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Abstract 

Multiple Input Multiple Output (MIMO) multiplexing is a promising 

technology that could greatly increase the channel capacity without additional spectral 

resources. The challenge is to design low complexity and high performance 

algorithms that capable of accurately detecting the transmitted signals. 

In this study, the general model of MIMO communication system was 

introduced in addition to several MIMO Spatial Multiplexing (SM) detection 

techniques. The BER performance and computational complexity of the optimal and 

sub-optimal MIMO detection schemes have been analyzed and compared to each 

other. For ease of understanding and fair comparison, the MIMO detection techniques 

are categorized into three main categories; viz., linear schemes, successive 

interference cancelation, and tree-search techniques. Different aspects have been 

considered and discussed in this evaluation such as; signal to noise ratio, channel 

matrix conditionality, number of transmit and receive antennas, and other 

performance limiting factors. The complexity evaluations and performance 

comparisons and graphs have been generated using an optimized simulator. This 

simulator has been developed using MATLAB® platform, hence, it can be considered 

as a reference implementation for any further research on the field of MIMO SM 

detection. 
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  تقییم الأداء ودرجة التعقید لتقنیات الإكتشاف 

  في أذظمة الإتصالات اللاسلكیة متعددة المداخل والمخارج

  

  عودة محمد الشكري: للباحث

  عمار أبو ھدروس. د :مشرف البحث

  

  

  الملخص

 تتمثل و. اللاسلكیة الإتصالات مجال في الواعدة التقنیات من والمخارج المداخل متعدد الإتصالات نظام یعتبر

 إلي الحاجة دون رسالالإ معدل وزیادة الاتصال قناة سعة زیادة على الفائقة قدرتھا في الأنظمة ھذه مثل أھمیة

 الاشارات كشف على قادرة خوارزمیات تصمیم في یتمثلوتتضمن تلك الأنظمة تحدیاً رئیساً . إضافیة موارد

  .مقبولة تعقید درجة و عالي بأداء المرسلة

 الى بالاضافة والمخارج المداخل متعدد اللاسلكي الإتصالات لنظام التقلیدي النموذج عرض تم اسة،الدر ھذه في

 لتلك الحسابي التعقید درجة وتحلیل  أداء  مقارنة وتم. المرسلة للإشارات استكشاف خوارزمیات عدة وصف

 الإتصالات نظمةلأ كشافالاست خوارزمیات تصنیف تم الموضوعیة والمقارنة الفھم لسھولة و .الخورزمیات

 إلغاء خوارزمیات ، خطیة خوارزمیات :وھي ، رئیسیة فئات ثلاث  الي والمخارج المداخل متعددة اللاسلكیة

 من العدید اعتبار  أثناء دراسة وتقییم  تلك الخورزمیات تم. الشجري البحث خورزمیات و ، المتعاقبة التداخل

 الإتصال، قناة حالة الضوضاء، نسبة لىإ شارةلإا نسبة  ؛ مثلفي النظام  المؤثرةالمقیدة و  والعوامل  المتغیرات

 توضح التي البیانیة الرسوم لإنتاج" MATALB" برنامج استخدام تم. والإستقبال الإرسال ھوائیات  عدد

 افالاستكش لخورزمیات شامل نظام تطویر تم وقد. فالاستكشا خوارزمیات لجمیع التعقید ودرجة الأداءوتقارن 

 الإتصالات أنظمة في الاستكشاف تقنیات مجال في والدراسات البحوث من مزید لإجراء كمرجع اعتباره یمكن

  .والمخارج المداخل متعددة اللاسلكیة

  

  



v 
 

 

 

 

 

 

 

 

 

 

 

To all whom I love 

  



vi 
 

Acknowledgements  

I would like to express thanks to my advisor Dr. Ammar Abu Hudrouss for his 

invaluable advice and comments from deciding the thesis topic to revising the work. 

His guidance and consistent encouragement allowed me complete this work. I am 

deeply grateful to Dr. Anwar Mousa and Dr. Fadi Alnahal for accepting to be on my 

thesis committee and for providing many insightful discussion and comments. Thanks 

to Dr. Manar Mohaisen for the helpful discussions and notes throughout my research. 

I am extremely impressed with his advising and generosity. Finally, I thank my 

parents and my wife for their support, patience and prayers through my life.   

 

  



vii 
 

Contents 

Abstract .................................................................................................................. iii 

Contents .............................................................................................................. ivvii 

List of Figures........................................................................................................... x 

List of Tables ...........................................................................................................xi 

 

CHAPTER 1 

INTRODUCTION 

1.1 Background .................................................................................................... 1 

1.2 Motivation ...................................................................................................... 2 

1.3 Objectives  ...................................................................................................... 3 

1.4 Thesis Organization  ........................................................................................ 4 

1.5 Terminology  ................................................................................................... 4 

1.5.1 Abbreviations  .......................................................................................... 4 

1.5.2 List of Terms  ........................................................................................... 6 

 

CHAPTER 2 

OVERVIEW OF MIMO SYSTEMS 

2.1 Introduction  ................................................................................................... 10 

2.2 MIMO Diversity Techniques .......................................................................... 11 

2.2.1 Transmit Diversity  .................................................................................. 11 

2.2.2 Receive Diversity  .................................................................................... 12 

2.3 MIMO Spatial Multiplexing Techniques ......................................................... 14 

2.4 Advantages of MIMO Systems ....................................................................... 15 

2.5 MIMO System Model  ..................................................................................... 16 

2.6 Spatial Multiplexing and Detection Problem ................................................... 18 

2.7 Summary  .................................................................................................... 20 

 

CHAPTER 3 

DETECTION TECHNIQUES FOR MIMO SPATIAL MULTIPLEXING 
SYSTEMS 

3.1 Linear Detection Techniques  ......................................................................... 21 

3.1.1 Zero-Forcing  ......................................................................................... 22 



viii 
 

3.1.2 Minimum Mean Square Error  ............................................................... 23 

3.2 V-BLAST Detection  ...................................................................................... 25 

3.2.1 Zero-Forcing VBLAST (ZF-VBLAST)  ................................................... 26 

3.2.2 Minimum Mean Square Error VBLAST (MMSE-VBLAST)  ................... 29 

3.3 QR Decomposition Based Detection  ............................................................... 31 

3.3.1 Zero-Forcing QR Decomposition (ZF-QRD) ................................................ 31 

3.3.2 Minimum Mean Square Error QR Decomposition (MMSE-QRD) ............... 34 

3.4 Tree-Search Detection Techniques  ................................................................ 36 

3.4.1 Sphere Decoding .................................................................................... 37 

3.4.2 QRD-M Detection  .................................................................................. 50 

3.4.3 SD and QRD-M Performance Comparison  ............................................. 58 

3.5 Summary  .............................................................................................. 60 

 

CHAPTER 4 

COMPLEXITY ANALYSIS OF MIMO SM DETECTION TECHNIQUES 

4.1 Introduction  ................................................................................................... 61 

4.2 Complexity of Arithmetic Operations ............................................................. 62 

4.3 Complexity analysis of linear detections ......................................................... 66 

4.3.1 Complexity of Zero-Forcing ..................................................................... 66 

4.3.2 Complexity of MMSE  ............................................................................. 68 

4.4 Complexity analysis of SIC (VBLAST) detection ........................................... 69 

4.4.1 Complexity of ZF-VBLAST ..................................................................... 69 

4.4.2 Complexity of MMSE-VBLAST .............................................................. 73 

4.5 Complexity of QR Decomposition Based Detection ........................................ 75 

4.5.1 Complexity of Zero-Forcing QR Decomposition (ZF-QRD) Detection ..... 75 

4.5.2 Complexity of Zero-Forcing Sorted QR Decomposition (ZF-SQRD) ........ 79 

4.5.3 MMSE Sorted QR Decomposition (MMSE-SQRD) ................................. 81 

4.5.4 MMSE QR Decomposition (MMSE-SQRD) ............................................ 83 

4.6 Complexity comparison of linear, SIC and QRD detection techniques ............ 83 

4.7 Complexity analysis of tree search algorithms................................................. 84 

4.7.1 Complexity of sphere decoding detection ................................................. 85 

4.7.2 Complexity of QRD-M algorithm detection .............................................. 88 

4.7.3 Complexity Comparison of QRD-M and SD ............................................ 88 



ix 
 

4.8 Summary  ............................................................................................... 90 

 

CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion  ................................................................................................... 91 

5.2 Future work  ................................................................................................. 93 

References ............................................................................................................... 95 

 



x 
 

List of Figures 

Figure 2.1 Transmit diversity ................................................................................... 12 

Figure 2.2: Receive diversity: selection combining ................................................... 13 

Figure 2. 3: MIMO receive diversity: maximal ratio combining ................................ 14 

Figure 2.4: MIMO Spatial Multiplexing system ....................................................... 15 

Figure 2.5:  SM system model including both transmitter and receiver main functional 

blocks ...................................................................................................................... 17 

Figure  3.1: MIMO SM with linear receiver. ............................................................. 21 

Figure  3.2: BER of linear detection algorithms ......................................................... 24 

Figure 3.3: BER of VBLAST detection schemes ...................................................... 30 

Figure  3.4: BER of QRD detection schemes ............................................................. 35 

Figure 3.5: Geometrical representation of the idea behind SD algorithm .................. 37 

Figure  3.6: Fincke-Pohst strategy ............................................................................. 38 

Figure  3.7: Schnorr-Euchner strategy ....................................................................... 39 

Figure 3. 8: Sequence of testing the hypothesis ......................................................... 47 

Figure 3. 9: Example illustrating SD search tree. Nodes visited by the algorithm are 

shown in black ......................................................................................................... 49 

Figure  3.10: Flowchart of QRD-M detection algorithm ............................................ 53 

Figure 3. 11: the final tree showing the detection levels and the estimate x ................ 58 

Figure  3.12: BER of SD and QRD-M performance for several values of M .............. 59 

Figure 4. 1 Number of floating point operations for linear, VBLAST and QRD 

detection techniques of a MIMO system with Nt = Nr antennas ............................... 84 

 

  



xi 
 

List of Tables  

Table 3.1: Pseudocode for the ZF-VBLAST detection algorithm 

Table 3.2: Pseudocode for the MMSE-VBLAST detection algorithm 

Table 3.3: Pseudocode of Sorted ZF-QRD detection algorithm 

Table 4.1: Computational complexity of arithmetic operations 

Table 4.2: ZF QR decomposition procedures 

Table 4.3: Steps of detection stage  

Table 4.4: ZF-SQRD algorithm  

Table 4.5: MMSE-SQRD algorithm 

Table 4.6: Complexity comparison for a QRSK MIMO system with Nt = Nr =4   

Table 4.7: Complexity comparison for 16 QAM MIMO system with Nt = Nr =4   

 

 



1 
 

CHAPTER 1 

INTRODUCTION 
 

 

1.1 Background 

 In the recent few years, Multiple Input Multiple Output (MIMO) systems have 

drawn a significant attention in the area of wireless technologies. The earliest ideas in 

this field go back to the work by A.R. Kaye and D.A. George (1970) and W. van 

Etten (1975, 1976). In 1984 and 1986, Jack Winters and Jack Salz at Bell 

Laboratories published several papers on beamforming related applications. A. 

Paulraj and T. Kailath proposed the concept of Spatial Multiplexing (SM) using 

MIMO in 1993. Their US Patent No. 5,345,599 issued in 1994 on spatial multiplexing 

emphasized applications to wireless broadcast. In 1996, Greg Raleigh and Gerard J. 

Foschini refined new approaches to MIMO technology, which considers 

configurations where multiple transmit antennas are co-located at one transmitter to 

improve the link throughput effectively. Bell Labs was the first to demonstrate a 

laboratory prototype of spatial multiplexing in 1998, where spatial multiplexing is a 

principal technology proposed to improve the performance to increase the capacity of 

MIMO communication systems.  

 In the industry, Iospan Wireless Inc. developed the first commercial system in 

2001 that used MIMO-OFDMA technology. Iospan technology supported both 

diversity coding and spatial multiplexing. In 2005, Airgo Networks had developed a 

pre-11n version based on their patents on MIMO.  Following that in 2006, several 
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companies (Broadcom, Intel,..) have fielded a MIMO-OFDM solution based on a pre-

standard for IEEE 802.11n WiFi standard. Also in 2006, several companies (Beceem 

Communications, Samsung, Runcom Technologies, etc.) developed MIMO-OFDMA 

based solutions for IEEE 802.16e WIMAX broadband mobile standard. All upcoming 

4G systems will also employ MIMO technology. Several research groups have 

demonstrated over 1 Gbit/s prototypes.  

 MIMO communications systems can exploit spatial multiplexing (SM) 

approach to increase the channel capacity and improve spectral efficiency as well. 

Therefore, the MIMO SM-based system is one of currently promising techniques that 

can achieve high-speed wireless communications networks.  In MIMO SM-based 

systems, independent data streams are transmitted from sufficiently-separated 

antennas. This results in a linear increase in the channel capacity proportional to the 

minimum number of receive and transmit antennas. However, MIMO SM-based 

system requires powerful signal processing procedures at the receiver to efficiently 

recover the signal transmitted from the multiple antennas, and hence to explore the 

advantages of MIMO systems. Therefore, the potential advantages of MIMO system 

can be guaranteed and the wireless system will work in the best possible way.  

Some special detection techniques have been proposed in the literature in order to 

exploit the high spectral capacity offered by MIMO systems. These techniques are 

grouped into three main categories: linear,   nonlinear, and tree-search. 

 

1.2 Motivation  

 Day by day, wireless communication systems require significantly higher 

spectral efficiency (i.e., higher transmission rate measured in bit/second/Hz) and 

improved quality of service. The intuitive solution to increase the system capacity is 
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to assign additional bandwidth where the capacity can be increased linearly. The 

spectral resources assigned to wireless communications are not only expensive, but 

also limited. Thus, in many cases it is infeasible to use more spectral resources.  

 MIMO Spatial Multiplexing (SM) seems to be the ultimate solution to 

increase the system capacity without requiring the need to additional spectral 

resources. In SM, multiple signals are transmitted instantaneously via enough spaced-

antennas. At the receiver side, the main challenge resides in designing signal 

processing techniques, i.e., detection techniques, capable of separating those 

transmitted signals with acceptable complexity and achieved performance. 

 Motivated by the importance of the detection techniques as an important factor 

in determining both the feasibility and performance of the MIMO-SM systems, this 

study only considers the receiver structure for the MIMO-SM techniques.  The study 

includes a detailed performance analysis of detection algorithms. Also, deep 

understanding of the affecting factors on the SM performance are covered including, 

the number of transmit and receive antennas, constellation size.  

