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SUMMARY 

  

The future development of engineered products will require a blend of technical 

knowledge from multiple engineering domains that meet its relevant multidisciplinary design 

criteria with sufficient accuracy. However, modeling and simulating multidisciplinary 

engineering systems are challenging due to complexities such as interactions between various 

input parameters. Moreover, in order to accurately estimate risk and reliability of such 

complicated systems, critical input parameters and the corresponding uncertainties must be 

correctly captured and propagated. Multidisciplinary engineering systems often require 

accurate representations of multivariate phenomena. Thus, it is essential to develop a 

framework that can handle multivariate phenomena of complex engineering systems under 

uncertainty.  

The proposed research will develop a framework that can accurately capture and 

model input and output parameters under uncertainties for multidisciplinary systems. 

Specifically, the Artificial Neural Network (ANN) with Principal Component Analysis 

(PCA) and the Auto-Encoder (AE) algorithm will be developed to handle this issue. The 

Independent Features Test (IndFeaT) to select a critical subset of model features will also 

be utilized when using the Probabilistic Neural Network (PNN). In addition, a copula 

function will be employed to accurately model input uncertainties. The proposed method 

permits complicated and multiple properties to be represented effectively and realistically, 

leading to accurate response predictions. Moreover, even though the general regression or 

classification method is operated based on original complex data sets that have large 

amounts of uncertainty and complexity, the proposed method can reduce the high 
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dimension and uncertainty of the original data to predict a response. This diminishes the 

error of the prediction and saves simulation costs. To demonstrate the efficacy of the 

proposed method, experimental results of a cantilever beam test and electro-mechanical 

systems such as a solder joint and stretchable patch antenna will be estimated. 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

1.1. Multidisciplinary Engineering System 

Repeated physical measurements and experiments increase the chance of predicting 

accurate results; however, engineers prefer to model and simulate their experiments with 

computer systems when testing design specifications for reliability. Models and 

simulations provide advantages in that they can effectively decrease design cost and time, 

and offer precise feedback that directly affects design decisions. This feedback leads to 

explicit final decisions and design alternatives. The model also assists in integrating 

different engineering disciplines (e.g. mechanical and electrical engineering). 

   

 

Figure 1.1. Model of the Actuation System of Spacecraft [1] 
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 One example of a multidisciplinary engineering system is a spacecraft, as shown in 

Figure 1.1. Fabrication of such spacecraft requires the designer to have a comprehensive 

understanding of specific disciplines. As workers from diverse engineering domains are 

combined into teams, their ability to accurately predict responses and correctly handle input 

data from differing engineering systems becomes extremely difficult. Uncertainty or 

redundancy, which result from complex and numerous input variables, from a high 

dimension of data, or from inadequate professional knowledge of each engineering domain, 

make it difficult to accurately predict the response of engineering systems. Another 

example of a system that needs accurate predictions across various engineering domains is 

shown in Figure 1.2. The crack analysis of a solder ball joint is an example of electro-

mechanical engineering. It integrates several disciplines’ corresponding material properties 

and thermal analysis of circuit and solder ball. 

 

 

Figure 1.2. Crack Analysis of Solder Ball Joint [2] 

 

Figure 1.3 is also an example of electro-mechanical engineering. Analysis of a stretchable 

patch antenna enables designers to estimate the allowable resonance frequency of the 
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antenna when its geometry is contracted and relaxed. Mechanical engineering is necessary 

to confirm the movement of the geometry, and electronic engineering is necessary to find 

the reliable resonance frequency.  

 

Figure 1.3. Analysis of Stretchable Patch Antenna [3] 

Multidisciplinary domains produce large amounts of data with high dimensions and 

this data must be fairly correlated. This correlation leads to data redundancy. To represent 

a given property of a system, correlated data must be related, yet this can allow redundant 

and uncertain data to negatively influence the predicted response of the system. Huge data 

processing and prediction errors are other examples of issues that would negatively impact 

a model’s accuracy. Despite these issues, precise modeling is required in order for users to 

draw accurate responses. This research will provide a way to readily and realistically 

represent all data using a function. Special techniques based on the data will reduce the 

uncertainty or redundancy caused by the high number of dimensions and will draw to get 

an accurate response. 
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1.2. Random Variables 

 Experiments that cannot predict accurate results can still produce a random variable 

through random experimentation. The random variable will be described by X and a 

particular value of the random variable will be denoted by x. Random variable X can take 

on any value of x in real domains. Random variables have two specific categories: 

continuous and discrete. Continuous random variables take on an infinite number of 

possible values in some interval, while discrete random variables take on a finite number 

of distinct values. Figure 1.4 shows how a sample space S and a random variable X are 

related. For each sample point s, x is defined as X (s).  

  

 
Figure 1.4. Abstraction of Random Variables [4] 

1.3. Random Fields 

 A random field is able to take on values that are multidimensional variables in a 

stochastic process. Most engineering structural analyses have various distributed properties 

(e.g. loads, geometry, stiffness properties, manufacturing processes, and operation 

environments) that are random [5]. Such distributed properties have uncertainty, and this 
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uncertainty may limit the prediction or modeling response of a design. Thus, not only does 

uncertainty have to be truncated and comprehensively expressed when giving experiments 

data, but numerous distributed properties should also be represented realistically. Such 

precision in expressing input variables helps engineers accurately estimate the statistics of 

random responses and the reliability of structures [5]. Random fields can be analyzed by 

random process analysis. A random process can be denoted as the integration of random 

variables in a given probability space. Due to this definition, engineers consider random 

fields and random processes to work similarly. However, random fields deal with 

multidimensional variation, while random processes are based on a single coordinate of 

time. Through random processes, it is identified that a specific design point is a single 

function of time. Figure 1.5 shows that the analysis of a random process can represent every 

design space, since it does not depend on a single design point. 

 

Figure 1.5. Deterministic Analysis [5] 

1.4. Multivariate Data 

1.4.1. Introduction of Multivariate Data 
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A set of multivariate data is comprised of observations that are best arranged and 

handled as a matrix of sample values. The size of the matrix can be denoted by m and n, 

where m and n are respectively the number of samples and the number of features. In the 

case of a crack analysis in a solder ball joint, the crack is generated by a set of 

interconnected factors, including variation of temperature, mismatches in the Coefficient 

of Thermal Expansion (CTE) between the substrate and chip, material properties, and the 

size of the solder ball. It is vital to comprehend the interdependence among innumerable 

features in order for designers to accurately predict and draw the most accurate results. The 

multivariate data has joint distribution of every feature, where a distribution of any 

individual feature is said to have a marginal distribution. 

1.4.2. Multivariate Data Analysis 

Multivariate data analysis suggests that designers must investigate the 

interrelationships among features, classify samples of data into uniform categories, 

interpret the results explicitly, and predict the fundamental subsets of a sample. Regression 

analysis checks the relationship between two sets of variables. One set is comprised of 

dependent variables while the other linearly related set consists of independent variables. 

The most important objective of multivariate data analysis is to keep meaningful 

information after applying analysis to complicated data. However, it is tremendously 

challenging to use analysis to make precise and purely informative design decisions due to 

major two issues:  uncertainty caused by high dimension and redundancy resulted from 

excessive correlation of such data. In this research, multivariate data analysis will reduce 

multidimensional data sets into small sized data sets in order to eliminate these causes. The 

compact data sets enhance regression or classification accuracy.  
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1.4.3. Curse of Dimension of Multivariate Data 

The curse of dimension is a situation where high dimensions of data hinder the 

design of a model, the prediction of a response, or the optimization of an objective function. 

Increasing the number of data dimensions interrupts the problem solving process in terms 

of finding global optimal points of a set of data [6]. A curse of dimension also results from 

redundant and highly correlated multivariate data. Such properties can make a set of data 

more intricate, making the estimation of a response sometimes inaccurate and not 

meaningful. Complex data dimension can also cause excessive computational operations 

and overload [7]. A way to cope with the curse of dimension would not only improve the 

reliability of a model’s response, but it would also help clear visualization of complicated 

data. As the dimension of input data increases, it becomes increasingly difficult to deduce 

an accurate response. If the number of samples of data is less than the number of features, 

the prediction will result in inaccurate and unreliable results, because the singular 

covariance matrix of data will derive an unreasonable output. Even if each set of 

multivariate data is explicitly estimated, integration of the results may be uninformative 

due to unpredictable error. Furthermore, the importance of dealing with high dimensional 

data cannot be overlooked, since reducing the dimension of data makes it simple to describe 

the interrelationship between sets of data and visualize its arrangement.  

1.4.4. Uncertainty and Redundancy of Multivariate Data 

Estimating multidimensional data can produce serious loss of information about 

that data due to uncertainty or redundancy, making it crucial to measure and evaluate these 

problems. The uncertainty can be calculated by entropy as explained in Equation 1.1. The 
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entropy is often used as a measure of the uncertainty from the probability distribution of a 

random variable, x  [8]. The entropy of a random variable X is defined by 

)(

1
log)( 2

xp
xpentropy

x

                            (1.1) 

where p(x) is the probability of each of the occurring variables, and entropy is defined as a 

measure of information.  Entropy can be regarded as the uncertainty of random variable X. 

On the other hand, redundancy can measure the amount of correlation in data sets. If the 

data sets have high correlation between one another, they must be highly interdependent. 

Interdependence is strongly related with redundancy.  

)(

1
log)(log 22

xp
xpNredundancy

x

                          (1.2) 

where N is the total number of events. log2 N is the maximum entropy. To measure 

redundancy of data sets, the opposite relationship of entropy should be employed. Figure 

1.6 and Table 1.1 represent the relationship between redundancy and correlation in data 

sets.  

 

Figure 1.6. Relationship between Redundancy and Correlation [9] 
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Table 1.1. Comparison between Redundancy and Entropy 

  Redundancy Entropy 

Correlation 

Correlated High Low 

Uncorrelated Low High 

Relationship with Correlation Uncertainty 

Sensitivity of data size Low High 

 

Specific interpretations regarding entropy will be introduced in Chapter 2. In a proposed 

framework of this research, the calculated value of entropy will evaluate the uncertainty of 

both raw, high-dimensional data sets and reduced data sets with low levels of complexity, 

while the redundancy comparison will check the irrelevance of original complex data sets 

and reduced data sets. If the compact data sets have lower values of entropy or redundancy 

than the raw data sets, this will indicate that the uncertainty or redundancy of the raw data 

has been reduced. On the other hand, if the raw data sets’ entropy or redundancy is still 

higher than the values obtained for the compact data sets, much smaller sized data sets with 

low uncertainty or redundancy will be required.  

1.4.5. Dependency of Multivariate Data 

In multivariate data analysis, dealing with interdependence of data sets is crucial. 

Interdependence refers to correlation or dependency. When modeling acceptable 

correlations, the response of a model can be deduced accurately. However, marginal 
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distributions of data sets are randomly distributed and thus cannot be considered as an 

acceptable model. To solve this issue, a copula function will be utilized in the proposed 

framework.  

 

1.5. Dimension Reduction 

 Dimension reduction is a method to reduce the number of dimensions of data. 

Dimension reduction is used to reduce the uncertainty and redundancy of data, to predict 

responses accurately [10], to prevent serious error, and to simplify data that retains crucial 

information. Indyk and Motwani (1998) expressed that the curse of dimension can be 

effectively resolved by dimension reduction [11]. There is a linear relationship between the 

number of dimensions and samples. Figure 1.7 represents the structure of a dimension 

reduction.  

 

 

Figure 1.7. The Structure of Dimension Reduction [12] 

 



 11 

In some practical cases, valuable information is buried in uninformative data. There are 

two main reasons leading this problem: 

1. Subset(s) of multidimensional data have excessive size. 

2. Subset(s) of multidimensional data are highly correlated with each other [13] 

 

 For these reasons, redundant and uninformative dimensions must be reduced or 

eliminated in order to extract useful information from the data. In the 1970's, there was 

already an endeavor to make a link between dimension reduction and classification [14]; 

now modern engineers have developed and broadened dimension reduction into 

multidisciplinary domains (e.g. machine learning, pattern recognition, text mining, 

classification, etc.). As the use of dimension reduction widened, engineers needed a method 

to correctly manage and truncate great volumes of multidimensional data. The progressive 

method that had been developed can be divided into two categories:  feature extraction and 

feature selection. In feature extraction, new features are transformed from the original 

features. In feature selection, users choose a subset of features from the original. Figure 1.8 

expresses various dimension reduction techniques. The fundamental description and 

properties of these two techniques will be briefly discussed in Sections 1.5.1 and 1.5.2.  
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Figure 1.8. Dimension Reduction Techniques [12] 

 

1.5.1. Feature Extraction 

 Feature extraction generates new features by transmuting them from initial data. 

For example, according to feature extraction, n dimensions of existing data are changed to 

m new dimensions (n > m). This process is called mapping. In this case, most of the 

information from the data should also remain after dimension reduction has been 

performed. Figure 1.9 (a) indicates that x1, x2, x3, x4, ∙∙∙, and xn are transformed to z vectors, 

showing that feature extraction employs dimension reduction to significant eigenvectors of 

the initial data to take on new features in z vectors. Subsequently, the new features that are 

reconstructed will have low uncertainty or redundancy. This research will introduce two 

special techniques of feature extraction:  Principal component analysis (PCA) and Auto-

encoder (AE). 
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                    (a) Feature Extraction Process                                         (b) Feature Selection Process  

Figure 1.9. Dimension Reduction Techniques 

 

1.5.2. Feature Selection 

 Feature selection refers to a special case of feature extraction. As shown in Figure 

1.9 (b), a feature selection program selects a subset of the original features of the data 

without any transformation and  identifies the most significant subset of n features out of 

the m available  (n > m). Feature selection is required in following situations: 

1. Features are expensive to be calculated and obtained. 

2. Engineers want to draw informative rules from the classifier. 

3. Features are not numeric, such as strings. 

 

 The proposed framework in this research will utilize dimension reduction such as 

feature extraction and feature selection to reduce the high dimension of the initial data 

obtained from multidisciplinary engineering systems. Compact data sets obtained by the 

dimension reduction will have little uncertainty, redundancy, or complexity, and will draw 

accurate responses of the system by saving simulation costs.  

