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Abstract

My thesis focuses on theoretical and empirical aspects of modelling time series during

different financial and economic conditions. It consists of three separate chapters in which

the properties of Threshold Vector Autoregressive Model (TVAR) models are addressed

with subsequent applications to equity and fixed income markets.

In the first chapter, which is a joint work with my supervisor Lars Stentoft, we examine

the steady state properties of the TVAR model. Assuming the trigger variable is exoge-

nous and the regime process follows a Bernoulli distribution, we derive the necessary and

sufficient conditions for existence of a stationary distribution. The derived stationarity con-

ditions for the TVAR model could help to validate existing and future empirical studies,

which are using this type of framework. We analyze a situation related to so called locally

explosive models, where the stationary distribution exists though the model is explosive in

one regime. Using simulation methods we show that locally explosive models can generate

some of the key properties of financial and economic data, usually implied by the literature

on bubble formation. Thus, having closed form solutions for the stability properties, which

describe locally explosive models, could be potentially useful for the studies of bubbles

in a multivariate setting. We also demonstrate that assessing the stationarity of threshold

models based on simulations might well lead to wrong conclusions, which highlights the

challenges when making inference in non-linear threshold models.

In the second chapter, I study the stock market liquidity and volatility relation over the

period of 2000 - 2015 in an empirical TVAR model with two regimes, which are defined

endogenously by the past level of stock market liquidity. I find supporting evidence that the

link between liquidity and volatility is non-linear and this result is robust for all the 4 stocks

in my sample. My results demonstrate that the relationship between market liquidity and
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volatility is stronger when market liquidity is low. I demonstrate that a shock to the market

liquidity and volatility can lead to vicious cycles when liquidity remains low forever, which

is related to the liquidity and volatility spirals described in the literature. The estimated

level of liquidity threshold could serve as informative indicator for market makers about

destabilizing liquidity conditions in the equity market. On the other hand, I find supporting

evidence that a single negative shock to volatility and liquidity is not enough to create the

explosive series when the model evolves between regimes.

In the third paper, I model the distribution of the Canadian swap rates during normal

times and during the Low Interest Rate (LIR) period. I examine the properties of the in-

terest rates around LIR periods and show that the whole distribution changes. To capture

this effect, I propose to use a mixture of t-scaled and Gaussian distributions with time-

varying weights. The estimated mixture of distributions model defines two different distri-

butions with the sharp transition between them at around 1.0% level of the short interest

rate. My model can generate the leptokurtic pattern of interest rates during normal interest

rate regime, as well as very low and possibly negative interest rates during LIR regime. I

show that the resulting methodology leads to more accurate empirical performance when

compared to the standard (one-regime) models used in the literature. The proposed mixture

of distribution model could improve on the models for interest rates and other risk factors,

like exchanges rates, used for derivative pricing and risk management in the LIR or low

volatility environment.

keywords: volatility, threshold models, interest rate, market liquidity, zero lower

bound
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1

Chapter 1

Stationary Threshold Vector

Autoregressive Models

1.1 Introduction

Correct theoretical and empirical modelling of financial time series remains challenging.

First of all, the usual linear framework often falls short of properly describing the data

which instead exhibit important non-linear features. Secondly, economic theory regularly

results in models with multiple equilibria and asymmetries which the time series model

should be able to accommodate. Finally, data is often interconnected and hence simple

univariate models generally fall short of appropriately describing the complex nature of the

data. The Global Financial Crisis of 2008 demonstrated this very clearly and reinforced

the need to use a multivariate non-linear framework in economic models, in general, and in

empirical finance, in particular.

Among the many possible candidate non-linear models, threshold models are particu-
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larly interesting and they have been extensively used in the existing empirical literature.

These models are straightforward generalizations of linear models. For example, the sim-

ple two regime Threshold Autoregressive (TAR) model specifies a different autoregressive

structure for each of the regimes and a threshold variable that determines which regime is

active. These models are therefore relatively simple to estimate, and since at time t the

regime state is known they are more suitable for forecasting than other non-linear mod-

els, in particular hidden Markov models. Finally, TAR models allow for reasonably simple

tests of the non-linear structure against linear alternatives and to test the number of regimes.

The multivariate generalization of the TAR model instead uses vector autoregressive (VAR)

structures in the regimes and is therefore naturally referred to as the TVAR model (Tsay,

1998, Hubrich and Tersvirta, 2013).

Empirical studies have used threshold models to explore the asymmetry of shocks and

non-linear relationship between variables in financial markets and data from the real and

monetary economy. For instance, TVAR models are widely used to study the asymmetric

effect of fiscal and monetary policies in different credit, interest and inflation rate regimes

(Fazzari et al., 2015, Balke, 2000, Shen and Chiang, 1999). For example, Balke (2000)

studies the propagation of shocks to output growth, Fed funds rate, inflation and measures

of credit conditions during “tight” and “normal” credit market conditions using a TVAR

framework with two regimes. The results suggest that shocks have a larger effect on output

in “tight” credit regimes and that contractionary monetary shocks are more effective than

expansionary ones. A similar approach is followed by Calza and Souza (2005) to study the

transmission of monetary shocks across two credit regimes in the EU area and by Li and

St-Amant (2010) to evaluate the effect of financial stress conditions on monetary policy

effectiveness in Canada.
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Another important application of threshold models has been to study the business cycle.

For example, Altissimo and Violante (2001) study the joint dynamics of US output and

unemployment using a bivariate TVAR model for recessions and expansions. Here the

lagged feedback variable, which measures the depth of the recession, defines the regime.

The resulting model is a VAR model with a fixed number of lags when the economy is in

expansion and a time varying lag order when the economy is in recession. The authors find

that nonlinearities are statistically significant only for unemployment, but it transmits to

output through cross-correlation. Further evidence on the usefulness of threshold models

for analysing the business cycle can be found in Koop and Potter (1999), Koop et al. (1996),

Peel and Speight (1998), and Potter (1995), amongst others.

Threshold models are also popular when it comes to exploring the asymmetric relation

between different varibales in financial markets. In particular, a common application of

TAR models includes determining the threshold effect in price movements related to trans-

action cost (Yadav et al., 1994). The threshold ARCH class of models has been applied

to study the non-linear effect in volatility processes (Rabemananjara and Zakoian, 1993).

Finally, multivariate threshold models have been extensively used in studying the dynamics

in stock prices, returns, volatilities, inflation and economic activity (Barnes, 1999, Griffin

et al., 2007, Huang et al., 2005, Li et al., 2015). For example, Griffin et al. (2007) study

the joint dynamics of stock market turnover, returns and volatility in 46 countries using a

TVAR model with two regimes which are separated by the sign of the past return. The

authors conclude that small negative return shocks, rather than large ones, are the drivers

for the decrease in turnover after a decreasing returns. Li et al. (2015) study the interac-

tion between the Shanghai and Shenzhen stock markets in a bivariate three regime TVAR

model where the threshold variable is the average difference of the log returns between the
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two markets. The results suggest that the strength of interaction between markets is regime

dependent. In particular, the Shanghai market leads most of the time, except in the third

regime, where both markets interact simultaneously. A detailed review of the application

of threshold models in empirical economics can be found in Hansen (2011).

One challenge with non-linear time series models in general and by extension also with

threshold models is to assess model stationarity. Establishing stationarity is important as

it is a fundamental assumption in most theoretical research. Indeed, the asymptotic prop-

erties of estimators in threshold models are generally established under a set of standard

regularity conditions, which include the existence of finite higher order moments and the

strict stationarity of the data generating process (Tsay, 1998). Moreover, existing infer-

ence approaches assume stationarity of the data generating process (Tsay, 1998, Hansen,

1996, 2000) and violation of this assumption might lead to spurious non-linearities (Calza

and Souza, 2005) and could invalidate the use of Hansen (1996) simulated p-values for

inference.

While significant progress has been made to establish conditions which ensure sta-

tionarity of the univariate threshold case (Chan and Tong, 1985, Brockwell et al., 1992,

Petruccelli and Woolford, 1984, Knight and Satchell, 2011, Chen et al., 2011) to the best

our knowledge very little is known about the multivariate extension. Please see Chen et al.

(2011) for an extensive review about recent findings regarding the stationarity of TAR mod-

els. If one was to use the general approach from this literature to establish the stationarity

of TVAR models it would require proving the convergence of an infinite sum of products

of random matrices. This is clearly difficult and likely explains the absence of theoretical

results for TVAR model.

In this paper we fill this gap in the existing literature and analyse the properties of the
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TVAR model in detail. To achieve this, we assume that the trigger variable is exogenous

and that the regime process follows a Bernoulli distribution. First, we derive necessary and

sufficient conditions for second order stationarity, which are not available in the existing

literature, when the variance-covariance matrices of the random vector and the error process

are assumed to have full rank. Next, we characterize the joint conditional distribution of the

data generating process when the error vector follows a multivariate normal distribution.

Finally, we derive the unconditional distribution for a special case of the TVAR model,

and we demonstrate that in this case, the distribution of the threshold model is an infinite

mixture of normals. This shows that TVAR models are very general and can accommodate

many of the stylized features of financial data.

As an application of our results, we consider the special case where the elements of

the random vector are positively correlated and we describe a model which is explosive in

one regime, but still allows for the existence of steady state distribution. A similar idea

was introduced in Knight et al. (2014) in the univariate case as a so-called “locally explo-

sive model”. In particular, they study the univariate threshold autoregressive model with

exogenous trigger and its application to bubble formation. We extend the notion of locally

explosive models to the bivariate TVAR model. The derived conditions for the existence

of the stationary distribution have simple economic intuition and are easy to interpret. In

particular, our results show that in the stationary model there is a trade-off between autore-

gressive dependence in the regime and the probability of the regime.

Next, we conduct an empirical analysis of the locally explosive models. In the absence

of explicit theoretical conditions which guarantee stationarity of the model, the previous

literature suggested to establish stationarity indirectly by demonstrating, using a simula-

tion study, that the estimated model does not contradict the stability assumption. To assess
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this procedure, we simulate the bivariate locally explosive TVAR model for different distri-

butions of the regimes. Our results show that a simulation study aimed at verifying stability

of a particular model might give inconclusive or even wrong results. Specifically, we show

that the simulation exercise may very well fail to reject stability of non-stationary TVAR

models when the probability of the explosive regime is low.

Finally, we empirically document that the locally explosive TVAR model can be asso-

ciated with bubble formation processes. In fact, our simulated locally explosive models

appear to possess explosive and unit root behaviour while overall remaining stationary.

These properties are implied by the definition of bubbles prevailing in the current literature

and formally described by Evans (1991) and Phillips and Yu (2011). Our results should

encourage further research into threshold models and their use to study the formation of

and existence of bubbles in financial data.

The structure of the paper is as follows: In Section 1.2 we derive the necessary and

sufficient conditions for second order stationarity and for the existence of a stationary dis-

tribution for the TVAR model. This section also derives closed form solutions for the

stationary distribution. In Section 1.3, we consider the so-called locally explosive models,

in which the TVAR model is explosive in one regime, while overall remaining stationary.

This section also presents some interesting special cases and reports the results from a sim-

ulation study. Finally, Section 1.4 concludes. Appendix A contains proofs and additional

figures.
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1.2 The Threshold Vector Autoregressive model

Throughout this paper we consider the threshold vector autoregressive model given by

Yt = Φ1I(Xt−1 ∈ R1)Yt−1 + Φ2I(Xt−1 ∈ R2)Yt−1 + εt, (1.1)

where Yt is a (n × 1) random vector, Φ1 and Φ2 are (n × n) parameter matrices, where n

is the number of time series, I() is the indicator function, Xt is a random variable, which

determines the regime, and εt is a sequence of independent multivariate random vectors,

such that E(εt) = 0 and Var(εt) = Σ, ∀t, where Σ is positive definite with full rank. We

assume that E(εt|Xs) = 0 for all s ≤ t and that the sequence (εt, Xt), t ≥ 1, is iid.

The regime process is defined as S t = I(Xt ∈ R2), ∀t, where Prob(Xt ∈ R2) = π and

Prob(Xt ∈ R1) = 1 − π, with R1 ∪ R2 = R and R1 ∩ R2 = ∅. From this it follows that S t is a

Bernoulli variable with S t = 0 with probability 1 − π and S t = 1 with probability π. Using

S t, (1.1) can be rewritten as Yt = (Φ1 + S t−1Φ
0)Yt−1 + εt, where Φ0 = Φ2 −Φ1. If we further

denote by Bt = S tΦ
0 − πΦ0, where E(Bt) = 0, ∀t, the model in (1.1) can be rewritten as a

Random Coefficient Model (RCM) (see Nicholls and Quinn (1982)) given by

Yt = (Φ + Bt−1)Yt−1 + εt, (1.2)

where Φ = Φ1 + πΦ0 = (1 − π)Φ1 + πΦ2.

In the following sections we examine in detail the TVAR model specified above. First

we provide the necessary and sufficient conditions under which the TVAR model is second

order stationary. We also derive expressions for the moments and the stationary solution to

the model given in (1.1). Secondly, we derive the distribution associated with this data gen-
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erating process. For simplicity, we assume only two regimes in Equation (1.1). However,

the theoretical results obtained here can easily be generalized to multiple regimes.

1.2.1 Stationarity of the TVAR model

Theorem 1.1 provides conditions under which the TVAR model above is second order

stationary, i.e. that E(Yt) is constant and Cov(Yt,Yt+h) depends only on the lag length h.

Theorem 1.1 The process Yt, t = 0, 1, 2, ... defined in (1.1) is second order stationary with

positive definite covariance matrix V = Var(Y0) if and only if:

1. µ = 0, where µ is a mean of the initial vector, µ = E(Y0),

2. the covariance matrix, V, solves V − ΦVΦ′ − E(Bt−1VB′t−1) = Σ, and

3. | λ |< 1, where λ is the maximum eigenvalue of the matrix (1−π)Φ1⊗Φ1 +πΦ2⊗Φ2.

Proof. See Appendix A.

Condition 2 of Theorem 1.1 provides an expression for calculating the covariance ma-

trix of the second order stationary process Yt. Notice that after vectorization of this expres-

sion we can obtain a closed form formula for this. Remark 1 provides this formula.

Remark 1 From vectorization of the expression V−ΦVΦ′−E(Bt−1VB′t−1) = A the equation

for the variance of Yt can be obtained from

vecV = (I − Φ′ ⊗ Φ′ − π(1 − π)Φ0 ⊗ Φ0)−1vecΣ. (1.3)

We note that our sufficient conditions for the existence of moments are special cases

of the conditions for the stationarity of RCMs derived by Nicholls and Quinn (1981) and
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Feigin and Tweedie (1985). Theorem 1.1, however, generalizes these results and provides

necessary conditions, which have been missing in the literature, for the stationarity of the

TVAR model in (1.1).

Theorem 1.2 provides an expression for the stationary solution to the model in (1.1) and

the corresponding conditions for the existence of this solution. Theorem 1.2 also shows that

this solution is unique and strictly stationary.

Theorem 1.2 Assume that V is positive definite with full rank. Then the TVAR model in

(1.1) has a unique stationary solution given by

Yt = εt +

∞∑
n=1

 n∏
k=1

Φ + Bt−k

 εt−n, (1.4)

if and only if | λ |< 1, where λ is the maximum eigenvalue of the matrix (1 − π)Φ1 ⊗ Φ1 +

πΦ2 ⊗ Φ2.

Proof. See Appendix A.

In Remark 2 we provide the restriction on the eigenvalues of the matrix Φ, which is

necessary for the stationary model (1.1) and follows from Theorem 1.1 and 1.2. This con-

dition is more tractable, and it is used in Section 3 to simplify the analysis of the stationary

TVAR model with one explosive regime.

Remark 2 Let the process Yt, t = 0, 1, 2, ... defined in (1.1) be stationary with positive

definite covariance matrix V. Then the maximum eigenvalue of the matrix Φ is less than 1.

Proof. See Appendix A.

The results of Theorem 1.1 and 1.2 can be extended to TVAR models with more than

one lag. Corollary 3 presents the conditions for the stationarity of the TVAR model, which

contains more than one lag.
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Corollary 3 Consider the following two-regime TVAR model with p lags in each regime

Yt = I(Xt−1 ∈ R1)
p∑

j=1

Φ1 jYt− j + I(Xt−1 ∈ R2)
p∑

j=1

Φ2 jYt− j + εt, (1.5)

where the properties of Xt and εt are those following Equation (1.1). This model has a

unique stationary solution given by

Zt = ηt +

∞∑
n=1

 n∏
k=1

A + Dt−k

 ηt−n, (1.6)

if | λ |< 1, where λ is the maximum eigenvalue of the matrix (1− π)A1 ⊗ A1 + πA2 ⊗ A2, and

only if | λ1 |< 1, where λ1 is the maximum eigenvalue of the matrix A = (1 − π)A1 + πA2,

where Ai, i = 1, 2, is defined as Ai =



Φi1 Φi2 Φi3 ... Φi(p−1) Φip

In 0 0 ... 0 0

0 In 0 ... 0 0

0 0 In ... 0 0

... ... ... ... ... ...

0 0 0 ... In 0



.

Zt and ηt are np × 1 vectors given by Z′t = [Y ′t ,Y
′
t−1,Y

′
t−2, ...Y

′
t−(p−1)] and ηt = [ε′t , 0, 0, .., 0],

respectively, and Dt = (S t − π)A2 + (π − S t)A1.

