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Background 

Diarrheal diseases are a leading cause of morbidity and mortality in Africa. Though research has 

shown diarrheal diseases to be impacted by weather, there is limited evidence of this association 

in sub-Saharan Africa and no studies conducted in Mozambique. Our study aimed to determine if 

variation in diarrheal disease counts was associated with precipitation in Mozambique. Estimating 

this association is the first step in an effort to determine whether the relationship is robust enough 

to support developing an early warning system to improve health system preparedness and 

response, and to project future burdens of diarrheal disease associated with climate change.  

Methods 

Weekly diarrheal disease data were available for 1997-2014 from the Mozambique Ministry of 

Health (n = 7,324,661). We estimated the association between cases of disease and precipitation, 

defined as the number of wet days (precipitation > 1mm) per week, in each of Mozambique’s 

four regions, comprising a total of 141 districts. Time series analyses were conducted using a 

distributed lag Poisson regression model. Models were adjusted for time, maximum temperature, 

and district. 
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Results 

Using a four-week lag, chosen a priori, we found that precipitation was associated with diarrheal 

disease in adjusted models. One additional wet day in a week was associated with a 1.86% (95% 

CI: 1.05-2.67%), 1.37% (95% CI: 0.70-2.04%), 2.09% (95% CI: 1.01-3.18%), and 0.63% (95% 

CI: 0.11-1.14%) increase in diarrheal disease in Mozambique’s northern, central, southern, and 

coastal regions, respectively.  

Conclusions 

Our study indicates a strong association between diarrheal disease and weather. Additional 

diarrheal prevention efforts should be targeted to areas with increased rainfall.  As climate change 

increases the number of wet days and heavy precipitation, the burden of diarrheal disease in 

Mozambique may increase unless additional health system interventions are undertaken.  
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INTRODUCTION 

Sub-Saharan Africa is projected to be highly affected by climate change (Vance et al. 2013). 

Climate variability and change present current and future risks to human health in this region 

where many countries have high exposure to climate-related hazards as well as low capacity to 

manage the associated risks (WHO). Increases in precipitation are one possible consequence of 

climate change. Changes in precipitation and temperature not only alter the geographic range, 

pathogenicity, seasonality, and survival of disease causing pathogens, but may also increase 

human exposure and jeopardize the infrastructure necessary to prevent disease transmission 

(Carlton et al. 2016). Diarrheal diseases are amongst a wide range of health outcomes sensitive to 

weather and climate and are already of significant concern in sub-Saharan Africa. Kolstad and 

Johansson (2011) estimated that by the end of the 21st century, climate change might increase the 

relative risk of diarrhea in Southern Africa by more than 20 percent. 

Transmission pathways through which precipitation operates to increase diarrheal disease are 

broad and complex and rainfall variability can influence diarrheal disease in many ways. 

Flooding, often due to heavy precipitation, is linked to increased diarrheal disease prevalence 

(IPCC 2007). Rainfall runoff and flooding can lead to human exposure to pathogens by flushing 

pathogens from environmental reservoirs or fecal matter into freshwater supplies (Hashizume et 

al. 2007, Vance et al. 2013, Singh et al. 2001, and Tornevi et al. 2015). In contrast, water scarcity 

can necessitate consumption of unsafe water as well as decrease hygienic practices, increasing 

diarrheal disease (Bandyopadhyay et al. 2011). 

Owing to these impacts of rainfall variability, studies have found an increased numbers of cases 

associated with both high and low rainfall, the dry and wet seasons, below average rainfall, heavy 

rains, and rainfall shocks (deviations from the long-term average)  (Vance et al. 2013; Carlton et 

al. 2016; Rabassa et al. 2014; Tornheim et al. 2010).  
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Although diarrheal diseases are considered a leading cause of morbidity and mortality in Africa, 

the quantity of evidence examining the association between climate and these diseases in sub-

Saharan Africa is low (Amegah et al. 2016; Smith et al. 2014). No studies have examined the 

association between precipitation and diarrheal disease in Mozambique, a country with over 

seven million cases of diarrheal disease reported between 1997 and 2014 (IHME). Diarrheal 

disease was the country’s fifth leading cause of death as well as fourth leading cause of death and 

disability combined in 2015 (IHME). In 2013, diarrheal disease was responsible for 13 percent of 

the country’s under-five deaths (WHO). 

