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Chapter 1 - Introduction 

 

 

 Dual-energy CT (DECT) was first introduced in 1976 by Alvarez and Macovski[1]. 

The main advantage offered by DECT comes from the ability to distinguish materials 

within an image through a process known as material decomposition. Material 

decomposition in diagnostic imaging is based on the fact that there are two primary 

mechanisms of photon interaction with matter in the diagnostic energy range, photoelectric 

effect and Compton scattering. The object contained within the image can ben be broken 

down into materials based on its method of interaction with photons. 

 Material decomposition has created wide clinical applications for dual-energy 

imaging, including iodine quantification[2, 3], kidney stone characterization[4-6], virtual 

monochromatic imaging[7-9], lung perfusion/ventilation studies[10], virtual non-enhanced 

imaging[11-13], aortic pathologies[14], diagnosis of pulmonary emboli[15], and 

neurological and cerebral vascular imaging[16, 17]. 

 Although DECT has found applications in diagnostics, it is fundamentally limited 

by significant noise amplification, leading to degradation of the signal-to-noise ratio[18-

21]. Noise suppression methods, both general to all of image processing and specific to 

DECT, have been explored. Many of the existing methods achieve acceptable noise 

suppression, however they typically lead to decreases in accuracy, poor image quality, or 

loss of spatial resolution. The intention of this research is to develop a noise suppression 

method which not only reduces noise, but preserves image quality and spatial resolution. 

We will present a background discussing noise characteristics in CT imaging and specific 
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to DECT, current noise suppression methods, and then present the formulation of our noise 

suppression algorithm accompanied by phantom and patient results. 
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Chapter 2 - Background 

 

2.1 Concept of Basis Material Decomposition 

 

Material decomposition is based on the fact that in the diagnostic energy range there 

are two primary mechanisms of photon interaction with matter, i.e., photoelectric 

absorption and Compton scattering, and the linear attenuation coefficient is a summation 

of the probabilities of these interactions. These mechanisms of interaction are governed by 

known functions which are dependent on both the material’s atomic number and the 

photon’s energy. Fig. 1 shows the probability of each interaction, along with coherent 

scattering (which can be ignored in the diagnostic energy range), for water and iodine. Fig. 

2 shows the total mass attenuation coefficient (linear attenuation coefficient divided by 

material density) for various materials. In material decomposition, this information is used 

to determine the material composition based on attenuation properties at the two different 

energy-levels. The material images produced by this process represent the relative fraction 

of two different materials, typically a bone-like (highly attenuating) and tissue-like 

(moderately attenuating) material. This material differentiation is the main advantage of 

DECT.  
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Figure 1. Mass attenuation coefficient for each interaction mechanism (i.e. Compton 

effect, photoelectric absorption, and coherent scattering) for water and iodine[22]. 

 

 

 

Figure 2. Mass attenuation coefficient for various materials in the diagnostic energy 

range[23]. 
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2.2 Applications of DECT 

 

Material decomposition is commonly used in determination of the composition of 

kidney stones. Kidney stones can be composed of different materials, namely uric-aced 

based or non-uric based, and these compositions can provide information on the underlying 

cause of the kidney stone. With conventional CT, the difference between attenuation 

coefficient between uric acid-based stones and non-uric acid-based stones is too small to 

determine the composition of the stone. However, with dual-energy CT this becomes 

possible based on the varying attenuation properties of the different stones. CT values in 

Hounsfield units (HU)for the different stones at low and high energies are plotted in Fig. 

3. Hounsfield units are the common clinical unit for CT value, and are formulated as: 

 
𝐻𝑈 =  

(𝜇𝑥 − 𝜇𝑤)

𝜇𝑤
× 1000 (1) 

where 𝜇𝑥 is the linear attenuation coefficient of material x, and 𝜇𝑤 is the linear attenuation 

coefficient of water. If the stone in question falls below the midline separating a “pure” 

uric acid stone and a “pure” non-uric acid stone, as the hollow circle does, it is labelled as 

an uric acid stone. Examples of kidney stone composition differentiation are shown in Figs. 

4 and 5. 
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Figure 3. CT value of uric acid stones and non-uric acid kidney stones[4]. 

 

 

 

 

Figure 4. Example of several kidney stones of various chemical compositions inserted 

into porcine kidneys. Red indicates the presence of uric acid (UA) while blue indicates a 

lack of uric acid (non-UA)[4]. 
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Figure 5. Clinical application of kidney stone characterization. In the CT image (left), the 

stone is indistinguishable from bone, while the material image (right) superimposed on 

the CT image shows that the bone and the stone are different materials[24]. 

 

  

Dual-energy CT can also be used to make virtual monochromatic images which are 

free from beam-hardening, as shown in Fig. 6. These are created much in the same manner 

as electron density images (section 3.5), with attenuation coefficient of each material (at 

the energy of the monochromatic image) replacing the electron density shown in Eqn. 

(18)[9].  

 

 

Figure 6. (a) water density image, (b) iodine density image, and (c) monochromatic 

image at 75 keV[9]. 



 8 

 Additionally, DECT has found implications in perfusion studies of the lungs[10]. 

In this case, the patient’s blood vessels are injected with iodine. In material decomposition, 

an iodine map is created then superimposed on the CT image for localization. These studies 

are used in diagnosis of pulmonary emboli. The images are compared to SPECT/CT 

studies, and are shown in Fig. 7. DECT yields a great clinical advantage in this scenario 

because of the superior spatial resolution of CT compared to SPECT. 

 

 

 

Figure 7. SPECT/CT fused perfusion image (a) and DECT fused image/iodine map of a 

patient with perfusion defect in the right lower lobe[10].  
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2.3 Dual-energy CT Scanners 

 

 Although DECT was first proposed in 1976, it was not widely implemented until 

recent years due to limits in CT scanner technology. Three scanner designs are currently 

being produced for clinical use. 

