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Abstract

This thesis consists of three papers which cover the efficient Monte Carlo sim-

ulation in option pricing, the application of realized volatility in trading strate-

gies and geometrical analysis of a four asset mean variance portfolio optimiza-

tion problem. The first paper studies different efficient simulation methods to

price options with different characters such as moneyness and maturity times.

The incomplete market environments are also been considered. The second pa-

per uses realized volatility based on high frequency data to improve the volatil-

ity trading strategy. The performance is compared with that using the implied

volatility. The last paper re-examines the Markowitz’s portfolio optimization

problem using a general case. It also extends the problem to four assets, it

describes the exact mean variance efficient fronter in the weight space and

studies the frontier in the mean variance space. The thesis may serve to help

our understanding of how to apply numerical and analytical methods to solve

financial problems.
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Chapter 1

Introduction

The dissertation consists of three papers dealing with efficient Monte Carlo

simulation strategies for option pricing, the use of realized volatility in high fre-

quency volatility trading strategies and a geometrical analysis of Markovitz’s

four asset problem.

The first paper compares different efficient Monte Carlo simulation methods

for the purpose of pricing derivatives under incomplete market environments.

Option prices were simulated based on three incomplete option price models:

stochastic volatility model, jump diffusion model, and stochastic volatility with

concurrent jumps in the stock price and variance process model. Using the

simulated option prices as well as the option prices based on S&P 500 index

returns, we tested and compared the performance of the standard Monte Carlo

simulation and five other efficient simulation methods including Antithetic
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Variables, Control Variates, Stratified Sampling (SS), Importance Sampling,

and Quasi-Monte Carlo (QMC). The comparison was made on different money-

ness and maturity times. According to Root Mean Squared Error, QMC is the

best choice for the out-of-the-money options. For in-the-money options, there

was no clear winners as the performance of the methods changed with the op-

tion pricing model. Considering the standard error, QMC and SS did the best

and much better than the other methods. The study may serve to improve the

speed and accuracy of Monte Carlo methods for option pricing under incom-

plete environments.

The second paper focuses on applying realized volatility in the high frequency

volatility trading strategies. The implied stochastic volatility regression method

has commonly been used to predict the conditional volatility of stock prices.

However, implied volatility has proven to be a biased predictor of the realized

volatility across asset markets. With the increasing emphasis on computer-

assisted techniques, high frequency data can be applied to process realized

volatility. This paper investigates the Delta Neutral strategy, with the realized

volatility forecasting based on high frequency data. A comparison between the

effectiveness of applying realized volatility to the trading strategies and that

of the implied volatility is conducted.This study showed that each of the two

types of volatility performed well in different settings, but the advantage of

the realized volatility lies in that it is much quicker to obtain the results than
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that of implied volatility, and this would be important in practice because the

application of the realized volatility improves the calculation efficiency.

The third paper re-examines the mean variance efficient problem in Markowitz

(2005) by adding up the non-negativity constraints of the asset weights. It also

examines the problem in a general case without specifying values for the means

and variances. Furthermore, the problem is extended to four assets so that

the weights can be described in a three-dimension space as some important

features of many securities portfolio optimization can be analyzed in the four

assets problem. In this paper, I calculated the solution of four important port-

folios including the minimum variance portfolio, the maximum return portfolio

and two corner portfolios at turning points. So the tedious algebra shows that,

in the weight space, the efficient line started from the point of minimum vari-

ance inside the tetrahedron and always hit the plane where the lowest return

asset was equal to zero. Then the efficient line would hit the plane where the

second lowest return was equal to zero. This leads to the result that with the

increase of the given expected portfolio return, the efficient portfolio always

drops off the asset with a lower return first. By mapping the efficient portfolio

from weight space to mean variance space, we prove that there is no kink at

the corner points in mean variance space (i.e. the efficient frontier is contin-

uous). The result is consistent with Dybvig(1984) etc. We also show that in

some conditions, the mean variance efficient frontier can be described as a few
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parabolas tangent at the corner points. The solution was tested on a specific

example of four assets with eight years daily stock prices. Monte Carlo simula-

tion was also used in this study to test a wider dataset and the results matched

well. This research may help us develop a deeper understanding of the efficient

portfolio. The analysis in weight space may also be extended to deal with more

constraints on the portfolio weights.
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Chapter 2

Empirical Performance
of Efficient Monte Carlo
Simulations for Option Pricing
in Incomplete Markets

2.1 Introduction

The benchmark model for option pricing is the Black-Scholes(B-S) model, which

assumes that the market is complete. For instance, an investor can borrow as

much as he needs at a constant risk-free interest rate; there is no transaction

cost in the market; the underlying asset prices follow the Geometric Brownian

Motion(GBM) process with constant drift and volatility; it is free of short sell-

ing constraints in the market, etc. The B-S model uses no-arbitrage theory and

martingale methods to get a closed form of option price in the complete market.

The Black-Scholes model is considered one of the most popular models because
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it can bring out the main features of the option price. However, it has been crit-

icized for its normal distribution and the complete market assumptions. For

example, the empirical data show conflicts in this model, such as leptokurosis

with the assets return having a higher peak and heavier tails than the normal

distribution; the ”smile” in volatility can not be explained by the Black-Scholes

model. Also, the volatility of the underlying asset return can not maintain con-

stancy. The Black-Scholes option pricing model comes from replicating portfo-

lios to cover the risk totally. However, it needs to be recognized that the market

is significantly incomplete and the perfect replication is impossible. There are

many factors contributing to the incompleteness of the market. Factors such

as transaction costs, portfolio constraints, insufficient assets for investing and

the volatility in B-S model can not be perfectly estimated. In this paper, the

models used to describe the incompleteness are stochastic volatility and mixed

jump diffusion processes which can better match the empirical data than in

B-S model.

The computation in financial theory and practice is complex. There is no ana-

lytical solution to it some time, so the numerical methods have become neces-

sary. Boyle(1977) recommended the use of Monte Carlo simulation to price the

options and other derivatives. Monte Carlo methods have become especially

useful with the development of computing power. The technique has many
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advantages compared to other numerical methods. It is easy to apply to com-

plicated problems, and with it people can simulate the paths and estimate the

expectations in most cases. The convergence speed does not rely on the dimen-

sion number of the problem. Moreover, the Monte Carlo estimate can provide

more accurate confidence intervals.

In order to get more accurate results with the Monte Carlo simulation method,

a large number of replications are needed. Thus, efficient strategies are almost

compulsory in order to reduce the variance of the estimator and improve the

accuracy. The popular variance techniques include antithetic variates, control

variates, moment matching, stratificaiton and Latin hypercube sampling, im-

portance sampling, repricing-matching-weights, conditional Monte Carlo and

Quasi-Monte Carlo simulation.

Much research has been done in the field of applying Monte Carlo simulation

to pricing the American style option and path dependent option, such as Asian

options. However, how to apply the efficient simulation in the environment of

incomplete market has not drawn much attention. The goal of this paper is

to apply and compare the various efficient simulation strategies in pricing the

European style options in the incomplete financial markets.

The rest of the paper is organized as follows. Section 2.2 demonstrates the



8

option pricing models in the incomplete markets and the Monte Carlo method

to price options. Section 2.3 presents the efficient simulation methods such as

four variance reduction techniques and Quasi-Monte Carlo method. Section

2.4 describes the data used in this research including generated data and real

data. Section 2.5 provides the numerical results and Section 2.6 draws conclu-

sions.

