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SUMMARY 

The combined trends of increasing computing power with the miniaturization of electronic 

devices brought about new challenges in terms of ambient heat rejection. The most simple and 

reliable ambient heat rejection method is natural air convection. However, this technique is 

limited in terms of the cooling power that can be dealt with. This work presents two 

technologies that can potentially increase the heat rejection rate to ambient air without using 

any moving part, thus ensuring a high reliability. The first technology considered uses ionic 

wind to increase the air flow through cooling passages. Ionic wind occurs when a high voltage 

potential is applied to an electrode with a large curvature – typically a thin wire or a needle. 

Due to the strong electric potential close to the electrode, a Corona discharge occurs and air 

molecules are ionized. The resulting ions induce an air flow through collisions with neutral 

molecules. In this study, the Corona current is characterized experimentally and a numerical 

procedure is developed to solve the electrohydrodynamics. A custom-built test bench is used 

to validate the numerical model experimentally. It is shown that ionic wind can increase the 

heat removal rate by up to 100% as compared to natural convection only. The second cooling 

enhancement technology considered is the addition of a chimney on top of the heat sink to 

increase the air flow through the cooling channels. A semi-analytical model based on thermal- 

and fluid equivalent resistance networks is developed. The model is validated using a 

commercial CFD package. Finally, a thermo-economic study is performed using genetic 

algorithms in order to compare the performance of both technologies versus natural convection 

only. A Pareto front combining the three technologies is constructed, allowing for cost-

effective design decisions based on the cooling power requirements.



 

INTRODUCTION 

  Introduction 

 The overarching goal of this research is to investigate possible techniques to 

enhance passive thermal heat rejection to ambient air. First, the limits of natural convection 

and buoyancy driven flows are to be determined for specific applications and geometries. 

Second, the potential of ionic wind as a heat transfer enhancement method to increase the 

performance of a heat sink is to be studied. An analysis tool describing the cooling power 

increase achievable utilizing ionic wind is developed. Finally, a technology demonstrator 

of a heat sink is constructed to demonstrate the feasibility of the proposed cooling system 

combining ionic wind with a fin array. 

It is common to classify standard cooling technologies according to two different 

parameters: natural or forced convection and gaseous or liquid medium, as depicted in 

Figure 1.1. The simplest cooling method is to rely on natural air convection. Though 

simple, this technology is very limited in terms of the magnitude of heat fluxes that can be 

dealt with. Therefore, it is frequent to see forced air convection cooling systems, with a fan 

increasing the flow of ambient air over the heat source. By utilizing liquid mediums such 

as water and oils, it is possible to further increase the critical heat fluxes. However, liquid 

cooling systems require a closed loop to conserve the fluid unless a nearly infinite source 

– e.g. a river or a lake – is available. Therefore, secondary radiators are necessary to cool 

the fluid. The circulation is either buoyancy driven – i.e. through forces caused by changes 

in the fluid density – as in a thermosiphon, or pressure driven using a pump. In addition to 
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the four classes of technologies presented, systems including a phase change of the medium 

– so-called heat pipes – have attracted increasing interest in the last decade [1, 2]. 

 

Figure 1.1: Standard classification of common cooling technologies. 

Historically, most electronic components have been cooled by air [3]. The reasons for 

this are several. First, air is abundant and readily available at no cost. Also, there is no 

hazard involved – neither for people nor for the environment – when cooling with air. 

However, the performance of CPUs followed a tremendous development starting in the 

seventies, with the transistor density nearly doubling every two years – a behavior 

described by Moore’s law and shown in Figure 1.2 (from [3]). Concurrently, there has been 

a miniaturization trend in the field of consumer electronics, resulting in a significant 

reduction in the size of the devices, as shown in Figure 1.3. The Apollo 11 space mission 

is an impressive illustration of the relentless effort that was put in the development of 

computers over the past half-century: the computers used to control the lunar missions 
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filled entire rooms – but their aggregated computing power was less than a modern cell 

phone can deliver [4]. 

 

Figure 1.2: The evolution of the processor power followed an exponential growth over 

several decades – a behavior also known as the Moores’ law (from [3]). 

 

Figure 1.3: Representation of the miniaturization trend in the mobile phone space by 

Motorola (from [5]). 

A technical consequence of this evolution is that larger amounts of heat have to be 

dissipated in smaller volumes. Therefore, increasing the heat removal rate is required to 
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maintain the system at an acceptable temperature. In fact, the lifetime of power electronics 

strongly correlates with the operating junction temperature, as it is shown in Figure 1.4: an 

increase of the operating temperature of a few degrees Celsius can result in halving the 

lifetime of a device. Therefore, a reliable, efficient cooling system is vital to ensure a 

flawless operation of power electronics. 

 

Figure 1.4: Lifetime of IGBTs as a function of the difference between ambient and 

junction temperature (from [6]). 

Altogether, air-cooling for electronics is now being pushed to its limits. New airflow 

enhancement techniques have to be developed in order to cope with the increasing heat 

load. Enhanced buoyancy-driven flow through the addition of a chimney to the system and 

ionic wind are potential candidates to increase the range of applications of air cooling 

(Figure 1.1a) but could also be implemented to reduce the size and the cost of the secondary 

radiator in Figure 1.1c and Figure 1.1d.  
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 Ambient Heat Rejection 

In the past decades, a tremendous research effort has been performed on the hot side of 

heat sinks. State-of-the-art micro-feature heat exchangers can cope with heat fluxes of 

100W/m2 and beyond [7]. However, the research on the cold side of the heat sink – i.e.  

Ambient heat rejection – has been lagging. Ambient heat rejection is the process that 

describes the transfer of heat from a system to the ambient surroundings, generally to 

ambient air. The simplest method of ambient heat rejection is to rely on natural convection 

and radiation. However, this method is limited in terms of the heat removal rates that can 

be achieved. Therefore, in many instances, large surface areas in the form of secondary 

radiators are required to achieve the desired level of cooling. Besides being expensive, 

secondary radiators also increase the size, weight and complexity of the system. Hence, the 

improvement of ambient heat rejection is critical. The present work investigates two 

potential techniques to enhance ambient heat rejection in a passive way: ionic wind heat 

transfer enhancement and enhancement through the chimney effect. Both techniques are 

especially attractive for applications requiring high levels of reliability that prevent the use 

of any moving parts, for instance power electronics meant to be part of the electricity 

distribution grid or systems parts of nuclear power plants. Additionally, both systems 

operate silently as compared to pumps or fans. 

1.2.1 Heat Transfer Enhancement through the Chimney Effect 

The chimney effect describes the air flow induced by changes in density in a medium 

due to temperature variations. In simple words, it all bases on the fact that hot air rises. 

This effect has probably been known ever since mankind discovered fire. From a more 

mathematical perspective, the gain in buoyancy pressure is proportional to the height of 
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the system. Therefore, adding a chimney on top of a heat sink increases the flow rate of air 

and therefore augments the cooling power. This is the very same reason why high chimneys 

are often seen on combustion sites: due to the gain in buoyancy pressure, the chimneys 

ensure an adequate feeding of air to the combustion chamber. 

1.2.2 Ionic Wind Heat Transfer Enhancement 

Ionic wind is a generic term used to describe the bulk flow of air induced by momentum 

transfer of free ions to neutral air molecules. The process is best understood by considering 

the sequential steps of the ionization and flow enhancement as depicted in Figure 1.5. 

First, a naturally free electron enters the plasma region – the domain near the Corona 

electrode in which ions are generated. The corona electrode has to be sharp, i.e. with a high 

curvature, to create a zone with a strong electric field around it. Typical shapes used are 

needles or wires with very small diameters (in the order of 100μm). Due to the strong 

electric field, the free electron is accelerated to a high speed. Next, the free electron collides 

with a neutral air molecule. If it carries enough kinetic energy, it splits the neutral molecule 

into a positive ion and another free electron. Thereby, a chain reaction occurs and the 

numbers of free electrons and positive ions grow exponentially. Eventually, the positive 

ions travel towards the collector electrode. Momentum is transferred to the medium 

through collision between ions and neutral air molecules, inducing an air flow. The effect 

achieved is similar to the effect of a fan, but for the fact that momentum is transferred to 

the medium through collision of ions instead of the angular momentum transfer across the 

propeller blade. The setup made of the corona and collector electrodes is sometimes 

conveniently referred to as ionic wind generator or ionic pump. It is controversial as 

whether ionic wind can be considered a passive cooling method as active energy is added 
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to the system through the corona electrode. However, the present work considers ionic 

wind as a passive cooling method since no moving parts are involved. 

 

Figure 1.5: Principles of ionic wind generation. 

 Passive Thermal Management Systems 

Several systems require ambient heat rejection to occur in a passive way. Passive 

cooling systems have several advantages as compared to active cooling methods using 

pumps and fans. First, passive systems are typically rather simple in their construction and 

do not require any control. Second, due to the absence of moving parts, passive systems 

generally exhibit a high reliability. Last, most passive systems usually operate without 

creating any noise. 

Because of these characteristics, passive thermal management systems are desirable in 

many applications. For instance, nuclear power plants require passive cooling systems to 
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avoid overheating in case of a system failure. Also, many military applications require 

noise-free systems, for which pumps or fans would not be suitable. Finally, the cooling 

system of transformers, power routers or any other device part of the electrical distribution 

grid is required to operate passively to ensure a high reliability and a long lifetime. 

1.3.1  Power Routers for a Smart Grid 

Among the wide array of potential applications for ionic wind heat transfer 

enhancement, thermal management of grid-scale power routers is especially promising due 

to the inherent presence of a high voltage source. The electric power distribution grid is 

placed under increasing stress by a rising demand and the growing importance of non-

dispatchable energy sources such as solar and wind. Rather than renewing the grid 

infrastructure, a more cost-effective option is to improve the grid controllability by 

implementing power routers capable to direct energy fluxes at grid intersections [8]. An 

intensive effort has been put in the development of such components [9, 10]. Currently, a 

critical issue remains the cooling of the electronic devices. The design of the cooling 

system is limited by stringent requirements on these devices such as long lifetime (>30 

years) and high Mean Time Between Failures (MTBF) without any maintenance. Any 

active cooling system such as pumps or fans would involve components (bearings, shaft-

seals) that do not meet the expected lifetime. Therefore, the heat sink has to operate in a 

passive mode [11]. Nowadays, possible thermal management systems include heat pipes 

or thermosiphons [12, 13]. However, these technologies involve complex and costly 

components such as oil loops and secondary radiators. This work investigates the 

possibility to replace the current heat pipes and thermosiphons by an alternative heat sink 

design combining ionic wind with a fin array. The new heat sink could potentially replace 
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conventional cooling methods at a lower cost without compromising the reliability nor the 

performance of the system. 

1.3.2 Heat Sink Design 

The heat sink considered consists of power electronics mounted at the back of a fin 

array. The whole system is cooled by ambient air flowing through the channels. Two 

distinct techniques are considered to enhance the flow in the channels and thus increase the 

cooling power: the chimney effect and ionic wind. 

In the first configuration – for the case of buoyancy driven flow, i.e. without ionic wind 

flow enhancement – a chimney is added on top of the fin array. An aluminum sheet is 

attached at the back of the fin array to form closed channels. The chimney increases the 

flow through the channels, as the change in buoyancy pressure is directly proportional to 

the difference in height. This design is shown in Figure 1.6. The main advantage of this 

heat sink is its simplicity. The drawback, on the other hand, is the increase in size of the 

system. 

 

Figure 1.6: Heat sink design with chimney enhanced flow through a fin array. 
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The second technique incorporates an ionic wind generator at the bottom of the fin 

array. The ionic wind generator induces an air flow through the channel and therefore 

increases the cooling power of the heat sink, potentially negating the need for a chimney. 

The ionic wind generator consists of an array of electrodes. Each channel is provided with 

a single Corona electrode and two collector electrodes. The Corona electrode is placed 

upstream of the cooling channel. It consists of a thin stainless steel wire with a diameter in 

the order of 100μm subject to an electric potential of several kilovolts. The two collector 

electrodes are placed further downstream and are grounded. The proposed design is shown 

in Figure 1.7. 

 

Figure 1.7: Heat sink design combining a fin array and an ionic wind generator. 

While the focus of this work lays on the thermal management of power routers for grid 

applications, the presented heat sink configurations are not limited to this unique 

implementation. In fact, the presented heat sink could be used for any other application as 

the numerical models developed are universal. 
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Eventually, the performance of both heat sink configurations presented is compared to 

the case with natural convection only and the increase in cooling power as well as the 

economic tradeoffs are reported.  
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LITERATURE REVIEW 

 Review of Salient Literature 

The review of the salient literature relevant to the present topic was conducted using 

the engineering databases Compendex and Inspec. The search was performed for selected 

keywords in all text fields. The number of papers found depending on the keywords applied 

are summarized in Table 2.1. Once a lens was found to yield a manageable number of 

references, the articles were scanned through. The most relevant findings are synthesized 

in the forthcoming section. 

Table 2.1: Number of articles found for different search lenses 

Keywords Number of Articles 

Ionic Wind 941 

Ionic Wind AND Heat Transfer 74 

DC Corona Discharge 1784 

DC Corona Discharge AND Ionic Wind 53 

Chimney Effect AND Heat Transfer Enhancement 47 

 

Besides the actual content of the publications, it is also of interest to observe the 

evolution of the number of publications over the years, especially in the field of ionic wind 

heat transfer enhancement. The number of articles found through the lens Ionic Wind is 

plotted in Figure 2.1 (left). It is shown that the number of papers published increased 

rapidly starting in the 2000s. However, this behavior has to be discounted for the general 

inflation in the number of scientific publications released each year. To do so, the number 

of papers on ionic wind is normalized by the number of papers found under the much more 

general lens Heat Transfer. This quantity is plotted in Figure 2.1 (right) and shows the 
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relative importance of ionic wind within the field of heat transfer. While less pronounced, 

there is still a general trend showing a growing interest in the technology. 

 

Figure 2.1: Number of publications found through the lens Ionic Wind (left) and 

normalized with the number of papers found using the more general lens Heat Transfer 

(right) for the period 1975 – 2015. 

2.1.1 Ionic Wind Heat Transfer Enhancement 

The literature relevant to ionic wind heat transfer enhancement can be categorized in 

two different sections: work pertaining to the Corona discharge itself on the one hand, and 

thermo-fluidic studies considering the effect of Corona discharge on the flow and cooling 

patterns of a system on the other hand. 

Corona Discharge 

Lightning sparks and Corona discharges are probably among the first electrical 

phenomenon that were ever observed by men. In ancient times and before the theory of 

Corona discharge was known, sailors observed a glowing, bluish light at the tip of the ship 

mast during thunderstorms [14]. They named this phenomenon St. Elmo’s fire after the 

saint of sailors [15]. This is probably the first time that a Corona discharge was 

documented. A contemporary description of a Corona discharge was provided by Sigmond 
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and Goldman as a gas discharge emitting bluish light and crackling sounds from regions 

close to sharp-pointed or thin-wire electrodes [16]. They also developed a more physical 

definition of a Corona as being a self-sustained electrical gas discharge where the 

Laplacian electric field confines the primary ionization processes to regions close to high-

field electrodes or insulators. Corona discharges are characterized by the bright, bluish 

glow around the high-voltage electrode and the smell of ozone familiar from ambient air 

before a storm or, more recently, laser printers. Typically, effort is directed to avoiding 

Corona discharges as they are the result of electrical insulation failure or can cause parasitic 

losses. This is a concern in several applications, such as high-voltage transmission lines, 

motors and generators [17, 18]. However, Corona discharges have found interesting 

applications in the fields of gas analysis, electro-coating or electrostatic separation early 

on in the twentieth century [16]. Nevertheless, it is a very complex phenomenon and it is 

not until more recently that detailed studies were performed. 

Chen and Davidson conducted a thorough study of the Corona discharge in the wire-

to-cylinder geometry for both positive and negative electrodes [19, 20]. Their study 

included the calculation of the free charge carrier density both within the plasma and in the 

inter-electrode spacing. It is to mention that the wire-to-cylinder geometry is often 

considered in theoretical studies as it allows reducing the model to a one-dimensional 

geometry. However, this geometry is not very practical for heat transfer applications. 

Several studies have tackled the problem of predicting the Corona current numerically. 

Adamiak and Patten developed a numerical method to predict the Corona current, electric 

field distortion and ion density for the point-to-plane geometry [21]. For a given, fixed 

geometry and ambient conditions, the developed correlation predicts the Corona current as 
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a function of the applied voltage. More complex models have been developed to include 

different effects and electronic reactions. Cagnoni et al. developed a multiphysics model 

of electric discharge in ambient air for the configuration of imping jet on a flat surface 

electrode [22]. Others have used statistical methods such as Monte Carlo based simulations 

to determine the various electronic reactions occurring and the resulting electrostatic 

discharge [23-26]. While such studies are of interest to develop a detailed understanding 

of the physics at the level of chemical reactions, the computational burden and the 

complexity of the algorithm make it inappropriate as a design tool for thermal management 

applications. 

Ionic Wind 

The fact that ion production in air in conjunction with an electric field induces an air 

flow was first observed by Chattock [27], who named this phenomenon electric wind. The 

terms ionic wind or Corona wind are also commonly used to describe the same effect. In 

the middle of the twentieth century, the subject regained attention. The basic theory 

describing the behavior of ionic wind generation was developed in successive studies by 

Harney [28], Stuetzer [29] and Robinson [30]. Soon after, the potential of ionic wind for 

heat transfer enhancement purposes was recognized in a first paper by Marco and Velkoff 

[31]. In their work, they studied the influence of the electric wind to enhance natural 

convection over a heated flat plate. At around the same time, O’Brien and Shine conducted 

an experimental study on the effect of an electric field on heat transfer from a vertical plate 

in free convection [32]. More recently, the Corona discharge was also considered for other 

applications such as drag reduction over a flat plate [33]. The real surge in attention for 

ionic wind heat transfer enhancement method came along with the emergence of new 
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generation electronics for which thermal management through natural convection only no 

longer provides enough cooling power. Ionic wind has been considered as a potential 

cooling enhancement method for several applications including the thermal management 

of LED lighting [34, 35] or for electronics cooling [36-38]. The material most relevant to 

the application of ionic wind for the enhancement of passive ambient heat rejection is 

briefly presented hereafter. 

Owsenek and Seyed-Yagoobi presented results from a numerical and experimental 

analysis of heat transfer enhancement using a wire-to-plane electrode configuration. Local 

convective heat transfer coefficients of up to 50W/m2-K were measured at an applied 

voltage of 12.6kV [39, 40]. 

Kalman and Sher investigated the performance of an electrostatic blower for electronics 

cooling experimentally [41]. The proposed configuration combines a Corona wire 

electrode confined by two inclined wings that act as a nozzle and help directing the air flow 

on to the desired hot spot. It was noticed that a positive Corona electrode induces a higher 

air velocity as compared to a negative electrode. The designed ionic wind pump generated 

velocities up to 1.5m/s. It was found that the average convective heat transfer coefficient 

over a flat plate could be more than doubled utilizing ionic wind as compared to free 

convection. 

Jewell-Larsen et al. considered the configuration of a cantilever needle electrode that 

creates a jet impinging on a flat surface [42-44]. The developed numerical model was 

solved in FEMLAB using a finite-element approach. In a numerical study, local convective 

heat transfer coefficients of up to 282W/m2-K were reported. This is a relatively high value, 
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but can be explained by the fact that it is constrained to a very small surface directly under 

the impinging jet. 

Go et al. performed considerable work both experimentally and numerically on ionic 

wind heat transfer enhancement of external convection for a wire-to-plate electrode 

configuration with applied voltages up to 5kV [45, 46]. Local heat transfer coefficient 

increase of up to 200% were reported for this specific configuration. In further studies, the 

implementation of ionic wind generator at the micro-scale for mobile electronics 

applications was studied numerically [47, 48]. The numerical model developed was solved 

in Ansys Fluent combined with macro function defined to solve the electro-hydrodynamics. 

The advantage of micro-ionic wind generator is that, because the electrode gap is small 

(<100μm), only low voltages (<100V) are required to induce a Corona discharge. 

Berard et al. compared the induced ionic wind velocity of positive Corona electrodes 

as compared to negative Corona electrode [49]. They reported that positive electrodes 

consistently induce higher wind velocities than negative electrodes. Also, they observed 

that the Corona discharge from a positive wire electrode occurs uniformly, steadily along 

the wire. The negative discharge, instead, occurs unsteadily at discrete spots along the wire. 

