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SUMMARY 

Statistical analysis is used quite heavily in production operations. To use certain advanced 

statistical approaches such as Bayesian analysis, statistical models must be built. This thesis 

demonstrates the process of building the Bayesian models and addresses some of the classical 

limitations by presenting mathematical examples and proofs, by demonstrating the process with 

experimental and simulated implementations, and by completing basic analysis of the 

performance of the implemented models. From the analysis, it is shown that the performance of 

the Bayesian models is directly related to the amount of separation between the likelihood 

distributions that describe the behavior of the data features used to generate the multivariate 

Bayesian models. More specifically, the more features that had clear separation between the 

likelihood distributions for each possible condition, the more accurate the results were. This is 

shown to be true regardless of the quantity of data used to generate the model distributions 

during model building. In cases where distribution overlap is present, it is found that models 

performance become more consistent as the amount of data used to generate the models 

increases. In cases where distribution overlap is minimal, it is found that models performance 

become consistent within 4-6 data sets. 
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 INTRODUCITON 1

In manufacturing, statistical analysis is used for a range of activities, from metrology to 

predictive based maintenance. Of all of the statistical approaches used in the field, 

Bayesian statistics are especially powerful and revealing. The use of Bayesian statistical 

models in the manufacturing field is not unseen; however, there is a lack of material 

explaining clear methods for implementing general Bayesian multivariate models or 

explaining general considerations for use of the models in the field. As such, this thesis 

addresses the process of building the Bayesian models and the classical limitations that 

are encountered during model building and use. To limit scope, this thesis discusses 

model building from the perspective of machine diagnostics even though the process 

presented to implement multivariate Bayesian models can be used for almost any 

implementation of statistical analysis on the manufacturing floor.  

The term “Bayesian” is derived from Thomas Bayes, an 18
th

 century statistician and 

philosopher who formulated a powerful theorem, Bayes’ Theorem. The key difference 

between Bayesian statistics and the more classical frequentist statistics, is that Bayesian 

statistics utilize prior ‘beliefs’ or prior probabilities. This allows Bayesian statistical 

approaches to be more effective than classical frequency statistical approaches because 

they incorporate the relationship between conditional and non-conditional probabilities. 

In the field of machine diagnostics, Bayesian models have been used for a range of 

activities, from bearing health diagnostics to updating parameters of alternative types of 

models. These other models range from statistical models to artificial intelligence 

models.  
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A challenge to diagnostics models is that the models representing the machine tool states 

must account for the noise, vibration, and other outside disturbances found in the 

manufacturing environment. Using multivariate models, often from the integration of 

data from several sources (sensor fusion), can help address this challenge as the noise in 

one sensor can be offset by information from other sensors. As such, the model presented 

here is a multivariate model that performs sensor fusion. As a further solution, the 

process for applying a Bayesian multivariate model presented includes a step for updating 

the Bayesian models with data collected in production conditions. This promotes the 

ability to update statistical models in their functional environment so that one can better 

capture the behavior of the model features while they are under the effect of the 

manufacturing environment or low frequency conditions. 

The thesis is laid out as follows. First, a method to build multivariate Bayesian models is 

explained and supported with mathematical proofs and applied examples. Then, an 

experimental case using sensor fusion to identify the current state of a tool is provided to 

illustrate a simple implementation of the general multivariate Bayesian model. Finally, a 

simulated approach is taken to illustrate the classical limitations during model building 

and model use. In the simulated testing, the effects of three aspects of the models are 

explored: the quantity of data used to build the model, the amount of similarity between 

the distributions of the features for different conditions (distribution overlap), and the 

quantity of features used to build the model.  
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 BACKGROUND AND LITERATURE REVIEW 2

The process presented to implement multivariate Bayesian models can be used for a wide 

range of statistical analysis. To limit scope, this discussion approaches model building 

from the perspective of machine diagnostics. The first goal of machine diagnostics is to 

use sensor information from the machine to reliably identify the current state of the 

machine tool. From a probabilistic or statistical perspective, this objective of machine 

diagnostics is to search for the most probable state of the tool, Ci, given the extracted 

signal features at a specific instance in time, vector data(tc) (Zhu, 2009). The state or 

condition of the tool could be severity of a worn tool, identification of a damaged 

bearing, or many other conditions of interest. How the conditions are represented in the 

models is dependent on the type of model used. Generally, to build each model, data from 

each condition is recorded and suitable sensor signals or data features that correlate to the 

machine state are extracted. These sensor signals or data features are then used to train 

artificial intelligence models, to build statistical models, or a mix of both. Once the 

models are built, they are ready to be used and commonly are not updated once in their 

functional state. In this background, first common artificial intelligence based models are 

reviewed and then statistical based models are reviewed. While discussing statistical 

based models, Bayesian analysis and a type of Bayesian model called Naïve Bayesian 

models, are examined in more detail.  

2.1 ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANN) are models inspired by neural networks found in the 

animal brain. ANN can be used to diagnose and predict machine health behavior in cases 
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where there are many inputs and their relationships to the outputs are not well 

understood. ANNs are made up of “neurons” or “nodes” and are broken up into a 

minimum of three layers: the input layer, hidden layers, and the output layer. This is 

illustrated in Figure 1. 

 

 

Figure 1: Structure of an Artificial Neural Network 

 

Initially, the values of the input layer and hidden layers are randomly assigned connection 

weights, represented by arrows in Figure 1. These weights are ‘tuned’ by a learning 

algorithm until the outputs of the network correlate with expected outputs. The type of 

Neural Network and learning paradigm used determines how to tune the ANN. Examples 
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where ANN were used in machine health diagnostics are (B.A. Paya, 1997) (Jaouher Ben 

Ali, 2015) (Farzaneh Ahmadzadeh, 2013) (C. Sbarufatti, 2016). 

2.2 SUPPORT VECTOR MACHINE 

Support vector machines (SVM) are used for classification and regression analysis for 

machine learning. In either supervised or unsupervised mode, SVM analyzes data and 

recognizes patterns. In supervised (classification) mode, the SVM model is first built 

using a training set of data where each data point is labeled with the desired output 

category. In unsupervised (clustering) mode, no labeled training data is used. Instead, 

SVM is used on a data set to find natural clustering of data points to categories. In either 

case, after a model is built new input data are mapped to output categories developed 

when building the model. Examples where SVM was used in machine health diagnostics 

are (K.C. Gryllias, 2012) (Fafa Chen, 2013) (Khmais Bacha, 2012). 

There have been instances where Bayesian and SVM techniques have been integrated 

together. For example, Saha & Gobel (2008) used Bayesian techniques to develop a 

method for uncertainty management for performing diagnostics and prognostics of 

batteries. Bayesian techniques were applied to regression and classification through 

Relevance Vector Machine (RVM). The Bayesian treatment of Support Vector Machine, 

in the form of RVM, was used for model recognition. Next, state estimation was 

performed through a Particle Filter (PF) framework that used the developed model and 

anticipated operational conditions to estimate the remaining useful life (RUL) of the 

battery. The estimate of the remaining useful life was in the form of a probability density 

function. (Saha, 2008) 
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2.3 NEURO-FUZZY SYSTEMS 

A Neuro-fuzzy system is a hybrid of an Artificial Neural Network and Fuzzy System. 

Although Fuzzy Systems and ANNs have disadvantages, most disappear when the two 

systems are united together. For example, although both ANN and Fuzzy systems do not 

require mathematical models to create the final classification model, it is difficult to 

extract rules from the ANN where as it is easy to from a Fuzzy System. On the other 

hand, in the same situation, an ANN can be developed without any apriori knowledge 

where as it is essential for a Fuzzy System. Apriori knowledge is also necessary for a 

Bayesian system. Examples where Neuro Fuzzy systems are used for machine health 

diagnostics are (Chaochao Chen, 2012) (Ramasso, 2014) (Soualhi, 2014). 

2.4 FREQUENTIST ANALYSIS 

A classic statistical method for machine health is frequentist analysis. Frequentist 

analysis is used on Normally distributed data as is represented in Figure 2. The values on 

the independent axis represent standard deviations (σ) from the mean. The dependent axis 

represents percent of data within said standard deviation. The percent of data within ±1σ, 

±2σ, and ±3σ are also indicated in Figure 2. 
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Figure 2: Normal distribution with standard deviations on the independent axis. (Psomas, 

2003) 

 

The equation representing Figure 2 is given by 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

−(𝑥−𝜇)2

2𝜎2  𝑓𝑜𝑟 − ∞ < 𝑥 < ∞ 
(1) 

 

where µ and σ are the mean and standard deviation respectively. As shown in Figure 2, 

the graph of the pdf with a mean of 0 and standard deviation of 1 is also known as the 

standard Normal curve (Montgomery, 2009).Figure 2 illustrates that the farther a point is 

from the mean of a Normally distributed data set, the less likely it is to occur under 

normal conditions. A common manufacturing tool that uses frequentist methods is a 

control chart (e.g. 𝑥 and s charts).  

Important properties of Normal distributions are the mean, µ, variance, σ
2
, and standard 

deviation, σ. The mean, µ, is an arithmetic average of the values in data set, X, and 

represents a measure of central tendency of the dataset. As such, the mean is also known 

as the expected value of X or E(X):  
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𝐸(𝑋) =
1

𝑛
∑ 𝑥𝑗           

𝑛

𝑗=1

 (2) 

Where n is the number of points in the data set. The variance and standard deviation are 

the measurement of the dispersion or scatter of the data about the mean µ. As shown in 

Figure 3, if the majority of values in X tend to be close to the mean, the variance and 

standard deviation are small; if the majority of values in X are more widely distributed 

around the mean, then the variance and standard deviation are larger.  

 

 

Figure 3: A larger variance signifies a larger spread or scatter of data. (The Basic 

Statistical Foundation, 2002) 

 

The variance σ
2
 can be calculated as:  

𝑉𝑎𝑟(𝑋) =
1

𝑛
∑(𝑥𝑗 − 𝜇)2

𝑛

𝑗=1

 (3) 

The standard deviation is the positive square root of the variance, thus:  
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𝜎 = +√𝑉𝑎𝑟(𝑋) = +√𝜎2    (4) 

Examples where frequentist analysis was used in machine health diagnostics are (Michael 

L. Fugate, 2001) (N. Baydar, 2001). 

2.5 CONTROL CHARTS 

Control charts use frequentist analysis to test if sample data sets are ‘in control’ or ‘out of 

control’ from population statistical parameters. When data sets are ‘in control’ they are 

within the specified limits that characterize desirable conditions. When data sets are ‘out 

of control’ they indicate a deviation from Normal conditions and that process 

investigation should take place. In manufacturing, control charts are often used to 

monitor production specifications when samples are collected at regular intervals from a 

production line. Figure 4 illustrates a sample distribution within control limits.  

 

 

Figure 4: Control chart and sample distribution ‘in control’ 
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In contrast, Figure 5 illustrates how sample distributions can be ‘out of control.’  

 

 

Figure 5: Control chart with ‘out of control’ sample distributions 

 

There are a number of types of control charts with the most popular being the X-bar and 

the s-chart. The X-bar chart compares the current sample mean to the population mean 

and trends it across time. The s-chart compares the current sample standard deviation to 

the population standard deviation and charts it across time. The X-bar and s-chart are 

used together when one has sample sets with at least 10 data points. The center line (CL) 

for the X-bar chart is represented as �̿�. To calculate the (CL) for the X-bar chart:  

�̿� =
∑ 𝑛𝑖�̅�𝑖

𝑚
𝑖=1

∑ 𝑛𝑖
𝑚
𝑖=1

 
(5) 

where m is the number of sample sets, ni is the number of samples in the i
th

 sample set 

and 𝑋�̅� is the sample mean of the i
th

 sample set (Banks, 1989). To calculate the 3σ upper 

and lower control limits for the X-bar chart, UCLx and LCLx respectively: 
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𝑈𝐶𝐿�̅� = �̿� +
3 �̅�

𝑐4

√𝑛
 (6) 

𝐿𝐶𝐿�̅� = �̿� −
3 �̅�

𝑐4

√𝑛
 (7) 

where 

𝑐4 =
[𝑛−2

2
]!

[𝑛−3
2

]!
√

2

𝑛 − 1
 (8) 

And n is the number of samples in the set and  �̅�  is the sample standard deviation (Banks, 

1989).  

To calculate the center line, upper and lower control limit, CLs UCLs and LCLs 

respectively, for the s-chart:  

𝐶𝐿𝑠 = 𝑐4𝜎 (9) 

𝑈𝐶𝐿𝑠 = (𝑐4 + 3√1 − 𝑐4
2) 𝜎 (10) 

𝐿𝐶𝐿𝑠 = (𝑐4 − 3√1 − 𝑐4
2) 𝜎 (11) 

where σ is the population standard deviation (Banks, 1989). As an example where control 

charts were used for diagnostics, Fugate et al (2001) used control charts to determine 

when vibration data from a concrete structure were ‘out of control’ and entering a 

degradation state (Michael L. Fugate, 2001). 

2.5.1 STUDENT’S  T-DISTRIBUTION 

When using frequentist analysis for machine health diagnostics often times student’s t 

distributions are used if machine testing only produces small amounts of data. The 

student’s t-distribution is standardized statistical distribution that is used when the 
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population standard deviation is unknown and/or when the number of sample values is 

less than 30. To use the student’s t-distribution, the population mean should be known. 

One way to use the student’s t-distribution is to use a t-score (similar to a z-score for the 

Normal distribution). The t-score is calculated as follows:  

𝑡 =
�̅� − 𝜇
𝑠

√𝑛⁄
 

(12) 

where t is the t score, �̅� is the sample mean, µ is the population mean, s is the sample 

standard deviation, and n is the samples size.  

The student’s t-distribution is defined by its degrees of freedom. The degrees of freedom 

is 

𝑑𝑓 = 𝑛 − 1 (13) 

where df is the degrees of freedom and n is the sample size. There is a different student’s 

t-distribution for each degree of freedom and as the degrees of freedom reach 30, the 

student’s t-distribution converges to a Normal distribution.  

The mean is always zero for a standard student’s t distribution. To calculate the 

population variance of a standard t-distribution, σ
2
:  

𝜎2 =
𝑑𝑓

(𝑑𝑓 − 2)
 (14) 

The variance is always be more than one for the standard student’s t-distribution unless 

the degrees of freedom are infinite. As such, the student’s t-distribution is a more 

conservative form of the Normal distribution.  
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2.5.2 TYPE I AND TYPE II ERROR 

Type I and Type II error represent the two types of error associated with using frequentist 

analysis. Type I and Type II error are related to testing a statistical null hypothesis. The 

null hypothesis is the hypothesis that there is no statistically significant difference 

between the desired distribution and the current distribution of a data set. Type I error is 

when the null hypothesis is incorrectly rejected. In other words, type I error is the case 

where a system reports that the current distribution has shifted from the desired when it 

actually has not. It is a false positive or false alarm. Type II error is when the alternative 

hypothesis is incorrectly rejected (also described as failing to reject the null hypothesis). 

This means that the current distribution has shifted from the desired distribution; 

however, it has not been detected. This is more commonly known as a false negative or 

consumer’s risk. Both Type I and Type II error can be calculated and represented 

statistically. Type I error is represented as α and can be found in a t distribution table 

after calculating the t statistic. The t statistic is calculated with the following two 

Equations 

𝑡 =
𝜇1 + 𝜇2

𝑠𝑝√
1

𝑛1
+

1
𝑛2

   

(15) 

𝑠𝑝 = √
(𝑛1 − 1)𝑠1

2 + (𝑛2 − 1)𝑠2
2

𝑛1 + 𝑛2 − 2
  

 

(16) 

where t is the t statistic to use in the t-distribution look-up table, µ is the mean of each 

distribution, n is the number of samples in each distribution, sp is the pooled standard 

deviation and s1 and s2 are the standard deviations of each distribution, respectively. 