2.2 Option Pricing

2.2.1 Black Scholes Model in complete markets

It is assumed that the stock prices follow a (continuous time) geometric Brow-

nian motion process:

dS = φSdt+ σSdW (2.1)

where,

S = the current stock price

φ = the expected return

σ = volatility of the stock return

W = Brownian Motion process

dW = ε(dt)0.5, ε is the standard normal distributed random variable

Together with other strict assumptions such as that the transactions do not

incur any fees or costs, it is possible to buy and sell any amount of stock, and
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it is possible to borrow and lend cash at the risk-free interest rate, the Black-

Scholes European call option price can be obtained as:

fBS = SN(d1)−Ke−rTN(d2) (2.2)

Where,

S = current stock price

K = option strike price

r = annual risk-free interest rate

T = time to expiration, current time is set to zero, T should be annualized

since the annual interest rate is used

N = the cumulative normal density function

d1 =
ln(S/K) + (r + σ2/2)T

σT 1/2

d2 =
ln(S/K) + (r − σ2/2)T

σT 1/2
= d1 − σT 1/2

2.2.2 Incomplete Market Models

A lot of evidence has shown that the complete market assumptions can not be

satisfied, and the incompleteness can be presented in the models by stochas-

tic volatility and jumps in volatility and underlying stock prices. In order to

capture the main features of option prices, we use the stochastic volatility

model(SV), the pure jump diffusion model(Jump) and the stochastic volatility

with concurrent jumps model(SVCJ).
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Stochastic Volatility Model (SV)

In the incomplete market, the underlying asset return volatility is stochastic

rather than constant. We use the Hull and White (1987) model to describe the

option prices process. If the stock price is St and its instantaneous variance is

Vt, the asset price can be described in the following stochastic processes,

dS = S(φdt+ σdw) (2.3)

dV = V (µdt+ ξdz) (2.4)

Where V = σ2 follows a geometric Brownian Motion. dw and dz are correlated

Brownian motion process with correlation coefficient ρ. φ is the expected re-

turn of the share, µ is the drift (expected growth rate) of the variance, σ is the

volatility and ξ is the volatility of volatility. The security price f(St, σ
2
t , t) is the

present value of the expected terminal value of f discounted at the risk free

rate, thus the closed form of the option price is:

f(St, σ
2
t , t) = e−r(T−t)

∫
f(ST , σ

2
T , T )p(ST |St, σ2

t )dST (2.5)

Where T is the time at which the option matures, St is the security price at time

t, σt is the instantaneous standard deviation at time t, and p(ST |St, σt) is the

conditional density function of ST given the security price and variance at time

t. V = 1
T−t

∫ T
t
σ2
τdτ denotes the mean of variance over the life of the derivation

security, and the price can be written as

f(St, σ
2
t , t) =

∫ [
e−r(T−t)

∫
f(ST )g(ST |V )dST

]
h(V |σ2

t )dV (2.6)
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where h(·) denotes the conditional distribution of V . The inner integral pro-

duces the Black-Scholes price.

If we assume that the correlation ρ = 0 and µ and ξ are independent of S(t), the

Hull and White price can be seen as the integral of the Black-Scholes price over

the conditional distribution of mean variance V and in Hull and White(1987)

model:

fHW (St, σ
2
t ) =

∫
fBS(V )h(V |σ2

t )dV (2.7)

fBS is the Black-Scholes European option price defined in previous section.

By expanding Black-Scholes price fBS(V ) from its expected average variance

E(V ) in a Taylor series, Hull-White also propose a power series approximation

technique to get the option price fHW as:

fHW (St, σ
2
t ) = fBS(E(V )) +

1

2

∂2fBS(E(V ))

∂V
2 E(V

2
)

+
1

6

∂3fBS(E(V ))

∂V
3 E(V

3
) + ... (2.8)

Where E(V
2
) and E(V

3
) are the second and third central moments of V .

Jump-Diffusion Model(Jump)

In this model, the market incompleteness comes from the jumps of the security

price. Merton (1976) option pricing formula is that the basic model takes into

consideration the jump diffusion which can lead to the leptokurtic and implied

volatility smile. Merton(1976) assumes that the underlying stock price follows
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Brownian motion as in Black-Scholes(1973) model, together with jumps which

are modeled with a compound Poisson process. The dynamics of the stock prices

is described as

dS/S = (φ− λµ)dt+ σ̂dWt + dqt (2.9)

Where φ is the instantaneous expected return of the asset, λ is the mean num-

ber of arrival events in unit time, µ is the mean jump size. σ̂2 is the instan-

taneous variance of the return when the Poisson event does not occur. Wt is

a standard Brownian motion. qt is the independent Poisson process. And the

price of an European call option in Jump-Diffusion model is given by

fJ =
∞∑
i=0

e−λT (λT )i

i!
fBS(S,K, T, r, σi) (2.10)

where T is the time to expiration; K is the strike price; r is the annual risk

free interest rate; fBS(S,K, T, r, λi) is the Black-Scholes pricing formula for an

European Call option, and

σi =
√
z2 + δ2(i/T ),

where

z2 = σ2 − λδ2, δ2 =
γσ2

λ

σ is the total volatility including jumps, λ is the expected yearly number of

jumps and γ is the percentage of total volatility due to the jumps.
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Stochastic Volatility with Concurrent Jumps in the Stock Price and

the Variance Process(SVCJ)

There is strong empirical evidence of stochastic volatility and jumps in finan-

cial markets. We follow the SVCJ model in Duffie et al.(2000) which is based

on the dynamics of the underlying stock price and variance,

dSt = (φ− λµ)Stdt+
√
VtSt

[
ρdW

(1)
t +

√
1− ρ2dW

(2)
t

]
(2.11)

+(Js − 1)dNt

dVt = k(θ − Vt)dt+ σv
√
VtdW

(1)
t + JvdNt (2.12)

where St is the stock price at time t, φ is the interest rate,
√
Vt is the volatility,

θ is the long-run mean of variance, k is the speed of mean reversion, σv de-

termines the volatility of the variance process, W (1)
t and W

(2)
t are independent

Brownian motion processes, and ρ is the instantaneous correlation between the

return process and the volatility process.

Nt denotes a Poisson process independent of the Brownian motions with con-

stant intensity λ, Js is the relative jump size of the stock price and Jv is the

jump size of the variance. If a jump occurs at time t, we have

St+ = St−J
s

Vt+ = Vt−J
v

The jumps in stock price occur concurrently with that in the variance and the

correlation is determined by ρJ . Jv follows exponential distribution with mean
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µv and Js follows lognormal distribution with mean (µs+ρJJ
v) and variance σ2

s .

And the parameters µs and µ are related as µs = log[(1 + µ)(1 − ρJµv)] − 0.5σ2
s .

There is no closed form solution for the option price in SVCJ model and it only

has numerical solution.

2.2.3 Monte Carlo(MC) Simulation Approach for Option

Pricing

The Monte Carlo simulation method was first used in option pricing by Boyle

and it has proved to be a powerful tool in finance. There has been a lot of

research on the MC simulation in American style options and path depended

options such as Asian options, but not much attention has been given to the

incomplete market environment. There is a lot of work to do on the improve-

ment of the algorithm of MC approach in this field. This paper focuses on how

to choose the efficient strategies of MC simulation in the incomplete market

environment. Following is the basic MC approach which simulates the process

of how an option is priced.

The payoff for an European call option with strike price K at expiry time T

is fcall(S, T,K) = max{ST −K, 0} where ST is the point stock price. Monte Carlo

simulation method generates m paths of stock prices, calculates option pay off
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for each path and takes average to get

f̄call(S, T,K) =
1

m

m∑
i=1

f
(i)
call(S, T,K) (2.13)

The approximation of the present time option price is obtained by discounting

the approximate future price by e−rT , where r is the risk free interest rate.

ffair(S, 0, K) = e−rT f̄call(S, T,K) (2.14)

Following one of the assumptions of Black-Scholes model, we simulate the un-

derlying stock prices whose natural logarithm follow a geometric Brownian

motion process. Same as equation (2.1), the stock prices dynamic is described

as the SDE:

dS = φSdt+ σSdW (2.15)

By Ito’s Lemma,

ST = Stexp{(φ− 0.5σ2)(T − t) + σ
√
T − tε} (2.16)

This is the continuous time model of the underlying stock price at maturity

time T . Accepting the risk neural assumption, stock return φ is equal to the

risk-free interest rate rf . However, φ can also denote the cost of carry rate

which is the cost of interest plus additional costs such as the cost of paying

dividends.