Chen et al. considered ionic wind for the cooling of LED [34]. The Corona discharge 

was induced by a needle-type electrode, and various collector configurations (single point, 

wire, grid of wires) were investigated. The thermal resistance of the LED chip was reduced 

up to 50% using ionic wind as compared to natural convection. 

2.1.2 Heat Transfer Enhancement through the Chimney Effect 

The basic phenomenon causing natural convection air cooling is the temperature 

dependence of the medium density: as the temperature of air increases, the density of the 
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gas decreases and the hot air rises. The change in buoyancy pressure is proportional to the 

temperature gradient between cold and hot air, the gravitational acceleration, the gas 

properties and the vertical height of the system. Therefore, increasing the height of the 

system will induce higher buoyancy gains and result in larger air velocities. This effect has 

been taken advantage of for centuries in order to increase the air supply in combustion 

applications. It is commonly referred to as the chimney effect or the stack effect. The 

application of the chimney effect for heat transfer enhancement purposes is comparatively 

recent. Haaland and Sparrow were among the first to consider the chimney effect as a mean 

to enhance heat transfer in parallel walled channels [50]. Straatman et al. conducted a 

numerical study using a finite element method to investigate the heat transfer enhancement 

by the chimney effect of a single, isothermal channel [51]. Adiabatic extensions of 0.25 to 

0.67 of the channel length were considered. An overall heat transfer increase of up to 1.3 

was measured for straight channels. Abrupt extensions, i.e. a chimney with a cross section 

larger than the channel, offered a heat transfer increase of up to 2.5 as compared to natural 

convection only. Auletta et al. considered the case of an isoflux single channel with an 

adiabatic extension [52]. In their experimental study, they reported increases in the average 

Nusselt number of 10-20% for extensions with a length between 1 and 2 times the channel 

length. Fisher et al. considered an interesting case where the total height of a heat sink is 

constrained [53]. The heat sink includes an array of parallel, isothermal plates combined 

with a chimney. An iterative numerical procedure is developed to solve for the air velocity 

and thermal transport. It is found that a reduction of the heat sink height can be 

compensated by the addition of a chimney, which can potentially reduce the cost of the 

overall system. 
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 Research Gap and Objectives 

The enhancement of heat transfer through Corona discharge has been considered in 

several studies mentioned above. However, the present work intends to fill a gap and 

differentiates itself through several aspects. First, this study focuses on the enhancement of 

heat transfer in internal flow channels, while the majority of the work performed thus far 

considered the enhancement of external convection for geometries such as an impinging 

jet on a flat surface or the wire-to-plane configuration. Second, this work includes a 

thorough experimental work consisting of characterizing the Corona discharge depending 

on the dimensions of the heat exchanger channel. Third, a generic numerical design tool 

combining experimental data for the Corona discharge and a fast-solving algorithm for the 

differential equations describing the transport of ions and the Poisson equations is 

developed to enable tailoring heat sinks to the specific application needs. Finally, this study 

presents a very promising application field for ionic wind heat transfer enhancement, i.e. 

in the thermal management of grid-scale power routers. Ionic wind has not been 

widespread yet mainly due to the difficulty of implementing a high voltage source when 

the same effect can be achieved by using a fan driven by a low DC-voltage. From that 

perspective, thermal management of grid-scale power routers is a niche application field: 

fans cannot be used because they do not meet the lifetime and reliability requirements, and 

a high voltage source is readily available. 

Further, a numerical tool is developed to determine the cooling power of a heat sink 

combining a fin array with an adiabatic chimney. Eventually, a thermo-economic study is 

conducted to assess the tradeoffs between the different technologies. 



 20 

The following research objectives have been identified as vectors for the successful 

development of a novel heat sink technology combining corona discharge with fin arrays: 

1. Experimentally characterize the Corona discharge as a function of the 

geometric dimensions of the ionic wind generator for the configuration of 

rectangular cooling channels. 

2. Develop a numerical model that assesses the cooling power enhancement 

through corona discharge in rectangular, air-cooled channels. 

3. Validate the numerical model by conducting an experimental study measuring 

the air velocity at the exit of the channel as well as the heat dissipated in a 

cooling channel. 

4. Demonstrate the feasibility of enhanced passive thermal management of grid-

scale power routers utilizing ionic wind combined with fin arrays by 

constructing a technology demonstrator of a heat sink. 

 Research Approach 

The principles of ionic wind heat transfer enhancement can be subdivided into two 

steps: In the first step, positive ions and free electrons are produced through a Corona 

discharge. Then, positive ions drift towards the grounded electrode and eventually transmit 

momentum to neutral air molecules through collisions. The first part is a plasma physics 

phenomenon involving numerous complex reactions that is challenging to model 

numerically. On the other hand, the physics happening outside the plasma region is well 

described by a set of partial differential equations. Therefore, the proposed approach to 

describe heat transfer enhancement through ionic wind combines an experimental study to 

describe the Corona discharge and numerical computations to model ion transport, fluid 
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flow and heat transfer outside the plasma region, as represented in Figure 2.2. The work 

presented in this thesis is constrained to the situation of a positive Corona electrode. 

Positive Corona electrodes are preferred for heat transfer enhancement applications 

because of the higher air velocity induced and the lower ozone production as compared to 

negative Corona electrodes [22, 49]. 

 

Figure 2.2: Proposed research approach for the investigation of ionic wind heat transfer 

enhancement including an experimental study of the Corona discharge and a numerical 

model of the ion transport and thermo-fluidics. 

Heat transfer enhancement through the chimney effect has been considered in several 

studies. In most cases, the chimney effect has been investigated based on the solution of 

the governing conservation equations. The chosen approach, however, uses an equivalent 

resistance network to solve the thermo-fluidic problem. The advantage of this method is 

the very low computational time required, which allows to evaluate many different 

configurations within a short time and is therefore suitable for design optimization. 

 Thesis Organization 

CHAPTER 1 provides a general introduction to the topic. CHAPTER 2 gives an 

overview of the relevant salient literature and describes the research objectives and 



 22 

research approach. CHAPTER 3 covers the characterization of the Corona discharge. 

CHAPTER 4 focuses on the numerical modeling of the ion transport in the unipolar region 

and of the thermo-fluidic behavior of the system. CHAPTER 5 presents the results of the 

experimental work on ionic wind heat transfer enhancement as well as the numerical model 

validation. CHAPTER 6 displays the thermo-economic tradeoffs of natural convection and 

enhanced cooling utilizing the chimney effect. Finally, CHAPTER 7 provides general 

conclusions on the presented research and recommendations for possible future work.  
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CHARACTERIZATION OF THE CORONA CURRENT 

  Introduction 

This chapter presents the characterization of the Corona discharge for the application 

of ionic wind heat transfer enhancement in rectangular channels as presented in Figure 1.7. 

The considered configuration of a single wire electrode to a double collector electrode is 

shown in detail in Figure 3.1 alongside the important parameters d1 (vertical electrode 

spacing), d2 (channel width) and Φ0 (applied voltage). 

 

Figure 3.1: Electrode configuration for the application of ionic wind heat transfer 

enhancement in rectangular channels. 

The mechanism of Corona discharge is best described by considering sequential steps. 

First, a naturally free electron enters a zone of strong electric field close to the Corona 

electrode. Kinetic energy is imparted to the free electron through the force applied by the 

electric field. If the electron is accelerated to a speed high enough, it will eventually split a 

neutral air molecule upon collision and create a new pair of electron and positive ion. The 
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newly created electron is in turn accelerated and eventually hits another neutral air 

molecule. This process is referred to as electron avalanche or Townsend generation 

mechanism [16]. When electrons recombine with positive ions and form neutral air 

molecules, photons are released. These photons emit the bluish glow around the Corona 

electrode. At a certain distance from the high voltage electrode, the magnitude of the 

electric field is no longer high enough to sustain electron avalanche. The transition 

typically occurs where the electric field reaches 3∙106 V/m, the breakdown value for air. 

This location is the boundary of the plasma region. Outside this region, the medium is 

considered unipolar as the concentration of positive ions is typically several orders of 

magnitude higher than the concentrations of free electrons and negative ions. 

Harney defined the stage of the discharge at which a continuous, self-sustained glow is 

present as the Continuous Corona regime [28]. This is the regime of interest for flow- and 

heat transfer enhancement applications. Is the voltage further increased, the Breakdown 

Stage is reached, at which a full discharge occurs across the electrode spacing. Both the 

continuous Corona regime and the breakdown stage were captured in a picture and are 

shown in Figure 3.2 and Figure 3.3, respectively. 

 

Figure 3.2: Continuous Corona regime for a 100μm wire at a voltage of 13.5kV. The 

glow is caused by photons emitted when electrons recombine with ions to form neutral 

molecules. 
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Figure 3.3: Breakdown stage for a 100μm wire at a voltage of 18kV. 

The process of Corona discharge in air is per se a very complex phenomenon involving 

many more electron-impact reactions than merely the actual ionization reactions of 

nitrogen and oxygen molecules described by equations (1) and (2). 

 eOeOe  

22  (1) 

 

 eNeNe  

22  (2) 

In fact, dozens of additional electronic or vibrational excitations, dissociation or 

attachment reactions need to be considered to accurately model the Corona discharge. 

Hence, there is no closed form mathematical solution defining the functional dependence 

of the Corona current on the geometric parameters of the ionic wind generator such as the 

inter-electrode spacing d1 or the channel width d2. A numerical simulation of this 

phenomenon is typically very complex and computationally expensive. The model 

developed by Wang et al. considered 39 different electron-impact reactions [24]. Using a 

Monte-Carlo Collision method, they were able to calculate the Corona discharge. However, 

the computation required a supercomputer cluster and took 48 hours to complete. While 

such studies are of interest to develop an in-depth understanding of the physical 

mechanisms of Corona discharge, the computational burden makes it inappropriate as a 
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design tool. Instead, the approach taken in the present work combines an empirical 

characterization of the Corona current with a statistical regression to obtain a mathematical 

expression of the current as a function of the geometric parameters of the ionic wind 

generator. Thereby, the focus lays on the development of a tool for the design of ionic wind 

generator for internal flow and heat transfer enhancement rather than on a detailed 

understanding of the individual reactions occurring at a molecular level. The developed 

correlation then serves as the input to a numerical model that assesses the flow and heat 

transfer enhancement. 

A flow chart summarizing the method pursued in this chapter is shown in Figure 3.4. 

First, a preliminary analysis and a parametric study are performed on the geometric 

parameters, the applied voltage, the ambient humidity and the wire diameter. This allows 

defining the domain of interest for which the Corona characterization is performed. The 

collected data is analyzed and a regression is performed to derive a mathematical 

expression for the Corona current. Finally, the validity of the derived expression is verified 

using randomly generated test points. 

 

Figure 3.4: Overview of the process leading to the characterization of the Corona current. 

 Experimental Test Setup 

A custom test bench was designed and built to perform the desired Corona current 

characterization. A simplified schematic of the test setup is shown in Figure 3.5. The main 

components are the following: 
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 Single channel with Corona and collector electrodes 

 High voltage DC source to apply the desired potential to the Corona electrode 

 Picoammeter to measure the magnitude of the Corona discharge 

 Data Acquisition (DAQ) system to record the measurements 

 

Figure 3.5: Schematic of the test setup for the Characterization of the Corona current. 

3.2.1 Test Setup Design 

The main challenge of the design phase for the test setup is to determine the range of 

interest for the parameters within which the Corona discharge is to be characterized. These 

parameters include the vertical distance between the electrodes d1, the channel width d2, 

the applied voltage Φ0 and the actual Corona current ICorona. The difficulty lies in the fact 

that there is no prior knowledge about the Corona current for this configuration. In a first 

step, a conservatively large range of parameters d1, d2 and Φ0 was considered and a 

sensitivity study was performed. Based on those results, a more restricted domain of 

interest was defined for which the detailed Corona characterization was performed. 

As one of the goal of the presented research is to assess the potential for ionic wind as 

a passive cooling technology for distribution grid assets, voltages of interest extend at least 
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up to 13.7kV, which is the voltage of the distribution grid in the U.S. Therefore, 13.7kV is 

the minimal requirement for the high voltage DC source. 

For natural convection problems in vertical, rectangular arrays as discussed presently, 

the optimal channel is the width at which the tradeoffs between minimizing the frictional 

losses and maximizing the available heat transfer surface area are balanced. It can be 

computed following the correlation developed by Bar-Cohen and Rohsenow [54]. For the 

presented heat sink design with an array of parallel, rectangular, vertical channels, the 

typical optimal channel width is less than 10mm. It is expected that the ideal channel width 

for a heat sink with enhanced flow would not be much different. In a conservative way, 

however, the range of channel widths d2 considered is extended up to 20mm. 

The range for the vertical distance between the Corona and collector electrode d1 cannot 

be defined by any application driven constraint, as the only impact of d1 will be on the 

actual Corona discharge. The closest existing experimental data was collected by Go et al. 

for a Corona discharge in a wire-to-plane configuration [45]. The projected distance 

between the electrodes corresponding to d1 in the presented setup was maintained below 

6mm. However, voltages up to only 5kV were considered, while the present study intends 

to go beyond that threshold. Therefore, the range of parameters of interest for d1 was set 

conservatively from 0 to 25mm. In a similarly conservative fashion, the range of Corona 

current expected spans from 0 to 100μA. 

The ranges of interest for the parameters d1, d2 and V are summarized in Table 3.1. 

Based on these specifications, the high voltage DC source and the picoammeter can be 

selected and the testing channel designed. 
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Table 3.1: Initial Ranges of Interest 

Variable Description Value 

V 
Applied Potential to the Corona 

Electrode 

0 – 13.7kV 

d1 
Vertical Distance Between the 

Electrodes 

0 – 25mm 

d2 Width of the Channel 5 – 20mm 

ICorona Corona Current 0 – 100μA 

 

The test setup needs to exhibit a variable channel width and vertical electrode spacing 

aforementioned as well as a controllable applied voltage. The high voltage DC power 

supply selected is a Spellman CZE1000R. This device allows both adjustable voltage and 

current from 0 to 30kV and 0 to 300μA, which conservatively spans the range of parameters 

shown in Table 3.1. It also has a voltage test point, which outputs a DC voltage from 0 – 

10V corresponding to 0 – 100% of the rated output. Combining this test point with a Fluke 

45 multimeter allows for the accurate setting of the applied voltage within 1% of the target 

value. Some key specifications of the high voltage power supply are summarized in Table 

3.2. 

Table 3.2: Specifications of the High Voltage Power Supply Spellman CZE 1000R 

Specification Value 

Input Voltage 115 Vac 

Output Voltage 0 – 30kV DC 

Output Current 0 – 300μA 

Maximum Output Power 9 W 

Operating Temperature 0 – 40°C 

Operating Humidity 10 – 85% RH 

The picoammeter selected is a Keithley Model 480 Digital Picoammeter. This 

picoammeter measures currents from 1nA to 1.999mA in seven different ranges. The 

Corona electrode is a thin stainless steel wire, as was used by Go et al. in their experimental 
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work [45]. Three different wire diameters are considered: 0.002” (50.8μm), 0.004” 

(101.6μm) and 0.008” (203.2μm). The collector electrode consists of a 0.5” (12.7mm) wide 

aluminum tape. The underlying idea of having a flat, large collector electrode is to 

minimize the curvature in order to minimize the electric field concentration near the 

collector electrode and therefore increase the voltage at which a full discharge will occur. 

The structure of the ionic wind generator is designed such that the vertical walls are 

adjustable in the horizontal direction to set the channel width d2, while the Corona electrode 

is mounted on a movable platform that allows setting the vertical distance between the 

electrodes d1. The adjustable vertical walls and the platform for the Corona wire are 

mounted to a structure through spring-loaded dowel pins and linear bearings. A 3D model 

of the test setup is shown in Figure 3.6 and a detailed view of the adjusting mechanism is 

shown in Figure 3.7. 

 

Figure 3.6: CAD picture of the test setup for the characterization of the Corona current. 
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Figure 3.7: Detailed CAD picture of the adjustable channel walls mechanism with linear 

bearings, dowel pins and spring-loaded setting screw. 

3.2.2 Test Setup Build 

The structural parts of the test setup (channel walls, supporting elements, etc.) were 

made of compressed Chlorinated Polyvinyl Chloride (CPVC). The advantage of CPVC is 

that it is an electrical insulator and therefore prevents any short circuit or unwanted Corona 

discharge. Further, it is easily machinable and has a maximum operating temperature of 

95°C, which is higher than conventional PVC and fulfills the requirements for the thermal 

testing to be performed. The different parts were first water-jet cut on a MAXIEM 1515 

JetMachining Center shown in Figure 3.8. In a subsequent step, the parts requiring a high 

precision were finished on a 3-axis CNC mill Prototrak DPM SX2 as seen in Figure 3.9. 

Next, the required holes and threads were machined. To ensure a noise-free reference 

electrical potential, a 750mm copper grounding rod was machined and stepped into the 

earth ground. 
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Figure 3.8: Water jet cutting of the structural part for the ionic wind generator. 

  
Figure 3.9: Milling of the parts for the ionic wind generator requiring a higher accuracy. 

Eventually, all parts were assembled. Key dimensions of the Corona discharge test 

setup are summarized in Figure 3.10 and a picture of the full system is shown in Figure 

3.11. The uncertainty of the test setup apparatus is reported in 

Table 3.3. 
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Figure 3.10: Key dimensions of the Corona discharge test setup. 

 

Figure 3.11: Test setup for the Corona characterization. 
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Table 3.3: Test equipment and uncertainty of the measurement apparatus for the Corona 

characterization setup. 

Device Model Uncertainty 

Picoammeter Keithley 480 0.5%+3 counts 

High Voltage Power 

Supply 
Spellman CZE1000R 1% 

Multimeter Fluke 45 0.025% + 2 counts 

 

The approximate costs of the test setup are summarized in Table 3.4. Bulk of the cost 

was induced by the high voltage power supply. Items not listed were available in-house 

and did not have to be purchased. Materials for a total of $4465 was purchased to build the 

test bench for the characterization of the Corona current. 

Table 3.4: Cost of the test setup for the Corona characterization 

Item Total Cost 

High Voltage Power Supply Spellman CZE 1000R $3812 

Picoammeter Keithley 480 $272 

Linear Bearings (6 parts) $105 

Stainless Steel Corona Electrode (3 different wires) $173 

Small Hardware (Springs, Screws, Dowel Pins, 

etc.) 
$103 

Total Costs $4465 

 

 Experimental Results 

In the first phase, the influence of the individual parameters was investigated by 

performing a parametric study. There are five main parameters that influence the Corona 

discharge in ambient air: the applied voltage Φ0, the vertical inter-electrode spacing d1, the 

channel width d2, the ambient relative humidity and the diameter of the Corona wire 

electrode. The independent parameters are further classified into design variables and 

blocking factors. Design variables are parameters that can be chosen freely within certain 
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bounds when developing a new system. Hence, these parameters can be used to optimize 

the performance of the system. In the present situation, the vertical inter-electrode spacing 

d1 and the channel width d2 are design variables. Blocking factors, on the other hand, are 

determined by external constraints and cannot be changed to optimize the system. In our 

case, the applied voltage, the ambient humidity and the wire diameter are considered as 

blocking factors. The applied voltage is set to 13.5kV due to the primary application target, 

i.e. the thermal management of power routers for the electrical distribution grid. The 

ambient humidity, clearly, cannot be controlled and therefore has to be considered as a 

blocking factor. The diameter of the wire electrode could potentially be varied, however 

only in discrete steps and to a limited extent. Therefore, it is not suited as a design variable 

and is treated as a blocking factor as well. 

In the second phase, data was collected over the range of design variables (i.e. d1 and 

d2) that have been identified as of interest. 

