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SUMMARY

Continuous growing demands of customized produlctseasing competition in
manufacturing industries and increasing labor eostdemanding mass customization to
be realized in all spectrum of industry. Howevegss customization has not lived up to
its promise. The assembly system, being identifiedhe breaking point to enable mass
customization, also brings challenges when deakiitly high variety products which is
typical situation in mass customization. The tafithis dissertation is identified game
theoretic optimization of high variety assembly system design. It suggests itself as a key
enabler of mass customization paradigm, which alcampanies to supply high variety
product for today’s market that demands custonomatrithout too much tradeoff in cost,
quality or distribution. The research problem isnfalated as to provide a systematical
approach to design a multi-stage, multi-producthhigariety assembly system under
multiple pre and post-conditions and constraints.

The proposed work is geared towards a game theasgdosolution to solve
complex engineering system design problems metdasncustomization, and using the
high variety assembly system design as a demoisirafhe dissertation reveals the
fundamental issues underlying high variety assermajdyem design and decision making,
which represents a typical complex engineering esystin order to tackle the
fundamental issues, a technical framework of gdmeretic optimization of high variety
assembly system design is proposed. Accordinglythemaatical and computational
models are developed within the framework to supgd9rvariety propagation from

product to assembly process, 2) assembly systeoutlayesign, 3) assembly process

XIX



design and resource allocation, and 4) assembbepsoplanning. These coherent models
along the technical framework lay the theoreticainfdation of this research, as described
below.

First, in order to identify the necessary procdssents and their relations for
given product variety demands, the mapping frompiteeluct variety to process variety
must be formulated. By using a generic represamtamethod of both product and
process information, the large amount of varietyadd both product and process can be
handled. Then the construction of association rod@sng makes it possible to find a
suitable assembly process set to deliver the psocasety which fulfills the product
variety demands.

Second, the major decision making problem undeglyine high variety assembly
system design problem is to find the equilibriumuson between assembly process
design and resource allocation. With the evaluatioteria of assembly flexibility and
resource utilization rate, the assembly systemgdedecision making problem becomes
leverage between flexibility and efficiency of tkgstem design. The game theoretic
optimization framework together with modified ganedlgorithm brings a mathematical
solution to this problem.

Third, the layout design of assembly system is fthendation of the of high
variety assembly system realization. The task sfgieng an assembly system layout can
be generally concluded as grouping similar and liglependent assembly processes
together into an enclosed unit, a department opik \station, depending on their scale.

The use of design structure matrix enables thengagsembly process set to be translated
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into a system layout which will optimize the ma&trflow efficiency and minimize
possible bottlenecks in the system.

Fourth, as a solution to high variety assembly esysfprocess planning and
verification / validation of the assembly systensida, a real-time data driven simulation
method and an industrial application case studgported. The data driven simulation
brings not only a methodology to verify the systeesign, but also a potential industrial
application with online simulation and decision nmakcapability to keep improvement
of the running assembly system. The case study\adigation to the methodology set
proposed in assembly system design, illustratepitheess flow to solve a real life high

variety assembly system design problem.
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CHAPTER 1

INTRODUCTION

This chapter provides an overview of backgroundciwHeads to this research
topic. Through the discussion of research motivatibe topic of research is identified as
game theoretic optimization of high variety assembly system design. It suggests itself as a
key enabler of mass customization paradigm, whiubukl allow companies to adopt
mass customization strategy in their assembly systeAccordingly, the research
objectives and scopes are defined, along with &nieal roadmap outline for this

research.

1.1 Research Motivation

In the last several decades, the increased glaimpetition from the emerging
economies in developing nations, and the incredsifigkle consumer looking for
variation and individualized products, had led maggearchers and companies to agree
that an economic motivation for mass customizagaists (Pine, 2000). Especially in
high-wage countries, there is a clear trend tovaiathding out from global competitors
by means of product differentiation. The cost lealig strategy, which aims to provide
products that can only be manufactured cheaply assmproduction, is no longer
sufficient to keep their advantage in global contpet By adopting differentiation
strategy, in which giving customization options fopducts is one of the major tactics,
company will provide products that can offer unigaributes that are valued by

customers and that customers perceive to be lib#trror different from the products of



competitors. However, ever shorter product life legc growing number of product
variety demands and lack of skilled workers in corabon with increasing wage costs
force companies to no longer follow only one siygtdnstead of commitment to either
differentiation or cost leadership strategy, theaadages of both strategies have to be
combined in order to offer customized productsaahgetitive prices. As a result, many
companies choose a mass customization strateggctncile individualized products
with advantages of the economies of scale (Milkerale 2013). As a production
paradigm, mass customization allows companies tet te customization demands by
manufacturing relatively high variety product withdoo much tradeoff in cost, quality,
or market size.

The concept of mass customization was put forthiy@& years ago. Yet, despite
great strides in information technology, enginegraesign practice and manufacturing
technology, which are the components necessaryaterthe paradigm realizable, mass
customization has largely not lived up to its premiFew examples of successful mass
customization implementations, such as personapabens, are largely limited to certain
systems where the existing, dominant product achite enables mass customization to
be viable. On the other hand, modern industriapsth@ors are highly affected by the
ever-increasing product variety and volatile mardemands introduced by the mass
customization paradigm. The task of design, plajmrand operation of manufacturing
systems is becoming more and more challenging darpanies, as globalization, mass
customization and the turbulent economic landscapeate demand volatility,

uncertainties and high complexity (Mourtzis et 2014).



The expansion of the mass customization paradigdeendent on developing
methods and tools that support designers througheuproduct development process. It
will be critical to overcome the challenges broulghthigh variety of product which any
company considering mass customization would hawedrk through. Variety can be
achieved at different stages of product realizatohring design, fabrication, assembly,
at the stage of sales, or through adjustment diun@gisage phase (Hu et al., 2011).

Variety implemented in design stage incorporategaruer design inputs. These
kinds of products are personalized products andllyssingle piece order. Variety can
also be achieved in the fabrication stage, by usliffgrent manufacturing methods,
parameters and materials. For example, optical, |fasteners, jewelries and many
medical products are customized in fabrication estags they normally share the same
design platform, the variety is limited comparingthwdesign stage customization.
Assembly is one of the most cost effective appreadio achieve high product variety.
With a proper design, each functional module / asgembly of the product is provided
with several variants so that the total assembiylgnation will provide high variety in
the final products (Hu et al., 2011). Variety cdsoabe added at the stage of sales. For
example, golf clubs and trousers are often cub¢oléngth at the time of purchase based
on the user’s height, waist watch band length dsn lae adjusted based on user’s waist
size. Some product can also be adjusted after psechsuch as some tennis and
badminton rackets which have different weight add-oThe products which can add
variety at or after sales are generally mass predipcoducts which can be manufactured
in high volume with only one or several models. Hewer, their varieties are always

limited and only certain kinds of products can lestomized this way. As shown in



Figure 1.1, five different typical manufacturingsggms are shown. Variety achieved in

design, manufacturing, assembly, sales and aftes san be substantially corresponded

to these systems.

Transfer Lines
¢ Identical mass

High
Volume produced products
— Dedicated Flow Lines
1000 |— Generally same products with few
. .
< adjustable features

Flexible Assembly Cells

Production 100 |— Modular products
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CNCor NC Joh Shop
Small batc.h Custom made/
products with .
. personalized
customized
. products
1 machining
parameters
Low
volume | ] ] 1 |
1 10 100 1000 10000
Variety

(Number of different parts per system)
Figure 1.1 A comparison of different kinds of maattiring systems

Assembly is the capstone of product realizatiorcgss. It is also the key stage to
add variety to products. From the comparison, itlear that realizing high variety in
assembly process is the most promising methodrimstef balance between variety and
economies of scale. It is also implementable forstmaf the manufactured products
whereas other stages of variety realization haveerhmitations on product types. With
development of robotic and machine vision technielsgmany of today’s manufacturing
companies already adopted automatic or semiautonratiotic assembly systems.
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Different from the traditional transfer lines whiohajorly use delicate tooling, fixtures
and automatic machines to produce certain predéfipeducts, robotic assembly
systems with help of intelligent machine visiorexible feeding and material handling
systems can easily handle multiple products or eneliple product families’ assembly
tasks. These developments in flexible manufactuiefnology bring huge potentials on

high variety assembly systems development.

1.2 Research Objective

Traditional assembly systems are designed to watk wery limited kinds of
products, the changeover time form one produchtitteer will also significantly affect
the total system efficiency. In order to designaasembly system which will be able to
handle high variety products, there are several keghnical challenges and
corresponding research tasks can be identified:

(1) Variety modeling and propagation: High varigisoducts implemented in
assembly stage leads to high variety in assemiplingesses. In order to manage variety
propagation from design to production, it is logit@ model the variety in products,
processes and their correlations. The related reséasks are:

a. ldentify a suitable representation format for bgitoduct and process
variety;

b. Propose a solution to extract product and procassty information form
common company’s product database;

c. Analyze the relationship of product and processetar

d. Develop a mapping method to find suitable procemsety information

from given product variety information.
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(2) Process modularization: The key enabler towatseving customization in
assembly process is product modularity and postpenk strategies. The division of a
product into separate modules / components provitesneans to achieve high product
variety at lower costs. Modularity, as a varietyaleler, need to be applied in both
assembly process level and assembly system lelelrélated research tasks are:

a. Find key factors of a modularization decision tk#ects the quality of
high variety assembly system design;

b. ldentify evaluation criteria to quantify and evakidhe key factors of a
modular design;

c. Find the solution method to identify the optimake®bly process and

system modular design.

(3) Assembly system configuration: Assembly systemmally consist multiple
assembly units, machines or setups. To carry authtgh variety assembly processes
efficiently with minimal system changes is a keyatthieve a desirable production rate,
thus keeps low average production cost. The relaseharch tasks are:

a. ldentify the assembly system configuration repres@n method which
is suitable for optimization;

b. Identify evaluation criteria to quantify and evdkiathe quality of
assembly system configuration;

c. Find the solution method to identify the optimals@®bly system

configuration.

(4) Assembly operation planning: The consequencehigh product variety

manifests itself through an exponentially increasedber of process variants, which
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introduces significant constraints to productioarpling and control. The related research
tasks are:
a. ldentify the key factors that in a factory floor evption planning that
effects the performance of the whole system,;
b. Propose a method to enhance the system performamder the high
variety production scenario;
c. Find the solution to identify the optimal procesamnpfor factories dealing

with high variety products.

(5) Optimization for equilibrium solution: In higlariety assembly system design,
there are always multiple criteria which are cantiiig with each other, which is common
in such a complex engineered system. There is tmaikt solution which will provide
optimal results meet all the parties’ interest i@ cime. A joint optimization framework
is needed to reflect the conflict nature of thisckof decision making problems as well as
providing an equilibrium solution. The related rash tasks are:

a. Develop a optimization framework that will addreélse conflict nature of
assembly system design decision making problems;

b. Propose a solution strategy to solve joint optitideaproblem;

c. Formulate a solution algorithm suitable for highiety assembly system

design application.