 

1.3 Objectives 

 As the MIMO detection is a challenging topic for researchers and 

communication system designers, huge research efforts were done in the recent years 

giving the birth to a variety of detection schemes that differ in strategy adapted, 

computational complexity, and performance. This thesis mainly achieves the 

following objectives;  

• Get a more fundamental understanding of MIMO technology  

• Introduce a good and useful MIMO spatial multiplexing model  
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• Evaluate several MIMO-SM detection techniques by comparing BER 

performance simulations and analyzing the computational complexities 

• Evaluate and find an efficient MIMO-SM detection techniques in terms of 

performance and complexity that is recommended to hardware implementation 

 

1.4 Thesis Organization 

 In chapter 2, the key concepts behind MIMO communication theory, 

particularly spatial multiplexing and MIMO system model, have been reviewed. In 

addition, the system descriptions and assumptions used throughout this thesis have 

been presented. Chapter 3 was the core of this thesis; it firstly presented the theory 

behind most MIMO detection schemes described in literature. Secondly, an 

independent code for each detection algorithm has been written. This chapter also 

included BER performance comparisons among detection algorithms of the 

aforementioned three categories. Chapter 4 presented a complexity analysis and 

comparison for all detection schemes that have been described and discussed in 

chapter 3. Chapters 5 concluded the most important attained results and suggested 

different research topics for future work. 

 

1.5 Terminology 

1.5.1 Abbreviations 

MIMO: Multiple-Input Multiple-Output 

SISO: Single-Input Single-Output 

SNR: Signal to Noise Ratio 
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SC: Selection Combining  

MRC: Maximal Ratio Combining 

EGC: Equal Gain Combining 

tN : Number of transmit antennas 

rN : Number of receive antennas 

x : Transmitted symbol vector 

Ω : Constellation set 

QAM: Quadrature Amplitude Modulation  

H : Channel matrix 

( )0,1CN : Complex Gaussian distribution with zero mean  and unity variance 

r : Received symbol vector 

n : Noise vector 

iid : independent and identically distributed  

SM: Spatial Multiplexing 

OFDM: Orthogonal Frequency Division Multiplexing 

OFDMA: Orthogonal Frequency Division Multiple Access 

MLD: Maximum Likelihood Detector 

SD: Sphere Decoding 

QRD-M: QR Decomposition with M-algorithm 

ZF: Zero-Forcing 

MMSE: Minimum Mean Square Error 

( )†⋅ : Moore-Penrose pseudo-inverse  

G : Filtering (weighting) matrix  

2σ : Noise variance 
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QPSK: Quadrature phase-shift keying 

bE : Average bit energy 

oN : Noise power 

BER: Bit Error Rate 

VBLAST: Vertical Bell Laboratories Layered Space Time 

( )Q ⋅ : Demodulation function  

QRD: QR Decomposition 

Q : A unitary matrix 

R : An upper triangular 

HQ : Hermitian transpose of Q  

y : Modified received signal vector   

p : Permutation vector 

SD: Sphere Decoding 

d : Sphere radius 

FP: Fincke-Pohst searching strategy 

SE: Schnorr-Euchner searching strategy 

QRD-M: QR-Decomposition with M-algorithms 

M : Number of survival candidates at each detection level 

 

1.5.2 List of Terms 

1.5.2.1 3GPP LTE 

LTE stands for Long Term Evolution and it is the name given to a project within the 

3GPP to improve the universal mobile telecommunications standard (UMTS). The 

LTE project resulted in Release 8 of the UMTS standard, including extensions and 
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modifications of the UMTS system. LTE Advanced is a more recent project that 

addresses the 4G technology requirements, such as increased data rates and reduced 

latency. 

1.5.2.2 Array Gain 

In MIMO communication systems, array gain means a power gain of transmitted 

signals that is achieved by using multiple-antennas at transmitter and/or receiver. 

1.5.2.3 Diversity Gain 

In wireless communications, diversity gain is the increase in signal-to-interference 

ratio due to some diversity scheme, or how much the transmission power can be 

reduced when a diversity scheme is introduced, without a performance loss. 

1.5.2.4 QAM 

Quadrature amplitude modulation is a modulation scheme. It conveys two message 

signals/ streams, by changing the amplitudes of two carrier waves, using the 

amplitude-shift keying (ASK) digital modulation scheme or amplitude modulation 

(AM) analog modulation scheme. These two waves, usually sinusoids, are out of 

phase with each other by 90° and are thus called quadrature carriers.  

1.5.2.5 OFDM 

OFDM is a frequency-division multiplexing (FDM) scheme utilized as a digital multi-

carrier modulation method. A large number of closely-spaced orthogonal sub-carriers 

are used to carry data. The data is divided into several parallel data streams or 

channels, one for each sub-carrier. Each sub-carrier is modulated with a conventional 

modulation scheme (such as QAM or PSK) at a low symbol rate, maintaining total 
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data rates similar to conventional single-carrier modulation schemes in the same 

bandwidth 

1.5.2.6 QR Decomposition 

The QR decomposition (also called a QR factorization) of a matrix is a decomposition 

of the matrix into an orthogonal and a right triangular matrix. QR decomposition is 

often used to solve the linear least squares problem 

1.5.2.7 Unitary matrix 

A unitary matrix is an N N× complex matrix U satisfying the condition 

* *
NU U UU I= = , where NI is the identity matrix and *U  is the conjugate transpose 

of U . Noting that U must have an inverse which equal conjugate transpose conjugate 

transpose *U ,i.e. 1 *U U− = . 

1.5.2.8 Upper triangular matrix 

The upper triangular matrix (right triangular matrix) is a special kind of square matrix 

where the entries below the main diagonal are zero 

1.5.2.9 Depth-first search 

Depth-first search is an algorithm for searching a tree, tree structure, or graph. One 

starts at the root (selecting some node as the root in the graph case) and explores as 

far as possible along each branch before backtracking. 
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1.5.2.10 Breadth-first search  

Breadth-first search is a graph search algorithm that begins at the root node and 

explores all the neighboring nodes. Then for each of those nearest nodes, it explores 

their unexplored neighbor nodes, and so on, until it finds the goal. 

1.5.2.11 Flops  

In computing, FLOPS (or flop/s) is an acronym meaning Floating Point Operations 

Per Second. The FLOPS is a measure of a computer's performance, especially in 

fields of scientific calculations that make heavy use of floating point calculations. 
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CHAPTER 2 

OVERVIEW OF MIMO SYSTEMS  
 

 

2.1 Introduction  
 During the last decade, the intensive work of researchers on Multiple-Input 

Multiple-Output (MIMO) techniques has demonstrated their key role in increasing the 

channel reliability and improving the spectral efficiency in wireless communication 

systems without the need to additional spectral resources [1]. 

 To meet the exaggerated demands on high transmission rate in Single-Input 

Single-Output (SISO) wireless communication systems, the capacity can be increased 

by allocating additional bandwidth which is not always possible because spectral 

resources are not only expensive but also scarce [2]. 

 Recent developments have shown that using spatial multiplexing MIMO 

systems can increase the capacity in wireless communication substantially without 

requiring extra-bandwidth [1], [3]. In MIMO systems, multiple antenna elements are 

deployed at the transmitter and/or the receiver, as shown in Figure 2.1. Thus, instead 

of sending only one signal at every time instant, i.e. time slot,    signals are 

transmitted at the same time instant using the same frequency band. As a result, the 

capacity of the overall system is linearly proportional to   , which is a considerable 

increase in the capacity and the spectral efficiency is improved as well. In general, 

MIMO techniques are grouped into two main categories, namely; MIMO diversity 

techniques and MIMO spatial multiplexing techniques. MIMO diversity techniques 
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can provide higher signal-to-noise ratio (SNR), which improve transmission 

reliability. On the other hand, MIMO spatial multiplexing techniques can provide a 

linear increment in the channel capacity without requiring additional spectral 

resources. In this study, we restrict our work on MIMO spatial multiplexing systems 

and their related detection schemes due to the strong need for such systems in the 

future communication systems (i.e. 4G technologies). 

2.2 MIMO Diversity Techniques 

 The key idea in MIMO diversity techniques is that the same data stream is 

transmitted from multiple antennas or received at more than one antenna. MIMO 

diversity schemes are impressively effective in increasing the diversity gain where 

consequently performance is improved [4].  Diversity can be implemented at the 

transmit end (transmit diversity), at the receive end (receive diversity) or at both ends 

of the wireless link. Generally, MIMO diversity techniques can provide higher SNR 

and improve transmission reliability as a result.  

2.2.1 Transmit Diversity 

 Transmit diversity improves the signal quality and achieves a higher SNR 

ratio at the receiver side; it involves transmitting data stream through multiple 

antennas and receiving by single antenna or more.  Transmit diversity can effectively 

mitigate multipath  fading effects as multiple antennas afford a receiver several 

observations of the same data stream. Each antenna will experience a different 

interference environment and if one antenna experienced a deep fade, then it is likely 

that another has a sufficient signal. Thus, transmit diversity can help improve the 

reliability of the data reception and data decoding as well. The most popular examples 

of these transmit diversity techniques include Alamouti code [5] and orthogonal codes 
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proposed by Taroukh et al. [6]. Figure 2.1 depicts the whole system for an exemplary 

Nt transmit antenna system. 

 

Figure 2.1 Transmit diversity 

 

2.2.2 Receive Diversity 

 Receive diversity are widely used in wireless communication systems; it can 

be achieved by receiving redundant copies of the same signal.  The idea behind 

receive diversity is that each antenna at the receive end can observe an independent 

copy of the same signal. Therefore the probability that all signals are in deep fade 

simultaneously is significantly reduced. This type of diversity hasn't particular 

settings or requirements on the transmit end, but requires a receiver that could 

simultaneously process all received signals and combines them by a proper combining 

method [4]. There are several classical methods for combining the different diversity 

branches at the receiver [7], [8], the most important of which and most widely used 

are Selection Combining (SC), Maximal Ratio Combining (MRC) and Equal Gain 

Combining (EGC).  
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I. Selection Combining 

 Selection combining shown in Figure 2.2 is the simplest form of receive 

diversity combining methods. Fundamentally it estimates the instantaneous SNR for 

each of the received signals and selects the particular receiver output with the 

strongest SNR among Nt diversity branches; where Nt is the number of receive 

antennas in the system.    

 

Figure 2.2: Receive diversity: selection combining  

 

II. Maximal Ratio Combining  

  The selection combining technique ignores information from all diversity 

branches except the particular branch that has the highest SNR. This drawback is 

mitigated by using Maximal Ratio Combining, in which the information from all 

branches is combined in order to maximize the output SNR [9].  MRC works by 

weighting each branch with the complex conjugate of their particular channel 

coefficients and then do summation to produce the received signal as shown in Figure 

2.3. 
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III. Equal Gain Combining 

 Equal Gain Combining (EGC) is similar to Maximal Ratio Combining without 

weighting the signals before summation [10]. In EGC co-phasing is needed to avoid 

signal cancellation. The average SNR improvement of EGC is typically about 1 dB 

worse than with MRC, but still simpler to implement than MRC. 

 

Figure 2.3: MIMO receive diversity: maximal ratio combining 

 

2.3 MIMO Spatial Multiplexing Techniques 

 Spatial Multiplexing (SM) has been utilized in MIMO systems to provide 

higher transmission rate without allocating additional bandwidth or increasing the 

transmit power [11]. The VBLAST [3] was the practical implementation approach of 

spatial multiplexing technique. Spatial multiplexing involves deploying multiple 

antennas at both transmitter and receiver ends as shown in Figure 2.4. Input data 

streams can be divided into different independent sub streams and then transmitted 

simultaneously via sufficiently-separated antennas ( / 2λ  or more, to obtain highly 

uncorrelated and independent signal). It has been shown in [2] that utilizing spatial 
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multiplexing schemes under certain conditions and assumptions, can  linearly 

increases capacity with relation to the minimum of the number of transmit antennas 

and the number of receive antennas.  

 

Figure 2.4: MIMO Spatial Multiplexing system 

 

2.4 Advantages of MIMO Systems 

 The increased demand on higher transmission rate for the cutting edge 

wireless applications makes MIMO technology very important for the future wireless 

communication systems.  MIMO systems can provide different advantages over 

single input single out output conventional system [12]. These advantages can be 

summarized in the followings: 

• MIMO systems exploit multiple antennas diversity at transmitter/receiver. 

This gives the possibility to increase system reliability by one of the transmit 

diversity techniques in which the same signal is transmitted through multiple 

antennas. Different copies of the signal can be observed at the receiver and the 

probability that at least one of the copies is not experiencing a deep fade 



16 
 

increases. Thus the receiver can successfully recover the signal with decreased 

bit/symbol error rate and overall system performance is improved as well. 

• MIMO systems can proportionally increase the achievable data-rates by 

spatial multiplexing, i.e. transmitting multiple independent data streams within 

the allocated bandwidth.  Thereafter, the receiver can separate/recover the data 

streams under certain channel conditions such as a rich scattering surrounding 

wireless channel. 

• MIMO systems can produce different gains such as array gain, diversity gain 

and multiplexing gain. Despite the fact that these gains compete each other, 

they may combined to increase the coverage area and to reduce the required 

transmit power [4]. Assume that there are    receive antennas and only one 

transmit antenna, then the average SNR is approximately   , then it can be 

found that the coverage area is  increased by a multiplicative factor    , 

where   is the average SNR per branch. This can be used to increase the 

coverage area for a fixed transmitted power, or it can be used to reduce the 

transmitted power requirement for a given coverage area. 

 The most benefit behind using MIMO technology is that all above advantages 

are achieved without requiring any additional bandwidth for the wireless system. 

Moreover, the offered benefits can help meet the challenges posed by both the 

impairments in the wireless channel as well as resource constraints and limitations. 

Therefore, MIMO technology constitutes a breakthrough in a wireless communication 

system design.  

2.5 MIMO System Model 

 In this thesis, we consider a conventional MIMO SM system with    transmit 

antennas and    receive antennas where   ≤    as shown in Figure 2.5. Independent 
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data streams a , b, and c, are encoded and modulated before being transmitted. Herein, 

consider a transmitted vector  = [  ,   , ⋯ ,    ]  whose elements are drawn 

independently from a complex constellation set Ω , e.g. Quadrature Amplitude 

Modulation (QAM) constellation. The vector is then transmitted via a MIMO channel 

characterized by the channel matrix H  whose element ( ), 0,1i jh CN: 1  is the 

complex channel coefficient between the jth transmit and ith receive antennas. The 

received vector  = [ ,  , ⋯ ,    ]  can then be given as following, 

 

 

Figure 2.5:  SM system model including both transmitter and receiver main 
functional blocks 

  =   +    ,                                                   (2.1) 

where the elements of the vector  = [  ,  , ⋯ ,    ] are drawn from independent 

and identically distributed (i.i.d.) circular symmetric Gaussian random variables. The 

system model of (2.1) is then given in the matrix form as following. 

 

   ( )⋮   ( ) =  ℎ  ⋯ ℎ   ⋮ ⋱ ⋮ℎ   ⋯ ℎ        ( )⋮   ( ) +    ( )⋮   ( ) . 
                                                        

1  Normal distribution with a zero mean and unity variance  
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2.6 Spatial Multiplexing and Detection Problem 

 Spatial Multiplexing (SM) seems to be the ultimate solution to increase the 

system capacity without the need to additional spectral resources. The basic idea 

behind SM [4] is that a data stream is demultiplexed into Nt  independent substreams 

as shown in Figure 2.5, and each substream is then mapped into constellation symbols 

and fed to its respective antenna. The symbols are taken from a QAM constellation. 

