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Abstract 

 

During the last three decades several approximation techniques based on 
the property of functions orthogonality were proposed  to solve different 
classes of optimal control problems (OCPS).  

The methods used to solve OCPS are classified into two types: the direct 
methods are discretization and parameterization while indirect methods are 
Caley-Hamilton and Euler-Lagrange. The direct parameterization methods 
are classified into three ways control parameterization, state 
parameterization, and state-control parameterization. 

The proposed method in this thesis uses state-control parameterization via 
Legendre scaling function in which OCPS is converted into quadratic 
programming. In addition, when OCP  in quadratic form, it is easy to solve 
it by using any software package like MATLAB, Mathmatica, or Maple. 

The optimal control problems investigated in this thesis deals with linear 
time invariant (LTI) systems, linear time varying (LTV) systems, and 
nonlinear systems. 

The LTI and LTV problems were parameterized based on the Legendre 
scaling function such that the cost function and the constraints are casted in 
terms of state and control parameters while, complex nonlinear OCPS  can 
be solved by proposed method after converted to a sequence of time 
varying problem using iterative technique. 

To demonstrate applicability and effectiveness of the proposed technique 
various numerical examples are solved and the results are better when 
compared with other methods. 
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Chapter One 
 

Introduction  

1.1 Background 

Most of the computing techniques for the solution of nonlinear problems depend on 
approximating the solutions of nonlinear systems with linear systems in small regions of 
phase space. In general, nonlinear systems can't be solved obtaining general 
expressions; this motivated researchers to solve these nonlinear problems using 
numerical solutions i.e. optimal or suboptimal solutions. 

Optimal control is an important science that deals with nonlinear optimal control 
problem (OCP) and the main objective of optimal control is to find an optimal 
controller that can be applied to the nonlinear system and to extrmize a certain cost 
function within the system's physical constraints. 

Generally, optimal control can be classified as direct and indirect methods. Indirect 
methods are based on converting OCP into two-point boundary value problem(TPBVP), 
then solving the last one by Euler Lagrange technique or Hamilton-Jacobi-Bellman 
equation (HJBE). Direct methods can be implemented using discretization or 
parameterization methods. 

1.2 Motivations  

Approximation is one of the most successful applications among different applications 
of wavelets functions; thus a great number of researchers have tried to solve OCPS using 
those functions. 

The task of finding optimal controller ����� for nonlinear problems by indirect methods 
is often very difficult. Moreover, there are many  disadvantages of indirect methods 
such as: (1) difficultly to obtain exact solution of nonlinear OCPS  using Euler- 
Lagrange or  HJBE; (2) increasing problem computation by using artificial costates ���; 
(3) complete knowledge of system model is needed. In addition, there are many 
advantages of direct methods over indirect methods such as: (1) there is no need to use 
costates variables ���; (2) direct methods convert dynamic OCP into a static 
optimization problem.  Thus, researchers are encouraged to use direct parameterization 
methods which are based on orthogonal functions and polynomials. 

Researchers used direct parameterization methods which are classified into three types: 
state, control, and state-control parameterization [1-4]. 

Legendre scaling function (LSF) can be used for solving OCPS because:  
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• It is not supported on the whole interval �� � � �  �, so it is effective in 
approximating functions with discontinuities or sharp changes. 

• It has a closed form, so it is easy to obtain operational matrix of integration 
(OMI). 

• It is not only orthogonal but also orthonormal. 
•  Rapid convergence. 
• Small number of scaling parameter ��� and low order of  Legendre polynomials   ��� are needed to obtain very satisfactory results. 
• Its  OMI in the form of tridiagonal. 

Thus, this work will be based on direct methods using state-control parameterization via 
LSF to solve quadratic OCPS. 

1.3 Thesis Objectives 

Objectives of this thesis can be summarized as follows: 

• Using LSF to approximate the state and control variables of OCPS to solve linear 
time invariant and linear time-varying OCPS. 

• Solving complex nonlinear OCPS by applying the iterative technique developed 
by Tomas and Banks [5-7] to convert the nonlinear quadratic OCP into a 
sequence of time varying quadratic OCPS.  

• Comparing between the proposed method with the other methods to show 
effectiveness of the proposed method.  
 

1.4 Statement of Problem 
 
The optimal control problem can be stated as: find an open loop optimal controller ����� or a closed loop optimal controller ���!���, �� that minimizes the following 
performance index 
 

# 	 $%!%�&', �& ' ( ) *�!���, ����, ��+,

+-
.�                                         �1.1� 

Subject to the system constraints 
 !0 	 1�!���, ����, ��    , !��2� 	 !2                                                 �1.2�    

Where � 3 4�2 , �&5, ! 3  67 is the vector of states, � 3  68 is the vector of controls, 1 
is assumed continuous differentiable function with respect to all its arguments,while $ 
and * are scalar functions. 

Moreover, many techniques have been presented to solve OCP (1.1)-(1.2), and these 
methods can be classified into three methods as follows: 

1. Calculus of variation (Euler Lagrange Equation). 
2. Dynamic programming (Hamilton-Jacobi-Bellman Equation). 
3. Nonlinear programming (Parameterization and discretization). 
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Due to the advantages of direct methods and the drawbacks of indirect methods, this 
thesis will based on parameterization method which is one techniques of nonlinear 
programming approaches. Figure (1.1) illustrates these computation methods 

1.5 Literature Review 
 
The solution of nonlinear OCPS with constraints is very difficult, especially, when using 
indirect methods like HJBE. However, direct methods shown to be very useful and 
efficient in solving nonlinear OCPS.    
 

� Razzaghi and Yousefi [8] solved OCPS using direct numerical methods; but 
handled only the inequality constraints and the equality constraints were linear 
depending on Legendre wavelets and Gauss node integration formula.  

 

� Razzaghi and Yousefi [9] also proposed method for solution of nonlinear problems 
depending on calculus of  variations in which only the performance index was 
nonlinear and the constraints were linear.  

 

� Dadkhah and et al.[10] proposed numerical solution only for  nonlinear Fredholm-
Volterra integro-differential equation using Legendre wavelets.  

 

� Sadek and et al.[11] proposed method of solving nonlinear OCPS  based on modal 
space and Legendre wavelets; but their method was very complex.  

 

� Babolian and Fattahzadeh. [12] proposed numerical method of solving 
differentiable equations using Chebyshev wavelets; but this method didn't take into 
account the nonlinear constraints.  

 

� Jaddu and Vlach [13] proposed an approach to solve linear OCPS using Legendre 
wavelets.  

 

� Jaddu[14] also proposed method for solving linear time-varying OCPS using 
Legendre wavelets, in which the time-varying problem converted to quadratic 
programming problem.  

 

� Majdalawi[15] proposed a method for solving nonlinear OCPS using Legendre 
polynomial and state parameterization; but the main disadvantage that Legendre 
polynomial supported the whole interval and this will give poor results comparing 
with others methods.  

 
The proposed method is based on Legendre scaling function and iterative technique  
where nonlinear  OCPS is solved. In addition, the performance index of optimal problem 
is in quadratic form and subject to different kind of state constraints.  
 