From the t distribution table, the p-value associated with the t statistic is the probability of 
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type I error. This has become such a common calculation that Microsoft Excel has 

included a TDist function that outputs the p-value for the t-distribution. 

In manufacturing, Type I and Type II error are often used for quality engineering. 

Understanding Type I and Type II error allows engineers to calculate the probability of 

detecting a shift in process parameters that affect product specifications. By using the 

frequentist approach and understanding Type I and Type II error, one optimizes the 

number of quality inspections performed while ensuring produced parts match customer 

specification. For example, if a large batch of a product is supposed to have a mean 

diameter of 15mm, a process engineer would use Type I and Type II error to decide how 

many samples they should inspect from each batch and what should be the process limits 

of the sample mean and standard deviation. Consequently, when the mean and standard 

deviation of the sample are outside of the process limits during an inspection, the batch is 

rejected. This is often done using control charts. In this example, the Type I error would 

be the probability of rejecting a good batch and the Type II error would be the probability 

of accepting a bad batch. The challenge with Type I and Type II error is that changing the 

process limits to decrease the probability for Type I error increases the probability for 

Type II error. Likewise, changing the process limits to decrease the probability of Type II 

error increases the probability for Type I error. Increasing the number of samples taken is 

one way to decrease both Type I and Type II error, however, this is often costly and may 

delay detection of a process shift. Type I and Type II error is also used when using 

frequentist analysis in machine health diagnostics. 

As an example of using frequentist testing for machine health diagnostics, Jun Ma & 

James Li (1995) developed a scheme for detecting localized defects in rolling element 
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bearings using hypothesis test theory. By detecting the distributions of vibrations when 

the rolling elements were in contact with the defect and the distributions of vibrations 

when the rolling elements were not in contact with the defect, they were able to classify 

two separate distributions that, when a defect was present, alternated at the rate that the 

rolling elements passed over the defect. Thus, by using a hypothesis test to classify the 

bearing vibration as one of the two distributions and checking the switching frequency, a 

defect was detected. They experimentally confirmed the method with different defects 

under different loads (Jun Ma, 1995). 

2.6 BAYESIAN ANALYSIS 

Bayesian statistical methods and models are derived from Bayes’ Theorem 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (17) 

where P(A|B) is the probability of A given B, P(B|A) is the likelihood of B given A, P(A) 

is the probability of A, and P(B) is the probability of B. The meaning of each probability 

is more easily comprehended through an example. For example, if Bayes Theorem is 

rewritten   

𝑃(𝐻|𝑉) =
𝑃(𝑉|𝐻)𝑃(𝐻)

𝑃(𝑉)
 (18) 
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where H represents a condition “tool is Healthy,” V represents evidence that “there is 

Vibration over a set alarm threshold” and the probabilities are as follows: 

 

Table 1: Nomenclature for example and equation (18) 

Representation Meaning Type of 

probability 

P(H) Probability that the “tool is Healthy” Prior, 

Unconditional 

P(V) Probability that “there is Vibration over a set alarm 

threshold” 

Evidence,  

Unconditional 

P(V|H) Likelihood that “there is Vibration over a set alarm 

threshold” given that the “tool is Healthy”  

Likelihood, 

Conditional 

P(H|V) Probability the “tool is Healthy” given that “there 

is Vibration over a set alarm threshold” 

Posterior, 

Conditional 

 

Then Bayes Theorem can be expressed as  

The probability that the tool is healthy given that there is machine vibration over the 

preset alarm threshold =  

The likelihood that there is vibration over the preset alarm threshold when the tool is 

healthy multiplied by the prior probability that the tool is healthy and divided by the 

probability there is vibration over the set alarm threshold. 

(19) 
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or more generally 

(𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟) 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 =  

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 × 𝑃𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 (20) 

For compactness, equation (20) can be rewritten as: 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑃𝑟𝑖𝑜𝑟

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 

(21) 

The likelihood (or likelihood probability) technically is not a probability density function 

(PDF). By definition, to be a PDF the summation or integral of all possible probabilities 

in the distribution must equal one (Drake, 1967). In the case of the likelihood represented 

in equation (21), this would be the summation of the ‘probability of the evidence given 

the condition’ for each condition. For technical clarity, the evidence (not the probability 

of evidence) is now defined as a random variable x and the condition defined as a 

hypothesis. Although the summation of probabilities of all possible values of a random 

variable x across a single hypothesis adds to one (by definition), the summation of 

probabilities for all hypotheses given a single value of x does not necessarily add up to 

one. Moving forward, the posterior and prior are true probabilities. The posterior 

probability is conditional probability as it is constrained to a single condition. The prior 

distribution is an unconditional distribution because it is independent of any other 

variables. 

Bayes rule is a powerful tool because it allows one to derive conditional probabilities 

using probabilities that are more readily found through prior experience or 

experimentation. To illustrate, the prior probability that a tool is healthy and the evidence 
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probability that vibration is over a set threshold can be calculated from data from the 

shop floor or be found through experimentation. The likelihood that there is vibration 

over the alarm threshold given the tool is healthy can also be generated through 

experimentation or observation. Using these three pieces of information together, one can 

understand how to calculate the probability that a tool is healthy whenever the alarm 

“vibration has exceeded a set threshold” is triggered. Examples where Bayes approach 

was used in machine health diagnostics are (Jun Ma, 1995) (Mehta, 2015) (Mosallam, 

2014) (Nagi Z. Gebraeel, 2005) (Saha, 2008) (Tobon-Mejia, 2012) (Wang, 2012).  

As a more detailed example in the field, Gebraeel et. all (2005) provided Bayesian 

updating methods to develop a closed form remaining useful life distribution for a 

monitored manufacturing device. This remaining useful life distribution was used to 

update stochastic parameters of exponential degradation models. To build the models, 

they use data from a “population” of components in addition to data from the device for 

which they are predicting residual life. They further use a degradation model with a 

Brownian motion (Wiener) error process. Periodically, the system uses real time data and 

a Bayesian method to update the exponential degradation models used to predict residual 

life. From this study, it was seen how machine diagnostic models can address the random 

nature found on the shop floor by having stochastic parameters in the model update with 

real time conditions (Nagi Z. Gebraeel, 2005).  

2.6.1 NAÏVE BAYESIAN MODELS 

A challenge to diagnostic algorithms is that the models representing machine tool states 

must account for the noise, vibration, and other outside disturbances that are found in the 

manufacturing environment. Using multivariate models, often from sensor fusion, can 
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help address this challenge as the noise in one sensor can be offset by information from 

other sensors. Although using multivariate models is more robust, this can cause the 

models to become complicated and difficult to build. As such, using naïve Bayesian 

approaches to simplify multivariate Bayesian models is common.  

Naïve Bayesian models are Bayesian models that exploit conditional independence 

assumptions to produce a compact representation of a high dimensional probability 

distribution. In other words, naïve Bayesian models use conditional independence to 

produce a simple compact representation of the otherwise complicated multivariate 

distribution. For example, a multivariate representation of Bayes rule is  

𝑃(𝐶𝑖|𝑑) =
𝑃(𝑑|𝐶𝑖)𝑃(𝐶𝑖)

𝑃(𝑑)
 (22) 

where  

𝑑 = [𝐹1, … , 𝐹𝑚] (23) 

and 𝐹𝑗 represents a feature and 𝐶𝑖 represents a class or condition. Without conditional 

independence, calculating 𝑃(𝐶𝑖|𝑑) and 𝑃(𝑑) is complicated and sometimes impossible. 

On the other hand, if features are independent given class (in other words conditionally 

independent) and classes are mutually exclusive and exhaustive, then  

𝑃(𝑑|𝐶𝑖) = ∏ 𝑃(𝐹𝑗|𝐶𝑖) 𝑚
𝑗=1  where 𝑑 = [𝐹1, … , 𝐹𝑚] (24) 
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and  

𝑃(𝑑) = ∑ 𝑃(𝐶𝑖) ∏ 𝑃(𝐹𝑗|C𝑖)

𝑚

𝑗=1

𝑛

𝑖=1

 (25) 

Although the assumption of conditional independence is usually unrealistic and often 

violated, the Naïve Bayesian model has proven often be robust to violations of this 

condition (Friedman, 1997) (Pearl, 1988) (M. Elangovan, 2010). (Rish, 2001) 

(Domingos, 1997) (Hilden, 1984) (Langley, 1992) (Francesco, 2012) (Zhang, 2004). For 

example, M. Elanovan et al (2010) found when using statistical features instead of 

histogram features for condition monitoring of single point carbide tipped tool, the 

difference in accuracy between the Bayesian network and the Naïve Bayesian model was 

about 1%. Also, Fancesco et al (2012) confirmed that a data driven stochastic approach 

relying on a Naïve Bayesian classifier was a feasible tool to estimate the remaining useful 

life of damaged thrust ball bearings. Furthermore, Friedman and Goldszmidt compared 

naïve Bayes to Bayesian networks (Pearl, 1988) and found that not only did the Bayesian 

network not perform better than the naïve Bayesian network; it actually reduced accuracy 

in some domains. Why naïve Bayesian networks perform well even when the assumption 

of conditional independence is violated has been studied and tested (Hand, 2001) (Rish, 

2001)(Zhang, 2004). 

2.6.2 IMPLEMENTING BAYESIAN MODELS  

As a reminder, the objective of machine diagnostics is to search for the most probable 

state of the tool, Ci, given the extracted signal features at a specific instance in time, 

vector data(tc) (Zhu, 2009). As one would expect, the model that most closely matches 

the current sensor data is the most probable current condition of the tool. This is like a 
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form of pattern matching. As is found in pattern matching algorithms, many applications 

of Bayesian models for machine health diagnostics rely on a basic two phase structure for 

implementation (Tobon-Mejia, 2012), (Mosallam, 2014), (Gebraeel, 2005). For example, 

when D.A Tbon-Mejia et. al (2011) used dynamic Bayesian Networks to perform 

prognostics and diagnostics for CNC machine tool health assessment, the developed 

algorithm was based on two main phases: an off-line (development) phase 1 and an on-

line (useful) phase 2. In the off-line phase, raw data from experimentation was used to 

develop data analysis and feature extraction methods as well as build models that are 

used in the diagnostic and prognostic assessments. In the on-line phase, current data from 

a machine tool was input into the constructed models to classify the current health state 

and compute the remaining useful life and the associated confidence value (Tobon-Mejia, 

2012). The structure from Tobon-Mejia et. al 2012 is shown in Figure 6. The algorithm 

identifies the current wear state of the tool and then predicts the remaining useful life 

(RUL). This model was also used for bearing health diagnostics.  
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Figure 6: Off-line (Phase 1) and On-line (Phase 2) set up for diagnostics algorithm by 

Tobon-Mejia 2012 

 

In Figure 6 it can be seen that the models are built in the off-line phase by the “model 

learning” block and the models are stored in the dashed circle. The comparison of the 

models to current data is shown by the “Wear stage identification” diamond in the on-line 

phase. The results of the comparison are the inputs to the prognostic model in the online 

phase.  

The main reason why many algorithms rely on a two phase approach to implement 

Bayesian models is to separate the system development phase (phase 1), from the 

functional on-line phase (phase 2). In other words, since machine diagnostics is like a 

form of pattern matching, phase 1 is necessary to build the models, and phase 2 is 

necessary to use the developed models. Moreover, a separate initial phase is essential to 

find signal features that correlate to the condition of the tool and to standardize methods 

for extracting data before the models can be built or tested. Once this practice is 
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standardized, the methods can be used to ensure quality results in the functional online 

phase. 

As there are two general phases for implementing a Bayesian model, there are also 

general tasks for each phase. Since phase 1 is for system development, usually data 

acquisition, signal processing, and feature extraction methods are established and model 

building performed in phase 1. Data acquisition is the process of acquiring electrical 

signals that measure physical conditions, and converting them into digital values as 

digital samples of data. Signal processing, in machine diagnostics, filters out operational 

and environmental disturbances to reduce the data to condition indicators. Feature 

extraction is extracting features from sensor signals that correlate with the machine 

condition states. Model building is a “learning” step where data driven, experience 

driven, etc. models are built up into a model database. Phase 2 utilizes the data 

acquisition, signal processing, and feature extraction methods established in phase 1 to 

process raw sensor data into an input for the models. The next step of phase 2 is 

dependent on if the system is deterministic or nondeterministic thus is not a general step. 

2.6.3 MODEL UPDATING 

Although sensor fusion helps machine tool state models be less affected by the noise, 

vibration, and other outside disturbances that are found in the manufacturing 

environment, it does not completely solve the problem of having the models address the 

stochastic nature of most cutting processes or the heavy disturbances caused by other 

machinery in the manufacturing environment. Theoretically, this challenge could be 

caused by the idealness of the environment in which the models are developed. Solving 

this problem is no easy feat because there is strong motivation to develop the models in 



 

24 

 

the ideal offline phase and to develop the models in the functional online phase. First, 

during selection of features for feature extraction, it is accepted that sensor signals should 

be as free from environmental noise as possible to confidently correlate the signals with 

machine states. Thus, feature extraction for the models should be performed in an ideal 

off-line state. On the other hand, when building up the models, the models should take 

into account the increased uncertainty and spread that occur due to the noise, vibration, 

and other environmental conditions due to the manufacturing environment, thus model 

building should be performed in an on-line state. 

This thesis presents a general approach for applying Bayesian models for machine 

diagnostics using sensor fusion that addresses the aforementioned challenges by breaking 

model building into two sections. First, to preserve quality feature selection, selecting 

methods for feature extraction and initial model building remains in phase 1. Second, to 

better represent the stochastic nature of features in the models, the models can be updated 

in the online phase 2 where the machine is already in its functional environment. This is 

accomplished by having an ‘update’ feature in the implementation algorithm that adds 

newly classified data to the condition databases that are used to generate the models.  
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  METHODS 3

The methods section satisfies three main purposes: to address the process to generally 

build and apply a multivariate Bayesian model for sensor fusion, to present the methods 

used to implement the models for an experimental case, and to present the methods used 

to test simulated models in order to illustrate the classical limitations during model 

building and model use. In more detail, the sections satisfying each purpose are as 

follows. 

To address the process to generally build and apply the multivariate Bayesian model for 

sensor fusion, first the method assumptions for building the Bayesian model are stated 

and the reasoning for each given in the ‘Method Assumptions’ section. Second, in the 

‘Mathematical Tools’ section, the mathematical proofs used to obtain each of the main 

Bayesian models components are provided and supported with applied examples. Third, 

in the ‘Bayesian Model for Sensor Fusion’ section, the final mathematical representation 

of the general multivariate Bayesian model for n conditions and m features is presented 

and a mathematical example provided. Next, the method for implementation and metrics 

for model results are stated in the ‘Method for Implementation of Bayesian Models’ 

section and ‘Metrics for Results’ section respectively. This concludes the general 

explanation of how to build and generally apply a multivariate Bayesian model for sensor 

fusion. 

The next third of the methods section provides a demonstration of an experimental 

implementation of the general Bayesian method in the ‘Experimental Implementation: 
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Tool Diagnostics for a Three Insert Tool’ section. In this section the purpose, materials, 

experimental procedure, and the process for building and using the models are presented. 

In the final third of the methods section, the procedure for using simulated data to address 

the classical limitations that occur when building and using a multivariate Bayesian 

model is presented. This section includes the purpose for simulated testing, the specific 

inputs and computational tools used for testing, and the specific procedures for testing the 

effects of overlapping distributions and the effects of model updating (i.e., the effects of 

quantity of data used to build the models). The code used for testing is also discussed and 

provided in the computational tools section. 

3.1 METHOD ASSUMPTIONS 

1. Inspection is assumed to be perfect. Therefore, assume data used to build models 

do not contain incorrect values. 

2. Observations from multiple sensors are random and conditionally dependent on 

the machine state.  

3. Conditions, also known as the model classes, are mutually exclusive and 

collectively exhaustive. 

4. Features are conditionally independent of each other 

Assumption 1 is self-explanatory. Assumption 2 establishes the stochastic state 

between the observed features and the system state (Wang and Christer, 2000). 