Proof. See Appendix A.

The distinctive feature of the TVAR model is that it is a linear Vector Autoregresive

Model (VAR) in each of the regimes and an interesting question therefore is how the sta-
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bility of each regime contributes to the stationarity of the whole TVAR model. Knight and

Satchell (2011) investigate this question in detail for the univariate TAR model and Niglio

et al. (2012) provide evidence that, when the univariate TAR model is stationary in both

regimes, the whole TAR model cannot explode. The most interesting situation however

occurs when the model in (1.1) is explosive in one of the regimes.

The results of Theorem 1.1 and 1.2 can be used to analyse this particular situation, one

in which the TVAR model in (1.1) is explosive in one of the regimes. For example, the

following example shows that the TVAR model can still be stationary in that case provided

the probability to be in the explosive regime is not too large. See also Section 3 for further

analysis.

Example. Consider the model in (1.1), where Φ1 =

0.70 0.21

0.31 0.80

, Φ2 =

0.20 0.32

0.10 0.25


and π = Prob(Xt ∈ R2) = 0.3. Since one of the eigenvalues of Φ1 is equal to 1.01, the

model is not stationary in regime one. On the other hand (1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2 =

0.36 0.12 0.12 0.0

0.16 0.41 0.06 0.14

0.16 0.06 0.41 0.14

0.07 0.18 0.18 0.47


, and its maximum eigenvalue λ = 0.78. Thus, overall the model

is stationary.

1.2.2 The stationary distribution

In this section we describe the stationary distribution associated with the model in (1.1).

Throughout, we assume that εt ∼ N(0,Σ) are independent random vectors. Let Yt be defined
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by (1.4) and let S n(t) =
∏n

k=1(Φ + Bt−k), n ≥ 1, with S 0(t) = 1. It follows that

Yt = εt +

∞∑
n=1

S n(t)εt−n. (1.7)

From this we have that

Yt|S n(t) ∼ N(0,Σ +

∞∑
n=1

S n(t)ΣS ′n(t)), (1.8)

and from the definition of S n(t) we notice that the stationary distribution of Yt is a compli-

cated mixture of Normal distribution. Since, it is difficult to establish the distribution of Yt

in general, we will derive it under the assumption that Φ1 = 0.

From (1.8) we see that the characteristic function of Yt conditioned on S n(t) is given by

φ(t,Yt|S n(t)) = exp

−1
2

tΣt′ −
1
2

t
∞∑

n=1

S n(t)ΣS ′n(t)t′
 . (1.9)

Notice that when Φ1 = 0 and Φ2 = Ψ then Bt = (S t − π)Ψ and Φ = πΨ, and hence

S n(t) =
∏n

k=1 S t−kΨ. Note also that
∏n

k=1 S t−kΨΣ
∏n

k=1 S t−kΨ =
∏n

k=1 S t−kΨΣ
∏n

k=1 Ψ′. The

conditional characteristic function (1.9) therefore becomes

φ(t,Yt|S n(t)) = exp

−1
2

tΣt′ −
1
2

t
∞∑

n=1

n∏
k=1

S t−kΦ
2Σ

n∏
k=1

Φ2′t′
 . (1.10)

Given the conditional characteristic function and the distribution of S n(t) we can obtain

the unconditional characteristic function and the marginal stationary distribution of Yt. The

results are presented in Theorem 1.3.

Theorem 1.3 The stationary distribution of the TVAR process with Φ1 = 0 and Φ2 = Ψ
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has the following characteristic function

φ(t,Yt) = (1 − π)
∞∑

K=0

πKexp

−1
2

t
K∑

n=0

ΨnΣΨ′nt

 . (1.11)

Moreover, the probability distribution function is given by

f (Yt) = (1 − π)
∞∑

K=0

πKN

0, K∑
n=0

ΨnΣΨ′n

 , (1.12)

where N(A, B) is the multivariate normal distribution function with mean A and covariance

matrix B.

Proof. See Appendix A.

Theorem 1.3 is a generalization of a result for the univariate threshold autoregressive

process developed in Knight and Satchell (2011) and shows that when Φ1 = 0 the distri-

bution function of Yt given in (1.12) is an infinite mixture of multivariate Normals. This

type of distribution can generate excess kurtosis. Such distributional characteristics are

interesting when it comes to analysing financial markets and economic problems, since it

can support the special features of this type of data. For instance, the distributions of equity

returns and typical measures of realized volatility are characterized by large kurtosis. Thus,

the theorem shows that TVAR models can be used to study these processes.
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1.3 Locally explosive TVAR models

Threshold autoregressive models where one regime is non-stationary are related to the so-

called locally explosive models.1 Knight et al. (2014) defines the locally explosive model

as a model in which some regimes may be explosive, but the whole model has a stationary

distribution. They study univariate threshold models and apply the idea of locally explosive

models to investigate the formation of bubbles. In this section, we generalize the notion

of locally explosive models to the bivariate setting. In order to do so, we need to link the

stationarity of the whole model in (1.1) provided in Theorem 1.1 and 1.2 to the stability of

the model in each particular regime.

The derived conditions for the existence of a stationary solution are simple conditions

on the matrix (1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2, and it is not possible to relate the eigenvalues

of this matrix to the eigenvalues of the parameter matrices Φ1 and Φ2 without adding extra

structure. In the following section we therefore consider a bivariate TVAR model, where

the parameter matrices Φ1 and Φ2 have either positive entries only or are upper triangular.

We first obtain the conditions on the parameter matrices under which the locally explo-

sive TVAR model remains stationary. We next provide a simulation study to examine the

characteristics of this model and show that graphically it is very difficult to assess model

stationarity using simulated data.

1Notice that the locally explosive models considered in this paper are models, which are state explosive.
When Xt = t instead the TVAR model is related to the models derived in Phillips and Yu (2009) and Phillips
et al. (2011) where the explosive behaviour is defined in the time series context.
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1.3.1 Special cases of the TVAR model

We consider the special case where Yt in (1.1) is bivariate and the parameter matrices have

positive entries. We introduce the following additional notation for Φ1 =

φ
1
11 φ1

12

φ1
21 φ1

22

 and

Φ2 =

φ
2
11 φ2

12

φ2
21 φ2

22

 . The following corollary to Theorem 1.1 and 1.2 provides conditions in

terms of the individual φ’s above under which the TVAR model is second order station-

ary. These conditions do not rule out the possibility of an explosive regime, and if we

assume that one regime is explosive, we derive the conditions on the coefficient matrix of

the stationary regime.

Corollary 4 Let the matrices Φ1 and Φ2 have positive entries. If (1 − π)(φ1
j1 + φ1

j2)2 +

π(φ2
i1 + φ2

i2)2 < 1, ∀i, j = 1, 2, then the model in (1.1) is stationary. Moreover, if the model

in (1.1) is explosive in one of the regimes x ∈ {1, 2}, then (φ−x
i1 + φ−x

i2 ) < 1, ∀i = 1, 2, where

−x ∈ {1, 2} \ {x}.

Proof. See Appendix A.

Corollary 4 shows that if the model in (1.1) is explosive in one regime, the persistence of

the variables in this regime is restricted by the probability of the regime and the persistence

of the variables in the other regime.2 In other words, Corollary 4 states that there is a trade-

off between how persistent a given regime can be and the probability of this particular

regime. In addition, when the conditions of Corollary 4 hold and one of the regimes is

explosive, the sum of the coefficients of the other regime’s matrix is naturally bounded by

one.
2The persistence of the variables is defined as the column sum of the coefficients of Φ1 and Φ2.
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Corollary 4 provide sufficient conditions for stationarity of the model, even when the

underlying relationship is explosive in one of the regimes. We believe that the above finding

might be useful for a number of financial and macroeconomic models. In fact, the assump-

tion of positive entries only in Φ1 and Φ2 is not very restrictive for economic research

and there are a variety of well documented cases with positive relationships between vari-

ables and their lags. For example, it is shown to be the case for asset returns and asset

market illiquidity, consumption and GDP, volatility and trading volume and inflation and

stock volatility, among many other pairs (Amihud and Mendelson, 1986, Engle and Rangel,

2005, Jagannathan et al., 2000, Wang and Yau, 2000).

When we add slightly more structure and assume that Φ1 and Φ2 are triangular matrices

with nonnegative diagonal entries, we can derive the necessary conditions directly in terms

of the eigenvalues of Φ1 and Φ2. Corollary 5 summarizes these findings.

Corollary 5 Let the process Yt, t = 0, 1, 2, ... defined in (1.1) be stationary. Then the

following conditions hold

1. λ2
1λ

2
2 ≤

1
π
,

2. λ1
1λ

1
2 ≤

1
(1−π) ,

3. λ1
1λ

2
2 ≤

√
1

(1−π)π , and

4. λ2
1λ

1
2 ≤

√
1

(1−π)π ,

where λi
1 and λi

2 are the eigenvalues of the matrix Φi, i = 1, 2.

Proof. See Appendix A.

Since the eigenvalues of a triangular matrix is its diagonal entries, Corollary 5 could

equivalently be stated as follows.
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Corollary 6 Let the process Yt, t = 0, 1, 2, ... defined in (1.1) be stationary. Then the

following conditions hold

1. φ2
11φ

2
22 ≤

1
π
,

2. φ1
11φ

1
22 ≤

1
(1−π) ,

3. φ1
11φ

2
22 ≤

√
1

(1−π)π , and

4. φ2
11φ

1
22 ≤

√
1

(1−π)π .

Corollary 5 and 6 illustrate explicitly that there is a trade-off between how persistent

a regime in the TVAR model can be and the probability of that regime while ensuring the

overall stationarity of the process. Again, it is noteworthy that the stationarity of the TVAR

model does not rule out the possibility of an explosive regime, but it restricts the value of

the own autoregressive coefficients.

1.3.2 Simulation

Second order stationarity implies that means, variances and covariances are time-invariant

and finite. If stationarity is not satisfied, however, it could be that shocks to the data gen-

erating process could lead to a time series that have unbounded moments. Previously, and

in the absence of explicit stationarity conditions such as the ones derived in our paper, the

literature instead suggested to verify that the estimated model does not contradict stability

assumptions by use of simulation studies (Hubrich and Tersvirta, 2013, Franses and Dijk,

2000). Specifically, the literature proposed to switch off the noise and simulate the esti-

mated model for different histories. If the generated series converge to the same point,
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the natural conclusion would be that the simulated model is stationary. In contrast, find-

ing at least one starting point that leads to an explosive time series would be sufficient to

invalidate the stationarity assumption.

In this section we follow the above procedure and perform a graphical analysis to “test”

the stationarity of the TVAR model as suggested in the existing literature for different lo-

cally explosive TVAR models. Our result show that this rough-and-ready approach does

not allow us to draw the correct conclusion and the outcome of it is affected by the distribu-

tion of the explosive regime and the persistence of this regime. To be specific, we simulate

the bivariate TVAR model in (1.1) with different parameter values. We generate time se-

ries from the model of length equal to n = 250, which is equivalent to one year of daily

observations. The number of simulations is equal to m = 200. The initial values of the

time series, Y0, are equally distributed over the interval [−0.15, 0.24] for the first series and

equally distributed over the interval over [−0.17, 0.23] for the second series. In Appendix

A, we report additional results when n = 2000 to check the robustness of our result.

The parameter values used in the simulation study are shown in Table 1.1. As the

table shows, regime 2 is by construction always explosive and we vary the value of π, the

probability of this regime, such that the overall TVAR model can be stationary or non-

stationary. This is indicated by the maximum eigenvalue of the matrix (1 − π)Φ1 ⊗ Φ1 +

πΦ2 ⊗ Φ2, which is reported in column six labelled λmax. In particular, we define 3 groups

of models, such that models within each group have the same coefficient matrices, but the

probability to be in the explosive regime 2, π, varies.

Models 1-6 are stronger related to lags in the explosive regime 2 than in regime 1. We

contrast our models such that the persistence of the models in the second regime is stronger

in group 2 than group 1. When the second regime is mildly explosive, like the models
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Table 1.1: Parameter values used in simulating the bivariate TVAR model

Group Model Regime 1, Regime 2, Probability of λmax

Φ1 Φ2 regime 2, π
1 0.2 0.3 0.3 0.8 0.3 0.72

0.3 0.4 0.5 0.8
1 2 0.2 0.3 0.3 0.8 0.5 0.95

0.3 0.4 0.5 0.8
3 0.2 0.3 0.3 0.8 0.7 1.18

0.3 0.4 0.5 0.8
4 0.2 0.3 1.1 1.2 0.1 0.84

0.3 0.4 1.2 1.05
2 5 0.2 0.3 1.1 1.2 0.3 1.8

0.3 0.4 1.2 1.05
6 0.2 0.3 1.1 1.2 0.5 2.8

0.3 0.4 1.2 1.05
7 0.9 0.05 0.3 0.8 0.1 0.95

0.7 0.3 0.2 0.8
3 8 0.9 0.05 0.3 0.8 0.3 0.99

0.7 0.3 0.2 0.8
9 0.9 0.05 0.3 0.8 0.5 1.03

0.7 0.3 0.2 0.8
Notes: This table shows the parameter values used in the simulated TVAR models. The distribu-
tion of the regimes is Bernoulli with probability to be in regime 2 equal to π. Notice that regime 2
is not stable in any of the models. In the right hand column we report the maximum eigenvalue of
the matrix (1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2, λmax.

from group 1, this regime has to occur very frequently, in order to make the whole TVAR

model non-stationary. In contrast, model 6 is unstable even when the probability to be in

the explosive regime is as low as 0.3. Thus, when one regime is not stable, the distribution

of the regimes is crucial for the stationarity of the whole TVAR model.

Figure 1.1 shows the simulated paths from models 1-3. When π is fairly low (Panel a)

the time series appear stationary. When π gets higher and λ is closer to 1, the simulated
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model looks like a unit root (Panel b). While model 1 and 2 generate spikes, the simulated

series return to the initial level all the time, a characteristic of stationary processes. When

π = 0.7 (Panel c), the series is no longer stable and this is also evident from the figure. This

conclusion is also valid when n = 2000 (see Figure A.1 in Appendix A).

Figure 1.2 shows the simulated paths from models 4-6. These models are very persistent

in regime 2 and they can generate huge spikes even when the probability of this regime is

low (Panel a and b). Both models 4 and 5 look like unit root models, which explode,

though they return to the initial level afterwards. Thus, the simulation exercise cannot reject

stability of model 5, even though it is non-stationary by construction. The simulation study

though does reject stability of model 6, when the probability to be in the explosive regime

increases to 50% (Panel c). Thus, the results of the simulation might be misleading about

non-stationary TVAR model with low probability of the explosive regime.3 The result of

the simulation of models 4-6 prevails when n = 2000 (see Figure A.2 in Appendix A).

Models 7-9 describe a type of relationship, where a particular time series is stronger

related with its own lag in regime 1 and with the other time series in regime 2. These

models are quite persistent in regime 1, but still remain stationary in this regime. Figure

1.3 shows the simulated paths from these models. The explosive performance of model 9

is evident from Panel c. The conclusion however is not clear about model 8. This model

is quite persistent in both regimes, thus it can generate growing series, like those shown in

Panel b, and simulation of model 8 may in fact lead to rejecting the stability of a stationary

model. However, we cannot reject stability of the model when n = 2000 (Figure A.3 in

Appendix A, Panel b). In fact, when the length of the simulated time series is increased

to n = 2000 the series from model 8 grows first but then returns to the initial level later

3It is of course impossible to check all starting points in a simulation study and we might not be lucky
enough to have a starting point that allows rejecting stability of the model.
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Figure 1.1: Simulated paths from models 1-3
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(a) Model 1, π = 0.3
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(b) Model 2, π = 0.5
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(c) Model 3, π = 0.7

Notes: This figure shows the simulated paths from models 1-3 for different set of histories over a n = 250
period using m = 200 simulated paths. The parameters are those from Table 1.1 and the probability to be in
the explosive regime 2 is equal to π.
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Figure 1.2: Simulated paths from models 4-6
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(a) Model 4, π = 0.1
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(b) Model 5, π = 0.3
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(c) Model 6, π = 0.5

Notes: This figure shows the simulated paths from models 4-6 for different set of histories over a n = 250
period using m = 200 simulated paths. The parameters are those from Table 1.1 and the probability to be in
the explosive regime 2 is equal to π.
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on. Thus, the results from simulating model 8 show that the conclusion from this type of

simulation study may also be sensitive to the sample size used in the simulation.

Figure 1.2 shows the simulated paths from models 4-6. These models are very persistent

in regime 2 and they can generate huge spikes even when the probability of this regime is

low (Panel a and b). Both models 4 and 5 look like unit root models, which explode,

though they return to the initial level afterwards. Thus, the simulation exercise cannot

reject stability of model 5, even though it is non-stationary by construction. The simulation

study though does reject stability of model 6, when the probability to be in the explosive

regime increases to 50% (Panel c). Thus, the results of the simulation might be misleading

about non-stationary TVAR model with low probability of the explosive regime. The result

of the simulation of models 4-6 prevails when n = 2000 (see Figure A.2 in Appendix A).

