (6.3) represents the intraband contribution, 

where the values of p  and   are given in Section II for a doping concentration of 10
20

 

cm
3

. Note that the high-frequency dielectric response of silicon can be treated as a 

constant in the calculation of radiative heat transfer, since the contribution from 

frequencies higher than 4.0×10
14

 rad/s is negligible. However, for the Casimir interaction, 

these high-frequency modes are significant and even dominant for gap distances below 

hundreds of nanometers. The Casimir force of doped-silicon gratings Fg normalized by 

that of bulk doped silicon Fb is plotted in Figure 6.6 for varying submicron gap distances 
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with two periods P = 0.2 m and 1.0 m with f = 0.2 and H = 1 m. The dashed lines 

with marks represent the results from the scattering theory using RCWA. As shown as 

the dash-dotted line, the PA prediction is independent of the period and gap distance. 

Since Casimir force is a strong function of the distance between two parallel planar 

surfaces, the ratio /g bF F  in the PA limit approaches to the filling ratio of 0.2 for aligned 

gratings. In contrast to near-field energy transfer, the Casimir force is always reduced by 

surface corrugation as predicted by both the scattering theory and the PA method. Similar 

results were demonstrated for intrinsic silicon and metal gratings [28, 29, 31, 32]. 

Nevertheless, the PA method may under- or over-predict the Casimir force as compared 

with the exact method. It is interesting to note, according to the exact solution, the 

Casimir force of doped-silicon gratings is reduced to below the PA limit at gap distances 

below several hundred nanometers, which fall in the desired separation range for near-

field energy harvesting and thermal management due to the prominently high radiative 

heat flux. The reason for the reduction of Casimir force below the PA limit may be 

attributed to the strong interactions of the fields between the ridges and those inside the 

grooves. Virtual photons confined between the ridges of the emitter and the receiver tend 

to leak when being close to the edges. The Casimir force predicted by the scattering 

theory for P = 1 m tends to be closer to the PA limit than for P = 0.2 m. This is 

expected since both the edge effects and interactions between neighboring unit cells will 

become weak for increasing grating period. Therefore, besides improving the near-field 

radiative heat flux, patterning doped-silicon surfaces helps to relieve the Casimir stiction.     
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Figure 6.6 Casimir force between aligned doped-silicon gratings normalized to that for 

bulk counterparts as a function of the gap distances. 

 

 

The heat flux and Casimir force generally decrease when some lateral 

displacement   is introduced between the top and bottom gratings since mode coupling 

is deteriorated due to symmetry breaking. Such an effect has been considered for 

potential devices such as thermal modulators [83]. Before possible applications of doped-

silicon gratings in modulating the heat flux and attraction force, it is necessary to study 

the effects of lateral displacement. To simplify the analysis, the relative lateral 

displacement P  is chosen to be 0.5, i.e., the maximum misalignment, so that the heat 

flux and Casimir attraction force should be the smallest. The ratio of the radiative heat 

flux and Casimir force between the misaligned case and the aligned case, =0.5 =0PQ Q 
 

and =0.5 =0PF F 
, are shown in Figure 7a and 7b, respectively, for varying grating 

period.  When the period is small, below 200 nm, both the radiative heat flux and Casimir 
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force remain the same despite of the misalignment. This is not surprising since when the 

period is shorter than the wavelength of the dominating modes, gratings behave as a 

homogeneous film according to the EMT. Even when d = 0.5 m, the heat flux and 

Casimir force for misaligned case are still very close to that for the aligned case. 

Therefore, when the period is small, the heat flux and Casimir force for the doped-silicon 

gratings are insensitive to the displacement. As the period increases, there exists a strong 

dependence of both the radiative energy transfer and momentum transfer on the lateral 

displacement. As expected, if P exceeds 10 m, both of the ratios approach those as 

governed by the PA limit. The PA limit of =0.5 =0PQ Q 
 is 56% as seen from Figure 6.7 

(a), while that of =0.5 =0PF F 
 is only 2% as seen from Figure 6.7 (b). This is because 

the Casimir interaction is more sensitive to the gap spacing (d
4

) compared with the near-

field radiative heat flux (d
2

).  