The encoding process is simply a bit to symbol mapping for each substream, and all 

substreams are mapped independently. The total transmit power is equally divided 

among the Nt transmit antennas. At the receiver side, the main challenge resides in 

designing powerful signal processing techniques, i.e., detection techniques, capable of 

separating those transmitted signals with acceptable complexity and achieved 

performance. Given perfect channel knowledge at the receiver, a variety of techniques 

including linear, successive, tree search and maximum likelihood decoding can be 

used to remove the effect of the channel and recover the transmitted substreams, see 

for example [13-15]. Different research activities have been carried out to show that 

the spatial multiplexing concept has the potential to significantly increase spectral 

efficiency [11], [16]. Further research has been carried out on creating and evaluating 

enhancements to the spatial multiplexing concepts, such as combining with other 

modulation schemes like OFDM (Orthogonal Frequency Division Multiplexing) [17]. 

In general, this technique assumes channel knowledge at the receiver and the 

performance can be further improved when the knowledge of the channel response is 

available at the transmitter. However, SM does not work well in low SNR 

environments as it is more difficult for the receiver to recognize the multiple 

uncorrelated paths of the signals [18], [19].  
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 The main challenge in the practical realization of MIMO wireless systems lies 

in the efficient implementation of the detector [20] which needs to separate the 

spatially multiplexed data streams. So far, several algorithms offering various trade-

offs between performance and computational complexity have been developed [21]. 

Linear detection (low complexity, low performance) constitutes one extreme of the 

complexity/ performance region, while Maximum Likelihood Detector (MLD) 

detection algorithm has an opposite extreme (high complexity, optimum 

performance). 

 Maximum Likelihood Detector (MLD) is considered as the optimum detector 

for the system of (2.1) that could effectively recover the transmitted signal at the 

receiver based on the following minimum distance criterion, 

   = arg  ∈{    ,⋯,  }   ‖ −    ‖ ,                              (2.2) 

 

where   is the estimated symbol vector. Using the above criterion, MLD compares the 

received  signal with all possible transmitted signal vector which is modified by 

channel matrix H and estimates transmit symbol vector x.  Although MLD achieves 

the best performance and diversity order, it requires a brute-force search which has an 

exponential complexity in the number of transmit antennas and constellation set size. 

For example, if the modulation scheme is 64-QAM and 4 transmit antenna, a total 

of 64 = 16777216 comparisons per symbol are required to be performed for each 

transmitted symbol. Thus, for high problem size, i.e. high modulation order and high 

transmit antenna (Nt), MLD becomes infeasible.  

 The computational complexity of a MIMO detection algorithm depends on the 

symbol constellation size and the number of spatially multiplexed data streams, but 
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often on the instantaneous MIMO channel realization and the signal-to-noise ratio 

[22]. On the other hand, the overall decoding effort is typically constrained by system 

bandwidth, latency requirements, and limitations on power consumption. In order to 

solve the detection problem in MIMO systems, research has been focused on sub-

optimal detection techniques which are powerful in terms of error performance and 

are practical for implementation purposes as well that are efficient in terms of both 

performance and computational complexity. Two such techniques are Sphere 

Decoding (SD) and QR Decomposition with M-algorithm (QRD-M) which utilize 

restrict tree search mechanisms. These algorithms and more linear and non-linear 

detection techniques will be described and discussed in details in Chapter 3 . 

2.7 Summary  

This Chapter presented an overview of Multiple Input Multiple Output systems,   

spatial multiplexing and detection problem. It has been shown that there was an 

intensive research on developing an efficient detection algorithm for MIMO spatial 

multiplexing systems to meet the exaggerated demands on high transmission rate for 

the cutting edge wireless communication systems. In MIMO technology, system 

performance is improved using spatial diversity techniques. But with spatial 

multiplexing the channel capacity is linearly increased as independent data streams 

are transmitted from the multiple transmit antennas and received by multiple antennas 

at the receiver.  

The main challenge in MIMO SM system is the design of detection code with 

acceptable complexity and achieved performance. The conventional MIMO SM 

system model has been also described. This model will be utilized in the design of all 

SM detection schemes in chapter 3.    



21 
 

CHAPTER 3 

DETECTION TECHNIQUES 

FOR MIMO SPATIAL MULTIPLEXING SYSTEMS 
 

  

 Several MIMO detection techniques were proposed in the literature. In this 

study, a variety of these techniques will be evaluated using different predetermined 

performance and complexity criteria. 

MIMO detection techniques are categorized into three main categories; linear 

schemes, successive interference cancelation, and tree-search techniques. These 

techniques are explained in details in the following sections. 

 

3.1 Linear Detection Techniques 

 The idea behind linear detection techniques is to linearly filter received signals 

using filter matrices, as depicted in Figure 3.1. This category includes Zero-Forcing 

(ZF) and Minimum Mean Square Error (MMSE) techniques. Although linear 

detection schemes are easy to implement, they lead to high degradation in the 

achieved diversity order and error performance due to the linear filtering. 

x̂H
r

n

x%
x 1−H

 

Figure 3.1: MIMO SM with linear receiver. 

 

 



22 
 

3.1.1 Zero-Forcing 

 Zero-Forcing (ZF) technique is the simplest MIMO detection technique, which 

was proposed in [3]. Where filtering matrix is constructed using the ZF performance-

based criterion. The drawback of ZF scheme is the susceptible noise enhancement and 

loss of diversity order due to linear filtering [21], [22].  ZF can be implemented by 

using the inverse of the channel matrix H to produce the estimate of transmitted 

vector %x . 

( )

†

†

 
    
    

=

=

=

%x H r
H Hx
x

                                                    (3.1) 

where ( )†⋅ denotes the pseudo-inverse. But when the noise term is considered, the 

post-processing signal is given by: 

( )

†

†

†

 

    

    

=

= +

= +

%x H R

H Hx n

x H n                                               (3.2) 

 

with the addition of the noise vector, ZF estimate, i.e. %x  , consists of the decoded 

vector x plus a combination of the inverted channel matrix and the unknown noise 

vector. Because the pseudo-inverse of the channel matrix may have high power when 

the channel matrix is ill-conditioned, the noise variance is consequently increased and 

the performance is degraded.   

To alleviate for the noise enhancement introduced by the ZF detector, the MMSE 

detector was proposed, where the noise variance is considered in the construction of 

the filtering matrix G . 
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3.1.2 Minimum Mean Square Error 

 Minimum Mean Square Error (MMSE) approach alleviates the noise 

enhancement problem by taking into consideration the noise power when constructing 

the filtering matrix using the MMSE performance-base criterion. The vector estimates 

produced by an MMSE filtering matrix becomes 

   =       + (   )         ,                                    (3.3) 

 

where 2σ is the noise variance. The added term ( 21/ σ=SNR  , in case of unit 

transmit power) offers a trade-off between the residual interference and the noise 

enhancement. Namely, as the SNR grows large, the MMSE detector converges to the 

ZF detector, but at low SNR it prevents the worst Eigen values from being inverted. 

At low SNR, MMSE becomes Matched Filter [23]:       + (   )      ≈                                             (3.4) 

At high SNR, MMSE becomes ZF: 

      + (   )      ≈ (   )                                     (3.5) 

 

 Figure 3.2 shows performance estimation of the linear detectors, the 

simulations are done for a ( ) ( ), 4, 4=t rN N  system with QPSK modulation. The 

/b oE N , ranges between 0 dB and 30 dB in step of 5 dB. The Bit Error Rate (BER) is 

calculated by performing 1,500,000 trials at each /b oE N point. 
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A new realization of H  was chosen in each trial and for each /b oE N value. We 

observe that there is no convergence of the MMSE and ZF performance curves for 

high SNR in the simulation results. In this example MMSE curve performs better than 

ZF by about 5 dB at an error rate of 10-3.  Both the ZF and MMSE detectors show a 

diversity order of more than 1− +r tN N , but less than rN  [24]. The ML detector is 

the optimum one and shows the full diversity order of rN . Generally, the linear 

detection schemes are favourable in terms of computational complexity, but their 

BER performance is severely degraded due to the noise enhancement in the ZF 

detector case, and when the channel matrix is ill-conditioned. 

 

Figure 3.2: BER of linear detection algorithms 
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3.2 V-BLAST Detection 

 Although linear detection techniques are easy to implement, they lead to high 

degradation in the achieved diversity order due to the linear filtering. Another 

approach that takes advantage of the diversity potential of the additional receive 

antennas, uses nonlinear techniques such as Successive Interference Cancellation (SIC) 

(for instance, V-BLAST decoder).  

 The Vertical Bell Laboratories Layered Space Time (V-BLAST) scheme was 

originally proposed by Foschini [1] and has been discussed in details in literature. The 

main idea behind the V-BLAST architecture (i.e., transmitter) is to demultiplex the 

data stream into several sub-streams and transmit them simultaneously.  At the 

receiver side, each antenna observes all the transmitted signals, which are mixed due 

to the environment surrounding the wireless propagation channel. V-BLAST 

detection algorithm detects the signals one after another in an iterative way. The 

construction of the filtering matrix can still be based on any of the aforementioned 

linear criteria, i.e. ZF or MMSE. 

 The V-BLAST algorithm utilizes the already detected symbol ix , obtained by 

the ZF or MMSE filtering matrix, to generate a modified received vector with ix

cancelled out. Thus the modified received vector becomes with fewer interferers and 

better performance due to a higher level of diversity. The algorithm continues until all 

Nt symbols being detected. 

If we rewrite the system in (2.1) into a matrix form with 4= =t rN N ,  

11 12 13 141 1 1

21 22 23 242 2 2

31 32 33 343 3 3

41 42 43 444 4 4

h h h hr x n
h h h hr x n
h h h hr x n
h h h hr x n

      
      
      = +
      
      

      

                             (3.6) 
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Then, using ZF or MMSE criterion, the estimate of ix can be calculated. Assuming 

that this symbol is correct, it is weighted with its corresponding channel coefficient 

and then subtracted from the received vector r. The new modified vector y becomes : 

12 13 141 1
2

22 23 242 2
3

32 33 343 3
4

42 43 444 4

h h hy n
x

h h hy n
x

h h hy n
x

h h hy n

    
     
     = +     
      

    

                                   (3.7) 

Iteratively, the nulling matrix is computed. The newly detected symbol ix  is 

subtracted of the already modified received vector y to produce the following 

equations : 

13 141 1

23 242 3 2

33 343 4 3

43 444 4mod 

h hy n
h hy x n
h hy x n
h hy n

    
         = +      
    

    

                                   (3.8) 

Definitely the diversity level is getting better at each stage of detection and the 

performance is improved because the equations become more than unknowns. This 

method of successive interference cancellation is continued until all tN  symbols are 

detected.  

3.2.1 Zero-Forcing VBLAST (ZF-VBLAST) 

 The Zero-Forcing V-BLAST algorithm (ZF-VBLAST) is based on detecting 

the components of x one by one. For the first decision, the pseudo-inverse, i.e., G  

equals †H , of the matrix H is obtained. Assume that the noise components are i.i.d. 

and that the noise is independent of x . Then, the row of G, with the least Euclidean 

norm, corresponds to the required component of x . That is, 
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( )2

1 argmin ,j
j

k g=                                                (3.9) 

1 1

(1) ,k kx g r=%                                                        (3.10) 

and, 

1 1
ˆ ( ),k kx Q x= %                                                   (3.11) 

where jg is the thj  row of the filtering matrix G , ( )Q ⋅ is the demodulation function, 

and the superscript is the iteration index. At the first iteration, ( )1r r=   and ( )1 †G H= . 

At the end of the first iteration, the interference due to the 1
thk  component of x  is 

cancelled out as follows: 

1 1

(2) (1) ˆ ,k kr r x h= −  

1

1 1

(2) (1)
1 1, , ,

k

k kH H h h
−

− + = = L L
 

Doing so until detecting the last element of x . When the sorting step in Table 3.1 

(line 6) is discarded, the code is called Unsorted ZF-VBLAST or ZF-VBLAST. 

 Obviously, incorrect symbol detection in the early stages will create errors in 

the following stages; i.e. error propagation. This is a severe problem with cancellation 

based detection techniques particularly when the number of transmit and receive 

antennas are the same. The first detected symbol's performance is quite poor as it has 

no diversity. To reduce the effect of error propagation and to optimize the 

performance of VBLAST technique, it has been shown in [14] that the order of 

detection can increase the performance considerably. By detecting the symbols with 
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largest channel coefficient magnitude first, the effect of the noise vector producing an 

incorrect symbol can be reduced, and reducing error propagation as result.   

 In order to achieve best performance, it is optimal to start detecting the 

components of x  that suffer the least noise amplification i.e the layer with the largest 

SNR. Then sorting step (line 6) in the code shown in Table 3.1 will be activated. This 

algorithm is called sorted Zero-Forcing VBLAST (SZF-VB).   

Table 3.1: Pseudocode for the ZF-VBLAST detection algorithm 

( )
( ) ( )

( ) ( )

( )
( )

( ) ( )

( ) ( )

( )
( )

i

1

1

†

2

k
i

 1     input , ,

 2         

 3         r

 4     for  1,...,   

 5                     

 6        arg min     

 7        =g                     

 8     Exchange columns  and  in  

 9    

T

i i

j
i i

i

i

H r U

H H

r

i N

G H

k g

W

k i U

=

=

=

=

=

( ) [ ]
( )
( )
( )

1

1

                                

ˆ10                                       

ˆ11                                

12                                     

13        end      

i

i i

i i

i i i i

k
i i

x W r

x Q x

r r h x

H H
+

+

= ⋅

=

= − ⋅

=

%

%

( )
                                    

14     Output                                      U
 

 It was shown in section 3.1 that ZF is the simple linear receiver with low 

computational complexity and suffers from noise enhancement. But it can works well 

at high SNR. However, in Zero- Forcing we can choose any row of iG  to null the 

signal from the thi  transmit antenna, while in  ZF-VBLAST it was shown that it is 

best to start with the signal that has the greatest signal to noise ratio (SNR) in which is 
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known by ordering, which results in a better performance as seen above. The ZF 

solution in general is an easier solution but not optimum as it enhances the noise. 

Instead we have used the MMSE method, which gives us better performance.   

3.2.2 Minimum Mean Square Error VBLAST (MMSE-VBLAST) 

 In section 3.1, it was shown that MMSE algorithm suppresses both the 

interference and noise components, whereas the ZF algorithm removes only the 

interference components. This implies that the mean square error between the 

transmitted symbols and the estimate of the receiver is minimized.  Therefore, MMSE 

is superior to ZF in the presence of noise. The MMSE filtering strategy can be used 

with VBLAST, where the resulting detector is referred to as the MMSE-VBLAST 

detector.   

