
 

 

 

 

 

 

 

  

 

   
 

 
Solving  Optimal Control Problem  

 Via Chebyshev  Wavelet 
 

 

 

By 

 
Atya  A. Abu Haya 

 
 

 

 

Supervisor 

Dr. Hatem Elaydi 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master 

of Science in Electrical Engineering 

 

 

 

 

 

 

 

 

 

 

1432-2011 

 

 

The Islamic University of Gaza 

Deanery of Graduate Studies 

Faculty of Engineering 

Electrical Engineering Department 

 

 غـزة-اىجاٍؼت الإسلاٍيت

 ػَادة اىذراسـاث اىؼـييـا

 مــيـيـــت اىــهـْــذســــــت

 قسٌ اىهْذست اىنهزبائيت



 

 ii 

 

 

 

 

 

 (اىَْاقشت ىجْت قبو ٍِ اىحنٌ ّخيجت) اىبحث ػيً اىحنٌ ّخيجت صفحت

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii 

 

 

ABSTRACT 

 

 

Over the last four decades, optimal control problem are solved using direct and indirect 

methods. Direct methods are based on using polynomials to represent the optimal 

problem. Direct methods can be implemented using either discretization or 

parameterization. The proposed method in my thesis is considered as a direct method in 

which the optimal control problem is directly converted into a mathematical 

programming problem. A wavelet-based method is presented to solve the non-linear 

quadratic optimal control problem. The Chebyshev wavelets functions are used as the 

basis functions. The proposed method is also based on the iteration technique which 

replaces the nonlinear state equations by an equivalent sequence of linear time-varying 

state equations which is much easier to solve. Numerical examples are presented to 

show the effectiveness of the method, several optimal control problems were solved, 

and the simulation results show that the proposed method gives good and comparable 

results with some other methods. 
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 ملخص

 

 "شيبيشيف الوويجات تحويل الأهثل باستخدام التحكن هشكلة حل "

 

اسخخذاً ٍخؼذدة اىحذود اىَخؼاٍذة اقخزحج ىحو أّىاع هْاك طزق ػذيذة حؼخَذ ػيً ,عقود الماضية عبرالأ خلال

اىطزيقت اىَباشزة ٍَنِ . هذٓ اىطزق حْقسٌ إىً طزق ٍباشزة وطزق غيز ٍباشزة. ٍخخيفت ٍِ ٍسائو اىخحنٌ الأٍثو

 .اىطزيقت اىَقخزحت في هذٓ اىزساىت حؼخبز طزيقت ٍباشزة ,خقسيٌ واىباراٍخزيزيشِباسخخذاً اىأُ حْجز 

  .ىحو ٍسأىت اىخحنٌ الأٍثو ىلأّظَت اىغيز خطيت(  اىىيفيج ) قت حؼخَذ ػيً اىَىيجاث ياىزساىت قذٍج طزفي هذٓ 

قذٍج  أٍثيت رقَيت لإثباث  .ريتاواسخخذٍج مذىل اىخقْيت اىخنز.اسخخذٍج داىت شيبيشيف مذاىت أساسيت في هذا اىؼَو

غ حؼطي ّخائج أفضو أو ٍشابهت ٍ هذٓ اىطزيقت أُج اىحيىه وقذ أثبخ,  ٍخؼذدة مذىل قذٍْا ٍسائو . حأثيز هذٓ اىطزيقت 

 .ٍقارّخها ىطزق أخزي 
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CHAPTER 1 INTRODUCTION 

 

1.1.  Thesis Motivation 

The goal of an optimal controller is the determination of the control signal such that a 

specified performance index is optimized, while at the same time keeping the system 

equations, initial condition, and any other constraints are satisfied. Many different 

methods have been introduced to solve optimal control problem for a system with given 

state equations. Examples of optimal control applications include environment, 

engineering, economics etc. 

 

The most popular method to solve the optimal control problem is the Riccati method for 

quadratic cost functions however this method results in a set of usually complicated 

differential equations [1]. In the last few decades orthogonal functions have been 

extensively used in obtaining an approximate solution of problems described by 

differential equations [2], which is based on converting the differential equations into an 

integral equation through integration. The state and/or control involved in the equation 

are approximated by finite terms of orthogonal series and using an operational matrix of 

integration to eliminate the integral operations. The form of the operational matrix of 

integration depends on the choice of the orthogonal functions like Walsh functions, 

block pulse functions, Laguerre series, Jacobi series, Fourier series, Bessel series, 

Taylor series, shifted Legendry, Chebyshev polynomials, Hermit polynomials  and 

Wavelet functions [3]. 

 

As we know nonlinear optimal control problem does not has an analytical solution as 

linear case so this reason motivates many researchers to try to find a solution to this 

problem. In most cases, if not all, these solutions are numerical i.e. approximate or 

suboptimal solutions. 

 

In general there are two methods or approaches that are used to solve optimal control 

problems:  the indirect and direct methods. 

 

Indirect methods are usually employed by converting the optimal control problem into a 

two-point boundary value problem TPBVP and solving this new problem which is 

easier than the original problem or finding a solution that satisfies the Hamilton- Jacobi-

Bellman equation. The main advantage of indirect methods is that the resulted solutions 

produce existence and uniqueness of results, exact solutions when the TPBVP can be 

solved analytically, and error estimates when it is solved numerically [4], in the other 

hand it has some disadvantages  as [2]: 

 The solution of the Hamilton-Jacobi-Bellman equation of general nonlinear 

optimal control problem is very difficult.  
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 The lack of robustness.  

 The user must have a deep knowledge of the mathematical and physical  of the 

system model. 

 

To avoid these drawbacks and others many researchers were proposed direct methods to 

solve optimal control problems. The direct method [2], is based on nonlinear 

programming (NLP) approaches that transcribe optimal control problems into NLP 

problems and apply existing NLP techniques to solve them. In most of practical 

applications, the control problems are described by strongly nonlinear differential 

equations hard to be solved by indirect methods. For those cases, direct methods can 

provide another choice to find the solutions. 

 

In this method, the optimal solution is obtained by direct minimization of the 

performance index subject to the constraints. Direct methods classified into either 

discretization or parameterization of the state and/or the control variables.  

 

In discretization, many discrete points (samples) of the state and/or control variable are 

required in order to produce accurate results, which make the system of large 

dimension.  

 

Parameterization can be implemented by one of the three ways [4]:  

• Control parameterization, in this way we approximate the control variables by a finite 

series of known functions with unknown parameters, then the state variables are 

obtained as a function of the unknown parameters by integrating the system state 

equation, but this process is computationally expensive.  

