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ABSTRACT 

IDENTIFICATION AND OPTIMAL LINEAR TRACKING CONTROL OF                        

ODU AUTONOMOUS SURFACE VEHICLE 

Nadeem Khan 

Old Dominion University, 2018 

Director: Dr. Jen-Kuang Huang  

 

 

Autonomous surface vehicles (ASVs) are being used for diverse applications of civilian 

and military importance such as: military reconnaissance, sea patrol, bathymetry, environmental 

monitoring, and oceanographic research. Currently, these unmanned tasks can accurately be ac-

complished by ASVs due to recent advancements in computing, sensing, and actuating systems. 

For this reason, researchers around the world have been taking interest in ASVs for the last dec-

ade. Due to the ever-changing surface of water and stochastic disturbances such as wind and tidal 

currents that greatly affect the path-following ability of ASVs, identification of an accurate mod-

el of inherently nonlinear and stochastic ASV system and then designing a viable control using 

that model for its planar motion is a challenging task. For planar motion control of ASV, the 

work done by researchers is mainly based on the theoretical modeling in which the nonlinear hy-

drodynamic terms are determined, while some work suggested the nonlinear control techniques 

and adhered to simulation results. Also, the majority of work is related to the mono- or twin-hull 

ASVs with a single rudder. The ODU-ASV used in present research is a twin-hull design having 

two DC trolling motors for path-following motion. 

A novel approach of time-domain open-loop observer Kalman filter identifications 

(OKID) and state-feedback optimal linear tracking control of ODU-ASV is presented, in which a 

linear state-space model of ODU-ASV is obtained from the measured input and output data. The 



 

 

accuracy of the identified model for ODU-ASV is confirmed by validation results of model out-

put data reconstruction and benchmark residual analysis. Then, the OKID-identified model of the 

ODU-ASV is utilized to design the proposed controller for its planar motion such that a prede-

fined cost function is minimized using state and control weighting matrices, which are deter-

mined by a multi-objective optimization genetic algorithm technique. The validation results of 

proposed controller using step inputs as well as sinusoidal and arc-like trajectories are presented 

to confirm the controller performance. Moreover, real-time water-trials were performed and their 

results confirm the validity of proposed controller in path-following motion of ODU-ASV.
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Motivation and Problem Statement 

Intelligent robotic or autonomous vehicles are the unmanned air, land, surface, and un-

derwater systems that integrate the computer system, microcontroller, guidance, navigation, and 

control system, as well as various other automation technologies to perform the various tasks of 

civilian and military use. For this very purpose, a significant level of autonomous functions in 

autonomous vehicles has been successfully incorporated. Autonomous surface vehicles (ASVs) 

or unmanned surface vehicles (USVs) are one of the categories of autonomous or unmanned sys-

tems and have prominent and diverse applications such as military reconnaissance, sea patrol, 

bathymetry, riverine or shallow water survey, environmental monitoring and oceanographic re-

search. That is the reason that ASVs or USVs are gaining attention from the researchers around 

the world for the last decade [1], [2], [3]. The abovementioned various autonomous or unmanned 

tasks are effectively accomplished due to the recent advancements of computing, navigation, 

wireless communication, vision, laser measurement, and propulsion systems. These advance-

ments have made the ASV more efficient and sophisticated in performing difficult and danger-

ous tasks. Hence, due to this fact, autonomous vehicles are, in general, most preferable to be 

used for their capabilities so that human operators are removed from the inhospitable and/or in-

accessible marine or other shallow water working environments. 

In order to accomplish these sophisticated tasks, an optimal controller is essentially re-

quired; optimal in a sense that the control inputs required for the ASV motion will be optimized 
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with respect to an already defined performance index (PI) while achieving the desired objective. 

In this scenario, to control the motion of ASV optimally is a challenging task due to the follow-

ing facts. First, for optimal control, an accurate dynamical model of the ASV system under study 

is very essential; however, it is quite challenging and hard to incorporate the available theoretical 

formulations to achieve an accurate dynamical model of ASV because these techniques are nor-

mally nonlinear, time-varying, and coupled in nature [4] [5]. Second, water is the ever-changing 

surface, and the outdoor marine as well as estuarial tasks are stochastic in nature. Because most 

of the time these tasks performed by the light-weight and small size ASVs are accompanied by 

time-varying environmental disturbances such as wind and tidal currents, which are very unpre-

dictable. These environmental disturbances are the main stochastic perturbations to the desired 

control system; that’s why the ASV modeling is a stochastic process. 

There are various theoretical formulations, which are basically based on first-principle 

modeling techniques available to model the dynamics of a powered ASV cruising on the water 

surface. These formulations, as mentioned above, are inherently nonlinear due to the nonlinear 

hydrodynamic and coriolis forces therein [4], [6]. There is some previous work done related to 

nonlinear control based on theoretical formulations for the motion control of ASVs such as back-

stepping control, sliding mode control, and adaptive control, but most of the work adhered to the 

simulation validations for their proposed models and controllers [7], [8], [9], [10], [11]. Some of 

the ASVs used in the previous work were mono-hull and rudder based systems which need one 

propeller and a thruster [12], [13]. A few studies that were performed were related to empirical 

modeling which is based on the experimental work, and the ASV used was catamaran type hav-

ing two thrusters [14], [15]; however, the ASV is modeled as two inputs and single output sys-

tem and also simulation validations are given. The work of Elkaim, G.H., [16] is based on the 
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observer Kalman filter identification (OKID) modeling; he a used sailing-type catamaran having 

one thruster and one rudder mechanism, whereas, the system configuration of the prototype 

ODU autonomous surface vehicle (ODU-ASV) is of twin-hull and two fixed DC trolling motors 

which is used for various path-following tasks. The ODU-ASV named Big Blue was used in this 

research in order to determine its linear time-invariant state-space model and later to use the 

identified model for the design of desirable controller for its motion control. Therefore, the acro-

nyms ASV and ODU-ASV will sometimes be used interchangeably from now onward in this 

dissertation, unless the usage of acronym entails the ASV in general.  

The system identification and control design for such type of inherently nonlinear and 

stochastic system is a challenging task. The OKID methodology is basically very suitable for a 

stochastic system such as the ODU-ASV due to the advancement in computing and navigation 

technology. Hence, the process of OKID is well applied with the help of incorporating a fast pro-

cessing computer and accurate pose sensors of high sampling rates. After identifying the system, 

it is well utilized in the control design, which can easily be implemented with the help of com-

puter and microcontroller boards. Therefore, in the present work, the OKID methodology is per-

formed in order to identify the discrete linear time-invariant system and later on utilized the 

OKID-identified model to design optimal linear quadratic tracking controller for the ODU-ASV 

planar motion. 

 

1.2 Survey of Previous Work  

 The scope of this dissertation pertains to the potential research areas such as system iden-

tification/modeling and control of ODU-ASV. Therefore, the relevant prior work related to the 

system identification/modeling and control of ASV dynamical motion is concisely reviewed and 

discussed in this section.   
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 Elkaim, G.H., et al. [7] developed a nonlinear model of a modified Prindle-19 light cata-

maran called the Atlantis based on wind and water current models and subsequently designed PI 

feedback control for its motion control while traversing a series of user defined way-points as 

heading reference. This controller of the Atlantis makes it have station keeping functionality in 

the presence of water currents while motor powered. They performed Monte Carlo simulations 

of their proposed guidance and control system on the nonlinear model and showed that the At-

lantis is capable of maintaining a cross-track error of less than one meter throughout the path; but 

large cross-track errors would be produced during the transition of way-point navigation. The 

time domain OKID has been applied by Elkaim, G.H., [16] for system identification of autono-

mous wind-propelled catamaran. The sea trials were performed for the system identification task, 

in which the catamaran was driven on the straight line paths. The rudder is used for those straight 

line maneuvers and the inputs were generated by the human pilot. In this work, the system of au-

tonomous catamaran was considered to be the velocity invariant, so the yaw dynamics does not 

depend on velocity. A discrete time invariant model of order four was identified and tested, 

which showed acceptable prediction results for yaw dynamics.  

 Caccia, M., et al. [17], [18] used a small and low cost prototype catamaran autonomous 

surface craft (ASC) known as Charlie. In this study they assumed a reference theoretical nonlin-

ear model of Blanke for speed and steering equations and proposed a simple experimental dy-

namical model for the ASC with limited instrumentation by identifying the hydrodynamic drag 

and actuator interaction effects through sea trials. Their model’s steering system based on rudder 

and the sway speed was considered to be negligible. The application of their practical model 

based on theoretical model is to support the design of vessel automatic navigation, guidance and 

control system. The experiments showed that with the extended Kalman filter and simple PID 
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guidance and control laws, the ASC having only GPS and compass perform basic control tasks 

such as auto-heading, auto-speed, and straight line following. Gomes, P., et al. [11] used a two 

pontoon design autonomous surface craft having two propellers called Delfim for its path-

following guidance and control. The error vector is driven to zero for the said controller, so for 

modeling of error dynamics, a poly-topic linear parameter varying (LPV) representation with 

piecewise affine dependence on the selected parameters is used. The formulation of control syn-

thesis is done as a discrete-time H2 control problem for LPV system and solved using linear ma-

trix inequalities (LMIs). A preview controller design method is used for increasing path-

following performance. The nonlinear controller is achieved and implemented with D-

methodology under the gain-scheduling control domain. Simulations were given for the said con-

trol testing using full nonlinear model.     

 Sliding mode control law was proposed by Ashrafiuon, H., et al. to implement trajectory 

tracking control of under-actuated small autonomous surface vessel experimentally [10]. They 

also designed the control law by introducing the first-order sliding surface as surge motion track-

ing errors and the second-order sliding surface as the sway motion tracking errors. They per-

formed experiments using a small surface vessel having two propellers in an indoor pool envi-

ronment. A camera was used for the absolute position and orientation measurements of their ves-

sel. The input voltage values to the motors were estimated from controller propeller forces and 

transmitted wirelessly to the motors. Straight-line and circular maneuvering experiments were 

performed for checking the validity of their proposed controller. A model-based multi-variable 

sliding mode control law for trajectory tracking of a ship was also suggested by Cheng, J., et al. 

[19]; in this work the positions and yaw angle of the ship motion were simultaneously tracked.  

 The work of Wei, M., et al. [20] is about sliding mode control of under-actuated surface 
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vehicles based on formation control scheme. The surface vehicle is considered to be under-

actuated because the sway speed is not considered, so it is not directly actuated. The formation 

control scheme is achieved based on the leader-following strategy. Both Lyapunov's direct meth-

od and sliding mode control techniques have been utilized for the design of proposed controller. 

The surge and sway motion tracking errors were introduced as the first-order and second-order 

surfaces, respectively. Numerical simulations were performed to check the effectiveness of the 

designed sliding mode formation controller. 

 Shr, S. H., et al. [21] worked on robust nonlinear course keeping control of ship, having a 

rudder and single propeller, in presence of high wind and wave disturbances. He made use of two 

feedback loops, i.e. the inner-loop is    approximate input-output linearization and the outer-

loop is related to μ-synthesis technique to deal with tracking, regulation, and robustness prob-

lems. He showed in his simulation that a robust nonlinear controller design performs better than 

linear robust control in presence of environmental high wind and wave conditions. Similarly, 

Jerzy, B., [13] worked on the design of robust nonlinear control system of the ship course angle 

based on a model following control (MFC) structure obtained through input-output linearization. 

In his work, the controller responds to deviation between the model output and real output signal 

of a mono-hull ship having a rudder and single propeller. In this simulation based work, surge 

speed and yaw angle are considered. So his proposed system can substitute the complex adaptive 

control system with MFC structure, which compensates for the difference of his linearized model 

and the nonlinear characteristics of the process.  

 Guerreiro, Bruno J., et al. [22] employed nonlinear model predictive controller (MPC) 

techniques for the problem of trajectory tracking control for ASC. In this work, a two-hull ASC 

is used, which is propelled by two propellers driven by electric motors. In their approach, a non-
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linear dynamic model of the ASC is derived from first principles. Based on this derived model, a 

trajectory tracking error-space model is proposed. At each instant of time, the nonlinear MPC 

algorithm utilizes the nonlinear model of the ASC and the current state to predict the future states 

of the system within a predefined time horizon. Annamalai, A., et al. [23] also proposes nonline-

ar MPC control to improve the performance of traditional autopilot deterioration due to disturb-

ances produced by an ever-changing marine environment. A line of sight (LOS) guidance system 

is used in this research. The proposed controller is compared with the LQG controller in simula-

tion, and showed that the former has the ability to follow the desired trajectory smoothly by the 

catamaran-type USV called Springer, which has two fixed thrusters. Sharma et al. [24] also used 

nonlinear MPC control for the Springer USV having two fixed thrusters. In his work, an optimi-

zation problem was solved to find open-loop policy of the present state optimally.     

 A design framework named local control networks (LCNs) for the development of non-

linear autopilot is proposed by Sharma, et al. [25]. His autopilot is for controlling nonlinear yaw 

dynamics of a catamaran type unmanned surfaced vehicle having two fixed thrusters known as 

Springer. Simulation results are presented and the performance of nonlinear of autopilot is com-

pared with that of an already existing Springer linear quadratic Gaussian (LQG) autopilot using 

standard system performance criteria, and it showed that the LCN autopilot perform well. The 

Springer USV is also studied and modeled as two inputs single output system by Naeem, et al. 

[15]. The suitable model structure, such as auto-regressive with exogenous input (ARX), auto-

regressive moving average with exogenous input (ARMAX), output error, etc., was used for this 

purpose. The identified model is also applied to a general nonlinear USV model. The genetic al-

gorithm based MPC autopilot was proposed, which utilizes the process model to search for the 

control moves that satisfy process constraints while optimizing the cost function. The simula-
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tions were given, showing the autopilot perform in response to variation in the desired course of 

the USV. In another work, Naeem, et al. [14] proposed the LQG controller design for the motion 

control of the aforementioned Springer USV based on the state-space model obtained. In this 

control design, the LQR and Kalman filter were separately developed and then combined to con-

struct the LQG control.   The surge speed and yaw angle were considered in the design and simu-

lations were shown.    

 Backstepping control technique was also used by Fossen, et al. [5] for station keeping 

control strategy of an over-actuated ship using nonlinear equations, in spite of the fact that he did 

not express the environmental disturbances explicitly in the problem formulation stage. Sonnen-

burg, et al. [8], [12] selected Nomoto's first‐order steering planar motion model for the USV, 

which is a modified rigid hull inflatable boat having automated throttle and steering, at higher 

speed from different theoretical models after performing experiments over a wide range of 

speeds and planning conditions. While at low speed of ASV, a first-order lag model for sideslip 

is included. Their work focused on development, analysis, and experimental implementation of 

two trajectory tracking controllers, i.e. a cascade of proportional-derivative (PD) controller and a 

nonlinear controller obtained through backstepping approach. They suggested through experi-

mental results that backstepping control is more effective at tracking trajectories with variable 

speed and course angle. The work of Sarda, E. I., et al. [9] is related to design and tests nonlinear 

proportional derivation (PD), backstepping, and sliding mode feedback controller with the addi-

tion of wind and without wind feedforward control for station keeping control of a USV in the 

presence of current and wind. They perform experiments on twin hull configuration of a USV 

having two azimuth thrusters and a theoretical planar dynamic model considering three DOF, i.e. 

surge, sway, and yaw, is used; so, for this model, all of the hydrodynamic coefficients are deter-
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mined through their respective water tests. The experimental test results are given showing that 

sliding mode control was found to perform well overall. Dong, Z., et al. [26] proposed a state 

feedback based backstepping control law for the problem of trajectory tracking of an underactu-

ated USV in horizontal plane. For this purpose, a nonlinear 3DOF dynamic model of USV is 

considered. Also, for steady state performance, an integral action is included in the proposed 

control. Lyapunov's theory is used in order to confirm the global stability of the overall system. 

Simulations of tracking straight line and curve trajectories were carried to demonstrate the effec-

tiveness of the designed control law.  

 Aguiar, et al. [27], [28] showed an adaptive switching supervisory control along with a 

nonlinear Lyapunov-based two-dimensional (2D) position trajectory tracking and path-following 

control law for under-actuated autonomous vehicles so that the problem of global boundedness 

and convergence of the position tracking error is solved to a neighborhood of the origin. Peng, 

Z., et al. [29] proposed a robust adaptive steering law to track a heading reference signal with the 

respective measured signals and minimized the error. They incorporated predictor neural net-

work and a modified dynamic surface controller technique in this work. In their control design, 

the theoretical nonlinear yaw dynamics are considered, in which the hydrodynamic coefficient 

are determined in the calm water trials. The USV used in these trials was mono-hull having three 

propellers and one rudder driven by servo motors. The stability of the closed loop steering law is 

determined by the Lyapunov's analysis. Simulation and experimental results are given to show 

the performance of their control in the presence of model uncertainty and measurement noise. 

The work of Ren, J., et al. [30] explained the application of adaptive backstepping theory to the 

automatic steering of ships. They suggested the course-keeping adaptive tracking fuzzy control 

strategy of the nonlinear system of mono-hull ship in strict feedback form. The system has one 
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propeller and one rudder, so surge speed and yaw angle are considered. The purpose of the con-

trol law is that the course of ship has to track output of the given reference model. The unknown 

system dynamics are approximated by fuzzy system. The simulation results given indicating that 

the boundedness of all the signals of the close-loop system is guaranteed by the proposed control 

technique.   

 Pan, C. Z., et al. [31] proposed neural network (NN) based real-time tracking control of 

an ASV with completely unknown dynamics and subject to bounded unknown disturbance such 

as the unstructured, unmolded dynamics. First, the control is derived at the kinematic level and 

then extended to the dynamic case. A single NN is suggested, and vehicle repressor dynamics 

formulation was utilized, so off-line training was not performed. The learning algorithm is de-

rived from Lyapunov's stability analysis. Simulation results were given to show the proposed 

controller is capable of tracking the desired trajectory. Larrazabala, J., et al. [32] used both intel-

ligent and conventional techniques for controlling rudder angle of their USV, which is a scale 

model of mono-hull marine vessel. The guidance law is also used for calculating the desired an-

gle and then estimate trajectory based on the dynamic model of the said USV. The dynamic 

model of marine system of Moreno-Salinas was used and the physical and hydrodynamical pa-

rameters therein are determined by doing calm water-trials of the USV. An adaptive control law 

was suggested for any type of trajectory and then gain scheduling approach was used by incorpo-

rating PID controllers whose tuning parameters were optimized by genetic algorithm for various 

operation points. Moreover, a fuzzy logic controller was designed for tackling uncertainties of 

system dynamics. Simulations were given to depict the control performance and compared with 

the conventional control. 
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1.3 System Identification and Control of ODU Autonomous Surface Vehicle 

The desired motion control of an ASV is generally obtained by three main motion control 

schemes, such as station-keeping, trajectory tracking, and path-following; their brief account will 

be discussed in Chapter 5. In the present research, path-following or way-points tracking control 

strategy is adopted for the ODU-ASV, which is the spatial tracking resulted basically from the 

decoupling of velocity and 2D path [4], [33]. The path-following problem of ODU-ASV can be 

affine formulated and solved as an optimal discrete linear quadratic tracking problem by incorpo-

rating full state feedback and the 2D reference path so that the state feedback and feedforward 

gains are obtained and stored for later use in the control real-time run [34],[35]. The path-

following control strategy shows good performance while the position of ASV converges 

smoothly to the reference path, and less control effort is utilized in this process. As the ODU-

ASV is an under-actuated system having two fixed DC trolling motors for its propulsion, so the 

challenge for under-actuation is to reject almost all the disturbances, which is quite difficult task 

with only two inputs in the form of two fixed thrusters. Therefore, for this purpose, the optimal 

discrete LQT control is designed and implemented in real-time for the path-following motion 

control of the ASV in this research. For the proposed optimal full-state feedback LQT control 

design and real-time implementation, it is necessary to have a mathematical model in the form of 

system matrices        and   for the ODU-ASV dynamical system. For this purpose, an open-

loop system identification technique is used.                   

The system identification method is empirical modeling which has been used in the re-

search of vast areas of engineering and other diverse fields of interest as a viable alternative ap-

proach to the traditional modeling by first principles for the last three decades. In the latter case 

of modeling, various laws of physics and energy methods are used to derive ordinary differential 
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equations (ODE) or partial differential equations (PDE) models for the dynamical or physical 

systems, while the system identification is a kind of black-box type of approach that pertains to 

developing models of the dynamical or physical systems from the observed input and output data 

[36]. System identification is comprised of a large number of linear or nonlinear techniques, 

which fall generally either in frequency or time domain response of dynamical systems [37], 

[38]. In this research, the open-loop linear state-space approach of identification called OKID 

will be used to identify the discrete linear time-invariant (LTI) system of ODU-ASV. The prima-

ry purpose of using OKID algorithm is to approximate the dynamics of ODU-ASV accurately 

with a less complex but more robust mathematical model so that the output residual is minimized 

substantially. For the very purpose of system identification, the OKID technique will be per-

formed with the help of system observer controller identification toolbox (SOCIT) developed in 

MATLAB
®
 at NASA Langley Research Center.   

The first step in the OKID identification process is the real-time experimental input and 

output data collected from water-trials performed on the ODU-ASV. Afterwards, the observer 

Markov parameters (OMPs) will be obtained from the set of Markov parameters of the state-

space observer equation. From OMPs, the system Markov parameters and the observer gain 

Markov parameters will be calculated. Then, the state space model of the ASV will be realized 

from the system Markov parameters using the Eigen-system realization algorithm with data cor-

relation (ERA/DC), which starts with the formation of generalized block data matrix known as 

Hankel matrix and later on to factorize it by singular value decomposition. The true system order 

of ASV is identified by selecting the first significant non-zero singular values from HSV and 

MSV plots. Finally, the estimate of state-space system matrices of ASV such as  ̂,  ̂, and  ̂ will 

be obtained; the detailed methodology of both ERA/DC and OKID algorithms are elaborated in 
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Chapter 3 and Chapter 4, respectively. The accuracy of the identified model for the ASV dynam-

ical will be confirmed by simulations of model output data reconstruction as well as the bench-

mark residual analysis tests. 

The optimal discrete closed-loop LQT control methodology [34], [35] is proposed to be 

applied to the identified linear model of ODU-ASV so that it follows a desired known reference 

path over a time interval. The proposed control design methodology will address the problem of 

determining a control law for the identified dynamical system of ODU-ASV such that a prede-

fined optimality criteria or cost function is attained. In this control strategy, optimal control is 

determined by combining linear full state variable feedback plus a term depending on reference 

track. The state variable feedback gains are obtained by minimizing a cost function utilizing 

weighting matrices, which are found by a multi-objective optimization genetic algorithm (MO-

GA) technique. The detailed methodology of optimal LQT control and its real-time implementa-

tion is given in Chapter 5. The results of simulations and, later on, real-time water-trials for vali-

dation will be performed in order to support the validity of the OKID identified model and its 

proposed control design for path-following motion of ODU-ASV.  

 

1.4 Objective of the Dissertation  

From review of the literature, it is concluded that the open-loop OKID method has not 

been used yet for the system identification of twin-hull ASV having two fixed DC trolling mo-

tors with no rudder mechanism using the outdoor experimental input and output data exclusively. 

Therefore, the key objectives of this research are elaborated as follows. 

First, the system identification is performed using observer Kalman filter identification 

methodology from the experimental input and output data of the required sensors and actuators, 

which are obtained during outdoor water-trials of ODU-ASV in the presence of stochastic dis-
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turbance. In this way, the discrete linear time-invariant state-space model of ODU-ASV is ob-

tained, which is both accurate and conformable to the design of optimal state feedback linear 

quadratic tracking control. As mentioned earlier, the experimental data contains noise from vari-

ous environmental disturbances such as wind and tidal currents as well as measurement noise 

from the sensors imperfections. So, it is the feature of OKID algorithm that the noisy data is dis-

carded while the dynamical system is identified which is represented by the significant Hankel 

singular values. That's why the OKID technique is better than other identification methods for 

determining the stochastic systems or processes.  

 Second, the design and real-time implementation of a viable optimal discrete linear quad-

ratic tracking control based on the identified model is accomplished afterwards. Consequently, 

the ODU-ASV could properly follow the predefined reference trajectory path described by the  , 

  Cartesian coordinates, as way-point guidance coordinates, while coasting at low speed in the 

presence of varying and uncertain outdoor disturbances such as: wind and tidal currents. The aim 

is to achieve position tracking accuracy within 1 meter.  

 Finally, the goal of present research work would be to make the ODU-ASV as predeces-

sor-prototype for the purpose of accurate system identification and control design of a similar 

kind of a full-scale autonomous or unmanned vehicle in the future research; hence, the civilian as 

well as military research community may take benefit from the present work.  

 

1.5 Dissertation Structure  

 This dissertation is presented in accordance with the logical flow in order to describe and 

explain the various concepts, prior work, methodology, results, conclusion, and future work. So, 

the detail of present work is written as seven chapters, which is as follows.    
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 Chapter 1 is the introduction which mainly contains the concepts about autonomous sur-

face vehicles, the methodology of system identification and control, prior work, and a general 

overview of the dissertation. 

Chapter 2 describes the overall ASV system configuration, various parts of the control 

console consisting of on-board computer, microcontroller boards, and different means of com-

munications between on-board computer and the computer of ground control station (GCS). The 

layout of power supply required for the overall system as well as the ASV propulsion system is 

also given in the chapter. This chapter also gives a succinct description of the various pose 

measurement sensors that are vital for autonomous/unmanned control task.  

Chapter 3 gives a general description of model, its main classification, and also the state-

space form of the model. It then explains the systematic procedure of system identification and 

the concepts of observability and controllability in detail. The description of Markov parameters 

(MPs) and its role in the system realization are described. In this chapter, the Eigen-system Real-

ization Algorithm (ERA) as well as the accuracy indicators for differentiating the true modes 

from noise is explained.       

 Chapter 4 initially describes some prominent types of model structures and a state-space 

linear observer. The observer Kalman filter identification (OKID) core-equation and computa-

tion of the observer Markov parameters are explained. The process of extraction of both system 

and observer gain Markov parameters from observer Markov parameters are elaborated; and 

then, the outline of OKID algorithm is given. The relationship of state-space observer and Kal-

man filter is also described. Finally, observable canonical-form realization.is explained.  

 Chapter 5 details the steady-state linear quadratic regulator (LQR) control, its design out-

line, and its salient properties. Then, the detail description, design outline, and implementation of 
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main control technique called the optimal linear quadratic tracking control are elaborated, which 

is used for the control of ASV motion in the present work. 

 Chapter 6 details the application of OKID methodology to identify the discrete linear 

time-invariant ASV system using experimental input and output data. The benchmark assessment 

tests, such as reconstruction of output data during simulation, residual analysis, and cross-

validation, for the validity of OKID-identified ASV model, were explained. Afterwards, applica-

tion of the optimal linear quadratic tracking control for the ASV motion along with the utiliza-

tion of multi-objective genetic algorithm (MOGA) for the selection of weighting matrices of the 

said control's cost function is given. The results of controller performance regarding step inputs 

and various trajectories were also elaborated in this chapter. Finally, the results of implementa-

tion and real-time experimental validation of the proposed control along with the application of 

nonlinear autoregressive with exogenous input neural network (NARX) for the purpose of map-

ping the control signals are given.   

In chapter 7, the conclusive summary of this dissertation along with the recommendations 

for future research is described.  
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CHAPTER 2 

 

ODU-ASV SYSTEM CONFIGURATION 

 

2.1 Introduction 

 The ODU-ASV named "Big Blue" was used in this research in order to perform system 

identification methodology for achieving the ASV system model and subsequently utilize the 

identified model to have optimal feedback control design and its validation. This prototype ASV 

system is a small-sized autonomous surface vehicle made by the ODU-ASV team for the purpose 

of the association for unmanned vehicle system international (AUVSI) RoboBoat competition. 

