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Abstract

During the last three decades several approximd&ohniques based on
the property of functions orthogonality were progmsto solve different
classes of optimal control problems (QLP

The methods used to solve OQC#te classified into two types: the direct
methods are discretization and parameterizatiotevindirect methods are
Caley-Hamilton and Euler-Lagrange. The direct patanization methods
are classified into three ways control parametdona state
parameterization, and state-control parameterizatio

The proposed method in this thesis uses stateatqrarameterization via
Legendre scaling function in which OE€Ks converted into quadratic
programming. In addition, when OJR quadratic form, it is easy to solve
it by using any software package like MATLAB, Matatica, or Maple.

The optimal control problems investigated in thiedis deals with linear
time invariant (LTI) systems, linear time varyingT{) systems, and
nonlinear systems.

The LTI and LTV problems were parameterized basedhe Legendre
scaling function such that the cost function areldbnstraints are casted in
terms of state and control parameters while, comptmlinear OCPE can
be solved by proposed method after converted tecquence of time
varying problem using iterative technique.

To demonstrate applicability and effectivenesshef proposed technique
various numerical examples are solved and the teesuie better when
compared with other methods.
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Chapter One

I ntroduction

1.1 Background

Most of the computing techniques for the solutidmonlinear problems depend on
approximating the solutions of nonlinear system Wnear systems in small regions of
phase space. In general, nonlinear systems can'tsdhed obtaining general
expressions; this motivated researchers to sohesethnonlinear problems using
numerical solutions i.e. optimal or suboptimal iolos.

Optimal control is an important science that dealth nonlinear optimal control
problem (OCP) and the main objective of optimal toanis to find an optimal
controller that can be applied to the nonlineatesysand to extrmize a certain cost
function within the system's physical constraints.

Generally, optimal control can be classified asedirand indirect methods. Indirect
methods are based on converting OCP into two-fmmahdary value problem(TPBVP),
then solving the last one by Euler Lagrange teamigr Hamilton-Jacobi-Bellman
equation (HJBE). Direct methods can be implementsihg discretization or
parameterization methods.

1.2 Motivations

Approximation is one of the most successful applces among different applications
of wavelets functions; thus a great number of neteas have tried to solve Og&sing
those functions.

The task of finding optimal controller (t) for nonlinear problems by indirect methods
is often very difficult. Moreover, there are margisadvantages of indirect methods
such as: (1) difficultly to obtain exact solutio nonlinear OCE using Euler-
Lagrange or HJBE; (2) increasing problem compaitally using artificial costates;

(3) complete knowledge of system model is needadaddition, there are many
advantages of direct methods over indirect metlsods as: (1) there is no need to use
costates variablest;;; (2) direct methods convert dynamic OCP into atista
optimization problem. Thus, researchers are ergma to use direct parameterization
methods which are based on orthogonal functiongpahghomials.

Researchers used direct parameterization metho e classified into three types:
state, control, and state-control parameterizdtiof.

Legendre scaling function (LSF) can be used forisglOCR because:



* It is not supported on the whole interval <t < b), so it is effective in
approximating functions with discontinuities or ghahanges.

* It has a closed form, so it is easy to obtain dpmral matrix of integration
(OMI).

* Itis not only orthogonal but also orthonormal.

* Rapid convergence.

* Small number of scaling parametéf) and low order of Legendre polynomials
(M) are needed to obtain very satisfactory results.

* Its OMI in the form of tridiagonal.

Thus, this work will be based on direct methodsgstate-control parameterization via
LSF to solve quadratic OGP

1.3 Thesis Objectives
Objectives of this thesis can be summarized asvisli

» Using LSF to approximate the state and controlaldeis of OCEto solve linear
time invariant and linear time-varying OEP

* Solving complex nonlinear OGPy applying the iterative technique developed
by Tomas and Banks [5-7] to convert the nonlineaadyatic OCP into a
sequence of time varying quadratic QCP

e« Comparing between the proposed method with therothethods to show
effectiveness of the proposed method.

1.4 Statement of Problem

The optimal control problem can be stated as: indopen loop optimal controller
u*(t) or a closed loop optimal controller(x(t),t) that minimizes the following
performance index

t
J=H(x(t), ) + j G(x(t),u(t),t)dt (1.1)
Subject to the system constraints °
x = flx@),u®),t) ,x(t,)=x, (1.2)

Wheret € [t,,tf], x € R™ is the vector of stateg, € R™ is the vector of controls;

iIs assumed continuous differentiable function wehpect to all its arguments,white
andG are scalar functions.

Moreover, many techniques have been presentedite &XCP (1.1)-(1.2), and these
methods can be classified into three methods &sifsi

1. Calculus of variation (Euler Lagrange Equation).
2. Dynamic programming (Hamilton-Jacobi-Bellman Eqoa}i
3. Nonlinear programming (Parameterization and diszagon).



Due to the advantages of direct methods and thebdeks of indirect methods, this
thesis will based on parameterization method whsclone techniques of nonlinear
programming approaches. Figure (1.1) illustrateséhcomputation methods

1.5 Literature Review

The solution of nonlinear OGRvith constraints is very difficult, especially, et using
indirect methods like HIBE. However, direct methatt®wn to be very useful and
efficient in solving nonlinear OGP

s Razzaghi and Yousefi [8] solved OERsing direct numerical methods; but
handled only the inequality constraints and theadtyuconstraints were linear
depending on Legendre wavelets and Gauss nodeatitagformula.

% Razzaghi and Yousefi [9] also proposed method dart®n of nonlinear problems
depending on calculus of variations in which otilg performance index was
nonlinear and the constraints were linear.

« Dadkhah and et al.[10] proposed numerical solutioly for nonlinear Fredholm-
Volterra integro-differential equation using Legendvavelets.

% Sadek and et al.[11] proposed method of solvindinear OCPS based on modal
space and Legendre wavelets; but their method eigscomplex.

% Babolian and Fattahzadeh. [12] proposed numericathod of solving
differentiable equations using Chebyshev wavelaisthis method didn't take into
account the nonlinear constraints.

+« Jaddu and Vlach [13] proposed an approach to dwlear OCPS using Legendre
wavelets.

« Jaddu[l4] also proposed method for solving linaaretvarying OCPS using
Legendre wavelets, in which the time-varying prableonverted to quadratic
programming problem.