In practice, we can only observe the stock prices discretely such as every 5
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minutes. In order to simulate the stock prices, we separate 1 year into n pe-

riods. Assuming that there are N days in a year and D periods every day, we

have n = N ∗ D and the maturity time T (days) is scaled to T ∗ = T ∗ D peri-

ods. The asset return per period is φ∗ = φyear
n

. The asset volatility per period is

σ∗ = σyear√
n

. The stock prices process follows lognormal distribution. If current

time is t = 0, stock price at scaled maturity T ∗ is:

S(T ∗) = S(0)exp{
T ∗∑
i=1

Zi} (2.17)

where Zi follows the normal distribution with mean µ = φ∗− 1
2
(σ∗)2 and volatil-

ity σ∗. Equation (2.17) can also be written as

S(T ∗) = S(0)exp{µT ∗ + σ∗
√
T ∗εi} (2.18)

εi is drawn from a standard normal distribution. If we have simulated the

stock price at maturity, the present-time fair option price can be obtained by

discounting the payoff to the factor e−rT as

f(S0) =
1

m
e−rT

m∑
i=1

[max{ST −K, 0}] (2.19)

The number of replications m must be set large enough, such as 104, to get

an accurate result. This computer intensive approach is the main drawback

of Monte Carlo simulation method, thus the efficient simulation strategies are

significant in applying the Monte Carlo method to improve the performance.
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2.3 Efficient Monte Carlo Simulation Methods

2.3.1 Variance Reduction Techniques

The convergence speed of Monte Carlo simulation is N−
1
2 , but there are several

variance reduction methods which can improve the accuracy of the simulation

process. I use four techniques in this paper to compare their performance in

the incomplete market.

Antithetic Variables(Anti-V)

Anti-V uses pairs of random variables that follow the same probability dis-

tribution but with negative correlation. The average of N pairs of antithetic

variables has smaller variance than that of 2N independent variables. If we

want to estimate E(h(U)) where U is uniformly distributed on [0, 1]N . We can

get the antithetic variate of U ,

1−U = (1− U1, 1− U2, ..., 1− UN)

Now we can estimate h by

h̄ =
1

N

N∑
i=1

h(Ui)

and

h̄A =
1

N

N∑
i=1

h(1− Ui)

The Antithetic estimator is (h̄+ h̄A)/2. The variance of this estimator is

V ar(h(U))

2N
(1 + ρ)
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where ρ is the correlation between h(U1) and h(UA
1 ). The variance is reduced if

ρ < 0, and it is always the case if V ar(h(U)) is monotonic in U. The idea is that

h can be decomposed to symmetric part (h(U) + h(1−U))/2 and antisymmetric

part (h(U) − h(1 − U))/2. Because the Antithetic version of estimator has only

the symmetric part of h, the variance is reduced.

In this study, option prices are simulated based on normal random variable

Zi and −Zi. Option prices are

fi = e−rTmax{0, S(i)
T −K}, where S(i)

T is simulated based on Zi (2.20)

f̃i = e−rTmax{0, S̃(i)
T −K}, where S̃(i)

T is simulated based on −Zi (2.21)

and an unbiased estimator of the option price is

fAntiV =
1

N

N∑
i=1

fi + f̃i
2

(2.22)

Control Variates(CV)

The control variates method adjusts the outputs of Monte Carlo simulation

directly. It uses the known errors of the estimator which contains the infor-

mation of the unknown error of the interesting estimator, for example, in the

case of estimating E(h(X)) or E(h(X1, ..., XT )). Suppose we know E(f(X)) and

the error of E(f(X)) and we also have ρ(f(X), h(X)) 6= 0, then the estimation

errors of these two expectations are correlated. We can use the standard linear

estimation to reduce the variance of E(h(x)).
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Now let

h̄ =
1

N

N∑
i=1

h(Xi)

f̄ =
1

N

N∑
i=1

f(Xi)

σ2
h = V ar(h(X))

σ2
f = V ar(f(X))

Construct new estimator

h̄α = h̄+ α(E(f(X))− f)

Since E(h̄α) = E(h(X)), the new estimator is still unbiased. However, the

variance for the new estimator is

V ar(h̄α) =
1

N
(σ2

h + 2ασhσfρ(h(X), f(X)))

Given the variances and correlation, it is obvious that

α̂ = argminαV ar(h̄α) = −(σh/σf )ρ(h(X), f(X))

and minα = σ2
h(1−ρ2)/N . The more h(X) and f(X) are correlated, the more the

variance is reduced.

Following Broadie and Glasserman(1996), we use the terminal asset price as

the control variate and let C be the unbiased simulation estimator of option
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price and c = E[C] where c is the true value of the option. We let ST be the sim-

ulated terminal price of the underlying stock at time T. By the Black-Scholes

assumption, we have the expected value of terminal asset price E[ST ] = S0e
rT .

Now we can construct a control variates estimator of the option price as

CCV = C + α(erTS0 − ST ) (2.23)

since the variance of the new estimator is

V ar[CCV ] = V ar[C] + α2V ar[ST ]− 2αCov[C, ST ] (2.24)

α is chosen to minimize E[CCV − c]2 and the variance-minimizing α is

α∗ =
Cov(C, ST )

V ar(ST )
(2.25)

This problem can be solved by a linear regression of C on ST .

Stratified sampling(SS)

Random variables Xi are sampled in a way that a specified number of samples

selected from each stratum. Thus, the whole domain can be covered. It is useful

if there is a good approximation for the average over small subdomain. The

stratification should be chosen so that the subdomains have equal probability

associated. Consider h(U1, ..., Ud), the standard stratified sampling is to divide

the sample space of U1 into equiprobable strata [0, 1/N ], ..., [(N − 1)/N, 1] and

the stratified estimator can be described as

1

N

N∑
i=1

h

(
i− 1 + U

(i)
1

N
,U

(i)
2 , ..., U

(i)
d

)
(2.26)
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Note that (i− 1 + U
(i)
1 )/N falls between (i− 1)th and ith with probability 1/N .

In general, if we want to sample from a mix of N distributions in which the

ith distribution has probability pi, mean µi and variance σ2
i . Thus, the mixed

distribution has mean
N∑
i=1

piµi

and variance
N∑
i=1

pi(µ
2
i + σ2

i )−

(
N∑
i=1

piµi

)2

Applying the stratified sampliing, the variance of the new stratified estimate

is
∑N

i=1 piσ
2
i , and the variance reduction is

N∑
i=1

pi(µ
2
i )−

(
N∑
i=1

piµi

)2

The SS removes the variance of conditional expectation of the outcome given

the information being stratified.

In our option pricing case, the payoff depends mainly on the terminal stock

price ST which is assumed to follow a Brownian motion process W . If we want

to generate 105 times standard normal distributed number, we can apply SS

process to improve the simulation. For example, separate the whole field to 103

straddles and do 102 independent simulations in each straddle. The random

number in each straddle is

zji = Φ−1

(
i− 1 + Ui

103

)
i = 1, ..., 103 (2.27)
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Where Φ−1 is the inverse cumulative distribution function of a standard nor-

mal, Ui is drawn from Unif(0, 1). Then in the ith straddle, we simulate random

number zji 102 times. Note that i−1+Ui

103
falls between the (i − 1)th and ith per-

centiles of the uniform distribution with equally probability.