This chapter covers the overall structure of ASV, the required sensors, actuators, and other elec-

tronic control console necessary for achieving the above said aim of the research. The design of 

ASV is based on the flexibility of the modularity design concept, so that the custom-made 

changes regarding sensors, actuators, and other electrical/electronic components can easily be 

performed according to the specific needs. In section 2.2, the overall system configuration of 

ASV is described. The configuration of control console consisting of an on-board computer, mi-

crocontrollers, radio controller, and wireless modem is explained in section 2.3. The electrical 

power system is explained in section 2.4, while the section 2.5 elaborates pose measurement sen-

sors. Lastly, the propulsion system of the ODU-ASV is given in section 2.6.          

 A pictorial view of Big Blue is given in Fig. 2.1 showing its top flat surface or deck, Iner-

tial Measurement Unit (IMU) and Global Positioning System (GPS), Ubiquiti Bullet M2 net-

working modem, and control system console consisting of on-board computer, microcontroller 

boards, and radio controlled (RC) receiver. The MEMSense IMU is installed at CG point of ASV 
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inside the custom-made acrylic box which is located a little distance away from the electronic 

control console. The GPS receiver is mounted on a separate raised platform, which is fixed to the 

PVC pipe installed at the CG point above the acrylic box of IMU. 

 

2.2 Overall ASV System Configuration  

 The design of the ODU-ASV is based on a custom-made catamaran type configuration 

made up of small-sized twin parallel hulls held together by a single flat platform or deck. The 

ASV is approximately 1.43 m long and 0.84 m wide. Its total height up to the IMU and GPS 

mast is 0.92 m and without mast it is 0.46 m. The deck is covered with a perforated polypropyl-

ene plastic sheet. The flat surface of deck is used for housing of electronic parts, computer, net-

working modem Bullet M2, and the navigational sensors such as IMU and GPS as shown in the 

Fig. 2.1, which elaborates the layout of all components of the ASV as below.  

 

 

 

  

 

 

 

 

  

 

 

 Figure 2.1 Pictorial view of the top flat surface or deck of ODU-ASV. 
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 The required batteries are put inside the hollow body of the two parallel hulls which is 

covered with the blue Styrofoam sheet, so that the batteries heat can be decapitated with the sur-

face of ASV's hulls, which are submerged externally in the water. The two hulls are streamlined 

design as demi-hull and built with 1/8
"
 thick aluminum metal. During the motion of ASV, greater 

stability is attained on account of its low speed as well as dual hulls catamaran-type configura-

tion. Moreover, due to distance between the two hulls, considerable space of the deck can be 

achieved for other coordinated autonomous tasks, for instance with quad-copter, in the future. 

One drawback of the catamaran-type design of the ASV, but not pronounced, is that it is less ef-

ficient at low speed than a mono-hull design due to more surface area.  

 

2.3 The Configuration of Control Console 

A custom-built control console is used for waypoints guidance, navigations and control of 

ASV. The control console is a            waterproof Ziploc plastic bin having enough 

space to have all the required electrical and electronic components such as: on-board computer 

and its necessary components, microcontroller boards, radio control receiver, electrical fuse 

blocks, power switches, Bullet M2 Ethernet port, and DAQ module of the MEMSense nIMU as 

shown in the Fig. 2.2. The control console is secured to the top of the flat surface or deck of ASV 

and it is interfaced with the required sensors and actuators that have been installed on the ASV. 

The components of control console are detailed as follows:         

 

2.3.1 On-board Computer 

 In order for the ASV to accomplish navigation process during real-time water-trials, it is 

equipped with a stand-alone on-board computer that interfaces with all the Arduino microcon-

trollers, speed controllers, GPS, nIMU, RC receiver/transmitter, and Wi-Fi networking device. In 

the navigation process, all the inputs and outputs from sensors and actuators, respectively, were 
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collected, interpreted, and stored as navigational data into the large computer memory files, 

which are then used for system identification and, later on, for the control design. Moreover, an 

on-board computer is also necessary because the data requires processing to make executable 

control commands for the two fixed DC trolling motors during the water-trials, which involve 

computationally intensive calculations that couldn't be achieved by the Arduino controllers 

alone. The computer is custom made from reliable desktop computer components by the ODU-

ASV team. The key components are as follows: ASUS motherboard, core-i5 processor with two 

2.5 GHz processor, power supply, and hard drives as shown in Fig. 2.2 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 The control console of ODU-ASV. 
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The motherboard has USB ports, a VGA connector, and an Ethernet port, which handle all of the 

communications between input/output peripheral devices, storage medium, and the processor. 

The Windows-7 operating system is installed so that the system becomes user-friendly for per-

forming various tasks. The on-board computer can also be remotely controlled from the shore, 

which means that monitor, mouse, and keyboard are not required for its normal operation. The 

keyboard is only required for entering the password of Windows operating system.  

 

2.3.2 Microcontroller Boards 

The microcontroller boards used in the present work were two Arduino Mega 2560s, 

which are based on the ATmega2560 and have 54 digital input/output pins for various purposes, 

a USB connection, a power jack, and a reset button as shown in Fig. 2.3. The Arduino Mega 

2560 has everything needed to support the microcontroller for communicating with on-board 

computer or another microcontroller connected to it with a USB cable or though digital in-

put/output pins. The open-source Arduino software, known as IDE, is used to write codes and 

upload them to the board for performing various tasks. The written code can run on the Win-

dows, MAC OS X, and Linux operating systems. One of the Arduinos, called GPS-Arduino, and 

connected to GPS receiver, is used for the position data logging of ASV with the help of naviga-

tion code written in Arduino IDE. The GPS data in the form of latitude and longitude is transmit-

ted to MATLAB
® 

of the on-board computer by serial communication having baud rate of 38400 

bps during the real-time control run; where it is converted to   and   Cartesian coordinates ex-

pressed in metric units, i.e. meters, in order to be used as the position states of ASV. Another 

Arduino, called Drive-Arduino, is used for the actuation and controlling of the two Watersnake 

trolling motors. The Drive-Arduino is interfaced with both the control module on the main on-

board computer as well as hand-held remote control unit so that it receives the required pulse 
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width modulation (PWM) commands from them and send those commands to the speed control-

ler of two fixed DC trolling motors to rotate accordingly. Hence, the Drive-Arduino performs 

three main functions; first, it manages to toggle the ASV motor power between on and off. Se-

cond, it switches the ASV between autonomous and remote control modes. Third, it receives in-

puts PWM values from the on-board computer and sends them to the speed controllers of the two 

DC trolling motors for thrusting purpose.    

 

 

 

 

 

  

 

 Figure 2.3: A typical Arduino Mega-2560 microcontroller board. 

 

 

2.3.3 Radio Controller  

The hand-held radio controller (RC), consisting of a transmitter and a receiver, is re-

quired for controlling the boat manually from remote distance as well as for switching between 

the manual and autonomous modes. This functionality is achieved with the help of Futaba 6-

channel transmitter and 7-channel receiver radio control system; each of them has frequency 2.4 

GHz as shown in the Fig. 2.4 below. These RC channels consist of four toggle switches and two 

bi-directional joystick controls. The two out of four toggle switches were utilized for control    
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Figure 2.4 Futaba RC transmitter and receiver. 

 

 

purpose; one toggle switch, which is connected wirelessly to one of the channel on the receiver, 

is programmed as on/off switch of the ASV motors. Another toggle switch is used for switching 

autonomous and remote control modes. The two bi-directional joysticks control the two fixed 

motors during RC mode in order to produced thrust levels required for both propellers attached 

to the motors. The receiver sends PWM signals to the speed controller according to the position 

of the respective channel on the transmitter. All the receiver's channels are attached to the Ar-

duino microcontroller board which is already programmed to interpret the signals from the re-

ceiver and then control the motion of two DC trolling motors accordingly. At any point of the 

ASV's waypoint navigation, the RC system overrides the control values sent from the control 

module during autonomous mode so that emergency control of the ASV is achieved in case of 

unpredictable mishap. Also, the ASV motion can be terminated by pressing the emergency cut-

off push-button on the control console. 
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2.3.4 Wireless Modem 

The remote communication connection of the laptop computer of ground control station 

(GCS) and the on-board computer of ASV is an essential prerequisite so that the autonomous and 

remote control tasks can easily be performed and so that access to all of the required signals is 

achieved. For this purpose, a pair of wireless modem devices called Ubiquiti Bullet M2, as 

shown in Figure 2.5, is used to communicate the sensors and actuators data between the above 

said two computers. In this way, the maneuvering tasks of the ASV can be continuously moni-

tored remotely from the site of GCS. The two Bullet M2, one at the GCS serving as router and 

another on the ASV working as receiver, with their two omni-directional outdoor 12dBi anten-

nas offer a large Wi-Fi range. These antennas can communicate with up to a range of 1.6Km by 

utilizing its maximum power of 63 mW. The two powered antennas of the above said Bullets are 

configured to form a wireless bridge in order to connect with each other and hence this bridge 

setup acts as wired LAN connection. The recommended DC voltage range of this wireless sys-

tem is 10-24V. 

 

 

 

 

 

 

Figure 2.5 Ubiquiti Bullet M2 with antenna.  
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2.4 Electrical Power System  

For all the electrical devices installed on ASV such as: on-board computer, DC trolling 

motors for two thrusters, speed controllers, RC receiver, GPS receiver, IMU, Ubiquiti Bullet M2, 

and Arduino microcontrollers to perform the necessary autonomous tasks, a reliable power 

source is required. This power source is in the form of two rechargeable lead-acid batteries of 

12V & 8Ah which are placed in the hollow compartments of twin hulls of the ASV as well as a 

separate 7.4V Lipo battery. The first 12V lead-acid battery provides power to two thrusters only, 

because they consume more power for propelling the ASV on water surface as compared to all 

other electrical devices. The second lead-acid battery is used to power the on-board computer 

along with its attached peripheral devices.  

The power used by the Nano IMU is provided by a third Lipo battery. The flow diagram 

of power distribution for the ASV system's basic functioning is shown in Fig. 2.6 below. The 

speed controllers as well as some of the electronics draw high current occasionally, so fuse 

blocks, as shown in Fig. 2.2 of section 2.3, were used in order to protect some of the circuits in 

case of power surge. One of the fuse blocks consists of two 30 amp fuses used for both speed 

controllers, while another fuse block has a 25 amp fuse used for the on-board computer. Both the 

lead-acid batteries share a common ground with the positive leads going to each fuse blocks. 

 

2.5 Pose Measurement Sensors  

 The position and orientation of the autonomous vehicles with respect to the NED, Geo-

detic, and/or body coordinate systems is known as its pose. Nowadays, with the advancement of 

Micro-Electro-Mechanical Systems (MEMS), robotic or autonomous vehicles are equipped with 

many state of the art and miniature sensing systems. A sensing system is comprised of one de-

vice or a group of devices that senses the stimulus of a physical process or phenomenon and  
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Figure 2.6 Flow diagram of electrical power distribution.  

 

 

converts to signals having physical units. In order to accomplish the state estimation task of the 

autonomous vehicles, various common techniques are used for measuring raw data of the pose of 

these vehicles. These techniques are mainly based on the on-board sensors such as: laser sensors, 

accelerometers, gyroscopes, magnetometers, ultrasonic sensors, static/dynamic pressure sensors, 

odometers, and GPS receivers. Moreover, advanced actuator systems are being used for for-

ward/reverse motion and steering maneuvers of these vehicles. In this section, various types of 

sensing and actuation systems that are installed and used for the ASV have been overviewed ra-
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ther than in detailed study of the different underlying technologies incorporated in such systems.  

 

2.5.1 Laser Measurement Device 

Laser measurement devices, also known by the acronym LIDAR (Light Detection and 

Ranging), are generally the most robust sensors which are used for distance measurement, object 

detection, area monitoring, and mapping purposes. Laser scanners measurements are based on 

the time-of-flight principle. A beam of laser pulse with defined duration is directed towards a 

confronted object, and a fast counter is started. After being reflected by the object, the pulsed 

laser beam is deflected by an internal rotating mirror and then detected by a photodiode. The 

photodiode converts this beam into signals in an optoelectronic circuit. The counter is stopped at 

the time of the first return of a signal and this process continues. Hence, the time interval lapsed 

between transmission and reception of the reflected pulse of light is directly proportional to the 

distance between the laser scanner and the object that reflected the light. The light traverses ap-

proximately 15 cm from the source until it strikes upon the object and traverses the same dis-

tance back towards the receiver within 1 nanosecond [39].  

The position of ODU-ASV in the NED coordinate system is determined using a laser 

scanner called the SICK laser Measurement Sensor (LMS) 200 as shown in the Figure 2.7. The 

position coordinates of ASV are calculated based on the distance and angle measurements of the 

reflected laser beam of SICK LMS 200. The angular resolution of SICK LMS 200 in the radial 

field of view is up to minimum of 0.25 degrees. Its typical accuracy is 35 mm for a range of 20 

mm or more as far as 80 mm depending on the reflectivity of the target object and transmission 

strength of the SICK LMS 200 laser scanner. Due to good reflectivity of     to     , the alu-

minum foil was wrapped around a 1
" 
PVC pipe and the pipe was installed on the center of gravity 

(CG) point of ASV during outdoor testing. With the help of this technique, the accurate position 
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of ASV is recorded within a circular area of 8 meters radius. Hence, the ASV dynamics could 

easily be tested and system identification runs are performed for a total length of 16 meters. The 

main parameters of SICK LMS 200 are highlighted in the Table 2.1 below.  

 

Table 2.1 Specifications of SICK LMS 200 

Measurement range 8 m, 16 m, 32 m, 80 m 

Field of view 180° /100° 

Resolution 10 mm 

Angular resolution 1° /0.5° /0.25° 

Response time 13ms /26ms/53ms 

Update rate 75 scans of 180° sweep per second 

Data transfer rate 9.6 /19.2 /38.4 /500 k Baud 

Systematic error ±15 mm 

Stochastic error at 1 σ 5 mm 

Supply voltage 24 V ±15% 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 A typical SICK LMS 200 Lidar.  
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The main disadvantage of SICK LMS 200 is that its measurements are sometimes deteri-

orated by the adverse outdoor conditions such as fogginess and dazzling sunlight. Therefore, the 

SICK LMS 200 is best suited to use for indoor measurements, but it was used outdoors with 

good quality of data collection because on the test day the sky was partly overcast giving perfect 

daylight condition. The communication of LMS 200 with the connected computer is achieved 

through either RS-232 or RS-422 interface. The RS-422 being differential interface circuit em-

ploy the differential mode of operation that allows each signal to be split into two different wires, 

configured in opposite voltage states. Due to this interface configuration, substantially faster data 

transfer speeds can be achieved than that of the RS-232. For this purpose, an additional high-

speed serial interface card was purchased and utilized.  

 

2.5.2 Global Positioning System Receiver 

The positioning and navigation technology is enormously versatile and being widely used 

in different kinds of applications around the world, namely guidance and navigation systems for 

autonomous vehicles, navigation systems for passenger airplanes and ground transport vehicles, 

surveying, agriculture, and military. The Global Positioning System (GPS) is a Global Naviga-

tion Satellite System (GNSS) and has been proving itself as a reliable and accurate method used 

for the positioning and timing information necessary for navigation applications over the last 

couple of decades. The low-cost 3DR uBlox LEA-6H GPS with compass module was used in the 

present work for logging the position data of the ASV in geodetic coordinates, i.e. latitude and 

longitude, only during the real-time validation water-trials of feedback optimal LQT control.  

The 3DR GPS with compass module is in factory enclosed protective case. It is mounted 

on a custom-made small acrylic platform which is fixed to a PVC mast at about 40cm height 

from the deck of ASV with the arrow of GPS facing forward. The GPS mount is at a reasonable 
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distance with a clear view of the sky. So, in this way, the GPS module does not interfere with the 

magnetic fields of the motors, speed controllers, DC power wiring, batteries, and the nearby iron 

containing metallic objects to avoid possible magnetic interference as well as to ascertain the un-

obstructed view of the sky for maximum satellites constellation. The GPS mounting position is 

depicted in the pictorial view of Fig. 2.1 given in section 2.2 above. A custom design TTL (tran-

sistor-transistor logic) serial cable is made, which connects the GPS to the Arduino Mega micro-

controller board with the communication baud rate of 38400 bps. Its specified data update rate is 

5Hz, but when the position data is transferred from Arduino to the MATLAB
®

 programming en-

vironment, then data sampling rate reduces to 3 Hz. This sampling is then set as the minimum 

sampling rate for the system identification of ASV and all other sampling rates of the sensors are 

adjusted to it accordingly. The voltage rating required for the GPS is 2.7V - 3.6V.  

The 3DR GPS delivers position and status data in National Marine Electronics Associa-

tion (NMEA), UBX binary, and RTCM protocols. An Arduino-C navigation code was used for 

the GPS data logging so that it decodes the position and status data of the ASV from the telemet-

ric sentence defined within the binary protocol of the GPS receiver into the latitude and longi-

tude values with the help of GPS Arduino. Then, the decoded data in the form of latitude and 

longitude position data is sent to the MATLAB
® 

programming environment of the on-board 

computer; where it is transformed to   and   Cartesian coordinates in metric units. The   and   

position data are then used by the designed feedback control module to compute the required 

control commands for controlling the two trolling motors of ASV. The 3DR GPS provides rather 

reasonable position accuracy in static and slow moving applications, and that can only be ex-

pected in an environment with unobstructed sky view. In outdoor experiments, all the water-

trials were performed by the ODU-ASV in an open environment with an unobstructed sky view. 
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The GPS takes a little while in order to update all the satellite positions and then settle in on sta-

ble reading. The average position accuracy of 3DR GPS is observed to be approximately     

to      .  

 

2.5.3 Inertial Measurement Unit  

An Inertial Measurement Unit (IMU) is MEMS self-contained measurement system 

comprised of sensors' triad such as accelerometers, gyroscopes, and magnetometers that renders 

inertial measurement data consisting of angular velocity, linear acceleration, and magnetic field. 

The estimate of angular rates and the corresponding orientation of the ASV expressed as in Euler 

angles such as roll, pitch, & yaw are obtained by using the Nano IMU (nIMU) in this research. 

The nIMU is a small-size and light-weight MEMS measurement system which is manufactured 

by MEMSense [40] as shown in Fig. 2.8 below.  

 

2.5.3.1 IMU Data Acquisition 

The nIMU gives inertial data of 3D acceleration, 3D angular rate, and 3D magnetic field 

along with the temperature data through RS-422 serial communication protocol. The digital data 

outputs are compensated for the sensitivities of operating temperature to bias and scale factor. 

For the purpose of communication with nIMU, it is simply connect to its USB interface which is 

in turn connect to the computer. A manufacturer's USB RS-422 data acquisition (DAQ) module 

is used for the data communication to computer with the baud rate of 115200 bps. The RS-422 

USB module incorporates virtual COM port drivers which are compatible with typical COM port 

communication protocol. The data format of RS-422 connection of IMU is factory configured as 

8-bit UART with 1 start bit, 8 data bits, and 1 stop bit. The sampling rate of the inertial data pro-

vided by the IMU is 150 Hz, which is three times higher than its bandwidth i.e. 50 Hz. The soft-

ware used for acquiring inertial data for the system identification task is known as Inertial Insight   
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Figure 2.8 A typical MEMSense nIMU unit with the coordinate system shown. 

 

 

software provided by the MEMSense which is the GUI-based menu-driven application; while a 

MATLAB
®
 code is used for data logging from the nIMU during the real-time water-trials which 

are performed for the validation of the designed optimal discrete LQT controller. The main man-

ufacturer specifications of nIMU are tabulated in Table 2.2. 

 

2.5.3.2 Tilt Compensation     

 The heading or yaw angle ψ can be accurately determined through dual-axis magnetome-

ter and tri-axial accelerometer sensors of the nIMU. In order to implement the compass system 

correctly, it must compensate for the effect of pitching and rolling angles, as well as try to cali-

brate out soft and hard iron effects [41], [42], [43]. The MEMSense IMU is installed at the CG 

point inside the custom-build acrylic box, which is rather far away of the electronic control con-

sole. Also, the top working platform of ASV is covered with the perforated polypropylene plastic 

sheet; so, it is assumed that there are no soft and hard iron effects which might distort the Earth's 

magnetic field and they don’t need to be calibrated out. Hence, according to right-hand rule,  
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Table 2.2 Specifications of MEMSense Nano IMU 

Size                     inches  

Mass      20 gram 

Angular rate dynamic range                

Accelerometer dynamic range     g 

Magnetic field dynamic range      gauss 

Update rate 150 Hz 

Input voltage          VDC 

Supply Current 140 mA 

Working temperature              

 

 

positive roll, pitch, and heading angles are counter-clockwise when looking along x-, y-, and z-

axes of rotation, respectively, towards the origin as shown in Fig. 2.8 above. The orientation is 

assumed to be calculated relative to NED reference frame, where the reference frame axes are 

considered in uppercase having the subscript  , such as   . The details of the NED reference co-

ordinate system are given in section 6.3.2. The gravity is incorporated in calculation of pitch and 

roll angles which exerts a constant acceleration of    downwards. Therefore, pitching angle is 

calculated following a negative rotation X-Z plane by the arc-tangent function as shown in the 

Fig. 2.9; the details for calculating pitch and roll angles are given in [41], [42], [43]. Gravity 

can't be used to calculate change in heading angle, so the magnetometer data is used instead. In 

this regard, the arc-tangent method is applied to the raw magnetometer data. However, errors are 

got into the heading data when the magnetometer's sensitivity decreases due to the increase in 

pitch and roll angles [42], [43]. The heading can be corrected by re-aligning the local z-axis with 

the Z axis of reference frame. Hence, the correction to the magnetometer's data is achieved by  
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Figure 2.9 Calculation of elevation or pitch angle ( ).   

 

 

 

 

 

 

 

 

Figure 2.10 Tilt corrected heading angle data from a typical water-trial. 

 

applying first a rotation, which removes the roll angle, and then a second rotation that removes 

the pitch angle, and consequently the local x-y plane will be re-aligned with the X-Y plane of the 

reference frame. The correction process of heading is done in MATLAB
®
, and the corrected and 

un-corrected heading angle data from one of the water-trials is shown in the Fig 2.10. 

 

2.6 The Propulsion System 

The propulsion system of the ODU-ASV consists of Kort nozzle system, i.e. a type of 

ducted propellers system, in which two propellers attached to the two trolling motors are sur-
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rounded by lightweight and non-rotating shrouds made up of ABS plastic as shown in Fig. 2.11. 

The shroud is designed hydro-dynamically and wraps around the propeller blades, thereby in-

creasing the low speed thruster performance like in the case of the ODU-ASV. The cross section 

of shroud towards the fore of the ASV is slightly wider than the one towards the stern side; there-

fore, more water is sucked into narrower space and passed faster through the propeller blades 

[44]. In this way, the overall efficiency of the propellers is improved that entails high thrust is 

achieved at very low speed, e.g. less than 5 knots. The ASV has two custom-designed propellers 

  

 

 

 

 

 

 

 

 

Figure 2.11 The ASV propellers and shrouds system.   

 

each of them has four blades. The actuators, based on their energy source, are mainly differenti-

ated into electrical, mechanical, piezoelectric, and pneumatic or hydraulic actuators. The motion 

of ODU-ASV is attained by employing two Watersnake trolling motors as electrical actuators, 

each of them operates at variable speed and produces        thrust in either forward or reverse 

direction.  

As the ODU-ASV is rudderless; so, the heading is attained by the difference between two 
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motors' thrusts at any instant of time. The Watersnake trolling motors are installed below the 

twin-hulls and equally away from the midline at stern of the ASV. These actuators are excited by 

the commanded signals in the form of PWM through Arduino microcontroller board in order to 

produce thrust. The voltage and current rating required for each motor is      and          . 

The Victor SP speed controllers, as shown in Fig. 2.12, having nominal voltage of 12V are 

placed inside the twin-hulls. They control the input voltage to motors at a specified time. The 

speed controllers read the PWM signals received from the microcontroller, which has been 

named as Drive-Arduino, connected to the on-board computer and output current to the motors 

thereby altering their speed and direction; hence, in this way, the required dynamics of ASV is 

achieved. The PWM values range from 40 to 160 duty cycles, 90 being the neutral value at 

which each trolling motor stops rotating. The range of PWM values above neutral value, i.e. 91-

160 duty cycles, are used for forward motion; while the PWM values below neutral value, i.e. 

40-89 duty cycles, are used for the reverse motion of ASV. The cruise speed of ASV is calculat-

ed to be approximately 1 m/s.    

 

 

   

 

 

 

 

Figure 2.12 A typical Victor SP speed controller. 
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CHAPTER 3 

 

TIME-DOMAIN IDENTIFICATION OF STATE-SPACE MODELS 

 

3.1 Introduction 

 In today’s fast growing digital computational era, dynamical systems are being analyzed 

and their inter-variable relationships are being dug out for the identification, prediction, control, 

and monitoring of these systems. For this purpose, the mathematical description known as model 

of the dynamical system under study is predominantly required to be developed. In order to de-

velop a mathematical model for a physical or dynamical system, the system identification tech-

niques which incorporate the observed/experimental input output data obtained from the system 

under study are used. Among the vast range of models for dynamical systems, state-space (SS) 

descriptions gradually getting attention for system identification, signal estimation, as well as 

multivariable control [45], [36], [46]. So in this research, state-space system identification will 

be incorporated to identify the system of small prototype ODU autonomous surface vehicle.  

 The organization of the topics covered in this chapter is as follows. First, the model defi-

nition and a brief and concise overview of the various types of models are given. Then, the con-

cept of system identification and its systematic procedure is discussed. In section 3.4, a general 

linear discrete time-invariant state-space representation for a MIMO system and its response to 

general input are described. In section 3.5, the key concepts of state-space identification, i.e. ob-

servability and controllability, are briefly explained. Following in section 3.6, the building blocks 

of system realization called Markov parameters and the basic realization theory along with the 

Eigen-system Realization Algorithm (ERA) are presented. Some other accuracy indicators such 
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Modal Amplitude Coherence (MAC) and Mode Singular Value (MSV) for the distinguishing the 

true modes from the noise are also briefly explained to culminate the chapter.   

 

3.2 Model of a Dynamical System and Its Classification 

  The model, a mathematical abstraction of the dynamical system or physical process, is 

elaborately defined as ―the set of linear or non-linear, differential or algebraic- difference equa-

tions comprised of the system/process state variables, inputs, and outputs, which emulate the dy-

namic system or process in the course of time for a given set of operating conditions and the un-

derlying assumptions‖. The model is both the final product and the central part of system identi-

fication practice. The criterion of ―good‖ quality model is usually based on how well the model 

fulfills the purpose of fitting the measured data [36], [46]. 

 Models are classified primarily on the method of identification used for modeling itself, 

i.e. models developed through first-principle vs. models developed through empirical methods. 

Fundamental Laws of Physics are used to obtain the first-principle models which are generally 

causal, continuous, non-linear differential-algebraic equations. Empirical models are obtained 

using the measured input output data, so minimal knowledge of system dynamics is needed in 

this regard. Further divisions within these two main classes are made based on system character-

istics, available knowledge, domain of modeling, and response characteristics. The categoriza-

tion of the models is by no means hierarchical; so any class of model could be chosen and further 

sub-divided into the other nomenclature of the model’s types which are briefly described below.  

 The empirical models are further classified as parametric vs. non-parametric models as 

well as black-box vs. grey-box models. The parametric models have a specific structure, which is 

characterized by delay, order, and a set of parameters, while non-parametric models don’t have 

specific structure to be assumed by the user but are usually described by responses. In black-box 
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modeling, there is no one-to-one correspondence between the structure and/or parameters of the 

model with the physical properties of the system. It is a good option to use the black-box models 

when the purpose of the model is only prediction. The grey-box modeling is the emerging area of 

identification which depends on the availability of a priori knowledge to the user. In grey-box 

models, the constraints are imposed on the structure of the model prior to and/or during the esti-

mation process in order to interpret the physical laws involved in the system. 