3.3.1 Parametric Study 

The goal of the parametric study is twofold. First, it aims at restraining the range of 

parameters of interest presented in Table 3.1 to a more limited set of values relevant for 

the application of ionic wind heat transfer enhancement. Typically, parameters that exhibit 

too low of a Corona current are not of interest since no noticeable flow improvement is 

achieved. On the other end, design points at which a full discharge occurs should be 

avoided as it does not yield the wanted transfer of momentum from the ions to the air 

molecules. The second objective of the sensitivity study is to gain insight into the functional 

dependency of the Corona current on the different variables. 
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The first study considers the variation of the Corona current as a function of the applied 

voltage. Stuetzer investigated the behavior of the Corona discharge for the electrode 

configuration of parallel planes, wire-to-cylinder and point-sphere [29]. In this study, the 

author showed analytically that the magnitude of the Corona discharge follows the trend 

shown in equation (3), i.e. the square root of the Corona current varies linearly with the 

applied voltage differential between the electrodes. This dependency was verified 

experimentally by Go et al. for the configuration of a wire-to-plane discharge [45]. 

 
5.0

CoronaCollectorCorona I  (3) 

 

A sweep across a wide range of voltages was performed for a fixed geometry (d1 = 

20mm and d2 = 15mm). Figure 3.12 shows that the linear dependency between the square 

root of the Corona current and the applied voltage also holds for the presented electrode 

configuration. 

 

Figure 3.12: Functional dependence of the square root of the Corona current on the 

applied voltage. 
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The next study considered the influence of the vertical distance between the electrodes 

d1 on the Corona discharge. The magnitude of the Corona current as a function of the 

distance d1 is shown in Figure 3.13 for three different values of the channel width. It is 

observed that an increase in the vertical distance between the electrodes results in a 

decrease of the Corona current. This can be explained by analyzing the process of 

ionization: the production of ions occurs when sufficiently energetic electrons collide with 

neutral air molecules, resulting in the split of the neutral air molecule into a positive ion 

and another free electron. The acceleration of electrons is proportional to the strength of 

the electric field, which is in turn related to the gradient of the potential applied to the 

Corona electrode. Therefore, reducing the inter-electrode spacing increases the electric 

field, resulting in a higher number of ions produced and, therefore, a larger Corona current. 

 

Figure 3.13: Functional dependence of the Corona current on the vertical distance 

between the electrodes d1. 

Further, the effect of the channel width d2 on the Corona current was investigated. The 

first observation from Figure 3.14 is that the Corona current increases as the channel width 
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is increased. Another observation that was made during the experiments is that a full 

discharge occurred at a lower voltage for small channel widths. The fact that the Corona 

current increases as the channel width is increased is somewhat counter-intuitive and goes 

against the explanation given for the dependence of the Corona current on the inter-

electrode distance d1. A possible explanation is that the air flow through narrow channels 

is low due to the higher fluid resistance. Under certain circumstances, the flow can be 

chocked and thus prevents the feeding of fresh air. Thus, the number of air molecules 

available for ionization is limited in a narrower channel. As the channel width increases, 

the air flow is no longer obstructed and the number of neutral air molecules candidates for 

ionization becomes larger. Therefore, the Corona current increases with increasing channel 

width. 

 

Figure 3.14: Functional dependence of the Corona current on the channel width d2. 

The ambient humidity is the next parameter of interest. A parametric study on the 

humidity is conducted for an applied voltage of 13.5kV, an inter-electrode spacing d1 of 
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15mm and a channel width d2 of 15mm. The humidity was controlled in the laboratory 

room using a Dandy Premier dehumidifier and a water kettle. The ambient humidity was 

measured at two different locations in the room using a Taylor humidity meter with an 

accuracy of ±5%. This setup allowed to control the room humidity between 43% and 73% 

(humidity ratio of 7.54∙10-3 to 12.9∙10-3). The dependence of the Corona current on the 

ambient humidity is shown in Figure 3.15. It is shown that the Corona current increases 

with increasing humidity. This trend is explained by the enhancement of electrical 

conductivity at higher ambient humidity that was investigated by Carlon [55]. These results 

are in agreement with the work presented by Nouri et al., to which the reader is referred 

for more details on the dependence of the Corona discharge on humidity [56]. 

 

Figure 3.15: Influence of the relative humidity on the Corona current. 

The last parameter of interest is the diameter of the Corona wire electrode. The electric 

field at the surface of the wire electrode is expected to depend on the wire diameter. Peek 
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developed an empirical correlation for the electric field at the surface of a wire in air at 

standard conditions [57]. This correlation is shown in equation (4), where Ee is the electric 

field at the wire surface, E0 is the breakdown electric strength of air (both in V/m) and Re 

is the radius of the corona electrode in μm. 
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Three different wire diameters were tested: 50μm, 100μm and 200μm. The resulting 

voltage-current curves are presented in Figure 3.16 for a fixed geometry. It is shown that, 

for a given geometric configuration and applied voltage, the Corona discharge increases as 

the wire diameter is reduced. This is explained by considering equation (4): as the radius 

of the Corona electrode is decreased, the electric field at the wire surface increases due to 

the higher curvature. Thus, ionization occurs at a faster pace and the total current discharge 

increases for a smaller electrode radius. 

From a practical perspective, however, dealing with wire electrodes as thin as 50μm 

presented a challenge. Wire elongation and breakage made it difficult to maintain the 

electrode under tension. Besides the loss of strength due to the smaller cross sectional area, 

another cause of wire elongation and breakage at smaller diameters can be wire heating, 

especially at higher voltages and Corona currents. The steady state wire temperature is 

calculated according to equation (5), where the convective heat transfer coefficient is 

computed following the empirical correlation shown in equation (6) developed by Hilpert 

[58]. Thereby, radiation heat transfer is neglected, as the convective heat transfer 

coefficient is in the order of 500 – 1000W/m2-K. 
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At an applied voltage of 16.5kV and a Corona current of 40μA, the steady state 

temperature of a 50μm diameter wire is found to be 102°C. While this is well below the 

specified maximal operating temperature of 285°C, it is enough to soften the steel and 

facilitate elongation. As a comparison, a 100μm thin wire subject to the same conditions 

reaches a temperature of 63°C only. Therefore, all subsequent measurements were 

performed using an electrode wire of 100μm diameter. 

 

Figure 3.16: Corona current for three different wire diameters. 
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3.3.2 Data Collection 

Based on the sensitivity study and preliminary testing, the following range of 

parameters was identified as relevant for the objective of the present work, i.e. ionic wind 

heat transfer enhancement in rectangular channels. 

Table 3.5: Refined Domain of Interest Based on the Sensitivity Study 

Voltage Domain of Interest 

Φ0=10.5kV 

mmdd

mmdd

mmd

353

5

205.7

21

21

2







 

Φ0=13.5kV 
mmdmm

mmd

2010

255.12

2

1




 

Φ0=16.5kV 
mmd

mmd

205.7

2516

2

1




 

 

A total of 597 data points were collected at ambient conditions. The ambient 

temperature was constant at 21±2°C and the ambient humidity was measured at 54±2%. A 

scatter plot of the Corona current is shown for three different voltages in Figure 3.17 - 

Figure 3.19. A few things can be noticed from these raw data. First, the general trend 

observed from the sensitivity study showing that the Corona current increases as the 

projected distance between the electrodes d1 decreases is confirmed. Further, it is seen that 

no significant Corona discharge occurs for channels widths below 7.5mm. Last, it is noted 

that the range of d1 considered changes depending on the applied voltage. The reason for 

this comes from the fact that, as the voltage is increased, the inter-electrode distance at 

which a full discharge occurs decreases. For instance, when applying a voltage of 16.5kV 

with a channel width of 20mm, a full discharge would occur at d1 = 15m. When the voltage 

is set to 10.5kV, however, d1, can be reduced to 5mm without electrical breakdown. 
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Figure 3.17: Measured Corona current as a function of the channel width and electrode 

spacing at a voltage of 10.5kV. 

 

Figure 3.18: Measured Corona current as a function of the channel width and electrode 

spacing at a voltage of 13.5kV. 
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Figure 3.19: Measured Corona current as a function of the channel width and electrode 

spacing at a voltage of 16.5kV. 

 Data Analysis 

The eventual goal of this study is to develop a parametric tool defining the magnitude 

of the Corona discharge as a function of the geometry of the ionic wind generator. A 

mathematical expression of the form shown in equation (7) is developed for a voltage of 

13.5kV, as this is the relevant electrical potential for the target application of thermal 

management of grid-scale power routers. A similar expression is developed for voltages of 

10.5kV and 16.5kV, allowing for linear interpolation at intermediate voltage levels if 

required. Data points exhibiting a Corona current lower than 1μA are discarded, as it was 

observed that such a low current will not cause any noticeable flow enhancement and is 

thereby irrelevant for thermal management applications. 

  215.13, ,ddfI VCorona   (7) 
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A multivariate regression analysis following Chapter 12 in Barnes is performed [59]. 

Thereby, the code developed by John D’Errico and available from the Matlab file exchange 

source is used with some modifications [60]. The number of possible models explaining 

the data rapidly grows as additional terms are considered. In the present study, the potential 

candidates to fit the data are constrained to a polynomial of order up to 3. Any further 

increase in the order rapidly becomes impractical from a user perspective as the number of 

terms becomes too large. Therefore, a full model will contain the ten terms shown in 

equation (8). Any combination of those ten terms is also a valid candidate. 
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Despite constraining the polynomial order to three, there are still 511 possible 

combinations. The goodness of each individual fit is assessed by comparing the coefficient 

of determination (R2) and the Root Mean Square Error (RMSE) computed as shown in 

equation (9) through (13), respectively. Thereby, yi represents a data point, ŷi its estimate 

by the regression model and ӯ is the mean of all data points. The number of parameters in 

the model is denoted by p and the number of data points is n. A good model will have a 

high R2 and a low RMSE. Eventually, however, the choice of the final model is also based 

on a judgement call, as the accuracy of the model has to be balanced with the complexity 

in terms of the numbers of coefficients required. The R2 and RMSE values are plotted in 

Figure 3.20 to Figure 3.22 for the three different voltage levels. 
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Figure 3.20: Goodness of the fit at a voltage of 10.5kV. 
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Figure 3.21: Goodness of the fit at a voltage of 13.5kV. 

 

Figure 3.22: Goodness of the fit at a voltage of 16.5kV. 

As expected, a higher number of terms allows for a higher R2 and a lower RMSE. 

Further, it is observed that the models with the highest R2 also have the lowest RMSE, 

facilitating the identification of the best candidate. The only question that remains to be 
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answered concerns the balance between the number of terms to consider and the achieved 

accuracy. To address that question, the achievable R2 is plotted as a function of the number 

of terms considered, as shown in Figure 3.23 and Table 3.6. From these values, it is 

concluded that any terms past six will only lead to a marginal increase in accuracy. 

Therefore, the models consisting of the six terms yielding the highest R2 value are chosen 

for the three different voltage levels. 

 

Figure 3.23: Maximal achievable R2 as the function of the number of terms considered. 

Table 3.6: Maximal Achievable R2 as a function of the number of terms considered 

Number of 

Terms 
R2 (Φ0=10.5 kV) R2 (Φ0=13.5 kV) R2 (Φ0=16.5 kV) 

2 0.6925 0.8020 0.6839 

3 0.8911 0.9188 0.9285 

4 0.9545 0.9779 0.9672 

5 0.9800 0.9867 0.9901 

6 0.9910 0.9932 0.9930 

7 0.9937 0.9947 0.9955 

8 0.9974 0.9963 0.9984 

9 0.9981 0.9965 0.9985 

10 0.9982 0.9965 0.9985 



 49 

 

The three expressions for the Corona current at different voltages are listed in equations 

(14) to (16). It is noticed that the optimal expression for each of the cases takes a slightly 

different form. For instance, there is the presence of a squared term in d1 at a voltage of 

10.5kV while this term is missing at higher voltages. The ranges of validity for the 

developed expressions are also indicated. The upper bound in d1 is typically constrained 

by the minimal Corona current requirement. The lower bound in d1 is constrained by the 

distance at which a full discharge occurs. The distance d2 is bound to 20mm by the size of 

the experimental setup, while the lower bound is limited by either a full discharge at low 

values of d1 or by the minimal Corona current requirement. This effect is represented 

graphically in Figure 3.24 for equation (14). 
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Figure 3.24: Range of parameters for d1 and d2 for which the Corona current is superior 

to 1μA but no full discharge occurs. 

Finally, the original data points are plotted along the model prediction in Figure 3.25 

to Figure 3.27, showing a good qualitative agreement. It is noted that all the Corona current 

values presented were measured with a wire length of 80mm. Since the voltage drop along 

the wire is negligible, the Corona discharge is homogeneous along the wire electrode, as 

can also be seen in Figure 3.2. Therefore, the value of the Corona current for a wire of a 

different length can be linearly extrapolated from the presented data, i.e. the magnitude of 

the Corona current with a wire twice as long will be doubled.  
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Figure 3.25: Surface of the polynomial fit and original data for the Corona current at a 

voltage of 10.5kV. 

 

Figure 3.26: Surface of the polynomial fit and original data for the Corona current at a 

voltage of 13.5kV. 
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Figure 3.27: Surface of the polynomial fit and original data for the Corona current at a 

voltage of 16.5kV. 

 Uncertainty Analysis 

The uncertainty of the Corona current correlations was determined following the Kline 

and McClintock method. The general form of the uncertainty for the Corona current 

correlations is shown in equation (17). The error in the distance measurement d1 and d2 is 

estimated based on the fact that the pitch of the M5 bolts used to set the channel width and 

electrode spacing is 0.8mm per rotation. It was observed that it is possible to adjust the nut 

to less than 1/6 revolution or 0.1mm. Since two walls have to be adjusted to set the channel 

width, the uncertainty in d2 is the aggregate error and amounts to 0.14mm. The uncertainty 

calculation for the three different voltages is shown in equations (18) to (20). 
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The average percentage model uncertainty in the value of the current was calculated to 

4.29%, 3.44% and 2.82% at a voltage of 10.5, 13.5 and 16.5, respectively. The maximal 

and minimal uncertainties for each case are reported in Table 3.7. 

Table 3.7: Minimal, maximal and mean error of the correlation for the Corona current 

Voltage 

[kV] 
σI,min [μA] σI,max [μA] σI,mean [μA] 

σI,mean [%] 

10.5 0.054 0.978 0.501 4.29% 

13.5 0.112 0.869 0.335 3.44% 

16.5 0.241 0.808 0.418 2.82% 

 

 Model Validation 

In order to validate the model, 30 independent data points (10 points per voltage level) 

are collected and compared to the developed correlations. These data points are generated 

randomly using the Matlab function rand. The test points are generated in such a way that 

they do not coincide with the measurement points already collected. Rather, the distance 

d1 is chosen such that it falls between the points used for the development of the 

correlations. The test points, the predicted values for the Corona current as well as the 

model uncertainty are shown in Table 3.8. 
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Table 3.8: Test points and predicted values for the Corona current. 

Voltage Point # d1 [mm] d2 [mm] ICorona [μA] 
Model 

Uncertainty [μA] 

10.5kV 

1 12.1 16.2 18.87 0.57 

2 15.3 19.4 6.36 0.25 

3 12.9 13.8 13.09 0.49 

4 16.1 15.4 4.42 0.20 

5 16.1 17.0 5.03 0.18 

6 12.9 14.6 13.81 0.48 

7 8.1 13.8 51.27 1.19 

8 13.7 9.0 1.92 0.50 

9 9.7 10.6 30.15 0.94 

10 11.3 12.2 20.21 0.70 

13.5kV 

1 17.7 11.4 9.09 0.34 

2 19.3 13.8 8.13 0.23 

3 18.5 10.6 6.06 0.29 

4 16.1 11.4 14.78 0.48 

5 16.9 13.0 13.64 0.40 

6 20.1 13.8 6.83 0.20 

7 18.5 13.8 9.80 0.28 

8 18.5 19.4 14.30 0.29 

9 16.1 17.0 21.26 0.49 

10 15.3 19.4 27.62 0.59 

16.5kV 

1 17.7 9.0 18.71 0.61 

2 23.3 8.2 3.50 0.34 

3 20.1 13.8 19.07 0.38 

4 20.1 10.6 13.61 0.40 

5 18.5 19.4 31.51 0.55 

6 23.3 10.6 8.10 0.29 

7 17.7 11.4 24.06 0.60 

8 20.1 11.4 15.13 0.39 

9 18.5 19.4 31.51 0.55 

10 16.9 13.0 31.69 0.70 

 

The result of the validation measurements are shown in Figure 3.28 to Figure 3.30. It 

shows good agreement, almost all data points falling within the error bars of the model 

predictions and the measurement error. There are several possible causes for the difference 

between the measurements and the model prediction, such as the approximation of the 

polynomial fit or experimental uncertainty. However, the model validation performed 
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shows that the derived correlations correctly capture the trends and therefore are useful as 

design tools for the development of heat sinks with ionic wind cooling enhancement. 

 

Figure 3.28: Validation of the correlation for the Corona current at an applied voltage of 

10.5kV. 

 

Figure 3.29: Validation of the correlation for the Corona current at an applied voltage of 

13.5kV. Only the test points number 7 and 10 slightly deviate from the model prediction. 
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Figure 3.30: Validation of the correlation for the Corona current at an applied voltage of 

16.5kV. 

 Discussion 

The proportionality between the square root of the Corona current and the applied 

voltage was verified. The dependence of the Corona current on the electrode wire diameter 

is also well understood, the current increasing for smaller wire diameters due to the higher 

curvature and hence higher electric field around the electrode. Further, the fact that the 

Corona current increases as the vertical distance between the electrodes d1 is decreased can 

be explained by the increase in the magnitude of the electric field. The dependence of the 

Corona current on the channel d2 is somewhat counterintuitive. One possible explanation 

is that the number of neutral air molecules that can be potentially ionized is constrained in 

narrow channels due to the higher flow resistance, thus limiting the Corona discharge. 

Lastly, it is shown that an increase in humidity results in an increase of the Corona current 

due to enhanced electrical conductivity of the ambient air. The collected data were fitted 
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for three different voltage levels using polynomial fits. The three correlations have an R2 

higher than 0.99 and are therefore efficient tools to easily predict the Corona current for 

the proposed electrode configuration. 

 Summary 

A custom test bench was developed and built to determine the Corona current 

experimentally over the range of parameters of interests. The sensitivity of the Corona 

current on the geometric dimensions of the ionic wind generator, the applied voltage, the 

diameter of the wire electrode and the humidity is presented. The linear dependence 

between the voltage and the square root of the Corona current presented in literature is 

confirmed. Typically, the Corona current increases with decreasing vertical electrode 

spacing d1. On the other hand, the Corona current is higher for larger values of the channel 

width d2. It is also observed that a thinner wire electrode produces a higher Corona 

discharge. This is due to the increased electric field concentration at larger curvatures. For 

three different voltages (10.5, 13.5 and 16.5kV), the data of the Corona current is fitted by 

a two-dimensional polynomial expression with six terms. The resulting polynomials fits 

achieve an R2 value of over 0.99. The presented expressions are validated using 

independent test points and have an average uncertainty of less than 4.3%. The derived 

correlations are therefore useful as a tool for the design and optimization of ionic wind 

generators. 
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MULTIPHYSICS MODELING OF IONIC WIND HEAT 

TRANSFER ENHANCEMENT 

 Introduction 

Ionic wind heat transfer enhancement is a complex, multiphysics problem involving 

electrostatics, thermodynamics and fluid dynamics laws. As described in the research 

approach section, the numerical model is constrained to the domain outside of the plasma 

region. The magnitude of the ionization enters the model in the form of a boundary 

condition for the Corona current derived experimentally in CHAPTER 3. The present 

model is inherently multiphysics as it captures combined electrostatic and thermofluidic 

phenomena. The solution method follows a two-step process. First, a numerical procedure 

based on Finite Difference Approximation (FDA) is developed to solve for the electric field 

and the ion concentration. Second, the thermofluidic part of the problem is solved using 

the commercially available software Ansys 15.0 Fluent.  

 Multiphysics Model 

 A set of five governing partial differential equations (PDEs) describing the effect of 

ionic wind is presented following existing literature [40, 61]. The electric field is described 

by the Poisson equation (21). The charge density ρe is the sum of the free electrons, positive 

and negative ions concentration multiplied by the elementary charge, as shown in equation 

(22). In the case of a positive Corona discharge considered in this work, the number of 

negative ions and free electrons outside the plasma region is several orders of magnitude 

smaller than the number of positive ions, as shown by Chen and Davidson [19]. Therefore, 
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the domain outside of the plasma region is considered unipolar and the concentration of 

free electrons and negative ions is assumed to be zero. The permittivity of air takes a value 

of ε = 8.859·10-12 F/m. 

