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SUMMARY 

Metallic uranium alloys are considered a promising nuclear fuel for the new 

generation of fast reactors.  Metallic alloys have advantages over the traditional ceramic 

nuclear fuels in the areas of thermal conductivity, burn-up, ease of fabrication, favorable 

plutonium breeding efficiency, fuel-recycling, and other thermo-physical and neutronic 

properties.  However, metallic fuels undergo various physical phenomena whose 

fundamental processes are unexplained.  One such phenomenon is the complex 

microstructure and phase separation following fabrication and irradiation of the metallic 

fuels.  In order to help understand the complex microstructure, atomistic simulations were 

conducted on U-Zr alloys, a promising option for the new generation of metallic fuels, to 

investigate their structure, thermodynamics, and microstructure evolution. 

A semi-empirical modified embedded atom method (MEAM) potential was 

developed for application to the high temperature body-centered-cubic uranium-

zirconium alloy (γ-U-Zr) phase.  The potential was constructed to ensure that the basic 

properties (e.g. elastic constants, bulk modulus, and formation energies), the thermal 

properties (e.g. thermal expansion, Vegards law, and melting point), and the mixing 

thermodynamics (e.g. enthalpy of mixing) were in agreement with first principles 

calculations and experimental results.  The potential was then used to examine some of 

the high temperature thermodynamics and structure, and was able to obtain new values 

for the isothermal compressibility, adiabatic index, and the Grüneisen parameters for the 

U-Zr phase at temperature. 



 xii 

In many metallic alloys, complex microstructures form as a consequence of local 

atomic ordering that depends on the processing path.  This research uses an atomistic 

approach to study microstructural morphology and evolution by investigating how 

temperature and alloy concentration affect ordering behaviors that lead to observed 

microstructures.  Atomic simulations conducted with the MEAM potential show the 

thermodynamic driving force to the lamellar structure for the melt-casted U-rich alloys 

and the finely acicular microstructure for the water-quenched U-rich alloys.  In addition, 

when the U-rich U-Zr alloy is equilibrated at a lower temperature, the lamellar/acicular 

microstructures begin to spheroidize, as observed in experiments.  In the intermediate Zr 

concentration region, the ordering seen is able to facilitate the structure to the partially 

ordered δ-UZr2 phase seen experimentally.  Lastly, the Zr-rich region is able to 

successfully show the thermodynamic driving force to the acicular, Widmanstätten, and 

martensitic needles type microstructures observed experimentally.  These simulations are 

able to successfully replicate some of the fundamental thermo-physical and 

microstructural characteristics following fabrication and irradiation of the U-Zr metallic 

fuels. 

Lastly, a sensitivity analysis of the modified embedded atom method (MEAM) 

potential was performed in order to examine and understand the uncertainty in the 

parameters and formalism of the interatomic potential.  The sensitivity analysis was 

conducted using one-at-a-time (OAT) sampling of the parameters and how they affected 

the ground state, thermal, and alloy structural and thermodynamic properties.  The 

performed analysis was able to uncover the properties that can be easily varied or 

adjusted like the lattice constant, and the properties that had little variance like the heat 



 xiii 

capacity.  The observed analysis on the ground state properties was found to correspond 

well with previously published results, after which the thermal and alloy properties were 

examined.  A new method of categorizing changes in the alloy properties was developed 

that allows for the discrimination of bonding behaviors, determining if the strength of the 

bonding between atoms changed or if the manner in which they were bonded together 

changed.  
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CHAPTER 1 

INTRODUCTION 

 

Since the Clementine reactor in 1949, the first nuclear fast reactor, metallic alloy fuels 

have been of interest to the nuclear community, and a number of experimental fast reactors have 

employed nuclear metallic fuel, including the Experimental Breeder Reactor (EBR) series, the 

Los Alamos Molten Plutonium Reactor Experiment (LAMPRE) series, the Dounreay Fast 

Reactor (DFR), and the Fermi reactors [1].   

Generally ceramic nuclear fuel is used in the Light Water Reactors (LWR) and 

Pressurized Water Reactors (PWR); however, recently there has been increased research in using 

metallic fuels in a LWR [2].  Metallic fuels have already been shown to have many benefits 

when used in non-water cooled reactors.  Metallic alloys have advantages over the conventional 

ceramic nuclear fuels in the areas of thermal conductivity, burnup, ease of fabrication, favorable 

plutonium (Pu) breeding efficiency, fuel-recycling and other thermo-physical and neutronic 

properties [3, 4]; yet, recently they are being noticed for additional significant benefits.  Metal 

alloy fuels demonstrate superior performance over ceramic fuels in that they behave in a benign 

manner during core off-normal events, maintain integrity in high burn-up conditions, have low-

loss fuel recycling during reprocessing, have proliferation-resistant recycling, and have passive 

reactor safety feedback mechanisms [1, 5].  However, metallic fuels undergo various physical 

phenomena whose fundamental processes are poorly understood, such as fuel solid/gaseous 

fission swelling, constituent redistribution, fuel-cladding interactions and phase separation 

during fabrication.   
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Metallic Fuel Advantages 

Nuclear metallic alloy fuels are believed to have a very promising future in the new 

advanced fast reactor designs and research for several reasons.  First, they do not require 

plutonium to be separated during reprocessing, which is a benefit in regard to national security 

threats.  One of the largest concerns for nuclear national security is terroristic efforts to obtain 

material in order to create a nuclear device.  However, the metallic fuel reprocessing, as opposed 

to ceramic fuel reprocessing, would ensure that key isotopes and elements required for a 

supercritical nuclear device would not have to be separated from the bulk and therefore could not 

be a target or opportunity for terroristic efforts.  Another benefit is that reprocessing of metallic 

fuel allows for reduced fuel cycle cost.  

Secondly, the metallic fuels have the potential for the highest fissile atom density, 

resulting in a higher burn-up potential of nuclear fuel.  This would allow reactors to operate 

longer before refueling; create an opportunity to breed more plutonium during reactor operation, 

resulting in high utilization of fuel resources; and allow for smaller reactors with a high power 

density. 

Third, nuclear metallic alloy fuels have favorable thermodynamic properties, promoting 

safety and energy harvesting.  They have a high thermal conductivity leading to lower fuel and 

cladding temperatures and less stored energy.   

Metallic fuels also have favorable neutronic properties.  At the reactor operating 

conditions, many of the metallic fuels are in the body-centered-cubic (bcc) phase, resulting in 

very isotropic neutron cross-sections, which are particularly important for small fast nuclear 

reactors.  
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Lastly, metallic fuels have passive safety features during core off-normal events. For 

example, during a loss-of-flow accident, fission gases and thermal expansion cause the fuel to 

expand to the cladding, whereupon the fuel at the fuel/cladding interface will transform to the 

molten phase, removing reactivity from the core. 

There are some drawbacks to the use of metal alloy nuclear fuels as well.  They have high 

fission gas release and swelling during irradiation and a lower melting point than the traditional 

ceramic nuclear fuels. They can also react with water.  Nonetheless, some of these disadvantages 

have actually been realized to be beneficial, such as the low melting point.  The low melting 

point allows for the fuel to go into the molten phase, which reduces reactor reactivity, acting as a 

passive safety feature (this process is described further in the Fuel Disadvantage Section below). 

Metallic Fuel Disadvantages 

Each nuclear fuel type has its advantages and disadvantages, and no single fuel type will 

perform better than the others in all scenarios.  There are a few concerns that need to be 

considered when using metallic fuels in particular, such as fuel swelling, fission gas release, fuel 

redistribution, cladding interactions, coolant interactions, and complex microstructures. 

Fuel swelling and irradiation growth are drastic phenomena that metallic fuels undergo 

when irradiated.  Swelling in the fuel means that the fuel maintains a similar shape but the 

volume increases, while irradiation growth means a change in shape with no noticeable change 

in volume.  At the onset of operation, metallic fuels will swell rapidly due to fission gas bubbles, 

until the bubbles become interconnected and make a path for the gas to escape.  After the 

bubbles are interconnected, the swelling behavior of metallic fuels is very slow and is caused by 

the solid fission products taking up lattice positions in the fuel.  The addition of the solid fission 
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product accumulation leads not only to slow swelling, but also to a loss in thermal conductivity.  

Furthermore, grain boundary tearing at the fuel edges has been seen to cause large irregular 

shaped cavities.  Both the irradiation growth and grain boundary tearing are known to result in 

reactivity loss [6].  

The fuel cladding mechanical interaction (FCMI) is a large concern when using metallic 

fuels.  As irradiation of the fuel progresses, the irradiation/thermal creep by fission gas pressure 

loading can eventually cause a stress-rupture of the cladding [6, 7].  Until the 1960’s, the burn-up 

of the metallic fuels in fast reactors was limited by the FCMI (Ogata 1996).  A technical 

breakthrough from Argonne National Laboratory (ANL) drastically decreased the FCMI and 

allowed the burn-up potential of the metallic fuels to be realized [8].  Reducing the smear density 

down to approximately 75% provided enough space for the fuel to swell inside the cladding until 

the fission gas pores became interconnected and fuel swelling due to fission gasses stopped. 

Fuel-cladding chemical interactions (FCCI) must also be considered when using metallic 

fuels.  The creep rupture at high burn-up is known to be accelerated by FCCI.  Experiments have 

shown that there is fuel-cladding interdiffusion, in which uranium, plutonium, and some 

lanthanide fission products react and can penetrate into the cladding.  The result of this 

interdiffusion is cladding wall thinning, a brittle cladding layer between the fuel and cladding, 

and a eutectic composition approached in the fuel which causes a lower melting point in that 

region [6, 9, 10].  

Another concern when using metallic fuels is the fuel constituent restructuring of 

uranium and zirconium that has been experimentally witnessed in the U-Zr type metallic fuels.  

The uranium and zirconium redistribution occurs soon after reactor operation begins from U and 



 5 

Zr interdiffusion.  However, the inhomogeneity associated with the restructuring, while changing 

some of the mechanical and neutronic properties of the fuel, has not noticeably affected the 

overall fuel lifetime, but a lowered solidus temperature has been noticed in some fuel regions [6, 

11].  

All nuclear metallic fuels have a lower melting temperature than the nuclear ceramic 

fuels.  The solidus temperature for uranium metals can be increased when alloyed to another 

metal with the same bcc high temperature phase. Common metals alloyed to uranium are 

zirconium, niobium, and molybdenum.  For reactor operation the fuels must be kept below their 

melting temperature.  However, since the thermal conductivity of these metallic fuels is higher 

than that of the ceramic fuels, the heat flux from the fuel pin is higher, which leads to a lower 

temperature gradient across the fuel pin and allows for a high power density to be achieved while 

remaining below the fuel melting temperature.  Nevertheless, this low melting temperature can 

cause problems during fast transients. 

Depending on the fuel temperature and the zirconium redistribution, the fuel could have 

multiple phases during reactor operation, causing changes in both mechanical and neutronic 

properties. 

The swelling and low melting point of metallic fuels is a benefit during off-normal core 

events.  The interconnected porosity of swollen metallic fuel coupled with the low melting point 

during a transient event allows for the thermal expansion of the fuel due to temperature induced 

phase transformations; this phase transformation prevents the fuel from stressing the cladding, 

and allows the fuel to flow onto itself in the open porosity [12]. 
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Metallic alloy fuel microstructure tends to be much more complex than ceramic.  

Depending on the processing path undergone, drastically different phases and precipitate 

morphologies may be present (this is described further in the Uranium-Zirconium 

Microstructures Fuel Section below). 

However, the metallic fuels still need additional research before they can be fully 

understood.  One of the barriers obstructing the advancement of metallic fuels is the lack of 

appropriate tools needed for computational simulations.  Computational simulation is a tool that 

can be used to give insight into physical phenomena, as well as give understanding to the 

atomistic mechanisms that result in the overall mechanical and thermal properties of the system.  

Computational simulation not only gives insight into experimental results, but also, once 

developed, allows for the necessary predictions of metallic fuel property changes under a variety 

of conditions.  In addition, computational simulation combined with experimentation will not 

only assist in the operation and design of a reactor, but also provide the necessary information 

and comprehension for optimizing fabrication and reprocessing of the fuels.   

Uranium (U) 

Uranium is an actinide that has three distinct stable solid phases.  The transition of these 

phases can be attributed to the behavior of the de-localized f-orbital-electrons.  The ground state 

uranium phase is the α (orthorhombic) phase.  As temperature increases, uranium will go through 

transitions to the β (tetragonal) and the γ (body-centered-cubic) phases respectively.  The α and β 

phases of uranium have unwanted an-isotropy of expansion, but the γ phase has seemingly 

isotropic expansion which is desirable in reactor environments.  The transition temperatures of 
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uranium from α to β, β to γ, and γ to liquid are 940.85 K ± 1.3 K, 1047.95 K ± 1.6 K, and 

1405.95 K ± 0.8 K respectively [13].  

Zirconium (Zr) 

Zirconium is also a transition metal and has two distinct solid phases.  The ground phase 

of zirconium is hexagonally closed-packed (hcp or α-Zr), while the high temperature phase is 

body-centered-cubic (bcc or β-Zr).  The transition temperature from α-Zr to β-Zr occurs at 

863 °C.  Another important characteristic of zirconium is its high melting point of 1855 °C, 

which makes zirconium useful when alloying to uranium, as it raises the melting point of the 

alloy. 

Uranium-Zirconium (U-Zr) 

Zirconium is one of the principal structural metals for fuel cladding and other core 

components because of its high temperature bcc phase (above 865 ºC), high melting temperature, 

very low thermal neutron absorption cross-section, relatively low cost, and high fission product 

yield. For these reasons it was considered a good option to alloy with uranium to construct a 

metallic alloy fuel.  However, the choice of which element to alloy to uranium for a good 

metallic fuel has mostly been decided by trial and error, often making a compromise between 

mechanical properties and corrosion resistance.  After many experiments and tests, uranium-

zirconium (U-Zr), along with a few other alloys, appears to be a promising option as a nuclear 

fuel for fast reactors. 

A detailed history of the use of U-Zr based alloys as fuel for fast reactors is provided by 

Carmack et al. [9] and by Hofman and Walters [3].  As described by Carmack et al. [9], the early 
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U.S. fast reactor designs favored metal alloy fuel due to its high fissile density and compatibility 

with sodium.  Furthermore, it was discovered that the low smear density of the metallic fuel 

facilitated the operation at much higher burnup [9].  Metal fuel was selected for use in many of 

the first reactors in the U.S., including the EBR-I and the EBR-II in Idaho, the FERMI-I reactor, 

and the DFR in the U.K. [1, 8, 9].  Metallic U–Pu–Zr alloys were the reference fuel for the U.S. 

Integral Fast Reactor (IFR) program.  An extensive database on the performance of advanced 

metal fuels was generated as a result of the operation of these reactors and the IFR program.  

First generation (often called Mark-I in the literature [9]) fuel was unalloyed, highly enriched 

uranium metal that was rolled and swaged to the desired final shape.  The second (Mk-II) and 

third (Mk-III) core loadings of EBR-I were centrifugally cast U–Zr alloy and centrifugally cast 

U–Zr alloy coextruded with Zircaloy-2 cladding, respectively.  The EBR-II operational and fuel 

qualification data includes the irradiation of over 30,000 Mk-II driver fuel rods [14, 15], 13,000 

Mk-III/IIIA/IV (U–10Zr alloy) driver fuel rods, and over 600 U–Pu–Zr fuel rods [1, 7] from 

1964 to 1994.  Thus, it can be seen that the U-Zr alloy system is of integral interest to fast reactor 

fuel development, both as an early fuel for these reactors and as the main component of 

advanced (U-Pu-Zr) fuel designs.  In this paper, the thermodynamics of the entire U-Zr alloy 

system is studied; however the fuel forms are generally fabricated from high U content alloys 

(e.g., U-10%Zr).   

Uranium-zirconium has a bcc structure for reactor operating temperatures; therefore, the 

bcc structure is particularly important to analyze.  It is also important to note that the uranium-

zirconium alloy goes through a δ (C32 crystal structure) to γ (bcc) phase transition for 65%-75% 

zirconium around 890 K.   
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In 1955, Summers-Smith [16] presented a phase diagram for the U-Zr alloy system as 

well as measurements of lattice constants of quenched alloys.  While the phase diagram has been 

modified significantly since then, several researchers [17-19] have reproduced the lattice 

constants. 

Thermodynamics of the γ-U-Zr bcc alloy was investigated by experimental and 

computational techniques.  Fedorov and Smirnov [20, 21] used an electrochemical cell to 

estimate the experimental electromotive force (emf) values, heat capacity, and the molar 

enthalpy and entropy of mixing of the high temperature γ-phase of the U-Zr system.   In 1981, 

Chiotti et al. [22] used the emf values and heat capacities obtained from Fedorov to construct the 

Gibbs energy of mixing and enthalpy of mixing for the high temperature U-Zr solid solution.  

Kanno et al. [23] used the Knudsen effusion mass-spectrometric technique to measure vapor 

pressures and thermodynamic activities of liquid and solid solutions of U-Zr in the temperature 

range of 1700 K-1850 K.  The molar Gibbs energy was then obtained using the partial molar 

Gibbs energies and activity coefficients.  It can be seen from Chiotti et al. [22] and Kanno et al. 

[23] that the Gibbs energy of mixing values, and therefore the enthalpy of mixing values, remain 

relatively similar throughout the stable γ-U-Zr solid solution phase region.  Shevchuck et al. [24] 

estimated the Gibbs energy of mixing from Darken’s equation using diffusion data at 1000°C.  

Leibowitz et al. [25] and Xiong et al. [26] constructed Gibbs energy curves to fit the previous 

thermodynamic experimental data and phase diagram for the U-Zr system. 

The most recent phase diagram was constructed by H. Okamoto [27] and was made from 

a compilation of experimental papers on uranium-zirconium.  Figure 1 shows the binary U-Zr 

phase diagram. 
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Figure 1: Binary U-Zr phase diagram, with important major phase regions indicated, from 

Thermo-Calc® and the TCBin database [28, 29], which uses the previously published 

thermodynamics and phase diagrams [27, 30, 31]. 

 

The γ-U-Zr phase is the high temperature phase in which the metallic U-Zr fuel has 

isotropic properties and the main phase of interest for high temperature fast reactors. 

Uranium-zirconium (including U-Pu-Zr and U-ZrH) fuel is already considered to be one 

of the best options for use in the TRIGA pool type reactors and the Generation IV SFR’s reactors 

(EBR-II, SABR, S-PRISM and more).   Uranium-zirconium in reactor operating conditions is in 

the bcc phase.  The bcc phase gives the metallic fuel the desired isotropic thermal expansion, but 

has less experimental data than the lower temperature phases.  This research focuses on this bcc 

metallic phase. 
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δ-U-ZR2 Partially Ordered (C32) Phase 

The δ-phase of uranium-zirconium is an important phase for non-high temperature 

conditions.  The U-Zr alloy transitions from a δ (partially ordered C32 crystal structure) to γ 

(bcc) phase around 65%-75% Zr and 890 K. The δ-UZr2 phase is a modified C32 (AlB2)-type 

crystal structure, and is the only stable intermetallic phase in the U-Zr system.  This C32 

intermetallic crystal structure has been found in a few uranium metallic alloys, such as UZr2, 

UHg2, U3Si5, U2Ti0.82Zr0.18, U-Hf, and U2Ti [18, 32-39].  The δ-UZr2 phase was proposed to be a 

modified partially ordered C32 phase by Silcock [40] and Boyko [38] using x-ray diffraction 

analysis. 

 

Table 1: Structure of the δ-U-Zr crystal system. 

Pearson Symbol hP3 

Space Group P6/mmm 

Prototype Al-B2 

Strukturbericht Designation C32 

 

Uranium-Zirconium Microstructures 

Microstructural evolution in metallic alloys involves complex atomic processes occurring 

over a wide range of temporal and spatial scales.  Underlying the evolution of microstructure are 

unit mechanisms involving atoms or groups of atoms that diffuse in order to satisfy local 

thermodynamic constraints.  Complex microstructures form as a consequence of local atomic 

ordering that depends on the processing path.  An example of such complex microstructure 

formation is the uranium-zirconium (U-Zr) system, where ordering and phase separation effects 

are observed and cause microstructures to be highly dependent on processing paths.  Figure 2 
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shows the binary U-Zr phase diagram with important major phase regions indicated.  A U-Zr 

microstructural characteristic is the uranium separation or decomposition from the U-rich U-Zr 

alloy to form the α-U and δ-UZr2 phases in various formations.  Five representative 

microstructures are schematically shown in conjunction with the phase diagram. 

For example, if the U-rich alloy is air-cooled from the melt, it results in a lamellar 

microstructure.  The same alloy, quenched from the high temperature bcc phase, forms a more 

acicular structure, while an alloy with a slightly higher Zr concentration, quenched from the 

miscibility gap, results in spherical decomposition.  The lamellar microstructure of U-rich U-Zr 

alloys has been noticed by Basak et al., McKeown et al., and Kim et al. [41-43].  In each case, 

this lamellar microstructure formed when the alloy was heated above its melting temperature and 

then cooled at a modest rate, not quenched [41-43].  However, if the sample was very rapidly 

quenched, there is evidence that the bcc γ-U phase may hold instead of decomposing [17], and if 

cooled quickly, may either decompose into α-U and δ-UZr2 phases or form a supersaturated α’-

phase in a Widmanstätten morphology with fine interleaving lamellae [44, 45]. 

The Zr-rich U-Zr alloys also decompose.  Previous publications [46-49] have classified 

some of the resulting microstructures of this decomposition as acicular, Widmanstätten, disc, 

globular, rhomboidal, and more complex decompositions.  If water-quenched from the bcc solid 

solution region, the Zr-rich U-Zr can remain in the bcc phase [46, 47] with possible martensitic 

α-Zr needles or bainitic α-Zr precipitates [46]. However, if air-cooled, Zr-rich alloys result in an 

acicular decomposition, and if furnace-cooled, in either a Widmanstätten or rhomboidal 

microstructure after decomposition of the α-Zr [46, 47].  If the sample is annealed in the α-Zr, γ-

U-Zr temperature region, either a globular or rhomboidal, or both, α-Zr forms in the δ-UZr2 

phase [46-49]. 
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              (a)                     (b)                     (c)                    (d)                     (e) 
 

Figure 2: Binary U-Zr phase diagram, with representations of observed microstructures if cooled 

with a given rate from a temperature range. 