Assumption 3 is required for valid computation of the probability of evidence 

(equation (40)). Assumption 4 does not always hold; however, a number of papers 

have found that the Bayesian model performs well even when the features are not 
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conditionally independent (Friedman, 1997) (Pearl, 1988) (M. Elangovan, 2010) 

(Rish, 2001) (Domingos, 1997) (Hilden, 1984) (Langley, 1992) (Francesco, 2012) 

(Zhang, 2004).  

3.2 MATHEMATICAL TOOLS 

3.2.1 BAYESIAN MODEL COMPONENTS 

As is seen from the equation representing the basic structure of Bayes Theorem (equation 

(21)), Bayesian Models are made from prior probabilities, likelihood probabilities, and 

the probability of evidence. This section provides an in depth discussion about each.  

3.2.1.1 Prior Probabilities  

In this method, the prior distributions are the classical probabilities that each tool 

condition would occur under normal conditions. Mathematically represented as 

P(Condition) or P(Ci). In this generalized method, the prior probabilities are generated 

through observation, experimentation, or prior knowledge. For example, if there are two 

conditions, Healthy tool and Damaged tool, and it is known from gathered data on the 

manufacturing floor that the tool is damaged 5% of the time, the two prior probabilities 

are P(Healthy) = 0.95 and P(Damaged) = 0.05.  

3.2.1.2 Likelihood Probabilities 

Likelihood probabilities are the likelihood of observed data results given the machine tool 

is in a specific condition. For an example, view Table 1. In this method there are 

univariate likelihood probabilities and multivariate likelihood probabilities. The 

univariate likelihood probabilities are mathematically represented as 
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𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒|𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) or 𝑃(𝐹𝑗|𝐶𝑖). This is the likelihood one would observe the value 

of 𝐹𝑗 given the current state of the tool is Ci. The symbol ”|” signifies “given.” The 

multivariate likelihood probabilities are mathematically represented as, 

𝑃(𝐷𝑎𝑡𝑎|𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) or 𝑃(𝑑|𝐶𝑖). This is the probability one would observe the data 𝑑 

given the current state of the tool is Ci.  

There are multiple ways to calculate the univariate likelihood probability. The first 

method discussed is a histogram approach. Data for a feature belonging to condition Ci is 

used to generate a histogram. For clarity, a possible histogram and condition history is 

illustrated in Figure 7. 

 

 

Figure 7: Example Histogram for Feature Fj|Ci 

 



 

29 

 

The frequency on the vertical represents the number of data points that were within the 

bin range indicated on the horizontal axis. The likelihood for each bin is calculated as  

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑏𝑖𝑛 =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑏𝑖𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
  (26) 

The total number of data points is the total number of data points for feature Fj in 

condition Ci. The likelihood probability 𝑃(𝐹𝑗|𝐶𝑖) is equal to the likelihood of the bin 

whose bin range encompasses the value of Fj. For example, if Fj = 11 it would be in the 

2
nd

 bin who’s frequency is 3 and bin range is 10 to 20.  If one adds up the frequencies of 

each bin, the total number of points is found to be 16. Therefore if Fj = 11 , the likelihood 

would be 3/16 or 0.188. A shortcoming of this technique is that it is possible to have zero 

probabilities.  

If the behavior of the feature for each condition is known, the probability density function 

(PDF) that represents the behavior for the feature can be used to calculate the likelihood 

probability instead of using a histogram. For example, if a feature is Normally 

distributed, the PDF is equation (1) 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

−(𝑥−𝜇)2

2𝜎2  𝑓𝑜𝑟 − ∞ < 𝑥 < ∞ 

By extracting the µ and σ for feature Fj in condition Ci, one can calculate 𝑃(𝐹𝑗|𝐶𝑖) as f(Fj) 

of equation (1) shown above. This approach can also be used for a variety of distributions 

including Lognormal, Gamma, and Poisson density functions.  

As this approach builds Naïve Bayesian models, it is assumed that the features are 

conditionally independent (as discussed in section 2.6.1). In other words, the features are 
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dependent on the condition of the tool, but independent of each other. With the 

assumption of conditional independence, the multivariate likelihood probability, 𝑃(𝑑|𝐶𝑖),  

for condition Ci of all features F1 … Fm using the univariate likelihood 

probabilities 𝑃(𝐹𝑗|𝐶𝑖) as follows.  

𝑃(𝑑|𝐶𝑖) = ∏ 𝑃(𝐹𝑗|𝐶𝑖) 𝑚
𝑗=1  where 𝑑 = [𝐹1, … , 𝐹𝑚] (27) 

Equation (27) demonstrates that the multivariate likelihood probability is simply the 

product of the univariate likelihood probabilities.  

3.2.1.3 Probability of Evidence 

In this thesis, the systematic approach uses the likelihood and prior probabilities to 

generate the evidence probability. This decision exploits that the likelihood and prior 

probabilities must already be available to calculate the numerator of the Bayesian model 

(equation (21)). Given that P(Ev) represents the probability of evidence, C represents a 

condition of the machine tool, and “~” represents logical “not”, the general equation for 

the method used to calculate the probability of evidence is 

𝑃(𝐸𝑣) = 𝑃(𝐸𝑣|𝐶)𝑃(𝐶) + 𝑃(𝐸𝑣|~𝐶)𝑃(~𝐶)  (28) 

The following example demonstrates that equation (28) is a valid method to calculate the 

probability of evidence (using the example on page 15). The variables are defined in 

Table 1. In this example, the probability of evidence is P(V). 
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Figure 8: Venn diagram representing P(H) and P(V) 

 

Looking at the Venn diagram above, the circle on the left represents the probability the 

tool is Healthy, P(H), and the circle on the right represents the probability there is 

vibration over a set alarm threshold, P(V). The probability for each subspace of the circle 

is represented in the center of each subspace. Each subspace is indicated by a unique 

color.  

From the Venn diagram, it is seen that the probability of evidence, P(V) 

𝑃(𝑉) = 𝑃(𝐻 ∩ 𝑉) + 𝑃(~𝐻 ∩ 𝑉) (29) 

Using the commutative law these components can be changed to,  

𝑃(𝐻 ∩ 𝑉) = 𝑃(𝑉 ∩ 𝐻) (30) 

𝑃(~𝐻 ∩ 𝑉) = 𝑃(𝑉 ∩ ~𝐻) (31) 
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Then from the probability chain rule,  

𝑃(𝑉 ∩ 𝐻) = 𝑃(𝑉|𝐻)𝑃(𝐻) (32) 

𝑃(𝑉 ∩ ~𝐻) = 𝑃(𝑉|~𝐻)𝑃(~𝐻) (33) 

Therefore, substituting (32) and (33) into (29) 

𝑃(𝑉) = 𝑃(𝑉|𝐻)𝑃(𝐻) + 𝑃(𝑉|~𝐻)𝑃(~𝐻) (34) 

Thus, probability of evidence, P(V), is calculated using the prior and likelihood 

probabilities as defined by (28). 

Application examples aside, the general equation for the method used to calculate the 

probability of evidence (28) can be validated through a mathematical proof.  

Proof of (28) 

From the probability chain rule, (28) can be rewritten as 

𝑃(𝐸𝑣) = 𝑃(𝐸𝑣 ∩ 𝐶) + 𝑃(𝐸𝑣 ∩ ~𝐶) (35) 

Next, from the distributive law this can be reorganized as,  

𝑃(𝐸𝑣) = 𝑃(𝐸𝑣)(𝑃(𝐶) + 𝑃(~𝐶)) (36) 

By the axiom of the algebra of events, P(A)+P(~A)=U where U is the universal set,  

𝑃(𝐶) + 𝑃(~𝐶) = 𝑈 (37) 
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Thus substituting (37) into (36) 

𝑃(𝐸𝑣) = 𝑃(𝐸𝑣)(𝑈) (38) 

Finally, by the law P(A)*U=P(A) 

𝑃(𝐸𝑣) = 𝑃(𝐸𝑣) (39) 

From (34) and the proof above, it is seen that the method used to calculate the probability 

of evidence requires at least two conditions to exist. In (34) the two conditions are “the 

tool is healthy” (H), and “the tool is not healthy” (~H).  

In reality, this approach is valid for more than just 2 conditions. This thesis now 

demonstrates and proves how the mathematical representation of the evidence probability 

for two conditions  (28) can be expanded to build models for up to n conditions where n 

is an integer from 1 to ∞. A condition is now represented as Ci, where i is a number 

between 1 to the total number of conditions in the model.  

Demonstration and Proof 

If C1,…,Cn are mutually exclusive and collectively exhaustive conditions, then 

𝑃(𝐶1) + ⋯ + 𝑃(𝐶𝑛) = 𝑈 (40) 

Which is also written as  

∑ 𝑃(𝐶𝑖)

𝑛

𝑖=1

= 𝑈 (41) 
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Thus, by the law P(A)*U=P(A) 

𝑃(𝐸𝑣) = 𝑃(𝐸𝑣) (∑ 𝑃(𝐶𝑖)

𝑛

𝑖=1

) (42) 

Using the distributive law 

𝑃(𝐸𝑣) = ∑ 𝑃(𝐸𝑣 ∩ 𝐶𝑖)

𝑛

𝑖=1

 (43) 

Finally, using the probability chain rule,  

𝑃(𝐸𝑣) = ∑ 𝑃(𝐸𝑣|𝐶𝑖)𝑃(𝐶𝑖)

𝑛

𝑖=1

 (44) 

Thus for n conditions, the probability of evidence is mathematically represented by (44). 

The following example demonstrates the validity of the method to calculate the 

probability of evidence for multiple conditions using the example on page 15. The 

previous probabilities are defined in Table 1 and additional probabilities for two 

additional conditions are defined below. The two new conditions are, W for “tool is 

Worn” and Ch for the “tool is Chipped.”  

 



 

35 

 

Table 2: Probabilities for Multi-Condition Example 

Representation Meaning Type of 

probability 

P(W) Probability that the “tool is Worn” Prior, 

Unconditional 

P(Ch) Probability that the “tool is Chipped” Prior, 

Unconditional 

P(V|W) Probability (likelihood) that “there is Vibration 

over a set alarm threshold” given that the “tool is 

Worn” 

Likelihood, 

Conditional 

P(V|Ch) Probability (likelihood) that “there is Vibration 

over a set alarm threshold” given that the “tool is 

chipped” 

Likelihood, 

Conditional 

P(W|V) Probability that the “tool is Worn” given that 

“there is Vibration over a set alarm threshold” 

Posterior, 

Conditional 

P(Ch|V) Probability that the “tool is Chipped” given that 

“there is Vibration over a set alarm threshold” 

Posterior, 

Conditional 

 

 

In this example, the probability of evidence is P(V). As in the example on page 15, H 

represents the condition “tool is healthy.”  

 

 

Figure 9: Venn diagram of Three Conditions and One Feature 
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The rectangle containing the Venn diagram represents U. The light grey area in the top 

left represents the condition “tool is worn.” The medium grey area on the bottom of the 

space represents the condition “tool is chipped.” The dark grey area at the top right of the 

space represents “Tool is healthy.” The circle in the center represents the set, “there is 

vibration over a set alarm threshold.” The conditions, “tool is worn” “tool is chipped” and 

“tool is healthy” are mutually exclusive and exhaustive, meaning they do not overlap 

each other and cover the entire universal set U. There are three overlap regions between 

the set V and the three conditions represented by A, B, and C where 

𝐴 = 𝑃(𝑉 ∩ 𝑊) = 𝑃(𝑉|𝑊)𝑃(𝑊) (45) 

𝐵 = 𝑃(𝑉 ∩ 𝐻)𝑃 = 𝑃(𝑉|𝐻)𝑃(𝐻) (46) 

𝐶 = 𝑃(𝑉 ∩ 𝐶ℎ) = 𝑃(𝑉|𝐶ℎ)𝑃(𝐶ℎ) (47) 

From the diagram, it can be seen that the probability of evidence P(V) equals  

𝑃(𝑉) = 𝐴 + 𝐵 + 𝐶 (48) 

Therefore 

𝑃(𝑉) = 𝑃(𝑉|𝑊)𝑃(𝑊) + 𝑃(𝑉|𝐻)𝑃(𝐻) + 𝑃(𝑉|𝐶ℎ)𝑃(𝐶ℎ) (49) 

Through comparison, one can see that (49) would be generated by applying the equation 

for the probability of evidence of n conditions (44). 

3.2.2 BAYESIAN MODEL FOR SENSOR FUSION 

As stated previously, Bayesian Models are made from prior probabilities, likelihood 

probabilities, and the probability of evidence (21). Hence, to derive a general Bayesian 

model for n conditions and m features, the mathematical representation of the 

multivariate likelihood probability (27), the mathematical representation of the evidence 
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probability (44), and the classic prior probability P(Ci),  are implemented into the basic 

structure of Bayes Rule (21), to get 

𝑃(𝐶𝑖|𝑑) =
𝑃(𝐶𝑖) ∏ 𝑃(𝐹𝑗|𝐶𝑖)𝑚

𝑗=1

∑ 𝑃(𝐶𝑖) ∏ 𝑃(𝐹𝑗|C𝑖)𝑚
𝑗=1

𝑛
𝑖=1

   (50) 

where P(Ci|𝑑) is the posterior probability, Ci represents each condition or state of the 

manufacturing equipment,  [𝐹1, … , 𝐹𝑚] are the features extracted from a data set and 

𝑑 = [𝐹1, … , 𝐹𝑚] where 𝑑 is a vector of the extracted features.  

For example, supposed there are 3 features and 3 conditions. The inputs to the model are 

the values of the 3 features and the outputs are be three posterior probabilities: 𝑃(𝐶1|𝑑),

𝑃(𝐶2|𝑑), 𝑃(𝐶3|𝑑). The inputs are current data feature values from the sensors on the 

machine and the outputs are the probability the machine is in condition 1, condition 2 and 

condition 3 respectively. Appling Bayes’ Theorem, the models are written fully as defined 

by (50) 

𝑃(𝐶1|𝑑) = 

(51) 𝑃(𝐶1)𝑃(𝐹1|𝐶1)𝑃(𝐹2|𝐶1)𝑃(𝐹3|𝐶1)

𝑃(𝐶1)𝑃(𝐹1|𝐶1)𝑃(𝐹2|𝐶1)𝑃(𝐹3|𝐶1) + 𝑃(𝐶2)𝑃(𝐹1|𝐶2)𝑃(𝐹2|𝐶2)𝑃(𝐹3|𝐶2) + 𝑃(𝐶3)𝑃(𝐹1|𝐶3)𝑃(𝐹2|𝐶3)𝑃(𝐹3|𝐶3)
 

𝑃(𝐶2|𝑑) = 

(52) 𝑃(𝐶2)𝑃(𝐹1|𝐶2)𝑃(𝐹2|𝐶2)𝑃(𝐹3|𝐶2)

𝑃(𝐶1)𝑃(𝐹1|𝐶1)𝑃(𝐹2|𝐶1)𝑃(𝐹3|𝐶1) + 𝑃(𝐶2)𝑃(𝐹1|𝐶2)𝑃(𝐹2|𝐶2)𝑃(𝐹3|𝐶2) + 𝑃(𝐶3)𝑃(𝐹1|𝐶3)𝑃(𝐹2|𝐶3)𝑃(𝐹3|𝐶3)
 

𝑃(𝐶3|𝑑) = 

(53) 𝑃(𝐶3)𝑃(𝐹1|𝐶3)𝑃(𝐹2|𝐶3)𝑃(𝐹3|𝐶3)

𝑃(𝐶1)𝑃(𝐹1|𝐶1)𝑃(𝐹2|𝐶1)𝑃(𝐹3|𝐶1) + 𝑃(𝐶2)𝑃(𝐹1|𝐶2)𝑃(𝐹2|𝐶2)𝑃(𝐹3|𝐶2) + 𝑃(𝐶3)𝑃(𝐹1|𝐶3)𝑃(𝐹2|𝐶3)𝑃(𝐹3|𝐶3)
 

 

 



 

38 

 

The model for each can be compactly written as 

𝑃(𝐶1|𝑑) =
𝑃(𝐶1)𝑃(𝑑|𝐶1)

𝑃(𝐶1)𝑃(𝑑|𝐶1) + 𝑃(𝐶2)𝑃(𝑑|𝐶2) + 𝑃(𝐶3)𝑃(𝑑|𝐶3)
 (54) 

𝑃(𝐶2|𝑑) =
𝑃(𝐶2)𝑃(𝑑|𝐶2)

𝑃(𝐶1)𝑃(𝑑|𝐶1) + 𝑃(𝐶2)𝑃(𝑑|𝐶2) + 𝑃(𝐶3)𝑃(𝑑|𝐶3)
 (55) 

𝑃(𝐶3|𝑑) =
𝑃(𝐶3)𝑃(𝑑|𝐶3)

𝑃(𝐶1)𝑃(𝑑|𝐶1) + 𝑃(𝐶2)𝑃(𝑑|𝐶2) + 𝑃(𝐶3)𝑃(𝑑|𝐶3)
 (56) 

3.3 METHOD FOR IMPLEMENTATION OF BAYESIAN MODELS 

The method is broken up into an initial offline phase, phase 1, and a functional online 

phase, phase 2. The method is illustrated in Figure 10. 