Figure 1.4 shows the simulated Y1t from TVAR models 4 and 5 specified in the Table

(1.1). We end this section by noting that the simulated series of Yt could be associated

with data generating processes of financial or economic bubbles. Evans (1991) defines

periodically collapsing explosive processes of bubbles such that the explosive behaviour of

this process prevails through the whole sample, with non zero probability to collapse when

it faces some threshold level. Phillips and Yu (2011) suggest a locally explosive process of

bubbles, where asset prices transit from a unit root regime to an explosive regime and claim

that this approach is consistent with other propagation mechanisms in financial markets like

rational bubbles, exuberant responses to economic fundamentals and herd behaviour. Our

simulation exercise shows that a simple bivariate locally explosive yet globally stationary

TVAR model can generate unit root or explosive behaviour, which is consistent with these

existing definitions of bubbles.4

4An open question in the literature relates to how one can test for bubbles. In a recent paper, Ahmed and
Satchell (2016) examine the performance of the Generalized Sup Augmented Dickey Fuller test proposed by
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Figure 1.3: Simulated paths from models 7-9
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(a) Model 7, π = 0.1
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(b) Model 8, π = 0.3
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(c) Model 9, π = 0.5

Notes: This figure shows the simulated paths from models 7-9 for different set of histories over a n = 250
period using m = 200 simulated paths. The parameters are those from Table 1.1 and the probability to be in
the explosive regime 2 is equal to π.

Phillips et al. (2013) for the detection of explosive roots in univariate TAR models. They show that the power
of the test drops considerably even though locally explosive regimes continue to be present when the process
has a stationary distribution. We conjecture that this conclusion generalizes to the multivariate setting used
in our paper.
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Figure 1.4: Simulated Y1t
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Notes: This figure shows the simulated Y1t of model in (1.1) with parameters from models 4 and 5 for over
n = 250 period, where εt ∈ N{0, 1} The parameters are those from Table 1.1 and the probability to be in the
explosive regime 2 is equal to π.

1.4 Conclusion

This paper derives the necessary and sufficient conditions for the existence of a stationary

distribution of the TVAR model with two regimes, when the regime process follows a

Bernoulli distribution. These results are to the best of our knowledge unavailable in the

existing literature. We further derive a closed form solution for the stationary distribution

in the special case when there is no autoregressive structure in one of the regimes.

When the variables of interest are positively related we describe a bivariate TVAR

model, which is explosive in one regime, but allows for a stationary distribution along

with finite moments. These results are related to so-called locally explosive models and

our results extend the notion of locally explosive univariate processes to the bivariate case.

We show that such models may remain stationary and to ensure this there is a trade-off
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between the persistence in a given regime and the probability of this regime.

In an empirical application we simulate from various bivariate TVAR models, which

are explosive in one of the regimes. We show how these models can capture the unit root

and explosive behaviour, usually implied by the literature on bubble formation. We also

demonstrate that a simulation study may fail to reject the stability of non-stationary TVAR

models, when the probability of the explosive regime is low.
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Chapter 2

Stock Market Liquidity and Volatility:

A Non-Linear Approach

2.1 Introduction

Market liquidity is related to the ability to sell and buy a large quantity of an asset without

affecting its price. In illiquid market the asking price tends to be above its fundamental

value, while the bidding price tends to fall below. The resulting transaction cost increases,

making market less liquid. In extreme situation, liquidity can dry up, eliminating investor’s

opportunity to enter or exist current positions. It may cause a significant fall in asset prices,

amplified by possible fire sales and leverage effect to meet margin calls (Brunnermeier,

2009). Thus, liquidity is crucial for the trading process and stability of the financial system

(Pedersen, 2009).

Liquidity changes over time. The recent financial crisis reinforced the importance of

market liquidity, since it was characterized by low liquidity for most financial assets and
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a stronger link between liquidity and other financial fundamentals (Acharya et al., 2013,

Rosch and Kaserer, 2014). The goal of this paper is to explore the potential non-linearities

between stock market liquidity and volatility in the time series dimension. In particular, I

ask the following questions: Are market liquidity and volatility non-linearly related? How

do shocks to liquidity or volatility affect subsequent stock market liquidity and volatility?

What is considered to be a sustainable level of market liquidity? And what constitutes

a critically low liquidity level? In this paper I build a model of stock market liquidity

and volatility, such that the relationship between these variables varies and depends on the

specific level of past liquidity, which I determine endogenously within the model. There are

several stylized facts and recent empirical findings that motivate me to follow the described

methodology.

Liquidity and volatility are related. Both of these variables share similar time series

properties, like time variation, long memory, clustering and countercyclical behaviour.

Chen et al. (2016) demonstrate high correlation between various aggregate liquidity mea-

sures and volatility of assets traded on NYSE. When volatility goes high, the probability

of mispricing of asset is higher, thus bid-ask spread becomes wider. As a result the cost

of trading increases, and market liquidity declines. A number of theoretical models link

trading more volatile assets to higher inventory risks, which decrease asset liquidity (Brun-

nermeier and Pedersen, 2009, Grossman and Miller, 1988, Stoll, 1978). Comerton-Forde

et al. (2010) empirically document this prediction, and also show that the impact of in-

ventory on market liquidity is larger when trading results are poor. Thus, the liquidity

differential between assets of low and high volatility increases, known as ”flight to quality”

phenomenon when highly volatile assets become especially illiquid. Other empirical find-

ings suggest that market liquidity declines when fundamental volatility increases (Benston
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and Hagerman, 1974, Amihud and Mendelson, 1989).

Liquidity affects volatility through a variety of channels. Since liqudity varies over

time, investors, who face uncertainty about future transactions costs may require higher

compensation for possible liquidity risk. Amihud and Mendelson (1986) demonstrate how

the expected return is related to the transaction cost. Acharya and Pedersen (2005) present

the liquidity adjusted CAPM model, where liquidity risk is priced in the cross section of

stock returns. Other studies numerically establish that illiquid assets have higher expected

returns (Chordia et al., 2009, Amihud, 2002, Hasbrouck, 2002). Thus, changes in liquidity

may impact investor’s expectations and contribute to price fluctuations and asset volatility.

Finally, when there are many buyers and sellers who want and can trade easily, then price

movements will be smoother since any shock will be incorporated into the price quickly

based on market consensus about their significance. Otherwise, when it is harder to trade,

in other words market liquidity is low, shocks might generate additional price movements

and increase volatility.

The interation between volatility and market liquidity is described in the theoretical

model of Brunnermeier and Pedersen (2009). This model links market liquidity and volatil-

ity to margin requirements and availability of capital to support trade. The main result of

the paper predicts that there could be two equilibria in market liquidity, volatility and cap-

ital requirements relationship. When financiers believe that price movements are due to

fundamental shocks, then negative liquidity shock increases price volatility, which rises

the expectation about future volatility, then capital requirements increase, which again de-

crease the possibility to complete the trade, in other words worsen market liquidity and

so on. The subsequent liquidity spirals arise, volatility and capital requirements increases.

Otherwise, when financiers belive that price movements are due to temporary shocks, the
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above described feedback effect might not exist. Finally, the authors claim that the link be-

tween capital constraints and market liquidity is stronger during financial downturn, when

availability of capital is already low. I test the predictions of the Brunnermeier and Ped-

ersen (2009) model by considering a two regime model of market liquidity and volatility.

However, I do not propose a pure test of the theoretical predictions of Brunnermeier (2009)

in this paper, which would require capital requirements data.

The non-linearity of liquidity shocks is empirically documented in the literature, which

usually aims to explain the time variation of liquidity and generally relates it to the state

of the financial market. Acharya and Pedersen (2005) note a greater impact of market

liquidity shocks on asset prices fluctuations in times of financial distress, which is usually

associated with high volatility and illiquidity. Billio et al. (2012) study hedge fund risks

using a Markov regime switching model. Their fundings suggest that liquidity shocks are

highly episodic and are associated with large and negative return fluctuations. Acharya

et al. (2013) study the link between liquidity risk and corporate bond returns using Markov

regime switching model. They suggest that the effect of liquidity risk on the corporate

bond prices is regime dependent, and is much more vivid during adverse macroeconomic

and financial market conditions. Acharya et al. (2013) find the regime dependent liquidity

impact on stocks, where the same factors which define regimes in the bond market, are

relevant for stock market as well. Degiannakis et al. (2013) also suggest to explore the effect

of return dispersion on the dynamics of market liquidity in the state dependent framework.

My paper adds to the literature that explores the non-linearity of market liquidity within

regime-switching framework. First I model the joint dynamic of market liquidity and

volatility. Second, in contrary to Acharya et al. (2013) and Billio et al. (2012) where

regimes are defined in the statistical setting, I identify regimes according to threshold level
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of the past market liquidity, which allows me to shed light on the critically ”bad” level of

liquidity.

Engle et al. (2012) study the potential non-linearity in the joint dynamics of volatility

and liquidity of the US Treasury bonds using the multiplicative error model. The authors

consider different periods related to the recent financial crisis, specifically focusing on the

the dates of important economic announcement and flight to safety episodes. They find

that liquidity negatively influences volatility, but the inverse effect varies, depending on

the considered price tier. Specifically, the authors find a negative relationship between

volatility and liquidity of bonds, which goes in both directions for the first price tier, and

intensifies during financial crisis. The authors relate the feedback effect between volatility

and liquidity to observed liquidity spirals and high volatility in the crash periods.

My goal in this paper is to explore the dynamics of market liquidity and volatility of

stocks during, similarly to Engle et al. (2012), the recent financial crises as well. I consider

a longer time period, which includes several episodes of financial downturns, and use a level

of past liquidity, estimated in the model, as an indicator to distinguish between favourable

and bad market conditions.

I estimate the link between market liquidity and volatility in a two regime Threshold

Vector Autoregresive Model (TVAR), formally described by Tsay (1998). I assume that

a regime is defined by past unknown level of market liquidity, which I call a trigger or

threshold variable. I consider two regimes of volatility and liquidity, which is suggested by

the previous literature and is naturally translated into good and bad regime. I estimate the

TVAR model for Bank of America (BAC), Kimko Realty Corporation(KIM), Dow Chemi-

cal Corporation (DOW), and Ford Motor Company(F) stocks traded on NYSE, AMEX and

NASDAQ for the period from January of 2000 to November of 2015. Such long time span
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allows me to capture the time-variation of liquidity and volatility with a special focus on

the recent financial crisis. I consider stocks which come from different industries in order

to verify whether my findings are robust to stock specific characteristics.

My results confirm the non-linear link between volatility and market liquidity. I find

that a TVAR model of market liquidity and volatility is strongly statistically preferred over

the linear alternative based on Hansen (1996) and Hansen (1997) inference procedures and

this result is robust across all the stocks in my sample. I estimate the unknown threshold

level of market liquidity, which separates two regimes of liquidity and volatility along

with its confidence interval. My model identifies the ”bad” or low liquidity regime, which

coincides with major financial market declines like the 9/11 attack, WorldCom bankruptcy

in September 2002, 2007-2009 financial crisis and Eurozone downturn with a peak in Greek

government-debt crisis in May, 2011. My results suggest that the link between stock market

liquidity and volatility is stronger and generally more persistent during ”bad” liquidity

regimes. The impact of liquidity on future volatility and liquidity is substantially bigger in

low liquidity regime. I find that volatility shocks are stock specific in low liquidity regime.

However, when volatility affects stock market liquidity in both regimes, it has a bigger

impact when liquidity is low. I estimate the responce to shocks over time when the model

stay in a particular regime forever. I find that illiquidity and volatility shocks generate

exploding volatility and illiquidity in low liquidity regime for all stocks but DOW. These

findings might be related to episodes of evaporating liquidty observed in the data and the

’liquidity spiral” described in Brunnermeier and Pedersen (2009).

I estimate non-linear IRF of liquidity and volatility shocks, which happens in a specific

regime, when the model can move between regimes, which may lead to size and sign

sensitivity of shocks. My findings suggest that a positive shock to illiquidity or volatility
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increases future illiquidity and volatility. I show that the volatility and illiquidity response

to illiquidity shocks is greater, when a shock happens in low liquidity regime. My results

demonstrate the sign and size asymmetry of liquidity shocks, such that a large drop in

liquidity contribute more to the change in the volatility and liquidity, than the improvement

in liquidity to the same extend. Large liquidity drops may signify major adverse events

to market players, who usually dislike these and as a result may have a larger impact on

price movements. Finally, my analysis shows that even though the explosive reaction of

volatility and liquidity to shocks does exist when market liquidity is low, a single shock in

the bad regime is not enough to generate liquidity spirals.

In summary, my threshold model of market liquidity and volatility adds to the large

body of recent literature that stress the non-linearity of market liquidity in relation to other

assets characteristics (Brunnermeier and Pedersen, 2009, Acharya et al., 2013, Acharya

and Pedersen, 2005, Billio et al., 2012, Engle et al., 2012, Christoffersen et al., 2014). The

results in my paper are consistent with some of the theoretical predictions or related to

other empirical findings:

1. There are different regimes in illiquidity and volatility relationship; The link between

these variables is stronger during scarce financial conditions.

2. Liquidity and volatility may reinforce each other when liquidity is low, leading to

liquidity spirals and flight to quality/liquidity.

3. The impact of volatility on market liquidity varies within the same class of assets.

4. Liquidity shocks are asymmetric.

I believe that the proposed methodology gives useful insights into the necessary features

of future models of asset pricing.
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The rest of the paper is organized as following. In section 2.2 I specify TVAR model and

the estimation approach. Section 2.3 describes data construction and provides preliminary

data analyses. Estimation results are presented in Section 2.4. Section 2.5 concludes.

Additional figures, description of estimation procedure and the results are presented in the

Appendix B.

2.2 Empirical Model

I model the volatility and market liquidity using a TVAR, a multivariate extension of

Threshold Autoregressive Model (TAR), which is described in Tsay (1998) and Hubrich

and Tersvirta (2013). For example, the simple two regime TVAR model specifies a differ-

ent autoregressive structure for each of the regimes, and there is a threshold variable that

determines which regime is active. The TVAR specification has several advantages. First,

it allows capturing the joint dynamics between volatility and market liquidity. Second,

it characterizes in relatively simple way potential non-linearities such as regime switch-

ing, asymmetric reaction to shocks and existence of multiple equilibria implied either by

the theoretical model or empirical observations. Third, it is relatively simple to estimate,

and, since at time t the regime state is known, it is relatively easy to use for forecasting,

in comparison for instance to other non-linear models, in particular hidden Markov mod-

els. Lastly, the trigger variable that governs regimes can itself be an endogenous variable

included into the TVAR framework, as it is in this paper, which allows to generate the

distribution of the regimes after the shock happened.
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I consider the following TVAR model given by:

Yt = (A1 + Φ1,p1Y p1
t−1)I(Xt−d ≤ γ) + (A2 + Φ2,p2Y p2

t−1)I(Xt−d > γ) + εt, (2.1)

where Yt is a (2 × 1) vector of liquidity and volatility, A1 and A2 are (2 × 1) constant

coefficient vectors, Φ1 and Φ2 are (2×2p1) and (2×2p2) parameter matrices, where p1 and

p2 are the number of lags in regime 1 and 2 respectively, I() is the indicator function, Xt is a

random variable, which determines the regime, i.e. threshold variable, d is a lag parameter,

γ is unknown level of threshold variable, which separates two regimes, and εt is a sequence

of independent multivariate random vectors, such that E(εt) = 0 and Var(εt) = Σ, ∀t. I

assume that Σ is positive definite and has a full rank, that E(εt|Xs) = 0 for all s ≤ t and that

the sequence (εt, Xt), t ≥ 1, is iid and Normal.

I consider the TVAR model in (2.1) with two regimes. In general, it is possible to define

a model with multiple regimes. This framework requires a large number of parameters to

be estimated, that would be computational burdensome. In addition, a two-regime model

makes it easy to understand the economic meaning behind each regime, i.e. one regime

would be associted with favorable conditions, the other regime with bad state. Lastly, the

two-regime model can accomodate the two equilibria model proposed by Brunnermeier

and Pedersen (2009).

The previous literature associates the non-linearity between volatility and liquidity with

the state of the financial market, which implies that there are several candidates for the

choice of threshold variable (Engle et al., 2012, Brunnermeier and Pedersen, 2009, Acharya

et al., 2013). I consider liquidity, volatility, returns and VIX as potential candidates for the

trigger variable. All variables, except for liquidity result in a poorly behaved log-likelihood



36

function or suggest a corner solution as an optimal point for the threshold level, which

makes optimization in (2.2) somewhat ambiguous. Other extensions of the model are pos-

sible in the form of weighted linear combinations of the trigger variables and levels, but

this approach would only produce statistical gains, making economic interpretation compli-

cated. Thus, I use liquidity as the only choice for the trigger variable in this paper. Liquidity

co-moves with the market, such that financial downturns are associated with evaporating

liquidity, which was observed during the last financial crisis, in particular Thus, a regime,

where liquidity is lower than the threshold γ would be naturally related to the ”bad” illiquid

state, and the situation when liquidity is above the threshold γ would be described as ”good

” liquid regime. Also, liquidity is known to have strong asymmetric effects, affecting finan-

cial markets more when illiquidity is high. Consequently, choosing liquidity as a threshold

variable would enable my model to evaluate the effect of liquidity shocks when it is the

most needed.

