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SUMMARY 

 

Exhaled human breath contains thousands of compounds that provide information about 

the physiological state of the human body, yet it is not used as extensively as blood or 

urine samples for medical diagnostics. Some of the major reasons for this include the lack 

of a standard method of sample collection, control of variability, reliable detection at 

trace level and quantification. Breath analysis has recently attracted renewed interest in 

medical diagnostics and for monitoring therapeutic progress because it is a less invasive 

method of sample collection than is currently used in treatment and it can be sampled as 

often as required. Breath analysis can be performed in surgery or in intensive care and 

real time analysis is possible on a stationary cycle or during sleep.  

The objective of this research is to develop a novel sample collection system that is 

capable of capturing both the EBC as well as the VOC present in exhaled human breath.  

Currently, methods of simultaneously capturing both fractions of exhaled breath are not 

well established and current work focuses on the capture and analysis of either one 

fraction. Furthermore, the focus is currently on the targeted analysis of specific 

compounds to monitor ailments such as asthma, cancer etc.  In this work, both fractions 

are successfully collected and analyzed using gas chromatography - mass spectrometry 

(GC-MS) as well as two-dimensional gas chromatography (GCxGC). This provides 

analysis of volatile organic compounds as well as proteins and higher molecular weight 

components present in breath. This broader analysis might find use in medical 

diagnostics, for detection of markers indicating oxidative stress, detection of lung cancer, 

monitoring plasma glucose and many more medical applications.
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

 

The first step in most clinical diagnostics involves the collection and analysis of blood 

and urine samples of a patient. These body fluids are known to contain information that 

enables appropriate diagnosis of a medical condition. The main focus of diagnostics 

research over the past few decades has been on blood and urine analysis. More recently 

however, there has been a greater emphasis on non-invasive diagnostic methods 

especially in the areas of neo-natal care [1] and for the critically ill [2]. 

The analysis of exhaled breath is one such non-invasive technique [3] that has not yet 

been fully explored and exploited for clinical diagnostics. The compounds present in 

exhaled human breath can be broadly divided into two categories – the higher molecular 

weight compounds present as aerosol particles which can be condensed and collected as 

exhaled breath condensate (EBC) and the lower molecular weight volatile organic 

compounds (VOC). The routine blood and urine analysis reveals only the larger, higher 

molecular weight compounds such as proteins and amino acids, whereas the VOCs are 

generally lost in sampling or analysis. However, it has been found that these volatile 

compounds occur at trace levels (parts per billion or parts by trillion volume) in exhaled 

breath [4]. The quantitative measurement of many of these compounds can give us great 

insight and information for clinical diagnosis [5]. It is preferable for patients as blood 

sampling can be painful and collection of urine samples is embarrassing for many people. 

Breath samples closely reflect the arterial concentration of biomarkers and may avoid the 

need for collection of arterial blood samples, which is difficult. In cases where multiple 
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blood samples are required, breath analysis is advantageous. Breath is also a less 

complicated mixture as compared to serum or blood. Preparation of breath samples for 

analysis is far more trivial as compared to blood or urine. 

Despite all the above-mentioned advantages, breath analysis is still not being used in 

mainstream clinical diagnosis. This is mainly due to a lack of a standard sampling 

procedure and difficulty in quantitation. Although a number of compounds have been 

found in exhaled breath, the origin of some these biomarkers are yet to be established. 

The instrumentation currently in use for analysis is either too expensive or impractical to 

use in a clinical setting. The following sections contain a brief review of breath as a 

clinical sample, different methods that have been used for sample collection as well as 

instrumentation that have been and are currently in use to analyze the breath sample. 

1.1 Breath as a clinical sample 

Breath has been identified as a biomarker for various ailments since ancient times. The 

ancient Chinese and Greek physicians were able to diagnose diseases from the odor of 

patients’ breath. In 1971, Pauling et al. first reported the presence of over 200 volatile 

organic compounds in human breath using gas chromatography [6]. In figure 1 we see the 

various peaks of a chromatogram each representing a compound present in human breath. 

Over the next few decades, great progress was made in terms of investigating the 

physiological meaning of the various compounds seen in breath as well as the 

correlations between the compounds and the internal processes in the human body [7]. As 

technology developed and new instrumentation was made available, the ability to 

separate, analyze and identify the various volatiles improved.  
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Exhaled human breath mainly consists of nitrogen, oxygen, carbon dioxide, water 

vapor and a small fraction of volatile trace components. Table 1.1 shows the percentage 

composition of human breath. The trace compounds could be endogenous or exogenous. 

Endogenous compounds are those that are produced inside the human body as a result of 

metabolism or other physiological processes.  

 

Figure 1.1: An exhaled breath chromatogram [6] 

Exogenous compounds are those, which are present in the surroundings and absorbed by 

the body as contaminants. Analysis of the endogenous compounds provides information 

about the physiological processes of the body whereas the exogenous compounds reveal 

information about the quality of the environment and the ability of the body to absorb and 

expel these contaminants [8]. The endogenous compounds include inorganic gases such 
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as NO and CO, VOCs such as ethane, pentane, acetone, isoprene and non-volatile 

substances such as isoprostanes, glucose and cytokines which can also be found in EBC 

[4]. 

Table 1.1: Concentration range of various compounds in human breath [9] 

Table 1.2: Physiological origins of various biomarkers [9] 
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In order to understand the physiological meaning of exhaled breath, it is important to 

know the biochemical pathways of generation of the various compounds. The 

physiological origins of some biomarkers found in breath are given in table 1.2. The 

various VOCs that are found in human breath can be classified into 5 main categories 

based on their chemical composition and structure - Saturated hydrocarbons, unsaturated 

hydrocarbons, oxygen containing, sulphur containing and nitrogen containing 

compounds. 

 Saturated hydrocarbons such as ethane, pentane and malondialdehyde are generated 

from ω3 and ω6 fatty acids during lipid peroxidation [10]. Methylated hydrocarbons have 

also been reported as lipid peroxidation markers [11], however the biochemical pathways 

and the meaning of these compounds have not been sufficiently investigated [12]. These 

hydrocarbons, which are stable end products of lipid peroxidation, have a low solubility 

in blood. Hence they are ejected into exhaled breath within a few minutes of their 

formation in tissues. Thus exhaled concentration of ethane and pentane acts as a marker 

of the degree of oxidative damage in the body [13]. 

One of the most abundant unsaturated hydrocarbons found in exhaled human breath is 

isoprene. Its origin lies along the mevalonic pathway of cholesterol synthesis. 

Experimental evidence initially indicated that the presence of isoprene in breath is related 

to the oxidative damage of the fluid linings of the lungs and the body [14], [15]. However 

it has been found that isoprene concentration increases by nearly 5 times during physical 

exertion [16] or even something as simple as a few leg contractions. The concentration of 

breath isoprene is also found to vary with age as it is significantly lower in children [17].  
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Acetone, an oxygen containing compound, is one of the most abundant compounds 

found in human breath. It falls under the category of ketones along with acetoacetate and 

β-hydroxybutyrate and is produced due to decarboxylation of acetoacetate and through 

dehydrogenation of isopropanol [18]. It has been found that breath acetone levels are 

increased in patients suffering from uncontrollable diabetes mellitus [19]. Acetaldehyde, 

another oxygen containing compound is produced by the oxidation of endogenous 

ethanol whereas ethanol itself is produced by the bacteria present in the intestines [20]. 

Sulphur containing compounds are generated by the incomplete metabolism of 

methaionine in the transaminative pathway [21]. The concentration of sulphur containing 

compounds is very low in human blood during normal conditions, but any impairment in 

the functioning of the liver causes the concentration to rise. The characteristic odour of 

sulphur is found in the exhaled breath of people suffering from cirrhosis of the liver due 

to the presence of ethyl mercaptane and dimethyl sulphide [22]. 

