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SUMMARY 

Solar energy is an advantageous energy source because it’s plentiful, free, and has 

zero net chemical footprint. The problem with solar energy is that it’s dilute (1000 W/m2) 

and intermittent, since it is inherently dependent on the weather.  Therefore, an expensive 

sunlight collection and energy buffering/storage infrastructure is required for solar energy 

to meet demand at the utility scale. Concentrated solar power with liquid salt (LS-CSP) 

thermal energy storage (TES), is a commercially proven technology that delivers 

dispatchable electricity to the grid; however, it currently costs about twice as much as 

fossil fuel generation, which is a barrier to its wide spread adoption.  

 Current CSP plants operate at 565°C and utilize a steam Rankine power cycle 

with ~ 35-40% thermal to electrical conversion efficiency. One pathway to lower the 

levelized cost is to increase the operating temperature above 1,200°C enabling usage of a 

combined power cycle with an efficiency as high as 60%. Molten nitrate salts degrade at 

~600°C, therefore a different heat transfer fluid is required for higher temperatures. 

Liquid metals (LM) can reach the high temperatures required for combined power cycles. 

However, LMs oxidize in air and corrode conventional structural materials such as steel. 

Switching from LS-CSP to LM-CSP necessitates replacing steel pipes, pumps, heat 

exchangers, and tanks with alternative materials, such as ceramics and encasing the 

subsystems in an inert atmosphere. Finally, a different receiver design that limits thermal 

radiation losses is necessary for efficient high temperature operation.  The power cycle 

efficiency gains from higher temperature operation must outweigh the additional 

infrastructural costs of using LM in CSP for the approach to be feasible, but it is unclear 

if there is a net gain. This thesis addresses this question by presenting a LM-CSP plant 



 xx 

design and estimating its costs subject to many mechanical, chemical and materials 

criteria that would make the plant construction feasible. 

 Chapter 1 reviews the history of solar thermal technology and the motivation for 

further research and cost reduction. In chapter 2, the overall design of the LM-CSP plant 

is presented alongside a LS-CSP plant with published costs. The LM-CSP plant was 

modeled with the same thermal input as the LS-CSP plant to make direct cost 

comparisons and simplify the cost modeling of components that would not change in a 

hypothetical LM-CSP plant design. Chapters 3 through 7 present the component designs 

and costs for each of the four subsystems, namely the heliostat field, receiver, TES, and 

power cycle. Each subsystem was then compared against LS-CSP plant components to 

quantify the cost increase. Chapter 7 also includes the parasitic losses calculated for the 

LM-CSP plant and they were significantly lower than a LS-CSP plant, due to the higher 

thermal conductivity of LM as compared to LS or any other non-electrically conductive 

fluid.  Chapter 8 presents all subsystem costs combined and the estimated levelized cost 

of electricity for a LM-CSP plant which was ~ 9 ¢/kWh and was a 30% cost reduction 

from the current state of the art LS-CSP.  

 Chapter 9 presents experimental work done building liquid tin (Sn(l)) pump loops. 

First, the experimental design to test a 1,350°C optical cavity receiver is described and 

the associated challenges for a successful test run, some of which were addressed with 

previous experiments. The solutions discussed in this thesis include Sn compatible 

ceramic pipes, graphite reaction bonds, graphite mechanical seals, LM valves, and minor 

flow losses in graphite elbows. The ultimate conclusion of the thesis is that there is strong 

economic incentive to pursue LM-CSP and further research should be conducted to solve 
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the remaining technical challenges, which all appear surmountable from the preliminary 

experimental studies. 
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CHAPTER 1: INTRODUCTION 

Global climate change and energy demand has set new standards for electricity 

generation. Future generation technologies must deliver electricity on demand while 

limiting their environmental impact.  Renewable sources like wind and solar 

photovoltaics (PV) meet the second criterion by providing electricity without emitting 

greenhouse gases.  In some regions, wind and PV approach cost parity with traditional 

sources like coal and natural gas [1]. The approximate levelized costs of electricity 

(LCOE) for wind and PV are 7.4 ¢/kWh and 12.5 ¢/kWh respectively, which is cheaper 

than advanced coal with carbon capture and storage at 14.4 ¢/kWh (Table 1) [1].  LCOE 

is a cost metric that compares different generation technologies by summing all lifecycle 

costs (capital expenditures, fuel expenditures, operation, investments) and normalizing 

them against the electricity generated. 

LCOE does not take into account when an energy source can deliver electricity to 

the grid. The issue of whether or not a resource can be dispatched by a utility and provide 

electricity at any time, is known as dispatchability. Wind and solar electricity conversion 

are weather dependent and cannot be controlled to match demand. Wind and solar are 

therefore inherently non-dispatchable because of their intermittent supply.  Furthermore, 

their capacity factors (e.g., the proportion of operation at peak capacity) are less than half 

that of fossil fuel generation. When renewables make up a larger percentage of a utility’s 

generation portfolio, dispatchability and capacity factor have real economic costs for the 

utility not taken into account with LCOE estimates [2, 3]. In order for renewable energy 

to transition from a minor grid supplement to an adequate fossil fuel replacement, cost 

effective energy storage is required.  
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Table 1: LCOE for plants entering service 2020 [1] 

 LCOE (2013 ¢/kWh) Capacity Factor, % Dispatchable 

Conventional Coal 9.5 85 Yes 

Advanced Coal with 
CCS 

14.4 85 Yes 

Conventional Natural 
Gas Combined Cycle 

7.5 87 Yes 

Conventional 
Combustion Turbine 

14.2 30 Yes 

Wind 7.4 36 No 

Solar PV 12.5 25 No 

Solar Thermal, no 
storage 

24.0 20 No 

 

Current grid level energy storage relies primarily on pumped hydroelectric 

(hydro) and electrochemical battery technologies [3, 4]. Pumped hydro is inexpensive yet 

geographically limited [4], and works by pumping water uphill when there is a surplus of 

generated electricity.  During peak demand, water is drained from the raised reservoir 

through hydroelectric turbines to match the supply with increased demand [5]. Pumped 

hydro requires natural streams and hills to be cost effective, limiting its use to current 

hydroelectric dam installations.  

Batteries are not geographically limited and typically have roundtrip efficiencies 

above 70% [6, 7].  They can also quickly shift from charging to discharging within 

seconds, and are easily scalable.  However, their costs are high ($150 to $600/kWhe), and 

there is a tradeoff between their lifetime and discharge rate [6, 8, 9]. Thermal energy 

storage (TES) is a cost effective alternative to battery storage with an estimated cost of 

~$60/kWhe for molten salt TES [10]. At large scales, it has a round trip thermal 

efficiency >99%, long life, and unlike electrical batteries, the amount of energy stored is 

decoupled from the rate of discharge [11].   
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TES works by heating a medium and storing it in an insulated tank until power is 

required.  When electricity is needed, the heat is transferred from the heated medium to a 

power cycle. At large scales, where the surface area to volume ratio decreases, TES is 

efficient because thermal losses scale with the surface area while the amount of energy 

stored scales with the volume [11]. 

TES conceptually makes the most sense when the energy input is heat, rather than 

electricity, as is the case for an electrical battery.  While joule heating from electricity is 

nearly 100% efficient, converting thermal energy back to electricity is 

thermodynamically limited by the second law and therefore it is a function of the peak 

TES temperature. Using today’s best power cycles, the maximum thermal to electric 

conversion is ~60% and would require extremely high storage temperatures (>1200°C) 

[12-14].  Therefore, the most economically advantageous and efficient embodiment of 

TES is to pair it with concentrated solar power (CSP), where mirrors concentrate sunlight 

onto a receiver which heats the TES medium [15]. CSP already requires a thermal energy 

conversion step and the fuel (sunlight) that provides the thermal energy is, in a sense, 

free. CSP plants with TES can operate more like coal and natural gas plants, delivering 

dispatchable electricity to the grid with a capacity factor in excess of 40% [10]. 

Plant Configuration 

A CSP tower plant with TES is composed of four subsystems: a heliostat field, a 

receiver, TES, and a power block (Fig. 1) [10, 14]. The heliostat field typically consists 

of many mirrors, typically 1,000-100,000 that cover an area on the order of a square mile, 

which concentrates sunlight onto a central tower. The heliostat field is the most expensive 

part of the plant, accounting for ~25-40% of the capital cost [10].  The concentrated 
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sunlight incident on the receiver is then absorbed and the energy is transferred as heat to 

the heat transfer fluid (HTF), which can be LS for TES or it can be used to directly 

generate steam [16, 17].  Current solar receivers are approximately 15 m in diameter and 

consist of cylindrical banks of parallel tubes (i.e., nickel alloy pipes) [17, 18]. The metal 

pipes are painted black to maximize absorption of the solar radiation, which heats LS 

flowing through the piping network.  After the LS is heated, it is pumped down the tower 

to an insulated tank.  The first tank stores LS at the peak storage temperature (565°C for 

LS-CSP plant) until electricity is required [10, 17].  When electricity is needed, the 

storage fluid is pumped from the hot tank through a heat exchanger to a cold storage tank.  

The heat exchanger transfers heat from the storage fluid to a power cycle working fluid, 

which is steam for LS-CSP plants.  Once steam is generated, the remainder of the power 

block is nearly identical to that of other coal or nuclear plants.  It consists of a pump to 

pressurize water, a boiler to heat it, and a turbine to generate work.   

 

Fig. 1: LS-CSP plant schematic 

Concentrated Solar Power History 

Interest in concentrated solar power began in the late 1970’s when spikes in oil 

prices prompted DOE labs to explore fossil fuel alternatives for energy production [19].  

Heliostat Field

T=565 C
Salt Thermal 

Storage Tanks Power Cycle Heat 

Exchanger: Steam
Rankine Power Cycle, 

Salt

H2O

Receiver Thermal Energy 

Storage

Power Block
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In 1976, engineers at Sandia National Labs constructed the National Solar Thermal Test 

Facility, which used water as a heat transfer medium to run a steam Rankine cycle and 

charge an oil + sand TES system [20]. This system, called Solar I, proved the concept of 

CSP with TES, operating from 1982 to 1986; however, its thermal storage system 

suffered from large inefficiencies. Elsewhere in the Mojave Desert, the Solar Electric 

Generating System (SEGS), was built in 1984. SEGS used parabolic trough technology 

where long troughs of mirrors with a parabolic cross-section concentrated sunlight onto a 

central oil tube running lengthwise along the mirror’s focal line (Fig. 2).  

 

Fig. 2: SEGS parabolic trough plant (NOAA) 

In these plants, hot oil is heated to ~390°C and transfers heat to a steam Rankine power 

cycle with ~ 37.5% efficiency. The hot oil can be used for TES to provide power after 

peak sunlight hours. Parabolic trough technology is scalable and commercially proven, 

with 354 MW of installed capacity at the Mojave Desert site representing the second 

largest solar thermal installation (after Ivanpah Solar Power facility). However, solar 

trough plant’s operating temperature is limited by the mirror geometry to 80X 
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concentration, heating oil to ~400°C [21]. Power tower designs achieve concentration 

ratios from 300 to 1,000 and can heat LS to 565°C.  With the advantages of power 

tower’s known, in the 1990’s, solar I was converted to solar II by switching to LS as a 

heat transfer fluid and storage medium [20]. Solar II demonstrated the key advantages of 

LS-CSP, namely dispatchability and higher efficiency.  It delivered electricity to the grid 

for 153 straight hours. Over one 30 day period, solar II produced 1,633 MW-hr, 

exceeding its monthly goal of 1500 MW-hr [20].    

For 20 years, solar thermal energy was favored over photovoltaic systems because 

of the historically high cost of PV, as compared to CSP’s mirror based infrastructure, 

which made CSP competitive with PV, even for direct power generation without TES 

[22, 23].  However, in 2010, PV cells saw a dramatic decrease in costs, largely due to 

major manufacturing scaling in China [24]. Since 2010, current solar thermal technology 

has not been able to compete with PV cells without storage.   

Ivanpah, the largest solar thermal plant to date at 377 MW has no energy storage, 

and it is more expensive than PV (Fig. 3) [25].  When the plant was funded and 

contracted in 2009, its LCOE forecast was still cost competitive with PV.  However, 

when construction finished in 2014, the plant capital cost was $5.40/W, which was higher 

than the cost of PV at that time $4/W [26, 27].   
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Fig. 3: Decline of PV prices. Ivanpah price plotted in red 

This identifies an inherent disadvantage of CSP, namely the fact that large capital 

intensive projects, with long multi-year construction times are required. At such long 

time scales there is significant volatility associated with the costs of components, 

availability of suppliers and the strength and viability of competitors. However, where 

CSP plants have an advantage is in their ability to integrate TES for dispatchability. 

Electrochemical batteries are the primary commercial storage option for PV and wind, 

but the capital cost varies between ~$120/kWhe for traditional lead acid batteries and 

~600 $/kWhe for new lithium ion batteries [9].  When one compares these costs to the 

cost of LS TES which is ~$62.5/kWhe [10], then the cost advantages of TES become 

clear. Another disadvantage for battery storage is that the power output is a function of 

storage capacity and has a cost between $300-1,200/W [6, 8]. For LS TES, electricity is 

produced by pumping LS through a steam generator powering a Rankine cycle. 
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Therefore, power production is decoupled from storage capacity and is priced according 

to the heat engine cost, $1.14/W for a Rankine power cycle [28]. 

There are two currently active commercial LS-CSP plants with TES, namely the 

Crescent Dunes plant in Nevada and the Gemasolar plant in Spain.  Gemasolar is a 20 

MW plant featuring 14 hours of storage and Crescent Dunes is a 100 MW plant with 10 

hours of TES [29, 30].   

 

Fig. 4: Crescent dunes LS-CSP plant (Solar Reserve) 

Both plants provide dispatchable electricity without greenhouse gas emissions; the 

problem is that they are still too costly.  While costs vary, power tower CSP plants have 

an LCOE of ~13.5-15 ¢/kWhe, compared to ~7 ¢/kWhe for fossil fuel technology (see 

Table 1) [10, 29].  One promising way to reduce the costs of CSP plants is to increase 

plant efficiency. If a greater proportion of the solar energy collected can be converted to 

electricity without an accompanying increase in the cost of the plant, then the LCOE will 

decrease.  The largest energy conversion loss occurs in the power cycle which converts 

thermal energy to electricity. Power cycles are thermodynamically limited by the working 

fluid inlet temperature with current LS-CSP plants utilizing a Rankine steam cycle with a 



 9 

peak temperature of 565°C and an efficiency as high as 41%. However, the most efficient 

commercial heat engine has an efficiency of ~60% [12] and combines two power cycles: 

a natural gas Brayton cycle with peak temperature >1200°C, which then rejects heat to 

power a steam Rankine cycle at 550°C [13, 31]. Thus, in order for concentrated solar to 

power a more efficient combined cycle, higher operating temperatures are necessary.  

However, current nitrate liquid salts, 60% NaNO3 and 40% KNO3, degrade at ~600°C, 

where they would reduce to form nitrites and the stainless steel that holds them would 

experience a considerable decrease in corrosion resistance, due to chromium diffusing to 

the grain boundaries above 565°C [32-35].  Therefore, a new heat transfer fluid and 

storage medium is required for higher temperatures and more efficient cycles. 

Higher temperature heat transfer fluids is an area of ongoing research and 

research groups are considering fluids ranging from fluoride salts, molten glass, sand 

particles, and LMs as possible high temperature alternatives to nitrate salts [36-40].  

Storage fluids vary in cost, and many require special containment materials. This thesis 

focuses on LMs aluminum (Al) and Sn inside a ceramic containment infrastructure to 

reach ~1,400°C, whereby heat is converted to electricity via combined cycle. Some LMs 

are advantageous due to their low vapor pressure at high temperatures, low viscosity, and 

high thermal conductivity compared to liquid glasses and fluoride salts. Their primary 

benefit is storing high temperature heat to utilize a more efficient combined cycle heat 

engine. Increasing the TES temperature from 565°C to 1,380°C could increase power 

cycle efficiency from 40% to 60% - potentially a 50% increase in electricity generated 

while using essentially the same heliostat field.  
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There are, however, technical challenges associated with constructing a LM-CSP 

plant. Ceramic pipes, joints, pumps, and tanks need to be used instead of metal structures 

since LMs will generally corrode steels very quickly [39, 41]. Furthermore, the system 

needs to be maintained in an inert atmosphere so that the LM or in some cases the 

ceramics do not oxidize. Finally, the receiver needs to be redesigned to limit severe re-

radiation losses from the higher receiver temperature. In order to determine if switching 

to LM-CSP decreases costs, the components for a LM-CSP plant were designed and cost 

estimated normalizing all costs with respect to the greater electric output. The LM-CSP 

plant was not optimized, but rather designed conservatively to more assuredly determine 

if LM-CSP could reduce costs compared to LS-CSP.  The designed plant cost was 30 % 

cheaper and a significant step toward cost parity with fossil fuel electricity generation.  

LM-CSP Experimental Set-up 

With the economic potential established, extensive experimental testing of the 

proposed LM-CSP concept is necessary before constructing a prototype power plant 

becomes warranted.  A scaled down LM pump loop with a miniature receiver was built to 

test the concept, which consisted of a LM pump to flow Sn(l) through graphite pipes. The 

Sn(l) entered a cavity receiver designed to limit re-radiation losses and was heated by 

concentrated light from a solar simulator. The simulator was a set of lamps that simulated 

the solar intensity of a heliostat field on a smaller scale.  The LM was then cooled via a 

heat sink and the whole loop was contained within a 4’ x 4’ sealed steel box that was 

pumped with nitrogen to remove all oxygen from the experiment. 
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Fig. 5: Schematic of graphite receiver test loop. 

 

Fig. 6: Receiver inlet contained within inert containment box 
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Experiments characterizing receiver efficiency were ongoing at the publication of 

this thesis and the lessons learned from these experiments are discussed in Chapter 12. 

From Sn(l) circulation experiments at 400°C, the compatibility of Sn(l) was 

experimentally verified with two different pipe materials. Techniques for joining graphite 

via reaction bonding were largely improved and mechanical sealing methods were 

proven. Furthermore, graphite joint minor (frictional) loss experiments and ceramic ball 

valve experiments led to engineering solutions that could be applied at larger scale and 

make LM-CSP a technical reality. 
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CHAPTER 2: TECHNO-ECONOMIC ANALYSIS METHODOLOGY 

CSP Plant Levelized Cost of Electricity 

The LCOE for a 100 MW CSP power tower plant with 10 hours of TES is ~ 13.5-

21¢/kWh.  To be cost competitive with traditional energy sources like natural gas and 

coal, this cost must drop to 6-7¢/kW-hr [10, 42] and reaching or exceeding this goal 

requires significant research and cost reductions in each of the four CSP subsystems, (the 

solar field, the solar receiver, TES, and the power block). 

The LCOE for a power plant can be calculated according to the following Eq.:  
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where It is the investment expenditures in the year t, Mt is operations and maintenance 

expenditures in the year t, Ft is the fuel expenditures in the year t, Et is the electricity 

generation in the year t, r is the discount rate, and n is the life of the system. In CSP 

plants, one of the most effective ways to lower LCOE is to reduce investment 

expenditures, It, because for CSP, the fuel is free and the maintenance costs are low (1-

2% of initial investment) [10]. Therefore, investment expenditures dominate the LCOE 

and most investment expenditures occur before or during construction. The investment 

expenditure to build the plant, I1, is given its own variable, K, and is defined as the 

overnight capital cost [1]. 

In order to lower the LCOE of CSP, the overnight capital cost, K, needs to be 

decreased and since the capital cost is normalized by electricity production, given in 

$/kWe, K can be lowered by reducing the construction costs, increasing the plant output, 
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or both. Increasing output can be accomplished by improving the thermal to electric 

efficiency of the power cycle, possibly from 40% to 60%, which requires raising the 

operating temperature from 565°C to ~1,400°C.  Achieving higher temperatures in a CSP 

plant presents many challenges, the first of which is identifying a heat transfer fluid 

(HTF) that is stable at 1,400°C and melts at sufficiently low temperature that it will not 

freeze during daily transients.  Liquid nitrate salt is currently used in CSP plants, but it 

degrades at temperatures above 600°C [43].  A promising alternative to LS is a LM such 

as Sn.  Sn melts at 232°C, and even at 1,400°C, it remains liquid with a vapor pressure 

less than 10-4 atm [44]. However, traditional steel based components, such as pumps, 

piping, and storage vessels, cannot be used with Sn(l) due to the high temperatures 

involved and the accelerated corrosion that would occur [45, 46]. Refractory ceramics 

and graphite, however, can be used to design a CSP plant that employs Sn(l) as a HTF.  