• Control-state parameterization, in this way we approximate both state and control 

variables by a finite series of known functions with unknown parameters, the resulted 

system would ends up with large unknown parameters.  

• State parameterization is the least used method compared with  control  

parameterization and control-state parameterization. In state parameterization, only 

some  state variables are directly approximated by a finite series of known functions 

with unknown parameters. The remaining state and control variables are obtained as a 

function of the unknown parameters directly from the state equation(s).Though, state 

parameterization is not used extensively in optimal control.  

 

In this work we choose control-state parameterization to solve optimal control problem 

because there is no need as in control parameterization to integrate the system state 

equations and the state constraints can be handled directly.  

1.2. Wavelet and Optimal Control Problem 

Lately wavelets have found their way into many different fields of science and 

engineering. Wavelets constitute a family of functions constructed from dilation and 

translation of a single function called the mother wavelet [5]. 

 

Several numerical methods have been proposed in the last four decades  to solve various 

classes of optimal control problems which are based on orthogonal polynomials [2-3], 
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also  wavelets approach was used in several papers to solve optimal control problems 

[6-7].  

 

The wavelets are very effective in approximating functions with discontinuities or sharp 

changes because they are not supported on the whole interval         as other 

orthogonal functions are, so this approach is very important [8]. 

 

Generally the wavelets can not be obtained in closed form. One of the wavelets that can 

be obtained in closed form are the Chebyshev wavelets and Legendre wavelet .  

 

Wavelet analysis allows us to represent a function in terms of a set of basis functions, 

called wavelets, which are localized both in space and time. Here a continuous 

function    , called the mother wavelet, is introduced. 

1.3. What is Wavelets ? 

 Wavelets are mathematical functions that cut up data into different frequency 

components, and then study each component with a resolution matched to its scale. 

They have advantages over traditional Fourier methods in analyzing physical situations 

where the signal contains discontinuities and sharp spikes. Wavelets were developed 

independently in the fields of mathematics, quantum physics, electrical engineering, and 

seismic geology. Interchanges between these fields during the last ten years have led to 

many new wavelet applications such as image compression, turbulence, human vision, 

radar, and earthquake prediction [9].  

 

Wavelet analysis is a powerful mathematical tool, so it has been widely used in image 

digital processing, quantum field theory, numerical analysis and many other fields in 

recent years. 

 

Wavelets possess several useful properties, such as orthogonality, compact support, 

exact representation of polynomials to a certain degree, and the ability to represent 

functions at different levels of resolution.  

 

The first mention of wavelets appeared is from A. Haar 1909. One property of the Haar 

wavelet is that it has compact support, which means that it vanishes outside of a finite 

interval. Unfortunately, Haar wavelets are not continuously differentiable which 

somewhat limits their applications. 

 

In 1985, Stephane Mallat gave wavelets an additional jump-start through his work in 

digital signal processing. He discovered some relationships between quadrature mirror 

filters, pyramid algorithms, and orthonormal wavelet bases. Inspired in part by these 

results, Y. Meyer constructed the first non-trivial wavelets. Unlike the Haar wavelets, 

the Meyer wavelets are continuously differentiable; however they do not have compact 

support. After that Ingrid Daubechies used Mallat's work to construct a set of wavelet 

orthonormal basis functions that are perhaps the most elegant, and have become the 

cornerstone of wavelet applications today [9]. 
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1.4. Thesis Goals 

 The first goal of this thesis is to apply control state parameterization to the 

optimal control problem.  

 The second goal is that  using  Chebyshev wavelets to parameterize the state and 

control variables  to solve linear and nonlinear optimal control problem. 

 The third goal is to solve  the  optimal  control problem  directly by  converting 

it into a quadratic programming  problems. So an iteration technique developed 

by Banks[10-13] is used to replace the original nonlinear dynamic system by a 

sequence of linear time varying dynamic system,  then we  compared the results 

versus previous works. 

1.5. Thesis Contribution 

The contribution of  this thesis can be summarized as  

 Presents an effective method to solve linear quadratic optimal control problems 

time in-variant systems using control-state parameterization via Chebyshev 

wavelets.  

 

 Presents an effective method to solve linear quadratic optimal control problems  

time-varying systems using control-state parameterization via Chebyshev 

wavelets . 

 

 Introducing  a new form of matrix of product for Chebyshev wavelet. 

 

 Presents a new method for solving nonlinear quadratic optimal control problems 

using iteration technique and control-state parameterization via Chebyshev 

wavelets. 

1.6. Thesis Organization 

The remaining chapters of this thesis are organized as follows: 

 

Chapter two reviews the optimal control problem in general and discusses some of the 

important previous works that are proposed to solve the optimal control problem. In this 

chapter, the computational techniques and methods used to solve optimal control 

problems are classified into direct and indirect methods. 

Chapter three presents a numerical method for solving the linear quadratic optimal 

control problems with time in-varying systems. The concept  of control state 

parameterization via Chebyshev wavelet are discussed in this chapter. In addition, some 

of the important properties of Chebyshev wavelet are reviewed. An explicit formula to 

approximate the quadratic performance index using Chebyshev wavelet is introduced, at 

the end of the chapter, computational results of a standard two examples ( one state and 

two states ) are introduced and the results are compared with some other methods. 
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Chapter four  describes a method for solving the linear quadratic optimal control 

problems with time varying systems. An explicit formula to approximate the quadratic 

performance index using Chebyshev wavelet is introduced. 

Chapter five presents the core of this work, where a computational method for solving 

the nonlinear quadratic optimal control problem is introduced. In this chapter, the 

concept of the iteration technique is presented. To verify the proposed method, a 

standard example is solved for the purpose of comparison with other methods. 

Finally, Chapter six contains the important conclusions of this work and 

recommendations  for future work.  
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CHAPTER 2 OPTIMAL CONTROL PROBLEM     

 

2.1.  Introduction and Literature Review  

The optimization of a dynamic system is usually aimed to find the optimal control       

in minimizing or maximizing some performance indices under various constraints, 

keeping at the same time the system physical constraints unchanged. The performance 

index or cost function can be considered as the desired specifications of the system. We 

discuss some of the important previous works presented to solve the optimal control 

problem. Many textbooks [1],[14] and survey papers [15], that solved optimal control 

problem were published.  

 

Several methods that use the orthogonal functions have been proposed to solve the time 

varying linear quadratic optimal control problem [16]. These methods are basically 

based on either converting the two point boundary value problem into a set of algebraic 

equations or on converting the dynamic optimal control problem into a quadratic 

programming problem. 

 

A few works have appeared recently that employ the recently developed wavelets to 

approximate the optimization problem [6-8]. The use of wavelets is very effective in 

approximating signals with discontinuities or fast changing edges because of the 

localization property of wavelets.  