Nitric oxide (NO) has been identified as a key compound in numerous physiological 

processes and a marker of airway inflammation over the last few decades. Increased NO 

content has been observed in asthmatic patients [23]–[25] and this has been attributed to 

the activation of nitric oxide synthase 2A by the damage to the epithelial cells lining the 

airways and by inflammation of airways. Hence NO is used as a means to distinguish 

between asthmatic and non-asthmatic patients [26], [27]. Ammonia is another nitrogen 

containing compound that would appear in breath if its conversion to urea was restricted 

due to impairment of the kidney. Higher concentration of ammonia was observed in the 

breath of uremic patients when compared to that of normal patients [28]. 
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1.2 Sampling and pre-concentration 

A significant challenge in the clinical implementation of breath analysis involves 

implementing a standardized method for collecting and analyzing breath samples from 

patients. Many factors such as the volume of breath collected, the quality of the 

surrounding air, the method of collection and the method of storage introduce variability 

in the amount of analyte present in the sample. 

 There are two basic approaches used when it comes to breath sampling. Mixed 

expiratory sampling involves the collection of the total breath, which includes the dead 

space air present in the lungs. The dead space air is basically the volume of breath that 

does not take part in gas exchange. It usually occupies the airway volumes and consists 

primarily of carbon dioxide. It accounts for a third of the total tidal breathing volume. 

Alveolar sampling is another method of collection where only the fraction of breath 

involved in gaseous exchange is collected. Alveolar breath has fewer contaminants [29] 

and better represents the actual concentration of analytes present in the human body. The 

concentration of endogenous compounds is also much higher as compared to mixed 

expiratory sampling as the dead space gas does not dilute it. In order to distinguish 

between endogenous and exogenous compounds, different approaches such as 

background air subtraction or correction of exhaled concentrations by calculating alveolar 

gradients have been employed [30]. Attempts have also been made to try and control the 

ambient air by making volunteers breathe pure air for a fixed time before sampling [13].   

As exhaled breath contains both EBCs and VOCs, different collection techniques have 

been implemented depending on the type of sample being collected. Most devices that 
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have been designed for the collection of EBC involve cooling the exhaled breath in order 

to condense and collect the liquid condensate. This is typically achieved by breathing  

 

Figure 1.2:(a) EBC collection system using a cold finger [33] (b) EBC collection with 

tube immersed in cold bath [34] 
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through a tube, which is immersed in a cold bath containing dry ice or some such coolant. 

Various materials such as Teflon, polypropylene and Tygon have been used for the 

tubing [31], [32] whereas different containers such as a double-walled glass chamber [33] 

with a cold finger or an immersion ice bath [34] have been used as the condensing 

chamber. The VOCs on the other hand, are generally collected by directly breathing into 

an inert Tedlar bag or a stainless steel canister [35]. In some cases, the VOCs were 

captured by exhaling onto adsorptive materials [36], by breathing onto a SPME fiber [37] 

or by cryofocussation [38].  

A preconcentration step is generally carried out before analysis of the breath sample. 

Since the concentration of the VOCs in exhaled breath is in the ppm-ppv range, direct 

analysis may not yield good results. Preconcentration by sorbent traps include adsorbing 

the volatiles onto activated carbon, Tenax, Silica Gel and other such sorbents. Once the 

breath is passed through the trap, the sorbents are then heated to release the adsorbed 

compounds. Solid Phase Microextraction (SPME) works in a similar manner, where a 

fiber coated with either a polar, non-polar or semi-polar compound, acts as the adsorbing 

material. When the SPME is introduced into a breath filled Tedlar bag, the compounds 

present tend to adsorb onto the fiber based on their affinity for the coating. Hence 

different coatings are used to capture different compounds of interest. Like sorbent traps, 

the SPME fiber is then heated in order to desorb the compounds. A disadvantage of 

sorbent traps and SPME is that they suffer from memory effects ie. Not all the 

compounds are completely desorbed sometimes and this could lead to carry over of 

compounds. Also, SPME fibers are not equally selective towards all the compounds 

present in a Tedlar bag and tend to adsorb some compounds more than others [39]. This 

could lead to errors while performing quantitative measurements.  
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1.3 Instrumentation for breath analysis 

Since exhaled breath is a complex mixture of non-volatiles and volatiles in both liquid 

and gaseous form, chromatography is a popular technique used to separate the mixture 

into its various constituents. Liquid chromatography techniques are applied to the EBC 

portion whereas the VOCs are separated via gas chromatography. The gas chromatograph 

(GC) is usually coupled to a detector that enables the identification and quantification of 

the constituent compounds. Some of the most important instruments used for this are the 

flame ionization detector (GC-FID) [40], mass spectrometer (GC-MS) [35], selected ion 

flow tube mass spectrometry (SIFT-MS) [41], proton transfer reaction mass spectrometry 

(PTR-MS) [42] and laser absorption spectroscopic techniques [43]. The principle of 

operation of these instruments is beyond the scope of this thesis, however a brief 

overview of the GC is presented, as it was the primary separation tool used during the 

course of this work. 

The major working components of the GC can be classified into 3 categories – the 

injector, the separating column and the detector.  
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Figure 1.3: Components of a gas chromatography system 

The complex breath sample is introduced at the injector in either liquid or gaseous form. 

The heater at the injector vaporizes the sample, which is then carried along the length of 

the chromatographic column by the carrier gas or the mobile phase. The carrier gas is 

usually an inert/unreactive gas such as helium or nitrogen. The chromatographic column 

is coated on the inside by a liquid or a polymer layer known as the stationary phase. The 

coating is usually polar, semi-polar or non-polar in nature, and depending on its chemical 

properties, it interacts in a different manner with the various constituents of the sample. 

Hence, this causes the gaseous constituents to elute at different times, depending on the 

interaction with the stationary phase. Thus the mixture of compounds introduced at the 

injector is separated as it leaves the column. For a given analytical condition the elution 

times are compound specific and can be used for identification of the eluting components.  

The detector attached to the end of the column is used to quantify the amount of 

analyte passing through the column. The most basic detector, which is the flame 

ionization detector, pyrolyzes the eluted compound into its constituent ions, which then 

go on to strike a detector plate generating a current. The magnitude of current is 
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proportional to the concentration of ions and hence the concentration of the analyte. More 

sophisticated detectors such as the mass spectrometer (MS) are able to identify the 

compound by breaking it up into its constituent masses and then analyzing it using a mass 

analyser.  

Recent developments in instrumentation are shifting the focus toward two- 

dimensional gas chromatography [44]. The 2-D GC has increased resolving power as the 

analyte is separated using two different stationary phases as opposed to the single 

stationary phase used in traditional 1-D GC. A shorter secondary phase is attached at the 

end of the first column and the analyte exiting the first column is collected for a fixed 

period of time known as the modulation period and is then introduced into the secondary 

column for further separation. Thus the final chromatogram is a 2-D layout of the 

separation and is able to bring out compounds that would typically co-elute in a 1-D 

chromatogram.   
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CHAPTER 2: EXPERIMENTAL APPARATUS 
 

2.1 Introduction 

Although breath analysis exhibits great potential in non-invasive medical diagnostics, 

its actual clinical implementation has been somewhat limited. One of the major factors is 

the absence of a standard method or protocol for collection of breath samples. The 

various methods of collection currently in use have been briefly discussed in the previous 

chapter, with most groups content to deal with the non-volatiles and VOCs separately. 

The preferred method for collection of the EBCs has been to make the patient exhale 

through a tube immersed in an ice bath for a fixed period of time. The water vapor 

present in the breath condenses on the walls of the tube from where it is collected and 

analyzed. Groups that were interested in the exhaled breath VOCs, directly collected the 

patients’ breath in Tedlar bags, canisters and by blowing over SPME fibers. In both 

cases, no attempt is made to isolate the analyte of interest completely from the other 

fraction. For example, while collecting breath samples in tedlar bags, the presence of 

moisture in the breath is ignored. Also, due to the focus on a single fraction of breath, 

very little information exists about the significance of VOCs dissolved in the EBC as well 

as the broader spectrum analysis of both fractions.    

The objective of this research is to develop a breath-sampling device that is able to 

separate and capture both the EBC and the VOC fractions present in exhaled breath. The 

patient is made to breathe for a few minutes into the system and two different cold baths 

or ‘stages’ are used to separate the analytes based on their condensation temperatures. 