1.6 Thesis Contributions 

 
� Introducing a new method for solving nonlinear OCPS using Legendre scaling 

function and iterative technique to provide a straight forward and convenient 
approach for digital computation. 
 

� Providing  numerical technique to solve linear OCPS subject to state constraints. 
 

� Presenting effective method to solve time varying OCPS  . 
 

� Using simpler form of  OMI that simplifies computations of optimal control. 
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� Presenting the property of multiplication of two Legendre scaling function 
which help solving time varying and nonlinear OCPS.     

� Keeping the performance index in the same format.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (1.1): Computation Methods of Optimal Control Problems  

1.7 Thesis Organization  

The thesis is organized as follow: 

Chapter Two is introduction to wavelets theory and Legendre scaling function. Chapter 
Three introduces linear quadratic OCPS  and the Bolza form of the performance index. 
State and control variables parameterization via Legendre scaling function are also 
presented in Chapter Three. Chapter Four provides effective technique for solving time-
varying OCPS. In addition, the property of multiplication of two Legendre scaling 
functions is introduced. Chapter Five describes a method for solving unconstrained 
nonlinear OCPS by converting nonlinear OCPS into a sequence of linear time-varying 
OCPS using iterative technique and two examples are shown. Chapter Six concludes this 
thesis. 

Optimal Control Problem Methods  

Indirect Methods Direct Methods 

ELE HJBE 
Parameterization Discretization 

State  

Control 

Control - State  

Control 

Control - State  
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Chapter Two 
 

Introduction to Wavelets and Legendre Scaling Function 

2.1 Introduction 

Wavelets theory is a relatively new area in mathematical research which has 
considerable attention in a wide range of applications and engineering. In addition, 
wavelets are mathematical functions that separate data into different frequency 
components, and then present each component with a resolution matched to its scale. 
They have advantages over traditional Fourier methods in analyzing physical situations 
where the signal contains discontinuities and sharp spikes. Wavelets were developed 
independently in the fields of mathematics, quantum physics, and electrical engineering.  

Moreover, wavelets emerge in the area of parameterization; due to their rapid 
convergence and their fast numerical algorithms.      

There are a multitude of wavelets with different properties. It is important to choose the 
one with appropriate properties for a given application. 

Most important properties are: 

� The compact support property. 
� The property of symmetry.  
� Accuracy of approximation; particularly, with discontinuities functions.  
� Their smoothness and regularity. 
� Wavelets not supported on whole interval �� � � �  �. 
� Orthogonality property. 

Wavelets  constitute a family of functions constructed from dilation and translation of a 
single function called the mother wavelet. When the dilation (scaling) parameter � and 
the translation (shifting) parameter   vary continuously, we have the following family 
of continuous wavelets as [8] 

9:,;��� 	 |�|=> ?@  9 A� B  � C  ,   �,   3  D, � E 0                            �2.1� 

Here, we would like to distinguish between wavelet and scaling functions. Wavelets are 
defined in the time domain by the wavelet function 9��� which is called the mother 
wavelet and scaling function F��� which is called the father wavelet. Moreover, wavelet 
function has only time domain representation.   
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2.2 Legendre Scaling Function 

In this section, we will introduce the definition, basis, and plots of Legendre scaling 
function. These basis will be the basic of our work in the following chapters. Legendre 
scaling function can be defined as in [13] as follows: 

G78��� 	 H IJ ( >?  2K ?@  L8�2K� B 2� ( 1�              1MN     ?7=??O  � � �  ?7?O   0      M�PQNRSTQ                                                                          �2.2�       U   

Where L8 is the Legendre polynomial of order J; � refers to the section number,� 	1,2, … , 2K=>; � is the scaling parameter and can assume any positive integer and � 3 W0,1X. 
Legendre polynomial can be defined as in [16] as follows: 

                                  L8�!� 	 >?Y 8!  [Y[\Y  �!? B 1�8                                            �2.3� 

    

From which the first four Legendre polynomial can be given L]�!� 	 1 L>�!� 	 ! 

                                                         L?�!� 	 12 �3!? B 1�                                           �2.4� 

L̂ �!� 	 12 �5!^ B 3!� 

Now by using equations (2.2) and (2.4) and choose � 	 3 and � 	 2, then the four 
basis Legendre scaling functions can be given for � 	 1 as follows 

_̀̀
à
`̀̀
b c>]��� 	 √2                                                c>>��� 	 √6�4� B 1�                                

c>?��� 	 e52 W3�4� B 1�? B 1X                
c>^��� 	 e72 W5�4� B 1�^ B 3�4� B 1�X

 
g̀̀
h̀
`̀̀
i

   0 � � �  12                               �2.5� 
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and for � 	 2 as follows 

_̀̀
à
`̀̀
b c?]��� 	 √2                                                c?>��� 	 √6�4� B 3�                                

c??��� 	 e52 W3�4� B 3�? B 1X                
c?^��� 	 e72 W5�4� B 3�^ B 3�4� B 3�X 

 
g̀̀
h̀
`̀̀
i

   12  � � �  1                              � 2.6� 

The  basic functions of equations (2.5) and (2.6) can be plotted as shown in 
Figure (2.1) where the symmetry property is realized. In addition, this property 
simplifies the problem computation.  

 

Figure ( 2.1): Legendre Scaling Functions Basis for � 	 1 and � 	 2 

2.3 Approximation via Legendre Scaling Function 

Any function 1���, which is defined on the interval W0,1X, can be expanded using 
Legendre scaling function as follows : 

 

                                                  1��� 	 j  ?Okl
7m> j n78

o
8m] F78���                                           �2.7� 

Where 
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                                               n78 	 ) 1���
?7?O

?7=??O
 F78��� .�            

pq 	 4 n>] n>> … n>o n?] … n?o n?Okl] … n?Oklo5              
Φ��� 	 4 F>] F>> … F>o F?] … F?o F?Okl] … F?Oklo5q 

The formula of equation (2.7) will be used in the next chapters to parameterize both 
state and control variables.  

To show the effectiveness of Legendre scaling function in approximation, we introduce 
a square wave to be  approximated as shown in Figures ( 2.2)-(2.4).  

 

Figure ( 2.2): Approximating Square Wave at � 	 1 and � 	 2 

When Figures (2.2), (2.3) and (2.4) are compared, we  notice that increasing � and � 
will enhance the approximation. More over, to obtain the same accuracy as in Figure 
(2.4) using Fourier series the order of Fourier series will be nearly fifteen; so this 
illustrate the efficiency of Legendre scaling function in approximation.  
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Figure ( 2.3): Approximating Square Wave at � 	 2 and � 	 3 

 

Figure ( 2.4): Approximating Square Wave at � 	 2 and � 	 4 
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Chapter Three 
 

Linear Time Invariant Quadratic Optimal Control Problem 

3.1 Introduction  

In this chapter, linear approach is introduced to solve linear quadratic OCPS; this step is 
necessary for the next chapters to solve time-varying and nonlinear OCPS. 

The main goal of the proposed method is to convert the nonlinear OCPS into sequence 
of time varying OCPS using iterative technique, then the optimal problem is converted 
to quadratic programming problem, which can be easily solved by any software package 
like MATLAB. 

In this chapter, a new technique will be presented for handling linear quadratic control 
problems using state-control parameterization via Legendre scaling function. 