1.3 Research Scope

The game theoretic optimization for high varietysexably system design is

proposed as a new paradigm to approach the reahzaf mass customization by



introducing game theory based decision making solutit attempts to bridge the gap
between the already well developed mass customizateories and manufacturing
enterprise practice. As shown in Figure 1.2, fitts¢, research is motivated by the current
merging business strategy of cost leadership affdreintiation, the volatile market
demands together with increasing global competitiequire companies to produce
customized products at low cost; Then the scopewardown to identify the realization
of mass customization in manufacturing floor, whistthe major challenge in this field
of research; Then in the third step, the key toqmasstomization realization is identified
as high variety assembly system. The traditionaihabne optimization methods are no
longer suitable for such multi-objective optimizatiproblems with equilibrium solutions.
A game theoretic optimization with modified genegigorithm solution is proposed to
solve such problems; In the fourth step, from tlesigh aspect of a product family
realization, an assembly process design framewdrkhwenables high product variety
through minimal tradeoff of cost and efficiencyfemulated. This is the key enabler of
achieving high variety in a given product familysam; Following in the manufacturing
phase, the assembly system design and layout @atilom which is suitable for high
variety production is proposed; In the sixth stafper all related design tasks in product
level and factory level are studied, the high ugreesssembly process planning method in
a factory floor setup is developed. Then as a wayalidate the high variety assembly

system design, a case study is conducted.
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Figure 1.2 Research scope and research methodology
Thus, the proposed research spans over the iniersexf game theory based
design decision making, assembly process desigendsy system design and process
planning by integrating fundamental principles fromltiple disciplines across domains

of engineering design, business strategy, and ptaausystems.

1.4 Organization of This Dissertation

Figure 1.3 presents the technical roadmap of thssedation, including
motivation & significance, problem formulation, kegcal approach, methodology &

solution, and validation & application.



Chapter 1 discusses motivation and significandisfresearch topic, along with
a holistic view of research goals and scope. Chdprovides a comprehensive review
of various topics related to this research.

Chapter 3 formulates the key problems of this me$ealt presents the
fundamental issues underlying high variety assersigbtem design. These fundamental
issues help providing insights into how to solventhsystematically.

Chapter 4 and 5 propose a technical solution fraonlevior the high variety
assembly system design problems. Chapter 4 intesdtiee game theoretic optimization
method and its formulation. Chapter 5 proposesddefollower genetic algorithm used
to search for optimal solution of game theoretitragation problems.

Chapter 6 to 9 reports the development of highetarassembly system design
starting from process variety propagation to as$gsystem process planning. Chapter 6
introduces a generic representation of product pratess. Based on this generic
representation, a product variety propagation seheproposed. Then a rule mining
application is introduced to find the relationsbifproduct and process variety in product
and process database. This rule mining result ésl is generate a mapping between
product and process variety thus provides propagatiethod to deliver process variety
items from any given product data. Chapter 7 repihwt derivation of different assembly
process design evaluation criteria which is usedjwantify the quality of a given
assembly process design. These evaluation crimmeaused as fitness functions in
assembly process design optimization. Chaptertr@daces a design structure matrix
based high variety assembly system layout desigthade which would deliver a

clustering decision based on given assembly prosessChapter 9 introduces a data
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driven architecture to formulate an online assenmscess planning framework which
could conduct real-time data acquisition and feeklbto support assembly process
planning decision making.

Chapter 10 presents a case study of the developmhéigh variety car connector
flexible assembly system. This case study is usehlidate the high variety assembly
system design framework and game theoretic optimizaolution.

Chapter 11 concludes the thesis along with disonssef research limitations and

future works.
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CHAPTER 2

LITERATURE REVIEW

This chapter is dedicated to the state-of-the-axtiewv for game theoretic
optimization of high variety assembly system desigased on the research scope in
Chapter 1, | will review various topics related ttos research in mass customization
applications, assembly system design, assemblyegsoplanning, and design decision
making. A framework of reference will be given firshat elaborates the topic
relationships among different research domains. lifhigations of the reviewed topics
will also be discussed, which lead to the propasedhods in different chapters in the

following.

2.1 Framework of Reference

As shown in Figure 2.1, this research mainly spdmee domains, including
business strategy, engineering design, and pramusiistem. In the domain of business
strategy, the major topic is mass customizatioateel business strategies. Both strategies
in design phase and production phase are revielamgineering design aims to build a
product with a specified performance goal. It usuhs a multi-step process, including
task clarification, conceptual design, embodimesgigh, and detail design (Pahl et al.,
2007). In this research, most related efforts igimeering design focus on process
representation and design decision making in eeging systems. So the different
representation methods of assembly systems ansialeenaking approaches in complex

engineered systems are reviewed below. Then iddh®in of production system, topics
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related assembly systems design and planning acestied, including assembly process

sequencing, system layout design and assemblypélaacing.

Business Strategy Engineering Design | Production System
A

» Mass customization strategy = = Representation of assembly | = Assembly process sequencing

in design system * Assembly system layout
* Mass customization strategy = = All-in-one decision making design
in manufacturing * Bi-level decision making = Assemnbly system line

\ J balancing

Figure 2.1 Various topics reviewed and their cqroegling domains

2.2 Mass Customization in Manufacturing Industry

Literatures on mass customization related to manufemg industries are
commonly presented in two categories: product desigfinitions to facilitate mass
customization and related manufacturing techniques.

Most of the literatures are focused on productgtegphase. Holtta-Otto (2008),
Dai (2007) and Du (2003) and their team proposethaus of modular identification to
find out products internal functional relationshigisd physical properties’ similarities,
which can support the possible customization opaties. Fellini et al. (2002) and Jiao
et al. (2000) also considered designer definedopadnce of product family into the
final variant design. Yeh and Wu (2005) use modlidsirability and cost as determinant
of the product modularization. Williams et al. (Z)0ntegrates customer demand, range
of variety and analysis of demand into a singlebfmm formulation. After product
modules being identified, the configuration of miedubecomes a challenge to avoid
“mass confusion”. Chen et al. (2010), Yang et 2D000) and Huang et al. (2008) explore

the development of product configuration methodwle-based, model-based and case-
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based constraints. Although most of the literatwt®sose product modularization as the
answer to mass customization enabled product deigne are also some researches
focusing on other solutions. Such as, Dai and S(2®04) propose methods for
identifying scalable components to handle the desigpllenges in mass customization.
As product modularization is capable of generaprmuct variety through the addition,
substitution and exclusions of modules, it is tr@stcommonly used method in product
design phase in mass customization. However, therityaof publication is emphasized
on product itself without considering the processdalarity which is also very important
in product realization in mass customization.

In the phase of manufacturing, mass-customized yatodften has higher or
additional requirements than a mass-produced ptdokcause of the increased variety
offered and the act of integrating the customeo ithte process of defining the final
design configuration (Ferguson, 2014). The relatedks in this area have two distinct
directions: production information management amgv rmanufacturing technologies.
Zhang and Efsthathiou (2006); Du and Jiao (200&)p &t al. (2000) and Tseng et al.
(2005) have papers on generation of Bill of Mate{f®0M) and routing information to
make production more efficient. Product and custordata management and the
management structure are discussed by Zhao andq2Bai); Waller (2004); Fan and
Huang (2007) and Wang (2009). Besides those workgrbduction information
management, some manufacturing techniques suchelestige laser melting by
Vandenbroucke and Kruth (2007), combining recomfigple molds and CNC machining
by Kelkar and Koc (2008), reconfigurable roboticsteyns by Bi et al. (2004) and

Zangiacomi et al. (2004) and rapid prototyping eyt by Bateman and Cheng (2002).
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Based on the review, we can see that many of teealures are investigating the
currently evolving additive manufacturing technigu/hich is yet to be widely applied
in industry. However, the traditional assembly epstis still the backbone of
manufacturing industry, which needs more attentmmllow a smooth transition from

mass production to mass customization.

2.3 Assembly Representation and Sequence

2.3.1 Assembly Representation

The first step in assembly system design is a pad analyzing the input
product information, both geometric and non-geoitetio obtain the necessary assembly
process information so that the subsequent asseplbhning task can work. Such
information is used to represent the assembly covps and hierarchy, and to generate
the sequences of assembly.

Many researchers have proposed graph-based assepl#gentational schemes,
such as location graph (Eastman, 1981), virtudl (lree and Gossard, 1985), constraint
graph (Wolter, 1991), relational model graph (DelldM@and Scaramelli, 1989), feature
mating operation graph (Huang and Lee, 1989), fanat relationship graph (Roy and
Liu, 1988), and part position and part relationweek (Heemskerk and Van Luttervelt,
1989). The basic concept is to store assemblyiesytieither parts, subassemblies, or
parts with assembly operations, as vertices inouaritypes of graph. The variety of
relationships between assembly entities, such asembivity, geometry, location, and
functionality, are characterized in terms of jompiedges between graph vertices. The

more generic and commonly used assembly represantatethod in industry is the
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BOM. A BOM generally lists all parts, subassembl®l materials, and also includes
other information such as quantities, costs andufaaturing methods. A BOM usually
has a tree-graph or tabular structure with hieiaet¢Hevel codes (Hopp and Spearman,
2011). It has been a standard communication toatdnstry for design, manufacturing
and purchasing, and has been integrated to Compided Design (CAD) and
Enterprise Resource Planning (ERP) systems.

The increasing product variety has led to new apghies in assembly
representation. They appeared in the literaturediverse forms. Among these, the
Product Family Architecture (PFA) has been onehef ¢xtensively studied topics. A
PFA was used to measure market position, commgnatitt manufacturing economy
(Tseng et al., 1996; Jiao et al., 1998; Jiao arahds1999; Jiao and Tseng, 2000; Jiao et
al., 2007). There are also researches aiming dveBOM to represent a variety of
products and processes, such as the concept ofiG&ieof Material (GBOM) (Jiao et
al., 2000; Hegge and Wortmann, 1991; Olsen, 19Bf7¢se GBOMSs use functional and
structural relations among components to repregeatuct variants. A variety of
representation methods were used including taldolans and programming language
based notations. Other hierarchical representaticare also used to represent product
families. For instance, generic subassemblies fogpr@duct family were used for
integrated product family and assembly system degide Lit et al., 2003). Liaison
graphs have also been adapted to represent prealiety. One such development is the
product family liaison graph that combines thesken graphs of product variants by
representing common components over different mtgias a single node. Thus, for a

family of products, the liaison graph can be madifio include both common and variant
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parts in the assembly. A product family liaison gfravas used to identify maximal
common subassemblies and a product-family assesdgjyence (Gupta and Krishnan,
1998).

The current assembly representations are limited terms of the
comprehensiveness of assembly information. For el@nthe usual BOM cannot
directly represent the complex physical assemblycgsses. On the other hand, the
assembly representations based on the liaison graph not suitable in representing
hierarchical functional structures. A new graphetletic assembly representation
incorporating product and process information is€essary to overcome the above

problems.