The less volatile compounds are dissolved in the water vapor and condense at a higher 

temperature in the first stage whereas the volatiles present in the gaseous phase condense 
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in the colder, second stage of the system. The samples are then extracted from the system 

with the help of a syringe (EBC) and a Tedlar bag (VOC).  

Significant attention is paid to ensure that the pressure drop across the sampling 

system stays within a reasonable limit in order to ensure the patient stays comfortable 

during the course of sampling. The temperatures of the two zones are selected in order to 

ensure maximum efficiency during the capture of anlytes from the breath. A longer tube 

length in the sampling system provides greater cooling of the breath but this is at the 

expense of the pressure drop across the system. The length of the tube is selected after 

calculating both the amount of cooling achieved as well the pressure drop incurred and 

finding a solution that satisfies both needs.  The detailed design of the system is presented 

in the following sections; with emphasis on achieving a good yield of the analyte while 

ensuring the patient is comfortable through the sampling procedure. 

2.2 Design of sampling system 

Human breath is at a temperature of 37OC and has a relative humidity of 95% when it 

is expelled from the upper respiratory tract. This implies that a large fraction of exhaled 

breath consists of water vapor as it is almost fully saturated. The non-volatile EBCs are 

carried by the water vapor whereas the remaining fraction of the breath consists of CO2, 

O2 and the various VOCs. By separating the water vapor from the breath, we can isolate 

the EBCs for collection from the rest of the breath matrix. As the amount of water vapor 

present in air is a function of its temperature, it is possible to remove the water vapor by 

cooling to air to a particular temperature. The patient is made to breathe through a tube 

immersed in a cold bath and as the breath passes through the tube, it is cooled and the 

water vapor present condenses onto the walls of the tube. In order to determine what 
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temperature the breath must be cooled to remove the maximum amount of water vapor, 

some basic calculations related to human physiology are made. It is found that the tidal 

volume or the volume of air inhaled or exhaled by the lungs during normal breathing is 

reported to be roughly 0.5 Liters for a healthy adult. Since the density of air is 1.225 

Kg/m3, the mass of exhaled air per breath is close to 0.6 grams. The specific humidity or 

the humidity ratio is defined as the ratio of the mass of water vapor to the total mass of 

air at a particular temperature and this reduces as temperature is reduced. Hence, by 

looking up the specific humidity of air at different temperatures, it is calculated that in 

order to remove 95% of the water vapor from breath, it must be cooled from 37OC to -

10OC. It was also calculated that in order to obtain a removal efficiency of 99.5%, it is 

necessary to cool the air to -40OC. Due to the restrictions on the type of cooler available, 

it was decided that a removal efficiency of 95% was adequate for our purpose. 

The tubing for the system is made up of two different sections - the section that is 

immersed in the cold bath and where the heat transfer takes place is made of stainless 

steel whereas the remaining section is made of tygon tubing. This is done in order to 

provide a highly conductive section for the region where heat transfer takes place and 

insulate the other areas by using tygon. The length of the conductive section needed to 

cool the breath to the required temperature can be calculated using the following equation 

[45] 

                                                !!!!!
!!!!!

= exp !!!!
!!!

                                                     (1) 

where Ts is the bath temperature, Ti is the initial temperature of exhaled breath, P is 

the perimeter of the tube, L is the tube length, 𝑚 is the mass flow rate and h is the heat 
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transfer coefficient which can be calculated by using the Nusselt number for transition 

flows. After fixing the bath temperature at -40OC, the temperature distribution across a 1 

meter tube for different diameters was calculated and plotted on Matlab (Mathworks, 

Natick,MA) (fig 2.1). The pressure drop across the first stage is given by [45], 

                                               ∆𝑃 = !"!!! (!!!!!)
!!

                                                          (2) 

where 𝛿 is the density of air, um is the mean velocity, D is the diameter of the tube and f 

is the friction factor. The friction factor for fully developed laminar flow is given by 

64/Re where Re is the Reynolds number of the flow. The pressure drop across the same 

configuration of tubes was also calculated and plotted (fig 2.2). It is clear that shorter 

tube lengths are required for cooling when the diameters are less, however the increase in 

the pressure drop is significant. It is to be noted that a normal human being generates 

approximately 1mm hg (133 Pa) pressure during exhalation. In order to have a 

comfortable experience while breathing into the system, the pressure drop across it must 

be close to normal human exhalation pressure. The 6 mm diameter configuration was 

found to fit the need of the experiment well, as for a short tube length (25 cm) and low 

pressure drop, the required exit temperature is obtained. 

The first stage bath consists of an insulated container filled with a liquid having low 

freezing point such as isopropyl alcohol. A NESLAB (Thermo Fischer, Waltham MA) 

chiller is used with a temperature feedback ‘cryotrol’ to maintain the cold bath at the 

required temperature. The probe of the chiller is immersed into the bath along with the 

feedback probe to maintain the bath at a constant temperature of -40C. T-type 

thermocouples are inserted at the beginning and end of the first stage in order to track the 

temperature of the inlet and outlet breath. 
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a) b) 

c) d) 

Figure 2.2: Variation of pressure along tube length for diameters of 
a) 1 mm b) 4 mm c) 6 mm and d) 10 mm 

Figure 2.1: Variation of temperature along tube 
length for different tube diameters 
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A slightly different design approach is followed while building the second cooling stage 

of the system. The air entering the second stage is now at -10OC and is almost completely 

dry. The breath now consists primarily of carbon dioxide, oxygen and trace level VOCs. 

The exit temperature of the air stream is calculated based on the removal efficiency 

desired. The first step is to determine the VOC concentration at the outlet of the second 

stage for a given removal efficiency. This is calculated by first determining the partial 

pressure of the VOC at the outlet, Pvoc. Assuming that ideal gas laws apply [46],  

 

             𝑃!"# = 760 !"#$% !"# !" !"#$%# !"#$%& 
!"#$% !"# !" !"#$% !"#$%&!!"#$% !"# !"#$%"&

                                   (3) 

where Pvoc = Partial pressure of the VOC in exit stream (mm Hg). 

And the condenser is assumed to operate at a constant pressure of one atmosphere. This 

equation can be further simplified and written as, 

 

                                        𝑃!"# = 760 !!"#,!"(!!!)
!!(!∗!!"#,!")

                                                  (5) 

 

yVOC,in = Volume fraction of VOC in inlet stream. 

𝜂 = Removal efficiency (moles of VOC removed/moles VOC in inlet). We set a removal 

efficiency of 90%. 

At the outlet of the second stage, the VOC in the gas stream is assumed to be in 

equilibrium with the condensate in the tube. At equilibrium, the partial pressure of the 
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VOC in the gas is equal to its vapor pressure at that temperature. Therefore by 

determining the temperature for this condition, it is possible to specify the outlet 

temperature for the second stage. This temperature can be calculated from the Antoine 

equation [47] that defines the relationship between vapor pressure and temperature for a 

particular compound as 

                                          log𝑃!"# = 𝐴 − !
!!"#!!