(a): (U-rich) melt to low air-cooled: results in lamellar 

(b): (U-rich) bcc quenched: results in acicular 

(c): (U-rich) α-U, γ-U-Zr phase region quenched: results in spherical decomposition 
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(d): (Intermediate) bcc quenched: results in equiaxed 

(e): (Zr-rich) bcc quenched: results in bcc with martensitic needles 

 

Evidently, atomistic configurations in the bcc and liquid phases, where atomic diffusion 

is significant, is key in the research of microstructure and morphological evolution of the U-Zr 

system.  Neither U, Zr, nor their alloys lend themselves easily to atomistic analysis.  

Using atomistic simulations, we attempt to understand these microstructural effects 

through analyzing small configurations of U-Zr alloys and looking for thermodynamic driving 

forces and unit mechanisms of ordering and phase separation.  U-Zr interactions are described by 

a recently developed interatomic potential that is capable of computing several thermodynamic 

properties of the U, Zr, and U-Zr metals and alloys [50].   

Previous U-Zr Simulations 

The first published density functional theory (DFT) simulation of the U-Zr system was 

performed by Landa et al. [51] who employed the Korringa-Kohn-Rostoker method within the 

atomic-sphere approximation (KKR-ASA) combined with the coherent potential approximation 

(CPA) in order to investigate the compositional disorder.  Effective cluster interactions that were 

used in the Monte Carlo simulations were obtained using the screened generalized perturbation 

method (SGPM).  The first and second nearest neighbor (hereafter referred to as 1NN, 2NN, ...) 

effective pair interactions (EPI) obtained by Landa et al. [51] showed significant negative values, 

indicating a strong tendency of phase separation of the γ-U-Zr system at 0 K. 
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In 2010, Bozzolo et al. [52] constructed a Bozzolo-Ferrante-Smith (BFS) potential that 

utilizes the equivalent-crystal theory (ECT) to examine the heat of formation, cohesive energies, 

and lattice parameters.  This is done by utilizing the pure element cohesive energy, the bulk 

modulus, and the equilibrium lattice parameter, as well as the strain energy, the chemical energy 

for the compositions, and a reference chemical energy to obtain the formation energy of the 

system.  The parameters needed for the BFS potential were obtained using the Linearized 

Augmented Plane Wave method (LAPW).  The results obtained for 0 K were similar to that 

obtained by Landa et al. [51].  Then in 2011 and 2012, the BFS potential was used to investigate 

lanthanide migration and possible cladding interactions [53, 54]. 

In 2013, Xie et al. [55] and Xiong et al. [26] called into question the enthalpy of mixing 

obtained by Landa et al. and Bozzolo et al. by showing that the spin orbit-coupling (SOC) and 

the introduction of the DFT+U significantly changed the enthalpy of mixing and produced better 

matches to the experimental energetics and thermodynamics. 

In 2013, Moore et al. [56] introduced a preliminary bcc U-Zr modified embedded atom 

method (MEAM) potential; however, it was unable to capture much of the experimental high 

temperature thermodynamics, and in 2015, Moore et al. [50] published a U-Zr MEAM potential 

designed to mimic experimental thermodynamics.  It successfully replicated the enthalpy of 

mixing obtained by Chiotti et al. [22], as well as the elastic constants, defect formation energies, 

lattice constants, thermal expansion values, melting point temperatures, and enthalpy of fusion. 

The objective of the current work is to create an atomistic model using the MEAM to 

describe the structure and thermodynamics of the γ-U-Zr alloys at temperatures where these 

alloys are stable.  Unlike most first principles calculations, interatomic potentials based on 
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mostly classical descriptions can be used to calculate relevant larger scale atomistic properties at 

temperature.  In comparison to recent literature on the ab initio based calculations of U-Zr alloys 

[26, 51, 55, 57], very few properties of the γ-phase have been calculated at temperature due to its 

propensity to destabilize at 0 K.  Recent calculations often have needed to account for the 

instability through fixed volume or geometry constraints.  The translation of first principles 

calculations at the ground state to the high temperature phase involve assumptions about 

structure and thermodynamic equilibria.  Direct calculations of the γ-U-Zr phase at temperatures 

where it is stable are currently not possible through most ab initio techniques, due to 

computational limitations.   

The created MEAM potential is the first interatomic potential for the U-Zr system able to 

describe the γ-U-Zr phase at temperature.  The MEAM potential enables atomistic results to be 

compared to experimental results, allowing the atomistic mechanisms contributing to the 

experimental results to be witnessed and understood for the first time.  The creation of a MEAM 

potential will allow for the study of the larger scale atomistic simulations of separation/ordering 

phenomena, defect properties, radiation damage, void/bubble energetics, coalescence, and 

plasticity.  In addition, the MEAM potential can be expanded to include fission products, 

cladding, and other minor actinides, permitting the study of ternary metallic fuel, fuel-cladding 

interactions, and how fission products can affect fuel properties. 

Semi-empirical interatomic potentials can be fit to both first principles and experimental 

data and employed to simulate high temperature properties.  In classical simulations, atoms are 

represented by point-like centers, which interact through many-body interactions defined by a set 

of equations, i.e., the interatomic potential.  In that way, the highly complex description of 

electron dynamics is replaced by an effective model whose main features (such as the hard core 
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of particles and internal degrees of freedom) are described by a set of parameters and analytical 

functions, which depend on the mutual positions of the atoms in the configuration.  These 

parameters and functions give complete information about the system energy, as well as about 

the forces acting on each particle. 

Very few interatomic potentials for actinoid metals have been developed.  Itinerant f-

electron behavior has proved difficult to describe.  Directional effects of the electron cloud need 

to be considered in the potential description.  Of the actinoid metals, interatomic descriptions of 

uranium [56, 58-65] and plutonium atomic interactions are available [66, 67].  Uranium has been 

described by a charge optimized multi-body (COMB) potential [61], embedded atom method 

(EAM) potentials [62-64], and a few MEAM potentials [56, 58, 59] which have been developed 

for various phases of U.  The potentials for uranium are often designed to better match a 

particular U phase or attempt a more inclusive potential by making compromises when fitting 

properties of the phases.  There have also been two previous binary U alloy potentials, U-Mo 

[64] and U-Al [62], developed using the EAM potential method.  In addition, a MEAM potential 

has been formulated for Pu [67].  This Pu potential has been used to calculate the stability of Pu 

phases, the phase diagrams of Pu alloys, defect properties, and radiation damage effects [68-76]. 

The introduction of the many-body EAM potentials [77] allowed a single potential 

formalism to mimic a wide variety of metals with differing crystal structures as well as oxide, 

liquid and gaseous phases with reasonable agreement with experimental or first principles 

simulations [77-82].  However, it was observed that the EAM potentials lead to elastic constants 

that were inconsistent with experiment when simulating materials with significant directional 

bonding [83].  Therefore, the MEAM [84] was constructed to simulate the properties of metals 

with significant directional bonding.  These MEAM potentials have been used to investigate a 
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wide variety of phenomena (e.g., irradiation damage cascades, crystal interfaces, phase and alloy 

thermodynamics, diffusion, plasticity, etc.) in pure metals and alloys [85-103].  

Chapter 2: “Computational Theory and Analysis” describes the simulation methods.  A 

detailed description of the MEAM potential equations and parameters is presented in Chapter 3: 

“Interatomic Potential” and Chapter 4: “MEAM Parameters”.  Chapter 5: “Structural Properties 

of Elemental Phases of U and Zr” describes the structural properties for the U and Zr phases at 

ground state.  In this section, the elemental lattice parameters, elastic moduli, and point defect 

energies of U and Zr phases are calculated and compared to an extensive literature survey.  

Chapter 6: “Thermodynamics of Pure Elements” describes the thermodynamics of the pure U 

and Zr elements, where the heat capacity, melting temperature, and heat of fusion are calculated 

and compared to reported experimental values.  Chapter 7: “BCC and Liquid Phases of U and 

Zr” uses RDFs and BADFs to examine the thermal structure of the bcc and liquid phases of U 

and Zr and compare it to previously published results.  Chapter 8: “Structural Properties of U-Zr 

Alloys” describes the structural properties of the γ-U-Zr alloy.  In this section, the γ-U-Zr lattice 

constants and thermal expansion values versus concentration are compared to existing 

experimental values.  Chapter 9: “U-Zr Solid Solution Thermodynamics” describes the γ-U-Zr 

solid solution thermodynamics.  In this section, the γ-U-Zr enthalpy and Gibbs energy of mixing 

are presented followed by a description of the calculation of the heat capacity, volumetric heat 

capacity, isothermal compressibility, and the Grüneisen parameter.  Subsequently in Chapter 10: 

“Discussion of U-Zr Thermodynamics”, the U-Zr system thermodynamics of our results and 

previous results are compared and the discrepancies explained.  Then in Chapter 11: 

“Ordered/Disordered U-Zr”, the created interatomic MEAM potential is used in molecular 

dynamics and Monte Carlo simulations, independently as well as in conjunction, to analyze the 
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ordering behaviors of the U-Zr system.  Ordering analysis is conducted by using a short range 

ordering parameter, radial distribution functions, and bond order distribution functions, as well 

as some visual analysis.  After which, the ordering, separation, and precipitate morphology in U-

Zr alloys are studied in Chapter 12: “Ordering, Separation, and Precipitate Morphology”.   

Wherever possible we compare our results with experimental or simulation results.  Lastly, a 

MEAM sensitivity analysis is presented in Chapter 13: “MEAM Sensitivity Analysis of Thermal 

Properties”.   
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CHAPTER 2 

COMPUTATIONAL METHODS & ANALYSIS TECHNIQUES 

Molecular Statics (MS) and Molecular Dynamics (MD) Calculations 

Molecular statics (MS) simulations (energy minimization) and molecular dynamics (MD) 

simulations were performed using the “in-house” code DYNAMO (predecessor to LAMMPS or 

PARADYN).  The process of an energy minimization simulation corresponds to relaxing (or 

moving) the atomic positions until zero net force is acting on the system at 0 K (minimum 

energy configuration).  Molecular statics with DYNAMO uses the equations of motion from 

Newton’s second law to relax the atoms.  Molecular dynamics simulation consists of a numerical 

systematic solution to the classical equations of motion.  Similarly to molecular statics, 

molecular dynamics calculates the force on each atom from the gradient vector of the potential 

energy at each atom’s location.  Molecular dynamics computes the phase-space trajectory, in 

which the atoms are allowed to interact for a period of time with forces being exerted on each 

atom, giving snapshots of the motion of the atoms.  The forces on each atom are calculated using 

the MEAM interatomic potential.  Temperature in a molecular dynamics simulation corresponds 

to an average atom velocity. 

The MD simulations performed in this research, unless otherwise specified, were 

conducted with a supercell consisting of 10x10x10 unit cells (2000 atoms) run under an 

isothermal–isobaric (NPT) ensemble, in which the atoms, pressure, and temperature are held 

constant, with periodic boundary conditions.  A Nose-Hoover thermostat [104, 105] was applied 

in the MD simulation to keep the system at a constant temperature. 
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The MD simulations must be run long enough to reach the equilibrium value, and then 

for additional time to ensure a good statistical average.  The total MD simulation time was 100 

picoseconds using a 2 femtosecond time step, with ensemble property averaging over the last 35 

picoseconds.   

Density Functional Theory (DFT) Calculations 

Where necessary, ab initio calculations were performed in order to calculate defect 

formation energies of the Zr crystal phases.  The first principles Zr study was conducted using 

the projector augmented wave (PAW) method [106] within the density functional theory (DFT) 

[107, 108] in the Vienna ab initio Simulation Package (VASP) [106, 109, 110].  The Perdew–

Burke–Ernzerhof (PBE) [111] generalized gradient approximation (GGA) is used to describe the 

exchange–correlation.  In addition, a Zr PAW pseudopotential with the 4d25s2 valence electronic 

configuration and a core represented by [Kr] is utilized.  The Zr hexagonal-close-packed (hcp) 

and the bcc structures were analyzed with a gamma-centered k-point mesh of 20x20x20 and all 

symmetry restrictions removed, resulting in 4004 k-points in the irreducible Brillouin zone. 

Accurate precision was used with a cutoff energy of 500 eV to minimize wrap around errors in 

the grid. 

Monte Carlo (MC) Calculations 

The Monte Carlo (MC) simulation used is based on the Metropolis Monte Carlo 

algorithm [112, 113].  The MC method allows for the study of order-disorder and segregation 

phenomena in the equilibrated system.  The MC method is not based on the equations of motion, 

like the MD simulation, but the energetics of the states.  This type of MC simulation is good for 

evaluating effects that would take a long time to witness during a molecular dynamics 
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simulation.  In addition, this type of MC simulation provides insight into the possible range of 

thermodynamic properties which could change due to atomistic ordering effects. 

Order-disorder transitions proceed through substitution between atoms followed by small 

atomic displacements.  These order-disorder transitions are commonly found in metals and 

alloys.  The MC approach is used to drive the atoms toward their equilibrium state at a finite 

temperature. 

The MC simulation started with the ending positions of each atom after the previous MD 

simulation.  Then a series of configuration transformations were performed to achieve a thermo-

dynamically equilibrated state.  The MC code uses a canonical (or NVT) ensemble, which means 

that the number of atoms, volume, and temperature is conserved. 

In each MC step, one of the following two configuration changes is attempted with an 

equal probability:  

1. A randomly selected atom is displaced from its original position in a random 

direction with a distance between 0 and rmax.  This step accounts for the 

positional relaxation process (adjustment of bond lengths and angles). rmax 

was chosen to be 0.35 Å. 

2. Two randomly selected atoms with different elemental types are exchanged.  

This step accounts for the compositional relaxation process. 

In order to determine if the configurational change to the system is accepted, the energy 

between the new and old configurations is evaluated.  If the new configuration has a lower 

energy, the configurational change is always accepted.  However, if the new configuration has a 
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higher energy than the old configuration, the configurational change is accepted with a 

probability PXY. 
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Where kB is the Boltzmann's constant, ΔE is the change in energy between the new and 

old configurational states, and T is the temperature.  Initially, during the approach to the low 

energy equilibrated states, the potential energy and the configurational acceptance rate will 

rapidly decrease following an exponential decay progression.  Once the MC simulation has 

reached the condition of oscillating around the low energy equilibrated states, the probability of 

configurational transformation acceptance remains stable proportionately to the Boltzmann's 

distribution of the equilibrium ensemble.  The 0 K MC simulations are performed with no 

Boltzmann's distribution of accepting positive energy changes; therefore, only changes that result 

in a decrease in the energy of the system are accepted. 

The MC runs were also conducted on a bcc 10x10x10 periodic supercell for a total of 

2000 atoms, unless otherwise specified. The simulation size chosen allowed the precipitation 

morphology to develop in a recognizable shape, while keeping computational time reasonable.  

In order to test the simulation size effect, the MD and MC simulations were performed on bcc 

7x7x7, 10x10x10, and 15x15x15 supercells of U-20at.%Zr at 1100 K.  The three different sizes 

lead to the same energy per atom and separation morphology, the only difference being 

morphological dimensions. 

Molecular Statics/Dynamics (MS/MD) - Monte Carlo (MC) Iterative Method 
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The MC simulations with an NVT ensemble rearranges the atoms to have a lower free 

energy.  This restructuring of the atoms creates a problem since rearranging the atoms should 

cause a volume change.  Running a MS or a MD simulation with an NPT ensemble corrects the 

volume problem.  However, the corrected volume changes how the structure rearranges during 

an MC simulation.  Therefore, an iterative MC-MS and MC-MD simulation is proposed, which 

should eventually settle to the state that minimizes the free energy through a series of atom 

switching and thermal motion, if continued.  A finite number of MC-MS and MC-MD iterations 

is proposed to approximate the minimal free energy structure. 

 

 

Figure 3: Flow diagram of the proposed finite iterative MS and MC simulations. 

 

 

Figure 4: Flow diagram of the proposed finite iterative MD and MC simulations [56]. 
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Radial Distribution Function (RDF) and Bond Angle Distribution Function (BADF) 

Analysis Techniques 

The radial distribution function (RDF) is a useful tool for atomic analysis of crystal 

systems.  The radial distribution function gives a normalized equation of the distance between 

atoms in the lattice.  The RDF is calculated by determining the average number density of an 

atom to another within a spherical shell as a function of radial distance.  The RDF can be 

described by the function g(r), which gives the probability of finding a particle in the distance r 

from another particle. 

g(r) =
1

4𝜋𝑁𝑟2𝜌0
∑ ∑ 𝛿(𝑟 − 𝑟𝑖𝑗)𝑁

𝑖=1
𝑖≠𝑗

𝑁
𝑗=1   ( 2 ) 

The calculation of g(r) can give useful information about the average thermal scatter (by 

looking at the width of the peaks) and the phase of the system (by looking at the distance 

between the peaks and the relative magnitudes), and it can even give information on the chemical 

ordering in a complex system when elemental partial radial distance functions are used. 

The bond angle distribution function (BADF) is another useful tool for atomic analysis of 

crystal systems.  The BADF gives a normalized equation of the bond angles between atoms 

located within a certain distance, and can be described by the function g3(θ), which gives the 

probability of finding a bond angle θ between the local atoms. 

The unnormalized bond angle distribution function can be found using the Kirkwood 

superposition of pair distribution functions [114].  We define the unnormalized Kirkwood-

approximation 𝐺3
𝛼𝛽𝛾(𝜃, 𝑟1, 𝑟2) between αβγ in three dimensions as 



 26 

𝐺3
𝛼𝛽𝛾(𝜃, 𝑟1, 𝑟2) = 𝑠𝑖𝑛𝜃 ∫ ∫ 𝑑𝑟 𝑑𝑟′𝑟 𝑟′𝑔𝛼𝛽(𝑟) 𝑔𝛼𝛾(𝑟′)  ×

𝑟2

0

𝑟1

0

 𝑔𝛽𝛾 (√𝑟2 + 𝑟′2 − 2𝑟𝑟′𝑐𝑜𝑠𝜃)   , ( 3 ) 

where g(r) is the pair distribution functions, θ is the bond angle between αβγ, r1 is the maximum 

bond distance between αγ, and r2 is the maximum bond distance between αβ. 

After which normalization can be applied to the triplet correlation function to obtain the 

Kirkwood approximation of the BADF. 

𝑔3
𝛼𝛽𝛾(𝜃, 𝑟1, 𝑟2) =

𝐺3
𝛼𝛽𝛾(𝜃,𝑟1,𝑟2)

∫ 𝑑𝜃 𝐺3
𝛼𝛽𝛾(𝜃,𝑟1,𝑟2)

𝜋
0

   ( 4 ) 
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CHAPTER 3 

INTERATOMIC POTENTIAL THEORY AND FORMALISM 

The electron density functional theory’s concept of electron density’s replacement of 

wave functionals led to the creation of the EAM potential and the MEAM potential.  The EAM 

potential is based on the assumption that an atom can be embedded into a homogenous electron 

gas, and that the resulting change in potential energy is a functional of the embedded atom 

electron density that can be approximated with an embedding function.   

 

Figure 5: Physical representation of the basics of the embedding function [115]. 

However, the electron density in a crystal is not homogenous.  Therefore, the EAM 

potential changes the background electron density to the electron densities for each atom and 

supplements the embedding energy by a repulsive pair potential to represent atoms’ core-core 

interactions. 



homogeneous 

electron gas 

homogeneous 

electron gas 


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Figure 6: Physical representation of the embedding function into a lattice [115]. 

The EAM potential uses a simple linear superposition of the atoms’ electron densities as 

the background electron density. 

�̅�𝑖 = ∑ 𝜌𝑗
𝑎(𝑅𝑖𝑗)𝑗   ( 5 ) 

𝑅𝑖𝑗 = |𝑟𝑖 − 𝑟𝑗|  ( 6 ) 

In the equations above, 𝑅𝑖𝑗 is the distance between atoms i and j, 𝜌𝑗
𝑎 is the atomic 

electron density, and ri is the position of atom i.   

The EAM potential is a semi-empirical potential developed by Daw and Baskes in 1983 

[77, 116] and has been used to successfully model a variety of face centered cubic (fcc) metals.  

The EAM inter-atomic potential does not simply depend on atom locations, but includes many 

body effects that depend on the local environment. 

The potential energy of a crystal system, using the EAM potential, can be calculated 

using the embedding function F, the electron densities 𝜌𝑖, and the pair interaction potential ϕ.   

𝑈 = ∑ 𝐹(�̅�𝑖)𝑖 +
1

2
∑ 𝜙(𝑅𝑖𝑗)𝑖,𝑗   ( 7 ) 



homogeneous 

electron gas 

inhomogeneous 

electron gas 
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Modified Embedded Atom Method (MEAM) Interatomic Potential 

However, the EAM potential has problems simulating materials with significant 

directional bonding, and cannot be used when simulating these materials.  Criteria for significant 

directional bonding in materials were created using the Cauchy relation or Cauchy discrepancy 

which relates the C12 and the C44 elastic moduli for symmetrically cubic materials.  The Cauchy 

relation stated that the transverse expansion elastic constant (C12) is equal to the shear modulus 

elastic constant (C44), or C12=C44 [117], if the crystal and the atoms have cubic symmetry.  This 

condition is not satisfied for most metals.  Therefore, materials with C12/C44 - 1 < 0 (Cauchy 

discrepancy) are said to have a significant amount of directional bonding and cannot be 

described by EAM [117]. 

The MEAM potential builds on the EAM potential by allowing the background electron 

density to depend on the local environment, whereas the EAM potential uses a linear 

superposition of spherically averaged electron densities. 

The MEAM inter-atomic potential is a semi-empirical potential proposed by Baskes et al. 

[84] that has been successfully used to reproduce the physical properties of various metals with 

different crystal structures.  The MEAM potential is useful because it has the ability to replicate 

physical properties while keeping the computational power and time, which are necessary to 

complete the simulations, down to an acceptable level.   