This study sought to better understand the role that precipitation plays in diarrheal disease in 

Mozambique using 18-years of data at a weekly resolution with confounders measured over that 

same time scale. Specifically, our study seeks to understand the short-term association between 

precipitation and diarrheal disease at the weekly timescale. Understanding this association will 

allow for improved policies and programs to support prevention of diarrheal disease, an important 

cause of mortality.  Specifically, developing an early warning system for extreme precipitation 

events may improve health system preparedness and response with the goal of reducing the 

burden of diarrheal diseases in Mozambique and other nations. 
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METHODS 
 
We used an ecologic study to better understand the role that precipitation plays in diarrheal 

disease in Mozambique. We conducted a time series analysis using weekly district-level 

precipitation estimates and weekly district-level total cases reported in Mozambique from 1997 

through 2014. 

The study was conducted in Mozambique, a country comprised of four regions, ten provinces, 

and more than 1411 administrative districts (Figure 1A). Districts do not cross regional 

boundaries.   

Though disease data collection began in 1989, years prior to 1997 were excluded due to 

incomplete reporting. Districts that did not report cases for a given week were considered 

missing. This study included the years 1997-2014 when on average, disease counts were reported 

by the districts more than 90 percent of all possible weeks (Figure 2A). Individual districts were 

included in the analysis if their reporting exceeded 85 percent during all the weeks of follow-up; 

as a result, four districts were excluded from the analysis. 

Diarrheal disease counts are weekly aggregates of reported cases by each of the districts to the 

Mozambique Ministry of Heath reportable disease registry. Healthcare providers are required to 

track the number of patients seeking care for clinical diarrheal illness, routinely defined as the 

passing of three or more loose or liquid stools per day. These visits are tallied weekly at the clinic 

level and reported to the district for aggregation with other clinics, yielding a weekly total.  

Precipitation was defined as the number days it rained, or ‘wet days,’ in a week. Wet days were 

defined as days for which precipitation met or exceeded one millimeter (mm), one of 27 indices 

developed by the World Meteorological Organization (WMO) Commission for Climatology and 

																																																								
1The number of districts varied over the 18 years of follow-up, several districts were abolished, two split 
and more than 10 were formed. 
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the Expert Team on Climate Change Detection and Indices (ETCCDI) (CSAG 2016).  

Precipitation data come from the Climate Hazards Group InfraRed Precipitation with Stations 

(CHIRPS) dataset, which spans nearly worldwide with collection beginning in 1981 (Funk et. al). 

The CHIRPS dataset contains of daily rainfall data derived from a combination of satellite 

derived precipitation estimates or merged satellite data, model re-analysis data for large areas, 

and weather station rainfall data gridded to 0.05 x 0.05 degree spatial resolution. CHIRPS data 

are available daily for the period 1981-2014 and aggregated to the weekly level by the Climate 

System Analysis Group (CSAG).  

Temperature data come from the Climate Research Unit (CRU), which utilizes more than 4,000 

global weather stations (Harris et al., 2014). The data consist of weekly time series estimates of 

multiple temperature variables as far back as 1979, and are also gridded to 0.05 x 0.05 degree 

spatial resolution.  

Time (year), temperature (degrees Celsius), and region/district were covariates included in the 

analysis.  

The weather-diarrheal disease association of interest also varies temporally across weeks by 

season (medium-term trends) and years (long-term trends). According to the United States 

Agency for International Development (USAID) Technical Report on Climate Change and Health 

Systems in Mozambique, one such secular trend is that the country experienced higher rainfall 

intensity in more recent years compared with earlier years. 

Temperature confounds the association as it often varies concurrently with precipitation and has 

been shown to influence diarrheal disease rates (Carlton et al. 2015).  

 Diarrheal disease counts vary from region to region. Further, each region has a different climate 

profile. There’s strong evidence that rainfall intensity varies spatially in Mozambique. The 
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northern parts of the country receive appreciably more annual precipitation that the southern parts 

and the driest parts of the country are in the southwest (CSAG 2016).   

Rate ratios (RR) and 95% confidence intervals (CI) were calculated to estimate short-term (i.e. 

less than seasonal, or weekly) associations between weekly case counts of diarrheal disease and 

number of wet days (precipitation > 1mm) per week. We conducted a time series analysis and fit 

a generalized linear model (GLM) assuming a Poisson distribution in diarrheal disease counts and 

allowing for overdispersion (Gasparrini et al. 2010; Zhou et al. 2011). The RR values are 

exponentiated coefficients that represent the difference in the log of the expected counts 

comparing a one unit higher values (one additional wet day) to a one unit lower value. We can 

therefore interpret the RR as a percent difference. 