3.2 Problem Statement 

The optimal control problem can be considered as finding the optimal controller ����� 
that minimize a performance index such 

                                               # 	 ) �!qs! ( �q6�� .�                                                    �3.1�+,

]  

Subject to linear constraints and initial condition 

                                         !0 	  t !��� ( u ���� , !�0� 	 !2                                          �3.2� 

Where � 3  40, �&5, ! , !2  3  67, � 3  68, t, u are � x � and � x J constant 

matrices respectively.  s ST �� � x � positive semidefinite matrix and 6 ST �� J x J 
positive definite matrix. 

3.3 Approximation via Legendre Scaling Function 

State and control variables can be approximated using Legendre scaling function as 
follows 

!���� 	 j j �78�  F78���     S 	 1,2, … , T o
8m]

?Okl
7m>                              �3.3� 

����� 	 j j  78�  F78���     S 	 1,2, … , N o
8m]

?Okl
7m>                              �3.4� 
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These equations can be written in compact form as follows !��� 	 %yz { Fq���'|                                                      �3.5� 

���� 	 %y} { Fq���'~                                                      �3.6� 

Where yz, y} are identity matrices of dimension T x T and N x N respectively and F��� is 
the vector of Legendre scaling function with dimension � x 1, where � 	 2K=>�� (1�. 

������ 	 4 F>] F>> … F>o F?] … F?o F?Okl] … F?Oklo5q 
And  

��78 	 4�>]�  �>>� … �>o�   �?Okl]�  �?Okl>� … �?Oklo� 5   S 	 1,2, … , T 

 �78 	 4 >]�   >>� …  >o�    ?Okl]�   ?Okl>� …  ?Oklo� 5    S 	 1,2, … , N 

 

3.4 Operational Matrix of Integration ( OMI) 

Lemma 3.1 The matrix P is called operational matrix of integration of Legendre scaling 
function and can be given by  

P 	 12K  
���
���
�� � � � … … �� � � � … … �� � � � � � �� � � � � � �� � … � � � �� � � … � � �� � � … … � ����

���
�

                                      �3.7� 

Where  P ST �  %2K=>�� ( 1�' x %2K=>�� ( 1�' operational matrix of integration, �, �, ��. � 
are �� ( 1� x �� ( 1� matrices and given by 

 

� 	 �2 0 0 … 00 0 0 … 0� � � � �0 0 0 0 0�                                                �3.8� 
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� 	  

��
���
���
���
��
� 1 1√3 0 0 … 0 0 0B1√3 0 1√15 0 … 0 0 0

0 B1√15 0 1√35 � 0 0 0
0 0 B1√35 0 � � � 0
� � � � … B1√4�? B 16� ( 15 0 1√4�? B 8� ( 30 0 0 0 … 0 B1√4�? B 8� ( 3 0 ��

���
���
���
��
�

  

 �3.9� 

O is matrix that all entire elements are zeros. 

To be familiar with operational matrix of integration we will give here the form of 
matrix for � 	 2, � 	 5 as follows 

The � matrix will be of dimension �6 x 6� and given as in equation (3.11) and the 
matrix P will be of dimension �12 x 12� and can be given in compact form as in 
equation (3.12). 

Lemma 3.2 The integration of  multiplication of Legendre scaling function and its 
transpose in the interval � 3  W0, 1X is equal to identity matrix since Legendre scaling 
functions are orthonormals as follows 

) ����>
]  �T��� .� 	 ��                                                       �3.10� 

Where ��, is identity matrix of dimension �, �� 	 2K=>�� ( 1��. 

� 	  

��
���
���
��
���
� 1 1√3 0 0 0 0B1√3 0 1√15 0 0 0

0 B1√15 0 1√35 0 0
0 0 B1√35 0 1√63 0
0 0 0 B1√63 0 1√990 0 0 0 B1√99 0 ��

���
���
��
���
�

                                  �3.11� 

 

L 	 12? �� �� ��                                                                 �3.12� 
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3.5 Performance Index Parameterization via Legendre Scaling function 

In this section, we would like to construct the formula of performance index to calculate 
its numerical value easily. 

The first step is to integrate the equation (3.2) as follows 

!��� B !2 	 ) t !���.� ( ) u ����.�                                  �3.13�+
]

+
]  

Where !2 is resulted from integration and known as initial condition vector. !2 can be 
expressed via Legendre scaling function as follows 

!2 	  √22K ?@  %yz { Fq���'�2                                                  �3.14� 

Where  �2 	 W�]> �]? … … �]� X                                                             �3.15� �]� 	 W!��0� 0 0 … U0|!��0� 0 0 … U0| … |!��0� 0 … 0UX        �3.16� 

The second step is to substitute equations (3.5) and (3.6) into equation (3.1) to get 

# 	 ) |�%yz { F���'�%yz { Fq���'|>
] ( ~�%y} { F���'�%y} { Fq���'~ .�       �3.17� 

By applying Lemma 3.2, equation (3.17) can be simplified as in equation (3.18) 

 # 	 |q�� � y��| ( ~q�� � y��~                                             �3.18� 

Moreover, equation (3.18) can be written in quadratic form as follows 

# 	 W|q  ~qX  � � y� ¡¢�x¢£¡¢£x¢� � � y�¤ �|~�                                           �3.19� 

 

3.6 Continuity Test 

Wavelets functions are not supported on whole interval �� � � �  �; so these 
functions divide the interval of interest to number of sections depending on the 
value of scaling parameter �; for this reasons we have to add additional 
constraints to ensure the continuity of the state variables between different 
sections. There are �2K=> B 1� points at which the continuity of state variables 
must be tested according to equation (3.20). 

�� 	 S2K=>         S 	 1,2, … , 2K=> B 1                                      �3.20� 
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In addition, there are �2K=> B 1� T  equality constraints can be given as follows �yz � Φ¥�| 	 0%?Okl=>'�x>                                                   �3.21� 

However, the matrix of continuity ensured constraints is �2K=> B 1� x%2K=>�� ( 1�' and is given by  

Φ¥ 	
���
���
F>8��>� BF?8��>� 0 0 0 ¦ 00 F?8��?� BF^8��?� 0 0 … 00 0 F^8��^� BF§8��^� 0 ¦ 0� � � � � ¦ �0 0 0 … 0 F%?Okl=>'8��?Okl=>� BF%?Okl=>'8��?Okl=>����

���  
(3.22) 

3.7 Quadratic Programming Problem  

In this section, we try to construct the quadratic form of optimal problem to be 
easily solved by MATLAB. 