2.3.2 Assembly Sequence

The sequence of assembling parts and components @lkey role in determining
the quality of the assembled product, as well aserably process efficiency and
complexity. Determination of all possible assenmg#guences is an important and critical
stage in the total design process of a assembigraydesign.

Bourjault’s work (1984) used rules that are detesdiby a series of “yes” or “no”
guestions, which are answered by studying the maifncomponents for an assembly.
De Fazio and Whitney (1987) extended Bourjault's rkwvdoy simplifying the
determination of the set of rules, or precedenasesttaints, by using specific questions
about liaison precedence. Other work that takesamtdge of a computer aid in
determining all assembly sequences is the workhafska and Mattikali (1989). Kanai et
al. (1996) developed a computer aided Assembly &smpi Planning and Evaluation

system (ASPEN) that takes all the solid-model comgmbs of a product and
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automatically determines all feasible sequencesldgomposition and determines -
optimum sequence using Methods Time MeasurementMMas time standards fi
operating time determination. Choi and Z1998) developed computer aided autom
assembly sequence generation with their work ooraated sequence planning. Me
and Sanderson (1991) built upon previous reseayclrdating an assembly sequel
generation problem as a disassembly sequencdem. Dini et al. (1999) made use
the genetic algorithm to create and evaluate adyeselguences. They created a fitn
function which takes into account geometrical crists of the assembly and ott
optimization aspects and using their geneticorithm decreased the time 1
computation. Almost all assembly sequence generaftgorithms are based
sequential tasks. Consideration of assembly hieyaatiows parallel assembly sequel
and hybrid system configurations and such choieesbe exjored to simplify assembl

sequence generation and system design (Li etCdll,).
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Figure 2.2Example of different assembly sequer (Hu et al., 2011
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2.4 Assembly System Design and Balancing

2.4.1 Assembly System Layout Design

Assembly systems can be designed using variousitgy®he moving assembly
line introduced by Ford (2007) had a serial lay&utch systems, known as serial lines or
flow lines, were used for high volume productionac$ingle product type with dedicated
machines and material handling systems. To actiglevariety in an assembly system,
an efficient layout arrangement and material flosthpdesign are important due to the
large percentage of product cost that is relatedaterial handling (Yang et al., 2005). A
poor layout and flow path design can result in higaterial handling costs, excessive
work-in-process inventories, and low or unbalan@sgiipment utilization (Heragu,
2008). Luggen (1991) defined four basic layout gpmftions: spine, circular, ladder,
and open-field. A modern assembly system is usuadjyipped with an Automated

Material Handling System (AMHS) and computer nuedty controlled machines.
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Figure 2.3 Types of assembly line layouts (Yanglet2005)

20



Montreuil and Venkatadri (1990) consider the dymamanufacturing system and
provide an interpolative design approach. This waicknot force the cell shape as a hard
constraint. In addition, the distance measure useabt directional. Montreuil (1991)
proposed a modeling framework for integrating lady@amd flow network designs.
Chhajed et al. (1992) provided a detailed flow metwdesign on an existing layout.
Given a fixed single-loop material flow path, Wudakgbelu (1994) developed a
procedure to determine an optimal layout desigmalihis path. For this approach, the
flow path is known a priori. The decision is to etetine the flow sequence along this
path. Chittratanawat and Noble (1999) proposedtagrated approach for facility layout,
P/D location and material handling system desigih wqual-size department assumption.
Banerjee and Zhou (1995) designed a directed, esiiogp layout by sequentially
determining the flow sequence between machinesttamdayout of the machines. Kim
and Kim (2000) addressed an open-field type laydatning problem for facilities with

fixed shapes and P/D points.

2.4.2 Assembly System Line Balancing

In high variety assembly system, it will always dde handle multiple sets of
work elements or tasks, each having a set of pegmedrelations. The assignment of
tasks to an ordered sequence of stations in oodeatisfy the precedence relations and
optimize the effectiveness is commonly categoriasdan Assembly Line Balancing
problem (ALB). Performance optimization for ALB fnlems can be done by various
methods namely, by Heuristic, Mathematical Model{iMM), Design of Experiments
(DOE), Hypothesis testing, Analysis of Variance @WA), Analytical Hierarchy

Process (AHP), Linear Programming (LP), Data Enwelent Analysis (DEA),
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Simulation approach, and also by search algorithikes Genetic Algorithm (GA),
Simulated Annealing (SA), Neural Network (NN), A@blony Optimization (ACO),
Particle Swarm Optimization (PSO) etc. Shift tovgeattle use of GA is increased in
recent years (Rane et al., 2015).

The most commonly used heuristic approach in ALBlea@n manufacturing
techniques, which introduces a pull system witthartslead time and aim to eliminate
different kinds of wastes (Shah and Ward, 2003k Various lean techniques used are
ALB, reduced Work in Process (WIP), minimizing Nwialue Added (NVA) activities,
use of kanban pull system, Value Stream MappingMy Ruality Function Deployment
(QFD), World Class Manufacturing (WCM) etc.

Mathematical model plays important role in definimgathematical relationship
between input and output. It is an exact methodbafining the solutions to the system
under consideration. Adham and Tahar (2012) usednbBel and GA to minimize the
gueuing problem, idle time and regulate the workéta and Lin (2009) establish
multistage scheduling model of an auto vehicle mhiredel assembly line. The model is
solved by Lingo software and the optimal schedulosfgqueue was obtained. For
complex mathematical model, the concept of GA edu® generate processing sequence.

Simulation can clarify the exact nature of the é&@ifl between customer
satisfaction and cost-effective delivery of servidéenkat (2006) demonstrated the
significant role that DES can play in design oftoeifective system. Mixed model lines
offers increased flexibility. Bottleneck managemeah be used for optimizing manual

automobile assembly system. This was illustrateBéya and Chidzuu (2012).
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2.5 Decision Making Approaches

Balancing of multiple engineering decision makirsgcommonly achieved by
integrating the different engineering domains as singular optimization problem, such
that multiple design criteria are aggregated ime @ll-in-one” objective function (Luo,
2011). While multi-objective optimization approasheaddress standalone design
problems well, the decision making in a complexieegred system is related to coupling
of multiple decisions, which needs a synergy offlictiing goals of each individual
engineering optimization problem. The all-in-on@m@ach is often practically infeasible
in such situations due to computational and orgditinal complexities (Alyagout et al.,
2011). Optimization by decomposition has been dppe#or alleviating the problem of
handling a large number of design variables andtcaimts simultaneously (Kokkolaras
et al., 2006). Decomposed optimization largely vgavkly if the domain problem follows
a hierarchical decision flow. However, many prokdefa.g., product portfolio planning)
involving marketing-engineering concerns cannotrdrghically decomposed along
disciplinary boundaries. Coordination between rpldtiengineering decision makers
indeed implies equilibrium decisions, whereby d#éf® parties strive for different
interests and have to compromise with others teesehcommon solutions (Devendorf
and Lewis, 2011). A bi-level programming is becognimore popular method among the
engineering decision making approaches.

Bi-level programming, also known as bi-level optation, refers to the
mathematical programming model, whose constraio$ain sub-optimization problems.
It is first studied and proposed by Bracken and Mc(973). It abstracts a class of

hierarchical decision-making problems including tlkeader-follower decision-making
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problem. Owing to its wide practical relevance, thidevel programming theory has
become an important branch of mathematical progragwnNonetheless, it still has
many characteristics of its own. Normally, the upleeel problem contains optimization
functions or solutions of the lower level. As aulgsthe bi-level model itself is non-
smooth. Moreover, even linear bi-level programmprgblems are Non-deterministic
Polynomial-time hard (NP-hard) (Hansen and Savi®82; Vicente et al., 1994). When
the upper-level function contains an optimal solutiof the lower level, the feasible
region could be disjunctive. Currently, there a@gesal methods being used to solve bi-
level programming problems, including th&th optimal solution for special linear
conditions (Bialas and Karwan, 1982, 1984), thentinaand-bound method (Edmunds
and Bard, 1992), the method of replacing sub-probldy its Karush—Kuhn—Tucker
condition (KKT condition) to form a single-levelggramming problem (Fortuny-Amat
and McCarl, 1981), the method of using duality gepmalty function to form a single-
level programming problem (Anandalingam and Whit890), intelligent algorithms
(Mathieu, 1994), etc.

Due to the theoretical difficulty and computationemplexity in bi-level
programming problems, they are rarely used in malcapplications such as engineering
design. Roy et al. (2008) have a systematic suremyoptimization methods in
engineering design with 202 references, but n@well optimization is included. With the
development of engineering design, many importasigh issues have shown complex
structures with a leader-follower hierarchical teat which can hardly be tackled with
traditional single-level optimization models. Theldvel optimization is more widely

known from its increasingly important role. In rategears, there are some researchers
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investigating the bi-level programming problemsmgineering design applications. For
instance, Shabde and Hoo (2008) establish a cheprmduct design and process control
joint optimization model based on the bi-level pogming framework. Nicholls (1996)

applies bi-level programming in aluminum productmanning. Wang et al. (2008) use a

bi-level programming model to solve workshop prdducscheduling problems.

2.6 Summary

The topics reviewed in this chapter offer guidatsolve the fundamental issues
involved in high variety assembly system desigrthe next chapter. Considering the
limitations of various topics reviewed here, | ppep methodologies that can overcome
their respective limitations in Chapters 4, 5, 63,7and 9 to address a specific step of the

high variety assembly system design and its gae@ ¢htic optimization solution.
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CHAPTER 3

FUNDAMENTALSOF HIGH VARIETY ASSEMBLY SYSTEM

DESIGN

Recognizing the importance of assembly processigh kariety products, this
chapter examines the fundamental issues undergasgmbly system design for high
variety products, which includes formulation angresentation of process variety,
assembly process evaluation, assembly system lalesign and assembly production
process planning. Understanding these fundamessaés is crucial to this research and
each of them will be further discussed in laterptbes with consideration of game

theoretic optimization solutions.

3.1 A Holistic View

The key challenges for high product variety realigt@ough assembly system can
be viewed from two aspects: In product level, tbeus is on the derivation of an
assembly process design to allow efficient varggyeration, which involves a certain
product family design; In factory level, the foctigns to the realization of product
assembly process to produce high variety produdigh deals with one or more product
families in a certain factory floor. By further dilng the high variety assembly system
design issues with different phase of product zaéibbn, four contextual research topics
can be identified. Each of them can be viewed as mart of the logical process from
inputting a high variety product definition to dedring a functional high variety

assembly system.
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Figure 3.1 Fundamental issues involved in highetgrassembly system design

3.2 Process Variety Formulation

The first step of high variety assembly system giess to identify the necessary
process elements and their relations for a giveduymt architecture, in another word, the
mapping between the product variety to proceseiari

To utilize commonality underlying product diversapd process variation, it has
been widely accepted as a practice to develop ptddmilies, in which a set of similar
variants share common product and process strigcane variety differentiates within
these common structures. Traditional BOM is anceffit way to represent product
structures, but it needs unification and adoptommé¢al with variety. When it comes to
the variety in assembly process, the major chadlerige in the relationships between
diverse product variants and the corresponding ymoch process variations as well as
the selection of various operations alternativeshwespect to a large number of

functional requirements and their combinationso(&gal., 2000).
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The assembly process should reflect the flow ofenmaltthrough the production
process. By extending the BOM with adding varietgrgmeters and assembly
configuration constraints, it is possible to modifgditional BOM structure into a generic
variety structure which provides a concise way karacterize variant derivation at
different levels of the structure, variety param&te@and/or parameter values, for both
product architecture and process flows.