 The classification of linear vs. non-linear model is based on the assumption of linearity 

conditions, i.e. homogeneity (scaling) and superposition, to be satisfied by the system. The sys-

tem which fulfills those conditions is called linear system while the system which does not satis-

fy is called non-linear system. Next, the nature of domain of inputs, outputs, and states specify 

the model type that whether the model is built in time-domain (also known as raw-domain) or in 

frequency-domain (also known as transform-domain). The particular instance of domain-based 

modeling is the continuous-time or discrete-time case. All the physical quantities such as dis-

placement, velocity, and acceleration are varying continuously in time and are measured by sen-

sors to generate analog signals. These signals can be converted to discrete-time when sampled by 

A-D converter. Empirical models are generally constructed in discrete-time domain.  

 The deterministic model predicts the response of the system whose underlying physics is 

precisely known. The input profile is also known in this case. On the other hand, the stochastic 

model, which is also known as time-series model, is constructed on the basis of statistics and 

probability. The response of the stochastic model to the random or stochastic inputs can never be 

accurately predicted but rather described as a good fit to the measured data in statistical sense.  

 The time-invariant model relates to the system whose features do not vary with time. 

This means the system produces the same output by applying the same input irrespective of 
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when the input was applied. On the contrary, the output of the time-varying model changes with 

the passage of time even if the same input is applied. If the output variations of the model is just 

a function of one dimension such as time, then this model belongs to the family of lumped pa-

rameters models; while the variations of output of the distributed parameters model also de-

pends on more than one dimension. The estimation of lumped parameters model is easier than 

the distributed parameters model because the former requires few parameters for their structure.  

 Additionally, there are input-output models and state-space models based on the mathe-

matical abstraction of the dynamical system. State-space modeling is the most common class of 

representation in modern system and control theory because in this class of modeling approach 

the dynamics of a system is characterized by a set of either tangible or hidden variables known as 

states. The state-space models got some advantages over the input-output models in terms of 

numerical efficiency and order determination. In this research, however, the focus will be on the 

identification of the discrete linear time-invariant (LTI) dynamic state-space model of the ODU 

ASV system. 

 

3.3 System Identification and Its Systematic Procedure 

 Development of a mathematical model with desired accuracy for a system is the main 

goal of system identification. So, system identification is defined as the process of developing a 

mathematical relation between the inputs and outputs of a system or process based on the meas-

ured data. The following objectives are generally the scope of the LTI system identification: 

(i) Describe various deterministic and stochastic structures used for the identification of LTI 

systems. 

(ii) Characterize the parameterization, bias, variance, and consistency of the dynamical pro-

cess or system under study. 
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(iii) Discuss both classical and modern estimation methods for identifying optimal models, 

such as: Maximum Likely Estimation (MLE), Bayesian, and Least Squares (LS).  

(iv) Using methods of prediction-error, observer based Kalman filter identification, and sub-

space identification for identifying a model for a system at hand. 

(v) The assessment of the goodness of estimated models by incorporating statistical tech-

niques.  

 The process of system identification can be divided systematically into the following 

main steps, which are also depicted in Figure 3.1 below.  

 

3.3.1 Data Generation and Acquisition 

 The basic requirement of system identification is the type of input excitation and its effect 

on the measured input. The input excitation should be such that its effect is more pronounced in 

the output rather than the effect caused by sensor noise and environment disturbances. Another 

important issue is to choose a suitable sampling rate so that there is no loss of information. 

Informative data for system identification depends critically on the sampling rate of the data. If 

the sampling interval denoted by    is too much larger than the high-frequency content in the 

signal will look like low-frequency content; this phenomenon is known as aliasing. The frequen-

cy at which aliasing takes place is known as Nyquist-frequency. Hence, a continuous or discrete-

time signal having frequency   should be sampled as fast as at least two times of its frequency in 

order to avoid the loss of information therein; i.e.  |    |      where    is the sampling fre-

quency [38]. 
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 Figure 3.1   A generic layout of system identification procedure. 
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3.3.2 Pre-processing of Data 

 In addition to the noise, raw data is generally associated with outliers, missing data, and 

drifts that affect the data quality. Outliers are the data which don’t conform to the remaining data 

chunk and they are come up from abrupt excursion in the process or sensor malfunctioning. Sim-

ilarly, the missing data is resulted from the irregular sensor malfunctioning, non-uniform sam-

pling, and losses in the data transfer. In order to perform the model estimation algorithm effec-

tively, the raw data undergoes quality inspection and pre-processing by utilizing good statistical 

methods such as ML-based expectation maximization and the multiple imputation methods. The 

data pre-processing can also be facilitated by selecting reliable instrumentation and data acquisi-

tion system as well as careful design of experiment. 

 

3.3.3 Visual Analysis of Data 

 Visual qualitative analysis of the data at every step of system identification process is the 

key requirement for information extraction. A visual scrutiny of the data helps in identifying the 

presence of outliers, drifts, and missing data before performing pre-processing step. Also, the 

visual examination of the data in the model development stage of the identification process is 

useful in the selection of model structure and its order as well as in model validation.  

 

3.3.4 Model Development 

 Development of a useful working model of dynamic system is the main motive of the 

process of system identification. The step of model development is further categorizes into two 

steps. First, determination of suitable model structure and the order based on end use, prediction 

accuracy, prior knowledge, and physical insight. Second, estimation of the required parameters 

of the very model is done by minimizing the objective function of the prediction errors. Methods 

based on LS minimize the squared 2-norm, called the Euclidean distance, between the predicted 
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and observed values of data. On the other hand, objective functions of prediction errors are for-

mulated based on maximum likelihood principle in the stochastic case of modeling.   

 

3.3.5 Validation of the Identified Model 

 In order to have a good model, it is essential to perform the integral part of the system 

identification i.e. the quality assessment and validation of the identified model through the statis-

tical analysis of the residual or prediction error and cross-validation. In the statistical analysis, 

one has to check any residual information left over for the model to capture; while in cross-

validation, one has to determine that whether the identified model has captured the global char-

acteristics of the dynamic system or process by investigating the response of the identified model 

on a fresh test data set.   

 

3.4 Development of State-Space Model 

 As discussed previously, there are basically two ways to represent the dynamic systems. 

First, the fundamental physical laws lead the modeling of the dynamical systems to differential 

or difference equations which are parameterized by coefficients relating directly to the physical 

component of the system. Second, dynamical models are represented in transfer functions ob-

tained through identification from input and output measurements either in the continuous La-

place domain or in the discrete z-domain. Yet, another more convenient form of representation of 

the model of dynamical system exists, which is known as the state-space model. In this type of 

modeling representation, the second-order equations of motion for a general multi-degree-of-

freedom system are described by the first-order strictly causal matrix differential/difference 

equation. In essence, the state-space model relates the inputs and outputs of a system with the 

help of intermediate variables called the state variables. These are the minimum set of variables 

of a dynamical system equal in number to its order and whose present values together with the 
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known control input values completely predict the future response of the dynamical system. The 

multi input and multi output (MIMO) systems can be described with elegance and simplicity 

with the help of state-space descriptions. That’s why they are usually used in modern control be-

cause it is very easily implemented with the help of modern-day digital computers having fast 

processing speed. For the sake of brevity, the MIMO discrete-time state-space model of a dy-

namical system, having   inputs and   outputs, is described below. However, the same approach 

can easily be used for single input and single output (SISO) systems in either discrete or continu-

ous-time domain.  

 

3.4.1 Discrete-Time Representation of State-Space Model  

 A generic finite-dimensional discrete LTI dynamical system can be described by the dis-

crete-time state-space model as shown below [38]. 

   (   )    ( )    ( )                                 (3.1) 

           ( )    ( )    ( )                           (3.2) 

where  ( ),  ( )  and  ( ) are the state (   ), control (   ), and output (   ) vectors 

respectively. The dimensions of constant matrices as in above equations i.e.        and   are 

(   ), (   ), (   ), and (   ) respectively; which map the inputs to outputs through a 

discrete-time state vector  ( ). In practice, the experimental data are discrete in nature due to 

sampling the analog signals such as: displacement, velocity, and acceleration into digital signals 

by analog-to-digital (A-D) converter. Therefore, the set of equations i.e. Eq. (3.1) called state 

equation and Eq. (3.2) called output equation constitute the foundation for the state-space system 

identification of a linear, time-invariant, dynamical systems of the form (3.1) and (3.2) directly 

from the observed data [38], [47]. For instance, the algorithm of some popular methods such as 

observer Kalman filter identification (OKID) and subspace identification known as the N4SID 
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are used for this purpose. The OKID algorithm is the subject of this research and will be dis-

cussed in the forthcoming Chapter 4. 

 

3.4.2 Dynamic Response of a Discrete-time State-Space Model 

 Owing to the fact that integration action is already built into the discrete-time state-space 

model, it can be simply used to simulate the free response as well as the forced dynamic response 

to a general input  ( ). Let the initial conditions of the state  ( ) and the input profile are given, 

the state at each consecutive instant for     can be computed as follows: 

   ( )      ( )    ( )           

   ( )      ( )    ( )      ( )     ( )    ( ) 

                                                            

   ( )       ( )  


k

l 1

      (   )                    (3.3) 

The output response at any instant becomes  

   ( )        ( )  


k

l 1

        (   )    ( )           (3.4) 

Eq. (3.4) indicates that stability of the dynamic system is associated with the behavior of the ma-

trix exponential   . It means that a discrete LTI system is asymptotically stable if and only if the 

absolute value of the magnitude of all the eigenvalues of matrix   is less than unity, 

i.e., |  ( )|        . Also, Eq. (3.4) is the starting point for deriving observability conditions 

which is the key concept of state-space system identification. 

 

3.5 Observability and Controllability of Discrete-Time Systems 

 The application of system identification and hence optimal control rely equally on the 

concepts of observability and controllability; however the use of observability is more pro-
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nounced due to its importance in identifying the stochastic models. The observability determines 

the ability to estimate the initial state  ( ) from the measurements and inputs over the finite time 

interval. Similar to observability, the controllability is a desirable property of the system to be 

identified, which states that a state-controllable system is the one for which there is an input se-

quence available to drive the states to the desired final values in a finite time interval. The dy-

namical system of ODU-ASV is modeled as discrete-time state-space system; therefore, these 

concepts are explained easily and elaborately in the discrete-time domain below. Though, the 

derivation of controllability and observability theories both in continuous-times as well as dis-

crete-time domains are equivalent in the sense that continuous-time system can be converted to 

discrete-time after sampling process. Assuming the linear discrete-time state-space representa-

tion of a dynamical system as described in the Equations (3.1) and (3.2). 

 

3.5.1 Observability  

 Observability means that a state  ( ) at time step     can be determined from the 

measurement of input  ( ) & output  ( ) over the finite time interval ,       -. If all 

the system states can be determined in this way, then it is called completely observable or simply 

observable system [38], [45], [47]. Consider the zero input system where  ( )   : 

   ( )      ( )            (3.5a) 

   ( )      ( )      ( )             (3.5b)  

                                           

   (   )      (   )         ( )           (3.5c) 

In compact matrix form, Eq. (3.5c) is as follows: 

          ( )                                             (3.6) 

where 
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      [

  ( ) 

 ( )
 

  (   ) 

] ,      [

   
  
 

       

]                         (3.7) 

The matrix    of       is called the observability matrix, which plays a very important role in 

state estimation and identification. The rank of observability matrix    is the order of a minimal 

realization with state space dimension n. In other words, a LTI state-space system (A, B, & C) is 

observable if the associated observability matrix    is of full rank. The full rank of observability 

matrix    guarantees that  ( ) can be uniquely solved as:   

   ( )      
                     (3.8) 

where † means the pseudo-inverse. The term minimal basically relates to the minimum number 

of states required for input-output relationship after the pole-zero cancellations get done, because 

for a given state-space system, there may be infinitely different realizations; if the realization is 

not minimal, then the redundant states are inevitably included in the model, which leads to unob-

servable and/or uncontrollable modes [38].  

 To better understand the concept of observability, assume the discrete-time system of 

Eqs. (3.1) & (3.2) with the constant matrix A having a full set of distinct eigenvalues    and only 

one output; let the system be transformed to modal coordinates. This system would be observa-

ble if and only if the constant vector         has no zero elements, where   is modal matrix 

having eigenvalues of A as its column vectors [38], [47]. This fact entails that in a single sensor 

system, the sensor is located at a node of a mode, then that particular mode will be unobservable. 

After modal transformation, the discrete-time single output system of Eq. (3.1) gets the form as: 

 

    (   )          ( )       ( ) 

    (   )      ( )     ( )              (3.9) 
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   ( )      ( )    ( )           (3.10)  

Here the subscript m indicates that the matrices are resulted from the modal transformation, 

hence        ,           and the output influence and eigenvalues matrices are given as 

below: 

             ,            -                     (3.11) 

 

     [

          

          
        
          

]             (3.12) 

and the observability matrix in modal coordinates is as follows:  

   ̅   [

  
   
 

        

]   [ 

  
    

        
  
    

   
 
       

  
    

 

 
  
     

   
 

  
     

   
 
 
   

 
  
     

]                (3.13) 

If any element of the output influence vector   is zero, for instance    = 0, then observability 

matrix  ̅  will be rank deficient. This means the corresponding modal coordinate     will be 

unobserved because it is not included in the output of the system. Both observability and control-

lability have dual relationship; hence the realization of a system is minimal when the system is 

both observable and controllable.  

 

3.5.2 Controllability 

 Controllability is also a requirement for state-space model identification; once you identi-

fy the minimal realization of the state-space model then it is necessary to be able to excite all the 

observable states by some control action. A state  ( ) at time step   will be controllable if this 

state can be reached by some input sequence from the origin or some initial state  ( ) of the sys-

tem in a finite time interval ,       -. Strictly speaking, the system is completely control-
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lable or simply controllable only if a set of controllable states constitute the entire state-space. 

Consider a scalar control input  ( ) which means     and constant matrix A has distinct ei-

genvalues      Also, some initial state  ( ) be driven by the control input to a desired final state 

at  ( ) at time step     (p being an arbitrary number) is as follows: 

   ( )      ( )    ( )       (3.14a) 

   ( )      ( )    ( )      ( )     ( )    ( )              (3.14b)  

                                                                                

   ( )       ( )        ( )       (   )    (   ) 

                  ( )  ,          - [ 

 ( )
 

 (   )

 (   )

 ]                       (3.14c)  

In compact matrix form, Eq. (3.14c) is written as follows: 

   ( )     ( )               (3.15) 

where,    is the controllability matrix of      as: 

      ,            -         (3.16) 

In order to find the control input time history for driving the initial state  ( ) to a desired final 

state  ( ), Eq. (3.15) is solved. The solution depends on the rank of the controllability ma-

trix    . Therefore, it turns out that a linear, finite-dimensional, discrete-time dynamical system 

is controllable if and only if the controllability matrix is of full row rank n, which is the order of 

the system and    is larger than or equal to n. The addition of terms beyond       in the con-

trollability matrix will not improve its rank. 

 The concept of controllability is easily understand by transforming the original state-

space equation into modal coordinates that diagonalizes A containing the distinct eigenvalues as 
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shown in Eq. (3.12). The state is written as      , where   is a nonsingular modal matrix 

with full rank n containing all the independent eigenvectors of A as its column vectors. After 

modal coordinate transformation, the elements of    and controllability matrix  ̅  is denoted by: 

  

      [

  
  
 
  

]                                  (3.17) 

 

    ̅     ,               -   

[
 
 
 
  
                 

  
                 

                              
  
                 ]

 
 
 
      (3.18)  

If any of the elements of    vector is zero, then the rank of controllability matrix  ̅  will be-

come    . Hence, from Eq. (3.15) in modal coordinates, it is concluded that element of the 

state vector can’t be controlled by any input and the system becomes uncontrollable. 

 

3.6 System Realization & Role of Markov Parameters 

 The term system realization will be used in this research throughout for MIMO state-

space system such as ODU-ASV, which is a technique of computing the system matrices A, B, C 

from the Markov parameters as described below. For a given input-output system, there are infi-

nite state-space realizations possible that depict the same input-output behavior. Consequently, 

there is a chance for the state-space description to include more states than what is sufficiently 

required which may leads to the loss of observability and controllability. Therefore, the term 

minimal realization descriptions will be introduced without involving in the cancellation of un-

stable modes. Such type of minimal realization has the minimum number of state variables es-

sential for the description of specific input-output behavior of the dynamic system. 
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3.6.1 Markov Parameters 

 The sequence of system Markov parameters or Markov parameters are actually the pulse 

response of a dynamical system and can be obtained from the experimental data in the time-

domain or using frequency response function (FRF) in the frequency domain. These parameters 

are unique for a given linear dynamical system and hence are commonly utilized as the founda-

tion for the identification of discrete-time model for the said linear system. 

For simplicity, consider the discrete LTI stochastic dynamical system in state-space form having 

single input i.e.     as shown in Equations (3.1) and (3.2). Now, let the unit pulse  ( )    

and  ( )    for time index           be applied to this system and solve for the output re-

sponse  ( ) with zero initial condition i.e.  ( )     as follows: 

 

  ( )                                 
      
→      ( )      ( )    

  ( )    ( )                      
      
→      ( )       ( )    ( )  

  ( )     ( )    ( )  
      
→      ( )        ( )     ( )    ( )  

                                                                                                           

  ( )  


k

l 1

      (   )
      
→     ( )  



k

l 1

       (   )    ( )       (3.19)  

The constant matrices in the sequence of Eq. (3.19) are called as Markov parameters    having 

dimension     which are unique and coordinate-independent. They are given as: 

 

                                                            (3.20) 

As it is apparent from the Eq. (3.20), the constant system matrices A, B, C, and D are embedded 

in the Markov parameter sequence. As     ; therefore, only the matrices A, B, and C are re-

quired to be determined for the system identification. 



53 

 

3.6.2 The Eigen-system Realization Algorithm (ERA) 

 Although there are various methods to estimate the state-space realization (       ) 

from the system Markov parameters, but the Eigen-system realization algorithm (ERA) is com-

monly used in identification and control of linear dynamical system. This method is first devel-

oped by Ho and Kalman (1966) for the deterministic case and followed by Kung (1978) for the 

noisy case. Once the open loop Markov parameters as shown in Eq. (3.20) are obtained, then 

they are incorporated to construct the generalized block data matrix known as Hankel matrix of 

the order       as shown:  

   ( )   

[
 
 
 
  
  
        

  
  
   
 
       

  
    

 

  
  
   

     
    

   
  
 
   

 
      ]

 
 
 

           (3.21)  

where   and   are the number of outputs and inputs respectively, and   and   are arbitrary inte-

gers chosen such that       . In order the system to be both observable and controllable, 

Hankel matrix  ( ) will be of full rank   which indicates the order of the system. For this pur-

pose, the dimension      trivially. In order to prove this claim, let construct  ( ) from Eq. 

(3.20) and Eq. (3.21) and decompose subsequently into the following two matrices:  

   ( )  [

  
   

        
   
    

     
 
        

    
    

 

  
      

    
    

    
   
 
 
  

 
        

]      
               (3.22)  

where    and    are block observability and controllability matrices as:         

     

[
 
 
 
 

   
  
   

 
       ]

 
 
 
 

 ,        (3.23a) 

     ,                  -                          (3.23b) 
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 As discussed previously, the system will be controllable and observable for minimum 

realization of order  , which leads to the fact that the block observability matrix    and block 

controllability matrix    will be of rank  . Hence, it is inferred from Eq. (3.22) that rank of the 

Hankel matrix  ( ) is  . The order of Hankel matrix can be same as that of the constant 

trix   of the true system in that case when the data has sufficiently low noise. The ERA begins 

with the factorization of the Hankel matrix as given in Eq. (3.22) utilizing singular value decom-

position (SVD) as follows:  

   ( )                     (3.24) 

where both matrices   and   have orthonormal columns so that       and      ; and   is a 

rectangular matrix of monotonically non-increasing singular values arranged along the diagonal 

as given below:  

     0
   
  

1 ,           ,                       -      (3.25) 

where 0 are zero matrices with suitable dimensions and                      

 . In reality, the Hankel matrix  ( ) is usually of full rank due to a noisy set of measurements, 

process noise, and computer round-off; therefore, in this case the rank does not represent the true 

order of the system. Now to dig out the true inherent linear system which produces the smooth 

version of dynamical response, it is the purpose of realization to select the first   non-zero singu-

lar values in the diagonal matrix   and accordingly to choose the first   columns of   and   as 

well. Hence the Hankel matrix  ( ) of rank   as well as its pseudo-inverse becomes: 

    ( )          
         (3.26) 

              
    

         (3.27) 

where   
         

   ; From Eqs. (3.22) and (3.26) we have:  
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   ( )  ,     

 

 - ,  

 

   
 -           

which implies that    ,     

 

 -  and    ,   

 

   
 - making both    and    balanced as:  

    
      

 

   
      

 

                             (3.28a) 

      
     

 

   
      

 

              (3.28b)  

Both the controllability and observability grammians are equal and diagonal as given in Eqs. 

(3.28a) and (3.28b) which implies that the estimated realization is as controllable as it is observ-

able. From Eqs. (3.23a) and (3.23b), the estimated values of matrices   and   are formed as: 

   ̂   the first   columns of   , 

      ̂   the first   rows of   , 

In order to estimate the  ̂, generalized shifted block Hankel matrix of dimension       is 

used as follows: 

   ( )   

[
 
 
 
  
  
        

  
  
   
     
           

    

    
 

       
    

    
         
    

   
   
 
    

 
    ]

 
 
 

           (3.29)  

Similar to the block Hankel matrix  ( ), the shifted block Hankel matrix  ( ) can be written 

with the help of Markov parameters and split subsequently into two matrices as given: 

   ( )  [

   
    

          
  

    
     

 
      

    
      

 

  
    

    
      

      
   
   
  

  
 

        

]                   (3.30) 

                  

 

      

 

    
              (3.31) 

The state matrix   is obtained from Eq. (3.31) as:  

   ̂    

 
 

   
   ( )      

 
 

                        (3.32) 
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The detailed mathematical proof of above Eq. (3.32) is given in [38], [47]. The identified triplet 

( ̂  ̂    ̂) is a minimum realization having order   of the discrete-time state-space system under 

consideration. The sign ˄ over the system matrices represent their estimated quantities identified 

from the data having sufficiently low noise, and hence, they are differentiated from the true sys-

tem matrices.  

 The computation method of ERA with data correlation (ERA/DC) algorithm is all similar 

to the ERA except that in ERA/DC a block correlation matrix  ( ) with the elements of a 

square matrix called data correlation matrix    (   ) is built; where the    (   ) is the 

product of a Hankel matrix  ( ) and a shifted Hankel matrix  (   ) and   being integer se-

lected to avoid substantial overlap of adjacent   blocks. The square data correlation matrix 

   (   ) is smaller than Hankel matrix  ( ) used in ERA. Also, an additional step required 

for the ERA/DC algorithm is the computation of controllability matrix   , from which the first   

columns determine the estimate of input matrix i.e.  ̂.  

 

3.6.3 Additional Accuracy Indicators for Discrimination of True Modes  

 As described in the previous section that the singular values are used to distinguish true 

modes from the noise modes, in this section two other methods including the Modal Amplitude 

Coherence (MAC) and the Mode Singular Value (MSV) are described to be used for quantifying 

the system & noise modes. For this purpose, the identified discrete-time model with   inputs 

and   outputs is described in modal coordinates as given below: 

 

    (   )    ̂  ( )   ̂  ( )        (3.33a) 

              ( )    ̂  ( )    ( )                 (3.33b) 

where the diagonal matrices  ̂ are the identified eigenvalues; as well as  ̂  and  ̂  are the input 
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and output matrices in modal coordinates respectively, which are given as: 

   ̂   

[
 
 
 
 ̂         

  ̂      
  

        
        ̂  ]

 
 
 

 ,        (3.34a) 

   ̂   

[
 
 
 
 ̂ 
 ̂ 
 
 ̂ ]

 
 
 

,  &   ̂   , ̂   ̂     ̂   -                    (3.34b & 3.34c)  

The measurement vector  ( ) is real, so the identified eigenvalues will be complex conjugate 

pairs. Also, each  ̂  is an input row-vector of length   and  ̂  is an output column-vector of 

length   for           where   is the number of modal coordinates. The sequence of identi-

fied Markov parameters for a linear system is: 

   ̂  [ ̂   ̂  ̂    ̂  ̂  ̂     ̂  ̂     ̂ ]    , ̂    ̂    ̂    ̂   -        (3.35) 

where   is the number of Markov parameters. Each modal coordinate constitutes a sequence of 

Markov parameters given as below:      

  [ ̂  ̂    ̂  ̂   ̂     ̂  ̂ 
    ̂ ]   for                     (3.36) 

Here,   represents the length of data. From the row vector  ̂  and identified eigenvalue  ̂  , the 

sequence of identified modal amplitude time-history  ̂  is reconstructed: 

   ̂   [ ̂    ̂  ̂    ̂ 
  ̂     ̂ 

    ̂ ]   for                     (3.37) 

The sequence of identified modal amplitude time-history  ̂  can also be computed by decompos-

ing the Hankel matrix, as given in Eq. (3.21), through SVD [38], [47]. 

 

    ( )  [

  
  
        

  
  
     

 
      

         

      
 

  
  

    
    
    

   
  
   

          
 

    

]             (3.38) 
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             ,     

 

 - [  

 

   
 ]               (3.39) 

               ,     

 

 -      [  

 

   
 ] 

             ,     

 

   - ,     

 

   
 -     ̅ ̅           (3.40) 

The arbitrary number   is so selected that     ,   being the order of the system. If the modal 

coordinates are used, then   is the eigen-vector matrix composed from the estimated state 

trix  ̂ rather than the real system matrix   which is usually unknown; therefore, from Eqs. (3.35) 

and (3.40), we have:  

     ( )     

[
 
 
 
    

     
        

     

      
       

 
      

          

        

 

  
        

     
    

      
   
   
  

           
 

        ]
 
 
 
    ̅  ̅     (3.41) 

                 

[
 
 
 
 

    
   

    

 
        ]

 
 
 
 

  ,                        -      (3.42) 

Here, the real system matrices i.e.  ,     and    are described in modal coordinates. Due to 

noise, some very small nonzero singular values are truncated after the singular value decomposi-

tion; hence from Eq. (3.42)  

   ̅  ,                        -           (3.43) 

or     ̅   [

 ̅ 
 ̅ 
 
 ̅ 

]   

[
 
 
 
,            

        
       -

,            
        

       -
 

,            
        

       -]
 
 
 

           (3.44) 

In real practice, some nonzero singular values are discarded owing to the presence of noise, 

therefore identified modal amplitude time-history  ̂  is an approximation of  ̅ ; otherwise both 
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would be identical.  

 

3.6.3.1  MAC Accuracy Indicator 

 The MAC is defined to be the dot product of the vector formed by the unit pulse response 

history up to the selected timestamps that is related to the mode of the identified model and the 

corresponding vector made by the pulse response data used in the identification process. It is 

generally represents the cosine of the angle between the vectors of the measured response time-

history and the identified model’s response history as denoted by the following relation: 

         
|  ̅   ̂ 

 |

(| ̅   ̅ 
 | | ̂   ̂ 

 |)   
              (3.45) 

where           and     denotes the transpose and complex-conjugate of the term. 

 

3.6.3.2  MSV Accuracy Indicator 

 This is a method of quantifying as well as specifying the contribution of each mode to the 

pulse response history of the identified model obtained through ERA. Mathematically, it is de-

scribed by taking the maximum singular value of the sequence of Markov parameters of each 

identified modal coordinate as: 

          √| ̂ | (  | ̂ |  | ̂ 
 |    | ̂ 

   |)| ̂ |   

               √
| ̂ | | ̂ |

(  | ̂ |)
     (If | ̂ |   1 for sufficiently large  )     (3.46) 
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CHAPTER 4 

 

OBSERVER KALMAN FILTER IDENTIFICATION 

 

4.1  Introduction 

 In chapter 3, the state-space realization performed by some time-domain method namely 

ERA or ERA/DC is discussed; in which the Hankel matrix composed of the system Markov pa-

rameters are used to identify the state-space system matrices, i.e., (         ). The system 

Markov parameters for the lightly damped systems obtained through traditional identification 

methods may present very slow decay of the response to initial conditions, which may contribute 

to high computational cost in the identification algorithm owing to the larger Hankel matrix. 