  

Recently, Haar wavelets and Legendre wavelets have been used, Haar wavelet 

orthogonal functions and their integration matrices used to optimize dynamic systems 

and to solve lumped and distributed parameter systems were done by Chen and Hsiao 

[7],[17]. Jaddu [18], used Chebyshev wavelet to solve the linear  quadratic optimal 

control problem with terminal constraints. The method is based on converting the 

optimal control problem into mathematical programming and he used the operational 

matrix of differentiation.   

  

Razzaghi and Yousefi [19] defined functions which they call Legendre wavelets, 

however, these functions are scaling functions and not wavelets. Ghasemi and Kajani 

[20] presented a solution of time-varying delay systems by Chebyshev wavelets. 

Babolian and Fattahzadeh [21] presented operational matrix of integration of 

Chebyshev wavelets basis and the product operational matrix. Here we will present a 

wavelet-based numerical method to solve a nonlinear optimal control problem. The 

method is based on using Chebyshev scaling functions to  approximate the state and 

control variables. So, the optimal control problem is transformed into a quadratic 

programming problem. 
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2.1.1. Orthogonal Functions 

Special attention has been given to applications of orthogonal functions,  such as Walsh 

functions, block-pulse functions, Fourier series, Laguerre polynomials, Legendre 

polynomials, and Chebyshev polynomials. There are three classes of sets of orthogonal 

functions that are widely used. The first includes sets of piecewise constant basis 

functions (such as the Walsh functions, block pulse functions, etc.). The second consists 

of sets of orthogonal polynomials (such as Legendre polynomials and Chebyshev 

polynomials, etc.). The third is the widely used sets of sine–cosine functions in Fourier 

series [20].  

 

The main characteristic of  using orthogonal functions is that it reduces the problems to 

solving a system of linear algebraic equations, thus to simplify the problem as well.  

 

2.1.2. Optimal Control Problem 

We used the Chebyshev wavelets to present a computational method of the time varying 

linear optimal control problem and solved the nonlinear optimal control problem using 

iteration technique. The method is based on approximating the optimization problem by 

a quadratic programming problem. 

 

Then we can classify  the basic optimal control problem into three elements: 

 

1- The system which  be controlled: Mathematically, it is represented as a set of state 

equations which are a set of first order differential equations 

 

                                                                                                  

  

where       the state vector ,       is the control vector. ƒ is assumed continuous 

differentiable function with respect to all its arguments. 

 

2- A set of initial conditions which indicate the system state values at initial time 

 

                                                                                           

                                                                    

where       represents a known initial condition vector. 

 

3- Plant performance index (specifications): The desired specifications of the system 

that needs to be minimized (or maximized). Mathematically, the performance index is 

represented by a scalar function given by 

 

                                                                            
  

  

 

               

where    and    are the initial and final time; ℎ and ℊ are scalar functions.    may be 

specified or free, depending on the problem statement.  



 

 8 

2.2. Problem Statement 

We can state the general unconstrained optimal control problem as follows: 

Find an optimal controller, feedback             if possible, or if not an open loop      
that minimizes the following performance index 

 

                                                                               
  

  

 

                

Subject to 

 

                                                                                            

 

 

                              

In general the previous problem                 can be solved by many methods. This 

problem basically can be solved by one of the following approaches  [2]: 

 

  Bellman's dynamic programming method (Hamilton-Jacobi-Bellman HJB 

Equation). 

  Variational method and Pontryagin's minimum principle (Euler-Lagrange 

Equations). 

  Direct methods using Parameterization or discretization (nonlinear 

mathematical programming). 

 

Bellman's dynamic programming method is based on methods that satisfy HJB 

equation. The optimal controller resulted from these methods is a closed loop or 

feedback controller        . Methods that are based on the variational method and 

Pontryagin's minimum principle (Euler-Lagrange equations) convert the optimal control 

problem into a Two-Point Bounded Value Problem (TPBVP). The optimal controller 

resulted from using these methods would also produce a feedback or closed loop 

controller     . Methods that are based on HJB equation or Euler-Lagrange equations 

are usually classified as indirect methods. 

 

Methods that are based on parameterization or discretization are called direct methods. 

Direct methods usually produce an open loop optimal controller     . Direct methods 

are based on solving the optimal control problem by converting it into a nonlinear 

programming problem. The proposed method in this work is classified as a direct 

method, so we will discuss these two methods in the following sections .  

2.3. Indirect Methods 

An indirect method transforms the problem into another form before solving it. The 

indirect method is sometimes described as “first optimize then discretize.” because 

optimality conditions are found before numerical techniques are introduced. As 

mentioned earlier, indirect methods are based on solutions that satisfy the HJB equation 
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or on solutions that convert the optimal control problem into a TPBVP, we review this 

method as follows [2],  

 

1. Power series approach, this approach is based on finding an approximate solution to 

the Hamilton-Jacobi-Bellman equation or the nonlinear two-point boundary value 

problem by using power series expansion. The approximated feedback control law 

obtained by this technique is solved successively. 

 

 The pioneers of this method are: 

 

 Lukes [23] applied this method to obtain an approximated feedback control law 

of the HJB equation. Lukes assumed a general nonlinear infinite horizon 

(regulator) optimal control problem.  

 

 Willemstein [24] extended the work of Lukes to handle finite time optimal 

control problems both fixed end and free end. The optimal control problem 

reduced to solving successively systems of ordinary differential equations. 

 

 Garrard and Jordan [25] applied the work done by Lukes to control a complex 

dynamic system of an F8 fighter jet. 

 

 Yoshida and Loparo [26]  apply a similar idea of Lukes to solve a nonlinear 

optimal control problem with quadratic performance index for both finite and 

infinite time  problems.  

 

2.Extended linearization method [27] in this method, the nonlinear dynamic system 

expressed as a nonlinear state equations of the form 

 

                                                                             

where          is a nonlinear function in   is to be rewritten in a “pseudo” linear form 

 

                                                             

  

3. Inverse optimal control problem [28] an optimal feedback control is obtained by 

finding a solution to the inverse optimal control problem.  

2.4. Direct Methods 

Direct methods are an important class of methods for solving the optimal control 

problem. Direct methods are employed by direct substitution of the state and control 

variables into the performance index without constructing the Hamiltonian of the 

system as in indirect methods, the direct method has been described as “first discretize 

then optimize.” 
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These  methods offer some advantages when applied to optimal control problems. The 

first advantage is that we can convert the difficult dynamic optimal control problem into 

static parameters optimization problem which is easier than the old one;  many software 

packages are available to solve this static problem; we can deal with different 

constraints  directly. 