% Majdalawi[15] proposed a method for solving nonin€@OCPS using Legendre
polynomial and state parameterization; but the nthsadvantage that Legendre
polynomial supported the whole interval and thidl give poor results comparing
with others methods.

The proposed method is based on Legendre scalmgidn and iterative technique
where nonlinear OGf#s solved. In addition, the performance index diropl problem
Is in quadratic form and subject to different kiofdstate constraints.

1.6 Thesis Contributions

v Introducing a new method for solving nonlinear Q@Bing Legendre scaling
function and iterative technique to provide a gfinaiforward and convenient
approach for digital computation.

v" Providing numerical technique to solve linear @8bject to state constraints.

<

Presenting effective method to solve time varyir@Fo .
v Using simpler form of OMI that simplifies compuitats of optimal control.



v' Presenting the property of multiplication of two demdre scaling function
which help solving time varying and nonlinear QCP

v' Keeping the performance index in the same format.

Optimal Control Problem Methods

Indirect Methods Direct Methods

\ 4

4 (
Par ameterization ]— Discretization ]7
\ \
4 \ ( \
State < Control
J \ J
( \ 4 \
Control Control - State
. J . J
( \
Control - State |«
. J

Figure (1.1): Computation Methods of Optimal Control Problems

1.7 Thesis Organization
The thesis is organized as follow:

Chapter Twas introduction to wavelets theory and Legendrdisgdunction. Chapter
Threeintroduces linear quadratic OCPS and the Bolza fof the performance index.
State and control variables parameterization vigebdre scaling function are also
presented in Chapter Three. Chapter Fowrides effective technique for solving time-
varying OCR. In addition, the property of multiplication of e&wLegendre scaling
functions is introduced. Chapter Fivlescribes a method for solving unconstrained
nonlinear OCE by converting nonlinear OGnto a sequence of linear time-varying
OCR;s using iterative technique and two examples arevahGhapter Sixconcludes this
thesis.



Chapter Two

I ntroduction to Wavelets and L egendr e Scaling Function

2.1 Introduction

Wavelets theory is a relatively new area in mathemal research which has

considerable attention in a wide range of applicetiand engineering. In addition,
wavelets are mathematical functions that separat® dnto different frequency

components, and then present each component wigsadution matched to its scale.
They have advantages over traditional Fourier nistho analyzing physical situations
where the signal contains discontinuities and slspiges. Wavelets were developed
independently in the fields of mathematics, quanplinysics, and electrical engineering.

Moreover, wavelets emerge in the area of paranzetésn; due to their rapid
convergence and their fast numerical algorithms.

There are a multitude of wavelets with differempgeerties. It is important to choose the
one with appropriate properties for a given appilca

Most important properties are:

The compact support property.

The property of symmetry.

Accuracy of approximation; particularly, with diggmuities functions.
Their smoothness and regularity.

Wavelets not supported on whole intergal < t < b).

Orthogonality property.

ISANENENENEN

Wavelets constitute a family of functions constealcfrom dilation and translation of a
single function called the mother wavelet. WhendHation (scaling) parameter and
the translation (shifting) parametkrvary continuously, we have the following family
of continuous wavelets as [8]

Yan(t) = |a|_1/21p(%), a,b € Ra#0 2.1)

Here, we would like to distinguish between waveled scaling functions. Wavelets are
defined in the time domain by the wavelet functipft) which is called the mother
wavelet and scaling functigp(t) which is called the father wavelet. Moreover, wate
function has only time domain representation.



2.2 Legendre Scaling Function

In this section, we will introduce the definitiobasis, and plots of Legendre scaling
function. These basis will be the basic of our workhe following chapters. Legendre
scaling function can be defined as in [13] as fo#io

1K/ Ky 2n-2 2n
o, (1) = /m +5 272 P,2%t —-2n+1) for —F st <%
0 otherwise (2.2)

WhereP,, is the Legendre polynomial of order; n refers to the section numbers:
1,2,..,2K71: K is the scaling parameter and can assume any \@sitteger and
t € [0,1].

Legendre polynomial can be defined as in [16] #svis:

1 am
Pn(X) = g o (% = D™ 23)

From which the first four Legendre polynomial candiven

Py(x) =1
P(x) =x
1
P,(x) = E(sz -1) (2.4)

1
Py(x) = > (5x3 — 3x)

Now by using equations (2.2) and (2.4) and chadse 3 and K = 2, then the four
basis Legendre scaling functions can be givemfer1 as follows

(@10(t) = V2 )
911(t) = V6(4t — 1)

5
< P12(8) =\/;[3(4t—1)2 —1] b0 <t< % (2.5)

P13(t) = \/2[5(415 - 1)° —3(4t - 1)]
\

J



and forn = 2 as follows

[ @20(t) = V2 )
@21(t) = V6(4t — 3)

5
{9220 = [5[3(4t=3)* ~1] (2.6)

N[ =
IN
~
AN
[N

0250 = |Z[5(4t — 3)° — 3(4t — 3)]
L 2 )

The basic functions of equations (2.5) and (2.6h ®e plotted as shown in
Figure (2.1) where the symmetry property is redizén addition, this property
simplifies the problem computation.

Legendre Scaling Function For ME3, k=2 Legendre Scaling Function For M=3, k=2

PHI23

;
&

PHID , PHIN
PHIZZ

Figure (2.1): Legendre Scaling Functions Basis foe 1 andn = 2

2.3 Approximation via L egendre Scaling Function

Any function f(t), which is defined on the intervdD,1], can be expanded using
Legendre scaling function as follows :

2K-1

FO=)" D cambum(® 27)
n=1 m

=0

Where



Cnm

T —
C - [Clo Cll e ClM CZO e CZM CZK—lo e

2n

2K

2n—2
2K

— [ 1® dum( e

CZK—1M]

d(t) = [¢10 P11 - D1m D20 - Doy Pox-14 .. ¢2K-1M]T

The formula of equation (2.7) will be used in thexihchapters to parameterize both
state and control variables.

To show the effectiveness of Legendre scaling fondn approximation, we introduce
a square wave to be approximated as shown inésgqu2.2)-(2.4).

