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ABSTRACT 

PARAMETRIC INVESTIGATION OF A LABORATORY DROP TEST TO SIMULATE BASE 
ACCELERATION INDUCED BY WAVE IMPACTS OF HIGH SPEED PLANING CRAFT 

 
John D. Barber 

Old Dominion University, 2016 
Director: Dr. Gene Hou 

 
 
 

High speed operations in a small craft can be physically punishing and, in some 

circumstances, even dangerous for the crew.  The aspect of small craft operations that make 

them punishing for the crew is wave slamming generated by wave impacts as the craft is 

travelling over the seas at high speed. 

 The initial step of this thesis effort was to perform a literature survey to determine what 

knowledge existed within the technical and academic community about wave slamming and 

simulating them with drop tests. 

 Eventually, a final experiment strongly influenced by the experiment model found in 

(Protocol 1, 2014) was formulated.  Technical drawings were produced which in turn were given 

to the NSWCCD DN waterfront fabrication shop at Naval Station Norfolk for fabrication.  The 

fabricated hardware was assembled and instrumented.  A predetermined series of drops were 

performed and data was recorded and analyzed. 

 Once the reduced data was obtained, trends were observed and conclusions of the 

research were drawn.  Finally, the math models were generated using tools in MATLAB.  The 

math models can be used as a tool to customize a drop test that can simulate a single wave 

impact.  An example of how to customize a drop test to simulate a single wave impact is 

provided. 
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CHAPTER 1 

1.  INTRODUCTION 

1.1  Problem Statement and Motivation 

High speed operations in a small craft can be physically punishing and in some 

circumstances, even dangerous for the crew.  This fact can be easily understood when 

considering the vastness of the sea itself in relation to the physical dimensions and 

characteristics of a small craft.  The design tradeoffs that make these small craft so popular for 

commercial, search and rescue, law enforcement and military purposes are the acceleration, 

the high top speed and the small drafts that these craft typically draw.  These qualities are of 

great importance to law enforcement agencies and military special operations forces. 

Unfortunately, the sea can be a hostile and unforgiving environment.  The sea can often 

turn from a very pleasant place to work in to one of great turmoil and danger within a matter of 

minutes.  This situation typically arises because of rapidly changing weather fronts in the local 

area and also because of the craft’s position relative to a safe harbor at the time that the 

weather front arrives.  When adverse weather strikes, the crew of a small craft is forced to 

endure rough sea conditions until the mission is over or until they arrive at a safe harbor to 

seek refuge.  Even conditions that are benign for large ships can become hazardous for small 

craft.   A photograph of a Naval Special Warfare 11 Meter Rigid Inflatable Boat operating at high 

speed in a low sea state is provided as Figure 1. 
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Figure 1.  Naval Special Warfare 11 Meter Rigid Inflatable Boat (NSWCCD Photograph) 

 

 

As illustrated in Figure 1, even a combination of high speed and a low sea state can 

result in significant craft motion.  Craft motion is not random; rather, it is the response of the 

craft to a number of input factors such as wave interaction, craft speed, craft weight, hull 

shape, etc.  A complete study of all design parameter interactions with craft motion is outside 

the scope of this document; rather, the focus of this study is the interaction of 3 specific 

parameters based on a laboratory test.  The specific parameters to be investigated are (a) 

weight, (b) drop height and (c) wedge angle.  The laboratory test and the decision making 

process that resulted in choosing these 3 parameters will be discussed. 

1.2  Approach 

The initial step of this thesis effort was to perform a literature survey to determine what 

knowledge existed within the technical and academic community regarding the wave slam 

phenomena and the procedures necessary to evaluate impulse signals.  The findings of this 

effort help to refine further research and the objectives of this thesis. 

The next step was to design the experiment.  Eventually a final experiment design was 

strongly influenced by the experiment model found in (Protocol 1, 2014).  The unique hardware 

used in the described experiment was modeled in GeoMagic Design Expert, and technical 



3 

 
 

drawings were produced which in turn were given to the NSWCCD DN waterfront fabrication 

shop at Naval Station Norfolk for fabrication. 

The fabricated hardware was assembled and instrumented.  A predetermined series of 

drops were performed, and data was recorded on a National Instruments, Inc., data acquisition 

system with a sampling rate of no less than 2,000 Hz.  The recorded data was post processed 

and converted into a text file using a script written in National Instruments, Inc. LABVIEW by 

Naval Surface Warfare Center, Carderock Division, Norfolk Detachment (NSWCCD DN), Code 

835 personnel. 

Once the reduced data was obtained, trends were observed and conclusions about the 

proposed research were drawn.  Finally, the math models were generated using tools in 

MATLAB. 

1.3  Contribution Of The Thesis To The Technical Community 

The contributions of this research to the technical community are primarily that it 

presents a study that describes the effects of (a) wedge angle, (b) drop weight and (c) drop 

height upon the acceleration amplitude and acceleration duration produced by dropping a test 

fixture whose design and test procedure was influenced by (Protocol 1 2014).  The results of the 

parametric variation observed in the experiments will help other researchers better understand 

the physics of drop tests performed with sand impact surfaces to better simulate wave impacts 

in a laboratory test.  A secondary product of this thesis will be a pair of math models.  Each 

model will have wedge angle, drop weight and drop height as the inputs.  The output for one 

model will be predicted acceleration amplitude, and the output for the other model will be 

predicted acceleration duration.  An example of how to use the empirical models to formulate a 

single event impact will be provided.  Additionally, topics for further investigation based upon 

this thesis will also be provided in the conclusions and recommendations chapter. 

1.4  Scope Of Thesis 

Chapter 1 presents motivation and background information that is necessary in order to 

understand the purpose and goals of this thesis.  Chapter 2 provides more background 

information regarding wave slam events and the procedure for analyzing wave impact events.  
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This background and wave impact analysis procedure allows the reader to develop a further 

appreciation for the physical events that occur during a wave slam event and how these events 

are tied to the proposed test procedure.  Chapter 3 describes the experimental setup used and 

provides a discussion of the initial results.  Chapter 4 is a discussion of the results.  Chapter 5 

presents the conclusions and important findings of this study. 

1.5  Review of Previous Works 

A significant amount of analysis work concerning the rigid body motion response of 

small, high speed craft in a seaway has been performed by Naval Surface Warfare Center, 

Carderock Division, Norfolk Detachment (NSWCCD DN).  The mission of NSWCCD DN is to 

provide complete small craft support to the US Navy.  This support includes, but is not limited 

to, design, acquisition, in-service support and asset tracking.  The analysis work of rigid body 

motion response was performed by NSWCCD DN in support of the above mentioned design 

tasking.  The overall goal of this analysis work was to better understand the rigid body motion 

response of small craft and ultimately to promote a standardized method of analyzing vertical 

acceleration. 

A problem that has existed within the small craft community is a general disagreement 

between technical experts regarding the method to analyze data obtained from an 

accelerometer secured to the deck of a high-speed craft while underway in a seaway.  As an 

example of this lack of consistency, one analyst could look at vertical acceleration data 

recorded in the time domain and count every noticeable peak while another analyst could 

decide to pick only those peaks that he considered to be significant.  In this case, the number of 

peaks counted by the two analysts when looking at the same vertical acceleration data could 

differ by thousands of peaks counted.  Since there was no standard method to identify what 

constituted a peak, there was no method to determine which of the two peak counts were 

more applicable.  In the same manner, there also existed no guidance regarding data filtering or 

any guidance regarding a minimum time interval between significant peaks. 

Engineers at NSWCCD DN began a process to rectify the situation concerning the lack of 

a standardized method for evaluating vertical acceleration data (Riley, Haupt, Jacobson 2010).  
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The first step was to review the many sets of time history acceleration data for small craft that 

have been tested at NSWCCD DN.  During this review process, the engineers at NSWCCD DN 

noticed that the craft encounters with waves (hereafter referred to as wave impacts) exhibited 

a relatively constant periodicity for a given speed and sea state.  Specifically, the engineers 

noticed and then verified that for craft in seas greater than 1.6 feet significant wave height and 

at speeds between 10 and 50 knots, the wave impact frequency was less than 2 waves per 

second.  Engineers then made the observation that using a time duration peak discriminator 

instead of an amplitude threshold as the peak discriminator made further calculations more 

predictable and intuitive.  Based on the wave impact frequency of less than 2 waves per 

second, the engineers surmised that when looking a Fast Fourier Transform (FFT) of any vertical 

acceleration data, any frequency content in the acceleration record greater than 2 Hertz must 

be coming from a source other than rigid body encounters with the waves. 