Recall equation (3.13), which can be rewritten in the following form 

  W�A � PT� B I¢7   �B � PT�X �©ª� 	 B�2«                                   �3.23� 

Where « 	 √??O ¬@  

By combining equations (3.21) and (3.23) we get the following form of 
equality constraints 

�A � PT� B I¢� �B � PT��yz � Φ¥�         0%?Okl=>'�x¢£® �|~� 	  B�2«0%?Okl=>'�x>®          �3.24� 

 

Equations (3.19) and ( 3.24) can be rewritten in compact quadratic form as 
follows JS�¯   ¯q ° ¯                                                        �3.25� 

Subject to equality constraints ± ¯ 	 P                                                              �3.26� 

 

Where  

¯ 	 �|~� 
 

° 	  � � y� ¡¢�x¢£¡¢£x¢� � � y�¤ 
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± 	 �A � PT� B I¢� �B � PT��yz � Φ¥�         0%?Okl=>'�x¢£® 
 

P 	  B�2«0%?Okl=>'�x>® 
the optimal vector ̄� can be also calculated by the standard quadratic programming 
method [17] as follows ¯� 	 °=> ±q�± °=>±q�=> P                                      �3.27� 

3.8 Numerical Examples 

3.8.1 Example (1) 

Find the optimal control ����� which minimize the following performance index 

# 	 12 )�!? ( �?�.�>
]  

Subject to equality constraints and initial condition as follows !0 	 B! ( �     , !�0�=1 

To illustrate the proposed method we will solve example (1) in details and step 
by step as follows 

Step (1): define the unknown coefficients of state and control variables 
according to � and �. 

For � 	 2, and � 	 2 the unknown coefficients will be as follows  | 	 W�>] �>>�>?  �?] �?>�??X  
  ~ 	 W >]  >> >?   ?]  ?> ??X 
Step (2): generate the Legendre scaling function vector depending on � and �. 

Φ��� 	 WF>]��� F>>��� F>?���  F?]��� F?>��� F??��� Xq 

Step (3): approximate the state and control variables. 

!��� 	 j j �78
?

8m]
?

7m>  F78   
	    �>]F>] ( �>>F>> ( �>?F>? ( �?]F?] ( �?>F?> ( �??F??         

���� 	 j j  78
?

8m]
?

7m>  F78 	  >]F>] (  >>F>> (  >?F>? (  ?]F?] (  ?>F?> (  ??F?? 
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Step (4): find the vector of initial condition. 

« 	 √22K ?@ 	 1√2  , �2 	 W1 0 0  1 0 0 Xq 

Step (5): find the points of ensured continuity and the continuity matrix. 

�� 	 S2K=> 	 12 

Φ¥ 	 WF>]�0.5�  F>>�0.5�  F>?�0.5�   B F?]�0.5�  – F?>�0.5�  – F??�0.5�  X  
Φ¥ 	 W1.4142   2.4494   3.1622  B 1.4142   2.4494  B 3.1622  X 

 
Step (6): determine the performance index by equation (3.19) as follows. 

# 	 0.5��>]? ( �>>? ( �>?? ( �?]? ( �?>? ( �??? (  >]? (  >>? (  >?? (  ?]? (  ?>? (  ??? � 

Step (7): solve for optimal vector ̄� using equation (3.27) or quadratic programming 
method in MATLAB.  

¯� 	  0.5122, B0.1001, 0.0095, 0.2684, B0.0464, 0.0050, …                                                                                B0.1829, 0.0465, 0.0060, B0.0518, 0.0304, 0.0084 ¤q
 

Step (8): substitute the optimal values from step (7) into step (6), and obtain the optimal 
value  # 	 0.192998105237. 

We solve the same problem using different values of � and � and the optimal values 
are as shown in Table (3.1). 

Table (3.1): Optimal Values for Example (1) 

M K J Deviation Error 

3 2 0.192909334109 3.6 x 10=³   
4 2 0.192909298711 6.1 x 10=>] 

5 2 0.192909298093 6.7 x 10=>? 

 

The exact optimal value of this problem as in [13] is 0.1929092981. The 
optimal state and control trajectories for � 	 3 and � 	 5 are shown in 
Figures (3.1) and (3.2) respectively. Since our system is linear; so the state and 
control trajectories should approach zero after finite time. On the other hand, 
we focus on the interval W0, 1X to compare our plots with other researchers to 
show effectiveness of the proposed method. Moreover, increasing the order � 
will enhance the accuracy of results. 
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Figure (3.1): Optimal State and Control Trajectories for Example (1) at M =3 

 

Figure (3.2): Optimal State and Control Trajectories for Example (1) at M =5 
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3.8.2 Example (2) 

Find the optimal control ����� which minimize the following performance index 

# 	 )�!>? ( !?? ( 0.005�?�.�>
]  

Subject to equality constraints and initial conditions as follows  !0> 	 !?               , !>�0� 	 0 

    !0? 	 B!? ( �   , !?�0� 	 B1 

Using the steps of example (1) to solve this problem for � 	 2, � 	4, 5, and 6 we obtain the optimal values as shown in Table (3.2). 

Table (3.2): Optimal Values for Example (2) 

M K J Deviation Error 

4 2 0.07112166296 1.76 x 10=^ 

5 2 0.069603214383 2.42 x 10=§ 

6 2 0.069365200694 4.26 x 10=´ 

 

To show effectiveness and superiority of our proposed method, we compare 
our results with other methods as shown in Table (3.3). 

 Table (3.3): Comparison between Optimal Values for Example (2) 

Source Used Method J Deviation Error 

Exact Value --- 0.06936094 0 

Hsieh [18] Space Function 0.0702 8.4 x 10=§ 

Neuman & Sen [19] Cubic Splines 0.06989 5.3 x 10=§ 

Vlassenbroeck[20] Chebyshev Poly. 0.069368 7.1 x 10=´ 

Jaddu [1] Chebyshev Poly. 0.0693689 7.96 x 10=´ 

Majdalawi [15] Legendre Poly. 0.0693688962 7.956 x 10=´  

This Research LSF 0.069365200694  4.26 x 10=´  
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The optimal state and control trajectories for � 	 2, � 	 6 are shown in 
Figures (3.3) and (3.4) respectively. These figures are exactly as obtained in 
[1]. Moreover, !?��� converges rapidly to zero after 0.8 second and ���� after 0.35 second. On the other hand, !>��� settles to zero as � goes to ∞.   

 

Figure (3.3): Optimal State Trajectories for Example (2) for M =6 

 

Figure (3.4): Optimal Control Trajectory for Example (2) for M =6 
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Chapter Four 
 

Linear Time Varying Quadratic Optimal Control Problem 

4.1 Introduction 

There are many developed techniques for dealing with time varying OCPS based on 
Fourier series[21], Legendre  polynomials[15], Chebyshev polynomials[1], Chebyshev 
wavelets[12], and Legendre wavelets[8]. 

In this chapter, we will expand the developed technique in Chapter Three to solve time 
varying OCPS. Moreover, the property of multiplication of two Legendre scaling 
functions will be presented. In addition, this method will be the basic for next chapter 
for solving nonlinear OCPS .  

4.2 Multiplication of Two Legendre Scaling Functions 

In this section, we will introduce the property of multiplication of two Legendre scaling 
function; since this step is important to deal with time varying and nonlinear OCPS. 

Lemma 4.1: The multiplication of two Legendre scaling functions will be zero if two 
functions are in different sections. 

Theorem 4.1: Given two Legendre scaling functions F78���, F7���� and assuming J � T, then the multiplication of these two scaling function is given by following 
formula 

F78��� F7���� 	 2K ?@2  ¶�2J ( 1��2T ( 1� j ·̧
I2�J ( T B 2¹� ( 12  F7�8º�=?¸����8

¸m]  

�4.1�  
Where  

�̧ 	 �2¹ B 1�!!¹!  