 


eE  2
 (21) 

 

   ennn ee    (22) 

 

 The next PDE imposes conservation of charges. Free charges are transported by four 

mechanisms: conduction, drift, advection and mass diffusion. 

   eIAee DuEbE  2  (23) 

 

 As suggested in the literature, the dominant transport mechanism is drift due to the 

electric field [29, 40, 45]. Therefore, transport by conduction, advection and diffusion is 

neglected. This assumption is discussed in more details in section 4.8.1 based on the 

obtained numerical results. 

 The thermo-fluidic part of the problem is described by the steady state conservation 

equations for mass (24) momentum (25) and energy (26). The influence of ions on the fluid 

flow enters the conservation of momentum equation in the form of an electrostatic force 

proportional to the ion density and the electric field, the last term in equation (25). 

   0 u  (24) 
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    EuEbTkTcu eep   22
 (26) 

 

To fully describe the conservation of energy, the heat generated by the electrical current 

in the medium should be taken into account [40]. This is done by adding a Joule heating 

term – the second to last term in equation (26). The last term in equation (26) subtracts the 

kinetic energy that ions transfer to the fluid, as part of the ion energy is not converted to 

heat. However, both terms can be neglected when compared to the amount of heat 

transported by advection in the range of parameters considered. A quantitative discussion 

of this simplification is presented in section 4.8.1. 

The presented assumptions yield a simplified numerical model of five partial 

differential equations summarized in equations (27) - (31). The advantage of the simplified 

model is that the system of PDEs can be partially decoupled, since the charge conservation 

equation is independent on the air velocity ū. Hence, the free charge density ρe and the 

electric field Ē can be solved directly from equation (27) and (28). In a subsequent step, 

the resulting body force acting on the air is fed into equation (30) and the velocity, pressure 

and temperature distributions are calculated. 
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 Computational Domain 

A cross section of the geometry under study combining a Corona electrode with a 

double collector electrode is presented in Figure 4.1. Two distinct computational domains 

are defined: one for the electrostatic solution, the other for the thermofluidic solution. 

 

Figure 4.1: Computational domain for the electrostatics (in blue) and for the 

thermofluidic part of the model (in orange). 

A few assumptions have been made in order to simplify the numerical procedures. First 

of all, it is taken advantage of the fact that the channel is symmetric so that only half of the 

channel is considered. Second, it is assumed that the depth of the channel (i.e. the 

dimension in the plane perpendicular to Figure 4.1) is large as compared to the channel 

width and that, therefore, a two-dimensional model accurately represents the physics. This 

assumption is verified by a parametric CFD study on the aspect ratio of a vertical, 
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rectangular channel. A rectangular channel of length 100mm subject to forced convection 

at an inlet velocity of 1.20m/s and a wall temperature of 100°C was considered. The 

average wall heat flux is reported as a function of the aspect ratio. It is shown that, for 

aspect ratio over 7, the error is less than 3%. Typically, fin arrays used for passive cooling 

applications have an aspect ratio that ranges from 8 to beyond 30 [62]. Therefore, a 2D 

approximation is reasonable for the present purposes.  

 

Figure 4.2: Average error in the heat flux when comparing a 2D result with the 3D 

calculation for a 100mm channel subject to forced convection by air at a velocity of 

1.2m/s. 

Third, it is assumed that the plasma region is small enough so that it can be neglected. 

In reality, the plasma region is nearly circular around the Corona wire, and a small portion 

of the computational domain should be cut out. However, this would greatly complicate 

the implementation of boundary conditions in that particular area. Further, the thickness of 

the plasma region is typically of the order of 1 to 2 times the radius of the Corona wire 

[63]. In our case, this represents less than 200μm, as compared to a channel width and 
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length in the order of 10mm and 50mm, respectively. Thus, this simplification is 

acceptable. 

 

Figure 4.3: Actual situation including the plasma region (left) and model simplification 

neglecting the plasma region (right). 

Lastly, the computational domain for the electric field and ion concentration is confined 

between the electrodes. Thereby, it is assumed that all the ions produced by the Corona 

electrode move directly to the collector electrodes and no charge leaves the control volume 

through the top boundary. A more detailed analysis of this region is discussed in section 

4.4.3. 

 Numerical Procedure for the Electric Field and Ion Concentration 

Aissou et al. mentioned that a complete solution of the Poisson equation and current 

continuity equation is not straightforward [64]. Indeed, even though several assumptions 

have been made to simplify the numerical model of the electric field and ion concentration, 

there is no readily available solution method. Therefore, a numerical procedure is 

developed to calculate the ion distribution and the electric field in the unipolar region. 
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4.4.1 Non-Dimensionalization 

The simplified model describing the electrostatics, i.e. equations (27) and (28), is 

solved using a finite difference approach on a homogeneous m by n grid in Matlab R2013a. 

Because the quantities ρe and Ē are expected to be large, the equations are non-

dimensionalized to avoid truncation errors. The normalized variables are defined in 

equations (32) - (37)  and denoted by a star. The normalizing constants are denoted by the 

subscript zero and summarized in Table 4.1. 
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Table 4.1: Normalization Constants 

Constant Description Unit 

Φ0 Applied Potential to the Corona Electrode V 

L0 Total height of the computational domain m 

ρe,0 
Expected maximal ion concentration based 

on preliminary calculations 
C/m3 

bion,0 Ion mobility coefficient in air m2/V-s 
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The normalized equations are shown in equation (38) and (39). 
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4.4.2 Finite Difference Approximation 

Due to the strong coupling of both equations, a direct solution would require solving 

2·m·n nonlinear equations simultaneously. This approach proved to be unsuccessful 

because of computational power limitations. Instead, an iterative computational scheme 

was used. The overall numerical procedure is summarized in Figure 4.4. First, the ion 

concentration is assumed to be uniformly zero and the homogeneous Poisson equation for 

the electric field is solved. Based on the calculated electric field, the conservation of 

charges equation is solved for the ion density. The process is iterated until convergence is 

reached. 

 

Figure 4.4: Overview of the numerical procedure for the solution of the Poisson equation 

and the conservation of charges equation. 
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Both equations were discretized on a staggered grid as shown in Figure 4.5. A staggered 

grid allows for a convenient computation of the first order derivative quantity Ē. Notice 

that the grid is extended past the border of the actual domain by half a cell. This facilitates 

the implementation of Neumann boundary conditions on the electric potential. The finite 

difference approximation of the normalized Poisson equation is shown in equation (40). 

The conservation of charges is solved for each cell sequentially, starting from the cell 

adjacent to the Corona electrode. An ion balance is performed on each individual cell 

according to equation (41). Thereby, it is assumed that the ion stream leaving the cell (i,j) 

has the concentration of the cell (i,j). 
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Figure 4.5: Staggered grid used for the implementation of the finite difference method. 
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4.4.3 Boundary Conditions 

The applied boundary conditions on the electric potential are summarized in Figure 4.6. 

As the collector electrode is grounded, its potential is set to zero. The potential at the 

Corona electrode is also subject to a fixed potential, namely the value of the applied voltage 

Φ0. Additionally, the electric field adjacent to the Corona electrode in the radial direction 

is set to 3∙106 V/m, the value of the breakdown of air. The treatment of the boundary 

conditions in the Corona region is summarized in detail in Figure 4.7. The remaining 

sections of the computational domain are subject to homogeneous Neumann conditions, 

following the approach by Go et al. for a similar situation [61]. The only boundary 

condition applied to the conservation of charges equation is a fixed number of ions entering 

the control volume at the Corona electrode. The number of charges entering the control 

volume is directly proportional to the Corona current measured experimentally. The 

homogeneous Neumann boundary conditions on the electric potential de facto implies a 

zero ion flux at all boundaries, except at the electrodes. This postulates that no free charge 

leaves the control volume but through the collector electrode. While in reality some free 

charges might be transported by diffusion or advection and leave the control volume 

through the top boundary, it is shown in section 4.8.1 that this transport mechanism is 

negligible as compared to the drift due to the electric field, which is directed towards the 

collector electrode. This was further verified experimentally: the Corona current was 

accurately measured at the collector electrode. In addition, the current leaving the high 

voltage DC supply can be monitored from the front panel of the device. It was observed 

that the value of the current measured at the two locations was the same within reading 
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accuracy. Therefore, applying a Neumann boundary condition immediately above the 

collector electrode is a reasonable assumption. 

 

Figure 4.6: Boundary conditions applied on the potential. 

 

Figure 4.7: Implementation of the boundary condition in the Corona region. 
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4.4.4 Mesh Convergence Study 

A mesh convergence study was performed to ensure grid independence of the results. 

The final solution of the body force on the air is considered, i.e. the product of the free 

charge density ρe and the electric field Ē. This is the relevant quantity for two reasons: first, 

it is the variable of interest as it will be used to compute the thermo-fluidic results. Second, 

it can be assumed that, if the product of the electric field and the free ion concentration has 

reached convergence with respect to the grid size, the individual variables ρe and Ē will 

have reached convergence as well. The contour of the body force in vertical direction is 

plotted for two different grid sizes of 200 and 400 elements in the vertical direction in 

Figure 4.8. Both grids yield the same solution. Additionally, the vertical body force along 

the vertical centreline of the computational domain is plotted in Figure 4.9 and allows a 

more quantitative assessment of the mesh convergence. For this study, a representative 

case with an applied voltage of 13.5kV, a channel width of 15mm and a vertical electrode 

spacing of 20mm was considered. Based on these result, the mesh with 200 nodes in the 

vertical direction corresponding to a cell size of 160μm was chosen as the minimal size for 

all calculations as it yields an optimal accuracy at a low computational cost. 
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Figure 4.8: Non-dimensionalized body force in vertical direction for a grid of 200 (left) 

and 400 (right) elements in the vertical direction, respectively. 

 

Figure 4.9: Normalized body force in vertical direction along the centerline of the 

computational domain. 
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4.4.5 Convergence of the Solution 

The average change in the solution ΔS is computed according to equation (42) in which 

N is the total number of points and k is the kth iteration. In order to investigate whether 

some regions of the control volumes have large errors, the average change in the solution 

is computed for values of p equal to 1, 2, 4 and 8. The higher values of p amplify the weight 

of points with large errors. Therefore, if a region of the computational domain does not 

converge, the value of ΔS will capture that effect. 
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For the same representative case with Φ0 = 13.5kV, d1 = 20mm and d2 = 15mm, the 

average change in the solution is plotted in Figure 4.10. As expected, the average change 

in ΔS increases with increasing exponent p. Nevertheless, it always follows an exponential 

decay until it finally converges. Therefore, it is showed that the numerical procedure 

converges to a solution for all regions of the computational domain. 
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Figure 4.10: Average change in the solution at each iteration for the representative case 

with Φ0 = 13.5kV, d1 = 20mm and d2 = 15mm. 

In order to determine whether the calculated solution is unique, the numerical 

procedure is repeated with a disturbed starting guess: instead of starting the computation 

by solving the homogeneous Poisson equation, the solution obtained previously is modified 

by a random disturbance of 10% magnitude and fed as a starting guess. The new 

convergence plot is shown in Figure 4.11. It is observed that the numerical scheme 

converges to the same solution. Therefore, it can be assumed that the solution is unique. 

Further, the convergence plot for p = 2 is shown in Figure 4.12 for the situations with two 

different starting guesses. It is noticed that the convergence curve for the case with the 

homogeneous zero concentration as the starting guess has a larger error at the start of the 

algorithm. This is expected as the homogeneous zero starting guess is further from the 

actual solution. Nevertheless, the slope at which the solution converges is the same in both 

situations, as it is expected since it converges to the same solution. 
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Figure 4.11: Average change in the solution at each iteration for the representative case 

with Φ0 = 13.5kV, d1 = 20mm and d2 = 15mm with the starting guess being the solution 

previously obtained disturbed by 10%. 

 

Figure 4.12: Comparison of the convergence plot for the case with a homogeneous zero 

density as the starting guess (blue) and for the case in which the obtained solution is 

modified with a 10% disturbance and fed as a starting guess for p = 2. 
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 Numerical Results for the Electric Field and Ion Concentration 

The non-dimensionalized results for the electric field and the ion concentration are 

presented in Figure 4.13 and Figure 4.14 for the case with Φ0 = 13.5kV, d1 = 20mm and d2 

= 15mm. As expected, the electric field is directed away from the Corona electrode in the 

bottom left corner and towards the collector electrode, located on the upper right side of 

the domain. The free ion density exhibits a maximum at the base of the control volume, 

close to the ion source. Bulk of the ions are located within the inter-electrode space, with 

the concentration approaching zero towards the top of the control volume. 

 

Figure 4.13: Electric field for the case with Φ0 = 13.5kV, d1 = 20mm and d2 = 15mm. 
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Figure 4.14: Non-dimensionalized free ion concentration for the case with Φ0 = 13.5kV, 

d1 = 20mm and d2 = 15mm. 

The non-dimensionalized force in horizontal and vertical directions are shown in Figure 

4.15 and Figure 4.16, respectively. Because the electric field is directed mostly vertically, 

as can be seen in Figure 4.13, the horizontal body force is close to zero throughout the 

control volume but close to the electrodes, where the electric field does have a significant 

horizontal component. The vertical component of the body force is more homogeneously 

spread across the inter-electrode space, even though it still shows a maximum close to the 

Corona and collector electrodes. It is noticed that in order to obtain the actual input data to 

fluent, the non-dimensionalized values presented need to be multiplied by the factor 
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Φ*ρe
*/d*. The magnitude of the body force typically ranges from 0 to 150 N/m3 depending 

on the applied voltage and geometric dimensions. 

 

Figure 4.15: Non-dimensionalized horizontal body force acting on the fluid for the case 

with Φ0 = 13.5kV, d1 = 20mm and d2 = 15mm. 
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Figure 4.16: Non-dimensionalized vertical body force acting on the fluid for the case with 

Φ0 = 13.5kV, d1 = 20mm and d2 = 15mm. 

 Numerical Procedure for the Thermo-fluidics 

Unlike the equations describing the electric field and the ion concentration, the 

equations (24) to (26) describing the behaviour of the thermo-fluidic system have been 

widely studied and several commercially available software exist to solve this set of 

equations. The present work was performed using Ansys Fluent v15.0. The simulation was 

carried out using the workbench. The 2D geometry was built in the DesignModeler tool. 

Since the geometry of the present model is simple, the standard Ansys Meshing tool was 

used to generate the mesh. A homogeneous mesh of square elements was generated. The 

steady-state, pressure-based solver was selected. The viscous laminar model coupled with 
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the energy equation was chosen. The assumption of laminar flow is verified in section 

4.8.1. The material properties of air were evaluated at the average film temperature. To 

capture the effect of buoyancy forces due to density changes, the density was modelled 

using the Boussinesq approximation and the gravitational acceleration was specified to 

9.81m/s2. The body force induced by the ion collisions was implemented by specifying 

momentum sources in the cell zone conditions. Thereby, the text files generated from the 

Matlab calculations and containing the values of the local body force were uploaded as 

profiles. 

4.6.1 Boundary Conditions 

The boundary conditions specified in the model are summarized in Figure 4.17. The 

inlet of the channel is set as an inlet vent at atmospheric conditions. The ionic wind 

generator is treated as an adiabatic wall. The wall of the cooling channel is set to a fixed 

temperature. This temperature can be either constant across the wall or an arbitrary 

temperature profile defined using text files uploaded as profiles. The outlet of the channel 

is set as a pressure outlet at ambient pressure. Finally, the left-hand side of the control 

volume is specified as a symmetry axis. 



 79 

 

Figure 4.17: Boundary conditions specified in Fluent of the thermo-fluidic simulation. 

4.6.2 Solution Method 

Two kind of solvers are offered in Fluent: segregated and coupled solvers. Segregated 

solvers such as the Simple or the Simplec algorithm solve the equations for the solution 

variables sequentially. Coupled solvers, on the other hand, solve the momentum and 

continuity equations simultaneously. While there is no clear rule on which solver to use 

based on the problem setup, it is mentioned that the Fluent Coupled solver typically 

converges faster than segregated solvers, but requires more memory [65]. While the present 

simulation converged for both types of solvers, the Coupled solution scheme proved to be 

more time-efficient than the Simple or Simplec algorithms and was therefore the preferred 

solver. 
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The double precision option was selected. This option is recommended for cases where 

natural convection is important. In addition, the double precision option did not result in a 

significant increase of the computational time as compared to the single precision routine 

in the present simulation. Stringent residuals of 10-6 were required for the mass 

conservation, the x-velocity, the y-velocity and the energy equations to ensure convergence 

to a unique solution. 

4.6.3 Mesh Convergence Analysis 

A mesh convergence study was performed by reducing the size of the elements and 

reporting the velocity profile at the exit of the channel as well as the average heat flux on 

the heated wall. The case considered was a channel of 15mm width and 100mm length. 

The parameters of the ionic wind were set to a voltage of 13.5kV and an inter-electrode 

distance of 15mm. The simulation was run with a cell size of 1000, 500, 250 and 125μm. 

The velocity profile at the exit of the heat exchanger channel is plot in Figure 4.18 and the 

average surface heat flux is reported in Table 4.6. It is shown that grid independence of the 

results is reached at a cell size of 250μm, which was chosen as the minimum cell size for 

subsequent calculations. 

Table 4.2: Average wall heat flux for different grid sizes. 

Cell Size [μm] 
Average Wall Heat 

Flux [W/m2] 

Increase in  

Heat Flux [%] 

1000 684.87 N/A 

500 673.63 1.65% 

250 670.20 0.51% 

125 669.17 0.15% 
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Figure 4.18: Mesh convergence analysis for the thermo-fluidic simulation in Fluent. 

The simulations were performed on an AMD 8 core work station with 32GB of 

memory. A typical case required less than 200 iterations and 5 minutes to converge. 

 Numerical Results for the Thermo-fluidics 

The numerical model developed is used to gain insight in the behaviour of the ionic 

wind generator and the potential cooling enhancement achievable through ionic wind in 

vertical, air-cooled channels. 

4.7.1 Comparison with Nusselt Number Correlation 

At first, the thermal model is run without the body force due to ion collisions. This case 

serves as benchmark and is compared to the Nusselt correlation shown in equation (43) for 

flow between isothermal, parallel plates developed by Bar-Cohen and Rohsenow [54]. 

Thereby, C1 and C2 take a value of 576 and 2.81, respectively. The simulation is performed 

for two channel lengths (100mm and 200mm) and three different surface temperatures. The 
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ambient temperature is set to 295K. The width of the channel is kept constant at 15mm. 

The comparison between the Fluent thermal model and the empirical Nusselt correlation 

is shown in Figure 4.19. A good agreement is shown between both methods, with an 

average error of 4.9%. This is well within the expected accuracy commonly accepted for 

empirical Nusselt number correlations. Indeed, the level of accuracy of empirically derived 

Nusselt number correlations is typically around 20% [66]. 
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Figure 4.19: Comparison of the Fluent thermal model with the Nusselt correlation for 

flow between parallel, isothermal plates. 

4.7.2 Velocity Profile of the Ionic Wind Generator 

In order to investigate the velocity profile induced by the ionic wind generator, a set of 

simulation is performed without a cooling channel. The influence of the ionic wind 
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generator geometric parameters d1 and d2 on the velocity profile is investigated in a 

sensitivity study. The voltage is kept constant at 13.5kV. In the first set of results, the 

channel width d2 is kept constant at 15mm and the vertical inter-electrode spacing is varied 

from 15 to 25mm in 2mm increments. The predicted velocity profiles at the exit of the 

ionic wind generator are shown in Figure 4.20. 

 

Figure 4.20: Sensitivity analysis of the velocity at the exit of the generator on the vertical 

inter-electrode spacing d1. 
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It is observed that the velocity is very sensitive on the inter-electrode spacing d1. The 

first thing noticed is that the magnitude of the velocity decreases as d1 is increased. This is 

expected as the Corona discharge is less for larger d1, as shown in Figure 3.13. Also, it is 

observed that the shape of the velocity profile is changing as the vertical inter-electrode 

spacing is varied. This is due to the varying body force induced by ion collision. For the 

six different cases, the normalized body force in vertical direction is shown in Figure 4.21 

and Figure 4.22. For the case with d1 = 15mm, a large body force is induced close to the 

Corona electrode, resulting in a maximal velocity in the centre of the channel. At the other 

extreme, for d1 = 25mm, the body force is more homogeneously distributed, with bulk of 

the momentum transfer occurring in the inter-electrode space. This results in a flatter 

velocity profile. 

