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ABSTRACT 

 

The study of economics is based on key concepts such as incentives, efficiency, 

marginality and tradeoffs.  Economic research has hypothesized and tested for how 

economic agents behave after taking each of these into account.  In order for agents to 

meet their objectives it is sometimes the case that they intentionally keep their behaviors 

out of sight.  However, economic theory can be used to search for patterns of observed 

behaviors from which the unobserved behaviors can be inferred.  This dissertation 

performs this kind of analysis by observing the behavior of sports participants. 

Chapter 1 is an application of Becker’s (1968) economic model of crime by using 

an econometric model to search for the presence of National Basketball Association 

(NBA) referees who bet on NBA games.  The placement of these bets is not observed 

since a referee who bets on a game does so illegally and therefore hides his betting 

activity to prevent detection.  A referee who places a bet on a game he also officiates has 

an incentive to manipulate to improve his chances of winning the bet.  At the same time 

he should also be mindful to manipulate in a way that lowers his chances of being 

detected.  The referee’s observed behaviors through detailed play-by-play data are used 

to look for patterns hypothesized to be consistent with manipulation.  The results suggest 

that former NBA referee Tim Donaghy, who was found to have bet on NBA games, did 

behave in ways consistent with manipulation.  One other referee also appears to engage 

in the same type of behavior but stops once Donaghy is detected. 
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Chapter 2 is an application of Fama’s (1970) Efficient Market Hypothesis (EMH).  

Typically, the EMH is tested in the financial markets but some research tests for it in the 

sports betting markets so that the question becomes whether or not the betting market 

odds fully reflect all of the available relevant information.  This chapter tests to see how 

completely National Football League (NFL) bettors use information called the circadian 

advantage.  This occurs when a game is played in the evening, Eastern Time, between 

teams that are based on opposite coasts and always favors the better rested West Coast 

team.  A regression model designed to test for market efficiency finds that the advantage 

is not fully reflected in the odds so that bets on the West Coast team are underpriced.  In a 

majority of games that involve a circadian advantage most of the money is wagered on 

the overpriced East Coast team.  A conclusion that ties these results together is that the 

bookmakers restrict the amount bet from informed bettors who tend to win their bets and 

who are aware of the circadian advantage, and adjust the odds just enough to bait 

uninformed bettors who are unaware of the circadian advantage into placing wagers on 

the team that is overpriced.  Given these dynamics, it is the bookmakers who profit from 

the information contained in the circadian advantage. 

Chapter 3 revisits the NFL betting market but instead estimates the extent to 

which bettors place wagers based on sentiment for a team that is unrelated to relevant 

measures of relative performance along the lines of speculative investment outlined by 

Graham and Dodd in 1934 (2009).  The results show that more bets tend to be placed on 

teams for which bettors have high sentiment and fewer bets are placed on teams for 

which bettors have low sentiment.  However, the market odds appear to be using 

sentiment unbiasedly, leading to the conclusion that contrarian bettors place wagers 
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opposite the sentimental bettors.  While the market as a whole is efficient in the use of 

sentiment, losers tend to be bettors who wager with sentiment and winners tend to be 

bettors who wager against sentiment. 



 1 

 

 

 

 

CHAPTER 1: A MODEL TO DETECT IF REFEREES 

MANIPULATE GAMES FOR BETTING PURPOSES 

 

 

1.1 Introduction 

 

With the seminal work of Becker (1968), the occurrence of illicit behavior began to be 

analyzed in a theoretical economic framework.  Since then, as computer technology has 

become more powerful and accessible, researchers have been able to process voluminous 

data into useful information and to robustly test hypotheses derived from economic 

theory through many different applications.  The common strand among the research has 

been the specification of the marginal benefits versus the marginal costs from either 

society’s or the offenders’ perspectives.  Modeled as typical economic agents, persons 

engaging in illicit behavior will do so as long as the additional benefits exceed the costs.  

To maximize their net benefits, they will seek to lower their costs by cloaking their 

behavior in order to decrease their chances of detection. 

Sports have become a relatively new application of these theories due to the 

growing abundance of game-competition data that can be used to test for illicit behavior.  

These behaviors are akin to the principal-agent problem.  Agents such as players or 

coaches are hired to either win a competition or, in the case of referees, to enforce the 
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rules.  Given their ability to influence the outcome of the competition, these agents may 

pursue a conflicting agenda for their personal financial gain, such as by a bet placed on 

the game.  For example, a player may underperform in order to allow the opposing team 

to win, or a referee may unfairly officiate to allow the team bet on to win. 

The purpose of this study is to test for game manipulation by National Basketball 

Association (NBA) referees.  In this chapter, manipulation is defined to be the officiating 

of a game that unevenly enforces the rules between the opposing teams.  If referees bet 

on games they officiate, then they clearly have an incentive to manipulate.  Such 

manipulations, however, do come with costs and may be detected given their amounts or 

contexts within a game.  Given the penalties they suffer if they are detected, referees who 

manipulate should seek to conceal their behavior so that the manipulation is not obvious.  

In this chapter, micro game data at the play-by-play level is used to look for patterns in 

game officiating consistent with referee manipulation. 

The case this chapter revolves around is based on former NBA referee Tim 

Donaghy.  On June 21, 2007, NBA Commissioner David Stern announced that the FBI 

had evidence that Donaghy engaged in betting activity on NBA games, some of which he 

also officiated.
1
  The primary concern was whether Donaghy’s ability to properly enforce 

game rules was compromised by his financial interests to win bets placed on the same 

games.  Both the FBI and the NBA believe that Donaghy did not manipulate games
2
 

however Donaghy provided a back door admission by agreeing that his “…personal 

interest might have subconsciously affected his on-court performance.”
3
 

                                                 
1
 Pedowitz (2008), pg. 2 

2
 Ibid., pg. 16 & pg. 19 

3
 Ibid., pg. 15 
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Donaghy has admitted to gambling-related behavior on NBA games from 2003 to 

2007, a period over which he refereed in about 250 games.
4
  His officiating was regularly 

observed by several thousand witnesses from several different perspectives each game: 

players, coaches, paying spectators, sports media, as well as the other two referees in his 

game crew.  Could manipulation have been so subtle as to repeatedly evade detection 

from all of these witnesses?  While there has been considerable interest among the 

sporting and sports betting communities in the answer to this question, there has been to 

date no academic research on this topic.  This chapter develops an econometric model 

that is based on the assumed behavior of potential manipulators consistent with economic 

theory.
5
  Donaghy’s conduct is used as a reality check against the model. 

Section 2 of this chapter reviews the relevant academic literature.  Section 3 

presents the theoretical framework of game manipulation on the part of referees.  Section 

4 lists the key assumptions as well as the hypothesized behavior of manipulation.  Section 

5 describes and summarizes the data that is used, and Section 6 discusses the basic 

empirical model.  Section 7 describes the results, and Section 8 lists the conclusions. 

 

1.2 Relevant Literature 

 

Becker (1968) is the first to publish an economic theory applied to the study of crime.  

Criminals follow incentives to commit criminal activity and society expends resources to 

create disincentives that make it more costly for criminals to commit crimes.  Rose-

                                                 
4
 Ibid., pg. 11 

5
 This was proposed by a number of academics shortly after the allegations against Donaghy were first 

announced including Ayres (2007) and Reese (from quotes in “Could a Statistical Model Detect Cheating 

NBA Ref?” downloaded from http://www.deseretnews.com/article/1,5143,695201262,00.html) 
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Ackerman (1975) expands on Becker’s work by using economic theory to study the 

impact incentives and disincentives have on bribes during the bidding process for 

government contracts. 

Perhaps the first empirical research within the area of detection for illicit behavior 

is Angoff’s (1974) statistical model to search for cheating among standardized test takers.  

A set of indices is constructed that measures the covariance of answers among all pairs of 

test takers within the same room.  A subset of the indices is found to be better at 

identifying known cheaters and is eventually used in practice by the Educational Testing 

Service.  Jacob and Levitt (2003) investigate the degree of after-test answer changing 

among teachers who proctor their own students’ standardized tests.  Certain patterns in a 

classroom’s answers consistent with the assumed objective of manipulatively raising test 

scores in a covert manner is specified and found to be effective in identifying known 

instances of teacher manipulation. 

Slemrod (1985) and Feinstein (1991) develop models to detect aggregate tax 

evasion.  Slemrod confirms his hypothesis, through individual tax return data, that the 

distribution of declared taxable income tends to clump at the upper end of tax brackets as 

taxpayers underreport from the next higher bracket.  Feinstein regresses underreported 

taxable income on a number of hypothesized relevant taxpayer characteristics and finds 

that taxpayers who own their own businesses or are farmers, where more detailed forms 

could make detection more difficult, tend to underreport more than the typical taxpayer. 

A number of empirical studies have been published that investigate the impact of 

corruption at the macroeconomic level.  Mauro (1995) finds that corruption, as measured 

by a business survey, lowers economic growth through lower investment.  Fisman (2001) 



 5 

 

estimates that rumors of then-President Suharto’s ill-health had a larger effect on the 

stock price of publicly traded Indonesian companies that had closer ownership ties to the 

Suharto regime than companies with more distant, or non-existent, relations.  Mocan 

(2008) makes use of polling data from several countries to measure the occurrence of 

government corruption where the characteristics of those polled is observed.  Among 

other conclusions, he finds that males and respondents with higher income or who live in 

larger cities experience more interactions with corrupt government officials. 

Sports have recently become a new application of the economic theory of crime 

and corruption.  Preston and Szymanski (2003) create a theoretical model of corruption 

where the players are susceptible to bribes from bettors.  Their results confirm basic 

intuition that corruption is most likely to occur for low wage players in environments 

where punishment is light.  Duggan and Levitt (2002) analyze sumo wrestling 

tournament results and find evidence that opposing wrestlers fix matches when one 

wrestler has a much larger financial return to winning than the other.  The fixed loser is 

then compensated for the loss by becoming the fixed winner in a future rematch so that 

both wrestlers essentially maximize joint profits.  Price and Wolfers (2007) look at NBA 

box score data and conclude that referees tend to officiate more leniently towards players 

of the same race. 

It is widely alleged that the 2002 NBA playoff series between the Sacramento 

Kings and the Los Angeles Lakers was manipulated in favor of the Lakers.  At one point 

during the series the Kings had won three games to the Lakers two (four wins were 

needed to advance to the next round).  Before the start of game six, Donaghy alleges: 
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…the league office sent down word that certain calls – calls that would 

benefit the Lakers – were being missed by the referees.  This was the type 

of not-so-subtle information that I and other referees were left to interpret.  

(NBA referee) Bavetta openly talked about the fact that the league wanted 

a Game 7.
6
  

 

 

After the game ended with the Lakers winning, noted sports columnist Michael Wilbon 

was highly critical of the referees: 

 

 

When Pollard (a player on the Kings), on his sixth and final foul, didn't as 

much as touch Shaq (a player on the Lakers). Didn't touch any part of him. 

You could see it on TV, see it at courtside. It wasn't a foul in any league in 

the world. And Divac (a player on the Kings), on his fifth foul, didn't foul 

Shaq. They weren't subjective or borderline or debatable. And these fouls 

not only resulted in free throws, they helped disqualify Sacramento's two 

low-post defenders.
7
 

 

 

Two studies lend support to the belief that manipulation occurred.  Price, Remer 

and Stone (2009) analyze play-by-play game data and conclude that NBA referees tend to 

officiate in ways that favor game conditions that are more compelling for spectators to 

watch, or to extend playoff series.  Presumably, these are ploys to increase league 

revenues although the authors find no evidence of an NBA management mandate to do 

so.  Zimmer and Kuethe (2009) find that after controlling for playoff seeding, teams from 

larger cities tend to advance in the playoffs more often than expected.  They also suggest 

this as evidence of referee behavior designed to advance teams with larger fan bases and 

hence larger revenue streams. 