Table 3.2: Pseudocode for the MMSE-VBLAST detection algorithm 

( )

( ) ( ) ( )( )
( ) ( )

( )
( )

( ) ( )

( )

11 2

1

†

2

 1     input , , ,

 2         

 3         r

 4     for  1,...,                          

 5                                           

 6        arg min                  

 7

H H

T

i i

j
i i

H r U

H H H I H

r

i N

G H

k g

σ

σ
− = +  

=

=

=

=

( )

( )
( )

( ) [ ]
( )

ik
i

1

       =g                                     

 8     Exchange columns  and  in  

 9                                          
ˆ10                                       

11        

i

i

i i

i i

i

W

k i U

x W r

x Q x

r +

= ⋅

=

=

%

%

( )
( )
( )

1

ˆ                          

12                                       

13        end                                            

14     Output                                      

i

i i i

k
i i

r h x

H H

U

+

− ⋅

=
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Also, we refer to the MMSE-VBLAST as the “Unsorted MMSE-VB” when the 

sorting stage is skipped. In this case, the components of x are detected in an ascending 

order. 

Table 3.2 shows the pseudocode for the Sorted MMSE-VBLAST detection algorithm. 

The MMSE-VB detection algorithm can be obtained by the MMSE criterion in 

constructing the filtering matrix as shown in step (2) of the code. 

 

Figure 3.3: BER of VBLAST detection schemes 
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Figure 3.3 shows the performance of various VBLAST detection schemes that 

utilizing both ZF and MMSE criteria with and without using optimal ordering. 

Comparing the simulation results of ZF-VBLAST and MMSE-VBLAST separately, 

the sorted detection schemes achieve an improved performance in comparison to the 

unsorted ones. At a target BER of 10-3 the difference between ZF-VBLAST curves is 

about 4 dB and the difference between MMSE-VBLAST curves is about 7 dB. This 

demonstrates the impact of employing signal ordering. Note that the performance 

advantage of the MMSE is quite considerable in all cases. The sorted MMSE-

VBLAST lags the MLD curve by about 6.7 dB at a target BER of 10-4.  

 

3.3 QR Decomposition Based Detection  

 In section 3.2, it was shown that VBLAST detection algorithms imply the 

calculation of the pseudo-inverse of MIMO channel at each detection step. This 

involves expensive computational requirements and makes VBLAST algorithms 

enduring computational bottleneck.  This computational bottleneck can be avoided 

using QR Decomposition based algorithm such as ZF- QRD and MMSE-QRD. In 

[25], [26], it was shown that QR Decomposition-based algorithms requires only a 

fraction of the computational efforts required by the V-BLAST detection algorithm.  

 

3.3.1 Zero-Forcing QR Decomposition (ZF-QRD) 

 It was shown that VBLAST algorithm can be restated in terms of QR 

decomposition of the channel matrix H  [26-29].  

H QR= ,                                                            (3.12)  
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where the t rN N×  matrix Q  has orthogonal columns with unit norm (unitary matrix) 

and the t rN N× matrix R is upper triangular.  

Then, the received vector r  in (2.1) is multiplied from the left by the Hermitian 

transpose of Q ,[30]. 

H H H

r H x n
r QR x n
Q r Q QR x Q n

= ⋅ +
= ⋅ +

= ⋅ +

  

y R x v= ⋅ +                                                      (3.13) 

a 1tN ×  modified received signal vector  y can be written in an explicit matrix form 

as follows: 

1 11 12 1 1 1

2 22 2 2 20

0 0

Nt

Nt

Nr NrNt Nr Nr

y r r r x v
y r r x v

y r x v

      
      
      = +
      
      
      

K
L

M M M M M M M
K

                       (3.14) 

or 

, ,
1

ˆ
Tn

k k k k k j i
i k

y R x R x
= +

= + ∑%                                       (3.15) 

then 

,
1

,

ˆ
ˆ

Tn

k k j i
i k

k
k k

y R x
x Q

R
= +

 
− 

 =
 
 
 

∑
                                  (3.16) 

Note that due to the upper triangle structure of the matrix R, the last element Ntx% , is 

interference-free and can be used to estimate Ntx  ; hence, it is detected at first 
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ˆ Nt
Nt

NtNt

yx Q
r

 
=  

   

by applying the quantization operation [ ]Q ⋅  . 

Detecting ( )1, ,1tk N= − K is carried out in an equivalent way, noting that already-

detected components of x are cancelled out from the received vector. These 

procedures are repeated up to the first component 1x . 

 As mentioned in section 3.2, the detection sequence is critical due to the risk 

of error propagation. Following the same idea as VBLAST, the symbols can be 

detected in order of decreasing SNR. Because the last symbol is detected first in this 

method, one would like the last symbol to be the best one. This requires rearranging 

the columns of H in increasing order of 2-norm so that the last symbol corresponding 

to the last column gets detected first and so on. The optimal ordering can be 

determined just by permuting the columns of x according to the elements of p (where 

p is the permutation vector).  

 Table 3.3 gives a pseudocode of the Sorted ZF-QRD detection algorithm. 

Again, we meant by 'sorted' that the signal ordering approach is employed in the code.  

The unsorted ZF-QRD can be obtained by discarding the sorting steps in the code 

(line (7) and line (8)). The algorithm consists of a decomposition part (line (1) to (16)) 

and a detection part (line (17) to (21)). In the decomposition part, the ordering is done 

in line (7) and (8) and provides the permutation vector p , the orthogonal matrix Q  

and the upper triangular matrix R . In the detection part, the received signal vector is 

sorted according to the permutation p , and the modified received signal vector y  is 

calculated (line (17)). The following lines (17) to (21) represent the iterative detection 

process . 
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Table 3.3: Pseudocode of Sorted ZF-QRD detection algorithm 

( )
( )
( )
( )
( )
( )
( ) ( )

2

,...,

 1     input , 1, 2, ,

 2     0,  

 3     for  1,...,                          

 4        norms                  

 5     end

 6     for 1,...,  

 7        = arg  min  norms               
T

T

i i

T

i i
j i N

H p Nt

R Q H

i N

q

i N

k
=

= …

= =

=

=

=

( )
( )

( )
( )
( )

,

,

,

                     

 8        Exchange -th -th columns in R, Q, p and norms

 9        = norms      

10        /     

11         for 1, ,                          

12                  

i i i

i i i i

i k i

i k

R

q q R

k i Nt

R q

=

= +

=

K

( )
( )
( )
( )
( )
( )

( )

,

2
,

13                  

14                  norms norms

15             end   

16         end 

17         r                                        

18         for , ,1

19              

H
k

k k i k i

k k i k

H

q

q q R q

R

y Q

k Nt

⋅

= − ⋅

= −

=

= K

( )

( )
( )

,
1

,

ˆ ˆ

ˆ
ˆ20              

21         end

ˆ22         Permutate  according to p                                     

Nt

k k i i
i k

k k
k

k k

d R x

y dx Q
R

x

= +

=

 −
=   

 

∑
 

  

3.3.2 Minimum Mean Square Error QR Decomposition (MMSE-QRD) 

 In order to extend the QR-based detection with respect to MMSE criterion, the 

channel matrix H should be extended to 

n

H
H

Iσ
 

=  
 

%                                                (3.17) 
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and decomposed into Q  and R  matrices such that H QRP=% , with P  as the column 

permutation matrix.  

 Table 3.3 gives the pseudocode of the ZF-SQRD detection algorithm. The 

sorted MMSE-QRD detection scheme (labelled MMSE-SQRD) is obtained by simply 

replacing H by H% . The unsorted MMSE-QRD detection scheme (labelled MMSE-

QRD) is obtained by simply skipping the sorting steps in the QRD code (line (7) and 

line (8)). 

 

Figure 3.4: BER of QRD detection schemes  

Figure 3.4 shows the BER performance of the QRD-based detection schemes in 

addition to that of the optimum detector (MLD). It can be seen that the MMSE 
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algorithms perform better than ZF in all cases. At target BER of 10-3, MMSE-QRD 

leads both ZF-QRD and ZF-SQRD by about 5.5 dB and 2.5 dB respectively. 

In MMSE cases, by sorting the columns of the QR decomposition the performance 

increases to 7.5 dB.  Thus the best performance is achieved by the MMSE-SQRD 

detection scheme, where it lags the optimum performance by about 9 dB at target 

BER of 10-4. 

 In general, both VBLAST and QRD detection algorithms without sorting have 

a diversity order of ( )1r tN N− + [9]. That is, the diversity orders of VBLAST and 

QRD without sorting equals one for equal number of transmit and receive antennas 

whatever is the number of receive antennas. This is because signals are detected 

independently, where the ZF or MMSE solution of each component of x is 

demodulated and considered as error-free in the following detection levels. Since one 

of the main reasons for the inaccuracy of the linear detection, VBLAST and QRD 

algorithms is the ill-conditionality of the channel matrix, we introduce in the 

following section the tree search detection. 

3.4 Tree-Search Detection Techniques 

 Several tree-search detection algorithms have been proposed in the literature 

that achieve quasi-ML performance while requiring lower computational complexity. 

In these techniques, the search problem of (2.2) is presented as a tree where nodes 

represent the symbols’ candidates. In the following, we introduce two tree-search 

algorithms and discuss their advantages and drawbacks. 
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3.4.1 Sphere Decoding  

 Sphere Decoding (SD) approach was inspired from the mathematical problem 

of computing the shortest nonzero vector in a lattice [31]. SD algorithm was originally 

described in [32] and refined in [33] to substantially reduce the computational 

complexity of signal detection in MIMO communication systems. The principle of SD 

is to search for the closet constellation point to the received signal within a sphere 

with predetermined radius ‘d’[34], where each transmit candidate is represented by a 

lattice point in a lattice field {Hs}. Figure 3.5 depicts a geometrical representation of 

the idea behind SD algorithm, the search can be restricted to be in a circle around the 

received signal just small enough to enclose at least one lattice point or ML solution 

[35], thus search time can be significantly reduced by eliminating the search of those 

lattice points lie outside the circle. According to the analysis available in [36], SD can 

transform the ML detection problem into a tree search and pruning process and 

achieve quasi-ML performance with polynomial average computational complexity 

for large range of signal to noise ratios. 

 

 

Figure 3.5: Geometrical representation of the idea behind SD algorithm 
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3.4.1.1 SD Search Strategies 

 The sphere decoding can be considered as a depth-first search approach with 

tree pruning process [37]. In SD algorithm, the most important issue is the strategy 

based on which signals “hypotheses” are tested per level. The SD algorithm for SM 

MIMO systems has two types of searching strategies, the Fincke-Pohst (FP) and the 

Schnorr-Euchner (SE) [38]. 

 

I. Fincke-Pohst Strategy 

 The Fincke-Pohst (FP) strategy [33] is considered in literature to be the 

original sphere decoding algorithm [39]. This strategy was first used in digital 

communications theory by Viterbo and Biglieri [31]. In [40], it was applied to find the 

closest point for a single antenna fading channels. This method considers all 

hypotheses in natural order, and the search is starting with the first one as shown in 

Figure 3.6. If a point is found, the radius is updated (reduced) and so forth. 

 An important and critical aspect of the FP strategy is that a search radius must 

be initialized appropriately. However, if the sphere radius d is too large, many lattice 

points will have to be computed and a large number of points may also be cancelled 

out. If it is too small, no points will be found and the algorithm must then be restarted 

with a larger searching radius. Both of these factors negatively influence the overall 

 

iX
 

Figure 3.6: Fincke-Pohst strategy 
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computation time, and thus it is well-known that one of the main drawbacks of the FP 

strategy is the sensitivity of its performance to the choice of initial search radius d. A 

recommend choice is the distance to the Babai point [35], which is the first returned 

point in the search set. Then, it could be assured that at least one lattice point will be 

found inside the sphere.  

II. Schnorr-Euchner Strategy 

 Schnorr-Euchner (SE) strategy that was proposed in [41], added a small but 

significant refinement to the FP approach. The FP strategy searches the admissible 

nodes without any ordering, whereas in SE strategy, the admissible nodes of each 

level are spanned in a zigzag order starting with the closest middle point as depicted 

in Figure 3.7. SE strategy considers symbol close to the ZF solution and If a point is 

found, then the radius is updated (reduced) and so on. It was also concluded in [35] 

and [42] that the SE enumeration is more efficient than FP and has lower 

computational complexity by reordering the constellation searching at each level. 

iX

 

Figure 3.7: Schnorr-Euchner strategy 

 

3.4.1.2 Sphere Decoding Algorithm 

 As stated in the introduction, the exhaustive search through the whole lattice 

{Hs} has an exponential computational complexity. This complexity is unrealizable 
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and thus defines a bottleneck in the practical implementation of the MIMO SM 

systems [43][44]. The SD algorithms can solve the ML detection problem in (3.18) by 

searching over a restricted subset Ω that at least contain the ML solution. 

2arg min
k

k
x

x r Hx
∈Ω

= −%                                     (3.18) 

To describe the conventional sphere decoding algorithm, consider the QR-

decomposition of the channel matrix, i.e. H QR=  where R  is upper triangular 

matrix and Q has orthogonal columns of unit norm. In the basis given by the columns 

of Q  the system model in (2.1) can equivalently be written as  

y R x v= ⋅ +  ,                                                      (3.19) 

where Hy Q x=  and  Hv Q n= . Further, the ML detection problem can equivalently 

be written as  

2arg min
k

k
x

x y Rx
∈Ω

= −%                                       (3.20) 

The main difference between (3.20) and (3.18) is that R, by construction, is upper 

triangular. The sphere decoder solves (3.20) by searching over all vectors, kx ∈Ω , 

satisfying a spherical constraint on the form  

2 2
ky Rx d− ≤                                                    (3.21)           

In what follows, d will be referred to as the search radius for the obvious reason. It is 

straightforward to see that if d is sufficiently large, at least one vector, 

kx ∈Ω  satisfies (3.21) and the SD algorithm will obtain the ML estimate. Naturally, 

it is not practically feasible to verify (3.21) for every kx ∈Ω  as this would require an 
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exhaustive computational complexity equal to the original brute-force ML approach. 

Instead, SD algorithm finds all kx ∈Ω  satisfying (3.21) through a constrained tree 

search [45].  

So far, note that  

2
2 2

1

m m

i ij j
i j i

y Rx x r x d
= =

− = − ≤∑ ∑  

where ijr , iy and ix are the ( ), thi j  entry of R , thi  entry of y  and the thj  entry of 

x respectively. Thus, a sufficient condition for (3.21) to be satisfied is given by 

(3.22), 

2

2

1

m m

i ij i
i m k j i

x r x d
= − + =

− ≤∑ ∑                                               (3.22) 

for 1, ,k m= K . Due to the triangular structure of R, (3.22) is only a constraint on 

1, ,m k mx x− + K . In particular, if 1k = , (3.22) is equivalent to  

2 2 1
mm m m m m mmr x y d x c r d−− ≤ ⇔ − ≤                               (3.23) 

where 1
m mmc r d−@  is the unconstrained least squares estimate of mx . In other words 

the admissible, in the sense that (3.22) is not violated, values of mx  belong to a 

sphere of radius 1
mmr d− , centered at mc .  