As stated above, the engineers did notice some frequency content greater than 2 Hertz.  

During the review process, engineers routinely performed a FFT on the many time history 

acceleration data sets and noticed a trend.  The trend was that the largest spectral amplitudes 

corresponded to frequencies below 10 Hertz, and smaller spectral amplitudes occurred 

between 20 Hertz and 80 Hertz.  The engineers came to the conclusion that these smaller 

spectral amplitudes were the result of local deck flexure and machinery vibration.  In order to 

isolate the rigid body motion component from the time history acceleration data sets, 

engineers concluded that in most cases, a 10 Hertz low pass filter provided optimum results.  

This conclusion was arrived at by performing many Fast Fourier Transforms (FFT) of actual small 

craft test data.  Any person using this method should always perform an FFT analysis of their 

specific data to determine the most appropriate low pass filtering level.  Engineers also noted 

that a Butterworth filter, a Bessel filter and a Kaiser Window filter produced results within a few 

percent of each other.  Therefore, the filter type used was not as critical as selecting the 

appropriate cut off frequency value.  As stated above, the selection of a 10 Hertz low pass filter 

was a good starting point in most cases based on the observation of many FFT analyses. 

The final step of this process was determining a reasonable acceleration baseline level 

for analyzing and counting higher acceleration peaks induced by wave impacts.  This 
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acceleration level should be high enough so as to ignore small incidental wave impacts and not 

be so large as to ignore slightly larger yet significant wave impacts.  Engineers concluded that a 

convenient and effective baseline would be the Root Mean Square (RMS) of all of the data 

points in the data set.  Strictly speaking, the RMS is a measure of the average fluctuation about 

the mean for a time varying signal.  It was observed that the RMS value tends to correlate well 

with the average upward acceleration due to buoyancy and hydrodynamic lift after each impact 

is over. 

In this document (Riley, Haupt, Jacobson 2010), engineers laid the foundation for a 

standardized method to evaluate vertical acceleration data obtained from small high-speed 

craft in a seaway.  The foundation of this method was to (a) demean the data set, (b) apply a 10 

Hertz low pass filter to the data set, (c) compute the RMS value for the demeaned and filtered 

data set and (d) identify peaks.  The peaks were identified by selecting the first peak of interest 

that demonstrated a value greater than the RMS value.  The next peak and all subsequent 

peaks needed to satisfy two conditions.  The first condition was that the next peak shall have a 

value greater than the RMS value and the peak shall occur at a time value greater than 0.5 

seconds from the previously identified peak.  For the edification of a reader that is not familiar 

with the term demean, demean is the process of removing the +1 G bias that an accelerometer 

produces while it sits still and level.  Following the demean process, the average value of an 

acceleration data set would be 0 G instead of +1 G. 

Following the method described in (Riley, Haupt, Jacobson 2010), engineers at NSWCCD 

DN began to closely inspect many filtered data sets from the NSWCCD DN historical test data 

files.  During this inspection, it became evident that all individual acceleration spikes would fit 

into one of three patterns.  It was also noted that the patterns appeared to be scalable, but the 

patterns were there nonetheless.  The fact that the patterns continually appeared proved to be 

interesting. 

Further investigation yielded an equation that related average peak acceleration to 

significant wave height and craft speed that could partially explain the scalability phenomena 

(Savitsky and Brown October 1976).  Algebraic manipulation of this equation lead to the 

conclusion that the ratio of acceleration responses for two specific test conditions was directly 
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proportional to the ratios of the kinetic and potential energies of the two specific test 

conditions.  This fact confirmed that the responses of small craft in a seaway were not random 

but rather predictable based upon the input characteristics of the wave impact. 

The next step in this investigation was to theorize about what was physically happening 

to the craft during each of the three acceleration spike patterns.  Data from vertical 

accelerometers, longitudinal accelerometers and inertial measurement units that provided 

pitch, roll, and yaw data were used to provide clues about physical movements and 

orientations.  Based upon this data, the conclusion was drawn that the patterns were either 

Alpha slams, Bravo slams or Charlie slams.  Slams where the craft becomes airborne and lands 

stern first in the water were classified as Alpha slams.  Slams where the craft becomes airborne 

and lands on an even keel were classified as Bravo slams.  Slams where the craft impacts an 

incident wave with very little or no free fall but having a noticeable negative longitudinal 

acceleration at impact were classified as Charlie slams (Riley, Haupt, Jacobson,2012). 

The thoughts and processes presented in the above works were refined and expanded 

(Riley, Coats, Murphy 2014).  In this document, the term “modal decomposition” is introduced.  

Modal decomposition refers to the process of separating unfiltered vertical acceleration data 

into a rigid body component and a higher frequency vibration component.  The authors expand 

upon their case to primarily analyze the low frequency, rigid body content (Riley, Haupt, 

Jacobson 2010) and (Riley, Haupt, Jacobson,2012) by presenting a mathematical study of 

selected sinusoidal vibration frequencies and calculating their relative displacements and 

velocities.  As an example, a pure sine wave with an acceleration of 4 g and a frequency of 1 Hz 

will have a displacement of 39.120 inches and a velocity of 20.440 feet per second.  In contrast, 

a pure sine wave with an acceleration of 4 g and a frequency of 40 Hz will have a displacement 

of 0.024 inches and a velocity of 0.511 feet per second.  Comparing these values, it becomes 

evident that the greater damage potential to small craft operating at speed in a seaway will 

come from rigid body motions instead of higher frequency vibrations. 

Based on the concept that more damage could be caused by the rigid body component 

of motion and the impact velocities associated with the rigid body motion, (Riley, Coats, 

Murphy 2014) show how vertical velocity data could be inverted by multiplying the velocity 
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data by -1 and inputting it into a script developed by the authors which could identify the 

highest impact velocity peaks associated with the vertical acceleration data.  With the highest 

impact velocity identified, a laboratory drop test could be designed to simulate specific wave 

impacts.  This simulation would require dropping an object from an applicable height to 

replicate the impact velocity and the desired deceleration pulse (both amplitude and duration).  

This duration could be replicated if an appropriate energy absorbing material was used to 

provide the proper acceleration duration (Riley, Coats, Murphy 2014). 

The United Kingdom’s Ministry of Defense addressed the issue of replicating 

acceleration amplitude and acceleration duration by preparing a test standard for testing shock 

mitigating seats (Protocol 1 2014) that uses a specific test fixture design that impacts sand.  The 

sand impact medium was selected because it results in a half-sine shock pulse shape that 

simulates the shape of severe wave impact pulses in high-speed craft (Military Test Procedure 

5-2-506, Shock Test Procedures).  This test standard called for shock-mitigating seats to be 

secured to the base of a wedge shaped fixture. Then the fixture is dropped wedge first into a 

bin of sand.  A photograph of the drop test fixture specified in Protocol 1 is provided as Figure 

2.  This test standard allows the user the latitude to adjust the height of the drop until the 

desired acceleration amplitude is achieved.  However, there is no latitude regarding the angle 

of the wedge.  The angle of the wedge is fixed at 55°.  The dimensions, material and 

configuration of the test fixture that is dropped are specified (Protocol 1 2014). 
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Figure 2.  Drop Test Fixture As Described In Protocol 1 (Protocol 1 2014) 

 

 

(Protocol 1 2014) provides a model for a drop test that could be used as a vehicle to 

learn how the interaction of drop height, test fixture weight and wedge angle could possibly 

affect acceleration amplitude and acceleration duration.  The drop test apparatus shown in 

Figure 2 was used to test and evaluate the shock response of several different test items; 

however, systematic drop tests designed to evaluate how systematic parametric variations in 

payload weight, drop height, and impact wedge angle affect impact shock severity have not yet 

been performed.  This lack of knowledge related to the drop test methodology provided the 

primary motivation for the tests described in the following section. 