 The first type of scanner, the Siemens SOMATOM Definition Flash, is a 64-slice 

(or 128-slice) dual-source CT which consists of two x-ray tubes, offset by 90 degrees, 

operated simultaneously at two different tube voltages, and two detectors. As image noise 

is dependent on the number of photons which reach each detector pixel, and low-energy 

photons are preferentially absorbed in the object, the low-energy image will have higher 

noise levels than the high-energy image. The SOMATOM Definition accounts for this 

phenomena by adjusting the current in each tube so that the lower energy beam contains 

more photons, allowing for matching noise levels on each CT image. The main feature of 

this system is speed, having a rotation time of 0.33s compared with 0.5s or 1.0s on other 

64-slice scanners[25]. This faster rotation time and increased temporal resolution make the 

SOMATOM ideal for cardiac imaging in addition to other dual-energy applications.  

However, the dual-source design has a few drawbacks. Due to limited space in the 

gantry, one detector has to be smaller than the other, producing two different field sizes, as 

seen in Figs. 8 and 9. The small field-of-view makes applications through thicker parts of 

the patient, such as the pelvis, limited, especially for larger patients. This has partially been 

accounted for by using the information from the larger field to extrapolate rays to the 

smaller field[25], however this is not a perfect solution. Additionally the dual-source 

method induces a large amount of cross-scatter. Since both beams are on at the same time, 
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photons from beam A can be scattered into detector B, and vice versa. The effect decreases 

the contrast-to-noise ratio (CNR), and can lead to an offset ranging from 35 to 188 HU[26]. 

 

 

 

Figure 8. Cross-section of Siemens SOMATOM Definition Flash dual-source CT 

scanner.  ***** make [28] in plain text version 
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Figure 9. Siemens SOMATOM Definition Flash dual-source CT scanner with gantry 

housing removed. 

 

 

GE’s clinical dual-energy CT scanner, the Revolution HD, uses only one x-ray 

source, and changes the tube voltage in between projections, as depicted in Fig. 10. By 

alternating rapidly from 80 kVp to 140 kVp, this machine acquires the low and high energy 

projections with much better temporal resolution than the dual-source machines, reducing 

the time between projections from 75 ms to 0.3-0.5 ms[27]. Additionally, projections can 

be more easily angularly matched because of the smaller separation between them. This 

matching makes projection-domain decomposition more easily implementable than on 

dual-source CT scanners. This also allows for full field-of-view for both energies and 

eliminates the cross-scatter problems that arise from the dual-source scanner. However, 

while the Revolution HD alleviates some of the problems of the SOMATOM scanners, it 

induces some of its own issues. The ideal waveform for the energy switching would be a 
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square wave, with the tube current jumping exactly from 80 kVp to 140 kVp and vice versa. 

In reality, the voltage follows a more sinusoidal wave, with effective tube energies 

climbing and dropping imperfectly[28]. This leads to larger amounts of spectral overlap 

than are present on the dual-source CT, which can lead to higher levels of noise 

amplification in material decomposition[18]. Additionally, the tube current cannot be 

modulated in between projections, leading to noisier low-energy images.  

 

 

 

Figure 10. Fast-kVp switching CT scanner[29]. 

  

 

The Phillips solution to the problem of DECT acquisition is a dual-layer 

“sandwich” detector, the IQon spectral CT scanner. This detector consists of two detecting 

layers stacked on top of each other, with the top layer, an yttrium-based scintillator, 

designed to be sensitive to low-energy photons and the bottom layer, a GOS scintillator, 
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designed to be sensitive to high-energy photons. There are a few advantages to this 

approach. First, it has zero spectral overlap; acquisition is of only one spectrum with the 

low energy photons being absorbed in the first detector and the high energy photons being 

absorbed in the second detector. Additionally, it allows for perfect angular matching of 

projections since the high and low-energy detectors are in the exact same positions[30]. 

However, this also method also induces a noise problem because of each detector 

effectively sees half of the beam, and fewer photons are detected in each detector. 

 

 

 

Figure 11. Phillips dual-layer CT detector design, with the scanner shown in the 

background. 
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All of these clinical solutions offer a means to wider clinical implementation of 

dual-energy CT. Although they all bring different advantages and disadvantages, they all 

introduce a problem relating to noise. When coupling this additional noise with the 

significant noise amplification inherent of the material decomposition process, it becomes 

apparent that noise reduction methods are needed. It is this need for noise reduction in 

DECT that has primarily motivated this research. While hardware modifications could help 

with noise reduction, we choose to investigate a software-based approach that could be 

implemented on all three of the scanners. 

 

2.4 Formulation of Basis Material Decomposition 

 

Decomposition can be carried out in either the projection domain[1, 21, 31-33] or 

the image domain[19, 34, 35]. In projection domain decomposition, the measured 

projections are converted into line integrals of the basis materials using a non-linear 

model[1, 34, 36]. Reconstruction of basis material images is then carried out using these 

line integrals. Decomposition in the projection domain has the advantage of being able to 

correct for beam-hardening artifacts[1, 33]. However, this requires raw projection data 

which may not be readily available from a clinical CT scanner as many clinical scanners 

generate only the reconstructed CT images[7]. Additionally, projection-domain 

decomposition requires exact angular matching of the projections, which may be difficult 

on dual-source CT scanners[37]. This research focuses on image-domain decomposition, 

which is readily implementable on different CT scanners as a post-reconstruction 

procedure.  
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The fundamental limitation of quantitative DECT is significant noise amplification 

during the decomposition process and thus a decrease in signal-to-noise ratio.  