                                                 
6
 Donaghy (2009), pg. 96. 

7
 http://www.leagueoffans.org/sternletter.html, accessed on June 13, 2012. 
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1.3 Theory 

 

Assuming a referee has placed a bet on a game that he also officiates, the decision to 

manipulate at some point in time during the game is based on the following objective 

function to maximize: 

 

LmMPBSmPcBSmP
tt

d

t

af

tt

w

t

af

tt

w

t
),()],(1[),( 



  (1)
 

 

 

t is the elapsed game time.  ),(
af

tt

w

t
SmP

 is the probability that the referee will win the 

bet given the number of times he believes he will manipulate as of t (mt), and the current 

score of the game between the team bet for (f) minus the team bet against (a) compared to 

the point spread ( af

t
S

 ).
8
  Without loss of generality in this section, it is safe to let the 

point spread equal zero so that only the difference in the score matters.  c is the 

proportion of the amount won net of commission fees.  B is the amount bet.  Assuming 

even odds are offered, if a bet in the amount of B wins, then the bettor realizes a net gain 

of cB.  ),(
tt

d

t
mMP

 
is the probability of detection given the amount of previous 

manipulation in the game (Mt) and the planned amount of manipulation over the rest of 

the game.  L is the monetary value of the penalty if manipulation is detected, and could 

include lost wages from job termination, or imprisonment as well as fines.
9
 

                                                 
8
 The point spread is the predicted amount the team that is predicted to win the game (the favorite) will 

defeat its opponent (the underdog) by which a bet on the favorite wins if the favorite wins by an amount 

greater than the spread, otherwise a bet on the underdog wins. 
9
 Donaghy was sentenced to 15 months in prison and ordered to share in the repayment of $217,000 to the 

NBA [Pedowitz (2008), pg. 15]  
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To summarize the objective, the first term is the expected winnings from placing a 

bet, the second term is the expected losses from placing a bet, and the third term is the 

expected losses from manipulation that is detected and from punishment that follows. 

 The first order necessary condition is: 

 

L
m

P
cB

m

P

t

d

t

w




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
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)]1([
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where 
t

w

m

P




 and 

t

d

m

P




 are both greater than zero so that an additional act of manipulation 

not only increases the chance of winning the bet but also of getting detected.  The left 

side of the equation corresponds to the marginal benefit from an additional manipulation 

and the right side to the marginal cost. 

The ratio of the response of the probability of winning the bet to an additional 

manipulation to that of the probability of detection is: 

 

)]1(/[ 









cBL

m

P

m

P

t

d
t

w

    (3)

 

 

Assuming that L is much larger than B, then optimally an additional manipulation should 

increase the probability of winning the bet far more than increasing the probability of 

detection.  Equation (3) is also written in terms similar to the marginal rate of 

transformation in that manipulation is used to “produce” P
w
 and P

d
.  Figure 1.1 shows 

graphically how the optimal amount of manipulation is chosen. 
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The second order sufficient condition, 
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.  There are diminishing returns to manipulation 

and the probability of detection increases at a constant or an increasing rate. 

From the betting referee’s perspective, the marginal increase in the probability of 

winning a bet given an additional manipulation can change given a change in the context 

of the game.  For one, the return to manipulation increases as elapsed game time, t, 

progresses.  Therefore, as t increases it becomes more attractive to manipulate: 
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The return to manipulation also increases as af

t
S

 , the difference in the opposing teams’ 

scores compared to the spread, gets smaller.  Therefore, as af

t
S

  decreases it also 

becomes more attractive to manipulate: 
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Everything else the same, Equations (6a) and (6b) lead to an increase in the MRT 

outlined in Equation (3) which then leads to an increase in manipulation.  Figure 1.2 

shows graphically how manipulation increases in this case.  If the MRT is small enough 

then a corner solution exists and no manipulation occurs. 

While Donaghy is still an NBA referee, the NBA appears to monitor the referees 

for officiating quality only and not for manipulative behavior: 

 

Since the 2003 – 2004 season, the League has been collecting data on 

calls and non-calls for each of its referees.  Although this system was 

developed for training and developmental purposes, we have worked…to 

develop a…system for screening games in an effort to detect data patterns 

that warrant further investigation.
10

 

 

 

Given the above quote, it is possible that while the NBA may fire a referee who is in fact 

manipulating, the manipulation would instead be seen by the NBA as low quality 

officiating so that 
t

d

m

P




 is a constant in that it does not depend on t or af

t
S

 .  That is, if 

the NBA does not detect for manipulation, then the context of the game when a 

“questionable” call is made is irrelevant from the NBA’s perspective.  Since 
t

d

m

P




, L, B, 

and c are constant, it follows from Equation (3) that if 
t

w

m

P




 increases because elapsed 

game time increases or the difference in the scores decreases, then a corruptible referee is 

more likely to manipulate or, having already committed to a strategy of manipulation, 

will manipulate more.  

  

 

 

 

                                                 
10

 Ibid., pg. ES 6 
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1.4 Key Assumptions and Hypothesized Behavior 

 

Two broad assumptions are made in this chapter about what is bet and how manipulation 

takes place.  First, it is assumed that some referees might place bets against the point 

spread.
11

  If the market’s predictions are unbiased, then a bet against the spread, absent 

inside information or the ability to manipulate, amounts to a coin flip. 

Second, it is assumed that the referee who manipulates has one tool at his 

disposal: foul calling.
12

  In particular, fewer fouls will be called against the team bet on 

and more fouls will be called against the team bet against when there is manipulation.  In 

this case, the chances of winning the bet will increase for two reasons.   First, more free 

throws than normal will be awarded to the team bet on and fewer free throws than normal 

will be awarded to the team bet against thus favoring the team bet on.  Second, the team 

bet against will be forced to play less aggressive defense in order to prevent more fouls 

from being called against them to the point of player disqualification while the team bet 

on will be able to continue to play aggressive defense with less fear of disqualification.
13

  

The lessened ability of the team bet against to play its normal defense compared to the 

team’s bet on continued ability to play its normal defense once again favors the team bet 

on. 

How referees officiate games can be categorized into two distinct refereeing 

philosophies.  One philosophy advocates that referees should officiate “by the book” so 

that rules are enforced regardless of the context of the game.  The other philosophy, 

                                                 
11

 There is  no mention of over-under betting in Pedowitz (2008) or Donaghy (2009). 
12

 Price et al. (2009) refer to foul calling as a more pertinent measure of referee behavior as opposed to 

other calls where the rules are less open to interpretation, such as a shot clock violation. 
13

 A player who is called for his sixth personal foul is ejected from the game. 
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called the “Tower Philosophy,” advocates that referees should have more latitude in how 

they officiate so as not to unduly interfere with the pace of the game.
14

  Therefore, over 

the course of a game, a referee who manipulates can migrate between the two 

philosophies to legitimize or obfuscate the manipulations. 

Four hypotheses based on strategies intended to increase the probability of 

winning a bet without being detected are jointly tested.  That is, all four of the hypotheses 

listed below must be satisfied in order for manipulation to take place. 

 

Hypothesis One (H1): Announcement of Donaghy’s betting and punishment in the 

summer of 2007 deters other referees from officiating in ways that are consistent with 

manipulation beginning with the 2007 – 08 season as they perceive the cost of 

manipulation has risen.  Figure 1.3 shows this graphically.  

 

Hypothesis Two (H2): Given Price, Remer and Stone’s (2009) findings that referees 

generate increased fan interest, thus revenues, by officiating games in ways to keep the 

game outcomes in doubt for a longer period of time, the referee is more likely to place 

bets on games with small spreads since the expectation is that these games may need to 

be manipulated.  If manipulation under these circumstances is condoned by the NBA, as 

is alleged by Donaghy (2009), then this might provide cover for referees who place bets 

on these games. 

 

Hypothesis Three (H3): From Equation (5b), manipulation is more likely to occur later in 

the game when the impact a manipulation has on the betting outcome is more certain.  

                                                 
14

 Pedowitz (2008), pp. 42-44 



 13 

 

Early in the game, the amount of uncertainty over the betting outcome would lead the 

referee to not manipulate since there either could be a reasonable enough chance that he 

could win the bet without manipulation or the impact of a manipulation early in the game 

can more easily be offset by unanticipated changes in conditions throughout the rest of 

the game. 

 

Hypothesis Four (H4): From Equation (6b), manipulation is more likely to occur if the 

difference in the score between the two teams is sufficiently close to the point spread.  If 

the referee is winning a bet by a large enough margin then he is relatively certain he will 

win the bet without manipulation.  Therefore, he will not manipulate since the marginal 

benefit is small and less than the marginal cost from the additional manipulation.  If the 

referee is losing a bet by a large enough margin then he is relatively certain he will lose 

the bet even with manipulation.  He will not manipulate since the amount of manipulation 

needed to reverse the betting outcome is large and more likely to be detected.  In this 

case, the referee concedes that the bet is lost.   

 

1.5 Data 

 

The sample is from all NBA games played in regulation time from the eight regular 

seasons from 2003 – 04 to 2010 – 11.  The first four seasons of the sample correspond to 

the period of Donaghy’s betting activity on NBA games.  The second four seasons are 

used to test for changes in the other referees’ behaviors given that Donaghy’s behavior is 

detected.  Point spread data is from a sports betting website, www.covers.com, and game 
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data is from play-by-play files on www.espn.com
15

.  There are a total of 8,234 games in 

the sample excluding games with missing or bad data.  Game data includes: the teams, 

the three referees in charge of calling the game, when during the game each foul is called, 

when during the game the score changes, and the score of the game.  Although there are 

86 referees in the sample, evaluations are performed on Donaghy and the 36 referees who 

officiate games over all eight seasons in the sample. 

Figure 1.4 graphs the empirical probability that a bet on a randomly selected team 

will win given the context of the game, specifically what time during the game and how 

far the actual game score between the two teams is from the spread.  There are two 

features of the graph that are consistent with the hypotheses that are tested.  Hypothesis 

H3 can be seen in the increasing certainty in the outcome of the bet, win or lose, as game 

time elapses.  Hence, the impact of one act of manipulation is greater closer to the end of 

the game.  Hypothesis H4 can be seen in the increasing certainty in the outcome of the 

bet as the score between the two teams deviate further from the spread.  The larger the 

deviation, the less likely manipulation will take place. 

Towards the end of a game, teams that are losing often commit fouls intentionally 

in order to stop the game clock and allow them more time to try to overcome the deficit.  

Thus, a perfectly legal tactic on the part of the players can be confused for manipulative 

behavior on the part of the referees.   Figure 1.5 shows the standard deviation across all 

games in fouls called during 4
th

 quarters in 15 second intervals.  The variation appears to 

be fairly constant until there are 75 seconds left when it spikes.  Considering this extra 

noise, the last 75 seconds of all games are omitted from the sample. 

 

                                                 
15

 I am greatly indebted to Joseph MacDougald for creating the database. 



 15 

 

There are unobservables that could complicate model estimation. 

 

 The games Donaghy bet on has not been revealed by the FBI.
16

 

 The kinds of bets Donaghy placed has not been made public.  Point spreads can 

vary among the different bookmakers, legal or illegal, presumably by a small 

amount.  The consensus spreads in the data sample, therefore, may match or 

approximate the actual spreads bet on. 

 Although the play-by-play data records when fouls are called during the course of 

a game and the identity of the three man referee crew is known, which specific 

referee calls which specific foul is not known.
17

 

 

1.6 The Model 

 

The broad question this chapter addresses is whether NBA referees bet on NBA games.  

The occurrence of bets placed is unobserved, however, referees who bet have incentives 

to manipulate the games bet on in order to improve their chances of winning the bets.  

However, such manipulation increases the chance of detection.  With this in mind, the 

referee crew’s observed behavior from play-by-play data will instead serve as a proxy for 

the unobserved bets.   

 Any manipulation should be restricted to those parts of the game where the 

benefits from manipulation exceed the costs, as hypothesized in H1 through H4.  If this is 

the case then how fouls are called between the two teams should differ over the parts of 

                                                 
16

 Donaghy (2009) lists 12 games he claims to have bet on. 
17

 The NBA has developed a proprietary database of calls made at the individual referee level (Pedowitz, 

pp. 48-51) 
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the game when manipulation is more and less likely to occur.  If no manipulation takes 

place, then there should be no change in how fouls are called against the two teams. 