The MEAM potential for a single element contains 13 adjustable parameters (A, B0, B1, 

B2, B3, t1, t2, t3, α, δ, Ec, Cmin, and Cmax) used to obtain the physical properties seen by 

experiments or ab initio simulations.  However, the MEAM potential becomes more complex for 

binary and tertiary alloys.  A binary alloy has 13 adjustable parameters for each element and at 
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least 14 adjustable parameters (δ, α, re, ρU, ρZr, Δ, Cmin
(1,1,2), Cmin

(1,2,1), Cmin
(1,2,2), Cmin

(2,1,2), 

Cmax
(1,1,2) , Cmax

(1,2,1), Cmax
(1,2,2), Cmax

(2,1,2)) for the binary alloy interactions. 

A MEAM potential is presented for the high temperature bcc γ-U phase.  MEAM 

potentials add an angular component to the older EAM potential to account for directional 

bonding.  

With the MEAM potential, the total energy E of a system of atoms is given by 

,

1
( ) ( ) ( )

2
i i ij ij iji i j i

U F R S R 


    , ( 8 ) 

where Fi is the embedding function, ρi is the background electron density at site i, Sij is the radial 

screening function, and φij(Rij) is the pair interaction function between atoms i and j at a distance, 

Rij. 

Embedding Function  

The embedding function describes the energy it takes to add (or embed) the atom to the 

crystal structure.  The embedding function for the MEAM potential is defined by 

𝐹𝑖(�̅�𝑖) = 𝐴𝑖𝐸𝑐𝑖 (
�̅�𝑖

𝜌𝑖
𝑒̅̅̅̅ ) 𝑙𝑛 (

�̅�𝑖

𝜌𝑖
𝑒̅̅̅̅ ) , ( 9 ) 

where Ai is an adjustable parameter, Eci is the cohesive energy, and 𝜌𝑒
𝑖
 is the electron density 

evaluated at equilibrium in the reference structure. 

Universal Binding Energy Relationship (UBER)  

The reference state energies are found from the universal binding energy relationship 

(UBER), which uses a reference structure to create the pair potential.  The UBER describes 
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cohesion and adhesion of unrelaxed surfaces, chemisorption, and diatomic molecules [118].  The 

UBER in the MEAM is normally fit through a few parameters. 

The pair potential, instead of being given explicitly, is given as a functional of an 

embedding atom function and a universal function (Eu(R)) that is able to reproduce the universal 

equation of state (EOS) [119] for the potential energy of a reference crystal structure.  The 

universal function (Eu(R)) describes the uniform expansion or contraction in the reference 

structure. 

The value of the energy per atom for the equilibrium reference structure is obtained from 

the zero-temperature universal EOS by Rose et al. [119] as a function of nearest-neighbor 

distance R. 

𝐸𝑢(𝑅𝑖𝑗) = −𝐸𝑐 [1 + 𝑎∗ + 𝛿(𝑎∗)3 𝑟𝑒

𝑅𝑖𝑗
] 𝑒−𝑎∗

  ( 10 ) 

𝑎∗ = 𝛼(𝑅𝑖𝑗 𝑟𝑒⁄ − 1)  ( 11 ) 

𝛼 = (9𝐵Ω 𝐸𝑐⁄ )1 2⁄   ( 12 ) 

The repulse and attract parameters of the MEAM potential are the short range attraction 

and repulsion forces in the universal EOS (the cubic repulsion/attraction term in the Rose 

rnergy).  In this work a single value of  is used in the repulsive and attractive parts of the 

universal EOS. 

Reference State & Pair Potential 

The universal EOS combined with a reference structure can be back-calculated to a pair 

potential.  This is done by equating the reference structure to the pair potential as shown in 

Equation (13). 



 32 

𝐸𝑢(𝑅𝑖𝑗) = 𝐹[𝜌0̅̅ ̅(𝑅𝑖𝑗)] +
1

2
∑ 𝜙(𝑅𝑖𝑗) = −𝐸𝑐 [1 + 𝑎∗ + 𝛿(𝑎∗)3 𝑟𝑒

𝑅𝑖𝑗
] 𝑒−𝑎∗

𝑖,𝑗   ( 13 ) 

The equation can be re-written in the first nearest neighbor MEAM form of 

𝐸𝑢(𝑅𝑖𝑗) = 𝐹[𝜌0̅̅ ̅(𝑅𝑖𝑗)] + (
𝑍1

2
) 𝜙(𝑅𝑖𝑗) , ( 14 ) 

where Z1 is the number of 1NN atoms.  The equation can be rearranged to obtain the pair 

potential as follows 

𝜙(𝑅𝑖𝑗) = (
2

𝑍1
) {𝐸𝑢(𝑅𝑖𝑗) − 𝐹[𝜌0̅̅ ̅(𝑅𝑖𝑗)]} , ( 15 ) 

where �̅�0 is the background electron density for the reference structure. 

Background Electron Density 

The background density depends on the local environment, in particular the atoms’ 

angular relation to one another.  These angular contributions are split into partial electron 

densities.   The background electron density (�̅�) is composed of a spherically symmetrical partial 

electron density �̅�𝑖
(0)

 and angular partial electron densities �̅�𝑖
(1)

, �̅�𝑖
(2)

, and �̅�𝑖
(3)

, and has the 

following form. 

(𝜌𝑖
(0)

)
2

= [∑ 𝜌𝑗
𝑎(0)

(𝑅𝑖𝑗)𝑗≠𝑖 ]
2

  ( 16 ) 

(𝜌𝑖
(1)

)
2

= ∑ [∑
𝑅𝑖𝑗

𝛼

𝑅𝑖𝑗
𝜌𝑗

𝑎(1)
(𝑅𝑖𝑗)𝑗≠𝑖 ]

2

𝛼   ( 17 ) 

(𝜌𝑖
(2)

)
2

= ∑ [∑
𝑅𝑖𝑗

𝛼 𝑅𝑖𝑗
𝛽

𝑅𝑖𝑗
2 𝜌𝑗

𝑎(2)
(𝑅𝑖𝑗)𝑗≠𝑖 ]

2

𝛼,𝛽 −
1

3
[∑ 𝜌𝑗

𝑎(2)
(𝑅𝑖𝑗)𝑗≠𝑖 ]

2

  ( 18 ) 

(𝜌𝑖
(3)

)
2

= ∑ [∑
𝑅𝑖𝑗

𝛼 𝑅𝑖𝑗
𝛽

𝑅𝑖𝑗
𝛾

𝑅𝑖𝑗
3 𝜌𝑗

𝑎(3)
(𝑅𝑖𝑗)𝑗≠𝑖 ]

2

𝛼,𝛽,𝛾 −
3

5
∑ [∑

𝑅𝑖𝑗
𝛼

𝑅𝑖𝑗
𝜌𝑗

𝑎(3)
(𝑅𝑖𝑗)𝑗≠𝑖 ]

2

𝛼   ( 19 ) 
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In these equations, 𝜌𝑗
𝑎(ℎ)

 represents the atomic electron densities of atom j at the distance 

Rij relative to the site i. 

The atomic electron densities are given by 

𝜌𝑗
𝑎(ℎ)

(𝑅𝑖𝑗) = 𝜌0 𝑆𝑖𝑗 𝑓𝑐𝑢𝑡(𝑅𝑖𝑗) 𝑒𝑥𝑝 [−𝛽(ℎ) (
𝑅𝑖𝑗

𝑟𝑒
− 1)] , ( 20 ) 

where 𝛽(ℎ) is the partial electron density decay, 𝑟𝑒 is the nearest neighbor distance, Sij is the 

screening factor, fcut is the cut-off function, and 𝜌0 is a scaling factor which plays no role for 

pure elements, but has a significant role for alloy systems. 

 

Figure 7: Physical interpretation of directional bonding by partial electron densities [120]. 

The geometric manner in which 𝜌𝑖
(𝑙)

 is defined allows us to consider the partial 

background electron densities in a similar manner to the specific angular momentum 

contributions to the background electron densities known as electron orbitals (spdf).  The partial 

background electron densities are orthogonal and can also be written in terms of Legendre 

polynomials, i.e., 

(𝜌𝑖
(𝑙)

)
2

= ∑ ∑ 𝜌𝑗
𝑎(𝑙)

(𝑅𝑖𝑗)𝜌𝑘
𝑎(𝑙)(𝑅𝑖𝑘)𝑃𝑙

0 (𝑐𝑜𝑠(𝜃𝑖𝑘𝑗))𝑘≠𝑖𝑗≠𝑖   ( 21 ) 

 θ 
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where 𝑃𝑙
0 are the Legendre polynomials. 

𝑃0
0(𝑧) = 1  ( 22 ) 

𝑃1
0(𝑧) = 𝑧  ( 23 ) 

𝑃2
0(𝑧) = 𝑧2 −

1

3
  ( 24 ) 

𝑃3
0(𝑧) = 𝑧3 −

3

5
𝑧  ( 25 ) 

The total background electron density can be obtained from the weighted partial 

background electron densities through an intermediate term Γ, i.e., 

�̅�𝑖 = 𝜌𝑖
(0)

√1 + Γ  ( 26 ) 

Γ = ∑ 𝑡𝑖
(𝑙)

(
𝜌𝑖

(𝑙)

𝜌
𝑖
(0))

2

3
𝑙=0   ( 27 ) 

where 𝑡𝑖
(𝑙)

 is the weighting factor for each of the partial electron densities.  For convenience 

𝑡𝑖
(0)

= 1. Setting one value helps to visualize changes in the weighted parameters since the 

electron density is weighted by the t parameters. 

Screening Function 

Screening between two atoms (i and j) is defined as the product of screening factors, Sijk, 

due to the neighboring atoms (k) that contribute to screening, leading to 

𝑆𝑖𝑗 = ∏ 𝑆𝑖𝑗𝑘𝑘≠𝑖,𝑗  . ( 28 ) 

Consider a two-dimensional model of screening, leading to an ellipse method of 

describing screening.  If the atoms i and j lie on the x-axis and the atom k is somewhere in the 
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x,y plane that does not lie on top of either atom, an ellipse model can be used to describe the 

regions of screening. 

Atom screening can be visualized using the ellipse model seen in Figure 8.  In this model, 

atoms i and j are being screened by atom k.  The amount of screening is separated into three 

regions: completely screened, partially screened, and non-screened. 

 

Figure 8: Visual representation of MEAM screening with an ellipse [120]. 

From this two-dimensional interpretation of screening, an equation can be made to 

represent the ellipse. 

𝑥2 + (
1

𝐶
) 𝑦2 = (1

2
𝑅𝑖𝑗)

2
  ( 29 ) 

The ellipse parameter C is determined by a function of ratios between atoms i,j, and k given by 

𝐶 =
2(𝑋𝑖𝑘+𝑋𝑘𝑗)−(𝑋𝑖𝑘−𝑋𝑘𝑗)

2
−1

1−(𝑋𝑖𝑘−𝑋𝑘𝑗)
2  , ( 30 ) 

where 𝑋𝑖𝑘 = (𝑅𝑖𝑘/𝑅𝑖𝑗)
2
 and 𝑋𝑘𝑗 = (𝑅𝑘𝑗/𝑅𝑖𝑗)

2
.  The screening factor Sikj is defined as 

𝑆𝑖𝑘𝑗 = 𝑓𝑐[(𝐶 − 𝐶𝑚𝑖𝑛)/(𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛)]  ( 31 ) 
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where Cmin and Cmax determine the extent of the screening and fc is the cut-off function. 

Cut-Off Function 

The cut-off function describes the smooth, gradually decreasing distance effect on the 

interactions between the atoms.  The smooth cut-off screening function (fc) is defined by 

𝑓𝑐(𝑥) = 1,      𝑥 ≥ 1 

[1 − (1 − 𝑥)6]2,         0 < 𝑥 < 1, 

0,               𝑥 ≤ 0  ( 32 ) 

𝑥 = (
𝑅𝑖𝑗

𝑐𝑢𝑡−𝑜𝑓𝑓
−𝑅𝑖𝑗

Δ𝑅𝑖𝑗
)  ( 33 ) 

where ∆Rij is the width of the cut-off region and Rcut-off is the maximum cut-off distance.  

Normally, the MEAM cut-off function employs (1-x)4 rather than the (1-x)6; however, the power 

was changed to the sixth when fitting the stacking fault energy for Zr. 

2nd Nearest Neighbor (2NN) MEAM 

The main difference between the 1NN MEAM and the 2NN MEAM is that the 2NN 

MEAM attempts to incorporate 2NN atomic interactions, which are weaker than 1NN 

interactions, into the pair interaction term ϕ.  The 1NN MEAM is able to neglect the 2NN 

interactions through the use of a strong many-body screening function.  However, the 2NN 

MEAM is able to include 2NN interactions by adjusting the many-body screening function so 

that it becomes less severe. 

Screening can play a large role on many parameters as temperature changes.  Thermal 

vibration can cause atoms to drift in and out of various screening regions.  When implementing 
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the 1NN MEAM, the screening parameters are selected to ensure that the first nearest neighbors 

are entirely un-screened.  This “strong” screening allowed for the neglect of 2NN interactions, 

with only 1NN interactions being considered.  The strong screening was taken into account by 

the many body screening function from a large minimum initial screening distance (Cmin). 

However, for 2nd NN MEAM potentials the start initial minimum distance that screening 

starts (Cmin) is reduced, leading to a screening function that is less “strong” and incorporates 

second nearest-neighbor interactions.  The UBER relationship for 2NN MEAM is slightly 

different due to the fact that the second nearest neighbor energy contributions have to be added. 

𝐸𝑢(𝑅𝑖𝑗) = 𝐹[𝜌0̅̅ ̅(𝑅𝑖𝑗)] +
1

2
∑ 𝜙(𝑅𝑖𝑗)𝑖,𝑗   ( 34 ) 

𝐸𝑢(𝑅𝑖𝑗) = 𝐹[𝜌0̅̅ ̅(𝑅𝑖𝑗)] + (
𝑍1

2
) 𝜙(𝑅𝑖𝑗) + (

𝑍2𝑆

2
) 𝜙(𝑎𝑅𝑖𝑗)  ( 35 ) 

𝐸𝑢(𝑅𝑖𝑗) = −𝐸𝑐 [1 + 𝑎∗ + 𝛿(𝑎∗)3 𝑟𝑒

𝑅𝑖𝑗
] 𝑒−𝑎∗

  ( 36 ) 

𝑎∗ = 𝛼(𝑅𝑖𝑗 𝑟𝑒⁄ − 1)  ( 37 ) 

𝛼 = (9𝐵Ω 𝐸𝑐⁄ )1 2⁄   ( 38 ) 

Here, Z2 is the number of 2NN atoms, “a” is the ratio between the second and first 

nearest-neighbor distances, and S is the screening function on the second nearest-neighbor 

interactions.  It should be noted that the screening function S is a constant for a given reference 

structure, if a value is given to Cmax and Cmin.  

By introducing another pair potential, ψ(R), the equation above can be rewritten as shown 

in Equation (39) and Equation (40).  

𝐸𝑢(𝑅𝑖𝑗) = 𝐹[𝜌0̅̅ ̅(𝑅𝑖𝑗)] + (
𝑍1

2
) 𝜓(𝑅𝑖𝑗)  ( 39 ) 
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𝜓(𝑅𝑖𝑗) = 𝜙(𝑅𝑖𝑗) + (
𝑍2𝑆

𝑍1
) 𝜙(𝑎𝑅𝑖𝑗)  ( 40 ) 

The function, ψ(R) can be calculated from the equation as a function of R. Then, the pair 

potential ϕ(R) is calculated using Equation (41). 

𝜙(𝑅𝑖𝑗) = 𝜓(𝑅𝑖𝑗) + ∑ (−1)𝑛 (
𝑍2𝑆

𝑍1
)

𝑛

𝜓(𝑎𝑛𝑅𝑖𝑗)𝑛=1   ( 41 ) 

The summation in Equation (41) is performed until the correct value of energy is 

obtained for the equilibrium reference structure [121]. 

2nd Nearest Neighbor (2NN) MEAM Alloy 

To describe an alloy system, the pair interaction between different elements should be 

determined.  In the 2NN MEAM, a perfectly ordered binary intermetallic compound, where one 

type of atom has a different atom type as its first nearest-neighbors, is considered to be a good 

reference structure for creating the alloy pair potential. The B1 (NaCl type) reference structure is 

used for the U-Zr MEAM potential.  For the B1 reference structure, the total energy per atoms 

(for half i atoms and half j atoms), 𝐸𝑖𝑗
𝑢 (𝑅), is given by 

𝐸𝑖𝑗
𝑢 (𝑅) =

1

2
{𝐹𝑖(�̅�𝑖) + 𝐹𝑗(�̅�𝑗) + 𝑍𝑖𝑗𝜙𝑖𝑗(𝑅) +

1

2
𝑍2

𝑖𝑗
(𝜙𝑖𝑖(𝑎𝑅) + 𝜙𝑗𝑗(𝑎𝑅))} , ( 42 ) 

where Zij is the number of 2NN atoms in the reference structure. ϕii and ϕjj are pair interactions 

between i atoms and between j atoms, respectively, and “a” is the ratio between the second and 

first nearest-neighbor distances. The procedure of computing ρi and ρj is not different from that 

in 1NN MEAM except that the contribution from the second nearest-neighbors should also be 

considered. The pair interactions between the same types of atoms can be computed from the 

descriptions of individual elements [121], i.e., 
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𝜙𝑖𝑗(𝑅) =
1

𝑍𝑖𝑗
{2𝐸𝑖𝑗

𝑢 (𝑅) − 𝐹𝑖(�̅�𝑖) − 𝐹𝑗(�̅�𝑗) −
1

2
𝑍2

𝑖𝑗
(𝜙𝑖𝑖(𝑎𝑅) + 𝜙𝑗𝑗(𝑎𝑅))}  ( 43 ) 

The cohesive energy for the alloy is determined by the elemental cohesive energies and a 

formation parameter ∆ij , i.e., 

𝐸𝑖𝑗
0 =

(𝐸𝑖
0+𝐸𝑗

0)

2
− Δ𝑖𝑗  ( 44 ) 

 

Figure 9: Unit cell of the B1 U(green)-Zr(grey) reference crystal structure. 

 

Table 2: Structure details of the B1 U-Zr reference crystal structure. 

Pearson Symbol cF8 

Space Group Fm3m 

Prototype Na-Cl 

Strukturbericht Designation B1 
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CHAPTER 4 

URANIUM, ZIRCONIUM, AND THE URANIUM-ZIRCONIUM ALLOY 

MEAM PARAMETERS 

The semi-empirical MEAM potential was constructed to match known ab initio and 

experimental values of the elemental elastic constants and defect formation energies.   

The old MEAM [56] potential was modified to match the experimental high temperature 

γ-U-Zr properties, while maintaining the elemental base properties at 0 K and at temperature.   

 

Table 3: Elemental parameters for MEAM potential. 

Elemental Parameters for MEAM Potential 

Elem. lat EC α A β(0) β(1) β(2) β(3) 

U fcc 5.27 5.1 0.98 4.8 6 6 6 

t(1) t(2) t(3) alat δ ρ0 Cmin Cmax 

2.5 4 1.0 4.28 .105 1.2 1.0 1.9 

Elem. lat EC α A β(0) β(1) β(2) β(3) 

Zr bcc 6.2 4.1 0.48 2.8 2 7 1 

t(1) t(2) t(3) alat δ ρ0 Cmin Cmax 

3 2 -7 3.535 -.03 0.8 0.7 0.99 

 

 

Table 4: B1 U-Zr alloy and screening parameters. 

B1 U-Zr Alloy and Screening Parameters 

re ∆ α δ 

2.85 0.8 4.8 0.05 

Cmin(U,Zr,U) Cmin(Zr,U,U) Cmin(Zr,Zr,U) Cmin(Zr,U,Zr) 

0.8 0.5 0.5 0.5 

Cmax(U,Zr,U) Cmax(Zr,U,U) Cmax(Zr,Zr,U) Cmax(Zr,U,Zr) 

2.5 2 2.8 2.8 

 

In the table above, the middle atom listed in the screening notion is the screening atom, 

while the first and last atoms are the atoms being screened. 

It should be noted that, in addition to the MEAM parameters, the cut-off function 

formation may need to be changed to match the form seen in Chapter 3: “Interatomic Potential”. 
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Fitting the MEAM Potential Parameters 

While either the force matching method [63, 122-124] or particle swarm optimization 

(PSO) [61, 62, 85, 125] has been commonly used to fit EAM and MEAM potentials, both can 

have difficulties when used with high temperature transition metals.  Therefore, the potentials 

were iterated by using knowledge of the system. 

To construct a high temperature MEAM potential, it is still necessary to begin with the 

0 K density functional theory (DFT) or experimental results in order to ensure that the basis of 

the potential matches the known elastic constants and defect formation energies.  The procedure 

for fitting a 1NN MEAM potential is described by Baskes et al. [84, 126].  After a 1NN MEAM 

has been made, the transition to a 2NN MEAM involves iterating the screening parameter Cmin, 

A, and the partial electron density parameters t1, t2, t3, β0, β1, β2 and β3. 

It is useful to fit properties based on symmetry of the defects, elastic constants, or 

interface, as well as the symmetry of the phase.  In addition, as noted previously, different crystal 

structure properties are dependent on different parameters, making the fitting of multiple phases 

useful as well.  The electron orbital in spherical harmonics can help visualize some of the 

symmetries of the orthogonal Legendre polynomials.  This knowledge combined with the 

sensitivity tables in Chapter 13 “MEAM SENSITIVITY AND UNCERTAINTY ANALYSIS 

FOR THE U-ZR SYSTEM” enables the fitting of new elemental and alloy systems employing 

knowledge of the sensitivity of the desired property to the variation of each parameter. 
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Do the Elemental MEAM Elastic 
Constants, Bulk Modulus, Formation 

Energies, and Relative Phase Stabilities 
Match Known Values? 

Create a Database of All Known Elemental Properties: Elastic Constants, Bulk Modulus, 
Cohesive Energy, Formation Energies, Migration Energies, Surface Energies, Stacking Fault 

Energies, Crystal Phase Energies, Lattice Parameter, and All Thermal Properties.

Change MEAM Elemental 
Parameters to Match 

Known Values.

Do the Elemental MEAM Lattice 
Constant, Thermal Expansion, Phase 

Stability at Temperature, and Transition 
Temperature Match Known Values? 

Create a Database of Known Alloy Properties: Elastic Constants and Bulk Modulus of Ordered Alloys, Intermetallic 
Phases, and the Chosen Reference Structure; Enthalpy of Formation and Lattice Constants of Ordered Alloys and 

Intermetallics; Enthalpy of Mixing of any Soluble Solution Regions; All Known Thermal Properties.