 

Figure 10: The phase one and the phase two of proposed method 
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3.3.1 PHASE 1 

In phase 1, sensors are selected and placed on the equipment, data processing methods 

are selected and implemented, and features correlated to the conditions are discovered 

and extracted. In a ‘Condition Database’ as indicated in the center of Figure 10, feature 

values from the experimental data collected in phase 1 are stored. For example, if there 

are two possible conditions, C1 and C2, and two features extracted, F1 and F2, and only 5 

sets of data for each condition have been collected, then the condition database could be 

shown follows: 

 

 

Figure 11: Illustration of a condition database with 5 sets of data in each condition 

 

Using the method to generate likelihood probabilities for Normally distributed data 

explained in section 3.2.1.2, distribution characteristics, µ and σ, are extracted from the 

history of values of each feature in each condition in the condition database. For example, 

from the conditional database shown in Figure 11, four means, {µ( F1 ∈ C1 ), µ( F2 ∈ C1 ), 

µ( F1 ∈ C2 ), µ( F2 ∈ C2 ) } and four standard deviations, {σ( F1 ∈ C1 ), σ( F2 ∈ C1 ), σ( F1 ∈ 

F1 F2 F1 F2

0.776 0.067 0.474 0.559

0.263 0.019 0.546 0.351

0.662 0.481 0.640 0.517

0.249 0.970 0.401 1.394

0.207 0.019 0.977 0.386

µ(F1 ∈ C1) µ(F2  ∈ C1) µ(F1  ∈ C2) µ(F2  ∈ C2)

σ(F1  ∈ C1) σ(F2  ∈ C2) σ(F1  ∈ C2) σ(F2  ∈ C2)

Condition 1 Condition 2
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C2 ), σ( F2 ∈ C2 ) } are extracted to be used for model building. Next, model building 

occurs. Again, as described in section 3.2.1.2, if the features are Normally distributed, the 

likelihood probabilities are generated by equation (1) 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

−(𝑥−𝜇)2

2𝜎2  𝑓𝑜𝑟 − ∞ < 𝑥 < ∞ 

where x= the variable for the current value of Fj, µ = µ(Fj ∈ Ci) from the condition 

database, and σ = σ(Fj ∈ Ci) from the condition database.  

3.3.2 PHASE 2 

In phase 2, the sensors, data processing, and feature extraction is performed using the 

same hardware and methods established in the offline state. The resultant of processing 

the current sensor data through data processing and feature extraction is the vector of 

current features 𝑑. As was seen in the section 3.2.2, 𝑑 is a vector of features {F1, … , Fm} 

from a particular point in time. Indicated by the diamond shaped block in Figure 10, the 

vector of features are input to the Bayesian model defined by (50), to compute the 

probabilities of the machine tool being in each condition {𝑃(𝐶1|𝑑), … , 𝑃(𝐶𝑛|𝑑)}. These 

conditional probabilities are known as posterior probabilities and are the nondeterministic 

output of the algorithm. Again, the posterior probabilities represent the probability the 

machine tool is in condition Ci given the data set 𝑑. 

3.3.3 MODEL UPDATING 

While in the functional state of phase 2, the algorithm is designed to easily update the 

generated models as new data is collected. Updating the models is performed as follows. 

First, a new data set is collected and input into the algorithm when the state of the 
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machine is unknown. Using the outputted posterior probabilities from the algorithm, the 

operator must make the decision to stop the machine and perform an inspection or to wait 

until a more convenient time to perform inspection. When the inspection is performed 

and the condition associated with the data set is confirmed, the new set of feature values 

are added to the condition database. Now that there are more data in the condition 

database, the distribution characteristics for each feature µ and σ, are recalculated. This 

updating process is illustrated in Figure 10 by the thick curved arrow (Add Data) from 

the ‘inspection confirms condition’ block to the ‘Conditional Database’ block. This 

process of model updating can occur each time data is collected and its condition 

confirmed.  

3.4 METRICS FOR RESULTS 

The first metric for the method results are error. Error is calculated as:  

휀 = 𝑌𝑒 − 𝑌𝑎 (57) 

where 휀 is error, Ye is the expected output, and Ya is the actual output of the model. Two 

facts are needed to understand the expected output of the model. First, in all testing, the 

test data is sourced from the same population as the conditional database data. Second, in 

the experimental and simulated tests, there are only two conditions. To explain, it is 

known that the test data either belong to condition 1, (𝑑 ∈ 𝐶1), or belong to condition 2, 

(𝑑 ∈ 𝐶2); therefore, the theoretical posterior probabilities should be 1 and 0 or 0 and 1. 

For example, if the test data 𝑑 ∈ 𝐶1 then theoretically  𝑃(𝐶1|𝑑) ≈ 1 and  𝑃(𝐶2|𝑑) ≈ 0. 

Similarly, if the test data 𝑑 ∈ 𝐶2 then theoretically  𝑃(𝐶1|𝑑) ≈ 0 and  𝑃(𝐶2|𝑑) ≈ 1. 
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The second metric for the method results is accuracy. Accuracy is defined as the ratio of 

solutions where the test “if 𝑑 ∈ 𝐶1 then 𝑃(𝐶1|𝑑) > 𝑃(𝐶2|𝑑) and if 𝑑 ∈ 𝐶2 

then 𝑃(𝐶1|𝑑) < 𝑃(𝐶2|𝑑)” is not violated to the total number of trials. 

3.5 EXPERIMENTAL IMPLEMENTATION: TOOL DIAGNOSTICS FOR A 

THREE INSERT TOOL 

3.5.1 ASSUMPTIONS 

1. Inspection is assumed to be perfect. Therefore, assume data used to build models 

do not contain incorrect values. 

2. Observations from multiple sensors are random and conditionally dependent on 

the machine state.  

3. Conditions, also known as the model classes, are mutually exclusive and 

collectively exhaustive. 

4. Features are conditionally independent of each other 

These assumptions are explained in section 3.1 and are the standard assumptions for the 

method presented in this thesis.  

3.5.2 PURPOSE 

The purpose of the experimental implementation is to demonstrate a simple real world 

implementation of the general process and show the results. In this methods section, the 

purpose is to present the process used to implement the Bayesian models. This includes 

describing feature selection, data processing, feature extraction, model building and 

model updating. The section is laid out as follows. First, the equipment, materials and 
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experimental procedure for the experimentation are provided. Then the methodology 

used to implement phase 1 and phase 2 are provided following the structure of the flow 

chart from Figure 10.  

The goal of the experimental case is to detect the condition of an actively cutting three 

insert end milling tool using sensor fusion. As shown in Figure 12, the two specific 

conditions of interest are “Healthy” where all three tool inserts are unchipped and not 

worn, and “Damaged” where one of the three inserts is chipped and the other two are 

unchipped and not worn.  

 

 

Figure 12: Milling tool and possible insert conditions 
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3.5.3 EQUIPMENT 

Machine tool: Okuma Millac 44V 

Tool: HERTEL Indexable Copy End Mill, 3 Insert, 1” Shank Diameter and Maximum 

Cutting Diameter, Inserts RP.10. Made of Steel 

In addition to the manufacturing equipment, there were three types of sensors used: two 

accelerometers, one dynamometer, and one power meter.  

Accelerometers: 

PCB Piezoelectric Accelerometer, Model 353B15, High Frequency Quartz Shear ICP 

Analog Devices, MEMS Accelerometer, Model ADXL203EB 

Dynamometer: Kistler Multicomponent Dynamometer, Type 9257B SN 456863 

Power meter: Load Controls Incorporated Universal Power Cell, Model UPC-FR 

Data Acquisition:  

Kistler Dual Model Amplifier, Type 5010 (X3)  

Kistler Power Supply/Coupler Type 5134 

National Instruments, CompacDAQ, type cDAQ-9178 with sensor based I/O modules 

type NI 9232  

LabVIEW 2014 Student Edition Software 

3.5.4 MATERIALS 

Alloy A-286 Stainless, Hardened HRC 40.2, 6” Round Bar stock  
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3.5.5 EXPERIMENTAL PROCEDURE 

The experiment had two independent variables, radial depth of cut and the condition of 

the tool. In all, there were three radial depths of cut and two conditions tested; thus six 

runs of experimentation were performed (Table 3).  

 

Table 3: Layout of Experiments 

Run # Radial Depth of Cut Tool Condition 

1 3 mm Healthy 

2 3 mm Damaged 

3 4 mm Healthy 

4 4 mm Damaged 

5 5 mm Healthy 

6 5 mm Damaged 

 

 

For all experimentation, the axial depth of cut was 1mm with a speed of 3000 RPM. 

Milling was performed with flood coolant in a down milling direction. An illustration 

defining radial depth of cut and axial depth of cut is shown in Figure 13.  
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Figure 13: Illustration of Radial Depth of Cut vs. Axial Depth of Cut in End Milling  

 

The test equipment was set up as shown in Figure 14. The MEMS and piezoelectric 

accelerometer were placed on the spindle housing away from the spindle motor. Both 

accelerometers were secured magnetically and with accelerometer wax. For accurate 

force measurements, the stock cutting material was bolted directly to the dynamometer. 

The dynamometer was secured to a plate that was gripped in the machine vice. The 

power meter was installed into the back panel of the machine as directed by manufacturer 

specifications. All sensors were sampled at a rate of 50 kHz with the National 

Instruments CompacDAQ DAQ system.  
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Experimental Test Equipment Setup 

 

Figure 14: Experimental Setup 

 

3.5.6 PHASE 1 

The discussion in the following section ‘Sensors and Data Processing’ explains logically 

how the data features were found and then discusses how they were used to choose data 

processing techniques. The, the next section, ‘Feature Extraction’ explains the methods 

used for automated feature extraction for the features chosen in ‘Sensors and Data 

Processing.’  

3.5.6.1 Sensors and Data Processing 

Initial data were taken at all six runs (see Table 3) and studied for data features that 

correlated to the two conditions of interest, healthy tool and damaged tool. The following 

sections discuss the findings from each type of sensor.  
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3.5.6.1.1 MEMS & Piezoelectric Accelerometer 

No data characteristics were found in time domain accelerometer data that correlated 

strongly with the two conditions of interest, healthy and damaged. On the other hand, 

when data was converted to the frequency domain by a fast Fourier transform (FFT), 

graphs of the FFT consistently unveiled two distinct types of scenarios; one correlated 

with the healthy condition and the other with the damaged condition. To illustrate, 

observe the FFT of accelerometer data for a healthy and damaged tool in Figure 15 and 

Figure 16. The fist figure is for the MEMS accelerometer and the second figure is for the 

piezoelectric accelerometer. The plot at the top of each figure is from a 3mm radial depth 

of cut pass with a healthy tool. The plot at the bottom of the figure is from a 3 mm radial 

depth of cut pass with a damaged tool. The dependent axis is acceleration (mg) and the 

independent axis is the frequency in Hertz.  
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Figure 15: FFT of MEMS Accelerometer Data for a Healthy and Damaged Tool 

 

 

Figure 16: FFT of Piezoelectric Accelerometer Data for a Healthy and Damaged Tool 



 

50 

 

For the MEMS and piezoelectric accelerometer, the FFT of the healthy tool is observably 

different than the FFT of a damaged tool. For example, between 100-200 Hz and 500-600 

Hz there is a noticeably taller and wider FFT peak in the healthy case than in the 

damaged case. This is true for both the MEMS and piezoelectric accelerometer. Also, in 

the damaged case there are noticeably more peaks above 10
-2

 mg acceleration than in the 

healthy case for both the MEMS and piezoelectric accelerometer.   

Although promising and a good first step, visually observing unique patterns is not 

enough to be able to implement a statistical Bayesian model. Specific features that can be 

isolated and numerically quantified must be discovered. An educated approach to 

discover isolatable features with only small amounts of data is to exploit the physics of 

the machining operation. For example, since a rotating three insert milling tool was used 

in this experiment, it is expected that an FFT peak at the rotation frequency of the tool 

and an FFT peak at three times the rotation frequency (the insert frequency) should be 

observed from the vibration data.  Using this knowledge the plotting methods for the FFT 

were altered to better reveal the expected features of interest, the rotation frequency and 

tool insert frequency. To demonstrate, data from Figure 15 and Figure 16 were replotted 

to create Figure 17 and Figure 18 respectively. Although from the same data, the 

independent axis was normalized by the rotation frequency of the cutting tool. Then the 

independent axis was limited to 10 times the frequency of the rotation of the cutting tool. 

The rotation of the cutting tool is also known as the shaft frequency. By normalizing the 

frequency response by the shaft frequency, the independent axis displays multiples of the 

shaft frequency. Because the expected features, rotation frequency and tool insert 
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frequency, are at the shaft frequency and three times the shaft frequency, they are 

observed at the first and third marker of the horizontal axis.  

 

 

Figure 17: Normalized FFT of MEMS Accelerometer Data for a Healthy and Damaged 

Tool 
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Figure 18: Normalized FFT of Piezoelectric Accelerometer Data for a Healthy and 

Damaged Tool 

 

Observing these figures, it is seen that each of the multiples of the shaft frequency 

noticeably increases or decreases in magnitude between the healthy and damaged case. 

For example, when comparing the healthy case to the damaged case the first and second 

multiple clearly increase and the third multiple decreases. The causation for this is due to 

the physics of the frequency of impact of the tool with the workpiece. Because the 

causation for this response is understood and the magnitude and location of these three 

FFT peaks are easily quantifiable, these three features are chosen as extractable features 

from the accelerometer data for the Bayesian models. 

Having found features from the accelerometer data to use in the models, the next step is 

to choose optimal data processing techniques for the raw accelerometer data. By the 
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nature of the features selected, choosing to perform the FFT and data processing methods 

to provide high quality FFT results were selected. Inspired from bearing health diagnostic 

techniques that use FFT data to identify bearing faults, time domain data was chosen to 

be windowed by 50% and the FFTs averaged before feature extraction was to be 

performed (Betta, G., et al., 2001)(McFadden et. al., 2000). This thesis does not go into 

the effects of windowing or FFT averaging, however, the methods used are explained. In 

this thesis, windowing is the process of subdividing data into overlapping sets prior to 

performing an FFT on each set. A window of 50% means that first 50% of the data in the 

current set is the last 50% of the data from the previous set. For example, looking at 

Figure 19, if data is subdivided into D width sections for FFT computation without 

windowing, there are three subsets of data, DI, DII, and DIII. However, if windowing of 

50% is used, there are five subsets of data, D1…D5.  
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Figure 19: Illustration of Windowing by 50% 

 

In this experimental case, data were separated into subsets of one second for FFT 

computation. An average of the FFT peaks was taken from every 10 subsets of data and 

there was 10.5 seconds worth of consistent cutting data used for analysis per pass.  