The potential advantages of Sn(l) include access to higher temperatures, and the 

possibility of using a significantly more efficient power cycle.  The potential 

disadvantages include higher material costs, higher assembly costs, and higher initial 

capital costs due to a more complex or expensive system design (e.g. the receiver). 

Cost Estimation Methodology 

The goal of the techno economic analysis was to estimate the LCOE of a LM-CSP 

and compare it against the LCOE of LS-CSP plant on equal footing. The LCOE for a 

natural gas plant is also presented for comparison using a similar system size and 

capacity factor.  The capital costs for a CSP plant was broken up into four sub-systems: a 

solar field, a solar receiver, TES, and a power block.  The primary reference used for LS-

CSP plant costs was Sandia’s “Power Tower Technology Roadmap and Cost Reduction 
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Plan” [10]. This report detailed the costs of a LS-CSP plant optimized using NREL’s 

System Advisor Model (SAM). The modeled plant had a gross output of 115 MWe, with 

a net output of 100 MWe (after parasitic losses) and 9 hours of energy storage.  The 

hypothetical LM-CSP plant had the same heliostat field (1.04 X 106 m2), receiver output 

(540 MWt), storage capacity (9 hours), and thermal input to power cycle (280 MWt) as 

Sandia’s modeled LS-CSP plant, but used a 60% efficient combined cycle with 168 MWe 

gross output instead of 115 MWe. All plant capital costs were normalized against this 

higher electric power output, which, for example, significantly reduced the LCOE of the 

heliostat field despite its identical capital cost to the LS-CSP plant. 

For cost modeling the proposed LM-CSP plant, the heat exchangers, receiver, 

storage fluid, TES tanks, and piping were significantly different. Furthermore, additional 

systems such as inert containment and secondary concentrators were necessary to build a 

LM-CSP plant. Using heat transfer and thermodynamic relations, the geometries for these 

components were modeled for the plant configuration discussed above. Material cost 

factors were then applied to estimate costs. Cost assumptions and questions were 

discussed with industry advisors from eSolar, SolarReserve, Saint Gobain, and 

Westmoreland Advanced Materials to determine other possible costs unaccounted for in 

initial modeling. When uncertainty in the design or particular cost factor was encountered 

in the LM-CSP plant, the more expensive and conservative option was used. For 

example, controls, instrumentation, spare parts, and pumps were costs outlined for the 

LS-CSP plant that were difficult to estimate for a LM-CSP plant using heat transfer and 

thermodynamic relations. Instead, a 2X cost factor was applied, which was typically the 

difference in volumetric material cost between stainless steel, used primarily in LS-CSP, 
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and silicon carbide (SiC), a refractory ceramic for LM containment [47]. While this was a 

coarse estimation strategy, these costs did not represent a large proportion (<5%) of CSP 

subsystem costs and in reality, would likely be similar to a LS-CSP plant.  

Construction costs for the LM-CSP plant were estimated from the published cost 

numbers for the LS-CSP plant and discussions with industry advisors. The largest 

construction cost, the heliostat field, was the same for both plants since both plant designs 

used the same heliostat field. Receiver construction costs were taken from Solar Reserve 

estimates and TES construction costs were scaled to the LM TES design using published 

scaling relations [10, 29]. The power cycle construction costs were already included in 

the published estimates for combined cycles [48].  

LS- CSP Plant Configuration 

To make direct comparisons between LS-CSP and metal CSP plants, a single size 

plant was modeled. The heliostat field size and thus thermal input was identical between 

both plants. The plant size was based off of Sandia’s power tower roadmap which 

published cost numbers for LS-CSP tower subsystems [10]. The theoretical LS-CSP plant 

had 115 MWe gross electric output with 9 hours of TES, with a Rankine cycle efficiency 

of 41%, and therefore required a thermal input of 280 MWt from the TES [49].  With 9 

hours of TES, the plant featured an external receiver that produced 540 MWt during peak 

sunlight hours. The solar receiver was sized larger than the power cycle input so a portion 

of the collected peak sunlight could be diverted to the TES while still running the plant at 

peak power output.  In addition to Sandia reported cost numbers, this size plant was 

modeled in NREL’s System Advisory Model to obtain additional parameters and costs 

not present in the report [35]. This size plant design was similar to Solar Reserve’s 
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Crescent Dunes solar energy project which had 110 MWe output and 10 hours of direct 

LS TES [36]. 

The LS-CSP plant consisted of the four previously mentioned subsystems: a solar 

field, a solar receiver, TES, and a power block.  The solar field consisted of mounted 

mirrors with 2-axis tracking systems termed heliostats, which focused sunlight onto a 

central receiver that sat atop a tower.  This external receiver was heated by sunlight and 

cooled by circulating LS through it.  The hot LS could be stored in storage tanks or used 

immediately to produce electricity by exchanging heat with water to create steam to drive 

a Rankine power cycle (Fig. 7).  

 

Fig. 7: LS-CSP plant 
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Fig. 8: LM-CSP plant configuration 

LM-CSP Plant Configuration 

The LM-CSP plant proposed in this TEA had the same four subsystems as a 

traditional LS-CSP plant albeit with significant modifications (Fig. 8).  The heliostat field 

for the LM-CSP plant design had the same total area as the LS-CSP plant.  However, the 

LM-CSP plant required higher concentration ratios to achieve higher temperatures.  

Secondary concentrators surrounded the receiver to increase concentration from 1,000 

suns to > 5,000 suns.  

The most significant difference between the two plant designs was that the heat 

transfer fluid in the receiver was not used as the thermal storage medium. Sn was too 

expensive to be used as a thermal storage medium, even when purchased in large 

quantities as 98% pure scrap (often referred to as “block Sn”). Block Sn was $8.40/kg 

and the material cost was normalized to the thermal energy stored by dividing by the 

temperature dependent specific heat integrated over the temperature cycle [50]. Cycling 

Sn from 290°C to 1,400°C, resulted in a cost of $120/kWht. This cost, without any 

additional supporting components, was already as high as lead acid electrochemical 
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batteries and therefore was deemed too expensive to provide CSP with an economic 

advantage. Al-Si alloys with 30 atom percent (%at) Si (Al0.7Si0.3) had a cost of ~$1.70/kg 

and was much more energy dense due to the heat of fusion that occurred during 

solidification 577-822°C [51]. Cycling Al-Si from a solid at 290°C to a liquid at 1,350°C, 

had a cost of $3.50/kWht, which was an order of magnitude cheaper than Sn(l) [50]. This 

then raised the question of why one should use Sn at all, and the reason is that Al would 

react with graphite to form Al3C4, faster than a protective SiC layer. This then 

necessitated a separate, smaller Sn circulation loop to transfer heat from the receiver to 

the Al-Si storage medium. The receiver required a refractory material with a high thermal 

conductivity for high efficiency [52]. Graphite, aluminum nitride (AlN), (SiC) and 

beryllium oxide (BeO) were some of the only known refractories that should be 

compatible with Sn, but also have sufficiently high thermal conductivity  > 30 W/m-K at 

1,350ºC [53-55] to yield a highly efficient receiver. BeO, however, was  carcinogenic and 

therefore had associated safety concerns [56]. AlN was inert with respect to Al(l) but had 

a cost three times as much as graphite pipe of similar dimensions, based on price quotes 

from two suppliers [Precision Ceramics, Graphitestore.com]. Furthermore, although AlN 

was potentially attractive from a cost perspective at large volumes, given the low cost of 

the constituent elements, there was currently no supplier of large AlN tubes, which would 

be needed for a MW level receiver. SiC was also inert with respect to Al-Si alloys with 

sufficiently high Si contents, and comparable in cost to graphite; however, it suffered 

from thermal cycle fatigue, which was especially severe in the receiver [47]. Given these 

constraints, graphite was the chosen refractory containment material and a separate Sn(l) 

receiver circulation loop with a silicon carbide heat exchanger would serve as the 
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interface between Sn and Al-Si in the TES subsystem. Here the idea was that the Al-Si 

portion of the system contained the majority of the thermal mass and therefore it did not 

experience the drastic 10 min extreme transients that the receiver would experience due 

to cloud cover etc. (see Fig. 8). 

To take advantage of high temperatures, a Brayton cycle gas turbine was run from 

1,350°C to 850°C where waste heat from the turbine was then transferred to a 

supercritical CO2 (SCO2) cycle which extracted the remaining heat (Fig. 30).  This 

configuration was similar to current combined cycle power plants which used natural gas 

Brayton engines from 1,400°C to 700°C and then a Rankine bottoming cycle from 565°C 

to 30°C [13]. In natural gas Brayton cycles, heat is added via combustion of the air -gas 

mixture, while in a CSP plant, combustion would not be necessary, since all of the heat 

would be added via a heat exchanger to pass heat from Sn(l) to an inert gas working fluid 

that drives the Brayton cycle turbine.    

With high operating temperatures (1,400°C) and LM, material compatibility and 

oxidation were important concerns [39]. To mitigate against oxidation, LM components 

would be contained in an inert (i.e. N2) environment to avoid oxidation of critical 

components, namely the receiver and TES. An inert containment system would then 

surround the LM containing pipes as well as the various subsystems.   

Overall Capital Costs 

By inspection of Eq. (3), the overnight capital cost, Ktot, and the overall efficiency 

were expected to be the primary differences between the LS-CSP and LM-CSP systems. 

Overnight capital cost was the construction cost for a plant, which is typically normalized 
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by the plant’s peak electricity output so that it can be compared directly to other forms of 

generation. The total overnight installed cost was given by, 

 
21 KKKK tot 
 

(2) 

where K was the direct equipment costs, K1 was contingency, and K2  was indirect costs 

[57].  The direct equipment costs, K, was calculated as follows: 
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In Eq. 3, there were four terms, each in units $/kWe for the four subsystems.  A was the 

cost of solar energy collection in $ and E was the plant electrical output in kW. A 

included site preparation and the material cost of the solar collection field (mirror, 

supports, drives, installation etc.) B was the cost of the solar receiver in the case of a 

power tower configuration, given in $/kWt.  Here, the subscript ‘t’ denoted that the output 

power was thermal, not electrical. Thermal power was converted to electrical power via 

the power cycle, which had efficiency ηe. F was the solar multiple, which described how 

much greater the maximum allowable power input was for the receiver than the power 

cycle. A solar multiple greater than unity meant more energy was captured and stored 

during the day than would be used while the sun is out, which allowed the remaining 

stored energy to be used after daylight hours.  C was the cost of thermal storage ($/kWht), 

t was the number of hours of storage, and D was the cost of the power cycle ($/kW), 

which was expressed in terms of the electrical output power. The contingency costs K1 

and indirect costs K2 was calculated as follows:  

T

ES 
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(4) 
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(5) 

where x and y were fractions of the equipment plus contingency costs used to determine 

the contingency and indirect costs respectively. The 2012 Sunshot Vision Study, 

published by the DOE, modeled contingency and indirect costs as x=0.1 and y=0.17 [1]. 

The total overnight installed cost for the LS-CSP plant was given by Sandia’s power 

tower roadmap [10]. 

Table 2: LS-CSP plant capital costs (2011) 

 LS-CSP ($/kWe) 

Solar Energy Collection Cost 1,879.4 

Solar Receiver Cost 562.7 

Thermal Storage Cost 535.3 

D, Cost of Power Cycle 1,274.0 

K1, Contingency 425.1 

K2, Contingency 795.0 

Ktot, total overnight installed cost 5,471.5 

 

Cost Report Structure 

Each subsystem from Table 2 was fully described for the LM-CSP plant in the 

subsequent chapters, where the overall cost breakdown of the components that made up 

each subsection were presented first, followed by detailed design and material selection. 

Parasitic losses for the LM-CSP plant were presented as well and the final section in the 

report estimated the operation and maintenance (O&M) costs and combined them with 

modeled overnight capital costs to calculate the LM-CSP plant LCOE.  This LCOE was 

then compared against those of LS-CSP and natural gas. 
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CHAPTER 3: SOLAR ENERGY COLLECTION  

Section Overview 

The solar energy collection price was based on the cost of the heliostat field 

including mirrors, supports, tracking systems, installation, and site preparation.  The total 

cost of the heliostat field, Kf, was normalized to $/kWe by using the following cost 

formula: 
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where A was the cost of the solar energy collection and E was the net electricity 

generation of the plant. 

To determine the heliostat field total cost, a 100 MWe LS-CSP power tower plant 

utilized a 540 MWt receiver and 9 hours of energy storage located in Tonopah, Nevada 

was modeled using SAM [49]. This was the same size plant used in the Sandia Power 

Tower Technology roadmap, which allowed for direct comparison between the studies 

[10].  Based on the receiver thermal output, solar multiple, and insolation at Tonopah, 

SAM recommended 1.042 million m2 of mirrored area priced at $180/m2 for a total solar 

energy collection cost,  A, of $188M or $1,879/kWe [35].  

The LM-CSP plant was modeled using the same heliostat field as the LS-CSP 

design so A remained the same as the LS-CSP plant.  It was also assumed that the 

sunlight to thermal conversion efficiency remained the same between both plants so their 

thermal input to the turbines was identical: 280 MWt.  Although the LM-CSP plant used 

a different type of receiver, this assumption was based on the design goal for the high 

temperature LM receiver, which was 90% conversion of incident light to thermal energy 
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and was the same conversion efficiency used in SAM’s external receiver [58, 59]. 

Furthermore, modeling efforts showed that such a high efficiency was attainable with 

incident fluxes on the order of 1,000 kW/m2 into secondary concentrators that increased 

the flux to 5,000 kW/m2 as it entered the cavity [52]. 

Heliostat Field Discussion 

As compared to LS-CSP, the difference between the power cycle efficiencies 

made the heliostat field significantly cheaper on a per kWe basis in a LM-CSP plant.  

Although both LS-CSP and LM-CSP plants were modeled with the same heliostat design, 

the power cycle efficiency, E , was 0.41 for the LS-CSP plant and 0.6 for the LM-CSP 

plant. Factoring in parasitic losses for the LS-CSP and LM-CSP, the net efficiency was 

0.36 and 0.58 respectively. The LM-CSP plant therefore produced more electricity using 

the same size heliostat field as a LS-CSP plant, resulting in a normalized solar energy 

collection cost of $1,159/kWe, which was 38% cheaper than the LS-CSP normalized 

solar energy collection cost of $1,879/kWe. Considering that the heliostat field alone was 

the single most expensive component of the system, the LCOE would be decreased by 

13% in the case of the LM-CSP plant, just due to the reduction in power output 

normalized heliostat field costs [10], if all other variables remained the same. 

Further optimization in the LM-CSP plant design has potential to further reduce 

field size costs.  The LM-CSP plant heliostat field modeled in this TEA was not 

optimized for an internal receiver design with a peak LM temperature of 1,400°C.  

Instead, the necessary concentration increase was included in the receiver sub-system by 

adding secondary concentrators.  In reality, the heliostat field and receiver costs were 

coupled and there was an optimum configuration to minimize total plant costs.  More 
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expensive tracking and smaller mirrors could have achieved greater concentration ratios 

than the 1,000 kW/m2 (1,000 suns) typically obtained in state of the art plants today. 

Higher concentration by the field would in turn have decreased the size of the receiver 

and the requirements of the secondary concentrators.  Since the receiver and secondary 

concentrators would have been made from expensive materials (machined graphite and 

polished optical components), minimizing its size at the expense of solar field costs could 

have reduced overall costs beyond this current estimation. On the other hand, a coupled 

system analysis might have led to the opposite conclusion; it may have turned out that it 

was cheaper to use less expensive controls in the field, decreasing the concentration 

achieved by the heliostats, while relying on more of the concentration that could have 

been achieved with the secondary concentrators. Further optical analysis and evaluating 

the respective tradeoffs is needed to determine the optimal system configuration for 

minimizing total LCOE. However, such an analysis was beyond the scope of the current 

investigation. Therefore, for the remainder of the ensuing analysis, it was assumed that 

the heliostat cost was the same and that the field supplied the necessary optical 

concentration to reach 90% efficiency at 1,400°C, once supplemented by secondary 

concentration. 
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CHAPTER 4: SOLAR RECEIVER  

Section Overview 

The solar receiver cost (KR) included the cost of the receiver, secondary 

concentrators, tower, cold salt/metal pumps, inert atmosphere containment for the 

receiver, controls/instrumentation, and spare parts.  The total cost of the receiver, KR, was 

expressed in units of $/kW using the following cost formula: 
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The receiver was sized to produce more thermal power at peak sunlight hours than the 

power cycle could handle. This oversizing allowed energy to be stored while continually 

running the power plant at peak capacity during peak sunlight.  Therefore, receiver costs 

were normalized by the maximum thermal power output (540 MWt) of the receiver, B 

($/kWt). The solar multiple, F, indicates how large the thermal output of the receiver was 

compared to the thermal input of the power cycle by dividing the receiver peak thermal 

output by the power cycle thermal input.  A larger solar multiple translated to more hours 

of energy storage. For the plants modeled in this paper, F= 1.94 which translated to 9 

hours of storage given the solar resource, Tonopah Nevada [60]. Costs were converted to 

$/kWe by dividing by the power cycle efficiency, 
E . 

Switching to a LM receiver required changes in materials and geometry, as well 

as adding two components: inert containment and secondary concentrators. 

Controls/instrumentation and spare parts were a small proportion of receiver costs – 

approximately 1% – so the LM-CSP plant values were set equal to 2X the LS-CSP plant 

values given from Sandia’s Power Tower Roadmap [10]. Here, the 2X estimate was the 
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difference between stainless steel and mullite, the common structural ceramic for LM-

CSP. For the LS-CSP plant estimates, the receiver and tower costs were obtained from 

the SAM, while the cold pump, controls/instrumentation, and spare parts were taken from 

the Sandia Power Tower Roadmap [10].  Table 3 shows the cost breakdown between the 

two plant designs. 

Table 3: Receiver subsystem cost comparison 

 
LS-CSP LM-CSP 

Total (M$) $/kWt $/kWe Total (M$) $/kWt $/kWe 

Receiver 30.0 55.6 300.6 63.1 116.9 390.0 

Tower 22.4 41.5 224.4 25.0 46.2 154.3 

Cold Salt Pumps 2.8 5.2 28.3 5.6 10.4 34.9 

Inert Atmosphere Receiver 0.0 0.0 0.0 1.2 2.2 7.4 

Controls and Instruments 0.5 0.9 4.7 0.9 1.7 5.8 

Spare Parts 0.5 0.9 4.7 0.9 1.7 5.8 

Total Capital Cost 56.2 104.0 562.7 99.5 179.2 598.1 

Tower 

The tower for CSP plants supported the receiver at the required height (Fig. 9) 

which was mainly a function of the heliostat field size. A taller tower reduced cosine 

losses from the reflected sunlight but increased receiver costs. SAM optimized the tower 

height for a prescribed heliostat field and since the heliostat field size was identical 

between both plants, the tower was the same height between both plants. However, the 

LM-CSP tower used ceramic pipes, which were an added cost compared to the stainless 

steel pipes in a LS-CSP tower.  
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Fig. 9: An example tower constructed for the Crescent Dunes CSP plant in Nevada 

The LS-CSP power plant modeled in SAM had a tower cost of $22M, which was 

normalized to receiver thermal output as $40/kWt. This tower cost included the 

construction work, and the cost of both the concrete column and the stainless steel piping.  

The LM-CSP plant used the same tower dimensions and foundation, but different pipes, 

which were made of mullite.  Mullite was selected for the pipes because it was 

chemically compatible with Sn(l) and less expensive than graphite. 

The tower pipe cost for the LM-CSP was determined from an online vendor of 

mullite pipes.  Using a few larger diameter pipes minimized the frictional head loss for 

Sn going up and down the tower as well as the required pipe material.  The largest 

diameter mullite pipe available had an outer diameter of 104 mm and was $780/meter 

[61]. By comparison, 316L stainless steel pipe with an OD of 104 mm used for the same 

purpose in LS-CSP plants was $321/meter [62]. The mullite pipe was approximately 

2.5X the cost of stainless steel pipe.   
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To estimate the mullite piping cost in the tower, the total length of pipe was 

determined.  To estimate pipe length, first the number of pipes in parallel was calculated 

based on frictional head loss. The number of pipes used in a cluster was used to 

determine its effect on the LCOE (Fig. 10).  The pipe surfaces were assumed to be 

smooth and the Sn viscosity at 290°C (0.97 cP) was used going up the tower [44], which 

was a more conservative estimate, since the viscosity decreased at higher temperatures. 

Head loss coming down the tower was neglected, because the Sn portion of the 

circulation loop was modeled as an open loop whereby gravity drives the flow down the 

tower. 