1.6  Objectives 

The primary objective of this thesis is to understand the effect that (a) adjusting the 

wedge angle, (b) varying the drop weight and (c) varying the drop height would have on the 
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acceleration amplitude and acceleration duration produced by dropping a test fixture into a 

sand impact medium.  After the series of drops are complete, the data will be reduced and 

analyzed to determine the correlation of these 3 factors.  The final report shall include math 

models whose inputs will be wedge angle, weight and drop height with an output of predicted 

acceleration magnitude and predicted acceleration duration. 
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CHAPTER 2 

2.  BACKGROUND 

2.1  Statistical Method Versus Deterministic Method of Data Analysis 

(Riley, Haupt, Jacobson,2012) introduced a new approach to wave impact data analysis 

that they call a deterministic approach for wave impact data analysis.  The deterministic 

method of wave impact data analysis gleans each individual, significant wave impact in a data 

set for more data than in previous data analysis methods.  That data can take the form of 

empirical data or observational data.  Observational data is where the analyst examines the 

general shape of curves and compares them to other dataset curves in order to identify 

patterns of recurring curves.  An example of using this data as observational data was the 

identification of the Alpha, Bravo and Charlie slams (Riley, Haupt, Jacobson,2012).  A 

deterministic analysis approach is one that assumes that the relationship in a physical system 

involves no randomness in the development of the future state (Riley, Haupt, Jacobson,2012).  

Simply stated, the deterministic method has concluded that the state of the craft at any time is 

directly affected by many inputs of the wave impact that the craft has just experienced   The 

term deterministic refers to a significantly different method of analysis than the more 

traditional statistical method of wave impact data analysis. 

Statistical methods look at a complete data set and calculate average values and RMS 

values using a peak to trough methodology adopted from ocean wave measurement 

techniques (Riley, Haupt, Jacobson,2012).  In this method, only peak values are recorded using 

a qualitative method to define the threshold above which the data is considered to be 

important enough for the design or comparative study.  Typically, once these peak values have 

been obtained, they would be sorted and the highest one-third, one-tenth and one-hundredth 

values would be calculated and reported.  These values would then be used as a measure of the 

average impact severity for a given speed and wave height for the design of a small craft. 

To understand exactly how the technical community began the shift from a statistical 

method of data analysis to a deterministic method of data analysis, the reader must first 
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understand the history of craft motion measurement techniques and the limitations that each 

of these methods presented to technical personnel. 

2.2  A Brief History of Craft Motion Measurement Techniques 

Many design equations that Naval Architects use to design hulls are developed with 

pressure as one of the design parameters.  As such, Naval Architects prefer hull data given in 

terms of pressure.  However, gathering pressure data can be difficult if not impossible to 

obtain.  Difficulties with clogging of pressure tubes, inconsistencies with surface pressures and 

even difficulties with pressure data reduction make the gathering of meaningful pressure data 

difficult for the test engineer.  Another option is to gather acceleration data and use this data to 

model the rigid body motions of the craft.  Gathering acceleration data in various locations 

throughout the test craft is much easier for test engineers.  Fortunately there is a direct 

relationship between recorded pressure loads and recorded rigid body acceleration responses 

(Riley, Coats, Murphy 2014). 

The ability to capture, record and analyze craft motion and acceleration data has 

increased in parallel with the ongoing development of the personal computer.  During the 

1960s, craft motion data was sensed with servo-type accelerometers and collected on reel to 

reel magnetic tape recorders.  The collected data was analyzed by hand with personnel printing 

out the data on long paper strips, placing the paper on the floor and manually measuring the 

height of each peak using calibrated scales, and recording peak accelerations on a separate 

piece of paper. 

By the early 1990s, computer based, digital data acquisition systems were introduced to 

the marketplace.  As with any new product, the equipment provider began to understand the 

unique equipment requirements of their customers and the ability of the hardware to meet 

those requirements.  In the case of high-speed craft testing, computer based data acquisition 

systems did not prove as robust as necessary to meet the maritime environment.  When testing 

in the maritime environment, it is necessary for the equipment to be highly shock resistant, salt 

water resistant and compact enough to be conveniently placed in small spaces. 
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A self-contained unit data sensor and acquisition unit was introduced to the 

marketplace in the late 1990s by Instrumented Sensor Technology (IST).  The IST model EDR-2 

included a tri-axial accelerometer, signal conditioning, a 10 bit digital-to-analog converter 

(DAC), microprocessor, and 1 megabyte (MB) of memory all contained in a rugged, 

environmentally sealed, portable unit.  Custom software written exclusively for the EDR-2 

allowed the user to define recording control parameters and analyze the data.  IST continued to 

improve their line of EDR systems, but a lagging problem was the lack of memory.  This lack of 

memory had to be overcome by creative testing techniques.  One technique was to establish a 

trigger comprised of vertical acceleration levels and acceleration duration.  While this system 

helped it was impossible to tell when a shock event occurred in real time.  Another data 

acquisition system was introduced in the late 1990s by a company known as IOTech.  This 

system was modular and also provided the ability to filter acceleration data prior to storage.  An 

additional feature of this system was increased memory and adjustable data sampling speeds. 

In the early 2000s, NSWCCD adopted the National Instruments, CompactRIO system as 

their standard data acquisition system.  The CompactRIO is the combination of a real-time 

controller, reconfigurable Input/Output Modules, a Field Programmable Gate Array module and 

an Ethernet expansion chassis.  When encased in a plastic protective case, the CompactRIO has 

proven itself to be very rugged. With high capacity, inexpensive, solid-state memory, the 

CompactRIO is capable of storing thousands of times more data than the older IST systems. This 

translates into days, rather than minutes, of recording time at sampling rates beyond 2,000 

samples per second. 

With the introduction of more capable data acquisition systems with increased storage 

capacity, the ability to capture more data began to open up new methods of analyzing data 

sets.  The availability of new analysis techniques written into commercial software and into 

software authored by personnel at NSWCCD DN allowed for the transition from statistical 

methods of data analysis to deterministic methods of data analysis. 
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2.3  Wave Slam Sequence of Events 

With the introduction of the deterministic data analysis method, it is possible to use this 

data to determine, in detail, what a small craft is doing physically as it impacts a wave.  The 

dynamic load acting upon any structure is typically described in units of pressure and/or force.  

The response of that structure to the applied force or pressure is typically described in (a) 

displacement, (b) velocity and/or (c) acceleration (Riley, Coats, Murphy 2014).  In the realm of 

high speed craft testing, the best way to mathematically describe the environment that the 

craft is experiencing at any moment is via pressure data derived from a matrix of pressure 

gauges along the bottom surfaces of the craft.  The process of getting pressure data along this 

matrix of pressure gauges is expensive in test execution and becomes even more expensive and 

complex when trying to correlate the pressure distribution data to the dynamic response data 

of the craft (Riley, Coats, Murphy 2014). 

Instead of trying to correlate pressure distribution to dynamic response, an alternative 

method would be to use rigid body heave acceleration values and correlate that to pressure 

distribution.  The net vertical force at a hull cross-section of the pressure distribution at any 

instant in time is directly proportional to the heave acceleration response at that cross-section 

(Riley, Coats, Murphy 2014).  The heave acceleration can be extracted from recorded 

acceleration data using concepts of response mode decomposition.  In the absence of pressure 

data or force measurements, the amplitude and duration of the rigid body heave acceleration 

at any location can be used as a measure of the severity of a wave impact load in units of “G” in 

the vertical direction (Riley, Coats, Murphy 2014). 

One of the most useful locations to place a vertical accelerometer on a high-speed craft 

is at the Longitudinal Center of Gravity (LCG).  In practice, test personnel determine the location 

of the LCG of a craft with a scale weighing test.  The raw load data from the scale weighing test 

is substituted into a moment balance equation which results in the location of the LCG on the 

craft.  The LCG location is marked, and one of the many locations for accelerometer placement 

becomes the LCG.  Typically the LCG accelerometer is secured to the main deck as a matter of 
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convenience.  This convenience is derived because the main deck, in most cases, is parallel to 

the keel. 

Figure 3 shows four different curves measured by vertical accelerometers for four 

different craft.  Each craft was in different sea states and moving at different speeds.  For each 

craft, the accelerometer that provided the data was located at the LCG and orientated 

vertically. 

 

 

 

Figure 3.  Various Speed Wave Encounters (Courtesy of Authors (Riley, Coats, Murphy 2014)) 

 

 

Figure 3, references three mathematical parameters in each of the four curves.  Those 

parameters are (a) the speed ratio, (b) the length Froude number and (c) significant wave 
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height.  In order to appreciate the significance and relevance of each curve, an explanation of 

each of the parameters is provided. 