Our a priori decision to lag the wet day variable by four weeks was informed by prior research 

(Alexander et al. 2013 and Tornheim et al. 2010). Using 30 years of diarrheal and climate data in 

Botswana and a stepwise variable selection procedure that included rainfall, Alexander and 

colleagues’ (2013) found that climatic variables most accurately predicted diarrheal disease at a 

one-month lag. Our lag was incorporated using an unconstrained distributed lag model with all 

lagged wet day variables from zero to four weeks in the model simultaneously (Bhaskaran et al. 

2013).  

We fit one model at the national level to estimate a countrywide association. This model adjusts 

for time, temperature, and region. Owing to the country’s spatial variation in precipitation and 

disease burden, we fit separate models for all four regions of Mozambique. This region-stratified 

model controlled for time, temperature, and district. Inclusion of district as an indicator variable 

allows control of additional heterogeneity and unmeasured factors such as other environmental, 

economic and social conditions.  
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Each model included a cubic smoothing spline for time (4 knots/year * 18 years = 72 degrees of 

freedom) to control for seasonality and long-term trends. Temperature was similarly controlled 

for using a cubic spline with a knot was placed every 5˚C (temperature minimum and maximum 

was 14˚C and 42˚C, respectively) and was not lagged (Hashizume et al. 2007, D’Souza et al. 

2004, Naumova et al. 2006).  

Sensitivity analyses for the degree of control/smoothing in both the time and temperature splines 

were conducted by halving and doubling the number of knots in each spline used in the main 

analysis. Our main analysis time spline contains four knots per year to allow for seasonal 

changes, so we fit the national model with a two-knot per year and eight-knot per year spline. Our 

temperature spline had a knot for each five degree Celsius difference, therefore we fit the national 

model with a temperature spline with knots every 2.5 and ten degrees Celsius.  

Exploratory analyses were conducted to investigate the strongest lag (between 0-8 weeks) for the 

association between diarrheal disease and both precipitation and maximum temperature. Owing to 

associations found in prior literature, we fit a model to explore the association between 

temperature, defined as the week’s highest maximum single day temperature, and diarrheal 

disease.  

RESULTS  

Country-wide descriptive statistics 

Weekly observations for 18 years and 141 administrative districts resulted in 126,056 

observations (4.5% of weeks missing). Diarrheal disease cases were reported on average in 

50 (out of 52) weeks each year of follow-up. There were 7,324,661 reported cases of 

diarrheal disease between 1997-2014. Weekly diarrhea case counts reveal marked 

seasonality (Figure 1). Diarrheal disease peaks both nationally and in all four regions were 
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observed during the wet season when tropical cyclones and the heaviest rainfall typically 

occur (CSAG 2016). 

The highest weekly diarrhea case count in the dataset was 2,033, observed in the tenth week 

of the year, which is commonly when disease count peaked. The lowest weekly value of 

zero cases occurred in weeks when a given district reported no diarrhea cases for treatment. 

Counts of zero occur more frequently in the years prior to 2000.  

There was an increasing trend of total diarrhea cases reported weekly over time. The mean 

weekly number of cases reported in 1997 was 24, whereas the mean weekly cases reported 

in 2014 is 63, however, case counts peaked in 2009 with an average of 85 cases reported 

each week. 

Figure 1. Time series graph of the total number of weekly reported diarrhea cases during the 18-
year follow-up (x-axis). Pink lines indicate the first week of each year. The yellow line is the 
trend in case counts over time. 
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Temperature and precipitation also display pronounced seasonality (Figure 2). The average 

number of wet days per week in the country was 1.23 (sd 1.91), with on average 3.31 during 

the rainy season and nearly zero during the dry season2. Of note on the bottom graph of 

Figure 2 is the average maximum temperature that differs noticeably from the prominent 

pattern. These lower observations are from the Inhambane province in the southern region, 

which has minimum average maximum temperatures more than 3˙C lower than the other 

nine provinces. Descriptive statistics of diarrheal disease, precipitation and temperature are 

shown in Table 1. 

Figure 2. Time series data from 1997-2014. Top graph: Number of wet days per week over 
follow-up. Bottom graph: Average maximum temperature over time.  