The derivation of product variety also requires emsable assembly process
representation. In the phase of assembly procesgrdand verification, there will be
over thousands of combinations of different produatiances coming from the same
level of quantity of assembly process designs. ilt e very time consuming for
manually derives variances from each different maddg process, the practice of
verification and evaluation would be even more tooasuming. As a result, an assembly
process representation which allows automatic geioer and test that can be reused for
all different products is key to the real life apptions of high variety assembly.

A generic mathematical representation of both pcobgariety and process variety
is also very important. In the decision making psx of assembly system design, the
mathematical representation of each design variendiuding information of both
product variant and its process variant, will béuadamental element for modularity
guantification and optimization in the followingusly. The research problem in process
variety formulation can be concluded as following:

a. Develop a concise and systematic variety representéor both product

and process variety;
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b. Formulate a variety propagation method from custaeenand to product
variety items;

c. Propose a method to identify the mapping relatigndhom product
variety to process variety, which can be used tovegrocess variety on

given product variety specification.

3.3 High Variety Assembly Process Design

Motivated towards delivering high variety at lowstothe idea of process
modularization is to reuse common assembly prosemseé resources. Process similarity
is the foundation of clustering analysis in its mladization. The objective of assembly
process modular design is to group related proseisse one module so each common
process resource can reach higher utilization wditide simplifying the whole process
flow into a modular system. On the other hand, éffeciency of assembly process is
equally important as similarity. A good assemblpgass modularization plan should
achieve efficient utilization of assembly resourasswell as maintaining its flexibility to
ensure a reasonable amount of varieties of prodtarntsbe assembled with the same
process design.

To deliver an optimal assembly process design fimgeof both flexibility and
efficiency is a challenging task without good ewion methods. Given multiple
schemes of assembly process design, an optimahaitee could be selected with
respect to different sets of evaluation criteriar Example, an appropriate assembly
process plan can be decided according to statuscofirse utilization (Tonshoff et al.,
1989), by shortest processing time (Kim and EghEd99; Jian et al., 2006; Leung et al.,

2010), in light of minimal tardiness (Weintraub &t, 1999), in terms of maximal

29



diversity of equipment engaged to fulfill all thabj (Saygin and Kilic, 1999), or based on
whichever achieves the lowest manufacturing cosartVet al., 2008; Haddadzade and
Farahnakian, 2009). Based on the nature of higketyanssembly systems for mass
customization, proper evaluation criteria with angoehensive effort of these factors will

be further discussed in Chapter 7.

As the process flexibility and efficiency are cortipg goals in assembly process
modularization, such decision making problem is mable to be described using
traditional all-in-one solution. This kind of deiis making problems will be addressed
in the introduction of game theoretic optimizationChapter 4. The research problem in
high variety assembly process design can be coedlad following:

a. ldentify a mathematical representation of procedan pto allow
guantification of assembly process design quality;

b. Formulate suitable evaluation criteria to quantif quality of a given
assembly process design;

c. Find a solution method to identify the assemblycpss design solution.

3.4 High Variety Assembly System Material Flow

Following the product and process representatiormdation and design
modularization, a suitable assembly process defsigra given product family can be
derived and evaluated. In product level, such mgtion will represent a full description
of how the product variety can be achieved in aem@bly system. However, if we look
at them in a production perspective, the produtiiliadesign incorporating high variety

and the corresponding assembly process is jusbbmany components and information
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that is merging into the factory floor. They can densidered as one of the inputs of
assembly system design task.

One of the major issues in assembly system is thengement of the multi
product and multi task material flow control andmiing. Traditional assembly systems
are lines of dedicated workstations in which paate added as the semi-finished
assembly moves from workstation to workstation. phes are added in sequence until
the final assembly is produced. Such assembly lareswidely used in industry since
almost 100 years ago when the famous Ford Modela$ mass produced. But such
assembly systems are normally limited in termsrofipct variety and flexibility.

Modern assembly systems should have the abilietd with slightly or greatly
mixed parts, to allow variation in parts assemhhyg aariations in process sequence,
change the production volume and change the desigrcertain product being
manufactured, especially in high variety assemlylstesns. Assembly system dealing
with high variety and high productivity must bexiele and efficient in material flow
path design. Taking these objectives as optiminagmals and searching for an
equilibrium solution, with consideration of phydicanstraints and stochastic demands is
a NP-hard problem. To solve such problem, a hecrgdtistering algorithm applied in
design structure matrix will be formulated. The alled discussion can be found in
Chapter 8. The research problem in high varietgragdy system material flow can be
concluded as following:

a. Define a material flow modeling method to represgmcific assembly

process plan design;
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b. Formulate an assembly process clustering analghisnsa to identify the
clustering trend of assembly processes in terntsest system efficiency

and flexibility.

3.5 High Variety Assembly System Process Planning

Assembly process planning is an important functioproduction planning and
control of discrete-part manufacturing. In factéeyel, the assembly process planning is
not only concerned with determining the sequence immfividual manufacturing
operations needed to produce a given part or ptpthut also determining the factory
equipment load balance and production schedule ngure a efficient equipment
utilization as well as meeting different customemands. Planning and using efficient
assembly processes across the whole factory femoactively contribute to the reduction
of a product’s manufacturing cost. However, du¢h® complexity and the multiplicity
of high variety assembly systems, the selectiothefappropriate assembly process plan
requires a high level of expertise and experiemoenfthe planner’'s side. Assembly
process planning is a time-consuming procedure asid result, the automation of this
procedure is necessary.

As product variants increase, variant-oriented mlagn of their assembly
processes becomes an important logical enablemioeost such a change on the assembly
system. Such assembly system dealing with mulppdelucts assembly at the same time
is normally called a mixed model assembly systdniak been recognized as a major
enabler to handle product variety. However, themdy process becomes very complex
when the number of product variants is high, whichfurn, may impact the system

performance in terms of quality and productivityh(Zet al., 2008).The performance of
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mixed model assembly system characteristics isrdbp# on product assembly process
design, assembly system layout and the demandrmsttieat the production system is
subjected to. In terms of automation solution afgess planning for such system, the use
of simulation is proving to be indispensable, sittee NP-hard nature of the scheduling
problem does not allow the identification of thetiofal solution within an acceptable
time frame. Toward this goal, Discrete Event Sirtiala (DES) with real time solution
capabilities is being investigated in Chapter 9.

For products with long life cycles produced in krguantities and often
assembled manually, time-consuming investmentsratgss planning are justifiable.
However, present market conditions and higher prodariety lead to much shorter life
cycles and smaller production volumes (Hu et @11). On the other hand, the final
production sequence is constructed step by stem wbperating the assembly process.
Thus, it is not the result of a single decision bfia dynamic or rolling process. As a
result, a new variety-oriented real time assemhdyming is required, and corresponding
real time data collection used for the online seioh and decision making becomes an
essential part. The research problem in high waassembly system process planning
can be concluded as following:

a. ldentify a modeling method to build simulation mbaé high variety
assembly system which can perform process plartasig

b. Develop a system architecture which allows proaunctiata acquisition;

c. Propose a dynamic high variety assembly system egso@lanning

framework.
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3.6 Summary

This chapter examines the fundamental issues wmagrhigh variety assembly
system design. These fundamental issues includiipr@and process variety formulation,
assembly process design for high variety produtsembly system layout design and
simulation, as well as assembly system processnpign Their interrelationships and
overall influence to the whole product life cyclé leigh variety products are also
elaborated. Such a profound understanding of th@sgamental issues provides us a
clear direction for a technical approach in thetrehapter. Research problems in each
fundamental issues are also identified, which v further addressed within the

methodology and technical approaches in the foligvahapters.
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CHAPTER 4

GAME THEORETIC OPTIMIZATION

4.1 Introduction

Engineering design decision making deals with weritradeoffs and constraints
involved in meeting the goals of overall problenivsw. Most enterprise-level planning
and engineering-level design decisions are typidaliegrated as a single optimization
problem that necessitates an all-in-one solutiaam@only multiple design criteria are
aggregated as a single-level objective functiom, dwample in the form of expected
utility on profit, revenue, etc. (Hazelrigg, 1998 practice, these kind of all-in-one
approaches tend to be infeasible due to the corpoush and organizational
complexities. While in many cases design decisiaking is enacted as one optimization
problem with multiple decision criteria, certainc®@on scenarios comprise multiple
optimization problems that are competing with onether and have to compromise to
arrive at equilibrium optima, and each of the omation problems itself may be
associated with a different set of criteria. Sugdtimization of multiple competing
optimization problems all together leads to a jomptimization problem. Joint
optimization problems are frequently observed imptex engineered systems that
involve diverse couplings of multiple sub-systenm&l dypically a joint effort of sub-

system optimization is required. This chapter pmese systematic formulation of a
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Stackelberg game theoretic optimization model ightvariety assembly system design,
which is a typical complex decision making problesth competing criteria.

High variety assembly systems design involves Iplltistages of design and
optimization that requires decision making dealthwiifferent tradeoffs and constraints
such as flexibility, commonality, utilization antroughput etc. It is very important to
leverage these attributes to reach a solutiontbigasystem performance, product variety
and cost can be optimized jointly. In order to de#h the joint optimization problems in
different stages of high variety assembly systesigie this chapter present a systematic
formulation of a Stackelberg game theoretic optanan model for assembly system

design evaluation.

4.2 Bi-level Optimization vs. All-in-one Approach

The most commonly adopted solution to deal with dpéimization problems
which have multiple disciplines is all-in-one opization. A modern engineered system
such as assembly system always contains more thansobsystem which leads to
multiple optimization goals in their design optimion process. It is assumed that all
subsystems can be aggregated to fulfill a gengstés optimization goal with common
interest. Then the optimization procedure of migdtipub-problems is combined to one
ultimate all-in-one optimization problem. The realion is normally weighted sum with
weights pre-defined based on domain experts orulzdés according to system
sensitivity derivatives. The advantage of all-ireasolution is obvious, the aggregated
problem is a single disciplinary optimization pret and there are plenty of mature

algorithms can be applied to find the global optima
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However, the assumption of all-in-one solution taltthe subsystems can be
coordinated and having common interest is not atwaye. Actually it is assuming the
design optimization is dealing with only one dompiblem with multiple objectives. In
high variety assembly system design optimizatibere are multiple domain problems,
such as assembly process flexibility and work etatitilization, which is competing with
one another. It is impossible and not reasonabléntb an ultimate goal for all such
optimization problems. The assembly process depiglem in terms of assembly
flexibility is trying to identify a set of assemb$gquence and the manufacturing resource
it uses in each sequence, so that the assemblggsr@et can be used to assembly the
product variants with minimal changeover effortnirachines and tooling. On the other
hand, the assembly process design in terms of res@llocation is trying to identify the
ideal resource allocation plan which will be fedsitor the given assembly sequence as
well as maximize the utilization to all assembly amiaes. These two optimization
problem are formulated in different domain of asknprocess design and serving
competing goals.