The estimator θ̂ = [γ̂, d̂, p̂1, p̂2, Φ̂, Σ̂], where Φ̂ = [Φ̂1, Φ̂2, Â1, Â2] jointly maximizes the

log likelihood function, i.e.:

θ̂ = arg max
γ∈Γ,d∈D,p1,p2∈P,Φ,Σ

LLF(γ, d, p1, p2,Φ,Σ), (2.2)

where LLF is log-likelihood function of TVAR model in (2.1). Since εt are assumed to

be iid and Gaussian, I estimate the model in (2.1) equation by equation using the least

squares approach. I perform optimization in (2.2) using a grid search over possible values

of treshold level γ ∈ Γ. Here I construct Γ by trimming the top and bottom 10% of the

original distribution of trigger variable Xt−d in order to ensure that each regime contains a

sufficient number of observations for estimation, i.e. min{γ : |γ ∈ Γ} = X10
t−d and max{γ :

|γ ∈ Γ} = X90
t−d, where X10

t−d and X90
t−d are 10th and 90th quantiles of the distribution of Xt−d
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rspectively. 5. In addition, I consider every 1% quantile of the trimmed Xt−d distribution in

Γ sample to speed up the maximization process, i.e. numver of observation in Γ is equal

to 100. D is a set of delay parameters. I consider the maximum of 10 lags of the trigger

variable. I chose p1 and p2 among P = 20 possible lags in each regime for each considered

value of and τ and d. Sin and White (1971) show that this method is consistent in the sense

that the correct lag orders will be selected with probability one asymptotically. Optimal

models are selected based on the Schwartz information, which gives larger penalties for

bigger sample.

In summary, I use the following algorithm to the maximize LLF function:

1. Number of lags in each regime, p1 and p2 are estimated by minimizing the Schwarz

information criterion for every possible threshold value γ ∈ Γ and delay parameter

d ∈ D.

2. The model in (2.1) is linear in Φ and Σ for each γ and delay lag d. Maximization of

LLF conditional on delay parameter uniquely yields γ̂:

γ̂ = arg max
γ∈Γ

LLF(γ, d|d), (2.3)

where maximization is performed by grid search over Γ.

3. Optimal delay parameter d̂ maximizes the following LLF defined at optimal thresh-

old level γ̂:

d̂ = arg max
d∈D

LLF(γ̂, d). (2.4)

5The minimum number of observations in each regimes is required for asymptotic results (Hansen, 1999).
Although, it is unclear how to trim trigger variable sample, Hansen (1999) recommends to use 10% quantile.
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4. Estimates of the matrices of parameters Φ̂ and variance-covariance matrix Σ̂ maxi-

mizes LLF defined at optimal value of γ̂ and d̂:

[Φ̂, Σ̂] = arg max
Φ,Σ

LLF(γ̂, d̂,Φ,Σ). (2.5)

I follow the Hansen (1996, 1997) approach to estimate the conference interval of γ.

Hansen (1997) and Chan (1993) illustrate that γ̂ is a consistent estimate of the true parame-

ter. Hansen (1997) derives the limiting distribution of the LR statistic to make inference for

threshold parameter and illustrates a convenient way to build a confidence interval for the

threshold level. Hansen (1997) recommends to build the asymptotic confidence interval by

inverting LR(q) statistic. Thus, I construct a LR(q) statistic testing a hypothesis H0 : γ = q

as follows:

LR(q) = 2(LLF1(γ̂) − LLF1(q))), (2.6)

where LLF1(γ̂) is log-likelihood of model in (2.1) estimated at γ̂ and LLF1(q) is estimated

at each value of trigger variable q. Then, a confidence interval given significance level α is

defined as:

Γ = {q : LR(q) > c(α)} where c(α) = −2ln(1 −
√

1 − α). (2.7)

2.3 Data

I consider a datasample from January, 1, 2000 to November, 30, 2015, which includes

4002 trading days. This time period includes various states of financial market and allows

to investigate possible non-linearities in the time series of market liquidity and volatility.
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I investigate Bank of America(BAC), Kimco Realty Corporation (KIM), Dow Chemical

Corporation (DOW) and Ford Motor Company (F) stocks traded on NYSE, AMEX and

NASDAQ stock markets in this study. This data is available from the Center for Research

in Security Prices. I include securities which come from different economic sectors to

check how robust my findings are to the stock’s specific characteristics.

I compute daily market illiquidity as a relative bid-ask spread calculated as a ratio be-

tween difference of daily highest ask and lowest bid and their midpoint:6

ILLIQt =
Askt − Bidt

(Bidt + Askt)/2
. (2.8)

This measure of liquidity is related to the market tightness, since it measures the ability

to buy or sell securities at about the same price and time. It is related to the transaction

cost that is necessary inccured when completing a trade. The smaller the bid-ask spread

is the more liquid the market is. This liquidity measure captures the cost per dollar traded

and is generally considered to be a good measure of liquidity (Goyenko et al. (2009), Ait-

Sahalia and Yu (2013)). It is the most widely used definition in the literature and it allows

to compare liquidity measures across different stocks. Another advantage of computing

illiquidity following formula in (2.8) is that it estimates liquidity even when no trade is

completed for that day.

I recover the (latent) daily volatility from a GARCH(1,1) model defined as the follow-

ing:

rt = σtzt, (2.9)

σ2
t = ω + αr2

t−1 + βσ2
t−1, (2.10)

6The convention to measure illiquidity instead of liquidity comes from the literature. Thus I will refer to
illiquidity whenever I talk about market liquidity throughout the rest of the paper.
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where zt ∼ IIN(0, 1) is the shock to returns and σt is the conditional volatility of return.

Finally, to mitigate the impact of extremes on the estimation and for the sake of better

distribution properties I consider the log-transformed liquidity and volatility series, thus

ILLIQt denotes log of (2.8) and σt is log of volatility series obtained from the GARCH

model in (2.10) throughout this paper.

Figure 2.1: Illiquidity and Volatility
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(b) Kimco Realty Corporation
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(c) Dow Chemical Corporation
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(d) Ford Motor Company
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Notes: This figure shows the historical paths of illiquidity and volatility of BAC, KIM, DOW and F stocks
during Jan, 2000 - Nov, 2015.

Figure 2.1 shows the time series dynamics of volatility and liquidity for stocks of Bank

of America, Kimco Realty Corporation, Dow Chemcal Corporation and Ford Motor Com-

pany. Several observations are immidiate from this graph. First, stock market liquidity and
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volatility shows a pattern of time variation and clustering, though the persistence is more

vivid for volatility. Second, markets are more liquid when stock returns are less volatile.

Third, there is clear time series dependency between volatility and liquidity, and both se-

ries co-moves with the market. Illiquidity and volatility are getting worse around important

economics events and financial downturns such as 9/11 attack, WorldCom bankruptcy in

September 2002, 2007 - 2009 financial crisis, Eurozone downturn with a peak in Greek

government-debt crisis in May, 2011. Liquidity evaporated during 2007 - 2009 financial

crises, which could be associated with capital availability problems faced by the market

participants, as is suggested by the model of Brunnermeier and Pedersen (2009) and de-

scribed as liquidity spirals.

Table 2.1 presents the summary statistics of ILLIQt and σt. Both series are relatively

symmetric, where liquidity skewness is a bit closer to zero and varies from 0.51 to 0.63,

and volatility skewness varies from 0. 85 to 1.56. Liquidity and volatility kurtosis are not

far away from 3, and ranges from 3.59 to 5.40. The null hypotheses of presence of unit root

are rejected for all series based on Dickey-Fuller test, with 5% significance level.
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Table 2.1: Summary Statistics

ILLIQt σt

BAC KIM DOW F BAC KIM DOW F
Mean 0.76 0.66 0.86 0.98 0.72 0.41 0.67 0.82
St Dev 0.69 0.67 0.55 0.60 0.59 0.53 0.38 0.39
Skewness 0.62 0.83 0.51 0.62 1.09 1.56 0.85 1.07
Kurtosis 3.59 4.17 3.61 4.22 4.31 5.40 3.62 4.80
D-F Test 0.00 0.00 0.00 0.00 0.02 0.00 0.03 0.04
L-B Test Test 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 lags
L-B Test Test 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 lags
L-B Test Test 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 lags
Normality J-B Test 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ARCH Test 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Notes: p-value is reported for D-F, L-B, Normality J-B and ATCH Test
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2.4 Estimation Results

2.4.1 Estimation of TVAR Model of Liquidity and Volatility

Table 2.2 shows the estimation results for the TVAR model in (2.1). The estimated quantile

of γ̂, shown in Column 4, varies between 58 - 78 across the stocks. It is the smallest for

BAC, indicating that liquidity and volatility dynamics of BAC are most sensitive to liquidity

levels. In other words, a smaller shock of liquidity will make the model in (2.1) to be in

the low liquidity regime for BAC. Since BAC belong to banking industry, this result might

suggest that financial institutions should monitor the level of liquidity closely, and it is a

part of Basel III requirements now.

The confidence interval of γ̂ (Column 3) is sufficiently tight, which translates into pre-

cise estimate of threshold parameter and provides additional evidence in favour of the

TVAR model. For further evidence refer to Figure B.1 in the Appendix B, which shows the

estimated threshold level and its confidence interval.

Table 2.2: TVAR: Estimation Results

Stock γ̂ 95% Confidence Quantile of d̂ p̂1 p̂2

Interval of γ̂* γ̂

BAC 0.83 [0.81, 0.86] 58 1 1 2
KIM 1.04 [1.04, 1.04] 77 1 2 2
DOW 1.24 [1.24, 1.24] 78 1 2 2
F 1.22 [1.10, 1.40] 69 1 1 2
Notes: this table shows the estimated parameters of model (2.1):
γ̂ is threshold level of trigger variable ILLIQ; d̂ is a lag value of
trigger variable ILLIQ; p̂1 and p̂2 is a number of lags in regime
1 and 2, respectively estimated with BIC statistics;** Confidence
interval is build using Hansen (1997) approach.

The estimated value of the delay parameter d̂ for the trigger variable ILLIQt−d is equal
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to 1 for all stocks (Column 5 of Table 2.2). Column 6 and 7 present the number of lags

within each regime, which minimizes the Schwarz information criterion. The number of

lags in high liquidity regime varies from 1 to 2, whereas the low liquidity regime is esti-

mated to have 2 lags.

Table 3.1 illustrates the summary statistics for illiquidity and volatility in high and low

liquidity regimes. The high liquidity regime has on average higher liquidity and lower

volatility. Iliquidity and volatility at least doubled in low liquidity regime, and for some

stocks the effect is even bigger. Thus, high liquidity regime could be considered as the

”good” state of the market, and low liquidity regime as the ”bad” state.

Table 2.3: Summary Statistics Across Regimes of Liquidly

High Liquidity Low Liquidity
Mean St Dev Mean St Dev

BAC
ILLIQt 0.40 0.48 1.25 0.53
σt 0.28 0.34 1.06 0.57
KIM
ILLIQt 0.43 0.47 1.40 0.68
σt 0.20 0.28 1.09 0.59
DOW
ILLIQt 0.70 0.47 1.36 0.51
σt 0.55 0.29 1.08 0.38
F
ILLIQt 0.78 0.48 1.43 0.59
σt 0.68 0.28 1.15 0.41

Figure 2.2 shows the time-series of volatility of different stocks through high and

low liquidity regimes. The low liquidity regime coincides with 9/11 attack, WorldCom

bankruptcy in September 2002, 2007 - 2009 financial crisis and Eurozone downturn with a

peak in Greek government-debt crisis in May, 2011. The estimated low liliquidity regime
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is longer during recent financial crisis for BAC and KIM stocks, which is expected since

these stocks represent financial and real estate sectors, which lost the most during this pe-

riod. Regime clustering is more vivid for BAC and KIM. Since the regime is defined by the

past liquidity level, regime clustering would be related to highly persistent liquidity series.

Regime clustering gives a rationale to investigate how shocks to liquidity/volatility affect

liquidity or volatility when systems remains in a specific regime forever. Section 4.4 refer

to this question in more detail, where I estimate IRF of model in (2.1) within each specific

regime.

Short lived episodes of low liquidity during generally favorable financial conditions are

also present, especially for DOW and F stocks. This observation is related to empirically

documented sudden dry-ups of market liquidity. Brunnermeier and Pedersen (2009) ex-

plain temporary drops in liquidity by strong beliefs about temporality of price shocks and

good availability of funding, such that a shock to liquidity does not lead to liquidity spiral.
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Figure 2.2: Volatility and Regime Changes

(a) Bank of America (b) Kimco Realty Corporation

(c) Dow Chemical Corporation (d) Ford Motor Company

Notes: This figure shows the volatility series of BAC, KIM, DOW, F stocks trough low and high liquidity
regimes. The shaded area represents the estimated low liquidity regime, or when ILLIQt−d > γ̂.
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The results of the estimation of TVAR model (1) is presented in the Tables B.1 - B.4 in

Appendix B. Most of the estimated coefficients are positive and significant, and negative

coefficients are either small and fairly insignificant. This gives reason to conclude that there

is generally a positive time series dependency between volatility and liquidity, which is con-

sistent with the existing theoretical and empirical literature (Benston and Hagerman, 1974,

Amihud and Mendelson, 1989, Brunnermeier and Pedersen, 2009, Engle et al., 2012).

Past values of illiquidity have stronger impact on illiquidity when liquidity is already

low and this result is stable for all stocks (Column 2 of Tables B.1 - B.4). Iliquidity sig-

nificantly increases with volatility when liquidity is high. Volatility does not have a sig-

nificant impact on market liquidity in the low liquidity regime for BAC and DOW. Since

volatility affects liquidity through the expectation of the future volatility, risk of mispricing

and capital requirements to support trade, in the low liquidity regime these indicators are

already high, such that the marginal volatility change might not significantly impact liquid-

ity. When volatility affects stock market liquidity in both regimes, its impact is bigger in

the low liquidity regime (KIM and F stocks). Generally, I conclude that volatility impact

on market liquidity is stock specific in low liquidity regime, and it is potentially interesting

to consider a bigger stock sample in the future to explore this result in more details, or to

investigate other channels through which volatility impacts liquidity.

Column 4 of Tables B.1 - B.4 shows the estimated coefficients of model (2.1) for the

volatility dynamics. The results show that illiquidity significantly and positively affects

volatility, and its impact is greater in the low liquidity regime for all stocks. My findings

therefore support the hypothesis that liquidity is more important for transaction smoothing

and price fluctuations when liquidity is already low.

Before moving to the analysis of the impact of shocks, I would like like to address one
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of the most important issues in the threshold literature, specifically testing linear model

against TVAR alternative, that would help to justify my approach.

2.4.2 Testing for Non-Linearity

An important question is whether the TVAR model is statistically preferred over the linear

VAR. Hence, before moving further to the discussion of the dynamics generated by the es-

timated TVAR model, I would like to address this question in order to justify my approach.

The null hypothesis of the linear VAR model can be formulated as follows H0 : A1 = A2

and Φ1 = Φ2 against the alternative that at least one of the matrices are not equal. The

inference procedure would be straightforward if the threshold level is known. However,

in my setting the threshold value is not known, but must be estimated. This means that

the inference is complicated by the fact that the threshold value γ is not identified under

the null hypothesis of no threshold (Davies, 1977, 1987), thus the corresponding assymp-

totic distribution of the test statistc is not chi-square. Hansen (1996, 1997) demonstrates

that the asymptotic distribution can be approximated by a bootstrap procedure. I follow

the non-standard inference procedure proposed by Hansen (1996, 1997) with an extension

to the multivariate case. I calculate LR statistics for the testing of no difference between

regimes for each possible threshold value. Then test statistics is defined as supLR, which

is maximum over all possible threshold levels:

LR = supγ∈Γ2(L̂LF1(γ) − L̂LF0), (2.11)

where ̂LLF1(γ) and L̂LF0 are log-likelihood functions estimated under the null and alter-

native hypothesis for each value of γ. Hansen (1996) suggest to compute the empirical
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distribution of LR from the following bootstrap algorithm:

1. Estimate LR statistics;

2. Form bootstrap empirical distribution:

(a) Draw residuals jointly with replacement estimated under the null hypothesis

(from VAR model);

(b) Generate new bivariate random variable Y∗t under the null;

(c) Estimate LR∗ statistics using generated data Y∗t ;

(d) Repeat steps a)-c) to create bootstrap sample of LR∗ statistics.

3. Calculate the p-value as a share of LR∗ > LR in total bootstrap sample.

I performed the described procedure with 500 bootstrap replications. The estimated

p-value for null hypothesis H0 : A1 = A2 and Φ1 = Φ2 is 0.00 for all stocks, thus I reject

the linear VAR model of liquidity and volatility against TVAR model in (2.1) with 1% level

of significance.7

2.4.3 Regime Dependent Impulse Response

The impulse response function (IRF) describes the response of one variable to the shock to

an another variable in a system of multiple variables. IRFs are a useful tool in analysing the

dynamic properties of autoregressive models. Since my model has variable coefficients, the

general response to the shocks might not longer be linear to size and sign of the shock, and

it might depend on the history of the regimes. I start the analysis by considering a specific

7I used 500 bootstrap replications. A small bootstrap sample may result in the extremely low p-value.
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regime scenario, when the model starts and remains in a particular regime forever. Such

regime dependent IRFs will allow to better demonstrate the difference between regimes

in the dynamic perspective. Also, the persistence of the trigger variable, ILLIQt and the

resulting regime clustering gives additional rational to explore response of liquidity and

volatility to shocks within each regime. This IRF would be fully described by the coeffi-

cients of a correspondent regime, and can be easily calculated as a IRF of standard VAR

model. I orthogonalize shocks using the Cholesky decomposition of the estimated covari-

ance matrix of innovations. In general it is hard to address the ordering of market liquidity

and volatility. Here, I consider the market liquidity first, though the alternative ordering

produces similar results.