 

1.6. Motivation 
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Due to the complexity of the multidisciplinary engineering systems, engineers 

attempt to simplify a model to reduce simulation burdens, such as cost and time, during the 

design process. However, the concise model is often inadequate for predicting accurate 

responses. In this research, an electro-mechanical engineering system will be considered 

in order to demonstrate these difficulties. For example, in the case of an analysis regarding 

the thermal stress on an electronic chip, the chip is doubtlessly assumed to have constant 

thickness or uniform temperature variation. However, if the chip has different hot spots 

from the electronic components, each different thermal distribution should be estimated 

and represented during modeling. Moreover, even though a system may be minutely 

modeled, the data of the system might not be easy to handle due to interdependency in the 

data. This complexity of data makes response prediction unreliable. Based on these 

problems, this research will develop a framework that can not only present most of the 

information of a system, but can also reduce the complexity of the problem in order to 

predict a response correctly. This will be achieved by utilizing a combination of several 

statistical approaches.  

 

1.7. Research Questions and Hypothesis  

 

Research Question 1 

How can we accurately represent correlated random quantities of a complicated 

multidisciplinary engineering system? 

 

 A copula function can be utilized to accurately model complexities of parameters. 

The copula offers an excellent method for modeling the input complexities in the proposed 
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research, as it can combine assorted marginal distributions corresponding to the inputs in 

order to reproduce a joint distribution. 

 

Research Question 2 

How can we accurately predict multidisciplinary engineering systems’ behavior while 

minimizing computational cost? 

 

 Multivariate system analysis produces inaccurate results largely because 

uncertainties or redundancies are created by complexities in data. These inaccuracies can 

be addressed by dimension reduction techniques. Feature extraction methods such as PCA 

and AE and feature selection methods can significantly reduce  complexities in the analysis 

process.  

 

1.8. Thesis Organization  

Chapter Two  Literature Review 

 

 
  

Chapter Three  Proposed Framework 

 

 
  

Chapter Four  Example Problems 

 

 
  

Chapter Five  Conclusion and Future Work 
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 Chapter 2 is a review of literature concerning design for complex engineering 

systems. This will include dimension reduction methods such as feature extraction and 

feature selection. It also includes a literature review of the copula functions to explain the 

random field of complicated engineering domains.  Chapter 3 will provide details on the 

development of these methods and will explain how redundancy comparison and the 

entropy of information are used to determine whether complexities are reduced. Also, an 

algorithm, implemented in MATLAB, will be presented in this chapter. Chapter 4 will 

show how the proposed methods can be applied to three specific examples in 

multidisciplinary engineering domains: the first example shows how feature extraction 

methods reduce data redundancy and have paramount influence on response prediction by 

using a cantilever beam example. In the second example, a solder joint analysis will be 

described to explain feature selection. A stretchable antenna will be presented as the last 

example as a multidisciplinary engineering domain problem in order to highlight the 

efficacy of the developed framework. 
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CHAPTER 2 

BACKGROUND 

 

2.1. Representation of Dependency 

 Identifying the dependency of data sets not having Gaussian distribution is difficult 

yet essential. Properties of probability can be used to boost accuracy when estimating 

dependency. According to the probability of the data or random variables, if reasonable 

dependence in the variables is calculated, the random variables must be dependent. Such 

dependency of multiple random variables can be effectively obtained by linearly 

correlating coefficients and rank correlation [15]. Modeling or designing corresponding 

and accurate representations of the dependency between complicated data sets is also in 

strong demand. If dependency is insufficiently expressed, it is not feasible to obtain a 

realistic response. In order to address this issue, a copula function is introduced [16, 17]. 

 

2.1.1. Linear Correlation 

 By using the linear correlation coefficient, the dependency of random variables is 

assessed in Equation 2.1.  

 

 
YX

YX
YX




),cov(
),(                                                                                       (2.1) 

where ),( YX  is a linear correlation coefficient of the random variables X and Y, 

),cov( YX  denotes the covariance, and YX  ,  represents the standard deviations. Since 

)()(),(),cov( YEXEYXEYX  , the covariance of the random variables can be 
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expressed. If the random variables are not interdependent, 0),( YX  because 

0),cov( YX .  

 

2.1.2. Rank Correlation 

 Rank correlation depends on the ranks of data by using Kendall’s tau (Ʈ) and 

Spearman’s rho (ρ). It is highly recommended for engineers to use these variables because 

the ranks are not affected by scale estimators [18]. This is a distinctive property that can fit 

copula to any data. Spearman’s ρ using the empirical cumulative distribution function of 

data can derive the correlation of transformed data. It is independent of marginal 

distributions. Kendall’s Ʈ is also independent of marginal distribution. If there are n data, 

2

)1( nn
 pairs of data can be obtained. All pairs can be divided into concordant or 

discordant data. If the value of Kendall’s Ʈ is 1, 0, and -1, it means that the pairs can be 

synthesized by the perfect correlation copula, independence copula, and perfect anti-

correlation copula, respectively. 

 

2.1.3. Copula 

 A copula is a mathematical function that can disassemble a set of variously sized 

multivariate distributions into a one dimensional marginal distribution [19]. In other words, 

a bulk of numerous marginal distributions, or a joint distribution, is divided into individual 

distribution forms [20]. For particular disciplines, a copula is used reversely to build a set 

of multivariate distributions, or joint distributions, by combining each of the different 

marginal distributions that are asymmetric and tail heavy. 
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  C is a Copula if    1,01,0:
2
C and 

   (a)      00,,0  vuC  

   (b)      uuuC  1,,1  

   (c)          0,,,, 21212121  uuCvuCuvCvvC  for all    2121 , uuvv       (2.2) 

where u and v represent the probability of marginal distributions on [0,1]2 [21]. The 

property (a) indicates if the probability of marginal distributions regarding the results is 

zero, the probability of joint distribution should be zero. The property (b) expresses that if 

the marginal distributions’ probability in terms of the results is one, the joint distributions’ 

probability must be one. Property (c) is a two dimensional function in terms of an 

increasing one dimensional function. Figure 2.1 shows a simulation of Gaussian copula 

with different correlations. Each figure estimates each relation between marginals and 

random variables such a grades and pdf of a copula.  
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(a) Correlation Parameters of 0.9 

 
(b) Correlation Parameters of 0 

 
(c) Correlation Parameters of -0.9 

Figure 2.1. Simulation of Gaussian Copula [22] 
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Compared with the general way to measure dependency which uses a correlation 

coefficient, using a copula is much more effective due to the fact that correlation 

coefficients fail to estimate interdependence among non-linear variables and measure the 

dependence between variables when the standard diviation of one variable becomes very 

large. Copula, on the other hand, can be used for any relation between variables [23]. Figure 

2.2 presents the difference between using a correlation coefficient and copula. Even though 

the correlation coefficient is good for checking for constant dependency, copula can 

represent any variable dependencies without the limitation correlation coefficients have.  

 

 

Figure 2.2. Difference between Correlation Coefficient and Copula [23] 

 

Family of Copula 

 As shown in Figure 2.3, there are many types of copula functions:  the Gaussian 

copula for linear correlation and the student or t copula of elliptical copula, the 

Archimedean copula, the Frank copula, the Clayton copula, and the Gumbel or Logistic 

copula [16]. 
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1.  The Gaussian copula:  As the most generally used copula function, the Gaussian 

copula is constructed from a multivariate normal distribution with probability 

integral transformation. It has an elliptical symmetric shape. 
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where  represents a linear correlation coefficient, x and y indicate marginal 

distributions, h and k refer to copula parameters, and   represents a standard 

univariate Gaussian distribution function. 

 

2. The Student or t copula: It has radial symmetric shape and the upper and lower tail 

dependencies are identically characterized. The tail dependency is decided by 

degrees of freedom and correlation.  

 

 dxdy
v

yxyx
yxC

v
xt yt

v

v v 2

2

2

22)( )(

,
)1(

2
1

)1(2

1
),(

1 1


 
















  

 






      (2.4) 

where v expresses degree of freedom and vt  refers to a standard univariate t 

distribution function. 

3. The Archimedean copula: The Archimedean copula is an associative class of 

copulas [24]. This copula is commonly used in practical applications since it can 

readily manage high multidimensional data sets with only one parameter when 

estimating and designing dependency in the data sets. 
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  )()(),( 1 yxyxC   
                 (2.5) 

where   represents the generator of copula. 

 

4. The Frank copula (Kendall’s Ʈ): This copula enables engineers to effectively gauge 

certain cases with different distribution types. For example, if two marginal 

distributions have beta and lognormal distribution, the Frank copula can make a 

joint distribution by using a parameter that decides the level of dependence between 

the marginal distributions.  
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 where  represents the Frank copula parameter. 

 

5. The Clayton copula:  This is one of the Archimedean copulas with lower tail 

dependence.  

 

    0,1),(
/1


 

 yxyxC                                   (2.7) 

 where  indicates the Clayton copula parameter. 

 

6. The Gumbel or Logistic copula:  This is also a kind of Archimedean copula but 

with upper tail dependence.  

    1,])ln()ln[(exp),( /1    yxyxC                              (2.8) 

 where  represents the Gumbel copula parameter. 
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Figure 2.3. Family of Copula Densities [18]:  correlation coefficient 0.3 and the t-copula has 2 degrees 

of freedom 
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Sklar’s Theorem 

 In 1959, Sklar introduced the definition of copula to decompose a joint distribution 

with various dimensions into two marginal distribution functions [20]. He defined Hxy  to 

be a joint distribution with marginal distributions F and G [17]. 

 

 ]1,0[]1,0[: 2 C  

        yGxFCyxH XY ,,                                                                               (2.9) 

 

In Equation 2.9, C refers to a copula and both F and G are distribution functions. The 

function H is a joint distribution, and the set of F and G are marginal distributions. Two 

separated marginal distributions can be combined into a joint distribution with any copula 

function, 

 

       vGuFHvuC 11 ,,                                                                 (2.10) 

 

A copula function can be obtained by Equation 2.10. The copula is not influenced by any 

variation of data. For example, without any transformation, a copula function is utilized for 

not only the joint distribution of x1, x2, x3, x4, ∙∙∙, and xn, but also that of ln x1, ln x2, ln x3, ln 

x4, ∙∙∙, and ln xn  [25].  

 

2.2. Information Theory 

In 1948, Shannon introduced the information theory to measure information 

logarithmically in telecommunicating engineering [8]. Information theory was specialized 

in only telecommunication; however, application of the theory has extended into various 

engineering domains based on probability distributions. This theory uses a random process 
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to quantify cumulative information in multivariate probability density functions [26, 27]. 

This quantity of information can be called entropy. In general, entropy is strongly 

connected with the rareness, uncertainty, randomness, or redundancy of a random variable 

[26]. Thus, entropy is often used to measure information or uncertainty of a random 

variable [28]. The properties mentioned above are extended to express mutual information, 

which quantifies how correlated two random variables are. In other words, these properties 

state by what amount the uncertainty of a random variable can be reduced by obtaining 

information about another variable in the data set.  

 

2.2.1. Entropy 

Entropy can be interpreted three ways to obtain different sorts of information.  

Differing levels of entropy can reflect the amount of information, uncertainty in a random 

variable or vector, and dispersion in the probability distribution [29].  

1. The amount of information:  A rarely occurring event yields more information than 

frequently occurring event. 

2. The uncertainty in a random variable or vector:  Common or certain events reduce 

uncertainty, hindering the prediction of response. Therefore, events with 

uncertainty will have larger amounts of entropy. 

3. The dispersion in the probability distribution:  Lower dispersion indicates smaller 

amount of entropy. 

Thus, entropy captures uncertainty, randomness, or redundancy of a random variable 

[8, 26]. Entropy of a discrete random variable X is described as 
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where N refers to number of total events and n indicates when x occurs. The choice of a 

logarithmic base corresponds to the unit used when measuring information. For example, 

if the base is two, the resulting units will be in binary, while if the base is ten, the units may 

be in decimal. Thus, a logarithmic base can take arbitrary number. However, Shannon 

defined the unit of entropy as a bit based on signal analysis. A bit has two cases:  zero and 

one. Zero can be denoted as “no” and one as “yes”. By using zero and one, the entropy of 

all events can be effectively and simply estimated. In the case of flipping a coin, bits should 

equal to one with the base two. The base ten cannot be used because the number of total 

events is two. Using this logic, the base 2 can estimate the entropy of any event since it is 

the smallest base. According to equation (1), entropy will be influenced by the value of 

probability, not the variation of the random variable. Therefore, if the probability is zero, 

entropy should be zero. Moreover, )(XH  is always greater than zero because probability 

values and 
)(

1
log2

xp
 are always greater than zero [28]. 

 

2.2.2. Joint Entropy and Conditional Entropy 

Based on random variables, joint entropy can be expressed as 

 


 


Xx Yy

yxpyxpYXH ),(log),(),( 2                                                             (2.12) 

 

As shown, if discrete random variables X and Y, or their joint probability distribution 

),( yxp  are given, joint entropy can be calculated.  
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For ),(~),( yxpYX and a given random variable, entropy should have the conditional 

property. 

 


 


Xx Yy

xypyxpXYH )(log),()( 2                                                               (2.13) 

 

Both joint and conditional entropy are related to entropy by the chain rule.  