Similarly, for 2k = , (3.22) is equivalent to (3.24) 

2

1 2
1 1 1, 1

2

m m

m k m k m k m k i ij i
i m k j i

x c r d x r x−
− + − + − + − +

= − + =

− ≤ − −∑ ∑                (3.24) 
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1 1 1,
2

m

m k m k m k j j
j m k

c x r x− + − + − +
= − +

− ∑@                                  (3.25) 

 Where (3.25) is the unconstrained least squares estimate of 1m kx − +  given 

2 , ,m k mx x− + K . An implicit assumption is naturally that the term appearing in the 

square root on the right-hand side of (3.24) is positive. In the case that it is not 

positive, there are no 1m kx − +  that satisfy (3.22).  

 The above bounds suggest an iterative (or recursive) approach for solving 

(3.20), and thus also the original ML detection problem in (2.2), by enumerating the 

admissible values of mx which satisfied (3.23). Each admissible value of mx  yields a 

set of admissible values for 1mx −  through (3.24). Similarly, given 1mx −  and mx , a 

new set of admissible values for 2mx −  is obtained and so on down to the top of the 

tree.  

 The SD algorithm can be illustrated as a tree search procedure using (3.22) as 

pruning criteria to reduce the search [46],[47]. In the tree search analogy, a sequence 

of symbol decisions, { }1 , ,m k mx x− + K corresponds to a node of the search tree at the 

kth level, counting from the root of the tree which by default is at the 0th level. Any 

full sequence { }1, , mx xK  is referred to as a leaf node and corresponds in an obvious 

way with a symbol estimate, x , satisfying (3.21). The algorithm searches in a 

structured manner all nodes that satisfy (3.22) and when completing the entire set of 

symbol estimates, x , satisfying (3.21) will have been generated. The symbol estimate,

x , yielding the smallest criterion value according to (3.20) is equal to the ML 

estimate. Note also that there is no possibility that the ML estimate does not belong to 

the set of leaf nodes visited by the algorithm (assuming there are some leaf nodes 
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visited). This follows since the bound in (3.21) assures that nodes not visited have a 

larger criterion than the optimal, ML estimate.  

 A general algorithmic description of the SD is given in [35] and this algorithm 

is reproduced in Appendix 01, Table 1. Also included in this table are modifications 

to restrict the search space to [0,…, Qmax]. The input to this algorithm is the vector to 

decode, r, and the generator matrix H of the lattice Hs. 

 Before illustrating the idea of SD in numerical example, it is worth to remind 

some important points regarding SD algorithm procedures. The SD algorithm starts 

the search process from the root of the tree, and then searches down along branches 

until the total weight of a node exceeds the square of the sphere radius 
2d . At this 

point, the corresponding branch is pruned, and any path passing through that node is 

declared as improbable for a candidate solution. Then the algorithm backtracks and 

proceeds down a different branch. Whenever a valid lattice point at the bottom level 

of the tree is found within the sphere, 2d  is set to the newly found point weight, thus 

reducing the search space for finding other candidate solutions. In the end, the path 

from the root to the leaf that is inside the sphere with the lowest weight is chosen to 

be the estimated solution x̂ . If no candidate solutions can be found, the tree will be 

searched again with a greater initial radius. 

Example I 

Let the channel matrix H , given by 

0.2 0.83 1.27
0.72 0.91 0.02

0.76 0.4 0.68
H

− 
 = − 
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suppose the elements of the transmitted vector, x , are withdrawn from { }1, 1,3, 3− −  

constellation 

1
1
3

x
− 

 =  
  

 

And, let the noise vector n  

0.006
0.05
0.01

n
 
 =  
  

 

 

Then, the received signal r  is given by 

3.17
  1.74

1.69

r Hx n= +

− 
 =  
  

 

The first step is the QR-decomposition of the channel matrix H  

0.19 0.67 0.72 1.066 0.17 0.23
0.68 0.62 0.4 0 1.28 0.56
0.71 0.91 0.57 0 0 1.31

H QR
− −   

   = = − −   
      

 

 

Now, multiply received signal r by HQ , thus the system can be re-written as 

y R x v= ⋅ +  
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where Hy Q r=  and Hv Q n= . Then,  

0.57
0.37

3.94
y

− 
 = − 
  

 

Now the system becomes  

1

2

3

0.57 1.066 0.17 0.23
0.37 0 1.28 0.56

3.94 0 0 1.31

x
x v
x

− −     
     − = − +     
          

 

To this end, forget the noise vector, because it is included in the modified vector y . 

In any tree search algorithm, including sphere decoding, the goal is to minimize  

2arg min
x

y Rx−
 

 In SD algorithm, the most important issue is the strategy based on which 

signals “hypotheses” are tested per level. For example; for 3x  we have 4 possibilities, 

so by which  3x
 
we should start? i.e. which search strategy, we should use? FP or SE. 

We usually use SE strategy because it leads to much lower complexity [42]. In SD 

algorithm, estimates of x  is found sequentially and the search is continued until no 

more estimate x̂  has lower accumulative metric of the so far found estimate. 

 Now, start computing the estimate of 3x  assuming the initial value for the 

sphere radius 2d = ∞ . The ZF solution of 3x  is computed. This value is considered as 

the first hypothesis to test for 3x . 
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Due to the triangular form of the matrix R , 3x  could be calculate directly as follows: 

( )
( )3

3 3.94 3.0076
3,3 1.31

y
x

R
= = =%  

We choose the closet constellation point to 3 3x → +% , then the estimate 3ˆ 3x = . 

Now, we are going to calculate the metric 3 ?E =  

( ) ( ) 2 4
3 3ˆ3 3,3 1E y R x e −= − ⋅ =  

is 2
3E dp ? If yes, move to the next level. 

( ) ( )
( )

( )3
2

ˆ2 2,3 0.37 0.56 3
1.0234

2,2 1.28
y R x

x
R
− − − −

= = =%  

Then, the estimate of 2ˆ 1x = , and the metric  

( ) ( ) ( ) 2
2 2 3ˆ ˆ2 2,2 2,3 0.0014E y R x R x= − ⋅ − ⋅ =  

4
2 2 3 0.0014 1 0.0015E E e −∆ = + = + =  

is 2
2 d∆ p ? If yes, go to the next level. 

To this end, 2ˆ 1x = and 3ˆ 3x = , then 1x̂  can be found as follows: 

( ) ( ) ( )
( )

2 3
1

ˆ ˆ1 1,2 1,3
1.0225

1,1
y R x R x

x
R

− −
= = −%  



47 
 

The closet constellation point to 1x%  is " 1"− , then the estimate of 1ˆ 1x = − , and the 

accumulative metric 

( ) ( ) ( ) ( )
1 1 2 1 2 3

2

1 2 3

4

ˆ ˆ ˆ   0.0015 1 1,1 1,2 1,3

   0.0015 8.82
   0.0024

E E E E

y R x R x R x

e −

∆ = + ∆ = + +

= + − − −

= +
=

 

Is 2
1 d∆ p ?  yes   

2
1d⇒ = ∆ , and restart from the beginning. According to the sequence of testing the 

hypothesis shown in Figure 3.8, the next hypothesis for 3x̂ is  +1 

3ˆ 1x⇒ =  

X3

+3+1-1-3

1234

 

Figure 3.8: Sequence of testing the hypothesis 

Find 1 ?E =  

( ) ( ) ( )2 2

1 3ˆ3 3,3 3.94 1.31 1 6.92E y R x= − ⋅ = − =  

is 2
1E dp       {now 

2 0.0024d =  } 

No è stop this hypotheses and move to next hypotheses according to Figure 3.8. 

3ˆ 1x⇒ = −  

( ) 2
1 3.94 1.31 1 27.56E = − − =  
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is 2
1E dp      

No è stop and move to next hypotheses of 3x̂ . 

3ˆ 3x⇒ = −  

( ) 2
1 3.94 1.31 3 61.93E = − − =  

is 2
1E dp      

No è stop and the already found estimate is the best. Now detection algorithm is 

terminated , and the esitimate

  

[ ]ˆ 1 1 3 Tx = −

 
Example II  

Another example of the search tree generated by the SD algorithm is given in Figure 

3.9 for the case when 3m = , { }1, 1Ω= + − , and 2 3d = , where  y and R  in (3.20) are 

given by  

0
3.8
1.1

y
 
 =  
 − 

, and  

0.4 1.2 2.7
0 0.5 2.7
0 0 0.6

R
− − 

 = − 
  

 

Each candidate symbol, x ∈ Ω , is indicated by a leaf node in the tree. The metric of 

each node, given by the left hand side of (3.22), is indicated by the number to the right 

of each node. Each node with a metric less than 2d is included in the search and 

indicated in black. On the other hand the white nodes are not visited by the SD 

algorithm. The ML estimate, [ ]1 1 1MLx = − + −  , has an objective value of 1.82 in 

(3.20) which is also the smallest node value.  
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Figure 3.9: Example illustrating SD search tree. Nodes visited by the algorithm 
are shown in black 

By moving down the tree until the sphere constraint in (3.22) is violated or until the 

bottom of the tree is reached, then moving back up to adjust previous decisions and 

proceed down other branches, the SD algorithm will eventually have visited all nodes 

satisfying (3.22). As the number of nodes visited in Figure 3.9 is less than the total 

number of nodes in the full tree, it follows that the SD algorithm is less complex than 

the brute force, ML, search over all nodes.  

 As indicated by Example II the complexity of the algorithm is proportional to 

the number of nodes that are visited by the tree search. The total number of nodes 

visited is however typically much larger than the number of leaf nodes visited 

meaning that it is the recurring verification of (3.22) which accounts for the larger 

part of the complexity of the algorithm, not the final number of estimates in the search 

sphere given by (3.21). However, the total number of nodes visited is usually much 

smaller than the set of all symbol vectors, mΩ , which implies that the SD algorithm is 

of substantially lower complexity than the brute force search.  
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 The complexity analysis in Chapter 4 will indicate that by requiring that the 

sphere decoder visits at least one leaf node (which is essential if the sphere decoder 

should find an estimate, x̂ ) it will also follow that the search tree is left unpruned up 

to some fraction ( ]0,1ε ∈ of the total search depth. This will however unfortunately 

imply that the number of nodes visited by the algorithm also grows exponentially fast, 

even though with smaller exponent than the full search over mΩ .  

 

3.4.2 QRD-M Detection 

 The second scheme in the tree search category is the QRD-M, which was 

proposed to achieve quasi-ML performance while requiring fixed computational 

effort. QRD-M algorithm was originally discussed in [48] and was first used in signal 

detection in MIMO system in [49]. QRD-M algorithm can reduce the tree search 

complexity by selecting only M candidates at each layer instead of testing all the 

hypotheses of the transmitted symbol [50]. These M candidates are the smallest 

accumulated metric values.  

QRD-M Algorithm  

 QRD-M Algorithm can be considered as a breadth-first search that has only 

one searching strategy. The concept of QRD-M is based on the classical M-Algorithm 

[51] that retains only a fixed number of symbol candidates, M, at each detection layer 

[49]. Basically, the idea of QRD-M Algorithm is similar to SQRD approaches for 

MIMO detection (section 3.3). However, instead of selecting only the closet 

constellation point in each layer, a total of M metrics is considered in evaluation.  
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 The algorithm starts by applying the QR decomposition to (2.1) with H QR=

, where Q is an orthogonal matrix satisfying = =H HQQ Q Q I  and R  is an upper 

triangular matrix with ,i jR , ≥j i  denoting its non-zero elements and triangular 

matrix ,i jR being positive real number, and assuming ≥r tN N  , we have  

= +r Hx n                                                      (3.26) 

hence 

y R x v= ⋅ +                                                    (3.27)  

where Hv Q n= . 

Denoting the ZF solution as 

† †ˆ = =x H r R y                                                    (3.28)  

The ML detection problem can be reformulated as: 

           
( ) ( ){ }

2

2
2

,
1 1

22 †

ˆ arg min

       arg min

ˆ       arg min

∈Ω

∈Ω = = = +

∈Ω

= −

  = − + 
  

= − + −

∑ ∑ ∑

Nt

t t r

Nt
t

Nt

ML
x

N N N

j j i i k
x j i j k N

x

x y Rx

y R x y

R x x I RR

 

( ) ( )
2

2
, ,

1 1 1

ˆ ˆ arg min
∈Ω = = + = +

  = − + − + 
  
∑ ∑ ∑

t t r

Nt
t

N N N

j j j j j i j j k
x j i j k N

R x x R x x y     (3.29) 

It can be seen that the second term 2

1= +
∑

r

t

N

k
k N

y is independent of the transmitted vector 

x , therefore it is ignored hereafter.  To minimize the metric in (3.29), QRD-M 
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algorithm keeps only M candidates at each detection level with the smallest 

accumulated metric. For example, at the first detection layer, the root node is 

extended to all the possible Ω candidates of 
tNx , the accumulative metrics of the 

resulting branches are calculated and the best M candidates are retained for the next 

detection layer. At the second detection layer, the retained M candidates at the 

previous layer are extended to all possible candidates. The resulting (MΩ) branches 

are sorted based on their accumulative metrics where the M branches with the 

smallest accumulative metrics are retained for the next detection layer.  

 

This strategy is repeated down to the last detection layer, i.e., 1i = . At the last 

step the x with the smallest overall metric is chosen as the ML decision. Note that 

QRD-M algorithm is sub-optimal in nature and only when = Ω tNM , it becomes 

exhaustive ML search. When 1=M , it is essentially zero-forcing nulling and 

interference cancellation. Therefore ordering is important in QRD-M, and VBLAST 

type of ordering gives the best performance among the various ordering schemes, as 

discussed in [52]. 

 

For the ease of understanding, a flowchart for the QRD-M algorithm is drawn, 

Figure 3.10. And the QRD-M algorithm can be summarized in the following six main 

steps: 

Step 1: Perform QRD on H  

Step 2: Pre-multiply y with HQ   

Step 3: Extend all branches to M Ω nodes  
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Step 4: Calculate the branch metrics using (3.29) 

Step 5: Order the branches according to their metrics, retaining only M branches and 

discarding the rest  

Step 6: Move to next layer and go to step 3  

 

 

Figure 3.10: Flowchart of QRD-M detection algorithm 

Example III 

Using the same values and parameters used in the example given for SD algorithm, so  
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1

2

3

0.57 1.066 0.17 0.23
0.37 0 1.28 0.56 noise

3.94 0 0 1.31

− −     
     − = − +     
          

x
x
x  

We could start from 3x  and go up. 

Let 4=M   

Then, we start by 3x  because it is interference-free as all the possibilities of 3x are 

four { }3, 1,1,3− − . 

We calculate the metric at this level. 