Figures 2.3 - 2.6 show the estimated response of a one standard deviation shock to

liquidity or volatility when the system stays in a particular regime forever. The striking

conclusion from Figures 2.3 - 2.6 is that any shock to liquidity or volatility makes these

variables to explode in low liquidity regime for all stocks but DOW. The impact of liquid-

ity shocks is always bigger when liquidity is low. In contrast, volatility shocks are more

pronounced in the good regime during the first week after the shock, but they escalate very

fast in the low liquidity regime.

The impact of a liquidity shock on liquidity is close to a 0.4 increase in illiquidity

which is roughly equal to 60% - 70% of a standard deviation of illiquidity, and it declines

rapidly on the next day for both regimes (Left of Panel (a) in Figures 2.3 - 2.6). The impact

of the shock in the high liquidity regime disappear over time. In contrast, liquidity start

growing in the low liquidity regime and the effect of the shock is around 35% of the initial

impact on illiquidity 350 days after the shock for BAC and KIM, and 64% of initial impact

on illiquidity for F. This translates into an increase in ILLIQt of around 20% of standard
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deviation for BAC and KIM and by 45% of standard deviation for F 350 days after the

shock. The liquidity shock has a longer lasting effect on illiquidity in bad regimes than in

good regimes for DOW, however the impact of the shocks have almost disappeared 150

days after the shock in both regimes.

Figure 2.3: Regime Dependent Impulse Response. BAC.
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(b) Volatility Response

Notes: This figure shows the response of stock market illiquidity and volatility of BAC stock to one standard
deviation shock (1 SD) of liquidity and volatility. Blue line shows the response when start and remain in high
liquidity regime. Red dashed line shows the response, when model start and remain in low liquidity regime.

A one standard deviation of volatility shock increases future illiquidity by 0.03 - 0.04

for BAC, KIM and F during the first week after the shock, which translates into an increase

of 5% of standard deviation (Right of Panel (a) in Figures 2.3, 2.4 and 2.6). Then it takes

55 - 110 days for illiquidity to return to 20% value of initial increase in illiquidity, when

the model stays in the high liquidity regime. The impact of volatility shocks on illiquidity

grows rapidly over time in the low liquidity regime. The effect of the shock almost doubles

for BAC and KIM, and triples for F 350 days after of the shock. This increase is equal to

around 9% of a standard deviation for BAC and KIM and 16% of a standard deviation of

illiquidity for F.

This dynamic is different for DOW stock, where a one standard deviation volatility
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Figure 2.4: Regime Dependent Impulse Response. KIM.
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Notes: This figure shows the response of stock market illiquidity and volatility of KIM stock to one standard
deviation shock (1 SD) of liquidity and volatility. Blue line shows the response when start and remain in high
liquidity regime. Red dashed line shows the response, when model start and remain in low liquidity regime.

shock rises stock market illiquidity by 0.03 in the high liquidity regime and by 0.02 in the

low liquidity regime, which is equal to to 5% and 4% of a standard deviation of illiquidity

respectively (Right of Panel (a) in Figure 2.5). The persistence of the shock is similar in

both regimes, such that it takes 116 days and 91 days for the impact of the shock to return

to its 20% values in good and bad regimes, respectively.

A one standard deviation shock to illiquidity rises future volatility by approximately

0.02 and 0.08 during the first week after the shock, which amounts to 4% - 5% and 13%

-16% of a standard deviation and in high and low regimes, respectively (Left of Panel (b)

in Figures 2.3 - 2.6). The effect of the shock decays fast in the high liquidity regime, and

converge to its 20% of the initial value in 55 - 110 days after the shock for BAC, KIM and

F, respectively. Volatility grows rapidly after liquidity shock in low liquidity regimes for

these stocks. The impact of the shock almost doubles in 350 days post shock for BAC and

KIM and triple for F, such that volatility increases by 26% - 61% of a standard deviation.

A one standard deviation shock to volatility rises future stock volatility by 0.04 - 0.06,
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Figure 2.5: Regime Dependent Impulse Response. DOW.
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Notes: This figure shows the response of stock market illiquidity and volatility of DOW stock to one standard
deviation shock (1 SD) of liquidity and volatility. Blue line shows the response when start and remain in high
liquidity regime. Red dashed line shows the response, when model start and remain in low liquidity regime.

Figure 2.6: Regime Dependent Impulse Response. F.

100 200 300

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 1 SD Shock to Illiquidity

 High Liqudity

 Low Liqudity

100 200 300

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 1 SD Shock to Volatility

 High Liqudity

 Low Liqudity

(a) Illiquidity Response

100 200 300

0.05

0.1

0.15

0.2

1 SD Shock to Illiquidity

 High Liqudity

 Low Liqudity

100 200 300

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 SD Shock to Volatility

 High Liqudity

 Low Liqudity

(b) Volatility Response

Notes: This figure shows the response of stock market illiquidity and volatility of F stock to one standard
deviation shock (1 SD) of liquidity and volatility. Blue line shows the response when start and remain in high
liquidity regime. Red dashed line shows the response, when model start and remain in low liquidity regime.

or by 8% - 11% of a standard deviations (Right of Panel (a) in Figures 2.3 - 2.6). The

response of volatility decays, when liquidity is high, and grows when liquidity is low. The

effect of the shock increases by 100% - 200% in the low liquidity regime 350 days after the
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shock, which corresponds to an increase of 10% - 22% of a standard deviation of volatility

for BAC, KIM and F. The impact of the shock decays to its 20% value in 55 - 110 days in

high liquidity regimes for these stocks.

The dynamics of volatility response to shocks is different for DOW (Panel (b) in Figure

2.5). The effect of a liquidity shock is bigger in the low liquidity regime, whereas the effect

of volatility shocks are the same. A one standard deviation of illiquidity shock will increase

volatility by 6% and 16% of standard deviation in high and low regimes respectively. A

volatility shock increases volatility by approximately 0.04, which is equal to 11% of a

standard deviation of volatility in both regimes. The volatility response to shocks declines

over time, and it disappears faster in the low liquidity regime. The effect of a liquidity

shock reaches its 20% value 116 and 89 days after the shock in high and low regimes,

respectively. The volatility shock converges to its 20% value in 112 and 76 days in high

and low regimes, respectively.

In summary, my analysis of the impact of shocks when the model stays in one regime

forever demonstrates the non-linearity in volatility and liquidity interactions. Figures 2.3

- 2.6 show that volatility and liquidity are more sensitive to their own shocks in the low

liquidity regime for BAC, KIM and F. The effect of the shocks declines quickly in the

high liquidity regime. Shocks lead to evaporating liquidity and growing volatility in the

low liquidity regime. Liquidity/volatility response to the shocks is among the fastest grow-

ing in low liquidity regime, when the impact of the shock doubles or even triples past

350 period after the shock. Thus, the reinforcing effect between liquidity and volatility

in the low liquidity regime, generated by the model, could be related to liquidity dry ups

observed in the data and liquidity spirals described in the literature. The feedback effect

between volatility and liqudity that leads to liquidty spirals and growing volatility is well
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described in the model of Brunnermeier and Pedersen (2009), and is associated with the in-

crease in capital requirements as liquidity worsen. Brunnermeier and Pedersen (2009) also

explains that a similar spiral effect might not exist, when market participants consider liq-

uidity movements as temporary. Thus, margin requirements do not increase due to lower

liquidity, which might explain decaying shocks for DOW, and in high regimes for other

stocks. Lastly, I notice that this spiral effect is the biggest for F, which is the most illiquid

and volatile of the stocks. This observations could be related to the theoretical predictions

of Brunnermeier and Pedersen (2009), where liquidity shocks are stronger for volatile and

illiquid securities.

2.4.4 Non-Linear Impulse Response

The IRF of non-linear models is much more complicated than in linear models. Since

shocks can lead to switches between regimes, it is not possible to construct the Wold de-

composition to easily compute the IRF. Consequently, IRFs of non-linear models do not

preserve the convenient feature of linearity to the sign and the size of the shock, and they

might depend on the initial condition Ξt−1 as shown in Potter (1994) and Koop et al. (1996).

I follow the approach of Koop et al. (1996) to compute the non-linear IRF, which is formally

defined as

IRFi = E(Yt|Ξt−1, ei
t) − E(Yt|Ξt−1), (2.12)

where Ξ is the information set at time t − 1, ei
t is a realization of an exogenous shock to a

particular variable i. 8 The IRF defined in (2.12) depends on initial conditions and the size

8Koop et al. (1996) refers to the non-linear IRF specified in (2.12) as the Generalized Impulse Response
Function.
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of the shock. Thus, to fully describe the dynamic of the model, the IRF in (2.12) should be

estimated for different values of the shock, as well as specific initial conditions. Also, the

IRF of non-linear models is sensitive to the specific ordering of the shocks in the same way

as the IRF of standard linear VAR model. I follow the same ordering I use in the section

2.4.4. for the regime dependent IRF, i.e. keeping market liquidity first.

I estimate the non-linear IRF assuming the model starts in low or high liquidity regimes,

but it moves between regimes afterwards. First, I randomly pick a vector of initial condi-

tions ξb, b = 1, .., 500 from a set of possible histories Ξt−1 ∈ {high, low}. Then, for each

initial condition I randomly draw a series of residuals ut+h, h = 0, .., l, with replacement

and compute the baseline path of Yt+h, h = 0, 1, .., l of the estimated model. To preserve

the joint distribution of the residuals I draw residuals for ILLIQt and Volt simultaneously.

Assuming there is a shock at time t to the variable i, i ∈ {1, 2}, I replace the residual ui
t

with the value of shock ei
t. In order to account for possible asymmetries, I assume that

the shocks can take values of ±1 and ±2 of a standard deviation of the residuals. I repeat

this procedure for each history, i.e. 500 times to estimate the conditional expectations in

(2.12). Then I average calculated IRFs over initial conditions to get an non-linear IRF for

each regime. A detailed procedure for how the non-linear IRF is calculated is described in

Appendix B.

Figure 2.7 - 2.10 show the response of illiquiidty and volatility to shocks, when the

model evolves between regimes after a shock occurs. I notice that there is a positive link

between volatility and illiquidity such that any positive shock to illiquidity make volatility

go up, and vise versa for all stocks, which is consistent with spells of liquidity disappearing

and volatility rising during crisis periods. Liquidity shocks on liquidity and volatility are

bigger and longer when liquidity is in high demand. A single liquidity shock happening in
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Figure 2.7: Liquidity Response, BAC and KIM
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Notes: This figure shows the response of stock market illiquidity to shocks of liquidity and volatility, when
model start in low or high liquidity regime. 1 SD shows the response to one standard deviation shock. 2
SD shows the response to two standard deviation shock. -1 SD shows the response to minus one standard
deviation shock. -2 SD shows the response to minus two standard deviation shock.
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Figure 2.8: Liquidity Response, DOW and F
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Notes: This figure shows the response of stock market illiquidity to shocks of liquidity and volatility, when
model start in low or high liquidity regime. 1 SD shows the response to one standard deviation shock. 2
SD shows the response to two standard deviation shock. -1 SD shows the response to minus one standard
deviation shock. -2 SD shows the response to minus two standard deviation shock.
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Figure 2.9: Volatility Response, BAC and KIM
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(b) Kimko Realty Corporation

Notes: This figure shows the response of volatility to shocks of liquidity and volatility, when model start in
low or high liquidity regime. 1 SD shows the response to one standard deviation shock. 2 SD shows the
response to two standard deviation shock. -1 SD shows the response to minus one standard deviation shock.
-2 SD shows the response to minus two standard deviation shock.
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Figure 2.10: Volatility Response, DOW and F
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Notes: This figure shows the response of volatility to shocks of liquidity and volatility, when model start in
low or high liquidity regime. 1 SD shows the response to one standard deviation shock. 2 SD shows the
response to two standard deviation shock. -1 SD shows the response to minus one standard deviation shock.
-2 SD shows the response to minus two standard deviation shock.
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high or low liquidity regimes is enough to create a different dynamics thereafter. The same

is not true for volatility shocks, where the results suggest even longer impact of volatility

shocks on liquidity in high liquidity regimes. This finding demonstrates the investor’s fear

about the future liquidity during sudden liquidity dry ups observed in the data.

A striking conclusion from Figures 2.7 - 2.10 is that the response to the impulse decays

over time in each regime. In contrast to the situation where the model remains in low liq-

uidity forever after the shock, shown on Figures 2.3, 2.4 and 2.6 (panel b), this specific case

scenario cannot generate the evaporating liquidity and growing volatility. For that purpose

a different shock scenario might be suggested, for instance when there are repetitive liquid-

ity shocks which will keep the model in the low liquidity regime for a longer time. Indeed

this finding is related to asset pricing literature with a special focus on events that generates

crisis. For instance, Ornthanalai (2014) proposed to use a model with frequent moderate

shocks to generate financial crisis instead of adding infrequent jumps of large magnitude to

the benchmark diffusion model. In essence, his continuous time modelling framework is a

similar to the regime switching model developed in the discrete time set-up, where jumps

indicate a different regime.

My analysis of non-linear responses also shows that there is size and sign asymmetry of

liquidity shocks. In particular, liquidity and volatility are highly sensitive to large drops in

liquidity, but responds less to an improvement of liquidity of the same extend. A large two

standard deviation drop in liquidity has a bigger impact than an improvement of liquidity

of the same size, but the exact asymmetry response varies among stocks. Large drops

in liquidity may signify a major market distress and have a bigger impact on investor’s

expectation through the fear of market instability.

To sum up, I estimate the IRF of volatility and liquidity, when the model starts in a
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particular regime, but is allowed to move between regimes thereafter. I demonstrate that

illiquidity and volatility are positively related to each other’s shocks. The effect of liquidity

shocks on liquidity and volatility are bigger when liquidity is in high demand. The impact

of shocks does not lead to explosive dynamics in liquidity and volatility in either of the

regimes.

2.5 Conclusion

This paper investigates the non-linear relationship between volatility and market liquidity

for different stocks. Using a two regime TVAR model of market liquidity and volatility

when liquidity determines the regime, I find supportive evidence of non-linearity between

liquidity and volatility and this result is robust for my sample of stocks. My model identifies

two different regimes — low and high liquidity, respectively, in the liquidity and volatility

interactions, where the low liquidity regime coincides with major financial downturns. My

results suggest that threshold level of liquidity which identifies low liquidity regime varies

within the same class of assents an it is the lowest for the banking industry.

My empirical findings establish that the link between volatility and liquidity is stronger

in a ”bad” liquidity regime. The results suggest that shocks to volatility and illiquidity

make these variables grow when the model remains in the low liquidity regime forever.

This feedback effect between liquidity and volatility can be related to liquidity dry ups

and growing volatility, which were present during the financial crisis, and are described

as liquidity spirals in the literature. Thus, the estimated level of liquidity which separates

two regimes could serve as a barometer that identifies the state of liquidity and volatility

crashes, and should be monitored, especially by financial institutions where it is estimated
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to be the lowest.

Next, my findings show that liquidity shocks are asymmetric in both regimes. Specifi-

cally, I show that liquidity and volatility are more sensitive to large drops in liquidity than

to positive liquidity dynamics, which might reflect investors fear of liquidity crashes.

Finally I demonstrate that a single shock does not generate evaporating liquidity and

growing volatility, when the model is allowed to move between regimes. This result is re-

lated to the crisis creations literature where repetitive moderate shocks are more important

for generation of crisis than single large shock. A different case scenario with potentially

multiple subsequent shocks could be studied in future work to explore the mechanism be-

hind the spiral creation.
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Chapter 3

Modelling the Distribution of Interest

Rates

3.1 Introduction

Modelling the dynamics of interest rates is an essential question for the risk and portfolio

management, derivative pricing, macroeconomics and monetary policy. Low and persistent

government yields, which has been recently observed in many countries, created an addi-

tional methodological challenges for financial models, since early adopted practices do not

work in the new environment. Specifically, the majority of the early models restrict inter-

est rate from being negative (Cox et al., 1985, Black and Karasinski, 1991) since investors

were not supposed to pay a fee to lend their money (i.e. interest rate is negative). On the

other hand, models that allow negative rates (Vasicek, 1977, Hull and White, 1990), and

Gaussian affine models (Brigo and Mercurio, 2001), cannot explain why short rates did not

rebound quickly, but had been stalled for along time. Thus, the rapid decline of the interest
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rate around the world during the financial crises in 2007 - 2009 created a new environment

– called Zero Lower Bound (ZLB) – where interest rate has been either very small for a

long time (USA, Canada) or become even negative (Euro Zone, Switzerland, Denmark).

To stress the ability of interest rates to become negative I will refer to this regime as a low

interest rate (LIR) regime rather than ZLB, although the latter is more widely used in the

literature.

In this paper I propose to model this new environment by incorporating LIR as an

different regime in the distribution of the interest rate, since it is characterized by the distinct

features compared to the period of high interest rates. The difference between regimes is

driven not only by the statistical properties, but also by the economic theory, in the sense

that a ”liquidity trap” prevents Central Bank’s intervention to change its key policy rate

(Keynes, 1936, Krugman et al., 1998). Indeed, once short term interest rate hits zero lower

bound, the Central Bank cannot decrease it further. By contrast, Central Banks has higher

flexibility to adjust its key policy rates during normal times, which leads to fast mean

reversion of the interest rate.