Approximating a square wawe at K=1,M=2
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Figure ( 2.2): Approximating Square Wave Bt=1and M = 2

When Figures (2.2), (2.3) and (2.4) are compared, wotice that increasing and M
will enhance the approximation. More over, to obtdie same accuracy as in Figure
(2.4) using Fourier series the order of Fourieiesewill be nearly fifteen; so this
illustrate the efficiency of Legendre scaling fuonotin approximation.
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Figure ( 2.4): Approximating Square Wave At



Chapter Three

Linear Time Invariant Quadratic Optimal Control Problem

3.1 Introduction

In this chapter, linear approach is introduceddiwes linear quadratic OGPthis step is
necessary for the next chapters to solve time-ugrgnd nonlinear OGP

The main goal of the proposed method is to conmertnonlinear OCginto sequence
of time varying OCR using iterative technique, then the optimal probie converted
to quadratic programming problem, which can belgasived by any software package
like MATLAB.

In this chapter, a new technique will be preseritechandling linear quadratic control
problems using state-control parameterization wgdndre scaling function.

3.2 Problem Statement

The optimal control problem can be considered rdirfg the optimal controllen*(t)
that minimize a performance index such

t
J = J- (xTQx + uTRu) dt (3.1)
0

Subject to linear constraints and initial condition
x = Ax(t)+ Bu(t),x(0) =x, (3.2)

Where t € [O,tf], X,X, € R", u € R™, A Baren Xnandn Xm constant
matrices respectivelyQ is an n X n positive semidefinite matrix anklis anm X m
positive definite matrix.

3.3 Approximation via L egendre Scaling Function

State and control variables can be approximatedgusegendre scaling function as
follows

2K-1

x;(t) = Z Z al, Gum(@) i=12,..,5 (3.3)

n=1 m=0
2K-1

w () = Z Z bi b () i=12, .7 (3.4)

n=1 m=0

10



These equations can be written in compact fornoksas
x(6) = (I,® ¢7(1))a (35)
u(®) = (L ® ¢ (1)b (3.6)

Wherels, I, are identity matrices of dimensianx s andr X r respectively and(t) is
the vector of Legendre scaling function with dimensv x 1, whereN = 2X-1(M +

1).
T
(bnm(t) = [¢10 b11 - P1im P20 - P2m ¢2K—10 ¢2K‘1M]
And
alym = [alp aly . @ly Aoxo1g Axory oo Aoxory,] E=12,.,8
binm = [bio bil b{M blK—10 ;K—11 b;K—1M] i=12,..,r

2

3.4 Operational Matrix of Integration (OMI)

Lemma 3.1 The matrix P is called operational matrix of integration of Legendre scaling
function and can be given by

D U U U .. .. U

o D U U .. ..U

[
P=2_K A (3.7)

o 0O .. O D U U

O 0 O O D U

O 0 O 0 D

Where

Pisa (2X71(M + 1)) x (2X~*(M + 1)) operational matrix of integratioB, U, and D
are(M + 1) x (M + 1) matrices and given by

2 0 0 0
v=|2 29 9 (3.8)
0O 0 0 0 o

11



- 1
1 — 0 0 0 0 0
V3
1o Loy 0 0 0
V3 V15
o L o L 0 0 0
= -1
0 0 — 0 0
V35
-1 . 1
vV4aM2 — 16M + 15 4M?2 —8M + 3
-1
0 0 0 0o .. 0 0
i 4MZ —8M + 3

(3.9
O is matrix that all entire elements are zeros.

To be familiar with operational matrix of integi@ti we will give here the form of
matrix fork = 2,M =5 as follows

The D matrix will be of dimension(6 x 6) and given as in equation (3.11) and the
matrix P will be of dimension(12 x 12) and can be given in compact form as in
equation (3.12).

Lemma 3.2 The integration of multiplication of Legendre scaling function and its
transpose in the interval t € [0,1] is equal to identity matrix since Legendre scaling
functions are orthonormals as follows

1
fcl)(t) dT(D) dt =1y (3.10)
0
Wherel y, is identity matrix of dimensioN, (N = 2K-1(M + 1)).
- 1 ! 0 0 0 0
V3
R S S S
V3 V15
o L o L o o
D= V15 4 V35 . (3.11)
0 0 r— 0 — 0
V35 V63
o o o —~ o 1
V63 V99
-1
0 0 0 0 o 0
\/99 |
1mp v
P = 2210 D] (3.12)

12



3.5 Performance | ndex Parameterization via L egendr e Scaling function

In this section, we would like to construct thenfala of performance index to calculate
its numerical value easily.

The first step is to integrate the equation (32)allows

t t

x(t) —x, = fo(r)dr+fBu(r)dr (3.13)

0 0

Wherex, is resulted from integration and known as initiehdition vectorx, can be
expressed via Legendre scaling function as follows

2
Xo = % (I,® ¢T(D))E, (3.14)
2" /2
Where
& = ad ad ... ... ajd ] (3.15)

al =[x;(0)00...0]x;(0)00... 0] ...|x;(0)0..0] (3.16)

The second step is to substitute equations (3¢b)&6) into equation (3.1) to get

1
] = f a'(I,® ¢(1))Q(I,® ¢T(®))a+ b' (I, ® () R(I, ® pT())bdt  (3.17)
0

By applying Lemma 3.2, equation (3.17) can be siineglas in equation (3.18)

J=a"(Q®Iy)a+b"(R®Iy)b (3.18)

Moreover, equation (3.18) can be written in quaddairm as follows

_ Q®IN ONstr a
J=1a" bl " N R IN] 3] (3.19)

3.6 Continuity Test

Wavelets functions are not supported on whole valea <t < b); so these
functions divide the interval of interest to numbefr sections depending on the
value of scaling parametekK; for this reasons we have to add additional
constraints to ensure the continuity of the statriables between different
sections. There ar€2X~! —1) points at which the continuity of state variables
must be tested according to equation (3.20).

i=12..,2k1-1 (3.20)

13



In addition, there ar€2¥-* — 1) s equality constraints can be given as follows
(I ® ©)a = 0(zx-1_1)5xq (3.21)

However, the matrix of continuity ensured constsinis (2571 —1) x
(2¥-1(M + 1)) and is given by

[¢1m(t1) —Gam (t1) 0 0 0 0 ]
| 0 Gam(tz)  —P3m(t2) 0 0 0 |
o' = 0 0 ¢3m‘(t3) _¢4‘r‘n(t3) 0 0
6 0 0 0 ¢(2K—1_1)m(t21<—1_1) —¢(2K—1_1)‘m(t2K—1_1)|
(3.22)

3.7 Quadratic Programming Problem

In this section, we try to construct the quadrdbem of optimal problem to be
easily solved by MATLAB.

