
Islamic University of Gaza  

Deanery of Graduate Studies  

Faculty of Engineering  

Electrical Engineering Department 

 

 

 
Design of GA-Fuzzy Controller for Buck  

DC-DC Converters 
 

 

A Thesis Submitted To The Faculty Of Engineering. 

In Partial Fulfillment of the Requirements For The 

Degree of Master of Science in Electrical Engineering 

 

 

 

 

 

  Prepared By:                                   Advisor  

     Mohammed A. Kaabar                 Dr. Basil Hamed 

 

 

 

 و2014 -هـ 1435



ُبقشت)صفحت َخيجت انحكى عهى انبحث  (َخيجت انحكى يٍ قبم نجُت انً  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

 

 

 

 

 

 

 

 

DEDICATION 

 

I dedicate this thesis to my Parents in recognition of their endless help 

and support. I also dedicate this work to my wife and to my children, 

Ahmed, Leila and Laian who are my most precious thing in this life. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

ACKNOWLEDGMENTS 

 

First and foremost, at the beginning, I thank ALLAH for giving me the 

strength and health to let this work see the light. 

I would like to express my gratitude and appreciation to Dr. Basil Hamed for 

all the help and guidance he provided throughout my graduate program. 

Special thanks go Dr. Assad Abu-Jasser and Dr. Mohammed Mushtaha - 

thesis examiners- for their patience, guidance, and generous supports during this 

research. 

I would like to thank my family, parents and my wife for their encouragement, 

patience, and assistance overall years. I am forever indebted to my parents, who have 

always kept me in their prayers. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
 

 



iv 
 

ABSTRACT 

By 

Mohammed A. Kabar 

The Islamic University of Gaza, 2014 

Gaza, Palestine 

 

 
 

Fuzzy logic control (FLC) systems have been tested in many technical and 

industrial applications as a useful modeling tool that can handle the uncertainties and 

nonlinearities of modern control systems. The main drawback of the FLC 

methodologies in the industrial environment is challenging for selecting the number 

of optimum tuning parameters. In this dissertation, a method has been proposed for 

finding the optimum membership functions, output gain and inputs gain of a fuzzy 

system using genetic algorithm (GA). A synthetic algorithm combined from fuzzy 

logic control and GA is used to design a controller for DC-DC converter. To exhibit 

the effectiveness of proposed algorithm, it is used to optimize the triangle 

membership functions of the fuzzy model DC-DC converter system as a case study. It 

is clearly proved that the optimized fuzzy controllers provided better performance 

than a fuzzy model for the same system in terms of settling time, steady state error 

and ripple voltage at the output response. The evaluation of the output has been 

carried out by software simulation using MATLAB Simulink.  

 

 

 

 

 

 

 



v 
 

 الملخص

 

اَظًت انخحكى انضبببيت حى اخخيبرهب في انعذيذ يٍ انخطبيقبث انخقُيت وانصُبعيت كأداة حخحكى في 

جهىنت انغزض يٍ اسخخذايبث أَظًت انخحكى انضبببيت في . أَظًت انخحكى انحذيثت انغيز خطيت وانً

في هذِ الأطزوحت، يخى عزض طزيقت يقخزحت  .انبيئت انصُبعيت هى اخخيبر قيى انًخغيزاث انًثبنيت

خزج نهًخحكى انضبببي لإيجبد انشكم  نهًذاخم نهخحكى في شكم الأعضبء ويعبيلاث انخكبيز وانً

انخىارسييت انًزكبت يٍ انًخحكى انضبببي  حخكىٌ .وانقيى انًثبنيت نهب ببسخخذاو انخىارسييت انجيُيت

نعزض انخأثيزاث انخىارسييت يسخخذو  .ثببج -يع انخىارسييت انجيُيت في حصًيى يحىل ثببج

يٍ انىاضح . ثببج كحبنت دراسيت -نخفعيم وظبئف الأعضبء في انًخحكى انضبببي نهًحىل ثببج

بأٌ انًخحكى انضبببي سود أداء أفضم يٍ انًخحكى انضبببي نىحذِ نُفس انُظبو يٍ حيث سيٍ 

حى حقييى انُخبئح بىاسطت . انخسىيت، خطأ انحبنت انًسخقزة وحًىج انجهذ في اسخجببت انجهذ انُبحح

. انسيًيىنيُك/ بزَبيح انًبحلاة

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

Computer Software Used: 

 

 Microsoft ®Windows 7 Operating Systems  

 Microsoft ®Word 2010 

 MATLAB ®Version 2010b 

 Simulink Version  

 Acrobat Reader X 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

TABLE OF CONTENTS 

 

CHAPTER 1 INTRODUCTION…………………………………………………………….1 

1.1Switch-Mode DC-DC Converters………………………………………...……..……………………1 

1.1.1Buck Converter……………………………………………………………..…………......…..……1 

1.2Control of DC-DC Converters……………………………………………….…..………...…....……3 

1.3Literature Review…………………………………………………………………..…………………4            

1.4Thesis Contribution……………………………………………………………………..…………….5 

1.5Outlines Of The Thesis…………...……………………………………………………….………….5 

CHAPTER 2 DC-DC CONVERTERS……………………………………………………...6 

2.1Converters…………….…………...…………………………………………………...……………..6  

2.2DC-DC Converter….……...….....…………………………………….…………………...…………6 

2.2.1Buck Converters……...….………………………………………………………………………….7 

2.2.2Analysis of a Typical Buck Converter…………….…...…………..………………….....…....……9 

CHAPTER 3 FUZZY CONTROL……………….………………….......…………………15 

3.1Fuzzy Logic…….……………….………………………...…………………………………………15 

3.2The Operat ions of Fuzzy Sets ………………………………….………………………...………….16 

3.2.1 Union …………………...…………………………………………………………………...……16 

3.2.2 Intersection…………………………………………………………………………………..……16 

3.2.3 Complement……………………………….…………………………………………………...…17 

3.3 Membership Function………………………………………………………………………………18 

3.3.1 Features of Membership Function ……………..……………………………………………...…19 

3.3.2Types of Membership Function ………………….………..…………………………………...…20 

3.4 General Structure of Fuzzy Logic Control …………………………………………………………22 

3.4.1 Fuzzification ……………………………………………...…………………………………….…23 

3.4.2. Knowledge Base……………………………………..………………………………………..…23 

3.4.3 Fuzzy In ference Systems…………………………………………………...…………………….25 

3.4.4 Defuzzificat ion…………………………………………………………………..……….……….25 

 

 CHAPTER 4 GENETIC ALGORITHM……………………………………………….…28 

4.1 Introduction…………………………………………………………………………………………28  

4.2 Basic Model of a Genetic Algorithm……………….………………………………………………28 

4.3 Genetic Algorithm vs. Other Optimization Techniques……………………………………………30 

4.4 Applicat ions of Genetic Algorithm……………………………………………………………..…..31 

4.5 GA Operat ions……………………………………………………………………………………...32  

4.6 GA Elements…………………………………………………………………………………..……32 

4.6.1 Ind ividuals………………………………………………………………………………………...32 

4.6.2Population……………………………………………………………………………………....…34 

4.7 Chromosome Coding…………...………………………………………………………………..…34 

4.8 Fitness Function…………………………………………………………………………………….36 

4.9 Selection………………………………………………………………………………………….…37 

4.9.1 Roulette Wheel Selection…………………………………………………………………………38 

4.9.2 Rank Selection……………………………………………………………………………………38 

4.9.3 Stochastic Universal Sampling………………………………………………………………...…39 

4.10 Crossover……..………………………………………………………………………………...…39 

4.10.1 Single-Point Crossover……………………..…………………………………………………...40 

4.10.2 Two-Point Crossover……………………………..…………………………………………..…40  



viii 
 

4.10.3 Multi-Po int Crossover (N-Point crossover)…………………………………….……...………..41 

4.10.4 Uniform Crossover………………………………………..………………………………..……41  

4.10.5 Three Parent Crossover………………………………………………….………………………42 

4.11 Mutation………..……………………………………………………………………………….…42 

4.12 Elit ism………………………………………………………………………………………..……42 

4.13 Genetic Fuzzy Systems………………………………………………………………… …………43 

4.13.1 Genetic Tuning of the Data Base……………………………………………………….....….…43 

4.13.2 Genetic Learning of the Rule Base……………………………………………………..…….…43 

 

CHAPTER 5 DESIGNING FUZZY CONTROLLER FOR BUCK CONVERTER ..….45 

5.1. Overall system Design…………………………..…………………………………………………45 

5.2 DC-DC Buck Converter………………………………………....…………………...……………..45 

5.2.1 Pu lse Width Modulation (PWM)………………………………………………………...……….46 

5.3 Fuzzy Logic Controller………………………………......................................................................46 

5.4 Simulation Result……………………………………………………………………………….…..51 

5.5 Fuzzy Controller Design with GA for Buck DC-DC Converter……….…………………...………53 

CHAPTER 6 CONCLUSION………………........................................................................56 

6.1. Conclusion……………………………………...………………………………………………….56 

6.2 Future Research………………………………………..……………………………………………56 

 

REFERENCES…………………………………………………………………...………….57 

APPENDIX A GA MATLAB PROGRAMS …………………...……………..…….…….60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

LIST OF TABLES 

 

Table 3.1 Some Properties of Fuzzy Sets Operations……………………………..…18 
Table 5.1: The Rule Base with 49 Rules…..………...…………….…………………49 

Table 5.2: Output Voltage follows the Changes in Reference Voltage……….……..52  
Table 5.3: Converter Parameters……………..………………………………………52  

Table 5.4: Values with and without GA Optimization……...……………….……….55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

LIST OF FIGURES 

 

Figure 1.1: Buck Converter…………………………………………………………....2 
Figure 1.2: PWM Signal to control the Switches in the DC-DC Converters….........…2 
Figure 1.3: Equivalent Circuit of the Buck Converter when the Switch is closed….....3 

Figure 1.4: Equivalent Circuit of the Buck Converter when the Switch is open……...3 
Figure 2.1: Typical Buck Converter……………………….…………..………………8 

Figure 2.2 Buck Converter Analysis…………………………………………………10 
Figure 2.3: Continuous Conduction Mode Waveforms………………………...……14 
Figure 3.1: Fuzzy logic vs. Boolean logic ………………………………………...…15  

Figure 3.2: A OR B………..…….………………………………………………...…16 
Figure 3.3: A AND B…………………….…………………………………….….…17 

Figure 3.4: NOT A…………………………………………………………….……..17  
Figure 3.5: Membership Value in Fuzzy Set…...………………………………….…19  
Figure 3.6: MF Terminology……………..…………………………………………..20 

Figure 3.7(a): Triangular Membership Function………………………………..……21 
Figure 3.7(b): Trapezoidal Membership Function…...……………………….…...…21  

Figure 3.8(a): Gaussian Membership Function…...….………………………………21 
Figure 3.8(b): Generalized Bell Membership Function………..………….…………21  
Figure 3.9: Two Sigmoidal Functions……...…..…………………………...………..22 

Figure 3.10: General Structure of Fuzzy Systems…………..……….……………….22 
Figure 3.11: Basic Parts of Fuzzy Logic Controller………….………………………23 
Figure 3.12:  Mamdani Fuzzy Inference System……..……………………………...26 

Figure 3.13: Various Defuzzification Methods…………...………………………….27  
Figure 4.1: The Basic Genetic Algorithm………...………………………………….29 

Figure 4.2: Representation of Genotype and Phenotype……………………………..33  
Figure 4.3: Representation of Chromosome…………...…………………………….33 
Figure 4.4: Gene Representation…………………………………………………..…33 

Figure 4.5: Population Representation…………………………………………….…34 
Figure 4.6: Binary Encoding…………………………………………………………35 

Figure 4.7: Real Encoding…………….……………………..……………………….35 
Figure 4.8: Octal Encoding…………………………………………………………..35 
Figure 4.9: Hexadecimal Encoding……….………………………………………….36 

Figure 4.10: Value Encoding……………...…………………………………………36 
Figure 4.11: Roulette Wheel Selection………..…………..……...…..……….…...…38 

Figure 4.12: Stochastic Universal Sampling…...…………….....……………..…..…39 
Figure 4.13: Single Point Crossover……..………..……………………..………..…40 
Figure 4.14: Two-Point Crossover…..………..………………………..……...….….41 

Figure 4.15: Uniform Crossover…………………………………………………..…41 
Figure 4.16: Three parent Crossover……...…………………….……………………42 

Figure 5.1: Buck Converter………………………………………….……………….45 
Figure 5.2: DC-DC Converter Subsystem………………...……..….………………..45 
Figure 5.3: Pulse Width Modulation Waveforms……………………………………46 

Figure 5.4:  PWM Simulation using Matlab……………………...……………….…46 
Figure 5.5: Basic Configuration of FLC……………………………...……………...47 
Figure 5.6: The Editor of Fuzzy Inference System….……………………………….48 
Figure 5.7: Membership Function of Input Variable „error‟ and „change of error‟.....49 
Figure 5.8: Membership Function of Output Variable………..……………...………49 



xi 
 

Figure 5.9: Surface of Fuzzy Controller……………………………….……………..50 
Figure 5.10:Matlab/Simulink Model  (BUCK Converter Closed Loop with Fuzzy 

Controller)…………………………...……………………………………………….50 
Figure 5.11: Responses FL Controller…...………..…………………………………51 

Figure 5.12: Ripples in the Output Voltage…..…………………………...…………52 
Figure 5.13: Membership Functions of the Fuzzy Controller with GA……………...54 
Figure 5.14: Responses FL Controller with GA…………………………......………54 

Figure 5.15: Ripples in the Output Voltage with GA.………..……....……...………55  

 

 

 



1 
 

CHAPTER1  INTRODUCTION 

 

Switch mode DC-DC converters efficiently convert a direct DC input voltage 

into a regulated DC output voltage. Compared to linear power supplies, switching 

power supplies provide much more efficiency and power density. Switching power 

supplies employ solid-state devices such as transistors and diodes to operate as a 

switch: either completely on or completely off. Energy storage elements, including 

capacitors and inductors, are used for energy transfer and work as a low-pass filter. 