																																																								
2 Rainy season calculated as weeks 1-8 and 49-52 of the year, to approximate the wettest months of 
December, January, and February. The dry season was calculated as weeks 26-37 to approximate June, 
July, and August.	
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Table 1: Univariate descriptive statistics of weekly reported values during 1989-
2014. 
 N Min Max Mean SD 
Total diarrhea Cases 126,118 0 2033 59 81 
Number of Wet Days 126,118 0 7 1 2 
Maximum Temperature ˚C 126,056 15.05 45.25 32.50 3.45 
 

Regional descriptive statistics 

While all regions appeared to have their largest annual disease peaks around late February 

and early March, which marks the end of the summer months (December, January, and 

February), and some of the warmest temperatures of the year occur, the seasonality of 

disease varied by region (Figure 3).  

The northern and central regions exhibited strong seasonality, with bimodal disease peaks 

occurring around February and October of each year. The coastal region had a single 

pronounced disease peak in late February/early March and a less prominent, if any, increase 

in disease later in the year towards October, November, and December. Lastly, the southern 

region showed little seasonality with a slight disease increase around March and April, but 

less variability throughout the year.  

All four regions appeared to have their lowest mean disease counts in the middle of the year, 

corresponding with the cooler, dry winter months of June, July, and August, when the 

monthly mean temperature often drops below 20°C. The northern region appeared to have 

the earliest trough beginning in May, while the other regions appeared to have their lowest 

disease burdens a month or two later in June and July. 
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Figure 3. Seasonality of diarrheal disease in Mozambique. Mean diarrheal disease cases by 
week of year and region.  
 

There was precipitation heterogeneity across regions as well (Table 2). The northern region was 

the wettest, with an average of 1.62 days per week and a mean weekly precipitation of 20.87mm. 

The southern region was the driest region across all precipitation indicators. Seasonality of the 

number of wet days by region is shown in Figure 4. During the wet season, the northern region 

experienced weeks that averaged more than 5 wet days throughout all 18 years of follow-up. The 

central region followed with more than 4 wet days during the wettest weeks.  The coastal and 

southern regions wettest weeks experienced between 2 and 3 wet days per week during the 

wettest weeks. All regions averaged less than one wet day per week in the dry summer months.  
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Table 2. Regional summary statistics of weekly reported precipitation values in 
each of Mozambique’s four regions. 

 
Number of Wet Days Wettest Day (mm) Total Precipitation (mm) 

 mean (SD) mean (SD) mean (SD) 
Northern 1.62  (2.29) 8.50 (12.52) 20.87 (33.50) 
Central 1.29 (1.98) 8.58 (14.17) 18.63 (34.30) 
Coastal  1.01 (1.62) 8.74 (16.15) 16.18 (32.99) 
Southern 0.82 (1.26) 7.10 (12.88) 11.39 (23.39) 

 

 
Figure 4. Average number of wet days by week number, 0-52 (x-axis) in Mozambique’s 4 
regions. 
 

Regression Models  
Our national model estimates that each additional wet day in a given week is statistically 

significantly associated with diarrheal disease, controlling for time, average high 
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temperature, and the region. We estimated a 1.04% increase (RR = 1. 0104) in diarrheal 

disease counts for each additional wet day (Table 3 and Figure 5).   

This national estimate masks, and arguably insufficiently controls for, the considerable 

heterogeneity in both diarrheal disease burden and precipitation across Mozambique. As 

such, we fit our regional model and found evidence of a larger association between wet days 

and diarrheal disease in the northern, central, and southern regions. One additional wet day 

was statistically significantly associated with a 1.86%, 1.37% and 2.09% increase in 

diarrheal disease in the northern, central and southern regions, respectively. In the coastal 

region, one additional wet day was associated with a 0.63% increase in diarrheal disease.  

Table 3. National and regions rate ratios (RR) 
estimates. Estimating the association between number 
of wet days (precipitation>1mm)† and weekly total 
cases of diarrheal disease reported in Mozambique, 
1997 – 2014  

 
RR 95% CI LL 95% CI UL 

 National* 
 1.0104 1.0042 1.0166  

Regionalˆ 
Northern 1.0186 1.0105 1.0267 

 Central 1.0137 1.0070 1.0204 
 Coastal 1.0063 1.0011 1.0114 
 Southern 1.0209 1.0101 1.0318 
 CI = 95% confidence interval; LL = lower limit; UL = upper limit 

*Controlling for time, average high temperature and region 
ˆControlling for time, average high temperature and district 
†Four-week lagged association with zero to four weeks in the model simultaneously 
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Figure 5. Rate Ratios of diarrheal disease associated with precipitation, lagged four weeks. Lines 
extend to 95% confidence interval for each estimate. Results are shown for each additional wet 
day in a model adjusted for time, temperature, and district. 
 