 

Figure 4.21: Normalized body force in vertical direction for d1 = 15mm (left), d1 = 17mm 

(center) and d1 = 19mm (right) for a channel width of 15mm and an applied voltage of 

13.5kV. 
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Figure 4.22: Normalized body force in vertical direction for d1 = 21mm (left), d1 = 23mm 

(center) and d1 = 25mm (right) for a channel width of 15mm and an applied voltage of 

13.5kV. 

A similar parametric study was performed to investigate the dependence of the velocity 

profile on the channel width d2. This time, the vertical inter-electrode distance was kept 

constant at 15mm. The voltage remained set to 13.5kV. The channel width d2 was increased 

from 10mm to 20mm in 2mm increments. The velocity profile at the exit of the ionic wind 

generator is shown in Figure 4.23 for the six different cases. 
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Figure 4.23: Sensitivity analysis of the velocity at the exit of the ionic wind generator on 

the channel width d2. 

It is observed that the magnitude of the velocity is not as sensitive to a change in 

channel width d2 as it is to a change in the electrode spacing d1. This trend is also expected 

as the Corona discharge is less sensitive to the channel width than it is to the vertical 

electrode spacing. It is noticed, however, that the shape of the profile changes significantly 

as the channel width is varied. Looking at Figure 4.23, it is seen that the velocity profile at 

a channel width of 10mm exhibits a maximal velocity close to the wall. As the channel 
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width is increased to 12mm, this maximum flattens and the shape becomes similar to a 

plug flow. Is the channel width further increased to 16mm, the velocity maximum is located 

at the centre of the channel. Again, this behaviour is best explained by looking at the 

distribution of the vertical body force induced by the Corona discharge on the medium 

shown in Figure 4.24 and Figure 4.25. At a channel width of 10mm, the body force is 

mostly concentrated close to the wall. This behaviour is explained by the fact that the ratio 

of the distance d1 to d2 is large as compared to the other cases. Therefore, an important 

fraction of the ions generated reach the wall before they attain the collector electrode, and 

subsequently drift along the wall towards the collector electrode. This results in a higher 

ion concentration close to the wall, which in turn leads to a higher body force. Therefore, 

the velocity profile is distorted and a maximum occurs somewhere between the center of 

the channel and the wall. This effect is less important in the other cases as the body force 

is more homogeneously distributed across the inter-electrode domain due to the larger 

distance between the Corona electrode and the wall. The other effect influencing the 

velocity profile is certainly the magnitude of the Corona current: as the channel width is 

increased, the Corona current typically increases. Therefore, the ion concentration and 

thereby the body force is higher close to the Corona electrode. This induces the maximum 

in the velocity profile observed at the centre of the channel for cases with channel widths 

greater than 14mm. The velocity vector fields contour plots for the case d2 = 10mm and d2 

= 20mm are shown in Figure 4.26 and Figure 4.27. It is challenging to deduce a clear 

correlation between the body force and the velocity profile as both quantities are linked 

though the conservation equations (24) and (25). However, some general trends can be 

recognized, such as a high velocity in the region close to the corona electrode – where the 
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body force is the highest. Further, it is noticed that the velocity in horizontal direction is 

zero throughout the control volume but for the region close to the channel entrance. The 

magnitude of the horizontal velocity is much smaller than the vertical velocity component, 

resulting in very little deviation from the vertical flow. This flow pattern is shown in the 

velocity vector fields. 

 

Figure 4.24: Normalized body force in vertical direction for d2 = 10mm (left), d2 = 12mm 

(center) and d2 = 14mm (right) for d1 = 15mm and an applied voltage of 13.5kV. 

 

Figure 4.25: Normalized body force in vertical direction for d2 = 16mm (left), d2 = 18mm 

(center) and d2 = 20mm (right) for d1 = 15mm and an applied voltage of 13.5kV. 
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Figure 4.26: Velocity magnitude and vector field for d2 = 10mm at a vertical electrode 

spacing of d1 = 15mm. 

 

Figure 4.27: Velocity magnitude and vector field for d2 = 20mm at a vertical electrode 

spacing of d1 = 15mm. 

4.7.3 Thermal Performance of the Ionic Wind Generator 

In the next step, a set of thermal simulations are carried out including the ionic wind 

flow enhancement considering an electrode spacing d1 of 15mm and an applied voltage of 

13.5kV. The channel width d2 is set to 15mm. Three different wall temperatures (323, 343 
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and 363K) as well as two channel lengths (100mm and 200mm) are considered. The 

ambient temperature is set to 295K. The local heat flux and convective heat transfer 

coefficients are extracted from Fluent and plotted in Figure 4.28 and Figure 4.29 for the 

six cases along with the corresponding situation without ionic wind heat transfer 

enhancement. The average heat flux for the cases with and without ionic wind is reported 

in Table 4.3. 
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Figure 4.28: Local heat flux (left) and convective heat transfer coefficient (right) for the 

100mm cooling channel. 
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Figure 4.29: Local heat flux (left) and convective heat transfer coefficient (right) for the 

200mm cooling channel. 

Based on these results, a few trends are observed. As expected, the convective heat 

transfer coefficient and hence the heat flux is highest at the channel inlet. This is due to the 

fact that the thermal boundary layer thickness is developing at the entrance of the channel. 
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Ionic wind induced an increase of the heat flux of 79.5 – 99.2% for the 100mm channel 

and 50.9 – 66.0% for the 200mm channel as compared to natural convection only. The ratio 

of the Grashof number to the square of the Reynolds number is computed for the case with 

ionic wind according to equation (44), where S is the channel width. For all cases, this ratio 

is smaller than 0.023. Therefore, forced convection is dominant as compared to natural 

convection for ionic wind enhanced flow. 

Table 4.3: Ionic Wind Heat Transfer Enhancement 

Channel 

Length 

[mm] 

Wall 

Temperature 

[K] 

Average Heat Flux 

Natural Convection 

[W/m2] 

Average Heat 

Flux w/ Ionic 

Wind [W/m2] 

Heat Flux 

Enhancement 

[%] 

100 

363 541.9 972.8 +79.5 

343 362.8 678.9 +87.1 

323 196.4 391.2 +99.2 

200 

363 460.0 694.2 +50.9 

343 307.8 482.8 +56.9 

323 166.5 276.4 +66.0 
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Next, the effect of varying ambient humidity on the heat transfer is studied. Keeping 

the same configuration (d1 = 15mm, d2 = 15mm, Φ0 = 13.5kV), the simulation is carried 

out for a varying ambient humidity resulting in different Corona currents. Thereby, the wall 

temperature is set to 363K. The average heat flux as a function of the ambient humidity is 

shown in Figure 4.30 for a channel length of 100mm and 200mm. 
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Figure 4.30: Average heat flux in the channel as a function of the ambient humidity. 

As expected, the average heat flux increases with increasing humidity due to the higher 

Corona discharge. The variation with respect to the reference relative humidity (54%) 

amounts to -5.4% to +12.2% for the 100mm channel and -5.1% to +12.1% for the 200mm 

channel in the range of humidity from 43% to 73%. Typically, a decrease in the ambient 

humidity will be of concern as the cooling power is less under such conditions. This effect 

has to be considered when designing cooling systems that will operate in open air. 

However, it is noticed that the variation in the ambient temperature will have a much larger 

effect on the cooling power than the variation in the ambient humidity. By analyzing data 

for the humidity in 100 U.S. cities from [67], it was noticed that the seasonal variation in 

the humidity was moderate for most regions. Nevertheless, certain cities with a specific 

climate do have significant seasonal variations that would have a non-negligible influence 

on the thermal performance of an ionic wind generator. A case study for the cities of 

Phoenix (AZ) and Salt Lake City (UT) compared the cooling power for summer and winter 
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conditions is presented in Table 4.3. The simulation is carried out for a 200mm channel 

and a wall temperature of 363K. First, the ambient temperature is kept constant at 295K to 

study the influence of the varying humidity only. Then, the average ambient temperature 

is set according to data from [67] in order to assess the combined effect of ambient humidity 

and temperature on the cooling power of the system. 

Table 4.4: Case Study of the Cooling Power Depending on Ambient Conditions 

Location 

Summer Winter  

RH [%] 
TAmbient 

[K] 

qChannel 

[W/m2] 
RH [%] 

TAmbient 

[K] 

qChannel 

[W/m2] 

Δq [%] 

Salt Lake 

City (UT) 

36 295.0 658.7 74 295.0 779.2 +18.3 

36 296.2 647.9 74 249.8 1307.2 +101.7 

Phoenix 

(AZ) 

36 295.0 658.7 54 295.0 694.8 +5.5 

36 313.7 488.5 54 285.3 820.9 +68.0 

The results presented in Table 4.3 show that the variation of the ambient humidity 

induces a change in the cooling power of 18.3% in the most extreme case. This is to be 

compared to a change of up to 101.7% when considering the combined effects of seasonal 

humidity and temperature variations. Therefore, it is to conclude that the variation in 

ambient humidity affects the thermal performance of the system only moderately as 

compared to variations of the ambient temperature. Therefore, the recommended approach 

is to design the cooling system based on the worst case scenario for the specific application. 

Last, the influence of the positioning of the ionic wind generator upstream (push) or 

downstream of the channel (pull) is investigated. The local heat flux for both configurations 

is shown in Figure 4.31 for a channel length of 100 and 200mm. It is observed that there is 

no significant difference from a heat transfer perspective. 



 96 

 

Figure 4.31: Comparison of the Push vs. Pull configuration for the ionic wind generator 

for a channel length of 100mm (left) and 200mm (right). 

A combination of both configurations, i.e. implementing an ionic wind generator both 

at the inlet and at the outlet of the channel could potentially further increase the cooling 

power. The average heat flux is computed for the case of a cooling channel provided with 

two identical ionic wind generators with parameters d1 = 15mm, d2 = 15mm and Φ0 = 

13.5kV, one each at the inlet and the outlet. The results are reported in Table 4.5.  

Table 4.5: Comparison of the configuration with a single ionic wind generator at the inlet 

(Push) and two devices, one each at the inlet and at the outlet (Push-Pull). 

Channel 

Length 

[mm] 

Wall 

Temperatur

e [K] 

Average Heat Flux 

Push [W/m2] 

Average Heat 

Flux Push-Pull 

[W/m2] 

Heat Flux 

Increase [%] 

100 363 972.8 1079.5 +11.0% 

200 363 694.2 810.7 16.8% 

It is shown that combining two ionic wind generators increases the average heat flux 

by 11.0 and 16.8% for a channel length of 100mm and 200mm, respectively. The moderate 

increase in the heat rate is due to the fact that the flow remains laminar even with two ionic 

wind pumps. A possible way to further enhance the heat transfer rate could be to 

deliberately disturb the flow to make it turbulent, at which point an increase in velocity 
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through additional ionic wind generators could be more beneficial from a thermal 

perspective. 

 Discussion 

The iterative procedure developed to solve the partial differential equations describing 

the electric field and the ion concentration typically converges within less than 40 

iterations. The computed body forces acting on the fluid in horizontal and vertical direction 

are fed to the thermo-fluidic model. It is observed that the force in horizontal direction is 

mostly concentrated near the electrodes, as the electric field in horizontal direction is weak 

in the inter-electrode space. The vertical force, on the other hand, is more homogeneously 

distributed, even though there is also a maximum near the electrodes. The thermo-fluidic 

solution scheme in Fluent typically converges in less than 200 iterations and less than 5 

minutes. The comparison between the thermo-fluidic simulation for the case without ionic 

wind and the value yielded using a Nusselt correlation shows good agreement, with an 

average error of less than 5%, which is usual for empirical correlations. The simulation is 

carried out for several cases with and without ionic wind to compare the heat transfer 

increase obtained when using ionic wind flow enhancement. The increase in the heat rate 

amounts to 79.5 – 99.2% for the 100mm channel and to 50.9 – 66.0% for the 200mm 

channel. The cooling power enhancement provided by ionic wind is mostly pronounced 

for short channels. This can be explained by the fact that natural convection is entirely 

driven by changes in density and consecutive buoyancy pressure gains. The change in 

buoyancy pressure is directly proportional to the height of the system. Therefore, short 

channels typically do not experience much draft and ionic wind is therefore most impactful 

in such cases. Ionic wind also offers new possibilities for the design of heat sinks as 
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compared to natural convection only as it does not necessarily require vertical channels. 

For instance, a flat power electronic assembly could be cooled by horizontal channels 

passing through the bottom of the assembly when using ionic wind. 

Another observation that was made is that the ratio of the Grashof number versus the 

square of the Reynolds number is much less than one when ionic wind is turned on. 

Therefore, forced convection is the dominant heat transfer mode as compared to natural 

convection. Finally, the effect of changing the positioning of the ionic wind generator from 

the inlet to the outlet of the channel is investigated. It is observed that the main purpose of 

the ionic wind generator is to provide a pressure differential that induces a flow through 

the channel. It is reminded that the momentum transfer occurs through collisions between 

neutral air molecules and ions instead of angular momentum transfer as in a conventional 

fan, in which case the blade – channel arrangement has an impact on the performance of 

the fan. Therefore, the location of the ionic wind generator does not affect the heat transfer 

rate in the cooling channel significantly. Thus, the choice of configuration is mainly driven 

by applications. Typically, positioning the ionic wind generator at the bottom of the 

channel will make it less exposed to damages and might be preferred. 

4.8.1 Model Assumptions 

Several simplifications and assumptions have been made in order to reduce the 

complexity of the numerical scheme. These simplifications are verified in this section 

based on the obtained results. 

The first important simplification that was taken concerns the transport mechanisms 

for ions in air. Indeed, it is commonly accepted in the literature that ion drift due to the 

electric field is dominant as compared to the other transport modes [29, 40, 45]. 
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Nevertheless, this assumption is verified quantitatively. The three terms on the left hand 

side of the conservation of charges equation (23), i.e. conduction, drift and advection can 

be compared directly to each other by computing an average transport velocity defined in 

equations (45) – (47). Thereby, the ion mobility coefficient b and the electrical conductivity 

of air σ take values of 3∙10-4 m2/V-s and 1.61∙10-23 Ω-1m-1, respectively [61, 68]. 
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The average diffusion flux Jdiffusion is computed using Fick’s first law shown in equation 

(48). Thereby, the value of the concentration gradient was averaged over the whole control 

volume in both directions. The diffusion coefficient Dion takes a value of 2∙10-5 m2/s [61]. 

The characteristic diffusive velocity is then calculated by dividing the diffusion flux by the 

average ion concentration, as shown in equation (49). 
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The transport velocities are calculated for a representative case with an applied voltage 

of Φ0 = 13.5kV, d1 = 15mm and d2 = 20mm and summarized in Table 4.6. Thereby, the 

average magnitude of the electric field and the average free charge density were 2.01∙106 

V/m and 1.16∙10-4 C/m3, respectively. The characteristic fluid velocity defined in equation 
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(47) was computed as the average velocity magnitude across the entire computational 

domain. 

Table 4.6: Characteristic velocities of the different transport modes 

Transport Mechanism Symbol Average Velocity [m/s] 

Conduction uconduction 2.79∙10-13 

Ion Drift uion drift 603 

Advection uadvection 1.27 

Diffusion udiffusion 7.34∙10-4 

 

From the values presented in Table 4.6, it is clear that ion drift due to the electric field 

outweighs other transport mechanisms by several orders of magnitude. Therefore, it is 

confirmed that neglecting these three terms is a reasonable assumption. 

The neglecting of the advection term was further investigated by iteratively solving the 

conservation of charges equation including the bulk flow velocity. This was done 

iteratively starting with a homogeneous zero velocity, and then implementing the velocity 

distribution calculated from Fluent in the FDA calculations. It was calculated that the 

average error in the ion concentration was less than 0.6%. Most of the error originated from 

the homogeneous Neumann boundary condition specified at the top of the control volume 

that prevents any charge to leave through that side. The average error in the velocity was 

calculated to less than 0.07%. Therefore, neglecting the advection term is a sound 

assumption as it allows decoupling the electrodynamics from the thermo-fluidic problem. 

The second assumption that needs to be verified pertains to the general energy 

conservation law shown in equation (26). It was postulated that the kinetic energy imparted 

to the fluid and the Joule heating due to the Corona discharge were negligible. The 

magnitude of the different terms are computed for the same representative case with an 
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applied voltage of Φ0 = 13.5kV, d1 = 15mm and d2 = 20mm. A cooling channel of 200mm 

length at a temperature of 90°C is considered. This case is conservative in terms of the 

Joule heating, as it exhibits a large value for the Corona current. The values for the heat 

transfer to the fluid, the kinetic energy imparted to the air and the Joule heating due to the 

Corona discharge are shown in Table 4.7. Both the joule heating and the kinetic energy 

term account for less than 1.6% of the total energy considered in the system. Therefore, it 

is reasonable to neglect these terms. 

Table 4.7: Representative values for the different terms in the energy conservation 

equation 

Terms Value [W] 

Heat Transfer 2.26∙101 

Kinetic Energy 1.46∙10-3 

Joule Heating 3.81∙10-1 

 

Last but not least, the assumption of laminar flow has to be verified. The Reynolds 

number is computed according to equation (50), where Dh is the hydraulic diameter. 

 


h

Dh

uD
Re  (50) 

For the most critical case, i.e. a channel width of 20mm subject to a high voltage of 

16.5kV and a vertical-interelectrode spacing maximizing the Corona current, the maximal 

Reynolds number does not exceed 2080, which is below the critical Reynolds number of 

2300 for internal flow. It is to mention that, for most of the configuration of interest in the 

present work – i.e. an applied voltage of 13.5kV and a channel width around 10-15mm – 

the  Reynolds number is even lower than 1500. Therefore, it is reasonable to assume 

laminar flow. 
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4.8.2 Efficiency of Ionic Wind Heat Transfer Enhancement 

The efficiency of ionic wind heat transfer enhancement is of interest. A coefficient of 

performance (COP) is defined as shown in equation (51) following the work by Ong [69]. 

Thereby, QIW describes the heat transfer rate with ionic wind enhancement, QNC is the heat 

transfer rate by natural convection only and PEl is the electrical energy input. 
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The COP is calculated for the cases shown in Figure 4.28 and Figure 4.29 and is 

reported in Table 4.8. It ranges from 9.3 to 22.3. This is higher than the value of 8.0 found 

in [70], but less than the value of 47.0 reported in [69]. It is important to mention that the 

high value of 47.0 was obtained by specifically optimizing the design to maximize the 

COP. It is certainly possible to increase the COP of the presented heat sink concept by 

performing a design optimization targeted at increasing the COP. However, many other 

parameters have to be considered when designing a heat sink, such as the maximal 

allowable temperature or geometric constraints. For instance, the results presented in Table 

4.8 imply that the proposed heat sink concept exhibits a larger COP at higher wall 

temperatures; however, some application might constrain the maximal allowable cold plate 

temperature below the value that would maximize the COP. 

June et al. conducted a study specifically targeted at comparing the efficiency of ionic 

wind devices for cooling purposes as compared to CPU fans [71]. In their study, they 

considered a needle-to-ring configuration and showed that ionic wind pumps can 

outperform axial fans. The presented ionic wind pump delivered an airflow of 462cm3/s 

for an electrical power input of 0.17W. As a comparison, a conventional CPU axial fan 

would require 0.40W to deliver the same air flow rate. The ionic wind generator considered 
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in the present work generates a flow rate of 1590cm3/s at an applied voltage of 13.5kV with 

an inter-electrode spacing d1 = 15mm and a channel width d2 = 15mm. The corresponding 

electrical power input is 0.34W. An axial fan equivalent to the one considered in reference 

[71] would require 1.37W to provide the same air flow rate. Therefore, besides being silent 

and operating without moving parts, ionic wind pumps could potentially also decrease the 

power consumption of the cooling system. 

Table 4.8: COP of the presented ionic wind generator for a representative case with a 

channel width of 15mm, an inter-electrode spacing of 15mm and an applied voltage of 

13.5kV. 