3.5.6.1.2 Dynamometer 

From understanding the accelerometer data, the initial dynamometer data was inspected 

in the frequency domain and similar characteristics found. To illustrate, observe Figure 

20 and Figure 21 to view FFT plots of dynamometer data for a healthy and damaged tool 

respectively. In both figures, the topmost plot is the FFT of the X-axis dynamometer data, 

the middle plot is the FFT of the Y-axis dynamometer data, and the bottommost plot is 

the FFT of the Z-axis dynamometer data. The X-axis is along the feed direction, the Y-
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axis is perpendicular to the feed direction, and the Z-axis in the direction of the tool. 

Again the FFTs are normalized by dividing by the shaft frequency. Note, the vertical axis 

of the plots is not uniform across all 6 plots.  

 

 

Figure 20: FFT of X, Y, & Z axis of ‘Healthy’ Dynamometer Data 
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Figure 21: FFT of X, Y, & Z axis of ‘Damaged’ Dynamometer Data 

 

As was perceived in the accelerometer case, it is seen that each of the multiples of the 

shaft frequency noticeably increases or decreases in magnitude between the healthy and 

damaged case. As was chosen in the Accelerometer case, the first three multiples of the 

shaft frequency for each axis, X Y & Z, were chosen as features. 

Based on the similar choice of features, data processing methods selected for the 

accelerometer data was also used as data processing methods for the dynamometer data. 

3.5.6.1.3 Power meter 

After observing the initial data response from the time domain power meter data it was 

found that the magnitude of the power meter data was affected by the condition of the 
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tool and the radial depth of cut. The initial results are plotted in Figure 22 below. The 

average power meter data from when the tool was in a healthy condition is shown in 

black and the average power meter data from when the tool was in a damaged condition 

is shown in light grey. Every 5k of raw data was average to arrive at these plots. The 

error bars represent ±1𝜎. The top plot is from the 3mm radial depth of cut condition. The 

middle plot is from the 4mm radial depth of cut condition. Finally, the bottom plot is 

from the 5mm radial depth of cut condition.  

 

 

Figure 22: Initial Results of Power Meter Data for 3, 4, & 5 mm Radial Depth of Cut 

 



 

58 

 

In the 3mm radial depth of cut case, it is clear when the tool is healthy and when it is 

damaged as each group is widely separated from each other. In the 4mm radial depth of 

cut case, it begins to become unclear around 280-300 Watts. In the 5mm radial depth of 

cut case, the healthy case and damaged case are nearly indistinguishable. Since mean of 

the power data can be useful in determining the state of the tool, it is selected as a feature. 

To statistically compare the distributions of the healthy and damaged power meter data, 

Figure 23 is helpful.  

 

 

Figure 23: Distributions of Power Data from the Healthy and Damaged Condition 
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The dark grey bar represents the mean of the healthy power meter data. The light grey bar 

represents the mean of the damaged power meter data. Lastly, the error bars are the ±3𝜎 

limits for each bar respectively. Each set of bars on the bar chart represent the 3mm, 

4mm, and 5mm radial depth of cut case respectively. Again, it is seen that the 

distributions for the 3mm radial depth of cut case are quite separate and that the 4mm and 

5mm radial depth of cut distributions have significant overlap. On the other hand, this 

figure makes it clear that the magnitude of the standard deviation itself is a unique 

identifier for the 4mm and 5mm radial depth of cut cases. With further analysis, it was 

found that the spread of the standard deviation for each set of power data was quite small.  

As a result, the standard deviation of the power meter data has a high probability of being 

a reliable feature. Thus, the final features are chosen, the standard deviation of the power 

data and the mean of the power data.  

Given the simple nature of the features chosen from the power meter data, the data 

processing technique was to take the mean and standard deviation of the raw data over 10 

seconds of continuously engaged cutting.  

All data processing was written into MATLAB functions in order to be able to automate 

the process in phase 2.  

3.5.6.2 Feature Extraction 

While choosing sensors and selecting data processing methods in phase 1, individual data 

features that change in response to the two conditions of interest, healthy tool and 

damaged tool, were found. A vector of these features becomes the structure of the 

input, 𝑑⃑⃑⃑ ⃑, for the Bayesian model in phase 2 (see Figure 10, block “Compute P(C| 𝑑⃑⃑⃑ ⃑)”). 
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The vector is organized in Table 4. The left column is the final vector of extracted 

features. The right column is the description of the feature. MSF stands for “multiple of 

shaft frequency.” 

 

Table 4: Final Vector of Extracted Features for Experimental Implementation 𝑑 

Feature Feature Description 

𝐴𝑚1 Magnitude of 1
st
 MSF from normalized FFT of MEMS accelerometer  

𝐴𝑚2 Magnitude of 2
nd

 MSF from normalized FFT of MEMS accelerometer 

𝐴𝑚3 Magnitude of 3
rd

 MSF from normalized FFT of MEMS accelerometer 

𝐴𝑝1 Magnitude of 1
st
 MSF from normalized FFT of piezo accelerometer  

𝐴𝑝2 Magnitude of 2
nd

 MSF from normalized FFT of piezo accelerometer 

𝐴𝑝3 Magnitude of 3
rd

 MSF from normalized FFT of piezo accelerometer 

𝐷𝑛𝑥1 Magnitude of 1
st
 MSF from normalized FFT of x-axis of 

dynamometer 

𝐷𝑛𝑥2 Magnitude of 2
nd

 MSF from normalized FFT of x-axis of 

dynamometer 

𝐷𝑛𝑥3 Magnitude of 3
rd

 MSF from normalized FFT of x-axis of 

dynamometer 

𝐷𝑛𝑦1 Magnitude of 1
st
 MSF from normalized FFT of y-axis of 

dynamometer 

𝐷𝑛𝑦2 Magnitude of 2
nd

 MSF from normalized FFT of y-axis of 

dynamometer 

𝐷𝑛𝑦3 Magnitude of 3
rd

 MSF from normalized FFT of y-axis of 

dynamometer 

𝐷𝑛𝑧1 Magnitude of 1
st
 MSF from normalized FFT of z-axis of dynamometer 

𝐷𝑛𝑧2 Magnitude of 2
nd

 MSF from normalized FFT of z-axis of 

dynamometer 

𝐷𝑛𝑧3 Magnitude of 3
rd

 MSF from normalized FFT of z-axis of 

dynamometer 

𝑃𝑜𝑚 Mean of 10 seconds of power data 

𝑃𝑜𝑠 Standard deviation of 10 seconds of power data  
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To ensure consistency and allow for automation of the Bayesian model fomulation, 

methods for extracting the features from the processed data must be defined. In this 

experiment, there are three main types of features. The first 15 features of 𝑑 are 

magnitudes of frequency responses from normalized FFTs of specific sensor data. The 

second to last feature of 𝑑 is a mean of specific sensor data and the last feature is the 

standard deviation of that specific sensor data. As such, there are three methods for 

feature extraction defined: one for FFT peak extraction, one for data mean extraction, and 

one for data standard deviation extraction.  

The methods for FFT peak extraction utilized the MATLAB function ‘PeakFinder.m’ and 

is as follows. The inputs are the spindle RPM, the FFT resolution and the averaged 

normalized FFT. The outputs are the magnitudes of the three peaks, 1 MSF 2 MSF and 3 

MSF, from the input FFT. To extract the peak magnitudes, the code utilizes MATLABs 

built in ‘max.m’ function to find the maximum peak in a small region around the 

frequency bin of interest. For the 1 MSF peak, the search region is covered by 1 𝑀𝑆𝐹 ±

2 𝐻𝑧. For the 2 MSF and 3 MSF, the search region is covered by 2 𝑀𝑆𝐹 ± 5 𝐻𝑧 and 

3 𝑀𝑆𝐹 ± 5 𝐻𝑧 respectively. The MATLAB code for the function ‘PeakFinder.m’ is 

included in Appendix B.  

The method for mean extraction from sensor data was simply using MATLAB’s built in 

‘mean.m’ function over 10 seconds of cutting data. This simply computed the mean of 

the data.  
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The method for standard deviation extraction from sensor data was simply using 

MATLAB’s build in function ‘std.m’ over 10 seconds of cutting data. This simply 

computed the population standard deviation of the data.  

3.5.6.3 Building the Condition Database 

The condition data base can be built as a series of matrices in MATLAB or as multiple 

files in Excel. Both types of condition databases were tested and used. In MATLAB, 

there was one matrix per run (see Table 3: Layout of Experiments). Each column of the 

matrix represented a specific feature. The rows recorded the history of feature values.   

In Excel, there was one file per case and one page per condition, as shown by the 

“Damaged Data” and “Healthy Data” pages in the RDOC_3mm Excel file shown in 

Figure 24.  

 

 

Figure 24: Condition Database in Excel 
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As in the MATLAB matrix, the columns of the Excel page represent the extracted 

features, and the rows store the recorded history of feature values. In the condition 

database in Excel, the mean and standard deviation are computed at the top of the 

condition page.  

3.5.6.4 Model building 

For later comparison two models are built: one with all 17 features, and one with only the 

five features that come from the MEMS accelerometer data and the power meter data. 

This is repeated for each case, 3mm 4mm and 5mm radial depth of cut.  From the 

mathematical representation of a general Bayesian model for n conditions and m features 

equation (50) the condensed Bayesian model is:  

𝑃(𝐻|𝑑) =
𝑃(𝑑|𝐻)𝑃(𝐻)

𝑃(𝑑|𝐻)𝑃(𝐻) + 𝑃(𝑑|𝐷)𝑃(𝐷)
 

(58) 

𝑃(𝐷|𝑑) =
𝑃(𝑑|𝐷)𝑃(𝐷)

𝑃(𝑑|𝐻)𝑃(𝐻) + 𝑃(𝑑|𝐷)𝑃(𝐷)
 

(59) 

where the multivariate likelihood probabilities 𝑃(𝑑|𝐻) and 𝑃(𝑑|𝐷) for the 17 feature 

model are 
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𝑃(𝑑|𝐻)

= 𝑃(𝐴𝑚1|𝐻)𝑃(𝐴𝑚2|𝐻)𝑃(𝐴𝑚3|𝐻)𝑃(𝐴𝑝1|𝐻)𝑃(𝐴𝑝2|𝐻)𝑃(𝐴𝑝3|𝐻)𝑃(𝐷𝑛𝑥1|𝐻)𝑃(𝐷𝑛𝑥2|𝐻)𝑃(𝐷𝑛𝑥3|𝐻) 

(60) 

𝑃(𝐷𝑛𝑦1|𝐻)𝑃(𝐷𝑛𝑦2|𝐻)𝑃(𝐷𝑛𝑦3|𝐻)𝑃(𝐷𝑛𝑧1|𝐻)𝑃(𝐷𝑛𝑧2|𝐻)𝑃(𝐷𝑛𝑧3|𝐻)𝑃(𝑃𝑜𝑚|𝐻)𝑃(𝑃𝑜𝑠|𝐻) 

𝑃(𝑑|𝐷)

= 𝑃(𝐴𝑚1|𝐷)𝑃(𝐴𝑚2|𝐷)𝑃(𝐴𝑚3|𝐻)𝑃(𝐴𝑝1|𝐷)𝑃(𝐴𝑝2|𝐷)𝑃(𝐴𝑝3|𝐷)𝑃(𝐷𝑛𝑥1|𝐷)𝑃(𝐷𝑛𝑥2|𝐷)𝑃(𝐷𝑛𝑥3|𝐷) 

(61) 

𝑃(𝐷𝑛𝑦1|𝐷)𝑃(𝐷𝑛𝑦2|𝐷)𝑃(𝐷𝑛𝑦3|𝐷)𝑃(𝐷𝑛𝑧1|𝐷)𝑃(𝐷𝑛𝑧2|𝐷)𝑃(𝐷𝑛𝑧3|𝐷)𝑃(𝑃𝑜𝑚|𝐷)𝑃(𝑃𝑜𝑠|𝐷) 

and the multivariate likelihood probabilities 𝑃(𝑑|𝐻) and 𝑃(𝑑|𝐷) for the five feature 

model are 

𝑃(𝑑|𝐻) = 𝑃(𝐴𝑚1|𝐻)𝑃(𝐴𝑚2|𝐻)𝑃(𝐴𝑚3|𝐻)𝑃(𝑃𝑜𝑚|𝐻)𝑃(𝑃𝑜𝑠|𝐻) (62) 

𝑃(𝑑|𝐷) = 𝑃(𝐴𝑚1|𝐷)𝑃(𝐴𝑚2|𝐷)𝑃(𝐴𝑚3|𝐻)𝑃(𝑃𝑜𝑚|𝐷)𝑃(𝑃𝑜𝑠|𝐷) (63) 

Prior to using the models, the assumption of condition independence should be inspected. 

A useful tool to understand dependence and independence is to draw the Bayesian 

network. Graphically illustrated, the Bayesian network for the 17 variable models is 

shown in Figure 25: 
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Figure 25: Naïve Bayesian Network for Tool Health Model 

 

In the figure, the sensor data are all dependent on the state of the tool and independent 

from each other. The presence or absence of data from one sensor does not affect the 

results of the others. In other words, although the data features are all correlated, 

causation is due to tool health and not influenced by the results of the other sensors. 

Mathematically this is expressed as:  

𝑃(𝐴𝑚|𝐷, 𝐴𝑝𝐷𝑛𝑃𝑜) = 𝑃(𝐴𝑚|𝐷) (64) 

and so forth for each sensor. Although it can be argued whether or not the features 

extracted from the sensor data are entirely conditionally independent of each other, the 
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use of naïve Bayesian models reasonably holds for these features (see section 2.6.1 for 

further explanation). 

The models are generated using a MATLAB function, called BuildBayes, laid out below. 

In this experimental case, the inputs are:  

 

Input Meaning 

CDatabase_H A matrix from the conditional data base structure representing 

all of the values in the conditional database for condition 

healthy. The rows represent individual data points and the 

columns represent individual features. 

Ex. rdoc5.accelP.h.peaks 

CDatabase_D The same set up as CDatabase_C1 except for condition 

damaged.  

Ex. rdoc5.accelP.d.peaks 

testData A vector of data representing the input 𝑑. Each column is a 

feature Fj.  

prior A vector representing the prior probabilities for the conditions.  

 

The output of the model is a vector of posterior probabilities called PosteriorP. Column 1 

of the output is 𝑃(H|𝑑) and column 2 is  𝑃(D|𝑑). In this implementation, the input testData 

is a vector 𝑑. This code is specifically set up for only two conditions but technically can 

be used for an unlimited number of features. MATLAB code for the experimental 

BuildBayes function is shown in Figure 70 in Appendix B.  

This function, although specific to this experimental case, is revised into a more general 

code for Bayesian implementation of sensor fusion in section 3.6. 
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3.5.7 PHASE 2 

3.5.7.1 Sensors, Data Processing, & Feature Extraction 

In phase 1, data processing and feature extraction methods were defined. In this 

experimental case, code to perform the data processing and feature extraction was also 

created in phase 1. As such, packets of raw sensor data are able to be inserted into said 

functions to arrive at a vector of features, 𝑑. This vector is then inserted into the Bayesian 

model and the posterior probabilities are generated. In this case, this is done by inputting 

the current 𝑑 into the code BuildBayes.m which was also generated in phase 1.  

3.5.7.2 Model updating 

When a new set 𝑑 is ready to be added to the condition database, the vector is input as an 

additional row to the appropriate MATLAB condition database matrix or Excel condition 

database page. When a dataset is added to a condition’s database in Excel, the mean and 

standard deviation for each feature auto updates thus updating the likelihood 

probabilities. When a dataset is added to a condition’s database in MATLAB, the means 

and standard deviations are updated by the BuildBayes.m function prior to calculating the 

likelihood probabilities while running the model.  