 Image-domain decomposition operates under the assumption that the linear 

attenuation coefficient is approximated by a linear combination of two basis functions. We 

can assume that position of the objects within the high and low energy images are constant, 

and thus each pixel will have two values for attenuation coefficient. The formulation of 

material decomposition is as follows: 

 �⃗� = 𝐴�⃗� (2) 

or, 

 
(

�⃗�𝐻

�⃗�𝐿
) = (

𝜇1𝐻𝐼 𝜇2𝐻𝐼
𝜇1𝐿𝐼 𝜇2𝐿𝐼

) (
�⃗�1

�⃗�2
) 

(3) 

where �⃗�𝐻 and �⃗�𝐿 are the vectorized high and low energy images, each of length N, the total 

number of image pixels, and �⃗�1 and �⃗�2 are the unitless basis material images, containing 

the relative fractions of each material, and also of length N. 𝜇1𝐻 , 𝜇2𝐻 , 𝜇1𝐿 , 𝜇2𝐿  are the 

linear attenuation coefficients of materials 1 and 2 at high and low energies, and 𝐼 is an N-

by-N identity matrix. Solving for �⃗� yields the direct decomposition: 

 �⃗� = 𝐴−1�⃗� (4) 

where 𝐴−1 is the decomposition matrix and is defined as: 

 
𝐴−1 =  

1

det (𝐴)
(

𝜇2𝐿𝐼 −𝜇2𝐻𝐼
−𝜇1𝐿𝐼 𝜇1𝐻𝐼

) (5) 

In the diagnostic energy range, the low and high energy spectra have great amounts 

of overlap. This means there is a relatively small difference in the attenuation coefficients 

at low and high energies, leading to a high condition number on the composition matrix A. 

Because of this, direct decomposition significantly amplifies noise[18]. As such, the 
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decomposition is very sensitive to noise on the initial CT images and material images can 

be difficult to interpret without noise suppression. 

 

2.4.1 Noise Amplification in DECT 

 

 A characteristic of the bremsstrahlung photon beams used in CT is a continuous 

spectrum which is shifted to lower energies, with the peak typically at E0/3, where E0 is the 

max photon energy. This leads to large amounts of overlap between photon spectra even 

at different energies, shown in Fig. 12 for 75 kVp and 125 kVp spectra. Because the mean 

energies of beams are not highly different, the measured attenuation coefficient values of 

the low and high energy images are close in value, leading to a high condition number on 

the composition matrix A. Petrongolo et al used singular value decomposition to show that 

the condition number of A is proportional to the degree of noise amplification[18]. 

Additionally, because of the formulation of decomposition via matrix inversion, each 

material image will carry the sum of the noise variances of each CT image, and the signal 

within decomposed images becomes (𝜇𝐻𝜇2𝐿 −  𝜇𝐿𝜇2𝐻) or (−𝜇𝐻𝜇1𝐿 +  𝜇𝐿𝜇1𝐻). This leads 

to large signal cancellation, which, when coupled with summation of noise variances, 

results in a noise boost. 
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Figure 12. Spectra of 75 kVp and 125 kVp x-ray beams with 6 mm Al filtration. 
 

 

 

2.5 Noise Power Spectrum 

 

The standard deviation (STD) or variance of pixel values is commonly used to 

quantify the noise level of the image. While these quantities allow for comparisons of the 

amount of noise present in an image, they reveal no information about the noise 

characteristics. Boedeker et al showed that even in images with the same noise STD, the 

detectability of lesions can be vastly different[38, 39], as shown in Fig. 12.  
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Figure 13. 2 mm slice of a sphere. The standard deviation in (a) and (b) is the same, 

however the graininess of the noise allows the lesion to be more easily detected in 

(b)[38]. 

 

 

To more fully characterize the behavior of noise, Reiederer et al developed the 

formulation for the noise power spectrum (NPS) in CT[40]. The NPS is calculated as the 

square of the discrete Fourier transform of the image noise, and is described more fully in 

section 3.5. 

The NPS serves as a measure of the randomness of the noise at each spatial 

frequency[39]. In his initial paper discussing the formulation of NPS, Riederer showed that 

the variation in CT number is not random and has a correlation to the variation at other 

points in the image. NPS fully describes this phenomena, attributing the noise correlation 

to the filter used in image reconstruction by filtered backprojection (FBP)[40, 41], an 

example is shown in Fig. 14. 
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Figure 14. NPS of a CT image reconstructed via FBP with ramp filtering (left) and 

Hanning filtering (right). Taken from Ref. [40] 

  

 

 Typical noise suppression methods aim to decrease the variation between 

neighboring pixels, reducing the total image noise. While this successfully reduces noise 

STD, it preferentially suppress high frequency noise, leading to an altered image quality 

and NPS. The method developed in this research is designed to maintain the characteristics 

of the NPS of the CT image. 

 

2.6 Existing Noise Suppression Methods 

 

 The problem of noise amplification has been known since the advent of DECT[20, 

42-44], leading to the development of several noise suppression algorithms[21, 44-49]. 

Additionally, many algorithms from general image processing have been applied to DECT. 

Early on, Rutherford et al suppressed noise by using a 5-by-5 low-pass filter[47]. Denoising 
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methods such as this are simple to implement, however they result in degraded spatial 

resolution. 

 Several noise suppression methods specific to DECT have been proposed. Warp 

and Dobbins proposed evoking the structural redundancy provided by two images, 

smoothing only the high energy image before decomposition to prevent blurring of 

calcifications on the low energy image[45]. Kalendar et al first proved that the noise on 

material images is anti-correlated. They then exploited the anti-correlation between the two 

material images created during decomposition to design a noise suppression algorithm[44]. 

Macovski et al filtered both images, combining a low-pass filtered version of a “tissue” 

image and a high-pass filtered version of a “bone” image to produce a high SNR image[50]. 

Dong et al developed a method which combines the image reconstruction with image 

decomposition[51].  

Niu et al recently proposed a new noise suppression algorithm for DECT which is 

based on both redundant structural information and the statistical nature of the 

decomposition process[19]. The authors use a penalized weighted least-square 

optimization, with the inverse of the variance-covariance matrix of the CT images as the 

penalty weight. Using the penalty weight for decomposition not only increases the accuracy 

of the noise suppression, it forces decomposition to be carried out iteratively. The method 

is further controlled by a regularization term, which aims to preserve edges of the initial 

CT images on the decomposed material images. The method, referred to as penalized 

weighted least-square optimization with edge-preserving regularization (PWLS-EPR), is 

distinct from other approaches in that the decomposition is carried out iteratively at the 

same time as noise suppression, leading to higher accuracy. 