 

)()(),( XYHXHYXH                                                                              (2.14) 

 

2.2.3. Mutual Information 

 Even if two random variables are independent, their dependency cannot be 

accurately measured by conditional entropy. )( XYH indicates that X  is greatly 

influenced by Y or by a small H(Y). Therefore, dependency should be evaluated by mutual 

information [30]. Mutual information refers to the reduction of randomness or uncertainty 

of a random variable when the other variable is known.  

 

 ),()()()()()()();( YXHYHXHXYHYHYXHXHYXI      (2.15) 

 

Mutual information can be maximized to minimize joint entropy and be used to include all 

individual input entropy.  
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Figure 2.4. Venn Diagram of Information Theory 

 

2.2.4. Relation between Each Terminology  

 Figure 2.4 shows the relationship between each term. Entropy is a measure of 

information or uncertainty of a random variable X and joint entropy can be expressed as 

the uncertainty of random variable X and Y. When a random variable is known, the 

uncertainty of the other variable is known by conditional entropy. Mutual information 

states that the amount of random variables known by a random variable X corresponds to 

the uncertainty, randomness, or redundancy of Y. If random variables X and Y are the same, 

their joint entropy is equal to not only the entropy of X or Y, but also to their mutual 

information. On the other hand, if the random variables are independent, their mutual 

information should be zero, and the joint entropy is the sum of the entropy of X and Y. 

 

2.3. Dimension Reduction 

 During the integration of various disciplines, the number of observations examined 

exponentially increases. For this reason, efficient multivariate data analysis is commonly 

required to get accurate and realistic responses of systems. However, multivariate data 
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results in a curse of dimension, as stated in Chapter 1. High dimension has uncountable 

features in data, and it causes uncertain and inaccurate predictions or overfitting in 

regression and classification [31]. Moreover, if the features are highly correlated, they may 

be used to represent the same property, leading to high redundancy and simulation 

inefficiency [7, 32]. In order to overcome these problems, dimension reduction is 

commonly used. It can be generally divided into feature extraction and feature selection. 

In the following subsections, these two categories will be explained in detail.  

 

2.3.1. Feature Extraction 

 Feature extraction transforms initially high dimensional data to generate new 

features with a reduced size. As briefly discussed in Chapter 1, feature extraction enables 

N dimensions of existing data to be changed to have M dimensions. This process is defined 

as mapping. After dimension reduction, specifically feature extraction, the data should 

contain most of the information from the original data [33].  Two of the more well-known 

methods for mapping that will be discussed are the Principal Component Analysis (PCA) 

and Auto-Encoder (AE). 

 

Introduction of Principal Component Analysis (PCA) 

 In 1901, Pearson started to conduct research on PCA by focusing on a line or plane 

to represent data on p dimensions and came up with the geometric optimization problem 

as a solution [34]. Hotelling stated that there are sets of independent variables in low 

dimensions that make p variables, and the independent variables are composed of principal 

components [35, 36]. Based on the theory of Hotelling, the idea that the principal 
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components’ alternative derivations are most likely to estimate the original components 

was introduced by Girshick [37, 38]. 

 

Basic Steps of PCA 

 In order to extract the most important features, a change of basis should be 

considered. X and Y have m (the number of observations, or cases) by n (the number of 

features) matrices composed by the linear transformation 

 

 YPX                                            (2.16) 

where X refers to an original data set and Y refers a re-representation of X. As a rotation 

and scale matrix, P transforms X into Y. Each coefficient of Y is a projection onto each row 

vector of P. P = {P1, P2, …, Pm} denotes new basis vectors to express the columns of X. 

This means that the row vectors of P should be the most principal components of X. If the 

basis of P is orthonormal, P acts as a rotation matrix. As already discussed in 

“Redundancy”, zero covariance should correspond to uncorrelated or independent data. 

After setting up this assumption, PCA starts to choose and save a normalized direction 

where X’s variance is at its maximum. It repeatedly selects and memorizes directions where 

the next variance is at its maximum. At this point, the direction is perpendicular to the 

previous directions due to the orthonormal property [39]. The selected directions’ data set 

is called the principal components.  
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Analysis of PCA 

 

 

Figure 2.5. Schematic Model of PCA 

 

To reduce the dimension of the data, PCA uses eigenvector decomposition. 

According to Equation 2.17, a covariance matrix can be obtained by a P matrix with the 

orthonormal property 
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In terms of orthonormal matrix P from Equation 2.16, the covariance matrix is 

represented as 
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                  (2.18) 

where in TXXA  , A is symmetric. A can be also denoted by a diagonal matrix, D, and A’s 

eigenvectors matrix, E, as TEDE . At this point, since matrix A is comprised of eigenvectors 
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from the rows of the P matrix, DPPAEP TT  , . Due to the property of orthonormal 

matrixes, the inverse of P should be equal to its transpose. Finally, a covariance matrix YC

is measured as follows, 
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Therefore, X’s principal components should be the eigenvectors of T

x XX
n

PC
1

1


 , and 

each diagonal variable of YC will be the variance of X . Principal components can be also 

determined by singular value decomposition (SVD). From iX  of n dimension, a 

covariance matrix is estimated as follows, 
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in matrix form, U represents the matrix of orthogonal eigenvector, ui, and  refers to the 

matrix of eigenvalue, i . Equation 2.21 estimates the eigenvalue of a covariance matrix. 

Figure 2.6 depicts how principal components in terms of large values of variance can be 

determined. 
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Figure 2.6. Process of Finding Principal Components 

 

Between n eigenvalues, the first largest eigenvalues are selected ( n ,,1  where n > m). 

With the selected eigenvalues, an eigenvector  nuuuW 21  can be used to 

calculate XWY T . After getting all principal components, it is important to decide how 

many components should be selected. There are many of methods to do so:  cumulative 

percentage of total variation, partial correlation, Horn’s procedure, or Kaiser’s rule [9]. 

However, the scree plot is the easiest. The scree plot presents the eigenvalues 

corresponding to the principal components in descending order. The X axis refers to the 

number of features while the Y denotes the magnitude of the eigenvalues for the principal 

components. The rate of decline is fast at first and then levels off. The scree plot is shaped 

like a curved bend and expresses the maximum number of principal components to extract. 

Figure 2.7 shows that 1 and 21 eigenvalues are selected to represent 91% of original data. 

This means that 30 features can be truncated to 1- or 21-features with a 9% loss of 

information of the original data.  
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(a) 1 Eigenvalues                                                              (b) 21 eigenvalues 

 
Figure 2.7. Scree Plot 

 

Limitations of PCA 

PCA uses eigenvectors from a covariance matrix. The accuracy of PCA can only 

be enhanced when the data sets have a Gaussian distribution. This is because in non-

Gaussian distributed data, the largest variance cannot reflect a significant axis [9]. 

Moreover, PCA only considers the directions with the largest variance to be the most 

important components, but there is no guarantee that the directions sorting the principal 

components are the most accurate [40]. PCA also uses the orthogonal transformation 

matrix and linear combinations about the original data, but its properties are not useful 

when analyzing non-linear data sets [9]. Finally, PCA is only valuable if the original data 

sets are correlated. If the sets are uncorrelated or independent, PCA is not efficient in 

extracting the principal components. In cases of non-Gaussian distribution or non-linear 

analysis and uncorrelated data sets, auto-encoder will be used in this study.  

Introduction of Auto-Encoder (AE) 
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 Auto-Encoder (AE) is a special type of artificial neural network (ANN). ANN 

imitates the human neuron system so to predict values or patterns of an output based on 

those recognized from the input. ANN will specifically be discussed in Section 2.4.1. The 

purpose of AE is reduce dimension by transforming inputs into outputs. In 1980, Hinton 

and the PDP group first indicated a concept for AE. This concept was extended to 

unsupervised learning by Hebb and Oja [41, 42]. In the 2000’s, AE describing deep 

architecture is introduced with various notions such as Restricted Boltzmann Machines 

(RBMS), stacked AE, and trained bottom up [27, 32, 43, 44]. Based on these works, AE is 

used for analysis on complicated nature phenomenon that have multiple dimension and 

non-linear data.  

 

Supervised Learning vs Unsupervised Learning 

 AE is based on an unsupervised learning algorithm, even though AE has a certain 

case of artificial neural network that has the supervised learning property. Unsupervised 

learning plays a significant role in reducing high dimensions of data [32]. In this section, 

the definition of supervised and unsupervised learning algorithm is explained.  

 Supervised learning:  Given input and target data, the algorithm finds specific 

patterns in the original input data. These patterns make a connection between the 

input and target values. Moreover, the patterns are used to predict or classify target 

values [45].  

 Unsupervised learning:  This is only based on input data since no target data is 

given. It discovers a certain relationship from the input data to find intrinsic 

structures. It can also extract significant information from data without being 
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controlled by the attributes of the particular data. Thus, unsupervised learning can 

create new lower dimensions that include the most important information. In other 

words, unsupervised learning can be used to truncate high dimensions of data [32]. 

Clustering, probability distribution estimation, and using association in data are 

also other examples of unsupervised learning.  

 

Steps of Auto-Encoder  

 

      (a) Single Auto-Encoder           (b) Formation of Auto-Encoder 

Figure 2.8. Schematic Model of Auto-Encoder 

 

 AE is composed of neural networks with multiple layers. Since AE is a technique 

that uses an unsupervised learning algorithm, the target data of the network should be 

regarded as input data. Thus, Figure 2.8 shows that AE has three layers: the input, hidden, 

and output layer. The circles with B in the bottom of each layer indicate both bias units and 

the intercept term. 


X  represents the reconstruction of X. The purpose of training neural 
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networks is to minimize the difference between units of an input and an output layer. In 

other words, the training aims to reduce the mean squared error of reconstruction. In Figure 

2.8, the number of units on a hidden layer (3) is smaller than that of other layers (4). Due 

to the hidden layers, multilayer AEs are presented with a bottleneck shape. Since the 

reduced number of hidden units is used and the low dimensional representations are 

obtained by extracting the unit values, AE can have a property in terms of dimensionality 

reduction. AE shares the weight values and biases between the previous and next layers 

[46]. As shown in Figure 2.8 (a), each arrow contains weight and bias units. AE is based 

on a feed-forward condition. Thus, hidden units and output units can be calculated as: 
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where W, x, b denote weights, input units, and bias, respectively. In Equation 2.23, each 

WT and bT represents the transpose of W and b. The squared-error cost function can 

calculate the reconstruction error, RE, by: 
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where Y and X denote units of output and input, respectively. AE can be divided by de-

noising, stacked, and sparse AE:  

1. De-nosing AE:  Commonly used to avoid overfitting by adding noise to the input 

data when the system is trained.  
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2. Stacked AE:  Necessary to represent a deep network. Each layer of stacked AEs is 

trained one by one and utilized as the input for the following layer.  

3. Sparse AE:  Allows the network to find intrinsic structures instead of learning how 

to map between input and output or adding noise. Furthermore, by applying 

parsimony constraints to the hidden unit, it can be used as a technique of dimension 

reduction. 

 

Spares Auto-Encoder (SAE) 

 AE has a distinguished condition, such as parsimony or sparsity conditions, in terms 

of reducing the number of hidden units. It is directly related with dimension reduction. AE 

originally considers output data to be equal to input data, xY  . From this relation, it is 

apparent that AE tries to learn an approximation of the identity function. By applying 

certain constraints and reducing the number of hidden layers of the identity function, AE 

takes on a bottleneck shape. This shape indicates that the original dimensions of the data 

are truncated. The certain constraint is a sparsity constraint. A single neuron will be active 

when its output value is close to one. On the other hand, for a zero output value, the neuron 

will be inactive. The sparsity constraint aims to make all neurons inactive. The average 

activation of hidden layer is defined as follows, 

 

  



n

i

ik

jj xa
n 1

)()( )(
1~                (2.25) 

where 
)(k

ja  refers to the activation of hidden unit j and hidden layer k. When the activation 

values of hidden layers are close to zero,  can be regarded as a sparsity parameter. The 

relationship between the average of activation values, j
~ , and the sparsity parameter is  
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To get more accurate results, it is essential to add an additional penalty term. In this case, 

s represents the number of hidden units, and the penalty term is represented by 
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By definition of Kullback-Leibler (KL) divergence, Equation 2.27 is replaced by 

)~( jKL  [27]. KL divergence seeks to find the minima of the penalty term to get .~  j  

 

2.3.2. Feature Selection 

 While feature extraction focuses on transforming an original data to take on new, 

reduced data, feature selection focuses on finding a subset of the original high dimension 

data such that the small sized subset only takes meaningful features. Given a set of original 

data, n, the number of selected subsets, m should be finite and still informative. This 

process of transformation is represented as a dimension reduction algorithm. If the selected 

subset does not have enough information from the original data, the subset’s significance 

will be diminished. There are many feature selection techniques using mutual information, 

single variable classifiers, or even genetic algorithm [47]. However these techniques are 

costly. Furthermore, analysis of the distributions often have unreliable results when the 

information for all of the data’s distributions are not fully given. Although an analysis with 

the mean and variance is not considered to be the best solution in this situation, it results 
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in accurate results simply and quickly. Figure 2.9 indicates how the analysis using mean 

and variance is explained.  

 

 
Figure 2.9. Seperating Two Classes Using Means [48] 

 

It is easy to analyze the importance of the two classes by their mean. The two distributions 

have largely different means and variance between each other. Thus, classes 1 and 2 are 

regarded to be relatively independent and both classes will be selected as significant data 

sets. In short, if the means are far apart, the features’ interest will be increased; it is 

distinguished between the two classes. A well-known feature selection technique, 

Independent Features Test, will now be introduced.  