In 1868, a researcher named William Froude proposed a set of theories that predicted 

the wave making potential and total hull resistance of ships based on scale model testing.  The 

connective tissue between the models tested by Mr. Froude and full-scale ships is a non-

dimensional number called the length Froude Number (FL).  The FL is defined as: 

 

where 

 v = craft speed, 

 g = acceleration of the craft due to gravity, 

 L = craft length. 

Although the use of the FL is predominant with hydrodynamicists, naval architects are 

more likely to use a number called Speed-Length (SL) Ratio.  The SL ratio is defined as: 

 

where 

 Vk = speed of the craft in knots, 

 L = length of the craft in feet. 

The SL ratio is commonly used in the United States simply because it uses the more 

common unit of velocity knot in place of the less common velocity unit feet per second.  

Additionally, it doesn’t use the gravity term, which makes it easier to work with.  If one so 

desires, the SL ratio can be converted back to the FL simply by multiplying the SL by 0.298. 
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Another number that is important to naval architects is called Significant Wave Height 

(H1/3).  H1/3 is traditionally described as the mean wave height of the highest third of all 

measured wave heights for a given period of time.  Technical documents in the maritime 

domain often define the environment that craft must function in as a sea state requirement.  A 

common reference among test engineers is the Wilbur Marks Scale for Fully Risen Seas.  Within 

this table is a cross reference between H1/3 and sea state number.  Part of the method that the 

Wilbur Marks Scale uses to define sea states is with a lower limit H1/3 value and an upper limit 

H1/3 value. 

During at sea tests, the H1/3 value is not known but simply estimated based on the 

experience of the test coxswains who roughly determine if the sea state at the test location is 

near the desired test conditions.  A wave height measuring and recording device, such as a 

wave buoy, is thrown into the water prior to testing.  As the test continues, the wave buoy 

measures and records the wave height data.  After the test is concluded, the wave buoy is 

recovered, and its data is retrieved.  The wave buoy data is post processed and statistically 

evaluated.  Only after these calculations have been completed can the actual H1/3 be 

determined. 

The upper left curve of Figure 3 depicts a craft that is moving slowly.  This condition is 

best described as “underway but not making way” (Riley, Coats, Murphy 2014).  As the craft is 

sitting in the water and moving slowly or not moving at all, it is supported by buoyant forces, 

and the only movement experienced by the craft is the up and down motion of the passing 

waves.  As the wave is approaching the location of the accelerometer, the acceleration level is 

positive as the craft is climbing the approaching wave face and negative as the craft falls down 

the back face of the wave. 

For the purposes of this document, the hump region of a craft speed versus craft trim 

curve refers to the point where the trim angle of a planing craft has reached its maximum and 

has begun to decrease.  What this means physically to a planing hull is that prior to achieving 

the hump speed, the planing hull acts more like a displacement hull.  As the speed of the hull 

increases through the water, hydrodynamic lift eventually begins to lift the hull from the water.  
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When this happens, the craft will typically experience a noticeable increase in speed with very 

little additional power applied.  The upper right curve of Figure 3 depicts a craft still in the pre-

hump region, but the craft is picking up speed (Riley, Coats, Murphy 2014).  The smooth 

sinusoidal shape that was evident is essentially still there, but the appearance of a small 

magnitude impact can be observed near the 1.1 second mark.  This craft has a speed ratio of 

1.27 which puts it clearly in the pre-hump region where the effects of buoyant forces dominate 

the effects of dynamic forces. It is apparent, though, that the effects of dynamic forces are 

increasing because of the emergence of a small but noticeable spike in the acceleration level 

near the 1.1 second mark. 

The lower left curve of Figure 3 depicts a craft in the pre-hump region approaching the 

planing region (Riley, Coats, Murphy 2014).  The smooth sinusoidal shape noticed with simply 

buoyant forces has begun to disappear and is now being replaced with a saw tooth shaped 

curve with noticeable impact spikes.  The impact observed at time 1.5 seconds is an impact, and 

as the craft recovers from the impact and momentarily sinks deeper in the water, buoyant 

forces become more dominant, causing the craft to oscillate up and down slightly as the craft 

prepares to encounter the next impact. 

The lower right curve of Figure 3 depicts a craft that is transitioning into the planing 

region (Riley, Coats, Murphy 2014).  In this curve, the most dominant feature is the impact 

feature that occurs at the 1-second mark.  After the impact spike that tends to look like a half-

sine pulse, the lower amplitude smooth part of the acceleration curve is caused by 

hydrodynamic lift and buoyancy.  The craft is experiencing a near free fall condition in the 2 to 

2.5 second region.  This observation is based on the near constant -0.9 G acceleration level.  

During this period the craft is ready for the next impact. 

Guidelines have been presented to determine which forces are most prevalent upon a 

hull based on the value of the SL ratio (Savitsky and Brown October 1976).  The guidelines are 

summarized in tabular form as Table 1. 
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Table 1.  SL Ratios and Its Effect Upon Craft 

SL Ratio Effect Upon Craft 

0 < SL ≤ 2 
Pre-hump region.  The effect of buoyancy forces dominate the effect 

of hydrodynamic forces. 

2 < SL ≤ 4 

Pre-hump region and approaching the planing region.  Both dynamic 

forces and buoyant forces are present but the effect of the buoyant  

forces are greater than the effect of the dynamic forces 

4 < SL ≤ 6 

Transition into the planing region.  Both dynamic forces and buoyant 

forces are present but the effect of the dynamic forces are greater 

than the effect of the buoyant forces 

SL > 6 
Planing region.  The effect of impact forces dominate the effect of 

hydrodynamic  and buoyant forces 

 

 

The severe wave impact in the lower right of Figure 3 is the one of interest when 

studying the effects of wave slam shock on the hull, installed equipment, and personnel.  The 

next step is to look closer at one wave impact like the one shown in Figure 4 to understand in 

more detail the characteristics of the motion in terms of acceleration, velocity, and absolute 

displacement. 

Figure 4 consists of three curves.  The top curve is a small section that was extracted 

from a typical unfiltered vertical LCG accelerometer large data set.  This specific section 

contains the characteristic large impact spike that is seen when the subject craft is transitioning 

into the planing region as illustrated in the lower right curve of Figure 3 (Riley, Coats, Murphy 

2014).  The middle curve of Figure 4 is a velocity versus time curve that was generated by 

integrating the acceleration curve.  In the same manner, the bottom curve of Figure 4 is a 

displacement curve obtained by integrating the velocity curve.  These three curves were then 
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aligned and shown together so that the relationship between craft motions and acceleration, 

velocity and displacement can be made (Riley, Coats, Murphy 2014). 

 

 

 

Figure 4.  Wave Impact Sequence Of Events (Courtesy of Authors (Riley, Coats, Murphy 2014)) 
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Visual inspection of the top curve from point A to point B yields an average value of 

acceleration of -0.9 G’s.  This value is very close to the value of -1.0 G, which would indicate a 

free fall condition.  Additionally, visual inspection of the middle curve from point A to point B 

shows that there is a linear decrease of velocity from 0 feet per second to the absolute 

minimum value of -12 feet per second.  During this phase, impact with the water has not yet 

occurred, but water entry is imminent. 

Point B is where the vertical velocity reaches its absolute minimum value.  Also at point 

B, the acceleration curve experiences a rapid increase to a maximum value of 3.8 G’s.  Because 

of these 2 observations, it is observed that point B is when the craft comes into contact with 

the next incident wave. 

Point C is identified as the point where the displacement of the craft experiences its 

minimum displacement value of -34 inches.  Also at point C, buoyancy, hydrodynamic lift and 

drag combine to produce a positive effect which brings the relative velocity of the LCG to 0 feet 

per second.  Once the craft reaches the zero value, the impact event is complete. 

Point D is where the maximum vertical velocity is reached immediately following the 

incident wave impact.  Traveling from point C to point D, the craft experiences a positive 

change in displacement, and the negative slope of the acceleration becomes less severe.  This 

behavior is explained by a combination of buoyancy and hydrodynamic lift, with components of 

thrust and drag (Riley, Coats, Murphy 2014). 

As the craft travels from point D to point E, it continues to decelerate with an expected 

linear decrease in velocity.  At point E, the craft reaches maximum vertical displacement.  

Following point E, gravity begins to have a greater affect upon the craft, and the craft is poised 

to begin another wave encounter sequence. 