  

Fig. 10: LCOE vs. number of pipes 

If only one pipe was used, the Sn velocity was high, which contributed to a large pressure 

loss and high parasitic loss that increased the LCOE. Adding more pipes increased capital 
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costs, but reduced the parasitic losses, which decreased the LCOE until more than 10 

parallel pipes were used. Using 10 pipes optimally balanced parasitic pumping cost vs 

capital cost, and gave a tower height of 180m, which required 3,600m of pipe.  With a 

cost of $780/m, the mullite pipe had a cost of $2.8M or $5/kWht. The tower cost given by 

SAM already included stainless steel pipe; however, the construction costs vs. piping 

costs were not delineated in SAM.  Therefore, to obtain a more conservative cost 

estimate, the price of the mullite pipes was simply added to the SAM tower costs.  Given 

that the mullite pipe was about 2.5X the cost of the stainless steel pipe and that the piping 

was a relatively small portion of tower cost, this assumption did not have a strong effect 

on the final conclusions. As a result, for the LM-CSP plant, the tower was estimated to 

cost $25.0M or $154/kWe. For the LS-CSP plant, the tower had a cost of $22.4M or 

$224/kWe.   

Receiver 

On top of the tower sat the solar receiver which converted concentrated sunlight 

to sensible heat in the HTF. Current LS receivers are external receivers, where metal 

pipes are arranged vertically in a 15 m diameter cylinder.  Concentrated sunlight 

illuminates the outside of the pipes, and the LS flowing inside is heated to 565°C. 
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Fig. 11: External receiver 

The cost estimation for the external LS receiver was verified based on discussion 

with representatives from SolarReserve.  The Crescent Dunes site featured 10 hours of 

TES and 100 MWe output, which was almost the same performance for the modeled LS-

CSP plant, which had only 9 hours of storage.  The estimated receiver cost of $74-

92/kWt was close to the estimates from Sandia’s report ($71-86/kWt) [10], which for an 

external receiver, coupled with 9 hours of TES. For the LM receiver cost estimates, the 

initial design cost was not estimated. Therefore, for accurate cost comparison, the design 

cost of the LS receiver (estimated at $20M) was subtracted from the LS receiver cost 

($50M) and gave a receiver cost of $55/kWt, which was ultimately used in the LS-CSP 

plant cost model.  
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Internal Receiver Design 

The receiver temperatures for the LM-CSP plant were much higher than the LS-

CSP plant (e.g., 1,400°C vs. 565°C). Re-radiation losses scaled with the receiver 

temperature to the fourth power; therefore, a different receiver geometry was necessary to 

limit re-radiation losses. Experiments using the internal optical cavity receiver design 

depicted in Fig. 12 were ongoing during publication of this TEA. Light passed through a 

cone of insulation at the front of a graphite cavity. This cavity was surrounded by Sn(l) 

and heated the Sn while limiting re-radiation to the environment. 

 

Fig. 12: Cross section of cavity receiver. Focused incoming sunlight is represented by the yellow 

triangle. Re-radiating light is the red arrows. Aperture insulation is tan. The graphite receiver is 

gray. 

For a full scale receiver, one concept was to tessellate many of these cavity 

modules around a cylindrical surface. Secondary concentrators in front of each module 

then concentrate the heliostat field light from 1,000 suns to 5,000 suns, which enabled 

high receiver temperatures (Fig. 13). 
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Fig. 13: Internal receiver with nitrogen containment 

For the LM-CSP cost model, the internal receiver was composed of 4,147 cavity 

receivers (Fig. 13), which were arranged in 128 columns of 36 receivers each. The 

number of receiver modules, M, was determined based on the heliostat field, receiver 

module size, and the surface area of the LS-CSP plant external receiver: 
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Drec was the diameter of the external receiver (15 m), Hrec was the height of the external 

receiver (18 m), rmod was the radius of the receiver module (0.25 m), and P was the 

packing factor for circles (0.9). It took 4,147 receiver modules to cover the surface area 

exposed to the heliostat field.  

As a nominal design choice, the Sn flowing into the receiver was split into 260 

separate streams, each of which passed through a total of 16 cavity receivers spaced 

evenly around the entire perimeter of the large receiver.  The Sn flow was split into 

parallel paths to limit the flow speed and thus the corresponding head loss through the 

receiver. However, 16 receivers were placed in series so that one receiver module did not 
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experience the full temperature range of the Sn (290°C to 1400°C) thus limiting thermal 

stresses. 

Another reason for flowing a single stream of Sn through several receiver 

modules was to account for differences in solar intensity on different sides of the tower.  

For example, when the sun rose in the morning, the western side of the receiver 

experienced higher solar flux due to the difference in cosine losses between the western 

and eastern mirror fields. Combining 16 modules to one Sn stream that spanned the full 

receiver perimeter averaged out temperature differences on opposing receiver sides (Fig. 

14). 

 

Fig. 14: Top-down view of the solar receiver showing cavity receiver locations. The large black circle 

represents the receiver perimeter, while the red dots represent all 16 cavity receivers through which 

Sn flowed while traveling along a single path. The Sn pipe path started at the center of the receiver 

base, flowed vertically (out of page) to appropriate height, flowed around a full perimeter of the 

receiver, then flowed back to the center of the receiver. 

These 260 paths required ~21,750 m of graphite pipe to feed Sn to the receiver 

modules. The length of one path was calculated by adding the distance from receiver 

center and to the perimeter and back (16 m) with the circumference to connect all 16 

modules (50 m) for a path length of 66 m. Some streams were at different heights than 
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others because the receiver was 18 m tall so the average stream height, 9 m, was added 

twice to each stream path. Multiplying the connecting pipe required for one stream (84 

m) by the total number of streams (260) gave 21,750 m of connecting graphite pipe. In 

this model, each receiver was a hexagonal prism, composed of 70 graphite tubes, each 0.8 

m long (Fig. 15). 

 

 

Fig. 15: (Left Side) Monolithic small scale receiver module. (Right Side) CAD drawing of a full scale 

cavity pipe receiver module.  Light is emitted into the receiver at the top of the Fig. 

This geometry approximated the custom monolithic graphite receiver used in small scale 

experiments by building a similar, larger geometry from commercial graphite tubes. The 

graphite tubes had a 1 cm inner diameter and 2 cm outer diameter. In order to fill the 

circumference of the 0.5 m diameter module, 71, 2 cm diameter tubes were required.  

Insulation was used to fill any space between pipes, which prevented light from escaping 
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the receiver. Each receiver module required a total of 56.8 m of graphite pipe and with 

4,147 modules, the total length of piping needed was 235,550 m, or 0.43 m/kWt. 

The graphite receiver cost was subdivided into several components: the piping 

network connecting receiver modules, the graphite piping in each receiver module, and 

the plenums in each receiver. The graphite pipe used for the connecting pipes and 

receiver modules was uniform with a 2 cm outer diameter (OD), a 1 cm inner diameter 

(ID) and 1 m length that had a cost of $111, or 0.02 ¢/kWt. One custom graphite plenum 

ring for each module end was $2,400, or 44 ¢/kWt , which was based on quotes obtained 

by vendors [Ohio Carbon, Graphtec], as tabulated in Table 4. 

Table 4: 540 MWt internal optical cavity receiver graphite costs 

Receiver Graphite Component Dimensions 
Normalized Cost, 540 MW 
Receiver ($/kWt) 

Graphite Pipe 2 cm OD, 1 cm ID, 1 m length 0.0002 

Graphtek Plenum Ring, 20" 0.004 

Connecting Pipes 21,751 m 4.4 

Receiver Module Pipes 23,550 m 48.3 

Receiver Module Plenums 8,294 18.5 

Total  71.3 

 

Secondary Concentrators 

The secondary concentrator was modeled as a hexagonal prism, where the 

hexagon through which light entering from the heliostat field was five times greater than 

the area of the hexagon through which light exited into the receiver. Thus, if light were to 

enter the concentrator at a concentration of 1 MW/m2 (1,000 suns), it would exit the 

concentrator at the target concentration of 5 MW/m2 (5,000 suns). The diameter of the 

entrance to the CPC was calculated as a 0.5 m diameter (module diameter) hexagon 
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because hexagons tessellate around the circumferential area of the receiver forming a 

lattice without gaps, thus concentrating all incident light into the receiver modules. 

Hexagons, also offer a closer approximation to a circle, as opposed to other geometries, 

such as rectangular geometries, which could also form a lattice without gaps. The length 

of the concentrator was dependent on the maximum acceptance angle, which was the 

maximum angle at which light could enter without being lost [63]. Knowing the 

concentration ratio, C, the maximum acceptance angle, θ was calculated using: 
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(9) 

With C=5, θ was 26.6° and the size of each trapezoidal mirror that made up the 

hexagonal concentrator was 0.11 x 0.25 x 0.3 meters. 

 

Fig. 16: Secondary concentrator 

An upper bounding estimate for the secondary concentrator was taken from the 

heliostat mirror cost: $180/m2, which included much more than just the cost of the 

mirrors. Each individual mirror was 0.06 m2 and there were 6 mirrors in each 

concentrator with 4,147 concentrators in the receiver giving a total mirrored area of 1,456 
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m2.  Multiplying by the mirror cost per m2, the cost of the secondary concentrators was 

$262,000 or $0.5/kWht, which was 0.6% of the total receiver cost. Since this cost was not 

dominant in the receiver cost, the secondary concentrators were likely to be purely 

performance driven, as each imperfect reflection reduced the heat that can be captured. 

The mirror cost estimate, $180/m2 was already conservative, because that price included 

heliostat foundations, structures, and tracking motors that were not relevant for a 

secondary concentrator.  The actual heliostat mirrors were likely closer to $20/m2 with a 

reflectivity of approximately 90% [64].  Using higher quality optics for higher reflectivity 

would improve efficiency, but was not likely to drive the receiver costs higher.  Even if 

the finish on the CPC mirrors resulted in a cost an order of magnitude higher than the 

heliostat mirrors, i.e. ~$1,000/m2, the secondary concentrators would have been only 

~3% of the receiver cost. 

Receiver Insulation 

Insulation needed to be packed around the receiver modules and graphite pipes to 

prevent heat leakages. The insulation was modeled as a cylindrical ring that surrounded 

and encompassed all the receiver modules. 
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Fig. 17: Top down review of receiver insulating ring. In reality, the insulation in front of the receiver 

modules would have been cut out to let light through. For cost modeling, the insulation was modeled 

as a cylindrical shell with the dimensions shown and 18 meters tall 

 In order to estimate the volume of insulation necessary, the thickness required 

was calculated by determining how heat is conducted throughout the receiver. For the 

nominal design, there were 4,147 receiver modules and the receiver peak output was 540 

MWt. Thus, each receiver module output ~130 kW of heat. From numerical heat transfer 

calculations performed using COMSOL on a cavity receiver module, achieving 90% 

overall efficiency required that the modules leak < 5% of their energy, or 6 kW, via 

conduction through insulation [52]. The heat loss rate, Qloss =6 kW, was then input into 

the steady state heat Eq. for a cylindrical shell to calculate the required insulation 

thickness, ri (Eq. 10).   
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where k was thermal conductivity, L was cylinder length, Trec was receiver temperature, 

Tenv was environment temperature, ri was inner radius and ro was outer radius. The 

insulation used in the estimate was Zircar Alumina Mat with a maximum use temperature 

of 1,650°C and thermal conductivity equal to k= 0.3 W/m-K at 1,400°C [65]. Each 

receiver module was approximated as a cylinder with 0.25m radius, ro, and 1 m length, L 

which had a resultant insulation thickness of 0.13 m. In reality, the insulation thermal 

conductivity was even lower at lower temperatures, but as a conservative estimate, it was 

taken as the peak value at the peak temperature: 1,400C. 

For a full scale receiver, the insulation would have been packed in between 

receiver modules and 0.1 m in front and behind the modules, effectively forming a shell 

around the receiver. To calculate the total volume of insulation required, the volume of a 

cylindrical ring 0.13 m wider than the receiver modules was calculated.  This ring had an 

outer diameter of 15 m, a height of 18 m, and a thickness of 1.26 m (Fig. 17). This gave 

an insulated ring around the modules a volume of 550 m3. At $7,958/m3, the insulation 

added $4.3M or $7.96/kWht to the receiver cost.    

Receiver Nitrogen Containment 

The receiver was primarily made of carbon and had Sn(l) flowing through it; 

therefore, the receiver needed to be kept in a nitrogen environment to protect against 

oxidation.  Because modeling the nitrogen containment seals was beyond the scope of the 

model, the estimated cost of the nitrogen containment was modeled as a steel tank 

surrounding the graphite receiver modules (Fig. 13).  The steel containment had large 

windows cut out containing a dense array of secondary concentrators to further 

concentrate the sunlight. The nitrogen containment vessel cost was estimated using the 
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formula for pricing a steel tank to contain LS, which was developed in the NREL study 

[66].  The study asked industry professionals to establish the base cost for CSP TES 

components.  One of these TES components was a mild carbon steel tank used to hold LS 

at 290°C.  The tank was modeled to hold enough LS for 6 hours of energy storage for a 

280MWt power block cycled between 565°C and 290°C and was approximated by a 

cylinder 22 m in diameter and 22 m tall that was $2.18M or $4.04/kWht. The rationale for 

comparing the steel tank and receiver nitrogen containment was that both are steel tanks 

designed to prevent fluid penetration.  Furthermore, the receiver nitrogen containment 

tank was heavily insulated from the receiver and was therefore expected to operate at 

temperatures below 290°C where mild carbon steel could be safely used.   

To estimate the price of the N2 containment tank for the receiver, the LS storage 

tank price was scaled down to the receiver size.  The receiver had a cylindrical footprint 

16 m in diameter by 18 m high. The price of the tank scaled with the volume raised to a 

scaling factor.  In the chemical processing industry, for cylindrical storage tanks this 

factor was 0.7 [66]: 
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where Rc was the cost of the receiver nitrogen containment tank, VB was the base tank 

volume, and VR was the volume of the receiver.  Using this formula, the cost of the 

receiver nitrogen containment was $1.25M or $2.2/kWht. This cost was added to the 

receiver cost and had no direct cost comparison with the LS-CSP plant because LS 

receivers did not require nitrogen containment. 
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Receiver Construction Costs 

Construction costs for the internal receiver design were estimated based on 

construction costs for the external LS receiver. Based assumptions were validated by 

discussions with Solar Reserve LLC representatives, and the receiver cost was estimated 

at $30M or $55/kWt including construction costs, but excluding the initial design costs. 

The proportion of costs due to construction were not given but could be conservatively 

estimated by subtracting the cost of high nickel content alloy pipe from the receiver, 

which is the most prominent material cost. High nickel content alloys were typically 4X’s 

as expensive as stainless steel [66] and from one vendor [MSC direct], a 0.5” OD 

stainless steel pipe had a cost of $12/foot and applying the nickel alloy 4X cost factor put 

the receiver pipe price at $48/foot. To cover the cylindrical surface of the external 

receiver with vertical, 0.5” pipe required 233,000 feet of pipe for a total of 11.2 M$.  

Subtracting pipe cost from the receiver cost gave the construction cost, $18.7M or 

$34/kWt. In reality, the external receiver construction cost was likely lower than 

estimated because of additional materials costs like headers, internal structure, and 

insulation. More research into construction costs is necessary for the graphite internal 

optical cavity receiver design, but for this nominal design, $34/kWt was used. 
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Receiver Total Costs 

The costs of the different internal receiver components are given in Table 5: 

Table 5: Receiver component costs 

Receiver Component Cost M$ 
Normalized Thermal 

Cost ($/kWt) 
Normalized Electric 

Cost ($/kWe) 

Graphite pipes and 
plenums 

38.5 137 237 

Insulation 4.3 8.0 26.7 

Secondary Concentrator 0.3 0.6 1.9 

Nitrogen Containment 1.2 2.2 7.5 

Construction 18.7 67 117 

Total 63.1 116 390 

 

For comparison, the LS receiver had a cost of $30M or $55.5/kWt.  On a cost basis, the 

internal cavity receiver design was 110% more expensive. On a $/kWe basis, the LM 

receiver was 31% more expensive than the LS receiver. 

Receiver Pressure Losses 

Pumping Sn(l) through all the connecting tubes and module tubes required a 

driving pressure.  Pressure loss in the receiver tubes was calculated according to the 

following formula: 

 2

2

f L v
p

g D

 
 

 
 

(12) 

where f was the graphite friction factor, L was the pipe length, V was the flow speed, g 

was the gravitational constant, and D was the inner diameter of the pipe [67].  

For the nominal design, the friction factor for graphite pipes was 0.006 [68].  The 

pressure loss through the connecting pipes and module pipes were computed separately 
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since the flow speed differed. The flow through the 71 separate receiver pipes (Fig. 12) 

was in parallel, which reduced the pressure losses in the receiver. 

Table 6: Receiver pressure losses 

 Connecting Pipes Receiver Module Pipes 

Total Pipe Length (m) 21,751 235,550 

Pipe Diameter, D (m) 0.01 0.01 

Pipe Volumetric Flow rate V 
(cm3/s) 

600 8.55 

Flow Speed (m/s) 4.79 0.06 

p (Pa) 12,041 25 

 

The total pressure loss in the receiver was almost negligible at 12 kPa. The 

primary reason for the low pressure loss was the fact that the flow could be split into 

many parallel paths, minimizing the LM velocity.  Extremely low flow rates were 

possible with Sn(l) because the high thermal conductivity (30 W/m-K), achieved a high 

convection coefficient even in the limit of laminar flow [44]. This property of LM was 

important to recognize, since it led to considerable cost savings as a result of a 

significantly lowered parasitic loss as compared to LS-CSP. To compare the differences 

in flow speed, take for example a 1 cm inner diameter pipe exposed to a 1 MW/m2 solar 

heat flux (1,000X concentration from heliostat field). The maximum receiver wall 

temperature is a tradeoff between the required HTF flowrate to achieve the required 

convective heat transfer coefficient, and the receiver’s re-radiation back to the 

environment.  For this example, the temperature difference between the HTF and pipe 

wall is ~50°C, which requires a convective coefficient of 20,000 W/m2K for the solar 

flux 1 MW/m2. Laminar flow through a pipe with uniform heat flux has a constant 

Nusselt number of 4.364 [69]. Since Sn(l) has a thermal conductivity k = 30 W/mK, a 1 

cm pipe yields a convective coefficient of 26,184 W/mK, which is sufficient to achieve a 
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50°C temperature difference between the fluid and pipe. By contrast, for a non-

electrically conductive liquid, such as LS, high speed turbulent flow would be required to 

reach sufficiently high heat flows, due to its lower thermal conductivity (Table 7). 

Table 7: Sn(l) vs. salt(l) transport properties [43, 44] 

 Density (kg/m3) Viscosity (cP) 
Thermal 

Conductivity 
(W/m-K) 

Specific Heat 
(J/kg-K) 

Salt(l) 6,750 0.97 0.5 240 

Sn(l) 1,899 3.26 30 1,495 

   

Turbulent flow through the circular tube sections is determined using the Dittus-Boelter 

correlation: 
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where ρ is density, V is fluid velocity, D is pipe diameter, μ is viscosity, Cp is specific 

heat, and k is thermal conductivity [69]. Using the Dittus Boelter correlation, assuming a 

convective coefficient of 20,000 W/m-K in a 1 cm pipe is required, yields a 10 m/s 

velocity for LS flow, but only a laminar Sn(l) flow speed of 1 m/s achieves the same 

convective coefficient. Since pressure loss in a pipe scales with fluid velocity squared, in 

this example, the LS flow experiences a 100X higher pressure drop as compared to the 

LM flow [67]. This advantage of LM over non-electrically conductive fluids is quantified 

in terms of cost later, where the pressure drop is converted to a parasitic electric loss in 

the Parasitic Loss section of chapter 7. 

In summary, the most significant cost of the solar receiver sub system was the 

internal optical cavity receiver which comprised 48% of the total sub system cost.  The 

solar receiver’s expense comes largely from the 4,147 graphite modules required to cover 
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the area projected from the heliostat field.  If the heliostat field is modified to achieve a 

higher concentration ratio, then the surface area of the receiver could be reduced 

requiring less receiver modules.   
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CHAPTER 5: THERMAL ENERGY STORAGE (TES) 

Section Overview 

The LM-CSP plant TES subsystem cost was normalized by the peak power output 

from the plant, Ks ($/kWe), using the following expression: 
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where C was the cost of the TES components in $/kWht, normalized to the thermal 

energy stored for the CSP plant (2,520 MWh), 
E was the power cycle efficiency, and t 

was the hours of storage. The LM-CSP subsystem consisted of 7 components, namely: 

tanks, storage media, the TES heat exchanger, inert atmosphere containment, inert 

atmosphere pipe conduits, piping/ support pumps, and controls/instrumentation. The 

design and cost estimation of each component is described in the forthcoming sections. 