 

So,  many techniques and methods were proposed that are based on direct methods. As 

a result  the difficult nonlinear dynamic optimal control problem is converted into a 

nonlinear mathematical programming problem by using a direct method. Direct 

methods can be implemented by either using discretization or parameterization 

methods. Here, we will use parameterization technique to convert the difficult nonlinear 

quadratic optimal control problem into linear time-varying quadratic control problems 

which are much easier than the original problem. In the following sections, we will 

briefly discuss both discretization and parameterization technique and we will 

concentrate  on parameterization. 

2.4.1.  Discretization: 

Discretization is a process in which the time interval           is to be divided into an 

equal    time segments, mathematically, this can be given as [29] 

 

                                                                                    

 

As a result, and depending on the discretization technique, the variable(s) is (are) 

sampled at each time point in ( 2.8 ). Basically, there are two discretization technique 

used in optimal control problem: Control-state discretization and control discretization. 

 

1. Control-State Discretization: 

Apply this method to discretize both state and control variables. As a result, the 

following vector which contains a sequence of unknown state and control variables will 

be produced [30] 

 

                                                                                            

 

By this, the system state equations are replaced by algebraic equations which are treated 

as equality constraints. This would convert the original optimal control problem into a 

static optimization problem that can be solved using any available software packages 

like MATLAB. Note that in order to have accurate results, large amount of samples 

should be taken, this would result in a system that is highly dimensional.  

 

2. Control Discretization: 

In this approach, is to discretize  the control variables only. As a result, the following 

vector is obtained [30] 

 

                                                                                           
 

In order to get the state variables, it is necessary to integrate the system state equations. 
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This would produce state variables that are a function of the control variables. An 

advantage of this method over control-state discretization is that the resulted system is 

lower in dimension.  

2.4.2. Parameterization 

The Parameterization technique is an essential part of my thesis, it is  a process in which 

a function or a variable is approximated using known functions with known or unknown 

parameters. Parameterization can be employed by one of the three forms: Control 

parameterization, control-state parameterization and state parameterization. In this work 

we will use control-state parameterization. 

 

1. Control Parameterization 

In this method, only the control variables are approximated by a finite length series of 

known functions with unknown parameters, mathematically, this can be formulated as 

follows 

 

      
   

  
 
                                                                                          

 

  

Where    is the order of approximation,   
   are the unknown parameters and   

   are a 

suitably selected set of functions forming a basis of the control space. By integrating the 

state equation, the state variables can be obtained as a function of the unknown 

parameters of the control variables. Both control and state variables are then directly 

substituted into the performance index. By this, the original difficult optimal control 

problem is converted into a static optimization problem of the unknown parameters 

which can be solved using any available software packages as MATLAB. This method 

is the most widely used method compared to the other parameterization techniques. But, 

integration of the state equations to get the state variables is an expensive computation 

process [4].  

 

 

2. Control-State Parameterization 

Using this method, both control and state variables are approximated by a finite length 

series of known functions with unknown parameters of its own. Mathematically, this 

can formulated as follows [31] 

 

 

      
   

  

 

   

                                                                      

      
     

 

   

                                                                       

 

 

Where    
        

  
 
 are the unknown parameters,   is the order of approximation and      

is a suitably selected set of functions forming a basis. By this, the optimal control 

problem is converted into a nonlinear mathematical programming problem. Since both 
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state and control variables are parameterized, the resulted system would ends up with a 

large number of unknown parameters.  

 

 

3. State Parameterization 

In this method, only the state variables are to be approximated by a finite length series 

of known functions with unknown parameters, mathematically, this can be formulated 

as follows [32] 

 

 

      
   

  

 

   

                                                                    

 

 

The control variables can be obtained from the state equations. The idea is to choose a 

set of state variables that are to be approximated directly by a finite length series of 

known functions with unknown parameters. The remaining state and control variables 

can be obtained as a function of the directly approximated state variables parameters 

from the system state equations. This would decrease the resulted system dimension 

dramatically. If any state equation remains unsatisfied, it will be considered as an 

equality constraint. 

2.5. Advantages of Direct Methods over Indirect Methods 

 

Using indirect method has certain advantages, which include existence and uniqueness 

of results, exact solutions when the TPBVP can be solved analytically, and error 

estimates when it is solved numerically [4]. There are many disadvantages of indirect 

method which can be overcome by a direct method. The first disadvantage of the 

indirect method is that each solution is problem specific; a separate set of mathematical 

transformation must be applied for each distinct optimal control problem. On the other 

hand direct method gives more universal solution; it is a numerical technique for 

solving a set of problems and can be very easily and quickly applied to the new set of 

equation without taking care of complication of  problem. Second, in an indirect 

method, the transformation requires that the optimal control problem should be 

formulated with a single objective functional. When there are multiple objectives, they 

must be collected into one. In the direct method multiobjective global optimizer can be 

used to solve this type of problems. One numerical run can produce a range of solutions 

that can be considered mutually optimal in some sense. This provides a  mathematical, 

rather than experimental, basis for generating a range of results from which to choose 

[33].  

 

As a result, the range of problems that can be solved via direct methods is significantly 

larger than the range of problems that can be solved via indirect methods. 
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In general we can illustrate the computational methods of optimal control problem in 

block diagram as in Figure ( 2.1 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ( 2.1 )  Computation methods of optimal control problem 
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CHAPTER 3 LINEAR TIME-INVARIANT QUADRATIC 

OPTIMAL CONTROL PROBLEM  

 

3.1. Introduction 

The main idea proposed in this work is to solve nonlinear optimal control problems by 

replacing the original nonlinear state equations by an equivalent sequence of linear 

time-varying state equations as we will seen in the iteration technique [10-13] in chapter 

five, so first we must study linear optimal control problems. 

 

The linear optimal control problem is one of the few optimal control problems that can 

be solved analytically. The solution of this problem gives a feedback control law. This 

solution can be found in many text books like [1]. However, this solution is not that 

easy. In order to solve this problem, it is necessary to solve either the nonlinear matrix 

Riccati equation or to convert the problem into Two-Point Boundary Value Problem 

(TPBVP).  

 

Many numerical methods which are based on orthogonal polynomials have been 

proposed  to solve various classes of optimal control problems [34]. Lately several 

papers have appeared that are based on using wavelets approach to solve optimal 

control problems [17–20]. The reason for using wavelets approach is that the wavelets 

are very effective in approximating functions with discontinuities or sharp changes 

because they are not supported on the whole interval             as other orthogonal 

functions are. 