Recall equation (3.13), which can be rewritterhia following form

[(A®PT) — Iy, B®P][p]=-¢5 (3.23)

V2

252

Whereé =

By combining equations (3.21) and (3.23) we get tfwlowing form of
equality constraints

A®PNH -1y, (BEPH
(Is ® ) O(ZK‘l—l)str

5] = lo(z;iiSXll (3.24)

Equations (3.19) and ( 3.24) can be rewritten irmgact quadratic form as
follows

mZin ZTHz (3.25)
Subject to equality constraints
Fz=h (3.26)
Where
a
Z= [b]
H = [Q ® IN ONstr]
OerNs R ® lN

14



_[A®PD) -1y,  (B®PT)

(s ® D7) O(ZK‘l—l)str
_ _505
B O(ZK_l—l)sxll

the optimal vectorz® can be also calculated by the standard quadratigrgmming
method [17] as follows

z*=H'FT(FH'FT)™'h (3.27)
3.8 Numerical Examples
3.8.1 Example (1)

Find the optimal contrak*(t) which minimize the following performance index
1
1
J = Ef(xz + u?)dt
0

Subject to equality constraints and initial coraditas follows
x=—-x+u ,x(0)=1

To illustrate the proposed method we will solve ragke (1) in details and step
by step as follows

Step (1): define the unknown coefficients of state and antvariables
according tdK and M.

ForK = 2, andM = 2 the unknown coefficients will be as follows

a = [a5pa11012 Az A2107;]

b = [byg b11b1; bag bz1bys]
Step (2): generate the Legendre scaling function vector wigipg onK and M.

D(t) = [p10(t) P11(8) P12(1) P20(t) P21 (1) Poa(®) 17

Step (3): approximate the state and control variables.

x(t) = 22: 22: Anm Prum

n=1m=0

= A0P10 + A11P11 T A12P12 + Az0P20 + A21P21 + Az2P22

N
N

u(t) = bum Pnm = b10®10 + b11®11 + b1212 + baoP2o + ba1P21 + baaa;

0

3
n
3
I

15



Step (4): find the vector of initial condition.

V21
§=—=— ,§,=[100100]7
ZK/z V2 d [ |

Step (5): find the points of ensured continuity and the oanty matrix.
i 1
ti=sk1=5
o' = [¢10(0-5) ¢11(0-5) ¢12(0-5) _¢20(0-5) ‘¢21(0-5) ‘¢22(0-5) ]

®' =[1.4142 2.4494 3.1622 —1.4142 2.4494 —3.1622 ]

Step (6): determine the performance index by equation (3as9pllows.
J = 0.5(af, + afy + ai, + ajy + a3y + ag, + by + biy + bf, + b3 + b3y + b3y)

Step (7): solve for optimal vectoz* using equation (3.27) or quadratic programming
method in MATLAB.

. _ [0.5122,-0.1001, 0.0095, 0.2684, —0.0464, 0.0050, ... T
Z = —0.1829, 0.0465,0.0060,—0.0518,0.0304, 0.0084

Step (8): substitute the optimal values from step (7) ingpg6), and obtain the optimal
value /] = 0.192998105237.

We solve the same problem using different valuek ahd M and the optimal values
are as shown in Table (3.1).

Table (3.1): Optimal Values for Example (1)

M K J Deviation Error
3 2 0.192909334109 3.6 x107°

4 2 0.192909298711 6.1 x 10710

5 2 0.192909298093 6.7 x 10712

The exact optimal value of this problem as in [18] 0.1929092981. The
optimal state and control trajectories fad =3 and M =5 are shown in
Figures (3.1) and (3.2) respectively. Since ourtesysis linear; so the state and
control trajectories should approach zero aftentdintime. On the other hand,
we focus on the interval0,1] to compare our plots with other researchers to
show effectiveness of the proposed method. Morgoumreasing the ordeM
will enhance the accuracy of results.
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State and Control Trajectony

08—

' ' ' ' ' ' '
' ' ' ' ' ' ' ' '

DE _________ L [ . e P 1o e - —
8 v ' v | v v ' '
' H ' T ' ' ' H '
' H ' ' ' ' ' H '

Figure (3.1): Optimal State and Control Trajectories for ExanffileatM =3

State and Control Trajectory
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Figure (3.2): Optimal State and Control Trajectories for ExanffileatM =5
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3.8.2 Example (2)

Find the optimal contrak*(t) which minimize the following performance index
1
] = f(xf + x2 + 0.005u?)dt
0

Subject to equality constraints and initial corahs as follows
).Cl = X2 le(o) =0
XZ =_x2+u ,xZ(O) =-1

Using the steps of example (1) to solve this probldor K =2, M =
4,5,and 6 we obtain the optimal values as shown in Tabl2)(3.

Table (3.2): Optimal Values for Example (2)

M K J Deviation Error
4 2 0.07112166296 1.76 x 1073
5 2 0.069603214383 242 x107*
6 2 0.069365200694 426 x 107°

To show effectiveness and superiority of our pregosmethod, we compare
our results with other methods as shown in Tahl®) (3

Table (3.3): Comparison between Optimal Values for Example (2)

Source Used M ethod J Deviation Error

Exact Value 0.06936094 0

Hsieh [18] Space Function 0.0702 8.4 x107*
Neuman & Sen [19]| Cubic Splines 0.06989 53 x 107
Vlassenbroeck[20] Chebyshev Poly. 0.069368 7.1x10°°
Jaddu [1] Chebyshev Poly 0.0693689 7.96 x 107
Majdalawi [15] Legendre Poly.| 0.0693688962 7.956 x 107°
This Research LSF 0.069365200694 4.26 X 1076
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in

2,M =6 are shown
Figures (3.3) and (3.4) respectively. These figuees exactly as obtained in

state and control trajectories faf

The optimal

Moreover, x,(t) converges rapidly to zero aftdr.8 second andu(t) after

0.35 second. On the other hand(t) settles to zero asgoes towo.

[1].

State Trajectory X(t)

0.9

0.8

0.7

0.6

0.4

Time

Figure (3.3): Optimal State Trajectories for Example (2) kbr=6

Control Trajectory u(t)

=6

Figure (3.4): Optimal Control Trajectory for Example (2) fiot
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Chapter Four

Linear Time Varying Quadratic Optimal Control Problem

4.1 Introduction

There are many developed techniques for dealing tmte varying OCP based on
Fourier series[21], Legendre polynomials[15], Gjsttev polynomials[1l], Chebyshev
wavelets[12], and Legendre wavelets[8].