The cost for LM controls/instrumentation and spare parts were taken as 2X’s the cost of 

LS components for the same reason as in the receiver subsystem. The overall cost 

comparison for TES subsystem is shown in Table 8. 
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Table 8: Thermal energy subsystem 

Thermal Energy Subsystem 

 
LS-CSP LM-CSP 

Total M$ $/kWht $/kWhe $/kWe Total (M$) $/kWht $/kWhe $/kWe 

Tanks 16.9 6.7 18.8 169.2 5.9 2.3 4.0 36.2 

Fluid Media 30.2 12.0 33.7 303.0 8.8 3.5 6.1 54.5 

Storage Fluid Heat Exchanger 0.0 0.0 0.0 0.0 6.8 2.7 4.7 42.3 

Receiver Loop Fluid 0.0 0.0 0 0 2.7 1.1 1.9 16.7 

Inert Atmosphere Conduits 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.7 

Piping and Small Support Pumps 2.5 1.0 2.8 25.3 6.3 2.5 4.3 38.9 

Controls and instrumentation 1.3 0.5 1.4 12.6 2.5 1.0 1.7 15.6 

Spare Parts 2.5 1.0 2.8 25.3 5.0 2.0 3.5 31.2 

Total Capital Cost 53.4 21.2 59.5 535.3 38.2 15.2 26.2 236.1 

 

Thermal Storage Fluid 

An optimal TES medium was both inexpensive and safe. Additional requirements 

were high energy density, low viscosity, high thermal conductivity, a high operating 

temperature range where it could be used, and chemical inertness with respect to its 

containment material. Different storage media could be directly compared by calculating 

their cost per unit of electrical energy stored, Cs, by using Eq. 15 below: 
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 (15) 

where M was the mass normalized material cost, Cp(T) was the temperature dependent 

specific heat, and η was the maximum power cycle efficiency available for a given 

storage medium. The specific heat for each material was integrated from the storage low 

temperature, Tcold to the storage hot temperature, Thot , as Fig. 18 shows the different 

fluids that were considered. 
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Fig. 18: Thermal storage fluids under research are plotted over the proposed temperature range at 

which they would be used.  Fluids are organized vertically from least expensive to most expensive.  

Example power cycles and their efficiencies are shown as a vertical line for the cycle peak 

temperature input as a reference [43, 50, 70, 71] 

Liquid glass was eliminated due to the lack of commercial products and their high 

viscosity, which inhibited pumping [71].  Liquid sodium, while inexpensive, was highly 

reactive with air and violently reactive with water and was eliminated for safety 

considerations [72].  Al(l) was an optimum storage fluid due to its low cost and high 

temperature (>1,400°C) stability. Al’s(l) storage temperature range was further improved 

by devising a system that extracted heat from freezing the Al(l) and storing it as solid.  

The storage fluid cost formula was adjusted for a frozen medium by adding the latent 

heat of fusion to the denominator, hf: 
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(16) 
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Adding 30 at% Si to the melt significantly increased the liquid’s heat of fusion, which led 

to even lower storage costs. However, it raised the melt’s liquidus point from 660°C to 

822°C which required a more complex heat exchanger system to handle two phases [73]. 

Silicon’s heat of fusion was anomalously large at 1.81 MJ/kg, which was 3 times that of 

water [73].  

Table 9 compares the fluid properties used to calculate storage medium costs for 

LS, Al(l), and Al-Si with solidification. The costs and temperature range for all three 

fluids are plotted in Fig. 18 and switching to Al-Si(l) reduced storage fluid costs by 6X 

over current nitrate salts.  The fluid storage cost on a thermal basis, Ct ($/kWht), was 

added to Eq. 14 and tabulated for the TES subsystem in Table 8. 

Table 9: Thermal storage fluid cost comparison 

Property Nitrate Salt(l) Al(l) 70% Al- 30% Si 

M ($/kg) 1.23[66] 1.69[41] 1.95[73] 

Tm (°C) 220 [43] 660 822 

Tcold (°C) 290 690 290 

Thot (°C) 565 1380 1380 

Average Cp (kJ/kg-K) 1.5 1.2 1.1 

hf (kJ/kg) 0 (does not freeze) 0 (does not freeze) 821 

( )
hot

cold

T

p f

T

C T dT h

(kJ/kg) 

411 798 1975 

Ct ($/kWht) 12 7.89 3.53 

Η 0.4 0.6 0.6 

Cs ($/kWhe) 30.10 13.13 5.89 

 

In addition to being a cheaper alternative than Al(l), Al-Si(l) was compatible with SiC 

and ALII castable cement, which were the proposed refractories for the TES subsystem. 

Therefore, the rest of the TES economic analysis was performed considering an Al-Si(l) 

melt. 
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Al-Si(l) reacted with graphite and could not be used in the receiver so the cost of a 

separate closed loop of Sn(l) was calculated.  The empty volume of the receiver pipes 

was 32 m3 and the empty volume of the tower pipes was 14 m3. Sn was $8.4/kg and had 

density 6750 kg/m3 resulting in a volumetric cost of $57,000/m3 [50]. Multiplying the 

volumetric cost by the requisite volume of 47 m3, the cost of Sn was approximately 

$2.7M, or $1.1/kWht. 

Using a separate fluid, Sn, for the receiver loop was an additional cost not present 

in a LS-CSP plant, and although expensive, the total receiver and TES fluid cost for LM-

CSP was still less expensive than LS-CSP.  Combining Al-Si(l) costs with Sn(l) costs and 

normalizing them to electrical energy stored gave $7.9/kWhe, which was 1/3 the 

normalized cost of LS.  

2-Phase Energy Storage 

By using the Al-Si alloy from 1380°C to 250°C, thermal energy was stored in 

three phases: 1) sensible heat storage in the solid melt (250-577ºC), 2) latent heat storage 

during phase transition (577-822 ºC), 3) sensible heat storage in the liquid melt (822-

1380 ºC). Assuming a 30 at% Al-Si alloy was used, it was an off-eutectic alloy point and 

therefore, latent storage occurred over the liquidus temperature range from 822°C to 

577°C (Fig. 19). 
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Fig. 19: Al-Si phase diagram. The alloy chosen for TES is shown as the vertical red line, 30 atom % 

Si. Latent heat storage occurred in the temperature range 577°C to 822°C [73] 

Table 10 shows a tabulated list of each storage phase and its contribution to overall 

thermal energy stored. For simplicity, all latent heat was assumed to be extracted at the 

liquidus temperature, 822°C while in reality, solid Si precipitated out of the melt starting 

at 822°C, decreasing the remaining liquid’s Si concentration as its temperature decreased 

to the eutectic temperature, 577°C, when the remaining alloy homogenously solidified 

altogether. Sensible solid storage was modeled from the liquidus curve, 822°C to the 

lower bound temperature, 290°C. This simplification was justified in the overall systems 

analysis because a single heat exchanger handled the entire solid and two-phase melt 

regime. Only the difference in states for the heat exchanger was required with the inlet a 

fully solid state at 250°C and outlet a fully liquid state at 822°C.  If further exergetic 
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analysis is to be conducted with the Al-Si melt, then the latent energy stored needs to be 

expressed as a function of temperature, which was beyond this analysis. 

Table 10: Al-Si melt storage phases 

 Low 
Temperature 
(ºC) 

High 
Temperature 
(ºC) 

% 
Energy 
Stored 

Sensible 
Solid 
Storage 

290 822.3 30.2 

Latent 
Storage 

822.3 822.3 40.7 

Sensible 
Liquid 
Storage 

822.3 1380 27.8 

 

The fraction of energy stored for sensible phases was calculated as follows: 

 
,p averageC T M

F
E

 


 

(17) 

where F was the fraction of energy stored in that phase, Cp average was the average specific 

heat of the melt for the temperature range, M was mass of storage melt, T  was the 

temperature difference for that phase, and E was the total energy stored in the melt over 

all three phases. Eq. 18 was modified for latent heat storage: 

 
fusionh M

F
E


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(18) 

where hfusion, was the latent heat of fusion of the melt.  

TES Tanks 

The Al-Si(l) for TES was held in a cylindrical tank constructed from a castable 

cement that was chemically compatible with the Al-Si melt, helped insulate the melt from 

thermal loss, and decreased the temperature from 1,350°C to 450°C so steel could be 
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used as a mechanical support (Fig. 20) [74].  An alternate design was to use a brick and 

mortar structure instead of castable cement that consisted of a single layer of high 

alumina brick lining the inner wall of a mullite brick tank.  The alumina bricks were non-

reactive with the melt; however, they were prohibitively expensive to use throughout the 

entire tank. Therefore, mullite made up the bulk of the thickness of the wall not in contact 

with the melt while mortar between the alumina bricks was used to seal against Al-Si(l) 

penetration.  No mortars were found that would bond the alumina bricks while also 

resisting chemical corrosion from the melt. Therefore, the tank analysis focused on using 

castable cement, which was an experimentally proven material for contact with Al(l).  

 

Fig. 20: Al-Si(l) storage tank options 

The first step in modeling the cost of the Al-Si(l) storage tank was determining its 

size and the cement wall thickness for 9 hours of TES with a heat input to the turbines of 

280 MWt: 2,520 MWht.  From Table 9, the Al-Si(l) melt had an energy density of 1,975 

kJ/kg and mass density 2,433 kg/m3. The energy density per unit mass was multiplied by 

the melt density, ρ=2,433 kg/m3, to obtain a volumetric energy density of 4.8 GJ/m3.  The 

necessary volume was then calculated by dividing the total energy required by the melt 

volumetric energy density which yielded a tank volume of 2,083 m3. By comparison, LS 
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had a volumetric energy density of 0.8 MJ/m3 and required 12,860 m3 to store the same 

amount of energy or 6 times the volume. The tank cylinder diameter and height were set 

equal to each other in order to minimize the surface area to volume ratio and thus reduce 

heat loss. Thus, in the case of the 2,083 m3 LM tank, the diameter and height was only be 

13.9 m. This factor of 6X increase in energy density was the primary reason the TES 

subsystem cost was lower for the LM-CSP plant vs. the LS-CSP plant. 

The castable cement used for the tank wall was ALII from Westmoreland 

Advanced Materials, which was a calcium aluminate, designed for secondary Al 

processing to resist corundum growth and minimize kiln heat loss [74]. The cement 

properties are displayed in Table 12 and discussions with Westmoreland confirmed that 

10 meter long steel walls with half meter thick cement liners have been commercially 

built with a cost of  $5,950/m3 [75].  Experimental tests were conducted by 

Westmoreland Inc., where they submerged ALII samples in Al(l) at 1,200°C for 800 

hours and confirmed the cement’s non-reactivity with Al(l) (Fig. 21). Additional tests 

with Al-Si at 1350°C were performed by collaborators at the Georgia Institute of 

Technology. The thickness of the sample was measured before and after contacting the 

melt for trials of 200 and 400 hours where thickness reduction indicated corrosion by the 

melt (Table 11). 

Table 11: Castable cement samples in Al-Si melt 

Cement 
Test duration 

hr. 
Coupon 

No. 
Thickness, mm Thickness loss 

µm Before test After test 

 
 
 

AL II 

 
200 

1 2.959 2.956 3 ± 1 

2 3.073 3.068 5 ± 1 

3 3.202 3.198 4 ± 1 

 
400 

4 3.065 3.059 6 ± 1 

5 2.867 2.858 9 ± 1 

6 2.753 2.749 4 ± 1 
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Extrapolating the worst corrosion scenario over the 30 year plant lifetime (9 micron 

thickness reduction over 400 hours), led to a worst case prediction that only ~ 6 mm of 

the liner would be corroded, which was an inconsequential amount. 

Table 12: Westmoreland ALII castable cement properties 

WAM AL II Cement 

Major Constituents 64.8 wt.% Al2O3, 24.3 wt.% CaO 

Thermal Conductivity 0.7 W/m-K @1200°C 

Cold Crushing Strength 4610 psi @1300°C 

Permanent Linear Change -0.3% @1300°C 

Cost $5950/m3 

 

 

Fig. 21: Castable cement cup cross sections exposed to Al(l) at 1200°C for 120 hours. Left is WAM 

ALII, right is standard castable cement, WAM 45 SC. The ALII with <0.4% silica experienced no 

degradation. The 45 SC with 48% silica was penetrated. [75] 

With the behavior of the cement experimentally verified, the required wall 

thickness of a storage tank and corresponding cost was calculated.  A thicker wall led to 

less heat leakage; however, it was more expensive. The temperature boundary conditions 

for the cement wall were 1,350°C on the inside surface contacting the melt and 450°C on 

the outside surface where structural steel ribs were placed. To calculate the necessary 

wall thickness, the thermal resistance of a cylindrical shell was used: 
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where qr was the heat loss through the cylindrical wall, L was the height of the tank, k 

was the cement thermal conductivity, TAl-Si was the temperature of the melt, Tsteel was the 

temperature of the steel, ri was the tank inner radius, and ro was the tank outer radius.  

Heat loss through the cylindrical wall, qr, was set to 1% of the thermal energy stored in 

the tanks per day, which was equivalent to1 MWt continuous heat leakage.  Solving for 

the outer liner radius, ro = 7.35 m, which gave a tank wall thickness of 0.38 m and the 

total hot tank material had a cost $1.38M or $0.5/kWht. 

The thickness of insulation surrounding the tank was also calculated using Eq. 19. 

Inexpensive fiberglass insulation was used because it had a maximum temperature 

limitation of 540°C, which was high enough to accommodate the 450°C temperatures 

present at the cement-steel interface. The fiberglass was $52/m3 and had a thermal 

conductivity of 0.2 W/m-K [76]. Solving Eq. 19 with constant temperature boundary 

conditions of 450°C and 25°C, the shell insulation layer was only 4 cm thick and was 

~$20,000 ($0.008/kWht), a negligible cost in the thermal storage tank system.  

Construction costs for the hot tank were estimated by scaling the base 

construction costs for LS-CSP tanks provided by an NREL report on two tank TES to the 

smaller volume of the LM-CSP tanks [66]. Base tank construction costs were $2.62/kWht 

and the volume ratio exponent was 0.7 (11).  Since the LM tank was 1/6 the volume of 

the LS tank, the construction costs were scaled by (1/6)0.7 or 0.28, giving a construction 

cost of $0.74/kWht. The construction cost was nearly the same as the material cost for the 

LM tank. 



 58 

A second tank with the same volume was required to hold the frozen melt at 

290°C. The same thermal analysis as the hot tank was performed to calculate costs.  

However, the allowable heat loss for the cold tank was reduced from 1% to 0.1% because 

the (s)Al-Si in the cold tank was 290°C instead of 1,380°C, and therefore a much smaller 

quantity of insulation was required to prohibit heat loss. Furthermore, the cold tank 

temperature was already below the steel tank support temperature limit so the castable 

cement lining prevented only chemical corrosion, and was not necessary to thermally 

insulate the steel supports like the 1380°C(l) Al-Si tank. These specifications required a 

thinner cement tank wall of 0.15 m and lower material cost of $0.71M or $0.3/kWht. 

Construction costs were estimated the same, $0.74/kWht, for the cold tank as the hot tank 

since both were the same volume and design. Adding both tank costs together and 

normalizing with respect to thermal energy stored gave a cost of $2.3/kWht. LS tanks 

made from stainless steel had a cost of $6.7/kWht, which was 2.5X’s as costly as their 

LM-CSP versions [10].  

In reality, the tank cement liner may have to be thicker than calculated to provide 

a freeze plane for any leaks through cracks caused by thermal stress and fatigue. Eq. 20 

provides a simplified estimation of the thermal conductivity of a cracked wall that is 

0.25% Al by volume. 

 0.0025 0.9975cracked Al cementk k k   
 

(20) 

using an Al thermal conductivity of 200 W/m-K and cement thermal conductivity of 0.7 

W/m-k, the estimated new wall thermal conductivity was 1 W/m-K, 42% more 

conductive than the unpenetrated wall. More significant cracking that led to Al 
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penetrating >0.25% of the tank volume would have had a more severe effect on tank wall 

thermal conductivity. 

A greater effective tank wall thermal conductivity would have had a significant 

impact on tank performance.  First of all, the heat leakage would be higher, decreasing 

the round trip efficiency of the storage tanks.  Second, the cement insulation interface 

would have increased above the design point of 450°C and possibly higher than the Al-Si 

eutectic temperature, 577°C.  If a crack penetrated the entire cement wall, penetrated Al 

would not freeze before exiting the cement wall and leak through the insulation as 

illustrated in Fig. 22.  The tank on the left was the design presented in the economic 

analysis above where the cement-insulation layer was at 450°C, which put the freeze 

plane 85% of the way through the cement shell.  The tank on the left was a more costly, 

but safer design, with a thicker cement layer that put the freeze plane only 60% of the 

way deep in the cement wall. If 0.25% of the cement wall volume was penetrated by 

Al(l), then the thin tank wall design would fail. 
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Fig. 22: Tank cross sections with different wall thickness. Top row is tank without cracks. Bottom 

row is if the wall cracks and 0.25% of wall volume is penetrated by Al(l). 

Further prototype testing is needed to establish where the acceptable cost/risk tradeoff 

exists, based on testing the mechanical properties of the cement over long periods.  

TES Pipes/Support Pumps 

A cluster of mullite pipes carried Sn(l) from the tower to the TES heat exchanger 

situated by the storage tanks using LM pumps. These costs of the TES piping and support 

pumps were estimated using a 2.5X increased material factor calculated from costs of 
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similar size mullite and stainless steel pipes [61] [62].  The LS system pipes and support 

pumps were primarily stainless steel, thus a 2.5X cost factor was applied to the LS-CSP 

plant base cost given by Kolb [10].  Using this approach for the LM-CSP nominal design, 

the TES piping and support pumps were estimated to cost $6.3M or $2.5/kWht, which 

included construction costs since the base LS-CSP costs included construction costs. 

When normalized against LM-CSP electric output, the pipes and small pumps had a cost 

of $39/kWe, which was 56% more than the LS-CSP plant.  These estimates were further 

justified by quotes obtained from vendors for modified versions of mechanical pumps 

that could be used to pump Sn(l) at < 400C, and ceramic pumps used to pump LM at 

1350C, which resulted in an approximately 2X increase in cost as compared to LS.  

Nitrogen Containment Steel Conduit 

The pipes carrying LM in the system required N2 surrounding them in order to 

prevent oxidation.  The primary cost of this nitrogen containment system was a 19” 

diameter steel pipe containment vessels that fit around the ceramic pipe bundles (Fig. 13).  

A steel tube 20’ long and 24” in diameter was quoted at $1,727/tube. It was estimated 

that 50 meters of pipe was needed to run to and from the TES system, in addition to 360 

m of pipe to traverse the height of the tower for a combined total of 410 meters of steel 

containment pipe.  This length gave a total cost of $0.11M or $0.05/kWht, which was a 

negligible cost in the system. 
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Fig. 23: Steel conduit nitrogen containment 

Conclusion 

Switching to LM storage led to significant cost reductions in the storage fluid and 

tanks category. For the same output electrical energy stored, the Al-Si(l) was 6X cheaper 

than LS and the tanks to contain it were 4X cheaper.  The large temperature range and 

high latent heat capacity resulted in much smaller quantities of storage material required, 

thereby reducing tank size. This significant decrease in storage costs, drove the system 

optimization further towards the LM design. 

The tradeoff associated with using lower cost Al-Si(l) was the need for a separate 

Sn(l) loop in the receiver. The additional heat exchangers were 20% of TES costs, and 

the Sn(l) cost was 7% of TES costs, which were two systems that were unnecessary in LS 

system where one fluid was used for both the storage and receiver. However, the 

combined cost ($16/kWhe) of the storage fluid heat exchangers, fluid media, and receiver 

loop fluid still had a lower cost on a $/kWhe basis than LS ($34/kWhe).   
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CHAPTER 6: HEAT EXCHANGERS 

Charging the TES tanks required 4 different fluid phases: liquid tin (Sn), liquid 

Al-Si (Al-Si(l)), solid Al-Si (Al-Si(s)), and helium (He).  Exchanging heat between all 

fluids required 3 different heat exchangers, which were envisioned as: 1) a liquid droplet 

heat exchanger (LDHX) between Al-Si(s) and He, 2) a LDHX between Sn(l) and Al-

Si(l), 3) a shell and tube heat exchanger between Sn and He (Fig. 24). Discharging the 

TES tank heat to the power cycle required an additional 3 heat exchangers: 4) a shell and 

tube heat exchanger between Al-Si(l) and He, 5) a LDHX between (s) Al-Si and He, and 

6) a printed circuit heat exchanger between He and SCO2 (Fig. 25). The shell and tube 

heat exchangers separated the two counter flowing fluids by pumping one fluid through 

the pipes and the other around the outside surfaces of the pipe array. They could handle 

high pressures and the solid wall of the pipe prevented fluid mixing or adverse reaction, 

provided the solid wall was simultaneously compatible with both fluids.  The liquid 

droplet heat exchanger (LDHX) worked by showering a liquid or solid phase down a 

column while gas flowed upward, and exchanged heat via direct contact between the two 

immiscible fluid phases. LDHX required He gas since Al-Si(l) and Sn(l) would have 

reacted if mixed. Fig. 24 illustrates how the Al-Si TES tanks were thermally charged by 

Sn(l) from the receiver.  
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Fig. 24: Heat exchanger diagram for charging TES tanks 

The envisioned power cycle was a combined cycle using a He Brayton cycle as 

the topping cycle and super critical CO2 as the bottoming cycle.  When electricity was 

required, Al-Si(l) at 1,380°C was pumped through the heat exchanger network to transfer 

heat to the combined cycle. Fig. 25 illustrates one proposed heat exchanger network to 

transfer heat to the power cycle. Printed circuit heat exchangers for super critical CO2 

cycles are being developed and their costs are generally included as part of the power 

cycle cost.  Further thermodynamic analysis was necessary for the power cycle to reach 

or exceed an efficiency of 60% and that was beyond the scope of the present 

investigation. Nonetheless, the precedent set by the ability for natural gas combined 
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cycles to reach 60% efficiency was the rationale for assuming such a high efficiency may 

be possible for the LM-CSP system. 