 

Here we used the direct method to solve the optimal control problem, some researchers 

proposed direct methods by using either discretization or parameterization to solve 

linear optimal control problems to avoid difficulties associated with solving using 

indirect methods, Razzaghi and Elnagar [16] parameterize the derivative of the state 

variables using shifted Legendre polynomials. Jaddu [2] proposed a method that is 

based on state parameterization using Chebyshev polynomials. Chen and Hsiao [7],[17] 

proposed a method using Haar wavelet  orthogonal functions and their integration 

matrices to solve  lumped and distributed parameter systems. Jaddu [18] also, used 

Chebyshev wavelet to solve the linear  quadratic optimal control problem with terminal 

constraints. The method is based on converting the optimal control problem into 

mathematical programming and he used the operational matrix of differentiation. 

Babolian and Fattahzadeh [21] presented operational matrix of integration of 

Chebyshev wavelets basis and the product operational matrix. 

    

In this chapter, we will propose a method to solve linear time-invariant quadratic 

optimal control problems using control state parameterization via Chebyshev wavelets 

by using operational matrix of integration.  
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The method is based on using Chebyshev scaling functions to  approximate the state 

and control variables. So, the optimal control problem is transformed into a quadratic 

programming problem and  solved it using MATLAB program.  

3.2. Statement of Linear Quadratic Optimal Control Problem 

We can stated the linear quadratic optimal control problem as follows: 

Find an optimal controller     
  that minimizes the following quadratic performance 

index 

 

           
  

 

                                                             

 

subject to the following linear dynamic system and initial conditions 

 

                                                                                                  
 

where                          are      and      real-valued matrices 

respectively.   is an      positive semidefinite matrix and  is an      positive 

definite matrix, we will assume that                   . 

 

The method proposed to solve the problem         ,         is based on directly 

parameterizing the state and control variables by a finite length series of Chebyshev 

wavelets with unknown parameters.  

3.3. Control State Parameterization via Chebyshev Wavelets 

In this section, we will present the proposed method of solving optimal control problem 

by using control state parameterization via Chebyshev wavelets, before that we will 

review some of the important properties of Chebyshev wavelets. 

 

3.3.1. Some Properties of Chebyshev Wavelets 

Wavelets constitute a family of functions constructed from dilation and translation of a 

single function called the mother wavelet. When the dilation parameter   and the 

translation parameter   vary continuously we have the following family of continuous 

wavelets as [21] 

            
 
   

   

 
                                                                       

 

Chebyshev wavelets                   have four arguments;                  
               is the order for Chebyshev polynomials and t is the normalized time. 

They are defined on the interval [0,1) by: 
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Here,       are the well known Chebyshev polynomials of order  , which are 

orthogonal with respect to the weight function      
 

     
  and satisfy the following 

recursive formula [20]: 

 

       ,    

         
                                                                                                                             

  
The set of Chebyshev wavelets are an orthogonal set with respect to the weight function  

 

                                                                      

 

 

3.3.2.  Function Approximation 

A function       defined over [0,1) may be expanded as: 

 

                

 

   

 

   

                                                    

       
 

                  

 

If the infinite series in Eq.         is truncated, then Eq.         can be written as: 

 

                        

   

   

  

   

                                           

 

                                                
 

 

                                                   
                ( 3.9 ) 

 

 

                                                                        
  

                                                                                                                                   ( 3.10) 
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3.3.3. Chebyshev Wavelets Operational Matrix of Integration: 

The power of orthogonal functions to construct operational matrices for solving 

identification and optimization problems of dynamics systems was start in 1975 when 

Chen and Hsiao initially established the Walsh-type operational matrix. Since then 

many operational matrices based on various orthogonal functions such as block pulse, 

Laguerre, Legendre, Chebyshev, as will as Fourier, have been developed . The main 

characteristic of this technique is to convert a differential equation into an algebraic one, 

and therefore the solution, and optimizing identification procedures are either reduced 

or simplified [17]. 

 

For Chebyshev wavelet the integration of the vector      defined in Eq. ( 3.10 ) can be 

obtained as 

             
 

 

                                                             

where P is the                operational matrix for integration and is given in [20] as 
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Lemma 1 

 

The integration of the product of two Chebyshev wavelet function vectors is obtained as  

 

                        
 

            
 

 

                                                     

 

                                                                 
   
   
   

  

 

                                                         

 
 
 
 
 
 
  

 
  

   

  

 
 

  
 

 
   

  
       

 
 
 
 
 
 

 

 

The following property of the product of two Chebyshev wavelets vectors [20] will also 

be used. Let 

                                                                   

Where                                                                         

             

               

                              
  

 

                                              
  

 

3.3.4. Chebyshev Scaling Functions 
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3.4. Optimal Control Problem Reformulation 

The linear quadratic optimal control problem can be stated as follows: 

Find an optimal controller          that minimizes the following quadratic performance 

index  

  

 

           
  

 

                                                                                             

 

           
 

                                                                                             ( 3.22 ) 

 

                                                                                                                     
 

 

Because  Chebyshev wavelets are defined on the time interval            and since our 

problem is defined on the interval             it is necessary before using Chebyshev 
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wavelets to transform the time interval of the optimal control problem into the interval 

         . 
We can obtained that by using  

 

   
 

                                                                                                          

So, 

                                                                                                          

Then the optimal control problem became as  

             
 

 

                                                                               

  

  
                                                                                                       

3.4.1. Control State Parameterization  

The basic idea is to approximate the state and control variables by a finite series of 

Chebyshev wavelets as follows [20] 

  

          
        

   

   

  

   

                                                  

 

          
        

   

   

  

   

                                                 

 

We can write these two equations in compact form as : 

 

                                                                       

                                                                          

 

 

                                                            is       ,  
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To approximate the state equation via Chebyshev scaling functions equation ( 3.22 ) can 

be integrated as  

                          
 

 

 

 

                                              

 

3.4.2. Initial Condition 

The initial condition vector    can be expressed  via Chebyshev scaling function as  

 

     
    

    (             
    

     
   

      =   
    

    
                                                                                                                       

 

            
    

     
          

                                              
 

                                  

  
 
 
 

 
 
 

 

                                         

     
    

    
  

   

      

 

                                                                                      

                           
 

                                                                ( 3.38 ) 

 

Using Kronecker product properties [ 35 ]we have   

 

                                                     

                                                                                                            
 

By equating the coefficients of             , we get  

 

                                                                                  
or  
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3.4.3. Performance Index Approximation 

Then we substitute ( 3.30 ) and ( 3.31) into ( 3.21 ) to get [8] 

       
 

 

                                                                 

Then we simplified it as  

      
 

 

                                                                 

 

Because of the orthogonality of Chebyshev scaling functions  and from Lemma1 then 

we have : 

               
 

 

 

Then  

    (                                                         
 

Finally we can write it as 

 

              
              

         
    

   
 
 
                                    

 

3.4.4. Continuity of the State Variables  

To insure the continuity of the state variables between the different sections we must 

add constraints. There are      points at which the continuity of the state variables 

have to ensured. 