I distinguish between the above mentioned regimes by modelling the distribution of

interest rates as a mixture of two distributions, corresponding to the normal state (high

interest rates) and the LIR regime, respectively. In the first regime, I assume that interest

rates have heteroscedastic volatility with fat tails innovations, which is in line with classical

models of short interest rate (Cox et al., 1985). By contrast, interest rates follow a Gaussian

distribution in the LIR regime with constant volatility. The changes in regimes are driven

by a state-dependent weighing function and depend on the level of interest rate. Thus, the

resulting conditional distribution is flexible enough to accommodate distinctive features of

the interest rate dynamics during periods of high interest rates and during the LIR regime.
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I estimate the distribution of short Canadian Swap rates from December, 1994 till Jan-

uary, 2017. Since short interest rates are not directly observable I filter the from weekly

government yields using the dynamic Nielson-Siegel (DNS) approach of Diebold and Li

(2006). The DNS model is very popular among financial market practitioners because of

its accurate performance in fitting the term structure of interest rates and forecasting its

dynamics. First, I analize the statistical properties and stylized facts of the yield curve,

and conclude that these are indeed captured by the DNS model. I demonstrate that the

yield curve changes its dynamics in the LIR state, and the shift is more pronounced for

the short term yields. Similar results are reported in Christensen (2015), Christensen and

Rudebusch (2015), and Meucci and Loregian (2016) when considering the term structure

of U.S. Treasury bills.

To motivate my model further, I investigate the statistical properties of the estimated

short interest rate and conclude that there is indeed a shift of the distribution of the interest

rate around LIR regime. In particular, the interest rate distribution is leptokurtic during

normal states, but remains close to Gaussian distributed, when the interest rate is low.

Based on this observation, I model the distribution of interest rate by a mixture of a t-

Scaled distribution and a Gaussian distribution with time varying weights.

My findings identify periods of normal regimes and LIR states. In particular the esti-

mated weighting function, suggests that when the interest rate is above 0.87%, the prob-

ability of the financial stability regime is higher than the probability of the LIR regime.

It approaches 100% very fast, i.e. it already reaches 95% when the interest rate is above

1.44% . Thus, my model estimates periods of leptokurtic interest rate increments during

during Jan, 1994 - Feb, 2009 and , Sep, 2010 - Jan, 2017. On the other hand, when the

interest rate is below 0.87%, the probability of the LIR regime is greater, and it is above
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85% from June, 2009 till May, 2010, when Canadian short interest rate was close to zero.

Next, I compare the empirical performance of my model to one regime benchmarks,

which assume either a Normal or t-Scaled distribution of interest rate changes. I find that

my proposed mixture of distributions model clearly outperforms these mentioned competi-

tors based on Likelihood and BIC statistics.

The analysis provided in this paper is related to the vast literature on modelling the yield

curve in the low interest rate enviroment and papers related to assessing the macroeconomic

effect of leaving LIR regimes (Meucci and Loregian, 2016, Bauer and Rudebusch, 2014,

Kim and Singleton, 2012, Wu and Xia, 2014). This area of research takes into account

the existence of LIR regimes, and handles it either by using regime switching models or

Gaussian shadow rates models proposed by Black (1995). Unlike the majority of these

papers aiming to model the drift and diffusion of the interest rate process, I model the

whole distribution of the interest rates, which is more applicable for option pricing and

portfolio risk management, for example.

The rest of the paper is organized as follows. In section 3.2 define the mixture of dis-

tributions model for the interest rate increments with time varying weights. In section 3.3

I describe the data, explain how to construct the short term interest rate and provide a pre-

liminary analysis regarding its distributional properties. Section 3.4 contains the empirical

findings and discusses its implications. Section 3.5 concludes.

3.2 Model

In this section I discuss the proposed model for the distribution of interest rate increments,

which combines both a fat tail distribution and a Gaussian distribution. This modelling
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framework is based on the stylized facts observed in the data, which I document in more

details in the next section. Thus, my modelling approach is different from popular affine

type models, see Piazzesi (2010) for general overview, in the sense that I do not define

state vectors that drive dynamics of the yields. The major benefit of the affine type models

is that they allow obtaining tractable closed or semi-closed form expressions of the bond

yields. Meanwhile, researchers have to assume restrictive dynamics of the state vectors to

get these tractable solutions. Moreover, affine models cannot explain a zero lower bound

regime, which motivates the recent research to extend standard Gaussian affine model. In

particular, Christensen (2015) used a regime switching affine model, Monfort et al. (2017)

considered non-negative affine processes, and Christensen and Rudebusch (2015) incorpo-

rated the shadow rate approach into the affine Nelson-Siegel framework. Although these

models could explain zero lower bound regimes, they can not produce negative rates, ob-

served in the Euro Zone, Switzerland and Denmark.

In my paper, I take a very different approach: I build my model based on the empirical

stylized facts, including the existence of low and high interest rates regime. Furthermore,

the transition probability between two regimes is time varying and state dependent.

I assume that the short interest rate dynamics in the high interest rate regime is de-

scribed:9

rt+1 = rt + εt+1rt, (3.1)

εt+1
iid
∼ t(ν, µ1, σ1). (3.2)

9The extension of the model to incorporate mean reversion in the dynamics of the interest rates is straight-
forward. However, the current time series are very close to unit root given weekly frequency of the data, which
justifies the simplification and focus on differences of returns.
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In this regime, interest rate increments, ∆rt+1 = rt+1 − rt, have heteroscedastic volatility,

driven by the previous value of the interest rate level, rt, and follow a t-scale distribution.

The conditional variance of returns increments is proportional to the square of the inter-

est rate, which is consistent with the lognormal specification of the short rate process, see

Dothan (1978) and Black and Karasinski (1991). While different models assumed different

functional specifications, Conley et al. (1997) empirically estimated the variance elastic-

ity of Federal funds interest rate sampled at daily frequency to be between three and four.

My model has lower variance elasticity (two) due to the ability to generate fat tails using

t-scaled distribution, while continuous time models are primarily constrained to Gaussian

processes.

The dynamics of the rates in the LIR regime is defined as follows:

rt+1 = rt + ωt+1, (3.3)

ωt+1
iid
∼ N(µ2, σ2). (3.4)

The interest rates increments have homoscedastic volatility σ2 and follows Normal distri-

bution, which allows to generate negative rates in the LIR regime.

With the above specification, the probability distribution function of interest rates in-

crements becomes:

pd f (rt+1 − rt|It) = πt f1(εt+1 · rt) + (1 − πt) f2(ωt+1),

πt(rt) =
1

1 + e−γ(rt−τ) ,

(3.5)

where πt(rt) is a time varying probability function of interest rate level rt with parameters

γ and τ. Here τ is interpreted as a threshold between two regimes, such that πt(rt) = 1
2 ,
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when rt = τ, and πt(rt) approaches 1 as rt goes above τ, and it reaches 0, when rt drops

below τ. The speed of convergence of πt(·) depends on the parameter γ, which determines

the smoothness of the probability function πt(rt), i.e. smoothness of the transition from one

regime to another. I simplify the mixture pdf in (3.5) as follows:

pd f (∆rt|It) = πt f1(εt+1)
1
rt

+ (1 − πt) f2(ωt+1). (3.6)

Next, I specify the pdfs in each regime as follows

f1(εt+1) =
Γ( v+1

2 )

σ1
√

vπΓ( v
2 )

v +
(
εt+1−µ1
σ1

)2

v


−( v+1

2 )

, (3.7)

f2(ωt+1) =
1

2σ2
√
π

exp
− [

ωt+1 − µ2

2σ2

]2 , (3.8)

and I assume that

E(∆rt) = 0, i.e. πµ1 + (1 − π)µ2 = 0, (3.9)

which involves an identification restriction for µ1 and µ2. To identify both conditional

means of ∆rt within each mixture I assume that one mean is constant, while the other is

time varying. Thus, I estimate one conditional mean while identifying the other mean from

(3.9).

I introduce the t-Scaled distribution in (3.1) to capture heavy tails in high interest rate

regime. The function Γ(·) in (3.7) is a Gamma function and the parameters µ1, σ1 and v are

location, scale and shape parameters respectively of t-Scaled distribution. The f1(εt) distri-

bution arises from the distribution of µ+σT variable, where T has Student’s t-distribution,

and µ andσ are location and scale parameter respectively. Small values of the shape param-
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eter v are associated with heavy tails of the distribution, and f1(εt) approaches the Normal

distribution, when v→ ∞.

3.3 Data Analysis

In this section I discuss the construction of the short term interest rate. I start by analyzing

the main trends of bonds yields of different maturities. Then, I estimate the yield curve and

elaborate on how well it captures the major stylized facts of the data. Finally, I estimate the

interest rate using yield curve factors and discuss its dynamics.

3.3.1 The Data

I consider the zero coupon yields on Canadian Swaps from December, 1994 till January,

2017. I focus on the fixed maturities of 2, 6, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120.

180, 240, 360 months. I collected data from Bloomberg and then constructed weekly

observations from daily data.

Since I assess the interest rate from various yields I focus on them now in more details.

Figure 3.1 shows weekly yields of Canadian Swaps from December, 1994 to January, 2017

at maturities of 3, 6, 12, 24, 120, 360 months. The time variation of the yields is apparent

from the figure at every maturity, but is more prominent for yields with shorter maturity

during the period of 1994 - 2009. However, long-term yields are more volatile than short

term yields after the financial crisis period.

Table 1 shows descriptive statistics of the yields of different maturities, as well as em-
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Figure 3.1: Canadian Swap Yields
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Notes: This figure shows weekly Canadian Swap Yields from December, 1994 till January, 2017 at maturities
of 3, 6, 12, 24, 120, 360 months.
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pirical level, slope and curvature of yield curve, which I define as the following:

level = yt(240),

slope = yt(240) − yt(3),

curvature = 2yt(24) − yt(3) − yt(240).

. (3.10)

Typically, yields rise with maturity level, which suggest upward sloping yield curve. In

general long term yields varies more than short term yields. Yields are very persistent,

but long tern yields are more persistent than yields at the short end of the curve. Level is

the least volatile and slope is less persistent than any individual yield. Curvature is highly

volatile around its mean, and is the least persistent among all the other factors.

3.3.2 Fitting The Yield Curve

I consider the following DNS model of the term structure of interest rates

y(τ) = β1t + β2t

(
1 − e−λtτ

λtτ

)
+ β3t

(
1 − e−λtτ

λtτ
− e−λtτ

)
+ εt, (3.11)

where y(τ) is the yield with maturity τ at time period t. β1t, β2t, β3t are three latent dynamic

factors. The first factor β1t is considered to be a long term factor, or level, since its loading

is equal to one and is constant over maturities and time. Thus, any changes to β1t affect the

whole level of term structure. The second factor β2t is called a short term factor, or slope,

since its loading monotonically decays from 1 to 0 over time. The last factor, β3t is viewed

as medium-term factor or curvature, since its loading increases from 0 and then declines.

From (3.11) I estimate the short term interest rate according to:
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Table 3.1: Descriptive Statistics, Weekly Canadian Swap Yields

Maturities(in months) Mean St. Dev. Max Min ρ(1) ρ(12) ρ(30)
3 3.00 1.84 8.38 0.43 1.00 0.93 0.80
6 3.10 1.82 8.69 0.60 0.99 0.92 0.80
12 3.27 1.83 9.08 0.69 0.99 0.92 0.80
24 3.43 1.96 9.75 0.62 0.99 0.92 0.83
36 3.68 1.97 9.88 0.67 0.99 0.92 0.84
48 3.89 1.97 10.02 0.71 0.99 0.92 0.84
60 4.06 1.96 10.18 0.77 0.99 0.93 0.84
72 4.22 1.96 10.26 0.87 0.99 0.93 0.84
84 4.36 1.95 10.35 0.99 0.99 0.93 0.84
96 4.49 1.93 10.37 1.06 0.99 0.93 0.84
108 4.60 1.92 10.40 1.15 0.99 0.93 0.84
120 4.60 1.92 10.40 1.15 0.99 0.93 0.84
180 5.02 1.72 10.40 1.57 0.99 0.92 0.83
240 (level) 5.13 1.67 10.38 1.70 0.99 0.92 0.82
360 5.06 1.71 10.36 1.58 0.99 0.93 0.83
slope 2.13 1.14 4.55 -0.03 0.99 0.90 0.66
curvature -1.27 0.91 1.54 -3.28 0.98 0.78 0.65
This table presents descriptive statistics for Canadian weekly swap yields at different ma-
turities, and for the yield curve level, slope and curvature, where I define the level as the
20-year yield, the slope as the difference between the 20-year and 3-month yields, and the
curvature as the twice the 2-year yield minus the sum of the 3- month and 20-year yields.
The sample period is 1994:12 - 2017:01. ρ(1), ρ(12), ρ(30) are sample autocorrelations at
the displacements of 1, 12, and 30 months.
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rt = β1t + β2t. (3.12)

In this section I estimate and discuss fitting of the three - factor DNS model in the equation

(3.11) in the time series and cross section. I build the short interest rate from estimated level

and slope components using equation in (3.12), and then estimate model in (3.5). Thus, the

proposed framework allows to incorporate evolution not only of the short term rate but also

of the whole term structure of interest rates.

In general, I could estimate the model in (3.11) by Non-Linear OLS, but it has slow and

not-robust performance. Instead, I use a well established and simple procedure by fixing a

value of λt and estimating the parameters in (3.11) by ordinary least squares at each point

of time. Specifically, follwoing Diebold and Li (2006), I set the value of λt to be equal to

0.0609, calculate factors loadings and estimate the times series factors {β1t, β2t, β3t} at each

t.

Table 3.2: Descriptive Statistics of β1, β2, β3

Factors Mean St. Dev. Max Min ρ(1) ρ(12) ρ(30)
β1t 5.34 1.74 10.46 1.68 0.99 0.93 0.82
β2t -2.24 1.37 0.03 -5.40 0.99 0.89 0.63
β3t -2.63 2.08 2.99 -7.19 0.98 0.79 0.67
This table presents descriptive statistics for the estimated β1t, β2t, β3t in the term
structure model in (3.11) for Canadian swap rates from 1994:12 to 2017:01
when λt = 0.0609. ρ(1), ρ(12), ρ(30) are sample autocorrelations at the dis-
placements of 1, 12, and 30 months.

Table 3.2 shows descriptive statistics for the estimated factors {β1t, β2t, β3t}. From the

autocorrelation functions I notice that β1t is the most persistent factor. This is consistent

with calling β1t a level of the yield curve, which is generally very persistent. Since, β1t is

the only factor in my model, which determines long rates, the model in (3.11) confirms that
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long rates are more persistent than short rates. β2 is the least persistent factor. This fact

gives additional rationale to call β2 a slope, which is related to the spread of the yield curve,

and is know to be less persistent than the level of the yield curve. I also notice that β1 is

more volatile than β2. Thus my model is consistent with the observation that long rates,

completely determined by β1t in my setting, are generally more volatile than the short end

of yield curve, which depends on β1t and β2t.

Figure 3.2 shows the the estimated factors {β1t, β2t, β3t} versus the empirical level, slope

and curvature respectively. All three time series pairs demonstrate similar patterns. The

correlation between β1t and level, β2t and slope and β3t and curvature are 0.99, 0.99 and

0.97 respectively. This observations confirms my reasoning for referring to the respecting

factors {β1t, β2t, β3t} as level, slope and curvature.

3.3.3 Interest Rate

In this section I discuss the empirical properties of the short term interest rate constructed

following equation in (3.12). Figure 3.3a shows the estimated short interest rate, rt. rt

reaches its maximum value at the beginning of 1995 and has very volatile pattern till 2008.

The interest rate drops to a minimum of 0.19% during financial crisis, and the dynamics of

the interest rate changes dramatically thereafter. It raises to almost 2% in 2010 and remains

fairly stable around 1%-2% afterwards. At first glance, the mixture of distributions seems

to a be a suitable methodology to model the distribution of interest rate. However, the

dynamics of the interest rate also suggests a non-stationary series, thus it would be difficult

to ensure the asymptotic properties of the estimators. Instead, I model the first difference

of the interest rate, defined as ∆(rt) = rt − rt−1, which is shown on the figure 3.3b. The time

series of ∆(rt) demonstrates mean reversion and volatility clustering.
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Figure 3.2: Estimated Factors and Empirical Factors
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(c) Blue solid line: 0.5β̂3t, Red dotted line: empirical curvature

Notes: This figure shows the estimated β̂t1, β̂t2 and β̂t3 vs empirical level. slope and curvature. I define the
empirical level as 20-year yields, the slope as a difference between the 20-year yields and 3-month yields,
and the curvature as the twice the 2-year yields minus the sum of 20-year yield and 3-month yields.
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Figure 3.3: Short Interest Rate
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(b) ∆(rt) = rt − rt−1.

Notes: This figure shows the dynamic of the estimated instantaneous interest rate,rt, for the Canadian Swaps
from 1994:12 to 2017:01. Panel (a) shows the level of rt, defined as rt = β1t + β2t. Panel (b) shows the first
difference of ∆(rt), defined as ∆(rt) = rt − rt−1.