The buck converter and the boost converter are the two fundamental topologies of 

switch mode DC-DC converters. Most of the other topologies are either buck-derived 

or boost-derived converters, because their topologies are equivalent to the buck or the 

boost converters.  

1.1  Switch-Mode DC-DC Converters 

 

Switch-mode DC-DC converters are used to convert the direct DC input to a 

controlled DC output at a desired voltage level. Switch-mode DC-DC converters 

include buck converters, boost converters, buck-boost converters, Cuk converters 

and full-bridge converters, etc. Among these converters, the buck converter and 

the boost converter are the basic topologies. Both the buck-boost and Cuk 

converters are combinations of the two basic topologies. The full-bridge converter 

is derived from the buck converter [1].  

There are usually two modes of operation for DC-DC converters: continuous 

and discontinuous. The current flowing through the inductor never falls to zero in 

the continuous mode. In the discontinuous mode, the inductor current falls to zero 

during the time the switch is turned off. Only operation in the continuous mode is 

considered in this dissertation [1].  

 

1.1.1 Buck Converter 

The buck converter, shown in figure 1.1, converts the unregulated source 

voltage 𝑉𝑖𝑛  into a lower output voltage 𝑉𝑜𝑢𝑡 . The NPN transistor shown in figure 1.1 

acts as a switch. The ratio of the ON time (𝑡𝑂𝑁 ) when the switch is closed to the entire 



2 
 

switching period (T) is defined as the duty cycle. The corresponding pulse width 

modulation (PWM) signal is shown in figure 1.2 [2]. 

 

Figure 1.1: Buck Converter 

 

Figure 1.2: PWM Signal to Control the Switches in the DC-DC Converters  

 

The equivalent circuit in figure 1.3 is valid when the switch is closed. The 

diode is reverse biased, and the input voltage supplies energy to the inductor, 

capacitor and the load. When the switch is opened as shown in figure 1.4, the diode 

conducts the capacitor supplies energy to the load, and the inductor current flows 

through the capacitor and the diode. The output voltage is controlled by varying the 

duty cycle. During steady state, the ratio of output voltage over input voltage is 𝐷, 

which is given by (1.1) [3]. 

          𝐷 =
Vout

𝑉𝑖𝑛
                  (1.1)      



3 
 

 

Figure 1.3: Equivalent circuit of the buck converter when the switch is closed 

 

Figure 1.4: Equivalent Circuit of the Buck Converter When the Switch is Open 

1.2 Control of DC-DC Converters 

The output voltage of the switch-mode DC-DC converters is regulated to be 

within a specified range in response to changes in the input voltage and the load 

current. There are two control methods for DC-DC converters: voltage mode control 

and current mode control [3].  

In voltage mode control, the converter‟s output voltage is compared with a 

reference to generate the voltage error signal. The duty cycle is adjusted based on the 

error signal to make the output voltage follow the reference value. Frequency 

response methods are usually used in the design of voltage mode controllers for DC-

DC converters. Small signal model of the converters is first obtained by linearizing 

the power stage of the converters around an operating point, and then a compensator 

is designed based on the small signal model. Typical compensators include phase- lead 

compensator, phase-lag compensator and lead- lag compensator. In analog control, the 



4 
 

compensators are implemented using operational amplifiers and appropriate values of 

resistors and capacitors to obtain the desired transfer function. In digital control, the 

control algorithm is implemented on a microcontroller or DSP. Current mode control 

for a DC-DC converter is a two- loop system. An additional inner current loop is 

added to the voltage loop. The current loop monitors the inductor current and 

compares it with its reference value. The reference value for the inductor current is 

generated by the voltage loop [1].  

1.3 Literature Review 

The research problem addressed in this dissertation is the design and 

implementation of controllers for buck converters using Fuzzy control methods. 

Digital control for DC-DC converters is theoretically interesting because it is a multi-

disciplinary research. Theory in the areas of power electronics, systems and control, 

and computer systems are all needed to conduct research in digital control of DC-DC 

converters. The increasing interest in digital control of switch mode power supplies is 

shown in international conference proceedings and journal publications in the past 

few years.  

 In June 1995, Wang and Lee designed a fuzzy controller for basic DC-DC 

converters and then compared the computer simulation results with those for 

current-mode control in buck, boost and buck-boost converters [4]. It was 

concluded from the comparison of start-up responses and load regulation tests 

that the current-mode controlled buck converter had a faster transient response 

and better load regulation, while the fuzzy controller for both boost and buck-

boost converters had less steady-state error and better transient response.  

 In May 1996, J. Arias, A. Arias, et al. proposed a design procedure for a fuzzy 

logic controller for a buck converter [5]. The control rules were derived from 

analysis of the system dynamics in the state plane which use try an error to 

generate membership.  

 In Jan 1997, Mattevelli and Spiazzi investigated a general-purpose fuzzy 

controller for DC-DC converters [6]. The fuzzy controller improved 

performance in terms of overshoot limitations and sensitivity to parameter 

variations compared to standard controllers. Simulation results for buck-boost 

and Sepic converters were presented.  



5 
 

 In Feb 1999, Campo and Tarela investigated the consequences of the finite 

word length on the performance of a digital fuzzy logic controller [7]. There 

were three types of error as a result of the finite word length: AD conversion 

errors, membership function errors and arithmetic errors. Simulation results 

showed that bias and limit cycles were generated due to the quantization.  

 In September 2002, Viswanathan, Srinivasan and Oruganti studied the 

development of a universal fuzzy controller for a boost converter [8]. 

Simulation results were compared with the results of a PI controller under 

varying operating points. The performance of the fuzzy controller was 

superior to the performance of the PI controller.  

 In June 2004, Perry and Sen proposed a design procedure that integrated linear 

control techniques with fuzzy logic [9]. The small signal model for the 

converters and linear design techniques were used in the initial stages of fuzzy 

controller design. Simulation and experimental results were presented and 

compared with results of a digital PI controller.  

 In July 2011, Feshki Farahani proposed a design of a fuzzy controller and 

comparing with PI digital controller [10]. These comparisons show that the 

fuzzy controller has faster dynamic when compared with the PI digital classic. 

1.4 Thesis Contribution 

In this thesis, we will use fuzzy controller for DC-DC Buck converter. By 

using Matlab/Simulink we will design the fuzzy logic controllers and apply the GA 

(Genetic Algorithm) to optimize the memberships fuzzy controller to improve the 

settling time and the ripple of the output voltage of the system. 

1.5 Outlines of the Thesis 

This thesis consists of five chapters. Chapter 2 presents the DC-DC Converter 

model. Chapter 3 presents a review and introduction to fuzzy logic and its application, 

fuzzy sets operations, the main concepts in fuzzy sets such as membership functions, 

and linguistic variable. Chapter 4 presents a review and introduction to genetic 

algorithm; its uses and main concepts in genetic algorithm such as cross over, 

mutation, reproduction. Chapter 5 presents analysis and simulation results of the 

fuzzy controller without GA and with GA, while the last chapter concludes this thesis. 



6 
 

CHAPTER 2  DC-DC CONVERTERS 

 

2.1 Converters 

In electrical engineering, power engineering and the electric power industry, power 

conversion is converting electric energy from one form to another. On the application side, 

the end user uses the power generated to run his appliances. These appliances in turn 

use different types of voltage (direct or alternating) with different magnitude levels. 

Hence, there is a need to convert these voltages as per requirement. That is why 

converters come into picture? One may ask a question, why don‟t we reduce the 

magnitude levels using a potential divider? If at all the voltage or power level is the 

only concern for the appliances. But, there lies an urge to reduce the loss component 

in the circuit (to improve efficiency), make it compact, incorporate changes in 

parameters if required (like frequency adjustments), as well as the most important 

reason to make it economical.  

Considering all the above factors, the necessity of a converter is well defined. 

Converters are classified into 4 types depending on the type and magnitude level of 

voltages is concerned: 

1. AC-AC converters 

2. AC-DC converters 

3. DC-DC converters 

4. DC-AC converters 

We deals with the DC-DC converters, so let us have a quick introduction about the 

DC-DC converters. 

2.2 DC-DC CONVERTER 

A DC-DC converter is an electronic circuit power class converter which 

converts a source of direct current (DC) from one voltage level to another [11]. If the 

voltage magnitude level at the output is greater than the input, then the converter is 

called a boost converter, while if the voltage magnitude level at the output is less than 

the input, then the converter is called a buck converter. Buck converter is explained in 

http://en.wikipedia.org/wiki/Electrical_engineering
http://en.wikipedia.org/wiki/Power_engineering
http://en.wikipedia.org/wiki/Electric_power_industry
http://en.wikipedia.org/wiki/Electric_energy


7 
 

detail in this document. Buck converters are, as explained above, converts a source of 

direct current from higher voltage magnitude level to a lower voltage magnitude level.  

One may think, why do not we use a linear regulator for reducing the voltage? 

The answer is that the linear regulators prove to be efficient over the switching 

regulators (such as the above converters) when the output is lightly loaded or when 

the desired output voltage is very close to the source voltage. Also linear regulators 

are void of magnetic circuit involving transformers or inductors thus resulting in a 

relatively smaller circuit. Other than these conditions if a linear regulator is used, the 

BJT which is usually used for regulation acts as a resistor, with the power loss across 

it. In order to make loss due to resistive drop almost negligible, we use switching 

regulators. 

Buck converters are used only if the voltage level to be reduced is less than the 

order of 10. If the scaling is more than 10, then we need to use an isolated type, 

flyback converters. Considering the non- isolated buck converters, let us go for the 

detailed study of buck converters firstly. 

2.2.1 Buck Converters 

Figure 2.1 shows the typical buck converter diagram. As shown, the converter 

consists of the following components.  

1- Direct Voltage Source - 𝑉𝑔  

2- Power Converter (represented as Switch) - 𝑆𝑊  

3- Filter Inductor - 𝐿𝑓 

4- Filter Capacitor -𝐶𝑓 

5- Load Resistor - 𝑅𝐿 

6- Freewheeling Diode - 𝐷𝑓 

1. Voltage Source 

Voltage Source is the basis of the converter circuit. In a typical buck converter 

as shown in Figure 2.1, one can see that the source voltage is direct voltage. The 

characteristics of an ideal direct voltage source is to provide a constant voltage 

independent of the current drawn from it by the load.  

 



8 
 

 

 

 

 

 
 

 
 

 

 

Figure 2.1: Typical Buck Converter 

Practically, the voltage sources fall short of ideal and the terminal voltage 

drops with the increase in the output current drawn by the load. For simplicity, we 

have considered the source as ideal in our analysis.  

2. Power Converter 

A Power Converter is referred to a power electronic circuit that converts 

voltage and current from one form to another. An operative unit for electronic power 

conversion, comprising  electronic valve devices, transformers and filters which 

necessary and auxiliaries in electronic Power Converter [12]. So, the term converter 

refers to a power electronic circuit that takes in electric power in one form and gives 

out electric power in another form [13]. A converter is a combination of one or more 

solid state electronic switching devices with filtering elements like inductors and 

capacitors (void of resistors to reduce power loss and hence increase efficiency) 

connected in different topology, depending on the application.  

The switching element is an important part of a converter and is explicitly 

shown in the previous figure. Control of the switch is provided externally with the 

help of triggering circuits, control circuits or even firing circuits. This converter block 

is termed as a power circuit or power electronic circuit. The control circuit operates 

with the feedback signal from the output, and sometimes with an addition of feed 

forward signal from the input and a reference signal.  

 



9 
 

3. Filter Inductor 

The filter inductor is required to smoothen out the current ripple as well as to 

reduce the high 
𝑑𝑖

𝑑𝑡
 caused at the instant of switching. This will not only improve the 

regulation of the output, but it protects also the switch to be stressed due to switching 

surge in current during switching. 

4. Filter Capacitor 

The Filter Capacitor is required to smoothen the output voltage waveform. It 

filters the rippled waveform and provides a constant output voltage across the load.  

5. The Load 

Load is any appliance which is connected across the output terminals of the 

converter. This can be a simple resistive load as shown in figure 2.1. 