Therefore, in order to identify the lightly damped systems in discrete time domain with multiple 

inputs and multiple outputs, an asymptotically stable observer model is introduced and is the 

main topic of this chapter. The purpose of using an observer allows to change the decay rate of 

the original system response as desired by compressing the number of identified Markov pa-

rameters leading to smaller Hankel matrix. Consequently, the data is compressed to achieve the 

computational efficiency. Section 4.1 is introduction to this chapter; while in section 4.2, some 

prominent types of discrete-time model structures are discussed. The concept of state-space line-

ar observer is introduced in section 4.3. The backbone of system identification work done in this 

research is the core-equation of the observer Kalman filter identification (OKID) algorithm, i.e., 

Eq. (4.32), which is detailed in sections 4.4 and 4.5. Afterwards in section 4.6, the relationship of 

discrete-time state space observer and steady-state Kalman filter is discussed. Finally, observable 

canonical form realization, which is also used in this research, is elaborated.  
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4.2 Prominent Types of Model Structures 

 As discussed in the previous chapter, system identification pertained to the techniques of 

developing the mathematical models of dynamical systems from the set of input-output sampled-

data. A quality model obtained through system identification is normally validated by its good-

ness of fit, i.e. how well the model attempt to fit the measured data. Therefore, a prior knowledge 

regarding the system at hand is pretty much supportive for the selection of model structure. Gen-

erally, the overall model represents the deterministic-plus-stochastic description of the input-

output pair { ( )  ( )} for the combined deterministic as well as stochastic effects. Hence the 

output measurement  ( ) of the model is the superposition of true response      ( ) generated 

by the deterministic system and the disturbances/noise  ( ) in discrete domain as 

   ( )       ( )   ( )                (4.1)  

Let the deterministic and stochastic systems in Eq. (4.1) be discrete LTI systems denoted by the 

transfer functions   and   representing the plant and noise models, respectively; also, let the 

discrete input be  ( ) and the error to be Gaussian white noise (GWN); then, we have   

   ( )     ( )     ( )             &    ( ): GWN        (4.2) 

As discussed in the previous chapter, there are two main categories of the model structures of 

discrete-time deterministic and stochastic systems, i.e. non-parametric and parametric, which 

may be cast either in time-domain or in frequency-domain. A brief summary of these model 

structures in conjunction with structured and unstructured state-space models are given below. 

 

4.2.1 Non-parametric Model structure 

 In non-parametric models, both the system/process and noise models’ transfer 

tions   and  , respectively, are represented in non-parametric form, such as convolution form or 

using spectral representations. Some of the important descriptions of the non-parametric model 
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structure are impulse, step, and frequency response models. The relevant features of the non-

parametric models are that they require minimal assumptions about the process and that they 

don’t need any substantial user intervention. The example of non-parametric time-domain model 

corresponding to convolution forms for   and   is 

   ( )  


n

 ( ) (   )  


m

 ( )  (   )        (4.3) 

Let’s consider the usual conditions of causality, i.e.  ( )      ( )     for     &     

and uniqueness of noise model, i.e.  ( )   . Then, Eq. (4.3) can be expressed as  

     ( )  


0n

 ( ) (   )  


0m

 ( )  (   )
⏟                          

                 

  ( )       (4.4) 

 

 

4.2.2 Parametric Model structure  

 Parametric structures of the input-output system given in Eq. (4.2) result from the param-

eterizing the system and noise models  (   ) and  (   ) respectively. Parameterization of   

and   is a very helpful representation of the system regarding compactness; but, using this ap-

proach, one has to confront the challenge of selecting the suitable model structure for a given 

application. There are many methods of parameterizing the transfer functions   and  , but the 

rational polynomial transfer function representations are mostly incorporated. Basically three 

main categories of parametric model structures exist, namely the equation-error (e.g. AR, ARX, 

MA, and ARMAX), output-error, and the Box-Jenkins; the equation-error and output-error mod-

els are briefly discussed below. 

 

4.2.2.1 AR Model 

 The output of Auto-Regressive (AR) model is the autoregressive of itself. The structure 

of AR model is 



63 

 

     ( )  


q

i 1

   (   )   ( )          (4.5) 

where    are the parameters of AR model and  ( ) is random Gaussian white noise.  

 

4.2.2.2 ARX Model 

 The parametric description knows as the Auto-Regressive eXogenous (ARX) model is 

the extension of the AR model which is commonly incorporated in the recursive technique of 

system identification. The structure of ARX model in the difference equation form is given as: 

   ( )  


q

i 1

   (   )  


q

i 1

   (   )   ( )        (4.6)  

where  (   ) represents the auto-regressive (AR) part,  (   ) represents the exogenous (X) 

part,    and    are the ARX model parameter coefficients. As the random Gaussian white noise 

gets into the difference equation, it is also called the equation-error model. A merit of the ARX 

model structure is that different orders of the system can be screen out in a computationally effi-

cient way for their suitability.      

 

4.2.2.3 MA Model 

 The moving average (MA) model structure represents the moving average term combined 

with the Gaussian white noise as follows: 

  ( )  


q

i 1

   (   )   ( )           (4.7) 

where    are the moving average parameters.  

 

4.2.2.4 ARMAX Model 

 The model structure named Auto-Regressive Moving Average with eXogenous input 

(ARMAX) is an extension of both the ARX model because of the incorporated moving average 
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term in the noise model as well as the ARMA model due to the effects of exogenous inputs, 

which is given: 

   ( )  


q

i 1

   (   )  


q

i 1

   (   )  


q

i 1

   (   )   ( )              (4.8) 

where   ,   , and    are the ARMAX parameters.  

 

4.2.2.5 Output-error Model 

 It is intuitive that for one-step ahead prediction of the measurement, prediction of both 

discrete-time deterministic system/process and stochastic disturbances/noise are required      

   ̂( )   ̂( )   ̂( )              (4.9) 

Assuming the error in the measurement is absolutely unpredictable; it means that zero-mean 

Gaussian white noise error signal becomes  ̂( )   . So from Eq. (4.9), we have  

   ̂( )   ̂( )      (   )     (   )       (4.10) 

where   ,   , and  (   ) are unknowns. Since GWN error signal directly enters the output, so 

the model constructing the output predictor of Eq. (4.10) is known as the output-error model. 

 

4.2.3 Un-structured and Structured State-space Model 

 The third alternative of model structure is either the unstructured or structured state-space 

model. The model description which has no preference for specific structure for any or all of the 

system matrices or specific basis for the states is known as freely parameterized or unstructured 

state-space model. Therefore, the unstructured state-space model usually has a much larger num-

ber of unknowns to be estimated than those of a corresponding input-output model characterized 

by a transfer function. The OKID is not equipped with the ability of imposition of any con-

straints on the structure of sate-space matrices; the condition of constraints’ imposition may gen-

erally arise whenever a state-space form corresponds to a transfer function form or a physical 
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representation is desired. On the other hand, the structured state-space model is the one in which 

the structural constraints are required to be imposed on system matrices corresponding to a par-

ticular input-output model structure, e.g. ARX, ARMAX that results in the matrices having non-

zero entries only in specific locations. The benefit of the structured state-space model is parsi-

mony, identifiability, and physically meaningful representation on the cost of excessive compu-

tation for its estimation. The structured state-space models are further sub-divided into parame-

terized black-box and grey-box state-space models due to the prior knowledge which causes to 

make a particular structure. The example of structured state-space model, in which non-zero en-

tries of system matrices are basically dealt as parameters   as  

   (   )   ( ) ( )   ( ) ( )          (4.11a) 

          ( )   ( ) ( )   ( ) ( )                 (4.11b)    

 

4.3 State-space Linear Observer  

 In most cases, the sate vector of the linear state-space model can’t be accessed through 

direct real-time measurement but sometimes a subset or a linear combination of the state is avail-

able to be measured from the output  . Therefore, the state-space observer or state estimator, 

comprised of the linear state-space equations, is used to estimate the states and possibly the out-

put of the original linear system by utilizing the measured input and output data so that those can 

adequately be used for the state-feedback or optimal trajectory tracking control of the dynamical 

system. Generally, for state estimation of the deterministic systems, the Luenberger observer is 

used, while for the stochastic systems, the Kalman filter formulated by Kalman (Kalman, 1960; 

Kalman & Bucy 1961) is a linear estimator used for estimation of the states optimally under the 

assumptions of Gaussian white noise both in the process and measurements [38]. The observer 

equation in discrete-time domain is derived from the generic discrete LTI multivariable state-
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space model given as following [37], [45]: 

   (   )    ( )    ( )             (4.12) 

          ( )    ( )    ( )                    (4.13) 

where  ( )      ,  ( )      , and  ( )       are the state, input, and the output vectors. 

Let the state-space matrices, i.e.      , &   having suitable dimensions as well as the 

put  ( ) and the output  ( ) be known. Also, the zero initial conditions are to be assumed, 

i.e.  ( )   . The state and output response of the discrete LTI system as given in Eqn. (4.12) 

and (4.13) for the time instants             becomes  

   ( )   ,     ( )    ( ) 

   ( )    ( ),    ( )     ( )    ( ) 

   ( )     ( )    ( ),   ( )      ( )     ( )    ( ) 

                                                                 

   (   )    




1

1

l

i

       (     )            (4.14) 

   (   )    




1

1

l

i

        (     )    (   )          (4.15) 

Eq. (4.15) can be written in matrix form 

                               (4.16) 

where dimensions  ,  , and   are the number of outputs, inputs, and data length respectively. 

The terms  ,    and   represent the block matrices of the output data, unknown Markov parame-

ters, and input data as given  

     , ( )    ( )    ( )     (   )-         (4.17) 

     ,                      -          (4.18) 
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[
 
 
 
 
 ( )     ( )     ( )     (   )
              ( )     ( )     (   )
                            ( )     (   )

                                               
                                       ( ) ]

 
 
 
 

          (4.19) 

From Eq. (4.16), it is evident that the solution for matrix    is not unique if    . Additionally, 

when the input signals has zero initial value or not rich in frequency content adequately, or the 

data length   is too large; then the block upper triangular input matrix   turns out to be ill-

conditioned and hence the solution of the matrix        can’t be accurately found. In order 

for the system matrix   to be asymptotically stable, a time index   is arbitrarily selected to be 

sufficiently large to make        for    ; so Eq. (4.16) can be expressed as 

            (   )   (   )              (4.20) 

where data samples   should be taken larger than  (   ). The block matrices     (   ) and 

  (   )   are the truncated variants of the       and       as given in Eq. (4.16). For state-space 

system of Eqs. (4.12) as well as (4.13), the first   Markov parameters approximate the solution 

of       , where    is the Moore-Penrose pseudo-inverse of the block input matrix  . For 

lightly damped system, the values of integer   and hence data length   are to be increased so that 

Eq. (4.20) is satisfied. Consequently, the size of the block input matrix   also becomes exces-

sively large which makes the calculation of its Moore-Penrose pseudo-inverse inadequate. For 

this purpose, damping of the system is increased artificially by introducing a term   ( ) with 

the arbitrary matrix        to the state equation i.e., Eq. (4.12). As a result, the most general 

form of linear discrete-time state-space observer equation is derived as: 

   (   )    ( )    ( )    ( )    ( )  

        (    ) ( )  (    ) ( )    ( )       (4.21) 

or 
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   (   )   ̅ ( )   ̅ ( )           (4.22) 

where 

    ̅               (4.23a) 

   ̅  ,       -        (4.23b) 

   ( )   [
 ( )
 ( )

]        (4.23c) 

Eq. (4.22) is called a discrete-time state-space observer equation of dynamic system provided 

that the state  ( ) is taken as an observer sate vector. The observer sate vector is driven by the 

input  ( ) comprised of  ( ) and  ( ), which are actually the input and the output of original 

state-space system of Eqs. (4.12) and (4.13). 

 

4.4 OKID Core-equation and Computation of Observer Markov Parameters  

 The set of Markov parameters of the state-space observer equation, i.e. Eq. (4.22), are 

known collectively as the observer Markov parameters (OMPs) denoted by  ̅. These parameters 

are the blend of system Markov parameters and observer gain Markov parameters. The system 

matrices  ,      and   are computed from the former while the observer gain matrix   is deter-

mined by the latter parameters. Similar to the Eqs. (4.14) and (4.15), the input-output mapping 

for Eq. (4.22) is described in matrix form   

         ̅  ,(   )(   )  -     ,(   )(   )  -          (4.24) 

where   

     , ( )    ( )    ( )     (   )- 

    ̅  ,      ̅     ̅ ̅     ̅    ̅     ̅    ̅-         (4.25) 
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[
 
 
 
 
 
 
 ( )    ( )    ( )     ( )                    (   )

             ( )    ( )    (   )             (   )

                         ( )    (   )            (   )
                                                                                  
                                         ( )              (     )

                                                                         
                                                                            ( ) ]

 
 
 
 
 
 

        (4.26) 

The matrix        can arbitrarily be selected in such a way that the observable system of Eq. 

(4.22) becomes a deadbeat observer, which implies that all the eigenvalues of the observer state 

matrix  ̅ are attempted to be placed at the origin. This causes the observer Markov parameters 

  ̅  ̅    for     in the scenario of noise-free data. In case of real-time data having some 

noise, the OMPs may not decay asymptotically to zero; therefore, the eigenvalues of the observer 

state matrix  ̅ are placed in a way to make   ̅  ̅    for    , provided that the integer   is 

chosen to be sufficiently large. With this approach, the observer Markov parameters are obtained 

by solving the linear input-output mapping Eq. (4.27) as given below that is formed by the real 

noisy data set. 

         ̅  ,(   )   -   ,(   )   -                 (4.27) 

where 

     , ( )    ( )    ( )     (   )- 

   ̅   ,      ̅     ̅ ̅      ̅    ̅-          (4.28) 

        

[
 
 
 
 
 ( )    ( )    ( )     ( )                    (   )

             ( )    ( )    (   )             (   )

                         ( )    (   )            (   )
                                                                                  
                                         ( )              (     )]

 
 
 
 

       (4.29) 

Similar to Eq. (4.20), the block matrices  ̅ and   of the observer equation are the truncated vari-

ants of the  ̅ and   as given in Eqs. (4.25) and (4.26), respectively. For state-space realization of 

Eq. (4.22) which is the linear observer equation, the non-recursive (batch) least square solution 
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to equation  ̅      for  ̅ is approximately satisfied by the first   Markov parameters; where    

is the Moore-Penrose pseudo-inverse of the block input matrix   related to the observer equation. 

The unique solution of  ̅ demands that all the rows of   must be linearly independent. Therefore 

the integer   is chosen to be sufficiently large enough in order to maximize the number of inde-

pendent rows (   )      of  . It means that   is the upper bound of the order of the dead-

beat observer. The non-recursive (batch) least square solution to Eq. (4.27) is given as follows. 

Considering the state equation of LTI observer system as given in Eq. (4.22) and let's assume 

zero initial conditions, i.e.  ( )   , then the sequence is 

   (   )   ̅ ( )   ̅ ( ) 

   (   )   ̅ (   )   ̅ (   ) 

                    ̅  ( )   ̅ ̅ ( )   ̅ (   ) 

                                                                 

   (   )   ̅ (     )   ̅ (     ) 

                    ̅  ( )   ̅    ̅ ( )   ̅    ̅ (   )    

             ̅ (     )           (4.30) 

Incorporating Eq. (4.30) into Eq. (4.13) gives    

   (   )    (   )    (   ) 

                     ̅  ( )    ̅    ̅ ( )    ̅    ̅ (   )    

              ̅ (     )    (   )                 (4.31) 

The set of equations in compact matrix form for             is the core equation of OKID 

given as below: 

    ̅    ̅    ̅  ̅            (4.32) 

where   ̅   , ( )    (   )    (   )     (   )-    
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     , ( )    ( )    ( )     (     )- 

   ̅   ,      ̅     ̅ ̅      ̅    ̅- 

   ̅   

[
 
 
 
 
     ( )                (   )            (   )

 (   )              ( )                  (   )

 (   )            (   )            (   )
                                                           

      ( )                    ( )            (     )

 

]
 
 
 
 

        (4.33) 

In fact, the terms   ̅ and  ̅ of Eq. (4.32) are known measurements, while the OMPs denoted by  ̅ 

are not known. The term   ̅   given in Eq. (4.32) can be discarded, provided that the observer 

sate matrix  ̅  is very small and all the states are bounded then Eq. (4.32) is written as: 

    ̅   ̅  ̅             (4.34)  

Eq. (4.34) can be solved for observer Markov parameters  ̅ by non-recursive (batch) least-square 

method subject to the condition that the inverse of matrix , ̅  ̅ - exists as given below: 

   ̅    ̅  ̅ , ̅  ̅ -                (4.35) 

otherwise 

   ̅    ̅   ̅              (4.36)  

where  ̅  is the Moore-Penrose pseudo-inverse of the block input matrix  ̅; moreover, the subset 

matrices   ̅&  ̅ are obtained by discarding the first   columns of the matrices   and   related to 

the linear input-output mapping Eq. (4.27). 

 

4.4.1 Extraction of System Markov Parameters from OMPs 

 As already discussed, the OMPs of the observer model are combination of the system 

Markov parameters and the observer gain Markov parameters. The system matrices  ,      

and   are computed from the system Markov parameters through ERA algorithm as discussed in 

chapter 3, while the observer gain matrix   is determined from the observer gain Markov param-

eters. For obtaining the system Markov parameters, the identified observer Markov parameters in 
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matrix  ̅ is partitioned  

   ̅  , ̅     ̅     ̅    ̅ -           (4.37) 

where 

   ̅       

   ̅    ̅    ̅     for                (4.38a) 

         , ((    )   )(    )    (    )    -                     (4.38b) 

         , ̅ 
( )

     ̅ 
( )

-                                                   (4.38c) 

The system Markov parameter    is recovered from the product term  ̅ 
( )

 in Eq. (4.38b):      

   ̅ 
( )   (    )         

   ̅ 
( )     (  )  

As the system Markov parameter      ,  

   ̅ 
( )      ̅ 

( )  

      ̅ 
( )   ̅ 

( )                                   (4.39) 

Similarly, the Markov parameter     is recovered from the product term  ̅ 
( )

 given in Eq. 

(4.38b): 

   ̅ 
( )    ̅ ̅ 

            (    ) (    ) 

                               

                     (    )   

As the system Markov parameter       , so  

   ̅ 
( )      ̅ 

( )    ̅ 
( )        

      ̅ 
( )   ̅ 

( )    ̅ 
( )            (4.40) 
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Likewise, the Markov parameter      is recovered from the product term  ̅ 
( )

 given in Eq. 

(4.38b): 

   ̅ 
( )    ̅  ̅ 

            (    )  (    ) 

            (                (    ) 

                       (    )     (    )    

As the system Markov parameter        ,   

   ̅ 
( )      ̅ 

( )    ̅ 
( )    ̅ 

( )       

      ̅ 
( )   ̅ 

( )    ̅ 
( )    ̅ 

( )          (4.41) 

Therefore by induction, the system Markov parameters are generally described in terms of the 

observer Markov parameters as 

       ̅ 
( )  



k

i 1

  ̅ 
( )       for                        (4.42a) 

      


p

i 1

  ̅ 
( )        for             (4.42b) 

From both parts of Eq. (4.42) as above, it is evident that the system Markov parameter    is the 

linear combination of its past arbitrary   system Markov parameters; which indicates one can 

choose only   independent system Markov parameters for a system of order  . The integer   is 

chosen in such a way that the terms  ̅ 
( )

 and  ̅ 
( )

 are assumed to be zero for the index    . The 

system Markov parameters can also be related to the observer Markov parameters with the help 

of generalized Hankel matrix   as        

   ( )   ̆             (4.43) 

where the integer   is selected to be sufficiently large and the matrices  ( )   and  ̆ are:     
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      ̅ 
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-                  (4.44) 

     

[
 
 
 
  

  
        

  

  
        

  

  
   
     
           

    

     
       
    

    
       
    

    
        
    

   
   
 
    

 
    ]

 
 
 

         (4.45)  

   ̆  ,                           -          (4.46) 

As from Eq. (3.27), we know the Hankel matrix can be written 

        

[
 
 
 
 

  
  
   

 
       ]

 
 
 
 

   ,                  -        (4.47) 

Hence, from Eqs. (4.43) and (4.47)  

   ̆   ( )   ( )               (4.48) 

The number of observer Markov parameters   calculated must be selected in such a way so 

that     ; where       and   are the number of outputs, arbitrary number, and order of the 

identified system model. As from Eq. (4.42), the number   specifies the maximum number of 

identified system Markov parameters. It indicates    is the upper bound on the order of the 

identified system model [38], [47]. The set of equations i.e. Eq. (4.42) can also be written in the 

compact matrix form:   
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 ̅ 
( )   ̅ 

( ) 
 

  ̅   
( )   ̅   

( )   ]
 
 
 
 
 

    (4.49) 

 

where   and  ̅ 
( )

 (for            ) are     square matrices. It is noted from Eq. (4.49) 

that recursive back substitution for               gives Eq. (4.42). 
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4.4.2 Extraction of Observer-gain Markov Parameters from OMPs 

 The observer gain   is the main quantity used for relating the linear observer equation to 

the finite-difference equation. The quantity   is identified by computing the following sequence 

in terms of the OMP.  

    
             for                      (4.50) 

The sequence of Eq. (4.50) is usually known as observer gain Markov parameters. The realiza-

tion of   and   in the sequence can be achieved by the identification procedure described in 

Chapter 3. The first, second, and third parameters of the sequence in Eq. (4.50) are obtained by 

considering the term  ̅ 
( )

  (    )     in Eq. (4.38) as: 

    
      ̅ 

( )
            (4.51)    

   ̅ 
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   ̅   (    )  

           (        )    
   ̅ 
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→        

   ̅ 
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  ̅ 
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             (4.52) 

   ̅ 
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   ̅    (    )   

          (             ̅   ) 
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   ̅ 
( )

  ̅ 
( )   

   ̅ 
( )

   
           (4.53) 

Hence, the sequence of observer gain Markov parameters are generally described in terms of 

OMP as: 

    
      ̅ 

( )
        (4.54a) 
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   for                        (4.54b) 
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p

i 1

  ̅ 
( )     

   for             (4.54c) 

The observer gain   is obtained by solving LS of the relation between the observability matrix of 

the system and the observer gain Markov parameters   

    (   )                    (4.55) 

where  
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          (4.56) 

Integer   is chosen sufficiently large in order to have the observability matrix   of rank equal to 

the order   of the identified system. The set of equations i.e. Eq. (4.54) can be written in compact 

matrix form: 
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                            (4.57) 

where   and  ̅ 
( )

 (for            ) are     square matrices. It is noted from Eq. (4.57) 

that recursive back substitution for  
    

         
  gives Eq. (4.42). Hence as from Eq. (4.54), 

the number   specifies the maximum number of observer gain Markov parameters    which are 

uniquely computed from the identified set of   observer Markov parameters. For computational 

purpose, either Eqs. (4.42) and (4.54) or Eqs. (4.49) and (4.57) can be written together in a com-

pact matrix form in order to solve for both the system Markov parameters    and the observer 

gain Markov parameters   
  simultaneously as: 
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     ,       
 -  ,                -       ,      -      

         0 ̅ 
( )   ̅ 

( )      ̅ 
( )1  





1

1

k

i

 ̅ 
( ),             

 -       for              (4.58) 

 

4.5 The Outline of OKID Algorithm 

 The detailed steps of the observer Kalman filter identification (OKID) algorithm to im-

plement are described below. The inputs to OKID algorithm are the input and output time histo-

ries like: { ( )} and { ( )} from the real-time experiment. The outputs from the algorithm are 

the system matrices           and observer gain matrix   of the identified sate-space model. 

1. Choose an arbitrary & sufficiently large integer   which indicates the number of identi-

fied observer Markov parameters as apparent from Eq. (4.27) or the maximum number of 

independent system Markov parameters as seen from Eq. (4.42). Generally the integer   

is selected to be four or five times larger than the effective order of the system. 

2. Observer Markov parameters  ̅ are obtained from the least-square solution of either Eq. 

(4.27) utilizing the block data matrices   and   for zero initial conditions, or Eq. (4.34) 

utilizing  ̅ and  ̅ for nonzero initial conditions. 

3. Both system Markov parameters    as well as the observer gain Markov parameters   
  

are recovered from the identified observer Markov parameters using Eq. (4.58). In order 

to solve for more Markov parameters than the number of identified observer Markov pa-

rameters, the extra observer Markov parameters are set to zero. 

4. The system matrices i.e.,           of the state-space system and its corresponding ob-

server gain   are identified from already calculated sequence of the system and the ob-

server gain Markov parameters by using Eigen-system Realization Algorithm (ERA) or 

ERA with data correlations (ERA/DC) method [38], [48]. 
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5. Eventually, the modal parameters namely frequencies, dampings, and mode shapes (at the 

sensor points) of the realized model can be determined after having been transformed to 

modal coordinates. 

 

4.6 Relationship of State-space Observer and Kalman Filter 

 The generic discrete-time Kalman filter (1960) is actually a linear estimator which finds 

optimal estimates of states under the assumptions that state variables and the input are Gaussian 

distributions with zero mean, and disturbances and measurement noise are uncorrelated and 

white in nature. A necessary prerequisite for computing steady-state Kalman filter gain for LTI 

dynamic system is that the state-space model as well as process noise and measurement noise 

covariances must be known a priori. In practice, the measurement noise co-variance may be es-

timated by analyzing the sensors outputs, while the process noise comprising the system uncer-

tainties and input noise is obtained by some educated guess. In order to relate the identified state-

space linear observer and Kalman filter, the identified state-space representation, i.e. Eqs. (4.12) 

and (4.13) can be written for both the deterministic plus stochastic linear dynamic system as: 

   (   )    ( )    ( )   ( )          (4.59) 

          ( )    ( )    ( )   ( )          (4.60) 

where  ( ) and  ( ) are assumed to be uncorrelated, Gaussian, zero-mean, and white random 

processes with covariance matrices   and 𝚁 respectively. The former is called state or process 

noise acting on the system states while the latter is known as measurement or output noise acting 

on the system outputs, respectively. The Kalman filter in innovation form can be written as: 

   ̂(   )    ̂( )    ( )    ( )         (4.61) 

           ̂( )    ̂( )    ( )            (4.62)                  

  ̂( )   ̂( )  and   represent the estimated state, estimated output, and the Kalman gain. The 
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term  ( ) is called the residual which is the usual Gaussian, zero-mean, and white noise process. 