·̧ 	  �8=¸ �̧  ��=¸  �8º�=¸ A2J ( 2T B 4¹ ( 12J ( 2T B 2¹ ( 1C 

Note that ¹ !! is the double factorial of ¹ and  B1!! 	 1 as special case. 

Proof of equation (4.1) and many examples of multiplication can be found in details in 
[14]. 
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4.3 Time Varying Linear Optimal Control Problem 

In this section, we present the form of performance index, which is remained  as in 
equation (3.1)  and the form of state equations which becomes linear time-varying. 
Moreover, the optimal control problem will be as follows 

Find the optimal control ����� that minimize the quadratic performance index  

                                               # 	 » �¼q�¼ ( ½q�½� .�                                                     �4.2�>]    

Subject to time varying state equations and initial condition vector 

                      ¼ 0 	  ¾��� ¼��� ( ¿��� ½���    , ¼�0� 	 ¼À                                      �4.3� 

Where � 3  W0, 1X, ! , !2  3  67, � 3  68, t���, u��� are � x � and � x J time-
varying matrices respectively. � ST �� � x � positive semidefinite matrix and � ST �� J x J positive definite matrix. 

4.3.1 Parameterization via Legendre Scaling Function 

State and control variables can be expanded as the same manner as in Chapter three via 
Legendre scaling function as follows 

!���� 	 j j �78�  F78��� 	 Φq��� |     S 	 1,2, … , T o
8m]

?Okl
7m>                                �4.4� 

����� 	 j j  78�  F78��� 	 Φq��� ~      S 	 1,2, … , N o
8m]

?Okl
7m>                                �4.5� 

These equations can be written in compact form as follows ¼��� 	 %yz { Fq���'|                                                        �4.6� 

½��� 	 %y} { Fq���'~                                                        �4.7� 

Where yz, y} are identity matrices of dimension T x T and N x N respectively and F��� is the vector of Legendre scaling function with dimension � x 1, where � 	 2K=>�� ( 1�. 

Φ����� 	 4 F>] F>> … F>o F?] … F?o F?Okl] … F?Oklo5q 
And  | 	 4�>]� … �>]�   �>>> … �>>�  �?Oklo> … �?Oklo� 5   

~ 	 4 >]> …  >]£     >>> …  >>£   ?Oklo> …  ?Oklo£ 5    
We should note here that the unknown vectors | and ~ are slightly different than in 
Chapter three. 
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4.3.2 Parameterization ¾�Á� and ¿�Á� via Legendre Scaling Function 

The time varying matrices t��� and u��� can be expressed in terms of Legendre scaling 
function as follows 

Â��� 	 j j Â�¸
o

¸m]
?Okl
�m> F�¸���                                                    �4.8� 

Equation (4.8) can be written in vector form as follows. Â��� 	 4Â>] Â>> … Â>o Â?Okl] … Â?Oklo5 Φ���                            �4.9� 

Where Â�¸ is T x T constant matrix of the coefficients of Legendre scaling function F�¸���. These matrices can be found by the following formula 

Â�¸ 	  ) Â��� F�¸��� .�                                                 �4.10� 
?�?O

?�=??O
 

In similar manner, u��� can be expanded in terms of Legendre scaling function as 
follows  

Ã��� 	 j j Ã�¸
o

¸m]
?Okl
�m> F�¸���                                                    �4.11� 

Also equation (4.11) can be written in vector form as follows 

Ã��� 	 4Ã>] Ã>> … Ã>o Ã?Okl] … Ã?Oklo5 Φ���                            �4.12� 

Where Ã�¸ is T x N constant matrix of the coefficients of Legendre scaling function F�¸���. These matrices can be found by the following formula 

Ã�¸ 	  ) Ã��� F�¸��� .�                                                 �4.13� 
?�?O

?�=??O
 

4.3.3 Initial Conditions parameterization via Legendre Scaling Function   

Initial condition can be expanded in terms of Legendre scaling function as follows 

¼2 	  « ΦT α]                                                             �4.14� 

Where 

« 	 √22K ?@                  
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�] 	 4�>]]  0 … 0 �?]]  0 … 0 �?Okl]]  0 … 05 and  �>]] 	 W!>�0� !?�0� … !��0�X  
Here we should note that the vector �] differs from the vector �2 in equation (3.15). 

4.3.4 Performance Index parameterization via Legendre Scaling Function    

To approximate the performance index of time varying system, we substitute equations 
(4.6) and (4.7) into equation (4.2) to obtain 

# 	 ) |��F���  { yz���Fq���  { yz�|>
] ( ~��F���  { y}���Fq���  { y}�~ .�       �4.15� 

By applying Lemma 3.2, equation (4.15) can be simplified as follows # 	 |q� y� �  ��| ( ~q� y� � ��~                                             �4.16� 

Moreover, equation (4.16) can be written in quadratic form as follows 

# 	 W|q  ~qX  y� �  � ¡¢�x¢£¡¢£x¢� y� � �¤ �|~�                                           �4.17� 

4.3.5 State Equations parameterization via Legendre Scaling Function    

To approximate state equations in terms of unknown coefficients of state and control 
variables, we integrate equation (4.3) as follows 

¼��� B ¼2 	 » Â���+]  ¼��� .� ( » Ã���+]  ½��� .�                             �4.18�  

By substituting equations (4.4), (4.5), (4.9), (4.12) and (4.14) into equation (4.18), we 
obtain  

Φq��� | B ΦT���« α] 	  

 )WÂ>] … Â?OkloX Φ���+
] ΦT���| ( )WÃ>] … Ã?OkloX Φ���+

] ΦT���~ .�                   �4.19� 

By using the results of theorem (4.1) which can be found in details in [14],we get 

Åq Φ��� ΦT��� 	 ΦT��� Å Æ                                              �4.20� 

Where Åq 	 4Ç>] … Ç>o  Ç?Okl] … Ç?Oklo  5 and  Å Æ  is a È2É=>�� ( 1�Ê xÈ2É=>�� ( 1�Ê product operational matrix (POM). To illustrate the calculation 

procedures, we choose � 	 2 and � 	 2 Thus, we have 

Å 	 WÇ>] Ç>>  Ç>? Ç?] Ç?>  Ç??  Xq                                         �4.21� 

Φ��� 	 W F>] F>> F>? F?] F?>F?? Xq                                      �4.22� 
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Multiply equation (4.22) in its transpose, we get 

Φ���ΦT��� 	
��
���
�F>] F>] F>]F>> F>]F>? F>]F?] F>]F?> F>]F??F>>F>] F>>F>> F>>F>? F>]F?] F>>F?> F>>F??F>?F>] F>?F>> F>?F>? F>]F?] F>?F?> F>?F??F?]F>] F?]F>> F?]F>? F>]F?] F?]F?> F?]F??F?>F>] F?>F>> F?>F>? F>]F?] F?>F?> F?>F??F??F>] F??F>> F??F>? F>]F?] F??F?> F??F??��

���
�
          �4.23�  

Applying Lemma (4.1) on equation (4.23), we get 

Φ���ΦT��� 	

��
���
���
���
�√2 F>] √2F>> √2F>? 0 0 0√2F>> √2F>]( 4√10 F>? 4√10 F>> 0 0 0

√2F>? 4√10 F>> √2F>]( 207√10 F>? 0 0 0
0 0 0 √2 F?] √2F>? √2F??0 0 0 √2F?> √2F?]( 4√10 F?? 4√10 F?>
0 0 0 √2F?? 4√10 F?> √2F?]( 207√10 F??��

���
���
���
�

 

�4.24� 

By using equation ( 4.21), Å Æ  can be given in the following form 

ÅÆ 	  �Ë> 0 ¦ 00 Ë? … 0� � … �0 … 0 Ë?Okl
�                                                �4.25� 

Where Ë�  for � 	 2, � 	 4 is given in [14] by the following matrix 

Ë� 	 √2  

��
���
���
��
�Ç�] Ç�> Ç�? Ç�^ Ç�§ Ç�> Ç�] ( 4√20 Ç�? 4√20 Ç�> ( 3√335 Ç�^ 3√335 Ç�? ( 4√21 Ç�§ 4√21 Ç�^
Ç�? 4√20 Ç�> ( 3√335 Ç�^ Ç�] ( √207 Ç�? ( 67 Ç�§ 3√335 Ç�> ( 4√5√15 Ç�^ 67 Ç�? ( 20√577 Ç�§
Ç�^ 3√335 Ç�? ( 4√21 Ç�§ 3√335 Ç�> ( 4√5√15 Ç�^ 67 Ç�? ( 20√577 Ç�§ 4√21 Ç�> ( 611 Ç�^
Ç�§ 4√21 Ç�^ 67 Ç�? ( 20√577 Ç�§ 4√21 Ç�> ( 611 Ç�^ Ç�] ( 10077√5 Ç�? ( 4891001 Ç�§��

���
���
��
�
  

�4.26� 

According to  the results obtained in equation (4.20), we have 

  WÂ>] … Â?OkloXΦ���ΦT��� 	 ΦT��� tÌ                                       �4.27� 

WÃ>] … Ã?OkloXΦ���ΦT��� 	 ΦT��� uÍ                                        �4.28� 

Where tÌ and uÍ  are constant matrices of dimension T� x T� and T� x N� respectively. 

Now equation (4.19) can be simplified using equations (4.27) and (4.28) as follows 
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Φq��� | B ΦT���« α] 	 ) ΦT���+
] tÌ | .� ( ) ΦT���+

] uÍ ~ .�                   �4.29� 

To eliminate the integral operator, we apply Lemma (3.1) on equation (4.29), we get 

Φq��� | B ΦT���« α] 	 ΦT��� Îq tÌ | ( ΦT��� Îq uÍ  ~                            �4.30� 

The multiplication in equation (4.30) is block-wise, to change into element-wise 
multiplication, we can use Kronecker product [22], we get 

�Φq��� �  yz�| B �Φq��� �  yz�« α] 	 

     �ΦT��� Îq � yz� tÌ | ( �ΦT��� Îq � yz� uÍ  ~        �4.31� 
4.4 Quadratic Programming Problem  

In this section, as in section (3.7), we construct the quadratic form of optimal problem 
to be easily solved by MATLAB.  

The compact quadratic form can be rewritten as follows JS�¯   ¯q ° ¯                                                        �4.28� 

Subject to equality constraints ± ¯ 	 P                                                              �4.29� 

Where  

¯ 	 �|~� 
° 	  y� �  � ¡¢�x¢£¡¢£x¢� y� � �¤ 

± 	 �PT � yz�tÌ – I¢� � Îq � yz� uÍ�Φ¥ � yz�         0%?Okl=>'�x¢£® 
P 	   B�2«0%?Okl=>'�x>¤ 

4.5 Numerical Examples 

Find the optimal control ����� which minimize the following performance index 

# 	 12 )�!? ( �?�.�>
]  

Subject to equality constraints and initial condition as follows !0 	 �! ( �     , !�0�=1 
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To illustrate the proposed method we will solve this example in details and step by step 
as follows 

Step (1): define the unknown coefficients of state and control variables according to ���. �. For � 	 2, and � 	 2 the unknown coefficients will be as follows   | 	 W�>] �>> �>? �?] �?> �?? X ~ 	 W >]  >>  >?  ?]  ?>  ??X 
Step (2): generate the Legendre scaling function vector depending on ���. �. 

Φ��� 	 WF>]��� F>>��� F>?���  F?]��� F?>��� F??��� Xq 

Step (3): approximate the state and control variables. 

!��� 	 j j �78
?

8m]
?

7m>  F78 

���� 	 j j  78
?

8m]
?

7m>  F78 

Step (4): find the vector of initial condition. 

« 	 √22K ?@ 	 1√2  , �2 	 W1 0 0  1 0 0Xq 

Step (5): find the points of ensured continuity and the continuity matrix. 

�� 	 S2K=> 	 12 

Φ¥ 	 WF>]�0.5�  F>>�0.5�  F>?�0.5�   B F?]�0.5�  – F?>�0.5�  – F??�0.5�  X  
Step (6): find tÌ by approximating Â���  using equation (4.10).  

Now solving the quadratic programming problem, we obtained # 	 0.484290813333 

To show the convergence speed to optimal value, we solve the same problem for 
different values of �, and �, then  the optimal values are recorded in Table (4.1).  

To show effectiveness of our proposed method we compare our results with other 
methods as shown in Table (4.2).  
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Table (4.1): Optimal values for different Values of  � and � 

Approx. Order  J 

Ï 	 Ð, Ñ 	 Ð 0.484290813333 

Ï 	 Ò, Ñ 	 Ð 0.484267886132 

Ï 	 Ó, Ñ 	 Ð 0.484267700376 

 

Table (4.2): Comparison between Optimal Values of Example  

Source Used Method J Approx. Order  

Elnagar [23] Cell Averaging 
Spectral 

Chebyshev 

0.48427022 � 	 4 

Elnagar [23] Cell Averaging 
Spectral 

Chebyshev 

0.48426764 � 	 6 

This Research LSF 0.48426770037  � 	 4, � 	 2  

 

The optimal state and control trajectories for � 	 2, � 	 2 and for � 	 2, � 	 4 are 
shown in Figures (4.1) and (4.2) respectively. Moreover, we notice from Figures that we 
can get more accurate results by increasing �.  

 

Figure (4.1): Optimal State and Control Trajectories at M = 2 
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Figure (4.2): Optimal State and Control Trajectories at M = 4 
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Chapter Five 
 

Nonlinear Quadratic Optimal Control Problem 

5.1 Introduction 

In this chapter, nonlinear OCPS will be solved depending on the proposed method in 
Chapter Four. In addition, iterative technique will be used to convert the complex 
nonlinear OCPS into sequence of linear time varying OCPS[5-7] which are much easier 
to solve by any software package such as MATLAB. 

Many researchers proposed different methods for solving nonlinear OCPS. For example, 
Razzaghi and Yousefi [8] used Legendre wavelets and Gauss node method to solve 
nonlinear OCPS. Tomas and et al.[24] presented a parametric approach based on 
reducing the nonlinear OCP to a sequence of linear time varying ones. Zheng and 
Yang[25] proposed method for solving nonlinear differential equations depending on 
Legendre wavelets and neural network. Jaddu[ 26] proposed direct solution of nonlinear 
OCPS using state parameterization based on Chebyshev polynomials and the second 
method of the quasilinearzation. By which, difficult nonlinear OCPS are converted 
directly into a sequence of quadratic programming problems. 