 21 

 While PWLS-EPR effectively achieves noise reduction on DECT decomposed 

images, it does not utilize all of the structural information contained in the original CT 

images. The calculation of image gradient in the edge-preservation regularization means 

that only the pixels lying on or near material edges are used for regularization of the noise 

suppression. The noise is then decreased by reducing the variation between neighboring 

pixels, and the regularization contains no information on the image texture or quality. This 

inevitably degrades the image noise power spectrum (NPS), resulting in artificial or over-

smoothed image textures[38, 39].   
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Chapter 3 - Method 

 

3.1 Algorithm Design Goals 

 

The goal of this research is to design a noise suppression algorithm which can 

achieve the following four goals: noise suppression by at least one order of magnitude 

while preserving both NPS and spatial resolution and maintaining accurate material density 

calculation. To achieve this, we aim to utilize the penalized weight least squares 

optimization framework, however with a different means of regularization. Rather than 

relying solely on edge pixels, we calculate the similarity between several pixels across an 

entire image. Based on the fact that averaging pixels of the same or similar materials gives 

a low-noise image, we include a regularization term in the objective of the optimization 

framework to minimize the difference between the images without and with noise 

suppression via averaging pixels of similar materials. The improved method is referred to 

as penalized weighted least-square optimization with similarity-based regularization 

(PWLS-SBR). Performance of PWLS-SBR on spatial resolution, DECT decomposition 

accuracy, and image NPS preservation is evaluated on the Catphan©600 phantom, an 

anthropomorphic head phantom, and a head-and-neck patient scan. 
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3.2 Iterative Image Domain Decomposition with Noise Suppression 

 

Following is a review of the algorithm of iterative image-domain decomposition 

with noise suppression, i.e., PWLS-EPR[19]. As shown in previous studies[52], least 

square estimation with smoothness regularization can be used to suppress image noise. If 

this method of noise suppression is applied to material images, the formulation is: 

 min
𝑥

(�⃗� − 𝐴−1�⃗�)𝑇(�⃗� − 𝐴−1�⃗�) + 𝜆 𝑅(�⃗�) (6) 

where 𝑅(�⃗�) is the regularization term to force smoothness of �⃗� ; �⃗� , �⃗� , and 𝐴−1  are as 

defined above; and 𝜆 is a parameter used to control the level of noise suppression. Eqn. (5) 

operates under the assumption that the noise on each pixel of 𝐴−1�⃗� is independent, which 

is invalid for DECT since the noise is highly correlated[44]. 

The PWLS-EPR algorithm restructures Eqn. (6) based on the design principle of a 

best-linear unbiased estimator[53], including the inverse of the estimated variance-

covariance matrix of the decomposed images as the penalty weight for the least-squares 

method.  The optimization framework then takes the form: 

 min 
�⃗�

𝐹(�⃗�) = (𝐴�⃗� − �⃗�)𝑇𝑉−1(𝐴�⃗� − �⃗�) + 𝜆 𝑅(�⃗�) (7) 

with matrix 𝑉 defined as: 

 𝑉 = 𝑑𝑖𝑎𝑔(𝑣𝑎𝑟(𝑛𝐻1⃗⃗⃗⃗⃗⃗⃗⃗ ), … , 𝑣𝑎𝑟(𝑛𝐻𝑁⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), 𝑣𝑎𝑟(𝑛𝐿1⃗⃗ ⃗⃗ ⃗⃗⃗), … , 𝑣𝑎𝑟(𝑛𝐿𝑁⃗⃗⃗⃗⃗⃗⃗⃗ )) (8) 

where 𝑣𝑎𝑟(𝑛𝐻𝑖⃗⃗⃗⃗ ⃗⃗⃗) and 𝑣𝑎𝑟(𝑛𝐿𝑖⃗⃗ ⃗⃗ ⃗⃗ ) are the estimated noise variances on the i’th pixel in the 

high-energy and the low-energy CT images. In our implementations, we measure the noise 

variance inside a small uniform area on the CT images and assume a stationary noise 
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distribution across the entire field of view. The second term preserves edges in the noise 

suppressed images, and is defined as: 

 
𝑅(𝑥) =  

1

2
∑ ∑ 𝑒𝑖𝑘(�⃗�(𝑖) − �⃗�(𝑘))2

𝑘∈𝑁𝑖𝑖

 (9) 

where 𝑁𝑖  is the set of four neighbors of the i'th pixel in the image and 𝑒𝑖𝑘  is the edge 

weight. For edge weighting, the Canny method[54], which detects local maxima of the 

gradient after smoothing by a Gaussian kernel, is followed by the Prewitt method[55], 

which approximates the directional derivative and determines edges where the gradient is 

at a local maximum. The algorithm first detects edge pixels on the initial CT images and 

then assigns low values to 𝑒𝑖𝑘 only when either the i’th or the k’th pixel is on the edge. 

Such a regularization term allows sharp signal transition at edges, forcing the image to be 

piecewise constant and preserving edge structures on the decomposed material images. 

 The key result of this method is that it carries out the decomposition iteratively in 

step with noise suppression. Because the two tasks are carried out simultaneously, the 

composition matrix, A, is used at every iteration, which increases optimization accuracy. 

Additionally, PWLS-EPR fully utilizes the statistical characteristics of the decomposition. 