3.6 SIMULATED IMPLEMENTATION 

3.6.1 PURPOSE 

A simulated approach is taken to illustrate the classical limitations during model building 

and model use. In the simulated testing, the effects of three aspects of the models are 

explored: the quantity of data used to build the model, the amount of distribution overlap 
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for the different conditions, and the quantity of variables (features) used to build the 

model. The purpose of the simulated implementation methods section is to explain how 

the testing was performed and how the components of the tests were created. The 

organization is as follows. First the inputs for the Bayesian model and the simulated 

model set up are discussed. Next, the computational tools used to generate the 

components of the models and the models themselves are presented. Then, the procedure 

for generating and testing the effect of overlapping distributions on multivariate Bayesian 

models is explained. Finally, the procedure for testing the effect of model updating is 

discussed.  

3.6.2 INPUTS & SIMULATED MODEL SETUP 

The Bayesian Model for the simulated experimentation has two conditions, C1 and C2, 

and three features F1, F2, and F3. Using the mathematical representation for a general 

Bayesian model for n conditions and m features (50), the Bayesian Models are 

𝑃(𝐶1|𝑑) = 
𝑃(𝐶1)𝑃(𝐹1|𝐶1)𝑃(𝐹2|𝐶1)𝑃(𝐹3|𝐶1)

𝑃(𝐶1)𝑃(𝐹1|𝐶1)𝑃(𝐹2|𝐶1)𝑃(𝐹3|𝐶1) + 𝑃(𝐶2)𝑃(𝐹1|𝐶2)𝑃(𝐹2|𝐶2)𝑃(𝐹3|𝐶2)
 (65) 

𝑃(𝐶2|𝑑) = 
𝑃(𝐶2)𝑃(𝐹1|𝐶2)𝑃(𝐹2|𝐶2)𝑃(𝐹3|𝐶2)

𝑃(𝐶1)𝑃(𝐹1|𝐶1)𝑃(𝐹2|𝐶1)𝑃(𝐹3|𝐶1) + 𝑃(𝐶2)𝑃(𝐹1|𝐶2)𝑃(𝐹2|𝐶2)𝑃(𝐹3|𝐶2)
 (66) 

The models are generated using a MATLAB function, called BuildBayes, which is now 

described. This is a generalized version of the BuildBayes code shown on page 117. The 

inputs are:  
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Input Meaning 

CDatabase_C1 A matrix representing all of the values in 

the conditional database for condition C1. 

The rows represent individual data points 

and the columns represent individual 

features. 

CDatabase_C2 The same set up as CDatabase_C1 except 

for condition C2  

testData testData is a matrix and each row 

represents an test vector 𝑑. Each column 

in vector 𝑑 is a feature Fj. 

prior A vector representing the prior 

probabilities for the conditions.  

 

 

The output of the model is a vector of posterior probabilities called PosteriorP. Each 

column of PosteriorP represents the posterior probability for a specific condition. For 

example, since there are two conditions, column 1 is 𝑃(𝐶1|𝑑) and column 2 is 𝑃(𝐶2|𝑑). In 

this implementation, the input testData is a matrix of input data vectors where each row 

represents an input vector 𝑑. For each row of testData there is an associated output row of 

posterior probabilities in PosteriorP. This code is specifically set up for only two 

conditions but unlimited number of features. The MATLAB code is located in Figure 72 

in Appendix B.  

3.6.3 COMPUTATIONAL TOOLS 

The simulated experimentation was done completely in MATLAB. To test the models, 

Normally distributed datasets were randomly generated using MATLAB’s “normrnd.m” 

function. For each distribution, three individual sets of 1020 points were generated and 

stored as a matrix. Each of the three sets represented an individual feature. As shown in 
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Figure 26, Quantile Quantile regression plots were used to guarantee that simulated data 

were Normally distributed.  

 

 

Figure 26: Quantile-Quantile regression plot of simulated data 

 

MATLAB is also used to perform kfold cross validation during testing. Cross validation 

is a way to measure the predictive performance of a statistical model when an explicit 

validation set does not exist. In other words, when the data used to test a model are 

sourced from the same population as the training data used to build the model, cross 

validation is used to ensure that results reflect the performance of the model independent 

of the subset of data chosen for testing. Kfold cross validation is a cross validation 
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technique that allows every point in a population to be tested and used for training. For 

kfold cross validation, the original data set is partitioned into k equal sized subsets. From 

these subsets, one is chosen to be used for testing and the remaining subsets are used as 

training data. This is repeated k times until each subset has been used as testing data. In 

this thesis, the original data set is the data in the conditional database. As noted above 

Figure 26, each condition has 1020 data instances per feature in the conditional database. 

With this, a k value of 51 was chosen for folds of 20 points each.  

Kfold cross validation was performed while also testing for the effect of the number of 

points in the conditional database. This was then repeated for each set of distribution 

overlaps. The code script used is in Figure 71 in appendix B.  

3.6.4 SIMULATED PROCEDURE: OVERLAPPING DISTRIBUTIONS 

Ten distribution sets are used to test for the effect of overlapping distributions for 

multivariate Bayesian models. The distribution overlap is characterized by the 

distribution range overlap and the distribution area overlap. The range overlap is 

calculated by the following equation:  

𝑅𝑎𝑛𝑔𝑒 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 =  
(𝜇2 − 3𝜎2) − (𝜇1 + 3𝜎1)

(6𝜎1)
 × 10       𝜇1 < 𝜇2, 𝜎1 = 𝜎2 (67) 

where 𝜇1 and 𝜎1 represent the mean and standard deviation of condition 1 and 𝜇2 and 𝜎2 

represent the mean and standard deviation of condition 2. The distribution area overlap is 

also known as the overlapping coefficient (OVL). In cases where 𝜎1 = 𝜎2, distribution 

area overlap is calculated using 
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𝑂𝑉𝐿 = 2𝛷(−
|𝛿|

2
) (68) 

where Φ is the cumulative distribution function of the standard Normal distribution and 𝛿 

is the population Cohen’s d (69).  

𝛿 =
𝜇1 − 𝜇2

𝜎
 (69) 

This calculation only holds if there are homogenous population variances (𝜎1 = 𝜎2 = 𝜎) 

Table 5 below provides the distribution characteristics for each set of distributions and 

Figure 27, Figure 28, Figure 29, and Figure 30, illustrate four of the distribution overlaps. 

For illustrations of the distribution overlaps not illustrated in this section, please go to 

Appendix A.  

 

Table 5: Parameters for test of overlap effect 

Condition 

1 

Condition 

2 
Distribution 

Range 

Overlap 

Distribution 

Area 

Overlap  𝜇1  𝜎1  𝜇2  𝜎2 

10 1 16 1 0.00% 0.00% 

10 1 15.5 1 8.33% 0.60% 

10 1 15 1 16.67% 1.24% 

10 1 14.5 1 25.00% 2.44% 

10 1 14 1 33.33% 4.55% 

10 1 13.5 1 41.67% 8.01% 

10 1 13 1 50.00% 13.36% 

10 1 12.5 1 58.33% 21.13% 

10 1 12 1 66.67% 31.73% 

10 1 11.5 1 75.00% 45.33% 

 



 

73 

 

 

In Table 5, the mean µ and standard deviation σ are listed for each distribution. Condition 

1 is always represented by a Normal distribution with a mean of ten and standard 

deviation of one. In the following figures, condition 1 is always on the left side of the 

figure and condition 2 is always on the right side of the figure. Also, condition 2 is 

always outlined with asterisks. The overlapping region of the two distributions is noted 

by the dark triangular shaped region between the two distributions in the figures. 

 

 

Figure 27: Simulated Distributions, 0% Area Overlap 
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Figure 28: Simulated Distributions, 8.01% Area Overlap 

 

 

Figure 29: Simulated Distributions, 21.13% Area Overlap 
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Figure 30: Simulated Distributions, 45.33% Area Overlap 

 

For testing the effect of overlapping distributions, the conditional database had 1000 sets 

of data for each condition and 20 sets of data used for testing. The code used for these 

tests are shown in Figure 72 and Figure 71 in Appendix B. This was repeated for each 

pair of distributions. 

3.6.5 SIMULATED PROCEDURE: MODEL UPDATING 

The ten distribution sets from the “Simulated Procedure: Overlapping Distributions” 

section are used again in this model updating section. For each distribution set, the 

Bayesian model is tested with various amounts of data in the conditional database. Using 

code shown in Figure 71 for cross validation, the Bayesian model is tested from 10 points 

to 1000 points (incremented by 10) for each feature in each condition of the condition 

database.  
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  RESULTS AND DISCUSSION 4

4.1 EXPERIMENTAL IMPLEMENTATION 

As mentioned in the Methods section, two models were tested in the experimental trial 

case: a 17 variable model which contained all variables noted in Table 4, and a 5 variable 

model with only features from the MEMS accelerometer and the Power Meter. This was 

repeated for three cases; once for 3mm radial depth of cut passes, once for 4mm radial 

depth of cut passes, and once for 5mm radial depth of cut passes. The summary of the 

results are presented in Table 6. Each of the columns of the table represents the average 

posterior probability that was output from the algorithm. The expectations are if 𝑑 ∈

𝐻𝑒𝑎𝑙𝑡ℎ𝑦 then the expected posterior probabilities are P(Healthy|𝑑)≈ 1 and 

P(Damaged|𝑑)≈ 0 else if 𝑑 ∈ 𝐷𝑎𝑚𝑎𝑔𝑒𝑑 then the expected posterior probabilities are 

P(Healthy|𝑑)≈ 0 and P(Damaged|𝑑)≈ 1. 

 

Table 6: Results for 3mm, 4mm, & 5mm Radial Depth of Cut Case with 10 instances of 

Data in Conditional Database for each condition 

  17 Feature Model 5 Feature Model 

Condition of 

Tool 

Average 

𝑃(𝐻𝑒𝑎𝑙𝑡ℎ𝑦|𝑑) 

Average 

𝑃(𝐷𝑎𝑚𝑎𝑔𝑒𝑑|𝑑) 

Average 

𝑃(𝐻𝑒𝑎𝑙𝑡ℎ𝑦|𝑑) 

Average 

𝑃(𝐷𝑎𝑚𝑎𝑔𝑒𝑑|𝑑) 

 𝑑  ∈ 𝐻𝑒𝑎𝑙𝑡ℎ𝑦 1 0 1 0 

 𝑑  ∈ 𝐷𝑎𝑚𝑎𝑔𝑒𝑑 0 1 0 1 
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The results strongly match the expectations for the 17 feature model and for the 5 feature 

model. Looking directly at the error of the individual results, Table 7 illustrates how 

small the error is for both experimental models. If the value is less than 4.94x10
-324

 then 

MATLAB rounds to zero. 

 

Table 7: Results for 3mm Radial Depth of Cut Case with 10 instances of Data in 

Conditional Database for each condition 

Calculated Error 

  17 Feature Model 5 Feature Model 

Tool 

Condition 

3 mm 

RDOC 

4 mm 

RDOC 

5 mm 

RDOC 

3 mm 

RDOC 

4 mm 

RDOC 

5 mm 

RDOC 

𝑑
∈

𝐻
𝑒

𝑎
𝑙𝑡

ℎ
𝑦

  

0 0 4.47E-167 0 9.00E-34 3.02E-30 

0 0 7.81E-161 0 5.42E-32 6.66E-30 

0 3.18E-205 2.17E-112 3.43E-136 2.41E-17 7.46E-21 

0 8.37E-179 5.10E-112 9.95E-132 8.76E-18 6.39E-20 

0 9.38E-171 2.21E-99 1.06E-137 9.96E-19 9.04E-17 

0 2.82E-141 1.41E-100 1.01E-132 4.75E-13 5.04E-16 

0 5.30E-183 5.45E-96 5.11E-146 2.16E-20 8.82E-15 

0 1.01E-142 9.36E-90 5.51E-142 1.19E-17 6.65E-13 

0 4.22E-195 2.61E-103 1.10E-173 4.20E-27 7.27E-15 

0 1.10E-151 1.43E-96 1.56E-170 4.82E-20 2.32E-12 

0 2.13E-240 1.93E-126 9.61E-214 4.53E-36 1.08E-18 

0 1.99E-170 1.96E-118 3.45E-212 1.66E-27 8.02E-16 

𝑑
∈

𝐷
𝑎

𝑚
𝑎

𝑔
𝑒𝑑

 

0 0 0 0 2.88E-26 1.49E-93 

0 0 0 0 6.59E-53 6.72E-119 

0 0 0 3.36E-250 1.89E-62 2.51E-54 

0 0 0 5.95E-280 6.20E-51 1.33E-68 

0 0 0 6.45E-242 5.89E-90 1.39E-66 

0 0 0 1.45E-264 9.66E-84 5.38E-82 

0 0 0 1.23E-261 1.31E-81 9.91E-76 

0 0 0 2.03E-288 2.32E-68 2.28E-95 

0 0 0 2.10E-251 1.32E-104 2.09E-122 

0 0 0 1.10E-274 4.22E-108 1.87E-147 

0 0 0 3.64E-281 3.41E-96 5.88E-192 

0 0 0 2.16E-312 1.28E-89 2.30E-226 
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In Table 7, the rows represent individual input samples of data. The condition of the tool, 

is indicated on the left. From both Table 6 and Table 7, it is seen that the expectations 

match the results in 100% of the experimental trials that were performed. In other words, 

if 𝑑 ∈ 𝐻𝑒𝑎𝑙𝑡ℎ𝑦 then the posterior probabilities are P(Healthy|𝑑)≈ 1 and P(Damaged|𝑑)≈

0. Likewise, if 𝑑 ∈ 𝐷𝑎𝑚𝑎𝑔𝑒𝑑 then the posterior probabilities are P(Healthy|𝑑)≈ 0 and 

P(Damaged|𝑑)≈ 1. Given that there were features in both models with very separate 

distributions, these results make sense. This aspect is further discussed in the next 

section.  

4.1.1 EFFECT OF OVERLAPPING DISTRIBUTIONS IN EXPERIMENTAL CASE 

Three variables are selected to illustrate the effect of overlapping distributions in the 

experimental trial case. The variables are 𝐷𝑛𝑦1, 𝐷𝑛𝑦2, and 𝐷𝑛𝑦3which are the magnitude 

of three peaks from the FFT of the Y axis force data from the dynamometer (see Table 4). 

Figure 31 illustrates the distributions for each peak and for each condition. The dark grey 

bars represent the healthy distributions, and the light grey bars represent the damaged 

distributions. The magnitude of the bars in the bar graph represents the mean value of the 

distribution in Newtons. The error bars represent the  ±3 σ range for the distributions. On 

the independent axis, 1, 2, and 3 represent the 1
st
, 2

nd
, and 3

rd
 multiples of the shaft 

frequency (which are 𝐷𝑛𝑦1, 𝐷𝑛𝑦2, and 𝐷𝑛𝑦3).  
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Figure 31: Distributions for Dynamometer in the Y axis 

 

From Figure 31, it can be seen that the 3
rd

 multiple of the fundamental frequency has a 

large overlap in distributions for the healthy and damaged case. More clearly illustrated, 

Figure 32 shows how the ±3𝜎 range of the damaged distribution is entirely within the 

±3𝜎 range of the healthy distribution.  
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Figure 32: Distribution for healthy and damaged case, Dynamometer 3rd peak Y axis 

 

If only using this variable, the output of the proposed model has a higher amount of error. 

However, if the distributions are clearly separate, as with 𝐷𝑛𝑦1 and 𝐷𝑛𝑦2, even the 

univariate models produce clear results with small amounts of error. The most powerful 

implementations of Bayesian models use multiple features where at least one feature has 

clearly separate distributions. To illustrate this effect, Table 8 displays a result from one 

of the damaged test points. The first row is the test point represented in Newtons. In the 

second row, each column represents the error in the Bayesian univariate posterior 

probability for 𝐷𝑛𝑦1, 𝐷𝑛𝑦2, and 𝐷𝑛𝑦3 respectively. The next row shows the error in the 
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multivariate posterior probability for a model with only 𝐷𝑛𝑦2, and 𝐷𝑛𝑦3 as features. The 

final row represents the error of the three feature model.  