Clearly, the volatility of ∆(rt) changes, and depends on the level of interest rate. ∆(rt)

is very volatile, when the interest rate is high, but it looks very stable, when the interest

rate is close to zero. This confirms my conjecture to the model the distribution of interest

rate changes as a mixture of distributions, such that the heterogeneous volatility of interest

rate changes depends on the level of the interest rate only in the high interest rate regime.

Interest rate models, where volatility depends on the level of interest rate are very popular

in the literature, the Cox-Ingersoll-Ross model are among those. (Cox et al., 1985).

Next, I supplement my analysis investigating the distributional properties of ∆(rt) con-

ditional on the level of the interest rate rt. Specifically, I fix the value of rt = 0.5% and

explore the histrogram of ∆(rt) , when rt is below or above 0.5% (Figure 3.4). Clearly,

the dynamics of ∆(rt) is described by different distributions, when rt is close to zero and

when it is above 0.5%. The descriptive statistics of ∆(rt), conditional on rt confirms this

finding (Table 3.3). When rt < 0.5%, the distribution of ∆(rt) has skewness close to 0 and

kurtosis close to 3, and it could be associated with a Normal distribution. When rt > 0.5%,
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the distribution of ∆(rt) demonstrates leptokurtic pattern with large excess kurtosis. This

observation confirms my choice of t-Scaled Distribution for the mixture of distributions

model in (3.5), since it can better accommodate fat tails, which occurs when rt > 0.5%.

Figure 3.4: Distribution of Interest Rate Increments
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(b) ∆(rt), rt ≤ 0.5.

Notes: This figure shows the histogram of ∆(rt) and ∆(rt)
rt

for Canadian Swaps from 1994:12 to 2017:01. Panel
(a) shows ∆(rt)

rt
, when rt > 0.5. Panel (b) shows ∆(rt), when rt ≤ 0.5.
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Table 3.3: Descriptive Statistics by The Level of Interest Rate.

State Variable Mean St. Dev. Skewness Kurtossis ADF
∆(rt) 0.00 0.12 0.38 24.41 0.00

rt > 0.5
∆(rt)

rt
0.00 0.04 0.81 15.89 0.00

∆(rt) -0.01 0.06 0.08 3.79 0.00
rt < 0.5

∆(rt)
rt

0.00 0.19 1.09 6.48 0.00

This table shows the description statistics for ∆(rt)
rt

and ∆(rt) of Canadian
Swaps, when rt < 0.5 and rt > 0.5 during 1994:122017:01. The last column
shows the p − value of Augmented Dickey-Fuller test.

3.4 Estimation Results

In this section I discuss the empirical performance of the model in (3.5). I conjecture that

the distribution of interest rate increments is described by the mixture of fat tail distribution

in normal times and Gaussian in the LIR regime. Thus, my goal is to access the importance

of mixing distribution, time varying weights and economic underpinning behind the es-

timated threshold parameter τ. First, I compare in sample performance of my model in

(3.5) to conventional models used in the literature, which assume either a Normal or a t-

Scaled distribution of ∆(rt). Table 3.4 reports the estimated parameters of the following

distributions of interest rates increments:

(1) −Gaussian,

(2) − t − S caled

(3) − Mixture o f t − S caled and Gaussian distribution

, (3.13)

which are estimated by Maximum Likelihood. I note that model (3) in Table 3.4 strongly

outperforms model (1) and (2) based on reported LogLikelihood statistics (L) and Schwarz
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Information Criteria (BIC). Interestingly, model (1) has the worst performance according to

Likelihood and BIC statistics. Model (2) outperforms model (1), since it can better captures

the fat tails observed in the data.

Table 3.4: Estimation Results.

Parameters 1 2 3
Mixture of t-Scaled

Normal t-Scaled and Gaussian
µ1 -0.01 0.00 0.00

(0.00) (0.01) (0.00)
σ1 0.12 0.10 0.02

(0.00)* (0.00)* (0.00)*
v 20 2.30

(5.15)* (0.24)*
µ2

σ2 0.08
(0.00)*

τ 0.87
(0.09)*

γ 4.60
(1.03)*

L 858 2549 3588
BIC -1709 -5091 -7169

This table shows the estimated parameters of the distribution of
∆(rt) of Canadian Swaps, during 1994:122017:01. The first col-
umn corresponds to Normal distribution, the second - to t-Scaled
distribution, the last column refers to mixture of t-Scaled and
Normal distribution. L refers to the estimated log-Likelihood,
and BIC stands for Schwarz Information Criteria , calculated as
−2L+ p∗log(n), where p is a number of parameters estimated and
n is a number of observations. Here * means that corresponding
p-value is lower than 0.01

The estimated mixture of t-Scaled and Gaussian distribution defines two distinct regimes.

The first regime, which is related to ”good” times, is a leptokurtic regime with relatively

small shape and scale parameter, v = 2.30 and σ = 0.02 respectively. The estimated
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Figure 3.6: Interest Rate and Weight Function, πt(rt)
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Notes: This figure shows the dynamic of the estimated interest rate, rt, of the Canadian Swaps from 1994:12
to 2017:01 versus the estimated probability of t-Scaled distribution πt(rt) = 1

1+e−γ(rt−τ) , where γ and τ are
estimated in the model (3.5)

v = 2.30 is relatively small, indicating that the first component of the mixture of distribu-

tion in (3.5) has fat tails.

Several conclusions arise from the estimated weighted function πt(rt), the dynamics of

which is shown on the bottom of the figure 3.6. It fluctuates from 0.04 to 1 during 1994

- 2017, and, as expected, it is highly correlated with interest rate level. The parameters of

the πt(rt) have correct economic intuitions. The estimated γ is equal to 4.60, which indi-

cates a sharp transition between two distributions. In other words, my model suggests that

two different regimes in the distribution of ∆(rt), - either t-Scaled distribution or Normal

distribution exists, but rarely a combination of both.

The estimated threshold parameter is τ = 0.87%, and it describes a situation, when the
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distribution of ∆rt is a mixture of two distributions with equal weights. When the interest

rates is above the threshold level τ = 0.87%, the probability of the high interest rate regime

is greater than the probability of the LIR regime, and it is more than 0.9, when interest rate

is above 1.44%. Consequently the t-Scaled distribution is related to the periods of high

interest rate during Jan, 1994 - Feb, 2009, and Sep, 2010 - Jan, 2017. Accordingly, given

the small value of ν, my model is able to capture the leptokurtic pattern of the interest

rate during these times. On the other hand, the probability of being in the LIR regime

is greater than the probability of being in the high interest regime when interest rate falls

below 0.87%, and it is above 0.85 when interest rate falls below 0.60%, which happened

from June, 2009 till May, 2010. The estimated path of π(rt) shows high probability of

rt to follow a Normal distribution, which allows for negative rates. Thus, the proposed

framework could be useful for derivative pricing and risk management, where the essential

question is how to model the distribution of interest rates with negative values.

While modelling the distribution of interest rate around LIR regimes, I do not make any

specific assumptions on the level of interest rate which separates the LIR period. Hence I

consider the proposed methodology as a general framework for modelling of the distribu-

tion of interest rates, which could be studied in the future work for other countries as well,

like USA or EU, where LIR periods had different characteristics than those in Canada.

Lastly, another avenue for potential research is to apply the proposed methodology

to other risk factors, e.g modelling the exchange rate dynamics of emerging countries.

For instance, if a particular currency starts to rapidly depreciate, it would lead to the high

volatility regime of its exchange rate. In this situation the Central Bank is likely to introduce

a currency peg, which essentially implies a low volatility regime. As a result, pricing of

foreign exchange options and accurate risk assessment becomes challenging for one regime
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models. I will leave assessing the quantitative gains of my proposed two regime model for

other classes of assets for future research.

3.5 Conclusion

In this paper I model the distribution of interest rates by a mixture of a t-Scaled distribu-

tion and a Gaussian distribution. My approach expands the conventional practice in the

literature to model the interest rate solely by a Gaussian distribution or a Lognormal distri-

bution, which has several limitation like the ability to capture fat tails (essentially due to the

unrealistic assumption on the volatility of interest rate increments), negative rates allowed

during LIR regime, and the overall performance during long periods of time. Using the

mixture of distributions model I address the issue of interest rate volatility dynamics dur-

ing long periods of time. Also, including t-Scaled distribution in my mixture of distribution

model, I capture the fat tails during the high interest rate regime. My model is significantly

statistically preferred over standard Gaussian models or a t-Scaled distribution model. In

the future, I plan to apply the proposed procedure to model the distribution of interest rate

increments of Euro zone swaps, where negative yields were observable. Another applica-

tion of mixing framework with two regimes (high and low volatilities) might be suitable

for modelling and forecasting of the exchange rates of developing countries, which I leave

for future research.
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Appendix A

Chapter 1 Appendix

This appendix contains the proofs of all the theorems, remarks and corollaries in the paper,

as well as provides additional figures.

A.1 Proof of Theorem 1.1

Theorem 1.1 The process Yt, t = 0, 1, 2, ... defined in (1.1) is second order stationary with

positive definite covariance matrix V = Var(Y0) if and only if:

1. µ = 0, where µ is a mean of the initial vector, µ = E(Y0),

2. the covariance matrix, V, solves V − ΦVΦ′ − E(Bt−1VB′t−1) = Σ, and

3. | λ |< 1, where λ is the maximum eigenvalue of the matrix (1−π)Φ1⊗Φ1 +πΦ2⊗Φ2.

Proof We first prove necessity. Let Yt be second order stationary such that E(Yt) = µ.

Taking expectation of (1.2), we have that µ = (1 − Φ)−1 ∗ 0. From (1.2) we have that

(Yt−µ)(Yt−µ)′ = (Bt−1µ+ (Φ+ Bt−1)(Yt−1−µ)+εt)(Bt−1µ+ (Φ+ Bt−1)(Yt−1−µ)+εt)′. (A.1)
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Taking expectations on both sides of (A.1) and noticing that the expectations of cross prod-

ucts are zero we have

Var(Yt) = Var(Bt−1µ) + Var((Φ + Bt−1)(Yt−1 − µ)) + Var(εt), (A.2)

which can be rewritten as

Var(Yt) = V = Var(Bt−1µ) + ΦVar(Yt−1)Φ′ + E(Bt−1Var(Yt−1)B′t−1) + Var(εt), (A.3)

or

V = ΦVΦ′ + E(Bt−1VB′t−1) + Σ. (A.4)

Then

V − ΦVΦ′ − E(Bt−1VB′t−1) = Σ. (A.5)

By definition Σ is a positive definite matrix of full rank. Conlisk (1974) and Conlisk (1976)

show there is a unique positive definite V if and only if the maximum of the moduli of

Φ ⊗ Φ + E(Bt−1 ⊗ Bt−1) is less than 1. Notice that E(Bt−1 ⊗ Bt−1) = π(1 − π)Φ0 ⊗ Φ0 and

Φ⊗Φ +π(1−π)Φ0⊗Φ0 = πΦ2⊗Φ2 + (1−π)Φ1⊗Φ1. Thus, the conditions used in Conlisk

(1974) and Conlisk (1976) transform to | λ |< 1 , where λ is the maximum eigenvalues of

the matrix πΦ2 ⊗ Φ2 + (1 − π)Φ1 ⊗ Φ1.

We now show sufficiency. Let conditions 1-3 hold. Taking expectation of equation

(1.2) at t = 1 shows that E(Y1) = E(Y0) = µ.10Iterating further, it is possible to show that

E(Yt) = µ, ∀t. Similarly, calculating the variance of equation (1.2) at t = 1 shows that

Var(Y1) = ΦVΦ′ + E(Bt−1VB′t−1) + A = V = Var(Y0). Iterating further, it is possible to

10The existence of the solution of (1.2) is demonstrated by the Theorem 1.2
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show that Var(Yt) = V , ∀t. Since λ < 1, it follows from Conlisk (1974) and Conlisk (1976)

that V is a positive definite matrix. Premultiplying (1.2) by Yt+h and taking expectations,

we have

cov(Yt,Yt+h) = (πΦ2 ⊗ Φ2 + (1 − π)Φ1 ⊗ Φ1)cov(Yt,Yt+h−1). (A.6)

Iterating further we have

cov(Yt,Yt+h) = (πΦ2⊗Φ2+(1−π)Φ1⊗Φ1)hcov(Yt,Yt) = (πΦ2⊗Φ2+(1−π)Φ1⊗Φ1)hV. (A.7)

Thus, the process Yt, t = 0, 1, 2, ... is second-order stationary.

A.2 Proof of Theorem 1.2

Theorem 1.2. Assume that V is positive definite with full rank. Then the TVAR model in

(1.1) has a unique stationary solution given by

Yt = εt +

∞∑
n=1

 n∏
k=1

Φ + Bt−k

 εt−n, (1.4)

if and only if | λ |< 1, where λ is the maximum eigenvalue of the matrix (1 − π)Φ1 ⊗ Φ1 +

πΦ2 ⊗ Φ2.

Proof Let Yt be stationary and defined by (1.4), i.e. moments of (1.4) exist and they are

finite. Then, from (1.7) it follows that

E(YtY ′t ) = E

 ∞∑
n=0

S n(t)εt−nε
′
t−nS ′n(t)

 .
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We may rewrite this in vec form as

vecE(YtY ′t ) = vecE

 ∞∑
n=0

S n(t)εt−nε
′
t−nS ′n(t)


= E

 ∞∑
n=0

S n(t) ⊗ S nvec(εt−nε
′
t−n)


= E

vec(εtε
′
t ) +

∞∑
n=1

n∏
k=1

(Φ + Bt−n) ⊗ (Φ + Bt−n)vec(εt−nε
′
t−n)

 .
Since

∏n
k=0 Ak ⊗

∏n
k=0 Bk =

∏n
k=0 Ak ⊗ Bk for any matrices Ak and Bk whenever the matrix

product exists, the later can be rewritten as

vecE(YtY ′t ) =

∞∑
n=0

(Φ ⊗ Φ + E(Bt−n ⊗ Bt−n))nvecΣ.

Then

vecV =

∞∑
n=0

(πΦ2 ⊗ Φ2 + (1 − π)Φ1 ⊗ Φ1)nvecΣ. (A.8)

Furthermore, since (πΦ2⊗Φ2+(1−π)Φ1⊗Φ1)vecV =
∑∞

n=1(πΦ2⊗Φ2+(1−π)Φ1⊗Φ1)nvecΣ =

vecV − vecΣ, we have that

vecV − (πΦ2 ⊗ Φ2 + (1 − π)Φ1 ⊗ Φ1)vecV = vecΣ,

or

vecV − (Φ ⊗ Φ + E(Bt−n ⊗ Bt−n))vecV = vecΣ,

which is equivalent to

V − ΦVΦ − E(Bt−nVBt−n) = Σ. (A.9)

Since V and Σ are both positive definite, the maximum eigenvalue of Φ⊗Φ+ E(Bt−n⊗Bt−n)
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is less than 1 (Conlisk, 1974, 1976). Thus, the maximum eigenvalue of (1 − π)Φ1 ⊗ Φ1 +

πΦ2 ⊗ Φ2, λ, is less than 1.

We now prove sufficiency. Let all the eigenvalues of the matrix (1−π)Φ1⊗Φ1+πΦ2⊗Φ2

be less than 1. Following Nicholls and Quinn (1982) we consider the following:

Wr(t) = εt +

r∑
n=1

n∏
k=1

(Φ + Bt−k)εt−n =

r∑
n=0

S n−1(t)εt−n. (A.10)

Given that the eigenvalues of the matrix (1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2 are less than 1, the

limit W(t) of Wr(t) exists in mean square and thus in probability. Moreover, W(t) = εt +∑∞
n=1(

∏n
k=1 Φ + Bt−k)εt−n satisfies equation (1.2) and W(t) is stationary. Now, suppose U(t)

is another stationary solution of (1.2) and define

X(t) = W(t) − U(t). (A.11)

By definition X(t) = (Φ+Bt−1)X(t−1), E(X(t)) = 0 and X(t) is stationary. Then E(X(t)X′(t)) =

ΦE(X(t − 1)X′(t − 1)Φ′) + E(Bt−1E(X(t − 1)X′(t − 1))Bt−1). Since X(t) is stationary, and

Φ⊗Φ + E(Bt−1 ⊗ Bt−1) = (1− π)Φ1 ⊗Φ1 + πΦ2 ⊗Φ2, we have (I − ((1− π)Φ1 ⊗Φ1 + πΦ2 ⊗

Φ2)′)vecE(X(t)X′(t)) = 0. However, since the eigenvalues of (1−π)Φ1 ⊗Φ1 +πΦ2 ⊗Φ2 are

less then 1, E(X(t)X′(t))=0. Thus, W(t) = U(t), and W(t) is the unique solution of (1.2).

Since, W(t) is the same for all t it is also the strictly stationary solution of (1.2).

A.3 Proof of Remark 2

Remark 2. Let the process Yt, t = 0, 1, 2, ... in (1.1) be stationary with positive definite

covariance matrix V. Then the maximum eigenvalue of the matrix Φ is less than 1.
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Proof Following Theorem 1.1 and 1.2, the maximum eigenvalue of Φ⊗Φ + E(Bt−n ⊗ Bt−n)

is less than 1. Consider S = Σ + E(Bt−nVBt−n) and K = V . S and K are positive definite,

since Σ and V are positive definite. From equation (A.9) we have that

K − ΦKΦ = S .

From Barnett and Storey (1970) it follows that the maximum eigenvalue of Φ is less than

1.