Importance sampling (IS)

In Monte Carlo simulation process, importance sampling is applied to change

the measure for obtaining a new estimator with lower variance. Random vari-

ables Xi’s are selected according to a different probability measure Q. The

probability measure Q is viewed as a way to control the choice of Xi’s in order

to consider the underlying structure of value function h. We use the likelihood

ratios wi’s to remove the bias due to sampling from measure Q. It also can be

viewed as an indirect way to bias the sampling towards the ”important” sam-

ples. In finance, importance sampling is mostly used to ensure that all samples

are drawn in the regions where the function is nonzero, for example, pricing

the out-of-money option. The standard process of generating paths will lead to

many zero payoffs. The idea of using IS as variance reduction technique is that

the estimate under new measure has less variance than that under the initial

probability measure. For example, if the payoff h can be obtained by simulat-

ing many paths of X1, ...., Xm and take average. This process is the same as to

estimate the integral∫
h(x)g(x)dx =

∫ (
hg

g̃

)
(x)g̃(x)dx (2.28)
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where g̃ is nonzero. Now the payoff is h̃ = hg
g̃

under new measure. The im-

portance sampling method chooses g̃ such that the payoff h̃ has less variance

under the new measure. The ideal way is to choose g̃ = hg
µ

to make the new

payoff have zero variance. But constant µ =
∫
h(x)g(x)dx is unknown. Thus

the goal of importance sampling is to choose density g̃ proportional to hg.

The ideal importance sampling can construct a zero-variance estimator by sam-

pling ST from the density,

f(x) = c−1max{x−K, 0}e−rTg(x) (2.29)

where g() is the log-normal density of ST ; c is a constant which normalizes the

integration of density function f to 1. Here, c is just the current time option

price. It is not applicable in practice.

Following Boyle(1997), we apply importance sampling in pricing the European

style call option. We need to price the option by e−rTE[max{ST − K, 0}]. The

standard approach is to generate samples of the terminal prices ST in (2.16)

with Brownian Motion having drift r and volatility σ. However, we can also

generate ST with any other drift µ and adjust the expectation with the likeli-

hood ratio. We use higher drift in importance sampling to obtain higher per-

centage of sample paths with positive payoffs.

Er[max{ST −K, 0}] = Eµ[max{ST −K, 0}L] (2.30)
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where L is the likelihood ratio of the log-normal densities with parameters µ

and r defined as

L =

(
ST
S0

)(r−µ)/σ2

exp

(
(µ2 − r2)T

2σ2

)
(2.31)

2.3.2 Quasi-Monte Carlo (QMC)

Quasi-Monte Carlo simulation, which uses the Low-discrepancy sequences and

is also called Quasi-random sequences, can provide a convergence ofO(N−1(log(N))d),

where d is the dimension number of the integration. The standard Monte Carlo

offers convergence as O(1/
√
N). Thus, QMC sequence improves the conver-

gence when the dimension d is small. QMC uses pre-selected deterministic

points rather than random samplings to evaluate the integral. The accuracy of

this approach depends on how the deterministic points are dispersed through-

out the domain of integration.

There are two main approaches to construct QMC which are randomized QMC

(RQMC) and effective dimension. We use the RQMC based on Lemieux and

L’Ecuyer(2001). First, we use lattice rules, Korobov rules specifically, to create

the low-discrepancy point set. For sample size n and dimension d, we choose

an integer a ∈ {1, ..., n − 1} and let aj = aj−1 mod n , for j = 1, ..., d. The lattice

point set Pn in d dimensions is described as

Pn = { i
n

(1, a, a2, ..., ad−1) mod 1, i = 0, ...., n− 1} (2.32)



25

Second, get the randomize QMC point sets. We randomly generate a vector ∆

in [0, 1]d and add it to each point of Pn with modulo 1. i.e. RQMC point set P̃nis

P̃n = (Pn + ∆) mod 1 (2.33)

To apply QMC in estimating the call option price, we take Ui’s from RQMC

sequence rather than from the uniformly distributed variables in MC sequence.

2.4 Data

2.4.1 Real Data

For the real data, we use the European type call options on the S&P 500 in-

dex(SPX) because this is one of the most actively traded options in the world.

The daily dividend distributions of the index are available. Furthermore, there

has been a lot of research based on the SPX.

Several filters are used on the data. First, we wish to use the options with ma-

turity time ranging from 10 days to 360 days. Second, the price is larger than

$0.05. Third, the implied volatility is less than 70%. The average of bid and

ask prices are used as option price. The option data are divided into several

categories in accordance with the maturity time and the monyness which is

strike stock ratio K/S. Based on the time to expiration, the options are classi-

fied as short-term(< 60 days); medium-term(60-180 days) and long-term(>180
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days). The options are also classified as in-the-money(K/S ≤ 0.97); at-the-

money(K/S ∈ (0.97, 1.03)) and out-the-money(K/S ≥ 1.03).

2.4.2 Simulated Data

It is useful to test the efficient simulation strategies on the simulated data

since we will be able to examine their performances under exact models. We

use the SV, Jump-diffusion and SVCJ models in this study. In the SV model

and Jump-diffusion model, closed form option prices are taken as ”true” price.

There is no closed form price for SVCJ model and I use the almost exact simu-

lation methods discussed in Alexander & Antoon (2008) to generate the ”true”

price.

In all the three models we assume that the market has 250 trading days a

year. The first two models have closed form of option price and the daily price

can be exactly obtained. For the SVCJ model, we simulate option prices for

every 5 minutes. The market is usually open at 9:00 in the morning and closed

at 5:00 at the afternoon. By generating the stock prices every 5 minutes, there

are 96 prices observed for each day and the last one is taken as the daily price.

In order to show the performances under different maturity times and strike

stock ratios, we consider three maturity times: 30 days as a short term, 90 days

as a medium term and 180 days as a long term. Although there can be longer

term options such as maturity time of over years in markets, in this study, we
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only simulate 180 days to compare with the short term options. Strike stock

ratios are 0.8 as in-the-money, 1.0 as at-the-money and 1.2 as out-of-the-money

in this study.

Option Price in Stochastic Volatility(SV) model

In SV model, we use the option price form of Hull and White (1987) in equation

(2.8) in which the Black-Scholes price is obtained from equation (2.2). The

result depends on the parameters µ and ξ. Assuming µ is zero and by the

moments for the distribution of V , the Hull-White option price can be described

as:

fHW (S, σ2) = fBS(σ2)

+
1

2

S
√
T − tN ′(d1)(d1d2 − 1)

4σ3
×
[

2σ4(ek − k − 1)

k2
− σ4

]
+

1

6

S
√
T − tN ′(d1)[(d1d2 − 3)(d1d2 − 1)− (d2

1 + d2
2)]

8σ5
(2.34)

× σ6

[
e3k − (9 + 18k)ek + (8 + 24k + 18k2 + 6k3)

3k3

]
+ ...,

where fBS(σ2) is the Black-Scholes price and σ2 = E[V̄ ] = V0. k = ξ2(T − t)

which is sufficiently small and ξ is from 1 to 4. From Hull and White(1987),

ξ = 1 leads to the least bias when pricing the options with stochastic volatili-

ties.

Because it is difficult to get the analytical solution for the SDE of stock price
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dynamics in Hull-White model, Monte Carlo simulation can be used to get the

numerical solution according to the following equations:

Si = Si−1exp{(φ−
Vi−1

2
)∆t+ ui

√
Vi−1∆t} (2.35)

Vi = Vi−1exp{(µ−
ξ2

2
)∆t+ viξ

√
∆t} (2.36)

The annualized interest rate φ is set to 0.07 and µ is set to 0. i is the index

where 1 ≤ i ≤ n. ui and vi are sampled from independent standard normal dis-

tributions. V0 can be obtained from V0 = σ2
0 where σ0 is obtained from the S&P

500 index option. In Hull and White (1987) model, the correlation ρ between

stock price and variance is assumed to be zero to get closed form option price.