 

 

 
Figure 6.7 Ratio of (a) the radiative heat flux or (b) Casimir force for the misaligned 

grating when P  = 0.5 to that corresponding to the aligned gratings as a function of the 

period. 
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6.2 Tunable Stable Levitation Based on Repulsive Casimir Interactions  

The desire of overcoming the Casimir stiction of MEMS devices has been one of 

the major driving forces for realizing repulsive force. Magnetic materials were introduced 

to achieve the Casimir repulsion through the vacuum gap [292, 293]. However, both 

these cases are based on nonphysical assumptions since infinite permeability is used by 

Boyer [292] and the independence of frequency for both permittivity and permeability is 

employed by Kenneth et al. [293]. Indeed, materials supporting non-unity permeability in 

the optical region which usually has the dominant contribution to the Casimir force do 

not exist in nature. This is because the interaction of materials with the magnetic field of 

electromagnetic waves is weak especially for short wavelengths due to the small value of 

the Sommerfeld fine-structure constant. Fortunately, artificial metamaterials with 

subwavelength unit cells such as split-ring resonators have been both theoretically and 

experimentally demonstrated to support strong magnetic responses. Based on EMT, both 

metamaterials supporting effective magnetic resonances and chiral materials with strong 

anisotropy have been claimed to induce repulsive Casimir force [294-299]. Nevertheless, 

the validity of EMT at small gap spacing is questionable [253], and exact calculations 

have recently proved effects of chirality to be small [300]. Therefore, achieving repulsive 

force in vacuum is still very challenging, although it has been demonstrated for 

ferromagnetic dielectrics [301] or in some situations out of thermal equilibrium [302]. 

Besides, very recent theories have ascertained that achieving stable levitation in vacuum 

to be impossible since Casimir free energy in vacuum for nonmagnetic materials has no 

minima [303-305].  
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Replacing the vacuum with an intervening fluid helps realize repulsion force, and 

stable levitation has been demonstrated based on dissimilar bulk substrates, changing the 

density of charge carriers by laser pulses, and more recently thin-film coatings [306-313]. 

However, the stable levitation is not actively tunable. The present study theoretically 

demonstrates stable suspension supporting on-site tunability by using one-dimensional 

(1D) gratings as shown in Figure 6.8. 

 

 

 
Figure 6.8 Schematic of Casimir interaction between one-dimensional gratings of 

dissimilar materials with a separation gap distance of d immersed in fluid bromobenzene. 

 

 

To achieve repulsive Casimir force or even stable levitation, let us consider the 

simplest configuration, i.e., two different substrates separated by a thin layer of fluid. 

Making the Casimir force repulsive is very challenging if the fluid is vacuum, however, it 

will be a different story for a fluid whose (relative) permittivity (or dielectric function) is 

f . The repulsive Casimir force is readily achievable without exciting magnetic 

resonances as long as Dzyaloshinskii’s condition:      1 2fi i i         is satisfied 
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in a suitable frequency range. Here, 1  and 2  are the dielectric functions for the two 

nonmagnetic plates at the imaginary frequency [92]. Munday et al. [312] experimentally 

demonstrated repulsive Casimir force between gold and silica separated by 

bromobenzene whose permittivity lies between those of the two substrates for a broad 

frequency range, and their results agree with the general Lifshitz’s formula for a wide 

range of gap distances [91]. When the fluid thickness is only a few nanometers where the 

retardation effects considering finite speed of light can be neglected, repulsive forces 

featured with negative Hamaker constant have also been experimentally demonstrated 

[314, 315]. Repulsive forces can lead to ultralow friction and good surface wetting [314, 

316]. Some potential applications can be realized if the Casimir force can change sign 

with the distance. One such example is stable quantum levitation [306, 307, 317], which 

can be used to design frictionless gears and develop passive-suspension techniques [24].  

The requirement of stable levitation is that the Casimir interaction should be 

repulsive for small gap spacings and turns into an attractive force when the two objects 

move away from each other to a certain extent. If the Casimir interaction exhibits an 

opposite behavior, the state is dynamically instable though the magnitude of the force 

becomes zero at that transition position. To achieve stable separation between two bulk 

isotropic substrates, the following guide inequalities should be satisfied [317] 

 
   

1 2

1 2 1 2

   at low frequencies

min ,  or max ,  at high frequencies

f

f f

    

       
  (6.4) 

  It is not difficult to understand the above criteria since the low and high 

frequencies play a major role in determining the Casimir force for large and small gap 

distances, respectively. However, these criteria are only approximate and should be 
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treated as guideline only [317]. Even if both inequalities in Eq. (6.4) are satisfied, it is not 

guaranteed that there will definitely be a stable position, since the contribution of 

different frequencies may vary largely. Therefore, realizing stable levitation based on 

proper choices of dielectric functions of the fluid and two bulk substrates is challenging 

though feasible for only a few delicately designed cases [317].  