For a given assembly system factory floor resoyrttesse are different types of
machines and tooling which is capable of fulfillingultiple assembly tasks. And it is
common that some of the newer machines are maxilgewhich have less impact to
the total system changeover, while the other ase flexible which are faster for some
delicate job but takes longer time to changeovgust following the assembly flexibility
goal, all assembly process should be done on tret attvanced and flexible assembly
machine, which will results a very low efficientsambly resource utilization, thus cause

a high assembly cost and low productivity. Howewvérjust following the resource
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utilization goal, some of the assembly process si#fers from very long changeover
time due to using a non-flexible assembly processroduce high variety products with
many changeover requirements.

Based on the traditional all-in-one approach, cme wse utility theory and try to
convert both assembly flexibility and resourceizdion into the same utility measure
and then solve both optimization problems at okt®wever, there are several reasons
which make it infeasible in the case of high variassembly system design in terms of
assembly flexibility and resource allocation:

1) The feasible region and solution space of assembbdgess plan and
resource allocation plan are dependent on eaclr,ottiech means the
solution for assembly process flexibility is coastt of available resource
allocation plans and vise versa. And their corretatis implicit. As a
result, it is infeasible to aggregate both optii@a goal functions into
one single utility function;

2) Fidelity of an all-in-one utility function to repsent both assembly
flexibility and resource utilization is hard to Wfgr and in many cases, it
also suffers from computational and organizatiac@hplexities as they
are optimization problems from different domairassembly system.

3) The determination of assembly process plan in teohsassembly
flexibility and resource allocation plan in termisresource utilization are
non-cooperate games, which will not have an optigedlition, tradeoffs

must be made to reach an equilibrium solution. Saphmization of
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multiple competing optimization problems all togatheads to a bi-level

optimization problem.

As a result, the decision making problem of highietst assembly system design
in terms of assembly flexibility and resource atliion falls into the bi-level optimization

category which one optimization problem is embedgedted) within another.

4.3 Leader-follower Decision Making

In order to better represent the competing natdirth@ multiple disciplines in
structural design optimization, a leader-followeinj optimization model can be used. It
is originated from Stackelberg games (Von Stackglbd952). A game theoretic
optimization problem can be formulated as a twelesptimization problem between
two decision makers. Each decision maker knows tetelyp the objective functions and
constraints of the other. The upper-level decismaker (leader) announces his decisions
to the lower level (follower). And then the followenakes his specific decisions and
feeds the decisions back to the leader. The basm bf leader-follower optimization
coincides with the Stackelberg games. A Stackellsme solution deals with the
interplay of two self-interested decision makersovdecide sequentially, implicating a
mathematical program that contains sub-optimizagooblems as its constraints. In
general case, the objective values mutually depemdhe choices of the other party.
Technically, the follower’s role can be seen asisgla parametric optimization problem,
whose parameters are determined by the leaderSidukelberg model originated from
strategic games in economics, it has been usedutty sequential decision making

problems in diverse fields. This obtained problesnai special case of Mathematical
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Program with Equilibrium Constraints (MPEC), a terotogy widely used in the
literature nowadays. The problem of the design oltirRstage, multi-product high variety
assembly system under multiple pre and post-camditand constraints is investigated in
this research. The problem is of NP-Hard computalicomplexity. To demonstrate that
a problem is in the class of NP-Hard complexitys icommon practice to depict that it is
at least as hard as another proven NP-hard profikamey and Johnson, 1979).

In a leader-follower optimization process, as showirigure 4.1, each decision
maker adopts his own strategy to optimize its oayoff. In general case, the objective
values mutually depend on the choices of the qihdy. Technically, the follower’s role
can be seen as solving a parametric optimizatiavblem, whose parameters are
determined by the leader. The followers and leag¢mization alternately, producing a
design improvement in each iteration. By startirant a best guess of initial design, the
model improves design in iterative cycles, eachecgomprises two steps. In step one,
the lower-level variables are frozen and the improent is achieved by upper-level
optimizations. In step two, further improvemensaight in the space of the lower-level

variables. After enough iteration, an equilibriuatusion will be reached.
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This two-person game is introduced by Von Stackgll§#952) in the context of
unbalanced economic markets. In this model, thergbiof the decision variables is
partitioned among the two players. Each player seéeloptimize his objective function.
The leader goes first by choosing a vector in a@engit to optimize his objective
function. In doing so, he must anticipate all pbksiresponses of the follower. The
follower observes a leader’'s decision and reactsdbycting a vector that optimizes his
objective function. Because the set of feasibleicd® available to either player is
interdependent, the leader’'s decision affects Ila¢hfollower’'s objective and decision

space and vice-versa.

4.4 Mathematical Formulation

Game theoretic optimization represents a frameworkthe analysis of joint
decisions problems. A game theoretic optimizatioobfem is described as finding a

good decision without knowing exactly in which st#te environment will be when this
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decision is implemented. The leadgr has ans-dimensional design variabl€ O R®.
The follower F, has at-dimensional design variab OR' . Then the game theoretic
optimization formulation can be represented a®vedt
Min R, (X,Y"), (4.1a)
s.t. G,(X,Y)<0XOR, (4.1b)
wher&/*is an optimal solution of the leader’s perceptidrtle follower’s decision on
solutior¥, andY solves:
Min, F_(X,Y), (4.1c)
s.t. G (X,Y)<0,YUR, (4.1d)
whereG, and G are vector valued functions of dimensipnand g, showing the
constraints. From Eq. (4.1), the constraint regbithe design variables can be denoted
as Q={(X Y):G,(X Y) <0,G (X,Y)<0,XOR’,YOR'}. The projection ofQ onto
the upper-level design space gives the feasible der X, i.e,,
U ={XOR®: 0¥ OR, (X, Y) OQ} .Then the lower-level rational reaction set %U
can be defined aR(X) ={Y OR": Y Dargmin{F (X, Y):G, (X,Y)<0}} . A feasible set
that at least when the lover-level optimization eldtas a unique optimal solution for all
values ofX is called an inducible region, which is defined as
IR={(X Y):(X,Y)OQ, YORX)} . (4.2)
Additionally, with the assumption th&(X) is single-valued, which implies that

there exists a unique response functior Y '(X), an optimal solution to Eq. (4.1) can

be found, which is denoted éX,Y").
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In general, the solution of the game theoreticroation leader-follower model
can be realized in three steps:
Step 1. The leader makes a decisknaccording to the leader’s own strategy

F, (X,Y), then announces the decision to the follower @&iffet of constraints;
Step 2: The follower makes a decision subject sodwn strategyr, together

with the leader’s decision, then feedback the fdds feasible solution

Y =Y (X") to the leader;

Step 3: The leader adjusts its decision to obtaieva X " base on the follower’s

feasible solution.

These steps are iterated until a satisfactory resalrived for both the leader and
the follower (Ji et al., 2013). The game theorejitimization problems coincide with
two-stage stochastic programming with recourse Bba2006).Whereas deterministic
optimization problems are formulated with known graeters, real world problems
almost invariably include some unknown parametérsa deterministic optimization
problem, the goal is to find a solution which iadtble for all such data and optimal in
some sense. Stochastic programming models areasimistyle but take advantage of the
fact that probability distributions governing thata are known or can be estimated. The
goal here is to find some policy that is feasilie dll (or almost all) the possible data
instances and maximizes the expectation of sometitum of the decisions and the
random variables. More generally, such models armilated, solved analytically or
numerically, and analyzed in order to provide ukgfiormation to a decision-maker. In
the decision process, two different kinds of dexisiare distinguished. The first stage

deals with “here-and-now” decisions. Hence, deaisiariables representing “here-and-
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now” decisions do not depend on each single rdaizaf the random variables. The
second-stage corresponds to “wait-and-see” dedsibat are made after knowing the
actual values of the random variables. Consequetithse decisions depend on each
plausible realization of the random variablesatidom variables are represented by a set
of scenarios, a second-stage decision variable|ldhioe defined for each scenario
considered. The above steps, wherein the decisiamade after uncertainty is cleared,

thus constitute a recourse problem.

4.5 Game Theoretic Optimization Framework for High Variety
Assembly System Design

In order to identify a practical game theoretic imitation framework, the
original Stackelberg competition game model willdiaalyzed and used as a foundation.
Then with the general assumptions of high varisgeably system design problems, the
framework suitable for this research will be deypeld and applied to each stages of

assembly system design decision making in theviatig chapters.

4.5.1 Stackelberg Competition Model

The Stackelberg competition model is a strategrogga economics in which the
leader firm moves first and then the follower firmmve sequentially, which can be
solved to find Nash equilibrium. The Nash equilifoni is a solution concept of a non-
cooperative game involving two or more players ihich each player is assumed to
know the equilibrium strategies of the other playemd no player has anything to gain

by changing only his or her own strategy (Osboma Rubinstein, 1994).
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To demonstrate the Stackelberg competition model¢can construct a simplified
market model. Assuming there are two companiesymiad a similar product which
meets identical customer demand. One of the corapasithe leader who will make its

decision first, by determining its production quant,. The other company is follower
who will observe the leader’s action and make dewcibased on the leader’s output, their
production quantity is denoted ag, . By using a simple linear price model
P(Q)=a-bQ , the product's market price can be rewriteP4g,,q,) =a—bqg,—bq,.
Assuming the two companies total cost can be ptedey C(q)=cq, and
C(g,) =¢,0,, and using the economic profit function= P(Q) [@Q - C(Q), the maximal
profit of the two companies from selling the protdwould be:

Max, 7z = g,(a—ba, —bg,—-c,); (4.3)

Max, 77, = g,(a—bg, -bg,-c,) . (4.4)

In order to find the Nash equilibrium, it is typilyato start at the end of the game

and work backwards. Since the leader moves firstcan takey, as given, find the best
responseq, and then back-up and consider the leader’s chgicen this case, it is

obvious that the optimal solution to the followsr i

* a—Qg —cC
o =%- (4.5)

Substitute Eqg. (4.5) into Eq. (4.3), a solutionhis problem can be obtained.
However, in the real-life cases of assembly systlmsign, most of the design
evaluation criteria are implicit and cannot sohaexhlytically. Furthermore, many design

solutions are combinational sets of assembly psssesr workstations which don’t have
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a mathematical equation form. In order to solvehguoblems, a more generic numerical
solution framework should be used. To demonstrage riumerical solution to this
problem, the two companies Stackelberg competitnmael example are further solved

numerically, the solution can be found by followistgps:
Step 1: Leader selects a value of follower's préiducquantity go within the

constraint;

Step 2. Leader solves the upper-level optimizatioproblem
Max%zg:ql(a—bql—bq';‘l—c]) to find the optimal solutiony’, n equals to
current iteration level;

Step 3: Follower uses leader’'s solution as inpul anlves the lower-level

optimization problem Max, 7z, =q,(a—bg; -bg,-c,) to find the optimal
solutiong, , n equals to current iteration level;
Step 4: Ifqf —q) <€ and g —q) " <&, wheree is the convergence limit, the

iteration will stop andy, g, is the Nash equilibrium solution to this problem.