2.4  Wave Slam Event To Be Modeled Via The Experiment 

For the purposes of this thesis, the specific area of interest in the entire wave encounter 

sequence is from point B to point C on Figure 4.  The shape of this acceleration spike will be 

attempted to be replicated with a half sine pulse.  However, the peak acceleration magnitude 

and acceleration duration will be allowed change as the variables within the experiment are 
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allowed to change.  The variable conditions and the value of the acceleration magnitude and 

the acceleration duration will be noted and recorded. 
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CHAPTER 3 

3.  EXPERIMENT SET UP 

3.1  Basic Experiment Description 

The basic experiment was not conducted in accordance with Protocol 1; rather, the 

experiment and the procedure were heavily influenced by it.  The primary characteristic of the 

experiment that was influenced was the use of sand to control the impact pulse shape.  Using 

sand as an impact surface was in response to the following statements:  “In order to simulate 

the vertical rigid body acceleration of a wave impact, the falling equipment item must 

experience an acceleration pulse upon impact with a shape that simulates the first half-sine 

acceleration pulse (Riley, Coats, Murphy 2014)” and “This is typically achieved at drop test 

facilities by placing a pliable object or energy absorbing material under the test fixture.  When 

the test fixture impacts this object or material, the desired first half sine pulse may be 

produced” (Military Test Procedure 5-2-506, Shock Test Procedures, 1966). 

Where deviations took place with equipment or procedures, the deviations were made 

in order to minimize the test cost or to achieve test data outside the window of acceptable data 

specified by Protocol 1.  For example, the Protocol 1 drop test fixture was constructed from a 

mild steel plate with a thickness of 6 mm.  Since the mild steel plate measured in English units 

was cheaper to procure, this experiment was conducted with a drop test fixture constructed 

from steel plate with a thickness of ¼ inch.  As an example of gathering test data outside the 

window of acceptable data, Protocol 1 states that the maximum acceptable value of vertical 

acceleration that may be obtained in a vertical drop shall be 1.2*100 ms-2 which equates to 

393.7 fts-2 or 12.2 G’s.  During this test, acceleration levels of greater that 20 G’s were recorded. 

The sand used in this test was fine washed masonry.  The sand box used for an impact 

pit was 6 feet wide by 6 feet long by 4 feet deep. 

A total of 4 different wedges were used in this experiment.  The wedges were 45°, 55°, 

65° and 75°.  The mass of the drop fixture was another variable in this experiment.  The mass 

was varied by affixing 1 to 7 plates to the top of the drop test fixture.  Each plate had a nominal 

weight of 29 pounds.  A drawing of the test fixture with a 45° wedge and 4 plates is provided as 
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Figure 5.  The complete drawing package used to fabricate the drop test fixture is included in 

this document as appendix A. 

 

 

 

Figure 5.  Drop Test Fixture With 45° Wedge 

 

 

3.2  Detailed Experiment Description 

For this experiment, the drop heights selected were 3 feet, 5 feet, 7 feet and 9 feet.  The 

test fixture was raised to the specified drop height via a bridge crane.  The height of the drop 

was measured by means of a length of cord cut to length and taped to the bottom of the 

wedge.  A photograph of the test fixture suspended above the sand box is provided as Figure 6. 
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Figure 6.  Drop Test Fixture Suspended Above The Sand Box. 

 

 

The test fixture was dropped from the hook of a bridge crane.  A shackle was attached 

to the crane hook.  Beneath the shackle was a load cell that continually sensed the weight of 

the test fixture.  Beneath the load cell was a quick release mechanism that was activated by 

pulling a lanyard.  Prior to attaching the test fixture to the quick release mechanism, test 

personnel raised the quick release from the floor and then zeroed the weight thus eliminating 

the weight of the quick release from the displayed weight of the test fixture.  A photograph of 

the load cell and quick release mechanism used in testing is provided as Figure 7. 
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Figure 7.  Load Cell and Quick Release Mechanism Used During Testing. 

 

 

A Silicon Designs model 50 accelerometer and a MicroStrain GX3 Inertial Measurement 

Unit was attached to the top plate.  These sensors were used to sense the orientation of the 

fixture prior to release and to sense the acceleration of the fixture throughout the test event.  

Prior to dropping the fixture, test personnel would ensure that the pitch and roll angles of the 

fixture were at 0° ± 1°.  A bi-axial strain gauge was attached to each side of the wedge that 

sensed strain during impact.  Strain data was collected for informational purposes only.  All of 

the data was collected and stored using a National Instruments CompactRIO data acquisition 

and signal conditioning system.  Following each drop, the electronic data was stored and the 

penetration depth into the sand was noted and recorded.  The wedge was then lifted from the 

sand; the sand in the immediate area of the impact was turned over several times with a shovel 

to reduce the potential effects of sand compaction and then the sand was leveled.  The wedge 

was then dusted off, and test personnel prepared for the next test drop.  A photograph of the 

45° wedge fixture immediately after coming to rest in the sand box is provided as Figure 8. 
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Figure 8.  45° Wedge Fixture Following A Drop Into The Sand Box 

 

 

A total of 112 individual test conditions existed for this experiment (4 wedges x 7 weight 

plates x 4 drop heights = 112 test conditions). To minimize cost, only one drop at each of the 

112 separate test conditions was initially authorized.  At the conclusion of these 112 drops, 

further authorization was granted to increase the number of drops from 1 at each test 

condition to a total of 5 drops at each test condition.  With this additional authorization, a total 

of 560 drops would be completed.  However, only the additional drops for the 45° wedge were 

completed, which resulted in another 112 drops being performed (1 wedge angle (45°) x 7 

weight plates x 4 drop heights x 4 drops = 112 drops).  These additional drops combined with 

the initial 112 drops resulted in a total of 224 drops completed.  One of the 224 drops had an 

instrumentation problem that was not discovered until test completion.  As a result, data was 

analyzed from a total of 223 valid drops.  These two series of drop tests resulted in a completed 

test matrix of 5 drops for the 45° wedge and only 1 drop at each of the other test conditions for 

the 55° wedge, the 65° wedge and the 75° wedge. 

One feature that was added to the top plate of the test fixture following the first series 

of 112 drops was a symmetrical and center mounted aluminum plate that protected the sensor 
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package from potential damage from a falling shackle.  This aluminum plate and mounting 

hardware weighed a total of 3.8 pounds.  This additional weight was noted in the total weight 

of the fixture. 
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CHAPTER 4 

4.  EXPERIMENT RESULTS 

4.1  Data Analysis 

Data generated during this experiment was analyzed using the modal decomposition 

method (Riley, Coats, Murphy 2014).  Raw data was obtained from the cRIO system in its raw 

TDMS file format.  It was then converted to a text file using a file conversion utility written by 

personnel at NSWCCD DN Code 835.  The text file was then imported into MS Excel, and all 

headers were removed.  The resulting file was then saved as a Comma Separated Variables 

(CSV) file.  The CSV file was then imported into a software package identified as UERDTools 

(Mantz, Costanzo, Howell III, Ingler, Luft, Okano).  UERDTools is a software package that was 

written by personnel at Naval Surface Warfare Center, Carderock in West Bethesda, Maryland 

that was designed to analyze wave forms generated by underwater explosive events.  For this 

experiment, UERDTools was used to demean, zoom in on, and to perform 10 Hz low pass 

filtering of the test event.  A sample of a filtered waveform event that was generated by 

dropping the 55° wedge loaded with seven plates from a height of 7 feet is provided as Figure 

9. 
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Figure 9.  Filtered Half Sine Pulse For The 55° Wedge, 5 Plates and a 7 Foot Drop 

 

 

A standard method of analyzing the filtered waveforms was adopted for this experiment 

in order to maintain consistency.  The starting point for the event to be measured was defined 

as that point where the trace increases from its steady state -1 G value and crosses the 0 G axis.  

The end point for the event was defined as that point where the trace next came into contact 

again with the 0 G axis.  The shock pulse duration was defined as the time differential between 

the end point and start point values.  The peak acceleration value was defined as the maximum 

acceleration level found between the identified start point and the identified end point.  For 

each test event, these values were collected using this method. 

4.2  Data Disparity 

 Data for this experiment was collected during two distinct periods.  The initial data 

collection was conducted in August of 2015.  The initial data collection consisted of 112 

individual drops.  Those test drops consisted of 1 drop each for each of the 112 specific test 

conditions.  The second series of 112 drops consisted of testing for the 45° wedge only.  These 

two series of drop tests combined for a total of 224 drops.  An instrumentation problem was 
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noted with one of the test drops but was not discovered until after the test was complete.  