                                                        (6) 

 

where Tcon is the unknown condensation temperature and A, B, C are constants specific 

to the VOC that are determined for the NIST web book. In cases such as ours where the 

gas mixture is complex and consists of a number of VOCs, the outlet temperature can be 

estimated by taking a weighted average of the temperatures necessary to condense each 

VOC in the gas stream at a concentration equal to the total VOC concentration. Eight 

commonly occurring VOCs were considered and the outlet temperature of each VOC was 

calculated (table 2.1). Based on these numbers, the exit outlet temperature of the second 

stage of the condenser was set at -120OC. Although it is possible to ensure a greater 

recovery of VOCs by setting the exit temperature equal to the lowest VOC recovery 

temperate (in this case, it would be -147OC for CO2), doing so would also cause a large 

amount of solvent (CO2) to condense onto the tube. Hence the final breath sample in the 

bag is a lot more dilute. In order to avoid this, we take the average condensation 

temperatures of the VOCs. 
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Table 2.1: Selected compound set and their individual outlet temperatures 

Compound of interest Outlet temperature 

for 90% recovery 

Carbon dioxide -147.76OC 

Isoprene -102.13OC 

Methanol -105.34OC 

Ethanol -115.6OC 

Dimethyl Sulfide -128.51OC 

Chloroform -124.85OC 

Benzene -133.5OC 

Toluene -102.31OC 

 

The second stage is set up similar to the first stage with the tubes running into an 

insulated bath. Since the required outlet temperature is below -100OC, liquid nitrogen 

(bp:-196OC) is used for the cooling bath. Equation 1 is once again used to determine the 

appropriate tube length required for the cooling. Figure 2.3 shows the variation of 

temperature along a tube for different tube diameters. It is seen that the selection of the 

6mm diameter tube provides the required outlet temperature at a length of approximately 

27 cm. The combined pressure drop of the first stage and the second stage tubing is 

approximately equal to the pressure generated by the lungs during breathing. Hence this 

particular combination of tube length and diameter is calculated to be the best fit for the 

breath sampling device. 
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Figure 2.3: Variation of temperature along tube length for the second stage 

 

Figure 2.4: Pressure drop across second stage for 6mm diameter tube 
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The complete breath sampling set up is shown in figure 2.5. Commercially available 

‘Spirette’ mouthpieces (Medline, GA) were used for the patient to breathe into the 

system. Two-way valves separate the two stages such that the collection of sample from 

one stage does not affect the other. A syringe is used to collect the liquid EBCs from the 

first stage whereas a Tedlar bag is the preferred method of collection of the gaseous 

VOCs. The technique employed to collect the two fractions is discussed in detail in the 

next chapter.  

 

 

 

1. Mouthpiece 
2. Tygon tubing 
3. Cooling probe 
4. Iso-Propyl Alcohol bath at -20

O
C 

5. Syringe 
6. Valves 
7. Liquid Nitrogen bath at -196

O
C 

8. Tedlar bag 
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Figure 2.5:Variation of temperature along tube length for different tube 
diameters 
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2.3 Two-channel breath sampling system 

As an extension to the breath sampling system described in the previous section, a 

two-channel sampling system was implemented in order to separate the dead space breath 

and alveolar breath. The objective of this is to determine which of the compounds seen in 

exhaled breath are endogenous and which are exogenous. It also gives us further insight 

into the biological pathways of some of the exhaled breath compounds. 

The construction of the two-channel device is very similar to the single channel device 

described in the previous section. The most significant difference is that an additional 

second channel or set of tubes is connected to the exit of the mouthpiece. The design and 

construction of this second channel is the same as the first channel in terms of length of 

tube, temperature of cold bath etc. Two solenoid valves  (Mcmaster Carr) are placed 

between the mouthpiece and the two channels in order to divert the exhaled breath into 

the appropriate set of tubes and a pressure sensor (10 inch AllSensors corp.) is placed at 

the mouthpiece in order to track the pressure of exhaled breath. Due to the presence of an 

additional set of tubes, solenoid valves etc, the pressure drop in the two-channel breath 

sampling system was greater than that seen in the single channel system. A number of 

different sensors (2.5 inch and 5 inch) were trialed before settling on the 10-inch sensor.   

The pressure sensor and the solenoid valve are controlled via Labview on a PC. The 

solenoid is powered by a 24V DC source and has a single output state- when powered, 

the solenoid is at high or ON and when the circuit is incomplete the solenoid is low or 

OFF. Using two such solenoids, it is possible to divert the flow of air into the appropriate 

set of tubes. The pressure sensor is provided with a 4.5-5.5V DC input and its output 

varies from 0.25-5V, where 0.25V indicates atmospheric or base pressure. When the 
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volunteer breathes into the mouthpiece, the pressure read by the sensor begins to increase 

and consequently, the output voltage is increased. The blue line in figure 2.6 shows the 

variation of the pressure sensor output as a person breathes into the mouthpiece. In order 

to separate the breath into two parts, the average duration of each breath is first calculated 

to be approximately 8 seconds. Next, the gradient of the pressure sensor output is 

calculated, and if it is above a value of 0.5V (which would indicate that the person has 

started to exhale), it is used as a trigger for the solenoid, which switches on and diverts 

the breath into the first channel. After 4 seconds, the first solenoid is switched off and the 

second solenoid is switched on which diverts the breath to the second channel. The 

second solenoid is switched off after 4 seconds at which point, both the solenoids are in 

the off state. Again on the next breath, the positive gradient of pressure is detected and 

the first solenoid is turned on. In this manner, the valve is continuously toggled on and 

off to separate the breath into two different sets of tubes. The yellow line in figure 2.6 

shows the toggling for the first solenoid. As can be seen, the solenoid is actuated at the 

beginning of every exhalation expect on one instance. The time of 4 seconds is chosen on 

the basis that it takes approximately 8 seconds for one complete exhalation, hence half of 

it is collected as dead space and the second half of the breath is collected as the alveolar 

component. The rest of the breath collection procedure such as condensation and 

collection of analytes is the same as the method employed for the single channel system. 
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Figure 2.6: Pressure curve of exhaled breath for the two-channel setup 

 

 

Figure 2.7: Labview schematic for 2-channel control 

 

 



 

 
 

26 

CHAPTER 3: EXPERIMENTAL PROCEDURE 

3.1 Collection of samples 

In order to collect breath samples, volunteers were made to breathe through the system 

described in chapter 2 for 3 minutes. Special emphasis was placed on inhaling through 

the nose and exhaling through the mouth so that the volunteer does not accidently inhale 

the contents of the system. A spirometer was attached to the mouthpiece in order to track 

the breath volume generated for different volunteers. It was found that the average 

volume of breath exhaled in three minutes was roughly 22 liters. Thermocouples were 

placed at the exits of the first stage and second stage in order to ensure that the required 

outlet temperatures were achieved. A typical temperature profile during breath collection 

can be seen in figure 3.1. The blue line represents the outlet temperature of breath at the 

end of the first stage and the red line represents the temperature of the breath exiting the 

second stage. It is seen that the target temperatures are achieved and the variation over 

the sampling period is minimum.  

 

Figure 3.1: Temperature of breath at the exit of first stage (T1) and second stage (T2) 
during the course of collection 
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At the end of the sampling period, the valves of the system were closed and a Tedlar 

bag (Zefon int.) was connected to the outlet of the system. When the second stage is 

removed from the liquid nitrogen bath, the condensed VOCs inside the tube vaporize and 

build up pressure. This pressure difference forces the VOCs from the tube into the Tedlar 

bag. A syringe is connected to the outlet of the first stage and is used to collect the liquid 

condensate trapped in the tube. One end of the first stage tubing is capped whereas the 

other end is connected to the syringe. When suction is created, the liquid condensate is 

forced into the syringe. At the end of each collection, a purge cycle is employed where 

the tubing is flushed with iso-propyl alcohol in order to get rid of the contaminants. This 

ensures that there is no cross contamination between different breath samples. 

 

 

Figure 3.2: Flow rate and total volume of breath exhaled by a volunteer as read 
by a spirometer 
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3.2 Pre-concentration 

Various methods of pre-concentration such as the use of carbon sieves, sorbent traps 

etc. have been used on VOCs. In our experiments, the direct injection of the VOCs from 

the Tedlar bag into the GC using gas tight syringes was first attempted. Due to the poor 

strength of signal, it was decided that SPME would be the preferred method of pre-

concentration. As mentioned earlier, a SPME fiber is very similar to an inside-out GC 

column, where the fiber is coated with an adsorptive polymer. The SPME fiber is directly 

introduced into the Tedlar bag and left there to sample the VOCs for a specific period of 

time after which, it is introduced into the injection port of the GC where the analytes are 

desorbed into the column. There are two main factors that need to be considered while 

using SPME for sampling – one of them being the type of polymer coating that is used 

and the other being the actual sampling time. Three different SPME fibers were used for 

the sampling of the VOCs to determine which polymer was best suited for our application 

- PDMS-Carboxen, PDMS-DVB and PDMS-DVB-Carboxen fibers were each introduced 

into the Tedlar bag for 45 minutes before being injected into the GC-FID. All the fibers 

were first pre-conditioned at 230OC in the injector of the GC to remove all the impurities 

in the fibers. Care was taken to ensure that they were directly moved to the Tedlar bag 

after pre-conditioning in order to avoid picking up anything from the atmospheric air. 