The residual is actually gained from the difference between the real measurement  ( ) and the 

estimated measurement  ̂( ) i.e.,  ( )   ( )   ̂( ) and is also known as innovation in the 

context of Kalman filtering. The Kalman filter in innovation form is a state-space model having 

inputs comprising of the input to the original system  ( ) as well as the sequence of the output 

residual  ( ). From Eqs. (4.61) and (4.62), the following estimated state equation is obtained 

   ̂(   )    ̂( )    ( )   , ( )   ̂( )- 

                     ̂( )    ( )   , ( )    ̂( )    ( )- 

                   ,    - ̂( )  ,    - ( )    ( ) 

   ̂(   )   ̃ ̂( )   ̃ ( )         (4.63) 

where  

   ̃  ,    -            ̃  ,        -,           ( )  [
 ( )
 ( )

]  

From definition of residual and Eq. (4.62), the measurement equation can be written 

   ( )    ̂( )    ( )   ( )           (4.64) 

A comparison of Eq. (4.63) with the observer model i.e., Eq. (4.22) reveals that they are identical 

provided that      and  ( )   . The Markov parameters are also same for both these equa-

tions. Now, the conditions will be figured out for the situation when      as follows [37], 

[38], [45], [49]. So, we can write from Eqs. (4.63) and (4.64),  

   ̂(   )   ̃ ̂( )   ̃ ( ) 

   ̂(   )   ̃ ̂(   )   ̃ (   ) 

                    ̃  ̂( )   ̃ ̃ ( )   ̃ (   ) 

                                                                 

   ̂(   )   ̃ ̂(     )   ̃ (     ) 
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                    ̃  ̂( )   ̃    ̃ ( )   ̃    ̃ (   )    

             ̃ (     )           (4.65) 

Incorporating Eq. (4.65) into Eq. (4.64) gives    

   (   )    ̂(   )    (   )   (   ) 

                     ̃  ̂( )    ̃    ̃ ( )    ̃    ̃ (   )    

              ̃ (     )    (   )+ (   )                (4.66) 

The set of equations for             of Eq. (4.66) in compact matrix form is given as: 

    ̅    ̃  ̂   ̃  ̅              (4.67) 

where   is the residual matrix,   is the data length. Also,  ̅ and  ̅ given in Eqs. (4.32) & (4.33) 

are again written as below:      

    ̅   , ( )    (   )    (   )     (   )- 

   ̂   , ̂( )    ̂( )    ̂( )     ̂(     )- 

   ̃   ,      ̃     ̃ ̃      ̃    ̃- 

   ̅   

[
 
 
 
 
     ( )                (   )            (   )

 (   )              ( )                  (   )

 (   )            (   )            (   )
                                                           

      ( )                    ( )            (     )

 

]
 
 
 
 

         

     , ( )    (   )    (   )     (   )- 

If the Eq. (4.67) is post-multiplied by  ̅ , we have 

    ̅  ̅    ̃  ̂  ̅   ̃   ̅  ̅    ̅           (4.68) 

Eq. (4.68) can be written in a more elaborate way as 

  [  ̅  
     ̅    

      ̅  
 ]   ̃ 

[
 
 
 
 
    

          
                  

 

      
         

               
 

                                       
    

            
                

 ]
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  [    
         

         
 ]    ̃ [ ̂   

    ̂     
      ̂   

 ]     (4.69) 

Considering the ergodicity of the abovementioned stationary random process, the conversion 

from the time average to an expected value is carried out for each term from the products i.e.  

  ̅   ̅  ̅   ̂  ̅   and   ̅  ̅  for           . Let's take a term from   ̅  as:   

      
    





1

0

pl

j

 (   )   (   )  

              




1l

pk

 ( )   (     ) for                (4.70) 

The term     
  of Eq. (4.70) can be written as its ensemble average provided      according to 

ergodicity property as:  

   , ( )   (     )-      
   

 
 

   
 





1l

pk

 ( )   (     )                 (4.71) 

The data must be collected after the system transients are decayed by allowing sufficient time 

and integer   in Eq. (4.67) is selected sufficiently large. It shows that the transients of the Kal-

man filter are very small and can be discarded i.e.   ̃  ̂   ; so Eq. (4.68) will have the form  

     
   

 
 

   
 [  ̅  ̅   ̃  ̅   ̅ ]   , ( )  ( )   ( )  (   )  ( )  (   )-     

    ̃  , ̂( )  (   )   ̂( )  (     )    ̂( )  ( )-              (4.72) 

If the observer is chosen to be such it satisfy the following equation for the limit        

   ̃    ̅  ̅ ,  ̅  ̅ -            (4.73) 

From Eqs. (4.72) & (4.73) 

   , ( )  ( )   ( )  (   )  ( )  (   )-   

       ̃  , ̂( )   (   )   ̂( )   (     )    ̂( )  ( )-      (4.74) 

As matrix  ̃ is asymptotically stable for an observer; therefore, the right-hand side of Eq. (4.74) 
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is disregarded for sufficiently large integer  , i.e. 

   , ( )  ( )   ( )  (   )  ( )  (   )-                 (4.75) 

Eq. (4.75) implies that  

   , ( )   (   )-   ;                &            (4.76) 

   , ( )   (   )-   ;                &            (4.77) 

Therefore, for an observer with the observer Markov parameters satisfying the least-squares i.e. 

Eq. (4.73) provided the inverse ,  ̅  ̅ -   exists, the residual  ( ) is orthogonal to the given in-

put and the measured output with the time delay. For the data obtained from the finite dimen-

sional deterministic plus stochastic linear dynamic system as given in Eqs. (4.59) and (4.60), 

there is Kalman filter available having the property that the residual is zero-mean Gaussian white 

as described below: 

   , ( )-      ( )   ( )         for            (4.78) 

the residual of the Kalman filter satisfies the principle of orthogonality 

   ( )   (   )          for                   (4.79) 

The Kalman filter gain would be constant for data length    , it means that the experimental 

process is assumed to be long enough, statistically stationary, and random. Hence, the Kalman 

filter Markov parameters would satisfy the least-squares in Eq. (4.73) provided the inverse 

,  ̅  ̅ -   exists. Thus any identified observer is like a Kalman filter if the data length   as well as 

the order of that observer is chosen to be sufficiently large. In conclusion, the observer gain   

calculated from Eq. (4.58) yields the steady-state Kalman filter gain, i.e.     . But in prac-

tice, the resultant identified observer is not the Kalman filter due to the disturbances, nonlineari-

ty, and non-whiteness of the process and measurement noises.  
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4.7 Observable Canonical-form Realization 

 Besides the minimum realization technique that generates a controllable and observable 

model, the observable canonical form realization is also used for determining the system matri-

ces        and   directly from observer Markov parameters without first calculating the system 

Markov parameters. Considering   be the number of available observer Markov parameters cal-

culated from the input and output data,   being the number of outputs, and   being the number 

of inputs. Therefore, from Eqs. (4.37) & (4.38), we have     identified observer Markov pa-

rameters 

   ̅  ,     0 ̅ 
( )   ̅ 

( )1    0 ̅ 
( )   ̅ 

( )1    , ̅ 
( )   ̅ 

( )-                    (4.80) 

Eq. (4.27) can be expanded and shifted by   time steps that results in the finite-difference model 

like ARX model. Consequently it takes the form of input-output map of the dynamic system as 

   (   )   ̅ 
( ) (     )   ̅ 

( ) (     )     ̅ 
( ) ( )  

     (   )   ̅ 
( ) (     )   ̅ 

( ) (     )     ̅ 
( ) ( )   (4.81) 

Let’s define the state variables as vectors of length   i.e.   ( )  for           as given [38]: 

    ( )       ( )    ( ) 

      ( )   (   )    (   )   ̅ 
( ) ( )   ̅ 

( ) ( ) 

      ( )   (   )    (   )   ̅ 
( ) (   )   ̅ 

( ) (   )   ̅ 
( ) ( ) 

             ̅ 
( )

 ( ) 

                                                                                                        (4.82) 

    ( )   (     )    (     )   ̅ 
( ) (     )   

       ̅ 
( ) (     )   ̅ 

( ) (     )   ̅ 
( ) (     ) 

               



84 

 

     ̅   
( )

 ( )   ̅   
( )

 ( )            

The set of Eq. (4.82) gives the following equations:   

   ( )              ( )    ( ) 

      ( )        (   )   ̅ 
( ) ( )   ̅ 

( ) ( ) 

      ( )          (   )   ̅ 
( ) ( )   ̅ 

( ) ( )           

                                                                                  (4.83) 

    ( )            (   )   ̅   
( )  ( )   ̅   

( )  ( ) 

and with the incorporation of Eq. (4.82), the last equation in Eq. (4.81) yields the following:  

    (   )    ̅ 
( ) ( )  ̅ 

( ) ( )  

Similar to the Eqs. (4.12) and (4.13), the above-mentioned equations are arranged in the compact 

matrix form which is called the canonical-form; for which the state vector        , the state 

matrix         , the input matrix        , and the output matrix         are given 

in the set of Eqs. (4.84) as:  

   ( )  

[
 
 
 
 
 
 
  ( ) 
  ( )

  ( )
 

     ( ) 

  ( ) ]
 
 
 
 
 
 

 ,    

[
 
 
 
 
 
 
             ̅ 

( )

            ̅   
( )

            ̅   
( )

                             

            ̅ 
( )

            ̅ 
( )

]
 
 
 
 
 
 
 

 ,   

    

[
 
 
 
 
 
 
  ̅ 

( )   ̅ 
( )  

 ̅   
( )    ̅   

( )  

 ̅   
( )    ̅   

( )  

     

  ̅ 
( )   ̅ 

( ) 

 ̅ 
( )   ̅ 

( )  ]
 
 
 
 
 
 
 

      ,        -        ̅ ,           (4.84) 
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The observability matrix   of the canonical-form given in Eq. (4.84) is as follows: 

    

[
 
 
 
 

  
  
   

 
       ]

 
 
 
 

 

[
 
 
 
 
 
 
                                                               

                                         ̅ 
( )               

                     ̅ 
( )       ̅ 

( )   ̅ 
( ) ̅ 

( ) 

                                                                            
                                                           
                                                             ]

 
 
 
 
 
 

       (4.85) 

where     shows some no-zero elements. The observability matrix   has full rank of   , the 

dimension of realized sate matrix  , which means that it is non-singular for any  ̅ 
( )

; and hence, 

all states are observable. A unique sequence of system Markov parameters can be computed 

from the canonical-form model given in Eq. (4.84) as follows: 

         ̅ 
( )   ̅ 

( )       

          ̅ 
( )   ̅ 

( )   ̅ 
( )        

           ̅ 
( )   ̅ 

( )   ̅ 
( )    ̅ 

( )            (4.86)  

                                    

The integer   is selected in a manner so that    is less than or equal to the order of the system, 

then the triplet ,     - obtained through the above system Markov parameters in Eq. (4.86) is a 

minimum realization. Therefore, in this context the state-space model as given in Eq. (4.84) is 

thus called as the observable canonical-form. One usual drawback of this model is that the order 

of the system at hand is required to be known a priori, which is normally not known in real prac-

tice. Therefore, the best model order is determined by a trial and error technique in this scenario. 
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CHAPTER 5 

 

LINEAR QUADRATIC TRACKING 

CONTROL OF ODU-ASV 

 

5.1 Introduction 

 Nowadays autonomous vehicles such as ASVs have been gaining the significant attention 

for their ability to perform variety of autonomous tasks. For this purpose, modern control tech-

niques are being used to design autopilots, stability augmentation systems (SASs), and other con-

troller designs to achieve unmanned tasks of the autonomous vehicles. The main purpose of the 

control system design is the regulation as well as tracking control of the desired states of the dy-

namical system such as ASV in such a way that its desirable closed-loop response characteristics 

are obtained. This can be attained by placing the closed-loop poles at desirable locations on the 

pole-zero map without too much control input. In classical control theory, successive loop clo-

sure strategy has to be followed in which each loop is closed separately one at a time and as a 

result control gains are determined; so in this way, the multivariable control system can be de-

signed. But pole placement technique for the MIMO control system design could usually be bad-

ly conditioned when unrealistic pole locations are considered. That is why the alternate modern 

state-space control designs techniques, such as linear quadratic regulator (LQR) control and the 

extended version of LQR, i.e. the optimal linear quadratic tracking (LQT) control, are used for 

optimal control of dynamical systems. The LQR control design technique in terms of mathemati-

cally precise performance index produces matrix equations that can be solved for computing the 

control gains by closing all the loops at the same time [35], [50]. The LQR and optimal LQT are 
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more powerful control design techniques for many linear MIMO as well as SISO systems. In the 

forthcoming sections, the design procedures for both the discrete-time LQR as well as optimal 

discrete LQT control techniques are discussed.   

 The desired motion of ASV is normally achieved by any of the following motion control 

strategies such as: station-keeping, trajectory-tracking, and path-following. The station-keeping 

permits the ASV system to keep the position and or heading constant over the time interval. In 

the trajectory tracking control strategy, full-state tracking of the given reference states is per-

formed while path-following is the reduced-state tracking approach and particularly the spatial 

tracking. The path-following or way-points tracking is actually the decoupling between space 

and time which means the separation of velocity and two-dimensional (2D) path. The velocity, if 

considered in the design, is actually an additional DOF for time coordination [4], [7], [9], [33]. In 

the path-following control approach for the ASV, the predefined time-independent 2D spatial 

paths are followed with the help of designed control. As the ODU-ASV is an under-actuated sys-

tem having twin thrusters for its propulsion, so the challenge for under-actuation is to reject al-

most all the disturbances which is quite difficult task with only two inputs in the form of two 

thrusters. Therefore for this purpose, the optimal discrete-time LQT control is designed and im-

plemented for the path-following motion control of the ASV in the present work.    

 

5.2 The Linear Quadratic Regulator Control 

 Due to the increase in hardware complexity and its ensuing costs as well as the decrease 

in reliability, the nonlinear models of mechanical/physical systems are either linearized about an 

operating point for having an approximate linear plant model or linear models are identified by 

various system identification techniques for those systems. Therefore, for the linear state-space 

plant models, traditional linear controller, such as LQR, could be designed in order to ensure the 
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plant state to be in the close vicinity of the operating point. The LQR or commonly known as 

optimal state-feedback control design is nothing more than the solution to a convex, least squares 

optimization problem that has some very attractive properties, namely the optimal controller au-

tomatically ensures a stable closed-loop system, which achieves guaranteed levels of stability 

robustness, and is simple to compute [35], [51]. 

 

5.2.1 Steady-State LQR   

 Consider the dynamics of continuous time-invariant multivariable linear system as given: 

   ̇( )    ( )    ( )                                            (5.1) 

with state vector  ( )     and control input  ( )    . The control input is selected in such a 

manner that quadratic cost function is minimized, which is given as: 

    
 

 
∫ [  ( )  ( )   ( )  ( )]   
 

 
         (5.2) 

with symmetric positive semi definite     and symmetric positive definite     are the design 

parameter weight matrices to penalize the states and control inputs, respectively, of the linear 

system. These weight matrices can be tuned iteratively until the required performance is 

achieved [35]. It is assumed that all the states of linear system of Eq. (5.1) are available for feed-

back and ,   - is stabilizable and ,   - is detectable; then a unique, time-varying state-feedback 

control law is actually the linear quadratic controller [35] as: 

   ( )      ( )                 (5.3) 

where  

   ( )         ( )               (5.4) 

is the time-varying gain matrix that minimizes the performance index (PI) or cost function  , 

subject to the dynamic constraints of the open-loop dynamics as given in Eq. (5.1). Here  ( ) is 

the solution of the Riccati differential equation (RDE) as: 
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     ( )   ( )   ( )       ( )     
 

  
 ( )       (5.5) 

If time horizon of the integration is indefinite i.e.    , then Eq. (5.2) is called an infinite hori-

zon performance index and an optimal solution exists; then  ( ) tends to be constant matrix , 

where  ̇   . The RDE given in Eq. (5.5) is replaced by Algebraic Riccati Equation (ARE) as 

follows: 

                               (5.6) 

where symmetric positive semi-definite matrix     is the unique and steady-state solution to 

the algebraic Riccati equation (ARE). Then, time-varying gain matrix given in Eq. (5.4) is con-

stant and is called as the steady-state sub-optimal gain given as: 

                            (5.7) 

Hence, the constant state-variable feedback is the sub-optimal steady-state control as follows: 

    ( )       ( )                 (5.8) 

For matrix  , the corresponding closed-loop system under the influence of the steady-state LQR 

control law is asymptotically stable and has the time-invariant dynamics as: 

     ̇  (     )                 (5.9) 

The block diagram of the linear quadratic regulator is given in Fig. 5.1 below. 

 

5.2.2 Design Outline of LQR 

 The control system specifications are not directly achieved from the LQR formulation, 

but rather an iterative trial and error technique is required for the selection of the weighting ma-

trices   and   in the cost in order to have a satisfactory controller. So, the LQR design process is 

generally initiated by selecting values for the design weights, then synthesizing the control law, 

and later evaluating the designed control law for the desired performance and robustness. It is 

necessary for the design of LQR control that full-state feedback must be  



90 

 

 

 

 

 

 

 

 

 

 

 

  

 Figure 5.1 Schematic of linear quadratic regulator (LQR) control design. 

 

 

available to be used, which is the main limitation of this methodology. The main design steps of 

the LQR control are as follows:  

1.  The optimal selection of the symmetric weighting matrices   and   of the performance 

index (PI) has been the challenging topic for the control researchers. The selection pro-

cess is an iterative process and so standard control system specifications are not directly 

achieved. But, there are different techniques, such as: trial & error technique, Bryson's 

approach, and evolutionary algorithm based methods i.e. the multi-objective genetic algo-

rithm (MOGA), that are commonly used for determining the diagonal components of de-

sign weighting matrices   and   in the performance index, so that the satisfactory con-

troller performance can adequately be achieved. According to Bryson's rule,   and   ma-
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trices are determined using maximum allowable deviations in the component   ( ) of the 

state vector  ( ) as     and the component   ( ) of the control input vector  ( ) as    . 

Then the matrices   and   are chosen as:       *  + and       *  +, such that 

     
 

(    ) 
 ,     

 

(    ) 
                                                                    (5.10) 

 

The state weighting matrix   can also be selected as matrix    , because this selection 

shows the weighting of the states in the output as:           . The diagonal ele-

ments of control weighting matrix   is selected to be equal weights on the control inputs. 

When    , the identity matrix, then a good compromise result can be achieved on the 

control input. Hence, we have as follows: 

                    (5.11) 

                  (5.12) 

where   represents a scalar constant incorporated to decrease the states interaction. In this 

research, the MOGA technique is incorporated for the selection of   and   matrices, the 

detail of which is given in Chapter-6.   

 2. Solve the ARE for symmetric positive semi-definite matrix P using Eq. (5.6)  

3. Compute the sub-optimal state-feedback gain    using Eq. (5.7). 

4. Then, find the required control input using Eq. (5.8) and by utilizing the gain obtained in 

the previous step.  

5. Lastly, simulate the designed control system in order to check desired controller perfor-

mance. If the controller performance is not satisfactory then repeat the design process 

from 1 to 4 until the desired controller performance is achieved.   
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5.2.3 Salient Properties of LQR Controller 

 There are some appealing properties of LQR controller which are briefly discussed as 

follows. 

The steady-state LQR controller automatically guaranteed a stable close-loop system 

even if it is MIMO system, as long as the system satisfies some fundamental properties. Let the 

linear system of Eq. (5.1) have   states, then the system is said to be reachable only when the 

reachability matrix   

   ,                 -         (5.13) 

has rank  ; which also implies to stabilizability. Also, the system is said to be observable only if 

the observability matrix 

    

[
 
 
 
 

  
  
   

 
       ]

 
 
 
 

                          (5.14) 

has rank  , which implies detectability as well [35].  

Theorem 5.1: If matrix   is a square root of   i.e.      . Also, let (   ) is detectable and 

(   ) is stabilizable. Then: 

(i) A unique symmetric positive-semi definite limiting solution   exists to the ARE. 

(ii) The closed-loop system    (     ) is asymptotically stable [35].  

It is concluded from the above said Theorem 5.1 that the system of Eq. (5.1) and PI of 

Eq. (5.2) with     satisfy the fundamental controllability and observability requirements; 

hence, the steady-state LQR control will produce gains that stabilize the system. The theorem 

anticipates that closed-loop stability properties of the system in terms of open-loop system prop-

erties are determined utilizing matrix rank techniques. The detectability of matrix (√   ) means 
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that all the unstable system modes should be weighted in the PI in terms of the weighting 

trix  . If the (√   ) is observable and the weighting matrices are selected as     &    , 

then the closed-loop poles will always be stable. Therefore, the suitable close-loop system per-

formance is obtained through the selection of   and   matrices during an interactive computer 

aided design of the control system and their diagonal elements may continuously be varied until 

the suitable closed-loop performance is achieved.  

The LQR control needs simple computing steps for its design and then its implementation 

later on. Despite the robustness and easy to compute feature, there is main limiting fact of LQR 

controller that it requires full-states for feedback in order to work. 

 

5.3 Design of Optimal Discrete Linear Quadratic Tracking Control  

 In this section, the discrete-time closed-loop linear quadratic optimal trajectory tracking 

control over the entire time interval ,   - is designed for the motion control of inherently non-

linear time-invariant systems such as the ASV, robotic arm, and spacecraft etc. This kind of con-

trol design strategy is the extension of discrete linear quadratic regulator (LQR) control design 

technique and its results can also be generalized to the linear and time-varying case. The state-

space model of the Eqs. (4.12) and (4.13), that characterizes the dynamical system as finite-

dimensional discrete linear time-invariant system, is re-written: 

                                                  (5.15) 

where      , and some linear combination of the states are: 

                                                  (5.16) 

to follow already known reference trajectory    over the interval   ,   -, while the perfor-

mance index can be minimized as [34], [35], [50]:    

             
 

 
(      )

   (      )  
 

 
 ,(      )

   (      )    
     -

   
         (5.17) 
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where matrices             and actual value of    is not constrained. The optimal 

control   can be achieved by solving the following state system as given in Eq. (5.15), co-state 

system, and stationarity condition given below. So the co-state system is given as: 

                                              (5.18) 

where    is the co-state and the stationarity condition:  

                          (5.19) 

with the boundary conditions as follows:   

     (given) 

and        (      )                                (5.20) 

So the optimal control from stationarity condition of Eq. (5.19) is 

                           (5.21)  

By eliminating    from Eq. (5.15), we can write discrete linear time-invariant system as: 

                                                     (5.22) 

The coupled state and co-state equations, given as (5.18) and (5.22), can be written as single un-

forced system known as nonhomogeneous discrete Hamiltonian system as:  

  0
    

  
1  [

                
                         

] 0
  
    

1  [
   

    
]                                        (5.23) 

The control law of Eq. (5.21) can't be practically implemented because the boundary conditions 

are divided between times     and    . Therefore, another practical approach is dug out. 

The control    can be described as combination of linear state feedback and a term depending 

on    by sweep method. From Eq. (5.20), we can assume that 

                        (5.24) 

where matrix         and vector          are unknown auxiliary sequences. In order to 

find the consistent equation for    and    ; let use Eq. (5.24) in the state equation portion of the 
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Eq. (5.23) as: 

                                           (5.25) 

Eq. (5.25) can be solved for      as: 

       (            )
  (              )     (5.26)  

and from the co-state equation portion of Eq. (5.23) utilizing (5.24) and (5.26), we have: 

                        .            /
  

 .              /  

                                 (5.27)   

or 

 ,          .            /
  
      -   ,    

 
    .            /

  
  

                                  -          (5.28)    

Eq. (5.28) is valid for all state sequences    given any   , in order the terms in brackets must be 

vanished individually. From Eq. (5.28), the two sequences    and    can be written using the 

matrix inversion lemma as: 

       ,          ( 
        )        -          (5.29) 

and 

     ,          ( 
        )    -               (5.30) 

and if Eqs. (5.20) and (5.24) are compared, then the boundary conditions are given as: 

                    (5.31) 

                      (5.32) 

So, the optimal control can be written as from Eq. (5.21) 

                       (             )      (5.33) 

From Eq. (5.33), it is evident that the control depends on the unknown      at time  ; so state 

Eq. (5.15) is substituted into Eq. (5.33), and then pre-multiplied by R, then we have the required 
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control law as: 

     (         )    (             )           (5.34) 

The affine formulation of control law given in Eq. (5.34) is more robust and can be written as:  

             
                                  (5.35) 

where    and   
  are state feedback and feedforward gains respectively as:     

     (         )                                                                             (5.36) 

    
  (         )                                                                                 (5.37) 

The diagram of optimal LQ tracker is given in Fig. 5.2 below; which is an affine state-feedback 

control law consisting of linear term of    and another term independent of    and whose gains 

are depend on the solution to the Riccati equation given in Eq. (5.29). The closed-loop system 

under the action of optimal LQT controller is nonhomogeneous time-varying system as [34]: 

       (     )      
             (5.38)   

 

 

 

 

 

 

 

 

  

 Figure 5.2 The schematic of linear quadratic tracking (LQT) control.  
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5.4 Outline of Optimal Discrete LQT Control 

 The outline of the formulation of optimal discrete LQT control is given as follows. 

1. The linear time-invariant system identified as state-space, which is given in Eqs. (5.15) 

and (5.16), is considered, where the triplet of system matrices         is known. 

2. The cost function is selected as given in Eq. (5.17), which needs to be minimized assum-

ing the symmetric matrices as              Where the symmetric matrices   and 

  are called the weighting matrices and   is the solution to ARE given as Eq. (5.29). The 

techniques for selection of   and   are briefly discussed in aforesaid section        

3. The feedback gain    is computed from Eq. (5.36) utilizing the boundary condition given 

in the Eq. (5.31). 

4. The auxiliary sequence    is computed by the following relation: 

             (     )              (5.39)  

5. The auxiliary sequence    is computed using boundary condition given in Eq. (5.32) as: 

     (     ) 
                      (5.40) 

6. The feedforward gain is determined as from Eq. (5.37). 

7. Finally, the optimal affine state feedback control law is computed as given in Eq. (5.35).  

 

5.5 Implementation of Optimal Linear Quadratic Tracker 

The main steps of the optimal LQT control implementation in real-time are summarized as fol-

lows.  

1. The desired track    is known in advance and stored in the computer's memory, where        

is the index 0 to N, the total number of points of trajectory track. 

2. The auxiliary sequence    is computed offline using Eq. (5.40) utilizing already known 

track    and boundary condition given in Eq. (5.32). The sequence    is stored in the 
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computer memory for later use.  

3. As ARE does not depend on the state trajectory [34]; therefore, the sequence    as given 

in Eq. (5.39) as well as the LQT gains sequences    and   
  as given in Eqs. (5.36) and 

(5.37), respectively are computed offline and stored for later use during the control run. 

4. During actual control run, the only work is to solve Eq. (5.35) for computing the optimal 

control   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



99 

 

CHAPTER 6 

 

EXPERIMENTAL RESULTS   

 

6.1  Introduction 

 It is an essential requirement to develop a mathematical model for the ASV dynamical 

system in order to design and implement a feasible controller for its motion control. Likewise, 

the dynamics of complex systems such as aerial and subsurface vehicles, the motion of ASV is 

also very challenging to model because water is an ever-changing surface. The ASV is consid-

ered to be a rigid body, so its motion is actually six degrees of freedom (DOF): i.e. translation 

along three perpendicular axes and rotation about three perpendicular axes [4]. In this research, 

the vertical motion is not considered because the ASV is coasting on rather calm water and its 

motion is stable because of the twin-hull design, so it is assumed that its motion is characterized 

as 3DOF. For this purpose, experimental system identification technique known as the OKID is 

used to find the simplest state space model that will capture the dynamics of ASV system ade-

quately. During the process of system identification, a trade-off between the model's fidelity and 

modeling effort is involved, which ensures the accuracy of the developed model, and the same 

practice has been exercised in this research. Once we identify the state space model for the ASV 

dynamics, the design of a controller for the motion of ASV and its implementation could be exe-

cutable. Hence, the scope of this chapter encompasses important concepts for design of system 

identification and control for the ASV, which will be discussed onwards.     

 The System Observer Controller Identification Toolbox (SOCIT) developed at NASA by 

Jer-Nan Juang and Lucas G. Horta is a collection of MATLAB functions expressed in M-files, 
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which implements a variety of modern system identification techniques used for the identifica-

tion of an open-loop system model and its corresponding forward and backward observers in the 

discrete time domain directly from the experimental input output data [48]. The identified model 

and the observer for state estimation can be utilized for controller design of linear systems as 

well as identification of modal parameters such as dampings, frequencies, and mode shapes. The 

optimal discrete closed-loop linear quadratic tracking (LQT) control methodology [34], [35] is 

applied to the identified linear model of ASV so that it follows a desired known reference path 

over a time interval. In this control strategy, optimal control is determined by combining linear 

state variable feedback plus a term depending on reference track. The state variable feedback 

gains are obtained by minimizing a cost function utilizing weighting matrices, which are found 

by genetic algorithm (GA) based multi-objective optimization technique. The results of simula-

tions and later on validation water-trial support the validity of the OKID identified model and its 

proposed control design for path following motion of ASV. The experimental setup and the ref-

erence coordinate frames for system identification and control design processes are explained in 

sections 6.2 and 6.3, respectively. The process of open-loop OKID process and the subsequent 

results are detailed in section 6.4; in section 6.5, the benchmark assessment tests for the identi-

fied model are given and the concluding discussion regarding OKID identified model is given in 

section 6.6. The design of optimal LQT control and its simulation results are explained in sec-

tions 6.7 and 6.8, respectively. The discussion related to LQT control design is given in section 

6.9 briefly. The software and hardware implementation process is discussed in section 6.10; in 

this section, mapping of control signal or manipulated variables obtained from the controller and 

the actual PWM required for the two outboard motors was elaborated. Then, the real-time valida-

tion testing of the proposed closed-loop controller while applying path-following control strategy 
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of ASV and its subsequent results are given. Finally, the concluding remarks are given in section 

6.11. 