I keep the assumption here.

In order to simulate one year’s daily option prices, we need to simulate the

stock prices first. The time interval t∗ − t = 1 is separated to n subintervals

and ∆t = (t∗ − t)/n where t is set to zero. I simulate 96 observations each day

and apply the last one in the Black-Scholes formula to obtain the option price

of that day. In this case, n = 96∗250. The stock prices are taken to calculate the

daily option prices are at index i = 96h, where h is the date number. When I

have the closing time stock price for day h, the Hull-White option price fHWh is

obtained from equation (2.34). Replicating this process m times independently,

and the simulated option price at day h is described as

f
HW

h =
1

m

j=1∑
m

fHWh (2.37)

Replication number m is set to 10, 000 in this process.
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Option Price in Jump-diffusion model

Jump-diffusion model has closed form for option price as described equation

(2.10). In order to sum from 0 to∞ in the price equation, a stopping rule is set

for the iteration.

Simulated Option Price in SVCJ model

Although Broadie and Kaya(2006) have given an exact simulation for the SV

model, the process is slow and can barely be used in practice. In this study, I use

the direct interpolation combined with the Quadratic Exponential scheme in

Andersen(2007) and martingale correction in Andersen and Piterbbarg (2007)

to obtain an efficient simulation process.

At time t, given Su and Vu, for u < t, the dynamics of stock price St and variance

Vt are described as

St = Suexp[(φ− λµ)(t− u)− 0.5

∫ t

u

Vsds

+ρ

∫ t

u

√
VsdW

(1)
s +

√
1− ρ2

∫ t

u

√
VsdW

(2)
s ] (2.38)

×
Nt∏

i=Nu+1

Jsi

and the variance is

Vt = Vu + kθ(t− u)− k
∫ t

u

Vsds+ σv

∫ t

u

√
VsdW

(1)
s

+
Nt∏

i=Nu+1

Jvi (2.39)
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In this study, we follow the option price simulation algorithm in Broadie and

Kaya(2006), but use the alternative efficient simulation rather than the exact

simulation in the second step. The time horizon is divided according to the

jumps and the variance, and stock prices are simulated at each jump. The

algorithm for simulation option price based on SVCJ model is described as fol-

lowings:

Step 1

Simulate a Poisson process with intensity λ to determine the time for the

jumps. If the maturity is T , the expected jump times during this time hori-

zon is λ ∗ T . Also, the time of next jump tj is set to T if tj > T . For the property

of a Poisson process, time between two jumps Rj has an exponential distribu-

tion Exp(λ) with mean 1
λ
. The steps to simulate the jump time tj are described

as followings

1 , generate Rj from exponential distribution Exp(λ),

i.e.E(Rj) =
1

λ

2 , tj = tj−1 +Rj

Step 2

During the time interval tj − t0, we ignore the jump process and simulate the

stock price Stj and variance Vtj according to the SV model. The time grid is set

to 5 minutes, i.e. the time interval tj − t0 is parted as 0 = t0 < t1 < .... < tM = tj.
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Where M =
tj−t0

∆t
and ∆t = 5 minutes. The stock price and variance process are

dSt
St

= φdt+
√
vtdW

s
t (2.40)

dvt = k(θ − vt)dt+ σv
√
vtdW

v
t (2.41)

where dW s
t dW

v
t = ρdt. The exact solution of (2.40) is

St = Ssexp

[∫ t

s

[φ− 0.5vu]du+

∫ t

s

√
vudW

s
u

]
(2.42)

Using Ito’s Lemma and Cholesky decomposition, we have

log(St) = log(Ss)− 0.5

∫ t

s

vudu+ ρ

∫ t

s

√
vudW

v
u

+
√

1− ρ2

∫ t

s

√
vudWu (2.43)

By integrating the variance process (2.41), the variance can be described as

vt = vs +

∫ t

s

k(θ − vu)du+ σv

∫ t

s

√
vudW

v
u (2.44)

or∫ t

s

√
vudW

v
u =

1

σv

[
vt − vs − kθ∆t+ k

∫ t

s

vudu

]
(2.45)

Plugging (2.45) into (2.43), the logarithmic asset price is

log(St) = log(Ss) +
kρ

σv

∫ t

s

vudu− 0.5

∫ t

s

vudu+
ρ

σv
(vt − vs − kθ∆t)

+
√

1− ρ2

∫ t

s

√
vudWu (2.46)

Drift interpolation

The simple drift interpolation scheme is defined as∫ t

s

vudu|vs, vt ≈ γ1vs + γ2vt , γ1 = γ2 = 0.5 (2.47)
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Applying the drift interpolation into equation (2.46), we have the approximate

logarithmic stock price as

log(St) = log(Ss) + φ∆t+K0 +K1vs +K2vt +
√
K3vs +K4vtZs (2.48)

where Zs is drawn from a standard normal distribution, and

K0 = −ρkθ
σv

∆t, K1 = γ1∆t

(
kρ

σv
− 0.5

)
− ρ

σv
, K2 = γ2∆t

(
kρ

σv
− 0.5

)
+

ρ

σv

K3 = γ1∆t(1− ρ2), K4 = γ2∆t(1− ρ2)

Quadratic Exponential(QE) Scheme for Variance Process

Given vs, compute

m = θ + (vs − θ)e−k∆t

s2 =
vsσ

2
ve
−k∆t

k
(1− e−k∆t) +

θσ2
v

2k
(1− e−k∆t)2

ψ =
m2

s2

Let ψc = 1.5. (a) If ψ ≤ ψc,

b2 = 2ψ−1 − 1 +
√

2ψ−1
√

2ψ−1 − 1

a =
m

1 + b2

vt = a(b+ Zv)
2

where Zv is drawn from a standard normal distribution. (b) If ψ > ψc,

p =
ψ − 1

ψ + 1

β =
1− p
m

=
2

m(ψ + 1)

vt = L−1(Uv)
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where Uv is drawn from an uniform distribution and L−1 is defined as

L−1(u) =

{
0 0 ≤ u ≤ p

β−1log( 1−p
1−u) p ≤ u ≤ 1

Martingale Correction

Since the discretized stock price from equation (2.48) does not satisfy the mar-

tingale condition under the risk-neutral measure, we apply the martingale cor-

rection scheme in Anderson(2007) in the QE process. The method is to replace

K0 in equation (2.48) by modified parameter K∗0 which is described as

K∗0 =

{
− Ab2a

1−2Aa
+ 0.5log(1− 2Aa)− (K1 + 0.5K3)vs ψ ≤ ψc

−log(p+ β(1−p)
β−A )− (K1 + 0.5K3)vs ψ > ψc

where A = K2 + 0.5K4.

Simulation Algorithm

Given v0, ψc = 1.5, γ1 = γ2 = 0.5,

1, Use QE scheme to sample vt.

2, Calculate the parameter K∗0 using the martingale correction method.

3, Generate the stock price St from equation (2.48).

Step 3

If the next jump time tj is equal or larger than T , this jump is skipped and the

stock price at maturity is ST . Otherwise, we simulate the jump ξv for volatility

at time tj. The jump size is sampled from exponential distribution with mean

µv. The variance when jump occurs is updated as Ṽtj = Vtj + ξv.
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Step 4

The jump of stock price ξs is also simulated at time tj. The jump size ξs is sam-

pled from a lognormal distribution with mean µs + ρJξ
v and variance σ2

s . The

stock price at jump is set to S̃tj = Stjξ
s.