Otherwise, go to Step 2.
By assumin@ =5000, b=1 and using different values, the results of the two

company Stackelberg competition model solutionshewvn in Figure 4.2.
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Figure 4.2 Numerical solution to a two company k¢ttwerg competition model

This example is a simplified game theoretic optatizn problem, which actually
would be faster to find an analytic solution tharfind a numerical solution. However,
when the cases move to the high variety assemishgsydesign, most cases would be

depending on the numerical solution framework a&sethis no analytic solution or its

computational load is even higher.

4.5.2 Game Theoretic Optimization Framework

In conclusion of the solution process to a gengeahe theoretic optimization

problem, Figure 4.3 shows a proposed generic soludtamework for game theoretic

optimization.
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Pass follower’s
decision to
follower

Solution

Figure 4.3 Game theoretic leader-follower optimmaframework

The initial assumption of follower’s response woaftect the starting point of the
optimization in entire feasible region, and thusynadfect the computation time for
reaching convergence and may also lead to diffesptinization result if there is local
optima exists. The traditional way is to start fraraero vector or origin. However, using
domain knowledge to interpret the follower’'s resporand start from the “best guess”
can help to reduce computation time in certain £adsing a simplified evaluation of the
objective function could also help to find a be#tarting point, although which is limited
in most complicated cases.

In terms of searching for optimal solutions in bddader's and follower’'s
optimization problem, there are many algorithm tkatld be used. In design and
decision making of high variety assembly systemms nhost common design variables are
process sequences, workstation sequences, jobsoed& so on, which is mainly
combinational variables. In this kind of optimizati problems, GA is known to
consistently produce better results compared tsethproduced by other techniques. In
Chapter 5, the use of GA to solve game theorettonigation problems for assembly

systems will be further discussed.
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The search algorithm will run multiple iterationstii a stopping criteria is met.
The stopping criteria could either be a maximunnatien number or a convergence is
reached. Due to the implicit nature of optimizatoon assembly system design,
traditional convergence detection methods such radignt norm condition or KKT
condition is not applicable. A convergence limihdae used to determine if the search
algorithm reaches a convergence with certain toleaThe convergence limit will need
to be set based on optimization parameters of GAdifferent mutation rate and
crossover rate will affect convergence speed. A dmd/ergence limit could cause the

search algorithm to be stopped too early or nexa&ch convergence.

4.6 Summary

The original achievements in this chapter can melcoled as followings:
1) The leader-follower decision model and mathematitadiel is suitable to
describe the non-cooperative game in high varisggmbly system design;
2) The numerical solution method proposed is capableotve the implicit

leader-follower optimization problem using Matlab.

As a summary, this chapter proposed a generic gdueeretic optimization
framework to solve high variety assembly systemigieslecision making problems.
Based on the nature of assembly system design,maahsolution with search algorithm
is selected to solve the combinational decisioningakroblem. An example of solution
to a traditional game theory problem is used towshtbe basic concept, further
applications and cases of this optimization framdwwill be discussed in the next

several chapters.
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CHAPTER S

SOLUTION TO GAME THEORTIC OPTIMIZATION

To find an optimal solution of the game theoretmimization based on the
numerical solution framework introduced in last utes, a suitable search algorithm is
needed. Search algorithms define a design optimaizgiroblem in terms of a search
problem where the search space is a space filldd avset of points. Each point in that
space defines a solution, which will be either ssembly process sequence or a machine
utilization plan in this research. The design optation problem is then transformed into
the problem of searching for the best solutionsesghere in the space of valid ones. The
whole procedure is composed of three steps, whigh(&) define the problem and search

space, (2) fix the goal of search and (3) use &aodketo reach this goal.

5.1 Genetic Algorithm Formulation

There are several reasons for using GA for desigblpms. GA is just one of
many methods known in computer science (Pirlot,2)9R is not easy to define exactly
which of these methods is best for the game thieasptimization problems. However, it
is possible to identify methods that can consisfgmtoduce better results compared to
those produced by other techniques. Rather thandspge time, and effort developing
new specialized techniques for new problems, mestldpers prefer to reuse proven
algorithms.

GA is a stochastic global search optimization atgor that mimics Darwin’s

theory of biological evolution. The idea behind @&Ato use this power of evolution to

50



solve optimization problems. GA works on the comip@s of genetic traits called

chromosomes, in which successive operations threuggsover or mutation give rise to
better performing off-springs due to successivaeshent of these hereditary traits. GA
works with a population of design solutions an@drio find the best solution. Search
algorithms like SA, PSO, ACO are also used formation but GA is most popular as
it is more efficient and consistent in solving canational problems which is common in
assembly system related design. GA is also usedsdbring discrete optimization

problems with application in statistics for the iahie selection problems in regression
and other multivariate statistical methods. It leen widely employed for tackling

problems related to manufacturing network desiggijstics and shop-floor scheduling

problems.

5.1.1 Representation of GA

In tackling a search problem over certain spacepadsible solutions, it is
necessary to construct a representation of theilppessolutions for manipulation and
storage. Thus, before applying a GA to any desigblpm, a certain mapping between
the design combinations and the evolutionary meswadtion points must be made. In
order to facilitate the use of GA, some terminoésgmust be introduced. The points in
the search space are known as phenotypes, whilerdpesentatives in the solution
space are known as genotypes. The structures osegpitesent genotypes are known
variously as genomes or chromosomes. The genotyeeifisally refers to an
individual’'s genetic structure. The phenotype refer the observable appearance of an
individual. The process of producing a phenotypemfra genotype is known as

morphogenesis (Rekiek and Delchambre,2006). As showFigure 5.1, the mapping
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between genotypes and phenotypes reflects the n@pgmtween physical assembly

solutions and GA chromosomes combinations in #sgarch.

I 1 1 1
| Phenotypes | : Genotypes i
i (Assembly Process) i Encoding i (Binary Chromosomes) i
| | — |
! i : [1Tofofol1]o+[ofo]+]ofo]]o] i
: : : [lifel+Tofol+Jol a4 4o o]s] |
: : Decodin | i
! ! <_—g : Ltleofe]v]o]1[e]o]+[o]eft]of 1
1 | 1 1
: i i CTo[ oo v e n e e o o] |
Solution Space Search Space

Figure 5.1 Mapping between solution space and kespace

Generally, the phenotype will be encoded into atdiength string called
chromosome. And each element of the string whichalted a gene will represent a
construction unit of the phenotype. In order toie@eh an efficient use of GAs, the
encoding must be adapted to the particular searoblgm at first. Using a good
representation is the first step to narrow the befween theory and practice in the
context of engineering optimization (Culberson, 899In the case of high variety
assembly system design, it would be a single adyguniicess or a work station.

Obviously, the search result from the mapped sespalbe would have chances to
be infeasible in the solution space. To deal witis problem, there are four different
basic strategies: rejection, repair, modifying gjemetic operator, and assigning penalties
(Gen and Cheng, 2000).The rejection strategy sirdiggards all infeasible individuals,
which will apply to all GAs, but leads to a wordéigency and sometimes leads to high
computational complexity. The repairing strategyempts to create only feasible

solutions. For some problems, genetic operatordbeamodified so that they create only
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feasible solutions. Finally, penalty functions denused when infeasible solutions can be
recombined to form feasible ones. As GA is manipudpa coding of the solutions, not
solutions themselves, it is obvious that the onerte correspondence mapping is the
best one in which each solution is represented Xagctyy one chromosome and each
chromosome decodes exactly one solution of thanadigoroblem. The n-to-1 mapping

suffers from a lack of detail because some infoiomais hidden from the GA.

5.1.2 General Solution Processes

All the variations of standard GAs are united bgoanmon thread. The GAs work
with a certain number of chromosomes. The setdividuals (solutions, chromosomes)
of each generation is called a population. Chrommesoare characterized by their fithess
and evolve through successive iterations (genergitioA population of solutions is
maintained and the evolution plays the role of #alegn of a population to its
environment. This adaptation causes the creatioma¥iduals of increasingly higher
‘fitness’. The best solutions are selected for edpction of every generation and the
offspring are then generated from these fit paresisg crossover and mutation. Thus,
evolution drives the population of better indivitki@John, 1992).

The standard GA solution process can be summabigdide following steps:

Step 1. Construct the GA encoding to representstblation space. GA can

operate on any data type (representation) whickrates the bounds of the

search space. It is desirable that the representatan only encode feasible
solutions, so that the objective function (fithes®asures only optimality and not

feasibility;
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Step 2: The initial population is created duringiamialization phase and it is
often generated randomly. Generally, some domagwladge is used by GA to
start the search from a promising region of thectespace;

Step 3: Every member of the population is thenweatald and a fithess value is
given according to how well it fulfills the objeeés. A fitness function is used to
perform the evaluation in order to find better siolos;

Step 4: The GA selects individuals with a higheerall fithess when picking
‘parents’ from the population. Then, these fithessres are used to determine
which individuals will have more probability to parpate in creating the new
population;

Step 5: Based on the fitness values, the GA seleatslidate solutions and
combines (crossover) the best traits of the paterppsoduce superior children;
Step 6: A small part of the population is mutat8ohgle existing individuals are
modified to produce a single new one. However, sonas it is likely to produce
harmful or even destructive changes than beneficias;

Step 7: Natural selection ensures that the weakeatures die, or at least do not
reproduce as successfully as the stronger ondbelsame way, a population is
maintained with the fittest solutions being seldcti®r reproduction. New
generations are formed by selecting some paremto#spring and rejecting the
less-fit ones;

Step 8: A generation is a population at a particikration of the loop. This
iterative process (selection, crossover, etc.)ioaes until the specified number

of generations is passed, or an acceptable solnisremerged.

54



5.2 Leader-follower GA for Game Theoretic Optimization

As the GA is more capable of solving the multi-mlodptimization problems
which are always seen in the real life, comparinth wraditional calculus-based or
approximation-based optimization techniques, GA eexm solving combinatorial
optimization problems. Taking the advantage of Githwecessary modifications, | can
develop a solution schema for game theoretic op#ition of high variety assembly

system design, namely the Leader-follower GenelgoA&hm (LFGA).