 

Introduction of Independent Features Test (IndFeaT) 

 In 1998, Weiss and lndurkhya suggested a simple hypothesis test to determine  

which predictor has an informative connection with the target data [48]. This technique 

was meant to quickly and effectively abandon uninformative features.  IndFeaT assumes 

that the target data is categorical, or that all features of data belong to one of two classes. 
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Weiss made the threshold to be the significance value for each class. Through this value, 

selected features can be estimated to see if each feature is informative or not. Equation 2.28 

solves for the feature scoring used in this method. 
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where IF denotes informative features’ scoring, and each A and B represents a data set 

corresponding to feature (F)’s values. n1 and n2 refer to the number of features in the classes. 

Feature scoring can be estimated by the summing all the scores. If a single score is of class 

A, the other classes are estimated as class B. Thus, Equation 2.29 defines feature selection 

performed to be: 
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where sig represents significance value. IndFeaT will select some informative features by 

comparing them to the significance value. Weiss suggested informative and important 

features to be higher than the significance value since higher values can choose more 

reliable features. In Figure 2.10, a data set has 12 features. After applying IndFeaT, the 

features can be selected by comparing them to the significance value. In this example, the 

value of 2 is used as the selection criterion. The features that are under the significance 

value are discarded and the rest of the 10 features are regarded to be informative to the 

subset. In general, Weiss suggests that features are informative at the significance value of 

2 or higher  [48]. 
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Figure2.10. Independent Features Test 

 

2.4. Neural Network 

2.4.1. Artificial Neural Network 

 In 1943, McCulloch and Pitts introduced a computational model of neural networks 

based on neurology [49]. This research is focused on biological processes in the brain and 

applications of the neural network with artificial intelligence [41]. In the 1950s, Farley 

and Clark first used computational calculators based on Hebbian learning to model 

biological behavior [50]. After 8 years, Perceptron, a three layer system with an input, 

output nodes, and association layer, is introduced by Rosenblatt. Perceptron can learn to 

associate a known input to a random output data. The output is also weighted and 

connected, and the function is fired when the sum of inputs exceeds a certain threshold 

[51]. Werbos, in 1974, created the back-propagation learning method. The method has 

three layers of neurons (e.g., input, output, and hidden layers) [52]. The Artificial Neural 

http://en.wikipedia.org/wiki/Wesley_A._Clark
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Network is a system designed based on the human brain. As shown in Figure 2.11, a brain 

neuron collects input signals through dendrites. It releases electrical spikes that split into 

various branches. At each branch, a synapse alters the activity of each branch. If the amount 

exciting activity surpasses that of inhibitory, a neuron will fire. By mimicking the property 

of the neuron system, artificial neural networks can be considered as a black box, as they 

readily predict an output pattern based on a recognized input one. After training, the neural 

network can define the formats to identify similarities when presented with new inputs, 

such as incomplete information versus noisy data.  

 

 
Figure 2.11. Neuron Model [53] 

 

Neural networks applications have four prime categories: 

1. Clustering:  The ANN can find the relationship between patterns and combines the 

patterns by similarity in a cluster.  

2. Classification/Pattern recognition:  The ANN can allocate an input pattern to one 

of various classes. The classes contain algorithmic implementations. 
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3. Function approximation:  The ANN can take linear or non-linear function 

approximation that can be used in fitting functions.  

4. Prediction:  The ANN can be used to predict future data based on given input data. 

The prediction significantly influences decision support systems.  

Types of neural network can be classified by:  

1. Applications:  clustering, classification, function approximation, and prediction 

2. Connection type:  static (feedforward), dynamic (feedback) 

3. Learning methods:  supervised and unsupervised learning 

4. Topology:  single or multilayer, recurrent, and self-organized 

 

Steps of Artificial Neural Network 

 Figure 2.12 shows that a single computational neuron is called a unit. It receives 

input variables, },,{ 21 nxxxX   from other units. Each input has a weight W that can 

represent synaptic learning. b  refers to bias, and outputs should be 
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where f¸ W, b, denote an activation function, weights, and bias for a single neuron, 

respectively. f1
(2) indicates that an activation function for first neuron is in the second 

hidden layer. 

 



 46 

 
 

Figure 2.12. Single Neural Network 

 

As shown in Figure 2.13, the most general activation function, f, is a sigmoid function. The 

sigmoid function’s slope represents the closeness to the threshold point. Its output range is 

from 0 to 1. As a revised version of the sigmoid function, 
)exp(1

1
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   and the 

tanh function, 
HH

HH

ee

ee
Hf








)( , are commonly used since the output range is from -1 to 

1 where H indicates hidden neurons.  
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(a) Sigmoid Function                                                       (b) Tanh Function 

 

Figure 2.13. Activation Functions 

 

Formation of Artificial Neural Network 

 

 

Figure 2.14. Formation of Artificial Neural Network 
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Figure 2.14 depicts that the circle with B in the bottom of each layer indicates both 

bias units and the intercept term. In Figure 2.14, the input layer contains 4 input units, while 

the output layer has 1 unit. As discussed above, a neural network is characterized by sets 

of W and b. 
)(l

ijW and b indicate a weight and bias between unit j and layer l. Activation, 

the output value, can be denoted by
)(l

jf . In the case of unit j and layer l, the total weighted 

sum of the inputs can be expressed as: 
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In general, if layer 1 is the input layer and layer nl is the output layer, each layer l is highly 

related with l+1. By using the concept of a feedforward neural network, all activations in 

each layer can be estimated in turn.  

 

Backpropagation 

 In order to train a neural network, it is essential to use batch gradient descent [54]. 

Since an optimization algorithm is being used, the cost function should be minimized. An 

equation of the squared error cost function, r, can be expressed by 
2

2

1
yY  , where Y and 

y indicate the output values from ANN and real value of the output. When considering a 

training set of p cases, total cost function is defined as follows 
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where   denotes the weight decay parameter. nl and sl represent the number of output 

layers and hidden layers. The first term regards the total weighted sum of the cost function, 

while the second term regards weight decay to minimize the weights’ magnitude. This 

function is commonly utilized for regression and classification. Minimizing the cost 

function is required by using batch gradient descent. With a learning rate  , each W and 

b are updated by an iteration of gradient decent.  
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In order to calculate partial derivatives, the backpropagation method is required. If (x,y) is 

set as training data, a feedforward algorithm starts to estimate all activation values for all 

layers, including the output layer.  

 

Deciding Number of Hidden units (rules of thumb) 

The most important part of a neural network is the number of hidden units that 

should be used in a neural network system. Numerous data miners and engineers have 

developed a standard to find the proper number of hidden units called the “rules of thumb”, 

but even with this rule, it is still challenging to obtain high accuracy. An exact number of 

hidden units can be only deduced by iterative simulations, resulting in a waste of simulation 

costs and hours. Thus, some general but reasonable standards should be considered. In 

1992, Blum introduced an approximate rule of thumb that the size of hidden layers should 

be between the input and output layer size [55]. In the end of 1990s, another rule of thumb 
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established was that there should never be more than twice the number of hidden units as 

that of input units [56]. Boger and Guterman also asserted that engineers should have as 

many hidden units as needed to keep 70 – 90% of the variance of the set of input data [57]. 

In modern commercial fields, two special standards are broadly established. The first 

standard is that   oi NN 
3

2
, and the other standard is that

 oi

s
h

NN

N
N




(
, where 

hN , sN , iN , and oN  refer to number of hidden units, samples in training data set, input 

units, and output units, respectively.   is an arbitrary scaling factor between 2 and 10. 

After finding a reasonable number of hidden layers, the next step is to explore the amount 

of training needed. Baum and Haussler introduced a guideline to guarantee the convergence 

of neural network systems by using a criterion [58],  

 



W
N                        (2.35) 

where N is the necessary number of trainings,  is an allowable error, and W is the weight 

function. Thus if 10% error is permitted, the amount of training is ten times as many as that 

of weight functions.  

 

2.4.2. Probabilistic Neural Network 

As a pattern classifier, Probabilistic Neural Network (PNN) was introduced to 

handle the weakness of general backpropagation neural network [59-61]. In the PNN 

algorithm, a response of input patterns is similar to that of training patterns near input data 

space [45]. Probability density functions of different classes [59] are estimated by the 

Bayes decision rule and Parzen nonparametric estimator [62]. PNN can be an 
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implementation of a statistical algorithm considered by the kernel discriminant analysis. 

As a multilayered feedforward neural network, PNN defines an input pattern by processing 

an input data from one layer to the next without feedback loops. PNN can be quickly trained 

because the magnitude’s order is faster than backpropagation. PNN also takes a free 

parameter, a smoothing factor, to add or remove training samples without network 

retraining. PNN does not have local minima problems. On the other hand, it requires a large 

amount of computation memory since a node or neuron at each training step should be 

separately estimated. 

Based on Bayes decision rule and Parzen nonparametric estimator, PNN states that 

the decision rule can reduce the expected risk of misclassification in pattern classification 

[63]. If the probability density function (pdf) of different categories A and B are given, a 

data set X belongs to class A when fA(X) > fB(X) and all BA   , where fA(X), fB(X) represent 

the pdf for class A and B, respectively. Using the Bayesian optimal decision rule, PNN’s 

classification decision becomes as follows:  

 

BAallXfchXfch BBBAAA  )()(                               (2.36) 

where hA and hB denote the priori probability of occurrence of patterns from each class, and 

lA and lB denote a loss function or misclassification cost associated with the decision that a 

data set X belongs to each class. The accuracy of the decision boundaries relies on an 

estimation of the pdf for each class. The Gaussian kernel can express a multivariate 

estimate of class-conditional pdf of each class by 
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where k, fk(X), p,  , m, i, TkiX  represent classes, the summation of the multivariate 

Gaussian distributions centered at each the training sample, dimension of measurement 

space, the smoothing parameter, the total number of training patterns, the number of 

patterns, and the ith training pattern from class k, respectively. The multivariate estimate 

can classify the data set X after being trained with training data set TX . The smoothing 

parameter impacts on the locations of the training data set. When the parameter increases, 

the degree of interpolation between the data set also increases. As show in Figure 2.15, 

PNN for classifying the data set X into two classes A and B is composed of four layers:  the 

input, pattern, summation, and output layers. 

 

 

Figure 2.15. Architecture of Probabilistic Neural Network [64] 

It can be assumed that the training data set TX  has n data points, and each contains m 

dimensions. Then PNN can have m, n, and 2 neurons in the input, pattern, and summation 
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layers, respectively. Figure 2.16 shows how pattern layers are comprised. For the input 

data set, X is normalized to its unit length and corresponds to the input unit neurons. In the 

second layer, with a weight function that can be operated by using the dot product with the 

input data set, each pattern unit is combined to the input data set. The dot product is 

expressed as ii WXZ   where i, Zi, and Wi represent the pattern number, pattern units, and 

weight functions, respectively. While general neural networks employ a backpropagation 

algorithm [65], PNN utilizes an exponential function as a transfer function. The non-linear 

transfer function is expressed as 
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Figure 2.16. Pattern Layer of PNN [64] 

 

In the third layer as shown in Figure 2.17, the response of each pattern unit is 

connected with the proper summation unit neuron. After assigning the weight functions to 
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each pattern unit that is similar to each input data set of the training pattern, the network is 

ready to be trained. A single pattern unit is needed for each training pattern. The training 

uses the feedforward operation, and the accuracy of the training is controlled by the 

smoothing parameter. In the last step classes can be divided depending if the class 

conditional pdf’s subtraction is greater than zero.  

 

 

Figure 2.17. Summation Layer of PNN [64] 

 

Limit state function estimation via PNN 

PNN can be applied to estimate the limit state function of a given system [66]. As 

shown in Figure 2.18, the limit state function denotes a negative value when the model is 

under failure conditions, while having a positive value under stable conditions. 
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where R is the resistance and S is the load of a certain model. Both parameters are functions 

of a random variable X. In case of Pf, g(.) = 0 refers to the classified surface. If g(.) < 0, 

g(.) represents the class B. If g(.) > 0, it represents the class A. Thus, there are two classes 

depending upon g(.).  

 

 

Figure 2.18 Limit State Function  
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CHAPTER 3 

PROPOSED FRAMEWORK 

 The goal of this research is to accurately predict a system’s response using high 

dimensional input data obtained from multidisciplinary engineering systems. To achieve this 

goal, a unified framework has been developed by using copula, dimension reduction, and 

regression and classification from neural network methods. This chapter will explain the 

proposed framework and provide a detailed overview of the process for each step of the 

framework with a simple example. 

 

3.1. Objective of Proposed Framework 

 The aim of this research is to enhance predictions made from multidisciplinary 

engineering systems under uncertainty. A framework has been developed to help 

accomplish this goal. To present all features of a system accurately and realistically, 

sophisticated data sets should be obtained without any loss of information. Moreover, to 

get a precise analysis of a system, each component with its own marginal distribution must 

be estimated accurately. This way, the framework will first provide intricate marginal 

distributions and combine them into a joint distribution. However, the complicated data 

includes redundancy or uncertainty, and such attributes will negatively affect the accuracy 

of prediction or classification of a system. Thus, the proposed method is introduced to 

resolve these problems regarding the representation of sophisticated data and reduction of 

the attributes. The proposed method is based on the research questions of this thesis. 

 

3.2. Steps of Proposed Framework 
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 The proposed framework has three prime parts:  generation of multivariate data, 

dimension reduction, and representation of multivariate system behavior by neural 

networks. 

1. Generation of multivariate data:  How the copula function resolves problems with 

data with various random distributions will be covered in this paper. Highly correlated 

and uncorrelated data will be generated, since the proposed framework aims to express 

how redundancy resulting from correlation between data sets from multidisciplinary 

engineering systems works. The proposed framework will also generate random data 

sets to show how uncertainty caused by high dimensional data works. Such problems 

can be minimized to take independent data sets. By using the copula function, the 

generated variables will be multidimensional and will also have realistic properties like 

a real model.  