 

3.3 Penalized Weighted Least-Square Optimization with Similarity-Based 

Regularization 

 

Although PWLS-EPR fully exploits the statistical nature of the decomposed 

material images, the edge preservation regularization is based solely on edge pixels rather 

than the entire structural information contained in the initial CT images.  
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PWLS-SBR improves over PWLS-EPR by avoiding the gradient calculation in the 

regularization term. Note that, the true value of one image pixel, �⃗�(𝑖), can be estimated via 

weighted averaging pixels of the same or similar materials, �⃗�(𝑘), i.e.: 

 〈�⃗�(𝑖)〉 =  ∑ 𝑤𝑖𝑘

𝑘∈𝑁𝑖

�⃗�(𝑘) 
(10) 

where Ni  are the pixels of the same or similar materials compared to the i’th pixel and 

𝑤𝑖𝑘 is the normalized weight quantifying the similarity between the materials of the i’th 

and the k’th pixels, calculated from the values of the initial CT images. We discuss the 

calculation of 𝑤𝑖𝑘  later in the paper for the clarity of writing. Converting the above 

equation to a matrix form, one obtains: 

 〈�⃗�〉 = 𝑊�⃗� (11) 

where 𝑤𝑖𝑘 is the element of the similarity matrix W at the i’th row and the k’th column.  

Eqn. (10) indicates that multiplying the image vector by the similarity matrix 

reduces the image noise. The difference between 〈�⃗�〉  and �⃗�  becomes smaller when �⃗� 

contains less noise. As such, if �⃗� is the result of a successful noise suppression algorithm, 

the following approximation holds:  

 �⃗� ≈ 𝑊�⃗� (12) 

Using Eqn. (12) as an additional data condition, the PWLS-SBR algorithm adopts 

the same optimization framework shown as Eqn. (7), but with a regularization term to 

ensure that Eqn. (12) is valid, i.e.:  

 min 
𝑥

𝐹(�⃗�) = (𝐴�⃗� − �⃗�)𝑇𝑉−1(𝐴�⃗� − �⃗�) + 𝜆||𝑊�⃗� − �⃗�||2
2  (13) 

where matrix 𝑉 is defined in Eqn. (8), ‖⋅‖2 calculates the L-2 norm of a vector, and 𝜆 is 

still a user-defined parameter that controls the strength of noise suppression. 



 26 

The calculation of 𝑤𝑖𝑘 or the similarity matrix W is critical to the performance of 

PWLS-SBR on noise suppression. In general, for each pixel i, we should include a large 

number of similar pixels in the calculation of 𝑤𝑖𝑘 so that the mean value of �⃗�(𝑖) can be 

accurately calculated. In this research, inspired from the sigma filter[56, 57], we use an 

empirical Gaussian model. The similarity 𝑠𝑖𝑘 between pixels i and k is calculated as: 

 

𝑠𝑖𝑘 =  {
exp (−

(�⃗�(𝑖) − �⃗�(𝑘))2

ℎ2
) , 𝑖𝑓 |�⃗�(𝑖) −  �⃗�(𝑘)| < 3ℎ 𝑎𝑛𝑑 𝑘 ∈ Ω𝑖

0         ,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (14) 

where h is another user-defined parameter that controls the width of the Gaussian similarity 

window. In our implementations, we set h as the measured noise STD on the CT images. 

The search window, Ωi, starts from a neighborhood of 41-by-41 pixels. If the number of 

neighboring pixels with non-zero 𝑠𝑖𝑘 values is less than 200, the size of search window 

automatically increases until the goal is reached or the search window is the entire image. 

This strategy ensures an adequate number of similar pixels for noise suppression. After 

normalization, the element of the similarity matrix is calculated as: 

 𝑤𝑖𝑘 =  
𝑠𝑖𝑘

Σ𝑘𝑠𝑖𝑘
 (15) 

 We use Eqns. (14) and (15) to calculate the similarity matrix in the PWLS-SBR 

algorithm based on the initial CT images. To reduce errors stemming from the CT image 

noise, we generate a first-pass similarity matrix from a noisy CT image, and suppress noise 

on the CT image by matrix multiplication shown in Eqn. (11). An updated similarity matrix 

is then produced on the noise-suppressed CT image. Furthermore, similarity matrices are 

calculated on the high-energy and the low-energy CT images separately, and averaged to 

generate a low-noise similarity matrix for use in PWLS-SBR.   
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3.4 Solver to PWLS-SBR 

 

The objective function in Eqn. (13) is convex and differentiable. As such, the 

condition for the optimal solution is: 

 ∇𝐹(�⃗�) = 0 ⟹ (𝐴𝑇𝑉−1𝐴 + 𝜆 ∙ ∇𝑅)�⃗� = 𝐴𝑇𝑉−1�⃗� (16) 

 where ∇𝑅 is the gradient of the similarity-based regularization: 

 ∇𝑅 = (�̅� − 𝐼)𝑇(�̅� − 𝐼)�⃗� (17) 

Eqn. (16) can be solved using a pre-conditioned conjugate gradient method.  

 

3.5 Evaluation 

 

We compare PWLS-SBR to both decomposition via direct matrix inversion, i.e., 

Eqn. (4), and PWLS-EPR, i.e., Eqn. (7). As shown in the previous section, the penalty 

weight on the regularization term, 𝜆, is the only tuning parameter for both algorithms of 

PWLS-SBR and PWLS-EPR. In the presented results, unless otherwise stated, we adjust 𝜆 

values to achieve the same noise STD on the noise-suppressed images for fair comparisons.  

Two physical phantoms are used in the evaluation studies, the Catphan©600 

phantom (The Phantom Laboratory: Salem, NY) and an anthropomorphic head phantom. 

Projection data are acquired on our tabletop CT system at Georgia Institute of Technology. 

The geometry of the tabletop CT exactly matches that of the on-board imager of a Varian 

clinical linear accelerator. More description about the system can be found in Ref. 54[58]. 

To inherently reduce scatter contamination on projection data, a fan-beam geometry is used 
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and the illuminated area in the longitudinal direction on the detector has a width of 15 mm. 