 

Channel 

Length 

[mm] 

Wall 

Temperatur

e [K] 

Average Heat Flux 

Natural 

Convection [W/m2] 

Average Heat 

Flux w/ Ionic 

Wind [W/m2] 

COP 

100 

363 541.9 972.8 20.5 

343 362.8 678.9 15.0 

323 196.4 391.2 9.3 

200 

363 460.0 694.2 22.3 

343 307.8 482.8 16.7 

323 166.5 276.4 10.5 

 

 Summary 

A multiphysics model describing the flow- and heat transfer enhancement in internal, 

rectangular channel utilizing ionic wind is presented. The model consists of five partial 

differential equations. A solution method based on finite difference approximation (FDA) 

is developed for the Poisson equation and the conservation of charges. The conservation 

equations for mass, momentum and energy are solved using the commercially available 

software Ansys Fluent. The numerical model predicts an increase in the cooling power from 

50% to 100% as compared to natural convection. When ionic wind is used, forced 
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convection is dominant, as the ratio of the Grashof number to the square of the Reynolds 

number is typically less than 0.023. It is calculated that the positioning of the ionic wind 

generator upstream or downstream of the channel does not significantly impact the 

performance of the cooling channel. Finally, the assumptions taken in the course of the 

model development are verified with the obtained results. 
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EXPERIMENTAL TESTING OF IONIC WIND  

HEAT TRANSFER ENHANCEMENT 

 Introduction 

The main objectives of this chapter are twofold. One on hand, experimental data is 

collected in order to validate the developed numerical model. On the other hand, a technology 

demonstrator is built to demonstrate the potential and the applicability of the presented 

technology. The validation is performed at two levels: first, the velocity at the exit of the ionic 

wind generator is measured and compared to the model prediction. Second, a thermal test is 

conducted on a single cooling channel and the predicted heat rate is compared to the measured 

value for the cooling power. 

The technology demonstrator is conceived to cope with the need of an existing Power 

Converter Augmented Transformer (PCAT) generating a total of 240W at a heat flux of 

1.27W/cm2. The numerical model developed in the previous chapter is used to design the 

heat sink consisting of a fin array and an ionic wind generator. Finally, the novel thermal 

management system is tested with and without ionic wind heat transfer enhancement and 

the cold plate temperature is compared for both cases. 

 Experimental Test Setup Design 

The ionic wind test setup is an extension of the system designed for the Corona 

characterization presented in section 3.2.1. The test setup should allow for modularity so 

that both air velocity measurements and thermal data can be collected.  

The air velocity is to be measured directly at the exit of the ionic wind generator. 

However, this measurement presents two challenges: first, the expected velocity 
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magnitudes are relatively low (in the order of 1-2m/s). Second, the width of the channel is 

20mm or less. Therefore, a small velocity sensor is required in order to measure the velocity 

profile across the channel width. There exists several techniques to measure air velocity: 

Pitot tubes, vane anemometers, Particle Image Velocimetry (PIV) and hot-wire 

anemometers are among the most common ones. Pitot tubes with a diameter smaller than 

1mm have been manufactured for velocity measurement in combustion turbines [72]. 

However, this technology is not suitable for the present setup as velocities in the order of 

1-2m/s would result in pressure differentials of only less than 2.5Pa, which are hard to 

measure accurately. Vane anemometers are not an option either since they are typically 

larger than the width of the channel considered. PIV is attractive as it gives a full image of 

the flow field. However, this measurement method is complex and costly as it requires a 

laser, a high speed camera and transparent walls. Moreover, it requires seeding particles to 

trace the flow motion. Seeding particles can sometimes influence the flow pattern and, in 

the present case, the electric field and the ion concentration. Therefore, PIV is not adequate 

for the present application. Hot wire anemometers potentially have the necessary 

measurement resolution over the range of interest, but the size of the measurement head is 

usually in the order of 10-15mm. However, novel mini air velocity sensors have been 

developed recently: the micro-profile airflow sensor UAS2000 developed by 

DegreeControls has a size of less than 1mm and allows for velocity measurements in the 

range of 0.50-10m/s. Therefore, this device proved to be the ideal tool for the present 

application. It is shown in Figure 5.1 alongside a penny as reference size. The velocity 

sensor is mounted at the exit of the ionic wind generator on a moveable stand in order to 

record the velocity profile across the width of the channel, as presented in Figure 5.2. 
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Figure 5.1: Air velocity sensor UAS2000 next to a penny as reference size. 

 

Figure 5.2: Moveable stand for the air velocity sensor allowing to collect data points 

across the channel. 

A sketch of the setup for the thermal test is shown in Figure 5.3. The equipment used 

in the thermal test setup as well as the uncertainty of the measurement apparatus is 

summarized in Table 5.1. 
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Figure 5.3: Sketch of the thermal test setup. 

Table 5.1: Test equipment and uncertainty of the measurement apparatus. 

Device Model Uncertainty 

Airflow Sensor 
DegreeControls UAS 

2000 

u >1m/s:  ±10% 

u <1m/s: ±20% 

Digital Ammeter Fluke 179 1.5% + 3 counts 

Digital Ohmmeter Fluke 179 0.9% + 2 counts 

Surface Thermocouple Omega T-type ±1°C 

Variac Staco 3PN2110B N/A 

16 Ch. Thermocouple 

DAQ 
NI 9213 N/A 

Film Heaters 
Omega KH-304/2, 

Omega KH-308/2 
N/A 
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 Test Setup Fabrication 

The structure of the cooling channel is made of CPVC. The parts are first water-jet cut 

and then finished on a 3-axis CNC mill (Prototrak DPM SX2). The heat load is provided 

by two film heaters that are individually controlled by variable transformers (Staco 

3PN2110B). Four T-type surface thermocouples are positioned along the channel at equal 

intervals to monitor the wall temperature. The data is recorded using a National Instrument 

DAQ NI9213 linked to a customized Labview program. The film heaters and surface 

thermocouples are inserted between the CPVC and a 3.2mm thick copper plate in a 

sandwich configuration. This ensures a good contact between the thermocouples and the 

film heaters. A thermal compound is applied between the copper plate and the heaters to 

minimize the contact resistance. The outside walls of the cooling channel are thermally 

insulated with 2 inch thick polystyrene foam insulation. A picture of the thermal test setup 

is shown in Figure 5.4. 

 

Figure 5.4: Experimental setup for the thermal tests. 
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 Air Velocity Measurements 

The multiphysics model is validated by measuring the air velocity at the exit of the 

ionic wind generator. The air velocity sensor is positioned 1mm above the channel outlet 

and 15mm from the edge of the channel, as shown in Figure 5.5. The airflow sensor is 

moved across the channel opening and measurement points are taken every 1.6mm. The 

test measurement is performed for three different configurations covering the range of 

interest for the voltage, the channel width and the inter-electrode spacing. The parameters 

for the three cases are reported in Table 5.2. 

Table 5.2: Parameters for the three cases of air velocity measurement at the exit of the 

channel. 

Test # 
Applied Voltage 

Φ0 [kV] 

Electrode 

Spacing d1 [mm] 

Channel Width 

d2 [mm] 

1 10.5 10 10 

2 13.5 15 20 

3 16.5 20 15 

 

 

Figure 5.5: Position of the velocity sensor at the exit of the ionic wind generator. 
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Due to the high sensitivity of the airflow sensor, the value of the velocity measured 

tends to slightly vary over time. Therefore, each data point in Figure 5.7 to Figure 5.9 is 

averaged over a minimum of 10 samples, and a characteristic plot is shown in Figure 5.6. 

 

Figure 5.6: Measurement sensitivity of the airflow sensor. Each data point is averaged 

over a minimum of 10 samples. 

 

Figure 5.7: Comparison of the velocity measurement at the exit of the ionic wind 

generator with the model prediction for case #1. 
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Figure 5.8: Comparison of the velocity measurement at the exit of the ionic wind 

generator with the model prediction for case #2. 

 

Figure 5.9: Comparison of the velocity measurement at the exit of the ionic wind 

generator with the model prediction for case #3. 
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The velocity measurement shows very good agreement with the model prediction. For 

all data points, the model prediction coincide with the velocity measurement within the 

uncertainty bounds. Therefore, it is shown that the multiphysics model accurately captures 

the effect of ionic wind flow enhancement in the present configuration of flow between 

parallel plates. 

 Thermal Testing 

In order to validate the thermal model, six different tests are conducted. Thereby, the 

parameters of the ionic wind generator are kept constant at an electrode spacing, a channel 

width and a voltage of d1 = 15mm, d2 = 15mm and Φ0 = 13.5kV, respectively. Two different 

cooling channels of length 100mm and 200mm are considered. Each of the channel is tested 

at three different heat loads, resulting in six separate tests. The load conditions of the 

different thermal tests performed are summarized in Table 5.3. Thereby, the subscripts 1 

and 2 arbitrarily denote one side and the other of the channel. It is noticed that the electrical 

resistance of the film heaters is temperature dependent. Therefore, the values reported were 

measured once the system had reached thermal steady state. Thermal steady state was 

defined as the situation when the wall temperature change did not exceed 0.1°C over 10 

minutes. 

Table 5.3: Load conditions of the different thermal tests performed. 

Test # 
Channel 

Length [mm] 

R1 [Ω] R2 [Ω] I1 [mA] I2 [mA] 

1 100 482.7±4.6 486.0±4.6 141.3±2.4 140.9±2.4 

2 100 483.4±4.6 486.8±4.6 164.7±2.8 163.0±2.7 

3 100 487.7±4.6 489.3±4.6 183.8±3.1 182.7±3.1 

4 200 246.3±2.4 228.6±2.3 222.8±3.6 228.1±3.7 

5 200 252.3±2.5 235.0±2.3 265.0±4.3 275.0±4.4 

6 200 257.8±2.5 240.1±2.4 309.6±4.9 321.8±5.1 
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The power dissipation in the film heaters is calculated according to equation (52). It is 

noticed that the value of I is the Root Mean Square (RMS) value of the alternating current. 

The uncertainty of the power dissipated is calculated as shown in equation (53). 
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Table 5.4: Power dissipated during the different tests with the corresponding uncertainty. 

Test # P1 [W] σP1 [W] P2 [W] σP2 [W] PTot [W] σPTot [W] 

1 9.64 0.34 9.65 0.34 19.29 0.48 

2 13.11 0.46 12.93 0.45 26.05 0.64 

3 16.48 0.57 16.33 0.56 32.81 0.80 

4 12.23 0.42 11.89 0.41 24.12 0.58 

5 17.85 0.60 17.90 0.60 35.49 0.85 

6 24.71 0.83 24.86 0.83 49.57 1.17 

 

The transient wall temperatures as well as the temperature change over time are plotted 

in Figure 5.10 and Figure 5.11 for the six different tests. Depending on the heat load, 

thermal steady state was reached within 150 to 200 minutes. The wall temperature is close 

to being uniform, with a maximal temperature difference of 4°C and 7°C for the 100mm 

and 200mm channel, respectively. Typically, the entry region of the channel is colder as 

fresh air is entering the channel. It is noticed that, for the 100mm channel, the highest 

temperature was measured at the location 3. This might be due to unequal spreading of the 

thermal interface leading to slightly different thermal resistances between the 

thermocouple and the copper plate or to cooling of the channel through the upper edges. 



 115 

 

Figure 5.10: Transient wall temperatures (left) and temperature change over 10 minutes 

(right) for the thermal testing of the 100mm cooling channel. 
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Figure 5.11: Transient wall temperatures (left) and temperature change over 10 minutes 

(right) for the thermal testing of the 200mm cooling channel. 
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5.5.1 Correction for Heat Leakages 

One of the challenges of testing heat sinks with moderate convective heat transfer 

coefficients is that heat losses that can safely be neglected at higher convective heat transfer 

coefficients – for instance when dealing with liquid cooling – have to be accounted for. In 

the present setup, not all of the power dissipated PTot is transferred to the fluid flowing 

through the cooling channel. The different losses are considered separately and subtracted 

from the total power dissipated PTot in order to calculate the actual heat flux in the cooling 

channel. 

A non-negligible fraction of the heat generated in the film heaters is transferred to the 

surroundings through the outer surface of the channel, despite the presence of a polystyrene 

foam insulation layer of 50.4mm thickness. The loss through the channel walls and 

insulation layer are computed using the equivalent thermal resistance network shown in 

Figure 5.12. The multi-dimensional heat conduction effects in the polystyrene insulation 

layer are considered using conduction shape factors following the method presented in 

[73]. The individual resistances are computed following equations (54) to (57). The 

convective heat transfer coefficients for the three different surfaces (bottom, sides and top 

of the setup) are computed using known Nusselt number correlations [66]. The emissivity 

of the polystyrene insulation foam takes a value of 0.6. The losses through the walls are 

finally computed according to equation (63) and are summarized for the six different cases 

in Table 5.4. Thereby, the uncertainty of the thermal resistances is assumed to be small and 

only the uncertainty of the temperature measurements is considered. This is reasonable as 

the geometric dimensions of the different components and the thermal properties of the 

materials are known with a high level of accuracy. Further, the convective resistance is 
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small as compared to the conductive resistances. Therefore, the uncertainty in the 

convective heat transfer calculations has a minimal impact on the calculations and can be 

neglected. Thereby, the wall temperature was averaged over the four measurement points. 

 

Figure 5.12: Equivalent resistance network to compute the loss through the channel walls 

and insulation layers. Thereby, RPS stands for the thermal resistance of the polystyrene 

foam insulation. 
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Another source of heat losses that has to be considered comes from the edge of the heat 

exchanger channel, as can be seen in Figure 5.13. This component is computed according 

to equation (64). The convective heat transfer coefficient is computed using the correlation 

for horizontal surfaces cooled from the top shown in equation (62). The uncertainty of the 

losses through the edge of the channel is computed assuming a 10% uncertainty in the 

convective heat transfer coefficient and a negligible error in the surface area measurement. 

  AmbEdgeTopEdgeLoss TTAhQ ,  (64) 
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Figure 5.13: A non-negligible fraction of the heat generated by the film heaters is 

transferred to the ambient through the walls and insulation layers as well as from the edge 

of the cooling channel. 

Finally, the radiation heat transfer rate from the channel to the surroundings is 

computed according to equation (65). The emissivity of non-polished copper is taken to be 

0.6. The view factor from the channel walls to the apertures at the top and the bottom of 

the channel F takes a value of 0.145 and 0.074 for a channel length of 100mm and 200mm, 

respectively. 

  44

, AmbWChannelRadLoss TTFAQ    (65) 

Finally, the net heat rate transferred to the fluid inside the cooling channel is computed 

according to equation (66) and summarized in Table 5.5. 

 RadLossEdgeLossWallLossTotNet QQQPQ ,,,   (66) 
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Table 5.5: Net heat transfer rate to the fluid inside the channel. 

Test # QTot [W] 
QLoss,Walls 

[W] 

QLoss,Edge 

[W] 

QLoss,Rad 

[W] 
QNet [W] σQNet [W] 

1 19.28 2.22 1.75 1.28 14.04 0.62 

2 26.04 2.93 2.40 1.84 18.87 0.76 

3 32.81 3.86 2.86 2.52 23.56 0.90 

4 24.12 5.12 1.45 1.10 16.44 0.93 

5 35.49 5.91 2.22 1.75 25.61 1.12 

6 49.57 8.30 3.02 2.67 35.58 1.39 

 

5.5.2 Heat Flux Calculation 

Once the net heat rate transferred to the fluid is calculated, the heat flux can be 

calculated according to equation (67). The total heat transfer surface area AHT is composed 

of three components: the copper heat spreader ACu, the end-walls of the channels made of 

CPVC AEW and the CPVC channel of the ionic wind generator AIG. The effect of conduction 

within the CPVC is accounted for by using the fin efficiency method. The fin efficiency is 

calculated according to equation (69) and (70) considering an average value of the 

convective heat transfer coefficient, a constant base temperature and an adiabatic tip. 
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Figure 5.14: The heat transfer occurring at the end-walls of the channel AEW is accounted 

for by considering the area of the end-walls and discounting it by the corresponding fin 

efficiency. 

 

Figure 5.15: The heat transfer occurring within the channel of the ionic wind generator is 

accounted for by considering the area of the CPVC channel AIG and discounting it by the 

corresponding fin efficiency. 
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Table 5.6: Total Heat Transfer Surface Area. 

Test # ACu [m2] AEW [m2] AIG [m2] ηEW ηIG ATot [m2] 

1-3 0.016 0.003 0.0095 0.89 0.24 0.021 

4-6 0.032 0.006 0.0095 0.92 0.27 0.040 

 

Table 5.7: Net heat flux in the cooling channel. 

Test # QNet [W] AHT [m2] q" [W/m2] σq" [W/m2] 

1 14.04 0.021 669.7 29.4 

2 18.87 0.021 900.3 36.1 

3 23.56 0.021 1124.1 43.2 

4 16.44 0.040 410.2 23.1 

5 25.61 0.040 639.0 27.8 

6 35.58 0.040 887.6 34.7 

 

5.5.3 Thermal Model Validation 

The thermal model is run for each of the measurement cases presented in the previous 

section. The walls are set to a known temperature profile along the channel corresponding 

to the temperature measured during the tests. Thereby, a piecewise constant temperature 

profile is assumed between the measurement points. This assumption is reasonable as it 

was observed that the maximal temperature difference between two measurement points 

did not exceed 5°C. In order to account for the uncertainty of the experimental inputs to 

the model, the simulation is performed three times for each test point. There are two sources 

of uncertainty: the uncertainty of the Corona current calculated as presented in equation 

(71), and the uncertainty of the temperature measurement which is ±1°C. The first 

simulation is carried out with the nominal values for the temperature and the Corona 

current. The second and third simulation are performed considering a lower and upper 

bound for the average heat flux. The average heat flux through the channel wall computed 

by the model is reported and compared to the experimental values in Table 5.8. 
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Table 5.8: Comparison of the thermal model with the experimental results. 

Test # q”Model [W/m2] q”Experimental [W/m2] Error [%] 

1 659.9 669.7 -1.46% 

2 878.2 900.3 -2.45% 

3 1090.8 1124.1 -2.96% 

4 399.6 410.2 -2.59% 

5 615.6 639.0 -3.66% 

6 868.5 887.6 -2.16% 

 

 

Figure 5.16: Comparison of the model prediction to the experimental data for two cooling 

channels of length 100mm and 200mm. 

The thermal model shows a very good agreement with the experimental measurements. 

It is observed that the model consistently slightly underestimates the heat flux measured 

during the experiments. This effect is probably due to minor heat leakages that are hard to 

quantify and therefore neglected, such as the conduction through the structure of the test 

setup. Another potential root of the underestimation might be in the measurement of the 

Corona current. The current is measured at the receiving electrode. However, it might be 
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that a small number of charges leave the channel through electrostatic deposition to the 

walls or advection through the channel exit, resulting in an underestimation of the actual 

Corona current. While this effect is proved to be minor, it could explain a fraction of the 

error between the model prediction and the experimental data. On the other hand, the 2D 

model approximation would tend to slightly overestimate the predicted heat flux. All the 

aforementioned effects are possible causes for the discrepancy between the numerical 

model and the experimental data. Nevertheless, the present results allow to confirm the 

validity of the thermal model as all measurement points fall within the experimental 

uncertainty bounds. 

 Technology Demonstrator 

The main objective of building a technology demonstrator of the heat sink design 

presented in Figure 1.7 is to prove the applicability of ionic wind combined with a fin array 

to the cooling of power electronics. The heat sink is designed for the thermal management 

of a 50kVA Power Converter Augmented Transformer (PCAT). The three converter 

modules generate up to 80W each, for a total heat loss of 240W. The latest thermal 

management system was composed of a dual-loop thermosiphon using the di-electric 

medium of the transformer as cooling fluid [74]. A novel heat sink design combining a fin 

array with ionic wind could potentially replace the current system at a lower cost. This 

application field is especially attractive for ionic wind as a high voltage source is inherently 

present in the system. 

5.6.1 Heat Sink Design 

The total power to be dissipated amounts to 240W. The footprint area of each of the 

converter is 63cm2 and therefore the nominal heat flux amounts to 1.27W/cm2. The 
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variables defining the design of the heat sink are summarized in Table 5.9. In total, 8 

variables describing the parameters of the ionic wind generator and the fin array have to be 

set. 

Table 5.9: Design variables for the heat sink combining ionic wind with a fin array. 