Step 5

Now the new stock price and variance are updated as S0 = S̃tj , V0 = Ṽtj , t0 = tj,

and repeat from step 1 to get next jump until we reach the maturity time T .

The payoff of the option is simulated by taking average on enough number

of paths and discount to the factor e−rT to get present-time fair option price.

2.5 Numerical Results

2.5.1 Experiment Using Simulation Data

We use the same replication number and sample size in all efficient strate-

gies and compare the results with standard error and root mean squared error

(RMSE). When doing experiments on the simulation data, we compare their

performances on different stock/strike ratios and time to expiration. We use

the same parameters in all the simulations. The same seeds are used to gen-

erate random number for different efficient simulation strategies during the
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experiments.

For each option price model(SV, Jump, SVCJ), we do the experiment 500 times.

In each experiment, one year’s daily option prices are simulated according to

specific model and are taken as the ’true’ prices. Monte Carlo with different

efficient simulation strategies is used to estimate the option price for every-

day. The simulations number in each experiment is from 500 to 5000. The

estimated price is compared with the ’true’ price. We use the standard error

and the root mean squared error to measure the accuracy. Each Monte Carlo

simulation takes replications number m, which is important for the accuracy.

In each experiment we change the values of m and change the expiration time

and moneyness. The standard error of the mean(SE) and Root Mean square

error(RMSE) are defined as

SE =
s√
N
,where s =

√√√√ 1

N − 1

N∑
i=1

(fi − f̄i)2 (2.49)

RMSE =

√∑N
i=1(fi − f ∗i )2

N
(2.50)

where

s the sample standard deviation

N the sample size

fi option prices obtained by MC simulation

f̄i average of option prices obtained by MC simulation

f ∗i realized option prices, either from real data or from simulated data
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The standard error(SE) measures the standard deviation of the estimates’ sam-

pling distribution. The root mean squared error (RMSE) defined in this re-

search measures the distance between the estimated prices and the true prices.

The results of RMSE are in Table 2.2 and Figure 2.1 to Figure 2.3. The results

of standard errors are in Table 2.3 and Figure 2.4 to 2.6. From the numerical

results, we can have some interesting findings as follows:

For the results of the RMSE, it is clear that the the effects are different based

on different option pricing models, strike stock ratios, and maturity times.

Firstly, the results under option pricing models are: For SV model, IS per-

forms the best for in-the-money option and QMC performs the best for most

cases in at-the-money options and out-the-money options. For Jump model, CV

performs the best for in-the-money option, but QMC does the best for the at-

the-money options and out-the-money options. For SVCJ model, SS does the

best for in-the-money option and QMC performs the best for the at-the-money

and out-the-money options.

Secondly, the results based on times to maturity are: For the short term

option(30 days), QMC performs the best in at-the-money and out-the-money

options. But for in-the-money options, IS performs the best in SV model, while

CV performs the best in Jump model and SS does the best in SVCJ model. For
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the medium term options(90 days), QMC does the best in at-the-money option

and out-the-money options. The other different methods perform the best for

in-the-money options. It is the same for long term options(180 days); QMC does

the best for at-the-money and out-the-money options, while the other methods

beat QMC for the in-the-money options.

Thirdly, considering the strike stock ratios, different models and maturity

times show different results. For in-the-money options, IS performs the best

for all maturity times in SV model. CV and AntiV both do the best in the Jump

model. SS and QMC both do the best in the SVCJ model. For at-the-money

options, QMC does the best in most cases except that IS does the best for the

medium term option based on SV model. Also SS and AntiV work as well as

QMC does in in-the-money options. For out-the-money options, QMC does the

best and much better than the other methods. SS also performs better than

the other methods except QMC method.

Thus, according to the RMSE, QMC performs the best in most cases, and SS’s

performance is close to QMC. For the medium term and long term options,

QMC beats the other models. The out-of-money options are usually difficult to

be priced and QMC is proved to be a good tool in this case. During the experi-

ments, it is noticeable that the importance sampling method does not work well

in the out-of-money cases. It was expected to reduce the chance of zero payoff
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and offer better results in this case. The reason may be that, we only chose

the simplest algorithm in this study rather than the complex time consuming

optimal algorithm. Also, in some cases, not all the efficient simulations can

produce better results than the standard Monte Carlo; some even performed

worse.The accuracy doesn’t improve significantly with increasing the simula-

tions number. RMSE measures the distance between the true option prices

and the prices obtained by Monte Carlo simulation. It is even more important

in practice than the standard error. In order to get more accurate prices in the

incomplete market, we should choose right efficient simulation strategies and

better pricing algorithms as well.

If we think about the standard error and the methods’ capacity to reduce the

variance only, all efficient simulations can work much better than the standard

Monte Carlo process. For the three incomplete market option pricing models,

the performances of QMC and SS are very close and they do the best in all the

cases. Since most variance reduction methods can be combined with QMC, it

is worth studying the effects of the combined methods. Also, the term of ma-

turity and the strike stock ratio have little influence on how to choose effective

simulation strategies based on the standard error.
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2.5.2 Experiment Using Real Data

In this research, we use the European style call options on S&P 500 index of

a specific day. The options are filtered and categorized as described in section

2.4.1. We compared the standard error (SE) and the root mean squared error

(RMSE) based on different simulation times. The SE and RMSE based on CPU

time in seconds used in simulation are also counted and compared. The exper-

iment results are close to that based on the generated data from models but

different to some extent. Experiments results are listed in Figure 2.7, 2.8, 2.9

and 2.10.

According to standard error of simulations on the in-the-money options, all

efficient methods do much better than the standard Monte Carlo simulation.

The stratified sampling and Control variate did the best, and the quasi Monte

Carlo also did well. Importance Sampling did better than standard method but

not as good as the other efficient methods. For at-the-money options, Stratified

Sampling did the best,and QMC is the second best. For out-the-money options,

results are different from the above: the Anti Variates method did not do better

than the standard method. The QMC did best for out-the-money options.

From the stated results, we can see that, the time to maturity has little in-

fluence on how to choose the simulation methods and the moneyness is the key.

Stratified sampling can be applied to all the moneyness, and QMC is good for
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the out-the-money options. On the other hand, Anti Variates method should

not be used to simulate on the out-the-money options.

In this experiment, different simulation methods do not have big differences

in time consumed. By comparing the CPU time spent on the simulation, the

performances of the efficient methods are almost identical according to either

simulation numbers or time consumed. The main reason may be that the sam-

ple size of this experiment is not big enough to tell the difference in time con-

sumed. Further experiment should be done regarding this.

According to RMSE, increasing the simulation times can not reduce the error

efficiently. Also, the time to maturity has less influence than the moneyness

on how to choose the simulation method. For in-the-money option, CV did the

best. For the at-the-money option, QMC and CV did the best. For the out-the-

money option, QMC did the best, and the Anti Variates did not do better than

the standard Monte Carlo method.

2.6 Conclusion

The Monte Carlo simulation method is popular in the financial field, especially

for the purpose of pricing the derivatives. In order to apply this simulation

method better, under the incomplete market environment, it is necessary to
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compare different efficient simulation methods which can reduce the variance,

speed the simulation and get more accurate results.

In this study, we simulated option prices based on three incomplete option

price models: stochastic volatility model, jump diffusion model and stochas-

tic volatility with concurrent jumps in the stock price and the variance process

model. Under the three pricing models and based on different maturity times

and different strike stock ratios, we tested and compared the performances

of standard Monte Carlo simulation and other five efficient simulation meth-

ods, which are Antithetic Variables(Anti-V), Control Variates(CV), Stratified

sampling(SS), Importance sampling (IS) and Quasi-Monte Carlo (QMC). The

results are obvious. For RMSE, QMC is the best choice for out-the-money op-

tion. It is also the best choice for medium term and long term options. But

for in-the-money option, the performance of the methods depends on different

option pricing models. For standard error, QMC and SS do the best and much

better than the other methods.