3 3= −x  

( ) 2
3 3,13      3.94 1.31 3 61.93= − → = − − =x E  

( ) 2
3 3,21      3.94 1.31 1 27.56= − → = − − =x E  

( ) 2
3 3,31      3.94 1.31 1 6.92= + → = − =x E  

( ) { }2 4
3 3,43      3.94 1.31 3 1.0     so small−= + → = − =x E e  

Let us see the part of the tree, we have 
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Now each point (node) is extended to all possible branches. We will have 16 new 

nodes, and only 4 candidates should be selected among them. Let us make the 

calculations  

Let 3 3= −x , then we should calculate the solution 

2

3
 
 − 

x
 ,  

where { }3, 1,1,3∈ − −x  

( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 2,1 2 3

2

3      2 2,2 2,3

                                0.37 1.28 3 0.56 3 3.1998

= − → = − × − ×

= − − × − − − × − =

x E y R x R x
 

( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 2,2 2 3

2

1      2 2, 2 2,3

                                0.37 1.28 1 0.56 3 0.605

= − → = − × − ×

= − − × − − − × − =

x E y R x R x
 

( ) ( ) ( ) ( ) 2
2 2,31      0.37 1.28 1 0.56 3 11.185= → = − − × − − × − =x E  

( ) ( ) ( ) ( ) 2
2 2,43      0.37 1.28 3 0.56 3 34.94= → = − − × − − × − =x E  

Now we got the following tree: 

3,1E 3,3E 3,4E3,2E

61.93

27
.5

6

6.92
1.0

e-4

3.199

0.
60

5

11.185

34.94

i = 3

i = 2

96.8773.1262.5465.13  
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The accumulative metric of these branches are shown in the above tree. For example  

3,1 2,1 61.93 3.1998 65.1298+ = + =E E  

Now calculate for the next nods at 2=i level 

2 2,5

2 2,6
3

2 2,7

2 2,8

x 3 8.5
x 1 0.1222

1 ,   27.56
x 1 4.915
x 3 22.883

E
E

x
E
E

= − = 
= − = = − += + = 
= + = 

 

2 2,9

2 2,10
3

2 2,11

2 2,12

x 3 16.35
x 1 2.18

1 ,   6.92
x 1 1.187
x 3 13.368

E
E

x
E

E

= − = 
= − = = + += + = 
= + = 

 

2 2,13

2 2,14 4
3

2 2,15

2 2,16

x 3 26.74
x 1 6.780

3 ,   1
x 1 0.0014
x 3 6.3948

E
E

x e
E
E

−

= − = 
= − = = + += + = 
= + = 

 

After extending all possible hypotheses, the new tree becomes as shown in below. 

6.92
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Thus our tree now is: 

i = 2+1

8.1

+1

+3+1-1

6.3950.00146.78

i = 3+3

 

 

and the  estimates of both 2

3

x
x

 
 
 

 are the following: 

1
1

 
 
    , 

1
3
− 

 
 

,
1
3

 
 
  , and 

3
3

 
 
   

Now, we could start a new detection layer by extending the four selected candidates 

into all possible hypotheses and calculating their metrics. 

 

1,1 1,5 1,9 1,1
4

1,2 1,6 1,10

1,3 1,7 1,11

1,4 1,8 1,12

8.1 6.78 0.0014

6.59 3.0776 4.42
0.1905 0.14 8.82

                                 
2.8734 6.30 4.6712
14.64 21.53 18.429

E E E E
E E E e
E E E
E E E

−

+ + +

= = =
= = =
= = =
= = =1442443 1442443 1442443

[ ]

3

1,14

1,15

1,16

6.395

6.0
0.1

3.29
15.57

                                        Metrics of thier Father node                                  

E
E
E

+

=
=

=
=14243
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Figure 3.11 shows the final tree, and the lowest values corresponds the solution. The 

detected values are the same as the transmitted, i.e the solution is   

1

2

3

1
1
3

x
x
x

−   
   =   
      

 

 

 

Figure 3.11: the final tree showing the detection levels and the estimate x 

 

3.4.3 SD and QRD-M Performance Comparison 

 Figure 3.12 shows the BER performance of SD and QRD-M algorithms in 4 x 

4 MIMO SM system. SD algorithm coincides with the optimum performance and the 

QRD-M algorithm achieves the ML performance for M = |Ω| which equals 4 in the 

case of 4-QAM. Although SD achieves a quasi-ML performance, it has the following 

drawbacks: (i) the complexity of SD is random and depends on the conditionality of 

the channel matrix and the noise variance. 
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Figure 3.12: BER of SD and QRD-M performance for several values of M  

 

 The worst-case complexity of SD is therefore exponential which is infeasible 

in computational power limited communication systems [35]. And (ii) SD has a 

sequential nature because it requires the update of the search radius at every time a 

new lattice point with smaller accumulative metric is found. This limits the possibility 

of parallel processing and hence reduces the detection throughput, i.e., increases the 

detection latency. In [53] Barbero et al. have proposed a fixed complexity sphere 

decoder to overcome the aforementioned drawbacks of the SD. 

 The QRD-M algorithm has also two drawbacks: (i) it employs a systematic 

tree-search without considering the noise power or the channel conditionality and (ii) 
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increase in the size of the search tree. Several algorithms were proposed in the 

literature to overcome these drawbacks by introducing a method that adaptively 

selects the number of retained candidates per detection layer [54]. 

 As mentioned above, the tree-search based detection techniques provide quasi-

ML performance, and the QRD-M algorithm in particular is the most amenable to 

hardware implementation. It should be noted that the detection complexity of SD and 

QRD-M was significantly higher than that of linear and SIC detection algorithms. 

3.5 Summary  

In this chapter a variety of the MIMO SM detection schemes have been described 

discussed and compared in terms of performance and computational complexity. 

Different performance simulations have been generated for each detection categories 

to investigate and evaluate their BER. It has been shown that the linear detection 

techniques have poor performance due to the huge amplification in noise power in 

ZF-case. The ordering strategy involved VBLAST has important benefits but the 

performance improvement is limited due to error propagation. This error propagation 

has been alleviated by QRD algorithms. The tree-search based detection techniques; 

i.e., SD and QRD-M with the two promising approaches. SD has achieved MLD 

performance. In case of QRD-M, while the number of survival candidates increases 

the performance converges to that of MLD.  
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CHAPTER 4 

COMPLEXITY ANALYSIS OF MIMO SM DETECTION 
TECHNIQUES 

 

 

4.1 Introduction  

 MIMO techniques will only become part of future generation wireless 

systems, if they are feasible in real world systems. A complexity analysis and 

comparison will be carried out for the most promising MIMO algorithms. This allows 

to estimate the potential cost of such systems and to identify possible bottlenecks for 

the hardware implementation. Even though there is no real consensus in the digital 

communications community on how exactly to interpret the concept of complexity, it 

is generally defined as the number of floating point operations (additions, 

multiplications etc.) which are required to compute the estimate of the transmitted 

vector x  or the running time of the algorithm when implemented on some specific 

platform. This running time, may be defined in literature as time latency or CPU time 

in some references. In this thesis, the complexity of the detectors will only be 

computed in terms of flops, which is another measure proportional to the running 

time. There is also typically a tradeoff between the complexity of a detector and its 

performance in terms of error probability. The optimal, ML, detector which provides 

the minimum probability of error is often prohibitively complex while the 

computationally simplest detectors will have a poor performance in terms of error 

probability. An investigation of the complexity performance tradeoff of many 

detectors proposed in the literature is given in [55] in the context of CDMA. A similar 
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comparison of the sphere decoding algorithm and some extensions of the lattice basis 

reduction aided detectors in the context of MIMO can be found in [56]. 

 Simple, closed form, expressions for the complexity are rare and it is often 

convenient to instead characterize the rate at which the complexity grows with some 

variable w . If the complexity of an algorithm is in ( )( )O p w for some polynomial 

( )p w the algorithm is said to be of polynomial complexity.  

 The implementation of MIMO-systems requires new hardware architectures 

since highly parallel algorithms need to be executed. To identify suitable hardware 

structures the algorithms have to be analyzed and cut down to their basic components. 

The goal is to provide guidelines for fast prototyping. This detailed analysis of the 

MIMO-signal processing algorithms includes recommendations of implementation 

issues and estimation of the complexity. 

 In this chapter, the complexity is analyzed and compared for the MIMO SM 

detection algorithms introduced in Chapter 3:  linear algorithms( ZF, MMSE), SIC 

algorithms (VBLAST), tree-search algorithms (SD,QRD-M), and MLD. 

 

4.2 Complexity of Arithmetic Operations 

 Before determining the complexity of the MIMO SM algorithms, a number of 

general rules will be introduced, namely, the complexity of a matrix multiplication, 

the conversion from complex complexity figures to real complexity figures, the 

complexity of a slicer, and the complexity of finding a minimum value from a set of 

values.  
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 The complexity of a matrix product is determined as follows. Suppose two 

matrices A  and B  (real or complex) with dimensions ×C E and ×D E are 

multiplied, then the ( ), thi j element of the resulting matrix is given by  

1=

= ∑
D

i
j ik kj

k

a b a b  

where ia  represents the thi row of matrix A , jb  denotes the thj column of B  and 

ika  and kjb  stand for the thk  element of this row and column, respectively. Thus, in 

order to obtain one element of the resulting matrix, 1−D  additions and D  

multiplications need to be performed. The resulting matrix is ×C E  dimensional and, 

therefore, a total of ( )1−C D E  additions and CDE  multiplications are needed to 

multiply the two Aand B .  

 To write complex additions and complex multiplications in terms of real 

additions and real multiplications, it is easily verified that one complex addition 

consists of two real additions; the real and the imaginary part of the two complex 

numbers are added. Furthermore, a complex multiplication can be rewritten in the 

following two ways: 

( )( ) ( ) ( )+ + = − + +a jb c jd ac bd j bc ad                           (4.1) 

( )( ) ( ) ( )( )( )+ + = − + + + − −a jb c jd ac bd j a b c d ac bd           (4.2) 

The first option consists of 4 real multiplications, ac , bd , bc and ad , and 2 real 

additions, −ac bd and −bc ad . A subtraction is counted as an addition and the 

addition before the j does not count because the real and imaginary parts are stored 

separately. The second option has only three real multiplications
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( )( )( ), , + +ac bd a b c d , plus five real additions. Compared with the first case, the 

total operations count is higher by two, but in a number of hardware implementations, 

a multiplication is a more complex operation. In the remainder of this section, 

however, the first option will be used.  

 The complexity of a slicer is minimal in terms of additions and/or 

multiplications. For an M-PSK constellation scheme, the phase range [ ],π π−  is 

divided in M equal parts. In such a regular structure, a recursive search is done in 

which half of the (remaining) range the phase of the estimated symbol best fits. This 

results in a complexity equivalent to ( )2log M  comparisons. For an M-QAM 

constellation diagram, the real and imaginary parts are split. Each of these parts is 

regularly divided in M slicing ranges. Also in this case,  a recursive search is 

achieved in which half of the (remaining) range the real or imaginary part of the 

estimated symbol best fits, and the complexity is equal to log2( M ) comparisons for 

the real and for the imaginary part, or ( )22log M comparisons in total. It is 

reasonable to assume that a comparison is as complex as a real addition and, 

therefore, the slicing of the Nt-dimensional vector estx  requires at most ( )2logtN M

R-adds.  

 In order to find the minimum of N  numbers in hardware, the easiest thing to 

do is start with the first two elements, subtract the second number from the first, and 

compare the result with zero. If the result is larger than zero, the second number is the 

smallest; otherwise the first number is the smallest, etc. Obviously, finding the 

minimum between two real numbers has the complexity of one real addition. As a 
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result, determining the minimum of N  values has a complexity of 1−N  real 

additions.  

 The computational complexity of several arithmetic operations can be 

summarized in Table 4.1.  A refers to real addition, M refers to real multiplication, Ac 

refers to complex addition, Mc refers to complex multiplication. In the following, the 

complexity of the algorithms is given in terms of complex floating point operations 

(flops). A complex multiplication/ division requires 3 flops, and complex addition 

requires 1 flop. 

 Based on these general assumptions given in Table 4.1, the complexities of 

linear, nonlinear and tree search MIMO SM detection techniques are determined and 

compared, respectively, in section 4.3, section 4.4 and section 4.5.  

Table 4.1: Computational complexity of arithmetic operations 

Operation Inputs Output Complexity Flops 

Complex multiplication  Two complex  Complex 4M+2A 3.0 

Complex by real Complex and real  Complex 2M 1.0 

Square root  Real Real M 0.5 

Complex power Complex Real 2M+A 1.5 

Real division  Two real Real M 0.5 

Complex division Two complex Complex 8M+3A 5.5 

Complex division Complex and real  Complex 2M 1.0 
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4.3 Complexity analysis of linear detections 

4.3.1 Complexity of Zero-Forcing  

 As described in Subsection 3.1.1, the Zero Forcing technique is based on 

calculation of the pseudo-inverse of the channel transfer matrix H . Because it is 

assumed that the MIMO system is operating in a quasi-static environment, i.e., H  is 

constant during transmission of symbols, the pseudo-inverse of H  needs to be 

calculated only once per transmitted MIMO vector. For determining the complexity of 

the calculation of the pseudo-inverse, the following equation is used  

( ) 1† H HH H H H
−

=                                              (4.3) 

The dimensions of †H , H  and HH  are ×t rN N , ×r tN N and ×t rN N  respectively. 

To find the pseudo-inverse of H , first, determine the complexity of the matrix 

product HH H  . To determine this complexity, the general rule introduced in section 

4.1 will be used. These rules state that the complexity of the product of two matrices 

A  and B  (real or complex) with dimensions ×C E and ×D E  equals ( )1−C D E  

additions and CDE  multiplications (real or complex). Hence, the complexity of the 

matrix product HH H  yields ( )2 1−t rN N  Ac and 2
t rN N  Mc. The result is a square 

matrix with dimension ×t tN N . For this square matrix HH H , the inverse needs to 

be determined. It was shown in [57], that the direct inversion of a given square matrix 

A  (with dimension ×N N ) has a complexity in the order of  3N additions and 3N  

multiplications in total. So, inverting HH H has a complexity of 3
tN  Ac and  3

tN  Mc.  
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Finally, the inverse of HH H  (which is ×t tN N dimensional) is multiplied by HH . 

The complexity of this last multiplication is equal to ( )1−t t rN N N  Ac and  2
t rN N

Mc. (see section 4.2). This leads to a total complexity of 

( ) ( )3 2 1 1+ − + −t t r t t rN N N N N N  Ac and  3 22+t t rN N N  Mc based on general 

assumptions introduced in section 4.2, the complexity in terms of real operations 

(flops) equals   

( ) 3 2
ZF-pre 7 7= + −t t r tC flops N N N N                             (4.4) 

The payload processing for ZF consists of a matrix-vector multiplication per 

transmitted vector and a slicing step to translate the estimated elements of x  to the 

possible transmitted symbols. Recalling from Subsection 2.1, the matrix-vector 

multiplication is given by  

†=%x H r                                                       (4.5) 

The complexity of this product is equal to ( )1−t rN N  complex additions and t rN N  

complex multiplications.  