Figure 3.2 shows the comparison of the 3 fibers when they were run on a 30m long HP-5 

column in a GC-FID. Since the PDMS-Carboxen fiber showed the strongest signals 

among the three fibers, it was decided as the fiber of choice for the experiments. Once the 

choice of fiber was decided, the Tedlar bag was sampled for different time intervals to 

determine the ideal sampling time. In figure 3.3, we see that the sampling time of 45 

minutes displays the greatest signal strength.  
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Figure 3.3: Comparison of different SPME fibers 

 

 

Figure 3.4:  Comparison of different sampling times 
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3.3 Analysis of samples 

The analysis of the breath samples was first done on the GC-FID. A 30m HP-5 

column was used in the GC and the operating conditions were as follows. A pulsed-

splitless injection at an injector temperature of 230OC, initial oven temperature of 40OC, a 

temperature ramp of 15OC/min and a final temperature of 200OC was used. Although the 

FID was able to detect some compounds, the need for compound identification and better 

separation led us to explore the option of a GC-MS. With the mass spectrometer, it was 

possible to identify the various peaks in the chromatogram based on their signature 

masses. The built-in library provided with the software matches the peak to a compound 

and provides a similarity match for reference. The GC-MS provided much more clarity 

on the compounds present in breath and their relative concentration.  

Yet the biggest problem remained that the number of peaks on the chromatogram did 

not match up to the expected number of compounds in human breath. In order to get a 

better idea of the location of commonly occurring compounds in human breath, a set of 

standards were purchased and injected one by one into the GC-MS. Since a known 

compound was injected into the GC, identifying its elution time was trivial. In the same 

manner, all the standard compounds were individually injected into the GC and their 

elution time was noted. It was interesting to note that nearly 20 of the standard 

compounds co-eluted within 10 seconds of each other. As a result of this co-elution, 

many compounds of interest could not be identified on the chromatogram as compounds 

of higher concentration eluting at the same time masked them.  

A simple solution to the above problem involved using a column that would cause the 

compounds to elute more slowly. After reviewing the products available in the market, it 
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was decided to go with the 30m poraplot Q column (Agilent Technologies, CA). The 

column was able to slow down the elution of all the compounds, thereby providing a 

much greater degree of separation with running time being the trade off. It also had no 

retention affinity for carbon dioxide, which was one of the compounds of high 

concentration, causing it to elute right at the beginning such that it did not co-elute and 

mask the trace compounds. However, due to the slowness of the poraplot column, the 

higher molecular weight EBCs virtually never eluted. This made it an impractical 

solution in situations where the VOCs and EBCs were to be analysed on the same 

column. 

2- dimensional GC or GCxGC offered solutions to the above mentioned drawbacks of 

analyzing both the VOCs and EBCs on the same platform. 2-D GC, as the name suggests 

contains two different dimensions for the separation column – in our case, a 30m first 

dimension column and a 2m second dimension column. The properties of the 2-D GC is 

given below: 

• GCxGC/TOF MS (Pegasus 4D, LECO, St Joseph, MI)  

• First dimension GC column: Rtx-Wax (30m length, 250 mm column i.d.; Restek 

Corp., Bellefonte, PA) 

• Second dimension GC column: Rtx-5 (2m length, 180 mm column i.d.; Restek 

Corp. Bellefonte, PA) 

• Carrier Gas: Helium (99.999% purity; Nexair, Atlanta, GA) 

• Data processing was done on software (Chromatof) native to the instrument 

The same set of standard compounds that were run on the GC-MS were now run on the 

2-D GC in order to determine the location of the commonly occurring compounds on 
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the chromatogram. The 2-D GC displayed superior separation quality, where the 

compounds that were previous co-eluting were now separated on the second dimension 

of the GC. The TOF MS attached to the system enabled the identification of these 

standards by providing the first and second retention time along with the signature 

masses and similarity hits. 

 Previously reported work on breath analysis focus on the total number of compounds 

seen in breath when analysed by GC. A key factor that is often overlooked is the presence 

of markers originating from exogenous sources. Such sources would include the 

background room air, analytes not fully desorbed from the SPME fiber, siloxanes and 

other impurities present in the GC column as well as contaminants in the Tedlar bag. In 

an attempt to be as comprehensive as possible while isolating biomarkers present in 

exhaled breath, samples of all the above mentioned exogenous sources were analysed to 

get an idea of these background compounds. A blank SPME fiber was run on the GC 

before every set of runs to determine any carryover in the fiber. SPME fibers were also 

placed in the room where the experiments were run and also in a Tedlar bag filled with 

ultra high purity helium in order to determine the compounds arising from these sources. 

These chromatograms were later compared with actual breath chromatograms to try and 

distinguish the endogenous compounds present in the breath from the compounds arising 

from these external sources.  

The next step was to analyse the actual breath samples provided by the volunteers. 3 

healthy, non-smoking volunteers were selected to provide breath samples for the 

experiment. One of the volunteers provided 3 breath samples in a day – in the morning, 

afternoon and the evening and also provided breath samples on 3 consecutive days in the 
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morning. One single breath sample was collected from the other two volunteers in order 

to compare breath samples across three different persons. After each collection, the 

system was thoroughly rinsed with IPA in order to get rid of any residual impurities. 

Each of the VOC samples was sampled for 45 minutes before being analysed in the 2-D 

GC. The EBC samples collected from the volunteers were first derivitized by a TMAH 

derivitization protocol before being injected into the GC with a syringe. The various 

samples were run on the GC and the analysis of the data is presented in the next section. 
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CHAPTER 4: RESULTS AND DISCUSSIONS 

 

4.1 1-D Gas Chromatography 

A chromatogram of a breath sample run on a 1-D GC-FID is shown in figure 4.1.  It is 

observed that a number of compounds elute right at the beginning followed by a period of 

inactivity. This is followed by the elution of two tailing peaks and a peak of low signal 

strength right at the end. In order to validate the effectiveness of the sampling system, a 

volunteer was made to breathe directly into a bag, which was then sampled using the 

same PDMS-Carboxen SPME fiber and run on the GC-FID. The chromatogram of the 

breath sample run through the system is compared with that of the direct breath in figure 

4.2. It is clear that the signal strength in the case of the sample run through the system in 

more than an order of magnitude higher than the other case. This validates the fact that 

the sampling system is effective at preconcentrating the VOCs present in the breath 

sample. 

A striking feature of the 1-D chromatogram shown in figure 4.1 is the lack of distinct 

peaks. Although the number of compounds reported in human breath exceeds a hundred 

in literature, there are only three major peaks in the 1-D chromatogram. A closer 

inspection of the first peak reveals a couple of shoulder peaks, but they still do not add up 

in terms of the number of peaks expected in human breath. In order to get a better idea of 

the compounds present, the GC was connected to a MS detector and the peaks were 

identified. The largest peak in the first elution was identified as carbon dioxide whereas 

the shoulder peaks were identified as acetone and ethanol. Since a large fraction of 
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exhaled breath consists of carbon dioxide, it is easy to see that it floods the chromatogram 

and potentially elutes over VOCs having low concentration.  

 

Figure 4.1: A GC-FID chromatogram of exhaled breath 
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Figure 4.2: A comparison of exhaled breath concentrated by system (top) vs 
direct breath (bottom) 

 

The same holds with Acetone and Ethanol, which are compounds found in higher 

concentration in exhaled human breath. Hence it is possible that the trace level VOCs 

were captured by the breath sampling system and the SPME fiber, yet the sheer 

concentration of carbon dioxide and other VOCs of large concentration caused them to be 

overshadowed on the chromatogram. 

In order to confirm the presence of trace VOCs, a set of standards (table 4.1) was 

purchased and injected one at a time into a GC-MS.  The RTX-5 column was retained 

and the GC conditions were the same as mentioned in the previous chapter. Although the 
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detector used in this case is the MS, the retention time and the retention order of the 

compounds will remain the same as it is only dependent on the GC conditions and the 

column used. The standards were diluted in Hexane before injection. This was done in 

order to avoid injecting a high concentration of the standard and flooding the column. If 

the concentration is low, the peaks are sharp and peak broadening and tailing is avoided.  