In this chapter, we will expand the developed tépmm in Chapter Three to solve time
varying OCR. Moreover, the property of multiplication of twoegiendre scaling
functions will be presented. In addition, this neethwill be the basic for next chapter
for solving nonlinear OC#

4.2 Multiplication of Two L egendre Scaling Functions

In this section, we will introduce the propertyrotiltiplication of two Legendre scaling
function; since this step is important to deal withe varying and nonlinear OGP

Lemma 4.1: The multiplication of two Legendre scaling functions will be zero if two
functions are in different sections.

Theorem 4.1: Given two Legendre scaling functions ¢,,,,,(t), ¢,s(t) and assuming
m < s, then the multiplication of these two scaling function is given by following
formula

K
nm ns =—— (2 D(2 1 ! n(m+s-2j
Bum(8) s () = 5 @M+ D25 + )ZJZ(m+S_2])+1¢( 2n(®)

2

(4.1)
Where

_(@2j-D

Am—j Qj As_j <2m+25—4j+1)
2m+2s—-2j+1

Vi =
Amts—j

Note thatj !! is the double factorial gfand —1!! = 1 as special case.

Proof of equation (4.1) and many examples of miidtgion can be found in details in
[14].
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4.3 Time Varying Linear Optimal Control Problem

In this section, we present the form of performamzex, which is remained as in
equation (3.1) and the form of state equationsciwhiecomes linear time-varying.
Moreover, the optimal control problem will be aidws

Find the optimal contrak*(t) that minimize the quadratic performance index
J = [, (*"Qx + uTRu) dt (4.2)
Subject to time varying state equations and indaaddition vector
x = A(t) x(t) + B(t) u(t) ,x(0) =x, (4.3)

Where t € [0,1], x,x, € R", u € R™, A(t),B(t)aren Xnandn X m time-
varying matrices respectivelyQ isann Xn positive semidefinite matrix and
R is an m X m positive definite matrix.

4.3.1 Parameterization via L egendre Scaling Function

State and control variables can be expanded asathe manner as in Chapter three via
Legendre scaling function as follows

2K-1 M
— i — HT P
() = ; ;0 ai b ()= DT a i=12 .5 (4.4)
2K-1
() = i — ®T :
() = ; ;0 bi b () =dT(O)b =12 .7 (4.5)
These equations can be written in compact fornoksas
x() = (I,® ¢"(1))a (4.6)
u®) = (L,®¢T()b (4.7)

Where I, I.are identity matrices of dimensiomx s and r X r respectively and
¢(t) is the vector of Legendre scaling function withmdhsion N x 1, where
N =2%"1(M + 1).

P (8) = [ P10 P11 - D1 P20 - Pomt Pox-1 - ¢2K—1M]T
And
a=[aly..aj, aly .. aj; alx-1y, - ax-1,]
b = [b}y ... b]y biy .. bjy bix-1,, - blx-1,,]

We should note here that the unknown vectorand b are slightly different than in
Chapter three.
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4.3.2 Parameterization A(t) and B(t) via Legendre Scaling Function

The time varying matriced(t) andB(t) can be expressed in terms of Legendre scaling
function as follows

2K-1

A(t) = Z ZAU ¢ (t) (4.8)

i=1 j=0
Equation (4.8) can be written in vector form asoiak.
A(t) = [A1g Ay o Ay Agik-1g o Agi-1y, | @(E) (4.9)

Where A;; is s X s constant matrix of the coefficients of Legendralisg function
¢;;(t). These matrices can be found by the following fdem

2t

2K

2i—2
2K

In similar manner,B(t) can be expanded in terms of Legendre scaling ifumas
follows

2K-1
B(H) = ) > By¢y(® (411)
i=1 j=0
Also equation (4.11) can be written in vector famfollows

B(t) = [Byo Byy - Byy Byx-14 ... Byx-1,,] @(£) (4.12)

Where B;; is s X r constant matrix of the coefficients of Legendralisg function
¢;;(t). These matrices can be found by the following fadam

2t

2K

2i—-2
2K

4.3.3 Initial Conditions parameterization via L egendre Scaling Function

Initial condition can be expanded in terms of Ladyerscaling function as follows

X, = 6PTal (4.14)
Where
V2
6 =g,
2°/2



a®=[ay0..0a90..0 agk-1, 0...0] and afy = [x;(0) x,(0) ... x5(0)]
Here we should note that the vectdrdiffers from the vectog, in equation (3.15).
4.3.4 Perfor mance Index parameterization via L egendre Scaling Function

To approximate the performance index of time vagysgstem, we substitute equations
(4.6) and (4.7) into equation (4.2) to obtain

J =faT(¢(t) ®1)Q(@" (1) ®l)a+ b (¢p(t) ®IIR(P"(H) ®I)bdt  (4.15)

By applying Lemma 3.2, equation (4.15) can be siinegl as follows
J=a"(Iy® Qa+b"(Iy® R)b (4.16)

Moreover, equation (4.16) can be written in quaddatrm as follows

_ INn® Q@ Opnsxnr]fa
] B [aT bT] OerNs INN®A}\'] [b] (4.17)

4.3.5 State Equations parameterization via L egendre Scaling Function

To approximate state equations in terms of unknowefficients of state and control
variables, we integrate equation (4.3) as follows

x(t) = x, = [ A®t) x(7) dt + [ B(t) u(7) de (4.18)

By substituting equations (4.4), (4.5), (4.9), @.aAnd (4.14) into equation (4.18), we
obtain

dT(t)a—dT(t)s ol =

j (Ao o Ayiry,] D(0) DT (Da + j (Byo - Byc1,,] &(0) ®T(0)b dt (4.19)
0 0

By using the results of theorem (4.1) which caridemd in details in [14],we get
VI d(t) dT(t) = T () V (4.20)

Where VT = [vyg .. Vyy Vpk-1g o Vpx-1y, | and  V is a (2"‘1(M + 1)) X

(2"‘1(M + 1)) product operational matrix (POM). To illustrateeticalculation
procedures, we choo3¢ = 2 andK = 2 Thus, we have

V = [v19 V11 V12 Va0 Va1 V22 ]T (4.21)