  

6.2 Experimental Setup  

 As discussed in chapter 2, the ASV utilized in this research was already designed by 

ODU-ASV team and has comparatively small dimensions so that it could be operated in rather 

calm and shallow waters of low wave conditions such as river and estuarine environments. The 

open-loop system identification water-trials and stable autonomous maneuvers of ASV demand 

various kinds of sensors such as a magnetometer, accelerometer, gyroscope, LIDAR, and/or GPS 

that provide informative data regarding the vehicle motion. Hence, the necessary experimental 

layout for system identification and control design consists of on-board embedded control system 

console and ground control station (GCS) which is described in detail as following: 

 

6.2.1 On-board Embedded Control System Console 

 A custom built on-board embedded control system console is made by the ODU-ASV 

team and installed on the deck of the ASV for controlling its motion either in remote control or 

unmanned/autonomous modes. This electronics console is comprised of the main processing 

computer for guidance, navigation, & control, Arduino Mega 2560 microcontroller boards, 

onboard pose sensors such as IMU & GPS receiver both installed at CG point, radio receiver for 

remote control, and Ubiquiti M2 bullets as the outdoor wireless radio networking device. The 

IMU and GPS receiver are installed on the deck of the ASV in such a way that the GPS view is 

clear to the open sky and signals of IMU are not interfere with by the magnetic field of the adja-

cent wiring of the embedded control system console as shown in Fig. 6.1. The Memsense Nano 

inertial measurement unit (nIMU) was selected to be used for yaw and yaw rate data of the ASV 

because of its small footprint of 4.65 cm × 2.28 cm and its weight of about 20 g. The nIMU pro-
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vides inertial data at sampling rate of 150 Hz from orthogonal triads of magnetometers, gyro-

scopes, and accelerometers which measure local magnetic fields   
 
 
, body-fixed rotational ve-

locities   
 
 
, and local accelerations    

 
 
 respectively. From this data, the yaw and yaw rate of 

ASV are obtained through MATLAB
®
 code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.1 Schematic diagram illustrating experimental setup of ODU-ASV. 

 

 

6.2.2 Ground Control Station  

 The ground control station (GCS) consists of a laptop computer having the Intel core-i5 
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microprocessor, an Ubiquiti Bullet M2 as wireless radio networking router having LAN antenna, 

and R/C transmitter i.e. Futaba: 6-channel radio controlled system as shown in Figure 6.1. The 

laptop computer of GCS is remotely connected with the onboard main computer of ASV through 

the Bullet M2 for its remote control as well as unmanned/autonomous maneuvers. Besides GCS, 

the ASV pose was continuously monitored by incorporating the Sick LMS-200 Lidar located 

alongside GCS so that the position data in Cartesian coordinates were logged to be used for open 

loop system identification tasks. The working range of Lidar is 16 m accurately, so the outdoor 

water-trials were performed within 16 m semicircular area. The ASV is navigated on the water 

surface with the help of Fatuba R/C transmitter remotely during manual mode. The ASV can be 

switched between the two modes of operation, i.e. autonomous and remote control, by using a 

reserved toggle switch channel on the R/C transmitter. Moreover, during the autonomous control 

mode, commands in the form of PWM voltage values are transmitted to the two outboard motors 

could be overridden instantly by a human operator through R/C transmitter remotely in order to 

switch the control of ASV back to the remote control mode. The same switching strategy is cod-

ed into the drive Arduino microcontroller board which is connected to the pins of R/C receiver. 

The provision of remotely override is very crucial for safe operation of the ASV which permits 

the human operator to either navigate the ASV in remote control mode or abruptly halt its motion 

altogether in the scenario of unpredicted maneuver.  

 

6.2.3 Center of Gravity of ASV 

 As pose estimation sensors such as nIMU and GPS render information about the absolute 

or relative position and orientation of ASV, therefore it is necessary that they are installed at the 

center of gravity (CG) of the ASV. As the ODU-ASV is considered to be widthwise symmetrical 

regarding the distribution of mass, the term CG is used in a synonymous manner with the center 
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of mass (CM), regardless of the fact that CG point does not coincide with the CM point techni-

cally if the ASV does not have a symmetrical distribution of mass [4]. In the body-fixed refer-

ence frame as detailed in section 6.3.1 below, the CG is located at some point i.e.     

(         )
 , which is calculated lengthwise for installation purpose of pose sensors as follows.  

       (         )               (6.1) 

where       and        are the distance measured along longitudinal x-axis from the aft ver-

tical reference surface of the ASV's hull to the first and second hook-up point of the load cell, 

respectively; the weights    and    in pounds are measured by load cell at those particular 

points and          . The ASV is considered to be symmetrical widthwise; therefore all 

measurements are done amid of ASV along y-axis. So from Eq. 6.1, the CG is calculated to be 

located at 22.089″ from the aft vertical reference surface of the ASV's hull. 

 

6.3 Coordinate Systems and Transformations  

 Prior to performing real-time water-trials for open-loop system identification of the state-

space model of the ASV and later on its real-time validation water tests for the fidelity of closed-

loop control, it is necessary to specify the reference coordinate systems. For this very purpose, 

two main geographic reference coordinate systems, i.e. the body-fixed reference frame or local 

coordinate system and the Earth-fixed reference frame or global coordinate system, were consid-

ered. Moreover, GPS-based navigation used in the real-time validation water-trials for ASV con-

trol utilizes the geodetic coordinate system; they all discussed as follows. 

 

6.3.1 Body-fixed Coordinate System 

The body-fixed reference frame * + is a vehicle-carried moving coordinate frame, sometimes 

called the body coordinates comprised of three orthogonal axes         and    having its origin 
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  , is usually chosen to be fixed at the center of the gravity (CG) of the ASV. The longitudinal 

axis    is directed from aft to fore, axis    is directed to starboard, and axis    is directed from 

CG to vertically downward of the ASV in order to comply with the right-hand rule. The body-

fixed linear and angular velocities, i.e.     
  ,     -     and     

  ,     -    , 

respectively, of the ASV are monitored by the vehicle’s body-mounted sensors such as IMU and 

GPS as well as the dynamic constraints imposed by the ASV identified model are generally ex-

pressed in the body-fixed coordinate system. The graphical interpretation of the body-fixed co-

ordinate system is given as in Fig. 6.2.  

 

6.3.2 North-East-Down (NED) Coordinate System 

 NED is the geographic coordinate system * +  (        ) having origin    arbitrarily 

fixed to a point on the Earth’s geoid. This coordinate system, also known as flat Earth navigation 

coordinate system, is generally defined as tangent plane on the surface of the Earth moving with 

the ASV and considered to be the most common everyday-life local coordinate system. As its 

name suggests and according to the world geodetic system, 1984 (WGS-84), the x-axis    points 

towards the geodetic (true) north, the y-axis    points towards the geodetic east while the z-

axis    completes the right-hand orthogonal coordinate system pointing downward along the 

normal to the Earth’s reference ellipsoid. As the small autonomous surface vehicles navigate in a 

small region with quite low speed; therefore, being a small vessel, the navigation of the ASV 

used in this research is carried out within this frame of reference. To be precise, the vessel-

carried NED as well as the local NED frames are not aligned exactly, but due to the nature of 

miniature ASV navigating in a small region with low speed, this directional difference is normal-

ly neglected entirely assuming them to be coinciding with each other. The NED coordinate frame 

is depicted in the Fig. 6.2 below. The pose η of ASV is described in this coordinate frame. 
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Figure 6.2 The coordinate systems of the ODU-ASV along with linear and angular velocities. 

 

 

6.3.3 Geodetic Coordinate System 

 It is not a usual Cartesian coordinate system but a local geodetic coordinate system hav-

ing origin coincide with the GPS frame. The GPS receiver utilizes the world geodetic system-

1984 (WGS-84) as a global reference coordinate system originated by the U.S. Department of 
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Defense based on a reference ellipsoid model. This reference system is an Earth-centered, Earth-

fixed (ECEF) terrestrial reference frame that consists of a reference ellipsoid, a standard coordi-

nate system, altitude data, and a geoid. A coordinate point near the earth's surface is character-

ized in terms of longitude   , latitude   , and altitude   by this system. The longitude gives the 

position of measured point and the prime meridian in terms of rotational angle ranging from 

      to     . The latitude gives the angle ranging from      to     between the normal of 

the reference ellipsoid that passes through the measured point and the equatorial plane. The alti-

tude is local vertical distance the reference ellipsoid and the measured point. The position of 

ASV measured by GPS during the real-time validation water-trials for ASV control is trans-

formed from WGS-84 domain to local Cartesian coordinates system i.e. NED frame using 

MATLAB
®
 routines. 

 

6.3.4 Homogenous Transformation 

 The position of ASV during the open-loop system identification water-trials was meas-

ured in 2-D Cartesian coordinates by LIDAR which was placed on the bank of dock. A local 

NED coordinate frame denoted as {A} is considered to be attached to LIDAR for the purpose of 

finding pose of ASV. In order to transform the local NED frame {A} to the arbitrary starting 

point of the ASV motion on the surface of water, and denoted as NED reference frame {B}, the 

2-D homogenous transformation is performed on frame {A} as: 

  (
  

  

 

)  (
  
  

     
)(

  

  

 

)        

where   (   ) is the translation of the frame {A} to {B} and   
  is 2×2  orientation matrix of 

frame {A} with respect to frame {B} [52]. All other position data of ASV is related to the NED 

frame {B}.    
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6.4 Observer Kalman Filter Identification of ODU-ASV 

 The main purpose of OKID methodology is to best approximate the vehicle’s dynamics 

with a less complex but more robust mathematical model so that the prediction error is reduced 

substantially. Once we have a sufficiently accurate mathematical model of the ASV, then the vi-

able close-loop control is designed and later on implemented for its motion control. The identifi-

cation of a useable model of the ASV dynamical system through the OKID algorithm requires 

that the open-loop input and output data measured from the motion of ASV must contain signifi-

cant information regarding the persistently excited modes of system [37], [45]. This entails the 

OKID method starting from the point of exciting the relevant dynamic modes of ASV's system 

by some persistent discrete inputs  ( ) and measuring the resulting output responses  ( ) from 

all modes of interest by the required sensors. The detail step-wise process of OKID is given as 

follows.   

 

6.4.1 Input and Output Data for OKID  

 The type of input  ( ) to the ASV system is selected in such a manner that it is persistent 

and can excite all relevant modes of the system. In order to get informative data from the ASV 

system, the thrusters are actuated by two outboard DC trolling motors installed on the stern of 

the ASV, which are in turn excited by the PWM voltage signals. The PWM is basically a modu-

lation technique in which a digital signal is supplied in pulses of variable width and positions but 

maintaining the same frequency content; hence, this technique entails that the PWM signal is ac-

tually a kind of digital square wave consisting of two primary components: a duty cycle and a 

frequency. The variable speed control of the motors is attained with the help of the PWM tech-

nique applied to motor voltage, and the same process can be accomplished by the Arduino mi-

crocontroller and Victor SP speed controllers which have been utilized in this research. The 
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PWM values range from 40 to 160 duty cycles, with 90 being the neutral value at which each 

trolling motor stops rotating. The range of PWM values above the neutral value, i.e. 91-160 duty 

cycles, is used for forward motion, while the PWM values below neutral value, i.e. 40-89 duty 

cycles, are used for the reverse motion of ASV. 

 The ASV has no rudder mechanism, so the turning moment is induced by the differential 

thrust of the two astern outboard motors that are run by the PWM signals sent from the main 

onboard computer via Arduino microcontroller board. The turning moment in turn causes to 

change the yaw angle   of the ASV with respect to the z-axis which continuously varies with 

time and is then known as yaw rate  . So, in the present work, the motion of ASV is considered 

to be in horizontal plane because the water-trials of ASV having small size were performed in 

rather calm water as compare to the open sea. If only a few degrees of freedom at a time are con-

sidered for ASV dynamics then this assumption decouples the motion of the ASV and hence re-

duces the number of controllable degrees of freedom involved in control system design. As the 

thrusters are positioned in the ASV such that its vertical dynamics such as heave  , pitch angle 

 , and roll angle   are not dominant and hence not considered in the system identification and 

control of the ASV without considerable loss in accuracy during typical slow maneuvers [7], 

[16]. Therefore the ASV system, being six DOF, is under-actuated. However, the un-actuated 

roll and pitch motions are stable and can be left uncontrolled in the succeeding control design 

owing to twin-hull design and the slow motion of the ASV over the surface of water. 

Rather than being truly stochastic, the motion of the ASV is better described in determin-

istic terms like: initial steady acceleration for a short period of time and then coasting of ASV 

with considerably low constant velocity which is calculated to be      , so the dynamics of 

ASV is considered as velocity invariant [16]. According to general kinematic equations of ASV 
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motion in [4], position and velocity of the ASV in two-dimensional space are coupled, and also 

the states  ,    and yaw angle are seemed to be coupled [4]. From the Figure 6.2, surge is defined 

as the velocity vector   of the CG of ASV along the  -axis, and yaw angle defined as the angle 

of   -plane with respect to z-axis of the ASV. So, the position of the ASV in   and   coordi-

nates, yaw, and yaw rate are assumed to be instrumented which constitute the state vector as 

       ,            ̇ ].   

 

6.4.2 Data Acquisition and Preprocessing     

 In order to achieve the rich set of input and output data for open-loop system identifica-

tion tasks, a great deal of effort was made to carry out series of outdoor path-following water-

trials in the Lafayette River in Norfolk, Virginia. It is actually a tidal estuary that empties into the 

Elizabeth River which in turn discharges into the Chesapeake Bay. The ASV used in this re-

search is a miniature-design, so the water test location is selected in a way that it would provide 

moderate environmental disturbances by wind, current, and tidal wave. When the outdoor water-

trials were being performed, there was partial sunny with slight overcast. The weather was rather 

calm having wind speed of 6.9 mph westbound and the temperature was 71
º
 F. The tidal condi-

tion was average with a coefficient of 54; hence, there was not much disturbance to be brought 

forth by the tidal waves and the wind. The ODU-ASV is shown in Fig. 6.3 while cruising for the 

purpose of open-loop data acquisition for OKID algorithm.   

  There are many well-known paths that researchers usually propose for the ASV to follow 

for their autonomous/unmanned tasks but sinusoidal, zigzag, and arc-like are the most illustrious 

ones, and the same have been used in this research; in order to have a full range of ASV dynam-

ics and validity of the resulting identified dynamic model for its control design could be as-

sessed. The ASV was bounded to follow these paths within a 16 m range, which is the limit of 
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LIDAR for accurate measurements. During water trials, a human driver sent the control com-

mands to the ASV in the form of PWM voltage values through R/C transmitter in manual mode, 

and thrusts were produced by the two outboard motors which were stabilized for a long enough 

time to ensure that the given thrusts impart an impact in the change of position and heading of 

the ASV. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 ODU-ASV while cruising for the purpose of data acquisition for OKID identification. 

 

 

Consequently, the raw input and output discrete data from the installed sensors was collected and 

saved as some large data files in the onboard computer memory for the OKID method to be ap-

plied later on. In the present work, fifteen water trials of sinusoidal, zigzag, and arc-like maneu-

vering paths were selected from various experiments performed at different occasions. For in-
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stance, the raw data size of sinusoidal maneuvers was about 6000 sample points in total.  

 Prior to the OKID passes, the offline raw input and output data from the required actua-

tors and sensors is refined and adjusted after visual inspection for missing data, outliers, and 

drift; for instance, it has been observed that LIDAR sometimes rendered position data of ASV 

disruptively, which were adjusted by interpolation technique. Then, filtered utilizing a low pass 

filter (LPF) so that high frequency disturbances caused by noise in the data are surfaced and dis-

carded. The selection of the suitable and equal sampling frequency of each input and output sig-

nals is also assured to be fulfilled for the critical requirement of OKID algorithm. If the sampling 

rate of the input/output signals is too small as compared to the highest frequency content of the 

system, dynamics of the system is not actually identified well enough due to the resulting badly 

conditioned system equations. On the other hand, too high sample rate of the input/output signals 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Raw (—) and their corresponding filtered input data (-*-) from an identification run. 
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results in bad numerical of the matrix     owing to almost linearly dependent rows; where   is 

the system dynamic matrix. Very high sample rate also bunching up the poles of a discrete-time 

system around     and cause more noise in the data [53]. The Raw input and output data with 

their corresponding filtered data from an illustrative identification run are shown in Figs. 6.4 and 

6.5 respectively. 

 

6.4.3 Illustrative Open-loop OKID Run and Results  

 As discussed in the preceding section, carrying out outdoor open-loop water tests of a 

dynamical system such as the ASV for the purpose of OKID algorithm to model the entire range 

of its required responses is a time consuming process; therefore, some engineering skill is re-

quired in the design of the experiments which are as informative as possible to minimize the un-

avoidable disturbances and hence to ensure the best mathematical model of the ASV which is 

workable for designing the optimal feedback control of ASV. The filtered experimental input and 

output data having same samples is retrieved from the computer memory and used by the OKID 

algorithm for identification of the ASV model. 

 An important and initial step necessary for starting the OKID method is to select an upper 

bound on the potential system order in such a way that the computation time would be reduced to 

a great extent. Hence, this step specifies blocks of the input and output data to be used. So a 

number   according to Eq. (4.27), representing number of the observer Markov parameters and 

also the time step for the observer to become deadbeat, was selected such that      , where 

  and   are the number of outputs and the order of the system respectively. So,     repre-

sents the upper bound on the order of the identified system model. Apparently, the parameter   

could be smaller than the true order of the system for multiple output system; so number   was 

chosen to be 20 in our work, when multiplied by     equals to 80 which would sufficiently         
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Figure 6.5 Output data from an illustrative identification run showing raw data (dotted line) and 

their corresponding filtered data (solid line). 
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larger than the maximum true system order for the ASV; hence, the guessed value for the num-

ber   is more than enough. The plot of Hankel matrix singular values (HSV) obtained through 

SVD and the modal singular values (MSV) from the OKID algorithm applied to the ASV dy-

namical system can be seen in Fig. 6.6 and 6.7, respectively, which can be used to select the cor-

rect system order. The number of non-zero significant singular values represents the system or-

der [38] [48]. The system order, in essence, delineates overall system response with respect to 

the applied inputs. 

 Once we have HSV and MSV after SVD, then the balanced truncation (BT) method, 

which is one of the common reduction methods for selecting a model having suitable order of a 

linear time-invariant system, is used. In this technique, important modes of the ASV dynamical 

system represented by relatively much higher Hankel singular values arranged in descending or-

der such as              of the diagonal matrix   that were obtained through the 

SVD process. The significant singular values that evaluate the state contribution are kept while 

the insignificant ones that are relatively much smaller modes of the system are discarded which 

reflect the measurement noise affecting the system [38] [54]. The balanced truncation method 

can be performed either automatically in the code or interactively by the user. In this research, 

we follow the interactive approach of model order determination of the balanced truncation 

method in which the decision is made by the user as part of the offline identification process.  

 Due to the noisy input and output data of a real system, we can differentiate insightfully 

between the real and noise modes. Therefore, by examining the Hankel singular values shown in 

Fig. 6.6, a significant plunge in the singular values after the fourth one can be viewed clearly 

which made us to select the ASV system order to be four, whereupon majority of ASV system’s 

output response was described by that order accurately. The identification of system having order  
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 Figure 6.6 Hankel singular values from an illustrative identification run of ODU-ASV. 

 

 

 

 

 

 

 

 

 

 

 

       

Figure 6.7 Modal singular values from an illustrative identification run of ODU-ASV. 
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fourth is also confirmed by the accuracy indicator i.e. modal singular values (MSV) as depicted 

in Fig. 6.7. The detail of accuracy indicator was given at the chapter 3; so the hypothetical reason 

for the fourth order model is that the fourth mode is considered to be a delay between the actua-

tion of trolling motors rendering thrust and the ASV starts to rotate about the CG point. The de-

lay would add another state and the fourth order is the acceptable choice for the ASV system. 

The truncated Hankel matrix is then used to calculate the system Markov parameters. Then, from 

utilizing system Markov parameters in the ERA/DC algorithm [38], balanced realization in the 

form of system state matrices i.e.           of the ODU-ASV is obtained as: 
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As there are infinite realizations for a system that depict the same input/output behavior, but the 

realization that has least number of state variables required to describe the specific input/output 

behavior is called the minimal realization. The minimal realization is also the balanced realiza-

tion which is achieved when the system is both completely state controllable and state observa-
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ble. The controllability and observability of discrete-time ASV system is determined by compu-

ting the ranks of controllability and observability matrices given in equations (3.16) and (3.17), 

respectively; which are four in both cases and equal to the order of the ASV system.    

 

6.5 Benchmark Assessment Tests of OKID-identified ASV Model  

 In order to assure the validity and performance evaluation of fourth order model identi-

fied by OKID algorithm from the experimental input and output data alone, the estimation and 

prediction results derived from observer and identified model respectively, should be verified. 

Afterwards, to verify the identification results for having the best identified model, its validation 

is ascertained by testing the residuals for whiteness, which is the process of calculating the auto-

correlation function of inputs. Moreover, to check whether the identified model left behind any 

undetermined effects of inputs by computing the correlation between output residuals with 

lagged inputs [36], [55], [46].  

 

6.5.1 Reconstruction of Output Data during Simulation    

 That OKID is the best suited method for the identification of MIMO systems, besides the 

SISO systems [45], [16]; a fourth order model was identified for the ASV forward motion by the 

OKID algorithm as elaborated in previous section. The identified model needs to be investigated 

for its viability; for this purpose, the identified ASV system model as well as its related identified 

observer was simulated in time to the known inputs. The predicted as well as estimated outputs 

in the form of     Cartesian coordinates, yaw angle  , and yaw rate  ̇ are achieved by simulat-

ing in time the identified model and its corresponding observer of the ASV system with the help 

of known inputs and are given in Fig. 6.8 and 6.9, respectively. This means the predicted outputs 

are the reconstructed output data from the identified system model only, while the estimated out-

puts are gained from the identified observer equation. 
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Figure 6.8 Observed and simulated outputs of reconstructed data of the identified forward model. 
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Figure 6.9 Observed and simulated outputs of reconstructed data of the identified observer. 



121 

 

The dashed lines in Figs. 6.8 and 6.9 shows the reconstructed data from simulation of the identi-

fied forward model and the observer, respectively, while the solid lines represent observed ex-

perimental output data. By examining these figures, it is evident that the prediction as well as 

estimation of Cartesian  ,   position coordinates, and yaw angle are in perfect agreement with 

their respective actual observed outputs of the ASV system. As a matter of fact, perfect tracking 

of the actual outputs is not required because the sensors might have high frequency noise which 

can be observable but definitely not controllable. Among the outputs, the Cartesian position data 

is critically important as they are used in waypoint trajectory following control design of the 

ASV. As far as the yaw rate is concerned, the reconstructed data from the identified forward ob-

server matches the actual output data quite better than that from the identified system model. 

Therefore, overall performance of the identified ASV's model is good enough in predicting the 

ODU-ASV response to the known inputs. Simulation of the model performance can't completely 

clarify the deficiencies in the proposed state-space model. Therefore, model predictions error 

strategy can be used as residual analysis in the model validation step [36], as discussed ahead. 

 

6.5.2 The Residual Analysis  

As discussed in preceding section, model validation is also accomplished by comparing 

one-step ahead predicted response of the identified model with measured response of validation 

data set which is produced by the actual system and then evaluating their difference. The differ-

ence is technically known as residual or prediction error related to the dynamic model. The re-

sidual is the cardinal quantity of interest in the assessment tests of identified model and if not left 

behind by the said model then that is called the perfect model. This fact implies that ideally the 

residual should not depend on the inputs or its past residual values. If that requirement is not ful-

filled, then it indicates that some of the validation data set is not described perfectly by the iden-
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tified model but left over as residual or the prediction error; consequently, the model is inevitably 

to be improved [36], [55]. The residual  ( ) is defined in a formal manner as: 

 

  ( )   ( )   ̂( )             (6.2) 

 

where  ̂( ) is the predicted output, given by the identified system model, of the corresponding 

observed output  ( ) at time step  . Residual analysis is mainly performed with the help of two 

tests: the whiteness test which determines the predictability in residuals and the independence 

test which refers to correlating residuals with inputs; the details are presented as follows. 

 

6.5.2.1 The Whiteness Test: Predictability in Residuals  

According to the whiteness test of output residuals, the autocorrelation function (ACF) of re-

siduals is used for finding how the prediction errors are related in time. Autocorrelation relates to 

the correlation of a time series data with its own past and/or future values. In order to have per-

fect prediction for an identified model, it is necessary to have only one nonzero value of the au-

tocorrelation function occurring at zero lag. If the samples of output residuals separated in time 

by lag l have no statistically significant correlation among them, then there is no scope for pre-

dictability within the output residuals. This indicates that the residuals or prediction errors con-

tain no obvious patterns, which means they are completely uncorrelated with each other, and 

hence, is a white noise sequence [36] [45] [55]. The ACF of each output residuals rendered by 

the OKID identified model of our ASV are shown in the Fig. 6.10. The figures show that the 

output correlations except for the one at zero lag fall approximately within 99% confidence in-

terval around zero. Therefore, the identified model appears to be adequate and it is apparent from 

all the auto-correlation of output residuals that the model significantly the stochastic noise char-

acteristics of the measured output. 
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Figure 6.10 Auto-correlation of output residuals obtained from OKID identified model of ASV. 
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6.5.2.2 The Independent Test: Correlating Residuals with Inputs 

 Another test for the identified model to behave as a good deterministic model is to find 

out the independence of the model's residuals with respect to the past inputs of the system. This 

implies that a good identified model picks up the dynamics of the system adequately and never 

accumulates any unexplained leftovers originated by the inputs. For this purpose, the cross-

correlation function of the residuals with the lagged (time-shifted) inputs of the system is com-

puted and it should lie within the confidence region for this function. Mathematically the sample 

cross-correlation function    ( ) in discrete time domain is: 

 

   ( )          
 

    
   (   )   ( ) 

            (6.3) 

 

The cross-correlation function can also be calculated for the negative lag and are some-

times of interest, because the output does not depend on future inputs in causal systems. There-

fore, the values of cross-correlation function for positive lags are of great importance and will be 

used. A significant correlation between  ( ) and input  ( ) at positive lags directly implies that 

the effects of inputs on the process response have not been completely explained [36] [46]. The 

cross-correlation between inputs and the residuals for each input-output pair are given in Figs. 

6.11 and 6.12. The correlation between the residual of each output of the identified model with 

each left and right motor time-lagged PWM inputs lie within the 95% confidence interval and do 

perform well. 

 

6.5.3 Cross Validation 

The technique of validating a model using an independent data set, which is not used in 

model identification process, is termed as cross-validation. Hence the best way of having insight 

into the examination of the identified model’s quality is to simulate it with input from a new  
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Figure 6.11 Cross-correlation between lagged values of input-1 and residuals for all output data. 
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Figure 6.12 Cross-correlation between lagged values of input-2 and residuals for all output data. 
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validation data set that is not used in the identification process and then compare the simulated 

output thus obtained from the model with the measured one. A good model of the ASV system is 

the one which renders good predictions on the fresh data of validation set [37], [48], [56]. There-

fore, the simulated output response of identified model of ASV dynamics is cross validated 

against the output data from the ASV measured during the water trials. A couple of the measured 

test data set was set aside for this purpose and was not used in system identification task. A 

goodness of fit is determined between the output data from the ASV dynamical system measured 

by the sensors during the real water tests and the simulated model output of ASV. The common 

measure used to determine the percentage of goodness of fit denoted by    is the normalized root 

mean square error (NRMSE) as given: 

 

      
‖    ̂‖ 

‖       , - ‖ 
                (6.4) 

 

where   and  ̂ are vectors of measured and predicted outputs respectively; and the notation ‖ ‖  

stands for the 2-norm of a vector. The fit explains that how much in percentage the output of 

ASV system behavior is explained by the simulated output of its identified model. The compari-

son between simulated responses of OKID identified dynamical model of ASV against true ob-

served output data which is reserved for validation of  ,   position coordinates, and yaw angle is 

shown in the Fig. 6.13. The percentage goodness of fitness (NRMSE) values for predictions of   

&   position coordinates and yaw angle of the ASV are given in Table 6.1. 