 

 

Fig. 25: Heat exchanger diagram for dis-charging TES tanks 

All six heat exchangers were designed for the required power and their costs were 

modeled in detail. For charging the thermal storage tanks, the shell and tube heat 

exchanger was responsible for the sensible portion of the Al-Si(l) melt while the two 

LDHXs were responsible for the latent and sensible portion of the solidifying Al-Si. 

Therefore, the heat exchanger power was calculated by multiplying the maximum power 

input, 540 MWt, by the proportion of power input each heat exchanger handled. Each 

fraction was determined by the proportion each Al-Si phase stored, tabulated in Table 13. 

For discharging, the power of each heat exchanger was a fraction of the peak power cycle 

thermal input: 280 MWt. Again, each fraction was determined by the energy fraction 

stored in the Al-Si phases. 
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Table 13: Heat exchanger power and fluids 

  Hot fluid (giving heat) Cold Fluid (gaining heat) 

Heat 
Exchanger 

Power 
(MW) 

Media 
Inlet 

Temp 
(°C) 

Outlet 
Temp 
(°C) 

Average 
Pressure 

(atm) 
Media 

Inlet 
Temp 
(°C) 

Outlet 
Temp 
(°C) 

Pressure 
(atm) 

LDHX 382 He 840 270 1 
(2 

Phase) 
Al-Si 

250 830 1 

LDHX 382 Sn 850 290 40 He 270 840 1 

Shell and 
Tube 

158 Sn 1,400 850 50 (l) Al-Si 830 1,380 1 

Shell and 
Tube 

82 (l) Al-Si 1,380 830 1 He 820 1,350 10-30 

LDHX 198 
(2 

Phase) 
Al-Si 

830 250 1 He 240 810 1 

Printed 
Circuit 
Board 

198 He 810 240 1 S-CO2 220 800 100 

 

Shell and Tube Heat Exchanger Design 

The cost of the shell and tube heat exchangers was determined by calculating the 

length of pipe necessary for a heat exchanger with a 95% effectiveness and then 

multiplying by the cost per unit length of that pipe. It was assumed that the two shell and 

tube heat exchangers would be made from Hexoloy SiC because SiC was chemically 

compatible with both Al-Si and Sn.  In discussions with the manufacturer of Hexoloy 

SiC, Saint Gobain, SiC was currently used in high temperature heat exchangers and had a  

high thermal conductivity of 77 W/m-K at 400°C and 35 W/m-K at 1,200 °C which 

allows for efficient heat exchange [47].  Finally, SiC remains chemically stable above 

1,350°C and has a similar CTE (4.0x 10-6 K-1) to the rest of the Sn compatible 
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infrastructure (i.e. mullite and graphite CTE ~ 6.0x 10-6 K-1). Based on a quote obtained 

from Saint Gobain, a 14 mm OD SiC tube with 11 mm ID is $70/m [47]. 

The shell and tube heat exchanger analysis was conducted using the 

Effectiveness-NTU method and an iterative design approach to achieve the desired 

performance [77]. A heat exchanger configuration was assumed, detailing the number of 

pipes, sizes, baffles, etc. Then, the outlet temperatures and heat transfer rate were 

calculated for the assumed configuration and the configuration was adjusted until the 

resultant outlet temperatures and heat transfer rate matched the desired values presented 

in Table 13. The final cost was then estimated by multiplying the resultant total pipe 

length by the SiC pipe cost provided by Saint Gobain ($70/m). 

The number of transfer units, or NTU was first calculated: 

 

min

UA
NTU

C


 

(21) 

where U was the conductance between fluids, A was the pipe surface area for all tubes, 

and Cmin was the lowest heat capacity rate of the two fluids. The heat capacity rate for a 

fluid was calculated by multiplying the flow rate, m  by the heat capacity, Cp: 

 
pC mC

 
(22) 

As a starting point for the design, the heat capacity rates for both fluids were set equal to 

each other, so that the results were consistent with the LM-CSP plant size being modeled. 

In all the shell and tube heat exchangers required, both fluids experienced the same heat 

transfer rate and identical temperature differences (Table 13).  Setting T and q equal for 

both fluids, it was apparent that C must be equal for both fluids, and the heat capacity rate 

ratio, Cr was equal to 1. 
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(23) 
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The next step in the analysis was calculating the heat exchanger effectiveness, ε, as a 

function of NTU and Cr. For Cr=1, ε is given by: 

 

1

NTU

NTU
 

  

(26) 

The heat transfer rate for the chosen exchanger configuration was then calculated: 

  , ,h i c iq C T T 
 

(27) 

where Th,i and Tc,i were the inlet temperatures for the hot fluid and cold fluid respectively. 

The heat exchanger geometry (i.e., number of tubes, length of tubes, baffles, and baffle 

spacing) was iteratively modified until the calculated q matched the desired heat transfer 

rate from Table 13.  

The heat exchanger configuration and convective coefficients were calculated 

using the Kern method for shell and tube heat exchangers [78].  The shell side convection 

was a function of many parameters as detailed in Table 14 and illustrated in Fig. 26. 
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Table 14: Shell and tube heat EX configuration variables for Kern Method 

Description Variable Units Resultant Value for 
HX#3, Sn to Al-Si 

Resultant Value for HX#4, 
Al-Si to He 

Shell internal 
Diameter 

Ds m 0.54 1.27 

Tube Outside 
Diameter 

Do mm 14 14 

Tube Pitch PT mm 16 16 

Number of tubes NT - 1024 5776 

Baffle Spacing LB m 1 4 

Pipe/shell Length Ls m 15 20 

Baffle Thickness tb mm 5 5 

Number of Baffles NB  14 4 

Cost  M$ 1.07 8.09 

Normalized Cost  $/kWe 11.3 164 

 

 

Fig. 26: Cross sectional front and side view of shell and tube heat exchanger. 

Calculating the shell side fluid convection required calculating other constituent 

quantities first. First, the cross flow shell area, Ss, was calculated: 
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(28) 

Then the effective flow diameter, De, was determined: 

Do

PT
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LB
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The mass flow rate per area, Gs, was given by: 

 
s

s
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(30) 

Then the Reynold’s number was calculated using the fluid temperature average viscosity, 

f : 

 
Re e s
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
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(31) 

Finally, the shell side convection, houter, was calculated, using: 
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(32) 

where Pr was the Prandtl number, and c and h were the fluid cold side and hot side 

dynamic viscosities respectively. 

The convection on the inside of the tube was a function of the Nusselt number and 

the Nusselt number for LM in smooth pipes with uniform heat flux was approximated by 

Skupinski [77] as: 

  
0.827

4.82 0.0185 Re PrD DNu  
 

(33) 
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Conduction through the SiC pipe wall added thermal resistance to the system. This 

resistance was calculated using steady state conduction Eq. with cylindrical resistance:  
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(35) 

where ro and ri were the pipe outer and inner radii, respectively, L was pipe length and k 

was the thermal conductivity of the pipe. For Hexoloy SiC at 1,200°C, the thermal 

conductivity was k =36 W/m-k [47], which was much lower than the value at lower 

temperatures, thus leading to a conservative estimate (oversizing of the HXs). The 

conductance of the heat exchanger, U, was then calculated and the conductance between 

the fluids was found by summing three individual resistances in series: convection 

between the tube fluid, conduction through the SiC pipe wall, and convection between 

the shell fluids. Fig. 27 gives an example of these resistances for the Sn to Al-Si heat 

exchanger. 

 

 

Fig. 27: Heat Exchanger Pipe 
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The pressure drop across the heat exchanger tubes was calculated according to the 

following formula:  

 

gD

fLV
p

2

2

  
(37) 

where f was the friction factor, L was the pipe length, V was the flow speed, g was the 

gravitational constant, and D was the inner diameter of the pipe. The pressure drop for 

the shell side was given by the following formula from the Kern Method [78]: 
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(38) 

where NB was the number of baffles and  was the fluid density.  

Shell and Tube Heat Exchanger Results 

There were two shell and tube heat exchangers in the nominal design: one 

transfered heat from Sn at 1,400°C to Al-Si(l) at 830°C, charging the storage tanks, and 

the other transferred heat from Al-Si(l) at 1,350°C to He at 820°C, powering the topping 

cycle.  The temperature averaged properties of the materials used in the shell and tube 

heat exchanger analysis are tabulated below: 

Table 15: Shell and tube heat exchanger material properties[47, 79] 

 Al-Si Sn He SiC 

Pressure (atm) 1 50 30  

Density (kg/m3) 2433 7300 1.08 3100 

Heat Capacity (J/kg-K) 1089 234 6225 670 

Thermal Conductivity (W/m-K) 120 30 0.5 36 

Viscosity (cP) 1.1 1.85 0.06  

Prandtl 0.01 0.01 0.75  
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The results for each heat exchanger per the configuration tabulated in Table 14 are shown 

below: 

Table 16: Thermal results for heat exchanger 

  HX#3 Sn to Al-Si  HX#4 Al-Si to He 

 Shell Tube Shell Tube 

Fluid Al-Si Sn He Al-Si 

Inlet Temperature (°C) 830 1,400 820 1,380 

Outlet Temperature (°C) 1,380 850 1,350 830 

Mass Flow rate (kg/s) 264 1,230 23.9 137 

Volume Flow rate (m3/s) 0.11 0.17 22 0.06 

Heat Transfer Rate (MW) 158 158 82 82 

Reynold’s Number x 103 31 75 5.5 2.5 

Nusselt Number  10.8  5.08 

h (W/m-K) 25,300 29,500 1,820 55,463 

p (kPa) 340 2.12 78.9 0.056 

 

The shell and tube heat exchangers were cost estimated based on the length of SiC pipes 

required. Costs were normalized to electric output by dividing by the product of the heat 

transferred and power cycle efficiency (0.6) and the costs for both shell and tube heat 

exchangers are shown in the following table: 

Table 17: Shell and tube heat exchanger pipe cost 

  HX#3 Sn to Al-Si  HX#4 Al-Si to He 

Pipe Length (m) 15,360 115,520 

Total Cost (M$) 1.08 8.09 

Normalized Thermal Cost 
($/kWt) 

6.80 98.60 

Normalized Electric Cost 
($/kWe) 

11.34 164.36 

 

Shell and Tube Heat Exchanger Conclusions 

Heat exchange took place between two LMs with extremely high thermal 

conductivities as compared to non-metals, leading to high convective coefficients that 
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greatly minimized the required surface area, parasitic loss, and cost for the heat 

exchangers. Pressure losses through both heat exchangers were low: 3.3 atm for the Sn to 

Al-Si heat exchanger and 0.77 atm for the Al-Si to He heat exchanger.  The pressure 

difference through the Sn to Al-Si heat exchanger was provided by a LM pump that used 

electricity from the gross plant output.  Full analysis of this parasitic loss was presented 

in the parasitic loss section, and the result was 0.03 MWe - a very small fraction (0.02%) 

of plant output (168 MWe).  The primary reason for low parasitic loss in this subsystem 

was the high heat exchanger conductance due to high LM convection, which resulted in 

low requisite LM flow rates as compared to a non-metal fluid such as LS.  

The pressure loss through the Al-Si to He heat exchanger, 0.77 atm, was not 

provided via pump but rather the compressor on the topping Brayton cycle.  Recalling 

Fig. 25, the He gas was compressed to 50 atm before entering the shell and tube heat 

exchanger. 0.77 atm was then lost through the heat exchanger so the He entered the 

turbine at a slightly lower pressure than it came out of the compressor.  

The costs for the two shell and tube heat exchangers were added to their 

respective subsystems, ‘TES’ for heating the Al-Si and ‘Power Cycle’ for cooling the Al-

Si.  The LS-CSP plant required no TES heat exchanger since LS was used both as the 

HTF in the receiver and TES fluid. Therefore, the Sn to Al-Si heat exchangers were an 

added cost with no LS-CSP plant parallel. They were ~20% of total TES cost and not 

economically prohibitive for using two different LMs.   

The second shell and tube heat exchanger, Al-Si to He, was a more costly system 

and was added to the power cycle costs. The LS-CSP power cycle used a stainless steel 

heat exchanger that exchanged heat between LS and steam for the power cycle. The LM 
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shell and tube heat exchanger was $164/kWe while the LS-CSP plant version was 

$214/kWe, which was a significant cost reduction.   

The two shell and tube heat exchangers analyzed here did not transfer heat to 

solid particles. Instead, three LDHXs provided the necessary heat exchange between Al-

Si(s) in the LM-CSP plant.  In the LDHX analysis that follows, it is shown that these 

LDHXs were power dense and therefore inexpensive with regard to materials and 

parasitic loss.   

Liquid Droplet Heat Exchanger (LDHX) 

Examining the system configuration for charging and discharging the storage 

tanks (Fig. 24 and Fig. 25), anytime a heat exchange took place between He gas at 

atmospheric pressure and LM, a direct contact LDHX was used. The LDHX split the LM 

flow into small (<1 mm) droplets that fell down a tank, while a column of He gas flowed 

upward (Fig. 28). LDHXs have been explored before for space applications as well as 

inert gas Brayton cycles [80, 81]. 

 

Fig. 28: LDHX configuration 
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Direct contact heat exchangers could only be used between constituents that were 

non-reactive and immiscible with each other.  The advantage was that no separating 

barrier (i.e. SiC pipe) was required between the two fluids, which eliminated a major 

thermal resistance.  More efficient heat transfer due to direct contact greatly increased the 

power density of the heat exchanger and the elimination of pipes drastically reduced the 

cost normalized to the heat transferred as compared to a shell and tube configuration. 

Another advantage to the LDHX [81] was that it allowed for a two phase storage fluid, 

which was especially useful since 40% of the energy stored in the melt was due to latent 

heat of fusion (e.g., Al-Si(l) solidification from 577-822°C).  Al-Si(s) could not be 

pumped through the small diameter tubes in the shell and tube configuration, so instead, 

latent heat was transferred via LDHXs where the droplets could freeze or melt without 

physical constraint.   

The nominal LDHX design was a hollow cement column with a cement disk at 

the top that had small holes drilled into it to act as nozzles for the metal drops.  The 

cement was the same calcium aluminate engineered by Westmoreland Advanced 

Materials to resist corrosion from Al(l) used for the tank design [74]. Cost calculations 

for the cement were performed on a per volume basis, with Westmoreland quoting 

$5950/m3 for ALII castable cement. 

LDHX Heat Transfer Analysis 

Cost estimation of the LDHX was performed by calculating the column size 

necessary for the required heat transfer.  The droplet diameter and heat exchanger 

diameter were the two design variables that were adjusted to reduce the heat exchanger 

costs. For all three LDHXs, the chosen droplet diameter was 0.5 mm. The shell diameter 
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varied for all three units but was ~10m. The LDHX was sized so that drops were 

separated by an average distance of 10 diameters to avoid coalescence. Additional 

research into drop coalescence was needed to determine the precise spacing needed, but 

nominally, 10 diameters was used in subsequent calculations because that was the pipe 

entrance length necessary before end effects do not affect flow [69]. Once the column 

dimensions were known for the required heat transfer, then the volume of concrete 

required to build the column was calculated for a half meter thick wall (recommended by 

Westmoreland Advanced Materials Inc.) along with the necessary insulation to limit heat 

leakage to 0.1% of the heat transferred. The castable cement cost factor and fiberglass 

insulation cost factor was applied to the calculated material volumes to get the final 

LDHX cost. 

The first step in designing a liquid droplet exchanger was calculating the time 

required for each metal droplet, which was dragged upward against gravity by the He 

flow, to decrease its temperature from the inlet temperature to desired outlet temperature.  

Each metal droplet was approximated as a sphere with a specified droplet diameter. The 

diameter was adjusted later to balance terminal velocity against the number of total holes 

drilled, but eventually became equal to 0.5 mm in all heat exchangers.  Next, the terminal 

velocity of the particle was calculated by equating the drag force to the weight. Equating 

these forces and algebraically solving for terminal velocity, vt gave: 

 2
t

D

mg
v

AC


 

(39) 

where ρ was fluid density, m was the droplet mass, g was gravitational constant, A was 

cross sectional area of the drop, and CD was the drag coefficient of a sphere, 0.49 [82].   
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Knowing the terminal velocity allowed the convection coefficient to be 

calculated. For convection over a sphere, Whitaker recommended [69]: 

  
1 41 2 2 3 0.42 0.4Re 0.06Re Prsphere s

hDNu
k

 
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(40) 

where h was the convective coefficient, k was the thermal conductivity of the fluid, D 

was the diameter of the droplet, Pr was the Prandtl number of the fluid, μ∞ was the 

dynamic viscosity at the free stream temperature and μs was the viscosity at the sphere 

temperature. Convective coefficients on the order of  ~2,000 W/m2-K were obtained and 

the LDHX was arranged so that there was only a ~10°C temperature difference between 

the fluid and the sphere. One result of this was that the two viscosities became 

approximately equal, due to the weak temperature dependence of viscosity on 

temperature.  The Reynolds number, Re, was a function of the terminal velocity vt: 
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(41) 

the Reynold’s number was low ~ 6, which was valid for the Whitaker correlation (3.5 < 

Re < 80,000). 

With the droplet convection coefficient known, the heat transfer rate for each drop 

was calculated using the log mean temperature difference of the heat exchanger.  With 

each LDHX design, the inlet temperature and outlet temperature was specified. The 

LMTD was calculated as follows: 

 
, , , ,

, ,

, ,

( ) ( )

( )
ln

( )

M i He o M o He i

LM

M i He o

M o He i

T T T T
T

T T

T T

  
 

 
   

 (42) 



 79 

where M referred to metal, He referred to He, i referred to the inlet and o referred to the 

outlet. LMTD for this analysis was 14.4°C.  The heat transfer rate for each drop, Qd, was 

then calculated from: 

 
D lmQ h A T  

 
(43) 

where A was the surface area of a drop.  This analysis considered the temperature 

throughout the droplet to be uniform via the lumped capacitance model and QD for these 

analyses was 0.021 W.  The Biot number was calculated for the final heat exchanger 

design to test the validity of this assumption: 

 hV
Bi

Ak
  

(44) 

A Biot number less than 0.1, implied that the temperature difference between the center 

of the droplet and its outer surface was less than 10% of the temperature difference 

between the outer surface and the surrounding (flowing) gas temperature. Under such 

conditions, the droplet was treated as essentially isothermal since the temperature 

difference due to conduction was negligible by comparison to the temperature difference 

driving the convection. In all three LDHXs modeled, the Biot number was < 0.005, 

which suggested the neglect of the droplet’s internal temperature profile would lead to a 

negligible difference in the final analysis. 

To estimate the time each drop must have spent falling at the terminal velocity, tf, 

the enthalpy change for each droplet, h , was divided by the previously calculated QD.  
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As an example, the time of flight, tf, was 2.0 seconds for LDHX#1. The energy per drop 

was calculated from the known drop mass (m), specific heat (Cp), latent heat of fusion 

(hf), and inlet/outlet temperatures: 

   mhTTCh foip   (46) 

and in the subsequent analysis, h , was on the order of  ~ 0.1 Joules. 

With the required flight time known, the column height was estimated by 

multiplying the particle velocity by the flight time.  However, the terminal velocity with 

respect to the stationary ground, vg was different from the relative velocity between the 

droplet and gas, vt, because the gas was moving up the column at an appreciable speed.  