 

Theses points are : 

   
 

  
                                                                                      

 

So there are                                           
 

                                                                                           

Where  
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( 3.48 ) 

                    matrix  

 

3.4.5. Quadratic Optimal Control Transformation 

By combining the equality constraints ( 3.41) with those in ( 3.47)we have  

 

 
                 

                     
   

 
 
   

    
            

                                     

From ( 3.45 ) and ( 3.49 ) the optimal control problem is transformed into the following 

quadratic programming problem  

 

                                                                                                    

Subject to equality constraints  

                                                                                                  

      

                                                                                                                

    
              

         
    

                                                                                                 

F   =   
                 

                     
                                                       

h    =   
    

            
                                                                                         

 

3.5. Numerical Example 1  

Problem Treated by Feldbaum  

 

Find the optimal control       which minimizes  

 

  
 

 
       

 

 

    

subject to 

                             
 

We solved this problem when                        
 

Then we approximate the state and control variables as  
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For this problem 

 

Chebyshev scaling functions for this problem are for k=1,M=3 

  

 

       
 

  
                                  

       
   

  
                     

       
   

  
             

 
 

 
 

                                  

       
 

  
                                 

       
   

  
                    

       
   

  
           

 

 
 
 

 
 

 

 

                                                
  

 

                                              
 

                                              
 

   
    

    
 

    

 
 

 

                 
 

There are        point. 

 

This point is : 

   
 

  
                             

 

So there are                                           

                         

                      matrix then         matrix 

                                                              
    1.1284    1.5958    1.5958    -1.1284   +1.5958    -1.5958] 

 

By solving the corresponding quadratic programming problem we obtained the optimal 

 

value of performance index  
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Figure ( 3.1 ) Optimal state and control trajectories                       

 

                                              

 
Figure ( 3. 2 ) Optimal state and control trajectories                       
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Figure ( 3.3 ) Optimal state and control trajectories                       

 
 

Table (3.1) 

 

      

    

     

    

     

    

     

    

            

                                          0.1929093208              

 

 

 

We conclude from Table         that when we increase k or M we can obtain the results 

of performance index ( J )  more closed to the exact value. . 

Also from Figures             we conclude that, we can plot the OCP trajectories more 

good when we increase in K and M. 
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3.6. Numerical Example 2 

Find an optimal controller      that minimizes the following performance index  

 

  
 

 
    

    
         

 

 

    

subject to 

 

                                                               

                                                    

 

We apply the proposed method at this example , we solved this problem when 

 

                                                

 

                                               
 

By solving the corresponding quadratic programming problem we obtained the optimal  

 

value of performance index                             ,  while the exact value is  

 

                    .    
 

 
Figure ( 3.2 )                                            
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Figure ( 3.3 )                                 

 

 

Table ( 3.1 ) Comparison between different researches for (   ) value 

 

Research Name   Deviation error 

Exact value           0.06936094 0 

Hsieh [36]           0.0702              

Neuman and Sen [31]           0.06989            

Vlassenbroeck [41]           0.069368            

Jaddu [2]           0.0693689             

Majdalawi [22]           0.0693668896              

This research                                     

 

 

In this chapter, we proposed a numerical method for solving linear time in-variant  

quadratic optimal control problems. In this method we used Chebyshev wavelet to 

approximate controls and states of the system using a finite length of Chebyshev 

wavelet.  

 

Then we solved two examples, the first example contains one state and the second 

example contains two states, compared with other researches, our research gives better 

or comparable results with other researches. 

 

As we saw in this chapter we converted the difficult linear quadratic optimal control 

problem into a quadratic programming problem which was easy to solve, and solved it 

by MATLAB program.   
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CHAPTER 4 OPTIMAL CONTROL  PROBLEM OF 

LINEAR TIME-VARYING SYSTEMS  

 

In this chapter we present Chebyshev scaling function multiplication formula and  

multiplication  operational matrix. A numerical method is presented to solve the time-

varying linear optimal control problem. The method is based on converting the optimal 

control problem into a quadratic programming problem . 

 

Because we aimed to solve the nonlinear optimal control problem, so we want to use the 

iteration technique which developed by Banks [10-13] which replaces the original 

nonlinear dynamic state equations by an equivalent sequence of linear time-varying 

state equations. By this, the original nonlinear quadratic optimal control problem is 

converted into a sequence of quadratic linear time-varying optimal control problems 

which are much easier to solve, we will see that in next chapter. 

4.1. Statement of the Optimal Control of Linear Time-Varying 

Systems 

 

Find the optimal control that minimizes the quadratic performance index 

 

           
  

 

                                                                                 

          

Subject to the  time-varying system given by 

 

                                                                                        
 

 

where                                                                     
                                       

 
              are time-varying matrices, Q is 

a positive semidefinite matrix , and R is a positive definite matrix . 

4.2. Optimal Control Problem 

4.2.1. Control State Parameterization 

Approximating the state variables and the control variables by Chebyshev scaling 

functions, we get [20] 

  

          
        

   

   

  

   

                                                    

 



 

 30 

          
        

   

   

  

   

                                                   

 

 

We can write these two equations in compact form as : 

                                                                                                         

                                                                                       

Where                                                                                
                                                           
  

                                         
                                

 

                                                                           
     
 

                                                                                                    
 

         
      

        
      

        
   

   
      

     
                               

 

                                                                                
 

         
      

        
        

        
   

   
      

     
                              

 

           are vectors of unknown  parameters have dimensions                    

respectively .  

 

 

 

4.2.2. The Product Operational Matrix of Chebyshev Wavelets 

The following property of the product of two Chebyshev wavelets vectors [20] will also 

be used. Let 
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4.2.3. Performance Index Approximation 

To approximate the performance index, we substitute             and        into         to 

get [39] 

 

      
 

 

                                                           

 

It can be simplified as  
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Because of orthogonality of  Chebyshev scaling function and using Lemma1 in chapter 

three   

 

               
 

 
                                                   ( 4.18 ) 

Then  

 

 

                                                                   ( 4.19 ) 

 

 

It can be wrote as  

 

 

              
              

         
    

   
 
 
                                                  

 

 

To approximate the state equations we write equation ( 4.5 ) as  

 

          

   

   

  

   

                                                                     

    

      

                                                
 
                                

 

                                                                                                                                      
 

               
     

      
   

 

The control variables  ( 4.6 ) can be rewritten as  
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4.2.4. Time Varying Elements Approximation 

 

Then we need to express                  in terms of  Chebyshev scaling functions. 