Each CT scan contains 655 equi-angular projections, with 75 kVp and 125 kVp as the low 

and high tube energies and a tube current of 80 mA. CT images are reconstructed via FBP 

with an image size of 512-by-512 pixels and 0.5-by-0.5 mm2 pixel size. Patient data for a 

head-and-neck scan, acquired with 80 kVp as the low tube energy and 140 kVp as the high 

tube energy, is also used for evaluation. All the algorithms are implemented in Matlab. The 

Matlab function pcg is used to solve Eqn. (16). PWLS-SBR typically takes 180 seconds, 

depending on the level of noise suppression, to process one CT dataset on a 2.79 GHz PC 

with 4.022 GB of physical memory.  

Spatial resolution is evaluated using the line-pair slice of the Catphan©600 

phantom consisting of aluminum line-pairs, ranging from a spatial frequency of 1 to 21 

line pairs per cm. We use NPS to investigate the image quality difference for results from 

different algorithms at the same noise level[38, 39]. NPS is measured inside a uniform 

region of interest (ROI) as: 

 𝑁𝑃𝑆 = |𝐷𝐹𝑇2{𝑓}|2 (18) 

where 𝑓 is the two-dimensional (2D) image inside the uniform ROI offset by its mean 

value and 𝐷𝐹𝑇2 is the 2D discrete Fourier transform[39, 59, 60].   

The slice of the Catphan©600 phantom containing contrast rods of various 

materials is used to assess decomposition accuracy via electron density measurement. 

Highly accurate electron density maps have become increasingly important in radiation 

therapy treatment planning for precise dose calculation[61]. The electron density is 

calculated from the decomposed material images as: 

 𝜌𝑒 =  𝜌𝑒,𝑏 𝑥𝑏 +  𝜌𝑒,𝑡𝑥𝑡 (19) 
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where 𝑥𝑏  and 𝑥𝑡  are the decomposed material images (i.e., relative fractions of basis 

materials), 𝜌𝑒,𝑏 and 𝜌𝑒,𝑡 are the corresponding electron densities of the basis materials. For 

each contrast rod, the percent error of electron density measurement is computed as: 

 
𝐸(%) = (

|�̅�𝑒 −  𝜌𝑒
𝑟𝑒𝑓

|

𝜌𝑒
𝑟𝑒𝑓

) ×  100% (20) 

where 𝜌𝑒
𝑟𝑒𝑓

 is the true material electron density, as published in the Catphan©600 phantom 

manual, and �̅�𝑒 is the mean measured value inside each rod. The root-mean-square of the 

percent errors (RMSE) is calculated for all contrast rods to quantify the overall accuracy.  

Patient data for a head-and-neck scan and an anthropomorphic head phantom are 

used to evaluate the method performance on objects with realistic and complex structures.  

On the head phantom, we choose a slice containing the intricate bony anatomy of the 

sinuses, a challenging case for noise suppression without losing fine structures. On the 

patient data, we show the method’s performance on bone, soft tissue, and contrast-

enhanced blood vessels. 
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Chapter 4 - Results 

 

4.1 Catphan Study on Spatial Resolution and NPS 

 

 Fig. 15 shows the 75 kVp and 125 kVp CT images and Fig. 16 shows the results of 

material decomposition via direct matrix inversion without noise suppression, PWLS-SBR, 

and PWLS-EPR. Aluminum, the material of the line pairs, and epoxy, the material of the 

background, are chosen as basis materials for DECT decomposition, mimicking “bone” 

and “tissue”, respectively, in a clinical setting. The mean and STD calculated inside the 

ROI indicated in the “tissue” image without noise suppression of Fig. 16 are shown in 

Table 1 for each material image. For fair comparisons, we have tuned algorithm parameters 

such that both PWLS-SBR and PWLS-EPR achieve the same noise STD reduction, a factor 

of more than one order of magnitude. The zoom-in inserts on Fig. 15 and Fig. 16 scrutinize 

the performance on image spatial resolution. It is seen that PWLS-SBR preserves a spatial 

resolution of 8 line pairs per cm in both the “bone” and “tissue” images, comparable to that 

of the initial CT images. While PWLS-EPR can preserve this resolution on the “bone” 

image, the line pairs are blurred out on the “tissue” image. Additionally, PWLS-EPR 

cannot preserve the high density value on the “bone” image. This is because the 

regularization term only includes information for pixels lying on the edge and noise 

suppression cannot preserve high intensity values in the interior of the rod. As the algorithm 

tries to smooth, it flattens the signal throughout the line-pair, bringing down the average 

value. Since the similarity method regularizes based on the whole material of the line-pair, 

it can preserve the high intensity value. 
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Figure 15. CT images of the line-pair slice of the Catphan©600 phantom. Display 

window: [-500 2500] HU. 
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Figure 16. Decomposed “bone” and “tissue” images using direct matrix inversion without 

noise suppression, PWLS-SBR, and PWLS-EPR. The region where the inserts are taken 

is outlined on the low energy CT image in Fig. 15 and the ROI used to calculate mean 

and STD values of Table 1 is outlined on the “tissue” image without noise suppression. 

Display window: [0.2 1.2]. 
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Table 1. The measured mean ± STD for each material image shown in Fig. 16. The ROI 

used in the calculation is indicated in the “tissue” image without noise suppression of  

Fig. 16. 