The three materials satisfying Eq. (6.4) selected in this work are a Si substrate, a 

bromobenzene fluid, and a Teflon substrate. The dielectric function of intrinsic Si is 

described by a Sellmeier model as [291] 
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where the cutoff frequency 0  is equal to 6.6×10
15

 rad/s,   and 0  are 11.87 and 

1.035, respectively. For bromobenzene, a two-oscillator model is employed [312, 318] 
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IR = 5.47×10
14

 rad/s and UV = 1.286×10
16

 rad/s are the characteristic absorption 

frequencies in the infrared and ultraviolet range, respectively, IRC = 2.967 and UVC = 

1.335 are the corresponding absorption strengths. For Teflon, multiple oscillator models 

are used, the corresponding parameters obtained by combining Kramers-Kronig analysis 

and measured dielectric constants are given in a recent paper by van Zwol and 

Palasantzas [319]. The permittivities of these three materials at imaginary frequencies are 

shown in Figure 6.9. It can be clearly seen that the permittivity of bromobenzene lies 

between that of Si and Teflon until the crossing frequency at 1.612×10
16

 rad/s. Although 
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Eq. (6.4) is satisfied, as will be shown later, the Casimir force stays repulsive for all gap 

distances and stable levitation is not feasible with semi-infinite substrates.  
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Figure 6.9 Relative permittivity of Si, bromobenzene, and Teflon at imaginary 

frequencies. 

 

 

Using multilayer structures such as a thin film coated on a substrate may facilitate 

stable levitation [307]. Here, the configuration of fluid bromobenzene sandwiched 

between intrinsic Si and a thin film of Teflon coated on Si substrate is considered, as 

shown in Figure 6.10 (a). The Casimir force per unit area normalized to that between 

perfect conductors cF  for the considered planar configuration is shown in Figure 6.10 (b) 

for different thicknesses of Teflon. When the Teflon film thickness is zero, it recovers to 

the Si-bromobenzene-Si configuration. As expected, the Casimir force for this symmetric 

configuration as shown by the solid line is always attractive (positive sign) since r1 is 
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equal to r2 for both polarizations. On the other hand, as shown by the dotted line, Casimir 

repulsion at all gap distances is supported for Si-bromobenzene-Teflon where Teflon film 

thickness is infinitely large, although it is noted that Eq. (6.4) is satisfied with the 

transition frequency as 1.612×10
16

 rad/s, below and beyond which the spectral force 

becomes repulsive and attractive, respectively. The reason is because contributions from 

higher frequencies are relatively small compared with those from frequencies below the 

transition. Indeed, the permittivities of these three materials are very close and approach 

to unity at high frequencies as can be seen from Figure 6.9. As a result, the field 

confinement in the gap becomes weak, leading to small Casimir interactions. When the 

Teflon film thickness is finite, say 50 nm, the Casimir force lies between the above two 

limiting cases of pure attraction and pure repulsion, as illustrated by the dashed line. 

Stable position with diminishing force occurs at 195.2 nm as denoted by the solid circle, 

and the sign becomes positive and negative by further increasing and decreasing the gap 

spacing, respectively. Figure 6.10 (b) shows that the Casimir force considering thin film 

Teflon of 50 nm approaches the force for bulk Teflon (repulsion) and bulk Si (attraction) 

at small and large gap distances, respectively. Given this situation, there should be a 

middle point at which the transition occurs. In order to elucidate this phenomenon, it is 

necessary to take a look at the reflection coefficient for the thin Teflon coating on bulk 

Si, which is given as [3] 