Choose a Binary Reference Structure.

Are the Alloys and 
Intermetallics Stable at Their 

Respective Temperature 
Ranges? 

Change MEAM Alloy 
Parameters to Match 

Known Values.

Does the MEAM 
Potential Mimic Known 
Thermal Expansion and 

Lattice Constants? 

Do the Alloy Enthalpy of 
Mixing Values and Vegard s 
Law Match Known Values?

Yes

Yes

Fitting a Binary MEAM 2NN Potential

The Potential Fitting is Finished

No

No

Yes

Yes

Yes

No

No

No

No

No

No

 

Figure 10: MEAM potential fitting flow diagram, showing the process of fitting a MEAM binary 

alloy system. 

 

The first step in determining which parameters to change is to determine the cause of the 

enthalpy of mixing curve problem (seen in Figure 31b).  The MEAM enthalpy of mixing curves 

are not known for varying drastically with temperature.  Therefore, since all of the preliminary 

MEAM potentials [56] were constructed to match the low temperature decomposition curve for 

γ-U,β-Zr which shows a positive trend, the high temperature enthalpy of mixing curve showed a 

similar positive trend.  With some trial and error, it was determined that the t3 parameter (f-

electron orbital symmetry) was a large contributor to the misshapen uranium-rich concentration 

section of the enthalpy of mixing curve, and the alloy α parameter allowed for the downward 

shift of the enthalpy of mixing curve.  It was initially thought that some of the alloy screening 

parameters could change the shape of the enthalpy of mixing curves to fit the experimental 

results, but the elemental partial electron density parameters turned out to be the largest 

contributor to the enthalpy of mixing curve’s shape.  The determination of which parameters 
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needed to be changed and their effect on the system properties can be found in Chapter13: 

“MEAM Sensitivity and Uncertainty Analysis”. 
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CHAPTER 5 

STRUCTURAL PROPERTIES OF THE ELEMENTAL PHASES OF 

URANIUM AND ZIRCONIUM 

Lattice parameters, elastic constants, and defect formation energies of elemental bcc U, 

face-centered-cubic (fcc) U, bcc Zr, and hcp Zr are calculated using the MEAM potential 

(Chapter 4: “MEAM Parameters”) developed in this work.  For the Zr metal, DFT calculations of 

defect formation energies are also conducted in order to develop a comprehensive understanding. 

The defect formation energies in an atomistic crystal system are calculated from 

   
1

1f

vac bulk bulk

N
E E N E N

N


    , ( 45 ) 

   int

1
1f

bulk bulk

N
E E N E N

N


   , ( 46 ) 

where E(N) is the energy of the system in question and N is the number of atoms in that system. 

 

Uranium Elastic Constants and Defect Formation Energies 

The MEAM lattice constants, elastic constants, and formation energies for bcc U, which 

are shown in Table 5, are in good agreement with previous DFT and experimental values.  In 

addition, the lattice constants and elastic constants for fcc U in Table 6 also show agreement with 

most of the previous values.  However, for fcc U the lattice constant and elastic constant C11 are 

a little low and C44 a little high compared to most of the previous values. 

The molecular statics was used to obtain the ground state material properties with an 

energy convergence criterion of 10-6.  Elastic constants were calculated at 0 K via analysis of the 

changes in internal energy due to small strains enforced on the simulation cell. The internal 
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energy of a crystal system under strain was expanded in a Taylor series in powers of the strain 

tensor with respect to the initial energy of the unstrained crystal. Then, each elastic constant was 

computed from the application of a unique strain on the crystal and the resulting change in 

internal energy [58].  This methodology is outlined by Sӧderlind [127].  

The fitting of the base uranium parameters was constructed based on ab initio uranium 

bcc and fcc simulations.  The resultant potential while stable for the orthorhombic (A20) α-U 

phase, is unable to mimic the lattice constants quantitatively.  Therefore a phase which is not the 

ground state phase is used for the base of the MEAM potential.  The fcc crystal structure was 

chosen as the reference structure of uranium because it was relatively simple compared to using 

a bcc reference structure, where screening parameters are a larger concern. 

Experimental bulk modulus values for uranium were obtained by Yoo et al. [128] using 

in situ diamond-anvil cell x-ray/laser heating experiments.  In these experiments, it was observed 

that the γ-U phase was stable at high pressures.  The bulk modulus values were obtained using a 

temperature-independent Birch-Murnaghan EOS fit to volume compression data.  The resulting 

Murnaghan EOS fit to the data with B=135.5 GPa and B’=3.79 for α-U and B=113.3 GPa and 

B’=3.37 for γ-U.  In addition, using Debye-Gruneisen quasiharmonic theory, free energy 

calculations show that the softer bulk modulus of the γ-phase, compared to the α phase, stabilizes 

the γ-phase at high temperatures [51, 128, 129]. 

Matter et al. [130], using a positron annihilation coincidence count rate at the peak of the 

angular correlation curve (CCR) in uranium, was able to estimate the mono-vacancy formation 

energy of γ-U.  The trapping model was then applied to the collected data in the γ-phase, 

resulting in a 1.20 ± 0.25 eV mono-vacancy formation energy.  However, due to errors 
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introduced by impurities and the thermal positron CCR techniques, Matter et al. reported the 

mono-vacancy formation energy is most likely between 1-1.3 eV.  

 

Table 5: bcc Uranium Properties: Comparison of lattice constant, elastic constants and point 

defect energies. 

Date  Reference Comments 
 
a [Å] C11[GPa] C12 [GPa] C44 [GPa] 

C’= 
(C11-C12)/2 
[GPa] 

B 
[GPa] 

Vacancy  
Formation 
[eV] 

Interstitial  
Formation 
[eV] 

[100] Split  
Interstitial 
[eV] 

2015 Current work MEAM 3.438 102 117 48 -8 115 1.16 1.6 0.6 

2014 Söderlind et al. [57] 

FPLAPW  
(+/-SOC) / 
LDA+U  
(+/-SOC) 

3.454, 
3.437 / 
3.583, 
3.482 

- - - - 
150, 
137 / 
66, 130 

- - - 

2013 Moore et al. [56] MEAM - 111 117 15 -3 117 1.34 - 0.89 

2013 Beeler et al. [131] PBE-GGA 3.427 86 155 37 -34.5 132 1.38 1.54 0.5 

2013 Smirnova et al. [124] EAM 3.542 - - - - 92 2.2-3.0 - - 

2012 Beeler et al. [58] MEAM 3.503 111 117 15 -3 115 

1.38 (0K) 
1.8-2.3 
(800-
1300K) 

- 
0.38-0.75 
(800-1300K) 

2012 Smirnova et al. [63] EAM 3.493 - - - - 95 1.52 - - 

2012 Y. Li et al. [61] 
COMB3, PW91-
GGA  

3.509, 
3.43 

160, 95 122, 156 46, 35 19, -30.5 
135, 
136 

- - - 

2012 J.H. Li et al. [132] PW91-GGA 3.455 103 142 46 -19.5 129 - - - 

2011 Ru-Song Li et al. [60] GGA+SP 3.373 103.9 120.1 30.7 -8.1 114.7 - - - 

2010 Beeler et al. [133] PBE, PW91 
3.4283, 
3.4383 

- - - - 
133.6, 
133.0 

1.384, 
1.323 

- - 

2010 Shang et al. [134] PW91-GGA 3.438 83.5 158.6 37.9 -37.6 132.8 - - - 

2008 Taylor [135] PW91-GGA 3.43 161 184 56 -11.5 176 - - - 

2008 Xiang et al. [136] PBE-GGA 
3.4 
 

- - - - 122.6 1.08 - - 

2001 
Crocombette et al. 
[137] 

PW-LDA 3.37 - - - - 170 - - - 

1998 Yoo et al. [128] 
Birch-
Murnaghan or 
Compressibility* 

3.198 
(59Gpa, 
2300K) 

- - - - 113.3 - - - 

1980 Matter et al. [130] PAS* - - - - - - 1.20 ± 0.25 - - 

Note: The * means experimental result.    
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Table 6: fcc Uranium Properties: Comparison of lattice constant, elastic constants, and point 

defect energies. 

Date Reference Comments 
 
a [Å] C11 [GPa] C12 [GPa] C44 [GPa] 

C’=(C11-C12)/2 
[GPa] 

B [GPa] 
Vacancy Formation 
Energy,  Ev

f [eV] 

2015 Current work MEAM 4.280 128 130 50 -6 121 1.3 

2013 Moore et al. [56] MEAM - 91.1 128.6 23.3 -18.8 118 1.15 

2013 Beeler et al. [131] PBE-GGA 4.433 46 144 40 -49 111 - 

2012 J.H. Li et al. [132] PW91-GGA 4.443 71 144 26 -36.5 111 - 

2011 Ru-Song Li et al. [60] GGA+SP 4.323 59 34.5 10.2 12.25 135 - 

2010 Shang et al. [134] PW91-GGA 4.438 13.6 165.6 20.2 -76 114.7 - 

2008 Taylor [135] PW91-GGA  4.48 184 267 28 -41.5 239 - 

2001 
Crocombette et al. 
[137] 

PW-
LDA/FLAPW 

4.30 - - - - 154 - 

2000 Jones et al. [138] 
LCGTO-
FF/FLAPW) 
(LDA +/-SO 

4.305, 
4.314/ 
4.311, 
4.315 

- - - - 
160, 142 / 
148, 228 

- 

2000 Jones et al. [138] 
LCGTO-FF/ 
FLAPW) 
(GGA +/-SO 

4.410, 
4.430/ 
4.417, 
4.421 

- - - - 
101, 110 / 
125, 99 

- 

 

Zirconium Elastic Constants and Defect Formation Energies 

The MEAM and first principles lattice constants and elastic constants for hcp and bcc Zr 

is presented in Table 7 and  

 

 

Table 8 respectively, along with an extensive literature review of previous research.  Next 

the vacancy formation energy for Zr is presented in Table 9.  The elastic constants are obtained 

using the same kind of methodology used to determine the uranium elastic constants above. 

The Zr MEAM potential was made to fit both the hcp α-Zr and the bcc β-Zr phases; 

however, special care was taken to ensure the fitting of the β-Zr thermal properties.  The more 
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complex bcc structure was chosen to be the reference structure of Zr to allow the MEAM 

potential to mimic both hcp and bcc structure behaviors. 

 In the past, there have been a multitude of reported α-Zr lattice constants, bulk moduli, 

and elastic constants, obtained in a variety of ways.  Most of the previously documented values 

show decent consistency and reliability.  However, the DFT-PBE and the MEAM potential, both 

optimized for the β-Zr phase, show a slightly less than average α-Zr bulk modulus. 

The MEAM hcp Zr lattice constant “a” and the bulk modulus values are a little low compared to 

compared to most of the previous values seen in Table 7, while the other lattice constant and 

elastic constants are in good standing with the previous values.  The MEAM bcc Zr elastic 

constant C12 is a little low and C44 a little high compared to most of the previous values seen in  

 

 

Table 8, while the rest of the properties are in good standing with the previous values.  

The reduced C12 for the bcc Zr MEAM potential causes the shear constant (C’=(C11-C12)/2) to be 

positive instead of negative, indicating an overstability of the bcc Zr configuration at 0 K.  

However, this compromise was made to ensure the bcc stability of the higher temperature phase.  

The Zr MEAM potential is also able to replicate the vacancy formation energy of the hcp and 

bcc phases seen in Table 9.  There existed little previously known vacancy formation energy 

values of the bcc Zr phase.   

 

Table 7: hcp Zirconium Properties: Comparison of lattice constants and elastic constants. 

Date  Reference Comments a [Å] c [Å] B [GPa] C11 [GPa] C12 [GPa] C13 [GPa] C33 [GPa] C44 [GPa] 
C66=.5(C11-
C12) [GPa] 

2015 Current Work DFT-PBE  - - 83 144 - - 166 33.4 - 

2015 Current Work MEAM 3.1427 5.137 83.7 126.1 69.9 77.1 173.3 23.3 28.1 
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2012 
Blomqvist et 
al. [139] 

GPAW-GGA-PBE 3.237 5.157 91 157 51 62 158 15 53 

2011 
Wang et al. 
[140] 

DFT-PBE-GGA 
with Electron-
Phonon Coupling 
(EPC) 

3.236 5.168 96, 97.4 146.7 68.5 71 163.3 26 39.1 

2010 
Zhu et al. 
[141] 

PW91/UPP 3.223 5.175 96 160 - 66 182 18 - 

2008 
Hao et al. 
[142] 

DFT-PBE 3.24 5.178 93.4 141.1 67.6 64.3 166.9 25.8 36.8 

2008 
Liu et al. 
[143] 

Ultrasonic and 
Synchrotron* 

- - 95.3 - - - - - - 

2007 
Vérité et al. 
[144] 

DFT-PBE-LDA 
DFT-PBE-GGA 

3.16, 
3.24 

5.132, 
5.226 

114, 
101 

141, 147 - - 197, 166 16, 24 15, 32 

2007 
Mendelev 
and Ackland 
[145] 

EAM  
(3 Potentials) 

3.231, 
3.220, 
3.234 

5.186, 
5.215, 
5.168 

- 
196, 165, 
147 

88, 65, 69 81, 63, 74 
212, 180, 
168 

47, 48, 44 54, 50, 39 

Table 7 continued: hcp Zirconium Properties: Comparison of lattice constants and elastic 

constants. 

2006 
Schnell et al. 
[146] 

Tight Binding (TB-
E, TB-T) 

- - - 133, 142 80, 71 73, 71 148, 147 7, 8 26.5, 35.5 

2006 
Kim et al. 
[147] 

MEAM - - - 151.5 71.8 66.1 160.6 34.1 39.9 

2005 
Zhao et al. 
[148] 

X-ray diffraction, 
Birch-Murnaghan 
EOS* 

3.233 5.146 92, 94 - - - - - - 

2005 Greeff [149] DFT-GGA 3.232 5.182 - - - - - - - 

2004 
Ikehata et al. 
[150] 

DFT-PBE 3.232 5.182 93.4 139.4 71.3 66.3 162.7 25.5 34.1 

2002 
Domain et al. 
[151] 

PW91/UPP-LDA, 
PW91/UPP-GGA 

3.16, 
3.23 

5.10, 
5.18 

105, 92 145, 142 73, 64 83, 64 177, 164 22, 29 36, 39 

2002 
Clouet et al. 
[152] 

FP-LMTO - - - 153.1 63.4 76.5 171.2 22.4 44.9 

2002 
Yamanaka et 
al. [153] 

XPS* 3.232 5.147 - - - - - - - 

1999 
Pasianot and 
Monti [154] 

EAM 3.232 5.149 - 143.4 72.8 65.3 164.7 32.0 35.3 

1995 
Fast et al. 
[155] 

DFT-LDA - - - 156 65 76 182 25 45.5 

1994 
Baskes and 
Johnson [126] 

MEAM - - - 152 74 63.2 153.3 33.2 39 

1993 
Cleri and 
Rosato [156] 

Tight-Binding 
Potential 

3.232 5.147 
97.5, 
93.6, 
95.8 

130.1, 
164.4 

69.0, 62.1 65.7, 47.3 
174.4, 
189.8 

26.1, 36.8 30.6, 51.2 

1992 
Wei and Chou 
[157] 

DFT-LDA - - - 144 74 67 166 33 35 

1991 
Willaime and 
Massobrio 
[158] 

EAM (Potentials 
WM1 and WM2) 

3.202 5.218 97, 101 154, 162 70, 77 65, 65  - 34, ,30 42, 42.5 

1989 
Oh and 
Johnson [159] 

EAM 3.231 5.125 97.1 147.9 66.3 66.2 182.7 39.2 40.8 

1983 Brandes [160] 
Compilation of 
Experimental 
Publications 

- - - 144 74 67 166 33 35 

1982 
H. W. King 
[161] 

Compilation of 
Experimental 
Publications at 
298K 

3.2317 5.1476 - - - - - - - 

1979 
Hearmon 
[162] 

- - - 98.4 144 74 67 166 33.4 35 

1973 
Jamieson and 
Olinger [163] 

Compressibility & 
X-ray Diffraction* 

3.231 5.148 97.6 - - - - - - 

1972 
Vaidya and 
Kennedy 
[164] 

Static 
Compressibility* 

- - 102 - - - - - - 

1972 
Menon and 
Rao [165] 

Keating’s 
Approach 

- - - 143.65 73.06 65.90 179.76 31.73 35.29 

1970 
Bezdek et al. 
[166] 

Dispersion 
Relations using 
Inelastic Neutron 
Scattering* 

- - - 136.5 49.5 - 191.9 33.4, 27.6 43.5 

1970 
Fisher et al. 
[167] 

Ultrasonic Pulse 
Superposition 
Method with 
Crook’s Method* 
at 298K 

- - 95.31 143.68 73.04 65.88 165.17 32.14 35.32 

1969 Allard [168] - 3.231 5.148 - 143.4 65.3 65.3 164.8 32 39.05 
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1964 
Fisher and 
Renken [169] 

Ultrasonic Wave 
Interference* 

- - 97 
155.4 (4K) 
143.4 
(298K) 

67.2 (4K)  
72.8 
(298K) 

64.6 (4K)  
65.3 (298K) 

172.5 (4K) 
164.8 
(298K) 

36.3 (4K)  
32.0 (298K) 

44.1 (4K)  
35.3 (298K) 

Note: The * means experimental result.  

  

 

 

 

Table 8: bcc Zirconium Properties: Comparison of lattice constant and elastic constants. 

Date  Reference Comments a [Å] B [GPa] C11 [GPa] C12 [GPa] C44 [GPa] 
C’=(C11-C12)/2 
[GPa] 

2015 Current Work DFT-PBE - 85 - - 34 - 

2015 Current Work MEAM  3.582 (1273K) 80.8 93.6 72.4 70.6 10.6 

2011 
Wang et al. 
[140] 

DFT-PAW-GGA-PBE 3.574 90.2 86.6 92.3 26.6 -2.85 

2008 Hao et al. [142] DFT-PAW-GGA-PBE 3.58 - - - - - 

2007 
Mendelev and 
Ackland [145]  

EAM  
(3 Potentials) 

3.592, 3.562, 3.576 - 114, 96, 50 98, 109, 94 63, 42, 50 8, -6.5, -22 

2005 Zhao et al. [148] 
X-ray Diffraction and 
Birch-Murnaghan EOS* 

3.627 (973K) 66 (973K) - - - - 

2005 Greeff [149] DFT-GGA 3.577 - - - - - 

2004 
Ikehata et al. 
[150] 

DFT-PBE 3.58 - 84.2 91.4 32.3 -3.6 

1993 
Ahuja et al. 
[170] 

DFT-LDA - - - - 32.8 - 

1991 
Heiming et al. 
[171] 

Force Const. Dispersion 
Curves from Neutron 
Spectrometer* at 1213K, 
1508K, and 1908K 

3.574 - 104, 97, 100 93, 82 70 38, 40, 35 5.5, 7.5, 15 

1989 
Oh and Johnson 
[159] 

EAM 3.58 - - - - - 

Note: The * means experimental result. 
 

Table 9: Zirconium vacancy formation energies. 

Structure Date Reference Comments Ev
f [eV] 

αZr (hcp) 

2015 Current Work DFT-PBE  1.7 

2015 Current Work MEAM 1.65 

2012 Wen and Woo [172] EAM 1.78-1.90 

2010 Mendelev and Bokstein [173] EAM 2.41 

2007 Vérité et al. [144] 
DFT-PBE-LDA 
DFT-PBE-GGA 

2.29, 2.17 

2007 Woo and Liu [174] EAM 1.7858 

2005 Domain and Legris [175] DFT-PW-GGA 1.86 

1999 O Le Bacq et al. [176] 
DFT-LDA-
FPLMTO 

2.07 

1999 Pasianot and Monti [154] EAM 1.74 

1991 
Willaime and Massobrio 
[158] 

EAM 1.55-2.14 

1988 Hood [177] PAS* 
1.8-1.9 with 1.5 
lower bound 

βZr (bcc) 

2015 Current Work DFT-PBE  1.8 

2015 Current Work MEAM 2.07 

1991 
Willaime and Massobrio 
[158] 

EAM 2.1 

Note: The * means experimental result.   
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CHAPTER 6 

THERMODYNAMICS OF URANIUM AND ZIRCONIUM 

Melting 

The melting temperature of the MEAM potential is determined using the 

thermodynamics of a two dimensional solid-liquid interface.  In order to find the melting 

temperature for the MEAM potential, a solid/liquid interface is created (Figure 11).  This 

interface can be simulated at various temperatures to obtain the melting temperature, which is 

determined by the temperature at which the solid and liquid phases can co-exist together with a 

stable interface. 

The melting temperature was calculated using the moving interface method [58, 178] via 

an NPT ensemble with a solid/liquid interface and by analyzing the evolution of the interface. 

Initially, a 20x5x5 supercell of both γ-U and β-Zr were equilibrated at 1200 K in an NPT 

ensemble to generate a crystal system at high temperature.  Next, half of the supercell was held 

at 1200 K, while the other half was equilibrated at 1600 K for U and 3000 K for Zr in an NPT 

ensemble, restricting supercell shape change to the x-direction.  This created an interface of a 

crystal system and a liquid system.  Then the solid/liquid interface system was equilibrated using 

an NPT ensemble at various temperatures for 1 ns.  When the temperature of the system was 

equilibrated below the melting temperature, the solid phase propagated throughout the supercell 

and resulted in a solid crystal structure after 1 ns.  However, when the temperature was above the 

melting temperature, the liquid phase propagated throughout the supercell.   
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(a) Uranium Solid/Liquid Interface 

 
(b) Equilibrated at 1300 K                                 (c) Equilibrated at 1400 K 

 

Figure 11: (a) Schematic of the γ-liquid uranium interface, where the γ-U left-hand side is 

equilibrated at 1200 K and the liquid right-hand side is equilibrated at 1600 K.  The melting 

point is then identified using the γ-liquid uranium interface that was created.  The periodic 

system was held in an NPT ensemble then equilibrated at specific temperatures, enabling the 

analysis of the γ-liquid uranium interface evolution to either the γ-U phase or the liquid-U phase.  