 “Bone” Image “Tissue” Image 

Without Noise Suppression 0.01 ± 0.24 0.99 ± 0.74 

PWLS-SBR 0.01 ± 0.02 0.99 ± 0.05 

PWLS-EPR 0.00 ± 0.02 1.01 ± 0.05 

 

  In addition to the difference in spatial resolution, it can be clearly seen that PWLS-

SBR and PWLS-EPR produce images with different textures despite having the same noise 

level (obvious especially on the “tissue” images of Fig. 16). This is due to the difference 

on image NPS as shown in Fig. 17. PWLS-EPR heavily suppresses high-frequency noise, 

while PWLS-SBR preserves the shape of the NPS distribution of direct decomposition 

without noise suppression. For a quantitative measure, we average the 2D NPS in the 

angular direction to reduce noise and plot 1D profiles of the averaged NPS in the radial 

direction shown in Fig. 18. Note that Parserval’s theorem states that the total energy (i.e., 

sum of squares) in the signal domain equals that in the Fourier domain. Since the images 

of PWLS-SBR and PWLS-EPR have the same noise variance, their NPS have the same 

total energies. The NPS curve of direct decomposition without noise suppression is scaled 

down based on the noise reduction level to match the results of PWLS-SBR and PWLS-

EPR. The NPS using PWLS-SBR has a correlation of 93% with that via direct 

decomposition (which has 96% correlation compared to the 75 kVp CT image), while the 

correlation drops to -52% for PWLS-EPR. The negative correlation of PWLS-EPR can be 

explained by the low frequency peak in the 1D-NPS, where no suppression produces a 1D-

NPS with the peak shifted towards higher frequencies.  
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Figure 17. 2D NPS, calculated for a central region of 100-by-100 pixels of the line-pair 

“tissue” images, offset by its mean value. Display window [min max]. 

 

 

Figure 18. NPS in the radial direction after averaging in the angular direction for all 

images shown in Fig. 17. 
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4.2 Catphan Study on Electron Density 

 

Fig. 19 shows the CT images of the contrast rod slice of the Catphan©600 phantom. 

Different materials used for electron density measurements are labeled on the 125 kVp CT 

image. Aluminum and low density polyethylene (materials 1 and 7) are used as the “bone” 

and “tissue” materials for decomposition. Fig. 20 shows both the material images (left two 

columns) and the electron density images (right column) via direct matrix inversion 

without noise suppression, PWLS-SBR, and PWLS-EPR. The parameters are tuned for 

very strong noise suppression, noise STD reduction by a factor of 13 for “bone” images 

and by a factor of 149 for “tissue” images, to demonstrate the high level of accuracy that 

can be maintained by PWLS-SBR. Table 2 contains mean values of electron densities 

measured within various rods. PWLS-EPR has an electron density RMSE of 2.21%, while 

PWLS-SBR further reduces the RMSE down to 1.20%.  Additionally, it is obvious via 

visual inspection that PWLS-SBR achieves a much improved image quality on overall 

image uniformity and spatial resolution. 
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Figure 19.  CT images of the contrast-rod slice of the Catphan©600 phantom. The 

numbered materials are: [1] aluminum, [2] acrylic, [3] Delrin, [4] Teflon, [5] air, [6] 

polymethylpentene, [7] low density polyethylene (LDPE), and [8] polystyrene. Display 

window: [-500 1000] HU. 
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Figure 20. Material and electron density images of the contrast rod slice of the 

Catphan©600 phantom. Display windows are [0.1 0.7] for bone, [0.6 1.4] for tissue and 

[2.75 5] × 1023 e/cm3 for electron density maps. 

  



 38 

Table 2. The measured mean electron densities in unit of 1023 e/cm3 for different contrast 

rods. The last column shows the overall RMSE. 

 

 Alum-

inum 

Acrylic Delrin Teflon PMP LDPE Poly-

styrene 

RMSE 

Actual 

Electron 

Density 

7.83 3.83 4.56 6.24 2.85 3.16 3.34  

Without 

Noise 

Suppression 

7.81 3.82 4.40 5.91 2.86 3.15 3.33 0.91% 

PWLS-SBR 7.75 3.76 4.34 5.86 2.89 3.20 3.39 1.20% 

PWLS-EPR 8.86 3.75 4.29 5.70 2.98 3.24 3.38 2.21% 

 

 

4.3 Anthropomorphic Head Phantom Study 

 

The anthropomorphic head phantom contains a calcium-based substance and an 

epoxy to mimic bone and soft tissue, respectively, which are used as the basis materials in 

DECT decomposition. Fig. 21 shows the low and high energy CT images of a slice of the 

anthropomorphic head phantom. Fig. 22 shows the results of material decomposition via 

direct matrix inversion without noise suppression, PWLS-SBR, and PWLS-EPR. The 

mean and STD values measured in the ROI indicated by a black rectangle in Fig. 22 are 

listed in Table 3. Both PWLS-SBR and PWLS-EPR achieve the same level of noise STD 

reduction, i.e., by a factor of 24 and 57 on “bone” and “tissue” images, respectively. Again, 

it is clear that the texture of the original image is preserved by PWLS-SBR and high 

frequency noise is over-suppressed by PWLS-EPR. Fig. 23 allows for a closer examination 

of the fine sinus structures. These structures are buried in noise in the result of direct 
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decomposition. It is seen that PWLS-SBR better preserves the structures present on the 

initial CT images than PWLS-EPR. 

 

 

Figure 21. CT images of the anthropomorphic head phantom. The white box on the 75 

kVp image outlines the insert region shown in Fig. 23. Display window: [-500 1000] HU. 
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Figure 22. Decomposed material images of the anthropomorphic phantom using direct 

decomposition without noise suppression, PWLS-SBR and PWLS-EPR. The black 

rectangle indicates the ROI where the mean and STD values are calculated in Table 3. 

Display window [0.01 1.4]. 
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Table 3. Mean ± STD measured on the images shown in Fig. 22, where the black 

rectangle indicates the ROI used in the calculation. 

 

 “Bone” image “Tissue” image 

Without Noise 

Suppression 

0.00 ± 0.54 1.00 ± 1.21 

PWLS-SBR -0.01 ± 0.02 1.01 ± 0.02 

PWLS-EPR -0.01 ± 0.02 1.01 ± 0.02 

 

 

Figure 23. Zoom-in images of the sinus region for all images shown in Figs. 21 and 22. 