 
,Te 2

,Te 2

2s,p s,p
s,p Br-Te Te-Si
2 2s,p s,p

Br-Te Te-Si1

z

z

k H

k H

r r e
r

r r e









  (6.7) 

where 
2 2 2

,Te Tez nk c    is the z-direction wavevector in Teflon, Br-Ter  and Te-Sir  

are the Fresnel reflection coefficients are the interface of bromobenzene-Teflon and 
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Teflon-Si, respectively. At high frequencies, ,Tezk  becomes so large that ,Te 22 zk H
e


will 

approach zero, then 2 Br-Ter r . This means that the underlying Si substrate will not affect 

the reflection coefficient, and the thin Teflon film can be treated as bulk although its 

thickness is finite with the value of H2. That explains the overlap of the Casimir force 

considering Teflon of 50 nm and that for bulk Teflon at gap distances smaller than 20 

nm, as can be clearly seen from Figure 6.10 (b). At low frequencies, relatively small 

,Tezk  multiplies with nanometer scale H2 will make ,Te 22 zk H
e


 close to one. After some 

math work, it can be found that 2 Br-Sir r , meaning that the existence of thin Teflon film 

will not lead to a large modification of the Casimir force between bulk Si substrates at 

large gap distances, where the Casimir force is dominated by low frequencies. Therefore, 

thin film coatings can help achieve stable levitation.  

The stable separation distance can be adjusted by changing the thickness of 

Teflon film as shown in Figure 6.10 (c). The stable position decreases with reducing 

Teflon thickness, and the separation is 6.3 nm when H2 is 5 nm. When Teflon thickness 

becomes larger, the deviation of the corresponding Casimir force from that of bulk Teflon 

will be postponed to larger gap distances. On the other hand, the gap spacing needed to 

make the substrate effects large enough to achieve attraction should increase. This is why 

the stable levitation position increases monotonically with the thickness of Teflon. 

Nevertheless, the adjustment of stable separation is based on changing Teflon film 

thickness and cannot be made on-site or dynamically to meet different requirements of 

various applications. The above limitation can be overcome by the proposed design 

shown in Figure 6.8 and the details are given in the next section.  
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Figure 6.10 (a) The configuration of Casimir interaction between bulk Si and thin film 

Teflon deposited on Si substrate. (b) Normalized Casimir force as a function of the gap 

spacing for different bottom configurations: bulk Si, thin Teflon of 50 nm on Si, and bulk 

Teflon. (c) The variation of stable levitation position versus the thickness of Teflon film.   

 

 

The Casimir force between Si grating and Teflon grating as a function of the fluid 

gap distance is given in Figure 6.11. Here, P = 1000 nm, W = 500 nm, L = 0 nm, and H2 

= 50 nm are set as default unless otherwise specified. The agreement between the exact 

method represented by marks and proximity force approximation (PFA) denoted by the 

dash or dotted line is good for different values of H1. Stable separation occurs at 125.6 

nm and 115.7 nm for H1 equal to 50 nm and 30 nm, respectively. These values agree with 

136.6 nm and 122.9 nm obtained from PFA to some extent. For small gap distances, the 

Casimir force at two different values of H1 coincides, as is confirmed from both the exact 

method and PFA. It is expected since the contribution to the force from the ridges (Si and 

Teflon) becomes more dominant over that from the grooves (Si and Si) with decreasing 

d. This is essentially due to the power law dependence of Casimir force on the gap 

spacing. Though variations of H1 do not affect the Casimir interaction for small d, an 

apparent difference occurs for relatively large d. Decreasing H1 will increase the 

attractive force between the grooves, while the repulsive force between the ridges 

remains the same. In order to balance the increased attractive force, the gap spacing has 
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to be reduced to produce enough repulsion from the ridges. As a result, the stable 

levitation position shifts from 125.6 nm to 115.7 nm when decreasing H1 from 50 nm to 

30 nm. The equilibrium position can also be modified by changing H2 and W.  

 

 

 
Figure 6.11 Normalized Casimir force between grating structures varying with gap 

distances based on both exact method (marks) and PFA (lines). 