In this thesis, the nonlinear OCPS will be replaced by a sequence of time varying OCPS 
based on the iterative technique. Then, the proposed method in Chapter Four will be 
applied. 

5.2 Problem Statement of Nonlinear OCP 

The optimal control problem can be considered as finding the optimal controller ����� 
that minimize the performance index  

                                               # 	 ) �!qs! ( �q6�� .�                                                    �5.1�+,

]  

Subject to nonlinear constraints and initial condition 

      !0 	  1�!���, ����, �� 	 t�!� !��� ( u�!� ���� , !�0� 	 !2                 �5.2� 

Where � 3  40, �&5, ! , !2  3  67, � 3  68, t, u are � x � and � x J constant 

matrices respectively.  s is an � x � positive semidefinite matrix and 6 is an J x J 
positive definite matrix and 1 is assumed to be continuous differential function with 
respect to all its arguments. 
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5.3 Iterative Technique 

In this section, we will introduce a modern technique for handling nonlinear dynamical 
systems in which the original nonlinear OCPS are replaced by a sequence of linear time 
varying OCPS under Lipschitz condition[27]. Mathematically if t�!� is locally 
Lipschitz, then the nonlinear equation (5.2) can be replaced by the following linear time 
varying system. !0 W]X 	  t�!]�!W]X ( u�!]� �W]X     , !W]X�0� 	 !]                                   �5.3�     and for  � Ø  1   

!0 WÉX 	  t%!WÉ=>X��� '!WÉX ( u È!WÉ=>X���Ê �WÉX     , !WÉX�0� 	 !]                   �5.4�  
Theorem 5.1: Suppose that the nonlinear equation (5.2) has a unique solution on the 
interval W0, �X denoted by !��� and assume that t�!�: 67 Ú 67 is locally Lipschitz. 
Then the sequence of functions defined in (5.3)-(5.4) converge uniformly on W0, �X to the 
solution !���. 

Iterative technique have some advantages that makes it an attractive tool for solving any 
nonlinear equation, that satisfies the local Lipschitz condition. (1) Iterative technique 
provides an accurate representation of the nonlinear system after small number of 
iterations. (2) Common linear techniques can be applied on nonlinear systems by using 
iterative technique. 

Now OCP described in (5.1)-(5.2) can be replaced by the following representation 
based on iterative technique 

Minimize  

#W]X 	  ) �!W]XÛ+,
] s !W]X ( �W]XÛ6 �W]X� .�                                            �5.5�  

Subject to  

!0 W]X 	  t�!]�!W]X ( u�!]� �W]X     , !W]X�0� 	 !]                                   �5.6� 

And   for  k  ≥ 1  

Minimize  

#WÉX 	  ) �!WÉXÛ+,
] s !WÉX ( �WÉXÛ6 �WÉX� .�                                              �5.7� 

Subject to   
 !0 WÉX 	  t%!WÉ=>X��� '!WÉX ( u È!WÉ=>X���Ê �WÉX     , !WÉX�0� 	 !]             �5.8� 

The procedures required to solve nonlinear quadratic OCPS using iterative technique 
can be summarized as in Figure (5.1). 
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Figure (5.1): Flow Chart for Solving Nonlinear OCP Using Iterative Technique 

              !0 	 t�!� !��� ( u�!� ���� , !�0� 	 !2                  
Represent the Nonlinear System into Pseudo-Linear model 

.!.�WÉX 	  t%!WÉ=>X��� '!WÉX ( u È!WÉ=>X���Ê �WÉX, !WÉX�0� 	 !] 

Reformulate the OCP into Interval � 3  W0,1X using � 	  ++, 

Minimize        #WÉX 	 �&  » �!WÉXÛ>] s !WÉX ( �WÉXÛ6 �WÉX� .�   

Subject to 

START  

Ü½~ÝÞßÁ Áo      .!.�W]X 	  t�!2 �!W]X ( u�!2� �W]X, !W]X�0� 	 !] 

Set  � 	  0 and Solve Linear Quadratic Time Invariant OCP 

Minimize           #W]X 	  �& » �!W]XÛ>] s !W]X ( �W]XÛ6 �W]X� .�        

.!.�W>X 	  t%!W]X��� '!W>X ( u È!W]X���Ê �W>X, !W>X�0� 	 !] 

Set  � 	  1 and Solve Linear Quadratic Time Varying OCP 

Minimize           #W>X 	  �& » �!W>XÛ>] s !W>X ( �W>XÛ6 �W>X� .�        

Subject to 

STOP 

Increase � , � 	 � ( 1   

à#WÉº>X B #WÉXà �  á   
YES 

NO  
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5.4 Numerical Examples 

5.4.1 Example (1) 

Find the optimal control ����� for Van der Pol problem that minimizes the following 
performance index  

# 	 12 )�!>? ( !?? ( �?�.�        â
]  

Subject to nonlinear equality constraints and initial conditions as follows !0> 	 !?         , !>�0� 	 1                               !0? 	 B!> ( !? B !>?!? ( �   , !?�0� 	 0 

This problem was solved by several researchers and by different methods. Jaddu [1] 
solved the problem using state parameterization via Chebyshev polynomials and 
quasilinearization technique and # was found to be 1.433487. Bullock and Franklin 
[28] solved the same problem using the second variation method and # was found to be 1.433508 . Bashein and Enns [29] using quasilinearization and discretization and # was 
found to be 1.438097. Majdalawi [15] using state parameterization via Legendre 
polynomials combined with iterative technique and # was found to be 1.449395 . 

To solve this OCP using the proposed algorithm, we need to use the described 
procedures in flow chart of Figure (5.1) as follows 

Step (1): rewrite the OCP in  Pseudo-Linear form as follows 

!0> 	 !?         , !>�0� 	 1                                !0? 	 B!> ( �1 B !>?�!? ( �   , !?�0� 	 0 

Step (2): reformulate the OCP into Interval � 3  W0,1X using � 	  ++, 	 +â, we get 

Minimize  

  #WÉX 	 52 ) AÈ!>WÉXÊ? ( È!?WÉXÊ? ( %�WÉX'?C .�   >
]  

Subject to  

.!>.� WÉX 	 5!?WÉX         , !>WÉX�0� 	 1                                     
.!?.� WÉX 	 5 �B!>WÉX ( È1 B %!>WÉ=>X'?Ê !?WÉX ( �WÉX�   , !?WÉX�0� 	 0        

 



33 

 

 

Step (3): set  � 	  0 and solve linear quadratic time invariant OCP of the following form 

.!>.� W]X 	 5!?W]X         , !>W]X�0� 	 1                      

.!?.� W]X 	 UB5!>W]X ( 5�W]X U   , !?W]X�0� 	 0          
These state equations can be written in matrix form as follows 

�.!>.�.!?.� � 	 � 0 5B5 0� �!>!?� , �.!>.�.!?.� � 	  �05� W�X    
This is the iteration zero and for � 	 2 and � 	 4, we get the optimal value # 	0.9537225048.The optimal state and control trajectories for � 	 0 are shown in 
Figure (5.2). These trajectories are close to the exact trajectories. 