Variable Description 

t Fin Thickness 

d Height of the Fins 

s Spacing between the fins 

L1 Length of the Cold Plate 

L2 Width of the Cold Plate 

d1 Vertical Inter-electrode spacing 

d2 Channel Width 

Φ0 Applied Voltage 
 

While this design problem seems to be complex at first glance, the number of variables 

can be drastically reduced. First, in the presented heat sink design, the channel width of the 

ionic wind generator d2 is equal to the spacing between the fins s. Second, only 

commercially available fin arrays are considered. In the present case, an extruded fin array 

of the type 65525 from the manufacturer Aavid Thermalloy was selected. This fin array 

was chosen as it is wide enough to mount all three heat source horizontally and because it 

has the highest available fin spacing to fin height ratio for an extruded fin. Therefore, the 

fin thickness t, the height of the fins d, the spacing between the fins s and the width of the 

cold plate L2 are set to 2.54mm, 54.0mm, 10.4mm and 263mm, respectively. Further, the 

voltage Φ0 is constrained to 13.5kV based on the application, i.e. the thermal management 

of power routers for the electrical distribution grid. Since the applied voltage and the 

channel widths are set, the vertical inter-electrode spacing is selected as small as possible 

such that the maximal Corona current is induced while maintaining a distance high enough 
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so that no full discharge occurs. To ensure a safe operation and to account for possible 

manufacturing uncertainties, the distance d1 is set to 16mm based on the results presented 

in Figure 3.18. Therefore, the last design variable that can be used to size the heat sink is 

the total length of the cold plate L1. The required length of the cold plate is determined by 

the total heat load and the specific heat flux achievable under the given conditions. A semi-

iterative process combining equations (72) to (75) with the numerical model presented in 

the previous chapter was used to determine the required length of the heat sink L1. Thereby, 

the cold plate was assumed to be isothermal at 80°C. The calculated heat flux amounts to 

479.9W/m2. The fin efficiency of the selected array is about 0.95. Finally, the required 

length of the fin array is computed to 197mm according to equation (73) and was rounded 

up to 200mm. 
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5.6.2 Fabrication 

The heat sink was fabricated in house. The extruded fin array was cut to length on a 

band saw. A 6mm thick aluminum plate was water-jet cut and attached at the back of the 

fin array to form closed, rectangular channels. The ionic wind generator was made out of 

two layers of plastic material, each layer being 13mm thick. The profile of the channel 

array was water-jet cut. Both layers were assembled and glued together. Holes were drilled 
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for the thin wire electrode to be mounted. A single wire electrode was passed through all 

channels. As the fin array is made of aluminum, it was directly grounded and therefore 

used as the receiving electrode. The three copper heater blocks simulating the heat load of 

the converters were bolted to the cold plate. Thermal paste was applied at the interface to 

minimize the contact resistance. The heat sink was mounted on an aluminum frame. The 

high voltage power supply was the same as used for the characterization of the Corona 

current, i.e. a Spellman CZE1000R. Also, the power of the heaters was controlled using the 

Staco Variac used previously. The temperature of the individual heater blocks was recorded 

using T-type surface thermocouples. Additionally, a FLIR A20 thermal camera was used 

to obtain a qualitative image of the temperature distribution of the back of the heaters. The 

technology demonstrator along with the test equipment are shown in Figure 5.17. 

 

Figure 5.17: Technology demonstrator of ionic wind heat transfer enhancement in 

conjunction with a fin array. 



 129 

5.6.3 Results 

The transient temperature profile under each of the heater block is shown in Figure 

5.18. At t=0, the system is in equilibrium at ambient temperature. At t=2min, the heaters 

are turned on to full power, i.e. three times 80W. In the first phase of the test, the system 

is only subject to natural convection, without any ionic wind heat transfer enhancement. 

The current flowing through the heaters was measured to 2.27A and the electrical 

resistance at thermal steady state is 46.9Ω. Therefore, the total power dissipated amounts 

to 241.7±8.5W. It is noticed that the temperature between each of the heaters differ by up 

to 6°C. The reason for this behavior is that the heater blocks were not controlled 

individually but connected in parallel and supplied with the same voltage. The individual 

heater blocks might have slightly different electrical resistances, which would result in an 

inhomogeneous heat generation between the heaters. The system reached thermal steady 

state after about 60 minutes. With natural convection only, the maximal cold plate 

temperature was 99.5°C. At t=78min, the ionic wind generator was turned on, resulting in 

an immediate decrease of the cold plate temperature. Thermal steady state for the case with 

ionic wind heat transfer enhancement was reached after an additional 40 minutes. In this 

state, the maximal cold plate temperature was decreased by 18.3°C to 81.2°C. This is a 

substantial improvement: as can be inferred from Figure 1.4, a reduction of the operating 

temperature of 20°C can result in more than doubling the lifetime of the power electronic 

components. The cooling enhancement using ionic wind is also represented qualitatively 

using a thermal camera focused on the top of the heater blocks. A comparison for the case 

with natural convection only and with ionic wind cooling is shown in Figure 5.19. The 

average temperature of each of the heaters was calculated based on the IR images. It ranged 
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from 58.9 to 63.7°C for the case with ionic wind cooling as compared to 72.6 to 74.5°C for 

the case with natural convection only. 

 

Figure 5.18: Transient temperature profile of the cold plate below each of the heaters. At 

t=2min, the heaters were turned on. At t=78min, the ionic wind generator was turned on, 

resulting in an immediate decrease of the cold plate temperature. 

  

Figure 5.19: The temperature distribution at the surface of the heater blocks is recorded 

using a thermal camera for the case with natural convection only (left) and with ionic 

wind heat transfer enhancement (right). 
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 Discussion 

Measuring low air velocities in tiny spaces is challenging, as the change in dynamic 

pressure is hardly measurable and pitot tubes therefore not usable. The micro hot wire 

anemometer used proved to be a viable alternative. Due to slight oscillations of the velocity 

measured, each data point was averaged over at least 10 samples to minimize the 

measurement error. The obtained measurements show a good agreement with the model 

prediction. It is interesting to notice that in the first case, with a channel width of 10mm 

only, the experimental measurement is slightly higher than the model prediction. One 

possible explanation is that, despite the small size of the velocity sensor, the channel 

obstruction due to the anemometer slightly increases the air velocity at the measurement 

point, thus explaining the slightly higher value measured as compared to the velocities 

calculated using the model. This effect is less pronounced for wider channels. 

The thermal testing also brought about challenges. Even though the single channel used 

for the thermal test was insulated with 2 inch thick polystyrene foam, thermal losses 

through the walls and by radiation have to be accounted for. Indeed, because the convective 

heat transfer coefficients expected in the channel are moderate – in the order of 10-

20W/m2-K –, the heat losses across the insulation and through radiation have a significant 

impact on the measurements. Further, because the heat dissipation is relatively low, steady 

state was not reached before several hours. Nevertheless, the multiphysics model 

developed in the previous chapter could be validated, all the model predictions falling 

within the measurement uncertainty of the experimental data points. This also confirms the 

soundness of the assumptions taken in the course of the numerical model development. 
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Lastly, the applicability of the proposed concept combining a fin array with an ionic 

wind generator was demonstrated by building a prototype of a heat sink for an existing 

PCAT. The effect of ionic wind is clearly noticeable, as the cold plate temperature is 

reduced by over 18°C as compared to the case with natural convection only. Further, and 

as already mentioned, relying on ionic wind rather than pure natural convection offer more 

freedom in the design of the heat sink, as there is no requirement for the minimal height 

difference or channel orientation to maintain an air flow through the channel. 

 Summary 

The numerical model developed in the previous chapter is validated experimentally. 

The validation is conducted at two different levels. First, the velocity at the exit of the 

channel is measured and compared to the model prediction. Second, a thermal test is 

conducted for a single channel and the measured cooling power is compared to the 

numerical computation. Thereby, the parasitic heat losses of the system have to be 

accounted for as they represent a non-negligible fraction of the total heat dissipated. The 

model and the experimental data agree very well with each other, all data points falling 

within the measurement uncertainty bounds. Finally, a technology demonstrator of the 

proposed novel heat sink design combining ionic wind with a fin array is built and tested. 

The developed heat sink has a baseplate size of 263 by 200mm and is able to dissipate 

240W. It is shown that ionic wind can reduce the baseplate temperature by over 18°C from 

99.5 to 81.2°C as compared to the case with natural convection only. 
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THERMO-ECONOMIC LIMITATIONS OF PASSIVE AIR-

COOLED AMBIENT REJECTION SYSTEMS 

 Introduction 

In most engineering applications, economic parameters play a key role in decision making. 

In this section, the thermo-economic tradeoffs between three different heat sink designs are 

compared: a fin array subject to natural convection only, a fin array combined with a chimney 

and, finally, a fin array combined with an ionic wind generator. The three designs are shown 

in Figure 6.1 and Figure 6.2. The first design, i.e. a fin array subject to natural convection only 

as shown in Figure 6.1 (left) serves as a benchmark and allows comparing the enhancement 

provided by a chimney or an ionic wind generator. 

 

Figure 6.1: Heat sink design comprising a fin array subject to natural convection only 

(left) and a fin array combined with a chimney (right). 
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Figure 6.2: Heat sink design combining a fin array and an ionic wind generator. 

The thermal performance of the heat sink subject to natural convection only is 

computed using established correlations. A semi-analytical model is developed to assess 

the thermal performance of the heat sink with a chimney. The cooling power of the hybrid 

heat sink combining a fin array with ionic wind is computed using the model developed in 

CHAPTER 4. 

For all heat sink configurations, the baseplate dimensions are taken to be 263mm wide 

by 200mm high and the ambient and baseplate temperature are assumed to be 25°C and 

100°C, respectively. These values correspond to the technology demonstrator presented in 

section 5.6. 

 Thermo-fluidic Model 

The thermo-fluidic model presented in this section is applicable to both heat sink 

designs shown in Figure 6.1. In the considered heat sink, heat transfer by convection is the 

dominant mode. The present thermo-fluidic model is based on an equivalent thermal 

resistance network. The overall thermal resistance is modelled as a circuit of two parallel 

resistances RFins and RBaseplate representing the two paths heat can be transferred to the 
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ambient atmosphere as shown in Figure 6.3: either directly from the unfinned area of the 

baseplate to the ambient air or through the fins via conduction and then to the ambient air. 

There are two main processes to manufacture fin arrays. First, the fin array can be extruded, 

therefore built out of one single piece of aluminum. Second, single fins can be attached to 

the baseplate – so called bonded fins. Extruded fins do not have any contact resistance 

between fins and baseplate, but the design is limited by a maximal fin height and height-

to-spacing ratio. Bonded fins, on the other hand, can be manufactured with a higher fin 

height – however at a lower fin efficiency and higher costs. 

 

 

Figure 6.3: Geometric parameters characterizing the fin array (left) and equivalent 

thermal resistance network describing heat dissipation from the cold plate to the ambient 

air (right). 
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Each of the resistances is inversely proportional to the convection heat transfer 

coefficient and the available heat transfer area. In the case of bonded fins, an additional 

resistance RContact is added to model imperfect contact between the baseplate and the fins. 

The value of the contact resistance is estimated to 0.04 K/W per fin according to the 

manufacturer. The available surface area of the fins is discounted by the fin efficiency to 
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account for the conduction losses within the fin. Assuming an adiabatic tip, the fin 

efficiency is given in equation (79). Finally, the total cooling power of the heat sink can be 

computed according to equation (80). 
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The challenge resides in the computation of the convective heat transfer coefficient. 

The value of the convective heat transfer coefficient has to be computed for the two specific 

cases considered, i.e. free convection heat transfer only or buoyancy driven flow through 

the chimney effect. 

6.2.1 Natural Convection Heat Transfer Coefficient 

Free convection heat transfer from parallel heated plates has been widely studied. Elenbaas 

was the first to develop a Nusselt correlation for symmetrically heated isothermal plates in his 

1942 seminal paper [75]. Bar-Cohen and Rohsenow developed new correlations with various 

boundary conditions, such as isoflux walls or asymmetric heating [54]. Their Nusselt number 

correlation for parallel, isothermal plates is shown in equation (81). Thereby, S is the spacing 

between the channels and L represents the length of the channel. The constants C1 and C2 take 

a value of 576 and 2.87, respectively. The Rayleigh number RaS is defined as shown in equation 
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(82). Hence, the average convective heat transfer coefficient across the channel can be easily 

computed as shown in equation (83). 
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6.2.2 Thermo-Fluidic Model for Chimney Enhanced Heat Transfer 

There is no ready-to-use correlation for buoyancy driven flow in the configuration of a 

fin array combined with a chimney. Therefore, a flow analysis is necessary to deduce the 

air flow and, thereby, the heat transfer rate. The sum of all minor and major losses must 

equal the change in buoyancy pressure as shown in equation (84). The change in buoyancy 

pressure is calculated using the Boussinesq approximation shown in equation (85). 

     MajorMinorBuoyancy PPP  (84) 

 

    InAirOutAirBuoyancy TTgLP ,,    (85) 

The major losses for the fin array and the chimney are calculated as shown in equation 

(86) following well known methods and assuming laminar flow [76, 77]. Thereby s and d 

are the width and length of the channel cross section, respectively. The minor losses are 

computed using equation (87) from [76]. Values for the loss coefficient KL are taken as 

proposed by Kays [78]. Imposing energy conservation on the system yields the additional 

equation (88). 
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The hydrodynamic entry length is defined as the location at which the boundary layer 

thickness of an external flow over a flat plate equals the half-thickness of the channel, as 

shown in equation (89). This value proves to be very small (less than 1% of the channel 

length) and therefore the flow is assumed to be hydrodynamically fully developed. The 

Reynolds number over the range of parameters considered is well below 2300 so that the 

flow is considered laminar. Also, the ratio of the Grashof number to the square of the 

Reynolds number in the cooling channels is smaller than 0.05 in all configuration, and 

therefore forced convection is considered dominant as compared to natural convection. The 

thermal entrance length is computed using equation (90) from [79]. The average Nusselt 

number in the entrance region is calculated according to equation (91) developed by Hwang 

and Fan [80]. In the developed region, the Nusselt number for laminar, internal flow is 

constant. Given the geometry considered, the aspect ratio fin length of channel spacing is 

large and the Nusselt number takes a  value of 7.54 reported in [66]. The temperature 

difference between the plate and the fluid is calculated using the log-mean temperature 

difference as shown in equation (93). 
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Equations (80), (84), (88), (92) and (93) now form a system of five equations that is 

solved for the unknowns Q̇, ṁ, h, LMTD and Tair,out. 

6.2.3 Model Validation 

The thermo-fluidic model for the heat sink with chimney is validated using Ansys 

Fluent v15.0. The simulation is set up in a similar fashion as described in section 4.6. The 

geometry considered has a channel width of 6mm and a fin thickness of 2mm. The CFD 

simulation is run for various height and the reported heat flux is compared to the values 

obtained using the developed design tool. The comparison between the developed thermo-

fluidic model and the CFD simulation is presented in Figure 6.4 and shows very good 

agreement. The error between the semi-analytical design tool and the CFD simulation is 

bound within 2.5%. Several assumptions have been made in the development of the semi-

analytical tool that are possible roots for the difference between both calculation methods, 

such as the assumption of constant fluid properties or in the approximation of minor loss 

coefficients. Therefore, it is to mention that the CFD calculation is expected to be more 

accurate than the design tool as it solves for the conservation equations at each point of the 

domain. Nevertheless, the analytical tool is very valuable to evaluate dozens of potential 

design candidates in a fraction of a second with reasonable accuracy, for instance to 
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perform a multi-objective design optimization. Then, only the final design needs to be 

validated using a CFD package. 

 

Figure 6.4: Validation of the thermo-fluidic model for the heat sink combining a fin array 

with a chimney. 

6.2.4 Effect of Radiation Heat Transfer 

The radiative heat exchange consists of the solar irradiation impinging on the heat sink 

and the emitted radiation from the heat sink to the surroundings. The emitted radiative heat 

transfer is defined according to equation (94). It is assumed that the surface of the heat sink 

is coated with a magnesium oxide paint that is gray with a surface emissivity of 0.9 and an 

absorptivity of 0.1. The fraction of insolation absorbed by the heat sink is calculated 

following equation (95). The insolation GS varies depending on the surrounding conditions. 

On a clear day, the irradiance at the surface of the earth amounts to up to 1000W/m2 on a 

horizontal surface. Measurements by Muneer et al. suggest that vertical surfaces see up to 

50% of the insolation impinging on horizontal surfaces [81]. Therefore, the insolation on 
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the vertical walls of the chimney is assumed to be 500W/m2. The surface temperature of 

the chimney walls is computed by performing an energy balance on the walls, as shown in 

equation (96). Thereby, the outside convective heat transfer coefficient ho is computed 

using the Nusselt number correlation for free convection on vertical surfaces shown in (97) 

and developed by Churchill and Chu [82]. The inside convective heat transfer coefficient 

for the chimney is computed according to the correlation shown in equation (81). The total 

absorbed solar radiation, emitted radiative power and net radiative heat exchange are 

shown in Figure 6.5. Thereby, the depth of the fin array is assumed to be 140mm, the 

ambient temperature 25°C and the baseplate temperature 100°C. 
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Figure 6.5: Impact of radiative heat transfer on the heat sink. 

The net radiative heat transfer from the heat sink to the ambient surroundings amounts 

to less than 40W as compared to convective heat transfer rates of the order of 1000W in 

the fin array. It is further noticed that in the case of 40W radiative heat exchange between 

the heat sink and the surroundings, the change in buoyancy pressure is less than 3% of the 

total buoyancy gains and thus does not significantly impact the flow pattern inside the fin 

array. Therefore, radiative heat transfer can be decoupled from the thermo-fluidic 

equivalent resistance network. The somewhat counterintuitive fact that radiation heat 

transfer is not significant is explained by the unconventional design of the heat sink, with 

most of the heat transfer surface confined within the heat sink and therefore shielded from 

radiation. 

 Results 

A parametric study on the geometric dimensions of the heat sink is performed for all 

three configurations (natural convection only, chimney effect and ionic wind enhanced heat 
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sink). The parameters of interest are the ones shown in Figure 6.3, namely the fin thickness 

t, the depth of the fin array d and the spacing between the fins s. 

6.3.1 Thermal Limits of Natural Convection 

The range of parameters to be considered for the case with natural convection only is 

determined by manufacturing constraints and preliminary calculations. The following 

range of parameters is considered: 1.27 < t < 10 mm, 50 < d < 140mm and 4 < s < 20mm. 

The first thing to notice is the discontinuous shape of certain curves. This is explained 

by the fact that the number of fins is discrete, resulting in a jump when an additional fin is 

taken into consideration. Due to competing tradeoffs between flow resistance and total 

available heat transfer area, there exists an optimal fin spacing for which the cooling power 

is maximized, as shown in Figure 6.6 and reported by Bar-Cohen and Rohsenow [54]. An 

increase in fin length yields an increase in the cooling power, as shown in Figure 6.7. The 

slightly non-linear behavior of this trend is due to the fin efficiency that becomes smaller 

as the fin length increases. Generally, a smaller fin thickness will increase the cooling 

power due to higher available surface area, as seen in Figure 6.8. This dimension is mainly 

constrained by manufacturing and stiffness issues. 

Considering a maximal fin length of 140mm, the maximal cooling power with natural 

convection only is 610.5W for a fin thickness of 1.27mm and a channel width of 7.1mm. 

The heat flux calculated based on the area of the baseplate amounts to 1.17W/cm2, which 

is in accordance with literature values for natural air convection cooling in the order of 

1W/cm2 reported by Ebadian in [83]. 
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Figure 6.6: Dependence of the cooling power on the channel width s. 

 

Figure 6.7: Dependence of the cooling power on the fin length d. 
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Figure 6.8: Dependence of the cooling power on the fin thickness t. 

 

6.3.2 Thermal Limits of the Heat Sink with Chimney 

The range of parameters considered for the parametric study on the chimney effect is 

the same as for natural convection. The chimney length considered ranges from 0.4 to 

0.8m, or 2 to 4 times the height of the actual heat sink. First, the influence of the chimney 

height on the channel Reynolds number, the pressure terms and the cooling power is 

investigated. The results are shown in Figure 6.9 – Figure 6.11. As expected, a higher 

chimney increases the flow rate through the channel and, thus, the cooling power is 

increased. The channel Reynolds number across all configuration considered is less than 

905, which is well below the critical Reynolds number of 2300. Therefore, the assumption 

of laminar flow is justified. The different pressure loss terms are shown in Figure 6.11. It 

is noticed that bulk of the pressure drop occurs across the fin array. 
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Figure 6.9: Dependence of the cooling power on the chimney height. 