 

 

As shown in Figure 6.12 (a), the stable levitation position at W = 500 nm, H1 = 30 

nm, and H2 = 50 nm, decreases with the lateral displacement between the top and bottom 

gratings. In the present study, lateral Casimir force is not considered although it exists for 

misaligned cases except when the lateral shift is half of the period due to symmetry. It is 

assumed that the lateral shift is controlled externally. The curve is symmetric with respect 

to L = 0.5P; as such the other half period for L = 500 nm to 1000 nm is not drawn. With 
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increasing the lateral displacement, the dominant repulsion force from the ridges of the 

two gratings will decrease since the facing area becomes smaller while the dominant 

attraction force from the ridge of the top grating to the groove of the bottom grating 

increases. Subsequently, the separation distance for stable levitation will decrease. The 

agreement between the exact method and PFA is excellent except for the two extreme 

cases of L = 0 nm and L = 500 nm. PFA overestimates and underestimates the 

equilibrium position when L is close to 0 nm and 500 nm, respectively. The reason lies 

that PFA does not consider the edge effects. For example, when L = 0 nm, according to 

PFA, the equilibrium is settled when the repulsion force between the ridges and the 

attraction force between the grooves are equal. However, the field confinement between 

the ridges cannot be as perfect as that between bulks, so that the real repulsion will be 

smaller than the PFA value due to the leakage. This explains why the exact values of 

Casimir force are all above the PFA curves in Figure 6.11. Then, there is no wondering 

that the PFA predicts a larger stable separation for aligned gratings. For the purely 

misaligned case of L = 500 nm, balance of the repulsion from the groove of the top 

grating and the ridge of the bottom grating with the attraction from the corresponding 

remaining parts leads to the equilibrium position. However, the repulsion between the 

ridges, which is nontrivial especially for small gap distances, is not considered by PFA. 

As a result, the exact values of Casimir force will lie below the PFA predictions although 

the results are not shown here. This explains why the stable separation predicted by PFA, 

15.4 nm, is smaller than the exact value of 35.7 nm at L = 500 nm. Nevertheless, the 

overall accuracy of PFA is still good except close to the two extremes. If the period is 
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large enough, the edge effects are expected to diminish, and the accuracy of PFA will 

further improve.  

It is clearly shown that by laterally moving the bottom grating relative to the top 

one, the stable levitation position can be tuned on-site. It is noted that both the magnitude 

of the vertical displacement and its shape can be adjusted to meet different demands by 

changing the ridge width W. The equilibrium position varying with the lateral 

displacement for W = 300 nm is given in Figure 6.12 (b). The stable separation first 

decreases with L, as expected, and reaches a constant for L larger than 300 nm. This 

provides rich vertical motions, which might be useful for different applications. The 

maximum vertical displacement induced when L changes from 0 to 300 nm is 73.1 nm, 

which is slightly smaller than 79.9 nm in Figure 5a. The stable position in Figure 6.12 (b)  

for W = 300 nm is lower than that in Figure 5a for any value of the later shift. It is 

expected since the reducing W will decrease the repulsion between the ridges but enlarge 

the attraction between the grooves. Besides the conventional applications for stable 

levitation, the proposed design can be used as for position control. It can also work as 

mechanical transducers by converting lateral displacement into motion in the vertical 

direction. Instead of relying on classical mechanics or electromagnetism, this envisioned 

device is based on quantum electrodynamics, and no contact is required so that the 

friction is expected to be ultralow. The ratio of maximum vertical displacement to the 

lateral shift is inversely proportional to the period, thus can be tuned to meet different 

needs. Besides, the device size can be scalable from macroscale down to microscale. 

Another advantage of the proposed configuration is that the alignment of the two gratings 

can be self-acquired to some extent. If a certain misalignment is introduced, the Casimir 
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force will be repulsive and attractive for regimes with smaller and larger gap separations, 

respectively. As a result, the gap distance between the two gratings would tend to 

approach the same value across the whole sample.  

 

 

 
Figure 6.12 Stable levitation position tuned by the lateral displacement for different 

grating widths. (a) W = 500 nm; (b) W = 300 nm.   

 

 

In practice, the effects of temperature and gravity on the stable position should 

also be considered. The effect of thermal fluctuations may be nontrivial for bulk materials 

when the gap spacing is on the order of Bc k T , which is 7.6 m at T = 300 K [91]. 

Around room temperature, modifications of the Casimir force due to temperature changes 

are typically negligible [320]. However, Guérout et al. [47] found that the grating 

structure could augment the thermal contribution to the Casimir interactions. Therefore, it 

is necessary to check the sensitivity of proposed device to temperature changes. The 

liquid phase of fluid bromobenzene holds when the temperature is between 242.3 K and 

429 K at atmospheric pressure. Since the stable separation distance is around 100 nm, the 

Casimir force is calculated for aligned gratings with default geometric parameters at d = 
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100 nm for T = 250 K and 420 K. The relative difference is only three percent, 

demonstrating that the temperature has a negligible effect on the Casimir force. The 

stable position for L = 0 nm changes slightly from 115.66 nm to 115.57 nm when the 

temperature increases from 250 K to 420 K. It should be noted that according to the PFA, 

the stable position is changed from 122.97 nm to 122.55 nm, which qualitatively agree 

with the exact calculations. Therefore, it is safe to assert that the stable levitation of 

proposed nanostructures is robust to temperature variations.  