2. Dimension reduction:  In this step, two special techniques will be used to reduce the 

size of the multivariate data. The first technique, feature extraction, is divided into 

Principal Component Analysis (PCA) and Auto-Encoder (AE); these transform the 

original, larger sized data, making it smaller. The reduced data will retain most of the 

information from the original data. The second technique is feature selection. Feature 

selection will be used to choose a subset of the original data by employing the 

Independent Features Test (IndFeaT). This test will use an application of the mean and 

variance. Equation 3.1 and 3.2 refer to redundancy and entropy. 
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where N is the total number of events and p(x) is the probability of each of the occurring 

variables. log2 N refers to the maximum entropy.  

)(

1
log)( 2
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xpentropy

x

                            (3.2) 

After reducing the dimension of the data, the redundancy comparison will check how 

much redundancy are discarded and how much the data set becomes independent. If 

the estimated value is still high compared to the original data’s value, all three 

techniques will be operated again, further minimizing the size of the data.  

3. Representation of multivariate system behavior:  Based on the reduced and still 

informative data from Steps 1 and 2, a neural network will predict and classify the 

responses of a system wanted for design. Both ANN and PNN will be utilized for 

regression and classification, respectively.  

By following these three steps, engineers will be readily able to represent and estimate 

complex data sets of a system and to predict any response of the system accurately using 

only a small number of data sets; the reduced sets can be regarded as missing data or 

distorted data [67]. This leads to saving simulation costs and time. Figure 3.1 shows a 

flowchart of the described framework. 

 

 

 

 

 



 59 

 

 

Figure 3.1. Proposed Framework 
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3.2.1. Generation of Multivariate Data 

In Step 1, as shown in Figure 3.1, multivariate data using the copula must first be 

generated. The multivariate data generated by the copula can be regarded as parameters 

obtained in multidisciplinary engineering systems. To promote a better understanding of 

the framework, a data set containing 1000 simulations and 15 features is used as an 

example; for correlated data, a matrix of correlation parameters with a mean of 0.7 and 

COV of 0.2 will be used. For uncorrelated data, correlation parameters’ matrix will have a 

mean of 0.3 and COV of 0.2. Figure 3.2 shows how the copula estimates information of 

marginal distributions.  

 

 

     (a) Correlated Data                                                     (b) Uncorrelated Data 

Figure 3.2. Correlation of First Three Features Generated by Gaussian Copula 

 

3.2.2. Dimension Reduction 

In step 2 of the framework, the user should decide whether feature selection or 

feature extraction can be applied to the given problem. In order to decide this, a certain 

criteria is given with a notion of redundancy [33, 67, 68]; a prime problem of complicated 

multivariate data is redundancy that is related with correlation. If each variable is highly 
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correlated, it results in high irrelevance and low prediction accuracy. Feature extraction is 

able to reduce redundancy of data well, since it focuses on retaining both the independency 

within the original data, while feature selection has more consideration for the reduction of 

data size. After implementing feature extraction on the raw data, the correlation of data 

should be efficiently lower. Thus, engineers can choose either feature extraction or feature 

selection based on whether or not redundancy in the data sets should be removed. 

Specifically, if redundancy value of raw data exceeds 3 meaning that the raw data has high 

correlation, feature extraction will be employed to lessen redundancy. On the other hand, 

if redundancy value of raw data is lower than 3 indicating low correlation of the raw data, 

feature selection will reduce data size. Data obtained by feature selection can effectively 

reduce uncertainty, since the uncertainty is strongly related with data size. Thus, the 

amount of dimension reduction can be decided based on the necessity of a low 

computational cost and reduction of uncertainty. Figure 3.3 shows which dimension 

reduction method can be employed based on the decisions from the criterion. 

 

 

Figure 3.3. Criterion Deciding either Feature Extraction or Feature Selection 
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After feature extraction is operated, redundancy comparison will be employed to both raw 

data and reduced data. Based on redundancy comparison, if redundancy value of raw data 

is still higher than that of reduced data, feature extraction should be operated again to 

reduce redundancy more. In other case, based on entropy comparison, feature selection will 

be utilized with same procedure of feature extraction. 

 

Feature Extraction 

 The next step has the feature extraction technique transform correlated and 

uncorrelated original data into smaller sized data sets by extracting significant eigenvalues.  

Principal Component Analysis 

 In order to select the informative eigenvalues, PCA employs a scree plot for the 

correlated and uncorrelated data. According to Table 3.1 and Figure 3.4, the correlated data 

has 5 principal eigenvalues while the uncorrelated data has 13 principal eigenvalues. This 

shows that the original data’s dimension, 15, will be reduced to 5 and 13. Each case still 

contains most of the information (over 91%) from the original data. 

 

     (a) Eigenvalues of Correlated Data                     (b) Eigenvalues of Uncorrelated Data 

Figure 3.4. Scree Plot for Eigenvalues 
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    Table. 3.1. Number of Eigenvalues and Percentage of Information 

Scree Plot Correlated Data Uncorrelated Data 

Number of 

Eigenvalues 
5 13 

Percentage of 

Information 
92.64 % 91.24 % 

 

 

Figure 3.5. Proposed Framework of PCA 

 

 As shown in Figure 3.5, multivariate data will be first generated with a huge 

dimension. In the second step PCA will be employed to get compact, new data. 

Redundancy comparison will be used to check the correlation reduction. 

 

Auto-Encoder 



 64 

While even AE has been broadly used for non-linear and uncorrelated data, PCA is 

meaningful for linear analysis with correlated data. Thus, if PCA is not appropriate for the 

given problem, AE is considered to conduct feature extraction in this framework. With a 

process similar to PCA, AE also takes hidden neurons that are considered as principal 

components. A redundancy comparison also examines the efficacy of AE in terms of 

dimension reduction as shown in Figure 3.6.  

 

 

Figure 3.6. Proposed Framework of AE 

 Figure 3.7 explains how AE works in the proposed method. In regards to the 

number of hidden neurons, unlike PCA, AE cannot simply determine how many 

eigenvalues should be selected, and there is no specific standard for choosing the number 
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of eigenvalues. Engineering fields, however, commonly use 
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, where 

 , hN , sN , iN , and oN  refer to an arbitrary scaling factor, number of hidden units, 

samples in training data set, input units, and output units, respectively. For this reason, this 

thesis’s AE technique will be operated with the above equation to decide the best number 

of hidden units.  
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Based on this equation, the matrix (1000 x 15) generated by the copula function is 

estimated. Twelve hidden units are selected to take a little bit more information. If one 

method takes many more eigenvalues than the other method, its complexities will be high. 

In the AE technique, the backpropagation algorithm are used to minimize the gradient of 

the difference between input and output data, respectively. AE can originally get the 

reduced number of hidden units by using the sparsity algorithm, but the equation mentioned 

above is readily employed as well when designing the neural network. After deciding 

hidden units, AE is modeled as shown in Figure 3.7. The initial 15 input data of AE is 

reduced into 12 dimensional data. This process is called “encoding”, while the case where 

minimized data returns to 15 output data is called “decoding” or “reconstruction”. 

 

 

Figure 3.7. Schematic of Auto-Encoder 
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Comparison PCA with AE in terms of Reconstruction of Original Data 

 In order to check the irrelevance between the original and new data, both will be 

estimated by redundancy comparison again. If the new data is still informative and contains 

the most significant eigenvalues, its reconstructed data can cover and represent the original 

data similarly. Without irrelevance, PCA can get the reconstructed data by a row feature 

matrix based on the chosen eigenvectors and the mean-adjusted data matrix. AE already 

includes a reconstruction step during the process of decoding the significant eigenvalues. 

The accuracy of the two techniques is estimated by the absolute value. 

 































  (%)100

dataoriginal

dataoriginaldatatedreconstruc
meanError     (3.1) 

 

Feature Selection 

Feature selection is the next process to be conducted during dimension reduction. 

The feature selection procedure chooses a subset that is composed of significant variables. 

For feature selection, the proposed method makes an assumption that dimension reduction 

is applied to variation of random variables. The variation refers to difference between each 

random variable and its mean. Thus, selected informative variations are used in the new 

subset, while insignificant variations are regarded as zero when predicting a response. In 

the next step, ANN and PNN are utilized for regression and classification. A subset gained 

by feature selection will be used to predict a response through ANN. 

 

Independent Features Test (IndFeaT) 
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 This technique sets up not only the significance value of “2”, but also sets up the 

categorical target values to select important variables. The significance value is calculated 

by Equation 2.29. Weiss stated that the significance value of 2 is generally accepted by his 

experiments [48]. Higher values may be used for more reliable features. Figure 3.8 shows 

how IndFeaT is applied to find important variables in data set. For the data set, IndFeaT 

chooses all variables except 9, 14, and 15 features. If an estimated value of a certain 

variable is greater than the significant value, this means that the estimate is away from the 

mean, and can be denoted as an independent variable. If a variable has an independent 

property from the data set, its properties are uncorrelated with the data set and can be 

regarded as an independent variable. As shown in Figure 3.9, a subset of multivariate data 

generated by copula will be estimated by IndFeaT to find the most informative features. 

Entropy will also check if IndFeaT reduces the uncertainty of data. 

 

 

Figure 3.8. IndFeaT of Original data 
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Figure 3.9. Proposed Framework of IndFeaT 

 

 

Entropy 

 In the last step of the framework regarding dimension reduction, the entropy value, 

used to validate the efficacy of the reduction of dimension, is checked. The entropy of both 

the original multivariate data and the new data set obtained by feature selection are 

compared, since entropy is related to the uncertainty of data. As the size of the data 

increases, uncertainty also increases. If the entropy of the new data sets is not dropped, 

IndFeaT will use a significance value greater than 2. After redundancy or entropy value 

drops when it is compared to the value of the original data, the proposed framework can 

go on to the next step, neural networks. 

 

3.2.3. Combination with neural networks 
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 After successfully conducting feature extraction and feature selection, the final step 

is to apply the data to neural networks in order to construct a behavioral model of 

multidisciplinary engineering systems. This research suggests two frameworks:  feature 

extraction with regression of ANN and feature selection with classification of PNN. 

Classification of ANN is not considered due to the computational complexity of high 

dimensional input data and its slow learning algorithm. Thus, if a given example seeks 

optimal data representation, feature extraction will be utilized. Feature selection can be 

used when classification analysis is required 

 

Artificial Neural Network for Regression 

 Reduced dimensional data obtained from feature extraction will be used as sample 

input data for a regression neural network. The network will predict a single output value. 

An artificial neural network is for regression and classification, but in this research a 

regression method will be utilized. First, in order to train the neural network, the original 

data and new single output variables are required. After the training is finished, a sample 

set of input data reduced by PCA and AE will be employed. If the sample sets have lower 

redundancy, meaning that the irrelevance of the data is lower, the prediction of the neural 

network will be highly accurate. Moreover, even though the sample data set’s size is small, 

if the data retains most of the information from the original data by taking all principal 

components, the prediction will be more accurate. Figure 3.10 explains the proposed 

framework for regression.  
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Figure 3.10. Proposed Framework for Regression 

 

With the numerical example discussed in steps 1, and 2, this proposed framework is simply 

explained. The example uses two cases, correlated and uncorrelated data. Each data set has 

a Gaussian distribution. Figure 3.11 shows how the input data is used in a artifical neural 

network for regression. The number of input, hidden, and output nerons are 15, 15, and 1, 

respectively.  

 

Figure 3.11. Schematic of Artifical Neural Network 
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Table 3.2. Total Error of Prediction 

 
Total Error of Prediction (%) 

Correlated Original Data Uncorrelated Original Data 

Original Data + ANN 3.72 2.06 

PCA + ANN 2.38 1.71 

AE + ANN 2.97 1.48 

 

As shown in Table 3.2, for this simple example, the original data + ANN shows that after 

training the neural network with the original data, the data is used again as an input for the 

ANN to check the accuracy of the neural network. For correlated data, PCA + NN has the 

smallest error. However in the case of uncorrelated data, its error was increased. The result 

of AE + ANN for any case is realiable due to the lower error of prediction compared to the 

original data + ANN. This means that PCA and AE effectively reduced the redundancy of 

the complicated original data since the accuracy of prediction is reliable.  

Probabilistic Neural Network for Classification 

 For classification, a Probabilistic Neural Network (PNN) will be implemented. 

Similar to the progress of regression with artificial neural network, input data sets for the 

neural network can be taken by feature selection, specifically, IndFeaT. Figure 3.12 depicts 

the proposed framework for classification with PNN. 
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Figure 3.12. Proposed Framework for Classification 

 

To make two output categories, the limit state function in Equation 2.39 will be used. As 

stated, SRg  , where R is data from the simulation and S is the experimental value. R is 

a set of means from random variables and S represents generated random variables.  g(.) < 

0 represents the failure region, otherwise, g(.) > 0 denotes the safe region. After estimating 

categories, the results of the classification can be expressed by the probability of failure:  

total

fail

f
N

N
P   where Ntotal and Nfail represent the number of total simulations and failures of 

classification, respectively. Figure 3.13 indicates that PNN works for classification with 15 

input neurons and 2 output classes. 
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Figure 3.13. Schematic of Probabilistic Neural Network 

 

The Pf  from the proposed method is compared with the fP  from the Monte Carlo 

Simulation (MCS). MCS needs many iterative experiments to get the most accurate 

approximate value. As many experiments (or cases) are conducted, the value of fP  is 

diminished. MCS can estimate fP  by using the total number of experiments and the 

number of failure modes calculated by the limit state function
N

N
gP

f

MCSf  ]0[_ , where 

N represents total number of experiments and fN  represents the number of failure modes. 

As shown in Table 3.3, the probability of classification failure with IndFeaT and MCS are 

nearly similar. Thus, the classification process has been accurately operated.  