 

Figure 6.10: Dependence of the channel Reynolds number on the chimney height. 
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Figure 6.11: Dependence of the different pressure losses and buoyancy pressure gains as 

a function of the chimney height. 

A parametric study on the channel width, the fin thickness and the fin length is 

performed in a similar fashion as for the case with natural convection only. The results are 

shown in Figure 6.12 – Figure 6.14. The general trends are similar as for the case with 

natural convection only. By comparing Figure 6.6 with Figure 6.12, it is observed that the 

optimal channel width is smaller for the case with a chimney than for the case with natural 

convection only. Also, for the same baseplate geometry, adding a chimney of 800mm more 

than doubles the maximal cooling power from 610.5W for natural convection only to 

1294.0W at a fin thickness of 1.27mm, a channel width of 4.5mm and a fin length of 

140mm. This corresponds to a heat flux of 2.49W/cm2 calculated on the baseplate surface 

area. The length and the thickness of the fins remain constrained by manufacturing 

considerations. 
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Figure 6.12: Functional dependence of the cooling power on the channel width. 

 

Figure 6.13: Functional dependence of the cooling power on the fin length. 
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Figure 6.14: Functional dependence of the cooling power on the fin thickness. 

 

6.3.3 Thermal Limits of Ionic Wind Cooling Enhancement 

The range of parameters considered for the parametric study on the heat sink combining 

a fin array with ionic wind is slightly different, as the minimal required channel width is 

10mm, below which there is no significant flow enhancement. The vertical inter-electrode 

distance is set to the determined minimum of 12.5mm. The cooling power is calculated 

using the multiphysics model presented in CHAPTER 4. Thereby, the simulation is run for 

channel widths ranging from 10mm to 20mm in 1mm interval. Linear interpolation is 

performed for data points falling in between and the total heat transfer surface area is 

discounted by the corresponding fin efficiency. Again, the functional dependence of the 

cooling power on the geometric parameters is investigated and presented in Figure 6.15 – 

Figure 6.17. 
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Figure 6.15: Functional dependence of the cooling power on the channel width for the 

case with ionic wind heat transfer enhancement. 

 

Figure 6.16: Functional dependence of the cooling power on the fin thickness for the case 

with ionic wind heat transfer enhancement. 



 151 

 

Figure 6.17: Functional dependence of the cooling power on the fin thickness for the case 

with ionic wind heat transfer enhancement. 

The behavior of the system observed for the cases with natural convection only and 

buoyancy driven flow using a chimney are similar for the fin thickness and the fin length. 

It is interesting to notice the notch in the curve from Figure 6.16: this is due to the 

consideration of the contact resistance for bonded fins. Up to a fin length of 60mm, fins 

can be extruded out of a single aluminum part. Past this length, individual fins need to be 

bonded to a baseplate, which results in an additional contact resistance. The minimal 

channel width is constrained by the behavior of the Corona discharge, as explained in 

CHAPTER 3. The maximal cooling power of the heat sink with ionic wind amounts to 

909.0W for a fin thickness of 2.8mm, a channel width of 10mm and a fin length of 140mm. 

This is an increase of nearly 50% as compared to the case with natural convection only. 

The heat flux based on the surface area of the baseplate amounts to 1.75W/cm2. 
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 Cost Model 

The relevant components for a cost estimate of the heat sink are the fin array and, if 

applicable, the chimney and the ionic wind generator. Depending on the manufacturing 

process – bonded fins or extruded fins – two different cost functions are proposed for the 

fin array. Typically, bonded fins are more costly than extruded fins due to the higher 

complexity of the manufacturing process. The cost for material and part of the 

manufacturing are assumed to be linear with the mass of the fin array, as shown in equation 

(98) and (99). The cost coefficients are chosen to fit data from fin manufacturers and the 

values used are summarized in Table 6.1. 

   ExBaseFinsExVarExFins CmcC ,,,   (98) 

 

   BdBaseFinsBdVarBdFins CmcC ,,,   (99) 

The cost associated with the built of a chimney is proposed to be proportional to the 

length of the chimney, as shown in equation (100). The coefficient are chosen to fit data 

from manufacturers of ventilation ducts, which is the available figure that best describes 

the proposed configuration. 

   ChimBaseChimChimChim CLcC ,  (100) 

The cost of the heat sink with ionic wind heat transfer enhancement is composed of the 

cost of the fin array and the cost of the ionic wind generator. The cost of the fin array is 

computed according to equations (98) and (99). The cost of the ionic wind generator 

consists of the raw material and the manufacturing. The raw material includes the electrode 

wire as well as the plastic structure. At large scale, the cost of the wire electrode is 
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negligible. The structure of the ionic wind generator could be manufactured using injection 

molding for an estimated unit price of less than $1.50. The supply of a high DC voltage is 

also associated with certain costs. This cost will depend on the application. It can be an 

important cost factor if no high voltage source is available in the system. However, in the 

application of thermal management for power routers, the DC source can be obtained at a 

moderate cost by using a high voltage rectifier. The cost of such a unit is estimated to $40.3 

based on available supplier information (IXYS Corporation, product series UGE). The 

manufacturing costs are expected to be very low in the case of large-scale production. The 

assembling of the ionic wind generator could be fully automated. The total manufacturing 

costs are conservatively estimated to $5. The cost of the ionic wind is approximated to be 

constant across the different designs considered. This is reasonable as bulk of the cost is 

induced by the high voltage rectifier, which is required regardless of the configuration. 

   ingManufacturMaterialIW CCC   (101) 

 

Table 6.1: Cost coefficients used in the thermo-economic study. 

Coefficient Value 

CVar,Ex 6.2 

CBase,Ex 30.1 

CVar,Bd 17.9 

CBase,Bd 148.0 

CChim 34.5 

CBase,Chim 42.1 

CMaterial 40.3 

CManufacturing 5.0 
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 Thermo-economic Optimization 

In order to present the tradeoffs between the cooling power of the system and the costs 

associated with the manufacturing of the heat sink, a bi-objective optimization is 

performed. The parameters to be minimized are the total cost of the system Ctot and the 

negative of the cooling power -Q. The optimization is carried out using the genetic 

algorithm toolbox in Matlab R2013a [84]. The numerical implementation is summarized 

in Figure 6.18. First, the inputs to the model (fluid properties, size of the cold plate and 

case with or without chimney) are loaded and the manufacturing and cost constraints are 

defined. Next, a population of candidates for the optimal geometry t, d and S is set. 

Depending on the geometry, the thermal model and cost correlations for bonded or 

extruded fins are finally applied. 

The population size and the maximal number of iterations are both set to 500. The 

optimization was terminated when the average change in the spread of the Pareto front was 

less than the specified tolerance. The maximal number of iterations was never reached 

during the different runs. 
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Figure 6.18: Procedure for the multi-objective optimization using genetic algorithms. 

The obtained Pareto fronts for the three different cases (natural convection only, 

chimney enhanced flow and ionic wind enhanced heat transfer) are shown in Figure 6.19 

to Figure 6.21. 



 156 

 

Figure 6.19: Pareto front for the heat sink subject to natural convection only. 

 

Figure 6.20: Pareto front for the heat sink with a chimney. 
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Figure 6.21: Pareto front for the heat sink with ionic wind heat transfer enhancement. 

Two distinct domains are recognized in Figure 6.19 to Figure 6.21. The first domain at 

low cost but relatively low cooling power showed in blue corresponds to extruded fin 

arrays. The second domain depicted in red, on the right portion of the graphs, corresponds 

to bonded fins. While more expensive, bonded fins permit to achieve a lower thermal 

resistance due to the higher available heat transfer surface area. 

Finally, the three different heat sink configuration are incorporated into a single Pareto 

front, as shown in Figure 6.22. Thereby, NC stands for natural convection, IW for ionic 

wind, CH for chimney, Ext for extruded fins and Bnd for bonded fins. 
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Figure 6.22: Combined Pareto front highlighting the optimal design configuration based 

on the cooling requirement. 

 Discussion 

The thermo-economic study confirms the results expected from the parametric study. 

In general, an increase in cooling power requires higher investment costs. The heat sink 

subject to natural convection only exhibits the lowest cost, but it is the most limited in 

terms of cooling power. Adding an ionic wind generator or a chimney allows to increase 

the cooling power, but increases the cost of the heat sink. For the given baseplate dimension 

and temperatures setting, the maximal cooling power amounts 610.5W, 909W, and 1294W 

for natural convection, ionic wind enhanced heat rejection and using the chimney effect 

with an 800mm high chimney. Even though the air velocities achieved by the ionic wind 

generator are similar to those obtained using a chimney, the total cooling power of the heat 
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sink with a chimney is higher because the spacing between the fins can be smaller than for 

the heat sink with ionic wind. 

Based on the obtained results, it is possible to develop optimal design decisions. The 

optimal design configurations are summarized in Table 6.2 as a function of the required 

cooling power. 

Table 6.2: Optimal heat sink design depending on the cooling load. 

Cooling Load [W] 
Optimal Heat Sink 

Design 

Heat Sink Specific 

Cost [$/W] 

0 – 300  
Natural Convection with 

Extruded Fin Array 
0.17 

300 – 575 
Ionic Wind with 

Extruded Fin Array 
0.16 – 0.25 

575 – 610 
Natural Convection with 

Bonded Fins 
0.34 

610 – 880 
Ionic Wind with Bonded 

Fins 
0.28 – 0.34 

880 – 1294 
Chimney with Bonded 

Fins 
0.23 – 0.28 

 

The decision framework presented only considers the thermal and economic 

parameters of a system. It is to be mentioned that the different designs might have specific 

advantages or drawbacks that are not captured by these two criteria only. For instance, the 

chimney adds volume to the system, which might be unwanted in certain circumstances. 

Such aspects need to be evaluated on a case-by-case basis before a definitive design 

decision can be made. 

 Summary 

This chapter presents the thermo-economic tradeoffs of ionic wind heat transfer 

enhancement as compared to a heat sink subject to natural convection only or buoyancy 

driven flow through a chimney. The thermal performance of the heat sink subject to natural 
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convection only is assessed using established Nusselt correlations. A semi-analytical 

thermal model is developed to describe the thermal performance of a heat sink combining 

a fin array with a chimney. The behavior of the three heat sink configurations (natural 

convection only, chimney effect and ionic wind enhancement heat rejection) is investigated 

in a parametric study of the different geometric parameters. For the heat sink under 

consideration, i.e. with a baseplate dimension of 263mm by 200mm high, the maximal 

cooling power amounts to 610.5W, 1294W and 909W for the case with natural convection 

only, with the addition of a chimney and with ionic wind heat transfer enhancement, 

respectively. A cost model is developed for each of the heat sink configuration. Finally, 

the thermo-economic limits of the three different heat sinks are calculated in a bi-objective 

optimization carried out using genetic algorithms. The resulting Pareto front allows for a 

cost effective design decision based on the cooling requirements of a system. 
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CONCLUSION 

 Summary and Conclusion 

The combined trends of increasing computing power with miniaturization of electronic 

devices brought about new challenges in terms of ambient heat rejection. The most simple and 

reliable ambient heat rejection method is natural air convection. However, this technology is 

limited in terms of the cooling power that can be dealt with. This work presents two 

technologies that can potentially increase the heat rejection rate to ambient air without using 

any moving part, thus ensuring a high reliability. This first technology considered the use of 

ionic wind to increase the air flow through cooling passages. Ionic wind occurs when a high 

voltage potential is applied to an electrode with a high curvature – typically a thin wire or a 

needle. Due to the strong electric potential close to the electrode, air molecules are ionized and 

the resulting ions induce an air flow through collisions with neutral molecules. A hybrid model 

is developed to assess the cooling power of a heat sink with ionic wind heat transfer 

enhancement. The model consists of an experimental correlation describing the Corona current 

and a numerical procedure to solve the electrohydrodynamics. A custom-built test bench is 

used to validate the numerical model experimentally. The second cooling enhancement 

technology considered is the addition of a chimney on top of the heat sink to increase the air 

flow through the cooling channels. A semi-analytical model based on thermal- and fluid 

equivalent networks is developed. The model is validated using a commercial CFD package. 

Finally, a thermo-economic study is performed using genetic algorithms in order to compare 

the performance of both technologies versus natural convection only. 

Pursuant to the research presented in this thesis and summarized above, the following main 

conclusions are drawn: 
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 The approach best suited to model ionic wind heat transfer enhancement is a hybrid 

method that combines experimental data for the Corona current with numerical 

work to solve the electrohydrodynamics of the system. 

 The dependence of the Corona current on various parameters was investigated. It 

is confirmed that the square root of the Corona current is linearly correlated to the 

applied voltage. The Corona current is inversely correlated to the vertical distance 

between the electrodes. There exists a minimum channel width under which no 

significant Corona current is generated. Finally, a thinner wire electrode generally 

induces a higher Corona current. However, the minimal thickness is constrained by 

structural and thermal parameters. 

 The Poisson equation describing the electric field and the conservation of charges 

equation are strongly coupled such that an iterative approach is required to solve 

the system of partial differential equations. The developed procedure based on 

finite difference approximation proves to be time-efficient and numerically stable. 

 The thermo-fluidic behavior of the system can be modelled using a commercially 

available software in conjunction with the data for the electric field and the ion 

concentration calculated using the separate numerical procedure. 

 The effect of ionic wind heat transfer enhancement in rectangular channels is 

investigated. In the configurations considered, the cooling power increase using 

ionic wind as compared to natural convection ranges from 50% to 100%. 

 The developed numerical procedure shows very good agreement with experimental 

measurements. The air velocity measurements all fall within the error of the 

experimental data. The maximal error between the heat flux predicted numerically 

and the heat flux measured experimentally is 3.7%. 
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 The effect of adding a chimney on top of a heat sink can be efficiently modelled 

using an equivalent thermo-fluidic resistance network. This allows for the fast 

evaluation of dozens of different design candidates within seconds, which is a 

valuable asset for optimization purposes. 

 The combined Pareto front developed shows that natural convection is the most 

effective cooling technology for low heat fluxes. At intermediate powers, ionic 

wind is the most economical solution. A chimney allows to further increase the 

cooling power of the system, however at a higher cost and with an increased total 

volume of the system. 

 Contributions 

The main contributions of the work presented in this thesis can be summarized as follows: 

 Corona Current Characterization 

The Corona current for the configuration of a single wire to a double collector 

electrode was characterized experimentally as a function of the geometric 

parameters. This configuration is suitable for flow enhancement in rectangular 

cooling channels. The developed correlations for the Corona current allow for the 

numerical calculation of ionic wind heat transfer enhancement and therefore enable 

designing heat sinks that utilize ionic wind. 

 Development of a Numerical Procedure Describing Ionic Wind Heat Transfer 

Enhancement 

o A numerical scheme based on Finite-Difference discretization of the 

Poisson equation for the electric field and conservation of electric charges 

equation was developed. The numerical scheme allows for the time-

efficient solving of the electric field and ion concentration in the domain of 
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interest. The calculation process for a typical design candidate requires less 

than two minutes to solve on a conventional work station. 

o A method using the commercially available software Ansys Fluent and 

integrating the calculated values for the electric field and ionic 

concentration was developed in order to calculate the thermo-fluidic 

behavior of a heat sink utilizing ionic wind in internal channels.  

 Experimental Testing of Ionic Wind Heat Transfer Enhancement 

o A custom test bench was built to validate the numerical model of ionic wind 

heat transfer enhancement. The validation is performed at two different 

levels. First, the velocity profile at the exit of the ionic wind generator is 

measured using a mini hot-wire anemometer. Second, the thermal 

performance of a single channel is measured and compared to the model 

prediction. It is shown that the numerical model shows very good 

agreement with the experimental data. 

o A technology demonstrator of a heat sink utilizing ionic wind was built. 

The heat sink has baseplate dimensions of 263mm width by 200mm height 

and dissipates 240W. It consists of a fin array with 20 rectangular channels 

and an ionic wind generator. It is shown that ionic wind lowers the 

baseplate temperature from 99.5°C to 81.2°C as compared to natural 

convection only, demonstrating the potential of ionic wind as a cooling 

enhancement method. 

 Thermo-Economic Limitations of Ambient Heat Rejection 

o A semi-analytical model assessing the cooling power of a heat sink 

combining a fin array with a chimney was developed. The model combines 
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an equivalent fluid resistance network with a thermal analysis. It is 

validated using Ansys Fluent. 

o For each of the three heat sink designs considered (Fin array subject to 

natural convection only, fin array with the addition of a chimney and heat 

sink utilizing ionic wind), the Pareto front for the minimal costs at the 

maximal cooling power is deduced by performing a bi-objective 

optimization using genetic algorithms. Eventually, all three Pareto fronts 

are consolidated into a single figure, allowing for cost effective design 

decisions. 

The work presented in this thesis has been published or is under review in several peer-

reviewed conference papers or journal articles. The papers 1 and 2 were presented at the 

International Mechanical Engineering Congress & Exposition (IMECE) in November 2014 

in Montreal. These papers contain preliminary concepts and results that helped framing the 

research objectives and the outline of this thesis. The third paper presents the numerical 

procedure developed to describe the enhancement of heat transfer through ionic wind, i.e. 

the work included in CHAPTER 4. The articles 4, 5 and 6 correspond to the work presented 

in CHAPTER 6, CHAPTER 3 and CHAPTER 5, respectively. 

1. N. Gallandat and J. R. Mayor, “Thermo-economic Limitations of Passive Air-

Cooled Ambient Heat Rejection Systems”, Proceedings of the ASME 2014 

International Mechanical Engineering Congress & Exposition, 2014. 

2. N. Gallandat and J. R. Mayor, “Enhanced Passive Thermal Management of 

Grid-Scale Power Routers Utilizing Ionic Wind”, Proceedings of the ASME 

2014 International Mechanical Engineering Congress & Exposition, 2014. 
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3. N. Gallandat and J. R. Mayor, “Novel Heat Sink Design Utilizing Ionic Wind 

for Efficient Passive Thermal Management of Grid-Scale Power Routers”, 

Journal of Thermal Science and Engineering Applications, vol. 7, pp. 

0310041-0310048, 2015. 

4. N. Gallandat and J. R. Mayor, “Thermo-Economic Limitations of Ambient 

Heat Rejection in Vertical Fin Arrays with Buoyancy Driven Flow 

Enhancement through the Chimney Effect”, Journal of Thermal Science and 

Engineering Applications, under review. 

5. N. Gallandat and J. R. Mayor, “Ionic Wind Heat Transfer Enhancement in 

Vertical, Rectangular Channels – Part I: Corona Characterization”, submitted 

to the Journal of Thermal Science and Engineering Applications. 

6. N. Gallandat and J. R. Mayor, “Ionic Wind Heat Transfer Enhancement in 

Vertical, Rectangular Channels – Part II: Experimental Investigation”, 

submitted to the Journal of Thermal Science and Engineering Applications. 

 Recommendations for Future Work 

The presented work provides with a complete set of tool to design novel heat sinks 

combining ionic wind with a fin array. However, before ionic wind becomes established 

as a conventional, widespread cooling technology, a quantitative assessment of the cooling 

concept’s reliability is required. This should include a study of the ionic wind generator 

performance under adverse operating conditions, for instance in the presence of dust. 

Further, the developed numerical tool allows for potential performance increase by 

conducting a multi-objective design optimization. 
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 Two recommendations for possible extension of the presented research in future work 

are presented here. 

 Experimental Reliability Study 

One of the reasons supporting the application of ionic wind as a heat transfer 

enhancement method rather than fans is the absence of moving parts and, thus, 

the better reliability and longer lifetime of the system. However, a detailed 

study on the reliability of the system would be required to confirm this fact and 

quantitatively assess the lifetime of the presented heat sink design. A 

comprehensive reliability study should comprise endurance testing, i.e. 

determining the average lifetime of an ionic wind generator in operation. It 

would also be required to investigate the behavior of the system under 

unconventional conditions such as the presence of dust or other unexpected 

particles (i.e. pollen) in the system. 

 Multi-objective Design Optimization for Heat Sinks utilizing Ionic Wind 

The developed numerical procedure combined with the experimental data for 

the Corona current allow to design heat sink of a new kind. Using this new tool, 

novel designs can be developed to meet specific application needs. The 

optimization criteria are varied and range from minimizing the maximal system 

temperature, maximizing the COP of the ionic wind generator or minimizing 

the overall volume of the system, among others. 
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