The gravitational force generally needs to be considered for application with the 

proposed configuration shown in Figure 6.8, although when the z axis horizontal, gravity 

will not have an effect to the preceding results. In order to consider the gravitational 

effect, it is assumed that the top grating is beneath a thin Si film with a thickness HSi of 5 

m. The medium above the Si film is vacuum. Taking the gravitational acceleration rate 

g =  9.8 m/s
2
, the density of Si Si = 2329 kg/m

3
, and the density of BB BB  = 1492 

kg/m
3
, the force per unit area exerted on the top grating due to gravity is 

Si Si Si 1 BB 1gF gH gH f gH f    . The last term considers the buoyancy of the 

grooves immersed in the fluid. For default geometry parameters, i.e., P = 1000 nm, W = 

500 nm, H1 = 30 nm, and H2 = 50 nm, Fg is equal to 0.11424 Pa. So, the Casimir force 

between the two nanostructures should be repulsive and the magnitude should be equal to 

Fg for stable levitation in the presence of gravity. As can be seen from Figure 6.11, the 

Casimir force is always repulsive when the gap distance is smaller than the original stable 

levitation separation. Therefore, the stable levitation considering the gravity still exists 

but will shift to a smaller gap separation for the balance of gravitational force and the 

repulsive Casimir force is balanced.  
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Figure 6.13 is given to illustrate the gravity effect on the variation of the stable 

levitation position of the top grating with the thin Si substrate. Clearly, the stable 

separation distance is always smaller than the case without gravity for different values of 

lateral shifts as expected. Another prominent feature of Figure 6 is that the difference of 

the stable levitation separation with or without gravity becomes smaller as the lateral shift 

increases. Note that the stable levitation gap distance is smaller at a larger lateral shift. 

Because the Casimir force is very sensitive to the gap distance when it is small, even a 

tiny further decrease of the gap distance will lead to a repulsive Casimir force comparable 

to the gravitational force. As shown in Figure 6.13, for L equal to 500 nm, there is only a 

small decrease in the stable levitation separation. 
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Figure 6.13 Effect of the gravity on the tunable levitation when the top grating is attached 

to a thin Si substrate, HSi = 5  m, and the other geometry parameters are default.    
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 6.3 Summary 

This chapter investigates the momentum exchange or Casimir interaction between 

metamaterials. The major contributions are presented in the followings.  

Highly efficient radiative heat flux between doped-silicon gratings is 

demonstrated and the amount can be as high as three times that between planar 

substrates. Furthermore, the exact solution based on the scattering theory predicts the heat 

flux to be 1-2 orders of magnitude higher than that given by the geometry-based 

approximation. The excitation of hyperbolic modes, which support broadband and large 

energy transmission coefficient for high-k modes, is attributed to be the main reason of 

the enhanced near-field energy transport. Meanwhile, the issue of Casimir stiction is 

demonstrated to be greatly relieved with gratings as compared to the bulk counterparts. 

New possibilities of enhancing radiative energy transfer while simultaneously 

suppressing momentum exchange by patterning doped-silicon surfaces are opened. The 

findings hold promise for applications in contactless thermal management, near-field 

energy harvesting, and relieving adhesion problems of MEMS and MEMS devices. 

The Casimir interaction between two nanostructures separated by an intervening 

fluid is investigated. While stable levitation is achievable when one substrate and a thin 

film coated on another substrate are separated by a non-vacuum fluid, the levitation 

position depending on the film thickness is fixed rather than actively tunable. This 

limitation can be overcome by using dissimilar gratings, whereby the stable separation 

position changes when the two gratings move relative to each other laterally. Besides, 

how the levitation position changes with the lateral shift depends on the grating width. 