D(t) = [ P10 P11 P12 P20 P21022 1" (4.22)
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Multiply equation (4.22) in its transpose, we get

(P10 P10 Pr0P11 P10P12 P10P20 Pr0P21 Pr0P22]
¢11¢10 ¢11¢11 ¢11¢12 ¢10¢20 ¢11¢21 ¢11¢22
¢12¢10 ¢12¢11 ¢12¢12 ¢10¢20 ¢12¢21 ¢12¢22
d()PT(t) = 423
OPO =14 b1 brobis Poobrs Pr0b20 Srobor Poobrs| LD
¢21¢10 ¢21¢11 ¢21¢12 ¢10¢20 ¢21¢21 ¢21¢22
—¢22¢10 ¢22¢11 ¢22¢12 ¢10¢20 ¢22¢21 ¢22¢22—
Applying Lemma (4.1) on equation (4.23), we get
[V2 10 V2. ¢11 V261, 0 0 0
4
\/Z(;bll \/—¢10+\/—¢12 F¢11 0 0 0
\/— 12 — P11 \/— 10 12
OO = 2¢ m¢> 2¢10+ «/_d) 0 0
0 0 0 V2 s V2 ¢12 V25,
4
0 0 0 \/E¢21 \/—¢20+\/—¢22 ﬁd’u
0 0 0 \/E(I»"zz ﬁ(ﬁm \/_¢2o+ \/—¢22
(4.24)
By using equation ( 4.21Y, can be given in the following form
V, 0 0
_ 0 W 0
V=1. :2 : (4.25)
0 0 Vyk—
WhereVl; for K = 2,M = 4 is given in [14] by the following matrix
rVio Vi1 Viz Vi3 Vi
4 4 3v3 3v3 4 4
Vi1 Vio +ﬁvi2 ﬁ”m +¥V1‘3 35 = Vi2 +ﬁvi4 ﬁvm
4 3v3 V20 6 3v3 445 6 20v/5
N Vip ﬁvn 35 Viz Vi +Tvi2 +;Vi4 35 1711"‘\/%171'3 7171'2 +?Vi4
3v3 4 33 45 6 2045 4
Vis® S Viz T ﬁvm 35 vat Evis 7Viz T o Via E”m tgvis
4 6 20V5 4 6 100 489
_Vi4 ﬁvm 7171'2 +?Ui4 E”n 11 Vio +W§V1‘2 +mvi4_
(4.26)
According to the results obtained in equation@.%ve have
[Aig - Ayk-1, ] P()DT() = dT(t) 4 (4.27)
[B1o . Byk-1, ] @) ®T(t) = ®T(¢) B (4.28)

WhereA andB are constant matrices of dimenskdv x sN andsN X rN respectively.

Now equation (4.19) can be simplified using equei(}.27) and (4.28) as follows
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OT(t) a— OT(D)S a® = j OT(0) A adt + f ®T(t) B b dt (4.29)
0 0

To eliminate the integral operator, we apply Len{4) on equation (4.29), we get
OT(t)a—dT(t)§a® = dT(t)PT Aa+ dT(t)PTB b (4.30)

The multiplication in equation (4.30) is block-wjsto change into element-wise
multiplication, we can use Kronecker product [22¢ get

(T ® IDa— (") @ ) a® =
(PTOPTRI)Aa+ (T PTRI)BD  (4.31)
4.4 Quadratic Programming Problem

In this section, as in section (3.7), we constthet quadratic form of optimal problem
to be easily solved by MATLAB.

The compact quadratic form can be rewritten a®vel

mZi" ZTHz (4.28)
Subject to equality constraints
Fz=h (4.29)
Where
a
Z= [b]

IN ® Q ONstr
OerNs lN ® R

F = (PT®IS)A_INS (PT®IS)§
| (@ RI) O(ZK‘l—l)str

o-|

S

O(zK‘l—l)sxl
4.5 Numerical Examples

Find the optimal contrak*(t) which minimize the following performance index
1
1
] = Ef(xz + u?)dt
0

Subject to equality constraints and initial coraditas follows

x=tx+u ,x(0)=1
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To illustrate the proposed method we will solvestbkample in details and step by step
as follows

Step (1): define the unknown coefficients of state and adntariables according to
Kand M. ForK = 2, andM = 2 the unknown coefficients will be as follows

a = [a; a1 a3 Ay Az1 Ay; |

b = [byg b11 b1 byg by bys]
Step (2): generate the Legendre scaling function vector midipg onKand M.

D(t) = [P10(8) P11(8) P12(8) P20 (t) P21 (t) P2 (D) 1"

Step (3): approximate the state and control variables.

x(t) = 22: 22: Anm Prm

n=1m=0

u(t) = i

Step (4): find the vector of initial condition.

1
Xk 2

Step (5): find the points of ensured continuity and the oanty matrix.

2

bnm ¢nm
m=0

,a,=[100 100]T

i 1
t; =21{—1 =2

o' = [¢10(0-5) ¢11(0-5) ¢12(0-5) _¢20(0-5) ‘¢21(0-5) ‘¢22(0-5) ]
Step (6): find A by approximatingA(t) using equation (4.10).

Now solving the quadratic programming problem, Wweamed/ = 0.484290813333

To show the convergence speed to optimal valueseolee the same problem for
different values oK, and M, then the optimal values are recorded in TahlE) (4

To show effectiveness of our proposed method wepeoenour results with other
methods as shown in Table (4.2).

26



Table (4.1): Optimal values for different Values df andK

Approx. Order J

M=2K=2 0.484290813333

M=3K=2 0.484267886132

M=4K=2 0.484267700376

Table (4.2): Comparison between Optimal Values of Example

Source Used M ethod J Approx. Order
Elnagar [23] Cell Averaging 0.48427022 N=4
Spectral
Chebyshev
Elnagar [23] Cell Averaging 0.48426764 N=6
Spectral
Chebyshev
This Research LSF 0.48426770037 M=4K=2

The optimal state and control trajectories ko= 2,M = 2 and forK = 2,M = 4 are
shown in Figures (4.1) and (4.2) respectively. Mweax, we notice from Figures that we
can get more accurate results by increasing

State & Control Trajectories
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Figure (4.1): Optimal State and Control Trajectoriesvat 2
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State Trajectory u(t)

Time

Figure (4.2): Optimal State and Control Trajectoriesvat 4
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Chapter Five

Nonlinear Quadratic Optimal Control Problem

5.1 Introduction

In this chapter, nonlinear OGRvill be solved depending on the proposed method in
Chapter Four. In addition, iterative technique vl used to convert the complex
nonlinear OCR into sequence of linear time varying Qf827] which are much easier
to solve by any software package such as MATLAB.