Therefore, data was obtained for a total of 223 valid drops. 

For each series of drops, the same equipment, the same fixtures, the same 

instrumentation and the same personnel were used to collect the data.  During the period 

between the experiments, August 2015 and June 2016, the impact sand box remained inside 

the waterfront facility of Naval station Norfolk, Building V-47 protected from the effects of rain 

and snow. 

The data from both data collection periods were analyzed as described in the above 

section of this document.  All of the data from the 2 series of drop tests were merged into a 

single file and sorted by wedge angle, number of plates and drop height.  A small sample of the 

sorted master data file is provided as Table 2.  Following the merging and sorting of data, 

inspection of the master data file revealed an interesting trend.  The data collected in August of 

2015 consistently had a higher acceleration magnitude and consistently had a smaller 

acceleration duration than the data collected in June of 2016.  This trend can be seen in the 

data tabulated in Table 2.  Drop number 16 was performed on 8 August 2016.  When analyzed, 

this drop had an acceleration magnitude of 19.8 G’s.  This acceleration magnitude was 174% 

higher than the average value of drops 17, 18, 19 and 20.  Drop number 16 also had an 

acceleration duration of 88.5 milliseconds.  This acceleration duration was only 67% of the 

average value of drops 17, 18, 19 and 20.  A complete listing of the raw data collected in this 

effort is provided as appendix B. 
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Table 2.  Master Data File Sample 

Drop 

Number 

Wedge 

Angle 

(Degrees) 

Number 

of Top 

Plates 

Drop 

Height 

(Feet) 

Weight 

(Lbs) 

Acceleration 

Magnitude 

(G's) 

Acceleration 

Duration 

(Milliseconds) 

Acceleration 

Magnitude 

Percent 

Difference 

Acceleration 

Duration 

Percent 

Difference 

16 45 1 9 104.0 19.8 88.5 174.5 67.3 

17 45 1 9 102.5 11.5 136.3 

  18 45 1 9 102.5 11.2 132.2 

  19 45 1 9 102.5 11.5 120.1 

  20 45 1 9 102.5 11.1 137.4 

  21 45 2 3 130.0 10.3 98.5 173.1 64.5 

22 45 2 3 137.0 5.9 137.0 

  23 45 2 3 137.0 6.1 147.9 

  24 45 2 3 137.0 5.9 175.9 

  25 45 2 3 137.0 5.8 149.9 

   

 

Of particular note, the values of acceleration magnitude for the data collected in 2015 

were, on average, 162% higher than the values collected in 2016.  In the opposite manner, the 

values of acceleration durations for the data collected in 2015 were on average 72% lower than 

the values collected in 2016. 

Additionally, another interesting observation can be made by looking solely at the test 

data values collected in 2016.  The observation that was made is how consistent the data 

collected in 2016 appeared.  For example, looking at the values for acceleration magnitude for 

drops 17, 18, 19 and 20 in Table 2, the average value of those acceleration magnitudes is 11.3 

G’s with a standard deviation of only 0.2 G’s.  As an additional example, looking at the values 

for acceleration duration for drops 17, 18, 19 and 20 in Table 2, the average value of those 

acceleration durations is 131.5 milliseconds with a standard deviation of 7.9 milliseconds.  This 
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calculation was performed for all sets of the 45° wedge data collected in 2016, and the average 

of all standard deviation calculations for acceleration magnitude was only 0.2 G’s, and the 

average of all standard deviation calculations for acceleration duration was only 8.6 

milliseconds. 

For the purposes of comparison, the standard deviations for all of the data for the 45° 

wedge were calculated.  In this case, when combining the 2015 and the 2016 45° wedge data, 

the average standard deviation for acceleration magnitude rose to 2.4 G's, and the average 

standard deviation for acceleration duration rose to 21.0 milliseconds. 

Since there was no difference in any of the equipment or personnel that was used in 

both the 2015 and 2106 drops, it is hypothesized that the sand dried during the year between 

the two series of drop tests.  This theory would stand to reason since the sand that was used in 

this test was washed masonry sand and had some water in it for the 2015 test.  Since the 

impact box sat dormant and was not exposed to rain and snow for approximately 1 year, it had 

time to dry.  The absence of water could certainly explain why impact magnitudes in wet sand 

had a higher magnitude than dry sand. It could also explain why the acceleration durations for 

wet sand were smaller for wet sand than for dry sand. 

4.3  Wedge Angle, Weight and Drop Height Effects Upon Acceleration Magnitude 

4.3.1  Data Exclusion 

Data for the 112 drops gathered in 2015 was plotted in order to determine trends.  The 

2016 data was not included in the plots because as discussed in section 4.2 of this document, 

there is a noticeable disparity between the two data sets.  This disparity could unduly influence 

the plots and negatively influence the trend recognition process.  Exclusion of the 2016 data set 

from the plotting process was made simply to remove the possible effects of moisture content 

in the sand as a possible variable.  However, a set of empirical equations using a combination of 

the 2015 data and the 2016 data has been provided and will be discussed later in this 

document. 
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4.3.2  Wedge Angle Effects Upon Acceleration Magnitude 

The effect of wedge angle upon acceleration magnitude was plotted by sorting the data 

by wedge angle, drop height and then by the number of plates mounted to the test fixture.  As 

depicted in Figure 10, the plots of 3 foot drops represent roughly a horizontal pattern.  The 

exceptions to this pattern are the light blue 3 foot drop with one plate that has an unusually 

high value associated with the 75° wedge and the orange 3 foot drop with 6 plates that had an 

unusually low value associated with the 55° wedge. 

 

 

 

Figure 10.  Wedge Angle Versus Acceleration Magnitude For The 3 Foot Drop 

 

 

Examination of the 5 foot drop data, the 7 foot drop data and the 9 foot drop data 

revealed the effects of wedge angle upon acceleration magnitude becomes noticeably more 

linear as the drop height increases.  Figure 11 is a plot of the 5 foot drop data.  Figure 12 is a 

plot of the 7 foot drop data.  This trend can be seen in Figure 13, which is a plot of the 9 foot 
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drop data.  Most of the plots are parallel with the exception of the purple 9 foot drop with 4 

plates. 

 

 

 

Figure 11.  Wedge Angle Versus Acceleration Magnitude For The 5 Foot Drop 

 

 

 

Figure 12.  Wedge Angle Versus Acceleration Magnitude For The 7 Foot Drop 
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Figure 13.  Wedge Angle Versus Acceleration Magnitude For The 9 Foot Drop 

 

 

4.3.3  Weight Effects Upon Acceleration Magnitude 

The test data plots demonstrate linear behavior throughout the test parameter region.  

The plots of the 45 ° wedge, the 55 ° wedge, the 65 ° wedge and the 75 ° wedge all demonstrate 

that increasing weight has a linear effect on acceleration magnitude.  This effect can clearly be 

seen in Figure 14, Figure 15, Figure 16 and Figure 17.  Figure 14 depicts the weight versus 

acceleration magnitude data for the 45° wedge.  Figure 15 depicts the weight versus 

acceleration magnitude data for the 55° wedge.  Figure 16 depicts the weight versus 

acceleration magnitude data for the 65° wedge.  Figure 17 depicts the weight versus 

acceleration magnitude for the 75° wedge. 
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Figure 14.  Weight Versus Acceleration Magnitude For The 45° Wedge 

 

 

 

Figure 15.  Weight Versus Acceleration Magnitude For The 55° Wedge 
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Figure 16.  Weight Versus Acceleration Magnitude For The 65° Wedge 

 

 

 

Figure 17.  Weight Versus Acceleration Magnitude For The 75° Wedge 
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4.3.4  Drop Height Effects Upon Acceleration Magnitude 

The test data plots indicate linear behavior.  The plots of the 45° wedge, the 55° wedge, 

the 65° wedge and the 75° wedge all demonstrate that increasing drop height has a linear 

effect upon acceleration magnitude.  This effect can clearly be seen in Figure 18, Figure 19, 

Figure 20 and Figure 21.  Figure 18 depicts the drop height versus acceleration magnitude data 

for the 45° wedge.  Figure 19 depicts the drop height versus acceleration magnitude for the 55° 

wedge.  Figure 20 depicts the drop height versus acceleration magnitude for the 65° wedge.  

Figure 21 depicts the drop height versus acceleration magnitude for the 75° wedge. 