6. The Freewheeling Diode 

Let us analyze the above circuit shown in figure 2.1 without the freewheeling 

diode and the capacitor (for simplicity). First let us close the switch 𝑆𝑊  at time 𝑡𝑋 , a 

current is established in the circuit through the load; and then if the switch is opened 

at the instant 𝑡𝑌 , the inductor 𝐿𝑓 is charged and as soon as the switch is opened, the 

inductor looks for a path to discharge its stored energy. Otherwise, this leads to a 

sparking across the switch terminals leading to the malfunction or destruction of the 

switch itself due to the high amount of heat dissipated across the switch.  

In order to provide a path for the inductor to dissipate the current, we require a 

freewheeling diode, which provides a path for the inductor current to flow through the 

load as soon as the switch is opened.  

2.2.2 Analysis of a Typical Buck Converter 

Oxford Dictionary [14] defines the term “Buck” as lowest of a particular rank. 

One might ask a question, as the Buck converter involves the conversion of direct 

voltage to direct voltage. So, how can it be termed a conversion? The answer is that a 



10 
 

fixed direct voltage is converted into a variable direct voltage source without 

changing the power level (neglecting power losses in the switch).  

The analysis of the buck converter is as shown in figure 2.2[11], and the 

corresponding waveforms are as shown in figure 2.3. Assuming that the current flow 

in the inductor is continuous, we are now analyzing the buck converter in continuous 

conduction mode (CCM). From the basic principles, we know that, 

                                                    𝑒𝐿 = 𝐿𝑓  
𝑑𝑖

𝑑𝑡
                                 (2.1)       

Assuming that the inductor current rises linearly in the inductor as shown in the 

waveform 2.3, we can say that.  

                                𝑉𝑔 −𝑉𝑜 = 𝐿𝑓  
𝐼2 − 𝐼1

𝑡1

                                (2.2) 

Where 𝑉𝑜 is the output constant voltage across the load resistor.  

                                       𝑡1 = 𝐿𝑓  
∆𝐼

𝑉𝑔 −𝑉𝑜
                                 (2.3) 

where ∆𝐼 = 𝐼2 − 𝐼1. 

This is for the period for which is ON. This time period 𝑡1 is called ON time period. 

And is donated by 𝑡𝑂𝑁 = 𝑘𝑇𝑆. 

 
Figure 2.2 Buck Converter 



11 
 

For time period, 1 − 𝑘 𝑇𝑆 = 𝑡𝑂𝐹𝐹 , that is the time period 𝑡2 for which, the switch is 

OFF, the input is Zero, so 𝑉𝑔  = 0. 

                                      0 − 𝑉𝑜 = 𝐿𝑓  
𝐼1 − 𝐼2

𝑡2

                                 (2.4) 

                                                    𝑉𝑜 = 𝐿𝑓  
∆𝐼

𝑡2

                                 (2.5) 

 

                                                    𝑡2 = 𝐿𝑓  
∆𝐼

𝑉𝑜
                                (2.6) 

 

From equation 2.3 and 2.6, we get,  

                          ∆𝐼 =  
 𝑉𝑔 −𝑉𝑜 𝑡1

𝐿𝑓

=  
𝑉𝑜𝑡2

𝐿𝑓

                                (2.7) 

Simplifying the above equation 2.7, to get an expression for average voltage 𝑉𝑜, we 

get  

                                                    𝑉𝑜 = 𝑘𝑉𝑔                                     (2.8) 

Where k =  
𝑡𝑂𝑁

𝑇𝑠
  is the duty cycle of the switch. 

Neglecting the losses in the switch, we can write the input power is equal to output 

power. 

                                                 𝑉𝑔𝐼𝑔 = 𝑉𝑜𝐼𝑜                                   (2.9) 

where, 

𝐼𝑔  is the source current 

𝐼𝑜  is the average output current 

From the above equation 2.9, we can write,  

                                            𝐼𝑜 =  
1

𝑘
 𝐼𝑔                                          (2.10) 

To find the switching period, consider the equation  



12 
 

𝑇𝑠 =
1

𝑓𝑠
= 𝑡1 + 𝑡2 =

𝐿𝑓∆𝐼

𝑉𝑔 −𝑉𝑜
+

𝐿𝑓∆𝐼

𝑉𝑜
                                      (2.11) 

                            𝑇𝑠 =
𝐿𝑓𝑉𝑔∆𝐼

𝑉𝑜(𝑉𝑔 − 𝑉𝑜)
                                            (2.12) 

To find the peak to peak ripple current, use equation 2.12, we get  

                               ∆𝐼 =
𝑉𝑜(𝑉𝑔 −𝑉𝑜)

𝑓𝑠𝐿𝑓𝑉𝑔
                                        (2.13) 

or,  

                                ∆𝐼 =
𝑉𝑔𝑘(1 − 𝑘)

𝑓𝑠𝐿𝑓

                                        (2.14) 

We assume the load current is free of ripple and whatever ripple is present in the 

inductor current will be smoothened by the capacitor. Hence, we can write,  

                                         𝑖𝐿 = 𝑖𝐶 + 𝑖𝑜                                           2.15  

                                         ∆𝑖𝐿 = ∆𝑖𝐶                                            (2.16) 

So that 𝛥𝑖0 =  0. Now, consider the waveform of inductor current 𝑖𝐿 and 𝑖𝐶 given in 

figure 2.3. We can see that both the waveform add up to make the steady state output 

current 𝑖𝑜 to be constant. For upper half of the current ripple triangle, we can write the 

equation of the area of the triangle as 
1

2
 (
𝑡1

2 
+

𝑡2

2
) 

Δ𝐼

2
 which is nothing but equal to 

Δ𝐼

4
 for a period of  

𝑡1

2
 + 

𝑡2

2
 = 

𝑇𝑠

2
 .Now for this period, the capacitor charges. So the 

charging of the capacitor, 𝐼𝑐  is given by  

                                             𝐼𝐶 =  
∆𝐼

4
                                            (2.17) 

Now the capacitor ripple voltage is given by,  

                            𝑣𝐶 =
1

𝐶𝑓

 𝑖𝐶𝑑𝑡 + 𝑣𝐶  0−                                (2.18) 



13 
 

                      ∆𝑣𝐶 =
1

𝐶𝑓

 ∆𝑖𝐶 + 𝑣𝐶  0−                             (2.19)
𝑇𝑠/2

𝑡=0

 

Or, we can write, 

                    ∆𝑣𝐶 =
∆𝑄

𝐶𝑓

=
1

𝐶𝑓

1

2

𝑇𝑠

2

∆𝐼

2
=

𝑇𝑠∆𝐼

8𝐶𝑓

                          (2.20) 

 

Where we have considered the charging cycle of the capacitor with 𝛥𝑄 as the charge 

accumulated during the period  
𝑡1

2
+  

𝑡2

2
=

𝑇𝑠

2
  as explained above. 

Now, putting the value of 𝛥𝐼 from the equation 2.13 and 2.14, correspondingly we 

get, 

                             ∆𝑣𝐶 =
𝑉𝑜(𝑉𝑔 −𝑉𝑜)

8𝐿𝑓𝐶𝑓𝑉𝑔𝑓𝑠
2

                                          (2.21) 

                           ∆𝑣𝐶 =
𝑉𝑔𝑘(1 − 𝑘)

8𝐿𝑓𝐶𝑓𝑓𝑠
2

                                           (2.22) 

To find the critical values of the inductor and capacitor, the condition for continues 

inductor current and capacitor voltage is,  

                                        𝐼𝐿 =
∆𝐼

2
                                                  (2.23) 

                                     𝑉𝑜 =
∆𝑣𝐶

2
                                                  (2.24) 

Substituting the value of 𝐼𝐿 from equation 2.23 in equation 2.14, we get 

            
𝑉𝑔𝑘(1− 𝑘)

𝑓𝑠𝐿𝑓

= 2𝐼𝐿 = 2𝐼𝑜 =
2𝑘𝑉𝑔
𝑅𝐿

                                (2.25) 

                    ⇒ 𝐿𝐶 = 𝐿𝑓  ≥
(1 − 𝑘)𝑅𝐿

2𝑓𝑠
                                      (2.26) 

Now, substituting the value of 𝑉𝑜 from equation 2.24 in equation 2.22, we get 

                        
𝑉𝑔𝑘(1− 𝑘)

8𝐿𝑓𝐶𝑓𝑓𝑠
2

= 2𝑉𝑜 = 2𝑘𝑉𝑔                                 (2.27) 



14 
 

                         ⇒ 𝐶𝐶 = 𝐶𝑓 ≥
1 − 𝑘

16𝐿𝑓𝑓𝑠
2

                                       (2.28) 

We can show the Continuous Conduction Mode Waveforms in the figure 2.3[11] 

 

Figure 2.3: Continuous Conduction Mode Waveforms 



15 
 

CHAPTER 3  FUZZY CONTROL 

 

3.1 Fuzzy Logic 

Fuzzy logic is a superset of conventional (Boolean) logic that has been 

extended to handle the concept of partial truth- truth values between "completely true" 

and "completely false". As its name suggests, it is the logic underlying modes of 

reasoning which are approximate rather than exact. The importance of fuzzy logic 

derives from the fact that most modes of human reasoning and especially common 

sense reasoning are approximate in nature [15]. 

Fuzzy logic was developed by Lotfi A. Zadeh in the 1965s in order to provide 

mathematical rules and functions which permitted natural language queries. Fuzzy 

logic provides a means of calculating intermediate values between absolute true and 

absolute false with resulting values ranging between 0.0 and 1.0.  Fuzzy logic 

calculates the shades of gray between black/white and true/false.  

 

Figure 3.3: Fuzzy Logic vs. Boolean Logic 

Fuzzy Logic deals with those imprecise conditions about which a true/false 

value cannot be determined. Much of this has to do with the vagueness and ambiguity 

that can be found in everyday life. For example, the question: Is it HOT outside?  

Probably would lead to a variety of responses from those asked. These are often 

labeled as subjective responses, where no one answers is exact. Subjective responses 

are relative to an individual's experience and knowledge. Human beings are able to 

exert this higher level of abstraction during the thought process. For this reason, 



16 
 

Fuzzy Logic has been compared to the human decision making process. Conventional 

Logic (and computing systems for that matter) is by nature related to the Boolean 

Conditions (true/false). What Fuzzy Logic attempts to encompass is that area where a 

partial truth can be established, that is a gradient within the true/false realm [15]. 

3.2 The Operations of Fuzzy Sets 

In the classical sets there are basic operations that are found, such as 

intersection and union between sets, complement of set. If we have two sets (A and B) 

and these sets are subsets of universe (U). 

3.2.1 Union 

The membership function of the Union of two fuzzy sets A and B with 

membership functions µ𝐴 and µ𝐵 respectively is defined as the maximum of the two 

individual membership functions. This is called the maximum criterion. 

𝜇𝐴∪𝐵  =  𝑚𝑎𝑥  µ𝐴 ,µ𝐵                                          (3.1) 

The Union operation in Fuzzy set theory as shown in figure 3.2 is the equivalent of 

the OR operation in Boolean algebra. 

 

Figure 3.2: A OR B 

3.2.2 Intersection 

The membership function of the Intersection of two fuzzy sets A and B with 

membership functions µ𝐴 and µ𝐵 respectively is defined as the minimum of the two 

individual membership functions. This is called the minimum criterion. 



17 
 

µ𝐴∩𝐵  =  𝑚𝑖𝑛  µ𝐴 ,µ𝐵                                          (3.2) 

The Intersection operation in Fuzzy set theory as shown in figure 3.3 is the equivalent 

of the AND operation in Boolean algebra.  

 

Figure 3.3: A AND B 

3.2.3 Complement 

The membership function of the Complement of a Fuzzy set A with 

membership function µ𝐴 is defined as the negation of the specified membership 

function. This is called the negation criterion. 

                    𝜇𝐴 = 1 − 𝜇𝐴                                         (3.3) 

The Complement operation in Fuzzy set theory as shown in figure 3.4 is the 

equivalent of the NOT operation in Boolean algebra.  

 

Figure 3.4: NOT A 



18 
 

Some properties of fuzzy set operations are given in Table 3.1[16] [17]. 

 
Table 3.1 Some Properties of Fuzzy Sets Operations 

Law of contradiction 𝐴 ∩ 𝐴 =Ø 

Law of excluded middle 𝐴 ∪ 𝐴 = 𝐼 

De Morgan‟s laws (𝐴 ∩ 𝐵)          = 𝐴 ∪ 𝐵   

(𝐴 ∪ 𝐵)          = 𝐴 ∩ 𝐵   

Involution (Double negation) 𝐴 =𝐴 

Commutative 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴  

𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴  

Associative 𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩𝐵) ∩ 𝐶  

𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪𝐵) ∪ 𝐶  

Distributive 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩𝐵) ∪ (𝐴 ∩𝐶)  

𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪𝐵) ∩ (𝐴 ∪𝐶)  

 

3.3 Membership Function 

Unlike the aforementioned conventional set, a fuzzy set (Zadeh, 1965) 

expresses the degree to which an element belongs to a set. Hence the characteristic 

function of a fuzzy set is allowed to have values between 0 and 1, which denotes the 

degree of membership of an element in a given set.  