Sensitivity Analyses 

To determine if our results were robust to choices made in model fitting at the national level, we 

performed two sensitivity analyses by changing the way time and temperature splines were 

modeled. Model estimates were robust to both halving and doubling of the number of knots 

controlling for temperature (Table 7).  
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Table 7.  Sensitivity analysis for the degree of smoothing in the 
temperature spline for the association between precipitation and 
diarrheal disease using the national model. Rate ratio (RR) estimate for 
the final model fit with one knot per 5 degree Celsius change in 
temperature. Below that are model estimates for halving (one knot per 
10˚C) and doubling (one knots per 2.5˚C) spline flexibility. 

Model* RR 95% CI LL 95% CI UL  
Less Flexible 

1 knot/10˚C 1.0108 1. 0046  1. 0170  
Final Model 

1 knot/5˚C  1.0104 1. 0042 1. 0166   

More flexible 
1 knot/2.5˚C 1. 0102 1. 0041  1. 0164  

CI = 95% confidence interval; LL = lower limit; UL = upper limit 
*Controlling for time, average high temperature and region 
 
 
Estimates, however, were sensitive to changes in the control of time. Increases in the number of 

knots per year in time’s cubic spline resulted in a decreased estimated association, which lost 

significance and appeared to level off at 8 knots per year (Figure 6). Estimate sensitivity to time 

control confirms that it is indeed a strong confounder in this analysis. We felt that 4 knots per 

year was sufficient to remove confounding effects of seasonality in a sensible way without 

overcontrolling.  
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Figure 6. Rate Ratios (and 95% confidence intervals) of diarrheal disease associated with 
precipitation at the national level with increasing control of time, 0-12 knots per year (left to 
right). As a sensitivity analysis, time is adjusted for with varying control by altering the number 
of knots per year. Estimates are sensitive to changes in time adjustment. All estimates control for 
time (varyingly), temperature, and region. 

 

Exploratory Analyses 

Precipitation Lag 

Consistent with prior research and to allow for pathogen incubation, illness presentation, and 

the subsequent clinical visit requirement to be included as a case count, it was decided a 

priori to lag the wet day variable four weeks. To test our a priori decision to use a four-

week lagged association, we estimated RRs (with 95% CIs) for lags from zero-eight weeks 

in our national model, controlling for time, average maximum temperature, and region 

(Figure 7). Consistent with existing studies, the four-week lag had the strongest association 

between wet days and diarrheal disease. 
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Figure 7: Rate Ratios and 95% confidence intervals for diarrheal disease associated with 
precipitation at various lags (0-8 weeks), controlling for time, average maximum temperature, 
and region. 
 

Temperature Lag 

Existing literature has displayed an association between temperature and diarrheal disease. 

Specifically, Carlton et al.’s (2015) global systematic review of temperature and diarrheal disease 

found all-cause diarrheal disease and bacterial diarrhea to be positively associated with ambient 

temperature. Their meta-analysis estimated a seven percent increase in all-cause diarrheal disease 

for each degree Celsius increase in temperature. Bandyopadhyaya et al.’s (2012) examination of 

temperature and childhood diarrhea in 14 sub-Saharan African countries found a one degree 

Celsius increase in the average maximum temperature to increase diarrhea prevalence by one 

percent. One explanation as to how high temperatures may increase diarrheal disease is that 
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warmer temperatures cause increased pathogen proliferation in food and water sources. (Singh et 

al. 2001 and D’Souza, et al. 2004). 