As explained in section 4.2, the complexity of slicing tN M-ary constellation points 

equals ( )2logrN M  R-adds. 

Summarizing, the complexity of the ZF algorithm per transmitted vector x  equals  

( ) ( )3 2
ZF 2

17 7 2 4 log
2

= + − + +t t r t t r rC flops N N N N N N N M       (4.6) 
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4.3.2 Complexity of MMSE 

 The complexity of the MMSE algorithm is almost equal to the complexity of 

the ZF method described in the previous section.  

In the preamble-processing phase, the following MIMO processing matrix needs to be 

determined:  

( ) 1
σ

−
= +

t

H H
NG I H H H                                              (4.7) 

The calculation of this matrix has almost the same complexity as the determination of 

the pseudo-inverse in case of the ZF algorithm. Since σ  is real, the only additional 

complexity consists of the tN  real additions of σ  (i.e., the addition of σ  to the real 

part of the diagonal elements of HH H ). This leads to a total complexity in the 

preamble-processing phase of  

( ) 3 2
MMSE-pre 7 7= +t t rC flops N N N                                              (4.8) 

The complexity of MMSE during the payload processing is equal to that of ZF and 

consists of a matrix-vector product with the same dimensions and slicing. Recalling 

from the previous section, the payload complexity for every transmitted vector x  

equals  

( ) ( )3 2
MMSE 2

17 7 4 log
2

= + − + +t t r t t r rC flops N N N N N N N M      (4.9) 
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4.4 Complexity analysis of SIC (VBLAST) detection  

4.4.1 Complexity of ZF-VBLAST  

 The processing of the ZF-VBLAST algorithm can be divided into two parts: 

the processing during the preamble and processing of the payload. Based on the 

assumption that the MIMO channel is static during a vector transmission, the ordering 

and the weight vectors can be determined during the preamble processing. During the 

payload processing the actual detection and SIC is performed.  
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Complexity in the preamble processing  

 In order to find the weighting vectors, an iterative algorithm that consists of 

two steps can be performed. First the steps are described and then the complexity will 

be determined:  
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Step 1: Compute the pseudo-inverse of H , †H . Find the minimum squared length 

row of †H . This row is a weight vector. Permute it to be the last row and permute the 

columns of H accordingly.  

Step 2: While 1 0− >tN  go back to step 1, but now with : 

( ) ( )1
1 1, ,−

−→ = Kt

t

N
NH H h h  and 1→ −t tN N  

The complexity of calculating the pseudo-inverse is already determined in Section 

4.3. For an ×r tN N  dimensional matrix H , it equals 3 27 7+ −t t r tN N N N flops. 

 The next steps are the calculation of the squared length of all rows of †H  and 

the determination of the minimum squared length row. Note that, according to finding 

the minimum squared length row of H  is equal to finding the minimum element ppP  

on the diagonal of P , 1, ,= K tp N . Since P  is obtained through the computation of 

the pseudo-inverse of H , the complexity of these steps consists only of finding the 

minimum. As explained in section 4.2, finding a minimum of tN  values has a 

complexity of 1−tN  real additions. The permutations of step 1 are considered to 

have no complexity. The only thing that needs to be done is exchanging the memory 

pointers that respectively point to the two rows of †H  and the two columns of H that 

need to be permuted.  

 Since the algorithm is an iterative algorithm, and the dimensions of the used 

matrices scale down, the complexity per iteration is reduced. To take along this 

reduction in complexity during the iterations, the total complexity can be written by 

using series. The final number of real additions can be shown to be equal to  
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( ) ( )3 2

1 1 1 1

4 8 2 2 1
t t t tN N N N

r r
p p p p

NA p N p N p p
= = = =

= + − − + −∑ ∑ ∑ ∑  

       
( ) ( ) ( )3 2

1 1 1

4 8 2 1 2
= = =

= + − + − −∑ ∑ ∑
t t tN N N

r r t
p p p

p N p N p N  

       
( ) ( ) ( )( ) ( ) ( )22 1 2 1 1

1 8 2 1 2
6 2

+ + +
= + + − + − −t t t t t

t t r r t

N N N N N
N N N N N  

( ) ( )( )3 21 6 8 1 2 3 1 6 2 5
6

= + + + + + −t t t r t r rN N N N N N N                  (4.10) 

The total number of real multiplications (NM) of the preamble phase of ZF-VBLAST 

equals  

3 2

1 1

4 8
t tN N

r
p p

NM p N p
= =

= +∑ ∑  

                    
( ) ( )( )22 1 2 1

1 8
6

+ +
= + + t t t

t t r

N N N
N N N                           (4.11) 

Complexity in the payload processing  

 During the data processing the weighting vectors are used to first estimate the 

best element of the transmitted vector x . The result is sliced to find a hard-decision 

value of the transmitted constellation symbol and then this symbol is used in the 

feedback loop in order to find the next estimate. The following steps represent this 

iterative process:  

Step 1: Form the estimate of the best component p  of x . Due to the permutation the 

corresponding weight vector equals the th
tN row of permuted †H . In case of ZF:  
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( ) =% tN
p

x G r  

Slice ( )%
p

x to the nearest constellation point ( )ˆ
p

x  

Step 2: While 1 0− >tN  go back to step 1, but now with : 

( )ˆ→ −
tN p

r r h x  and 1→ −t tN N  

The complexity of the first step of this iterative algorithm equals 1−rN  complex-

additions and rN  complex multiplications, because two rN -element vectors are 

multiplied. The slicing step for an M -ary constellation has a complexity of 

( )2log M real additions as explained in Section 4.1. Step 2 consists of a scalar-vector 

product and a vector subtraction. The scalar-vector product has a complexity that is 

equal to rN  complex multiplications and the complexity of the vector subtraction is 

rN  complex additions, since the vectors have rN  elements.  

 Because above steps are performed tN  times, it can be said that the 

complexity of the payload processing of Successive Interference Cancellation 

(VBLAST) with Zero Forcing equals ( ) ( )22 4 1 log− +t r rN N N M real additions and 

8 t rN N  real multiplications per transmitted vector x .   

( )

( )

ZF-VBLAST preamble payload

4 3 3 2 2

2

5 8 3 7                           ...
3 3 4 2

55 17 1                               log
6 12 2

= +

= + + + +

+ − +

t t t r t t r

t r t t

C flops C C

N N N N N N N

N N N N M

                     (4.12) 
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4.4.2 Complexity of MMSE-VBLAST  

 The complexity of MMSE-VBLAST can be determined in the same way as is 

done for ZF-VBLAST in the previous section. Compared to ZF-VBLAST, there is a 

slight difference in the preamble processing, namely in the determination of the 

weight vectors. In case of MMSE, the iterative process of the weight calculation is 

given by  

Step 1: Compute the weight matrix = HG PH , with ( ) 1
σ

−
= +

t

H
NP I H H . Find the 

smallest diagonal entry of P  and suppose this is the thp  entry. Permute the thp  row 

of G  to be the last row and permute the columns of H  accordingly. The permuted 

row of G  is a weight vector.  

Step 2:  (While Nt -1 > 0) go back to step I, but now with:  

( ) ( )1
1 1, ,−

−→ = Kt

t

N
NH H h h  and 1→ −t tN N  

Compared to ZF VBLAST, the complexity of step 1 is slightly higher, because of the 

addition of σ I  to HH H . Since σ  is real, the only additional complexity consists of 

the tN real additions of σ  (i.e., the addition of σ  to the real part of the diagonal 

elements of HH H ). This leads to a complexity of 

( )3 24 8 2 2+ − − +t t r t r tN N N N N N   real additions and 3 24 8+t t rN N N  real 

multiplications. 

 Taking all iterations of the algorithm into account, this leads to a total 

complexity (including the complexity of finding the minimal diagonal element of P ) 

of  
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( ) ( ) ( ) ( )3 2

1 1 1 1

4 8 2 1 2 1
t t t tN N N N

r r
p p p p

NA p N p N p p
= = = =

= + − + − + −∑ ∑ ∑ ∑  

( ) ( )( )3 21 3 4 1 2 3 1 3 1
3

= + + + + + −t t t r t r rN N N N N N N                (4.13) 
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 For the MMSE-VBLAST algorithm, the payload processing is equivalent to 

the ZF-VLAST technique, except that in the former case the weight vectors are rows 

of the processing matrix G  instead of rows of the pseudo-inverse of H . The last fact 

is irrelevant for the complexity, thus, the complexity of the payload processing of 

MMSE-VBLAST equals ( ) ( )22 4 1 log− +t r tN N N M real additions and 8 t rN N  real 

multiplications per transmitted vector x . 

( ) ( ) ( )( )

( ) ( )( )

( )

3 2
MMSE-VBLAST

22

2

1 3 4 1 2 3 1 3 1 ...
6

1 2 11                                1 4 ...
2 6

1                                8 log
2

= + + + + + −

+ +
+ + +

+ − +

t t t r t r r

t t t
t t r

t r t t
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6 6 2

t t t r t t r

t r t t
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= +

= + + + +

+ − +

                  (4.15)

 

 

4.5 Complexity of QR Decomposition Based Detection 

4.5.1 Complexity of Zero-Forcing QR Decomposition (ZF-QRD) 
Detection  

 As pointed out in [58], in QR decoding most of the time is spent finding the 

QR factors of the channel matrix. In this section the complexity of ZF-QRD detection 

technique will be calculated through two stages, the first is to calculate the complexity 

of ZF-QRD factorization and the second is for calculating the complexity of detection 

process.  
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I. Complexity of Zero-Forcing QR Decomposition  

 The following are the required operations to obtain the ZF QR decomposition 

(ZF-QRD). The detailed algorithm is depicted in Table 4.2.  

 

Complex multiplication: 

( ) 2
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Now, based on the complexity values listed in Table 4.1, the complexity of ZF-SQRD 

factorization equals  

( ) 2 2
ZF-QRD

1 14
2 2t r t t r tC flops N N N N N N= − − +                        (4.16)

 

Table 4.2: ZF QR decomposition procedures 
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II. Complexity of detection stage  

 The required operations to obtain detection stage complexity are the 

followings. The detection stage sub algorithm is depicted in Table 4.3. 

Complex multiplication   
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Complex addition   

( ) ( ) ( )
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1 1 1
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t r t r t
i

N N N N N
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− + = − +∑
 

Complex division   
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t
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Table 4.3: Steps of detection stage  

,
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     r                          
     for , ,1
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     end
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k k i i
i k

k k
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k k
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=
=

=

 −
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∑

K

 

And the required operations for slicing tN M-ary constellation points are

( )2logtN M real additions.  

Then, the complexity of the detection stage is equal
 

( ) ( )2
Detection satge 2

3 14 4 log
2 2t t t r tC flops N N N N N M= + + +                  (4.17) 

The total complexity of ZF-QRD detection technique equals 

    
( ) ZF-QRD Detection stage= +C flops C C  

( )2 2
2

9 14 3 log
2 2t r t r t t tN N N N N N N M= + + + +                  (4.18) 
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4.5.2 Complexity of Zero-Forcing Sorted QR Decomposition (ZF-SQRD) 

 Below are the required operations to obtain the ZF sorted QR decomposition 

(ZF-SQRD). The detailed algorithm is depicted in Table 4.4.  

 

Complex multiplication: 

( ) 2

1 1
2

t tN N

r t r t r
i k i

N N N N N
= = +

= −∑ ∑
 

Complex power: 

( ) ( ) 2
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1 11
2 2

t t tN N N

r t r t t
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N N N N N
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+ = + −∑ ∑ ∑  

 

Complex addition: 

( ) 2 2
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1 12 1
2 2

t tN N

r t r t r t t
i k i

N N N N N N N
= = +

− = − − +∑ ∑
 

 

Square root: 
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1

1
tN

t
i

N
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Real additions: 

( ) ( ) 2

1 1 1

1 31 1
2 2

t t tN N N
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N N N N N
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Division of complex number by real number: 
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Table 4.4: ZF-SQRD algorithm  

( )

2

,...,

     input , 1,2, ,
     0,  
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     end
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              norms norms

         end   
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Real comparisons (equivalent to real subtraction): 

 

( ) 2

1

1 1
2 2

tN

t t t
i

N i N N
=

− = −∑
 

Based on the complexity assumption listed in Table 4.1, the total complexity of ZF-

Sorted QR Decomposition in terms of flops equals: 

( ) 2 2
ZF-SQRD

3 34
4 4t r t t r tC flops N N N N N N= + − −                        (4.19) 

And the total complexity of ZF-SQRD detection technique equals 

    
( ) ZF-SQRD Detection satgeC flops C C= +  
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( )2 2
2

9 13 14 3 log
4 4 2t r t r t t tN N N N N N N M= + + + +               (4.20) 

4.5.3 MMSE Sorted QR Decomposition (MMSE-SQRD) 

 The detailed algorithm of MMSE-SQRD is depicted in Table 4.5. Below are 

the required operations to obtain the complexity of this algorithm:  

 

Complex multiplication: 
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Table 4.5: MMSE-SQRD algorithm 

( )

2

,...,
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Real comparisons  

( ) 2

1

1 1
2 2

tN

t t t
i

N i N N
=
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The total complexity MMSE-Sorted QR Decomposition in terms of flops equals: 

( ) 3 2 2
MMSE-SQRD

4 5 134
3 4 12t t r t t r tC flops N N N N N N N= + + − −              (4.21) 

And the total complexity of MMSE-SQRD detection technique equals 

         
( ) MMSE-SQRD Detection satgeC flops C C= +  
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( )3 2 2
2

4 11 35 14 3 log
3 4 12 2t t r t t r t tN N N N N N N N M= + + + + +

  
   (4.22) 

 

4.5.4 MMSE QR Decomposition (MMSE-SQRD) 

 The complexity of MMSE-QRD is equivalent to that of the MMSE-SQRD 

algorithm without the sorting operations; that is, 

 

( ) 2
MMSE-QRD MMSE-SQRD

5 5
4 4

 = − − 
 

t tC flops C N N  

 

                      
( )3 2 2

2
4 3 25 14 3 log
3 2 6 2

= + + + + +t t r t t r t tN N N N N N N N M    4.23) 

 

 

4.6 Complexity comparison of linear, SIC and QRD detection 

techniques 

 In this section, the computational complexities of linear, VBLAST and QRD 

detection techniques are compared. The computational complexities of these 

algorithms were analyzed and discussed in terms of floating point operations (flops) 

in sections 4.3, section 4.4, and section 4.5 respectively.  Figure 4.1 presents a 

comparison of ZF, ZF-VBLAST, MMSE-VBLAST, ZF-QRD and MMSE-QRD 

algorithms in terms of computational complexity. In particular, it illustrates that the 

VBLAST detection schemes has the highest computational complexity. On the other 

hand the QRD techniques have lower number of floating point operations if compared 

with linear and VBLAST detections. This demonstrates the fact that VBLAST 
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detections endure much computational effort in the calculations of the pseudo-inverse 

of the channel matrix (see section 3.2). It also noticed that MMSE based detections 

have slightly higher number of flops than those ZF based detection because MMSE 

based detection has only additional Nt real additions  to ZF based detection 

complexity. 