Thus, the grating width can be adjusted to meet different applications. In addition, the 
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position of stable levitation is insensitive to temperature variations. The proposed design 

may turn quantum Casimir force into real applications in macroscopic devices, such as 

microposition control and mechanical transduction.  
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

 This dissertation investigates the unusual far-field and near-field radiative 

properties of metamaterials for potential applications in energy harvesting, thermal 

management, and light manipulation. The uniqueness and major contributions are divided 

into the following four parts.  

Firstly, the extraordinary transmission, refraction, and absorption of infrared light 

are theoretically demonstrated based on proper designs of metamaterials. Based on the 

extraordinary transmission of metallic nanoslits, an efficient polarizer working in the 

near-infrared regime with wide acceptance angle and extremely high extinction 

coefficient is proposed. Later, based on the excitation of magnetic polaritons, the 

counterintuitive blocking-assisted transmission is presented. Besides metals, doped 

semiconductors also possess metallic responses in the infrared regime. Negative 

refraction and tunable perfect absorption of the middle infrared light are theoretically 

predicted based on free-standing and substrate-backed doped silicon nanowires, 

respectively.  

Secondly, the potential of metamaterials on enhancing the near-field thermal 

radiation is investigated based on the effective medium theory combined with fluctuation 

electrodynamics. Excitation of broadband hyperbolic modes and reducing the loss of 

surface modes are proposed as two important methods of enhancing near-field thermal 

radiation. The effects of polarization coupling is found to be trivial for nanoscale thermal 

radiation. Perfect photon tunneling across broad frequency regimes and wavevector space 

is theoretically presented for the first time based on the hybridization of hyperbolic 

modes and graphene plasmons. Then, the quantitative application criteria of the effective 

medium theory is given for the first time.  
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Thirdly, based on exact approaches including the semi-analytical RCWA and 

numerical FDTD, new routes and mechanism for enhancing the near-field thermal 

radiation are presented. Due to the hybridization of graphene plasmons with surface 

phonon modes, covering a thin layer of graphene sheet is found to improve the radiative 

heat flux between silica gratings by more than one order of magnitude and alleviate the 

performance sensitivity to lateral shifts. Near-field thermal radiation between 

metasurfaces is investigated for the first time, and 1D metasurface is found to be 

surprisingly outperform 2D metasurface due to the excitations of both surface modes and 

hyperbolic modes. Pattering a graphene sheet into graphene ribbon arrays is demonstrated 

to further improve the near-field radiative heat flux by about one order of magnitude, and 

the physical mechanism is attributed to the excitation of hyperbolic graphene plasmons. 

New applications of near-field radiation, like enhancing the refrigeration rate and 

broadening the operation temperature range of electroluminescent refrigeration technique 

are also presented.   

Finally, the near-field momentum exchange or Casimir interaction is tailored for 

different applications based on metamaterials. Enhanced near-field thermal radiation and 

suppressed Casimir force are presented simultaneously. Based on repulsive Casimir force, 

a design for realizing tunable stable levitation is proposed for applications in propulsion 

and nanoscale position control.  

The future work will go to the radiative entropy analysis of metamaterials. 

Although metamaterials have been proposed to harvest energy based on TPV devices, the 

maximum thermodynamic efficiency is still not clear. The investigation of radiative 

entropy transfer is still in its infancy, and there are some other unresolved problems, 

some examples are listed. How to consider light interference effects on the entropy 

transfer? How to calculate the entropy transfer between two objects separated by a 
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nanoscale vacuum gap? Where does the entropy generation come from, at the material 

interface or inside the vacuum or the hot body? Can the Boltzmann’s definition of 

entropy lnBk   be applied to calculate entropy transfer considering real surfaces and 

near-field radiation? If it works, how to define the microstates  ? Will the emitted 

entropy flux be dependent on the distance from the hot body? Therefore, a deep 

understanding of the entropy transfer and generation considering non-ideal surfaces and 

near-field radiation is still needed. 

Moreover, the experimental demonstration of the enhanced near-field thermal 

radiation between large area metamaterials will be performed in the future. In the last 

past decade, there have been some experimental efforts on measuring the near-field 

thermal radiation between planar substrates or between a sphere and a planar substrate. 

However, the  near-field thermal radiation between metamaterials, such as silica grating, 

metasurfaces, and graphene ribbons, has not been experimentally reported. Experiments 

on this field will not only help to further understand nanoscale radiative heat transport but 

also pave the  way for turning near-field thermal radiation into real-world applications 

and commercializing the relevant devices.  
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