If 𝑋 is a collection of objects denoted generically by 𝑥, then a "fuzzy set" 𝐴 in 𝑋 is 

defined as a set of ordered pairs [18]: 

𝐴 =  {(𝑥, µ𝐴(𝑥)) | 𝑥 ∈  𝑋}                                 (3.4) 

where 𝜇𝐴(𝑥) is called "membership function" (or MF for short) for the fuzzy set 𝐴. 

The MF maps each element of 𝑋 to a membership grade (or membership value) 

between 0 and 1 as shown in figure 3.5. 

Obviously, the definition of a fuzzy set is a simple extension of the definition of a 

classical set in which the characteristic function is permitted to have any values 

between 0 and 1. If the values of the membership function are restricted to either 0 or  

1, then A is reduced to a classical set and 𝜇𝐴(𝑥) is the characteristic function of 𝐴 

[18]. 

 



19 
 

 

Figure 3.5: Membership Value in Fuzzy Set 

3.3.1 Features of Membership Function 

Features of Membership Function as shown in figure 3.6 divided to [18]: 

1- Support 

The "support" of a fuzzy set 𝐴 is the set of all points 𝑥 in 𝑋 such that 𝜇𝐴(𝑥) >  0: 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴) =  { 𝑥 | µ𝐴(𝑥) >  0 }                 (3.5) 

2- Core: 

The "core" of a fuzzy set is the set of all points 𝑥 in 𝑋 such that 𝜇𝐴(𝑥)  =  1: 

𝑐𝑜𝑟𝑒 (𝐴) =  { 𝑥 | µ𝐴(𝑥) =  1 }                        (3.6) 

3- Crossover points 

A "crossover point" of a fuzzy set 𝐴 is a point 𝑥 ∈ 𝑋 at which 𝜇𝐴(𝑥)  =  0.5: 

 
𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝐴) =  { 𝑥 | 𝜇𝐴(𝑥) =  0.5 }          (3.7) 

4- Boundaries:  

Comprise the elements x of the universe 0 <   
𝐴

(𝑥) <  1 

5-α-cut: 

The “𝛼-cut” or “𝛼-level set” of a fuzzy set 𝐴 is a crisp set defined by 



20 
 

     𝐴𝛼 =  { 𝑥 | 𝜇𝐴(𝑥) ≥  𝛼 }                             (3.8) 

 

Figure 3.6: MF Terminology 

3.3.2 Types of Membership Function 

In the classical sets there is one type of membership function but in fuzzy sets 

there are many different types of membership function, now will show some of these 

types [18].  

1- Triangular MFs 

A "triangular MF" as shown in fig 3.7(a) is specified by three parameters {a, b, c} 

as follows: 

𝑦 = 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒  𝑥; 𝑎, 𝑏, 𝑐 =

 
 
 

 
 

0,                 𝑥 ≤ 𝑎.
𝑥 − 𝑎

𝑏 − 𝑎
,                𝑎 ≤ 𝑥 ≤ 𝑏.

𝑐 − 𝑥

𝑐 − 𝑏
,                𝑏 ≤ 𝑥 ≤ 𝑐.

0,                𝑐 ≤ 𝑥.

                  (3.9) 

2- Trapezoidal MFs 

 

A "trapezoidal MF" as shown in fig 3.7(b) is specified by four parameters {a, b, c, d} 

as follows: 

trapezoid x; a, b, c, d =

 
  
 

  
 

0,                              x ≤ a.
x − a

b − a
,                       a ≤ x ≤ b.

1,                               b ≤ x ≤ c.
d − x

d − c
,                      c ≤ x ≤ d.

0,                           d ≤ x.

                        (3.10) 



21 
 

 

                         (a)Triangular MF    (b)Trapezoidal MF 

Figure 3.7: Examples of Two Types of Parameterized MFs 

3- Gaussian MFs 

A "Gaussian MF" as shown in figure 3.8(a) is specified by two parameters  {𝑐, 𝜎}: 

      gaussian  x;  c , = e2
−1 (x−c )

σ                         (3.11)  

    

4- Generalized bell MFs 

A "generalized bell” as shown in fig 3.8(b) is specified by three parameters {𝑎, 𝑏, 𝑐}: 

𝑏𝑒𝑙𝑙 𝑥; 𝑎, 𝑏, 𝑐 =
1

1 + 1(𝑥 − 𝑐)/𝑎|2𝑏
                 (3.12) 

 

 

(a)Gaussian            (b) Generalized Bell 

Figure 3.8: Examples of Two Classes of Parameterized Continuous MFs 

 



22 
 

5- Sigmoidal MFs  

A "Sigmoidal MF" as shown in figure 3.9 is defined by the following equation: 

𝑠𝑖𝑔 𝑥;𝑎, 𝑐 =
1

1 + 𝑒𝑥𝑝 [−𝑎 𝑥 − 𝑐 ]
                  (3.13) 

 

Figure 3.9: Two Sigmoidal Functions 

3.4 General Structure of Fuzzy Logic Control "FLC" System 

The basic parts of every fuzzy controller are displayed in figure 3.10. The 

fuzzy logic controller (FLC) is composed of a fuzzification interface, knowledge base, 

inference engine, and defuzzification interface.  

 

Figure 3.10: General Structure of Fuzzy Systems 

 

 



23 
 

3.4.1 Fuzzification 

The first step in fuzzy logic processing the crisp inputs is transformed into 

fuzzy inputs as shown in figure 3.11. This transformation is called fuzzification. The 

system must turn numeric values into language and corresponding domains to allow 

the fuzzy inference engine to inference to transform crisp input into fuzzy input, 

membership functions must be first be defined for each input. Once membership 

functions are defined, fuzzification takes a real time input value, such as temperature, 

and compares it with the stored membership function information to produce fuzzy 

input values. Fuzzification plays an important role in dealing with uncertain 

information that might be objective in nature [19].  

It converts the crisp input to a linguistic variable using the membership 

functions stored in the fuzzy knowledge base.  

 

Crisp                                                                                                        Crisp 

 
 
 

 
 

 
 
 

 
 

 
 

 

3.4.2. Knowledge Base 

Knowledge base is the inference basis for fuzzy control. It defines all relevant 

language control rules and parameters. The knowledge base is the core of a fuzzy 

control system. 

 
 

Figure 3.11: Basic Parts of Fuzzy Logic Controller 



24 
 

The knowledge base of Fuzzy Logic Controller (FLC) is comprised of two parts [20]: 

1. Database. 

2. Rule base 

A linguistic controller contains rules in the (if- then) format. The Rule base is 

the cornerstone of the fuzzy model. The expert knowledge, which is assumed to be 

given as a number of if- then rules, is stored in a fuzzy rule base. The rules may use 

several variables in both the condition and the conclusion of the rules.  

 Linguistic Variables 

A "Linguistic variable" is characterized by a quintuple (𝑥, 𝑇(𝑥),𝑋, 𝐺, 𝑀) in 

which 𝑥 is the name of the variable; 𝑇(𝑥) is the "term set" of 𝑥-that is, the set of its 

"linguistic values" or "linguistic terms"; 𝑋 is the universe of discourse, 𝐺 is a 

"syntactic rule" which generates the terms in 𝑇(𝑥); and 𝑀 is a "semantic rule" which 

associates with each linguistic value 𝐴 its meaning 𝑀(𝐴), where 𝑀(𝐴) denotes a 

fuzzy set in 𝑋[18]. 

 Fuzzy Rules 
 
As was pointed out by Zadeh in his work on this area (Zadeh, 1973), 

conventional techniques for system analysis are intrinsically unsuited for dealing with 

humanistic systems, whose behavior is strongly influenced by human judgment, 

perception, and emotions. This is a manifestation of what might be called the 

"principle of incompatibility"[18]: 

A "fuzzy if- then rule" (also known as “fuzzy rule”, “fuzzy implication” or 

"fuzzy conditional statement") assumes the form 

     𝑰𝒇 𝑥 𝑖𝑠 𝐴 𝒕𝒉𝒆𝒏 𝑦 𝑖𝑠 𝐵                           (3.14) 

where 𝐴 and 𝐵 are linguistic values defined by fuzzy sets on universes of discourse 𝑋 

and 𝑌, respectively. Often "𝑥 is 𝐴" is called "antecedent" or "premise", while "𝑦 is 𝐵" 

is called the "consequence" or "conclusion".  

Examples of fuzzy if-then rules are widespread in our daily linguistic 

expressions, such as the following: 



25 
 

 If pressure is high, then volume is small.  

 If the road is slippery, then driving is dangerous.  

 If the speed is high, then apply the brake a little.  

3.4.3 Fuzzy Inference Systems 

In this section we describe the type of fuzzy inference systems that have been 

widely used in the applications.  

The "Mamdani fuzzy inference system" (Mamdani & Assilian, 1975) was 

proposed as the first attempt to control a steam engine and boiler combination by a set 

of linguistic control rules obtained from experienced human operators. Figure 3.12 is 

an illustration of how a two-rule Mamdani fuzzy inference system derives the overall 

output z when subjected to two numeric inputs 𝑥 and 𝑦. 

In Mamdani's application, two fuzzy inference systems were used as two 

controllers to generate the heat input to the boiler and throttle opening of the engine 

cylinder, respectively, to regulate the steam pressure in the boiler and the speed of the 

engine. Since the engine and boiler take only numeric values as inputs, a defuzzifier 

was used to convert a fuzzy set to a numeric value [18]. 

3.4.4 Defuzzi fication 

Defuzzification refers to the way a numeric value is extracted from a fuzzy set 

as a representative value. In general, there are five methods for defuzzification. A 

brief explanation of each defuzzification strategy follows [18]. 

 Centroid of area 𝒁𝑪𝑶𝑨 : 

       𝑍𝐶𝑂𝐴 =
∫𝜇𝐴 𝑍 𝑍𝑑𝑍

𝜇𝐴 𝑍 𝑑𝑍
                               (3.15) 

where 𝜇𝐴(𝑧) is the aggregated output MF. This is the most widely adopted 

defuzzification strategy, which is reminiscent of the calculation of expected values of 

probability distributions. Various defuzzification methods are illustrated in figure 

3.13. 

 



26 
 

 

Figure 3.12:  Mamdani Fuzzy Inference System using the Min and Max 

Operators 

 Bisector of area 𝒁𝑩𝑶𝑨  :  

 𝜇𝐴 𝑍 𝑑𝑍 =  𝜇𝐴 𝑍 𝑑𝑍
𝛽

𝑍𝐵𝑂𝐴

𝑍𝐵𝑂𝐴

𝛼

              (3.16) 

where 𝛼 =  𝑚𝑖𝑛{𝑧 | 𝑧 ∈  𝑍} and   =  𝑚𝑎𝑥{𝑧 | 𝑧 ∈  𝑍}. 

 Mean of maximum 𝒁𝑴𝑶𝑴 : is the average of the maximizing 𝑧 at which the 

MF reaches a maximum 𝜇 ∗. Mathematically, 

             𝑍𝑀𝑂𝑀 =
∫𝑍𝑑𝑍

∫𝑑𝑍
                                   (3.17) 

 Smallest of maximum 𝒁𝑺𝑶𝑴 : is the minimum (in terms of magnitude) of the 

maximizing z. 

 Largest of maximum 𝒁𝑳𝑶𝑴: is the maximum (in terms of magnitude) of the 

maximizing z.  



27 
 

 
Figure 3.13: Various Defuzzification Methods for obtaining a Numeric Output 

In this thesis the Mamdani model will be used and will have two inputs error 

and change of errors, and the output will be change of duty cycle. All inputs and 

output have seven membership functions. And the 𝑍𝐶𝑂𝐴  defuzzification method will 

be used. The rule base will be as the next form: 

IF error is zero AND change of error is zero THEN change of duty cycle is zero. 

These rules will be written by the experience.  

 

 

 

 

 

 

 

 

 



28 
 

CHAPTER 4  GENETIC ALGORITHM 

 

4.1 Introduction 

Genetic Algorithm is reliable and robust method for searching solution spaces 

[21]. GA is general purpose search algorithm  which  uses  principles  inspired  by 

neutral genetic  to find  solutions  to problems  [22][23]by using Survival of  the  

fittest principle. The basic idea is to maintain a population of chromosomes, which 

represent candidate to the concrete problems that will be solve, through a process of 

computation and controlled variation. Each structure of chromosome in the population 

represent one of the possible solution of the problem and the fitness test of these 

chromosomes can determine which chromosomes are used to form new chromosomes 

that will be used in computational process. As in natural the new chromosomes are 

created by some operations such as crossover and mutations.  There is another 

operation which called reproduction. This operation is added to achieve the survival 

of the fittest principle.  In  recent  years, GA  is  used  in  many  applications  specially 

in optimization and search problems and had a great measure  of  success;  the  main  

reason  of  this  success  that  it can  start  from  any  solutions,  and generate  other  

solutions  that  converge  to  the  optimal solution in  less  time  versus  other  classical  

search  tools  (enumerative,  heuristic).  "GA  are theoretically  and  empirically  

proven to  provide  a  robust  search  in  complex  spaces,  thereby offering  a  valid  

approach  to  problems  requiring  efficient  and  effective  searches"[24].   