(b) Atomic configuration after the γ-liquid uranium interface had been equilibrated at 1300 K 

(below the MEAM potential melting point) for 1 ns, resulting in the domination of the f phase.  

(c) Atomic configuration after the γ-liquid uranium interface had been equilibrated at 1400 K 

(above the MEAM potential melting point) for 1 ns, resulting in the domination of the liquid-U 

phase.   

This solid/liquid interface method allows for the melting temperature to be determined 

within a temperature range, since it is very difficult for a MD simulation to find the exact 

temperature where the liquid/solid interface remains stationary.  The MEAM Zr potential was 

found to have a melting temperature between 2150 K and 2175 K, compared to the 2128 K 

experimental value [179].  The MEAM U potential was found to have a melting temperature 

between 1325 K and 1350 K, compared to the 1408 K experimental value [179]. 
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Enthalpy 

In addition to melting temperature, the enthalpy of fusion can also be obtained by 

calculating the change in the enthalpy of a liquid system at the melting temperature versus the 

enthalpy of the solid system at the melting temperature.  These calculations determined that 

uranium has an 8.52 kJ/mol enthalpy of fusion and a 2.66% volume change upon melting, and 

zirconium has a 14.85 kJ/mol enthalpy of fusion and a 3.16% volume change upon melting.  

Uranium’s volume change upon melting is close to the 2.2% experimental value obtained by 

Rohr et al. [180].  In addition, zirconium’s volume change upon melting is reasonably consistent 

with the 3.9% experimental value from Efimov et al. [181]. 

There have been some inconsistencies in the value of the enthalpy of fusion for uranium, 

both taken experimentally and when constructing alloy phase diagrams.  The experimental data 

are given in Table 10.  The MEAM results compare favorably with the more recent experimental 

work. 

 

Table 10: Uranium enthalpy of fusion. 

Date Reference 
Value 
[kJ/mol] 

Date Reference 
Value 
[kJ/mol] 

2015 Current Work 8.52 1964 Levinson* [182] 8.326 

2014 Fernández and Pascuet [59] 6.5 1963 Savage and Seibel* [183] 12.134 

2012 Beeler et al. [58] 8.66 
1963 

Rand and  
Kubaschewski* [184] 

10.46 

1976 Marchidan and Ciopec* [185] 7.029 1960 Kelly* [186] 13.598 

1974 Stephens* [187] 9.142 1956 Stull and Sinke* [188] 15.48 

1973 Hultgren et al.* [189] 8.518 1954 Rauh and Thorn* [190] 19.665 

1972 Radenac and Berthaut* [191] 7.276    

Note: The * means experimental result.   

 

Zirconium's enthalpy of fusion experimental measurements have been much more 

consistent than uranium’s.  The experimental data are given in Table 11.    
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Table 11: Zirconium enthalpy of fusion. 

Date Reference 
Value 
[kJ/mol] 

Date Reference 
Value 
[kJ/mol] 

2015 Current Work 14.85 1987 Guillermet* [192] 21 

2013 Arblaster* [193] 15.6 1985 Katz et al.* [194] 14.674 

2009 Klein et al.* [195] 14.652 1983 Efimov et al.* [181] 14.567 

2005 Mompean et al.* [196] 19.8 1976 Alock et al.* [197] 18.828 

2003 Brunner et al.* [198] 13.319 1973 Hultgren et al.* [189] 15.33 

2001 
Rösner-Kuhn et al.* 
[199] 

17.282 1972 
Martynyuk and  
Tsapkov* [200] 

21.5 

2001 
Korobenko et al.* 
[201] 

13.957 1967 Elyutin et al.* [202] 21.087 

1998 
Chase and Joint Army 
Navy Air (JANAF)* 
[203] 

20.92 1967 Hultgren et al.* [204] 16.945 

1991 
Korobenko and  
Savvatimski* [205] 

12.771    

Note: The * means experimental result.   
 

The heat of fusion value for Zr is also in good agreement with the most recent 

experimental data.  Since these values were not fit, this shows the possible level of prediction 

offered by the MEAM potential.   

The calculated enthalpy as a function of temperature is presented in Figure 12.  The 

enthalpy versus temperature graphs were obtained by performing MD simulations at various 

temperatures in an NPT ensemble.  Then, the enthalpy was calculated by taking the internal 

energy plus the pressure multiplied by the volume for each simulation.  From these data, the 

average MEAM heat capacity at constant pressure can be calculated, as well as the enthalpy of 

fusion. 
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Figure 12: Enthalpy versus temperature for the (a) γ-U and liquid-U phases from 800 K to 

1800 K and the (b) β-Zr and liquid-Zr phases from 1200 K to 2600 K obtained by MD using the 

MEAM potential.  The slope in the enthalpy versus temperature of a given phase allows an 

approximate constant pressure heat capacity (Cp) to be calculated, while the jump in the enthalpy 

between the solid and liquid phases gives the enthalpy of fusion for the given MEAM potential.  

 

Heat Capacity  

The majority of the high temperature solid and liquid heat capacity contributions have 

been shown to be due to lattice effects, anharmonic effects, expansion, and defects (for solids); 

however, for metals, conduction electrons can also play a significant role.  The MEAM heat 

capacity is obtained from the change in the enthalpy of the system over a change in temperature 

in an NPT ensemble with the pressure fixed.  The MEAM potential is not fit to the heat capacity, 

but normally inherently fits the heat capacity for many metals.  MD simulations in an NPT 

ensemble include the lattice vibrational effects, anharmonic effects, and expansion effects.  The 

defect contribution is considered to be negligible compared to the electronic and lattice effects 

for the solid phase and therefore is not considered.   
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There has been a series of reported electronic heat capacity coefficients (γe) for the 

ground state α-U [185, 206-214] and α-Zr [215-217]; however, there have been no reported 

values for the higher temperature bcc phases.  In the past, in order to overcome this problem, the 

ground state γe values were used to estimate the higher temperature phases [185, 218].    

A rough estimate of the electronic heat capacity coefficient (γe) is developed using basic 

Fermi-Dirac statistics in the free electron model, where the density of states (DOS) around the 

Fermi energy is taken from Xie et al. [55].  The heat capacity from electrons is caused by the 

ground state conduction electrons being excited; therefore, the electronic heat capacity is 

proportional to the DOS at the Fermi energy since those electrons are likely to be the ones that 

become excited above the Fermi level. 

2
( ) 2 ( )

3

electronic

B f eC k T D T


     
  ( 47 ) 

In the equation above, εf is the Fermi energy, D(εf) is the DOS at the Fermi energy, and γe 

is the electronic heat capacity coefficient.   

The previous reported α-U γe’s have been shown to be microstructurally dependent [206] 

with an average value between all of the experimental results [185, 206-214] of about 

10.12 mJ/mol-K2, and of about 2.77 mJ/mol-K2 for α-Zr.  The result for the γ-U γe’s using 

Equation (47) was a lower value of 7.62 mJ/mol-K2, while β-Zr resulted in nearly the identical 

value of 2.76 mJ/mol-K2.  Thus we expect that at around 1000 K the calculated MEAM molar 

heat capacity will be about 8 J/mol-K lower than experiment for U and 3 J/mol-K lower than 

experiment for Zr. 
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The heat capacity is then calculated by summing together the MEAM and electronic 

contributions.  This is shown in Figure 13 and Figure 14 as a function of T.  Figure 13 and Figure 

14 show Cp for U and Zr respectively, calculated as described above, along with experimental 

values of Cp.  The heat capacities for U (Figure 13) and Zr (Figure 14), with the addition of the 

conduction electronic effects, match the experimental heat capacities for the solid phases fairly 

well.  However, the liquid heat capacity tends to be slightly under-predicted, which is most likely 

a result of a change in the electronic heat capacity contribution between the bcc solid phases and 

the liquid phase. 

 
 

 

Figure 13: The constant pressure heat capacity versus temperature for the α-U, β-U, γ-U, and 

liquid-U phases [21, 26, 182, 184, 185, 218-224].  The γe represents the electronic heat capacity 

coefficient with which the molar heat capacity was calculated.  Vertical lines represent the 

transition between phases at various temperatures.  The experimental uranium heat capacity 

tends to show some variance in their values. 
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Figure 14: The constant pressure heat capacity versus temperature for the α-Zr, β-Zr, and liquid-

Zr phases [21, 189, 192, 194, 197, 201, 225-244].  The γe represents the electronic heat capacity 

coefficient with which the molar heat capacity was calculated.  Vertical lines represent the 

transition between phases at various temperatures.   
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CHAPTER 7 

THERMAL STRUCTURE CHARACTERIZATION OF THE BCC AND 

LIQUID PHASES OF URANIUM AND ZIRCONIUM 

In order to develop confidence in our methods, we start by simulating pure U in the γ-U 

and liquid-U phases and compare our results with EAM and quantum molecular dynamics 

(QMD) results [63, 245].  Elemental U is equilibrated at various temperatures in these 

configurations.  The resulting structure is analyzed using the radial distribution function (RDF) 

g(r) and the bond-angle distribution function (BADF) g3(θ).  The RDF, g(r), is defined as the 

relative probability of finding an atom at a distance r from another atom, and the BADF, g3(θ), is 

defined as the relative probability of finding a bond angle θ that an atom makes with its 

neighbors located within a maximum bond length [246].  The g(r) and the g3(θ) are calculated at 

various temperatures for the pure elemental liquid and bcc U.  The g3(θ) was calculated using a 

4.2 Å maximum bond length (Rm), which was determined by approximating the first minimum in 

g(r) (Figure 15). The effect that the maximum bond length has on the BADF can be seen in 

Figure 16. 

Figure 16, showing the BADF as a function of radial distance, allows for discrimination 

of 1NN and 2NN.  The 55 degree peak, which is the largest peak, is due to the angle between the 

1NN and 2NN atoms.  Then there are the 70 and 109 degree peaks, which are due to the angle 

between the 1NN atoms.  The 90 and 173 degree peaks correspond to the angle between the 2NN 

atoms. Lastly, the 122 degree peak corresponds to the angle between the 1NN and 2NN atoms. 

The melting transition to the liquid phase from the solid bcc phase is not forced, but is 

allowed to occur naturally.  The transition to the liquid state can be determined using the g3(θ) 

(Figure 17) as seen in the 1400 K and 2150 K for pure U.  The bonding angles from the solid bcc 
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phase to the liquid phase change significantly.  In the liquid phase, the bonds change to a more 

bimodal distribution with peaks around 55º and 110º ending with a trailing tail. 

The g(r) (Figure 15) and the g3(θ) (Figure 17) structural data obtained from the MD 

MEAM potential's runs for U is compared to those obtained using a QMD method by Hood et al. 

[245] and to the EAM potential by Smirnova et al. [63].  The MEAM and QMD g(r) both change 

smoothly with increasing temperature, indicating no solid-solid transitions.  Similar to these 

studies, we find that the last peak in the g3(θ) around 180º, characteristic of a cubic or tetragonal 

solid, disappears from the bcc solid to the liquid state for U.  In addition, the liquid states also 

show a bond-angle short range ordering (SRO), resulting in a characterizable structure (Figure 

18).  The liquid structure is found to be a collection of tetrahedra with common vertices, whose 

bond-angle SRO decreases slowly as the temperature of the liquid increases. 

The MEAM shows similar trends to the g(r) and the g3(θ) of the QMD and EAM results.  

There are however a few discrepancies that can be attributed to the MEAM having a lower 

melting point than the EAM and the experimental melting point of 1407.95 K [13].  We estimate 

that the MEAM melting point is between 1325-1350 K [50], while the EAM has a melting point 

around 1500 K [63].  The QMD melting point was not given [245]. 
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Figure 15: RDF g(r) for uranium calculated at different temperatures using the MEAM potential 

in MD simulations compared with the QMD results.  The vertical lines are the RDF positions for 

the MEAM potential at 0 K. 

 

 

Figure 16: BADF g3(θ,Rm) for the bcc U phase at 800 K, calculated for different values of the 

maximum bond length Rm. 
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Figure 17: BADF g3(θ) for (a) bcc uranium calculated at different temperatures and for (b) liquid 

uranium calculated at 2150 K using the EAM, MEAM, and QMD results.  The vertical lines are 

the BADF positions for the MEAM potential at 0 K. 

 

 

Figure 18: Snapshot of the liquid-U structure at 2300 K, showing the bonds within a 4.2 Å 

maximum bond length (Rm) of the central atom and the network of tetrahedrals characterizing 

the bonding in the liquid phase. 
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Similarly, the bcc and liquid phases of zirconium were also analyzed.  However, previous 

publications of RDFs and BADFs for comparison were not found for these phases.  The RDF 

(Figure 19) changes smoothly with increasing temperature indicating no solid-solid transitions 

between the 800 K-2150 K temperature range.  Once again the melting transition was not forced, 

but was allowed to occur naturally.  The transition to the liquid state can be determined using the 

g3(θ) (Figure 20) as seen in the 3000 K for pure Zr.  The bonding angles from the solid bcc phase 

to the liquid phase change significantly.  Similarly to the uranium liquid phase, in the zirconium 

liquid phase, the bonds change to a more bimodal distribution with peaks around 55º and 110º 

ending with a trailing tail.  The zirconium liquid phase was also found to be characterizable as a 

collection of tetrahedra with a common vertex (Figure 21). 

 

Figure 19: RDF g(r) for zirconium calculated at different temperatures using the MEAM 

potential in MD simulations.  The vertical lines are the RDF positions for the MEAM potential at 

0 K. 
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Figure 20: BADF g3(θ) for bcc and liquid zirconium calculated at different temperatures.  The 

vertical lines are the BADF positions for the MEAM potential at 0 K. 

 

 

Figure 21: Snapshot of the liquid-Zr structure at 3000 K, showing the bonds within a 4.2 Å 

maximum bond length (Rm) of the central atom and the network of tetrahedrals characterizing 

the bonding in the liquid phase. 
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CHAPTER 8 

 

STRUCTURAL PROPERTIES OF THE γ-U-ZR ALLOY 

Lattice Constant 

 

 

Figure 22: The lattice constant versus zirconium mole fraction for the γ-U-Zr alloys calculated 

by the current MEAM potential and previous experimental results [18, 19, 247-252].  The legend 

lists either the temperature from which the alloy was quenched (* indicates quenched from 

molten) or the temperature at which the lattice constant was obtained directly.  

 

Figure 22 shows the results of the MD calculations and a comparison with experimental 

results [18, 19, 247-252].  The lattice constants for the MEAM potentials were obtained using the 

conventional time averaged unit cell box size during the 1273 K MD simulations held in an NPT 

ensemble.  The unquenched MEAM lattice constants are seen to agree with Vegard’s law as well 

as the experimental lattice constants.  Summers-Smith [16] determined the lattice constant using 

powder x-ray diffraction analysis of arc-melted U-Zr that was homogenized and annealed at 
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1000 °C for 3 weeks.  The lattice constants for the U-Zr 40 to 90 atomic percent (at. %) of the 

quenched bcc phase were found to vary linearly with composition, and were extrapolated using a 

linear fit to 3.51 Å at pure uranium and 3.58 Å at pure zirconium.  Huber and Ansari [17] 

produced single-phase bcc solid solution U-Zr alloys using a rapid-quench-from-melt technique 

for compositions varying from 25 to 80 at.% Zr.  Then, using x-ray diffraction, they obtained 

lattice parameters and were able to verify the sample was still in the bcc phase.  However, they 

did note that the sample containing 40 at. % Zr or less had significantly broader bcc x-ray 

diffraction lines, which is where their lattice constants begin to deviate from the Summer-Smith 

values.   

Akabori et al. [18] obtained the γ-U-Zr lattice constants for U-70.7 at.% Zr by using 

powder neutron diffraction analysis at temperature, which reduced the negative effects of surface 

oxidation and orientation dependence.  Recently, Basak et al. [250, 253] examined the δ-phase 

and the transition from γ-phase to δ-phase and obtained the lattice constants from x-ray 

diffraction from U-50 weight percent (wt. %) Zr alloys quenched from 908 K, 993 K, and 

1147 K. 

 

Thermal Expansion 

The thermal expansion coefficient was determined by the change in volume over a 

change in temperature per unit volume.  The change in volume over a change in temperature was 

determined using multiple MD simulations held in an NPT ensemble above and below a 

midpoint temperature at which the thermal expansion was calculated.  This process was repeated 

to obtain the thermal expansion values of the U-Zr alloy at 1000 K, 1100 K, 1200 K and 1300 K.  

The MEAM potential’s parameter δ was varied to fit the experimental thermal expansion.  Figure 
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23 shows the thermal expansion of the γ-U-Zr using the MEAM potential compared to 

experimental results obtained by other researchers.  The Zr showed little variance of the thermal 

expansion coefficient within this temperature range; however, the U thermal expansion 

coefficient gradually increased with temperature.  The experimental volumetric thermal 

expansion values were obtained by either quenched or at temperature lattice constants at 

differing temperatures. 

Many of the thermal expansion values can be difficult to directly compare due to 

microstructural differences, phase changes, and different expansion reporting methods [18, 45, 

49, 128, 240, 251, 254-259].  Bagchi et al. [49] showed that the U-Zr microstructure can play a 

large role in thermal expansion.  For example, heat-treated alloys tend to show a significantly 

lower thermal expansion when compared to as-cast U-Zr. 

The thermal expansion values shown in Figure 23 were obtained for a single crystal bcc 

solid solution (10x10x10 supercell) of the U-Zr alloy.  The simulation was performed for 100 ps.  

Multiple simulations were performed and the average volume of the supercell calculated as a 

function of varying zirconium content.  These were compared to four experimental calculations 

of thermal expansion: elemental U [251], elemental Zr [258], U-70.7 at. % Zr [18] and U-72.3 

at.% Zr [250].  These experimental results were appropriate for comparison because they were 

obtained using experimental lattice constants at differing temperatures, which can be directly 

compared to the simulation of bulk thermal expansion values. 

 



 69 

 

Figure 23: Instantaneous volumetric thermal expansion coefficient versus zirconium mole 

fraction for the γ-U-Zr alloys for the current MEAM potential between the temperatures 1000 K-

1300 K, and the experimental instantaneous thermal expansion coefficients [18, 250, 251, 258]. 
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CHAPTER 9 

 

γ-U-ZR SOLID SOLUTION THERMODYNAMICS 

Enthalpy 

The enthalpy of mixing was obtained by using the basic definition of enthalpy and 

ensemble averages for volume (V), pressure (P), and internal energy (U).  The pure U and Zr 

ensemble time-averaged properties at a given temperature were taken and set to the component 

properties (e.g. Pi, Vi, and Ui).  The alloy’s ensemble time-averaged properties for a given 

composition (X) and temperature were taken and set to the “mixed” properties (e.g. Pmix, Vmix 

and Umix).  This method allows for a representative model of the MEAM potential on the 

enthalpy of mixing, given by 

mix mix i i mix mix i i ii i
H U X U P V X PV        ( 48 ) 

where, for the MD simulations held in a NPT ensemble, the pressures Pmix and Pi are 

approximately zero. 

The predicted mixing enthalpy and Gibbs energy are given in Figure 24 and compared 

with the available experimental data.  The graph illustrates the good agreement of the current 

MEAM potential with the experimental values given by Chiotti et al. [22].  In order to compare 

the MEAM potential results to experimental Gibbs energy values from Chiotti et al. [22], we 

used the entropy of mixing given by Chiotti et al. [22] and the MEAM heat of mixing to obtain 

Gibbs energy values.  Due to simulation difficulties, the entropy of mixing for the MEAM 

potential is not directly calculated. 
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Figure 24: The enthalpy of mixing and Gibbs energy of mixing at 1100 K versus the zirconium 

mole fraction. 

 

U-Zr Heat Capacity 

The heat capacity for the U-Zr alloys is obtained in the same way the elemental heat 

capacities were obtained.  However, alloying the metals creates an issue since they often show 

non-linear electronic heat capacity coefficient values with respect to mole fraction [260].  

Therefore, the electronic heat capacity coefficient for the γ-U-Zr alloy was obtained by using 

Equation (47) with the DOS from Xie et al. [55], resulting in the electronic heat capacity 

coefficient estimation shown in Figure 25.  The third order polynomial, fit to the electronic heat 

capacity coefficient in Figure 25, is used in the following γ-U-Zr alloy figures in order to add the 

estimated conduction electron effects to the heat capacities. 
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Figure 25: Electronic Heat Capacity Coefficient versus the Zr mole fraction for the γ-U-Zr alloy. 

 

Figure 26 shows the heat capacity calculated using the MEAM potential.  Two MEAM 

results are plotted, one with γe contributions, the other without.  In addition, experimental values 

are also plotted. 

There are only a few published heat capacity measurements for the high temperature U-

Zr alloys.  It can be noted that the experimental heat capacity values of the bcc U and Zr tend to 

be higher than most other bcc metals.  The first U-Zr heat capacity measurements were published 

by Fedorov and Smirnov who used a heat pulsed method [21].  Next, Takahashi et al. measured 

the high temperature heat capacity for a few concentrations of U-Zr by laser-flash method [261].  

The values from Takahashi et al. were found to be lower than the ones reported by Fedorov and 

Smirnov.  Since Takahashi, there have been four additional experimental heat capacity values 

published for two different U-Zr compositions.  Matsui et al. [262] determined the heat capacity 

of U0.8Zr0.2 alloy from 300 K to 1300 K by heating-pulse Calorimetry, which corresponds 

reasonably well with Fedorov’s data.  The rest of the heat capacity values were determined using 
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a heat flux type differential scanning calorimetry (DSC).  Kaity et al. [45] determined the heat 

capacity of U–14.3 at.% Zr alloy which was significantly different from both Fedorov’s and 

Takahashi’s values.  Lee et al. [263] determined the heat capacity of U-40 wt.% Zr in both 

irradiated and unirradiated samples, and the unirradiated results were similar to those of 

Takahashi and the current MEAM potential.  Most recently, Dash et al. [264] determined the 

heat capacity of U-7 wt.% Zr alloys, which were found to be similar to the results of Matsui et al. 

[262] and Kaity et al. [45]. 

 

 
Figure 26: The molar heat versus zirconium mole fraction for the γ-U-Zr phase [22, 45, 261-

264].  The γe≠0 versus γe=0 represents the value with the electronic heat capacity coefficients 

obtained from Figure 25 versus without, respectively.  The MEAM potential, while slightly 

underestimating the average experimental values, is in good agreement with the experimental 

values and trend obtained from Takahashi et al. [261] and Lee et al. [263]. 