The approximation of       can be given by [38] :  

 

                

   

   

  

   

                                                             

 

                                                                                      
 

      

                                                                                   

         Theses constant matrices can be obtained as  

 

                 

 

  

   

  

                                                            

 

Similarly ,      can be expanded via  Chebyshev scaling functions as follows  

 

  

                                                                                      
 

                                       

 

4.2.5. Initial Condition 

 

The initial condition vector    can be expressed  via Chebyshev scaling function as  
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To express the state equations in terms of the unknown parameters of the state variables 

and the control variables ,            can be integrated as  
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Using the integration operational matrix  P  of  Chebyshev scaling function , we get  

 

                                                                              
 

 

 

 

                                                                         
 

 

 

                                                                            
 

4.2.6. Quadratic Programming Problem Transformation 

Finally by combining the equality constraints ( 4.37 ) with  ( 3.47 ) we get  
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We saw that  the optimal control problem is converted into a quadratic programming 

problem of minimizing  the  quadratic  function ( 4.20 ) subject to the linear constraints 

( 4.38 ) and solved it using MATLAB program.  

 

4.3. Numerical Example   

 

Find the optimal control      which minimizes  

 

  
 

 
       

 

 

    

subject to 

                                               

 

                           

 

                                                                       

 

 

 

Table ( 4.1 ) 

 

      

    

     

    

     

    

                                                        

 

 

 

The optimal state and control variables are shown in Figures ( 4.1-4.3 ), we noticed 

from Figures ( 4.1 – 4.3 ) and from Table ( 4.1 ) that when we increase M  we obtained 

at a good trajectories plots and at good results of performance index ( J ). 
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Figure ( 4.1 ) Optimal state and control  K=2   M=3 

  
Figure ( 4.2 )  Optimal state and control  K=2   M=4 
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Figure ( 4.3 )  Optimal state and control  K=2   M=5 

 

 

Table ( 4.2 ) 

 

Research 

name 

                 [40]               

                                                

 

Table ( 4.2 ) shows the comparison between our research and other researches to solve 

the previous problem , from the table we notice that our method is good compared with 

other methods.  

 

In this chapter we proposed a method to solve the optimal control problem time-varying 

systems using Chebyshev wavelet scaling function, we applied this method at a 

numerical example to see the effectiveness of the method and compared with other 

methods. 

 

We need to solve the optimal control problem time-varying systems because we must 

need it to solve the nonlinear optimal control problem in the next chapter.  
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CHAPTER 5 NONLINEAR QUADRATIC OPTIMAL 

CONTROL PROBLEM 

 

5.1. Introduction 

 

After we solved the linear quadratic optimal control problem in the previous chapters  

via Chebyshev wavelets, we look to solve the nonlinear optimal control problems also. I 

will use here the iteration technique developed by Banks [10-13] which replaces the 

original nonlinear dynamic state equations into an equivalent sequence of linear time-

varying state equations, so the original nonlinear quadratic optimal control problem is 

converted into a sequence of quadratic linear time-varying optimal control problems 

which are much easier to solve. 

 

Iteration technique is based on the replacement of the original nonlinear system by a 

sequence of linear time-varying systems, whose solutions will converge to the solution 

of the nonlinear problem. The only condition required for its application is Lipschitz 

condition which must be satisfied by a matrix associated with the nonlinear system. 

This approach will allow many of the classical results in linear systems theory to be 

applied to nonlinear systems [13]. 

 

Therefore, we extend the method described in chapter four to solve the nonlinear 

optimal control problem using Chebyshev wavelet.  

 

Nonlinear optimal control problems was solved  using parameterization methods have 

been published. Sirisena [40] used the piecewise polynomials to parameterize the 

control variables. Vlassenbroeck and Van Doreen [41] used the control-state 

parameterization using Chebyshev polynomials to convert the nonlinear optimal control 

problem into a nonlinear mathematical programming problem. In its turn, the nonlinear 

mathematical programming problem can then be solved using different methods. One of 

the popular methods that are used to solve the nonlinear mathematical programming 

problem is the sequential quadratic programming method [42] which replaces the 

nonlinear mathematical programming problem by a sequence of quadratic programming 

problems. 

 

Jaddu [2],[43],[44] proposed a numerical method that is based on using the second 

method of quasilinearization and on parameterizing the system variables via Chebyshev 

polynomials to solve the nonlinear quadratic optimal control problems. By this, the 

original optimal control problem is converted directly into a quadratic programming 

problem. 

 

Also Majdalawi [22] proposed a method that is based on state parameterization via 

Legendre  polynomials which solved the nonlinear quadratic optimal control problems 

using iteration technique. So, the original optimal control problem is converted directly 

into a quadratic programming problem which is easy to solve.  
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As we say earlier, our method is based on replacing the difficult nonlinear dynamic 

system by a sequence of linear time-varying dynamic system using iteration technique 

[10-13]. These sequences of linear time-varying systems are to be solved using the 

method proposed in the previous chapter; which parameterize the control-state variables 

using Chebyshev wavelets. 

5.2. Statement of the Nonlinear Quadratic Optimal Control Problem 

The problem we are treating is to find  the optimal control          that minimizes the 

performance index 

 

           
  

 

                                                                        

Subject to  

 

                                                                                   

 

Where                      positive semidefinite matrix,            positive 

definite matrix             is assumed continuous differentiable function with 

respect to all its arguments. 

 

We proposed here a method that is based on using the iteration technique; in which the 

nonlinear dynamic system         is to be replaced by a sequence of linear time-varying 

dynamic system. So, the original nonlinear quadratic optimal control problem described 

in                 is replaced by a sequence of linear quadratic optimal control problems 

that are easier to solve. The resulted linear quadratic time-varying optimal control 

problems are then to be solved using the method described in previous two chapters, 

then we combine between iteration technique and control-state parameterization via 

Chebyshev wavelets, the solution of the difficult nonlinear optimal control problem is 

reduced to a simple matrix-vector multiplication solved using MATLAB program.  

5.3. What is Iteration Technique ? 

Before starting this method we must know what is iteration technique. This technique is 

based on the replacement of the original nonlinear system by a sequence of linear time-

varying systems, whose solutions will converge to the solution of the nonlinear 

problem.  

 

Iteration technique was developed by Banks [10-13], in this technique, the nonlinear 

system described in         can be replaced by an equivalent sequence of linear time-

varying state equations.  