5.2.1 Quantification and Encoding

In order to be consistent with the game theoretclér-follower decision making,
two kinds of chromosomes are composed: the Uppet-Ehromosome (ULC) and the
Lower-level Chromosome (LLC). Each chromosome re@esentation of a solution to
the optimization problem. In a game theoretic ofation, a selected ULC would
normally leads to several LLCs and follower shosédect the best LLC as response to
the leader. The encoding scheme is shown in Fig2re

ULC: Upper-level Ch
(T2 12 23T31111] uee  wic: Loverievelchromosome

[]1]o]t]ofoJofo]1]1] [o]o]2]o]2[2]o]o]o]o] [s]o]oo[0]o]3]5]o]0]
LLC1 LLC2 LLC3

Figure 5.2 LFGA encoding scheme
Take the high variety process design and procesmplg optimization problem
as an example. Given a product family that has rabas of m component parts to be
assembled, each product variant could have multiptembly process designs. First, the

process designer creates multiple assembly praeésseach variant, forming a process
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set. When all part process sets are generatedyuid candomly pick a process plan in
each set to generate an assembly process soltitiem. he should evaluate all process
solutions and sends the one producing the highesteps commonality index to the
process planner for further resource allocation paud sequencing. Among all resource
allocation plans and part processing sequencegqrtoess planner could find a solution
which can achieve a maximal resource utilizatiale.r8ut this solution will influence
setup time and sequencing flexibility, and in taffect the value of process commonality
index that is relevant to the process designeriscem. The process designer and the
process planner constitute a typical leader-follodecision-making scenario, whereby
the leader's goal is to maximize process commonaitd the follower’'s goal is to
maximize resource utilization. Iteration betweea lkader and the follower coincide with

the game theoretic optimization of process commtynaihd resource utilization.

X=[X1f X, x, ], f 1
0 1]of1/0fo]o|.|1]1] X =[x, ., x,]
e ———
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Figure 5.3 LFGA encoding for process design andptag game theoretic optimization
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As shown in Figure 5.3, the ULC is a selected pscsolution for the entire

product family, which is denoted as={X, ---X,,---X,} , whereX, is the assembly
process design of theth product variant. One or several elementXjnrepresents a

certain assembly process to assemblekttte product variant. Normally each process
design will results in one or several assembly @ss@lans and resource allocation plans.
A selected process plan and resource allocation pteown in LLC is denoted as

Y, ={Y, Y. Y.}, whereY, isthe selected process plan for k& product variant.
Assuming there will bem, work stations involved the assembly of productiargrk,
Y, (JUR,m]) represents the resource allocation plan of woskticst j for product

variantk.

The encoding of genes which form the fundamentinehts of ULC and LLC
are determined on the domain problems. In the caassembly process design, it will be
the assembly process ID number in binary formatd Anthe case of assembly process

planning, it will be work station ID or machine B binary format.

5.2.2 Initialization and Population

At the beginning, the population is generated ramlglo Corresponding to the
game theoretic optimization framework, it involveso initialization stages, i.e.,the
upper- and lower-level initializations. At each égvafter the initialization, the evolution
should make extremely rapid progress at first. déajlenost solutions are largely different
and belong to different areas of the search spauer time, the population begins to

converge, with the separate individuals resemt#imch other more and more. The LFGA
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narrows its search in the solution space and redineechanges made by evolution until
eventually the population converges to a singlatgmi.

An important parameter in this step is the popaiatisize. Normally the
population size is kept as a fixed humber so therdity is guaranteed in a certain level.
A number of population updating modes are used An The main approaches are the
steady-state update and generational update. Aragjemeal update scheme is a
population maintenance mechanism in whickhildren are produced from a population
with sizeN to form the population at the next time-step. Trieésv population of children
completely replaces the parent population. In @stirin the steady-state approach, a
single child is produced at each time-step whighlages a single member of the old
population. The most straightforward way to maimggopulation diversity is to increase
the population size. In large size problems, howevestrictions on the computer
resources, such as time and memory, make it irfieagd run GA with the population
size needed to maintain the required diversitythicases of the following chapters, the
generational update method will be used as it hasueh faster convergence speed,
which is very important for game theoretic optintiaa solutions, as the leader-follower

decision structure based LFGA have more iteratibas normal GA.

5.2.3 Fitness Function and Selection Method

A fitness function is necessary to evaluate theefis value of each chromosome
within the population of each generation. Good ofwsomes should be exposed to more
opportunities to be selected as a feasible solutidmereas poor ones should not be
selected at all. Generally speaking, the fitnesgtion is the evaluation criteria that

determines which solution should be selected teehmere chance to be kept until the
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end of GA, when only the optimal solution is lefit. an optimization problem, such
criteria will be the goal function. A fitness lamdpe is a set of points in n-dimension
space (hyper-surface) obtained by applying thee$gnfunction to every point in the
search space. To optimize a function efficienthe fitness function must be clearly
defined and higher fitness individuals must be iexpl promoted. Sometimes a certain
simplification is needed as this fitness functioill Wwe used a lot in the iterations of
LFGA. As a result, if any other ability besides tifjtness is desired, LFGA must
directly encourage the formation of individualsiwihe desired ability.

Darwin defined natural selection or survival of fiteest as ‘the preservation of
favorable individual differences and variationsdaie destruction of those that are
injurious...” (Darwin, 1963). When selection is tlbaly mechanism in GA between
generations, the best individual is eventually cel@ to completely take over the
population. The selection mechanism determines twimdividuals will have all or some
of their genetic material passed to the next geioeralhere are many selection methods
in GA, such as the elitist model (DeJong, 1975)jcWhries to reduce the stochastic
errors of the selection mechanism. This is doneatvgducing a count for each solutisn
initially set to thef(s)/ f value (f(s) is the fitness value of solution s arfdis the
average fitness of the population) and decrease@.®yr 1 each time the solution is
selected for reproduction with crossover or mutati@spectively. Thus, when a
chromosome count falls below zero, the solutionadonger available for selection. The
more widely used selection method in GA is the Rtial Wheel Selection (RWS)
method (Golberg, 1989). The RWS technique works &kroulette wheel in which each

slot on the wheel represents an individual of theybation. The size of each slot is
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proportional to the corresponding individual fitegsvhich implies the probability of
being selected is proportional to the quality of golution. Another method is called
ranking selection (Fonseca, 1995), which is simitathe RWS, however, the solutions
are selected proportionally to their rank ratheantho their evaluation. As shown in
Figure 5.4, for five different individuals, RWS eetion probability is based on their

fitness, and ranking selection probability is basaedheir rank and ranking distribution.
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Figure 5.4 Comparison of RWS and ranking seleatethod

The trade-off between exploitation and explorai®generally viewed as one of
the key features in an effective search. It is Wwidsccepted that a higher selection
pressure leads to fast convergence, but also sesethe likelihood of premature
convergence, which leads to a local optima. On dtieer hand, very low selection
pressure increases the run-time and can causdailime to improve solutions. Among
the mentioned methods, the elitist model has tlyhdst convergence speed but the
threshold factor is hard to leverage in applicaionhe ranking selection method will
help to explore more feasible regions but turnsedard to converge. This is because the

lower fitness population will always have certalmances to be selected no matter how
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low their evaluation values are. RWS is used is thsearch as it shows the best leverage

amount all the selection methods.

5.2.4 Genetic Operators

The selection mechanism does not introduce anyswutions for consideration
from the search space. It just copies some sokitiorform an intermediate population.
The second step of the evolution cycle is the rdsonation which takes the responsibility
of introducing new individuals into the populatidrhis is done by the genetic operators:
crossover, mutation and inversion. Thus, togetbewssover, mutation and inversion
allow LFGA to discover fit, short and low-order sbbns over time.

The most popular mechanism is where two individuais selected and are
crossed over in order to produce new offspringaghdteration. The aim of crossover is
to produce new solutions in regions of search spdwre successful ones have already
been found. There are many variations of the ckessoperators, the most common ones
are the ‘P-point crossover’ and the ‘uniform crossd(Rekiek and Delchambre, 2006).
In the P-point crossover, each parent is divided dbcations intoP+1 contiguous
sections, numbered from 1 B*1. Two offspring are created by exchanging evelg o
section between the two parents. The uniform cressocan be thought of as a P-point
crossover, wher@+1 is the number of genes in each parent. There&aeh gene is a
section and every section is probabilistically iotenged between the two parents. The
crossover gives LFGA an advantage to perform betian other algorithms. Without
crossover, LFGA lacks the additional instrumentthim SA or the Tabu Search (TS) like

temperature, Tabu list.
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Mutation is a mechanism that has only a small chasfcoccurring in LFGA,
which tends to produce more infeasible results thath normal GA due to the
combinational nature in LFGA encoding. The standardtation operator randomly
perturbs offspring composition by changing a smalnber of alleles. Unlike crossover,
mutation is a unary operator, and only acts omglsiindividual at one time. Some GA
uses only the mutation operator and do not perfany recombination. These GA are
roughly equivalent to running many SA algorithms parallel. Mutation maintains
diversity in the population and thus helps LFGAréaluce the chance resulting local

optima.

[1]1]2]1]2]2]3[3]1]1] [1]1]2]4]4a]2][1]3]1]1]

L] —
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(a) Choice of crossover site (b) Children by crossover

[1[1]2[a]4]2[1]3][1]1] == [1]1]2]4]4]5[5]2]4a]1]

(c) Choice of mutation site (d) Child by mutation

Figure 5.5 Crossover and mutation operation
Inversion is used to mitigate a drawback of thessower operator. Since the
crossing sites are picked at random, longer salusiets are disrupted more often than
shorter ones. Whenever one of the crossing sitlsslfetween the genes which define a
solution set, the child will inherit only a part tfe solution set. This has a very high
chance to happen in LFGA as many of the solutida seassembly systems are long
gene sets and an infeasible solution is very likelyoe reached by cutting these sets.

Inversion allows shortening of long solution setregrranging the positions of loci on
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the chromosome. In the standard inversion operatar sites are selected at random and

the order of the loci between the sites is reversed

5.2.5 GA Solution Process for Game Theoretic Optimization

The solution process of LFGA for game theoretidgrofation is shown in Figure
5.6. The initial population of both ULC and LLC Wwite done at the same step, this
guaranties the upper-level fitness function to haveLC input in the first iteration.
Although a random initial population on both ULCddn.C may lead to some infeasible
solutions, both ULC and LLC fitness function wolldve penalties with consideration of

infeasible solutions to make sure the number acsetl infeasible individual is kept to

minimal.
Start
LLC ¢
Enough N Feedback Initial population of both ULC
generations? and LLC
End N Il
Selection. crossover Determine the fitness of
5 \ , .
mutation and inversion ULC by upper-level function
T uLc l
Determine the fitness of "”p“t Selection, crossover,
LLC by lower-level function |~ mutation and inversion

Figure 5.6 LFGA solution process flow chart
After the fitness of all the ULC solutions is deténed, a RWS based selection
will be used to create the next generation of UGZossover will also use the same
fithess scores to produce certain numbers of newiduals. A small portion of the new
ULC population would mutate and inverse, the patamef crossover, mutation and
inversion would be determined by a sensitivity gtofithe domain problem. And further

tweak of these parameters may also happen if thiico converges too fast or too slow.
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After that, the new generation of ULC will be patse the lower-level for LLC fitness
calculation, and then followed by RWS selectiomssover, mutation and inversion,
which is similar to ULC. When the new generationLafC is produced, both ULC and
LLC will be compared with the last several genenadi of them for convergence test. The
whole GA search iteration will continue as longthe convergence condition is not

reached, and the number of generation is withirlihie.