 

Table 3.3. Probability of Failure 

 
Original Data 

with 1,000 Samples 

MCS with 10,000 

Simulations 

Pf difference between original 

data and data with MCS 

Pf 0.0936 0.0938 0.21 % 
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CHAPTER 4 

DESIGN EXAMPLES 

 This chapter will demonstrate the efficacy of the proposed method with three 

examples. The first example will show how the proposed method is applied to a 3-D 

cantilever beam and contributes to accurate prediction of the system’s response behavior. 

The second example will discuss how the proposed method can produce good results in 

classification problems such as the fatigue life analysis of a solder joint example. The last 

example is a stretchable patch antenna problem that can be considered as a typical example 

of a multidisciplinary system. This example will show the advantage of the method in 

designing antenna substrates realistically, and predicting the most reasonable frequency in 

varying thickness and displacement.  

 

4.1. 3-D Cantilever Beam 

4.1.1. Problem Description 

 In this example, a 3-D cantilever beam shown in Figure 4.1 is considered. A point 

load is applied to a node of the beam in the orthogonal direction. This beam has a length 

of 4m, a height of 0.1m, and a width of 0.1m, as shown in Figure 4.1. In this problem, 

Young’s moduli, E, of each element is considered as a random variable. The variable is 

generated with 111005.2 E pa and COV = 0.1. The design parameters and their 

properties are summarized in Table 4.1. 
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                  (a) Cantilever Beam on x-y Axes                             (b) Cantilever Beam on y-z Axes 

Figure 4.1. 3-D Cantilever Beam 

 

The set of Young’s moduli is composed as a random field. The random field is represented 

by the Gaussian copula function in this example. Thus, the beam can be divided into 30 

unit elements, and each element has a different Young’s moduli. Moreover, each variable 

is assumed to be highly correlated to a matrix of correlation parameters with a mean of 0.7 

and COV of 0.2. For the case of an uncorrelated example, the correlation parameters’ 

matrix has a mean of 0.3 and COV of 0.2. Thus, this example will progress with two data 

sets, correlated and uncorrelated, with Gaussian distribution.  

 
Table 4.1. Property of Cantilever Beam 

Length (m) 4 

Height (m) 0.1 

Width (m) 0.1 

Loading magnitude (N) 1000 in z direction 

Young’s moduli (pa) 111005.2 E , 1.0ECOV  

Number of elements 30 
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4.1.2. Generation of Young’s Moduli 

 A cantilever beam is considered to have 30 Young’s moduli. 30 random variables 

make a Gaussian random field generated by the copula function. Each value is highly 

correlated and uncorrelated. Figure 4.2 expresses how each variable can be demonstrated 

by the Gaussian copula. Each data set has distinguished marginal distributions, and all 

relationships between the marginal distributions are shown by the copula. Figure 4.3 shows 

each Young’s modulus using color scales for random field realization. 

 

                  (a) Correlated Young’s Moduli                                          (b) Uncorrelated Young’s Moduli 

Figure 4.2. Correlation of First Four Features by Gaussian Copula 

 

 

(a) Random Field Realization of Correlated Cantilever Beam Elastic Moduli 

Figure 4.3. Random Field Realization of Cantilever Beam Elastic Moduli 
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(b) Random Field Realization of Uncorrelated Cantilever Beam Elastic Moduli 

Figure 4.3. Random Field Realization of Cantilever Beam Elastic Moduli (Continued) 

 

After making two data sets, 1000 (Simulations) by 30 (features) matrices for Young’s 

moduli, the original data sets’ redundancy is checked. Table 4.2 shows the redundancy of 

each Young’s moduli for the correlated and uncorrelated cases. 

 

Table 4.2. Redundancy of Original Young’s Moduli 

 Redundancy 

Correlated Young’s Moduli 7.6828 

Uncorrelated Young’s Moduli 3.4950 

     

By Equation 3.1, the correlated data set has a value of 7.6828 for redundancy, while the 

uncorrelated data set’s redundancy is 3.4950. The correlated data set has much more 

redundancy than the uncorrelated one. Since each redundancy value is higher than 3, 

feature extraction will reduce redundancy of correlated and uncorrelated data. Although 
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dimension reduction will be applied to both the correlated and the uncorrelated Young’s 

moduli, the correlated moduli may be required to further lessen redundancy. 

4.1.3. Dimension Reduction for Young’s Moduli 

 After describing the randomness of the input data, the next step is to decide the 

process of feature extraction and feature selection as shown in Figure 3.1. Based on the 

criterion to distinguish feature extraction and feature selection, this problem is chosen by 

data analysis of feature extraction since this example does not individually estimate each 

Young’s modulus. Instead, it requires an analysis to represent the optimal tip displacement 

based on the correlated or uncorrelated Young’s moduli consisting of a random field. Also, 

a fast learning algorithm is not as important as accurate predictions. Thus, in this example, 

both PCA and AE are considered to conduct feature extraction. Feature extraction is 

employed to reduce high dimensional data. After diminishing the dimension of the data, 

redundancy comparison will be utilized how much redundancy have decreased compared 

to the original data. 

Principal Component Analysis 

 

       (a) Eigenvalues of Correlated Young’s Moduli       (b) Eigenvalues of Uncorrelated Young’s Moduli 

Figure 4.4. Scree Plot of Cantilever Beam 
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Table 4.3. Number of Eigenvalues and Percentage of Information 

Scree plot Correlated data Uncorrelated data 

Number of 

Eigenvalues 
4 25 

Percentage of 

Information 
96.09 % 96.11 % 

 

 According to Figure 4.4 and Table 4.3, PCA selected 4 and 25 eigenvalues of 

correlated and uncorrelated data sets to contain 96.09% and 96.11% of information, 

respectively. The dimension of the original data sets can be reduced to 4 for correlated data 

and 25 for uncorrelated data without a large loss of information. Based on the data sets, a 

redundancy comparison will check for reduction of redundancy. As shown in Figure 4.6 

and Table 4.4, PCA led to the correlated data’s redundancy reduction of 86.52 % of the 

original data, while the reduction in uncorrelated data is 22.39 %. Efficiency of PCA 

regarding the redundancy reduction will be compared to that of AE in the next step. 

 

Auto-Encoder 

 First, using the equation for deciding on the total number of hidden neurons, 

   3030(1

1000

( 
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s
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N
N  = 16.6, AE is first designed. AE has 30 

dimensions for the input and output data and 17 dimensions for hidden neurons. If AE 

selects 17 hidden neurons, 98.8 % and 84.6 % of information from the original data are 

taken because hidden neurons can be regarded as eigenvalues in linear analysis. A 

schematic of AE is shown in Figure 4.5. With 30 input data points, AE reduces its 
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dimension to 17, indicating that 17 new data points are significant eigenvectors that can 

reduce the redundancy of the original input data. 

 

Figure 4.5 Schematic of Auto-Encoder 

 

 

Figure 4.6. Redundancy Variation of Young’s Moduli 
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Table 4.4. Redundancy Variation of Young’s Moduli 

 
Correlated Young’s Moduli 

(Redundancy Reduction %) 

Uncorrelated Young’s Moduli 

(Redundancy Reduction %) 

Redundancy of Young’s Moduli  7.6828 3.4950 

Redundancy of 

Young’s Moduli with PCA 
1.0403 (86.52%) 3.2711 (22.39%) 

Redundancy of 

Young’s Moduli with AE 
2.2806 (70.31%) 2.2678 (35.11%) 

 

From AE, the redundancy reduction of the original data is estimated in Figure 4.6 and 

Table. 4.4. The reduction of redundancy is 70.31 % for correlated data and 35.11% for 

uncorrelated data. Unlike PCA, which cannot effectively reduce redundancy in 

uncorrelated cases, AE has a much higher reduction rate. However, the performance of AE 

in correlated data is slightly unsatisfactory compared to that of PCA. Since AE is operated 

with 17 hidden neurons that are more than 4 neurons that PCA took. As the number of 

hidden neurons increases, efficiency of redundancy deduction decreases. These properties 

are also checked by the reconstruction error, as shown in Table 4.5. PCA efficiently 

reconstructs correlated data with small error while being discredited when rebuilding 

uncorrelated data. AE is reliable for reconstructing both data sets. Reconstruction error can 

be calculated by the absolute value. 

 






























  (%)100

dataoriginal

dataoriginaldatatedreconstruc
meanError      (4.1) 

Table 4.5. Reconstruction Error 

Reconstruction Error (%) Correlated data Uncorrelated data 

Original data VS data with  PCA 1.53%  4.74% 

Original data VS data with AE 1.87% 1.56% 
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4.1.4. Artificial Neural Network for Regression of Deflection Estimation 

 An ANN is designed with 30 dimensions of input data, 21 dimensions of hidden 

neurnons, and 1 dimension of output data. The same network properties of AE are used for 

the ANN. Figure 4.7 represents how the ANN is comprised.  

 

 

Figure 4.7. Schematic of Artificial Neural Network 

 

 

After generating the reduced Young’s moduli through PCA and AE, the designed ANN is 

used to provide a statistical estimation of the tip displacement. To demonstrate the accuracy 

of the proposed method, the tip displacement of new data sets obtained by PCA and AE 

are compared to those of the original data by using the probability density estimation in 

Figure 4.8. In the uncorrelated data, the displacement of the new data sets provides results 

almost identical to those of the original displacement. However, with correlated data, AE 

has slightly lower accuracy than PCA. Even though AE failed to yield a response similar 

to the original displacement, the result of AE with 3.91% prediction error may be 

acceptable, since the method and this example are based on linear analysis. If complicated 

non-linear analysis, such as considering multiple loading conditions, is used, PCA’s results 

may not be reliable. Prediction error is estimated by the absolute value by Equation. 4.1.   
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Table 4.6. Prediction Error of Displacement 

 Correlated 

Original Data 

Uncorrelated 

Original Data 

 Displacement 

(0.0128) 

Prediction Error 

(%) 

Displacement 

(0.0125) 

Prediction 

Error (%) 

Original Data with 

ANN 
0.0135 5.47 0.0128 2.40 

Data with 

PCA and ANN 
0.0132 3.12 0.0128 2.40 

Data with 

AE and ANN 
0.0133 3.91 0.0127 1.57 

 

 

 

(a) Tip Displacement of Correlated Young’s Moduli 

Figure 4.8. Tip Displacement 
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(b) Tip Displacement of Uncorrelated Young’s Moduli 

Figure 4.8. Tip Displacement (Continued) 

 

4.2. Solder Joint Analysis Example 

4.2.1. Problem Description 

  In this example, the proposed method is applied to the crack analysis of a solder 

joint, as shown in Figure 4.9. The Ball Grid Array (BGA) method is commonly used in 

packaging engineering and plays a crucial role in connecting a chip with a substrate by 

using a solder ball. However, this method is exposed to destruction due to propagation of 

a crack in the solder ball. The propagation is generally due to thermal stress. Based on the 

thermal stress equation, variance of temperature, coefficient of thermal expansion (CTE), 

and properties of the chip and solder ball are assumed to be prime causes of the total 

number of cycles that generate failure. The number of cycles is called fatigue life. If a 

BGA’s fatigue life obtained by experiments is smaller than a value of fatigue life attained 
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by simulation, the BGA cannot be maintained anymore due to the propagation of the crack. 

This example, therefore, shows what variables such as CTE, temperature, or properties of 

BGA are influential to trigger a crack. After finding the most significant variables, IndFeaT 

of feature selection will reduce the dimension of the original data consisting of all variables 

to get data with low value of entropy. This is because that 9 significant variables are 

considered that they are independent and uncorrelated each other. In the last step, a 

Probabilistic Neural Network (PNN) will obtain two classes, safe and unsafe, by using the 

concept of fatigue life and the limit state function. Then, the reduced new data will be used 

to predict accurate classes. To validate this process, the classifications Pf and MCS’s Pf are 

compared. If both are close together, accuracy of this example is reliable.  

 

 

Figure 4.9 Crack Analysis of Solder Joint [69] 

 

This problem is based on the Coffin_Manson fatigue model [70]. The equation of fatigue 

life and each property is listed in Table 4.7: 
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Table 4.7. Properties of Solder Joint 

Property Definition Mean and COV 

Nf The fatigue life  

f'  The fatigue ductility coefficient (0.325, 0.01) 

mT (o C) The Mean cyclic solder joint temperature (100, 0.05) 

Dt (min) The half-cycle dwell time (15, 0.05) 

F The Empirical non-ideal factor (1,0.01) 

LD (m) 
The Distance of the solder joint from the Neutral Point 

(DNP), 
(0.0176, 0.1) 

h (m) The Solder joint height (0.00075, 0.1) 

 (ppm/o 

C) 

The Absolute difference in coefficients of thermal expansion 

of solder joint and substrate 
(4.5, 0.2) 

T (o C) The Cyclic temperature swing (165, 0.2) 

c The Fatigue ductility exponent (-0.411, 0.01) 

 

4.2.2. Generation of Random Properties of Solder Ball Joint 

 A solder joint example has 9 important properties. It means that the 9 properties are 

highly independent and uncorrelated each other. Thus, the Gaussian copula function 

generates a random data set with correlation parameters with a mean of 0.2 and COV of 

0.1 by using these properties. Figure 4.10 shows how the first four properties share 

interdependency. In an analysis of a solder joint, variation of CTE and temperature, dwell 
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time, and shape of the solder ball are considered to be important variables. Based on this 

fact, each data set with different COV is generated.  