 

We can formulate this technique mathematically as follows 

 The nonlinear system in         can be rewritten in pseudo-linear form [45]: 
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The following sequence of linear time-varying state equations can replace the original 

nonlinear system described in           
 

        
 

               
          

                                                            
 

            

 

                                                                                       
 

 

First we must applied the Lipschitz condition at  the above sequence. It can be shown 

that the above sequence converges to the solution of the original nonlinear system if the 

Lipschitz condition                          is satisfied. The proof can be found 

in [10]. 

 

If we applied the iteration technique to the optimal control problem described in 

           , the following sequence of linear time-varying quadratic optimal control 

problems can replace the original problem in                : 
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5.4. Problem Reformulation 

The proposed method here converts the optimal control problem under consideration 

directly into a quadratic programming problem. To convert the optimal control problem 

            into a quadratic programming problem, the state  and control variables are 

approximated by a finite length Chebyshev wavelets with unknown parameters. These 

approximations are used to approximate the initial state conditions of the system, which 

will be treated as linear constraints. 

  

If  we look at the optimal control problem OCP                   we can easily show that 

the                                                is a time-invariant optimal control 

problem, so we can consider this problem as the starting nominal trajectory to the 

sequence of optimal control problem                 . The solution to this particular 

problem was described in details in chapter three. 

 

The remaining linear time-varying optimal control                  can be solved using 

the method which was explained in chapter four using Chebyshev wavelets. 

 

Because of Chebyshev wavelets are defined on the time interval            and since our 

problem is defined on the interval             it is necessary before using Chebyshev 

wavelets to transform the time interval of the optimal control problem into the interval 

         . 
We can obtained that by using this formula, 

 

   
 

                                                                                                         

So, 

                                                                                                     

 

Reformulate the OCP by transforming its time interval into           . 
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Figure ( 5.1 ) flow chart for solving nonlinear Quadratic OCP                                                                                                              
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Set  k = 0 and solve the resulted linear quadratic time invariant OPC 

  

 

                                                
 

 

                        

                      
     

  
        

             
                        

Set  k = 1 and solve the resulted linear quadratic time-varying  OPC 
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5.5. Numerical Example 

Van der Pol Oscillator problem 

Find an optimal controller        that minimizes the following performance index 

  
 

 
    

 
 

 

   
                                                                           

           

                                                                                                      

             
                                                                 

 

Using the iteration technique the problem became as 

 

 Minimize 

     
 

 
     

   
  

 

 
    

   
 
 

       
 
                                                           

Subject to  

 

   
      

               
                                                                             

 

   
       

           
     

       
                  

                       

 

 for     
 

Minimize 

     
 

 
     

     
 

 
    

    
 

       
 
                                                                   

Subject to  

 

   
      

               
                                                                               

 

   
       

                  
                                                                     

 

 

Using Eq. ( 5.12 ) – ( 5.15 ) to reformulate the problem, then the problem became as  

 

 

Minimize 

     
 

 
     

   
  

 

 
    

   
 
 

       
 
                                                

Subject to  
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 for     
 

Minimize 

 

     
 

 
     

     
 

 
    

    
 

       
 
                                                    

Subject to  

 

 

   
       

               
                                                                   

 

   
         

                   
                                                 

 

  

Starting from the linear quadratic time-invariant problem  ( 5.28 )-( 5.30 ), which we 

will consider it as the starting nominal trajectories,  

We used K=2, M=6 then, 

 

J=0.953123245019731 
 
then we solved the linear quadratic time-varying optimal control problems ( 5.25 )-( 

5.27 ) for  k=5 iterations, I used K=1, M=3. 

 

Table ( 5.1 ) shows the results of the optimal values of the performance index  J  for 

each K by using Chebyshev wavelets. 

 

 

 

 

 

Table ( 5.1 )                                                             
 

Iteration 

k 
          

0 0.95312324501973 

1 1.46481948154029 

2 1.44502432590876 

3 1.43845253386883 

4 1.43407262339513 

5 1.43404253580764 
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Figure ( 5.2 ) Optimal trajectories of Van der Pol problem using Chebyshev wavelet. 

 

 
 

Figure ( 5.3 ) Optimal trajectories of Van der Pol problem using Chebyshev wavelet. 
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Table (5.2 ) shows the comparison between different methods were solved Van der Pol 

oscillator problem . 

 

Table ( 5.2 ) Comparison between different approaches of the Van der Pol oscillator problem 

 

Approach Name Performance Index ( J ) 

Jaddu [2]                            1.433487 
Bullock and Franklin [46] 1.433508 

Bashein and Enns [47] 1.438097 
Majdalawi [22]                            1.4493959719 
This research                            1.43404253580764 
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CHAPTER 6 CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE WORK 

6.1. Conclusion 

In this thesis, we proposed a numerical methods to solve several types of optimal 

control problems. We solved optimal control problem for linear time in-variant systems 

, linear time varying systems and nonlinear optimal systems. Theses methods are based 

on parameterizing the system state and control variables using a finite length Chebyshev 

wavelet. The aim of the proposed method is the determination of the optimal control 

and state vector by a direct method of solution based upon Chebyshev wavelet. 

 

 We also presented an explicit formula for the performance index. In addition 

Chebyshev wavelet operational matrix of integration was presented and used to 

approximate the solution. Also product operational matrix of Chebyshev wavelets was 

presented and we used it to solve linear time-varying systems.  

 

Nonlinear optimal control problem was solved using combination between iteration 

technique and control-state parameterization via Chebyshev wavelets, so the solution of 

the difficult nonlinear optimal control problem is reduced to a simple matrix-vector 

multiplication solved using MATLAB program. 

 

Compared with other methods and based on the simulation carried out in this work, our 

method gives better or comparable results with other methods. Using this method, the 

difficult linear quadratic optimal control problem is converted into a quadratic 

programming problem that is easy to solve.  

 

The numerical method proposed in this thesis have many advantages as: The 

approximation is easy; explicit formula is presented to approximate the quadratic 

performance index; small quadratic programming problems are to be solved. 

 

We applied the proposed method to several examples .The simulation results were good 

and the proposed method converges rapidly.  

 

We noticed from the results of performance indices and from trajectories plots that 

when we increase in        we obtained  more accurate results and closed to the exact 

values. 

6.2. Future Work 

 In this thesis we used operational matrix of integration to approximate the 

solution, I suggested that we can use operational matrix of differentiation to 

approximate the solution. 

 The work done in this thesis can be redo using Haar wavelet or Daubechies 

wavelet instead of Chebyshev wavelet, and  solved the problem as mentioned 

later. 
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