Let FH and FA be the number of fouls called against the home and away teams 

during some portion of a game so that the difference in fouls called is FH – FA.  This 

forms the basis for the measure of the referee’s behavior but in itself is not informative 

without some context.  First, FH – FA is tallied over two parts of a game, one where 

manipulation is more likely to occur (part M) and the other where manipulation is less 

likely to occur (part L).  Second, FH – FA is converted into a rate, V, by dividing it by the 

amount of time from the part of the game the fouls are tallied over.  Let VM = [(FH – FA) 

/ t]M be the rate at which fouls are called against the home team compared to the away 

team per unit time over the part of the game when manipulation is more likely to occur 

and VL = [(FH – FA) / t]L be the rate when manipulation is less likely to occur.  VM and 

VL are used to construct the metric of referee behavior relevant to manipulation called the 

change in foul calling index (CFCI). 

 

CFCI  = |VM - VL|     (7) 

 

It is the magnitude, not the direction, of the change that is relevant, hence the use of 

absolute values.  Everything else the same, larger values are hypothesized to indicate 

behaviors consistent with manipulation.  Smaller values indicate that the referee’s 

behavior does not change even though the marginal benefits and costs from manipulation 

do, thus it is unlikely in this case that manipulation is occurring.  According to 

Hypothesis H3, the CFCI should be larger in the later period of a game if there is 
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manipulation.  This is especially the case, according to Hypothesis H4, when the 

manipulation is assumed to take place if the difference in the opposing teams’ scores 

relative to the point spread is close. 

The CFCI could be measured over the entire game however conditions that have 

nothing to do with manipulation could change as the game progresses.  To hold these 

other conditions constant and thus focus on the factors that are relevant to manipulation, 

the CFCI is measured over subsamples of the game so that each subsample has a unique 

part M and part L.  For each game the CFCI is measured in two dimensions.  Across the 

first dimension it is measured in the first and the second half of a game.  Across the 

second dimension it is measured when part M is assumed to occur when the opposing 

teams’ scores relative to the point spread is within three points and then again within nine 

points.  One half of a game is 24 minutes long and to improve measurement reliability, 

part L and part M are set to be at least six minutes along.  Some observations are lost 

since there are some games where part M or part L does not exist with the given 

parameters.  If both parts exist then four different observations of the CFCI are generated 

for each game.  Figure 1.6 illustrates the subsamples the CFCI are measured over. 

Figure 1.7 is an example of how the CFCI is computed over the second half of a 

game that Donaghy refereed. In this case, manipulation is assumed to be more likely once 

the difference in scores between the two teams falls within three points of the spread.  

Within this region, 446 seconds of playing time elapsed with team A and team B called 

for one and nine fouls respectively.  The remainder of the half, 919 seconds in duration, 

saw team A and team B called for six and four fouls respectively.  Given the 
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hypothesized behavior, this could suggest that manipulation is done to favor team A by 

calling more fouls against team B over the period when manipulation is more likely.    

If a manipulative foul is called, it is not possible to know if the referee or the 

player is the manipulator.  That is, either the referee unfairly calls a foul or the referee 

fairly calls a foul on a manipulative player.  There are two reasons to believe this may not 

be a problem.  First, since the players are more highly compensated than the referees, 

they are less likely to engage in manipulation.
18

  This point is consistent with Preston and 

Szymanski’s (2003) findings. Second, Price and Wolfers (2007) quote the NBA as saying 

that referee assignments are “completely arbitrary.”  Therefore, if there are player(s) who 

manipulate, every referee is equally exposed to them. 

In the data, the number of fouls called is reported for the crew, not the individual 

referee, so that the value of CFCIg for game g is the same for all three referees in the 

crew.  One way to estimate the marginal behavior of one referee apart from the crew is to 

use a multivariate regression with dummy variables that indicate the presence of each of 

the three referees in each game.  The problem with this kind of regression is that tests of 

significance depend on the referee that is held out and used to estimate the constant term.   

However, using the assumption that the composition of referee crews is arbitrary, every 

referee is not only equally exposed to player(s) but also to referee(s) who manipulate.  

Therefore, it is not necessary to account for the identities of the three referees in each 

game’s referee crew.  Equation (8) tests for hypotheses H1 through H4 individually, and 

is estimated separately for each of the k referees under evaluation.   

                                                 
18

 In 2007, the average salary for NBA referees is approximately $200,000 

(http://www.cnbc.com/id/19876494, accessed on June 6, 2012) and for players it is approximately 

$4,300,000 (http://content.usatoday.com/sportsdata/basketball/nba/salaries/team/2007 accessed on June 6, 

2012). 
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dCFCIgk = α0 + α1 δ1gk + α2 δ2gk + α3 δ3gk + α4 δ4gk + εgk                   (8) 

 

dCFCIgk is a dummy variable that equals one if the value of CFCIgk is within the 

highest 50
th

 percentile across the entire sample, zero otherwise.  The choice of the 

percentile is based on not knowing what level of the CFCI is more likely to constitute 

manipulation.  However, at a minimum it seems reasonable that such a level should be 

above average.  δ1gk, δ2gk, δ3gk and δ4gk are dummy variables that are used to test for H1, 

H2, H3 and H4, respectively, and equal one under circumstances where manipulation is 

hypothesized to be more likely.  δg1 equals one if game g is played during the first four 

seasons of the sample when Donaghy is still officiating, zero otherwise.  δg2 equals one if 

the absolute value of the point spread on game g is less than or equal to three points, zero 

otherwise.  δg3 equals one if the CFCI is calculated over the second half of game g, zero 

otherwise.  δg4 equals one if the boundary that separates part L, the period of game g 

where manipulation is hypothesized to be less likely, and part M, the period of game g 

where manipulation is hypothesized to be more likely, is three points, zero if the 

boundary is nine points. 

Appending interaction terms to Regression (8) gives:   

   

dCFCIgk = α0 + α1 δ1gk + α2 δ2gk + α3 δ3gk + α4 δ4gk + 

 β1k δ1gk δ2gk + β2k δ1gk δ2gk δ3gk + β3k δ1gk δ2gk δ3gk δ4gk + εgk                             (9) 
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The variable of interest is the interaction term δ1gk δ2gk δ3gk δ4gk that equals one if all 

hypothesized conditions for manipulation to occur are met.  The null hypothesis that a 

referee does not manipulate is β3 ≤ 0. 

 

1.7 Results 

 

Given the binary nature of the dependent variable, dCFCIgk, probit modeling is used to 

estimate the regression coefficients.  Table 1.1(a) records the occurrence of coefficients 

from Regressions (8) and (9) that reject the null hypothesis that β3 is less than or equal to 

zero at the 5% level.  The first column shows that several of the referees evaluated have 

likelihood ratio chi-squared tests that are significant.  Therefore, it may help the 

explanatory power of the model to include these dummy variables individually.   

Of the 37 referees under evaluation, Donaghy and three other referees (identified 

in this chapter as referees #16, #23, and #73) have β3’s that are significantly positive, thus 

suggesting that they are reacting to the hypothesized changes in game conditions by 

manipulating.  However, there are two reasons to suspect that this count is too high.  The 

first reason is that with 37 referees at the 5% level of significance approximately two 

referees can be identified merely by statistical chance.  The second reason is that the 

choice of the dCFCI that identifies the highest 50% of the CFCI in the sample may be too 

liberal, thus increasing the chance of a type I error. 

There are two other noticeable results from Table 1.1(a).  First, there are seven 

α1’s from Regression (8) and six α1’s from Regression (9) that are significant suggesting 

that the corresponding referees are manipulating games at the same time Donaghy is 
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betting on NBA games but they are doing it in ways not hypothesized.  Second, there are 

ten α3’s from Regression (8) and seven α3’s from Regression (9) that are significant.  

These referees appear to be reacting to increasing returns to manipulation when the game 

progresses only, without regard to other hypothesized game conditions.  This particular 

result may support Price, Remer, and Stone’s (2009) findings that some manipulation is 

done to keep the scores close in order to generate fan interest given that the referees have 

a better idea which game is worth manipulating later in the game. 

Table 1.1(b) presents the significantly positive coefficients estimated over the 

second half of the sample after Donaghy’s betting is detected.  The three referees besides 

Donaghy who have significant β3’s when Donaghy is betting on games lose their 

significance after Donaghy is detected.  This is consistent with the hypothesis that 

Donaghy’s detection and punishment deters further manipulation from these referees.  

However, the β3’s for three other referees (#21, #71, and #85) become significant after 

Donaghy is expelled.  This result is unexpected since the deterrence that affects referees 

#21, #71, and #85 should affect all referees in the sample.  Therefore, it is more likely 

that this is a Type I error for reasons discussed at the beginning of this section.  Like 

Table 1.1(a), Table 1.1(b) shows that there are a number of referees who have significant 

values for α3 so that even after Donaghy is penalized manipulation appears to take place 

later in games.  This also supports Price, Remer, and Stone (2009) if an NBA mandate to 

manipulate games in order to keep the games close is always in effect. 
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1.8 Conclusion 

 

By design, illicit behavior is often difficult to detect or not directly observable.  

According to economic theory, agents who commit such acts are mindful of the benefits 

and costs of their actions and will seek to maximize their expected net gains.  Detection 

systems can use the theory to deduce the kinds of behaviors consistent with crime or 

corruption from observable data. 

This chapter describes an application of such a system that is used to test for in-

game behaviors of NBA referees that suggest manipulation of game results meant to 

increase the chance of winning a bet placed on the same game.  A baseline measure of 

fouls called against the opposing teams are tallied during a part of a game when 

manipulation is hypothesized to be less likely to occur and compared to a tally over 

another part of the game when manipulation is hypothesized to be more likely to occur.  

Referees who are manipulating change how they officiate based on these conditions. 

An econometric model designed with these concepts in mind finds that Tim 

Donaghy behaved in ways consistent with manipulation, however the model identifies 

three other referees, both during and after the period of time Donaghy bets on NBA 

games.  Manipulation for betting purposes after Donaghy is identified does not follow 

from economic reasoning.  Instead, it is more likely that a Type I error has occurred due 

to the design of the measure of manipulation.  The model also identifies several referees 

who are exploiting the increasing returns to manipulation as game time elapses.  In the 



 23 

 

absence of other hypothesized conditions, this result is consistent with the idea that 

manipulation is done for reasons unrelated to betting, such as to increase NBA profits. 

If it is true that the Type I error is large then the model may need to be redesigned 

so that it is a better filter, although the level of complexity needed to accomplish this may 

require more than the information given in the play-by-play data.  Other assumptions 

made in this chapter, such as only accounting for point spread betting, may be invalid.  

Relaxing these assumptions places additional demands on the model that may lie outside 

what it can do with the given data.  However, it is encouraging that this model can be 

used to infer betting behavior from a known bettor.     

 



 

 

 

 

 

CHAPTER 2: A TEST OF EFFICIENCY AND SPORTS BOOK 

PROFITS IN THE NFL POINT SPREAD BETTING MARKETS 

USING CIRCADIAN ADVANTAGE 

 

 

2.1 Introduction 

 

The Efficient Market Hypothesis (Fama 1970), or EMH, formalizes the concept that 

securities prices fully reflect all available information so that abnormal profits cannot be 

made.  The EMH has gone through many tests in several financial markets.  Additional 

tests have been conducted in the sports betting markets due to a number of shared 

characteristics with the financial markets.  Sports bettors, making use of the relevant 

information on hand, place wagers on certain sporting outcomes occurring if they believe 

that the outcomes’ odds are “underpriced” or “overpriced.”  Some of these tests have 

rejected the EMH.  More recent research suggests that sports books who take wagers 

often offer odds that are perceived as underpriced to uninformed bettors but are, 

empirically speaking, overpriced.  By restricting the amount informed bettors can wager, 

sports books can manage an unbalanced ledger with most of the amount wagered on what 

tends to be a losing bet.  The surplus of betting amounts lost after the winning bets are 

paid off is retained by the sports books as profits in addition to commission fees. 
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The purpose of this chapter is twofold.  First, to test the EMH by determining if 

the National Football League (NFL) point spread betting markets make use of the impact 

on relative performance between teams based three time zones apart due to differences in 

their circadian rhythms.  The impact that travel across time zones has on athletic 

performance has been documented many times in the medical literature.  Whether or not 

this piece of information is embedded in the NFL point spreads has not yet made its way 

into the economic literature.  Second, this chapter examines betting patterns that can 

determine if sports books are profiting from this one piece of information. 