4.2 Basic Model of a Genetic Algorithm 

The basic genetic algorithm is as follows [25]: 

 [Start] Genetic random population of 𝑛 chromosomes (suitable solutions for 

the problem) 

 [Fitness] Evaluate the fitness 𝑓(𝑥) of each chromosome 𝑥 in the population 

 [New population] Create a new population by repeating following steps until 

the new population is complete 

 [Selection] select two parent chromosomes from a population according to 

their fitness (the better fitness, the bigger chance to get selected). 



29 
 

 [crossover] With a crossover probability, cross over the parents to form new 

offspring (children). If no crossover was performed, offspring is the exact 

copy of parents. 

 [Mutation] With a mutation probability, mutate new offspring at each 

locus(position in chromosome) 

 [Accepting] Place new offspring in the new population.  

 [Replace] Use new generated population for a further sum of the algorithm.  

 [Test] If the end condition is satisfied, stop, and return the best solution in 

current population. 

 [Loop] Go to step2 for fitness evaluation.  

Figure 4.1 shows a basic model of a genetic algorithm, the algorithm is as follows. 

 

Figure 4.1: The Basic Genetic Algorithm 

The human  designer  who  want  to  solve  optimization  problem  using  GA  

must address  five issues[24]. 

1- A genetic representation of candidate solutions,  

2- A way to create an initial population of solutions,  

3- An evaluation function which describes the quality of each individual,  

4- Genetic operators that generate new variants during reproduction, and 

5- Values for the parameters of the GA, such as population size, number of 

generations and probabilities of applying genetic operators.  



30 
 

4.3 Genetic Algorithm vs. Other Optimization Techniques 

The principle of GAs is simple: imitate genetics and natural selection by a 

computer program [25]: The parameters of the problem are coded most naturally as a 

DNA-like linear data structure, a vector or a string. Sometimes, when the problem is 

naturally two or three-dimensional also corresponding array structures are used. A set, 

called population, of these problem dependent parameter value vectors is processed 

by GA. To start there is usually a totally random population, the values of different 

parameters generated by a random number generator. Typical population size is from 

few dozens to thousands. To do optimization we need a cost function or fitness 

function as it is usually called when genetic algorithms are used. By a fitness function 

we can select the best solution candidates from the population and delete the not so 

good specimens. 

The nice thing when comparing GAs to other optimization methods is that the 

fitness function can be nearly anything that can be evaluated by a computer or even 

something that cannot! In the latter case it might be a human judgment that cannot be 

stated as a crisp program, like in the case of eyewitness, where a human being selects 

among the alternatives generated by GA. So, there are not any definite mathematical 

restrictions on the properties of the fitness function. It may be discrete, multimodal 

etc. 

The main criteria used to classify optimization algorithms are as follows: 

continuous /discrete, constrained / unconstrained and sequential / parallel. There isa 

clear difference between discrete and continuous problems. Therefore it is instructive 

to notice that continuous methods are sometimes used to solve inherently discrete 

problems and vice versa. Parallel algorithms are usually used to speed up processing. 

There are, however, some cases in which it is more efficient to run several processors 

in parallel rather than sequentially. These cases include among others such, in which 

there is high probability of each individual search run to get stuck into a local 

extreme. Irrespective of the above classification, optimization methods can be further 

classified into deterministic and non-deterministic methods. In addition optimization 

algorithms can be classified as local or global. In terms of energy and entropy local 

search corresponds to entropy while global optimization depends essentially on the 

fitness i.e. energy landscape. 



31 
 

Genetic algorithm differs from conventional optimization techniques in 

following ways [25]: 

1- GAs operate with coded versions of the problem parameters rather than 

parameters themselves i.e., GA works with the coding of solution set and not 

with the solution itself.  

2- Almost all conventional optimization techniques search from a single point but 

GAs always operate on a whole population of points(strings) i.e., GA uses 

population of solutions rather than a single solution for searching. This plays a 

major role to the robustness of genetic algorithms. It improves the chance of 

reaching the global optimum and also helps in avoiding local stationary point.  

3- GA uses fitness function for evaluation rather than derivatives. As a result, 

they can be applied to any kind of continuous or discrete optimization 

problem. The key point to be performed here is to identify and specify a 

meaningful decoding function. 

4- GAs use probabilistic transition operates while conventional methods for 

continuous optimization apply deterministic transition operates i.e., GAs does 

not use deterministic rules. 

4.4 Applications of Genetic Algorithm 

Genetic algorithms have been used for difficult problems, for machine 

learning and also for evolving simple programs. They have been also used for some 

art, for evolving pictures and music. A few applications of GA are as follow [25]: 

 Nonlinear dynamical systems-predicting, data analysis 

 Robot trajectory planning 

 Evolving LISP programs (genetic programming) 

 Strategy planning 

 Finding shape of protein molecules 

 TSP and sequence scheduling 

 Control-gas pipeline, pole balancing, missile evasion, pursuit 

 Design-semiconductor layout, aircraft design, keyboard configuration, 

communication networks 

 Scheduling-manufacturing, facility scheduling, resource allocation 



32 
 

 Machine Learning-Designing neural networks, both architecture and weights, 

improving classification algorithms, classifier systems 

 Signal Processing-filter design 

 Combinatorial Optimization-set covering, traveling salesman (TSP), Sequence 

scheduling, routing, bin packing, graph coloring and partitioning 

4.5 GA Operations 

The process of genetic algorithm is used to solve the structure of chromosome 

to represent the possible combinations of answers, according to population size; the 

population size can be fixed or random according to the optimization problem [25]. 

The chromosome structure represents all the variables that the designer wants to find 

the optimal values of it. Every variable represents gene, and the main structure of the 

genes is 0 and 1 combinations. Real numbers can also be used to indicate the number 

of floating. The chromosomes of each string represents a separate individual, and  

each individual represent one solution of the problem, so each population contain  

series of individual and the decision of each individual will have a so-called fitness 

value. This value is calculated by fitness function; the individual which have higher 

fitness value has higher probability to appear in the next generation more than the 

lower fitness value. The new population is generated after some processes, such 

selection, replication (reproduction), mating (crossover), Mutation and other 

evolutionary mechanisms. The process of evolution over generations eventually 

converges to the optimal solution. 

4.6 GA Elements 

The two distinct elements in the GA are individuals and populations. An 

individual is a single solution while the population is the set of individuals currently 

involved in the search process. 

4.6.1 Individuals 

An individual is a single solution. Individual groups together two forms of 

solutions as given below [25]: 

1- The chromosome, which is the raw „genetic‟ information (genotype) that the 

GA deal 



33 
 

2- The phenotype, which is the expressive of the chromosome in the terms of the 

model. 

A chromosome is subdivided into genes. A gene is the GA‟s representation of a 

single factor for a control factor. Each factor in the solution set corresponds to 

gene in the chromosome. Figure 4.2 shows the representations of a genotype. 

Chromosomes are encoded by bit strings are given below in figure. 4.3. 

 

Figure 4.2: Representation of Genotype and Phenotype 

 

 

Figure 4.3: Representation of Chromosome 

Genes are the basic “instructions” for building a Generic Algorithms. A 

chromosome is a sequence of genes. Genes may describe a possible solution to a 

problem, without actually being the solution. A gene as we show in figure 4.4 is a bit 

string of arbitrary lengths. The bit string is a binary representation of number of 

intervals from a lower bound a bit string of length „n‟ can represent (2n-1) intervals. 

The size of the interval would be (range)/ (2n-1). 

 
Figure 4.4: Representation of a Gene 

 

 

 



34 
 

4.6.2 Population 

A population is a collection of individuals as shown in figure 4.5. A 

population consists of a number of individuals being tested, the phenotype parameters 

defining the individuals and some information about search space. Two important 

aspects of population used in Genetic Algorithms are: 

1- The initial population generation. 

2- The population size. 

 
Figure 4.5: Population Representation 

Initial population often consists of random individuals but in some cases the 

designer suggests some solutions to be in the population. The size of it depend on the 

complexly of the problem. In the ideal case the first population must have large 

number of individuals to cover all the range of solution space. All possible alleles of 

each should be present in the population.Sometimes some of the solutions expected 

can be used to seed the initial population. Thus, the fitness of these individuals will be 

high which helps the GA to find the solution faster. The population size can cause 

some problems. The large population is useful to find the best solution but it was 

established that the time required by a GA to converge is (N x log N ( where N is 

population size [25] 

4.7 Chromosome Coding 

Encoding is a process of representing individual genes. The process can be 

performed using bits, numbers, trees, arrays, lists or any other objects. Encoding 

depends mainly on solving the problem. For example, one can encode directly real or 

integer numbers. Figures 4.6, 4.7, 4.8, 4.9 and 4.10 show the kinds of coding. 

 



35 
 

1- Binary Encoding:  

The most common way of encoding is a binary string, which would be represented 

as in figure. 4.6. Binary encoding gives many possible chromosomes with a smaller 

number of alleles. On the other hand this encoding is not natural for many problems 

and sometimes corrections must be made after genetic operation is completed. Binary 

coded strings with 1s and 0s are mostly used. The length of the string depends on the  

accuracy. In this, 

 Integers are represented exactly 

 Finite number of real numbers can be represented 

 Number of real numbers represented increases with string length 

 

Figure 4.6: Binary Encoding 

2- Real Encoding:  

Every chromosome is a string of numbers, which represents the number in 

sequence. Sometimes corrections have to be done after genetic operation is 

completed. In permutation encoding, every chromosome is a string of integer/real 

values, which represents number in a sequence.  

 
Figure 4.7: Real Encoding 

3- Octal Encoding: 

This encoding uses string made up of octal numbers (0-7). 

 

Figure 4.8: Octal Encoding 



36 
 

4- Hexadecimal Encoding 

This encoding uses string made up of hexadecimal numbers (0-9, A-F). 

 

Figure 4.9: Hexadecimal Encoding 

5- Value Encoding 

Every chromosome is a string of values and the values can be anything 

connected to the problem. This encoding produces best results for some special 

problems 

 

Figure 4.10: Value Encoding 

6- Tree Encoding 

This encoding is mainly used for evolving program expressions for genetic 

programming. Every chromosome is a tree of some objects such as functions and 

commands of a programming language. 

4.8 Fitness Function. 

The fitness of an individual in a genetic algorithm is the value of an objective 

function for its phenotype. And it is used to evaluate how good the different 

individuals in the population are. The fitness function depends on the problem that 

will be solved, for example in Traveling Sales Man (TSM) problem may be the time 

that the sales man will take it along traveling. So the fitness value can be defined as 

function of the objective function 𝑔(𝑥).  

     𝐹𝑖𝑡𝑛𝑒𝑠𝑠. 𝑣𝑎𝑙𝑢𝑒 = 𝑓 𝑔 𝑥                              (4.1) 



37 
 

For calculating fitness, the chromosome has to be first decoded and the objective 

function has to be evaluated. The fitness not only indicates how good the solution is, 

but also corresponds to how close the chromosome is to the optimal one [25]. When 

the optimization problem is single criterion, it is simple because there is one goal to 

achieve, when the problem is multi criterion the optimization problem will be more 

complex because if the solution is optimal for one criterion it may be worst for 

another one. The most difficult fitness functions are the ones needed to evaluate non-

numerical data [26], as the developer must find other metrics or ways to find a 

numerical evaluation of non-numerical data. An example of this is provided by 

Mitchell [27], who describes the problem of finding the optimal sequence of amino 

acids that can be folded to a desired protein structure. The acids are represented by the 

alphabet {𝐴… 𝑍}, and thus no numerical value can be straightforwardly calculated. 

The used fitness function calculates the energy needed to bend the given sequence of 

amino acids to the desired protein. In control applications there are different fitness 

function that may be used [28]. 

                𝑓𝑖𝑡𝑛𝑒𝑠𝑠. 𝑣𝑎𝑙𝑢𝑒 =  𝑒2 𝑡 𝑑𝑡
∞

0

  𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟                     (4.2) 

Where (𝑒) is the error signal, this function can track error quickly, but easily gives 

rise to oscillation. 

                𝑓𝑖𝑡𝑛𝑒𝑠𝑠. 𝑣𝑎𝑙𝑢𝑒 =   𝑒  𝑡   𝑑𝑡
∞

0

  𝑠𝑢𝑚 𝑜𝑓 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟                    (4.3)  

This function can obtain good response, but its selection performance is not good.  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠. 𝑣𝑎𝑙𝑢𝑒 =  𝑡 𝑒2  𝑡 𝑑𝑡  𝑠𝑢𝑚 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑤𝑒𝑖𝑔𝑕𝑡𝑒𝑑 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟    (4.4)
∞

0

 

This function can gives fast tracking and good response.  

4.9 Selection 

Selection or reproduction is the first process after finding the fitness values of 

the solutions. In this process the developer will choose the pairs of parents that will be 

crossed. This step is to decide how to perform selection. On other words, who are the 

individuals of that population will be used to create the next offspring that will be 



38 
 

used for next generation. The purpose of this step is to stress the individuals of the 

population that will be selected with the higher fitness. The problem is how to select    

the chromosomes that will cross; there are many methods that can be used [25]. 