 

The molar heat capacity reported by the Fedorov and Smirnov, Chiotti et al. and Matsui 

et al. using the heat pulse method has a concave shape across the U-Zr alloy concentration 
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spectrum, while the molar heat capacity from the MEAM potential and molar heat capacity from 

Takahashi et al. using the laser-flash method show a convex shape.  The MEAM potential results 

match up well with the convex shape of the molar heat capacity versus mole fraction obtained by 

Takahashi et al.  

 

Additional U-Zr Thermodynamic Properties 

Figure 27 shows the MEAM molar heat capacities for the γ-U-Zr phase calculated at 

1100 K, by fixing either the volume for the constant volume heat capacity or by fixing the 

pressure for the constant pressure heat capacity.  This allows for the change in enthalpy and the 

change in energy with respect to temperature to be calculated. 

The instantaneous volumetric heat capacity (CV) is calculated by the change in internal 

energy over the change in temperature at a constant volume.  The change in energy over 

temperature is accomplished by first equilibrating the system at a specific temperature and then 

fixing the volume of the system and varying the temperature by 10 K above and below the 

volume equilibrated system temperature, resulting in the equation below. 

V

V

E
C

T

 
  

 
  ( 49 ) 
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Figure 27: The constant pressure heat capacity and the constant volume heat capacity versus 

zirconium mole fraction for the γ-U-Zr phase obtained using the MEAM potential.  The γe≠0 

versus γe=0 represents the value with the electronic heat capacity coefficients obtained from 

Figure 25 versus without, respectively. 

 

The U-Zr volumetric heat capacity (γe=0) obtained is around the value one would expect 

from harmonic oscillator theory and from other metals.  Simple harmonic oscillator theory 

combined with the equipartition principle allows for a basic estimation of volumetric heat 

capacity of solids at non-low temperatures and non-high temperatures, as seen below [265]. 

3 24.94
2

V B A

f J
C k TN R

T mol K

  
   
  

  ( 50 ) 

In the equation above f is the degrees of freedom per atom, R is the gas constant, NA is 

Avogadro’s number, and kB is the Boltzmann’s constant. 

Figure 28 shows the MEAM heat capacity ratio (or adiabatic index) for the U-Zr system.  

The heat capacity ratio is calculated by taking the constant pressure heat capacity over the 

constant volume heat capacity. 
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
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
     ( 51 )  

In the above equations, γ is the heat capacity ratio or adiabatic index, βT is the isothermal 

compressibility, βS is the isentropic compressibility, BT is the isothermal bulk modulus, BS is the 

adiabatic bulk modulus, and S refers to entropy. 

The heat capacity ratio of the γ-U-Zr phase for the MEAM potential was calculated at 

1100 K, while the heat capacity ratio of the liquid-U phase was calculated at 1810 K to allow 

direct comparison to the experimental result by Boivineau et al. [266]. 

 

 

Figure 28: The heat capacity ratio (or adiabatic index) versus zirconium mole fraction for the 

γ-U-Zr phase and the liquid-U phase.  The γe≠0 versus γe=0 represents the value with the 

electronic heat capacity coefficients obtained from Figure 25 versus without, respectively. 

 

Even though the heat capacity is slightly undervalued for the MEAM potential, the heat 

capacity ratio is in reasonably good agreement with the liquid-U phase experimental value 

presented by Boivineau et al. [266]. 
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Figure 29 shows the isothermal compressibility of the γ-U-Zr alloy at 1100 K.  The 

isothermal compressibility was calculated by scaling the simulation size volume in an NVT 

ensemble and equilibrating with a 100 ps MD run, then finding the inverse of the bulk modulus 

obtained from the Birch-Murnaghan EOS.  The relationship between βT and BT can be seen in 

Equation (52) below.  In addition, the relationship between βS and BS can be seen in 

Equation (53) below. 

1 1
T

TT

V

B V P


  
   

 
 ( 52 ) 

1 1
S

SS

V

B V P

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  ( 53 )  

The isothermal bulk modulus is found to decrease with temperature for the γ-U-Zr phase, 

which agrees well with the experimental decrease found for Zr [169]. 

 

 

Figure 29: The isothermal compressibility versus zirconium mole fraction for the γ-U-Zr phase at 

1100 K.  The isothermal compressibility can also be recognized as the inverse of the isothermal 

bulk modulus.   
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Grüneisen Parameter 

The Grüneisen parameter (γG) can also be predicted for the U-Zr system at temperature.  

The Grüneisen parameter was predicted at 1100 K and 0 GPa using the heat capacity ratio to 

convert the isothermal compressibility to the adiabatic bulk modulus, then the adiabatic bulk 

modulus, equilibrium volume, instantaneous volumetric thermal expansion coefficient (αV), and 

the constant pressure heat capacity were used in Equation (54) below. 

V T V S
G

V VV V p

V B V BP V P
V

E C T C C

 


    
      

    
  ( 54 ) 

 

Figure 30: The Grüneisen parameter versus zirconium mole fraction for the γ-U-Zr phase, the α-

Zr phase, the β-Zr phase, the α-U phase, and the liquid-U phase [51, 167, 192, 245, 266, 267].  

The γe≠0 versus γe=0 represents the value with the electronic heat capacity coefficients obtained 

from Figure 25 versus without, respectively. 
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The Grüneisen parameters for α-Zr [167, 267, 268] and for β-Zr [192] suggest that the γ-

U-Zr DFT ground state Grüneisen parameter obtained by Landa et al. [51] using the Debye- 

Grüneisen quasi-harmonic model is too high.  However, the MEAM obtained Grüneisen 

parameter for β-Zr agrees well with the Guillermet [192] experimental value at 1000 K. 
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CHAPTER 10 

DISCUSSION OF γ-U-ZR THERMODYNAMICS 

Previous simulations of U-Zr alloys have had some disagreements in their results [26, 51, 

55, 57, 269].  In addition, the enthalpy of mixing for 0 K and temperature simulations versus the 

experimental high temperature results for the γ-U-Zr alloys show significantly different trends.  

There has been some debate on the entropy of mixing for the γ-U-Zr alloy [22, 26, 31, 270].  

Initially it was believed that the U-Zr bcc solid solution phase was entropy stabilized.  However, 

the values obtained by Chiotti et al. [22] suggest that the γ-U-Zr phase may be more complex 

than originally postulated.  

Landa et al. [51] performed geometry optimization calculations using DFT-GGA and 

1728 site Metropolis MC simulations from effective cluster interactions (ECI) and effective pair 

interactions (EPI) to obtain the ground state configuration and enthalpy of mixing curve, which 

was used to justify possible separation effects seen in the metallic fuel.  In 2013, Xiong et al. 

[26] performed a summary of thermodynamic modeling of the U-Zr system [26] using the 

CALPHAD method [271] to obtain a set of self-consistent thermodynamic parameters to 

describe the phase equilibria of the U-Zr system.  The paper noted some of the experimental and 

modeling discrepancies of the U-Zr system and calls into question the accuracy of some of the 

experimental results.  A DFT study by Xie et al. [55] in 2013 showed the mechanical instability 

of γ-U-Zr at low temperatures where the 0 K U-Zr simulations were performed with only volume 

relaxation due to the mechanical instability of the phase.  Then in 2014, Söderlind et al. [269] 

contested the studies performed by Xie et al. and Xiong et al. due to their negative enthalpies and 

their volume expansions, particularly for the γ-U phase. 
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DFT simulation results [26, 51, 55, 57, 269] show 0 K enthalpy of mixing for the γ-U-Zr 

solution to be positive, which suggests that the high temperature bcc phase is entropy 

stabilized.  This positive enthalpy of mixing also supports the existence of the miscibility gap. 

However, the experimental enthalpy of mixing curve given by Chiotti et al. [22] has negative 

values for most of the U-Zr compositions in the bcc phase at temperature.  This signifies that 

there exists complex bonding and electron behavior for the high temperature bcc phase.  This 

complex phenomenon is believed to be due to the delocalized f-electron behavior [57, 272-275].  

From the previous first principle simulations [26, 55, 57], it has been noticed that the enthalpy of 

mixing is highly dependent upon spin orbit coupling (SOC) and correlation effects (DFT vs. 

DFT-U).  The first principles ground state enthalpy of mixing values vary widely, most of which 

are positive, but some even show a slight negative trend.  The MEAM potential and Chiotti et al. 

[22] enthalpy of mixing results are closer in nature to the enthalpy of mixing obtained by Xiong 

et al. [26] and Xie et al. [55] which begin to approach negative values, rather than Landa et al. 

[51].  In addition, the miscibility gap can be explained through the non-regular anisotropic 

behavior of the entropy and enthalpy of mixing. 

In 2013, Moore et al. [56] constructed a preliminary MEAM semi-empirical potential for 

the U-Zr system.  This potential was constructed using DFT simulations for ground state elastic 

constants and defect formation energies from Beeler et al. [131] as well as Landa’s 

decomposition curve [51].  The potential was shown to match the low temperature unstable U-Zr 

bcc properties as well as show the overall ground state energy configuration of the atoms.  

However, this previous MEAM potential’s enthalpy of mixing curve did not vary drastically with 

temperature and does not satisfy the experimental high temperature enthalpy of mixing values.  

The new potential is able to mimic the experimental thermodynamic enthalpy of mixing trend.  
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Transitioning the MEAM potential from matching the 0 K behavior to the experimental enthalpy 

of mixing shows the change in the f-electron symmetry parameter t3 and therefore the f-electron 

behavior as well as the reference alloy bulk modulus.  These changes could indicate how the 

bonding interactions change with temperature. 
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Figure 31: Enthalpy of mixing versus zirconium mole fraction for the γ-U-Zr alloys (a) for the 

0 K ground state values obtained from published simulation results [26, 51, 55, 56] and (b) the 

high temperature values obtained from simulations and the experimental results [22, 51, 56]. 

 

Expansion of the U-Zr thermodynamics using the MEAM potential could include finding 

the Gibbs energy of the γ-U-Zr alloy simulation, but this is a challenging problem.  This could be 

accomplished by combining a number of methods.  The Gibbs energy of mixing can be 

calculated if the enthalpy of mixing, the temperature, and the entropy of mixing are known.  The 

temperature and enthalpy of mixing are easily obtained.  The entropy of mixing for the U-Zr 

configuration can be obtained by going back to the probability for each differing atomistic 

configurational state or by simplifying the configurations to only consider local environment and 

using the cluster variational method (CVM) [276].  After the Gibbs energy of mixing has been 

obtained for a single temperature, thermodynamic integration can be used to find the values at 

other temperatures inside the phase region. 
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CHAPTER 11 

 

ORDERED/DISORDERED COMPARISON OF THE γ-U-ZR ALLOY 

Now we focus attention on the thermodynamics, kinetics, and structure of the U-Zr 

configurations.  We start with a random U-Zr configuration (also known as disordered 

configuration), which is allowed to naturally order with the given potential.  Here we simulate 

the U-Zr alloy with iterative MC and MD simulations.  The MC moves the ensemble to the 

lowest energy in an NVT ensemble.  The same configuration is relaxed in MD to enable 

volumetric relaxation.  The simulation begins with a 100 ps MD simulation in an isothermal-

isobaric (NPT) ensemble.  The resulting atomistic configuration is then used in an MC 

simulation in a canonical (NVT) ensemble for 500 steps per atom.  Then the atomistic 

configuration is exchanged between the NPT MD simulation and the NVT MC simulation until 

the MC simulation has less than a 5 meV energy per atom change over the 500 MC steps per 

atom.  The simulation ends with a final NPT MD simulation, resulting in the final structure and 

properties that are reported.  The evolution of the average energy per atom in the system during 

the MC simulations as the ordering progresses can be seen in Figure 32.  
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Figure 32: Average energy per atom of the U-20 at.% Zr system at 1100 K versus the number of 

MC steps per atom for each of the three MC simulations.  The arrows show the configurations 

that are volumetrically relaxed using MD simulations. 

 

The MD/MC simulations result in an ordered atomistic U-Zr configuration, which lowers 

the energy of the system.  The average energy per atom is calculated at the end of the final MD 

simulation and the enthalpy of mixing, presented in Figure 33, shows a significant change from a 

disordered (random) U-Zr configuration to an ordered configuration.  Thus, there is a 

thermodynamic driving force to order the U-Zr alloy, which could explain some of the separation 

and microstructural effects seen experimentally. 
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Figure 33: The enthalpy of mixing at 1100 K versus Zr mole fraction comparison for the random 

U-Zr configuration and the ordered/separated atomistic U-Zr configuration obtained using the 

MD/MC iterative simulations. 

Configurational Short Range Order 

In order to investigate the structure further, we compute the configurational SRO.  The 

SRO of a few U-Zr alloys with respect to temperature gives an overview of the overall separation 

or ordering and how it is affected by temperature and concentration.  The SRO parameter (σ) 

considers only 1NN [277-279]. 

𝜎 = −
𝑃𝐴𝐴−𝑛𝐴

1−𝑛𝐴
  ( 55 ) 

 PAA is the fraction of the nearest neighbor sites of atom type A that is occupied by A type 

atoms (averaged over all A atoms).  nA is the atomic fraction of A type atoms in the entire 
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system.  The SRO allows a single number to represent a large amount of order/disorder 

phenomena.  Complete atomic separation of an infinite system results in σ=-1, while an ordered 

system of opposite 1NN results in σ=1. 

In Figure 34 it is seen that, in the U-rich composition region, the SRO parameter is 

negative and hence there is U and Zr separation.  Then as the Zr concentration increases, the 

SRO also begins to increase, leading to the more ordered section around the intermediate 

composition region.  The ordering around the intermediate composition region is due to the 

thermodynamic driving force to partial ordering seen in the δ-UZr2 C32 phase.  Lastly, the SRO 

begins to decrease due to the partially ordered sections beginning to separate from the Zr bcc 

matrix in the Zr-rich composition region. 

As seen in Figure 34, the SRO of the bcc solid solutions tends to increase with 

temperature.  This increase in SRO can be attributed to the changing morphology and the 

deviation away from alternating (111) planes of atoms, which causes a push of the SRO closer to 

zero.  The liquid solutions tend to be more random, causing the SRO to approach a zero value. 
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Figure 34: The SRO parameter of U-Zr alloy at 0 K, 1100 K, 1700 K, 2000 K, and 2300 K 

versus mole fraction of zirconium. 

 

  



 90 

CHAPTER 12 

 

ORDERING, SEPARATION, AND PRECIPITATE MORPHOLOGY IN 

THE γ-U-ZR SYSTEM 

 

We can also study the ordering and separation morphology of the U-rich, intermediate, 

and Zr-rich U-Zr alloys.  The ordering and precipitate morphology can be visualized as seen 

from the cross-sections of the atomistic configurations.  These visualizations show the 

thermodynamic driving force toward certain separation or ordering behavior. 

Atomistic configurations can be broken up into three regions: the U-rich region 

corresponding to the U-Zr concentrations on the U-rich side of the δ-UZr2 phase (around 2 to 63 

at.% Zr), the intermediate region within the δ-UZr2 phase concentrations (around 64 to 78 at.% 

Zr), and the Zr-rich region corresponding to the concentrations on the  Zr-rich side of the δ-UZr2 

phase (around 78 to 91 at.% Zr). 

Ordering analysis is conducted using four methods: the SRO parameter allowing for 

general ordering and separation trends, RDFs, BADFs, and visual analysis.  Full and partial g(r) 

and g3(θ) distributions were calculated at various temperatures for the U-Zr alloys, offering more 

information on the structure and ordering of the U-Zr system.  The partial BADFs consisted of 

six unique atomistic local configurations: U-U-U, U-Zr-U, U-U-Zr, Zr-Zr-Zr, Zr-U-Zr, and U-

Zr-Zr.  The BADFs were calculated using a 4.2 Å Rm. 

 

Uranium-Rich Compositions 

The atomistic configurations (Figure 35) of the U-rich U-Zr alloys show the 

spheroidization of the precipitates at lower temperatures versus the band-like lamellar 
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precipitation at high temperatures, while Figure 36 and Figure 37 show the complimentary RDFs 

and BADFs respectively.  The U-10at.%Zr alloy is used to illustrate the typical U-rich 

precipitation phenomena.  The atomistic configuration of the U-10at.%Zr at 0 K (Figure 35a) 

illustrates alternating U and Zr (111) planes of atoms in a faceted spherical-like arrangement that 

has precipitated from the U-Zr alloy.  The faceted precipitate was found to have an 

approximately 25 Å size in the <100> directions and 21 Å size in the <110> directions.  This 

behavior shows the thermodynamic driving force toward the spherical precipitates observed 

experimentally [44, 46, 47, 253, 256, 259, 280] and shown in Figure 2c.  The precipitate has 

some preferred surfaces of separation on the (111), ( 221), and (110) surfaces.  As the Zr 

concentration increases, the faceted separation continues at low temperatures; however the 

morphology changes from the alternating planes being surrounded by U atoms to the U atoms 

being surrounded by alternating planes. 

As the temperature increases, the morphology of the (111) alternating U and Zr planes 

begin to change.  The precipitate begins to form band-like arrangements.  The atomistic 

configuration of U-10at.%Zr at 1400 K illustrates alternating U and Zr (111) planes of atoms in a 

band-like arrangement (Figure 35c).  The band-like precipitate was found to have an average 

thickness of about 12 Å in the [001] direction.  These (111) atom planes can also be seen in the 

Zr-Zr-Zr, U-Zr-U, and Zr-U-Zr g3(θ) (Figure 37).  The Zr-Zr-Zr shows a distinctive singular 

peak around 109º, indicating 1NN Zr atoms lining up in a particular direction, and the Zr-Zr g(r) 

(Figure 36) shows that the Zr atoms are 1NN.  Evidence of the 1NN Zr atoms lining up in a 

particular direction is also given by the U-Zr-U and Zr-U-Zr figures with their larger than 

average 90º peaks.  These bands are easily seen in the [100] direction; however, the surfaces of 

preferred separation are still (111) and (110).  As the temperature increases even higher, the 



 92 

precipitation remains in the stable bcc band-like structure, but the separated uranium begins to 

change from bcc to a more liquid state.  The band-like atomistic configuration shows the 

thermodynamic driving force to the lamellar [41-43] and acicular [16, 44, 46, 47, 256, 259, 281] 

microstructures observed experimentally and shown in Figure 2a and Figure 2b. 

Above the melting point, there is an increase in atomistic motion, leading to an increase 

in atomic diffusion, that results in a random configuration of U and Zr atoms in the liquid 

structure (Figure 35d).  The transition into atomistic randomness is captured by the g3(θ) in 

Figure 37, where both the total and partial BADFs move to the characteristic shape of a binomial 

distribution with peaks around 55º and 110º with a trailing tail, indicating the liquid phase 

consists of a network of tetrahedrals. 

 

 
(a)                                                      (b) 
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(c)                                                      (d) 
Figure 35: [100] Snapshots of equilibrium U(light-green)-10at.%Zr(dark-grey) configurations at 

(a) 0 K, (b) 0 K precipitate, illustrating the alternating U and Zr (111) planes of atoms in a 

faceted spherical-like morphology, (c) 1400 K illustrating the band-like separation of the 

alternating U and Zr (111) planes, and (d) 2000 K illustrating the random liquid phase atomistic 

configuration. 

 

 

Figure 36: Full and partial RDFs of U-10at.%Zr at 800 K, 1400 K, and 2000 K. 
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Figure 37: Full and partial BADFs of U-10at.%Zr at 800 K, 1400 K, and 2000 K. 

 

The atomistic configurations of U-20at.%Zr, U-30at.%Zr, and U-40at.%Zr at 1400 K 

(Figure 38) are used to illustrate the typical morphological transition as Zr concentration 

increases at temperature.  As the Zr concentration increases, the alternating U and Zr (111) 

planes forming the band-like precipitates begin to broaden with U-20at.%Zr having an average 

thickness of approximately 17 Å, and U-30at.%Zr having an average thickness of approximately 

22 Å.  Then as the zirconium content increases to U-40at.%Zr, the band-like separation 

transitions to a tubular morphology with an average diameter of about 17 Å.  This tubular 

separation behavior, when taken as two-dimensional cross-sections, can be likened to the 

microstructure of the U-rich region approaching the compositions just outside of the intermediate 

region, which tends to have small discs and globules of separated U [47, 48]. 
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(a)                                     (b)                                      (c) 
Figure 38: [100] Snapshots of 1400 K equilibrium configurations of (a) U(light-green)-

20at.%Zr(dark-grey), (b) U-30at.%Zr, and (c) U-40at.%Zr.  The atomistic configurations of U-

20at.%Zr and U-30at.%Zr illustrate the broadening of the band-like separation morphology 

consisting of alternating (111) U and Zr planes of atoms as Zr concentration increases, and U-

40at.%Zr illustrates the tubular separation morphology of pure U. 

 

Intermediate Compositions 

The atomistic configurations of the intermediate U-Zr alloy within the δ-UZr2 phase 

concentration show more ordered atomic arrangement without precipitates (Figure 39), while 

Figure 40 and Figure 41 show the complimentary RDFs and BADFs respectively.  The U-

70at.%Zr alloy is used to illustrate the typical intermediate U-Zr alloy ordering phenomena.  The 

atomistic configurations of U-70at.%Zr from 0 K-1400 K show the bcc structure with a 

preference for short sections of U and Zr (111) alternating planes and an overall preference for 

alternate 1NN types as seen in the SRO parameter (Figure 34) and the partial U-U g(r) (Figure 

40).  The atomistic snapshots in Figure 39 and the partial U-U g(r) depict that there is an 

ordering preference for U atoms to be 3NN and 4NN.  This overall preference for opposite type 

1NN, but still occasionally having U atoms as 1NN, and most often having them as 3NN, 4NN, 
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or even further, is important when considering the transition from bcc to the δ-UZr2 phase 

through the omega transformation mechanism.  If the bcc unit cells have U atoms with only one 

or two U 1NN, then this allows for the omega transformation to the ordered δ-UZr2 phase seen in 

Figure 42.  However, if the bcc unit cells have no U 1NN, the transition to the delta phase is still 

possible, but will result in a more random arrangement.  During the omega transformation 

mechanism, alternating (111) planes of the bcc phase collapse to form the AlB2 type hexagonal 

crystal structure, which has been documented by Basak et al. [250].  In the partially ordered δ-

UZr2 phase, the Zr atoms were found to occupy the (0,0,0) position, and a random mixture of U 

and Zr atoms were found to occupy the (2/3,1/3,1/2) and (1/3,2/3,1/2) positions.  The current 

atomistic configuration in the bcc structure facilitates a more direct transition to the partially 

ordered δ-UZr2 phase.  No atomistic precipitation is witnessed in this intermediate region, 

allowing the microstructure to result in equiaxed grains as observed experimentally and shown in 

Figure 2d. 