From table 4.1, we can see the retention times of the 46 standards along with the 

similarity match on the GC and the signature mass detected for each compound. The time 

corresponding to the peak apex was recorded while noting the retention time of each 

standard. As predicted, it can be seen that approximately 15 other compounds elute 

within the first ten seconds of the first peak elution. In general, the time between eluting 

compounds is not more than a few seconds and there are distinct regions of peak 

concentration. For example, there is a large group of compounds that elute within the first 

minute of the run. From there on the congestion of compounds is slightly less and the 

elution times are more spaced out. There is a small group of compounds eluting together 

right at the very end as well, but a majority of the compounds are grouped at the 

beginning. This result clearly explains the lack of compounds seen when an actual breath 

sample was run on the GC-FID. The chemical properties of the RTX-5 column are such 

that the affinity towards the target compounds is very low. Due to this, the analytes are 

not separated very much by the column before eluting. Also when a compound of high 

concentration such as carbon dioxide elutes at around the same time, due to the broad 

nature of the concentrated peak, the lower concentration VOCs are hidden behind the  

 

 



 

 
 

38 

Table 4.1: List of standards with retention time on 1-D GC 

 

 

 

Compound Retention time (s) MS Similarity match Signature m/z
1 Acetaldehyde 26.1015 880 44
2 Methanol 26.174 882 29
3 Acrolein 28.7418 947 56
4 Pentane 29.033 940 57
5 Acetone 29.1021 858 58
6 Propanal 29.2636 920 58
7 Furan 29.3158 869 68
8 Ethanol 29.4268 909 45
9 Isoprene 29.6693 926 67

10 Acetonitrile 29.735 864 41
11 Carbon Disulfide 33.4208 906 76
12 2-Methyl Propanal 34.2442 889 72
13 Cyclopentane 34.9134 822 69
14 3-Methyl-pentane 34.98 944 71
15 Methacrolein 35.6233 895 70
16 2-Methyl-pentane 36.8935 929 71
17 2,3-Butanedione 38.0119 868 43
18 Hexane 39.419 952 86
19 2-Butanone 40.3322 839 72
20 Methyl Vinyl Ketone 40.7424 882 70
21 2-Methylfuran 41.3123 935 82
22 1-Propanol 42.485 908 59
23 Methylcyclopentane 45.0089 935 69
24 Ethyl Acetate 45.2254 864 88
25 Cyclohexane 53.4848 947 84
26 Benzene 55.2569 888 78
27 Hydroxyacetone 56.9033 845 74
28 2-Pentanone 64.2898 870 86
29 1-Butanol 65.2746 906 56
30 Pentanal 68.9218 893 86
31 2,4,4-Trimethyl-1-pentene 73.0464 893 97
32 2,5-Dimethylfuran 73.7824 901 96
33 Toluene 115.957 867 91
34 Hexanal 149.966 878 56
35 Ethylbenzene 242.713 826 91
36 Styrene 305.665 786 104
37 o-Xylene 310.629 702 57
38 Nonane 336.381 843 128
39 Benzaldehyde 573.38 796 106
40 Decane 578.755 923 142
41 6-Methyl-5-hepten-2-one 590.326 889 108
42 Butyrolactone 633.947 906 42
43 Acetophenone 708.933 952 105
44 2-Propanol 920.965 934 43
45 Dimethyl Disulfide 693.546 923 62
46 2-Pentene 805.345 940 56
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peak. As a result, the chromatograph displays three large, broad peaks and very little else 

in the region of interest.  

In order to obtain better separation of the compounds, a Poraplot Q (Agilent) column 

was installed on the GC-MS and the standards were run using the same conditions as 

before. The entire set of standards was combined and diluted before injection. In the case 

of the Poraplot, the system was run for an hour. It was seen that a few compounds eluted 

almost immediately at the beginning of the run. After this there is a period of inactivity 

before the next compound elutes at around the 800-second mark. From there on, there is a 

slow, distinct elution of the standards with little or no overlap. This is a significant 

improvement over the previous column, where a large number of compounds co-eluted. 

Further MS investigation revealed the compound that eluted at the beginning to be carbon 

dioxide. The chemistry of the column is such that the carbon dioxide has little or no 

retention and hence is naturally separated from the other compounds of interest. This 

mitigates the problem previously faced in the RTX-5 where the carbon dioxide was 

completely masking the other compounds. Hence a clean, well-separated spectrum of 

breath is obtained without the interference of spurious compounds.  

Although the Poraplot does a great job separating the VOCs, the decision to move to 

the 2-D GC was taken due to the amount of time taken for the separation. Since breath 

analysis involves both the EBC and VOC samples, the amount of time taken to separate 

the EBC samples must be considered. Due to the high molecular weight and non-volatile 

nature of the EBCs, a larger run time and a higher temperature ramp is needed for 

effective separation. The maximum temperature the column can be heated as specified by 

the manufacturer is 250OC. This is a lot lower when compared to columns such as the 
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RTX-5 and RTX-50, which can be heated up to 300OC. Hence if the objective is to 

analyse both the VOCs and EBCs on the same system, the Poraplot column is not a 

practical option. This led to trials with the 2-D GC. 

4.2 2-D gas chromatography 

A default column set of ZB-5 for the first dimension and ZB-50 for the second 

dimension was chosen for the first set of experiments on the 2-D GC. The set of standard 

compounds were injected one at a time in order to determine the retention time for each 

of the compounds. Figure 4.3 is a peak apex plot of the standards on the default column 

set. It can be seen that the same compounds that were all co-eluting on the 1-D GC, are 

now separated based on their retention time in the second dimension. However, there is 

scope for improvement as the retention times of the compounds are very low and they are 

still concentrated at the beginning of the run. 

In order to achieve optimum separation of compounds on the 2-D GC, a column set 

selection, which is beyond the scope of this thesis, was performed in order to select the 

best combination of columns for the first and the second dimension. It was decided to go 

with the reversed orthogonality set of RTX-wax for the first dimension and ZB-50 for the 

second dimension. The RTX-wax slows down and separates the compounds on the first 

dimension whereas the RTX-50 provides an additional level of separation. A 2-D 

chromatogram of exhaled breath is presented in figure 4.3. The GC conditions are 

reported in the previous chapter. A 1-D chromatogram on the RTX-5 column is also 

shown in order to compare the separating power of the 2-D GC with the conventional 1-

D GC.  
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It is immediately apparent that the 2-D chromatogram is much richer in terms of the 

number of compounds separated. The compounds that were previously hidden behind the 

larger peaks in figure A are well separated along the second dimension in figure B. Since 

the operating conditions for both the 1-D and the 2-D GC are the same, the location of the 

large peaks in both the chromatograms remains the same, but the smaller peaks appearing 

in the 2-D GC are not seen on the 1-D GC. A convolution time of 7 seconds is chosen for 

the second dimension in order to prevent peak folding. 

 

Figure 4.3: Peak apex plot of standards on ZB-5/ZB-50 column. Marked in red is 
the separating power of the 2-D GC 

 

4.3 2-D GC data analysis 

The 2-D chromatogram shown in figure 4.4 was then analysed by the CromaTOF 

software to identify the various compounds present in the breath sample. By using the 
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data from the Time-of-flight mass spectrometer, the software is able to assign a 

compound name and CAS number to each of the identified peaks based on their signature 

ions. The user can specify the height and width threshold for the software to identify a 

peak. The software returned 5639 compounds with various similarity hits for the breath 

sample. It is important to note the way the software identifies the various compounds. 

Based on the threshold parameters entered for height and width, the software identifies a 

particular area on the chromatogram as a compound. If the width of the peak is too large, 

the software breaks the peak into multiple sections and identifies each of them as a 

separate compound i.e. if the peak concentration is large or there is trailing, the software 

will break the large peak into multiple smaller peaks and assign an identity to each of 

these small peaks. Due to this, it is possible that many of the compounds occurring at 

higher concentration are identified as peaks at multiple locations. Hence it is safe to say 

that the software generates a list of identified peaks rather than compounds. An example 

of such a plot is shown in figure 4.5.  
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Figure 4.4: A) Conventional GC/MS chromatogram of exhaled breath B) 
GCxGC/MS contour plot of same sample 

	 

A 
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Figure 4.5: Plot of peaks identified by the ChromaTOF software 

 

In order to get a better idea of the actual number of compounds present in human 

breath, it is necessary to translate the total number of peaks identified by the software into 

a set of actual compounds. For this, what is known as a ‘peak combine’ was performed. 