Section 2 is a basic primer on sports betting terminology that will be used 

throughout the chapter.  Section 3 reviews the relevant literature.  Section 4 discusses the 

theoretical model.  Section 5 describes and summarizes the data.  Section 6 reports the 

results and Section 7 offers an interpretation of the results.  Section 8 lists the 

conclusions. 

 

2.2 Sports Betting Primer 

 

The focus of this chapter is on wagers placed on National Football League (NFL) games.  

Given a game between two teams, the team that is predicted to win is called the favorite, 

and the team that is predicted to lose is called the underdog.  The number of points that 

the favorite is predicted to score less that of the underdog is defined here to be the point 

spread, or spread for short, although the spread is usually defined to be the negative of 

what is used here. 
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A bettor who places a wager on the favorite to beat the spread wins the wager if 

the favorite beats the underdog by an amount greater than the spread.  A bettor who 

places a wager on the underdog to beat the spread wins the wager if the underdog either 

loses by an amount less than the spread or unexpectedly beats the favorite.  Games with 

spreads equal to zero are called pick ‘ems, and games where the favorite wins by an 

amount equal to the spread are called pushes.  In the event of a push all money is returned 

to the original bettors. 

Determination of the favorite, underdog, and spread is initially made by a person 

called an odds maker who considers various factors that can, in general, explain the 

relative skill between the two teams.  The odds maker transmits his product to sports 

books who take bets throughout Nevada, the only state in the United States where betting 

on NFL games is legal.
19

  NFL games, for the most part, take place on Sundays and 

betting on those games begin on the previous Monday.  Bettors pay a commission fee 

called a vigorish, or vig for short, to the sports book to place a wager.  The vig typically 

follows an 11-for-10 standard such that a bettor who places an $11 wager either returns 

$10 for a win or −$11 for a loss.  Thus, the breakeven probability of winning a spread 

bet, p, is determined from: 

 

p ($10) + (1 – p) (−$11) = 0     (1) 

 

So that p is approximately 52.4%.   

The spread can change during the week prior to the game given the relative 

amounts wagered on both sides of the spread, as often occurs when new information 

                                                 
19

 I assume that the results of this chapter are not affected by illegal sports books. 
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about the two teams is made available to the betting market.  Conventional thinking, and 

not necessarily what is practiced, is that the spread is adjusted throughout the week by the 

sports book such that the amounts bet on either side of the spread are equal to each other.  

If the sports book is able to achieve this, then the winning bets are paid off, dollar-for-

dollar, by the losing bets with the sports book receiving the vig from all losing bettors.  If 

the total winning amount exceeds the total losing amount, then the sports book may 

suffer a loss if the shortage it has to make up for on its own could exceed the vig it 

collects from all losing bettors.  On the other hand, if the total losing amount exceeds the 

total winning amount, then the sports book enjoys a profit above the vig equal to the 

surplus. 

In general, if equal amounts of money are beat on each team then the sports book 

initially collects an amount 2b(1 + v) where b is the amount bet on one team before 

paying the vig and v is the vig as a proportion of b.  The winning bettors earn a total of 

b(1 + v) + b, thus leaving the sports book’s absolute earnings at bv and earnings relative 

to the pot at v / [2(1 + v)].  Given the 11-for-10 vig, the sports books’ return is 

approximately 4.5%. 

 

2.3 Relevant Literature 

 

Fama’s (1970) semi-strong form efficient markets model hypothesizes that securities 

prices fully reflect all publicly available information.  It is this form of the EMH that is 

the most relevant to this paper.  Fama posits that while costless information is a sufficient 

condition for capital market efficiency, it is not necessary so that from an operational 
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perspective capital market efficiency is possible even when there are information or 

transactions costs.  Cornell and Roll (1981) expand on the definition by proposing that in 

an efficient market, while gross returns earned by informed investors may exceed that of 

uninformed investors, net returns between the two groups should be the same after taking 

into account costs the informed investors bear to acquire information. 

The semi-strong form of the EMH has been tested many times.  For instance, Ball 

and Brown (1968) find that stock returns of firms that report earnings that are different 

from market expectations experience a post-announcement “drift”.  In particular, stocks 

of companies that report earnings above expectations yield above average cumulative 

returns, and stocks of companies that report earnings below expectations yield below 

average cumulative returns for at least six months after the announcement is made.  Basu 

(1977) finds that the risk-adjusted returns of portfolios made up of low price to earnings 

stocks tend to outperform the risk-adjusted returns of portfolios made up of high price to 

earnings stocks, although the difference becomes insignificant when transactions costs 

and taxes are accounted for.  Banz (1981) finds that the risk-adjusted returns of small 

market capitalization stocks are significantly higher than the risk-adjusted returns of large 

market capitalization stocks, although he is not entirely willing to conclude that the EMH 

is violated.  One possible explanation he offers is that investors may find it more difficult 

to estimate the true value of a small capitalization stock compared to a large 

capitalization stock, hence the investor would want to be compensated with higher 

expected returns.  Roll (1984) finds that the price returns of orange juice futures contracts 

can predict some of the variation in temperature forecast errors made by the National 

Weather Service (NWS), hence the returns can be used to improve the accuracy of NWS 
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forecasts.  The amount of information transmitted, however, is muted by institutional 

limits that constrain how much prices can change. 

Fama and French (1992) observe that stocks with high book-to-market ratios have 

risk-adjusted returns that tend to outperform stocks with low risk-adjusted book-to-

market ratios, although Fama and French interpret book-to-market to be a proxy for risk 

and not a rejection of the EMH.  On the other hand, Daniel and Titman (1995) find that 

the returns to book-to-market are independent of risk as measured by beta. 

Brown and Hartzell (2001) study the behavior of stock prices for the Boston 

Celtics when information is publically announced.  They find some results that are 

difficult to explain such as the asymmetric response of the stock price to the team’s game 

performance: the stock price tends to fall after losses but also tends to show no reaction to 

wins.  Brown and Hartzell also focus on two events and their impact on the Celtics’ stock 

price.  First, the stock price does not move appreciably on the news of a new stadium that 

ends up generating considerable profit.  Second, the stock price increases more than 8% 

on heavy trading volume when a new head coach is announced.  

Pankoff (1968) is the first to test for market efficiency in the NFL point spread 

betting markets.  He evaluates betting strategies that make use of “expert” analysts’ game 

predictions and finds that while they can be used to improve the chances of winning a bet 

versus the spread, it is not enough to profit net of transaction costs.  Pankoff concludes 

that market efficiency cannot be rejected, at least in this case, although he also believes 

that it may be possible to make better use of the experts’ predictions to create more 

profitable betting strategies. 
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 Vergin and Scriabin (1978) uncover some simple betting strategies on NFL 

games, such as betting on large underdogs, during 1968-74 that are marginally profitable 

after accounting for commission fees bettors pay the sports books to place bets.  Tryfos, 

Casey, Cook, Leger, and Pylypiak (1984) use 1975-81 as their sample period and find 

that three of 70 candidate strategies also evaluated by Vergin and Scriabin are profitable.  

They point out, however, that at the 5% level of significance roughly three strategies 

would be measured as profitable merely by chance so that in a statistical sense, there are 

no profitable strategies. 

Golec and Tamarkin (1991) discover a modestly profitable NFL betting strategy 

that favors bets on teams that are home underdogs over a 1973-87 sample period although 

Gray and Gray (1997) find that the strategy loses its effectiveness over a later sample 

period.  Dare and MacDonald (1996) address some econometric shortcomings from 

Golec and Tamarkin, as well as Gray and Gray, and find that the home underdog strategy 

does not profit in a statistically significant way.  Dare and Holland (2004) further refine 

Dare and MacDonald’s econometric model while also confirming their results.  Borghesi 

(2007a) evaluates the home underdog strategy on a weekly basis and finds that it is more 

effective in games played later in the season. 

Other tests of the EMH applied to the NFL betting markets include Vergin and 

Sosik’s (1999) Monday Night Football and playoff game effects that demonstrate 

significant market underpricing of the home team, and Boulier, Stekler and Amundson’s 

(2006) result that differences in stadium characteristics between the home and visiting 

teams does not add any profitable information.  Borghesi (2007b) finds that bets placed 

on home teams that are based in colder climates tend to win when the visiting team is 
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based in warm climates, thus the market underprices the impact of cold weather 

acclimitization. 

Some explanations have been offered to account for inefficiencies in the betting 

markets.  Gandar, Zubar, O’Brien, and Russo (1988) and Golec and Tamarkin (1991) 

point out that wagers from informed bettors are outweighed by wagers from uninformed 

bettors, and Gandar, Zubar, and Russo (1993) write that Las Vegas sports books raise 

obstacles to restrict wagers from informed bettors.
20

  Likewise, Borghesi (2007a) reasons 

that limits placed on arbitrageurs can explain why the late season home underdog bias has 

persisted over time. 

Most of these studies assume, in the absence of empirical data, that point spreads 

are set and adjusted in order to equate the amounts wagered on each team.  For instance, 

Vergin and Scriabin (1978) write that the intent of the sports book is to, “…assure that 

approximately equal amounts are bet on each side…,” and Boulier et al. (2006) write, 

“The betting spread on NFL games is intended to balance the size of the bets placed on 

the home and visiting teams.”  However, Levitt (2004) observes from an online NFL 

point spread betting competition
21

 that about half of the games played had at least two 

thirds of the money wagered placed on one team.  In games involving a visiting favorite, 

an average of 68% of the betting amounts are on that team.  Since bets on the home 

underdog tend to win, Levitt concludes that the bookmaker generates profits by knowing 

what kinds of biases bettors are prone to lean towards, and maintains point spreads to 

exploit these biases.  One shortcoming with the data Levitt uses is that all bets are the 

                                                 
20

 Andrew Patterson, an odds maker at Las Vegas Sports Consultants, estimates that 20% of all bettors are 

informed.  Konik (2006) chronicles sports books efforts to restrict wagers placed by a wealthy, informed 

sports bettor who tries to conceal his identity. 
21

 Bettors compete against each other and wager equal amounts in every game bet.  Therefore, the percent 

of bets placed on one team is the same as the percent of money wagered on one team. 
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same amount, a constraint that is not the norm.  Paul and Weinbach (2007) make use of 

betting data without the constraint but do end up supporting Levitt’s results. 

This chapter tests for the use of information that comes from a field of medical 

research called chronobiology which deals with the cyclical nature of many basic 

psychophysiological functions.  Winget, DeRoshia, and Holley (1985) summarize various 

studies that measure cognitive, neuromuscular, and cardiovascular functions, among 

others.  Not surprisingly, the studies show that the human body’s performance peaks 

during daylight and usually within late afternoon hours. 

Jehue, Street, and Huizenga (1993) evaluate the performance of NFL teams by 

time zones the visiting teams travel to arrive at the home team site, and find that for 

games played at night Eastern Time (ET) between Pacific (henceforth WC for west coast) 

versus Eastern (henceforth EC for east coast) Time Zone teams during 1978-87, the WC 

teams win 69% of the time regardless of where the game is played.  This is consistent 

with the hypothesis that the outcome of a game should favor the team whose players’ 

circadian rhythms are closer to late afternoon.  Jehue et al., however, do not account for 

the confounding effect that the WC teams could be better than the EC teams, time zone 

differences aside.  Smith, Guilleminault, and Efron (1997) attempt to control for this by 

evaluating a simple betting strategy of always betting on the WC teams to beat the point 

spread versus EC teams during Monday Night Football games where the point spread can 

be thought of as the expected difference in quality between the opposing teams.  Such a 

strategy wins 68% of the time over 1970-94.  Smith et al. are not concerned about betting 

market inefficiency.  Instead, they explain the profitable strategy as essentially being 

equal to what they dub the “circadian advantage”.  
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2.4 Statistical Tests of Efficiency 

 

Pankoff’s (1968) model is implicitly based on rational expectations as formalized by 

Muth (1961): 

 

ACTv-h = β0 + β1 SPRv-h + ε     (2) 

 

where ACTv-h is the actual difference in the points scored between the visiting team minus 

the home team and SPRv-h is the corresponding spread.  β1 < 1 means that bets on the 

home team to beat the spread tend to win, and for β1 > 1 the same holds for the visiting 

team.  Zubar, Gandar, and Bowers (1985) explicitly model Equation (2) and run an F-test 

on the joint null of β0 = 0 and β1 = 1 over the 1983 NFL season.  They do not reject the 

null and thus conclude that the betting market is efficient. 