Many researchers proposed different methods feirsphonlinear OCR For example,
Razzaghi and Yousefi [8] used Legendre wavelets @adss node method to solve
nonlinear OCEB. Tomas and et al.[24] presented a parametric apgprdased on
reducing the nonlinear OCP to a sequence of linieae varying ones. Zheng and
Yang[25] proposed method for solving nonlinear efifintial equations depending on
Legendre wavelets and neural network. Jaddu[ 26}gwed direct solution of nonlinear
OCR;s using state parameterization based on Chebyshigwmagmials and the second
method of the quasilinearzation. By which, difficulonlinear OCE are converted
directly into a sequence of quadratic programmirgplems.

In this thesis, the nonlinear OERIll be replaced by a sequence of time varying @CP
based on the iterative technique. Then, the praposethod in Chapter Four will be
applied.

5.2 Problem Statement of Nonlinear OCP

The optimal control problem can be considered rdiriig the optimal controllen™(t)
that minimize the performance index

t
] = f (xTQx + uTRu) dt (5.1)
0

Subject to nonlinear constraints and initial coiodit
x = f(x(),ut),t) = Ax) x(¢) + B(x) u(t) ,x(0) = x, (5.2)

Where t € [O,tf], x,Xx, € R", u € R, ABaren Xnandn Xm constant
matrices respectively.Q isann X n positive semidefinite matrix anflisanm xm
positive definite matrix angf is assumed to be continuous differential functath
respect to all its arguments.
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5.3 Iterative Technique

In this section, we will introduce a modern teclugdor handling nonlinear dynamical
systems in which the original nonlinear OC#e replaced by a sequence of linear time
varying OCR under Lipschitz condition[27]. Mathematically ifi(x) is locally
Lipschitz, then the nonlinear equation (5.2) camdmaced by the following linear time
varying system.

x1 = A(x)x + B(xy) ul® , x°1(0) = x, (5.3)

andfor k > 1
2K = A(xF=1(t) )x¥ + B (x[k_l](t)) ulkl ) xIkl(0) = x, (5.4)

Theorem 5.1: Suppose that the nonlinear equation (5.2) has a unique solution on the
interval [0,t] denoted by x(t) and assume that A(x): R™ —» R™ is locally Lipschitz.
Then the sequence of functions defined in (5.3)-(5.4) converge uniformly on [0, t] to the
solution x(t).

Iterative technique have some advantages that nia&esattractive tool for solving any
nonlinear equation, that satisfies the local Lipzchondition. (1) Iterative technique
provides an accurate representation of the nonlisgatem after small number of
iterations. (2) Common linear techniques can bdiegn nonlinear systems by using
iterative technique.

Now OCP described in (5.1)-(5.2) can be replacedtH®y following representation
based on iterative technique

Minimize
0 = 7 (oI g 10l 4 (07 g 0y (5.5)
JH = f X xS +u u t .
0
Subject to
2 = A(x)x + B(xo) ul® ,  x[9(0) = x, (5.6)
And for k >1
Minimize
tr T T
Ikl = (K17 Q x k] 4y IKI" R Ik g¢ (5.7)
0
Subject to
il = A(xl1(e) )2l + B (xl-1(0) ul, x1(0) = x (5.8)

The procedures required to solve nonlinear quad@CR using iterative technique
can be summarized as in Figure (5.1).
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Represent the Nonlinear System into Pseudo-Linealein

x=A(x) x(t) + B(x) u(t),x(0) = x,

4 c )

Reformulate the OCP into Intervale [0,1] usingt = =
f

Minimize ][k] =t fol(x[k]T Q xK 4+ K" R u[k]) dt

Subject to

dx!¥]
% = A(x*=1) )xlk + B (x[k_l](t)) ulkl,  xK(0) = x,

4 )

Set k = 0 and Solve Linear Quadratic Time Invariant OCP
Minimize ][0] =t fol(x[O]T Q xlol 4 0" p u[O]) dt

dx!®
Subjectto — = A(x,)x% + B(x,) ul®, x[01(0) = x,

4 )

Minimize JA = ¢, fol(x[llT 0 xW + 1R 4111y gg

Set k = 1 and Solve Linear Quadratic Time Varying OCP

Subject to

dxt!!
% = A=) )xM + B (x[o](t)) ulll,  x01(0) = x,

st — W] < e

NO

fl Increasek .k =k +1 l

Figure (5.1): Flow Chart for Solving Nonlinear OCP Using ItevatiTechnique
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5.4 Numerical Examples
5.4.1 Example (1)

Find the optimal controli*(t) for Van der Pol problem that minimizes the follogi
performance index

5
1
]=§j(x12+x§+u2)dt
0

Subject to nonlinear equality constraints andahitonditions as follows
X1 =X ,x1(0) =1
Xy = —x1 +x, —x2x, +u ,x,(0) =0

This problem was solved by several researchersbgndifferent methods. Jaddu [1]
solved the problem using state parameterization Qfeebyshev polynomials and
guasilinearization technique aridwas found to bel.433487. Bullock and Franklin
[28] solved the same problem using the second tiamianethod ang was found to be
1.433508 . Bashein and Enns [29] using quasilinearizatioth discretization angl was
found to be1.438097. Majdalawi [15] using state parameterization viagéndre
polynomials combined with iterative technique gndas found to bé&.449395 .

To solve this OCP using the proposed algorithm, meed to use the described
procedures in flow chart of Figure (5.1) as follows

Step (1): rewrite the OCP inPseudo-Linear form as follows
Xy = X ,x1(0) =1

X =—x+ (A —xHx,+u ,x,(0) =0

Step (2): reformulate the OCP into Intervale [0,1] usingt = ti = % we get
f

Minimize
: 1
2 2
JAE E,[ ((xy‘]) + (xz ]) + (ulkl) )dr
0
Subject to
do, ¥
d_’l'l = sz[k] ,xl[k](O) = 1
dx,"! k k-1112) .. [k K K
T =5[—x1[]+(1—(x k=11) )x k] 4t ]] ,%,1%1(0) =0
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Step (3): set k = 0 and solve linear quadratic time invariant OCPhef following form

dx,

— =5 x5l =1

dx, '

d_rz = —5x, 1% + 500 | x,[1(0) = 0

These state equations can be written in matrix fasrfollows

|15 3R |-
dv dr

This is the iteration zero and f&f = 2 and M = 4, we get the optimal valug=
0.9537225048. The optimal state and control trajectories foe= 0 are shown in
Figure (5.2). These trajectories are close to Xaetetrajectories.