Basically, the data was sorted by CAS number followed by compound name. If the same 

compound appeared more than once at different locations for a particular sample, the 

corresponding peaks were all grouped together and represented as a single peak. 

Amongst all these peaks, the one having the largest area is chosen as the representative 

peak. For example, if 12 different peaks occurring at different retention times were 

assigned the CAS number for acetone, the peak having the largest area is used to 

represent the compound and the rest of the peaks are removed from the chromatogram. 

This method of combining peaks to compounds is a better representation of the total 

number of compounds present in a sample. A peak combine performed on the raw 
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chromatogram in figure 4.5 is shown in figure 4.6. This process considerably reduced the 

chromatogram from 5639 or so peaks to about 2025 compounds. 

The chromatogram obtained after the peak combine represents the compounds present 

in exhaled breath, Tedlar bag, SPME and the GC-column.  In order to make it truly 

representative of the endogenous compounds present in exhale breath, a further reduction 

was performed. As mentioned in the previous chapter, the contents of the Tedlar bag and 

SPME were analysed by GC. The compounds occurring due to these two sources were 

compared with the reduced chromatogram obtained from peak reduction and the 

commonly occurring compounds were removed (figure 4.7). In order to remove only the 

significant compounds occurring in the bag and the SPME, the areas of the occurring 

compounds were first filtered and only those compounds that had an area greater than 

10000 units were compared to the breath sample. Next, the compounds common to just 

the Tedlar bag/SPME and the breath sample were compared according to their relative 

areas. The compounds that appeared in a higher concentration in just the tedlar bags were 

removed and the remaining compounds were retained. This way, approximately 40 

compounds that were definitely contaminants form the Tedlar bag and SPME were 

removed from the chromatogram. Finally, the siloxanes occurring in the reduced 

chromatogram were also removed (figure 4.8) as they are compounds typically seen due 

to column bleed and rarely occur in exhaled breath. All compounds having a  
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Figure 4.6: Peak combine applied to raw chromatogram data 

 

 

Figure 4.7: Chromatogram after removal of bag compounds 
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Figure 4.8: Chromatogram after removal of siloxanes 

 

peak area less than 10,000 were removed as well. It was found that the similarity match 

for these compounds was really low and the software was unable to identify the 

compounds with a fair degree of certainty. Hence these compounds were disregarded as 

unknowns.  

The final chromatogram after all the reductions is shown in figure 4.9 and has exactly 

664 unique compounds. As can be seen, this data is clear and a better representation of 

the endogenous breath compounds. A search for the purchased standard compounds 

revealed that 42 of the 46 compounds were present in the final breath chromatogram. The 

standards have been marked with red dots in figure 4.10. Thus it is safe to conclude, that 

apart from the compounds reported as confirmed in literature, there are many other 
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compounds of interest present in exhaled breath, which could potentially be investigated 

further. 

 It is safe to say, the data was filtered at every step and utmost care was taken to 

ensure that the final chromatogram is as close to the true representation of exhaled breath. 

By following this method, false positives arising from external factors such as the Tedlar 

bag and SPME fibers, as well as internal sources such as column bleed and noise have 

been eliminated to a large extent. The reversed orthogonality column does a good job of 

separating the compounds on both the first and second dimension and a good spread is 

seen.  Although the large cluster of data from the original chromatogram has been 

reduced to a more digestible form using the data reduction techniques, there is significant 

scope for improvement in the manner of data reduction.  

 

 

Figure 4.9: Final chromatogram 
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Figure 4.10: Peak apex plot of EBC sample with standards from table 4.2 
highlighted in red 

 

4.4 Comparison between breath samples 

The data reduction technique was applied to each of the three breath samples collected 

from the same volunteer. The samples were collected on the same day, in the morning, 

afternoon and evening and stored in Tedlar bags. The samples were run on the 2-D GC, 

and the data obtained was processed by the method previously described.   

The final compounds present in each of the breath samples were then compared with each 

other in order to see how many compounds were common between the samples. It was 

found that out of the 664 compounds that were determined to be uniquely present in one 
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breath sample, 98 compounds were present in at least two of the samples. Furthermore, 

only 18 compounds were found to be present in all the three samples. 

 

Table 4.2: Standards identified in breath sample 
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In conclusion, a breath-sampling device capable of capturing both the liquid fraction 

as well as the volatile compounds presents in exhaled breath was constructed. This device 

was further extended to a two-channel breath sampling system that is capable of 

separating the dead-space air from the alveolar air in exhaled breath. The captured 

samples, which were stored in tedlar bags, were then extracted using SPME and analysed 

using gas chromatography. The analysis was performed using various configurations on 

both 1-D and 2-D GC and the results were documented and reported. Due to its superior 

resolution and separation, the 2-D GC was the instrument of choice for breath analysis. 

The data from the GC was further analysed and a unique data reduction technique was 

applied on the raw data obtained from the GC. This technique enabled us to refine the 

5000 odd peaks obtained by the GC software to a more realistic 664 compounds by 

eliminating background contamination as well as noise from the system. The 

observations from the data reduction experiments further emphasize the need to develop a 

standardized method for breath collection as well as analysis. Finally a comparison was 

performed on samples collected at different times of the day from the same volunteer and 

it was found that 18 compounds were present in breath at all times of the day. 

 

 



 

 
 

52 

 

Figure 4.11: Chromatogram data processing algorithm highlighting the different 
steps during data reduction 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

Exhaled breath analysis has garnered significant interest and attention as a means of 

non-invasive medical diagnostics. However, the lack of a standard method of sample 

collection, control of variability, reliable detection at trace level and quantification of 

breath samples has held back exhaled breath analysis when compared to more 

conventional techniques such as blood and urine analysis. 

In this work, a novel breath sample collection system that is capable of capturing both 

the volatile and non-volatile fractions of exhaled breath is designed and constructed. The 

collection system makes use of two distinct temperature zones to condense and capture 

the non-volatile and volatile fractions in liquid and gaseous states. The breath flows 

through stainless steel tubes immersed in these cold baths, and as the temperature of the 

breath decreases, it condenses on the walls of the tube. The liquid portion is collected in 

syringes whereas the gaseous VOCs are stored in Tedlar bags. The design of the 

sampling system is further extended to separate the dead-space breath from the alveolar 

breath. This is done by introducing a second ‘channel’ or a set of tubes to separate the 

flow of breath into two different collection regions. The flow of the air into the two 

channels is regulated by means of a pressure sensor and a solenoid valve. Based on the 

pressure, the first half of the exhaled breath (dead-space breath) is directed through one 

channel and the second half (alveolar breath) is directed through another channel. 

The collected breath samples were sampled from the Tedlar bags by means of SPME. 

Different coatings and sampling times were compared before settling on a PDMS-
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Carboxen fiber with a sampling time of 45 minutes. The samples were then analyzed by 

gas chromatography. Both 1-D and 2-D gas chromatography was used to separate the 

compounds in exhaled breath. Many different column configurations were tried on the 1-

D FID GC, but the separation power of the single dimension column was limited. 

Although the PoraplotQ column displayed good separation, the long run time was not 

favorable for this particular application. The 2-D GC was able to provide a chromatogram 

of higher resolution as well as greater separation. The overlapping of compounds seen on 

the 1-D GC was absent on the 2-D GC. Coupled with a time of flight (TOF) mass 

spectrometer, more than 5000 peaks were identified on the 2-D GC chromatogram, which 

was the instrument of choice for the analysis of exhaled breath. 