Amoako-Adu, Marmer, and Yagil (1985) reverse Equation (2) so that ACT is used 

to explain the variation in SPR.  They conclude that, “…there is very little connection 

between closing spreads and actual game outcome…” because the slope coefficient is 

only 0.04 over their sample period of the 1979 – 1981 NFL seasons.  However, their 

model assumes that var(SPR) > var(ACT), something that is not evident in the data.  

Sauer (1998) points out that Amoako-Adu et al.’s findings are based only on the fact that 

the variance of ACT is much larger than that of SPR. The estimator for the slope 

coefficient in Equation (2) is cov(SPR,ACT) / var(SPR) and in Amoako-Adu et al.’s 

specification it is cov(SPR,ACT) / var(ACT).  Figures 2.1(a) and (b) show the slope 

coefficient using Pankoff’s (1968) specification is 1.0 and Amoako-Adu et al.’s 
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specification is 0.17 over the sample data used in this chapter, thus var(ACT) is about six 

times greater than var(SPR).   

While Equation (2) has an intuitive appeal, it has two main drawbacks.  First, it is 

a weak test of efficiency.  There are potentially many exploitable biases that have been 

omitted from the regression that could offset and, when aggregated, produce non-

rejection of the null.  Second, the relative nature of the scores between the opposing 

teams complicates model design and estimation.  As Gandar et al. (1988) point out, a 

home team difference definition where the (implied) away team score is subtracted from 

that of the home team results in different regression estimates compared to a favorite 

team difference definition where the (implied) underdog team score is subtracted from 

that of the favorite.
22

 

To address these shortcomings, Golec and Tamarkin (1991) design a more 

powerful test by including other potential biases into Equation (2): 

 

ACT = β0 + β1 HOME + β2 FAV + β3 SPR + ε   (3) 

  

where HOME and FAV are binary variables that equal one for the home and favorite 

teams, respectively, otherwise they equal zero.  The joint null of efficiency becomes β0 = 

β1 = β2 = 0 and β3 = 1.  Depending on the differencing definition used, however, either 

HOME or FAV will be a unit vector.  This introduces a singularity that makes Equation 

(3) inestimable.  Golec and Tamarkin seek to avoid this problem by randomly selecting 

the differencing definition across games so that roughly half of the sample is based on the 

home team difference and the rest on the favorite team difference, although in doing so 

                                                 
22

 Terminology from Dare and MacDonald (1996). 
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they generate different estimates each time the regression is run.  In interpreting the 

regression results, they recognize that symmetric strategies, such as a bet on the favorite 

team versus a bet on the underdog team, have symmetric coefficients so the negative 

coefficient on FAV also means that a bet on the underdog tends to win. 

  Dare and MacDonald (1996) note that while Golec and Tamarkin (1991) are 

careful to apply the same differencing definition to ACT and SPR within the same game, 

they do not account for the fact that the same differencing definitions can affect the signs 

of the coefficients on HOME and FAV in different ways.  For example, if a favorite team 

differencing definition is used for a certain game, and the away team is favored to win, 

then the coefficient on HOME should be multiplied by −1.  This reasoning leads to the 

following from Dare and MacDonald: 

 

    ACTf-u = β0 + β1 H + β2 SPRf-u + ε    (4) 

 

where ACT and SPR are in terms of the difference between the favorite’s (implied) score 

less that of the underdog. H = 1 if the home team is the favorite, and −1 if the visiting 

team is the favorite.  If none of the games in the sample are pick ‘ems, pushes, or played 

at a neutral site, then β0 is the favorite team bias and β1 is the home team bias.  The use of 

H eliminates the singularities faced in Equation (3) so that Equation (4) is estimable with 

the use of one differencing definition across the entire sample. 

Dare and Holland (2004) point out an unrealistic restriction that Dare and 

MacDonald (1996) implicitly make.  The joint home/favorite and home/underdog biases, 

according to Equation (4), are: 
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β
HF

 = β1 + β0 

β
HU

 = β1 - β0 

 

which can be added together to form the overall home team bias: 

 

  β
H
 = (1/2) β

HF
 + (1/2) β

HU
    (5) 

 

However, empirically speaking, home teams are more often the favorite than the 

underdog.  Dare and Holland’s solution to this discrepancy is to treat the four 

home/visiting and favorite/underdog combinations as separate biases.  Assuming a 

favorite team differencing, the model with favorite team differencing is: 

 

  ACTf-u = α
HF 

HF + α
VF 

VF + β SPRf-u + ε    (6) 

 

where HF or VF equals one if the favorite team is the home or visiting team, respectively, 

and zero otherwise.  α
HF

 is the joint home/favorite bias, the negative of which is the 

visiting/underdog bias, and  α
VF

 is the joint visiting/favorite bias, the negative of which is 

the home/underdog bias. 

Equation (6) can be restated in terms of the betting market’s forecast error by 

subtracting SPR from both sides: 

 

ACTf-u  – SPRf-u = α
HF 

HF + α
VF 

VF + (β – 1) SPRf-u + ε   (7) 
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However, the more relevant variable to study is not necessarily the magnitude of the 

forecast error, but whether or not a bet wins, as reasoned by Gray and Gray (1997).  

Letting Wf be a binary variable that equals one for a winning bet on the favorite against 

the spread and zero otherwise, Dare and Holland’s (2004) model becomes: 

 

Wf  = α
HF 

HF + α
VF 

VF + (β – 1) SPRf-u + ε    (8) 

 

If the market is unbiased, then HF, VF and SPRf-u should have no ability to explain 

variations in the occurrence of a winning bet.  The null hypothesis is, therefore, α
HF 

= α
VF 

= β – 1 = 0. 

To account for Borghesi’s (2007a) finding of the late season home underdog bias,  

binary variable δ equals one for games played after week 14 and zero for all other weeks. 

 

Wf = (α
HF 

+ γ
HF 

δ) HF + (α
VF 

+ γ
VF 

δ)
 
VF + (β – 1) SPRf-u + ε  (9) 

 

where γ
HF

 and γ
VF

 are the changes in the home/favorite and visiting/favorite bias, 

respectively, during late season games.  If the home underdog bias exists throughout the 

NFL season then α
VF

 < 0 and γ
VF

 = 0, and if the bias exists only late in the season then 

α
VF

 = 0 and γ
VF

 < 0. 

To properly estimate the circadian advantage bias, other potential biases should be 

accounted for at the same time, thus the use of Equation (9) as a foundation to which the 

circadian advantage strategies are added.  One strategy involves betting on games played 
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in the evening (ET), as identified by Smith et al. (1997).  A second strategy involves 

betting on games played in the late afternoon (ET).  In this case, and regardless of the 

game’s location, the EC team has the circadian advantage since its players’ circadian 

rhythms are at the late afternoon peak compared to the players from the opposing WC 

team whose circadian rhythms are three hours before peak.  A third strategy involves 

betting on games played in the early afternoon (ET) where, regardless of the game’s 

location, the EC team has the circadian advantage, at least in a relative sense, since its 

players’ circadian rhythms are three hours closer to the late afternoon peak than the WC 

team’s players’ circadian rhythms.  These strategies can be summarized like so: 

 

S1: bet on WC team for games played in the evening (ET) 

S2: bet on EC team for games played in the late afternoon (ET) 

S3: bet on EC team for games played in the early afternoon (ET) 

 

Considering the favorite team differencing used here, the circadian advantage 

strategies can also be stated as the following: 

 

S1: For evening games (ET): 

bet the favorite if the favorite is a WC team (S1F). 

bet the underdog if the favorite is an EC team (S1U). 

S2: For late afternoon games (ET): 

bet the favorite if the favorite is an EC team (S2F). 

bet the underdog if the favorite is a WC team (S2U). 



 39 

 

S3: For early afternoon games (ET): 

bet the favorite if the favorite is an EC team (S3F). 

bet the underdog if the favorite is a WC team (S3U). 

 

Letting Si, SiF, and SiU for i =  1, 2 or 3, be binary variables that equal one if one 

of the above sub-strategies is used, and zero otherwise, each pair of sub-strategies is 

combined by making the following restrictions for strategy i: For games involving a 

circadian advantage, Si = 1 if SiF = 1 and Si = -1 if SiU = 1.  If no circadian advantage 

exists then Si = 0.  These circadian advantage strategy variables are then added to 

Equation (9): 

 

Wf  = (α
HF 

+ γ
H 

δ) HF + (α
VF 

+ γ
V 

δ)
 
VF + (β – 1) SPRf-u + ρ1S1 + ρ2S2 + ρ3S3 + ε  (10) 

 

The joint null hypothesis of market efficiency is that all of the regression coefficients in 

Equation (10) equal zero.  

 

2.5 Data 

 

Game data including point spreads is downloaded from covers.com, and the start time for 

each game is downloaded from pro-football-reference.com.  The sample period is the 22 

NFL regular seasons from 1988 – 2009.  There are a total of 5,096 observations after 

excluding games with missing data, 10 neutral site games, 46 pick ‘ems, and 147 
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pushes.
23

  I account for the end of Daylight Savings Time which usually occurs around 

the middle of the NFL season.  In addition, I also account for the nonobservance of 

Daylight Savings by the team based in Arizona throughout the sample period, as well as 

the team based in Indianapolis until the 2006 season. 

Most NFL games begin at one of three different times; approximately 1:00, 4:00, 

and 9:00 p.m. ET.  Table 2.1 presents the start time intervals used in this chapter, as well 

as the number of observations, for each circadian advantage betting strategy.  Four 

hundred sixty-one games, or approximately 1% of the sample, involve a form of 

circadian advantage as defined in the previous section. 

Data compiled by Sportsinsights.com is used to look for patterns in the proportion 

of money bet on each side of the spread, like Paul and Weinbach (2007), that involve 

games with a circadian advantage.  The compiled data is drawn from six online betting 

sites.  It is assumed that the bettors’ behaviors as well as the spreads offered on these sites 

are not significantly different from other sports books like those in Nevada.  The data 

includes the three NFL regular seasons from 2005 – 2007 for a total of 739 observations 

excluding those that are missing.  Sixty-eight of these observations involve games where 

a circadian advantage exists. 

  

                                                 
23

 Since the regression is in terms of home/visitor and favorite/underdog, neutral site games, pick ‘ems, and 

pushes are excluded since these would show up in the constant term.  Excluding these slightly simplifies 

the model without loss of information. 
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2.6 Results 

 

2.6.1 Statistical Test of Circadian Advantage Unbiasedness 

 

Given that Wf is a binary variable, a probit model is used to estimate the regression 

coefficients as do Gray and Gray (1997).  The estimates for Equation (10), with p-values 

in brackets, are: 

 

Wf = (0.0078 + 0.0104 δ) HF + (0.0135 – 0.0672 δ) VF – 0.0040 SPRf-u +   

      [0.617]     [0.637]               [0.422]    [0.032]             [0.049]   

        

    0.1580 S1 + 0.0223 S2 + 0.0076 S3 

[0.015]        [0.463]         [0.872]      (11) 

 

The likelihood ratio chi-squared statistic for the test of joint exclusion is 20.62 

which has a p-value of 0.008, thus the null hypothesis of betting market efficiency can 

safely be rejected.  The estimated coefficient on late season VF is statistically significant 

at the 5% level, and supports Borghesi’s (2007a) finding that the home underdog bias is a 

late season phenomenon.  While the estimated coefficient on SPR is also statistically 

significant at the 5% level, its magnitude is not of any economic significance.  As for the 

circadian advantage coefficients, only the evening strategy S1 is statistically significant at 

the 5% level.  The insignificance of the afternoon strategies S2 and S3 could mean that 

either these circadian advantages exist and are correctly priced by the market, or they do 

not exist, although it is unlikely that if they do exist that the market would unbiasedly 

incorporate them into the spread in the afternoon and not in the evening.  Instead, this 

could be taken as evidence that the circadian advantage is asymmetric in that the 
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disadvantaged team that plays in the afternoon (ET) suffers significantly less than the 

disadvantaged team that plays in the evening (ET). 