CT images display window: [-500 1000] HU, “bone” images display window: [0.1 1.0], 

and “tissue” images display window: [0.6 1.4]. 
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4.4 Evaluation on Patient Data 

For further evaluations of realistic anatomical structures, we choose to compare 

PWLS-SBR to PWLS-EPR and direct matrix inversion on data for a head-and-neck patient, 

with the CT images shown in Fig. 24. A region of the jaw was used to define the bone 

material, and a region of muscle tissue in the patient’s posterior was used to define the 

tissue material. Table 4 shows the mean ± STD for the ROI indicated in Fig. 25. Both 

PWLS-SBR and PWLS-EPR achieve the same level of noise STD reduction, i.e., by a 

factor of 4 and 5 on “bone” and “tissue” images, respectively. Because the effective 

energies for this scan were further apart (80 kVp and 140 kVp vs. 75 kVp and 125 kVp), 

this image decomposition yielded lower initial noise levels, and thus required less noise 

suppression. Fig. 25 shows the results of material decomposition via direct matrix inversion 

without noise suppression, PWLS-SBR, and PWLS-EPR. The mean and STD values 

measured in the ROI indicated by the black rectangle in Fig. 25. PWLS-SBR is able to 

achieve a higher quality image than PWLS-EPR. PWLS-SBR performs exceptionally well 

on this image, preserving all the fine structures, as seen in Figs. 26 and 27, which show the 

“bone” image in red overlaid on the 80 kVp CT image. 
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Figure 24. CT images of a head-and-neck patient. The white box on the 80 kVp image 

outlines the insert region shown in Fig. 25. Display window: [-500 1000] HU. 
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Figure 25. Decomposed bone and tissue images using direct matrix inversion without 

noise suppression, PWLS-SBR, and PWLS-EPR. The ROI used to calculate mean and 

STD values of Table 4 is outlined on the tissue image without noise suppression. Display 

window: [0 1.2]. 

 

 

Table 4. Mean ± STD of all of the images shown in Fig. 24, where the black rectangle 

indicates the ROI used in calculation. 

 

 “Bone” Image “Tissue” Image 

Without Noise 

Suppression 

0.04 ± 0.03 0.96 ± 0.03 

PWLS-SBR 0.04 ± 0.01 0.94 ± 0.01 

PWLS-EPR 0.04 ± 0.01 0.86 ± 0.01 
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Figure 26. 80 kVp CT image with "bone" image overlaid in orange. 

 

 

 

 

 

 
 

Figure 27. Zoom in images of the 80 kVp CT image overlaid with bone images (orange), 

region outlined in Fig. 10.  
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Chapter 5 - Discussion 

 

In this research, we improve a previously developed noise suppression method, 

PWLS-EPR[19], for DECT decomposition by designing a new regularization term. PWLS-

EPR includes gradient calculation in the regularization for edge preservation, and therefore 

fails to preserve the NPS of the original image after noise suppression. The proposed 

PWLS-SBR algorithm adopts regularization that extracts the entire redundant structural 

information contained within the two initial CT images. Phantom studies show that, at a 

high noise STD reduction level (a factor of more than one order of magnitude),  PWLS-

SBR maintains both image spatial resolution (up to 8 lp/cm) and NPS (>90% correlation) 

comparable to that of the initial CT image, a clear advantage over PWLS-EPR. In addition, 

PWLS-SBR reduces the RMSE of electron density measurement from 2.21% using PWLS-

EPR down to 1.20%.  

 The similarity-based regularization in PWLS-SBR stands on the establishment of a 

new data condition, i.e., Eqn. (12), which uses a large number of similar pixels for noise 

suppression on one pixel. In our implementations, we choose to calculate the similarity 

matrix 𝑊 using an empirical Gaussian model.  Other more sophisticated algorithms of 

similarity matrix calculation are expected to achieve similar or even improved performance 

of PWLS-SBR, as long as Eqn. (12) holds and each row of 𝑊 has a large number of non-

zero elements (i.e., the number of similar pixels is sufficient). For example, one may find 

similar pixels to one pixel using image segmentation, and assign equal similarity to all 

these pixels. Furthermore, although we focus our paper on linear image-domain 

decomposition of DECT, the proposed method is readily translatable to non-linear 
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projection-domain decomposition, using the same technique as shown in our recent 

paper[62].   

The PWLS-SBR algorithm has two indications beyond the scope of DECT 

imaging. First, our results reveal that the similarity-based regularization is superior in 

preservation of image NPS compared with gradient-based regularization, although the 

latter is widely used for retaining edges during noise suppression. Following similar 

derivations of this paper, we can design similarity-based regularization for noise 

suppression in other imaging scenarios with improved image NPS. Secondly, the similarity 

matrix is able to extract structural information from one image for reducing noise on 

images with different intensities but the same structures. As such, with different formations 

of similarity matrices, PWLS-SBR can be used for noise suppression with prior images 

from the same imaging device but with different settings or even from different imaging 

modalities. For example, in energy-resolved CT imaging, we can calculate the similarity 

matrix on the image from one energy channel, and use PWLS-SBR for noise suppression 

on the images from all other energy channels. The similarity matrix can even be calculated 

on an MRI image for noise suppression on a CT image of the same patient, as long as the 

two images are well registered and have exactly matching structures.  
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Chapter 6 – Conclusions 

 

 

Dual-energy CT provides a diagnostic advantage over CT alone in its ability to 

extract information on the chemical composition of the materials in the image. This 

process, called basis material decomposition, yields significant noise amplification and 

decrease in the signal to noise ratio (SNR) of material images. Many noise suppression 

methods have been developed for and applied to DECT. However, noise suppression 

typically relies on reducing the signal variation from pixel to pixel. To keep the sharp edges 

present in the image, noise suppression is usually regulated based on the image gradient. 

While the gradient contains edge information, it does not provide any information on the 

texture of the image. Gradient-based noise suppression algorithms are prone to over-

smoothing artifacts, leading to degradation of the original image quality. Our method 

preserves image quality by avoiding gradient calculation, and instead uses a pixel 

similarity-based regularization. By including every pixel in the regularization, the image 

texture can be preserved. 
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