We also did the same experiments on the S&P 500 index option of a specific

day. The results are close to that based on the generated data. Moneyness

plays a crucial role in choosing the efficient methods. The time consumed for

one simulation is close to that in all methods. The trends under either time

consumed or simulation numbers show similarities. For in-the-money option,
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Stratified Sampling(SS) and Control Variates(CV) are the best according to

both SE and RMSE. For at-the-money option, QMC is the best according to

both SE and RMSE. Moreover, Antithetic Variables(Anti-V) should not be used

in out-the-money option pricing because it can not beat the standard method.

It is worth noting that there could be differences between the results obtained

with the use of real data and simulation data. However, the results from the

simulation lends an insight into real operation and therefore, they are helpful

for practitioners.

Maturity time is not a key factor for choosing the simulation method in this

research because all the options chosen are shorter than 1 year. Options with

longer maturity times should be considered in the future work. QMC has the

limitations of working effectively in integration with low number of dimen-

sions, and we have used only one dimension integration in this study. In this

regard, the high-dimension situation should be given attention. The future re-

search can also verify the performance of other simulation methods and the

combination of different efficient methods. Also, it is important to improve

the algorithm of pricing since from the study we can see that increasing the

simulation paths can reduce the standard error but can not reduce the RMSE

which measures the distance between the true prices and the ones obtained by

simulations.
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Appendix

S0 initial stock price at t = 0 $100

rf annualized risk-free interest rate 0.0319%

K/S strike/stock ratios 0.8 to 1.2

σ annualized asset volatility 29%

λ jump intensity 0.47

V0 starting volatility in SVCJ model 0.007569

k speed of mean reversion 3.46

θ long-run mean variance 0.008

σv volatility of the variance 0.14

ρ correlation between the return and volatility process -0.82

µ̄ mean of jump in stock price -0.1

σs volatility of jump in stock price 0.0001

µv mean of exponential process for jump in volatility 0.05

ρJ correlation between jump in stock price and jump in volatility -0.38

Note: The fitted parameters are for S&P 500 on a particular day.

Table 2.1: Parameters used in simulation data
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T=30days T=90days T=180days

K/S 0.8 1.0 1.2 0.8 1.0 1.2 0.8 1.0 1.2

SV model price

MC 1.9668 3.0349 3.4107 2.5607 3.3894 3.1855 3.1142 3.9520 3.2846

AntiV 1.9582 3.0327 3.4061 2.5557 3.3861 3.1807 3.1107 3.9466 3.2783

CV 1.9583 3.0342 3.4278 2.5543 3.3876 3.2809 3.1130 3.9473 3.4664

SS 2.4903 4.4459 3.4648 3.8738 4.0484 3.0319 5.5746 4.0423 2.7013

IS 1.7694* 2.4962* 3.2196 2.1440* 3.0021* 3.0241* 2.3830* 3.7288* 3.1664

QMC 2.3616 4.2127 2.6435* 3.6979 3.3778 2.3132 5.3829 3.0840 2.0624*

Jump model price

MC 0.1356 1.3968 2.5132 0.3965 2.1123 2.3963 0.8702 2.9050 2.5763

AntiV 0.0369 1.3532 2.4851 0.3250 2.0761 2.3710 0.8117 2.8722 2.5518

CV 0.0352* 1.3496 2.5039 0.3245* 2.0735 2.4687 0.8072* 2.8694 2.7376

SS 0.4973 1.4613 1.7210 0.9955 1.6272 1.5099 1.6552 2.0078 1.3552

IS 0.2403 1.9144 2.9259 0.7473 2.5702 2.7632 1.5476 3.3861 2.9277

QMC 0.3684 1.3181* 0.9987* 0.8195 1.0955* 0.8779* 1.4634 1.1652* 0.7934*

SVCJ model price

MC 0.6903 2.6176 3.3008 1.4753 3.0986 3.0887 2.5459 3.8238 3.2029

AntiV 0.6958 2.6115 3.2940 1.4702 3.0924 3.0820 2.5374 3.8159 3.1950

CV 0.6950 2.6091 3.3136 1.4710 3.0908 3.1801 2.5345 3.8140 3.3810

SS 0.3991* 0.7316 1.2189 0.5157* 1.0371 1.0671 0.6302* 1.4220 0.9527

IS 0.8538 3.1521 3.7227 1.8595 3.5698 3.4637 3.2457 4.3157 3.5614

QMC 0.4343 0.6828* 0.5908* 0.5632 0.6233* 0.5174* 0.6581 0.6892* 0.4642*

MC means standard Monte Carlo without variance reduction; * denotes the lowest RMSE

Table 2.2: RMSE of the Estimates (10000 simulation paths)
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T=30days T=90days T=180days

K/S 0.8 1.0 1.2 0.8 1.0 1.2 0.8 1.0 1.2

SV model price

MC 0.0358 0.0511 0.0459 0.0490 0.0501 0.0430 0.0603 0.0528 0.0431

AntiV 0.0051 0.0152 0.0180 0.0099 0.0172 0.0176 0.0160 0.0206 0.0187

CV 0.0040 0.0098 0.0137 0.0062 0.0120 0.0148 0.0093 0.0147 0.0166

SS 0.0050 0.0038 0.0025 0.0046 0.0034 0.0022 0.0044 0.0030 0.0020

IS 0.0224 0.0294 0.0271 0.0289 0.0296 0.0258 0.0330 0.0311 0.0259

QMC 0.0035* 0.0025* 0.0016* 0.0033* 0.0021* 0.0014* 0.0032* 0.0019* 0.0013*

Jump model price

MC 0.0367 0.0516 0.0462 0.0495 0.0505 0.0432 0.0610 0.0532 0.0433

AntiV 0.0058 0.0159 0.0184 0.0107 0.0177 0.0180 0.0169 0.0210 0.0191

CV 0.0048 0.0105 0.0142 0.0070 0.0126 0.0152 0.0102 0.0152 0.0170

SS 0.0052 0.0045 0.0029 0.0056 0.0039 0.0026 0.0053 0.0034 0.0023

IS 0.0232 0.0297 0.0273 0.0294 0.0299 0.0259 0.0333 0.0313 0.0260

QMC 0.0044* 0.0035* 0.0022* 0.0046* 0.0030* 0.0019* 0.0045* 0.0026* 0.0017*

SVCJ model price

MC 0.0353 0.0511 0.0460 0.0490 0.0502 0.0431 0.0604 0.0529 0.0431

AntiV 0.0075 0.0163 0.0188 0.0117 0.0182 0.0183 0.0175 0.0214 0.0194

CV 0.0070 0.0113 0.0147 0.0085 0.0133 0.0157 0.0112 0.0159 0.0174

SS 0.0078 0.0055 0.0035 0.0068 0.0047 0.0031 0.0066 0.0041 0.0027

IS 0.0225 0.0295 0.0272 0.0291 0.0298 0.0258 0.0331 0.0312 0.0259

QMC 0.0067* 0.0045* 0.0028* 0.0057* 0.0038* 0.0025* 0.0057* 0.0033* 0.0022*

MC means standard Monte Carlo without variance reduction; * denotes the lowest SE

Table 2.3: Standard Errors of the Estimates (10000 simulation paths)
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Figure 2.1: RMSE of Estimates based on generated data by SV model
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(a) Short Term, In-the-money
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(b) Short Term, At-the-money
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(c) Short Term, Out-the-money

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

1.2
RMSE: Jump,K/S=0.8,T=90

Simulation Number

R
M

S
E

 

 
MC
AntiV
CV
SS
IS
QMC

(d) Medium Term, In-the-money

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3
RMSE: Jump,K/S=1.0,T=90

Simulation Number

R
M

S
E

 