Given other covariates that are at their means, there are two marginal impacts that 

are economically significant.  The late season home underdog strategy has a marginal 

effect of decreasing the probability of winning a bet placed on the favorite by 

approximately seven percentage points.  The marginal effect of using the evening 

circadian advantage strategy on the probability of winning a bet on the favorite is an 

increase of 16 percentage points. 

 

2.6.2 Effectiveness of the Evening Circadian Advantage Strategy 

 

Table 2.2 shows the yearly record of the strategy.  The success rate of 0.651 for the 

strategy over the entire sample period is similar to those found in Smith et al.’s (1997) 

1970 – 1994 sample.  Assuming that the results from Smith et al. are unknown to the 

betting market before its publication, the publication of their study appears not to have 

diminished the effectiveness of the strategy.  A Wilcoxon signed-ranks test is applied to 

the results in Table 2.2 to test the hypothesis that the observed winning percentage does 

not exceed breakeven on a year-by-year basis, and yields a Z-score of 1.8 which is 

significant at the 5% level. 
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2.6.3 Evening Circadian Advantage Betting Patterns 

 

For the sports books to profit from the evening circadian advantage bias, more money 

would have to be bet on the EC team than on the WC team.  Since bets on the WC team 

tend to win, there would be a surplus of money from the losing bets placed on the EC 

team that is then retained by the sports books.  The data from Sportsinsights.com can be 

used to see if this is happening. 

For comparison’s sake, Figure 2.2 is a benchmark distribution of the proportion of 

money bet on a randomly selected team over all games in the sample.  As an example for 

how to interpret the graph, the middle bar shows that for about 17% of the games in the 

sample roughly half of the money bet is on the randomly selected team.  Under these 

circumstances the sports book runs little risk of losing money.  However, the tails of the 

distribution shows that there are some occasions when as little as approximately 10% or 

as much as approximately 90% of the money wagered is on the randomly selected team.  

In these cases, the sports book runs a large risk of losing money.  As should be the case, 

no bias is evident as the distribution appears to be symmetric and its mean value is 0.487.  

Figure 2.3 is the distribution of the proportion of money bet on the visiting favorite.  

Given the well-documented bias in favor of the home underdog, the sports books profit 

by setting the spread such that most of the money wagered is on the visiting favorite.  

Such is the case here as the proportion of money bet is heavily skewed towards the 
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visiting favorite with an average proportion of 0.633.  This confirms findings from Levitt 

(2004) as well as Paul and Weinbach (2007). 

If the sports books profit from the circadian advantage bias the same way it does 

from the visiting favorites then the same kind of skewness should show up in the 

direction of the EC team.  Figure 2.4 is the distribution of the proportion of money bet on 

the EC team for games where an evening (ET) circadian advantage exists.  There are only 

nine observations in the sample although none of them involve a game where a 

significant amount is bet on the WC team.  The mean proportion of money bet on the EC 

team is 0.626 thus allowing for conditions where the sports books profit. 

Perhaps Figure 2.4 does not illustrate a circadian advantage bias but instead a 

general bias skewed towards EC teams.  Some of the EC teams are based in very large 

cities (such as the teams based in New York, Philadelphia and Atlanta) and perhaps have 

more fans who may place bets on their home teams out of reasons of sentiment.  If this is 

true, then the skewness should also be present for the afternoon (ET) circadian advantage 

strategies.  As Figure 2.5 shows, this turns out to not be the case since the distribution of 

the proportion of money bet on the EC team appears to be fairly symmetric with a mean 

value of 0.486. 

To summarize the results, there is statistically significant evidence that the NFL 

point spread betting market inefficiently uses the information contained in the circadian 

advantage for games played in the evening (ET).  The success of a bet based on the 

evening game circadian advantage wins at a rate that is statistically significantly greater 

than breakeven.  Lastly, there is a tendency for the bulk of betting money to be placed on 

the disadvantaged EC teams.  
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2.7 Interpretation of Results 

 

There appear to be informed bettors who are aware of the circadian advantage, as shown 

in these quotes from ESPN.com and covers.com, respectively: 

 

 

What we've seen this season is the problem of West Coast teams playing at 

1 p.m. on the East Coast. Body clocks of West Coast players have trouble 

adjusting in the East. They are playing games at an hour when they are 

normally leaving pregame meals or heading to stadium.
24 

 

Performance on many cognitive and motor tasks peaks in late afternoon. 

Teams travelling west to east to play night games are playing with their 

biological clocks set earlier, close to the most favorable time, and teams 

traveling from east to west are playing at relatively later point in their 

biological "day," conferring a relative handicap.
25

 

 

However, the existence of a circadian advantage bias suggests that not all bettors 

are informed, such as perhaps those who rely on measures of sentiment described by 

Avery and Chevalier (1999).  This also means that those who are informed are unable to 

arbitrage away the bias.  These points are consistent with Gandar et al. (1988), Golec and 

Tamarkin (1991), Gandar et al. (1993), and Borghesi (2007a).
26

 

Even though informed bettors who are aware of the circadian advantage may have 

lower betting limits than the uninformed bettors, they still send a signal, albeit a restricted 

one, to the sports books.  The sports books do not have to know anything specific about 

the circadian advantage: They only need to know which team the informed bettors prefer.  

                                                 
24

 John Clayton (Oct 8, 2008), “Long trips force teams to try three-time-zone defense,” 

http://sports.espn.go.com/nfl/columns/story?columnist=clayton_john&id=3632212 (accessed July 25, 

2011). 
25

 Paul Ingmundson, as quoted by Brian Covert, “Study says West coast teams have advantage,” 

http://www.covers.com/articles/articles.aspx?theArt=81600&tid=25 (accessed July 25, 2011). 
26

 Also Konik (2006) observes that sports books often have a good idea of who the informed bettors are, 

and cut their exposure to these bettors by either lowering their betting limits or by not allowing them to 

even place a bet. 
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In other words, the sports books are buying information at a low cost through their 

exposure to the informed bettors.  Based on the incomplete signal, the sports books then 

partially adjust the point spread in the direction of the advantaged WC team.  The 

adjusted spread does not reflect all of the information since the informed bettors are not 

allowed to wager unconstrained, hence the bias still exists.  Wagers on the WC team are 

still underpriced or conversely wagers on the EC team are still overpriced. 

The uninformed bettors who are unaware of the circadian advantage, however, 

believe that the movement in the spread makes a bet on the EC team underpriced.  This 

perception entices more betting on the EC team relative to the WC team.  This is shown 

in Figure 2.4. 

 

2.8 Conclusions 

 

I offer some evidence that the NFL point spread betting market is capital market 

inefficient by showing that a strategy of betting on the WC team to beat the point spread 

when it is playing against an EC team in the evening (ET), regardless of location, wins at 

a rate significantly above breakeven.  Economic theory posits that in a competitive 

market the existence of betting profits on the WC team should encourage more WC team 

betting to the point where profits vanish.  However, this does not appear to be the case 

here. 

Instead, sports books may be acquiring a partial signal consistent with the 

circadian advantage from restricted wagers placed by bettors they know to be informed.  

The sports books then offer spreads that account for the partial signal to uninformed 
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bettors who are unaware of the circadian advantage.  From the perspective of the 

uninformed bettors, the offered spread makes wagers on the (unknowingly) 

disadvantaged team relatively cheap.  From the sports books perspective, this encourages 

overbetting on what tends to be a losing wager.  The surplus in the losing amount bet, 

after the winning bets are paid off, becomes the sports books profits above the vigorish. 
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CHAPTER 3: A TEST OF SENTIMENT IN THE NFL POINT 

SPREAD BETTING MARKETS 

 

 

3.1 Introduction 

 

In 1934, Graham and Dodd (2009) describe how it may be possible to profit from 

investing in the stock market by recognizing that part of a stock price is sometimes made 

up of speculative value that represents a “…strong psychological bias...”  in addition to 

investment value that is “…justified by the facts.”  This chapter tests for these 

observations in the NFL betting markets.  In this case there may be bettors who place 

wagers based partly on factors unrelated to the relative skills of the opposing teams or 

who incorrectly weight related factors.  Based on Graham and Dodd, the hypothesis in 

this chapter is that bettors tend to profit when they place wagers opposite the 

“sentimental” bettors. 

Similar research is done by Avery and Chevalier (1999) who find that the 

National Football League (NFL) betting markets’ point spreads
27

, which are somewhat 

analogous to stock market prices, move with various measures of sentiment derived from 

                                                 
27

 The point spread is the predicted difference in the score between the team expected to win the game (the 

favorite) and its opponent (the underdog).  A bet on the favorite wins if the favorite wins the game by an 

amount greater than the point spread, otherwise a bet on the underdog wins. 
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the teams’ past performances.  They also find that a contrarian strategy, where bets are 

placed on the opponents of the sentimentally preferred teams, are marginally profitable.  

Avery and Chevalier’s results are somewhat analogous to the superior performance of 

value stocks versus growth stocks if value (growth) stocks are treated as the equivalent of 

football teams with low (high) sentiment. 

As in the previous chapter of this dissertation, I use the sports betting market as a 

platform to test for hypotheses usually made about the financial markets.  I estimate the 

impact bettor sentiment has on betting odds, and if biases exist because of sentiment I 

investigate the extent of the biases and who stands to benefit.  Assuming that sentiment is 

not necessarily entirely a function of on-field performance, I use a measure taken from 

surveys that ask respondents which teams are their favorites to follow.  I also make use of 

the same database as in the previous chapter of this dissertation that records the percent 

of bets and money placed on each team to determine if sports books are profiting from 

bettor sentiment. 

Section 2 is a review of the relevant literature.  Section 3 discusses the theoretical 

model.  Section 4 describes the data and the construction of the sentiment variable.  

Section 5 reports the results and Section 6 lists the conclusions. 

 

3.2 Relevant Literature 

 

There are a number of different definitions of sentiment.  A conventional definition is, 

“an attitude, thought, or judgment prompted by feeling.”
28

  Baker and Wurgler’s (2006) 

definition is, “propensity to speculate,” and Avery and Chevalier’s (1999) is, “…any 

                                                 
28

 Webster’s Ninth New Collegiate Dictionary (1989) 
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nonmaximizing trading pattern among noise traders…”  In any case, sentiment can lead 

to a biased estimate of the value of an asset.  

A potential source of betting sentiment comes from teams who have won most of 

their games in the recent past.  In this case, bettors develop a preference for recent 

winners in the belief that they will be more likely to beat the point spread in the next 

game.  Camerer (1989) tests for this “hot hand” hypothesis in the National Basketball 

Association (NBA) betting market.  He finds, instead, that bets on teams that have lost 

consecutive games against the point spread against teams that have won consecutive 

games against the point spread win at an above breakeven rate of 53.7%.
29

   

Mispricings are also found in the horse racing betting market.  In a sample of over 

20,000 races, Ali (1977) compares subjective odds calculated from the betting pools 

placed on each horse with the objective, empirical odds and finds biases that underprice 

the favorites and overprice the long shots.  In Ali’s sample, favorites win 35.8% of their 

races compared to average posted odds of 32.4% and long shots win 2.1% of their races 

compared to average posted odds 2.8%.  Both differences are statistically significant at 

the 1% level. 