4.9.1 Roulette Wheel Selection. 

Figure 4.11 shows the Roulette selection method which is one of the 

traditional GA selection techniques. That is called because this method works in a 

way that is similar to a roulette wheel. Each individual in a population is allocated a 

share of a wheel; the size of the share depends on the individuals fitness. The 

individuals that have higher fitness have big share. The individuals that have lower 

fitness have small share. That means the lower fitness of the individuals may have no 

chance to be in the roulette. A pointer is spun (a random number generated) and the 

individual to which it points is selected.  This continues until the requisite number of 

individuals has been selected. The Roulette wheel will have a problem when the 

fitness values differ very much. If the best chromosome fitness is 90%, its 

circumference occupies 90% of Roulette wheel, and then other chromosomes have too 

few chances to be selected. 

 

Figure 4.11: Roulette Wheel Selection. 

4.9.2 Rank Selection 

Rank  Selection  ranks  the  population  and  every  chromosome  receives  

fitness  from  the ranking  [25].  It  results  in  slow  convergence  It  also  keeps  up  



39 
 

selection  pressure  when  the fitness variance is low. Here, rank selection is 

programmed as follow: 

1.  Select first pair at random. 

2.  Generate random number 𝑅 between 0 and 1. 

3.  If 𝑅 < 𝑟 use the first individual as a parent. If the 𝑅 > = 𝑟 then use the second 

individual as the parent 

4.  Repeat to select the second parent.  

4.9.3 Stochastic Universal Sampling 

Figure 4.12 shows Stochastic Universal Sampling method in this method the 

individuals represent a line that is divided into number of adjacent segments, such that 

each individuals segment is equal in size to its fitness exactly as in roulette-wheel 

selection. Then, create equally space pointers that are placed over the line. The 

numbers of these pointers (N Pointer) depends on the number of the individuals that 

will be selected; the distance between the pointers is given as 1/NP, and the position 

of the first pointer is given by a randomly generated number in the range [0, 1/N 

Pointer]. 

 

Figure 4.12: Stochastic Universal Sampling 

4.10 Crossover 

Crossover is the process of taking two parent solutions and producing from 

them child. After the selection (reproduction) process, the population is enriched with 

better individuals. Reproduction makes clones of good strings but does not create new 

ones. Crossover operator is applied to the mating pool with the hope that it creates a 

better offspring. Crossover is a recombination operator that proceeds in three steps  

[25]: 



40 
 

I. The reproduction operator selects at random a pair of two individual strings 

for the mating. 

II. A cross site is selected at random along the string length. 

III. Finally, the position values are swapped between the two strings following the 

cross site. 

4.10.1 Single-Point Crossover 

The traditional genetic algorithm uses single point crossover, where the two 

mating chromosomes are cut once at corresponding points and the sections after the 

cuts exchanged. Here, a cross-site or crossover point is selected randomly along the 

length of the mated strings and bits next to the cross-sites are exchanged. If 

appropriate site is chosen, better children can be obtained by combining good parents 

else it severely hampers string quality.  

Figure 4.13 illustrates single point crossover and it can be observed that the 

bits next to the crossover point are exchanged to produce children. The crossover 

point can be chosen randomly. 

 

Figure 4.13: Single Point Crossover 

4.10.2 Two-Point Crossover 

In two-point crossover, two crossover points are chosen and the contents 

between these points are exchanged between two mated parents. These points are 

exchanged between two mated parents as shown in figure 4.14. 



41 
 

 

Figure 4.14: Two-Point Crossover 

4.10.3 Multi-Point Crossover (N-Point crossover) 

There are two ways in this crossover. One is even number of cross-sites and 

the other odd number of cross-sites. In the case of even number of cross-sites, cross-

sites are selected randomly around a circle and information is exchanged. In the case 

of odd number of cross-sites, a different cross-point is always assumed at the string 

beginning. 

4.10.4 Uniform Crossover 

Uniform crossover is another crossover technique. In this technique, the 

random mask is used, and this mask has same length as the chromosome. This mask 

consists of 1s and 0s. If a bit in the mask is 1 then the corresponding bit in the first 

child will come from the first parent and the second parent will contribute that bit to 

the second offspring. If the mask bit is 0, the first parent contributes to the second 

child and the second parent to the first child as shown in figure 4.15. 

 

Figure 4.15: Uniform Crossover 

 



42 
 

4.10.5 Three Parent Crossover 

In this crossover technique, three parents are randomly chosen. Each bit of the 

first parent is compared with the bit of the second parent. If both are the same, the bit 

is taken for the offspring otherwise; the bit from the third parent is taken for the 

offspring. This concept is illustrated in figure 4.16. 

 

Figure 4.16: Three Parent Crossover 

4.11 Mutation 

Mutation means swap one bit in binary coding or changes one number if the 

chromosome consists of numbers [29]. For binary coding, for doing this process there 

are one way; first choosing random number at every individual if the number less than 

specified number which is chose before by the programmer, then this individual will 

have mutation process. But how many bits will be changed there are many ways. First 

choosing random number between1and the total numbers of chromosome length and 

swap the bits which meet that number. Second method is choosing  random number  

between 0 and 1 at every bit of the chromosome if the number less than specified 

number then this bit will be swapped i.e., if it is a 1 change it to 0 or vice versa. This 

mutation probability is generally kept quite low and is constant throughout the 

lifetime of the GA. However, a variation on this basic algorithm changes the mutation 

probability throughout the lifetime of the algorithm, starting with a relatively high rate 

and steadily decreasing it as the GA progresses. This allows the GA to search more 

for potential solutions at the outset and to settle down more as it approaches 

convergence. 

4.12 Elitism 

The first best chromosome or the few best chromosomes are copied to the new 

population. The rest is done in a classical way [25]. Such individuals can be lost if 



43 
 

they are not selected to reproduce or if crossover or mutation destroys them. This 

significantly improves the GA‟s performance. Elitism can be used to eliminate the 

chance of any undesired loss of information during the mutation stage. Moreover, the 

execution time is less. 

4.13 Genetic Fuzzy Systems 

In a very broad sense, a Fuzzy System (FS) is any fuzzy logic-based system 

where fuzzy logic can be used either as the basis for the representation of different 

forms of system knowledge or to model the interactions and relationships among the 

system variables. FSs proven to be an important tool for modeling complex systems in 

which, due to complexity or imprecision, classical tools are unsuccessful. Genetic  

algorithms are search algorithms that use operations found in natural genetics to guide 

the trek through a search space. GA is theoretically and empirically proven to provide 

robust search capabilities in complex spaces, offering a valid approach to problems 

requiring efficient and effective searching. The following components of the 

knowledge base (KB) are potential candidates for optimization [24].  

1- Data base (DB) components: scaling functions and membership function 

parameters. 

2- Rule base (RB) components: "IF-THEN" rule consequents.  

4.13.1 Genetic Tuning of the Data Base 

The tuning of the scaling gains and fuzzy membership functions is an 

important task in FLC design. Scaling gains applied to the inputs and outputs of an 

FLC. Because the most FLC is normalized, the universes of discourse in which the 

fuzzy membership functions are defined all inputs and outputs are in the range [-1 1]. 

The individual refers to scaling gain and by using fitness function can calculate the 

best individual which gives the best scaling function. In the case of membership 

function, the parameters of the membership are tuned; Triangular membership 

functions are usually encoded by the left, right, and center of the membership  

4.13.2 Genetic Learning of the Rule Base 

In this way the membership of the fuzzy inputs and outputs and the scaling 

gain do not changed, but the sequence of IF-THEN rules will be modified to gives the 



44 
 

best result. In this way the individual is represented the one rule or the all rules. The 

RB is represented by a relational matrix, a decision table or a list of rules. In this 

thesis the fuzzy membership inputs and output membership functions will be used as 

variables that will be optimized using GA. Every triangular membership has three 

variable can effect on its shape; so each chromosome will has the number of genes 

that effect on the membership shape. For example every triangular membership can 

represented be three genes because it has three parameters that control of its shape 

(center edge, left edge and right edge). If the inputs of fuzzy controller have seven 

triangular memberships, then every chromosome of the population will have twenty 

one genes (7x3) (in this thesis there are ten variable for membership and three 

variables for gains). While the fitness functions will be the integral of the absolute 

value of error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 
 

CHAPTER 5  DESIGNING FUZZY CONTROLLER 

FOR BUCK CONVERTER 

 
5.1. Overall System Design 

This chapter presents the process used to design fuzzy controllers for the DC-

DC Buck converter using Try and error method and using Genetic Algorithm to 

improve the settling time, steady state error and ripple of the output voltage of the 

system. 

5.2DC-DC Buck Converter 

The operation of converter is fairly simple with an inductor, two switches and 

a capacitor that control the current of the inductor. Firstly, connecting the inductor to 

source voltage to store energy in the inductor, and then discharging the inductor into 

the load as shown in figure 5.1. 

 
Figure 5.1: Buck Converter 

The simulation DC-DC converted to one subsystem block using Matlab\ simulink 

program as shown in figure 5.2. 

 

Figure 5.2: DC-DC Converter Subsystem 

Vg

L

C R

1

Out1

v
+
-

g m

D S

1

In1



46 
 

5.2.1 Pulse Width Modulation (PWM) 

PWM signals are pulse trains with fixed frequency and magnitude and 

variable pulse width. However, the width of the pulses (duty cycle) changes from 

pulse to pulse according to a modulating signal as illustrated in figure 5.3. When a 

PWM signal is applied to the gate of the power transistor, it causes turn on and off 

intervals of the transistor to change from one PWM period to another according to the 

same modulating signal [19]. 

 
Figure 5.3: Pulse Width Modulation Waveforms  

The simulation PWM converted to one subsystem block with input from FLC while 

the output goes to the DC-DC converter Block as shown in figure 5.4-b. 

 

 

 

 

 

 

(a) Block                                                            (b)Subsystem 

Figure 5.4:  PWM Simulation using Matlab 

5.3 Fuzzy Logic Controller. 

Unlike Boolean logic which states that the value of any variable is either 0 or 

1, fuzzy logic allows states between them; i.e. membership value. The grade of 

membership value of fuzzy variable can be described in linguistic term [9]. Fuzzy 

major features are the use of linguistic variables rather than numerical variables. 



47 
 

Linguistic variables are defined as the variables whose values are defined in a usual 

language (e.g. small and big), may be represented by fuzzy set.  

The general structure of FLC controller as shown in chapter 3 is clear in figure 

5.5. It comprises four principal components: 

 

Figure 5.5: Basic Configuration of FLC 

1- Fuzzifier 

A fuzzyfication interface converts input data into suitable linguistic values.  

2- Rule Base and Data Base 

Both are known as knowledge base. It consists of data base with necessary 

linguistic definition and control rule set.  

3- Decision Making 

Decision making logic simulates a human decision process, infers the fuzzy 

control action from the knowledge of the control rules and the linguistic variable 

definition. 

4- Defuzzi fier 

A defuzzification interface yields a non-fuzzy control action from an inferred 

fuzzy control action. The inputs of the fuzzy logic controller as shown in figure 



48 
 

5.6 are the error 𝑒 and the change of error 𝑐𝑒, which are defined in equation 5.1 

and 5.2 as: 

                           𝑒 = 𝑉𝑜 −𝑉𝑟𝑒𝑓                                 (5.1) 

                         𝑐𝑒 = 𝑒𝑘 − 𝑒𝑘−1                              (5.2) 

where 𝑉𝑜 is the present output voltage, 𝑉𝑟𝑒𝑓  is the reference input voltage, and 

subscript k denotes values taken at the beginning of the 𝑘𝑡𝑕 switching cycle. The 

output of the fuzzy controller is the duty cycle and is defined in equation 5.3 as: 

      𝑑𝑘 = 𝑑𝑘−1 + 𝑕∆𝑑𝑘                              (5.3) 

 

Figure 5.6: The Editor of Fuzzy Inference System using Matlab 

The fuzzy logic control for DC-DC buck converter is made from two inputs 

and one output variable, as shown in figure 5.6, which are the error and change of 

error as an input variables, while the change of duty cycle is output variable. Each 

control variable has been divided into seven partitions. These partitions, which are 

called membership function have named into seven fuzzy subsets: PB (Positive Big), 

PM (Positive Medium), PS (Positive Small), ZO (Zero), NS (Negative Small), NM 

(Negative Medium) And NB (Negative Big). Partitions of fuzzy subsets and the shape 

of the membership function are shown in figure 5.7; i.e. (error variable) and (change 



49 
 

of error variable) and figure 5.8 (output variable).The triangular shapes of the 

membership function of this arrangement presume that for any particular input there is 

only one dominant fuzzy subset. The rules for the fuzzy controlled buck converter are 

tabulated in Table 5.1. From the tabulated table, the fuzzy rule base is formulated into 

49 rules. 

 
 

Figure 5.7: Membership Function of Input Variable ‘error’ and ‘change of 

error’ 

 
Figure 5.8: Membership Function of Output Variable 

The next step after designing the membership functions is to write the rules of 

the fuzzy controller. These rules are chosen based on knowledge and experience. 