 

Table 8: Three variable multivariate model, Dynamometer Y axis 

Test  

 𝐷𝑛𝑦1 𝐷𝑛𝑦2 𝐷𝑛𝑦3 

Damaged 

Test Point (Newtons) 

55.39  44.52 78.33 

Univariate Error 3.11e-133 1.27e-177 0.3607 

Multivariate Error (2 feature)  8.845e-178 

Multivariate Error (3 feature) 2.753e-310 

 

As was expected, the error from the univariate case is miniscule for variable 𝐷𝑛𝑦1 and 

𝐷𝑛𝑦2 while it is significant for 𝐷𝑛𝑦3. When moving to a multivariate case with both 𝐷𝑛𝑦2, 

and 𝐷𝑛𝑦3, the results of 8.845x10
-178

 are a small improvement over the univariate results 

of 1.27x10
-177

. This demonstrates that features with overlapping distributions are still a 

valuable asset to the Bayesian models to reduce error. Finally, with all three features in 

the model, an error of 2.753x10
-310

 is significantly lower than any of the univariate cases. 

By having multiple features with clearly separate distributions, the confidence in results 

is increased. This provides insight into the strong correlation between expected and actual 

results for the 17 and 5 feature models. Because there were multiple features with clearly 

separate distributions for each condition, the model was able to be accurate 100% of the 

time. 

To observe the effect of the increase in number of samples in the conditional database, 

error as a function of number of samples for the five feature model has been plotted in 
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Figure 33 below. The error value and range are plotted. For comparison, the results for 

the 3mm, 4mm, and 5mm radial depth of cut cases are all shown.  

 

 

Figure 33: Error as a function of number of samples for 3mm Radial Depth of Cut 

 

From the figure, it is seen that the error and spread is negligible regardless of the number 

of samples between 2-10 in each condition.  
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Figure 34: Error as a Function of Number of Samples for 4mm Radial Depth of Cut 

 

From the figure above, it is seen that for 4mm radial depth of cut, the error and spread 

decrease rapidly as the number of samples increase. When there are only two samples in 

each condition, the error reached the maximum of one even though the average error is 

only 8%. By four samples of data in each condition, both the average and range of the 

error are negligible.  
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Figure 35: Error as a Function of Number of Samples for 5mm Radial Depth of Cut 

 

Similar to Figure 33 Figure 35 shows that the error and spread are negligible for the 

number of samples of 2-10 in each condition of the condition database. From these three 

figures, it is suggested that the updating feature of the algorithm would produce accurate 

models after collection of 4-6 samples of data per condition when using the specified five 

variables for this experimental case. To better demonstrate the effects of model updating, 

a simulated approach was taken in the section “Effect of Model Updating.” 

4.2 SIMULATED IMPLEMENTATION 

The results of the simulated implementation are organized as follows. First the effect of 

overlapping distributions is discussed. Next the effect of model updating is presented. 

Finally, additional results are presented.  
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4.2.1 EFFECT OF OVERLAPPING DISTRIBUTIONS 

The results from testing the effect of overlapping distributions on multivariate Bayesian 

models are organized in Table 9 below. The results are also illustrated in Figure 36. In the 

first two columns of the table, the amount of distribution overlap is characterized by the 

distribution range overlap and the distribution area overlap. In the next three columns are 

the average value of the error, the standard deviation of the error, and the range of the 

error for each set of overlapping distributions. The final column is the % accuracy of the 

Bayesian model. Error and accuracy for these models are defined in section 3.4. 

 

Table 9: Effects of distribution Overlap for 3 Variable Bayesian Model 

Simulation: Effect of Distribution Overlap 

Distribution 

Range 

Overlap 

Distribution 

Area 

Overlap 

Average 

Error 

Standard 

Deviation 
Range Accuracy 

0.00% 0.00% 0.0000 0.0000 0.0000 1. 00 

8.33% 0.60% 0.0000 0.0000 0.0000 1. 00 

16.67% 1.24% 0.0000 0.0000 0.0001 1. 00 

25.00% 2.44% 0.0001 0.0051 0.2312 1. 00 

33.33% 4.55% 0.0006 0.0216 0.9462 .9995 

41.67% 8.01% 0.0021 0.0295 0.8956 .9990 

50.00% 13.36% 0.0091 0.0724 0.9993 .9936 

58.33% 21.13% 0.0366 0.1358 0.9867 .9721 

66.67% 31.73% 0.0816 0.1963 0.9998 .9387 

75.00% 45.33% 0.2029 0.2936 0.9991 .8260 
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Figure 36: Error vs. Percent of Distribution Range Overlap 

 

In Figure 36, the error bars represent the three sigma limits. As was shown in Figure 2, 

99.7% of data fall within the three sigma limits for Normally distributed data. The 

diamond represents the average error and the asterisk represents the maximum error 

observed from the test data sets. 

From Figure 36, it is seen that the maximum possible error begins to be of significance 

around 20-30% distribution range overlap (2-5% distribution area overlap). Also from the 

table and the figure, it is seen that the accuracy begins to quickly diminish as the overlaps 
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pass 50% distribution range overlap (13.36% distribution area overlap). This discussion 

continues in the next section while discussing the effects of model updating. 

4.2.2 EFFECT OF MODEL UPDATING 

The results from testing the effect of model updating on multivariate Bayesian models are 

summarized in Figure 37, Figure 38, Figure 39, and Figure 40. Each figure shows the 

error as a function of number of samples for a different % distribution area overlap. To 

view the figures for all ten distribution sets, please see Appendix A.  

As seen previously, the diamond represents the average error and the asterisk represents 

the maximum observed error. The error bars represent the 3 σ limits of the results.  

 

 

Figure 37: Error as a Function of Number of Samples: 0.00% Distribution Area Overlap 
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From Figure 37, it is seen that with 0% overlap, the error is minimal. The maximum error 

observed is less than 10−6 and in the majority of instances the error is less than 10−12. 

Although the error decreases as the number of samples increase, the error is never 

significant. Given what the average error is, the maximum observed error is also 

negligibly small. From a statistical perspective, these results are expected. 

 

 

Figure 38: Error as a Function of Number of Samples: 8.01% Distribution Area Overlap 
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As the overlap increases, the spread of error increases rapidly. Although the average error 

in the 8.01% case is still low (with a maximum average of 0.003) the range is drastically 

increased to between 0.70-0.94. This indicates that as overlap increases, uncertainty 

increases. As the number of samples in the conditional database increase, the standard 

deviation does not noticeably decrease and the range does not significantly decrease. 

Instead, as the number of samples increase, the mean error, standard deviation, and range 

begin to stabilize. 

 

 

Figure 39: Error as a Function of Number of Samples: 21.13% Distribution Area Overlap 
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Figure 40: Error as a Function of Number of Samples: 45.33% Distribution Area Overlap 

 

In Figure 39 and Figure 40, the trends identified in Figure 38 continue. For example, as 

the overlap increases, the spread continues to increase rapidly while the average error 

increases less rapidly. Also, as the number of samples increase, the error and range of 

error begin to stabilize.  

From the previous four figures it was seen that the models perform relatively consistently 

after having about 100 samples for each condition in the condition database. Putting all of 

the distributions together in a histogram better illustrates the effect of model updating on 

the multivariate Bayesian model regardless of the amount of distribution overlap. In the 
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histogram, the x axis is the number of samples in each condition from 0 to 200, the y axis 

is the percent distribution range overlap and the z axis is the average error.  

 

 

Figure 41: Histogram of Error as a Function of Number of Samples and Percent 

Distribution Range Overlap 

 

Figure 41 highlights that the variation in the average error observed when building up the 

model from 10 to 50 points, is more substantial as distribution overlap increases.  
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By changing the figure above from histogram to a mesh plot, and changing the x axis 

from a maximum of 200 samples in each condition, to 1000, it is easier to observe how 

the error stabilizes with increasing numbers of samples. From Figure 42 it is also clear 

that the amount of samples required for the error to stabilize is related to the amount of 

distribution overlap. The more overlap, the more samples needed for error to stabilize. 

Note, although the x,y, and z axis values are the same, the positive direction of the x axis 

has been reversed for clarity. 

 

  

Figure 42: Mesh Plot of Error as a Function of Number of Samples and Percent 

Distribution Range Overlap 
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4.2.3 ADDITIONAL RESULTS 

From the experimental data, it was seen that a single feature with clearly separate 

distributions severely reduces a multivariate Bayesian model’s error (Table 8). To better 

view this effect, the testing for the effect of number of samples and percent distribution 

overlap on error (Figure 41) was repeated with each model having an additional feature 

that had clearly separate distributions. The results are shown in Figure 43. 

 

 

Figure 43: Histogram of Error as a Function of Number of Samples and Percent 

Distribution Range Overlap When Feature with Zero Overlap is Added to Model 
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Figure 43 illustrates how a single feature with clearly separate distributions significantly 

reduces the error regardless of the amount of distribution overlap of the majority of the 

features in the model. Figure 43 is plotted with the same axis limits as Figure 41 (case 

without additional zero overlap feature) to enable comparison. Figure 44 has the z axis 

limits such that one can distinguish variations between the data sets.  

 

Figure 44: Close up of Histogram of Error as a Function of Number of Samples and 

Percent Distribution Range Overlap When Feature with Zero Overlap is Added to Model 
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From Figure 44 it is seen that the larger the amount of distribution overlap of the majority 

of the features in the model, the higher the error is.  

When making measurements, it is common practice to take multiple measurements of the 

same feature and use the average of the result in order to reduce uncertainty. For 

example, when extracting the magnitude of FFT peaks from accelerometer or 

Dynamometer data, it was chosen to take the average of 10 FFT peaks instead of using 

just one. Instead of averaging the result, one can also use each measurement as an 

individual feature. The effect of using multiple instances of the same feature is tested in 

the same way to testing the effect of using multiple features because each repeated test of 

a feature was treated as an independent feature in the Bayesian model (clearly violating 

the assumption of conditional independence). The test was performed from 1-9 features 

with the same range of distribution overlaps as defined in the methods section. The 

results are illustrated in Figure 45. Percent distribution range overlap is plotted on the x 

axis, number of features is plotted on the y axis, and average error is plotted on the z axis. 
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Figure 45: Effect of Number of Features and Distribution Overlap on Error 

 

From Figure 45 it is seen that the number of data instances or features needed to cut 

through the uncertainty resulting from the distribution overlap, is related to the amount of 

distribution overlap present. For example, if there is a feature with about 41% distribution 

range overlap, the figure suggests that gathering 3 data points are enough to provide a 

clear result from the Bayesian model. If on the other hand, one has a feature with 0% 

distribution range overlap, a single measurement of that feature is enough to provide clear 

results.   
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  CONCLUSIONS AND RECOMMENDATIONS 5

This thesis demonstrates a general Bayesian approach for manufacturing equipment 

diagnostics using sensor fusion. To accomplish this, a method to build and implement 

Bayesian models is formulated and then demonstrated via an experimental case. Classical 

limitations during model building and model use are explored by discovering the effects 

of model updating, the effects of the quantity of signal features used to build the models, 

and the effects of distribution overlap.  

In this thesis, models are built from conditional and non-conditional probabilities that are 

related to features and conditions of a machine tool. Conditions represent the state of the 

machine tool, such as broken tool or chipped insert. Features are indicators extracted 

from sensor data that are used to determine the most probable condition of the machine 

tool. A feature has a unique distribution for each condition of the tool. For example, if a 

feature is the average value of power consumption during a cutting operation, Pm, and 

there are two conditions: damaged tool and healthy tool, then there is a probability 

density function (PDF) representing the distribution of Pm when the machine tool is 

damaged (damaged PDF) and a PDF representing the distribution of Pm when the 

machine tool is healthy (healthy PDF). The PDFs are built from distribution 

characteristics that are extracted from historical data stored in a condition database. 

Model updating is the process of adding additional data to the condition database and re-

extracting the distribution characteristics. Studying the effect of model updating is 

studying the effect of the quantity of historical data stored in the condition database. 

Distribution overlap is defined as the overlap in the PDF distributions that represent the 

conditions for a single feature (i.e. the area or range overlap of the healthy PDF with
 
the 
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damaged PDF for the feature Pm). A large overlap of these distributions makes it difficult 

to probabilistically distinguish between machine conditions using the specific feature. 

Studying the effect of distribution overlap is studying the effects of distribution overlap 

on Bayesian model error and investigating methods to reduce this error when large 

distribution overlap is present. Finally, the quantity of signal features used to build the 

models is the number of extracted features from sensor data that is used as indicators of 

machine state in the model. Studying the effects of the quantity of signal features used to 

build the model is studying the effect of having more or less signal features in the 

Bayesian model.  

5.1 CONCLUSIONS 

To implement a Bayesian model, a two phase approach is employed to separate the 

model development and the system development of phase 1 from the functional phase 2. 

The main tasks of phase 1 are: to discover signal features that correlate to the machine 

state, to standardize data acquisition, data processing, and feature extraction methods to 

be used in phase 2, to build a condition database, and to build the Bayesian models. For 

phase 1, the equation used to build the Bayesian model is represented in equation (50). 

𝑃(𝐶𝑖|𝑑) =
𝑃(𝐶𝑖) ∏ 𝑃(𝐹𝑗|𝐶𝑖)𝑚

𝑗=1

∑ 𝑃(𝐶𝑖) ∏ 𝑃(𝐹𝑗|C𝑖)𝑚
𝑗=1

𝑛
𝑖=1

 

where Ci represents condition i, 𝑑 represents a vector of features, Fj represents a feature j, 

n represents the total number of conditions, and m represents the total number of features. 

The output of the model, 𝑃(𝐶𝑖|𝑑), represents the probability of the machine tool being in state 

Ci given the extracted information 𝑑. 
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A method to find signal features that correlate to the state of the machine tool for use in 

the Bayesian models is to exploit the physics of the machining operation. The main tasks 

of the functional phase 2 are to employ the models to aid decision making on the 

manufacturing floor and to update the models when new data are classified. To update 

the models while in phase 2, the additional data are concatenated to the appropriate 

location in the conditional database. The feature distribution characteristics for the 

Bayesian model are then re-extracted. This two phase process is represented by the flow 

chart illustrated in Figure 10: The phase one and the phase two of proposed method.  

The purpose of the experimental case is to demonstrate the steps taken to implement both 

phases and perform model building. Two models, a 17 feature and a 5 feature model, are 

built and tested. The 17 feature model is resultant from four distinct sensors: a MEMS 

accelerometer, a piezoelectric accelerometer, a dynamometer, and a power meter. The 5 

feature model is resultant from two sensors: a MEMS Accelerometer and Power Meter. 

Both the 17 feature and the 5 feature model are accurate for 100% of the trials. These 

results are verified with k-fold cross validation. Due to the nature of the experimental 

case, taking a Bayesian approach does not add significant information to the model. As 

such, a simulated approach is exploited to better illustrate the classical limitations of 

building and applying the Bayesian models. 

The effects of model updating are tested by determining the effect of quantity of data in 

the condition database. The amount of data in the condition database does not affect the 

mean or spread of model error, however, it does stabilize the magnitude of error 

observed. In the simulated test cases, it takes about 50-100 instances of data in the 

condition database for most results to converge. Nevertheless, the amount of data needed 
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in the condition database to stabilize the error is dependent on the amount of distribution 

overlap present. Generally, the less distribution overlap present, the less data is needed in 

the condition database. For example, for a distribution range overlap of about 30% for all 

features in a three feature model, only 30 instances of data are needed for consistent 

results. On the hand, for a distribution range overlap of about 60% for the same model, 

140 instances of data are needed for consistent results. If there is at least one feature with 

clearly separate distributions in the multivariate model, simulated results demonstrate that 

the results become consistent within 10 samples per condition in the condition database. 