The profitability of contrarian strategies are supported by stock market research 

from DeBondt and Thaler (1985) who find that stocks with low returns over the previous 

three years outperform stocks with high returns during the same period over the next 

three years by 25%.  Likewise, Fama and French (1992) find that very high book to 

market (B/M) “value” portfolios have an average monthly return of 1.8% compared to the 

very low B/M “growth” portfolios that return 0.3%.
30

  Bauman (1965) creates two 

                                                 
29

 As shown in the previous chapter, the breakeven probability is about 52.4%. 
30

 Book value is the value of an asset at the time it is bought less depreciation afterwards. 
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hypothetical stock portfolios based on how many investment managers own them.  Over 

a ten year span, the “Least Popular Group” of stocks enjoyed higher returns than the 

“Most Popular Group.” 

Some research focuses on sentiment as an explanation for these patterns of 

returns.  Kahneman and Riepe (1998) note that, “The human mind is a pattern-seeking 

device, and it is strongly biased to adopt the hypothesis that a causal factor is at work.”  

In other words, humans search for patterns in order to improve decision making even 

when no underlying patterns exist, as is often the case in predictive markets like the stock 

or sports betting markets.  This is seconded by Lakonishok, Shleifer and Vishny (1994) 

who wrote, “Putting excessive weight on recent past history, as opposed to a rational 

prior, is a common judgment error…”  Gilovich, Vallone and Tversky (1985) find that 

basketball observers place too much weight, compared to what is empirically observed, 

on baskets consecutively made or missed in predicting the result of the next basket 

attempt. 

Another potential source of sentiment comes from stock analysts who recommend 

buy and sell decisions.  Jegadeesh, Kim, Krische and Lee (2004) find that these analysts 

tend to look favorably towards characteristics usually associated with growth stocks.  

Upward recommendations engender even more public sentiment in growth stocks. 

A puzzle is why value stocks have continued to have a tendency to outperform 

growth stocks considering that arbitrageurs would be sure to profit from the gap until it 

disappears.  Shleifer and Vishny (1997) offer a reason through a conceptual model that 

explains the behavior of arbitrageurs.  They conclude that when an investment strategy 

takes time to learn or when volatility is high, it becomes more costly to arbitrage.  In the 
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case of value stocks tending to outperform growth stocks, there still may not be enough 

reliable information to realize arbitrage profits, especially if the arbitrageurs are acting on 

behalf of sponsors with shorter investment horizons.  Hence the value/growth spread 

persists. 

Avery and Chevalier (1999) estimate the effect hypothesized sources of sentiment 

have on changes to NFL point spreads from when they are first set at the beginning of the 

week prior to the games to when the last bet is placed right before the games start.  The 

potential sources they investigate include favorable opinions from publicly acknowledged 

football experts, similar to the stock analysts studied in Jegadeesh et al. (2004), teams 

that have tended to win in the recent past (the “hot hand”) and prestigious teams who 

advanced to the playoffs the previous season.  As a measure of anti-sentiment, they also 

note those teams who finished in last place in their divisions the previous season.  Avery 

and Chevalier find that bettors tend to extrapolate these measures too far, to the point 

where the betting odds become overpriced against the sentimentally preferred team.  

Contrarian bets win at a rate of 54.7%. 

 

3.3 The Model 

 

Let Si be the amount of sentiment on team i, i being one of the 32 teams in the NFL, and 

let Sf-u be the amount of sentiment towards the favorite team less that of the underdog.  

Avery and Chevalier (1999) find that relative sentiment between teams can have an 

impact on point spreads.  Thus, it is likely that the proportion of bettors who place wagers 

on the favorite, denoted Pf, to beat the point spread, depends on Sf-u:  
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Pf  = ρ0 + ρ1 Sf-u + ε     (1) 

 

Since the number of bets placed on the favorite should increase as sentiment for the 

favorite increases, ρ1 > 0.  ρ0 is the average proportion of bets placed on the favorite when 

there is no additional sentiment on the favorite compared to the underdog. 

To test if the betting market uses the information contained in sentiment 

efficiently, a simple regression like Equation (2) below could be used: 

 

Wf  = γ0 + γ1 Sf-u + ε     (2) 

 

Wf is a dummy variable that equals one if a bet placed on the favorite to beat the spread 

wins.  By Avery and Chevalier’s (1999) definition of sentiment, there should be no 

profitable signal so the null is γ1 = 0.  However, as noted in the previous section, there 

have been a number of findings in the stock market that growth stocks that have gained 

sentiment by previously outperforming value stocks tend to reverse fortune.  This, along 

with Avery and Chevalier’s results and Camerer’s (1989) rejection of the “hot hand” 

hypothesis, leads to an alternative hypothesis that γ1 < 0. 

Equation (2) may be omitting variables that may have some ability to explain 

variations in Wf hence resulting in a biased estimate of γ1.  Equation (3) below, identical 

to that cited in the previous chapter of this dissertation, is used as a baseline to account 

for these biases that may be coming from betting strategies based on who is the 

home/visiting team or who is the favorite/underdog team. 
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Wf  = α
HF 

HF + α
VF 

VF + (β – 1) SPRf-u + ε    (3) 

 

HF equals one if the favorite team is also the home team, zero otherwise, and VF equals 

one if the favorite team is also the visiting team, zero otherwise.  SPRf-u is the point 

spread.  The null hypothesis of market efficiency is α
HF 

= α
VF 

= β – 1 = 0.  The measure 

of sentiment is appended to Equation (3) to arrive at: 

 

Wf  = α
HF 

HF + α
VF 

VF + (β – 1) SPRf-u + δ Sf-u + ε   (4) 

 

The joint null hypothesis becomes α
HF 

= α
VF 

= β – 1 = 0 and δ ≥ 0.  The alternative one-

sided hypothesis is δ < 0.   

 

3.4 Data and Sentiment Variable 

 

Game data including point spreads are downloaded from covers.com.  The sample period 

is from the seven NFL regular seasons from 2004 – 2010.  Appended to this data is the 

proportion of bets placed on the visiting team which is obtained from sportsinsights.com.  

After excluding games with missing observations and games that are either pushes, pick 

‘ems or played at neutral sites there are 1,721 observations.
31

 

The measure of sentiment is taken from survey results conducted by the Harris 

Poll.  Each year towards the beginning of the NFL season respondents who identify 

                                                 
31

 Since the model is based on potential home/away and favorite/underdog biases, pushes, pick ‘ems and 

neutral site games contribute nothing to the estimation and are therefore omitted. 
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themselves as NFL fans are asked, “What are your two favorite National Football League 

teams?”  Survey results in rank order during year t, denoted Rit, are listed in Table 3.1.  I 

assume that the respondents’ answers reflect the sentiment of bettors and do not change 

during the year, regardless of any of the teams’ on-field performances.  This is a practical 

matter as the surveys are only conducted once a year.  I also assume that the respondents’ 

answers depend not only on the teams’ on-field performances but also on other factors 

such as: 

 

 how close the teams are geographically located to the respondents 

 how many years the team has been in existence 

 off-field events that may help or hurt a team’s reputation 

 the hiring of a popular player 

 

In this respect, using this survey data may be a more complete measure of sentiment than 

using on-field performance alone. 

Table 3.2 shows how much a team’s on-field performance relates to sentiment for 

that team.  Spearman rank correlations are computed between the ordinal rank from the 

Harris Poll surveys in one year and the ordinal rank of the number of wins from the 

previous year.  In general, the results show that a team gains more sentiment if they win 

more often during the previous season.  Although the two appear to be correlated with the 

expected sign, the relationship is in general not exceptionally strong.  This could mean 

that there are off-field factors, such as those listed above, which also influence sentiment. 



 56 

 

Regressions that use ordinal rankings can be difficult to interpret.  For instance, 

how is a one unit increase in rank to be interpreted?  Is the impact different depending on 

the level of the rank?  It would be more informative to have the data in raw form where 

the number or percent of respondents for each team is known, however that information 

is not available. 

To address this shortcoming, each team is assigned to one of three portfolios 

based on sentiment, a high sentiment portfolio S
*

H made up of the eight most 

sentimentally preferred teams, a low sentiment portfolio S
*

L made up of the eight least 

sentimentally preferred teams and a medium sentiment portfolio S
*

M made up of the 

remaining 16 teams.  S
*

H is also given an ordinal value of two, S
*

M a value of one and S
*

L 

a value of zero.  For instance, in games where the favorite is in the low sentiment 

portfolio and the underdog is in the high sentiment portfolio the difference in the ordinal 

values is -2.  I am most interested in determining the impact on the point spread when 

teams from different portfolios play against each other, something I call relative portfolio 

sentiment.  Dummy variables are used to record the occurrence of relative portfolio 

sentiment between the opposing teams and equal one under the following conditions 

(zero otherwise): 
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Relative 

portfolio 

sentiment 

dummy  

 

If favorite 

in… 

 

…and 

underdog in 

dS
*

-2,f-u S
*

L S
*

H 

dS
*

-1,f-u S
*

L(or S
*

M)  S
*

M (or S
*

H) 

dS
*

1,f-u S
*

M (or S
*

H)  S
*

L (or S
*

M) 

dS
*

2,f-u S
*

H S
*

L 

 

For example, in 2010 the Dallas Cowboys are assigned to portfolio S
*

H since it is 

the most sentimentally preferred team and the Jacksonville Jaguars are assigned to 

portfolio S
*

L since it is the least sentimentally preferred team.  If Jacksonville is favored 

to beat Dallas, then the dummy variable dS
*

-2,f-u = 1 and all of the other relative portfolio 

sentiment dummies are equal to zero. 

Measuring relative portfolio sentiment between two teams leads to the following 

model for the proportion of wagers placed on the favorite team from Equation (1): 

 

Pf  = β0 + α
HF 

HF + α
VF 

VF + (β – 1) SPRf-u + 

ρ1 dS
*

-2,f-u + ρ2 dS
*

-1,f-u + ρ3 dS
*
1,f-u + ρ4 dS

*
2,f-u + ε         (5) 

 

where potential biases from the right hand side of Equation (3) are also included.  Given 

previous results that contrarian investments against an asset with high investor sentiment 

tend to profit, the hypothesized values for the coefficients are: 
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 ρ1 < 0 and ρ2 < 0: bettors have less sentiment for the favorite than the underdog, 

 ρ3 > 0 and ρ4 > 0: bettors have more sentiment for the favorite than the underdog, 

 ρ2 < ρ1 and ρ3 < ρ4 given the magnitudes of the relative differences in sentiment. 

 

To test for efficient markets, the relative portfolio sentiment dummies are 

appended onto Equation (3): 

 

Wf  = α
HF 

HF + α
VF 

VF + (β – 1) SPRf-u + 

δ1 dS
*

-2,f-u + δ2 dS
*

-1,f-u + δ3 dS
*

1,f-u + δ4 dS
*
2,f-u + ε   (6) 

 

The null hypothesis is that all coefficients equal zero.  Given a profitable contrarian 

strategy, the alternative is δ1 > 0, δ2 > 0, δ3 < 0 and δ4 < 0. 

 

3.5 Results 

 

The estimated coefficients for Equation (5), with p-values from the appropriate one-sided 

hypothesis tests described above, are: 

 

Pf  = 64.9882 – 15.6019
 
HF – 1.2529 SPRf-u + 

                                             [0.000]     [0.000]           [0.000] 

 

-3.7965 dS
*

-2,f-u - 1.0584 dS
*

-1,f-u + 0.5220 dS
*
1,f-u + 0.6347 dS

*
2,f-u 

 [0.012]                 [0.076]                 [0.200]                [0.250]                (7) 
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In all other games not accounted for by the explanatory variables, about 65% of the 

bettors place a wager on the favorite, a result that is consistent with Levitt (2004).  While 

all of the relative portfolio sentiment dummies are of the hypothesized signs, only the 

dummies when the favorite team has lower measure of sentiment on it than the underdog 

are statistically significant.  When the favorite team is in the high sentiment portfolio and 

the underdog is in the low sentiment portfolio then 3.8% fewer bets are placed on the 

favorite.  These results suggest that sentiment, as measured in this chapter, has an impact 

on the relative flow of bets placed on teams.   