Table 5.1 shows the rules base as a matrix 

Table 5.1: The Rule Base with 49 Rules 

 ERROE 

NB NM NS Z PS PM PB 

 C
H

A
N

G
E

 

E
R

R
O

R
 

NB NB NB NB NB NM NS Z 

NM NB NB NB NM NS Z PS 

NS NB NB NM NS Z PS PM 

Z NB NM NS Z PS PM PB 

PS NM NS Z PS PM PB PB 

PM NS Z PS PM PB PB PB 

PB Z PS PM PB PB PB PB 



50 
 

Figure 5.9 shows the surface of fuzzy controller using the previous rules. 

Surface shows  the relation between  the  inputs  and output  at  any point  in  the  

intervals  [-1 1] using  the Centroid defuzzification method as introduced previously 

using equation (3.15). 

 
Figure 5.9: Surface of Fuzzy Controller 

The simulation has been constructed using Matlab-Simulink environment is 

shown in figure 5.10. The results are obtained by adjusting the duty cycles with 

respect to voltage reference 14𝑉.  

 

-K-

out_g

-K-

err_g

-K-

ce_g

z

1

Unit Delay2
z

1

Unit Delay1

Saturation2

Saturation1

14

REF

d c

PWM 

Fuzzy Logic 

Controller

In1 Out1

DC_DC Converter

Figure 5.10:Matlab/Simulink Model  (BUCK Converter Closed Loop with Fuzzy Controller)  



51 
 

5.4. Simulation Result 

Simulated results obtained by Matlab/Simulink are shown in figures 5.11 and 

5.12.The performance of the control scheme is assessed in terms of time doma in 

specifications associated with output voltage response. As seen from figure 5.11, the 

compensated buck converter shows an under damped output voltage response and 

achieves the performance specifications of 0.83% overshoot and 0.045 ms settling 

time. The output voltage reaches its steady state value of 13.97𝑉 which gives a 1.5% 

steady state error. The steady state ripple is about 51.4𝑚𝑉 which represent 0.37% of 

the steady state value of 14𝑉. The converter has a satisfactory time response. We can 

conclude that the results give a good satisfactory response. That means that fuzzy 

logic controller is a good alternative way to control power converters than the 

classical controllers. 

 

Figure 5.11: Responses FL Controller 

0 1 2 3

x 10
-4

0

5

10

15

Time(s)

V
o
u
t(

v
)



52 
 

 
Figure 5.12: Ripples in the Output Voltage 

Table 5.2: Output voltage follows the changes in reference voltage 

Vin (V) Vref (V) OS% Tr (ms) Ts (ms) 

24 14 0.86% 0.033 0.042 

24 13 0.23% 0.0296 0.039 

24 12 0.225% 0.027 0.038 

 

Table5.3: Converter Parameters 

Symbol Symbol Component Description Values 

R Load Resistance 1 Ω 

RL Series Resistance of Inductor 80 mΩ 

RC Series Resistance of Capacitor 5 mΩ 

L Inductor of Output Filter 1 μH 

C Capacitor of Output Filter 200 μF 

Vin Input Voltage 24.0 V 

Vout Output Voltage 14.0 V 

0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
-4

13.93

13.94

13.95

13.96

13.97

13.98

13.99

Time(s)

V
o
u
t(

v
)



53 
 

5.5 Fuzzy Controller Design with GA for Buck DC-DC Converter 

 Here are many parameters that affect on the control process of the Buck 

DC-DC converter model in addition to the shape of the memberships of the inputs  

and output of fuzzy controller; i.e. (change of error gain),  err_g  (error  gain) and  

out_g  (fuzzy output gain). These gain parameters can be tuned to give near optimal 

results. GA is used to optimize these parameters and optimize the shape of   

memberships of fuzzy controller. There are many ways to have good response, first is 

to optimize gain parameters only without any change in memberships shape. Second 

is to optimize the memberships shape without any change in gain parameters. The last 

way is optimizing both gain parameters and memberships shape. GA Matlab code 

(Appendix A) is used to optimize the memberships shape and gain parameters. This 

program is divided into two codes; main code is responsible for performing the GA 

steps such as selection, crossover, mutation and make new population. The second 

code is responsible for testing the new population to calculate the fitness function and 

out the best fitness value. In fuzzy controllers, there are two inputs and one output.  

Every input and output has seven membership functions, five of these membership 

functions are triangular memberships and the others trapezoidal membership function. 

But in this thesis some simplification are used in writing GA code.  

1- The interval of the inputs and output will still at [-1 1] range. 

2- The symmetric point will still at zero.  

3- The inputs and output will have the same shape.  

After this simplification the number of the variables will be 7 for membership 

functions and 3 for the gain parameters.  The  fitness  function  that  will  be  used  is  

the  integral  of  the  absolute values  of  the  error,  in  the  control design the fitness 

value need  to be minimized. The number of individuals per one population will be  

50,  the  number  of  generation  will  be  100,  the crossover  probability  will  be  0.7. 

The first step in Matlab program, generate random population consist of 50 

individual, every individual consists of 13variable every variable is coded in 10 bit 

binary form.  In the second step, it converts the binary code of each variable to real 

number. In the third step, one call fuzzy control program and simulink program and 

find the fitness value of the fitness function (the integral of absolute values of error). 



54 
 

Fourth, implementing crossover and mutation, and finally generate the new 

population. The stop condition can be after exact times or after the exact value of 

fitness value. in this thesis the stop condition is after 100 generation.   

Figure 5.13 shows the memberships shape of the inputs and output. Figure 

5.14 shows the Responses FL controller with GA and figure 5.15 shows the ripple of 

output voltage with GA. 

 

Figure 5.13: Membership Functions of the Fuzzy Controller with GA 

 

Figure 5.14: Responses FL Controller with GA 

0 0.5 1 1.5

x 10
-4

0

5

10

15

Time(s)

V
o
u
t(

v
)



55 
 

Figure 5.15: Ripples in the Output Voltage with GA 

Table 5.4 shows the difference between parameters with and without GA 

optimization 

Table 5.4: Parameters Values with and without GA Optimization 

Parameters With GA Without GA 

Overshoot 1.01% 0.83% 

Settling time 0.041ms 0.043ms 

Rising time 0.033ms 0.033ms 

Error 0.5% 1.5% 

Ripple 12mV 51.4mV 

 

 

 

 

 

 

 

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

x 10
-4

13.982

13.984

13.986

13.988

13.99

13.992

13.994

13.996

13.998

14

Time(s)

V
o
u
t(

v
)



56 
 

CHAPTER 6  CONCLUSION 

 

6.1. Conclusion 

Issues in the design and implementation of controllers for buck converters 

have been discussed in this dissertation. There are many control methods that may be 

used to design controllers for DC-DC converters. Generally, these methods fall into 

two categories: linear and nonlinear control methods.  

Among the various techniques of artificial intelligence, the most popular and 

widely used technique in control systems is fuzzy control. Fuzzy controllers were 

designed based on the general knowledge of the converters.  

In this thesis, fuzzy logic controller was designed to improve the system 

response such as settling time, overshoot and ripple of the output voltage. The 

advantages of fuzzy controllers are: exact mathematical models are not required for 

the design of fuzzy controllers, complexities associated with nonlinear mathematical 

analysis are relatively low, and fuzzy controllers are able to adapt to changes in 

operating points. The fuzzy controller was designed with Matlab software program. 

The GA optimization method was used to optimize the membership function of the 

inputs and output of the fuzzy controller and also to optimize the gains. The Buck 

model was tested with the new membership functions and new gains and the results 

were better than the results of old fuzzy controller.  

6.2. Future Research 

1- Sugeno method can be used instead of Mamdani model and make 

comparison between two methods. 

2- Using fuzzy supervised PID techniques to give better results. 

3- We can implement the FLC for (Buck Converter) by using the modern 

technique in FPGA. 

4- In the future research the GA can be used in learning of rule base with 

Tuning of the data base to give better results.  



57 
 

REFERENCES 

[1] Liping Guo, Thesis, "Design And Implementation Of Digital Controllers For Buck 

And Boost Converters Using Linear And Nonlinear Control Methods", Auburn, 

Alabama, August 2006. 

[2] Y. S. Lee, Computer-Aided Analysis and Design of Switch-Mode Power Supplies, 

Marcel Dekker, Inc., New York, Basel, Hong Kong, 1993.  

[3] N. Mohan, T. M. Undeland, W. P. Robbins, Power Electronics: Converters, 

Applications, and Design, John Wiley & Sons, Inc., 1995.  

[4] F. H. Wang and C. Q. Lee, “Comparison of Fuzzy Logic and Current-Mode 

Control Techniques in Buck, Boost and Buck/Boost Converters”, 1995 IEEE 

26thAnnual Power Electronics Specialists Conference, Vol. 2, pp. 1079 - 1085, June 

1995. 

[5] J. Arias, A. Arias, S. Gomariz and F. Guinjoan, “Generating design rules for buck 

converter-based fuzzy controllers”, 1996 IEEE International Symposium on Circuits 

and Systems, Vol. 1, pp. 585 - 588, May 1996. 

[6] P. Mattavelli and G. Spiazzi, “General-purpose fuzzy controller for DC-DC 

converters”, IEEE Transactions on Power Electronics, Vol. 12, No. 1, pp. 79-86, 

January1997. 

[7] I. Campo and J. M. Tarela, “Consequences of the Digitization on the Performance 

of a Fuzzy Logic Controller”, IEEE Transaction on Fuzzy Systems, Vol. 7, No. 1, pp. 

85-92, Feb 1999. 

[8] K. Viswanathan, D. Srinivasan and R. Oruganti, “A Universal Fuzzy Controller 

for a Non-linear Power Electronic Converter”, IEEE International Conference on 

Fuzzy Systems, Vol. 1, pp. 46-51, 2002. 

[9] A. Perry, G. Feng, Y. Liu and P. C. Sen, “A new design method for PI- like fuzzy 

logic controllers for DC-DC converters”, 35thAnnual IEEE Power Electronics 

Specialists Conference, Aachen, Germany, pp. 3751-3757, 2004. 

[10] Farahani, H. Feshki , “Designing and Implementation of a Fuzzy Controller for 

DC-DC Converters and Comparing with PI Digital Controller”, Journal of Applied 

Sciences Research; July 2011, Vol. 7 Issue 7, p276.  

[11] The Institute of Electrical and Electronics Engineers Inc., “IEEE Standard 

Dictionary of Electrical and Electronics Terms”, Revised 2nd Edition 

[12]International Electrotechnical commission 

(IEC)http://www.electropedia.org/iev.iev.nsf/index?openform&part=551  

http://connection.ebscohost.com/c/articles/69734913/designing-implementation-fuzzy-controller-dc-dc-converters-comparing-pi-digital-controller
http://connection.ebscohost.com/c/articles/69734913/designing-implementation-fuzzy-controller-dc-dc-converters-comparing-pi-digital-controller
http://connection.ebscohost.com/c/articles/69734913/designing-implementation-fuzzy-controller-dc-dc-converters-comparing-pi-digital-controller
http://www.electropedia.org/iev.iev.nsf/index?openform&part=551


58 
 

[13] Power Electronics, 2/e, R S Ananda Murthy and V Nattarasu, Pearson Sanguine 

publications, 2010, ISBN: 9788131732403  

[14] The Oxford English Dictionary http://oxforddictionaries.com/ 

 [15] http://home.agh.edu.pl/~vlsi/AI/rozmyta_en/ 

[16] Robert Fuller, “Fuzzy Reasoning and Fuzzy Optimization,” TUCS General 

Publications, No. 9, Turku Centre for Computer Science, Abo, 1998.  

[17] M.  Ibrahim, Fuzzy Logic for Embedded Systems and applications, Elsevier 

Science, MA, USA, 2004.  

[18] Oscar Castillo and Patricia Melin, “Type-2 Fuzzy Logic: Theory and 

Applications,” Springer-Verlag Berlin Heidelberg, 2008, ISBN: 978-3-540-76283-6 

[19]  Mohammed S. EL-Moghany, Sun and Maximum Power Point Tracking in Solar 

Array Systems Using Fuzzy Controllers via FPGA, Master Thesis, Islamic 

University-Gaza, 2011. 

[20] H.-J. Zimmermann, Fuzzy Sets Theory - and Its Applications, Kluwer Academic 

Publishers, 1990.  

[21] Robert Fulle´r, "Fuzzy Reasoning and Fuzzy Optimization," TUCS General 
Publications, No. 9, Turku Centre for Computer Science, Abo, 1998.  

 
[22] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine 

Learning, Addison-Wesley, MA, 1989.  

[23] J.H. Holland, Adaptation in Natural and Artificial systems, University of 

Michigan Press, Ann Arbor, 1975.  

[24] O. Cordon, F. Herrera, F. Hoffman and L. Magdalena, .Genetic Fuzzy System 

Evolutionary Tuning and Learning of Fuzzy Knowledge Bases," Worlds Scientific,  

Singapore, 2001. 

[25] S.N. Sivanandam and S.N. Deepa, Introduction to Genetic Algorithms, Springer, 

New York, 2008. 

[26] OutiRaiha, Applying Genetic Algorithms in Software Architecture Design, 

University of Tampere, Department of Computer Sciences Computer Science ,M.Sc 

thesis,February, 2008. 