5.3 Discussions

The domain problems in assembly system design igoed example of
combinational problems, which deals with decisicsking among different combination
of assembly methods, sequences, manufacturing neesoland material flows, etc.
Comparing with traditional calculus-based or appration-based optimization
techniques, GA excels in solving combinatorial mitiation problems. Traditional GA is
designed to meet an ultimate goal with an overallegning fitness function, which
works well in all-in-one optimization problems. Hewver, such all-in-one solutions
assume that assembly process design and processnglaare homogenous problems,
which can hardly capture the inherent differenceéeaulying two heterogeneous decision-
making problems, whereby different sets of objesdiare involved and often conflicting
in problem solving per se (Jiao and Tseng, 2018¢ Jame theoretic optimization model
is developed to identify this equilibrium soluticas opposite to the traditional all-in-one
multi-objective optimal solutions that deals with mleal case and assumes unlimited
production capability. Then the modification ofdi@onal GA becomes a necessity to
provide a practical solution method for game thgoreptimization. With the inherent

leader-follower decision making schema applied £ tBe LFGA allows the conflicting
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nature between different parties in game theorggitmization to be reflected in the
evolution iterations pass between ULC and LLC. @iereng the computational and
organizational complexities in high variety assgméystem design, LFGA uses a dual
stage evolutional operation to make sure only omeds evaluation is needed for all
offspring at each stage. The trade-off between emence speed and exploration range
in LFGA is handled by the combination of RWS satattbased on ULC/LLC fitness,

relatively high crossover rate and low mutatiorerat

5.4 Summary

The original achievements in this chapter can melcoled as followings:
1) By using a leader-follower hierarchical encodinge tmodified GA is
capable of representing the proposed game theangtiimization problem;
2) Standard GA crossover operator is replaced by siweroperator, which
keeps the long assembly process gene codes feasible
3) The modified LFGA in Matlab presents the abilitysialve game theoretic

optimization problem of high variety assembly prsscdesign.

As a summary, the proposed LFGA provides a prdctsodution to game
theoretic optimization problems which is identifi&d Chapter 4. And the technical
challenges brought by high variety assembly desigmld also come to a feasible
guantitative solution using the leader-follower idean making model and LFGA method.
Following the framework brought by game theoretmimization model and FLGA
solution, the high variety assembly design probleith be analyzed in the following

chapters.
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CHAPTER G

ASSEMBLY PROCESSVARIETY DERIVATION

6.1 Introduction

As the backdrop of product families, a well-planradhitecture (the conceptual
structure and overall logical organization of gexieig a family of products) will provide
a generic umbrella to capture and utilize commadyalithin which each new product
instantiated and extends so as to anchor futungretd a common product line structure
(Du et al., 2001). A number of perspectives on pobgblatform and representation exist
in literature. A review suggests that product patf has been defined diversely, ranging
from being general and abstract to being industy jproduct specific (Robertson and
Ulrich, 1998).

There are two streams of research prevailing infild of developing product
platforms and representation (Meyer and Lehner®7190ne perspective refers to
development of a product platform as a physical, oraenely a collection of elements
shared by several related products. Accordinglg, iejor concern is how to identify
common denominators for a range of products. Thisrteis geared towards the
extraction of those common product elements, featiand/or sub-systems that are stable
and well understood, so as to provide a basisninoducing value-added differentiating
features and thus brings the possibility to prochigh variety products based on product
families. The other dominating perspective is tplex the shared logic and cohesive

architecture underlying a product platform. Sucteezches lead to later on development
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of more generic representation of product platfor@se endeavor towards product
platform representation development is to desigadpet families in the way of
stretching and/or scaling.

Product data can be represented by a BOM thaed feg an end product to state
raw materials and intermediate parts or subassembdiquired for making the product.
On the other hand, production information is conedrwith how a product is produced,
that is, the specification of operations sequencds performed at corresponding work
centers along with related resources such as meghi@bors, tools, fixtures and setups.
Similar to describing a product structure using @MB an operations routing can be
constructed to represent the production structoire fgiven product (Olsen et al., 1997).
A product platform, consisting of diverse produatiants, is characterized by a Generic
Product Structure (GPdS) (Du et al., 2001). Itngppsed to characterize the source of
variety based on the hierarchical decompositioprofluct structures. Product variants
can share a common structure, which may be commamaupt technologies, modules or
configuration mechanisms. GPdS acts as a genet& staucture for such variants.
Accordingly, its related production processes carctilated as standard routings in the
form of a Generic Process Structure (GPcS). Theselard routings form the basis of
various process variations in consequence of ptodagety. As being identified in
Chapter 3.2, the proposed methodology to solvegbearch problem includes:

1) Use generic representation which utilize the obpemnted data structure
to represent the product and process variety, deroto enhance data
structure efficiency, which is very critical for din variety assembly

system;
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2) Use data mining technique to identify the relatlopsbetween each
product variety and assembly process variety, tgeneralize such

relationships into a variety mapping for processetg propagation.

6.2 Generic Product Structure

Traditional BOM is a directed acyclic graph repres®y the composition of a
product. Every node is an aggregation of its chitdnodes. In this graph, all end nodes
are individual components, all intermediate nodes artial assemblies and the root
node is the final product. The graph arcs show dhantities of child components

required to create a single instance of the paré. shown in Figure 6.1,

{X, X, X, X} are individual componentsy, Y} are subassemblies afd} is the
final assembly. In terms of quantities, three uwitg X} are needed to assemble one
unit of {Y} , two units of{Y} are needed to assembly one unit of its parentsseipably

{Y} , and two units ofY} are needed to assembly one unit of the final prbfid .

With the comparison of a tree graph of the samdymbin Figure 6.2, it is oblivious that
BOM structure is more efficient in representing quots with same components

repeatedly used.

1 3

Figure 6.1 A traditional BOM structure
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The BOM product structure has been widely usednifustry as a standard
product structure for decades. In dealing with etgrithe traditional approach is to treat
every variant as a separate product by specifyingique BOM for each variant. This
works with a low number of variants but not whestomers are granted a high degree of
freedom for specifying products. The problem i thdarge number of BOM structures
will occur in mass customization production, in ahia wide range of combinations of
product features may result in millions of variaftés a single product. Design and
maintenance of such a large number of complex datactures are difficult, if not
impossible. To deal with a large number of variaiitss necessary to understand the

implication of variety and to characterize varieffectively.

Y3

S
=
| e

HH
H

Figure 6.2 A product representation using produast t

69



Introducing a generic product structure might redtuce complexity at first but
will give control over complexity. When product faynwith high variety is involved, the
benefits of the generic product definition will loece obvious. A generic product
structure is of great value for product managemehen planning new product
development, for research and development as mpuwthat is needed to be new design
and which design can be re-used, for productionmiey and not the least purchasing
organization for procurement planning. All thesscglines produce information to a

common structure and consume information from #mesalong the products lifecycle.

Precise BOMs

, ~

Figure 6.3 Comparison of BOM and GPdS for highetgrproducts
GPdS is a hierarchy consisting of constituent iteatsdifferent levels of

abstraction, where items can be either abstraphgsical entities. The physical entities

in a GPdS, which are also named as modules in geren be raw materigd R} ,

purchased par{,C} , intermediate par{!l} , and subassembl{SA} . Some of them are

primitive, which means they cannot be further degosed, thus becoming a leaf node of

the decomposition structure. A compound moduleosymosed of primitive modules
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and/or other compound modules. Each module carepsseveral variants (instances of
the same module type). The nesting of basic coctstris achieved by introducing
compound module(s) as the component(s) of anottrapound module. In this sense, a
nested GPdS can be regarded as a multi-level dexsingm structure of compound

modules.

The parent-child relationship between a parent rieodnd child module is called
a structural relationshipSR} . With respect to product structures, it is equenélto the
goes-into relationship defined for BOM structurgaif Veen and Wortmann, 1992). The

structural relationship variants can only be eitbgist (SR =1) or not(SR =0). The
existence ofSR means that the child module is included as thepmoent of parent

module. Otherwise, it is excluded. Different vayigjeneration can be implemented

through defining sucBR variants.

All variants of modules in GPdS are controlledestfinodes. This is because the
variety of a compound module can be achieved throtsgorimitive modules. Therefore,
the relationship between variants and the correipgnmodule can be observed as
instantiation of the module according to certaimaibons. Such variants and module

relationship are represented using include coms§oC} .
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Generic Product Structure
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Figure 6.4 Variety derivation though GPdS instartia

6.3 Generic Product and Process Structure

In practice, process information for an enterpiseften described in various
forms of documents such as, product specificatiomgjng sheets, and job cards. These
documents may be a suitable representation schemeufmans who must possess the
knowledge to understand the information, but doeslend itself to formal analysis,
monitoring, or improvement. Therefore, it is nee@gso develop a modeling formalism.
Such a formulation should provide a sufficientlywsoful syntactic model to support
rigorous analysis and manipulation of process tgrighile facilitating the application of
semantics to support process design enactmentetaded observations from a number

of perspectives including customers, design andymtion (Mills and Tanik, 2000).
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Generic Product Structure (GPdS)

Generic Process Structure (GPcS)
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Figure 6.5 GPPS and its instantiation
Both GPdS and GPcS are rigorous syntactic modetscan be used to formulate
product variety and process variety. In order talfthe relationship between product
variety and process variety, it is necessary tatifle the relationship between the
product structure and process structure, whicteareodied in the materials required by
particular production operations (Jiao et al., 200he link between product structure

and process routing data can be established byhgpgoeach component material in the
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product as required by the relevant operation efrtuting for making its parent product
(Mather, 1987). The material requirement and cpoeding operation sequence links
can synchronize GPdS and GPcS into a unified gesgtcture, which is called Generic
Product and Process Structure (GPPS).

While the GPdS associates each component matdredtlg with its parent
product, a component material in the GPPS is astmtiwith the relevant operation in
the GPcS for producing its parent component. Isesuhe elements of GPcS, including

assembly operatiofA} and machining operatiofM} . Each operation has operation

parameters including work center numbel),(cycle time T) and setup numbeB). For
each manufactured end or intermediate producth@eslievel GPPS can be derived by
specifying the sequence of operations requirecgfoducing that product in connection
with materials and resources (categorized in teomsvork centers, cycle times, and
setups) required for each operation. The multilé&@PS can be composed by linking the
single-level GPPSs of lower-level intermediate painrough the operations that require
them. Taking advantage of the meta-structure imtier@ the generic variety
representation, variant derivation can be implee@through the instantiation of a GPPS
with respect to the given values of particular egriparameters. For example, in Figure

6.5, the generic componef, has three variants. The generic identification Gf
family is described as a séIZ:{C%, C%, C§} The corresponding process variation@f

family involves a generic assembly operatin Assuming different variants oZ,
family use same work center but different setuphwdifferent setup time, then the

assembly operatiody can be described &' (W, ., Sy,)-
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In a GPPS, GPdS and GPcS are unified not only éyraterial links, but also by
their variety parameter sets and values to handieety. Thus, the class-member
relationships between generic items and their wars@ts can be consistently used for
both product and process variant derivation. Ii$ thay, the corres