 

Figure 4.1 Number of floating point operations for linear, VBLAST and QRD 

detection techniques of a MIMO system with Nt = Nr antennas 

4.7 Complexity analysis of tree search algorithms 

 Linear detectors usually have lower complexity at the cost of performance 

degradation. Tree search detectors; SD and QRD-M theoretically can achieve optimal 

performance. However, the complexity of these detectors may become prohibitive at 

low SNR [59]. Most tree-search-based MIMO detection techniques often have limited 
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performance because of the required hardware implementations; large memory 

requirement or high computational complexity of sophisticated algorithms. In this 

section, the complexity of two tree search based detection algorithms are presented 

and compared.  

4.7.1 Complexity of sphere decoding detection  

 The complexity of the SD algorithm and its variations has been discussed 

extensively in literature [42]. As shown, the complexity of ML detection given by 

solving (2.2) is exponential or NP-hard [41]. This as discussed earlier is not feasible 

to implement in a practical system, especially when high rate lattice constellations are 

used and multiple antennas are utilized. Therefore, it is very important that the SD 

algorithm provides a low complexity alternative to exhaustive ML detection. It has 

been shown in fact that the average complexity of sphere decoding is polynomial in 

the number of unknowns [42], [41], roughly 3( )O m . However, in worst case 

conditions the complexity of sphere decoding is still exponential, making it inefficient 

in these conditions. To understand this, it has to be stated that the complexity of SD is 

highly dependent on many factors, namely the SNR and the choice of initial radius. 

Therefore in worst case conditions of these parameters, SD will have an exponential 

complexity. One perception about the SD complexity is that it is a random variable, 

with an expected complexity proven to be polynomial [42].  

 There are various ways to analyze and measure the complexity of the SD 

algorithm. The one most commonly used is to measure the number of flops (floating 

point operations). This is the approach taken in most papers dealing with the 

complexity of SD [32], [42], [41]. Other ways also include calculating the expected 

number of visited nodes in the algorithm [59]. Counting the number of flops may 
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seem to be the most popular way to measure the complexity; however one has to be 

sure of the accuracy of the count. Most times the assumption is made that the 

multiplication and addition operations are equivalent in complexity measure. This is 

inaccurate as one multiplication operation is far more complex than an addition 

operation. Nevertheless the number of flops is still an acceptable qualitative measure 

of the complexity. The simple and brief notation used to the state the complexity of 

SD without rigorously analyzing it would be the big O notation, which is used to 

roughly estimate the complexity.  

 The complexity of SD will also depend on the pre-processing steps taken 

before the actual recursive search. Pre-processing steps include the QR decomposition 

of the channel matrix H  and initial radius selection. If a quasi-static channel is 

assumed, that is the channel matrix H  only changes every block of transmitted 

symbols, then the QR decomposition has to be calculated for every block. As given in 

[19], the QR decomposition algorithm requires 22nm  flops for an n m× matrix. This 

means that for the system model adopted here where n m≥ , then the QR 

decomposition itself is lower bounded by 3( )O m . If the channel is quickly varying, 

then the block length for which the channel matrix H is static becomes very small. 

This would mean that H would change more often requiring the calculation of the QR 

decomposition every time. The complexity of the QR decomposition becomes 

significant at this point.  

 If a deterministic approach is used for the initial radius selection, then the 

complexity of the sub-optimal estimate of the radius has to be taken into account. For 

example, using the ZF or the MMSE estimates will require algorithms with 

complexity on the order of 3( )O m due to the matrix multiplications involved. If you 
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take an n m× matrix and multiply it by an m n×  matrix, then the operation has a 

complexity on the order of 3( )O m , which is also lower bounded by 3( )O m . Since the 

ZF and the MMSE estimates are a series of matrix multiplications and one inversion, 

then their complexities are also at least on the order of 3( )O m . 

 It is easy to see that the complexity of the actual SD search algorithm 

(excluding the preprocessing steps) is proportional to the number of nodes visited 

within the sphere since more visited nodes will mean more computations [42]. A very 

useful expression for the complexity is given in [42] by  

( ) ( )( ) ( )2

1
, , expected # points dimensional sphere d

m

p
i

C m d i f iσ
=

= − ⋅∑         (4.24) 

where ( )pf i  represents the number of flops per visited point and is given by  

( ) 2 11pf i i= +                                                 (4.25) 

The complexity expression in (4.24) is stated as a function of the number of 

dimensions, noise variance, and sphere radius to emphasize its dependency upon these 

parameters.  

 It is clear to see the dependency of SD complexity on the initial radius 

selection as discussed earlier since the initial radius will determine how many points 

lie inside the sphere. Therefore the worst case scenario would be choosing a large 

initial radius which will mean more points than needed inside the sphere, and the 

complexity will be exponential. The dependency of the complexity on the SNR is also 

easy to see. In low SNR conditions, points inside the sphere will be tightly spaced. 

This will naturally show that for the same initial radius, more points will lie inside the 

sphere for low SNR conditions than high SNR conditions.  
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 It is very difficult to fully analyze the complexity mathematically and come up 

with closed form expressions for its statistics. A good analysis of the complexity of 

the SD algorithm was carried out in [42] and [59]; however the analysis had to 

undertake a lot of simplifying assumptions. It remains to say that the most accurate 

way of actually calculating the complexity is only through empirical results.  

 In conclusion, SD will have an expected polynomial complexity for a wide 

range of system parameters [41]. However, this is still not sufficient to fully 

implement SD in practical systems as SD will perform poorly with exponential 

complexity in worst case SNR conditions and bad initial radius choices. It is therefore 

essential to find variations of the SD algorithm to provide low complexity at all times.  

4.7.2 Complexity of QRD-M algorithm detection 

 QR-decomposition with M-algorithm was introduced to overcome the random 

complexity of the SD by retaining a fixed number of candidates per detection level. 

The original QRD-M has fixed complexity regardless of the channel environment due 

to the constant selection of survival branches at each stage. The complexity is defined 

by the total number of branch metric calculations. The parameters which determine 

the complexity of the QRD-M algorithm; are the number of transmit antennas Nt, the 

number of survival candidates vector at each stage M, and modulation scheme.  

4.7.3 Complexity Comparison of QRD-M and SD  

 In this section, further comparison of the implementation complexity of the 

QRD-M and SD algorithms. These comparisons have been achieved through 

computer simulations performed by Dai et al in [51]. The comparison results are 

listed in Table 4.6 for QPSK and Table 4.7 for 16-QAM modulated 4 x 4 systems, 

respectively.   
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 To ensure a fair comparison, for the QRD-M algorithm, M = 4 is used for 

QPSK modulation and M = 16 is used for 16-QAM modulation, in which cases QRD-

M has the same ML-achieving performance as the SD algorithm.  It is clear from 

results attained in Tables 4.6 and 4.7 that SD always performs lower average 

complexity. Its complexity advantage is observed for l6-QAM modulation in 

particular. The problem of SD lies in that its worst case complexity is significantly 

higher than the average one. 

Table 4.6: Complexity comparison for a QRSK MIMO system with Nt = Nr =4   

 Mean # of real 

multiplications 

Max # of real 

multiplications 

Mean # of visited 

nodes 

Max # of 

visited nodes 

ML 2272 2272 85(1+4+16+64) 85 

QRD-M 

(M=4) 

304 304 13(1+4+4+4) 13 

SD 150 2052 14 51 

 

Table 4.7: Complexity comparison for 16 QAM MIMO system with Nt = Nr =4   

  

SD achieves a tremendous reduction in the average complexity; its instantaneous 

complexity depends on the noise variance and channel conditioning. Thus, for ill-

 Mean # of real 

multiplications 

Max # of real 

multiplications 

Mean # of visited 

nodes 

Max # of 

visited nodes 

ML 330880 330880 4369(1+16+256+4096) 4369 

QRD-M 

(M=16) 

3520 3520 49(1+16+16+16) 49 

SD 200 8248 19 676 
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conditioned matrix or high noise power, the complexity of SD can be comparable 

with that of the ML algorithm [60]. The second scheme in this category is the QRD-M, 

which was proposed to achieve quasi-ML performance while requiring fixed 

computational effort. After the QR-decomposition of the channel matrix into unitary 

and upper triangular matrices, the M-algorithm is applied to retain the best M symbol 

replicas candidates at each detection stage. At the last detection stage, the branch with 

the smallest accumulative metric is considered as the estimate of the transmitted 

vector. Thus, QRD-M algorithm overcomes the extreme case complexity of SD and 

become more amenable to hardware implementation than SD. While the number of 

survival candidates at each detection layer increases, the QRD-M performance 

approaches that of MLD detection as shown in [61]. However, it should be noted that 

this improvement come at the cost of increased computational complexity.  

4.8 Summary 

In this chapter, the complexity of all detection techniques described in chapter 3 has 

been analyzed and calculated. This computational complexity could allow to estimate 

the potential cost of the algorithm and to identify possible bottlenecks for the 

hardware implementation. The linear detection techniques have an efficient 

computational complexity but with low performance. But the VBLAST techniques 

endure a computational bottleneck due to the multiple calculation of pseudo-inverse 

in detection procedures. This computational bottleneck has been avoided by QR-

factorization involved in QRD detection techniques. The tree-search techniques have 

significant achievements in reducing computational complexity. SD achieved a lower 

average complexity; but its worst case complexity is comparable to that of MLD 

when channel is ill-conditioned. The more amenable detection algorithm was the 

QRD-M as it requires a fixed level of computational complexity.   



91 
 

CHAPTER 5 

CONCLUSION AND FUTURE WORK 
 

 

5.1 Conclusion 

 In recent years, MIMO wireless communication systems have exploited spatial 

multiplexing (SM) approach to increase the channel capacity and improve spectral 

efficiency as well. Therefore, the MIMO SM-based system has been one of currently 

promising techniques that could realize Gbps high-speed wireless transmission for 

future communications networks.  The main challenge of MIMO SM-based system 

resides in designing signal processing techniques, i.e., detection techniques. Those are 

capable of separating the parallel transmitted signals with acceptable computational 

complexity and achieved performance.  An intensive work is being done in this field 

to investigate several MIMO SM detection techniques such linear, nonlinear and tree-

based detections.  

 In this study, several MIMO detection techniques have been successfully 

described, analyzed and compared. In general, linear detection techniques such as ZF 

and MMSE have an efficient computational complexity; however, the BER 

performance plots of these techniques demonstrated their relatively poor performance. 

In an attempt to improve the poor performance of the linear detections, VBLAST 

have been proposed. It was shown that the ordering strategy over Successive 

Interference Cancellation (VBLAST) has important benefits. This strategy was 

applied to the general V-BLAST code and got a higher performance gain. However, 

performance improvement with SIC techniques is limited due to error propagation, 
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particularly with the same number of transmitter antennas as receiver antennas. 

Additionally, the main drawback of the VBLAST detection algorithms lies in the 

computational complexity, because multiple calculations of the pseudo-inverse of the 

channel matrix are required. This involves expensive computational requirements and 

makes VBLAST algorithms enduring computational bottleneck.  This computational 

bottleneck can be avoided using QR Decomposition based algorithm such as ZF-QRD 

and MMSE-QRD. 

 In the MLD detection, corresponding metrics are generated for all possible 

transmitted symbols, and the vector with the least MLD metric is considered as the 

estimate of the transmitted vector.  Although MLD achieves the best performance and 

diversity order, it requires a brute-force search which is exponential in the number of 

transmit antennas and constellation set size. Thus, for high problem size, i.e., high 

modulation order and high Nt, MLD becomes infeasible from a hardware 

implementation perspective. In order to achieve quasi-MLD performance with a 

computationally feasible level of complexity, SD and QRD-M detection techniques 

have been proposed. These two techniques are the most appealing ones among tree-

search based detection schemes. With SD only searching through those candidates 

falling inside a hypersphere, thus reduces the high complexity of MLD. However, the 

main drawback of SD, a depth-first search algorithm, is that despite the low average 

complexity, the worst case complexity of the SD is identical to that of MLD.  On the 

other hand, QRD-M, a breadth-first search algorithm, requires a fixed level of 

computational complexity by only keeping those candidates with the best 

accumulated metric values at each step; therefore, QRD-M is more amenable to 

hardware implementation compared to SD. while the number of survival candidates at 

each detection layer increases, the QRD-M performance approaches that of MLD 
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detection, however, this improvement come at the cost of increased computational 

complexity. 

 

5.2 Future work 

 This study has addressed a number of important issues associated with MIMO 

SM detection techniques. In particular, provided a detailed description, analysis and 

comparison of performance and computational complexity of several detection 

techniques and gave a recommendation for those promising techniques that are 

potentially amenable to hardware implementation. However, there are still a number 

of issues that require further analysis and investigation, these include but are not 

limited to the followings:  

• To further reduce the computational complexity of tree-search based detection 

techniques i.e. SD and QRD-M, future research could investigate further 

development and improvement of the complexity and performance limiting 

factors such as  best initial radius selection for the case of SD and the number of 

survival candidates at each detection level for the case of QRD-M. 

• Among all detection techniques described in this study, the QRD-M algorithm 

was extensively studied in the literature and introduced as a potential candidate for 

signal detection in the future communication systems. Further work could be 

conducted to improve the efficiency of the QRD-M algorithm by reducing its 

complexity, processing it in an iterative way to reduce the hardware requirements, 

or in parallel to reduce the detection latency.  

• Generally in MIMO SM detection research and throughout this study, an 

assumption made is that channel coefficients are known at the receiver and that 
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this information is always correctly known. Future research could include a 

comparison of linear, SIC and tree search based techniques and previous 

detections for the scenarios where the channel knowledge at the receiver is not 

known.  

• This study deal with the general model of MIMO system, further investigations of 

MIMO SM detection techniques could be achieved for the MIMO OFDM. 

Because OFDM provides an attractive and practical solution for future high-speed 

indoor wireless data communication networks. It combines the data-rate and 

spectral-efficiency enhancements of SDM with the relatively high spectral 

efficiency and the robustness against different channel impairments. 

• The work conducted in this study was independent of channel coding and 

modulation; hence more investigation could be performed for the MIMO system 

with different channel coding and several modulation schemes  

• Further investigation could be conducted for a detection technique that could 

utilize a combination of detection schemes described throughout this study, i.e. 

developing   a hybrid MIMO SM detection algorithm 

• A prototype implementation of MIMO SM detection system could be designed 

and implemented on FPGA kit. 
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Appendix A 

SD Pseudocode 

The pseudocode for the sphere decoding algorithm is shown in Table 1. 

Table 1: Pseudocode for sphere decoding algorithm form [34] (modifications for 
finite constellations, xk ∈ {0,…,Qmax}) 
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