In order to separate the endogenous breath compounds from exogenous compounds, a 

unique data processing tool was applied to the raw data obtained from the commercial 

GC software. The two main features of this tool were the combination of peaks into 

compounds and the subtraction of background compounds. The peaks identified by the 

GC software were combined into compounds based on their CAS number and chemical 

formula. These compounds were further filtered by removing the ones that were also 

present in the SPME blank and Tedlar bag. The noise level compounds were also 

subtracted based on the assumption that the probability of correct identification was low 

due to the weak signal strength.  This way, we were left with a reduced set of compounds, 

which were a more accurate representation of the actual compounds present in exhaled 

breath. A comparison of three samples of breath collected from the same person at 

different times of the day revealed that out of a maximum of 664 compounds present at 

most in any sample, 98 compounds were present in at most 2 samples and only 18 
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compounds were present in all 3 samples. The compounds found in all three samples are 

listed in table 5.1. 

Table 5.1: List of compounds common to all 3 breath samples 

Compound RT
1 

RT2 Formula CAS 
number 

Eucalyptol 364 5.09 C10H18O 470-82-6 
Unknown 1677 107

8 
6.12 C13H17NO2 185957-

97-5 
Phenol, 2,4-di-t-butyl-6-nitro- 151

9 
4.045 C14H21NO3 20039-94-

5 
4-(1-Hydroperoxy-2,2-dimethyl-6-
methylene-cyclohexyl)-pent-3-en-2-one 

155
4 

2.2 C14H22O3 125284-
20-0 

Butylated Hydroxytoluene 132
3 

4.145 C15H24O 128-37-0 

Pentadecanoic acid 176
4 

3.68 C15H30O2 1002-84-2 

Guanidine carbonate 146
3 

1.19 C3H12N6O3 593-85-1 

2-Propenenitrile 168 1.235 C3H3N 107-13-1 
Propane, 1-(methylsulfinyl)- 108

5 
1.98 C4H10OS 14094-08-

7 
Propane, 1-(methylthio)- 133 1.795 C4H10S 3877-15-4 
Pyrazine 378 1.81 C4H4N2 290-37-9 
2-Butanone, 3-hydroxy- 476 1.46 C4H8O2 513-86-0 
p-Dithiane-2,5-diol 189 1.48 C4H8O2S2 40018-26-

6 
Butane, 2-(methylthio)- 154 2.18 C5H12S 10359-64-

5 
Benzonitrile 917 2.085 C7H5N 100-47-0 
Hexane, 2,3,4-trimethyl- 98 1.995 C9H20 921-47-1 
Methane, dibromochloro- 483 1.85 CHBr2Cl 124-48-1 
Methane, bromodichloro- 308 1.6 CHBrCl2 75-27-4 

 

5.2 Recommendations 

In this work, a two-stage system for breath collection was designed and implemented. 

If such a system is to be used in a clinical setting, the two most important factors that 

must be considered in the design is the portability of the system and the ease for patients. 

In its current form, the prototype system consists of lengthy tubing and requires a 
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constant supply of liquid nitrogen for the cooling of the second stage. Miniaturizing the 

system by reducing the length of tubing as well as finding an more portable alternative to 

the current cooling method is something that could be considered. Reducing the pressure 

drop across the system such that it makes for easier patient breathing can be looked into 

as well. A standardized method of sample collection in terms of breath volume collected 

will definitely play a big role in quantitation of the compounds 

Tedlar bags and SPME were the methods of collection and sampling used in this work. 

Although Tedlar bags are convenient in terms of handling and storage, they introduce a 

significant number of exogenous compounds that could be avoided during analysis. The 

use of polished canisters and adsorbent traps has been reported in literature. The sampling 

on SPME can be avoided as well by maybe directly introducing the breath sample into 

the analysis system. As SPME is based on surface adsorption, the analytes having higher 

concentration tend to occupy more of the surface sites as opposed to the low 

concentration analytes. This makes quantitation using SPME very tricky and challenging.  

In terms of analysis, 2D GC proved to be better than 1D GC thanks to its superior 

separating power. However, 2D GC with a TOF mass spectrometer is an expensive 

instrument and not very portable. Furthermore, selecting the correct combination of 

column sets for breath analysis is something worth investigating. The separation of the 

breath compounds is heavily dependent on the columns used, and selecting the wrong 

column set doesn’t really provide the 2D GC with any significant advantage over the 1D 

GC. Also, a study on the analytes endogenous to the GC column is worth performing as a 

blank run on the GC still spits out many compounds and sometimes carry overs from the 
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previous analyses. Reducing this would definitely help filter the final list of exhaled 

breath compounds. 

The data processing done in this work is unique in the area of breath analysis as it has 

not been done by anyone else previously as per our knowledge. A number of previous 

articles on exhaled breath claim a large number of detected exhaled compounds, however 

there is very little work done in trying to determine whether these compounds are actually 

from the human body or other external sources. As we have found out, a number of 

compounds seen by the GC are in fact contaminants from sources such as the SPME fiber 

and the Tedlar bag. Further work must be done to determine the effect of one’s 

surroundings during the breath collection process. For instance, if the patient’s breath is 

being collected in a clinical setting, it is possible that the levels of common clinical 

disinfectants such as alcohol could be greater in the exhaled breath. It is definitely 

beneficial to look more into accurately eliminating the exogenous compounds from the 

endogenous compounds. Table 5.1 lists all the compounds found common to the three 

breath samples, however, the list doesn’t include some of the common compounds cited 

in literature such as acetone, isoprene etc. This indicates that a lot more work needs to go 

into developing the data processing algorithm to ensure accurate data reduction. The two-

channel breath collection device that has been introduced in this work also needs to be 

followed up on, in terms of optimizing the switching of channels as well as analysis of 

the dead space and alveolar breath. 
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APPENDIX A: DATA PROCESSING ON BREATH SAMPLES 

 

In this appendix, the data-sorting tool developed has been applied to breath samples 

collected from two other volunteers. Figure A.1 shows the raw data of volunteer 1 as 

processed by the Chromatof software. The peaks are then grouped into distinct 

compounds in figure A.2. The exogenous compounds arising from the Tedlar bag and 

from column bleed are then removed and represented in figure A.3. Finally the noise 

level compounds are removed and the final chromatogram is show in figure A.4.  

 

 

Figure A.1: Raw breath chromatogram from volunteer 1 
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Figure A.2:  Peak combine (volunteer 1) 

 

 

Figure A.3: Chromatogram after removal of siloxanes and noise (volunteer 1) 
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Figure A.4: Final chromatogram (volunteer 1) 

 

 

Similarly, the same data processing is applied to the breath sample obtained from 

volunteer 2 and the data is shown below. 
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Figure A.5: Raw chromatogram (volunteer 2) 

 

 

Figure A.6: Peak combine (volunteer 2) 
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Figure A.7: Chromatogram after removal of siloxanes and noise (volunteer 2) 

 

 

Figure A.8: Final Chromatogram (volunteer 2) 
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Table A.1: List of standards found in volunteers 1 and 2 

Serial no. Name CAS 
number 

Found in sample 

1 Methyl Alcohol 67-56-1 1,2 
2 Acetaldehyde 75-07-0 1,2 
3 Ethyl Alcohol 64-17-5 2 
4 Propanal 123-38-6 2 
5 Acetone 67-64-1 1 
6 Isopropyl Alcohol 67-63-0 2 
7 Dimethyl Sulfide 75-18-3 1,2 
8 2-Pentene 109-68-2 1 
9 2,3-Butanedione 431-03-8 2 
10 2-Methylfuran 534-22-5 2 
11 2-Butanone 78-93-3 1 
12 2-Methylpentane 107-83-5 2 
13 Benzene 71-43-2 1,2 
14 Hexane 110-54-3 1 
15 2-Pentanone 107-87-9 1,2 
16 Toluene 108-88-3 1,2 
17 Hexanal 66-25-1 1,2 
18 o-Xylene 95-47-6 2 
19 6-Methyl-5-hepten-2-one 110-93-0 1 
20 Acetophenone 98-86-2 2 

 

 

 

Table A.2: Breath volumes of volunteers measured using spirometer 

Subject Total exhaled volume (liters) Mean flow rate (liters/sec) 
Volunteer 1 21.47 0.11 
Volunteer 2 27.71 0.14 
Volunteer 3 25.83 0.13 
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