By examining the plots given in Fig. 6.13 and the NRMSE values given in Table 6.1, it is 

clearly revealed that simulated output response in case of Cartesian  ,   position data of ASV 

obtained through OKID identified model closely matches their respective experimental observed 

data, while yaw angle   is not a very good match. As we are mainly concerned with the   and   
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Figure 6.13 True measured (solid line) and model predicted (dotted line) outputs of ASV system. 

 

 

position coordinates because the position data is critical for path-following control strategy. In 

this regard, yaw angle   and yaw rate  ̇ are not the required output states to be controlled, so we 

are not paying much attention to them. As a matter of fact, the yaw dynamics, i.e. yaw angle   
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Table 6.1 Percentage goodness of fit of X, Y, & yaw. 

 

Percentage goodness of fitness 

(NRMSE) 

Position in X-coordinate  97.99 % 

Position in Y-coordinate  83.72 % 

Yaw angle 60.79 % 

 

 

          

and yaw rate  ̇ are coupled with the surge and sway motion [4] so they are necessary in the sys-

tem identification process of ASV. Hence, it is concluded that the identified model of order 4 

validate the position data in Cartesian coordinates very well. 

 

6.6 Discussion Regarding OKID-identified Model 

 In the previous sections of the chapter, the time-domain observer Kalman identification 

(OKID) state-space algorithm was utilized to find the system matrices of the ODU-ASV so that 

they could be used in the optimal control design for its motion control. This is basically a dis-

crete linear time-invariant mapping technique for characterizing the inherent nonlinear relation-

ship between experimental input output data without imposing user-defined a-priori assumptions 

regarding model order or model structure [38]. In the OKID identification procedure, the observ-

er Markov parameters were obtained first from the real-time experimental input and output data 

collected from the ASV open-loop water trials and from them the system Markov parameters, 

and the observer gain Markov parameters were calculated. Then, the state space model of the 

ASV was realized from the system Markov parameters using ERA/DC algorithm, which starts 

with the formation of generalized block data matrix known as Hankel matrix and later on to fac-
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torize it by singular value decomposition. The true system order of ASV is identified to be four 

by selecting the first significant non-zero singular values from HSV and MSV plots. The esti-

mate of state-space system matrices of ASV such as  ̂,  ̂, and  ̂ are obtained using Eq. 3.32.   

 Numerical simulations are presented, and it can be concluded from the simulation of out-

put data reconstruction that the prediction as well as estimation regarding position of ASV in 

Cartesian  ,   coordinates, and yaw angle is in perfect agreement with their respective actual 

observed outputs of the ASV system. As far as the yaw rate is concerned, the reconstructed data 

from the identified forward observer matches the actual output data quite better than that from 

the identified system model. Therefore, overall performance of the identified ASV's model is 

good enough in predicting the ODU-ASV response to the known inputs.   

 The accuracy of the identified model for ASV dynamical has also been quantified with 

the benchmark residual analysis; and the results of these tests shows that the ACF of each output 

residual fall approximately within 99% confidence interval around zero except for the one at zero 

lag. Moreover, the correlation between the residual of each output of the identified model with 

each left and right motor time-lagged PWM inputs lie within the 95% confidence interval and do 

perform well. From cross validation test of the said model shows that simulated output response 

in case of Cartesian  ,   position data of ASV obtained through the OKID identified model 

closely matches their respective experimental observed data; in this case, the percentage good-

ness of fitness (NRMSE) values for predictions of   &   position coordinates and yaw angle of 

the ASV are 97.99 %, 83.72 %, and 60.79 %, respectively. So, the identified ASV model can ad-

equately be used for the design of closed-loop state feedback optimal linear quadratic tracking 

controller for its path-following control strategy. 
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6.7 Optimal Linear Quadratic Tracking Control  

 Oftentimes in controlling the position of ASV, regulating the state to or near zero is not 

the point of intrigue but rather tracking of nonzero reference waypoints or the command signal is 

the sole purpose of control design. The position of ASV in   and   coordinates while coasting is 

susceptible to environmental disturbances such as wind and currents and could sufficiently be off 

the target waypoints during the path-following control strategy under the action of simply PID 

control. This behavior consequently can show a delayed response by the ASV in coasting from 

its current position to the target waypoint. This problem could be solved by using optimal dis-

crete feedback linear quadratic tracking (LQT) control which is the extension of LQR control 

design approach. Hence, in this kind of optimal tracking or servo-design problem, an additional 

feedforward term is added to the control input along with the fundamental LQR feedback loop 

which makes the controller robust to uncertainties and disturbances as well as closed-loop stabil-

ity of the system is ensured. As we have state-space realization for ASV obtained in section 6.4, 

the optimal discrete feedback LQT control was designed and implemented in this section. For 

this purpose, path-following motion control strategy was adopted for the specified paths using   

and   Cartesian coordinates as reference waypoints in the present work, wherein all the states 

from necessary sensors and the inputs from actuators were available to be used. The design of 

optimal discrete LQT control for ASV motion is outlined as below. 

 

6.7.1 The Design Outline of LQT Control  

 From the OKID methodology, the finite-dimensional discrete linear time-invariant state 

space model, as given in Eqs. 4.12 - 4.13, was identified in section 6.4 above, that characterizes 

the dynamics of ASV wherein the identified system matrices           are given in Eq. 6.2. 

The n-dimensional, where    , state vector that is considered as:   ,          ̇-  represent-
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ing position of ASV in   &   Cartesian coordinates, yaw angle, and yaw rate respectively. These 

states are observed by the pose sensors at sampled time. The r-dimensional, where    , control 

input vector comprise of the applied PWM voltage values, i.e.  ( )  ,  ( )   ( )-
 , that 

causes to produces thrusts by port and starboard astern motors, thereby change the heading or 

yaw angle  ; and consequently the position of ASV varies too. Before designing the proposed 

controller, it's necessary to determine the open-loop poles of the ASV, system which are the ei-

genvalues of matrix   as shown: 

     ( )   [

               

               

         

       

]           (6.5) 

It is evident that three of the open-loop poles of ASV system are on the right-half plane of the 

pole-zero map, so it indicates that the system is unstable in open-loop. Therefore, the next step is 

to design a stable optimal discrete LQT control for path-following purpose. It must also be ascer-

tained that the realization of Eqs. 6.2 is minimum by ensuring that (   ) is controllable and 

(   ) is observable, because multiple state-space realizations could be possible for the ASV dy-

namical system. This test was confirmed that each of the pair has been determined to have rank 

four, which is also the order of the identified ASV system. Having identified the system matrices 

as discussed, the design outline of optimal discrete LQT control is given below; whereas the de-

tail account regarding the derivation of the proposed control design is given in Chapter 5. 

1. First, the user-defined waypoints            for the desired path were specified and 

store in the file of computer memory. 

2. In the optimal control, minimization of some predefined performance index (  ) or cost 

function is performed utilizing the symmetric weighting matrices          and   

       of system states and control inputs respectively, such as:  
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(     )

   (     )  
 

 
 ,(     )

   (     )    
     -

   
               (6.6) 

 

where   ,       , and    are the reference track, certain linear combination of states, 

and control at instant   ,   ]. Also,     is the solution to algebraic Riccati equation 

(ARE) [34], [35] given in Eq. (5.7). 

3. The initial value    of the auxiliary sequence    is computed offline by solving   , as 

given in Eq. (5.9), backward in time utilizing already stored waypoints    and the value is 

stored in the computer memory for later use.      

4. As ARE does not depend on the state trajectory [34]; therefore, the sequence   , as given 

in Eq. (5.29), as well as the gain sequences    and   
 , as given in Eqs. (5.36) and (5.37) 

respectively, are computed offline prior to the control application to the ASV dynamics. 

5. The LQT gains    and   
  are stored in the onboard computer memory for later use in the 

control run for controlling the motion of ASV.  

The weighting matrices are determined by the genetic algorithm (GA) based multi-objective op-

timization technique discussed as follows: 

 

6.7.2 Multi-objective Genetic Algorithm for Weighting Matrices Selection  

 The performance of discrete-time LQR and its extension such as LQT controllers depend 

on the state and control weighting matrices   and   of the performance index, which are used as 

panelizing the states and control inputs respectively. Therefore in the present work, the best op-

timal choice for these weighting matrices is determined by the GA based multi-objective optimi-

zation technique using MATLAB
® 

optimization toolbox
™ 

and is called multi-objective genetic 

algorithm (MOGA); so that the selection of diagonal elements of PI weighting matrices   and   

ascertains the basic optimality criterion of the said control law.  
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 A multi-objective optimization problem refers to finding a set of feasible non-dominated 

solutions, called Pareto optimal set, instead of a single objective optimization problem and, 

therefore, each solution satisfies all the objective functions to an acceptable level without being 

dominated by any other solution in the solution space with respect to multiple objectives. The 

values of the objective function corresponding to the Pareto set form the Pareto front [57], [58]. 

The GA, being larger class of the evolutionary algorithms, is regarded to be promising method 

for multi-objective optimization problems [59]. GA is basically a stochastic global search pro-

cess which resembles the natural biological evolution phenomena. The GA algorithm starts ran-

domly on the population of potential solutions without knowing the correct solution for the de-

sign variables beforehand. The principle of survival of the fittest is incorporated in GA algo-

rithms using evolution operators such as reproduction, cross over, and mutation in order to have 

better and better approximations to a solution [57], [59]. Hence, the main function of the pro-

posed method is to assure the convergence characteristics of GA based multi-objective optimiza-

tion for searching of the optimal choice of weighting matrices so that the Pareto curve tends to 

approach the origin as much as feasible. The concise explanation of GA based multi-objective 

optimization technique is given in Appendix-A.     

 The most vital step in GA based multi-objective optimization technique is the characteri-

zation of objective functions. In this work, the two objective functions are developed and used as 

given in Eqs (6.7) and (6.8) below [50], [60]. For this purpose, simulation of the fundamental 

LQR design criteria as well as closed-loop response of the unit step inputs were utilized. If the 

tracking error is defined as        [39]; then, Eq. (6.6) can be written as the first objective 

function: 

 

    (   )  
 

 
  

      
 

 
 ,            -   

           (6.7) 
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and the second objective function is: 

 

    (   )  
 
  ,    (    (   (     )))-⁄         (6.8)  

 

whereas   is a small positive number and adjusting coefficient to avoid computational error. In 

this technique, the diagonal elements of weighting matrices are tuned by the MOGA until the 

optimal controller gains   are obtained for the desired performance of the closed control system. 

The diagonal elements of both weighting matrices   and   together constitute six decision varia-

bles    which are the key elements of objective functions. The weighting matrices can be written  

          ,                   -,              ,        -,       (6.9) 

and the decision variables vector is: 

     ,                           -         (6.10) 

Therefore, the MOGA formulation for the LQR, and optimal LQT control, weighting matrices is 

written in the following form: 

 

Minimize   (  )  ,   (  )    (  ) -           (6.11) 

subject to   ( )              ,   and 

    ( )                 

Initial values and the lower and upper bounds for the decision variables vector were specified as 

follows:   

     ,                    -  

        0            
 

     
  

 

     
1    

and         ,                                - 
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By default, the initial population of       individuals which is a set of points in the design 

space is generated randomly. Then, non-dominated measures such as: rank based on the relative 

fitness and crowding distance of individuals of the current generation are the criteria for the 

computation of next generation. These individuals are a set of possible solution to the problem at 

hand. Therefore, six individuals represent the diagonal elements of both weighting matrices. The 

multi-objective GA function in optimization toolbox of MATLAB
®
 utilizes a variant of nondom-

inated sorting genetic algorithm II (NSGA-II), which is known as control elitist GA,                          

                                   

                       

 

 

 

 

 

 

 

 

 

  

  

 Figure 6.14 Pareto-optimal solutions with knee point ―Kn‖. 

  

in which individual with better rank or relative fitness value is selected but the increase in the 

diversity of population for convergence to an optimal Pareto front is ensured [58]. Different sim-
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ulations were performed for achieving good configuration parameters for the GA. In this work, 

the configuration parameters selected are given in the Table 6.2, while other parameters are left 

as default. After each run of MOGA in MATLAB
®

, a set of solutions is provided instead of just 

one solution, and each one is called individual in the population, which is evaluated in bi-

objective space formulated as above. During running of the MOGA, when the average change in 

the spread of Pareto front over the stall-generation limit, which is 150, is less than tolerance limit 

of     , then the generation stops and the Pareto-optimal or trade-off curve is obtained as shown 

in Figure 6.14. From the Pareto curve, an obvious knee i.e. point    of nondominated trade-off 

solution set for the elements of   and   is apparently visible. The objective function    increases 

by         from point   to    and        from point    to  , while the objective function    

decreases by        from point   to    and         from point    to  . Therefore, point    is an 

attractive compromised solution without the preference information. This points stands for a 

point of decreasing marginal objectives. 

 

Table 6.2 Configuration parameters for MOGA 

Size of initial population   200 

Distance measure function Crowding Distance 

Domain of distance measure function  Genotype 

Pareto front population fraction 0.5 

Tolerance limit        

Stall generation limit 150 

 

   

 From Eq. (6.10), the trade-off solution for the decision variable vector    given by the 

point    is as follows: 
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                ,                                        -      (6.13) 

where the elements of   , thus determined from MOGA; populate the diagonals of optimal 

weighting matrices   and   alternately as: 

 

     [

                                                      

                                                      

                                                    

                                                          

],         0
                        

                       
1                 (6.14) 

Once we determined the   and   matrices, the feedback gain matrix   is calculated from Eq. 

(5.7) for the case of step inputs wherein matrix   is calculated by solving discrete algebraic Ric-

cati equation (ARE) as given in Eq. (5.6). So the optimal feedback gain matrix that led to a good 

step response, as shown in Fig. 6.15, to both left and right motor step inputs is given as: 

 

     0
                                                                                    

                                                                     
1     (6.15) 

 

The discrete linear time-invariant identified model of ASV as given in Eqs. (4.12) and (4.13).  

 

6.8 Numerical Simulations for Controller Performance   

 The objective of numerical simulation study of under-actuated ASV's control design is 

mainly to verify the controller’s desirable parameters for its effective performance and to assure 

its digital implementation for the waypoints path-following motion. In the path-following control 

strategy, the waypoints navigation system was utilized in which user-defined waypoints of vari-

ous desired paths are provided sequentially as reference navigation points for optimal discrete 

LQT controller. A linear time-invariant system of ASV was developed in section 6.4 and later on 

the identified model along with the proposed controller designed in section 6.7 was then used for 

precise path-following simulations incorporating waypoints guidance. Therefore in this work, 

different types of computer simulations such as: the controller response to track the very basic 
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step inputs and also tracking the sinusoidal, zigzag, and S-shape maneuvering paths were carried 

out in order to test important characteristics of the controller as well as robustness to the ran-

domness in the complex path curvature. These numerical simulations were carried out using 

MATLAB
®
 control system toolbox

™
 and discussed as follows. 

 

6.8.1 Simulation Results of Step Inputs 

 Simulations of the closed-loop linear quadratic tracker utilizing the previously identified 

linear time invariant system of ASV were performed by applying the unit step inputs for both 

motors. The step responses of the closed-loop system of ASV are analyzed in order to check ro-

bustness and hence adequacy of the proposed control parameters, i.e. the state and control 

weighting matrices Q and R, respectively, which are obtained from GA based multi-objective 

optimization. The optimal selection of these parameters is very important because they are used 

in the optimal LQT controller for tracking the waypoints of selected trajectories accurately. The 

weighting matrices thus obtained improve the step responses of both left and right motor inputs. 

From the step response of closed-loop ASV system for its both astern motors and under the op-

timal LQT control, as depicted in the Fig. 6.15, the four closed-loop performance criteria such 

as: overshoot   , rise time   , settling time   , and steady-state error     were determined. The 

values of these performance parameters indicates that the ASV system has zero or limited over-

shoot; settling time and the steady state errors are also within admissible bounds. The values of 

these closed-loop performance parameters for unit step inputs for left and right motors are given 

in Tables 6.3 and 6.4, respectively. Also, from step response of the proposed controller, it is not-

ed that the steady-state error for each step response is not perfectly zero but rather a very small 

number. Hence, it is concluded that the close-loop gain adjustment is also achieved with the help 

of two objective functions as described earlier so that a trade-off between the desired transient 
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response and the desired steady-state accuracy is accomplished; and permissible step input per-

formance specifications are achieved. Usually, the steady-state error decreases with an increase 

in feedback gain values and vice versa [61]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

   

 Figure 6.15 Closed-loop unit step response of the proposed controller.  

 

Table 6.3: Step response parameters for left motor input 

     ( )    ( )     ( )     

X 3.38 7.01    0 1.0×10
-5 

Y 3.38 6.9      0 2.7×10
-5

 

Yaw 3.34 6.7      0 2.8×10
-5

 

Yaw rate 3.35 6.7      0 2.8×10
-5
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Table 6.4: Step response parameters for right motor input 

     ( )    ( )     ( )     

X    1.57      3.6    7.49 8.1×10
-7

 

Y     1.54 3.5 5.39  8.2×10
-6

 

Yaw  0.005 3.4 0  2.2×10
-5

 

Yaw rate  0.004 3.4 0  2.1×10
-5

 

 

 

 

6.8.2 Simulation Results of Tracking Various Trajectories 

 It can been seen from the simulation of proposed controller following sinusoidal, zigzag, 

and S-shape paths that simulated outputs given by the controller and the reference outputs are in 

good agreement. There are some small discrepancies found in simulated x-direction position of 

ASV which can be seen at the ends of zigzag and S-shape courses as given in Figs. 6.17 and 6.18 

respectively. The designed discrete optimal LQT control could follow and converge to the de-

sired reference paths pretty fast in all simulations. This is also apparent from the step response of 

the closed-loop ASV system under the proposed controller as discussed earlier. The exemplary 

trajectory paths chosen here, such as: sinusoidal, zigzag, and S-shape, are taken from several 

simulations that were performed and these are shown in Figures 6.16, 6.17, and 6.18. Their 

RMSE values for  - and  -position tracking in simulation are given in Table 6.5 below. 

 

           Table 6.5: RMSE of X- & Y-position tracking in simulation 

   X-direction       Y-direction 

Sinusoidal Path       9.9411×10
-3

       3.4332×10
-3

 

Zigzag Path       8.0744×10
-2

       6.2907×10
-3

 

S-shape Path       1.8702×10
-1

       1.0538×10
-2
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Figure 6.16 LQT control performance simulation of tracking sinusoidal path: tracking in X-

direction (top), tracking in Y-direction (middle), and tracking sinusoidal path (bottom). 
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Figure 6.17 LQT control performance simulation of tracking zigzag path: tracking in X-direction 

(top), tracking in Y-direction (middle), and tracking zigzag path (bottom). 
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Figure 6.18 LQT control performance simulation of tracking S-shape path: tracking in X-

direction (top), tracking in Y-direction (middle), and tracking S-shape path (bottom). 
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6.9 Discussion Regarding LQT Control Design  

 The problem of an effective design of optimal linear quadratic tracking control for path-

following motion approach of ODU-ASV is addressed. The model of vehicle horizontal dynam-

ics is identified by the OKID method for its subsequent control task under the assumptions that 

vertical motion dynamics were negligible and hence not considered in the design. Also, the speed 

of the ASV is coupled with the position of ASV in Cartesian coordinates, so the   and   position 

coordinates, yaw, and yaw arte of the ASV are considered in its system identification task. In the 

controller design, Q and R weighting matrices were determined optimally with the help of a GA 

based multi-objective optimization method called multi-objective optimization GA (MOGA) so 

that performance index of the said controller is minimized with the balanced adjustment of both 

matrices. After designing the proposed controller optimally, numerical simulations were per-

formed in order to test its performance incorporating the identified model of ODU-ASV dynam-

ical system. The simulation results regarding step response show that the proposed optimal LQT 

controller offered much better efficiency in tracking the step inputs with admissible rise time, 

settling time, and overshoot. Due to optimal design of feedback gains values with the help of 

MOGA technique, the steady state error has also been greatly reduced which is also evident from 

the step response simulation. Moreover, the performance of controller during simulation of vari-

ous paths, such as sinusoidal, arc-like and S-shape courses, was confirmed. The validity of the 

proposed controller was also proved in real-time water-trials by tracking the sinusoidal and arc-

like paths reasonably well in the presence of environmental disturbance of wind and currents as 

well as error produced by noisy readings of low cost GPS.   
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6.10 Implementation and Experimental Validation of Control 

 In the previous sections, the discrete-time closed-loop optimal linear quadratic trajectory 

tracking controller or simply linear quadratic tracker (LQT) is designed over the entire range of 

the waypoints ,   - for the ASV motion, where   represents the total number of waypoints for 

the desired trajectory path to be followed. In order to check effectiveness of the proposed con-

trol, its implementation strategy at both software and hard level is described here in detail; then, 

outdoor real-time water-trials were carried out and their results are presented in this section.  

 

6.10.1   Implementation of Optimal LQT controller 

 The implementation of optimal discrete LQT controller involves both hardware and soft-

ware environments. The proposed controller was implemented in hardware using the twin-

motors of ODU-ASV system having onboard computer, microcontroller boards, and pose sen-

sors such as: Memsense Nano IMU and low-cost 3DR uBlox GPS receiver for full state feedback 

that were considered. An overview of the experimental setup for twin-motors ASV was dis-

cussed in section 6.2. The only difference in the experimental setup for the real-time control test-

ing is the use of GPS receiver for position measurement of ASV instead of Lidar. The software 

(programming code) implementation of the designed control as well as real-time data logging 

from Memsense IMU are coded in MATLAB
®
, while the position data logging from GPS re-

ceiver as well as the tasks of autonomous or manual mode via remote control of ASV are ac-

complished in open source Arduino-C programming language. Therefore, in this regard, the 

guidance code generates the desired position of ASV in the Cartesian coordinates by utilizing the 

user-given waypoints of desire path and provides the position data to the control module. Navi-

gation code manages the sensors data, i.e. GPS receiver and IMU to generate ASV’s position in 

  and   Cartesian coordinates, yaw, and yaw rate as the state variables for the control module. 



147 

 

The control module generates the command signals for the port and starboard motors in a feed-

back loop by using guidance output commands and navigation sensors’ outputs such as GPS and 

IMU.  

  The output commands of the control module are the control signal or manipulated varia-

bles which are then mapped by the trained neural networks, one for each motor, with the execut-

able control commands representing PWM voltage values. The mapping is discussed in the 

forthcoming section 6.10. The PWM values are then sent to the two actuators that control the po-

sition and heading of the ASV by producing appropriate thrust T by each propeller. The working 

layout of the proposed control system is illustrated in Fig. 6.19 below. The main steps of the op-

timal LQT control implementation in real-time are summarized as follows:  

1. The waypoints    of the desired track are known in advance and stored in the onboard 

computer memory, where   is the index 0 to N, the total number of waypoints. 

2. The initial value    of the auxiliary sequence    is computed offline by solving   , as 

given in Eq. (5.28), backward in time utilizing already stored waypoints    and the values 

are stored in the computer memory in order to be used for real-time control validation 

testing. 

3. As ARE does not depend on the state trajectory [34]; therefore, the sequence   , as given 

in Eq. (5.29), as well as the LQT gains sequences    and   
 , as given in Eqs. (5.36) and 

(5.37) respectively, are computed offline prior to the control application to the ASV dy-

namics. These values are stored in the onboard computer memory for later use in the real-

time control validation run for controlling the motion of ASV. 

 During the actual control run, the only work is to solve Eq. (5.34) for      starting with 

the initial condition    as well as to compute the optimal control using Eq. (5.29) at each time  



148 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.19 Waypoints guidance, navigation, and control system for ODU-ASV. 

 

 

step, and then the control values are sent to drive-Arduino through Wi-Fi bullets for controlling 

the two astern motors of ASV. 

 

6.10.2 Neural Network Mapping of Control Signal 

 Neural networks (NNs), the artificial intelligence techniques, have the ability to charac-

terize the complex nonlinear relationship between two or more data types that is inputs and target 

outputs of the neural network. As in many dynamic time-series data applications, significant cor-

relation exists between the modeled time-series and independent external data set. Therefore, it 

has been observed in the present work that there is nonlinear relation exists in the mapping of 

control signals obtained from the optimal discrete linear quadratic tracking controller and their 

corresponding actual PWM voltage values required for controlling the two onboard motors of 

ASV. Each of the respective PWM signals, in turn, rotate the port and starboard motors which 
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induce the thrust for forward motion of ASV. Therefore, there is scope to apply NNs in this do-

main of problem. In order to achieve the nonlinear mapping task through NNs, MATLAB
®
 neu-

ral network toolbox
™

 was used, which is discussed in the forthcoming sections.   

 

6.10.2.1 NARX NN Architecture for Nonlinear Mapping 

There are many different kinds of NN architectures available, but the proposed NN-based 

nonlinear mapping between two different time-series data, such as: control signal or manipulated 

variables and their respective actual PWM voltage values for each motor, is characterized by 

nonlinear autoregressive with eXogenous inputs (NARX) feedback neural network. This net-

work, based on the linear ARX model, is recurrent dynamic network having feedback connec-

tions enveloping many network layers as given in following Eq. 7.1. 

       .                                      /   ( )       (7.1)    

It is clear from Eq. 7.1 of NARX network that future value of the dependent output signal i.e. 

     is regressed on the    past values of the output signal   and    past values of the independ-

ent eXogenous input signal  . Where           and      and      subject to       

represents the memory orders for tapped delay lines of the input and output, respectively. The 

nonlinear function   in Eq. (7.1) corresponds to nonlinear mapping, which is unknown in ad-

vance and can be approximated by the training of a feed-forward multilayer perceptron with the 

help of the network weights and biases as shown in Fig. 6.20. The term  ( ) is the approxima-

tion error of the signal   at time step   which needs to be minimized during training of the net-

work [62]. A rather detail account of the NARX network is given in the Appendix-B. 

 Various network topologies for mapping of both left and right motor control values ac-

cording to complexity level can be chosen by specifying the number of hidden layers and the 

number of neuron per layer as well as various training algorithms; this sort of selection was 
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 Figure 6.20 Nonlinear autoregressive with exogenous inputs (NARX) neural network. 

 

 

optimized through trial-and-error process to have network topology that could render the best 

performance. Therefore in the present work, separate NARX network was designed for the map-

ping of control values of each left and right motors, which avoids over-fitting of the input data to 

the targets while the generalization and computing power of each network increase instead. For 

the mapping problem at hand, the structure of each NARX network comprises of an input layer, 

two hidden layers, and an output layer of neurons which accomplish separate tasks. The input 

layer is actually the input fanning which is used just for summing the inputs and biases (if any) to 

the network and consists of 2 neurons for the two series of eXogenous inputs which made up of 

left and right motor control values obtained from the designed controller and 1 neuron for the 

output signal as provided to the network. The two hidden layers having [10, 30] neurons respec-

tively take information from the input layer and compare it with the desired targets using super-

vised learning rule. For this purpose, the nonlinear activation functions such as tan-sigmoid and 

log-sigmoid are used for the neurons of first and second hidden layer respectively; while the lin-
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ear transfer function is used for one neuron of the output layer. The selected parameters of each 

NARX network design are tabulated in the Table 6.6 below, while other required network pa-

rameters are remained as default.  