Probit estimates for Equation (6), with p-values in brackets, yield the following 

results: 

 

 

Wf  = 0.0198
 
HF + 0.0408

 
VF - 0.0084 SPRf-u + 

                                             [0.500]          [0.178]        [0.016] 

 

0.1223 dS
*

-2,f-u + 0.0081 dS
*

-1,f-u + 0.0345 dS
*
1,f-u + 0.0546 dS

*
2,f-u 

 [0.110]                 [0.815]                 [0.234]                [0.213]                (8) 

 

None of the relative portfolio sentiment dummy variables are statistically significant at 

any of the conventional levels.  The most significant coefficient is on dS
*

-2,f-u which is 

also not quite significant at the 10% level.  The estimated coefficient on dS
*

-2,f-u implies 

there is a 12% increase in the probability of winning a bet placed on the favorite if the 

favorite has low sentiment and the underdog has high sentiment.  Given the marginal 

statistical insignificance, this weakly supports the hypothesis that contrarian strategies 

tend to be profitable. 
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The regressions are run under the unrealistic assumption that equal amounts of 

money are bet on each game.  However, amounts wagered are not included in the 

database, hence weighting the observations is not possible.  If more money is wagered in 

games involving teams with high sentiment then, with the given data, games involving 

teams with high sentiment are underweighted.  Therefore, the results are less significant 

than would be the case if proper weights are applied. 

Over the sample period there are 43 games played between favorites in the low 

sentiment portfolio and underdogs in the high sentiment portfolio with the favorite 

beating the spread 26 times for an above breakeven success rate of 0.605.  However, 

given these conditions a binomial process with a success rate that equals the breakeven 

probability of 0.524 has a probability of 0.2519 of exceeding 0.605.  Therefore, the 

results are not significantly different from breakeven. 

Equation (7) shows that there are more bettors who wager on a team with high 

sentiment compared to an opponent who has low sentiment.  Whether or not this has an 

impact on the point spread and betting profits is debatable since the results from Equation 

(8) and the in-sample betting record are only weakly supportive.  This suggests the 

possibility that the contrarian bettors, although a minority in number, tend to bet in larger 

amounts thus closing off any profitable opportunities.  To test if these conditions exist, I 

examine the distribution of money bet on the favorite compiled from sportsinsights.com, 

as opposed to the number of bets placed.  There are 710 games, or about 41%, of the 

games in the sample for which this kind of data is available. 

I compare the proportion of money bet on the favorite between the 22 games in 

the sample where the favorite is in S
*

L and the underdog is in S
*

H (treatment sample T), 
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and the other 688 games (control sample C).  If the point spread is set so that there are no 

biases in terms of money bet associated with a contrarian strategy then the proportions of 

money bet on the favorite in both the treatment and control samples should be the same.  

In the treatment sample the mean value is μT = 0.4837 with a standard deviation of 0.1862 

and in the control sample the mean value is μC = 0.5331 with a standard deviation of 

0.1972.  A t-test of the null hypothesis that μT = μC yields an insignificant p-value of 

0.2469.  Thus, the statistical evidence supports the hypothesis that the money wagered by 

sentimental bettors is balanced by money wagered by contrarian bettors. 

 

3.6 Conclusions 

 

Bettors who place wagers based on sentiment appear to be similar to stock market 

investors who invest in growth stocks.  Lakonishok et al. (1994), among other finance 

researchers, often refer to growth stocks as glamour stocks in an acknowledgement that 

growth stock investors sometimes make decisions based on sentimental reasons.  There is 

evidence that a contrarian investment strategy in favor of value stocks tends to profit.  

Avery and Chevalier (1999) find evidence of a marginally profitable contrarian strategy 

in the NFL betting market. 

The evidence in this chapter finds that the market, as a whole, is not using 

sentiment in a biased fashion.  However, results from Equation (7) show that, everything 

else the same, sentimental betting leads to overpricing the sentimentally preferred team.  

Contrarian bettors take the opposite bet in betting amounts that offset the sentimental 

bettors.  Sentimental bettors tend to lose their wagers, and their losses are given to the 
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contrarian bettors who tend to win their wagers.  However, taken as a whole the betting 

market appears to be making efficient use of sentiment. 
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Table 1.1(a): Coefficients Significantly > 0 by Referee, 2004 - 2011 
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Table 1.1(b): Coefficients Significantly > 0 by Referee, 2008 - 2011 
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Table 2.1: Circadian Advantage Betting Strategies 

 

Strategy Team bet on Favorite 

team  

Game start time 

(ET) 

Number of 

observations 

1F Favorite WC 7:00 – 9:00 p.m. 42 

1U Underdog EC 7:00 – 9:00 p.m. 21 

2F Favorite EC 4:00 – 5:15 p.m. 98 

2U Underdog WC 4:00 – 5:15 p.m. 181 

3F Favorite EC 12:30 – 2:00 p.m. 50 

3U Underdog WC 12:30 – 2:00 p.m. 69 
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Table 2.2: Circadian Advantage Evening Strategy Bets Won and Lost by Year 

            

   Year  W L Year  W L  

   1988  1 0 1999  2 0 

   1989  3 1 2000  1 1 

   1990  4 1 2001  4 0 

   1991  0 1 2002  2 3 

   1992  3 1 2003  1 0 

   1993  1 3 2004  1 0 

   1994  0 0 2005  2 3 

   1995  2 3 2006  1 0 

   1996  3 2 2007  2 1 

   1997  2 0 2008  3 1 

   1998  3 0 2009  0 1 

 

  1988-1998  22 12 (0.647) 

  1999-2009  19 10 (0.655) 

 1988-2009  41 22 (0.651) 
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Table 3.1: Rank Order of Respondents’ Favorite NFL Teams 

 

Rank ordering to question, “What are your two favorite National Football League 

teams?” where a rank of “1” signifies most favorite and a rank of “32” signifies least 

favorite. 

 

 

2004 2005 2006 2007 2008 2009 2010 

Arizona Cardinals 32 31 29 29 24 16 11 

Atlanta Falcons 21 18 23 28 27 13 10 

Baltimore Ravens 29 28 30 26 28 26 19 

Buffalo Bills 27 23 27 30 20 27 29 

Carolina Panthers 18 16 13 14 19 25 23 

Chicago Bears 6 8 6 5 6 3 9 

Cincinnati Bengals 24 30 23 18 32 29 27 

Cleveland Browns 24 15 19 13 22 22 26 

Dallas Cowboys 2 2 2 1 1 1 1 

Denver Broncos 9 10 11 16 15 12 14 

Detroit Lions 26 18 17 25 29 31 30 

Green Bay Packers 1 1 4 4 5 6 3 

Houston Texans 19 25 28 31 26 23 17 

Indianapolis Colts 11 9 3 2 3 4 2 

Jacksonville Jaguars 28 32 32 32 30 32 32 

Kansas City Chiefs 21 21 20 23 22 27 25 

Miami Dolphins 13 18 13 14 16 17 21 

Minnesota Vikings 15 16 21 19 12 10 8 

New England Patriots 3 3 5 6 2 5 6 

New Orleans Saints 30 29 31 21 17 24 5 

New York Giants 4 13 9 7 7 8 7 

New York Jets 6 11 22 17 9 20 16 

Oakland Raiders 12 7 10 11 13 21 17 

Philadelphia Eagles 5 5 7 8 8 7 13 

Pittsburgh Steelers 15 3 1 3 4 2 4 

San Diego Chargers 31 27 23 10 18 14 20 

San Francisco 49ers 8 6 8 9 11 11 12 

Seattle Seahawks 14 24 12 19 14 14 31 

St. Louis Rams 20 21 26 23 30 30 24 

Tampa Bay Buccaneers 17 11 17 21 21 19 27 

Tennessee Titans 23 25 15 26 25 9 21 

Washington Redskins 10 14 16 12 9 17 15 

 

Source: Harris Poll 
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Table 3.2: Spearman Rank Coefficients on Sentiment and Lagged Performance 

 

Year Correlation 

2004 0.2947 

2005 0.0686 

2006 0.3048 

2007 0.3185 

2008 0.4089 

2009 0.5750 

2010 0.6700 

 

 

  



 74 

 

 
 

 

 

  

m 

$ 

m
* 

MRT 

L / [B (c + 1)] 
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APPENDIX: COMPARISON AND COMBINATION OF CHAPTERS 

TWO AND THREE 

 

 

The main result from Chapter Two is that the market inefficiently makes use of the 

circadian advantage, a finding that differs from Chapter Three where the market appears 

to be making efficient use of sentiment.  The difference in conclusions could occur if 

there are many bettors who are aware of sentiment so that contrarian betting against 

sentiment arbitrages the market while there are few bettors who are aware of the 

circadian advantage.  Therefore, while the sports book can use circadian advantage to 

manipulate the betting market to increase its profits it cannot do so for sentiment.   

The regressions from Chapter Two and Chapter Three could both suffer from 

omitted variable bias since the variable of interest in one chapter is omitted in the other 

chapter.  To address this issue, a regression that combines the regressions from the two 

chapters is estimated with results as follows: 

 

Wf = (-0.0030 – 0.0960 δ) HF + (0.0234 – 0.0531 δ) VF – 0.0052 SPRf-u + 

                       [0.927]    [0.019]               [0.499]    [0.354]             [0.164] 

 

0.0906 S1 + 0.0625 S2 + 0.0720 S3 + 

                                          [0.487]         [0.309]        [.496] 

 

0.1784 dS
*

-2,f-u + 0.0259 dS
*

-1,f-u + 0.0721 dS
*

1,f-u + 0.0384 dS
*

2,f-u 

                  [0.033]                 [0.493]                [0.022]                [0.412] 
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The first row of coefficients controls for other potential biases from Dare and Holland 

(2004), the second row are the circadian advantage strategies, and the third row are the 

measures of relative sentiment between the favorite and underdog. 

As far as the coefficients’ economic significance, all of the circadian advantage 

strategies appear to contribute in a meaningful way by adding approximately six to nine 

percentage points to the probability of winning a bet placed on the favorite.  A contrarian 

bet against sentiment when the favorite team has low sentiment on it and the underdog 

has high sentiment is also economically significant by adding 18 percentage points to the 

chance of winning a bet on the favorite.  However, while the contrarian sentiment bet is 

also statistically significant, the evening circadian advantage strategy S1 no longer is. 

One reason for the changes in statistical significance may be because of the data 

sample.  The sample size from Chapter Two is from 22 seasons with 5,096 observations 

compared to the sample size from Chapter Three of six seasons with 1,479 observations 

so that the combined results could be due to statistical chance and do not describe the 

actual relation well.  A second reason is that the evening circadian advantage strategy 

may coincidentally be a proxy for the contrarian sentiment bet.  From Chapter Two, a bet 

on the WC team tends to win if it also enjoys the evening circadian advantage.  From 

Chapter Three, a bet on the favorite team when it is significantly less popular than the 

underdog team tends to win.  To match these results, it must be the case that the WC team 

tends to be less popular than the EC team, and that sentimental betting takes place more 

often in the evening when the games tend to have national interest. 
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Some evidence to support this comes from the Harris Poll.  Of the eight most 

popular teams, on average, over the sample period five are based on the EC (New 

England, Pittsburgh, Indianapolis, Philadelphia, and the New York Giants) and none are 

based on the WC.  Therefore, what was viewed in Chapter Two as a bet against the EC 

teams based on circadian advantage is actually a contrarian bet against EC teams because 

more bettors have sentiment for the EC team.  As mentioned in the previous paragraph, 

betting on sentiment may be magnified during the evening when the more compelling 

games to watch are played. 

At the beginning of this section it was mentioned that sports books may 

persistently be taking an active position involving the circadian advantage because a 

small proportion of bettors are aware of it.  If it is the case that the circadian advantage is 

a proxy for the contrarian sentiment bet then persistence would have to exist for a 

different reason.  Shleifer and Vishny (1997) cite the amount of variance around the 

signal as a factor.  In this case, some bettors may be aware that contrarian sentiment 

wagers tend to win but there may be difficulties in measuring sentiment or in determining 

how much weight the market places on sentiment.  In addition, the weighting may change 

over time.  If this is the case, then the loss in reliability over the strategy’s effectiveness 

may deter informed bettors from arbitraging away the sentiment bias. 
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