A.4 Proof of Corollary 3

Corollary 3. Consider the following two-regime TVAR model with p lags in each regime

Yt = I(Xt−1 ∈ R1)
p∑

j=1

Φ1 jYt− j + I(Xt−1 ∈ R2)
p∑

j=1

Φ2 jYt− j + εt, (A.12)

where the properties of Xt and εt are those following equation (1.1). This model has a

unique stationary solution given by

Zt = ηt +

∞∑
n=1

 n−1∏
k=1

A + Dt−k

 ηt−n, (A.13)

if | λ |< 1, where λ is the maximum eigenvalue of the matrix (1−π)A1 ⊗A1 +πA2 ⊗A2, and

only if | λ1 |< 1, where λ1 is the maximum eigenvalue of the matrix A = (1 − π)A1 + πA2,



91

where Ai, i = 1, 2, is defined as Ai =



Φi1 Φi2 Φi3 ... Φi(p−1) Φip

In 0 0 ... 0 0

0 In 0 ... 0 0

0 0 In ... 0 0

... ... ... ... ... ...

0 0 0 ... In 0



.

Zt and ηt are np × 1 vectors given by Z′t = [Y ′t ,Y
′
t−1,Y

′
t−2, ...Y

′
t−(p−1)] and ηt = [ε′t , 0, 0, .., 0],

respectively, and Dt = (S t − π)A2 + (π − S t)A1.

Proof Given the definitions of Zt, ηt, and Ai, i = 1, 2, we can rewrite model (A.12) in its

companion form

Zt = A1I(Xt−1 ∈ R1)Zt−1 + A2I(Xt−1 ∈ R2)Zt−1 + ηt. (A.14)

Now define A = (1 − π)A1 + πA2. Then the model in (A.14) can be rewritten as a RCM as

of Nicholls and Quinn (1982) given by

Zt = (A + Dt)Zt−1 + ηt, (A.15)

where Dt = (S t − π)A2 + (π − S t)A1, such that EDt = 0. The proof of sufficient conditions

are similar to the proof of Theorem 1.2 and it suffices to show necessity. Define Ω = varZt

and assume it exists and that it is finite. Notice that η(t) = (1, 0, 0, .., 0) ⊗ ε(t)=l ⊗ ε(t).



92

Define H = ll′. Then, following the first part of the proof of Theorem 1.2, we have

vecΩ =

∞∑
n=0

(A ⊗ A + EDt−n ⊗ Dt−n)nvec(H ⊗ Σ). (A.16)

Following the same strategy as in the proof of Theorem 1.2, it is straightforward to show

that

Ω = AΩA + ED′t−nΩDt−n + H ⊗ Σ. (A.17)

Let z′ = [z′1, .....z
′
p] be the left eigenvector of the matrix A with corresponding eigenvalue λ

and zi are n × 1 vectors. Then

(1 − λ2)z′Ωz = z′1Σz1 + z′ED′t−nΩDt−nz.

Since Ω is positive semidefinite, ED′t−nΩDt−n is positive semidefinite. Since Σ is positive

definite, | λ |< 1 when z1 , 0. Now let z1 = 0. Since z′ is the left eigenvector of A with

eigenvalue λ we have the following system of equations

z′1Φ
i + z′i+1 = λz′i , ∀i = 1, .., p − 1,

and

z′1Φ
p = λz′p.

Since λ , 0, zp = 0. Thus, zi = 0, ∀i = 1, .., p − 1. However, since z , 0, this contradicts

that z1 = 0.
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A.5 Proof of Theorem 1.3

Theorem 1.3. The stationary distribution of the TVAR process with Φ1 = 0 and Φ2 = Ψ

has the following characteristic function

φ(t,Yt) = (1 − π)
∞∑

K=0

πKexp

−1
2

t
K∑

n=0

ΨnΣΨ′nt

 . (1.11)

Moreover, the probability distribution function is given by

f (Yt) = (1 − π)
∞∑

K=0

πKN

0, K∑
n=0

ΨnΣΨ′n

 , (1.12)

where N(A, B) is the multivariate normal distribution function with mean A and covariance

matrix B.

Proof The characteristic function of Yt is

φ(t,Yt) = ES n(t)

exp

−1
2

tΣt′ −
1
2

t
∞∑

n=1

S n(t)ΣS ′n(t)t′
 . (A.18)

Thus, it is defined by the distribution of S n(t). Since
∑∞

n=1 S n(t) =
∑∞

n=1
∏n

k=1 S t−kΨ, the

probability space of
∑∞

n=1 S n(t) is {0,
∑K

n=1 Ψn,K ≥ 1}, and
∑∞

n=1 S n(t) has a Geometric

distribution with P(
∑∞

n=1 S n(t) = 0) = (1 − π) and P(
∑∞

n=1 S n(t) =
∑K

n=1 Ψn) = (1 − π)πK . It
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follows that

φ(t,Yt) = ES n(t)

exp

−1
2

tΣt′ −
1
2

t
∞∑

n=1

n∏
k=1

S t−kΨΣ(
n∏

k=1

S t−kΨ)′t′


= (1 − π)exp
(
−

1
2

tΣt′
)

+ (1 − π)
∞∑

K=1

πKexp

−1
2

t
K∑

n=1

ΨnΣΨ′nt′


= (1 − π)
∞∑

K=0

πKexp

−1
2

t
K∑

n=0

ΨnΣΨ′nt′
 .

Integrating the above expression, we have that the probability distribution function of Yt is

a weighted average of normal distributions

f (t,Yt) = (1 − π)
∞∑

K=0

πKN

0, K∑
n=0

ΨnΣΨ′n


where N(A, B) is the multivariate normal distribution with mean A and covariance matrix

B.

A.6 Proof of Corollary 4

Corollary 4. Let the matrices Φ1 and Φ2 have positive entries. If (1 − π)(φ1
j1 + φ1

j2)2 +

π(φ2
i1 + φ2

i2)2 < 1, ∀i, j = 1, 2, then the model in (1.1) is stationary. Moreover, if the model

in (1.1) is explosive in one of the regimes x ∈ {1, 2}, then (φ−x
i1 + φ−x

i2 ) < 1, ∀i = 1, 2, where

−x ∈ {1, 2} \ {x}.

Proof The proof of Corollary 4 uses the Perron Frobenius theorem, which states that

for a matrix X with positive entries there is a unique maximum eigenvalue λ such that

mini
∑

j xi j ≤ λ ≤ maxi
∑

j xi j. Let λ2 be the maximum eigenvalue of matrix Φ2. Then,
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1 ≤ λ2 ≤ maxi∈{1,2}(φ2
i1 +φ2

i2). Let λ be the maximum eigenvalue of (1−π)Φ1⊗Φ1 +πΦ2⊗Φ2.

Then

λ ≤ max
i∈{1,2}

Fi((1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2), (A.19)

where Fi() denotes the column sum for each row i. From the last equation we have that

λ ≤ maxi∈{1,2} Fi((1−π)Φ1⊗Φ1+πΦ2⊗Φ2) ≤ (1−π) maxi∈{1,2}(φ1
i1+φ

1
i2)2+πmaxi∈{1,2}(φ2

i1+φ
2
i2).

Since the condition of the Corollary holds for any i, j = 1, 2, we have that

(1 − π) max
i∈{1,2}

(φ1
i1 + φ1

i2)2 + πmax
i∈{1,2}

(φ2
i1 + φ2

i2) < 1. (A.20)

Thus, λ < 1 and from Theorem 1.1 and 1.2 the model in (1.1) is stationary.

Now suppose the model is explosive in regime 2 and let λ2 be the maximum eigenvalue

of matrix Φ2. Then, from the Perron Frobenius theorem

1 ≤ λ2 ≤ max
i∈{1,2}

(φ2
i1 + φ2

i2). (A.21)

From (A.20) and (A.21) it follows that 1 ≤ (maxi∈{1,2}(φ2
i1 +φ2

i2))2 < 1
π
−

(1−π)
π

maxi∈{1,2}(φ1
i1 +

φ1
i2)2 and thus (φ1

i1 + φ1
i2) < 1 for any i = 1, 2.

A.7 Proof of Corollary 5

Corollary 5. Let the process Yt, t = 0, 1, 2, ... in (1.1) be stationary. Then the following

conditions hold

1. λ2
1λ

2
2 ≤

1
π
,

2. λ1
1λ

1
2 ≤

1
(1−π) ,
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3. λ1
1λ

2
2 ≤

√
1

(1−π)π , and

4. λ2
1λ

1
2 ≤

√
1

(1−π)π ,

where λi
1 and λi

2 are eigenvalues of the matrix Φi, i = 1, 2.

Proof From Remark 2 we know that if the model is stationary, then the eigenvalues of the

matrix Φ are less than 1. Let λ1 and λ2 are the eigenvalues of matrix Φ = (1 − π)Φ1 + πΦ2

where Φ1 =

φ
1
11 φ1

12

0 φ1
22

, Φ2 =

φ
2
11 φ2

12

0 φ2
22

 .
Then

λ1λ2 = detΦ = (1 − π)2λ1
1λ

1
2 + π2λ2

1λ
2
2 + π(1 − π)φ1

11φ
2
22 + π(1 − π)φ1

22φ
2
11. (A.22)

Since φi
11 and φi

22, i = 1, 2 are nonnegative,

λ1λ2 ≥ (1 − π)2λ1
1λ

1
2 + π2λ2

1λ
2
2. (A.23)

Suppose λ2
1λ

2
2 ≥ 1 and π ≥

√
1

λ2
1λ

2
1
. Since Φ1 and Φ2 are upper triangular matrices with

nonnegative diagonal entries we have that

λ1λ2 ≥ π
2λ2

1λ
2
2 ≥ 1. (A.24)

Thus, there is an eigenvalue of Φ, which is greater than 1. From Theorem 1.2 it follows that

the process Yt, t = 0, 1, 2, ... is not stationary. Similarly, it can be shown that the process Yt

is not stationary when condition 2 of Corollary 5 doesn’t hold.
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A.8 Additional Figures
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Figure A.1: Simulated paths from models 1-3
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(a) Model 1, π = 0.3
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(b) Model 2, π = 0.5
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(c) Model 3, π = 0.7

Notes: This figure shows the simulated paths from models 1-3 for different set of histories over a n = 2000
period using m = 200 simulated paths. The parameters are those from Table 1.1 and the probability to be in
the explosive regime 2 is equal to π.
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Figure A.2: Simulated paths from models 4-6
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(a) Model 4, π = 0.1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2000

0

2000

4000

6000

8000

10000

12000

14000

16000

Y
1

t
0 200 400 600 800 1000 1200 1400 1600 1800 2000

−2000

0

2000

4000

6000

8000

10000

12000

14000

16000

Y
2

t

(b) Model 5, π = 0.3
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(c) Model 6, π = 0.5

Notes: This figure shows the simulated paths from models 4-6 for different set of histories over a n = 2000
period using m = 200 simulated paths. The parameters are those from Table 1.1 and the probability to be in
the explosive regime 2 is equal to π.
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Figure A.3: Simulated paths from models 4-6

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Y
1

t
0 200 400 600 800 1000 1200 1400 1600 1800 2000

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Y
2

t

(a) Model 7, π = 0.1
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(b) Model 8, π = 0.3
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(c) Model 9, π = 0.5

Notes: This figure shows the simulated paths from models 7-9 for different set of histories over a n = 2000
period using m = 200 simulated paths. The parameters are those from Table 1.1 and the probability to be in
the explosive regime 2 is equal to π.
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Appendix B

Chapter 2 Appendix

This appendix contains the additional estimation results and estimation algorithm for IRF.

B.1 Estimation Results

Table B.1: TVAR model: Bank of America

ILLIQt σt

Coefficient (Std. Err.) Coefficient (Std. Err.)
High Liquidity
const 0.14 (0.01)* -0.01 (0.00)*
ILLIQt−1 0.30 (0.03)* 0.04 (0.00)*
σt−1 0.59 (0.03)* 0.96 (0.00)*
Low Liquidity
const 0.05 (0.03)*** -0.03 (0.01)*
ILLIQt−1 0.43 (0.03)* 0.11 (0.01)*
σt−1 0.17 (0.20) 0.87 (0.03)*
ILLIQt−2 0.18 (0.03) * -0.01 (0.00)*
σt−2 0.19 (0.19) 0.04 (0.03)
R2 0.66 0.99
Notes: HAC standard errors are reported in parenthesis;
* 1% level of significance; ** 5% level of significance; *** 10% level of significance
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Table B.2: TVAR model: Kimko Realty Corporation

ILLIQt σt

Coefficient (Std. Err.) Coefficient (Std. Err.)
High Liquidity
const 0.18 (0.01)* -0.02 (0.00)*
ILLIQt−1 0.22 (0.02)* 0.06 (0.00)*
σt−1 0.18 (0.15) 0.93 (0.01)*
ILLIQt−2 0.13 (0.02)* 0.00 (0.00)
σt−2 0.33 (0.14)** 0.01 (0.00)
Low Liquidity
const 0.04 (0.04) -0.04 (0.01)*
ILLIQt−1 0.41 (0.04)* 0.15 (0.01)*
σt−1 -0.27 (0.24) 0.81 (0.04)*
ILLIQt−2 0.20 (0.04)* -0.01 (0.01)
σt−2 0.68 (0.22)* 0.05 (0.04)
R2 0.67 0.99
Notes: HAC standard errors are reported in parenthesis;
* 1% level of significance; ** 5% level of significance; *** 10% level of significance
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Table B.3: TVAR model: Dow Chemical Corporation

ILLIQt σt

Coefficient (Std. Err.) Coefficient (Std. Err.)
High Liquidity
const 0.17 (0.02)* -0.01 (0.00)*
ILLIQt−1 0.26 (0.02)* 0.04 (0.00)*
σt−1 0.11 (0.18) 0.93 (0.01)*
ILLIQt−2 0.15 (0.02)* 0.00 (0.00)
σt−2 0.37 (0.17)** 0.03 (0.01)*
Low Liquidity
const 0.14 (0.07)** -0.03 (0.02)
ILLIQt−1 0.32 (0.05)* 0.12 (0.02)*
σt−1 -0.01 (0.28) 0.88 (0.05)*
ILLIQt−2 0.23 (0.04)* -0.02 (0.01)***
σt−2 0.39 (0.26) 0.02 (0.04)
R2 0.48 0.99
Notes: HAC standard errors are reported in parenthesis;
* 1% level of significance; ** 5% level of significance; *** 10% level of significance

Table B.4: TVAR model: Ford Motor Comapany

ILLIQt σt

Coefficient (Std. Err.) Coefficient (Std. Err.)
High Liquidity
const 0.17 (0.02)* 0.00 (0.00)
ILLIQt−1 0.31 (0.03)* 0.03 (0.00)*
σt−1 0.59 (0.03)* 0.95 (0.00)*
Low Liquidity
const -0.03 (0.06) -0.02 (0.01)**
ILLIQt−1 0.46 (0.04)* 0.11 (0.01)*
σt−1 -0.28 (0.19) 0.84 (0.04)*
ILLIQt−2 0.15 (0.03)* 0.00 (0.01)
σt−2 0.72 (0.17)* 0.04 (0.03)
R2 0.67 0.99
Notes: HAC standard errors are reported in parenthesis;
* 1% level of significance; ** 5% level of significance; *** 10% level of significance
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B.2 Threshold Level Estimation Results

Figure B.1: Threshold Level and Its Confidence Interval

(a) Bank of America

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Threshold variable

0

20

40

60

80

100

120

140

160

180

  Thereshlod Level and Its Confidence Interval

LR statistics

Threshold level

Critical Value

(b) Kimko Realty COrporation
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(c) DOW Chemical Corporation
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(d) Ford Motor Company
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Notes: Blue line shows the LR statistic computed in (2.6) for different value of threshold level q; black line
shows the estimated threshold level γ̂; red line shows the estimated 95% confidence interval of γ̂.

B.3 Non - Linear Impulse Response Estimation Algorithm

I estimate the following IRF

IRFi = E(Yt|Ξt−1, ei
t) − E(Yt|Ξt−1), (2.12)



105

for initial condition being in high or low liquidity regime, Ξt−1 = {high, low}, and shock

to variable i takes values of ±1,±2 of standard deviation. I follow the algorithm defined

below:

1. First, I pick a set of histories (ξ1, ξ2, ..., ξB), where B = 500 from a set of possible

initial conditions Ξt−1, i.e. I determine the initial condition.

2. For each history ξb I randomly draw a set of residuals u = (ut, ut+1, ..., ut+(l−1)) from

the estimated residuals with replacement, where l denotes a forecasting horizon. I

assume the joint distribution of residuals, thus residuals are simulated jointly for

ILLIQ and Vol.

3. I feed residuals u into the Yt to receive a path of Yt without shock. The regime state

is defined within the model at each forecaster period.

4. I create a set of orthogonalized residuals and replace the value of the orthogonalized

residual of variable i at time t by the value ei
t. Then, by Cholesky decomposition I

transform back back to the original residuals u∗ = (u∗t , ut+1, ..., ut+(l−1)).

5. I feed residuals u∗ into the estimated model (??) to create a path of Y∗t with shock.

6. I repeat steps 2-5 for each history ξb 500 times to create one observation of IRFb in

(2.12).

7. I average IRFb over set of histories to receive a bootstaped estimation of IRF for each

regime.
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