Thus, the particle velocity relative to the ground, vg, was significantly lower than the 

relative velocity between the droplet and gas, which served to strongly increase the total 

time it took for a droplet to fully descend, thereby minimizing column height, Ch.   

 
p t gv v v 

 
(47) 
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(48) 

Typical particle velocities were ~4 m/s yielding a column height ~10 m. Because the gas 

inlet temperatures and heat exchanger power were known, the gas flow rate was known 

and the volumetric flow rate was then calculated from the mass flow rate using the mean 

gas temperature and density. The gas velocity was then calculated by dividing the 

volumetric flow rate by the cross sectional area of the heat exchanger and the gas speed 

was ~9 m/s.  

The droplet and heat exchanger diameters were the design parameters that could 

be altered within three physical constraints to reduce cost. The heat exchanger diameter 
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must have been large enough so the Reynold’s number for gas flow was less than 105, 

reasonable for incompressible turbulent flows [69]. Much higher gas flows led to greater 

pressure losses and parasitic pumping loss. The second constraint was ensuring the 

droplets were large enough so the drag force did not exceed their weight and force the 

particles upward; however, if the particles were too large, they would need to be 

suspended in the flow for a longer period of time to transfer their energy. 

The third and most expensive constraint when designing the LDHXs was ensuring 

the chosen heat exchanger diameter provided enough space so that the droplets did not 

coalesce. This issue was complex, because the droplets could actually break up into 

smaller droplets depending upon the surface tension. As an order of magnitude 

approximation, based on the typical length scales required for flows to return to 

uniformity, which would prevent a droplet in the wake of another droplet from 

experiencing a different trajectory, the spacing between droplets both vertically and 

horizontally was taken to be 10 times the droplet diameter [69].  Each hole then had a set 

time between drops, to allow the previous droplet enough time to fall 10 diameters away.  

The time between drops, or tD, was calculated by: 
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For the different LDHXs, tD was typically ~ 1 ms, the enthalpy per drop, h , was 

calculated in Eq. 46, and dividing this by the time between drops gave the enthalpy flow 

through each hole as:  
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For the various LDHXs,  PH  was typically ~ 88 W, which then allowed estimation of the 

total number of holes required, by dividing the total heat exchanger power by PH which 

resulted in typically ~ 4 million holes. The effective area allocated for each droplet hole 

was then determined by forming a square around the hole 10 diameters wide (Fig. 29).  

 

Fig. 29: Hole effective area 

This area was then multiplied by the total number of holes and compared to the heat 

exchanger cross sectional area.  The nominal design heat exchanger diameter was 

increased until the cross sectional area exceeded the required total hole allocation area.  

LDHX Parasitic Losses 

Parasitic losses in the LDHX could have potentially come from two sources: He 

flow and creating LM droplet surface area. The cross sectional area for the He flow was 

so large that pressure losses were less than 1 Pa for all three heat exchangers. The second 

loss came from dividing LM flow into millions of drops and increasing the metal’s 

surface area.  The experimentally measured surface energy was 0.7 J/m2 for Sn(l) and 1.1 
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J/m2 for Al-Si [83]. The parasitic energy loss required to form droplets, PD was then 

estimated as: 
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(51) 

where A was the surface area of a drop, N was the total number of droplet holes, and tD 

was the previously calculated time between drops. 

LDHX Results 

The preceding analysis was conducted for the three LDHXs as shown in Fig. 24 

andFig. 25.  The chosen design parameters, costs, and parasitic loss are given in Table 18. 

Table 18: LDHX Results 

  LDHX#1 He to Al-Si  LDHX#2 Sn to He LDHX#5 Al-Si to He 

 Droplet Gas Droplet Gas Droplet Gas 

Fluid Al-Si He Sn He Al-Si He 

Inlet Temperature (°C) 250 840 850 270 830 240 

Outlet Temperature (°C) 830 270 290 840 250 810 

Mass Flow rate (kg/s) 606 107 2915 107 314 55.8 

Heat Transfer Rate (MW) 382 382 198 

Droplet Diameter (mm) 0.5 0.5 0.5 

Shell Diameter (m) 11 9 8 

Reynold’s Number x 105 3.12 3.8 2.2 

Gas Speed, vg (m/s) 19 28 18 

Terminal velocity, vt (m/s) 23.3 40.3 23.3 

Particle Speed, vp (m/s) 4.39 12.1 4.76 

Nusselt Number 3.93 4.58 3.93 

h (W/m2-K) 2,360 2,750 2,360 

Time of Flight (s) 3.76 2.01 3.76 

Tower Height (m) 16.5 24.3 17.9 

Enthalpy per drop, h  (J) 0.10 0.06 0.10 

Time between drops, tD (ms) 1.14 0.5 1.05 

Power per droplet hole, PH (W) 88 151 95.6 

Number of Holes, N (million) 4.34 2.52 2.07 

Gas flow Parasitic loss p (Pa) 0.01 1.3 0.46 

Liquid Metal Parasitic Loss, PD 
(kW) 

2.1 3.53 1.7 
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A cement shell surrounded by insulation made up the inner flow column specified 

in Table 18 and  the cement wall thickness was 0.5 m, which was the nominal cement 

thickness for Westmoreland designed Al holding vessels [74]. The top and bottom of 

each LDHX featured a castable cement disk 0.5 m thick where the castable cement was 

$5,950/m3. The bottom disk served as the base and top disk had holes drilled into it that 

served as the nozzle holes. The cement column was surrounded by rock wool insulation 

with a thermal conductivity of 0.2 W/m-K and cost $1,300/m3. The thickness of 

insulation was calculated to reduce heat leakage to 0.1% of heat flow through the heat 

exchanger. 

Table 19: LDHX Costs 

  LDHX#1 He to Al-Si  LDHX#2 Sn to He LDHX#5 Al-Si to He 

Cement Volume (m3) 411 441 303 

Cement Cost (M$) 2.45 2.63 1.80 

Insulation Thickness (cm) 23 26 33 

Insulation Volume (m3) 198 249 216 

Insulation Cost (M$) 0.26 0.32 0.28 

Total Cost (M$) 2.76 3.00 2.12 

Normalized Thermal Cost ($/kWt) 7.22 7.86 10.7 

Normalized Electric Cost ($/kWe) 12.0 13.1 17.8 

 

The cost of the He to Al-Si heat exchanger and Sn to He heat exchanger were 

added to the TES heat exchanger cost in the TES subsystem, which also included the Sn 

to Al-Si shell and tube heat exchanger discussed previously.  The Al-Si to He LDHX cost 

was added to the Power Cycle cost.  The LDHX could have been made more power 

dense and cheaper if the distance between droplets was decreased from 10 diameters 

clearance. Thus, more experimental investigation was required to minimize spacing while 

preventing flow coalescence thus reducing heat exchanger costs, however, even without 

optimization the estimated costs resulted in minimal impact on the LCOE (e.g., < 10%).  
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CHAPTER 7: POWER CYCLE  

The power block was the fourth and final subsystem whose cost was estimated. Its 

cost was normalized by the gross power output, i.e., by expressing all components in 

units of $/kWe. The power block included the combined power cycle, heat exchangers to 

transfer heat from the TES fluid to the working fluid, hot LM pumps, spare parts, and 

auxiliary equipment.   

The power cycle modeled was a combined cycle utilizing an inert gas working 

fluid, whereby inert He gas ran through a closed loop Brayton cycle that received heat 

from the sensible portion of the melt: 1,350°C to 820°C accounting for 28% of stored 

thermal energy (Table 10). The latent heat and solid sensible heat was then transferred 

into a SCO2 (SCO2) cycle that received 78% of total stored energy and operated between 

800°C and 220°C. In this sense, the primary cycle was the SCO2 cycle, and the He 

Brayton cycle acted as a topping cycle to help boost the overall efficiency.  
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Fig. 30: Power Cycle Diagram 

The cycle shown in Fig. 30 did not exist commercially, but there was a body of 

literature and experiments that support the notion that such a cycle could be built and 

potentially achieve 60% efficiency [79, 84, 85].  For example, Siemens had built 

commercial combined cycle plants that combust natural gas >1,200°C and power a 

Brayton cycle with heat rejected to a Rankine cycle for a combined efficiency of 60% 

[12].  The cycle envisioned for this CSP plant used He as a working fluid instead of air 

and required an additional heat exchanger to transfer heat from the LM to the working 

fluid. However, the key potential advantage of the cycle described in Fig. 30 was that it 

relied primarily on a more efficient SCO2 Brayton cycle, instead of a steam Rankine 

cycle. This suggested that there may exist a cycle configuration that could reach 60% 

efficiency or possibly higher. It is also important to note, however, that in current natural 

gas Brayton cycles, the additional heat exchange with the heat source was not required 
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because the natural gas was mixed with the air and ignited in the combustor. Therefore 

additional pressure losses were expected for the heat addition step that were not 

encountered in industrial scale gas turbines. Nonetheless, inert gas Brayton cycles, while 

not currently available commercially, are feasible to design and build [79, 86, 87]. 

The bottoming cycle was a SCO2 cycle that was used instead of a steam Rankine 

because of the higher temperature capabilities and higher power density [88].  The low 

volumetric flow rates required in a SCO2 cycle also reduced parasitic losses in the cycle 

and improved efficiency. Ultra-supercritical steam cycles with temperatures up to 760°C 

were also being developed and could be a second viable option for the bottoming cycle 

[89]. Leveraging cutting edge research in turbine technology that could enable 60% 

thermal to electric conversion, was essential to realizing the cost savings from the higher 

temperature LM-CSP plant.  

Power Cycle Heat Exchangers 

Fig. 30 shows that two heat exchangers were required to transfer heat from the 

storage fluid to the working fluid: shell and tube HX#4 and LDHX#5. Both these heat 

exchangers were described and cost modeled in Chapter 6. The shell and tube heat 

exchanger had a cost of $164/kWe and provided 29% of thermal input to the working 

fluid while the LDHX was $25.2/kWe and provided 71% of thermal input. This yielded a 

combined cost of $189.2/kWe, which was 12% lower than the cost of its LS-CSP plant 

equivalent which was $214/kWe. The third heat exchanger was a printed circuit board 

heat exchanger that transferred heat between He and SCO2. This heat exchanger was not 

cost modelled because its cost was included in literature provided cost estimates for 

SCO2 cycles [90]. There was no LS-CSP plant parallel because only one Rankine cycle 
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was used for that configuration. The cost of a combined cycle given by the US Energy 

Information Agency was $917/kWe  vs. current LS-CSP power plants that used a Rankine 

cycle that was 41% efficient and was $1,050/kWe [48].  

LM pump 

The power block required a LM pump that could pump 1,350°C Sn through the 

power cycle heat exchangers. The development and demonstration of such a pump was 

ongoing at publication and its cost was comparable to similar options that could be used 

for LS. Therefore, as a more conservative assumption, its cost was estimated by applying 

a material cost factor of 2X to current LS pumps.  LS pumps were made from stainless 

steel and for LS-CSP systems cost $4/kWt.  For the 280 MWt power cycle that was 

modeled here, a LS pump was $1M. A possible ceramic material for a LM pump was 

AlN, which was twice as much as stainless steel [47]. Applying this 2X cost factor, a LM 

pump would cost $2M, which was only $12.4/kWe. While using a material cost factor 

was a simplified alternative to designing the pump geometry, the pump was only 2% of 

power block costs and therefore even if the estimation was too low by a factor of 2-3, it 

would not have translated to a significant effect on the overall system LCOE. The cost of 

each power block component was estimated in Table 20, which provides a comparison 

between LS and LM. 
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Table 20: Power block cost comparison 

Power Block 

 
LS-CSP LM-CSP 

Total M$ $/kWe Total (M$) $/kWe 

Working Fluid Heat exchanger 21.4 214.0 10.2 63.1 

Structures/Foundations 0.1 1.0 0.1 0.6 

Power Cycle 120.5 1050.0 154.1 917.0 

Hot Salt Pumps 1.0 10.0 2.0 12.4 

Auxiliary equipment 0.3 3.0 0.6 3.8 

Spare Parts 0.1 1.0 0.2 1.3 

Total Capital Cost 143.4 1279.0 167.6 998.0 

 

Parasitic losses 

The parasitic losses for a CSP plant came primarily from fluid flow losses and 

heliostat tracking. For a LS CSP plant that had a gross output of 115 MWe, the parasitic 

loss was estimated at 15 MWe for a net output of 100 MWe [10].  On the other hand, the 

parasitic loss for a LM-CSP plant was calculated to be 6.2 MWe for a net output 162 

MWe. One of the key advantages of using LM as a heat transfer fluid was that its high 

thermal conductivity resulted in much lower flow rate requirements to achieve the same 

convective coefficient and therefore low parasitic pumping loss.  The disadvantage to the 

nominal LM-CSP design was that both Sn and Al-Si are used. These two different fluids 

required He gas as an intermediary heat transfer fluid when the Al-Si is freezing and 

could not be pumped though a Sn shell and tube heat exchanger. High gas flow rates 

were required leading to significant parasitic pumping losses in the system. Furthermore, 

using a 2 phase storage fluid required LDHXs that operated at atmospheric pressure since 

their large size (10m) would be expensive to engineer for higher pressures. Therefore, the 

Sn coming down from the tower experienced a pressure drop to atmospheric pressure 
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prior to entering the Sn(l)/He heat exchanger. This meant that the gravitational pressure, 

12 MPa, required for pumping Sn up the 180 meter receiver tower was provided by the 

LM pump and not suction force from Sn flowing down the tower. Furthermore, the 

frictional pressure loss in the tubes going up the tower added an additional 5 MPa of 

pressure loss. The Sn flowrate used in the parasitic loss calculation was for 280 MWt, not 

540 MWt which was the peak receiver output. The receiver output was dependent on the 

time of day and incident solar flux therefore these differences were accounted for by 

using the Sn flowrate that corresponded to the power cycle output, which ultimately 

parasitic losses were subtracted. With a Sn flow rate of 0.16 m3/s, the Sn(l) pump 

required 2.7 MW and represented the largest parasitic load in the plant (Fig. 31).  

 

Fig. 31: Sn flow parasitic loss 

Major Pumping Losses 

Major pumping losses occurred in the receiver, tower piping, TES heat 

exchangers, and power cycle heat exchangers.  The pressure losses for each subsystem 

Internal Receiver

LDHX, P= 0.1 MPa

Shell and Tube HEX, 

Sn to Al-Si

Tin:

P=17 MPa

/s

h= 180 m 
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were calculated in previous sections. Each pressure loss was converted to pump work, 

Wshaft, by the following Eq.: 

 . .

shaftW V p   
(52) 

where V was the volumetric flow rate in m3/s and p was the pressure loss for that 

subsystem. The following tabulates the pressure loss, flow rate, and calculated pump 

power required for each subsystem: 

Table 21: Major head loss 

Component 
Pressure Loss 

(Pa) 
Volumetric Flow rate 

(m3/s) 
Parasitic Power 

(kW) 

Receiver 12,000 0.16 2 

TES Piping 16 0.16 0.003 

TES Tower 17,000,000 0.16 2700 

Shell and Tube Sn to Al-Si 
(Tube Side) 

2125 0.17 0.36 

Shell and Tube Sn to Al-Si 
(Shell Side) 

350,000 0.11 38 

Shell and Tube He to Al-Si 
(Tube Side) 

59 0.06 0.0034 

Shell and Tube He to Al-Si 
(Shell Side) 

79,000 22 1700 

Liquid droplet  Al-Si to He 
(Gas) 

0.02 930 0 

Liquid droplet  Al-Si to He 
(Particle) 

N/A N/A N/A 

Liquid droplet  Sn to He (Gas) 0.26 1800 0 

Liquid droplet  Sn to He 
(Particle) 

N/A N/A N/A 

Liquid droplet  He to Al-Si 
(Gas) 

0.01 1800 0 

Liquid droplet  He to Al-Si 
(Particle) 

N/A N/A N/A 

Total   4500 

  

In total, 4.5 MW of pumping power was required, most of which was pumping 

power required to push Sn up the tower and could be reduced by employing an expander 
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(i.e., a pump pushed by the LM to drive its shaft) at the base of the tower to feed the Sn 

pump with recovered shaft work prior to the LDHX. Only 1.8 MW was required for the 

rest of the heat exchangers and the majority was required to flow He through the shell 

side of the shell and tube heat exchanger (1.7 MW). In reality, the pressure drop (0.77 

atm) would come at the expense of the compressor outlet pressure and decreased Brayton 

cycle turbine performance; however, it was included here as a pump parasitic power. 

Kolb et al. also provided estimates for the parasitic losses associated with tracking 

motors in the heliostat field. Since the mirror field for the LM-CSP plant was identical to 

the LS plant, this parasitic loss was the same at 1.75 MW [10]. Adding the pumping 

parasitic loss with the heliostat field parasitic loss gave a total loss of 6.2 MWe while the 

parasitic loss for the LS plant was 15 MWe.  These losses were very significant and their 

effect on plant output are shown in Table 22: 

Table 22: Parasitic loss and plant output 

 LS-CSP Plant LM-CSP Plant 

Parasitic Loss 15 MW 6.2MW 

Gross Output 115 MW 168 MW 

Gross Efficiency 0.4 0.6 

Net Output 100 162 MW 

Net Efficiency 0.36 0.58 
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CHAPTER 8: TEA CONCLUSION 

The plant construction cost K, was the plant construction cost in dollars 

normalized by the net electric output of the plant in kWe.  K was the primary cost variable 

for CSP plants and was found using the results of the above analysis.  Again, from 

Chapter 2, K was expressed as: Dt
C

F
B

E

A
K

EE









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









. There were four terms 

that each normalized the cost of a subsystem to $/kWe for the four subsystems: heliostat 

field, receiver, TES, and power block. The values used in Eq. 2 are presented in Table 23 

for both the LS-CSP plant and LM-CSP plant. The LS-CSP plant values came from 

Sandia’s Power Tower Roadmap and the LM-CSP plant numbers were a result of the 

preceding cost analysis. 
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Table 23: Overnight capital cost plant comparison 

Variable Unit LS-CSP LM-CSP 

Solar Energy Collection 

A, Solar energy collection M$ 188 188 

F, Solar Multiple - 1.94 1.94 

E, Net Electricity Generation MW 99.8 161.7 

ηe net, power cycle efficiency - 0.36 0.58 

Solar Energy Collection, Capital Cost $/kW 1,880 1,160 

Solar Receiver 

B, Cost of Solar Receiver $/kW-th 104 179 

Solar Receiver, Capital Cost $/kW 562 598 

Thermal Storage 

C, Cost of Thermal Storage $/kWh-th 21.2 15.2 

t, number of hours of storage hr. 9 9 

Thermal Storage, Capital Cost $/kW 535 236 

Power Block 

D, Power Cycle, Capital Cost $/kW 1,270 998 

K $/kW 4250 2990 

Contingency 

K1, Contingency $/kW 425 299 

K2, Contingency $/kW 795 559 

Ktotal $/kW 5470 3850 

 

The LCOE calculation was more complex than the overnight capital cost because it 

factored in maintenance, fuel costs, and generation over the plant lifetime. These 

quantities, however, were the same for both the LS-CSP and LM-CSP plants, thus, they 

did not contribute to the differences in LCOE. 

The LCOE was calculated according to Eq. 1, for three different plant types: LS-

CSP, LM-CSP, and natural gas. All plants analyzed were calculated with 20 year 

lifespans, so n=20.  The investment expenditure, It in eq. (1, was only calculated for the 

first year and was equivalent to  the overnight capital cost of the plant, K in Eq. 2 The 

values used for K ($) was calculated for LS-CSP and LM-CSP according to the approach 
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discussed in Chapters 2-7 and are given in Table 23. For providing a comparison to 

natural gas plants, the overnight capital cost was taken from Energy Information Agency 

report [48] and  K was converted to dollars by multiplying by the plant’s given nameplate 

capacity (kW). For natural gas plants, Mt, was given as fixed O&M costs in $/kW-yr and 

Mt was converted to dollars per year by multiplying it by the plant’s nameplate capacity 

(kW). The O&M costs, Mt, for the LS-CSP plant were taken as $65/kWe-yr based on 

estimates provided by the US-DOE [1]. 

A LM-CSP plant was expected to have similar operation and maintenance costs 

despite the additional nitrogen containment, heat exchangers, and exotic materials. This 

was because the most significant portion of the O&M costs were associated with 

maintaining the heliostat field, most specifically maintaining the electronics in mirror 

tracking as well as cleaning mirrors, which were exposed to the environment.  Since the 

LM-CSP plant had the same heliostat field as the LS-CSP plant, these costs were 

expected to be the same at $6.5M per year or $4/kWe-yr [10].   