 

 

 

Figure 18.  Drop Height Versus Acceleration Magnitude For The 45° Wedge 
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Figure 19.  Drop Height Versus Acceleration Magnitude For The 55° Wedge 

 

 

 

Figure 20.  Drop Height Versus Acceleration Magnitude For The 65° Wedge 
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Figure 21.  Drop Height Versus Acceleration Magnitude For The 75° Wedge 

 

 

4.4  Wedge Angle, Weight and Drop Height Effects Upon Acceleration Duration 

4.4.1  Wedge Angle Effects Upon Acceleration Duration 

The effect of wedge angle upon acceleration duration was plotted by sorting the data by 

wedge angle, drop height and then by the number of plates mounted to the test fixture.  As 

depicted in Figure 22, the plots of 3 foot drops represent roughly a horizontal pattern.  The 

exceptions to this pattern are the blue 3 foot drop with one plate that has an unusually high 

value associated with the 55° wedge and the orange 3 foot drop with 6 plates that also had an 

unusually high value associated with the 55° wedge. 
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Figure 22.  Wedge Angle Versus Acceleration Duration For The 3 Foot Drop 

 

 

The effect of wedge angle upon acceleration duration became more random as the drop 

height increased.  This trend was noted in the 5 foot drop data, the 7 foot drop and the 9 foot 

drop data.  The randomness of the data was at its most extreme in the 9 foot drop data.  A plot 

of the 5 foot drop data is provided as Figure 23.  A plot of the 7 foot drop data is provided as 

Figure 24.  A plot of the 9 foot drop data is provided as Figure 25. 
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Figure 23.  Wedge Angle Versus Acceleration Duration For The 5 Foot Drop 

 

 

 

Figure 24.  Wedge Angle Versus Acceleration Duration For The 7 Foot Drop 
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Figure 25.  Wedge Angle Versus Acceleration Duration For The 9 Foot Drop 

 

 

4.4.2  Weight Effects Upon Acceleration Duration 

The test data plots indicate linear behavior for the 45° wedge and the 75° wedge but 

with a noticeable scattering of data about the linear fit.  The test plots for the 55° wedge and 

the 65° wedge appear to be much more random.  Figure 26 depicts the weight versus 

acceleration duration data for the 45° wedge.  Figure 27 depicts the weight versus acceleration 

duration data for the 55° wedge.  Figure 28 depicts the weight versus acceleration duration 

data for the 65° wedge.  Figure 29 depicts the weight versus acceleration duration data for the 

75° wedge. 
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Figure 26.  Weight Versus Acceleration Duration For The 45° Wedge 

 

 

 

Figure 27.  Weight Versus Acceleration Duration For The 55° Wedge 
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Figure 28.  Weight Versus Acceleration Duration For The 65° Wedge 

 

 

 

Figure 29.  Weight Versus Acceleration Duration For The 75° Wedge 
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4.4.3  Drop Height Effects Upon Acceleration Duration 

The test data plots show random behavior.  If a linear regression data fit was fitted 

through the data in Figure 30 and in Figure 31, the slope of both of those lines would be 

minimal.  In fact, the slope of the line for the linear fit of data in Figure 30 was 0.867, and the 

slope for the linear data fit in Figure 31 was 1.746.  Figure 30 depicts the drop height versus 

acceleration duration data for the 45° wedge.  Figure 31 depicts the drop height versus 

acceleration duration for the 75° wedge.  Since the slope of the lines is minimal, this would 

suggest that drop height was not a major contributing factor to acceleration duration. 

One obvious factor to performing linear fits to the data in Figure 30 and Figure 31 was 

the amount of error that would be observed about the linear data fit.  For the linear fit for the 

data in Figure 30, the standard error was 11.377.  For the linear fit for the data in Figure 31, the 

standard error was 17.3905.  Since no other data trends are obvious in the data, it is assumed 

that the data follows a linear trend with a large error about the best fit line. 

 

 

 

Figure 30.  Drop Height Versus Acceleration Duration For The 45° Wedge  
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Figure 31.  Drop Height Versus Acceleration Duration For The 75° Wedge 

 

 

Figure 32 and Figure 33 are provided for informational purposes.  Figure 32 depicts the 

drop height versus acceleration duration data for the 55° wedge.  Figure 33 depicts the drop 

height versus acceleration duration data for the 65° wedge 
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Figure 32.  Drop Height Versus Acceleration Duration For The 55° Wedge 

 

 

 

Figure 33.  Drop Height Versus Acceleration Duration For The 65° Wedge 
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4.4.4  Acceleration Duration Data Dispersion 

It is evident that there is much variation in the acceleration duration for each of the 

plots shown above.  Intuitively, one would think that for a given wedge angle and weight, such 

as 65° with 2 plates as shown in Figure 33, that as drop height increases so would acceleration 

duration.  However, the exact opposite behavior has been noticed for this example.  In this 

particular case, a decrease of approximately 50 ms has been observed. 

During the data analysis process of this effort, it was observed that there was little 

consistency in the time differential from the transition point until the time where the curve 

crossed the zero axis at the end point.  For the purposes of this document, the transition point 

is defined as being where the steep slope of the rear half of the sinusoidal acceleration pulse 

begins to flatten out.  Figure 34 illustrates the location of a transition point in data from a 

sample full-scale craft, rough water test that was not part of this effort.  The selection of Figure 

34 was only to provide the reader with a clear example of an easily defined transition point.  In 

most cases, the data from this effort did not have such clearly defined transition points.  This 

observation can be easily seen in Figure 9 where determining the location of the transition 

point would require some subjective judgment.  The inconstancies within the acceleration 

duration data for this effort were chiefly located in the region from the transition point to the 

time where the curve crossed the zero axis at the end point.  In some cases, the time from the 

transition point to the end point was up to 50 ms longer than expected.  No reason for this 

disparity was observed. 
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Figure 34.  Transition Point Illustration 

 

 

When looking at full-scale planing craft motion data, it is not uncommon to see 

acceleration pulse durations ranging from 75-200 ms. This could happen for a variety of 

reasons: rolling or pitching at the time of impact, the size variations in the waves, differences in 

the impact velocity, etc.  Considering this with respect to the drop tests performed, given that 

there was no apparatus to maintain zero pitch or roll during the drop, given that there may 

have been variations in the sand surface between drops, and understanding that the sand 

consistency would likely vary with depth, it is not unlikely that there should be variations in 

duration from one drop to the next. 

4.5  Compliance With Protocol One 

Since the test that was performed in this effort was based upon the test method 

described in Protocol One, it is not surprising that some of the time history curves generated 

could fit within the allowable region of a valid Protocol One compliant test.  Where there was 

discrepancy with Protocol One, it was due to exceeding the maximum acceleration magnitude 

limit.  The maximum acceleration magnitude allowed in Protocol One is 12.2 G’s, and many of 

the time history curves generated in this effort exceeded this maximum level.  An example of 
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this can be seen in Figure 35 where the curve generated from a 55° wedge, 5 plate and 7 foot 

drop had a maximum acceleration value of 15.0 G’s.  In Figure 35, the line in green that lies 

above the curve is the Protocol One upper limit line.  In Figure 35, the line in blue that lies 

below the curve is the Protocol One lower limit line.  As described with Protocol One, any 

acceleration magnitude time history curve that fits within these limits is considered a valid 

Protocol One test.  However, there was no intent in the work herein to comply completely with 

Protocol One as this was not an effort to test equipment for a military acquisition program.  

Protocol One compliance was not a requirement for this thesis, though it is good to see that the 

acceleration time history profile aligns well with the Protocol One profile limits. 

 

 

 

Figure 35.  Sample Curve With Protocol One Compliance Envelopes Inserted 

 

 

4.6  Empirical Models 

As discussed above, some of the trends observed in the data, especially the data 

regarding acceleration magnitude, appeared to be linear; therefore, the formulation of the 
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empirical models for acceleration magnitude and acceleration duration would be accomplished 

using linear regression techniques.  The linear regression tool selected for this task was the 

MVREGRESS tool located in MATLAB.  Two separate sets of empirical models were generated.  