Much like precipitation, there is often a lagged relationship between temperature and diarrheal 

disease. Prior studies have used temperature lags ranging from zero to eight weeks when 

examining all-cause diarrheal disease (Carlton et al. 2016). Bandyopadhyaya et al. (2012) and 

Vance et al. (2013) used a four-week lag for their studies of temperature and diarrheal disease in 

sub-Saharan Africa and Botswana, respectively. However, others have found the strongest 

association during the same week (Hashizume 2007). As such, we began our exploration by 

examining various lags to determine the strongest association between diarrheal disease and 

temperature in our data. We fit our national model with temperature as the predictor of interest 

and distributed lags of zero to eight weeks (all of the lagged terms are included in the model 

simultaneously). Our data had the largest association at no lag (Figure 8).  
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Figure 8: Rate Ratios and 95% confidence intervals for diarrheal disease associated with 
maximum temperature (˚C) at various lags (0-8 weeks), controlling for time, average maximum 
temperature, and region. 
	
Temperature Association 

Informed by our findings that the strongest association between maximum temperature and 

diarrheal disease was at no lag, we estimated this association in the concurrent week using our 

national and regional models. These models adjusted for time and region/district. However, rather 

than temperature adjustment, the number of wet days was adjusted for using a cubic spline.  

The national model estimated that each one degree C increase in the hottest day of the week was 

associated with a 3.64% increase in diarrheal disease during the concurrent week (95% CI: 3.35, 

3.93%). 

Regional estimates varied. We observed a 1.45% (95% CI: 0.77, 2.13), 1.87% (95% CI: 1.44, 

2.30), 5.74% (95% CI: 5.18, 6.29), and 2.15% (95% CI: 1.51, 2.80) increase in diarrheal disease 
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in the northern, central, coastal, and southern regions, respectively, associated with each one 

degree C increase in maximum temperature (Figure 9). The coastal region is perhaps the most 

sensitive to increases in temperature because it has the lowest average maximum temperature of 

all four regions, as well as the smallest range between it’s highest and lowest maximum 

temperatures. 

 

 
Figure 9.  Rate Ratios and 95% confidence intervals for diarrheal disease associated with 
maximum temperature (˚C) in Mozambique’s four regions, controlling for time, number of wet 
days, and district. 

 

DISCUSSION 

Our results indicate that in Mozambique, precipitation is positively associated with diarrheal 

disease. This association was found nationally and in all four regions, to varying degrees. These 

analyses suggest that without implementing additional interventions, the number of cases of 
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diarrheal disease would be expected to increase over coming decades if there is an increase in the 

number of wet days as climate change alters precipitation patterns. 

Exploratory analyses of the association between maximum temperature and diarrheal disease also 

revealed a significant positive association nationally and in all four regions. Interestingly, while 

the coastal region’s diarrheal disease burden had the smallest association with an additional wet 

day, its RR was the most sensitive to an increase in the maximum temperature. There are a range 

of reasons why this might be the case, including warmer weather behavioral changes that may 

increase transmission of diarrheal diseases and the replication rate and transmission cycle for the 

causative pathogens in different regions. However, these results must be interpreted with caution 

as they are purely exploratory and were not pre-specified. We’re unable to interpret any further. 

Though research has shown diarrheal diseases to be impacted by weather, existing studies have 

revealed pronounced heterogeneity in the association between all-cause diarrhea and precipitation 

and there is limited evidence of this association in sub-Saharan Africa.  

Increased diarrheal disease following precipitation events represents a burden on health systems 

to treat these additional cases, which climate change is expected to exacerbate as it alters the 

hydrological cycle. Climate change will continue to increase heavy precipitation events in 

Mozambique, suggesting that the country can expect to see additional cases of diarrheal disease if 

no additional interventions are implemented. The magnitude and pattern of future burdens of 

diarrheal disease will depend on the magnitude and patterns of changes in weather and climate in 

the four regions of Mozambique, the rate of population increase, the effectiveness of efforts to 

increase access to safe water and improved sanitation, the effectiveness of adaptation, and other 

interventions to prevent contamination of food and water with disease-causing pathogens.   

Our study has several limitations. Inherent to the ecological study design is a lack of data at the 

individual level, opening us up to the possibility of the ecological fallacy. Another limitation 
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common to ecological studies is unmeasured confounding. We adjusted for time as a proxy for 

various unmeasured confounders that may vary over time, but for which we do not have 

information on (Gasparrini et al. 2010). This may include year-to-year variation in population, the 

number of reporting health clinics over the years of follow-up, and access to improved sanitation 

or safe water. However, inclusion of time may not sufficiently control for these confounding 

effects (Peng et al. 2006 Hashizume et al. 2008, Singh et al. 2001). Further, a concern of time 

series analysis is that results may be sensitive to model choices when controlling for confounding. 