[27] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 3rd edition. 

Springer. New York, 1996. 

http://oxforddictionaries.com/
http://home.agh.edu.pl/~vlsi/AI/rozmyta_en/


59 
 

[28] Hung-Cheng Chen. and Sheng-Hsiung Chang, "Genetic Algorithms Based 

Optimization Design of a PID Controller for an Active Magnetic Bearing," IJCSNS 

International Journal of Computer Science and Network Security, VOL.6 No.12, 

December 2006. 

[29] Hosam Abu Elreesh, “Design of GA-Fuzzy Controller For Magnetic Levitation 

Using FPGA”, Master Thesis, Islamic University-Gaza, June 2011. 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 
 

APPENDIX A GA MATLAB PROGRAMS 
 

1- GA FUZZY MATLAB CODE MAIN PROGRAM 
 

%-----------------------------------------------------------------------------------------------------  
 

clc 

clear 

globalrinyouttimefe_absset_p 

Ts=1e-7;  

NE1=readfis('NE'); 

open_system('Buck');  

MAXGEN = 100;%100; % maximum Number of generations 

NVAR = 13; % Generation gap, how many new individuals are created  

GGAP = .5; % Generation gap, how many new individuals are created  

PRECI = 10; % Binary representation precision 

NIND = 50; % No. of individuals per subpopulations 

% First, a field descriptor is set up 

FieldD = [rep([PRECI],[1, NVAR]); rep([-0.1;0.1],[1, NVAR]);... 

rep([1; 0; 1 ;1], [1, NVAR])]; 

%---------------------------------------------------------- 

% The population is then initialized 

%---------------------------------------------------------- 

FieldD(2,1)=0.9;FieldD(2,2)=14.5;FieldD(2,3)=14.5;FieldD(2,12)=2.4;FieldD(2  

,13)=0; 

FieldD(3,1)=1.1;FieldD(3,2)=15.5;FieldD(3,3)=15.5;FieldD(3,12)=2.8;FieldD(3  

,13)=0.2; 

FieldD; 

BsJ=0; 

E = crtbp(NIND, NVAR*PRECI); 

E(1,:)=[1,0,0,0,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,0,1,1,0,0,0,1,1,1,1,1,1,1,1,0 

,0,1,1,0,1,0,0,0,0,1,1,0,0,1,0,0,1,0,1,1,0,0,1,0,0,0,1,1,1,1,1,1,0,0,0,1,1, 

1,0,1,0,0,0,1,0,1,0,1,0,1,1,1,0,0,1,1,1,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0 

,1,1,1,0,0,1,0,1,0,1,0,1,1,0,1,1,1,0,1,0,1;]; 

E(2,:)=[1,0,0,0,0,0,0,0,1,1,0,1,1,0,1,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0 



61 
 

,0,1,1,0,1,0,0,0,0,1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,0,1,0,1,0,0,1,0,0,1,1, 

0,1,1,0,0,0,0,1,1,1,0,0,1,1,1,0,0,0,1,1,1,0,1,1,0,0,1,1,0,1,1,1,1,0,1,0,0,1 

,0,1,1,0,1,1,0,1,0,1,0,0,1,1,1,0,0,1,0,1,1;]; 

E(3,:)=[1,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 

,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1, 

0,1,1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,0,0,1,1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0,1,1 

,0,1,0,1,1,1,1,0,0,1,0,1,0,1,0,1,1,1,1,0,0;]; 

E(4,:)=[1,0,0,0,0,1,1,0,1,0,0,1,1,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,1,1,1,0,0,0 

,0,0,0,0,1,0,0,1,0,1,0,0,1,1,1,0,0,0,0,1,1,0,0,1,0,1,1,0,0,0,0,1,1,0,1,1,0, 

1,1,1,1,0,1,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,1,1,0,0,0,1,0,1,1,1,0,0,1,0,1,0,0 

,1,0,0,1,1,0,0,0,0,1,1,0,1,1,0,1,1,0,0,0,0;]; 

for kg=1:1:MAXGEN 

time(kg)=kg; 

Kfuzzy=bs2rv(E,FieldD); 

for s=1:1:NIND 

%*************** Step 1 : Evaluate BestJ ***************************** 

Kfuzzyi=Kfuzzy(s,:); 

[Kfuzzyi,BsJ]=mysystem(Kfuzzyi,BsJ); 

BsJi(s)=BsJ; 

end 

[OderJi,IndexJi]=sort(BsJi); 

BestJ(kg)=OderJi(1); 

BJ=BestJ(kg); 

Ji=BsJi+1e-10; 

fi=1./Ji; 

[Oderfi,Indexfi]=sort(fi); 

Bestfi=Oderfi(NIND); 

BestS=E(Indexfi(NIND),:); 

kg 

BJ 

BestS; 

%********** Step 2 : Select and Reproduct Operation******************* 

fi_sum=sum(fi); 



62 
 

fi_Size=(Oderfi/fi_sum)*NIND; 

fi_S=floor(fi_Size); %Selecting Bigger fi value 

kk=1; 

for i=1:1:NIND 

for j=1:1:fi_S(i) %Select and Reproduce 

TempE(kk,:)=E(Indexfi(i),:); 

kk=kk+1; %kk is used to reproduce 

end 

end 

%************ Step 3 : Crossover Operation ************ 

pc=0.99; 

n=ceil(100*rand); 

for i=1:2:(NIND-1) 

temp=rand; 

%if pc>temp %Crossover Condition 

for j=n:1:100 

TempE(i,j)=E(i+1,j); 

TempE(i+1,j)=E(i,j); 

end 

%end 

end 

TempE(NIND,:)=BestS; 

E=TempE; 

%*********** Step 4: Mutation Operation ****************************** 

pm=0.001-[1:1:NIND]*(0.001)/NIND; %Bigger fi, smaller pm 

for i=1:1:NIND 

for j=1:1:3*PRECI 

temp=rand; 

if pm(i)>temp %Mutation Condition 

if TempE(i,j)==0 

TempE(i,j)=1; 

else 

TempE(i,j)=0; 



63 
 

end 

end 

end 

end 

TempE(NIND,:)=BestS; 

E=TempE; 

%*******************************************************************

** 

end 

Bestfi 

BestS 

Kfuzzyi 

Best_J=BestJ(MAXGEN) 

figure(1); 

plot(time,BestJ); 

xlabel(‟Times‟);ylabel(‟Best J‟); 

 

 

 

 

 

 

 

 

 

 

 



64 
 

2- GA FUZZY MATLAB CODE CALL SIMULINK PROGRAM 
 

%--------------------------------------------------------------------- 

function [Kfuzzyi,BsJ]=fuzzy_gaf(Kfuzzyi,BsJ) 

global rinyouttimef 

%------------------------------------------------------------------------- 

a=newfis('NE');  

a=addvar(a,‟input‟,‟e‟,[-1,1]); %Parameter e 

a=addmf(a,‟input‟,1,‟NB‟,‟zmf‟,[-1,-0.6668-Kfuzzyi(10)]); 

a=addmf(a,‟input‟,1,‟NM‟,‟trimf‟,[-1-Kfuzzyi(9),-0.6668-Kfuzzyi(8), -  

0.3332-Kfuzzyi(7)]); 

a=addmf(a,‟input‟,1,‟NS‟,‟trimf‟,[-0.6668-Kfuzzyi(6),-0.3332- 

Kfuzzyi(5),0]); 

a=addmf(a,‟input‟,1,‟Z‟,‟trimf‟,[-0.3332-Kfuzzyi(4),0,0.3332+Kfuzzyi(4)]); 

a=addmf(a,‟input‟,1,‟PS‟,‟trimf‟,[0,0.3332+Kfuzzyi(5),0.6666+Kfuzzyi(6)]); 

a=addmf(a,‟input‟,1,‟PM‟,‟trimf‟,[0.3332+Kfuzzyi(7),0.6666+Kfuzzyi(8),1+Kfu 

zzyi(9)]); 

a=addmf(a,‟input‟,1,‟PB‟,‟smf‟,[0.6666+Kfuzzyi(10),1]); 

a=addvar(a,‟input‟,‟ec‟,[-1,1]); %Parameter ec 

a=addmf(a,‟input‟,2,‟NB‟,‟zmf‟,[-1,-0.6668-Kfuzzyi(10)]); 

a=addmf(a,‟input‟,2,‟NM‟,‟trimf‟,[-1-Kfuzzyi(9),-0.6668-Kfuzzyi(8), -  

0.3332-Kfuzzyi(7)]); 

a=addmf(a,‟input‟,2,‟NS‟,‟trimf‟,[-0.6668-Kfuzzyi(6),-0.3332- 

Kfuzzyi(5),0]); 

a=addmf(a,‟input‟,2,‟Z‟,‟trimf‟,[-0.3332-Kfuzzyi(4),0,0.3332+Kfuzzyi(4)]); 

a=addmf(a,‟input‟,2,‟PS‟,‟trimf‟,[0,0.3332+Kfuzzyi(5),0.6666+Kfuzzyi(6)]); 

a=addmf(a,‟input‟,2,‟PM‟,‟trimf‟,[0.3332+Kfuzzyi(7),0.6666+Kfuzzyi(8),1+Kfu 

zzyi(9)]); 

a=addmf(a,‟input‟,2,‟PB‟,‟smf‟,[0.6666+Kfuzzyi(10),1]); 

a=addvar(a,‟output‟,‟u‟,[-1,1]); %Parameter u 

a=addmf(a,‟output‟,1,‟NB‟,‟zmf‟,[-1,-0.6668-Kfuzzyi(10)]); 

a=addmf(a,‟output‟,1,‟NM‟,‟trimf‟,[-1-Kfuzzyi(9),-0.6668-Kfuzzyi(8), -  

0.3332-Kfuzzyi(7)]); 

a=addmf(a,‟output‟,1,‟NS‟,‟trimf‟,[-0.6668-Kfuzzyi(6),-0.3332- 



65 
 

Kfuzzyi(5),0]); 

a=addmf(a,‟output‟,1,‟Z‟,‟trimf‟,[-0.3332-Kfuzzyi(4),0,0.3332+Kfuzzyi(4)]); 

a=addmf(a,‟output‟,1,‟PS‟,‟trimf‟,[0,0.3332+Kfuzzyi(5),0.6666+Kfuzzyi(6)]); 

a=addmf(a,‟output‟,1,‟PM‟,‟trimf‟,[0.3332+Kfuzzyi(7),0.6666+Kfuzzyi(8),1+Kf 

uzzyi(9)]); 

a=addmf(a,‟output‟,1,‟PB‟,‟smf‟,[0.6666+Kfuzzyi(10),1]); 

%----------------------------------------------------------------------- 

rulelist=[1 1 1 1 1; %Edit rule base 

1 2 1 1 1; 

1 3 1 1 1; 

1 4 1 1 1; 

1 5 2 1 1; 

1 6 3 1 1; 

1 7 4 1 1; 

2 1 1 1 1; 

2 2 1 1 1; 

2 3 1 1 1; 

2 4 2 1 1; 

2 5 3 1 1; 

2 6 4 1 1; 

2 7 5 1 1; 

3 1 1 1 1; 

3 2 1 1 1; 

3 3 2 1 1; 

3 4 3 1 1; 

3 5 4 1 1; 

3 6 5 1 1; 

3 7 6 1 1; 

4 1 1 1 1; 

4 2 2 1 1; 

4 3 3 1 1; 



66 
 

4 4 4 1 1; 

4 5 5 1 1; 

4 6 6 1 1; 

4 7 7 1 1; 

5 1 2 1 1; 

5 2 3 1 1; 

5 3 4 1 1;                                                                                                                          

5 4 5 1 1;                                                                                                                          

5 5 6 1 1;                                                                                                                          

5 6 7 1 1;                                                                                                                          

5 7 7 1 1; 

6 1 3 1 1; 

6 2 4 1 1; 

6 3 5 1 1; 

6 4 6 1 1; 

6 5 7 1 1; 

6 6 7 1 1; 

6 7 7 1 1; 

7 1 4 1 1; 

7 2 5 1 1; 

7 3 6 1 1; 

7 4 7 1 1; 

7 5 7 1 1; 

7 6 7 1 1; 

7 7 7 1 1]; 

a=addrule(a,rulelist); 

a=setfis(a,‟DefuzzMethod‟,‟centroid‟); 

writefis(a,'NE'); 

NE1=readfis('NE'); 

ke=num2str(Kfuzzyi(1)); 

kce=num2str(Kfuzzyi(2)); 

ku=num2str(Kfuzzyi(3)); 



67 
 

ki=num2str(Kfuzzyi(12)); 

kp=num2str(Kfuzzyi(13)); 

set_param('Buck/err_g','Gain',ke); 

set_param('Buck/ce_g','Gain',kce); 

set_param('Buck/out_g','Gain',ku); 

[t,x,y]=sim('Buck'); 

clear t; 

clear x; 

clear y; 

BsJ=0; 

ts=1e-7; 

for k=1:1:201 

timef(k)=k*ts; 

Ji(k)=(e_abs.time(k)*e_abs.signals.values(k)); 

BsJ=BsJ+Ji(k); 

end 

end 

 

 