 

Figure 4.10. First Four Features by Gaussian Copula 

 

4.2.3. Dimension Reduction for Properties of Solder Ball Joint 

 After assigning 9 properties, we should decide to use either feature extraction or 

feature selection for dimension reduction. In this example, each of the 9 properties 

impacting fatigue life will be estimated to check each significance value by reducing the 

uncertainty of data sets, since redundancy value of the properties is 1.8645 that is smaller 

than 3. Thus, feature selection will be employed. The selected properties can be used to 

make a new subset that has a fast learning algorithm and low level of computational 

complexity. In the last step, the method used by the subset to improve accuracy of 

classification will be confirmed. This example will focus on feature selection for dimension 

reduction. IndFeaT is allowed to take the most informative properties based on significance 
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value. In properties’ relationships, IndFeaT selects 2, 3, 5, 6, 7, and 8 properties. It is 

assumed that the variation of CTE and temperature, dwell time, and shape of solder ball 

are already assigned as significant variables as shown in Figure 4.11. To check the 

uncertainty of the data set, redundancy comparison is used in Table 4.8. Redundancy 

reduction is estimated by the absolute value (Equation 4.1). IndFeaT leads to 29.10% of 

uncertainty reduction. Thus, the current process shows that 9 properties’ dimensions are 

effectively reduced by IndFeaT. Within the generated random properties, the data sets’ 

significance is lower than the selected data sets’ importance. Thus, in real simulations, such 

as the finite element method, if the properties selected by IndFeaT are controlled and 

revised first, the probability to reduce simulation cost and time and obtain more accurate 

results will increase. 

 

Figure 4.11. IndFeaT of 9 Properties 
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Table 4.8. Redundancy Reduction 

 

 

 
Redundancy Redundancy Reduction (%) 

Original Data 1.8645 

29.10% 

Original Data with IndFeaT 1.3219 

 

4.2.4. Probabilistic Neural Network for Classification 

 In this process, PNN is required for classification based on the target. To assign two 

classes, the limit state function and experimental results make the target data. Fatigue life 

from the simulation has a value of 1279 (mean:  1279, COV:  0.07) and an experimental 

value of 1436 [71]. By applying the limit state function, SRg  (where R is an 

experimental value and S is data from the simulation), two classes are generated; if g is 

greater than zero, the class is “class A”, otherwise its class is “class B”. Class B refers that 

solder joint system will be discarded due to propagation of crack. Figure 4.12 depicts PNN 

with the solder joint example. PNN does not require a training algorithm, so this process is 

remarkably simple when compared to that of ANN.  In Table 4.9, the Pf  is estimated by 

the limit state function, while the results in the second row are the probability of failure by 

PNN with IndFeaT. To check the accuracy of this process, MCS is used to estimate Pf. If 

MCS has a large number of samples, Pf of MCS will be decreased. The reduced Pf  is more 

accurate. In this example, a PNN with 1,000 samples and MCS with 10,000 samples are 

compared. In conclusion, reducing size of data the data set leads to lower classification 

accuracy, since Pf  of IndFeaT and PNN is bigger than Pf  of PNN. However, the values of 

Pf  of IndFeaT and MCS are similar, indicating that this process performed well. It is 
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confirmed that feature selection diminishes not only the uncertainty of data, but also the 

probability of failure for fatigue life. 

 

Figure 4.12. Schematic of Probabilistic Neural Network 

 

Table 4.9. Probability of Failure by PNN and MCS 

 
PNN with 

1,000 samples 

MCS with 

10,000 samples 

 Difference of Pf between 

PNN and MCS (%) 

Probability of Failure of 

Original Data 
0.0251 0.0256 1.99% 

Probability of Failure of 

Reduced Data by IndFeaT 
0.0276 0.0281 1.81% 

Difference of Pf between 

original and reduced data (%) 
9.96% 9.38%  

Pf  of IndFeaT is bigger than Pf  of the original due to elimination of features. However, Pf    

of IndFeaT and MCS are almost the same. Efficacy is guaranteed.  

 

4.3. Stretchable Antenna Example 

4.3.1. Problem Description 

 Stretchable patch antennas are composed of a substrate, patch, feed line, ground, 

and a source. Fabricating a substrate with constant thickness for stretchable antennas is 

uncommon because the substrate should be fabricated manually by engineers [72]. 

Therefore, a substrate has to be modeled taking into consideration its varying thickness. 
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Information regarding the geometry, varying thickness, and properties of the substrate is 

depicted in Figure 4.13 - 4.14, and Table 4.10. 

 

(a) Experimental Frequency Analysis of Stretchable Patch Antenna [3] 

 

(b) FEM Simulation of Stretchable Patch Antenna under Deformation 

Figure 4.13. Geometry of Stetchable Patrch Antenna 
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Figure 4.14. Stretchable Antenna with Varying Thickness 

 

Table 4.10. Properties of Stretchable Patch Antenna 
 Young’s Modulus 

(Mpa) 
Thickness (mm) Width (mm) Length (mm) 

Substrate 1.32 
09.0 , 

1.0COV  
70 80 

Patch 0.0124 0.03 35 43 

Feed Line 0.0124 0.03 32 2.5 

Ground 1.32 0.05 70 80 

Source 

(surface) 
  

09.0 , 

1.0COV  
2.5 

 

 
Permittivity 

Conductivity 

(S/cm) 

Dielectric Loss 

Tangent 

Magnetic Loss 

Tangent 

(kg/m^3) 

Substrate 3 0 0.01 0.0001 

Patch 1 1.51e4 0.01 0.001 

Feed Line 1 1.51e4 0.01 0.001 

Ground 1 1.51e4 0.01 0.001 

Air 1 0 0 0 
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The most important goal of the analysis of the stretchable patch antenna with varying 

thickness is to confirm that the antenna can maintain a reliable frequency range when 

contracted and relaxed. There are two main points to check for an allowable frequency 

range.  

 Mechanical behavior:  The antenna is pulled to get information about deformations. 

The deformation is calculated through a tensile test. Specifically, both ends of the 

antenna are put under tension. The antenna is assumed to be symmetric because 

both ends of the antenna deform symmetrically from the center. This symmetry 

reduces the size of the finite element model, which, in turn, reduces the time and 

cost of the finite element analysis. The deformed shape of the antenna is 

represented as the x and y coordinates. 

 

              (a) 31 Parts with Different Thickness                                         (b) 50 Coordinates 

Figure 4.15. Schematic of Stretchable Antenna 
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            (a) Tensile Test Boundary Condition                        (b) Tensile Test Symmetry Boundary Condition 

Figure 4.16. Boundary Condition of Stretchable Antenna 

 

 

In other words, symmetry is assumed for the boundary condition of the stretchable patch 

antenna, when  

1) The geometry is symmetric 

2) Boundary conditions (force and constraints) are symmetric. 

In this example, the antenna thickness is in the Z direction (out of plane direction). The 

geometry of the antenna is symmetric along the X axis in the middle. Since a tensile test is 

done, the loading condition on the antenna is also symmetric (two equivalent loads or 

displacements at each end are applied). Since these two conditions are satisfied, half of the 

antenna can be assumed to have symmetrical boundary conditions. The XZ plane in the 

middle along the X axis is called “plane of symmetry”. The general rule for symmetrical 

boundary conditions is that the displacement vector component perpendicular to the plane 

of symmetry is zero and the rotational vector components parallel to the plane of symmetry 

are zero. Let Ux , Uy , and Uz denote the displacement components in the X, Y, and Z 
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directions on the plane of symmetry, respectively (i.e. on the bottom edge). Then, the 

displacement perpendicular to the plane of symmetry is Uy = 0, while Ux and Uz are free 

(i.e. displacement in X and Z directions are allowed). Let Rx , Ry ,and Rz denote the rotational 

components about the X, Y, and Z directions on the plane of symmetry, respectively (i.e. 

on the bottom edge). Then the rotational components parallel to the plane of symmetry are 

Rx=0 and Rz=0, while Ry is free. Figure 4.17 shows a deformed antenna with 1mm and 

12mm thickness. 

 

(a) 1mm Displacement 

Figure 4.17. Deformed Geometry of Antenna 
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(b) 12mm Displacement 

Figure 4.17. Deformed Geometry of Antenna (Continued) 

 

 Electrical analysis:  This process investigates if the deformed antenna affects the 

variation of resonance frequency. The deformation on the antenna will be accepted 

as an allowable deformation if the frequency of the antenna stays in a reliable range 

(3dB frequency). On the other hand, if the deformed antenna is out of the suitable 

range, the antenna model will be rejected. After validating the first step, frequency 

will be calculated by HFSS software using the coordinates of the deformed model. 

Figure 4.18 show that how electrical analysis with HFSS can investigate if 

deformed antenna affects the variation of resonance frequency.  
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(a) Stretchable Patch Antenna under 1mm Deformation and Its Resonance Frequency 

Figure 4.18. Resonance Frequency of Stretchable Antenna under Deformation  
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(b) Stretchable Patch Antenna under 12mm Deformation and Its Resonance Frequency 

Figure 4.18. Resonance Frequency of Stretchable Antenna under Deformation (Continued) 

 

4.3.2. Generation of Varying Thickness 

 The Gaussian copula is only used to generate random thicknesses with a matrix of 

correlation parameters with a mean of 0.5 and COV of 0.2, because the thickness of the 

patch antenna and substrate are not always highly correlated or uncorrelated. Thirty-two 
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different thicknesses of the substrate are generated, and a patch with a constant thickness 

of 0.03mm is modeled. The redundancy of the original thickness is calculated, as shown in 

Table 4.11. One hundred twenty-one different values of displacement are tested on the end 

of the antenna, with a range of 0mm to 12mm. The displacement is calculated by the 

equation below: 

 %30
40

12





mm

L

L
strain

o

D   

where DL represents the applied displacement and oL represents original length of the 

substrate. This example has a range of 0% (0mm displacement) to 30% (12mm 

displacement). The X and Y coordinates are separately estimated for regression, since 

dimension reduction and ANN take a single variable as output data. This example focuses 

on estimating the coordinates when displacement is applied to the antenna with varying 

thickness. The input for dimension reduction and ANN represents the thickness, while the 

output is assumed as each coordinate. One hundred twenty-one values of displacement are 

used to more accurately train the original 32 values of thickness.  

 

4.3.3. Dimension Reduction of Varying Thickness 

Based on Figure 4.15, each part of the antenna has a different thickness, and the 

dimension of the thicknesses has to be truncated. In this example, an antenna has 32 parts; 

31 parts are for the substrate and 1 is for the patch. X and Y coordinates can be obtained 

from the deformed antenna. For dimension reduction, this example will use feature 

extraction because varying thicknesses should represent information as coordinates, rather 
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than having each thickness be estimated individually by reducing redundancy. Thus, 

feature extraction, such as PCA and AE, reduces the redundancy of a set of complex 

thicknesses. Redundancy comparison confirms if the irrelevance between the original data 

and truncated data is effectively diminished. Table 4.11 reveals that the redundancy of the 

thickness is minimized from 3.432 to 1.708 (PCA) and 1.926 (AE). In order to maintain 

90% of the information from the thickness, PCA selected 14 eigenvalues and AE took 20 

hidden neurons. The reconstruction error by AE is smaller than that by PCA, since AE 

takes more hidden neurons; in linear analysis, the hidden neurons of AE are regarded as 

eigenvalues. Reconstruction error and Redundancy error are calculated by Equation 4.1. 

 

Table 4.11. Information of Results from Feature Extraction 

 Number of 

Eigenvalues 

Reconstruction 

Error (%) 

Redundancy 

(Redundancy Error %) 

Original Thickness 0 0 3.432 

Original Thickness with PCA 14 2.51 1.708 (50%) 

Original Thickness with AE 20 2.37 1.926 (43.91%) 

 

4.3.4. Artificial Neural Network for Predicting Antenna Deformation 

In the next step, ANN will be utilized using information gathered from the varying 

thicknesses, the strain as input data, and the coordinates of the responses from the model. 

Table 4.12 presents the prediction error of ANN. For X coordinates, ANN has an error of 

3.27%. The thickness used in PCA takes an error of 6.28%, while that of AE has an error 

of 5.41%. For the Y coordinate, considering the ANN’s own error of 5.32%, the prediction 

error of PCA and AE are acceptable. The prediction error of the ANN was calculated by 
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Equation 4.1. Therefore, dimension reduction has been effectively performed. The antenna 

is modeled from the predicted coordinates as shown in Figure 4.19. 

 

Table 4.12. Prediction Error of ANN 
    

Prediction Error of ANN (%) X Coordinates Y Coordinates 

Original Thickness 6.28 7.43 

Original Thickness with PCA 3.27 5.32 

Original Thickness with AE 5.41 7.17 

 

 

(a) 1mm deformed antenna 

Figure 4.19. Shape of Deformed Antenna 
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(b) 1mm deformed antenna by AE  

 

 

(c) 1mm deformed antenna by PCA  

Figure 4.19. Shape of Deformed Antenna (Continued) 
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(d) 12mm deformed antenna 

 

 

(e) 12mm deformed antenna by AE 

Figure 4.19. Shape of Deformed Antenna (Continued) 

 



 104 

 

(f) 12mm deformed antenna by PCA 

Figure 4.19. Shape of Deformed Antenna (Continued) 

 

4.3.5. Dimension Reduction of Each Coordinate 

 The reconstructed antenna’s resonance frequency can be estimated by the 

coordinates predicted by feature extraction and ANN. For the second process, each of the 

50 coordinates is used as input data, and 121 different frequencies represent the output data. 

This data set is a high dimensional data set, so the dimension has to be reduced. For 

dimension reduction, feature selection is considered, since this process should estimate 

each significant coordinate in order to re-design an antenna based on the significant 

coordinates. Moreover, with the selected coordinates, frequency will be gauged to see if it 

can be classified into a reliable bandwidth. IndFeaT makes a new subset by selecting 

significant coordinates exceeding the “Significance value” of 3 to obtain the highest 

accuracy. Even though the significance value of 2 can be selected, it keeps most of the 
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original coordinates. Thus, to take the most important 5 coordinates, the value of 3 had to 

be chosen, after applying the IndFeaT method, 4 meaningful coordinates are newly selected 

as a reduced data set. Entropy estimates whether uncertainty is minimized. In Table 4.13, 

the value of redundancy after IndFeaT is smaller than that of the original coordinates 

indicating uncertainty has been reduced. Redundancy reduction can be estimated by 

Equation 3.1. Figure 4.20 shows which significant coordinates were selected. In this figure, 

a blue circle represents a meaningful coordinate.  