One major result of the preceding analysis was that N2 containment did not 

significantly raise the capital cost or O&M costs of the plant.  Current LS-CSP plants 

were shut down approximately once a year to perform maintenance.  For a Sn(l) plant 

with nitrogen containment, conceptually the system would have been purged with air, and 

then refilled with nitrogen after maintenance was performed. The cost of nitrogen 

required by the plant was calculated by summing the volume of all containment vessels 

and multiplying by the nitrogen cost per cubic meter, obtained from vendor quotes. The 

total volume of the receiver, TES tank containment vessels and heat exchangers was 

20,300 m3 and vendor (Airgas Inc.) quotes for N2 were ~ $5.88/m3 when purchased in 
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quantities of at least 300 liters (0.3 m3).  Thus, it was $0.1M to replace all the nitrogen in 

the LM-CSP plant once a year or $0.64/kWe-yr, which was small compared to the base 

maintenance cost of $4/kWe-yr.  

To evaluate Eq. (1), the real discount rate, r, was taken as a weighted average of 

inflation (3%), the nominal interest rate (7%), the nominal rate of return on equity (15%), 

the debt fraction (60%), the federal tax rate (35%), and an assumed state tax rate of (5%), 

which were all taken from the Sunshot Vision Study [1].  

The fuel cost, Ft, only applied to natural gas plants and was calculated by Eq. 53: 

 
tgast EHRCF   (53) 

where Cgas was the cost of natural gas, HR was the natural gas heating rate, and Et was the 

electricity produced per year. Et was solved according to the following Eq.: 

 tE G C   (54) 

where G was the peak electric output, and C was the capacity factor.  The capacity factor 

was the ratio between actual yearly output of the plant vs. the associated plant output if it 

ran at peak nameplate capacity continuously. The SAM gave the capacity factor of the 

CSP plant, 43%, which was dependent on the solar resource (Tonopah, Nevada) as well 

as the number of hours of TES  built in (9 hours) [60].  Natural gas capacity factor was 

given by EIA’s Electric Power Annual 2009 report as 87% for combined cycle natural 

gas plants [42].   

Using the aforementioned inputs, the LCOE was calculated for the LS-CSP plant, 

LM-CSP plant, and a conventional combined cycle natural gas plant.  The LCOE inputs 

and results are tabulated in Table 24. 
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Table 24: LCOE comparison of different energy sources 

Plant Type LS-CSP LM-CSP 
Combined Cycle 

Natural Gas 

Nominal Capacity, (MW) 97 162 620 

Overnight Capital Cost, I1, (M$) 546 622 917 

O&M Cost, Mt (M$) 6.5 6.5 13.17 

Natural Gas Cost, Cgas ($/MBTU) 0 0 4.39 

Heat Rate, HR (BTU/kWh) 0 0 7,050 

Fuel Cost per year, Ft (M$) 0 0 144 

Discount Rate, r 0.055 0.055 0.055 

Electricity Produced, Et (GW-hr/yr) 360 601 2,260 

LCOE (¢/kW-hr) 13.4 9.3 6.3 

 

TEA Conclusion 

A CSP plant using LM had the potential to reduce costs because it could reach 

higher (1400°C) temperatures and drive a more efficient (60%) power cycle than the 

current state of the art, LS-CSP, plants which were limited by nitrate salt chemistry to 

565°C and a 40% efficient power cycle. However, using LM as a HTF required switching 

from a metal containment infrastructure to a ceramic containment infrastructure and 

additional systems to exchange heat between LMs as well as to protect LM from oxygen 

were required in the LM-CSP design. Furthermore, since the receiver was much hotter 

than LS receivers, (1400 °C vs 565 °C ), it had to be substantially redesigned to limit its 

view factor to the surrounding room temperature environment and avoid losing a large 

proportion of incident energy via re-radiation.  

In order to determine if switching from LS to LM could reduce CSP costs, a LM-

CSP plant was designed with the same heliostat field and thermal input as a published 

LS-CSP plant design in order to make accurate side by side comparisons. Material cost 

factors were applied to the design geometries and construction costs were scaled from 

LS-CSP estimates to calculate the total LM-CSP cost. Whenever there were design 
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choices, the more conservative option was used to more confidently answer if switching 

from LS to LM would reduce CSP costs. Ultimately, the LM-CSP design featured a 

graphite, modular cavity receiver using Sn(l) as the HTF to transfer heat to a two phase, 

Al-Si alloy that was contained in calcium aluminate cement storage tanks. Energy stored 

at 1380°C in Al-Si(l) was transferred via shell and tube and LDHXs to helium and SCO2 

working fluids for a combined power cycle with a net output of 162 MWe. The costs for 

all the LM-CSP systems were normalized by this output and resulted in a design that had 

a LCOE 30% lower than LS-CSP. 

  While the LM-CSP ceramic infrastructure was more expensive than its LS steel 

counterpart, the higher energy density of Al-Si minimized the quantity of storage fluid 

necessary as well as the size of ceramic containment components, which led to a 50% 

cost reduction in the TES subsystem. Ideally, the energy dense Al-Si would have been 

used everywhere; however, Al corroded the graphite necessary for an efficient receiver, 

which necessitated a separate, smaller Sn loop to transfer heat to the Al-Si through a 

series of extra HXs. The extra tin loop and HX network was cost modeled in detail and 

did not make up more than 20% of the LM TES system. The LM receiver was nearly 

twice as expensive as the LS receiver due to the more complex internal cavity design, 

high temperature insulation, and graphite material cost. However, when normalized with 

respect to the plant electric output, the LM receiver was only 6% more expensive than the 

LS receiver. One important conclusion from the LM-CSP design was that the nitrogen 

containment systems and secondary concentrators not necessary in the LS-CSP plant 

were a minor cost, and only accounted for <1% of total plant costs. The power cycles for 

both modeled plants were approximately equivalent on a $/W basis, but the LM-CSP 
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cycle had the capability to be 50% more efficient than the LS-CSP plant due to the higher 

temperature heat input (1350°C vs. 565°C) for the same heliostat field or collection 

infrastructure. After taking into account parasitic losses for both plants, the LM-CSP net 

efficiency was actually 60% higher than LS-CSP because the high thermal conductivity 

of LM over LS led to a major decrease in flow speeds for equivalent heat fluxes. The 

reduction in flow speed decreased pressure losses throughout the receiver and heat 

exchangers, thereby decreasing parasitic losses by 59% compared to LS-CSP. The LM-

CSP higher electricity output decreased the normalized cost of every subsystem 

compared to LS-CSP except the receiver, despite the additional heat exchangers, inert 

containment, receiver loop fluids, and more expensive ceramic materials required for 

LM-CSP. Switching to LM therefore has the potential to reduce the LCOE of CSP by at 

least 30% therefore requiring only a 20% further reduction in cost to achieve parity with 

natural gas combined cycle power plants. 
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CHAPTER 9: LM RECEIVER LOOP EXPERIMENTAL DESIGN 

According to the techno-economic analysis presented in Chapters 2-8, using LM 

can reduce LS-CSP costs by ~ 30% and therefore it is important to further consider its 

associated technical challenges. There are three broad technical challenges with LM-

CSP: (1) achieving an efficient (>90%) high temperature solar receiver, (2) successful 

construction of a reliable ceramic infrastructure, and (3) implanting an inert gas 

containment system. Within these 3 categories there are a number of smaller challenges. 

All of the foreseen technical challenges associated with building a full scale LM-CSP 

plant are listed in Table 25 with the challenges discussed in this thesis highlighted in 

bold.  Many of these LM-CSP challenges have been addressed with a small scale, 

experimental LM loop that fits inside a 4’ x 4’ x 5’ steel nitrogen containment, but a few 

challenges remain.  
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Table 25: Technical challenges with LM-CSP 

Problem 

>80% efficient high temperature receiver 

Inert gas containment 

Air curtain for higher receiver efficiency 

Secondary concentrator 

High intensity light windows 

Low temperature mechanical support 

LM flow meter 

Thermocouple placement 

High temperature reaction bonds 

Sn Minor Flow Losses 

High temperature shell and tube heat exchanger 

Liquid droplet  heat exchanger 

High temperature heat sink 

>1000 sun heliostat field 

Inert gas Brayton cycle 

Printed circuit SCO2 heat exchanger 

Sn compatible ceramic pipes 

Al-Si compatible ceramic pipes 

Graphite mechanical pipe joints 

LM valves 

 

The LM loop’s primary purpose was to test a high temperature cavity receiver at 

1,350°C, where radiative heat flux from the receiver to the environment was much higher 

than at the current LS-CSP peak temperature of 565°C.  Higher temperatures required a 

new optical cavity receiver geometry that limited the view factor between the 

surrounding environment and 1350°C Sn. According to the Stefan Boltzman law, heat 

flux, Q”, was proportional to the receiver temperature: 

  " 4 4~ rec surrQ T T
 

(55) 

where Trec was the receiver temperature, and Tsurr was the surrounding temperature [77]. 

Interestingly, although increasing receiver temperature from 565°C to 1350°C was only a 

2.4X increase in ΔT, there was a corresponding 14X increase in re-radiative heat loss. 
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Current external receivers had efficiencies of ~ 90% [91].  Increasing re-radiative losses 

by almost an order of magnitude would have led to an inefficient receiver that negated 

the improvements in power cycle efficiency, unless higher concentrations and an internal 

receiver were used.  

Building a full scale internal receiver several meters in length and testing it in 

front of a heliostat field was prohibitively expensive.  Instead, a scaled down internal 

receiver (Fig. 32) was built and, at the time of publication, was being tested in front of a 

solar simulator (Fig. 33) that simulates the concentrated sunlight intensity of a heliostat 

field on a laboratory scale [52].  

 

Fig. 32: Experimental laboratory graphite internal receiver. Keyboard in background for size 

reference. 
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Fig. 33: Solar simulator 

In support of the internal receiver was a pump to flow Sn through the receiver, a 

heat sink system to remove the solar simulator heat input, and a flow meter to measure 

the Sn flow rate. These components were arranged in a loop, shown schematically below: 



 104 

 

Fig. 34: Solar receiver experimental loop 

LM and graphite would have oxidized rapidly at temperatures above 400°C 

limiting operation to only a few hours, therefore the entire experiment was assembled 

inside a sealed steel box into which nitrogen continuously  flowed to drive out oxygen 

associated with any leaks (Fig. 35). 
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Fig. 35: LM receiver test loop inside steel nitrogen containment 

Pipe Materials for Sn(l) 

Stainless steel was the primary pipe and containment material for liquid nitrate 

salts in CSP plants, which limited the maximum temperature for LS-CSP designs to 

565°C. Stainless steel could not be used for Sn(l), even at cooler temperatures (232°C) 

because Sn formed intermetallic compounds with the iron and chromium in steel [46]. 

Over relatively short time periods, Sn would corrode steel, effectively dissolving it away 

(Fig. 36).   

4 ft

5 ft
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Fig. 36: Two originally identical stainless steel gears. The right gear was corroded by Sn(l) after < 24 

hrs. of operation. One steel gear was treated with a ceramic coating, while the other was not, which 

led to a major difference in corrosion. 

As a result, ceramic pipes were necessary to contain Sn(l) due to their higher temperature 

limitations and chemical compatibility with Sn(l). 

Possible pipe materials identified were mullite, graphite, and alumina because 

they were non-corrosive and non-wetting to Sn(l) [92].  For the experimental loop built, 

graphite pipes were chosen due to their low cost, thermal shock resistance, and high 

thermal conductivity [55].   
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Fig. 37: Graphite pipes used in experimental loops. Pipe on the right had OD: 0.5" and ID: 0.3125". 

Pipe on the left had OD: 0.875" and ID: 0.5" 

To experimentally verify graphite’s non-reactivity with molten Sn, G347 graphite tubes 

from Tokai Carbon were weighed and then immersed in 1,100°C Sn for 100 hours.  After 

cooling, the graphite tubes were immersed in HCl to dissolve any solidified Sn that had 

adhered on or within the tube walls. The tube weight was measured again to determine a 

weight difference, which in turn would indicate whether any Sn had reacted with the 

graphite.  The measured weights of the graphite tubes, before and after Sn immersion, are 

presented in Table 26. 
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Table 26: Weight loss measurements of graphite tubes in Sn(l) 

Tube 
No., 

Purity 

Tube Surface 
Area, cm2; Wall 
Volume, cm3; 
Wall Density, 

g/cm3 

Tube Mass (g) 
Tube Mass 
Loss/Area 

Calculated Wall 
Thickness 
Reduction 

  
Before 

Immersion 
After 

Immersion 
g/cm2 mm 

Rel % 
Change 

1 
(99.5%) 

42.74; 5.077; 
1.740 

8.8348 8.8343 1.170 x 10-5 
6.722 x 

10-5 
0.00672 

2 
(99.5%) 

42.55; 4.995; 
1.735 

8.6667 8.6662 1.175 x 10-5 
6.774 x 

10-5 
0.00677 

3 
(99.5%) 

43.50; 5.136; 
1.696 

8.7112 8.7106 1.386 x 10-5 
8.171 x 

10-5 
0.00817 

4 
(99.5%) 

41.63; 4.901; 
1.682 

8.2453 8.2448 1.201 x 10-5 
7.139 x 

10-5 
0.00714 

 

Based on the low change in weight (~0.006%), it was confirmed that the graphite pipes 

were non-reactive with Sn(l), even at 1,350°C. 

The extent to which Sn(l) wets graphite was evaluated using electron microscopy. 

A G347 graphite tube that was sealed at one end to contain Sn was immersed in 1,100°C 

Sn(l) for 100 hours.  After draining the Sn from the tube and cooling it, the graphite tube 

was filled with epoxy which maintained interface integrity as the tube was cut into 

rectangular pieces containing the epoxy/graphite interface. The sample was magnified 

under a scanning electron microscope (Fig. 38) and showed spherical solidified Sn phases 

at the interface indicating that the Sn did not wet and penetrate the graphite wall. 
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Fig. 38: SE images of the epoxy-graphite interface at the bottom of the one-end-closed graphite tube 

These experiments showed that graphite was a viable pipe option for Sn(l) flow at 

1100°C; however, for lower temperature circulation loops (<500°C), glass-lined stainless 

steel could be used.  Coating the inside of a stainless steel with borosilicate glass 

protected stainless steel from Sn corrosion [93]. The advantage of glass-lined stainless 

steel over graphite was that typical stainless steel compression Swagelok fittings could be 

used for joints due to the higher ductility and strength. Glass-lined stainless steel pipes 

have been used in some experimental loops to test the LM pump and flow meter, but 

must did not exceed 500°C to avoid cracking and delamination of the glass lining.  
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Fig. 39: Sn filled section of glass-lined stainless steel tubing 

The problem with glass-lined stainless steel was the delicate nature of the glass. 

Mishandling or cutting the tubes improperly caused the glass to shatter, creating cracks 

that allowed Sn(l) to reach the stainless steel. Furthermore, glass shards could break free 

and clog tube passages, the pump, or valves.  For these reasons, glass-lined stainless steel 

was discontinued for Sn(l) loops, even for pipe sections that never exceeded 400°C. 

Another option for stainless steel was coating it with titanium nitride (TiN), often 

used as a coating for steel tools to increase their hardness [94].  TiN was expected to be 

inert with respect to Sn(l) and was experimentally shown to protect stainless steel from 

Sn(l) corrosion up to 450°C, beyond which the differences in thermal expansion would 

cause the coating to delaminate from the steel [95].  Stainless steel swage compression 

fittings (unions, elbows, T-joints), were coated with TiN and used successfully with both 
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graphite and glass-lined stainless steel pipes in low temperature (<400°C) sections of LM 

loops (Fig. 40). 

 

Fig. 40: TiN coated stainless steel fittings. Left most elbow was uncoated. 

Pipe Connections 

Joining graphite pipes and parts together with leak proof joints was more 

challenging than stainless steels. The strength of steel as well as its ductility allowed for 

easily connected pipes that could support their own weight. Switching to ceramic piping 

allowed higher temperatures, but at the expense of easily engineered connections and 

seals. For graphite pipe connections in these LM loops, there were two options: reaction 

bonds and mechanical compression fittings, both of which were demonstrated to work 

reliably, but required additional considerations as compared to metal based joints. 
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Reaction Bonds 

Graphite cements needed to withstand a temperature range of 22°C to 1350°C, 

prevent pipe disconnections, and prevent tin leaks. When choosing reaction bond agents, 

it was important to choose a ceramic bond that bonded carbon to carbon and had a similar 

coefficient of thermal expansion (CTE) to graphite.  If the CTE between the bond and 

pipe was significantly different, they would expand when heated at different rates, 

creating stresses that could potentially break the cement bond.   

The first reaction agent tried was Ceramabond 669 by Aremco (Fig. 41). The 

cement bonded graphite to graphite and was relatively viscous compared to other graphite 

bond agents such as Contronics 931 and had a consistency similar to Elmer’s glue (e.g., a 

viscosity on the order of 1,000 Pa*s, similar to honey). The initial thought was that the 

relatively low viscosity would help fill voids in graphite pipe joints and prevent Sn leaks; 

however, in practice the resulting bonds often failed when cycled to higher temperatures. 

As a result, the Ceramabond cement was abandoned in favor of the Cotronics graphite 

cement. 

 

Fig. 41: Aremco Ceramabond 669  
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The second reaction bond agent, Cotronics formula 931, was a two part formula 

consisting of >99% graphite powder and a reaction binder [96]. The powder and binder 

were mixed together with 26% binder to 74% powder by weight producing a final cement 

composition that was 99% graphite after curing, which could bond graphite components 

together up to 3,000°C.  

 

Fig. 42: Cotronics 931 graphite cement. 2 component mixture consisted of binder and powder. 

Cotronics 931 had a consistency closer to a paste and a more granular, irregular surface 

quality. The cure procedure required the bond to set at 100°C for 4 hours and cure at 

130°C for 20 hours.   

Many graphite joints using 931 were made and initially many leaked water and 

even Sn(l), even though the bonds between test samples held when cycled from room 

temperature to 1350C several times. However, the recurring issues with leaks led to a 

refined bonding procedure to limit the leak frequency and severity.  The first 

improvement was to modify the composition from the recommended 35 part binder to 

100 part powder.  Using 30 to 33 parts binder instead of 35 was found to produce more 
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reliable seals, with the ultimate composition decision made based on the consistency of 

the cement, which was generally a function of lab humidity levels.  Less binder ensured 

the cement was dryer, limiting the amount of excess water that could then boil out and 

create voids in the cement creating a leak path.  

Once the two parts were added to a weigh boat, it was very important to 

thoroughly mix the two parts, folding the mixture over itself so that it had uniform 

consistency. Kneading the paste like bread instead of stirring it prevented air bubbles that 

increased the porosity of the paste.   

 

Fig. 43: Cotronics 931 cement. Left picture is unmixed, right picture is thoroughly mixed. 

Applying the graphite cement to the two bonded pieces was done in two stages. First, a 

thin layer was pressed firmly and uniformly to the entirety of both graphite bond faces 

using a spatula. This thin layer filled the porosity of the graphite and minimized the 

surface energy the cement had to overcome during the cure. Following the thin layer, a 

second thick (>200 mils) cement layer was lavishly applied to both parts that would fill 

any gaps between the two pieces being bonded.   
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Fig. 44: Graphite cement application 

Next, the two parts to be bonded were firmly pressed together, applying force to 

squeeze excess cement from the joint. If significant quantities of cement did not ooze 

from the entire joint perimeter, then additional cement was re-applied to the two parts 

ensuring cement filled all gaps.  If the two parts being cemented together had the 

opportunity to easily shift out of position, then a jig was needed to physically constrain 

the two parts so that they were bonded in the correct position and the jig could be 

removed. 
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Fig. 45: Graphite 2 component cement bond. Excess cement squeezed from joint is smoothed into a 

beveled surface 

For joints with internal Sn passages, after pressing two parts together, cement 

could ooze into passages and, once cured, it could completely block the passage 

preventing LM flow. To eliminate these blockages, plugs were made from melting and 

solidifying Sn(l), which was then inserted into the passage before cement application. 

This ensured that the passage would remain open since a solid plug of Sn was used to 

preserve a passage for later Sn flow. This approach worked, because the entire cement 

curing procedure occurred below the melting point of Sn and thus the Sn plug remained 

solid during the curing procedure, thereby preventing a blockage from developing. Upon 

subsequent heating of the system, the Sn plugs simply melted and flowed with the rest of 

the Sn(l) being pumped. The plugs were formed by melting Sn with an induction furnace 

and pouring the melt into a mold that modeled the passage to be plugged, often a section 

of graphite tube that had the same diameter of the passage being protected. The tube was 

placed upright on a ceramic brick and Sn(l) was poured into the top. This graphite tube 



 117 

was then quenched in a pot of water to rapidly solidify the Sn. The Sn had a larger 

volume contraction than the graphite upon solidification, therefore upon cooling, it 

shrunk slightly and easily fell out of the graphite tube mold. Formed plugs were then cut 

to the correct size and inserted into the part passage to be cemented. 