This was a valid concern in our study as our association of interest was indeed sensitive to 

variations in time control.  

A common limitation of ecologic studies of this variety is underreporting of diarrheal disease. We 

are limited in that our aggregated health clinic counts only include individuals who sought 

medical care for their illness and may not capture people without the means or access to care or 

those with mild symptoms. Individual-level factors may influence health-seeking behavior, such 

as education, demographics variables, social status, and religious beliefs. However, we may be 

less concerned with bias from individual-level characteristics given that our unit of analysis is the 

district rather than individual (Gasparrini et al. 2010). 

A limitation widespread in existing literature examining weather and diarrheal disease, of which 

our study is not exempt, is that a wide range of pathogens can cause diarrheal disease but 

diarrheal disease surveillance systems often do not routinely capture the pathogen responsible for 

each case (Vance et al., 2013). Pathogen testing is often cost prohibitive and unfeasible in 

resource-limited settings, leaving us to examine clinical or self-reported diarrheal illness of 

unknown etiology. Within the large number of pathogens can cause diarrheal disease, not all are 

associated with temperature or precipitation. For those pathogens that are affected by weather, the 

specific associations vary by pathogen. For example, Carlton and colleagues (2016) found that 

temperature increased bacterial diarrhea but had no impact on viral pathogens. Two reviews of 
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African rotavirus trends found seasonal peaks during the dry season (Cunliffe et al. 1998; Waggie 

et al. 2010) whereas several African-based studies found cryptosporidium peaks during the rainy 

season (Siwila et al. 2011; Tellevik et al. 2015). We’re unable to tease out heterogeneous 

pathogen-specific associations with our data. 

Etiologic information on each diarrheal disease case would allow identification of more specific 

associations between weather variables and pathogens, as well as permit inclusion of the lag most 

relevant to each pathogen in the model. This could result in more precise estimates of the impacts 

of climate variability and change, and increase the effectiveness of prevention programs and 

interventions. Better understanding is needed of the pathogens associated with outbreaks of 

diarrheal disease in Mozambique so that interventions can be most effectively targeted.  

Our study had several strengths.  First, 18 years of time series data at the weekly resolution is 

rare, especially in an African country where health infrastructure is often weak and data 

collection may be inconsistent (Vance et al. 2013). Existing studies have relied on much smaller 

geographic areas, such as specific villages or districts (Oloukoi et al. 2013; Rabassa et al. 2014; 

Bonkoungou et al. 2013; Tornheim et al. 2010) and, many have not had the resolution to examine 

the direct association between weather and diarrheal disease, but rather focused on seasonal 

trends (Azage et al. 2015; Vance et al. 2013). Additionally, studies examining seasonal disease 

peaks and variability seldom estimate the direct association between precipitation and disease, 

even after including adjustment of seasonal and temporal confounders.  

Climate variability and change present current and future risks to human health. Low-income 

regions, such as sub-Saharan Africa, are expected to experience larger increases in the burden of 

diarrheal disease with climate change because these regions will, in many cases, have higher 

exposure to climate-related hazards, such as extreme precipitation or temperature events, and 

because these regions have low capacity to manage those risks. Africa is particularly vulnerable 
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because it is already facing weather conditions conducive to the spread of diarrheal disease that 

climate change is expected to exacerbate (Smith et al. 2014).   

These additional cases of diarrheal disease are potentially preventable using the increasing skill in 

forecasting precipitation over seasonal timescales. Having advance warning (e.g. an early 

warning and response system) that a week is expected to be wetter than normal would provide 

valuable time to put interventions in place, such as increasing access to oral rehydration in local 

health care centers, increasing education on appropriate use and handling of water (such as 

boiling drinking water), and on sanitation practices that can reduce transmission of diarrheal 

pathogens. Developing and deploying such an early warning system would increase population 

resilience to outbreaks of diarrheal disease over coming decades. 

This study is an important first step to understanding climate-drivers of diarrheal disease in 

Mozambique in order to inform disease prevention efforts and begin development of an early 

warning system for outbreaks. 
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ANNEX 

 

Figure 1A. Map of Mozambique’s ten provinces and 141administrative districts. Source: List of 
Maps, The New Zealand Digital Library 
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Figure 2A: Annual diarrheal disease reporting percentages in Mozambique for the years 1989-
2014. The reporting rate is the percentage of weeks that disease counts were reported each year, 
out of all possible weeks among the districts. 
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