The RDFs (Figure 40) and BADFs (Figure 41) of the intermediate U-Zr system show the 

characteristic 55º and 110º peaks, indicating the liquid phase consists of a network of 

tetrahedrals.  In addition, the partial RDFs and BADFs show the transition to atomistic 

randomness as temperature increases. 

An ordered bcc phase with the U atoms having only one U 1NN and the rest of the 1NN 

and 2NN being Zr can be reoriented with the bcc 3Pm m  [111] direction equating to the 3 1P m  

[0001] of an equivalent trigonal unit cell (Figure 42).  Using this equivalent unit cell, the 

collapsing of the alternate bcc (111) planes can be easily visualized. 
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(a)                                                      (b) 
 

 

(c)                                                      (d) 
Figure 39: [100] Snapshots of equilibrium U(light-green)-70at.%Zr(dark-grey) configurations at 

(a) 0 K, (b) 800 K, (c) 1400 K, and (d) 2000 K. The 0 K-1400 K snapshots illustrate the ordered 

atomistic configurations where there is a preference for U atoms to be 3NN or 4NN, while the 

2000 K snapshot illustrates the transition to melting. 
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Figure 40: Full and partial RDFs of U-70at.%Zr at 800 K, 1400 K, and 2000 K. 

 

 

Figure 41: Full and partial BADFs of U-70at.%Zr at 800 K, 1400 K, and 2000 K. 

 

 

(a)                                           (b) 
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Figure 42: Snapshot of the (a) 3 1P m  space group equivalent to a reoriented bcc structure with the 

U atoms (light-green) to (b) the P6/mmm space group of a partially ordered δ-UZr2 phase. 

 

Zirconium-Rich Compositions 

 

The atomistic configurations of the Zr-rich U-Zr alloys (Figure 43) show the precipitation 

of more band-like behavior from 0 K-2000 K, while Figure 44 and Figure 45 show the 

complimentary RDFs and BADFs respectively.  The U-90at.%Zr alloy is used to illustrate the 

typical Zr-rich precipitation phenomena.  The band-like separation is easily viewed from the 

[100] direction, and consists of regions of Zr atoms and regions of U and Zr atoms in differing 

arrangements where the U atoms are not 1NN.  The band-like structure has an average thickness 

of about 16 Å at 800 K which becomes less defined as temperature increases, resulting in a 

chaotic band-like structure at 2300 K.  The preference of U atoms to not be 1NN can also be seen 

in the U-U g(r) (Figure 44) and the U-U-U, U-U-Zr, U-Zr-U, and Zr-Zr-Zr g3(θ) (Figure 45).  

The U-U-U and the U-U-Zr g3(θ) BADFs' lack of bond angles and the U-U g(r) figure's lack of 

radial information indicates that there are very few U-U 1NN or 2NN.  However, from the U-Zr-

U g3(θ) figure, it can be seen that the U-Zr-U configuration has a tendency to line up in a single 

1NN and a single 2NN direction from the 109º and 122º peaks.  The U-Zr-U g3(θ) figure and the 

atomistic configurations indicate that U atoms prefer to be 3NN and 4NN.  As explained in the 

Intermediate section above, the U atoms' preference to not be 1NN, but instead 3NN or 4NN, 

makes for an easier transition to the partially ordered δ-UZr2 phase.  The band-like precipitation 

behavior shows the thermodynamic driving force to the acicular, Widmanstätten, and martensitic 

needle microstructures observed experimentally [46, 47] and shown in Figure 2e. 
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(a)                                                      (b) 

 

(c)                                                      (d) 
Figure 43: [100] Snapshots of equilibrium U(light-green)-90at.%Zr(dark-grey) configurations at 

(a) 0 K, (b) 800 K, (c) 1400 K, and (d) 2000 K. The snapshots illustrate the band-like separation 

behavior of the regions where U atoms prefer to be 3NN or 4NN from the regions of pure Zr. 

 

 

Figure 44: Full and partial RDFs of U-90at.%Zr at 800 K, 1400 K, and 2000 K. 
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Figure 45: Full and partial BADFs of U-90at.%Zr at 800 K, 1400 K, and 2000 K. 
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CHAPTER 13 

MEAM SENSITIVITY AND UNCERTAINTY ANALYSIS FOR THE U-

ZR SYSTEM 

 

Interatomic potentials have become a useful tool in modeling atomic forces for various 

materials.  Interatomic potentials have advanced from generic radial distances of Lennard Jones 

potentials, to multi-body potentials (EAM, extended Finnis-Sinclair, airebo), and more recently 

to include angular bonding effects (MEAM, COMB, AMEAM, MS-MEAM, Tersoff, and other 

Angular-Dependent Potentials (ADP)).  The increase in the complexities of these potentials 

allows more materials to be better simulated and understood.  However, with the increase in 

complexities, the cause/effect relationship of potential parameters to material properties can 

become blurred and is poorly understood.  Therefore, this research performs a sensitivity 

analysis on the parameters of a few MEAM potentials in the hope of better understanding the 

sensitivity of more complex interatomic potentials. 

The sensitivity of the MEAM potential on the ground state and thermal properties is 

thoroughly examined.  The MEAM potential is a very commonly used interatomic potential 

whose format allows the research to extend somewhat to EAM, AMEAM, MS-MEAM, and 

other ADPs.  The sensitivity analysis is conducted using the uranium, zirconium, and uranium-

zirconium MEAM potentials.  Previous 0 K sensitivity analyses have been performed using 

MEAM potentials [91, 282, 283].  However, so far no thermal analysis has been conducted.  

Sensitivity analyses on thermal properties require much longer simulations and often multiple 

runs for property determination.  In addition, this is the first reported sensitivity analysis for 

alloys, for which a new method of analyzing the effects that parameters have on the alloy 
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properties was developed.  These sorts of sensitivity analyses are helpful in potential 

development and the understanding of these interatomic potentials.   

Sensitivity Analysis Methodology 

A sensitivity analysis was performed on the degree to which the MEAM parameters 

affect the ground state and thermal properties of the elemental and alloy systems.  In the past, 

there have been a few sensitivity analyses of the MEAM potential performed on ground state 

properties [91, 283, 284], but this is the first reported sensitivity analysis of the MEAM potential 

performed on the thermal properties, which tend to be more complex and somewhat chaotic due 

to their nonindependent spatial parameters.  The thermal motion combined with the complexity 

of the angular partial electron densities and the screening parameters does not allow for a directly 

quantitative sensitivity analysis.  Therefore, a semi-quantitative approach was used to describe 

the potential significance of how a change in the MEAM parameters could affect the ground 

state and thermal properties of the system.  The sensitivity analysis performed uses one-at-a-time 

(OAT) sampling [285] where one parameter changes values between consecutive simulations, 

after which the results are analyzed.  However, the input parameters are non-independent input 

factors creating seemingly random fluctuations or jumps over ranges of input parameters.  In 

addition, the range of acceptable inputs for the parameters in this case is unknown, since changes 

in the parameters may lead to a destabilization of the phase of interest.  Therefore, the maximum 

parameter change examined is set to be a percentage of the initial parameter value, and after each 

simulation the phase stability is examined ensuring the input change did not cause phase 

changes.   
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The OAT sampling is computationally expensive, therefore, the sensitivity analysis was 

conducted fully on the uranium potential, after which a more detailed analysis was conducted on 

the parameters determined to be significant with both the U and Zr potential. 

Sensitivity Analysis of the Elemental Ground State Properties 

We begin by examining the ground state sensitivity analysis and comparing it to those 

previously published.  The bcc phase elastic constants and bulk modulus are calculated, as well 

as the relative phase stability in terms of change in energy.  The properties were calculated using 

the same methodology as described in Chapter 5. 

Table 12: bcc MEAM Sensitivity Table: Effect of uranium elemental parameters on elastic 

constants, bulk modulus, and relative phase energies. 

 
 

In Table 12 above, the “+” sign means that the effect of a 15% parameter change was 

significant, while a “-” sign means the change was less significant, and the “/” symbol means 

there was either no effect or almost no effect.  The effects of the parameter changes on the bcc 

elastic constants and bulk modulus (C11, C12, C44, and B) were deemed to be significant if the 

Properties

bcc C11 and C12 + - / - / / - / - - + + +

(+>Δ2GPa) ↓ ↑ / ↑ / / ↑ / ↑ ↑ ↓ ↑ ↑

bcc C44 + + / + / / + / - - - + +

(+>Δ2GPa) ↓ ↓ / ↑ / / ↑ / ↑ ↑ ↓ ↑ ↑

bcc Bulk Modulus + + / / / / / / - - - + +

(+>Δ2GPa) ↓ ↑ / / / / / / ↓ ↑ ↓ ↑ ↑

ΔE bcc → fcc + + / / / / / / - - - + /

(+>Δ0.01eV/atom) ↓ ↑ / / / / / / ↑ ↓ ↑ ↓ /

ΔE bcc → hcp + + / - - / - - - - - + /

(+>Δ0.01eV/atom) ↓ ↑ / ↑ ↓ / ↑ ↑ ↑ ↓ ↑ ↓ /

MEAM Parameters (15% change)

A B
0

B
1

B
2

B
3

t
1

t
2

t
3 Cmin Cmax δ α EC
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resulting change was greater than 2 GPa, and the change in energy between phases was deemed 

to be significant if they resulted in an energy change greater than 0.01eV/atom. 

In addition to the significance of the parameter change on the ground state properties, the 

directionality of the relationship is also noted for the 15% parameter variations.  In the table 

above, a “↑” designated a directional relationship where an increase in the MEAM parameter 

resulted in an increase in the thermal property; a “↓” designated an indirect relationship where an 

increase in the MEAM parameter resulted in a decrease in the thermal property; and a “↕” 

designated a mixed relationship. 

The ground state sensitivity analysis matches up fairly well with those of Lee et al. [284] 

for the bcc elastic constants and Kim et al. [91] for the change in energy between the phases.  

However, this time a directionality was applied as well as the significance.  The analysis 

performed on other crystal phase elastic constants shows different trends indicating the ground 

state properties of different phases are often dependent on different parameters [91, 283].     

Lee et al. [284] performed a sensitivity analysis on the ground state properties for bcc 

elements.  In this publication it was found that the A, B0, and Cmin parameters all had a 

significant impact on the elastic constants and the relative phase energies, yet the significance 

was never quantified in terns if degree of change or its direction.  Similarly, we found that the A, 

B0, and Cmin, as well as others, had an impact on the properties and attribute some of the 

difference in less versus more significant to the cut-off used as well as the potential.  While Kim 

et al. [91] performed her sensitivity analyses on the hcp ground state phase, she also included the 

change in the energy between phases in her analysis.  In that publication the A, B0, and t3 

parameters were found to cause significant changes in the energy difference between the hcp and 
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bcc phases.  Once again we find that our results are consistent with those of Kim et al. [91], 

where the same parameters were found to cause a change in the relative energies between the bcc 

and hcp phases. 

Sensitivity Analysis of the Elemental Thermal Properties 

The heat capacity was calculated by the average change in the enthalpy over the change 

in temperature between 1000 K-1400 K for bcc uranium and 1600 K-2100 K for bcc zirconium.  

The thermal expansion reported is the average instantaneous thermal expansion coefficient 

between 1000 K-1400 K for bcc uranium and 1600 K-2100 K for bcc zirconium.  However, the 

lattice constant was calculated by taking the average unit cell size at 1273 K.  Lastly, the melting 

temperature of the potential was determined within 25 K increments using the interface method 

described by Moore et al. [50].  The properties were calculated using the same methodology as 

described in Chapter 6. 

The OAT sampling was performed for the table below by implementing a 15% change, 

both in the positive and negative direction, in each MEAM parameter on the uranium potential.  

Then the system was analyzed on the significance of how the change in the MEAM parameter 

affected the specific heat, the melting temperature, and the thermal expansion of the system.   
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Table 13: bcc MEAM Sensitivity Table: Effect of uranium elemental parameters on elemental 

thermal properties. 

 

In  

 

 

Table 13 above, the “+” designates that the 15% change in the MEAM parameter caused 

a significant change in the thermal property; the “–” designates that the change was less 

significant; and the “-/+” designates that the change in the MEAM parameter had a significantly 

varying effect on the thermal property from less significant to greatly significant.  A change in 

Elemental 

Properties

Heat Capacity

(+≥1 J/mol-K)

(-<1 J/mol-K) + -/+ - - - - - - -/+ - - -/+ +

↑ ↑ ↑ ↓ ↓ ↑ ↓ ↓ ↕ ↑ ↓ ↑ ↓

L L L L L

Tmelt

(+≥100K)

(-<100K) + +  + + - -/+ -/+ -/+ + + -/+ + +

↓ ↓ ↕ ↑ ↑ ↕ ↑ ↑ ↑ ↑ ↓ ↑ ↑

Thermal 

Expansion

(+≥0.0004%)

(-<0.0004%) + + + -  - - + - + + + + +

↑ ↓ ↑ ↓ ↕ ↕ ↓ ↕ ↓ ↓ ↑ ↑ ↓

L L L L L

 Lattice 

Constant  
(+≥0.1Å)

A B
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3

t
1

t
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t
3 Cmin Cmax δ α EC

(-<0.1Å)  + + - - - -  -  - + + + + +

↑ ↑ ↑ ↑ ↑ ↓ ↓ ↕ ↓ ↓ ↑ ↓ ↓

L L L L L L L L L
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the elemental specific heat capacity was considered to be significant if greater than 1 J/mol-K; a 

change in the melting temperature was considered significant if greater than 100 K; a change in 

the thermal expansion was considered to be significant if greater than 0.0004%; and a change in 

the lattice constant was considered significant if greater than 0.1 Å.   

In addition to the significance of the parameter change on the thermal properties, the 

directionality of the relationship is also noted for the 15% parameter variations.  In  

 

 

Table 13 above, a “↑” designated a directional relationship where an increase in the 

MEAM parameter resulted in an increase in the thermal property; a “↓” designated an indirect 

relationship where an increase in the MEAM parameter resulted in a decrease in the thermal 

property; and a “↕” designated a mixed relationship.  The “L” in the table indicates whether or 

not the 15% parameter variations resulted in a linear change in the property of interest.  The 

trend was determined to be linear if R2 > 0.90 for the linear fit to three data points: the initial 

value, the 15% increased value, and the 15% decreased value.  It should be noted that the melting 

point was determined between a range of values, making the determination of linearity of the 

melting point not feasible. 

Since this table was constructed based on the bcc uranium and zirconium systems, it may 

give an expanded view of the sensitivity analysis of other bcc systems.  However, due to the 

symmetry and complexities of the MEAM potential, it may not be applicable to other crystal 

structures. 



 109 

The data in  

 

 

Table 13 show that while there are a few parameters that affect the elemental specific 

heat, they tend to be fitted based on the ground state properties and greatly affect both the 

thermal and ground state properties of the system.  Therefore, the fitting of the elemental specific 

heat is not performed with the MEAM potentials, but normally falls into place after the other 

parameter fitting has been conducted.  It should be noted that the cohesive energy parameter EC 

had the greatest impact on the specific heat capacity.  Some of the 15% parameter changes in B0 

and α caused obvious destabilizations in the bcc phase and could not be considered. 

The elemental melting temperature is affected by a great number of MEAM parameters, 

including cohesive energy, bulk modulus, the embedding function parameter A, the screening 

parameters, and the partial electron density parameters.  However, the partial electron density 

parameters tended to have a wildly varying significance on the melting temperature. 

The thermal expansion of the system was affected by the base parameters fitted from the 

ground state properties, as well as from some of the partial electron density parameters and the 

reference state parameter δ, which is often used to fit the thermal expansion values.   

To give a better view of how a few of the parameters influence the thermal properties, the 

parameter and its effect on the specific thermal property were plotted in the following figures.  

Each parameter was varied by ± 5%, ±15%, and ±25% of its initial value, giving seven data 

points.  However, some of the parameter changes caused phase destabilization and therefore 
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were not reported.  Occasionally additional data points were added to give a better view of how 

the properties changed with the parameters. 

Parameter sensitivity analysis can be categorized into parameters that significantly 

change local environment interactions like B’s and Cmin and Cmax, in contrast to the parameters 

that just scale current interactions, e.g., A.  The distance parameters often cause more varied 

results due to the fact that changing a parameter affects how much the surrounding atoms 

contribute to the potential, as described below. 

Bcc metals modeled with the MEAM potential tend to have a t3 parameter that is either 

very small or more likely negative, a t2 parameter that is positive, and a t1 parameter that is 

positive.  These partial electron weighting parameters are important for the stability and structure 

of the MEAM potential.  It has been observed that the t3 parameter can particularly destabilize 

the bcc phase if increased too much.  This destabilization effect can be seen in the lowering of 

the melting temperature with the increasing t3 value.  Similarly, a larger B3 value causes the 

partial electron density to decay more quickly and therefore leads to an increase in melting 

temperature and at the same time a decrease in the thermal expansion and heat capacity values.  

This opposite behavior is a common trend for the thermal properties.  Elemental parameters that 

affect the thermal expansion and heat capacity normally oppositely affect the melting 

temperature. 
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(a)                                                (b)                                              (c) 

Figure 46: Sensitivity analysis of U’s and Zr’s MEAM parameter A on (a) Cp, (b) volumetric 

thermal expansion, and (c) lattice constant. 

Figure 46 is an example of a sensitivity analysis of elemental parameter A, and its effect 

on some thermal properties.  The parameter A is a constant multiplier to the embedding function, 

making it an important parameter to fit, but also one of the more simplistic ones when it comes 

to the thermal properties, as it does not have a direct distance relationship with the potential.  The 

parameter and its effect on the heat capacity, thermal expansion and lattice constant can be seen 

in the graphs.  It can be seen that an increase in the parameter A causes each of these properties 

to increase, often according to a mostly linear relationship. 

 

 
                           (a)                                                (b)                                                (c) 
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Figure 47: Sensitivity analysis of U’s and Zr’s MEAM parameter Cmin on (a) Cp, (b) volumetric 

thermal expansion, and (c) lattice constant. 

Figure 47 is an example of a sensitivity analysis of elemental parameter Cmin, and its 

effect on some thermal properties.  The parameter Cmin is part of the bounds of the screening 

function, which is multiplied to the pair potential, making it a very important parameter, but it 

also has a very complex relationship with thermal properties.  Since Cmin is directly related to 

screening bounds, it directly affects how much each of the surrounding atoms contribute to the 

potential, making the effect on thermal properties dependent on the local environment.  This is 

seen in the sensitivity analysis of the uranium and zirconium potentials, in that their trends do not 

agree with each other. 

 

 
                          (a)                                                (b)                                                (c) 

Figure 48: Sensitivity analysis of U’s and Zr’s MEAM parameter B0 on (a) Cp, (b) volumetric 

thermal expansion, and (c) lattice constant. 

Figure 48 is an example of a sensitivity analysis of elemental parameter B0, and its effect 

on some thermal properties.  The parameter B0 is the distance decay function of the spherical 

partial electron density.  Once again this parameter has a direct relationship with how much the 

surrounding atoms contribute to the potential, making the thermal property analysis more 



 113 

complex.  In addition, it is often used to fit the relative phase energies.  This analysis showed that 

the B0 parameter has a great effect on the bcc phase stability, since many of the parameter 

changes resulted in destabilizing the phase. 

 

Sensitivity Analysis of the Elemental MEAM Parameters on Alloy Thermal Properties 

Similar to the elemental thermal properties, a sensitivity analysis of the alloy’s thermal 

properties was also performed.  Once again a 15% change, both in the positive and negative 

direction, in each MEAM parameter was varied one at a time for the uranium potential.  The 

system was analyzed regarding the significance of how the change in the MEAM parameter 

affected the alloy lattice constant versus zirconium mole fraction curve (or Vegard’s law) and the 

enthalpy of mixing versus zirconium mole fraction curve.  The properties were calculated using 

the same methodology as described in Chapter 8 and Chapter 9. 

Previously created MEAM alloy potentials are often fitted to pure elastic constants using 

knowledge of the system, but guess and check methods were used with thermal properties like 

lattice constants and enthalpy of mixing [90-92, 97, 100, 103].  In order to solve this issue, a 

systematic sensitivity analysis of the alloy’s structural and thermodynamic properties was 

conducted on the U-Zr system by examining the changes in U-20,40,60,80 at.%Zr. 

Table 14: bcc MEAM Sensitivity Table: Effect of U elemental parameters on alloy thermal 

properties. 
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Results of the sensitivity analysis performed on the alloy’s lattice parameter versus 

concentration (or Vegard’s law) and the enthalpy of mixing for the random solid solution are 

provided in Table 14.  Once again the “-” and the “+” symbols are used to designate that the 

change in the MEAM parameter causes either a less significant or more significant change to the 

property in question.  However, this time a “P”, for parabola shifted, or an “S”, for shape, was 

added to designate how the property over concentration curve varied once the parameter had 

been changed.  The “P”, or parabola shifted, meant that the property curve could be shifted from 

its initial position (before the parameter change) by adding or subtracting a symmetric parabola 

across the mole fraction to it final position (after the parameter change).  The “S”, or shape 

shifted curve, meant that the addition or subtraction of a symmetric parabola could not entirely 

encompass the change in the property over concentration curve.  In other words, the “S” means 

that the shape of the property curve had changed. 

The significance of a parameter change on the enthalpy of mixing was determined using 

Equation (56), where the change between the initial and final curves is deconstructed into a 

symmetric parabola and a shape function.  First the change between the initial and final curves 

was deconstructed by determining the constant “a” that minimized the residuals, after which the 

resulting residuals determined comprise the shape function. 