State and Control Trajectones

Figure (5.2): Optimal State and Control Trajectoriescat 0

Step (4): set k = 1 and solve linear quadratic time varying OCP aea



These state equations can be written in matrix fasrfollows

al o 5 dxy
c?;zlz’—s 5(1—(x§°])2) [2] fxrz = [(5)] [u]
do s

This is the first iteration and using quadraticggeanming at = 2 andM = 4, we get
the optimal valug¢ = 1.549716935.

Step (5): increaset and record the optimal values in Table (5.1)

To show applicability and effectiveness of our egd algorithm, we compare our
results with other researchers as shown in TabB®.(5

Table (5.1): Optimal Values for Example (1) féf = 2 andM = 4

Iteration k ]
0 0.9537225048
1 1.549716935
2 1.476606108
3 1.457374586
4 1.449939834
5 1.449039711

Table (5.2): Comparison between Used Methods for Van der Ru$lBm

Source J
Jaddu [1] 1.433487
Bullock and Franklif28] 1.433508
Bashein and Enns [29] 1.438097
Majdalawi [15] 1.449395
This Research 1.449039

The optimal state and control trajectories of Van [elol problem ak = 5 are shown in
Figure (5.3). These trajectories are very cloghéoexact trajectories.
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State and Control Trajectores

X(0) & uit)

Figure (5.3): Optimal State and Control Trajectoriescat 5

5.4.2 Example (2)

Find the optimal controk*(t) for Rayleigh problem that minimizes the following
performance index

2.5

] = f (x? + u?)dt
0

Subject to nonlinear equality constraints andahitonditions as follows
X1 = X3 ,x1(0) = =5
Xy = —x; + 1.4x, — 0.14x3 + 4u ,x,(0) = =5

This problem was solved by several researchersbandifferent methods. Jaddu [1]
solved the problem using state parameterizationChiabyshev polynomials and five
quasilinearization iterations agidvas found to b29.4022. Nedeljkovic [30] found to
be 29.419 using three different algorithms which based oe finst order Riccati
equation. Sirisena [31] found to be 29.451 using a piecewise polynomials
parameterization.

To solve this problem, we will follow the same pedares as shown in flow chart in
Figure (5.1).
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Step (1): rewrite the OCP inPseudo-Linear form as follows
Xy = X ,x1(0) = =5
Xy = —x, + (1.4 — 0.14x2)x, + 4u ,x,(0) = =5

Step (2): reformulate the OCP into Intervale [0,1] usingt = ti = Z—ts we get
f .

Minimize
5 1
2
JIKl = 5] ((x{k]) + (u["])z) dt
0
Subject to
dx, M5
d_rl =3 x4 M0) = -5
dx,M 5
— =3[+ (14— 014 )) 5,1 4+ 4u W] L2, (0) = 5

Step (3): set k = 0 and solve linear quadratic time invariant OCPhef fiollowing form

dx, 5

d_rl = Exz[o] ,x,1°1(0) = =5

dx," 5

d_TZ = 5[_x1[0] +4u ], x,l00(0) = -5

These state equations can be written in matrix fasrfollows

&\ - [_(2)_5 265] [;cl] ‘ & - [100] [u]
dt dt

Using quadratic programming to solve this OCPKat 2 and M = 4, we get the
optimal valug/ = 29.63689449. The optimal state and control trajectoriek at 0 are
shown in Figure (5.4).

Step (4): set k = 1 and solve linear quadratic time varying OCP aed

dx,™ 5

drl R ey M0) = -5

dx,' 5

= =2 =1+ (1.4 - 0.14(x, 1)) 1,11 + 4u ] 2, 10(0) = -5
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These state equations can be written in matrix fasrfollows

dxy 0 2.5 ax

' X
514 = [—2.5 2.5 (1.4 —0.14 (xg"])z)] [x;] ’ a?lxr2 - [100] [u]
dr dr

Solving the first iteration quadratic programminglgem atk = 2 andM = 4, we get
the optimal valug = 29.54820588.

Step (5): increaset and record the optimal values in Table (5.3)

Table (5.3): Optimal Values for Rayleigh problem kit= 2 andM = 4

Iteration k ]
1 29.54820588
2 29.45927227
3 29.44150164
4 29.43936952
5 29.43439489

State and Control Trajectories

X(t) & uit)

o 05 1 15 2 2.5
Time

Figure (5.4): Optimal State and Control Trajectoriescat 0 for Rayleigh problem
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To show effectiveness of the proposed method, wapape our result with other
researchers as shown in Table (5.4).

Table (5.4): Comparison between Used Methods for Rayleigh bl

Source J
Jaddu [1] 29.4022
Nedeljkovic[30] 29.419
Sirisena [31] 29.451
This Research 29.4393

38



Chapter Six

Conclusion and Future Work

6.1 Conclusion

In this thesis, we proposed a numerical methodkeesthe nonlinear quadratic optimal
control problem. However, the proposed methodge alitable for solving linear time
invariant/ variant quadratic optimal control prabke The proposed method depends on
state-control parameterization via Legendre scdlimgtion and the iterative technique
in which the nonlinear state equations are replégea sequence of linear time-varying
state equations. In addition, we choose Legendatingcfunction which has many
advantages over the other orthogonal polynomialdsfanctions.

Our proposed method, directly converts the optioitrol problem into a quadratic
programming problem. In which, the complex nonlmemadratic optimal control
problem is converted to a sequence of a quadiagar optimal control problems that
are much easier to solve.

The applicability and effectiveness of the proposegthod have been proven through
solving many numerical examples and by comparungresults with other researchers
were used different orthogonal polynomials and fioms.

6.2 Future Work

Searching in the field of wavelets functions usagespproximation and numerical
methods is very rich and new. Moreover, the workhis thesis can be extended in
many ways. Firstly, solving nonlinear optimal cahtrproblem with inequality
constraints. Secondly, using operational matrixlifferentiation instead of operational
matrix of integration for Legendre scaling function
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