In the experimental case, there were a number of features with clearly separate 

distributions, thus results converged in 4-6 samples per condition. 

From the simulated testing the general effects of distribution overlap on Bayesian model 

performance are analyzed. Model error increases as distribution overlap increases. To 

illustrate, when all features of a three feature model have distribution area overlap of 

8.01%, the average error is 0.002. If all features of a three feature model have a 

distribution area overlap of 31.73%, the average error is 0.08. Increasing the number of 

features in the Bayesian models or increasing the number of samples input into the model 

is a method to decrease the error in the presence of distribution overlap. This is illustrated 

in Figure 45: Effect of Number of Features and Distribution Overlap on Error.  

If there is a single feature with no distribution overlap in the multivariate model, the error 

is diminished to negligible amounts. For instance, when a single feature with 0.0% 

distribution overlap is added to the multivariate model whose features have distribution 

area overlaps of 31.73%, the average error decreases from 0.08 to less than 2x10
-4

. This 

effect is clearly observed when comparing Figure 41: Histogram of Error as a Function of 
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Number of Samples and Percent Distribution Range Overlap and Figure 43: Histogram of 

Error as a Function of Number of Samples and Percent Distribution Range Overlap When 

Feature with Zero Overlap is Added to Model. 

5.2 RECOMMENDATIONS  

As the training and trial data for model testing were both sourced from the same 

population, further research should explore the consequences of model updating if the 

sample distributions are different than the population distribution, if the population 

distribution is shifting, or if the population distribution is unknown. Outside of simulated 

testing, further research should explore if model updating in phase 2 allows the models to 

better represent the stochastic nature of some manufacturing operations on the 

manufacturing floor. Another opportunity for experimental exploration is using the 

updating method to completely build the Bayesian models while the machines are 

operating. Although the updating feature was developed to update the models, this could 

be used to capture data that occurs at low frequencies such as tool failure or machine 

crash. For example, presently there are no data driven Bayesian models of CNC machine 

crash. However, when machine crashes occur in the field, a model could be built using 

the sparse amount of data available. If and when another crash occurs, model updating 

can be used to further develop the model. Finally, a logical next step is to investigate a 

general approach to develop and implement Bayesian models that can relate the features 

over adjacent time steps. In other words, develop general dynamic Bayesian models 

instead of Naïve Bayesian models. 
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APPENDIX A 
 

 

Figure 46: Simulated Distributions, 0% Area Overlap 

 

 

Figure 47: Simulated Distributions, 0.60% Area Overlap 
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Figure 48: Close Up Simulated Distributions, 0.60% Area Overlap 

 

 

Figure 49: Simulated Distributions, 1.24% Area Overlap 
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Figure 50: Simulated Distributions, 2.44% Area Overlap 

 

 

Figure 51: Simulated Distributions, 4.55% Area Overlap 
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Figure 52: Simulated Distributions, 8.01% Area Overlap 

 

 

Figure 53: Simulated Distributions, 13.36% Area Overlap 
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Figure 54: Simulated Distributions, 21.13% Area Overlap 

 

 

Figure 55: Simulated Distributions, 31.73% Area Overlap 

 



 

107 

 

 

Figure 56: Simulated Distributions, 45.33% Area Overlap 

 

 

Figure 57: Error as a Function of Number of Samples: 0.0% Distribution Area Overlap 
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Figure 58: Error as a Function of Number of Samples: 0.60% Distribution Area Overlap 

 

 

Figure 59: Close Up Error as a Function of Number of Samples: 0.60% Distribution Area 

Overlap 
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Figure 60: Error as a Function of Number of Samples: 1.24% Distribution Area Overlap 

 

 

Figure 61: Close Up Error as a Function of Number of Samples: 1.24% Distribution Area 

Overlap 
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Figure 62: Error as a Function of Number of Samples: 2.44% Distribution Area Overlap 

 

 

Figure 63: Error as a Function of Number of Samples: 4.55% Distribution Area Overlap 
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Figure 64: Error as a Function of Number of Samples: 8.01% Distribution Area Overlap 

 

 

Figure 65: Error as a Function of Number of Samples: 13.36% Distribution Area Overlap 

 



 

112 

 

 

Figure 66: Error as a Function of Number of Samples: 21.13% Distribution Area Overlap 

 

 

Figure 67: Error as a Function of Number of Samples: 31.37% Distribution Area Overlap 
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Figure 68: Error as a Function of Number of Samples: 45.33% Distribution Area Overlap 
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APPENDIX B 

function [peak1,peak2,peak3]=PeakFinder(fft,RPM,fftRes)  
%inputs: fft = NORMALIZED FFT, RPM= rpm of spindle, fftRes= the FFT 
resolution 

  
ff=RPM/60; %fundamental shaft frequency in Hz 
 %% Calculate value of fundametal peak (aka 1st multiple) 
ll=(ff-2)/fftRes;%lower limit bin to look in 
ul=(ff+2)/fftRes;%upper limit bin to look in  
ff_max1=max(abs(fft(ll:ul))); %max peak found in area where we expect 

to see fundamental peak 
%% Calculate value of the 1st harmonic (aka 2nd multiple) peak  
ff2=ff*2; 
ll2=(ff2-5)/fftRes;%lower limit bin to look in 
ul2=(ff2+5)/fftRes;%upper limit bin to look in  
ff_max2=max(abs(fft(ll2:ul2))); %max peak found in area where we expect 

to see @ 2*fundamental peak 
%% Calculate the value of the 2nd harmonic (aka 3rd multiple) peak 
ff3=ff*3; 
ll3=(ff3-5)/fftRes;%lower limit bin to look in 
ul3=(ff3+5)/fftRes;%upper limit bin to look in  
ff_max3=max(abs(fft(ll3:ul3))); %max peak found in area where we expect 

to see @ 3*fundamental peak 

  
peak1=ff_max1; 
peak2=ff_max2; 
peak3=ff_max3; 
end 

Figure 69: MATLAB Code for FFT Peak Extraction 

 

function PosteriorP=BuildBayes(CDatabase_H,CDatabase_D,testData,prior) 

  
[numSets,feats]=size(testData); %feats= the # of features 
PosteriorP=zeros(numSets,2); %numSets = the # of test data sets, each 

set = 1 d vector   

  
%extract databse features 
means_H=mean(CDatabase_H); 
means_D=mean(CDatabase_D); 

  
std_H=std(CDatabase_H); 
std_D=std(CDatabase_D); 

  
likelihoodH=zeros(numSets,feats);%set up variables to store likelihood 

probabilities 
likelihoodD=zeros(numSets,feats); 
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for i=1:numSets 
        %get the likelihoods of healthy condition 
     likelihoodH(i,:)=normpdf(testData(i,:),means_H,std_H); 

        
       %get likelihoods of damaged condition 
      likelihoodD(i,:)=normpdf(testData(i,:),means_D,std_D); 

        
    %compute the posterior probabilities 
    PosteriorP(i,1)=(prior(1)*prod(likelihoodH(i,:)))/... 
        

(prior(1)*prod(likelihoodH(i,:))+prior(2)*prod(likelihoodD(i,:))); 
    PosteriorP(i,2)=(prior(2)*prod(likelihoodD(i,:)))/... 
        

(prior(1)*prod(likelihoodH(i,:))+prior(2)*prod(likelihoodD(i,:)));     
end 
format long e 
end 

Figure 70: MATLAB Function for Bayesian Model for Experimental Case 

 

clear 
load('simulationData.mat') 
prior=[.90,.10]; %the prior probabilities for condition 1 and condition 

2 
c1=m10; %condition one 
c2=m13; %change for each distribution being tested, this is condition 2 
[numSam,numEl]=size(c1); %numSam= number of samples, numEl= number of 

elements 
xInc=10; %x value increment, aka number of points  
fold=20; %number of samples per fold 
numXpoints=(numSam-fold)/xInc; %how many x points there are 
Kfold=numSam/fold; %Kfold is number of folds for testing in cross 

validation 

  
Ep_c1=zeros(numSam-fold,numXpoints);%for error values with test data 

from C1 
Ep_c2=zeros(numSam-fold,numXpoints);%for error values with test data 

from C2 

  
h=0; %counter for number of points in conditional database 
for j=1:numXpoints 
c=1; %counter for folds 
for i=1:Kfold 
    c1hold=c1; %save conditions 
    c2hold=c2; 
    c1hold(c:c+fold-1,:)=[]; %take out test data 
    c2hold(c:c+fold-1,:)=[]; 
    c1hold=c1hold(1:numSam-fold-h,:); %reduce num of points for graph 
    c2hold=c2hold(1:numSam-fold-h,:); 
    Post=BuildBayes(c1hold,c2hold,c1(c:c+fold-1,:),prior); %note: here 

we test c1 data 
    Ep_c1(c:c+fold-1,j)=Post(:,2); 
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    c=c+fold; 
end 
h=h+xInc; %decrease number of points in conditional database by xInc 
end 

  
h=0; 
for j=1:numXpoints 
c=1; 
for i=1:Kfold 
    c1hold=c1; %save conditions 
    c2hold=c2; 
    c1hold(c:c+fold-1,:)=[]; %take out test data 
    c2hold(c:c+fold-1,:)=[]; 
    c1hold=c1hold(1:numSam-fold-h,:); %reduce num of points for graph 
    c2hold=c2hold(1:numSam-fold-h,:); 
    Post=BuildBayes(c1hold,c2hold,c2(c:c+fold-1,:),prior); %note: here 

we test C2 data 
    Ep_c2(c:c+fold-1,j)=Post(:,1); 
    c=c+fold; 
end 
h=h+xInc; 
end 

 
x=(xInc:xInc:numSam-fold); 
x=fliplr(x); 
full=[Ep_c1; Ep_c2]; 
means=mean(full); 
upper=3*std(full)-means; 
lower=means-min(full); 
errorbar(x(:,50:100),means(:,50:100),lower(:,50:100),upper(:,50:100),'d

') 
hold on 
plot(x(:,50:100),max(full(:,50:100)),'r*') 
hold off 
title({'Error as a Function of Number of Samples: Simulated Case';... 
    '13.36% Distribution Area 

Overlap'},'fontweight','bold','fontsize',14) 
xlabel({'Number of Samples in Each Condition';''},'fontsize',12) 
ylabel('Error','fontsize',12) 
ylim([0,1]) 
xlim([0,500]) 
legend('Average Error','Maximum Error','Location','SouthOutside') 

Figure 71: Code for Kfold Cross Validation and Effect of Number of Points 

 

function 

PosteriorP=BuildBayes(CDatabase_C1,CDatabase_C2,testData,prior) 

  
[numSets,feats]=size(testData); %feats= the # of features 
PosteriorP=zeros(numSets,2); %numSets = the # of test data sets, each 

set = 1 d vector   
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%extract databse features 
means_c1=mean(CDatabase_C1); 
means_c2=mean(CDatabase_C2); 

  
std_c1=std(CDatabase_C1); 
std_c2=std(CDatabase_C2); 

  
likelihoodC1=zeros(numSets,feats);%set up variables to store likelihood 

probabilities 
likelihoodC2=zeros(numSets,feats); 

  
for i=1:numSets 
        %get the likelihoods of C1 
     likelihoodC1(i,:)=normpdf(testData(i,:),means_c1,std_c1); 

        
       %get likelihoods of C2 
      likelihoodC2(i,:)=normpdf(testData(i,:),means_c2,std_c2); 

        
    %compute the posterior probabilities 
    PosteriorP(i,1)=(prior(1)*prod(likelihoodC1(i,:)))/... 
        

(prior(1)*prod(likelihoodC1(i,:))+prior(2)*prod(likelihoodC2(i,:))); 
    PosteriorP(i,2)=(prior(2)*prod(likelihoodC2(i,:)))/... 
        

(prior(1)*prod(likelihoodC1(i,:))+prior(2)*prod(likelihoodC2(i,:)));     
end 
format long e 
end 

Figure 72: General Code for Bayesian Model 

 

%%build structure 3mm case 
rdoc3=struct('accelP',[],'accelM',[],'dyno',[],'power',[],'MTC',[]); 

  
% set up accelP structure 
rdoc3.accelP=struct('h',[],'d',[]); 
rdoc3.accelP.h=struct('peaks',[],'mean',[],'std',[]); 
rdoc3.accelP.d=struct('peaks',[],'mean',[],'std',[]); 

  
% set up accelM structure 
rdoc3.accelM=struct('h',[],'d',[]); 
rdoc3.accelM.h=struct('peaks',[],'mean',[],'std',[]); 
rdoc3.accelM.d=struct('peaks',[],'mean',[],'std',[]); 
% set up dyno structure 
rdoc3.dyno=struct('h',[],'d',[]); 
rdoc3.dyno.h=struct('peaks',[],'mean',[],'std',[]); 
rdoc3.dyno.d=struct('peaks',[],'mean',[],'std',[]); 
% set up power structure 
rdoc3.power=struct('h',[],'d',[]); 
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rdoc3.power.h=struct('avgsSpread',[],'mean',[],'std',[]); 
rdoc3.power.d=struct('avgsSpread',[],'mean',[],'std',[]); 
% set up MTConnect structure 
%currently leaving empty since data is not conclusive 

  
% end 3mm case 

  
%% 4mm case 

  
rdoc4=struct('accelP',[],'accelM',[],'dyno',[],'power',[],'MTC',[]); 

  
% set up accelP structure 
rdoc4.accelP=struct('h',[],'d',[]); 
rdoc4.accelP.h=struct('peaks',[],'mean',[],'std',[]); 
rdoc4.accelP.d=struct('peaks',[],'mean',[],'std',[]); 

  
% set up accelM structure 
rdoc4.accelM=struct('h',[],'d',[]); 
rdoc4.accelM.h=struct('peaks',[],'mean',[],'std',[]); 
rdoc4.accelM.d=struct('peaks',[],'mean',[],'std',[]); 
% set up dyno structure 
rdoc4.dyno=struct('h',[],'d',[]); 
rdoc4.dyno.h=struct('peaks',[],'mean',[],'std',[]); 
rdoc4.dyno.d=struct('peaks',[],'mean',[],'std',[]); 
% set up power structure 
rdoc4.power=struct('h',[],'d',[]); 
rdoc4.power.h=struct('avgsSpread',[],'mean',[],'std',[]); 
rdoc4.power.d=struct('avgsSpread',[],'mean',[],'std',[]); 
% set up MTConnect structure 
%currently leaving empty since data is not conclusive 

  
% end 4 mm case 

  
%% 5mm case 

  
rdoc5=struct('accelP',[],'accelM',[],'dyno',[],'power',[],'MTC',[]); 

  
% set up accelP structure 
rdoc5.accelP=struct('h',[],'d',[]); 
rdoc5.accelP.h=struct('peaks',[],'mean',[],'std',[]); 
rdoc5.accelP.d=struct('peaks',[],'mean',[],'std',[]); 

  
% set up accelM structure 
rdoc5.accelM=struct('h',[],'d',[]); 
rdoc5.accelM.h=struct('peaks',[],'mean',[],'std',[]); 
rdoc5.accelM.d=struct('peaks',[],'mean',[],'std',[]); 
% set up dyno structure 
rdoc5.dyno=struct('h',[],'d',[]); 
rdoc5.dyno.h=struct('peaks',[],'mean',[],'std',[]); 
rdoc5.dyno.d=struct('peaks',[],'mean',[],'std',[]); 
% set up power structure 
rdoc5.power=struct('h',[],'d',[]); 
rdoc5.power.h=struct('avgsSpread',[],'mean',[],'std',[]); 
rdoc5.power.d=struct('avgsSpread',[],'mean',[],'std',[]); 
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% set up MTConnect structure 
%currently leaving empty since data is not conclusive 
% end 5mm case 

  
save('E2_analysis_structs') 

Figure 73: Code Used to Create Condition Database Structures in MATLAB for 

Experimental Case 
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