Properties

 Vegard’s

(+P if a≥0.35)

(-P if .35>a≥.1) +P +P -P -P -S -P +P  +S -P -P -P +P +P

(+S if Σ|ri|≥.5) +S +S -S -S -S +S -S  -S  -S -S +S 

(-S if .5>Σ|ri|≥.1) ↕ ↑ ↑ ↑ ↓ ↑ ↑ ↕ ↑ ↑ ↓ ↑ ↓

 Enthalpy of Mixing

(+P if a≥0.04)

(-P if .04>a≥.01) +P +P  / -P  / -P +P +S -P -S -P +P +P

(+S if Σ|ri|≥.009) +S +S -S -S +S -S +S -S

(-S if .009>Σ|ri|≥.002) ↑ ↓ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓
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∆𝐻𝑚𝑖𝑥,𝑓𝑖𝑛𝑎𝑙(𝑋𝑍𝑟) = ∆𝐻𝑚𝑖𝑥,𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑋𝑍𝑟) + 𝑎 ∗ (1 − 𝑋𝑍𝑟) ∗ 𝑋𝑍𝑟 + 𝑆(𝑋𝑍𝑟) ( 56 ) 

 

In Equation (56), “a” is a constant multiplier to the addition of the symmetric parabola, 

and S(XZr) is the additional change called the shape function.  The degree of significance of the 

change was determined by the constant multiplier “a” and the shape function, S(XZr).  The value 

of the constant “a” will determine if the bonding strength change is significant.  After the 

parabola is fit, the resulting difference between the initial and final result is the shape function 

“S”.  The sum of the residuals comprising shape function “S” determine the significance of how 

the atoms are bonded together.  The change for the enthalpy of mixing was seen as significant if 

the “a” constant for the parabola was greater than 0.04 or the sum of the residuals was greater 

than 0.009. 

 

 

Figure 49: Visualization of the change in the enthalpy of mixing curve when U’s A parameter is 

increased by 15% from 0.98 to 1.127, and the determination that the addition of a symmetric 

parabola with a=0.26 and a shape function S(XZr) can mimic the effect seen in the change of the 

enthalpy of mixing. 
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Figure 49 shows an example of the change in elemental parameter A for U on the alloy 

enthalpy of mixing curve, and how it can be deconstructed into a symmetric parabola with the 

constant “a” equal to 0.26 and a shape function of S(XZr).  In this example, “a” being greater than 

0.04 results in a +P relationship, and the sum of the residuals for the shape function being greater 

than 0.009 also results in a +S relationship.  

However, for Vegard’s law we had to separate the elemental thermal expansion effects 

from the lattice constant over concentration curve.  Therefore, the lattice constant over 

concentration curve was first normalized between the starting point of 0 and the ending point of 

1.  This normalization allows for the analysis to be performed in a similar manner as the enthalpy 

of mixing, i.e., 

 

𝜔𝑏𝑐𝑐,𝑖𝑛𝑖𝑡𝑎𝑙(𝑋𝑍𝑟) = (
𝑎𝑏𝑐𝑐,𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑋𝑍𝑟)−𝑎𝑏𝑐𝑐,𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑋𝑍𝑟=0)

𝑎𝑏𝑐𝑐,𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑋𝑍𝑟=1)−𝑎𝑏𝑐𝑐,𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑋𝑍𝑟=0)
) ( 57 ) 

𝜔𝑏𝑐𝑐,𝑓𝑖𝑛𝑎𝑙(𝑋𝑍𝑟) = (
𝑎𝑏𝑐𝑐,𝑓𝑖𝑛𝑎𝑙(𝑋𝑍𝑟)−𝑎𝑏𝑐𝑐,𝑓𝑖𝑛𝑎𝑙(𝑋𝑍𝑟=0)

𝑎𝑏𝑐𝑐,𝑓𝑖𝑛𝑎𝑙(𝑋𝑍𝑟=1)−𝑎𝑏𝑐𝑐,𝑓𝑖𝑛𝑎𝑙(𝑋𝑍𝑟=0)
) ( 58 ) 

𝜔𝑏𝑐𝑐,𝑓𝑖𝑛𝑎𝑙(𝑋𝑍𝑟) = 𝜔𝑏𝑐𝑐,𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑋𝑍𝑟) + 𝑎 ∗ (1 − 𝑋𝑍𝑟) ∗ 𝑋𝑍𝑟 + 𝑆(𝑋𝑍𝑟) ( 59 ) 

 

In Equations (56,58,59), ω was introduced as the temporary variable for the normalized 

lattice constant.  The change for Vegard’s law was seen as significant if the “a” constant for the 

parabola was greater than 0.35 or the sum of the residuals was greater than 0.04. 

Once again a more detailed analysis was conducted on the MEAM parameters that were 

determined to be significant, and their effects on the alloy properties.  The parameters were 

varied by ± 5%, ±15%, and ±25% of its initial value, starting with seven data points.  However, 
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some of the parameter changes caused phase destabilization and therefore were not reported.  All 

the reported properties were calculated at or around a 1100 K midpoint. 

 

  
                                     (a)                                                                        (b) 

Figure 50: Sensitivity analysis of U’s MEAM parameter “A” on (a) enthalpy of mixing and (b) 

Vegard’s law. 

  

  
                                  (a)                                                                      (b) 

Figure 51: Sensitivity analysis of Zr’s MEAM parameter “A” on (a) enthalpy of mixing and (b) 

Vegard’s law. 

Figure 50 and Figure 51 show how the elemental parameter “A” affects the alloy’s 

thermal properties.  It can be seen that the change in the parameter affects the change in both the 

enthalpy of mixing and the Vegard’s law via a symmetric parabola, as well as changes the shape 
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of the curve, indicating a +P and +S relationship.  In addition, generally an increase in the 

parameter caused the curve to shift into the more positive values, indicating an overall direct (↑) 

relationship.   

 

  
                                    (a)                                                                       (b) 

Figure 52: Sensitivity analysis of U’s MEAM parameter Cmin on (a) enthalpy of mixing and (b) 

Vegard’s law. 

Figure 52 shows how the elemental parameter Cmin of uranium affects the alloy’s thermal 

properties.  The zirconium Cmin parameter had even less of an effect on the properties and 

therefore was not plotted.  It can be seen that the change in the parameter minimally affects the 

enthalpy of mixing and the Vegard’s law.  However, an increase in the parameter caused the 

enthalpy of mixing to slightly shift upward and the Vegard’s law to shift downward, indicating a 

direct relationship for the enthalpy of mixing and a direct relationship for Vegard’s law, once the 

thermal expansion effects were normalized. 
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                                    (a)                                                                    (b) 

Figure 53: Sensitivity analysis of U’s MEAM parameter B0 on (a) enthalpy of mixing and (b) 

Vegard’s law. 

  
                                    (a)                                                                      (b) 

Figure 54: Sensitivity analysis of Zr’s MEAM parameter B0 on (a) enthalpy of mixing and (b) 

Vegard’s law. 

Figure 53 and Figure 54 show how the elemental parameter B0 affects the alloy’s thermal 

properties.  It can be seen that the change in the parameter affects the change in both the enthalpy 

of mixing and the Vegard’s law via a symmetric parabola, as well as changes the shape of the 

curve, indicating a +P and +S relationship.  In addition, generally an increase in the parameter 

caused the curve to shift into the more positive values, indicating an overall direct relationship. 

Sensitivity Analysis of the Alloy MEAM Parameters on Alloy Thermal Properties 
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The effect of alloy MEAM parameters on the alloy’s properties was also examined, again 

using a 15% change, both in the positive and negative direction, in each MEAM parameter.  The 

system was analyzed regarding the significance of how the change in the MEAM parameter 

affected the alloy’s lattice constant versus zirconium mole fraction curve (or Vegard’s law) and 

the enthalpy of mixing versus zirconium mole fraction curve. 

Table 15: bcc MEAM Sensitivity Table: Effect of alloy parameters on alloy thermal properties. 

 
 

  
                                    (a)                                                                       (b) 

Figure 55: Sensitivity analysis of U-Zr alloy MEAM parameter α on (a) enthalpy of mixing and 

(b) Vegard’s law. 

Figure 55 shows how the alloy parameter α affects the alloy’s thermal properties.  It can 

be seen that the change in the parameter affects the change in both the enthalpy of mixing and 

Properties

 Vegard’s

(+P if a≥0.35)

(-P if .35>a≥.1) +P +P +P  +P

(+S if Σ|ri|≥.5) -S +S

(-S if .5>Σ|ri|≥.1) ↓ ↓ ↑ ↕

 Enthalpy of Mixing

(+P if a≥0.04)

(-P if .04>a≥.01) +P +P +P +P

(+S if Σ|ri|≥.009) -S -S -S +S

(-S if .009>Σ|ri|≥.002) ↓ ↑ ↑ ↕

Alloy α Alloy Δ ρ
0

MEAM Parameters (15% change)

Alloy δ

Alloy Δ ρ
0Alloy δ Alloy α
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the Vegard’s law mostly via a symmetric parabola, and only slightly changes the shape of the 

curve, indicating a +P and -S relationship.  This parameter shows great potential for calculated 

MEAM alloy property adjustment using a symmetric parabola only. 

 

  
                                     (a)                                                                       (b) 

Figure 56: Sensitivity analysis of U-Zr alloy MEAM parameters ρU,ρZr on (a) enthalpy of mixing 

and (b) Vegard’s law. 

Figure 56 shows how the parameters ρU,ρZr affect the alloy’s thermal properties.  These 

parameters are often used to fit the alloy properties.  It can be seen that the change in the 

parameter affects the change in both the enthalpy of mixing and the Vegard’s law mostly via a 

symmetric parabola, and only slightly changes the shape of the curve, indicating a +P and -S 

relationship. 
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                                    (a)                                                                    (b) 

Figure 57: Sensitivity analysis of U-Zr alloy MEAM parameter Δ on (a) enthalpy of mixing and 

(b) Vegard’s law. 

Figure 57 shows how the alloy parameter Δ affects the alloy’s thermal properties.  It can 

be seen that the change in the parameter affects the change in both the enthalpy of mixing and 

the Vegard’s law mostly via a symmetric parabola, and only slightly changes the shape of the 

curve, indicating a +P and -S relationship.  This parameter shows great potential for calculated 

MEAM alloy property adjustment using only a symmetric parabola. 
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CHAPTER 14 

SUMMARY and CONCLUSIONS 

A MEAM potential focused on the high temperature γ-U-Zr solid solution alloy was 

developed, which is virtually inaccessible to first principles calculations.  In addition, the U-Zr 

potential developed was able to closely mimic the experimental thermodynamics, e.g., the 

enthalpy of mixing at temperature, which has evaded multiple ground state first principles 

simulations.  

The validity and transferability of the high temperature U-Zr MEAM potential was tested 

against numerous first principles and experimental properties.  The simulation results concur 

with the experimental or first principles elastic constants, lattice parameters, thermal expansion, 

defect formation energies, enthalpy of fusion, and melting temperatures, while the heat capacity 

tends to be a little undervalued for both U and Zr until the conduction electronic heat capacity 

contributions were added, resulting in values between the experimental results. 

The potential resulted in a 5.41*10-5 volumetric thermal expansion coefficient for γ-U, 

which is 3.4% off the 5.61*10-5 experimental value [251], and a 3.27*10-5 volumetric thermal 

expansion coefficient for β-Zr, which is 10.7% off the 2.92*10-5 experimental value [258].  The 

U potential resulted in a melting temperature between 1325 K-1350 K, which is around 60 K off 

the experimental 1408 K; an enthalpy of fusion of 8.519 J/mol-K that matches the more recent 

experimental result of 8.518 J/mol-K [189]; and a 2.66 volume percent change upon melting that 

is 20.9% off the 2.2% experimental value [180].  The Zr potential resulted in a melting 
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temperature between 2150 K-2175 K, which is around 25 K off the experimental 2125 K; an 

enthalpy of fusion of 14.844 J/mol-K that is in  agreement with most of the experimental values 

[181, 193-195, 198]; and a 3.06 volume percent change upon melting which is 21.5% off the 

3.9% experimental value [181]. 

Next, a comparison of γ-U and liquid-U structures is conducted and compared to 

previously published QMD and EAM results. The QMD and MEAM results show similar 

behaviors for both the bcc and liquid phases. The liquid-U phase was found to have a 

characterizable structure of a local network of tetrahedrals.  

The potential was also able to replicate trends and values seen in the alloy’s 

thermodynamic properties.  It was able to replicate Vegard’s law for the lattice constants (with 

an almost perfectly linear fit) and the experimental thermal expansion for the U-Zr alloy, and it is 

the first to match the experimental enthalpy of mixing for the γ-U-Zr phase at temperature.  In 

addition, the heat capacity trend versus zirconium mole fraction mimics the experimental trend 

seen in the laser-flash method used by Takahashi et al. [261].   

The newly created MEAM potential was used to explore new thermodynamic properties 

for the γ-U-Zr phase, e.g., constant volume heat capacity, the isothermal compressibility, 

adiabatic index, and the Grüneisen parameters.  Where alloy experimental data is available, the 

model appears to agree quite well. 

Then atomistic simulations of the thermodynamic ordering in a mixture are shown to be 

able to mimic and contribute to the deeper understanding of precipitation morphology and 

microstructure evolution in U-Zr alloys.  The MEAM potential was used to investigate the 
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preferential ordering behavior of U-Zr alloys to relate the ordering behavior to observed 

microstructures.  

Atomistic simulations of the U-rich alloys show a tendency towards separation resulting 

in precipitates whose shape depends on temperature.  At lower temperatures the precipitates tend 

to form in more faceted and spherical arrangements, while at higher temperatures precipitates 

form in more of a band-like structure.  Previous experimental research has shown this precipitate 

behavior change from spherical to lamellar microstructure as temperature increased, but until 

now this transition was not well understood.  

Intermediate alloys, around the δ-UZr2 phase concentration, show a preference to 

ordering where the U atoms are not 1NN, but 3NN or 4NN.  This kind of ordering behavior 

allows for a more direct transition to the partially ordered δ-UZr2 phase seen experimentally. 

Lastly, simulations of the Zr-rich alloys show a mix of ordering and separation behaviors.  

The Zr-rich systems show ordered sections where U atoms are 3NN or 4NN, allowing 

more of a direct transformation to the partially ordered δ-UZr2 phase, separated by bands from 

the regions of pure Zr.  These bands mimic the acicular, Widmanstätten, and martensitic needle 

microstructures seen in the previous experimental research.  These simulations are able to 

successfully replicate some of the fundamental thermo-physical and microstructural 

characteristics following fabrication and irradiation of the U-Zr metallic fuels. 

A sensitivity analysis was conducted using OAT sampling of the MEAM interatomic 

potential parameters and how changes in parameters propagate throughout the system, causing 

changes to numerous structural and thermodynamic properties.  This analysis is key to 

unravelling the cause/effect relationship of interatomic potentials, as well as discovering their 
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benefits and drawbacks.  This sensitivity analysis shows how physical properties can be fitted 

when using interatomic potentials, as well as the properties which cannot be adjusted.  This 

research gives insight into the overall transferability and uncertainty when fitting and using 

interatomic potentials such as the MEAM. 

The analysis begins on the thirteen elemental MEAM parameters and how they affect the 

bcc ground state elastic constants and relative phase energies.  The sensitivity analysis performed 

is shown to agree well with previously published results.  However, our analysis takes the 

sensitivity of the ground state properties a bit further by including more parameters that were 

varied, adding a quantitative indication of the significance of a change, and adding the 

directionality of the parameter effects on the observed properties. 

Next, the effect the elemental parameters had on the thermal properties was examined.  

The trends in which MEAM parameters affect the thermal properties of the bcc metal have been 

successfully analyzed and categorized.  The thermal properties examined include heat capacity, 

melting point temperature, thermal expansion, and lattice constant.  The melting point, lattice 

constant, and thermal expansion all seem to be moderately dependent on a number of MEAM 

parameters.  However, the heat capacity was shown to have little variance with many of the 

properties and could not be easily adjusted.  The parameters that had much of any significance 

on the values Ec and A are usually fit to ground state properties of cohesive energy and relative 

phase stability. 

Then the effect the elemental parameters had on alloys was examined.  The alloy 

properties examined were the Vegard’s law for lattice constants and the enthalpy of mixing.  The 

sensitivity analysis of alloy properties has never been previously published, and therefore a 
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method of deconstructing the effects was developed.  The method developed allowed the change 

to be broken up by the magnitude that the strength or length of bonding between the atoms 

changed and how the elements were being bonded together changed.  From this analysis it was 

determined that before alloy parameters are fit, it is important that the elemental parameters be fit 

well first, as many of the alloy properties can change significantly with changes to the elemental 

parameters.   

Finally, the effect the alloy parameters had on the alloy properties was examined.  The 

alloy properties examined include Vegard’s law for lattice constants and the enthalpy of mixing.  

The analysis showed that a few key parameters exist that allow for shifts in either the Vegard’s 

law curve or enthalpy of mixing curve, like the alloy Δ and α parameters, making the fitting of 

most alloy thermodynamics relatively simple. 

Metallic fuel in fast reactors can undergo compositional variation changes and large 

irradiation swelling and growth due to irradiation damage, and the MEAM potential allows the 

study of each of these phenomena.  In this study, we focus on the structure, thermodynamics, and 

the compositional variation, resulting in different morphologies, following fabrication of the U-

Zr metallic fuel.  This compositional variation can also occur during reactor operation, leading to 

additional complexities that need to be accounted for, and can be studied using the MEAM 

potential and atomistic methods developed. 

The MEAM potential enables atomistic results to be compared to experimental results, 

allowing the atomistic mechanisms contributing to the experimental results to be witnessed and 

understood for the first time.  The atomistic study allowed the heat capacity of U and Zr to be 

broken up into the lattice, anharmonic, and expansion effects versus the contributions of the 
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conduction electrons.  It also obtained new values for the enthalpy of fusion and percent volume 

change upon melting, which are important for fuel transient codes.  The calculated thermal 

expansion, heat capacity, isothermal compressibility, and Grüneisen parameter allow the 

knowledge gained from atomistic simulations to be directly tied to macroscopic properties.  The 

heat capacity, thermal expansion, and isothermal compressibility can all be used in continuum 

models for a more complete fuel modelling code.  The Grüneisen parameter is important for 

equations of state (EOS), as well as understanding and modelling transients, as it often shows up 

in equations that describe the thermoelastic properties of materials at high pressures and 

temperatures [286]. 

The study of the U-Zr morphological evolution not only provides a new methodology for 

using atomistics to understand microstructure, but also supplies valuable information on the 

thermodynamic driving mechanisms for U-Zr alloys, which is important for both fabrication and 

behavior during reactor operation.  If the U-Zr fuel has sections that are more uranium-rich than 

others, this changes the neutronics of the fuel due to its non-homogeneous nature.  Failing to take 

into account non-homogeneity could result in the underestimation of a reactor’s reactivity and 

criticality.  The fabrication of the U-Zr fuel pellets can also benefit from this research, by 

modifying the fuel production process and annealing temperatures in order to obtain a desired U-

Zr morphology. 

In addition, the creation of this potential provides a tool for further atomistic research of 

the U-Zr alloy through the study of the larger scale atomistic simulations of defect properties, 

radiation damage, void/bubble energetics, coalescence, and plasticity.  In addition, the MEAM 

potential can be expanded to include fission products, cladding, and other minor actinides, 
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permitting the study of ternary metallic fuel, fuel-cladding interactions, and how fission products 

can affect fuel properties. 
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APPENDIX A: Common Thermodynamic Equations  
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Heat Capacity Equations: 
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Partition Function: 
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Gibbs-Duhem Equations: 
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At constant pressure and temperature, equation becomes: 
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APPENDIX B: Notations and Symbols 

 

Basic Notations  

E: Internal Energy 

ΔE: Change in Energy 

U: Potential Energy 

V: Volume 

P: Pressure 

H: Enthalpy 

G: Gibbs Energy 

S: Entropy 

T: Temperature 

N: Moles 

R: Gas Constant 

kB: Boltzmann’s Constant 

X: Composition 

NA: Avogadro’s Number 

1NN: 1st Nearest Neighbor  

2NN: 2nd Nearest Neighbor 

3NN: 3rd Nearest Neighbor 

4NN: 4th Nearest Neighbor 

MS: Molecular Statics 

MD: Molecular Dynamics 

MC: Monte Carlo 



 133 

DFT: Density Functional Theory 

DOS: Density of States 

 

Potentials 

EAM: Embedded Atom Method 

MEAM: Modified Embedded Atom Method 

COMB: Charge Optimized Multi-Body 

 

Equations and Distribution Functions 

RDF: Radial Distribution Function g(r) 

BADF: Bond Angle Distribution Function g3(θ) 

EOS: Equation of State 

 

Thermodynamic Statistics 

Pi: Probability the System Occupies a Microstate i 

Z: Partition Function 

β: Inverse Temperature Term in the Partition Function 

NPT: Thermodynamic Ensemble where the Moles (N), the Pressure (P), and the Temperature (T) 

are Held Constant 

NVT: Thermodynamic Ensemble where the Moles (N), the Volume (V), and the Temperature 

(T) are Held Constant 

 

Thermodynamic Quantities 



 134 

Cp: Heat Capacity at Constant Pressure 

Cv: Heat Capacity at Constant Volume 

αV: Volumetric Thermal Expansion Coefficient 

βT: Isothermal Compressibility 

βS: Isentropic Compressibility 

BT: Isothermal Bulk Modulus 

BS: Adiabatic Bulk Modulus 

γ: Heat Capacity Ratio   

γi: Activity 

γe: Electronic Heat Capacity Coefficient 

γG: Grüneisen Parameter 

 

Crystallography 

Cij: Elastic Constants 

Ec: Cohesive Energy 

Ev
f: Vacancy Formation Energy 

Ei
f: Interstitial Formation Energy 

 

Short Range Order 

SRO: Short Range Order 

σ: Short Range Order Parameter 

PAA: Fraction of the Nearest Neighbor Sites of Atom Type A that is occupied by A Type Atoms 

(Averaged over all A Atoms) 
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nA: Atomic Fraction of A Type Atoms in the Entire System 

 

Sensitivity and Uncertainty Analysis 

a: Constant multiplier for the symmetric parabola 

S(XZr): Shape Function 

OAT: One-at-a-Time 
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