 

Figure (5.2): Optimal State and Control Trajectories at � 	 0 

Step (4): set  � 	  1 and solve linear quadratic time varying OCP as follows 

.!>.� W>X 	 5!?W>X         , !>W>X�0� 	 1                                                                         

.!?.� W>X 	 UB5!>W>X ( 5 A1 B È!>W]XÊ?C !?W>X ( 5�W>X U    , !?W>X�0� 	 0                  
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These state equations can be written in matrix form as follows 

�.!>.�.!?.� � 	 ã 0 5B5 5 A1 B È!>W]XÊ?Cä �!>!?� , �.!>.�.!?.� � 	  �05� W�X    
This is the first iteration and using quadratic programming at � 	 2 and � 	 4, we get 
the optimal value # 	 1.549716935. 
 
Step (5): increase � and record the optimal values in Table (5.1) 

To show applicability and effectiveness of our proposed algorithm, we  compare our 
results with other researchers as shown in Table (5.2).  

Table (5.1): Optimal Values for Example (1) for � 	 2 and � 	 4 

Iteration  å æ  

ç 0.9537225048 

è 1.549716935 

Ð 1.476606108 

Ò 1.457374586 

Ó 1.449939834 

é 1.449039711 

 

Table (5.2): Comparison between Used Methods for Van der Pol Problem 

Source J 

Jaddu [1] 1.433487 

Bullock and Franklin [28] 1.433508 

Bashein and Enns [29] 1.438097 

Majdalawi [15] 1.449395 

This Research 1.449039 

 

The optimal state and control trajectories of Van der Pol problem at � 	 5 are shown in 
Figure (5.3). These trajectories are very close to the exact trajectories.    
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Figure (5.3): Optimal State and Control Trajectories at � 	 5 

 

5.4.2 Example (2) 

Find the optimal control ����� for Rayleigh problem that minimizes the following 
performance index  

# 	 ) �!>? ( �?�.�        ?.â
]  

Subject to nonlinear equality constraints and initial conditions as follows !0> 	 !?        , !>�0� 	 B5                                                                          
  !0? 	 B!> ( 1.4!? B 0.14!?̂ ( 4�   , !?�0� 	 B5                               

This problem was solved by several researchers and by different methods. Jaddu [1] 
solved the problem using state parameterization via Chebyshev polynomials and five 
quasilinearization iterations and # was found to be 29.4022. Nedeljkovic [30] found # to 
be 29.419 using three different algorithms which based on the first order Riccati 
equation. Sirisena [31] found # to be 29.451 using a piecewise polynomials 
parameterization.  

To solve this problem, we will follow the same procedures as shown in flow chart in 
Figure (5.1). 
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Step (1): rewrite the OCP in  Pseudo-Linear form as follows 

!0> 	 !?        , !>�0� 	 B5                                                                          
!0? 	 B!> ( �1.4 B 0.14!??�!? ( 4�   , !?�0� 	 B5                           

Step (2): reformulate the OCP into Interval � 3  W0,1X using � 	  ++, 	 +?.â , we get 

Minimize  

  #WÉX 	 52 ) AÈ!>WÉXÊ? ( %�WÉX'?C .�   >
]  

Subject to  

.!>.� WÉX 	 52 !?WÉX        , !>WÉX�0� 	 B5                                                  
.!?.� WÉX 	 52 �B!>WÉX ( È1.4 B 0.14%!?WÉ=>X'?Ê !?WÉX ( 4� WÉX�  , !?WÉX�0� 	 B5    

 

Step (3): set  � 	  0 and solve linear quadratic time invariant OCP of the following form 

.!>.� W]X 	 52 !?W]X        , !>W]X�0� 	 B5                                                            

.!?.� W]X 	 52 4B!>W]X ( 4� W]X5  , !?W]X�0� 	 B5                                           
These state equations can be written in matrix form as follows 

�.!>.�.!?.� � 	 � 0 2.5B2.5 0 � �!>!?� , �.!>.�.!?.� � 	  � 010� W�X 
Using quadratic programming to solve this OCP at � 	 2 and � 	 4, we get the 
optimal value # 	 29.63689449.The optimal state and control trajectories at � 	 0 are 
shown in Figure (5.4). 
 
Step (4): set  � 	  1 and solve linear quadratic time varying OCP as follows 

.!>.� W>X 	 52 !?W>X        , !>W>X�0� 	 B5                                                                             

.!?.� W>X 	 52 �B!>W>X ( È1.4 B 0.14%!?W]X'?Ê !?W>X ( 4� W>X�  , !?W>X�0� 	 B5      
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These state equations can be written in matrix form as follows 

�.!>.�.!?.� � 	 ã 0 2.5B2.5 2.5 A1.4 B 0.14 È!?W]XÊ?Cä �!>!?� , �.!>.�.!?.� � 	  � 010� W�X              
Solving the first iteration quadratic programming problem at � 	 2 and � 	 4, we get 
the optimal value # 	 29.54820588. 
 
Step (5): increase � and record the optimal values in Table (5.3) 

Table (5.3): Optimal Values for Rayleigh problem at � 	 2 and � 	 4 

Iteration  å æ  

è 29.54820588 

Ð 29.45927227 

Ò 29.44150164 

Ó 29.43936952 

é 29.43439489 

 
 

 

Figure (5.4):  Optimal State and Control Trajectories at � 	 0 for Rayleigh problem 
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To show effectiveness of the proposed method, we compare our result with other 
researchers as shown in Table (5.4).  

Table (5.4): Comparison between Used Methods for Rayleigh Problem 

Source J 

Jaddu [1] 29.4022 

Nedeljkovic [30] 29.419 

Sirisena [31] 29.451 

This Research 29.4393 
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Chapter Six 
 

Conclusion and Future Work 

6.1 Conclusion 

In this thesis, we proposed a numerical method to solve the nonlinear quadratic optimal 
control problem. However, the proposed method is also suitable for solving linear time 
invariant/ variant quadratic optimal control problems. The proposed method depends on 
state-control parameterization via Legendre scaling function and the iterative technique 
in which the nonlinear state equations are replaced by a sequence of linear time-varying 
state equations. In addition, we choose Legendre scaling function which has many 
advantages over the other orthogonal polynomials and functions.  
 
Our proposed method, directly converts the optimal control problem into a quadratic 
programming problem. In which, the complex nonlinear quadratic optimal control 
problem is converted to a sequence of a quadratic linear optimal control problems that 
are much easier to solve. 
 
The applicability and effectiveness of the proposed method have been proven through 
solving  many numerical examples and by comparing our results with other researchers 
were used different orthogonal polynomials and functions. 
 
 
6.2 Future Work 

Searching in the field of wavelets functions usages in approximation and numerical 
methods is very rich and new. Moreover, the work in this thesis can be extended in 
many ways. Firstly, solving nonlinear optimal control problem with inequality 
constraints. Secondly, using operational matrix of differentiation instead of operational 
matrix of integration for Legendre scaling function.    
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