 

Figure 4.20. Selected Significant Coordinates 

 

Table 4.13. Redundancy Reduction 

 
Redundancy 

Redundancy 

Reduction (%) 

Original Coordinates 12.5689 

13.9567% 

Original Coordinates with IndFeaT 10.8147 
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4.3.6. Probabilistic Neural Network for Classification of Antenna Frequency 

In the next step, a reliable range for the resonance frequency is estimated using the 

new coordinates. The range is expressed using 3dB frequency based on the non-deformed 

antenna. In Figure 4.21, the non-deformed antenna has a resonance frequency of 2.5 GHZ. 

According to the resonance frequency, a reliable range is 2.4849 GHZ (m2) to 2.5151 GHZ 

(m3). For classification the limit state function is estimated. The limit state function is 

defined as g(.)= r – s (where r represents 2.5 GHZ and s represents the simulation 

frequency). Resonance frequency should stay in a frequency of 3dB. If g has negative value, 

the stretchable patch antenna system will be in class B. In this problem, if the system is in 

class B, it should be discarded or re-designed due to unstable resonance frequency. 

 

0302.05151.2(.)  sg :  Class A 

0302.05151.2(.)  sg :  Class B 

 

 Based on the limit state function, the Monte Carlo Simulation (MCS) is conducted 

to validate the efficacy of the proposed method. MCS has low probability of failure (Pf) as 

the number of samples increases. This example uses 121 and 10,000 samples for high 

accuracy and low probability of failure. MCS is operated with 10,000 samples, since the 

range of frequency is evenly subdivided. Comparing Pf  of the of PNN classification with 

that of MCS, the results reveal that the classification is accurate because the Pf  value 

obtained by classification is nearly equal to that obtained by MCS. The reduced coordinates 

have a Pf  value of 0.3016, which indicates a 7.37% increase in the Pf  value from the original 

coordinates. The difference is acceptable. Moreover, Pf  of the reduced coordinates is close 
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to that of MCS, indicating that the feature selection and classification have been accurately 

performed. Pf  by PNN and MCS are listed in Table 4.14. Each value is calculated by 

Equation 4.1.  

 
Table 4.14. Probability of Failure by PNN and MCS 

 
PNN with 

121 samples 

MCS with 

10,000 samples 

 Difference of Pf between 

PNN and MCS (%) 

Probability of Failure of 

Original Data 
0.2809 0.3035 8.05% 

Probability of Failure of 

Reduced Data by IndFeaT 
0.3016 0.3247 7.66% 

Difference of Pf between 

original and reduced data (%) 
7.37% 6.98%  

 

4.3.7. Validation of Efficacy of Proposed Framework 

 First, each resonance frequency from the deformed antenna is estimated. The 

antenna remains acceptable until it undergoes a displacement of 3.1mm while maintaining 

2.51 GHZ. However, variation in frequency is detected starting from a displacement of 

3.2mm. The maximum displacement of 12mm has a resonance frequency of 3.2 GHZ. 

Hence, the allowable maximum displacement should be 3.1mm. In the last step, resonance 

frequency of the original coordinates and new coordinates from feature extraction and 

feature selection are compared. In Figure 4.22, feature selection’s frequency has relatively 

lower accuracy. This is because feature selection directly removes uninformative 

coordinates, while feature extraction only keeps some principal components and 

reconstructs the coordinates with the same dimensions as the original coordinates. Without 

reducing the dimension of the coordinates, feature extraction can reduce redundancy. In 

conclusion, the proposed method accurately predicted resonance frequency. 
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(a) Resonance Frequency of Deformed Antenna with 0mm Displacement 

 

(b) Resonance Frequency of Deformed Antenna with 3.2mm Displacement 

Figure 4.21. Resonance Frequency of Deformed Antenna 
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(c) Resonance Frequency of Deformed Antenna with 12mm Displacement 

Figure 4.21. Resonance Frequency of Deformed Antenna (Continued) 

 

 

(a) Validation of Proposed Method with Resonance Frequency for 1mm Displacement 

 Figure 4.22. Validation of Proposed Method with Resonance Frequency 
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(b) Validation of Proposed Method with Resonance Frequency for 12mm Displacement 

Figure 4.22. Validation of Proposed Method with Resonance Frequency (Continued) 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1. Summary 

An integration of technical knowledge from multidisciplinary engineering domains 

is essential for developing future engineering products. Accordingly, product development 

that reflects significant multidisciplinary design criteria with reliable accuracy is required. 

However, modeling and simulating multidisciplinary engineering systems are challenging 

due to the complexities in interactions between various input parameters and other complex 

behaviors. These complexities may result from uncertainty or redundancy in the input 

parameters, and are found to negatively affect predictive accuracy of complicated systems. 

Accurate estimation of risk and reliability of such complicated systems is not possible 

without correctly capturing critical input parameters and propagating corresponding 

uncertainties. Moreover, accurate representations of multivariate phenomena are required 

by multidisciplinary engineering systems. Thus, it is urgently needed to develop a 

framework which can handle multivariate phenomena of complex engineering systems 

under uncertainty. 

 For these reasons, the proposed research developed a framework that can accurately 

capture and model input parameters and predict responses. Specifically, to effectively 

demonstrate interdependency of various input parameters, the copula function is used. By 

using copula, every marginal distribution of input parameters are divided and represented 

into a joint distribution. Modeling based on the copula function will be more realistic and 

will draw accurate predictions of the response. However, many input parameters are 
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sophisticated and often fairly correlated. The problems are prime causes of inaccurate 

response predictions. The problems are connected with uncertainty and redundancy. For 

these reasons, the proposed method applies dimension reduction techniques such as the 

Principal Component Analysis, Auto-encoder, and Independent Features Test to reduce 

these concerns. Reduced input data sets play a crucial role in predicting precise responses 

without large losses of information. Artificial Neural Network and Probabilistic Neural 

Network are used to forecast and classify responses of a complicated system accurately. 

 In Chapter 2, literature backrounds of terms of the proposed method are reviewed, 

including the copula fucntion,  dimension reduction method, feature extraction, and feature 

selection. The concepts of entopry and neural network are also disucssed. Chapter 3 

provides the framework and functionality of the proposed method with a simple numerical 

example. The algorithm is operated by MATLAB. Chapter 4 explains how the method can 

be used to three specific examples. The first example is an application of the method in a 

3-D cantilever beam. The next example is a solder joint analysis in terms of feature 

selection with classification. For the last example, a stretchable antenna is used to show 

entire process of the method. 

   

5.2. Conclusion 

 Based on research questions, the proposed method shows great potential for 

designing a system and predicting its response in multidisciplinary engineering domains.  

  

Research Question 1 

How can we accurately represent the correlated random quantity of a complicated 

multidisciplinary engineering system? 
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 The copula function was utilized to realistically design a system with an 

understanding of marginal distributions. In first example, correlated and uncorrelated 30 

Young’s moduli were randomly generated by the Gaussian copula function. A joint 

distribution combined the total interdependency of the moduli and was represented as a 

data set. In the second example, 9 conditions consisting the fatigue life of a solder joint 

were separated to assign each special properties by copula. For the last example, copula 

played a vital role in representing varying thicknesses of stretchable antenna. It is 

impossible to make a constant substrate since this process is hand operated by engineers. 

Thus the Gaussian copula function was employed to generate different thicknesses to 

consider the interdependency of each thickness.  

 

Research Question 2 

How can the prediction or classification procedure be made computationally efficient 

for a multidisciplinary engineering system? 

 

 The proposed method resolved complexities leading to uncertainty or redundancy 

by adapting the dimesionality reduction method. Reduced random variables had lower 

values of complexities so that the variables drew accurate predictions and classifications 

of the response. Uncertatinty reduction was also checked by entropy. In the first examaple, 

feature extraction such as PCA and AE effectively reduced the input data’s complexity 

without large loss of information by using eigenvalues. Dimensionailty reduction was 

applied to minimize the principal components’ size, not original data’s dimension. 

Redundancy comparison confirmed irrelevance was reduced for correlated and 

uncorrelated data. In the next step, the reduced new data sets were used as another input to 
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predict an accurate response by ANN. Prediction error indicated that the reduced data with 

low redundancy led to reliable results. In the second example, the  feature selection method, 

IndFeaT, figured out significant properties regarding fatigue life of a solder joint. A new 

subset was also estimated by entropy, and the result indicated IndFeaT decreased the 

complexity of the original data sets. To validate if the new data sets can draw precise 

claissfication or not, PNN was employed. The value of the probability of faliure by PNN 

and MCS confirmed that the subset successfully derived an accurate classification. For the 

last exmaple, the dimesion of varying thicknesses with low redundancy was obtained by 

feature extraction. ANN was applied to predict accurate coordinates of the deformed shape 

of the antenna. Redundancy comparison and prediction rate also confirmed whether the 

process worked accurately. IndFeaT selected significant information from the coordinates 

to make a reduced dimensional subset. Entropy checked if uncertainty was reduced. Based 

on the subset, the antenna’s reliable frequency range was effectively classified by PNN.  

 

5.3. Contributions 

In this research various important challenges have been stated. The specific 

contributions and their explanations are listed below:  

1.  Copula:  The major contribution of the proposed framework is that it can represent most 

information from complex input data by using a copula function. While general 

statistical methods cannot accurately represent features of over two data sets, the 

framework with copula permits complicated and various features to be represented 

effectively and realistically. This advantage can lead to more accurate predictions of 

responses than that of a simplified model. 
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2.  Dimension reduction:  After representing the inputs’ complexities, the dimension of the 

inputs became huge. It led the estimation and prediction of the complex behavior of the 

given engineering system to have large computational costs. Hence, the proposed 

framework suggests dimension reduction of input data sets to handle these problems. 

 Criteria to decide to use either feature extraction or feature selection:  Experienced 

engineers typically might determine what dimension reduction algorithm should be 

utilized for a certain problem. However, inexperienced engineers are unfit to figure 

out the algorithms of dimension reduction. In this case, the proposed criterion used 

before running dimension reduction is required because it effectively suggests a 

clear distinction between feature extraction and feature selection. This results in 

accurate guidance and prediction of responses of complicated systems.  

 Feature extraction:  Based on eigenvectors, feature extraction generates new data 

with reduced dimension and complexity. The small sized data shows a good 

performance as an input data for predicting accurate responses of engineering 

systems. Specifically, AE resolved two limitations of PCA: uncorrelated and non-

linear data analysis. 

 Feature selection:  By selecting a new subset of original data, feature selection 

showed how each significant feature in reduced data could be estimated. An 

analysis of each important feature led to accurate predictions of responses of given 

systems. Moreover, feature selection improved the speed of the learning algorithm 

compared to feature extraction and reduced computational cost. 
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3. Entropy / redundancy comparison:  As a kind of criterion regarding uncertainty or 

irrelevance, entropy or redundancy comparisons between original data and reduced 

data expressed how dimension reduction worked well. A common method that can 

show the reduction of redundancy or uncertainty uses a matrix with correlation 

parameters. However, as the dimension of data increases, uncertainty or redundancy 

analysis by a correlation matrix is impractical. Entropy or redundancy comparison can 

be still employed in this situation since it provides information of uncertainty or 

irrelevance as a scalar value. 

4. Neural Networks:  Combining the feature extraction with ANN accurately represented 

an optimal response of the engineering systems. Unlike a general regression algorithm, 

ANN could enhance the accuracy of its prediction of response by controlling various 

parameters. Moreover, feature selection with PNN showed a better prediction and 

estimation for classification of reliability of a complex engineering system. Compared 

to ANN, PNN could reduce computational time since it has no feedback loss, leading 

to a faster learning rate. 

 

5.4. Future Work 

 Even though some limitations of the proposed framework and examples have been 

stated, there are some suggestions to enhance accuracy of the framework and examples: 

1. Analysis with data having non-Gaussian distribution: 

Even though the copula function can generate many types of distributions, this 

thesis is only focused on Gaussian distribution. Each different copula function has 
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distinct tail properties, and PCA cannot work accurately for non-Gaussian 

distributions. Thus, the proposed framework will be applied to data sets with non-

Gaussian distribution to check if this method can produce good accuracy in other 

distributions as well. 

2. Non-linear analysis: 

The proposed method and all examples are based on linear analysis. In future work, 

cantilever beams and stretchable antennas with multiple loading conditions will be 

estimated. The results will be also represented by the finite element method. 

3. Different types of Auto-Encoder: 

In this method, AE used a backpropagation algorithm to diminish the gradient. Only 

one AE, sparse AE, is employed. However, it is unlikely that AE with the 

backpropagation algorithm can work accurately for non-linear analysis or in a case 

where the data’s uncertainty is not fairly reduced. In future work, Stacked AE or 

the Restricted Boltzmann machine will be examined to resolve the weakness of 

using the backpropagation algorithm. 

4. Physical Experiment of Antenna Example: 

The initial design of the presented antenna will be physically fabricated and tested. 

Then the performance of the physical data will be compared to that of the 

simulation results from the current research. Moreover, in the example of the 

stretchable patch antenna, the most informative coordinates are recombined by the 

feature selection method. Significant coordinates must have a vital influence on the 

deformation of the antenna. In future work, the antenna’s shape near the significant 
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coordinates will be thicker and stronger so that the antenna can endure larger 

displacements. Moreover, to get better performance, an antenna should have S11 

gain under 10dB. The example in this research has 9.96dB. Thus, in future work, 

the geometry of antenna will be regulated to get better S11 gain. 
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