 

Table 6.6 NARX network structure used for mapping 

Number of  input neurons 03 

Number of hidden layers 02 

Number of neurons for each hidden layer [10, 30] 

Number of input and output/feedback delays 7, 7 

Number of output neurons 1 

Training function trainlm 

Network performance function mse 

Transfer function of neurons in 1
st
 hidden layer tan-sigmoid 

Transfer function of neurons in 2
nd

  hidden layer log-sigmoid 

Output neurons' transfer function Purelin 

 

 

6.10.2.2 Data Collection and Pre-allocation for NARX Network   

 The actual PWM data for both left and right motors has been collected at the sampling 

rate of 140 Hz from 5 out of 15 total outdoor water-trials; and are considered as the first discrete 

time-series data set as    to each network. The discrete exogenous input data set    for each 

network is the control values of both left and right motors which are obtained from optimal dis-

crete LQT controller. These two time-series of exogenous input data are obtained from the per-

fect simulation of the proposed controller for trajectory paths of those five outdoor trials; the per-

fect simulation means that when the actual trajectory paths and the simulated response of the 

proposed controller match perfectly then their corresponding control inputs, i.e. the actual PWM 

values and controller values after simulation, were collected and used for the training of each left 
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and right motors' network. The total selected data set from the five outdoor water-trials was 6000 

samples consisting of actual PWM values and their corresponding controller values from simula-

tions to form two time series for each motor of ASV. This entire training data set has been divid-

ed randomly into three different data subsets, namely: 70%, 15%, and 15% of the total data set 

were used for the purpose of network training, validation, and testing respectively. The unused 

inputs and target data set of one of the 15 water-trials are kept aside for ensuring the validation of 

each neural network design. 

 

6.10.2.3 Network Training  

 The NARX network for mapping the controller values of each left and right motor has 

been trained using Levenberg-Marquardt backpropagation (LMBP) learning rule. As LMBP is 

designed to approximate the second order derivative of the network errors without calculating 

the Hessian matrix Ҥ; so it is, most of the time, the fastest backpropagation algorithm [62], [63]. 

The Jacobian matrix J is utilized for calculation assuming the performance function to be mean  

square error mse. During LMBP training algorithm, weights & biases are automatically updated 

iteratively according to its error after the complete input-output training data set is provided to 

the network. The network weights and biases were initialized by the default function of 

MATLAB
®
 neural network toolbox

™
. The LMBP training algorithm is also elaborated in the 

Appendix-B. A series-parallel architecture is used for training the NARX network because the 

actual outputs are available during the training instead of feeding back the estimated outputs as 

shown in the Fig. 6.21. Each tapped delay line of input and output were provided with initial 7 

data points of given training data set. During training of the network, validation data is utilized 

for measuring network generalization; so when the network generalization is not improving for 
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some specified epochs, then the network training is halted and trained network is evaluated af-

terwards. The training parameters for both the networks are given in Table 6.7 below. 

 

                         

 

 

 

           

 Figure 6.21 Series-parallel architecture for NARX network's training for mapping purpose. 

 

 

 Table 6.7 Training parameters for each NARX network 

Max. Number of epoch 800 

Performance goal set (mse) 1×10
-6

 

Performance goal achieved (mse) 0.094916 (left) & 0.47686 (right) 

Regression R values 0.99969 (left) & 0.99968 (right) 

Training data divide function dividerand 

Training parameter max. fail 8 

 

 

It is clear from the networks performance during training as shown in Fig. 6.22, that there is no 

major problem with the training stage. The validation and test plots are rather similar; it implies 

that the test curve did not increase before rising of validation curve indicating no significant 

over-fitting has occurred. This means that network did not just over fit the network inputs to the 

targets during training and hence the network generalized well for the new data set.  

The network validation is also confirmed by the regression plot which shows the relation- 
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Figure 6.22 Network performances during training: mapping of left motor values (top) and right 

motor values (bottom). 

 

 

ship between the network outputs and its respective targets denoted by the R value. If the net-

work output is exactly equal to the corresponding targets then R is equal to one, which indicates 

that the network training is perfect; but this rarely happens in real practice. The regression plots 

for left and right motor inputs are given in Fig. 6.23. It is apparent from the R values in the re-

gression plots that the networks' training for both left and right motors' PWM values is adequate.   
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Figure 6.23 Regression plots for checking validation of both networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.24 Error autocorrelation function for checking validation of both networks' performance 
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The network performance in terms of mse metrics for both left and right motors mapping is vali-

dated by the error-autocorrelation function as shown in Fig. 6.24. The autocorrelation function 

(ACF) of errors produced by each network, in the case of left and right motors mapping, shows 

how the residuals of each network are related in time. From Fig. 6.24, it can be seen that there is 

only one nonzero value mse of the ACF at zero lag for each mapping network of left and right 

motors, which indicates that residuals are completely uncorrelated with each other. The correla-

tions of residuals, except for the one at zero lag, are approximately within     confidence limits 

around zero. Additional confirmation regarding the tracking performance of each network is ob-

tained by performing input-error cross-correlation function as given in Fig. 6.25, which shows 

how the residuals are correlated with the input sequence. In this case, all the cross-correlations 

are within     confidence limits around zero. It is concluded that each network is trained ade-

quately for mapping of left and right control signals to their respective PWM values.  

 

6.10.2.4 Evaluation and Implementation of the Trained Network  

 In order to check the generalization behavior of each of the network and see its response 

to new inputs, it is tested for the fresh unused input data to the network that it has never seen be-

fore. For this purpose, the data set consisting of inputs and target outputs for both left and right 

motor case were already kept aside is used. Initial values of 7 data points for each tapped delay 

line of input and output were provided as extrapolated data points from the start of the training 

data.  The weights and biases were initialized randomly by the MATLAB
®
 function. The trained 

networks were tested against new data that was not utilized in the training task. The results of 

mapping rendered by the trained networks for PWM values of both left and right motors are 

shown in the Fig. 6.26, which shows perfect match of actual PWM values and the NARX given 

PWM values. The network prediction capacity was additionally confirmed for multistep ahead 



157 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.25 Input-error cross-correlations for checking validation of both networks' performance. 

 

 

prediction in closed-loop format after following the known sequence as given in Fig. 6.27. After 

validation performance, the well trained network is saved and utilized for real-time control vali-

dation testing; the results therein shows that the trained networks work properly online for map-

ping purpose. 
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Figure 6.26 Mapping prediction of left and right motors' control input values. 

 

 

6.10.3 Real-time Experimental Validation of Control 

 The real-time experimental validation of control is a vital and final step in the process of 

testing the accuracy and adequacy of the designed controller at hand. In this step, the right deci-

sion is normally taken regarding validity of the controller after proving its adequacy. The real-

time validation water-trials of the ASV having the proposed control incorporated were performed 

on the Lafayette River. As already discussed, that a series of user-defined waypoints in terms of 

Cartesian coordinates for the desired paths to be followed are specified before starting the real-

time water-trials. The control values for both motors are computed in MATLAB
®
 with the help 

of designed optimal feedback LQT control so that the ASV is aimed at the reference waypoints  
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Figure 6.27 Mapping prediction of left and right motors' control input values with multistep 

ahead closed-loop prediction. 

 

 

sequentially in the presence of disturbances due to wind and currents. In order to achieve the re-

quired position while following the specified trajectory, the ASV is propelled by the differential 

thrust of two motors installed on the stern of ASV. Prior to start the real-time path following con-

trol run, the ASV was given motion in manual mode through R/C transmitter for a couple of se-

conds and then the autonomous feedback controller mode is initiated. The computed control val-

ues in real-time for both left and right motors are mapped by the trained networks to get the 

PWM values which were send to the drive-Arduino to run and control the two outboard motors 

through speed controllers. Hence the required waypoints were followed. 

 In these tests, the sinusoidal and arc-like trajectory paths were selected due to their 
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smooth curvature and their waypoints as the reference steering commands are stored in the 

onboard computer memory for real-time testing the designed controller response to those points. 

The selected maneuvering paths are more common in routine ASV dynamical motion. Even 

without DGPS technique or real-time kinematic (RTK) GPS corrections, the system model and 

designed controller proved to be working properly. The performance of the control system of 

ASV was validated in real-time for sinusoidal and arc-like paths as shown in the Fig. 6.28. The 

NRMSE values for both paths are given in Table 6.8 and it shows that the proposed controller is 

efficient in error minimization under persistent disturbances from the environment. 

 

          Table 6.8: NRMSE of X- & Y-position tracking in real-time validation 

   X-coordinate       Y-coordinate 

Sinusoidal Path         0.7231                          0.7074       

Arc-like Path         0.7964                    0.8067 

 

 

 

 

 

 

 

 

 

 

 



161 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.28 LQT control real-time path-following performance: tracking of sinusoidal 

path (top) and tracking of arced path (bottom). 
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6.11 Concluding Remarks  

 In order to identify the system dynamics of ODU-ASV Big Blue, some systematic tasks 

of the research work are accomplished in order such as: the acquisition of raw data from the out-

door real-time water-trials, preprocessing of acquired raw data, system identification algorithm 

i.e. OKID passes and analysis, assessment tests of the identified model, design, simulation & im-

plementation of the controller for ASV, and finally the real-time validation testing for the identi-

fied model of ASV and its subsequent controller.  

 The linear time-invariant state-space model of order fourth of the ASV is identified from 

experimental data utilizing the OKID method as well as ERA/DC algorithm. Most of the time 

sinusoidal, zigzag, and arc-like maneuvers were performed by the ASV during the outdoor wa-

ter-trials in order to fully assess that the validity of its dynamics and optimal feedback control 

design is executable. The length of the data record was quite reasonable from the 15 water-trials 

of different trajectory paths. The accuracy of the identified model for ASV dynamical has also 

been quantified with the benchmark residual analysis, and the results of these tests show that the 

OKID-identified could adequately be used for the design of closed-loop state feedback optimal 

linear quadratic tracking controller for its path-following control strategy. 

Irrespective of all the limitations aforementioned in this work, the proposed method presented in 

this research brought about to a good linear state-space model of ASV and based on the identi-

fied model, the optimal discrete linear quadratic tracking control for its motion control was de-

signed and validated in real-time in the presence of environmental disturbance of wind and cur-

rents. 
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE WORK 

 

7.1  Conclusions 

 In this dissertation, the open-loop system identification of ODU-ASV and its optimal 

control design based on the identified model has been proposed. The observer Kalman filter sys-

tem identification is utilized. The OKID technique, originally developed at NASA, together with 

the combination of its complementary algorithm of ERA comprised the OKID/ERA or 

OKID/ERA-DC has been proved to be a successful algorithm that has potential to identify the 

discrete linear time-invariant state-space system in the time-domain as the system matrices 

       and   along with the steady state Kalman filter gain matrix simultaneously from the ex-

perimental input and output data [38], [49], [64], [65]. Hence, the OKID methodology proved to 

be powerful alternative to the traditional modeling technique called modeling by first principles. 

The identified state-space model obtained from the experimental data represents the behavior of 

the dynamical system of ODU-ASV. The length of the experimental input and output data col-

lected from water-trials was selected to be sufficiently large, so that the dynamics of the ODU-

ASV is fully assessed. From the experimental input output data, the observer Markov parameters 

(OMPs) are obtained from the set of Markov parameters of the state-space observer equation. 

The OMPs are the combination of system Markov parameters and observer gain Markov pa-

rameters. The system matrices  ,      and   are computed from the former using ERA algo-

rithm while the observer gain matrix   is determined by the latter parameters. A fourth-order 

model was selected for the discrete linear time-invariant state-space system after performing sin-
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gular value decomposition. The benchmark assessment tests have been performed including: data 

reconstruction from the identified model, residual analysis, and cross-validation tests, in order to 

show the validity and accuracy of the identified model of order four for the ODU-ASV dynam-

ics. After having the linear state-space model, the optimal LQT controller is designed for achiev-

ing path-following task while minimizing the predefined performance index; during this process, 

the state variable feedback gains are obtained utilizing weighting matrices that are found by mul-

tiobjective optimization genetic algorithm (MOGA) technique. Finally, the neural network is 

trained for mapping the controller command and the actual PWM values required for the two 

trolling motors and then stored the trained network in order to use in real-time control run for 

mapping purpose. The results of real-time water-trials confirm the validity of the OKID identi-

fied model of ODU-ASV and its proposed controller.   

 

7.2 Future Extension of the Research 

 For horizontal planar motion control of the ODU-ASV, the optimal discrete linear quad-

ratic path-following controller is designed and implemented in this research considering sway 

motion negligible. Also, the temporal state of ASV in the forward   direction i.e. velocity was 

not included in the system identification process due to the fact that ASV, being slow moving 

vehicle with the velocity of approx. 1 m/s, is coasting with nearly constant velocity during path-

following control scheme after the initial acceleration for a couple of seconds; and it keeps mov-

ing at that speed until the time it stops moving at the end of its path-following task.. The future 

work is proposed to be focused on the OKID system identification with the addition of velocity 

states. The ASV dynamical motion in backward direction was not tested and studied for its sys-

tem identification task due to time constraint. The dynamic characteristics of the reverse motion 

of ASV might be slightly different than the forward one due to the expected error in finding the 
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location of CG point, the difference in hydrodynamic shape of the aft and fore of the ASV, as 

well as the variation of thrusting power between the port and starboard trolling motors; therefore, 

the identification experiments need to be performed for finding the reverse dynamical motion 

model for ASV so that its entire motion characteristics would be identified. Additionally, the 

specific optimal discrete linear quadratic tracking control is also designed and implemented for 

the reverse motion control of ASV.   

 A way-point guidance approach was used in this research in which different sets of way-

points of the predefined paths, which are already stored in the computer memory, were provided 

for the guidance of ASV. This was done to ensure the validity of OKID identified model of ASV 

and its subsequent designed controller for its motion. A more robust and fully autonomous guid-

ance strategy can be used for the motion control of ASV ranging from simple to more complex 

ones such as: variable radius line of sight (LOS) guidance system [14], [66], proportional naviga-

tion (PN), and guidance of ASV based on fuzzy logic and trained neural networks (NN) algo-

rithms.  

 NN are nonlinear learning algorithms acting as universal approximators; therefore, they 

can be utilized to cross calibrate the GPS signals with the more accurate LIDAR measurements 

for a large set of data for various maneuvering paths. For this purpose, various NN algorithms 

such as the feedforward multi-layer perceptron networks trained with the Levenberg-Marquardt 

algorithm or the input-output nonlinear model of neural network can be used. In this work, a 

low-cost GPS receiver is used for position estimate of the ODU-ASV during the real-time con-

trol run so that the position data is utilized as position states feedback in the proposed control law 

for computing the control inputs. As the GPS position data of ASV is more erroneous than that 

of the onshore LIDAR position measurements. Therefore, it has been attempted to cross-calibrate 
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the position data of ASV given by GPS with the simultaneously recorded position data from the 

LIDAR with the help of neural network method; this was the intention to have more accurate 

GPS position data after passing its raw position data through trained neural network in real-time. 

However, due to time constraints, this intended work is recommended to be done in the future. 

 On-line Observer Controller Identification (OCID) augmented by on-line neural network 

(NN) routines will also be the next future work concern. This new research idea will greatly help 

in avoiding the discontinuity in controlled motion of ASV just in case the ASV's position coordi-

nates given by GPS are missing due to no connection with the communication satellites. Conse-

quently in this scenario, the predicted controller commands would be provided by ANN to the 

ASV dynamical system in order to have unobstructed motion of the ASV. Moreover, if we use 

the fastest computer processor and subsequently the processing time of the algorithm would be 

enhanced enough, then the OCID method will be used to find the controller gain values directly 

of the ASV forward dynamics in online fashion and use them in the feedback control.  

The outdoor water-trials were performed in a semi-circular area having diameter of 16 

meters because this is the accurate measurement range of the LIDAR. Therefore, it is suggested 

to perform full-scale sea-trials on a comparatively large-size ASV having long distance accurate 

LIDAR or DGPS/RTK GPS along with the existing expensive MEMSense IMU for the accurate 

readings of position, velocity, and compass information of the ASV. The OKID methodology 

could be performed in order to identify its full-scale dynamical model. Moreover, the marine en-

vironment induced disturbance signals such as waves, tidal currents, and wind condition is sug-

gested to be included as error dynamics system besides the main identified system; these envi-

ronmental disturbance signals can be measured by their respective sensors, so in this way a ro-

bust controller can be designed for the ASV move in open sea with more harsh environment. 
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APPENDIX A 

 

MULTI-OBJECTIVE GENETIC ALGORITHM 

 

 A.1 Multi-Objective Optimization and Pareto Optimality Criteria  

 A multi-objective optimization problem (MOP) refers to a set of optimal trade-off solu-

tions instead of single objective optimization problem; therefore, each solution satisfies all the 

objective functions to an acceptable level without being dominated by any other solution in the 

solution space with respect to multiple objectives. Mathematically the multi-objective problem is 

defined as: 

  Minimize/Maximize  ( )  ,  ( )   ( )      ( ) -        (A1) 

where   ( )   ( )      ( ) are the objective functions. These objective functions are of the 

minimization and maximization kind. The trade-off solutions are comprised of all the feasible 

non-dominated solutions which is called the Pareto optimal set. The values of the objective func-

tion correspond to the Pareto set form the Pareto front [57], [58]. These of non-dominated points 

make the Pareto curve which represents a trade-off curve; the curve for two objective functions 

is shown in Fig.    below. From observation of this curve, an appealing point called ―knee‖ de-

noted by   , is to be chosen such that moving away from this point on the curve in any direction 

would not significantly improve the two objective or cost functions simultaneously. Hence, the 

knee stands for a point of decreasing marginal utility. If all the objectives are required to be min-

imized, a feasible solution ӿ is said to dominate another feasible solution ɏ if and only ӿ is as 

good as ɏ and better in at least one objective [58], [67] as given by Eqs.    and    : 

    ( )    ( )     ,        -                                                                      (A2)                          
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and    ( )    ( )     ,        -                     (A3) 

 

  

 

 

 

 

 

  Figure   . Pareto curve for two objective functions. 

 

 

A.2 Multi-Objective Genetic Algorithm   

 Genetic algorithm (GA), being larger class of the evolutionary algorithms (EAs), is the 

population based promising and robust technique for solving complex and large MOP in every 

application domain [59]. The main motive of utilization of GA is its efficacy to deal with a large 

set of possible solutions simultaneously; which results in determining the considerably large 

members of Pareto optimal set in the single run. GA is basically the stochastic global search 

method based on natural selection and survival of the fittest in order to have better and better ap-

proximations to a solution, which resembles the process of natural evolution. Therefore, multi-

objective genetic algorithm (MOGA) is found to be the most suitable and robust methods to 

solve MOPs. The most vital step in GA based multiobjective optimization technique is the char-

acterization of objective functions. The fitness of GA depends on the objective function for un-

constrained optimization problems, so the objective functions, as given in Eq.   , are used to 
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evaluate the fitness of an individual. Therefore, the firmness function differentiates between rela-

tive good and bad individuals or potential solutions [57].  

In order to achieve the best solution for the design variables, GA is always depending on 

environmental responses and evolution operators such as: selection, crossover, and mutation. In 

the selection process, the fittest individual from a population of the current generation is selected 

by comparing its fitness in relation to other individuals to send to the next generation. On the 

other hand, crossover produces new individuals with new genetic material by exchanging genetic 

material between individuals of a population which are selected by selection operator. A crosso-

ver between two individuals is performed by choosing two crossover points on their chromo-

somes randomly with the crossover probability    and crossed the chromosomes or genetic mate-

rial between these points. The resulting offspring replace parents in the new population. In the 

mutation process causes a random modification to the chromosomes of an individual with the 

mutation probability    in order to produce a new individual which may not resemble to the cur-

rent individual. The mutation probability is fixed before the optimization process. For each indi-

vidual, a random number between 0 and 1 is calculated and compared with the mutation proba-

bility. If the random number is smaller than the probability of mutation, then a gene is mutated 

so that to avoid a premature convergence and local optima. The process of GA is explained brief-

ly as: 

First, the required fitness function F(x), population size  , crossover probability   , and 

mutation probability    are specified. Then, GA initiate with random initialization of the popu-

lation i.e.    of potential solutions known as individuals    which are evaluated upon their fitness 

without knowing the correct solution for the design variables beforehand. The evolution or ge-

netic operators namely selection, crossover, and mutation make the transition of one population 
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to the next one in a generation. The fitness of each individual of the population is calculated in 

the first generation i.e.  (  ) with         and assigns a value equivalent to the performance. 

In each iteration, a new population is generated by applying three genetic operators: i.e. selec-

tion, crossover with probability   , and mutation with probability    to the individuals of popu-

lation. If the maximum generation        is attained, optimization process is terminated; oth-

erwise, the fitness is calculated and genetic operators are applied. The fittest individual thus ob-

tained represents the solution of optimization problem. The GA process is depicted in Fig.   .   

 

 

 

 

 

            

 

 

 

 

 

 

 

 

 Figure     Flowchart of GA.  
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A.3 Controlled Elitist Genetic Algorithm 

 In order to construct the Pareto curve and solve the MOP subsequently, an extension of 

MOGA algorithm available in MATLAB
®
 global optimization toolbox is used; which is called a 

variant of non-dominated sorting genetic algorithm-II (NSGA-II) called control elitist GA which 

works on population using genetic operators such as MOGA. In this algorithm, elitism is pre-

served by keeping of good solutions that is achieved using suitable selection methods thereby 

increasing convergence. Hence, an individual with better rank or relative fitness value is select-

ed, but the increase in the diversity of population for convergence to an optimal Pareto front is 

ensured [58]. Multiple Pareto-optimal solutions are determined with the help of this algorithm in 

one single simulation run. A controlled elitist GA prefers individuals that can assist enhancing 

the diversity of the population even if they have low rank. The diversity of individuals on the Pa-

reto front is preserved in both aspects i.e. along and lateral to the Pareto-optimal front by control-

ling the elite members of the population during the progress of algorithm in order to ensure better 

convergence [57], [58]. This is accomplished by limiting the number of elite individuals on the 

Pareto front and utilizing the distance metric assist in preserving diversity on the front by prefer-

ring individuals that that have larger crowding distance, that is, solution residing in the less-

crowded area.  
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APPENDIX B 

 

NARX NEURAL NETWORK  

 

B.1 Neural Network 

 The artificial intelligence techniques including artificial neural networks, fuzzy logic, ge-

netic algorithms, and support vector machines are nowadays being widely used for their potential 

capabilities of solving complex nonlinear modeling, prediction, and mapping problems accurate-

ly. These methods, similar to the statistical methods, utilize the past time-series data having the 

behavior of the dynamic system or process to be modeled. Among the aforementioned methods, 

neural network (NN) is computer algorithmic architecture which also has the ability to character-

ize the complex nonlinear relationship between two or more data types that is inputs and target 

outputs to the neural network. The NN is comprised of many artificial neurons which are simply 

mathematical representation of the biological neural networks. The number of neurons depends 

on the task at hand. In general, NNs are an extension of regression, but with one difference that 

the neural network makes use of one or more hidden layers of neurons, in which the input varia-

bles are transformed by a special function, known as transfer function or activation function, into 

a desired quantity [62]. In order to use any architecture of neural network, the MATLAB
®
 neural 

network toolbox
™

 can be used for this purpose. 

 The NN is simply a network of regression units called neuron piled in a specific configu-

ration. The neuron takes input from the previous layer, combines that input according to learning 

rule and then applies an activation or transfer function on the result. A feedforward NN configu-

ration is shown in Fig.    as following. 



179 

 

 

 

 

 

 

 

 

  

 

 Figure     A typical feedforward neural network architecture.  

 

 Transfer function or activation function having continuous first derivative bounds the 

neuron’s output within a particular range. It may be may be a linear or non-linear, e.g. a sigmoid 

function. The selection of a particular transfer function for solving a complex problem by the 

neuron is accomplished according to the desired behaviour of the output. There are other meth-

ods which are used as neurons’ activation functions such as step function, threshold logic, binary 

step function, or hyperbolic tangent function. Instead of using a simple step (threshold) activa-

tion function, the one which softens the output of each neuron to produce a symmetrical curve 

can be used; for example, the sigmoid function that makes S-shaped curve. Three of the most 

commonly used transfer functions are: tan-sigmoid, linear, and log-sigmoid. 

 The data to the network is divided randomly into three different data subsets, namely: 

70% training, 15% validation, and 15% testing data sets. The validation data is utilized for meas-

uring network generalization. When the network generalization is not improving for some speci-
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fied epochs, then the network training is halted and trained network is evaluated afterwards. In 

order to check the generalization behavior of the network and see its response to new inputs, it is 

tested for the new input data that it has never seen before.  

 

B.2 NARX Architecture  

The nonlinear autoregressive with eXogenous inputs (NARX) feedback neural network 

NN architectures is based on the linear ARX model and is given in following Eq.   . 

 

       .                                      /   ( )       (  )    

 

It is clear from Eq.    of NARX network that future value of the dependent output signal i.e. 

     is regressed on the    past values of the output signal   and    past values of the independ-

ent eXogenous input signal  . Where           and      and      subject to       

represents the memory orders for tapped delay lines of the input and output, respectively. The 

nonlinear function   in Eq.    corresponds to nonlinear mapping which is unknown in advance, 

and can be approximated by the training of a feed-forward multilayer perceptron with the help of 

the network weights and biases. The term  ( ) is the approximation error of the signal   at time 

step   which needs to be minimized during training of the network [62]. So, the NARX is a re-

current dynamic network having feedback connections enveloping many network layers. They 

have tapped delay lines for both inputs and outputs data set as shown in Fig.   .  

 Various network topologies according to complexity level can be chosen by specifying 

the number of hidden layers and the number of neuron per layer as well as various training algo-

rithms; this sort of selection is optimized through trail-and-error process to have the network to-

pology that can render best performance and avoids over-fitting of the input data to the targets 

while its generalization and computing power increase instead. The structure of NARX network 



181 

 

comprises of an input layer, hidden layers, and an output layer of neurons which accomplish  

 

 

 

  

 

 

  

  

  

 Figure     Nonlinear autoregressive with exogenous inputs (NARX) neural network. 

 

 

separate tasks. The input layer is actually the input fanning which is used just for summing the 

inputs and biases (if any) to the network and consists of neurons for the eXogenous inputs and a 

neuron for the output signal as provided to the network. The hidden layers having required neu-

rons take information from the input layer and compare it with the desired targets using super-

vised learning rule. For this purpose, the activation functions such as tan-sigmoid or log-sigmoid 

are used for the neurons of hidden layers; while the linear transfer function is used in the output 

layer.  

 

B.3 LMBP Algorithm 

 There are many learning rules for training a network, so the NARX network can be 

trained using Levenberg-Marquardt backpropagation (LMBP) learning rule. As LMBP is de-

signed to approximate the second order derivative of the network errors without calculating the 
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Hessian matrix Η; it is, most of the time, the fastest backpropagation algorithm [62], [63]. The 

Jacobian matrix   is utilized for calculation and if the performance function has the form of a 

sum of squares, then the Hessian matrix can be approximated as: 

                                (B.2) 

 and the gradient can be computed as follows 

                               (B.3)  

In Eq. (B.2) and (B.3), the Jacobian matrix   has the first derivatives of the network errors   with 

respect to the weights and biases in all training samples. To estimate the Jacobian matrix, the 

standard backpropagation algorithm is used to approximate the Hessian matrix which is simpler 

method than computing the Hessian matrix. The LMBP algorithm utilizes the Newton-like up-

date as given below: 

        ,      -                          (B.4) 

If the performance function is mean square error mse which is the mean squared error between 

actual output and the desired output of the network or error sum of squares sse, then back propa-

gating the network error is utilized to compute the gradient of the performance function with re-

spect to weight and bias variables. 

The back-propagation network is basically a gradient descent algorithm, a generalized 

Widow-Hoff learning rule applied to multilayer feed-forward network with nonlinear differenti-

able activation function, in which the network weights are adjusted along the negative of gradi-

ent of the performance function. It is has been observed that multilayer feed-forward network 

with back-propagation learning algorithm can approximate any complex sort of function to a re-

quired level of accuracy [62]. 
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