One set of empirical models was generated that would model only the first 112 drops 

conducted in 2015.  The second set of empirical models was generated using the entire data 

set, consisting of 2015 and 2016 data that would model all 224 drops conducted.  Equations 1 

and 2 model the 112 drops conducted in 2015.  Equations 3 and 4 model all 224 drops 

conducted in both 2015 and 2016.  In both sets of equations the following variables are defined 

as: 

 A = Wedge angle, measured in degrees; 

 W = Drop test fixture weight, measured in pounds; 

 H = Drop height, measured in feet; 

 Acceleration Magnitude, measured in G’s; 

 Acceleration Duration, measured in milliseconds. 

  For 112 drops: 

 (Eqn 1) 

 (Eqn 2) 

 

  For 224 drops: 

 (Eqn 3) 

 (Eqn 4) 

Both sets of equations were evaluated and compared to the actual data values 

collected.  Table 3 summarizes the statistical results of empirical model comparison with the 

collected test data.  Equations 1 and 2 were compared with the test data for the 112 drops 

conducted in 2015.  Equations 3 and 4 were compared with the test data for all 224 drops 
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conducted in 2015 and 2016.  As can be observed in Table 3, equations 1 and 2 demonstrate 

greater statistical accuracy than equations 3 and 4.  The greater statistical error demonstrated 

with these models can be attributed to the data disparity discussed earlier. 

 

 

Table 3.  Empirical Model Statistical Summary 

Equation Average Error 

Standard 

Deviation Maximum Error Minimum Error 

Eqn 1 0.0 0.8 2.0 -2.3 

Eqn 2 0.0 14.2 38.8 -40.6 

Eqn 3 0.0 2.2 5.1 -3.6 

Eqn 4 0.0 19.2 55.0 -54.2 

 

 

Another check of the accuracy of the derived equations would be to plot the actual 

results versus the predicted results.  The results were segregated by drop height.  The decision 

to group the data in this method was based on the assumption that the error within the data 

would grow smaller as drop height increased.  Figure 36 depicts the plotted data for equation 1, 

which predicts acceleration magnitude.  Figure 37 depicts the plotted data for equation 2, 

which predicts acceleration duration.  Equations 1 and 2 were selected for this accuracy check 

because they demonstrated lower error values than equations 3 and 4. 

Once the data was plotted, a least squares curve fit was applied to each group of data.  

A slope of 1 would indicate a perfect math model prediction.  A slope greater that 1 would 

indicate that the math model over predicts the results.  A slope less than 1 would indicate that 

the math model under predicts the results.  Additionally, the R squared value was calculated for 

each least squares fit to determine the goodness of fit. 
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The plotted data in Figure 36 demonstrated linear patterns.  An interesting observation 

is that the goodness of fit increased from 0.41 for the 3 foot drop to 0.91 for the 9 foot drop.  

This confirms the original assumption discussed above.  Conversely, the math model begins to 

more consistently under predict as drop height increases.  This can be observed with a slope for 

the least squares fit of 0.84 for the 3 foot drop and a slope for the least squares fit of 0.67 for 

the 9 foot drop. 

 

 

 

Figure 36.  Acceleration Magnitude, 112 Drops Actual Vs Predicted Results 

 

 

No further analysis was performed with equation 2 since no data patterns were 

observed in Figure 37. 
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Figure 37.  Acceleration Duration, 112 Drops Actual Vs Predicted Results 

 

 

4.7  Application Example 

Equations 1 and 2 can be used by interested parties to simulate, in the laboratory, single 

impact events based upon the measured rough water performance of a craft in a seaway.  For 

example, suppose that a marine radio manufacturer has built a prototype Very High Frequency 

(VHF) radio and, with it, a specialty mounting system designed to mitigate the effects of the 

wave slamming that the radio will be subjected to during rough water operations.  The VHF 

radio manufacturer wants to know how efficient the mounting system is in reducing shock.  The 

VHF radio manufacturer does not have access to craft or personnel that can perform a rough 

water test that will allow them the opportunity to learn this information under real world 

conditions, but assume that they do have access to some rough water data for a particular 

craft.  After review of the rough water test data, the VHF radio manufacturer has determined 

that the worst case shock that their system will see in a particular craft would be at an 

acceleration level of 15.4 G’s and at an acceleration duration of 120 milliseconds. 

Assume that the prototype VHF radio weighs 4 pounds and that the corresponding 

shock absorbing mount weighs 9 pounds.  This combined system weighs 13 pounds.  Also 
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suppose that the radio manufacturer has a warehouse with a high enough ceiling to allow a 

series of 6 foot drops from a roof truss.  It is also assumed that the radio manufacturer has 

access to appendix B of this thesis and, as such, knows the weight of all of the wedges and plate 

combinations.  With these pieces of information and by using equations 1 and 2, the radio 

manufacturer can modify appendix C into a simple spreadsheet and select a wedge angle, 

fixture weight combination that when dropped from a 6 foot height can produce the shock 

environment that is targeted.  In this particular case, selecting the 75° wedge with 4 plates and 

the mounted radio system (total weight = 170 pounds + 13 pounds = 183 pounds) and dropping 

it from a height of 6 feet can produce an acceleration magnitude of 15.4 G’s and an 

acceleration duration of 112.5 milliseconds.  The radio manufacturer can install an 

accelerometer on the top deck of the fixture and upon the radio itself.  By comparing the data 

generated by the two accelerometers during a series of drop tests, the radio manufacturer can 

cheaply determine the effectiveness of the shock absorbing mount before subjecting it to an 

expensive and time consuming rough water test.  After determining what combination of 

wedge angle, weight and drop height to use, it would be wise if the radio manufacturer 

performed a series of tuning drops where the manufacturer would tune the three parameters 

in order to get as close to the desired acceleration level and acceleration magnitude as possible. 
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CHAPTER 5 

5.  CONCLUSIONS AND RECOMMENDATIONS 

It was observed that the effect of wedge angle upon acceleration magnitude was 

roughly linear.  It was also observed that the effect of wedge angle upon acceleration duration 

was random and the randomness became more pronounced as the drop height increased. 

It was observed that the effect of weight upon acceleration magnitude was linear 

throughout the test variable region.  It was also observed that the effect of weight upon 

acceleration duration was linear but with a large error about a best fit line. 

It was observed that the effect of drop height upon acceleration magnitude was linear 

throughout the test variable region.  It was also observed that the effect of drop height upon 

acceleration duration was roughly a horizontal line with a large error about the best fit line. 

It was observed that a plot of actual versus predicted acceleration magnitudes results in 

linear behavior.  When these results were sorted by drop height, the error became smaller as 

the drop height increased.  It was also observed that the slope of a best fit line through these 

data plots resulted in a decreasing slope as drop height increased.  This trend would suggest 

that the math model for acceleration magnitude increasingly under predicts as drop height 

increases. 

It was observed that a plot of actual versus predicted acceleration durations resulted in 

no visibly discernable pattern. 

As demonstrated in section 4.7, equations 1, 2, 3 and 4 can be used as a tool to 

customize a drop test that can simulate a single wave impact.  It should be noted that these 

equations are only valid in the regions of weight from 110 pounds to 297 pounds, regions of 

drop heights from 3 feet to 9 feet, regions of wedge angle from 45° to 75° and in a consistent 

sand moisture content.  It should also be noted that for the 112 drops conducted in 2015, only 

one drop at each test condition was conducted.  Even though the data set was expanded to 5 

drops in each test condition for the 45° wedge, these additional test drops demonstrated that 

there was disparity in test results when the tests were conducted with different sand 
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conditions.  Therefore, it is recommended that the presented equations be used as a general 

guide to test personnel designing a drop test to simulate wave impacts.  It is recommended that 

test personnel conduct preliminary drops to verify and tune the performance of their test setup 

prior to conducting a specific test. 

There are potential areas where the results of this research could be improved and 

refined.  As discussed above, an issue noted during the execution of this thesis effort was the 

accuracy of the empirical models.  The generation of these models was based on limited data.  

In the case of equations 1 and 2, 112 valid data points were used for model generation.  In the 

case of equations 2 and 3, 223 valid data points were used for model generation.  A way to 

refine the accuracy of empirical models by using more data would be for an interested party to 

conduct further tests based upon the methods, drawings and procedures provided within this 

thesis. 

Another issue that should be investigated is determining how the moisture content of 

the sand affects the peak acceleration magnitude and acceleration duration upon impact.  A 

method for measuring the moisture content should be included in the test procedure.  This 

information should be collected and then integrated into the empirical model generation. 
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Appendix A - Technical Drawing Package of Drop Fixture 
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Appendix B - Complete Raw Data Table 
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