 

Fig. 46: Sn plug is inserted into tube. Cement is then applied on outer surface and the part to which 

the tube is being cemented. The tube is then inserted in to be cured. 

More complicated passages could be protected with solid Sn by pouring Sn(l) into 

the part itself. One passage end was plugged loosely with a graphite rod and Sn(l) poured 

into the passage from the other end.  Once solidified, the plug rod was pulled away and 

Sn that leaked past the unsealed rod to the cement surface was removed via sand paper, a 

dental pick, or a heat gun.  

The final cement curing step was the heating procedure, with Cotronics 

recommending 4 hours at 100°C and 20 hours at 130°C. The 100°C step slowly boiled 

water out of the mixture and if the temperature was increased above 100°C before all the 

water escaped, then water could boil rapidly, forcing steam through the joint, in turn 

creating voids for tin to leak through.  Initially, parts were heated by wrapping them in 
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heat tape, surrounding the part with insulation, and monitoring the air temperature close 

to the joint with a thermocouple. The heat tape was cycled on and off based on the 

surrounding air temperature, but a significant temperature difference existed between the 

air and the part, thus it was likely the curing joint became significantly hotter than the 

100°C air temperature monitored inches away. As a result, many joints heated in this 

fashion leaked Sn after the full cure procedure. 

To address this issue, ovens were built where the heat was delivered to the joint 

via convection of the air, rather than direct heating of the graphite, as this ensured the 

graphite bond itself stayed below 100C. The downside to this method was that large 

graphite parts with a large heat capacity could take longer to cure since the boundary 

layer now ensured the graphite part was a lower temperature than the atmosphere heating 

the joint.  For large parts and large joints, heat time was doubled (8 hours at 100°C and 

40 hours at 130°C) to ensure a complete cure. Given the size of parts needed for the 

prototype experimental loop, an oven was constructed from a steel box wrapped in 

insulation with heat tape lining the walls controlled by a thermocouple controller that 

cycled on and off to maintain the set temperature.   

After the part finished curing, it was leak tested by pouring water into the 

passageway and watching for leaks.  Severe leaks revealed water immediately, which 

typically flowing as a steady stream, while less severe leaks could take 20 minutes or 

more before water worked its way through the joint and formed drops slowly growing 

from the cemented joint (Fig. 48).   
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Fig. 47: Cement face joint leaking water. The CAD model for the part shown on the left is shown on 

the right for reference. 

If the leak was not severe, a 5 mm channel was picked in the leaking joint section and 

new cement was pressed into the channel for re-gluing and re-testing.  

Glue JointLeaking Water
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Fig. 48: Pick and cement procedure for leaking part. 

For large leaks, custom graphite plugs or fillers were sanded from graphite scraps to 

make approximate patches for the picked groove and reaction bonded into place.  

Once the part was proven leak proof against water, it was tested with tin by 

heating it in an oven to 300°C, and pouring Sn(l) into the passages. Sometimes, cemented 

joints would leak Sn even if they didn’t leak water, even though water wetted graphite 

while Sn did not. Sn should have required larger leak path cross sections than water to 

overcome the greater surface tension. However, Sn was more than 7 times as dense as 

water, so the pressure forcing Sn through a potential leak path was 7 times larger than the 

pressure from water. Experiments showed that the best way to prevent leaks was by 

designing joints with minimal bond surface, internal corners to pack cement, and making 

the joints accessible to picking/repacking once the parts were mated.  (Fig. 49 and Fig. 

50).   



 121 

 

Fig. 49: Example of more reliable geometry for forming a successful cement bond 
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packing glue
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Fig. 50: Example of a cemented joint that is inaccessible to repacking. The CAD representation of the 

two cemented geometries is shown in the bottom image 
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Mechanical Sealing 

Compression fittings using a graphite ferrule as a mechanical joint were the most 

advantageous alternative to reaction bonded joints and experiments showed that such 

joints sealed much more reliably than cemented joints. As shown in Fig. 51, the conical 

ferrule slipped over the connecting tube and was then inserted into a fitting (either a 

corner, a union, or a T-joint) that had a female conical hole. A threaded nut then fit over 

the ferrule and screwed into male threads on the fitting. The nut pressed the ferrule into 

the conical hole, forcing the graphite ferrule to deform slightly and grip the tube, creating 

a seal (Fig. 51).  



 124 

 

Fig. 51: Graphite ferrule joint 

For joints that would operate at 400°C or below, the fittings and nut were 

typically made from stainless steel and then coated with TiN, so that they were not 

corroded by Sn(l) at temperatures up to 450°C. For joints that needed to operate above 

400C, this stainless steel Swagelok design was replicated using only graphite components 

to make a mechanical seal at 1,350°C. The same graphite ferrule was used along with the 

same size graphite tube, 0.5” OD.  However, the nut and fittings were made significantly 
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Pipe to be 

connected

Threaded Nut

Stainless Steel 

Fitting
Sealed 

Joint
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larger (approximately 1” OD), since the graphite was weaker as the larger diameter 

limited the shear stresses on the nut when it was torqued onto the threads. Furthermore, 

the nut and fitting were made larger to accommodate coarser threads with a greater pitch 

than their stainless steel counterparts (Fig. 52). These all-graphite compression fittings 

were leak tested with Sn(l) at 400°C and were reliably leak proof after the graphite nut 

was tightened to a torque of > 14 in-lbs. 

 

Fig. 52: All graphite compression joint. Picture on left shows completed graphite union joint above 

completed stainless steel joint for size comparison. The picture on the right shows the coarse threads 

in a graphite union joint. 

LM Valves 

Another challenge with LM-CSP was engineering valves that seal and operate at 

1,350°C.  In a full scale system, valves controlled the flow of Sn to different receiver 

modules and to the heat exchangers.  An experimental attempt was made at using 

alumina ball valves at 400°C that was partially successful. As a result of lessons learned 
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from these alumina valves test at 400°C, an all graphite valve was constructed to be 

tested in a 1,350°C LM pump loop. For the lower temperature valves, a commercial ball 

valve was purchased from Fujikin. The Fujikin ball valve was made with a stainless steel 

housing, alumina ball, and polymer seals. The polymer seals were replaced with graphite 

foil, enabling the valve to operate at 400°C. 

 

Fig. 53: Fujikin ball valve assembly exploded view 
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Table 27: Part identifier 

Number 
Manufacturer 

Description 
Replaced? 

1 
Stainless Steel 

Coupling 
No 

2 
Stainless Steel 
Mounting Pad 

No 

3 Hastelloy-C Stem No 

4 
Carbon-Filled 

Teflon 
Yes 

5 
Stainless Steel 

Housing 
No 

6 

PTFE Gaskets, 
cushions ceramic 
against stainless 

steel 

Yes 

7-8 
Solid Ceramic 

Body 
No 

9-10 Solid Ceramic Ball No 

11 Serial number  

12 Ceramic Socket  

13 
Stainless Steel 

Flange 
 

 

Item 6, the PTFE ring designed to cushion the ceramic body inside the stainless steel 

housing, was replaced with a soft graphite packing ring that had a much higher 

temperature limitation and compatibility with Sn(l). The packing ring was graphite rope, 

shown below, cut and formed into the same donut shape as the PTFE ring. Item 4, the 

carbon filled Teflon, was also replaced with graphite rope packing.  
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Fig. 54: Graphite rope packing that replaced PTFE and teflon seals 

Alumina tubes were reaction bonded onto each side of the ceramic valve (Fig. 55) 

and connected to the graphite pipe loop using compression fittings.  Electronic actuators 

were used to turn the valve stems and turn the ball valve, opening and closing the valve. 

Since the valves were at 400°C, these actuators were mechanically connected to the valve 

via a thermally insulating (2.2 W/m-K) zirconia shaft. Furthermore, Al cooling blocks 

were bolted underneath the actuators and cooling water pumped through to ensure the 

actuator electronics stayed cool (Fig. 55). 
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Fig. 55: Valve and actuator holder 

In practice, the alumina ball sealed against the ceramic socket by being pressed 

into the socket due to fluid pressure. The pressure available in the prototype experiments 

was insufficient to meet this condition and as a result, the valve sealing was unreliable at 

such low pressures. 

 

Fig. 56: Top down view of ball valve. Graphite sheet was placed between alumina ball and housing to 

stem tin flow 
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The inner ceramic socket was lined with graphite sheet designed to contact the 

alumina ball and prevent Sn(l) from leaking past it. The valve held back about 75% of the 

flow when in the off position compared to the flow seen when the valve was opened.  

However, this reduction in flow occurred at a relatively low pressure; at higher Sn 

pressures, this graphite sheet seal would almost certainly fail until the pressure was high 

enough to seat the alumina ball against the socket.  These sealing failures motivated a 

different valve design, made from all graphite to withstand 1,350°C. 

With the lessons learned from the alumina ball valve seal, a new, custom, full port 

plug valve was designed. The plug valve sealed by driving a conical shaft into a conical 

hole with graphite packing. The new valve was also made entirely from graphite so that it 

could be tested at 1,350°C. A cross section of the valve is shown here:  

 

Fig. 57: Graphite plug valve. Image on the right is a cross section view.  

Valve Body
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The valve consisted of 3 parts: the valve stem, the stem plug, and the valve body. 

The valve body had a hole that passed through the entire valve, acting as a channel for 

Sn(l). The valve stem fit in the valve body and had a corresponding through hole that 

lined up with the valve body passage when the valve was open and blocked flow when 

the valve stem was turned 90°. The valve stem/plug and valve body were both tapered so 

that when the stem sat against the body, they formed a tight seal. The gland nut was 

threaded and screwed into the body forcing graphite rope packing into the cavity between 

the gland nut, valve stem/plug, and valve body. As the gland nut was screwed tight, this 

packing was compressed, forcing the tapered plug down into the valve body, forming a 

seal. This valve was machined and a Sn(l) loop that could be heated to 1,350°C was 

being designed at publication of this thesis. 

Graphite 90° Elbow Minor Losses 

In the LM loop designed to test the receiver, the pressure drop through the system was 

estimated to determine pump pressure requirements. The Reynolds number of the Sn(l) 

flowing in the loop was extremely low (<10) and therefore major losses through pipe 

sections were calculated using the laminar flow section of a Moody diagram [67]. 

However, there was no existing experimental data for minor loss through the specific 

graphite elbow geometry used, therefore a simple flow experiment was set up to estimate 

the minor loss through graphite elbows (Fig. 59).  
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Fig. 58: Graphite elbow cross section 

 

Fig. 59: Elbow minor loss experiment 

A graphite elbow was connected to the bottom of a Sn reservoir and the 

reservoir/elbow assembly was then placed on a scale. The reservoir was initially empty 

and once Sn(l) was poured into the top of the reservoir it then drained through the elbow 
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into another receptacle (Fig. 60). The Bernoulli Eq. was used to estimate the transient 

flow rate as a function of the head loss through the elbow and the corresponding loss 

coefficient. The two points of a single stream line were the tank free surface (1) and the 

elbow outlet (2) from Fig. 60. The Bernoulli Eq. for this stream line was as follows: 

 2 2

1 1 2 2
1 2 min

2 2
or

p V p V
z z h

g g 
     

 

(56) 

where p was the gauge pressure, V was fluid velocity, z was relative height, and hminor was 

the minor head loss in the elbow. p1 and p2 were both zero because they were free 

surfaces; z1 was also zero because it was taken as the reference height.  Rearranging Eq. 

56 with th0se assumptions in place: 

 2 2

1 2
min 1

2 2
or

V V
h z

g g
  

 

(57) 

The remaining unknowns were the flow velocities at points 1 and 2 as well as the relative 

height of the fluid in the tank.  These values were obtained from the mass vs. time data 

obtained by pouring Sn(l) into the reservoir. 
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Fig. 60: Sn elbow minor loss test pour procedure 

A mass measurement was sampled every second as the reservoir drained, producing a 

“drain curve”. The scale was continuously running and 7 Sn(l) pours were performed, 

producing 7 drain curves with the raw data shown below: 
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Fig. 61: Elbow drain curve data 

Fig. 61 shows 7 distinct peaks indicating 7 separate drain events and an intermediate time 

period where the flow rate was approximately constant. The relevant data is for negative 

slopes of measured mass vs. time after the Sn(l) had been poured into the reservoir and 

the elbow drained with two free surfaces. From each drain curve, the instantaneous slope 

was calculated to obtain the mass flow rate vs. time and then converted to volumetric 

flow rate by dividing by the Sn density.  The reservoir diameter and pipe outlet diameter 

were known, so the flow speed was obtained by dividing the volumetric flow rate by the 

cross sectional area. The height was obtained by subtracting the empty weight of the 

reservoir (8.0 kg) from the measured weight and using the Sn density and reservoir 

dimensions to calculate height. The velocities and Sn height were then used to calculate 

the loss coefficient KL at each measured time during the drain curve:  
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(58) 

A different KL value was calculated for each time step during a drain, making it difficult 

to pick a consistent loss coefficient for a drain curve; however, in the middle part of each 

drain curve, the k value varied very little (±7%) allowing a consistent loss coefficient 

measurement. The reason for larger discrepancies in k at the start of each drain curve was 

due to the Sn being poured into the reservoir, which invalidated the Bernoulli stream line 

analysis. At the end of each drain curve, Sn slowly dribbled out of the elbow and did not 

fill the entire tube cross section, also invalidating the Bernoulli stream line analysis. The 

k value for each drain and the total average was tabulated: 

Table 28: K values for drain trials 

Drain Trial K 

1 2.9 

2 3.1 

3 2.6 

4 2.8 

5 2.7 

6 2.5 

7 2.5 

Average 2.7 

Std. Deviation 0.2 

 

For the graphite elbow geometry tested, the minor loss coefficient was 2.7. This 

was significantly higher but not unreasonable compared to loss coefficients for threaded 

plumbing pipe elbows: 1.5 [67]. Furthermore, the Sn drained from a reservoir into a 

smooth tube that was positioned between the reservoir and elbow. This was considered a 

‘reentrant loss’, introducing another minor loss coefficient for the system, which was not 

isolated in the experiment. The reference minor loss obtained for an experiment with a 

reservoir draining directly into a catch pan was 0.8 [67]. Subtracting 0.8 from the 
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experimental minor loss coefficient for the reservoir elbow system gave 1.9, which was 

much closer to the established 1.5 for threaded plumbing elbows.   The abrupt change in 

diameter between the cemented nub and corner block likely led to the greater loss 

coefficient which could be decreased by counter-boring the cemented nubs so that there 

is a smooth transition in diameter.  However, this is not necessary for the LM loop 

experiment because the flowrates are low and parasitic pressure losses minor. 

Knowing the minor loss coefficient, the total head loss for the receiver 

experimental loop was estimated. There were 14 elbows in series and 3.3 m of graphite 

pipe with a 0.0127 m diameter. The flow rate for the loop at a receiver outlet temperature 

of 1,350°C was 0.026 kg/s and with 0.0127 m diameter pipes and Sn density 6,800 

kg/m3, this gave a flow speed of 0.03 m/s. Major head loss was calculated as: 

 2

,
2

L major

l V
h f

D g
 

 

(59) 

where l was pipe length, D was pipe diameter, V was Sn velocity, and g was the 

gravitational constant. The friction factor f was calculated for laminar flow as: 

 64

Re
f 

 

(60) 

The major head loss was 0.005 m, which was negligibly small, while the minor head loss 

was calculated according to Eq. 58 and multiplied by 14 elbows and was 0.0017 m.  

The low head loss was primarily a result of the rather low linear velocity of Sn 

through the loop (3 cm/s), which was needed for the LM to be cycled through such a 

large temperature difference, 1350°C to 400°C. Low flow rates were required to allow 

the Sn enough residence time in the receiver and heat sinks to heat and cool sufficiently. 

For most heat transfer fluids, these slow, laminar flows would significantly inhibit heat 



 138 

transfer and require long pipe networks for greater surface area; however, because Sn(l) 

had such high thermal conductivity, 30 W/m-K, high heat transfer coefficients were 

obtained even with laminar flows. 
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CHAPTER 10: CONCLUSION 

For continued economic growth, the world requires electricity generation that is 

low-cost and occurs without greenhouse gas emissions. Solar energy is an obvious choice 

because sunlight is free, plentiful, and clean. However, solar energy is dilute, requiring a 

costly infrastructure to collect and convert it to electricity. Furthermore, energy storage is 

required to compensate for the intermittency of solar supply and the varying demand. 

Current LS-CSP TES can deliver clean dispatchable electricity with an LCOE of 

13-15 ¢/kWh, 2.5 times that of fossil fuel generation[10].  Lower costs are necessary to 

see significant market penetration by CSP plants. One way to lower costs is by increasing 

the efficiency of CSP and converting more of the captured sunlight to electricity. Higher 

efficiency requires higher temperatures, and current liquid nitrate salts are limited to 

600°C [43]. Using LMs instead enables higher operating temperatures that can be used to 

heat a working fluid in a combined power cycle with 60% conversion efficiency as 

compared to current efficiencies of 40%.  

To estimate the costs, a full scale plant was designed to transfer sunlight to LM at 

1350°C. Two different LMs were used in this nominal plant design: Al-Si(l) in the TES 

tanks because it was inexpensive and Sn(l) in the receiver because Al corroded graphite. 

All subsystems using LM were contained in an inert atmosphere to prevent oxidation. 

The receiver, heat exchangers, storage tanks, ceramic piping, and nitrogen containment 

were all modeled using basic heat transfer and thermodynamic relations. Systems costs 

were estimated based on the design of the different components and material cost factors. 

Construction costs were taken from published estimates for a LS-CSP plant with the 

same thermal input and scaled to the LM-CSP geometry. 
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The complexity of the CSP plant was increased significantly, due to the use of 

two different LMs, a phase change storage material, an internal receiver geometry, and 

inert containment. Furthermore, ceramic materials were required for a LM-CSP plant, 

instead of traditional stainless and carbon steels. Greater complexity and material costs 

increased the overall component costs. However, when normalized to electricity 

produced, the LM-CSP plant modeled here was 30% less expensive at 9.3 ¢/kWh, 

compared to 13.4 ¢/kWh for the published LS-CSP plant. 

There were three primary reasons for cost savings: higher efficiency, higher 

energy density TES, and lower pumping parasitic losses. Since the sunlight was collected 

and stored at 1350°C instead of 565°C, a heat engine with 60% conversion efficiency 

could be used instead of 40%.  This led to a 50% increase in electricity generation for the 

same collector field and a corresponding reduction in all normalized costs. The large 

temperature difference for the LM and enormous energy density of phase change Al-Si 

meant the TES system components decreased in size, leading to further cost reductions. 

Finally, LMs had thermal conductivities 1 to 2 orders of magnitude higher than LS, so a 

high rate of heat transfer was achieved with low flows, decreasing the parasitic pump 

losses for the power plant.   

Additional thermodynamic analysis are necessary for a closed-loop He Brayton 

cycle that rejected heat to a SCO2 bottoming cycle to better estimate cycle efficiency, 

especially because the cost savings realized by switching to LM were a strong function of 

power cycle efficiency. In this model, the 60% conversion efficiency was assigned 

nominally since current natural gas combined cycles operating at ~ 1400°C had 60% 
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conversion efficiency; but, a detailed thermodynamic analysis for the proposed power 

cycle was needed to determine a more accurate cycle efficiency. 

There still remained significant technical challenges before the LM-CSP plant 

modeled in this report could be built. Many of these challenges had or were currently 

being addressed by constructing a graphite based LM circulation loop. Graphite was 

established as an inert, refractory, and conductive containment material for Sn(l). With 

regards to a graphite pipe network, both chemical and mechanical seals have been 

successfully demonstrated between graphite pipes and plenums operating at 400°C. 

Furthermore, the pressure drop across these reaction-bonded joint geometries was 

characterized, and was effectively negligible due to the low flow rate of the LM. Finally, 

an all graphite valve was successfully built that could seal against Sn(l) at 400°C and was 

soon t0 be tested in a pumped loop at 1,350°C.   

The two most immediate unsolved technical challenges were demonstrating an 

internal optical cavity receiver geometry that could convert sunlight to thermal energy 

with efficiency in excess of 80%, and operating a pump and valve loop at 1350°C. 

Significant progress toward these experimental setups was made and tests were ongoing. 

Further research was required to fully design LM SiC shell and tube heat exchangers, 

LDHXs, a SCO2 Brayton cycle, a closed loop He Brayton cycle, a secondary 

concentrator, and Al-Si storage tanks.  

The remaining technical challenges to successfully design and construct LM-CSP 

plant were numerous and substantial. However, the challenges posed by greenhouse gas 

emissions and subsequent climate change necessitated drastically improved solutions. 

The results of the research presented herein demonstrated there was significant potential 
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for LM-CSP to compete with natural gas and the technical progress that was made thus 

far on the systems designed was encouraging.  
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