 
MC
AntiV
CV
SS
IS
QMC

(e) Medium Term, At-the-money
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(f) Medium Term, Out-the-money
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(g) Long Term, In-the-money
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(h) Long Term, At-the-money
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(i) Long Term, Out-the-money

Figure 2.2: RMSE of Estimates based on generated data by Jump model
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(a) Short Term, In-the-money
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(b) Short Term, At-the-money

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5

4
RMSE: SVCJ,K/S=1.2,T=30

Simulation Number

R
M

S
E

 

 
MC
AntiV
CV
SS
IS
QMC

(c) Short Term, Out-the-money
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(d) Medium Term, In-the-money
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(e) Medium Term, At-the-money
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(f) Medium Term, Out-the-money
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(g) Long Term, In-the-money
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(h) Long Term, At-the-money
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Figure 2.3: RMSE of Estimates based on generated data by SVCJ model
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(d) Medium Term, In-the-money
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(f) Medium Term, Out-the-money
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(g) Long Term, In-the-money
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(h) Long Term, At-the-money
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Figure 2.4: SE of Estimates based on generated data by SV model
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(c) Short Term, Out-the-money
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(d) Medium Term, In-the-money
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(e) Medium Term, At-the-money
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(f) Medium Term, Out-the-money
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(g) Long Term, In-the-money
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(h) Long Term, At-the-money
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Figure 2.5: SE of Estimates based on generated data by Jump model
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(c) Short Term, Out-the-money
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(d) Medium Term, In-the-money
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(e) Medium Term, At-the-money
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(f) Medium Term, Out-the-money
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(g) Long Term, In-the-money
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(h) Long Term, At-the-money
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Figure 2.6: SE of Estimates based on generated data by SVCJ model
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(d) Medium Term, In-the-money
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(f) Medium Term, Out-the-money
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(h) Long Term, At-the-money
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Figure 2.7: SE by Simulation Number of Samples on Call Option of S&P500
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(c) Short Term, Out-the-money
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(d) Medium Term, In-the-money
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(e) Medium Term, At-the-money
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(f) Medium Term, Out-the-money
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(g) Long Term, In-the-money
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(h) Long Term, At-the-money
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Figure 2.8: SE by Time on Call Option of S&P500
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(c) Short Term, Out-the-money
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(d) Medium Term, In-the-money
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(e) Medium Term, At-the-money
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(f) Medium Term, Out-the-money
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(g) Long Term, In-the-money
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(h) Long Term, At-the-money
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Figure 2.9: RMSE by Simulation Number of Samples on Call Option of S&P500



55

0 0.005 0.01 0.015 0.02 0.025 0.03
4.12

4.14

4.16

4.18

4.2

4.22

4.24

4.26

4.28
log(RMSE) by Time (Optoin:Long Term,Out−the−money)

Time(seconds)

lo
g

(R
M

S
E

)

 

 
MC
AntiV
CV
SS
IS
QMC

(a) Short Term, In-the-money

0 0.005 0.01 0.015 0.02 0.025 0.03
1.75

1.8

1.85

1.9

1.95

2

2.05
log(RMSE) by Time (Optoin:Short Term,At−the−money)

Time(seconds)
lo

g
(R

M
S

E
)

 

 
MC
AntiV
CV
SS
IS
QMC
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(d) Medium Term, In-the-money
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(e) Medium Term, At-the-money
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(g) Long Term, In-the-money
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Figure 2.10: RMSE by Time on Call Option of S&P500
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Chapter 3

The effects of the Use of Realized
Volatility on Volatility Trading
Strategies

3.1 Introduction

Technical analysis has been through constant development and enhancement

in recent years, with an increasing emphasis on computer-assisted techniques.

In this study, we investigate the volatility trading strategy, in particular,

the Delta Neutral strategy, with the realized volatility forecasting as well as

option pricing models. Also, we compare the effectiveness of applying realized

volatility to the trading strategy and that of the implied volatility. Through the

study, we hope it will test the realized volatility performance in the volatility

trading strategy and produce a comparison with that of implied volatility.

The Efficient Market Hypothesis (EMH) asserts that it is impossible to

consistently outperform the market by using any information that the market
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already knows and there is no arbitrage. However, some studies have proved

that this predictability is economically meaningful. For example, Engel,

Kane and Noh(1994) calculated the accumulated profit/loss of each agent

from the maturity of each traded options to enumerate the economic value

of the volatility forecast algorithms used by the agent on the NYSE index

options. If we need to prove that the volatility trading strategy used can

in actuality lead to extra profits, the transaction costs must be taken into

consideration. Studies that include the consideration of transaction costs yield

different results. The study that Black-Scholes(1972), Galai(1976), Shastri &

Tandon(1986) and Harvey & Whaley(1991) conducted shows that the inclusion

of transaction costs does not cause the positive excess profits to be significantly

different from zero. On the other hand, some other papers such as Guo’s

(1999) study, which used stochastic volatility forecasts on dynamic volatility

trading strategies in the currency option market, concluded that with the use

of Implied Stochastic Volatility Regression (ISVR) method, observed profits

could be different from zero in specific trading strategies in consideration of

transaction costs. The implied volatility has been shown to be a conditionally

biased predictor of the realized volatility across asset markets. But research

on the use of realized volatility in the options trading strategy is rare. In-

formed by the previous studies, we will compare the application of realized

volatility with implied volatility on the same trading strategy in option market.
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Volatility is one of the most important drivers of the securities prices. It

was assumed to be a constant driver in studies such as Black-Scholes(1973)

and Merton (1973), but by now it is well understood that the volatility of

most financial returns is time-varying. The Generalized Autoregressive Con-

ditional Heteroskedastic (GARCH) framework and continuous time Stochastic

Volatility (SV) framework are extensions to the constant volatility framework

which allows for time-varying volatility. Several models (e.g. Heston (1993);

Hull-White(1987); Johnson-Shanno(1987)) can derive option pricing in a

continuous time world. However, when applied in practice, only return data

has been available and volatility is treated as an unobserved state variable.

The use of high frequency intraday data for estimating daily stock return

volatility has drawn a lot of attention because they have certain advantages

in capturing the stylized facts of asset returns compared to the use of lower

frequency daily data. The underlying idea is to use sums of squared returns

at high frequency to estimate volatility at a lower frequency. This idea was

formalized as the Realized Volatility(RV). Volatility estimates are used as a

risk measure in many asset-pricing models as Black-Scholes(1973) and its

extensions, and volatility appears in option pricing formulas derived from

these models. This study firstly calculates RV and IV. Secondly, it implements

RV and IV forecast models. Thirdly, it applies the forecasted RV and IV to

the pricing model for the purpose of obtaining the theoretical option prices.
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Finally, the theoretical option prices can be applied to option trading strategies

such as the delta-neutral or the straddles trading .

The increased availability of complete transaction and quote records from high

frequency data strengthens the ability to obtain more additional information.

There are, however some difficulties in practice. For example, the underlying

asset price can not be continuously observed; they are observed occasionally

instead. Thus the observation frequency is hard to choose but it’s key to cal-

culate the volatility. If the frequency is too high, many properties of volatility

tend to disappear. On the other hand, if it is too low, the measurement is

subject to big errors and the advantage of using high frequency data is lost.

Hence, we use the 5 minute data in this study. Furthermore, the recorded

prices do not reflect direct observations of a frictionless price process. A lot

of components such as bid-ask spread, different prices quoted by different

market makers due to heterogeneous beliefs and inventory positions, etc. are

referred to as market microstructure effects. There is still a lot of work that

can be done on how to reduce the microstructure noise to improve the model

and the trading strategy.

The ideal data is from the options on stocks such as IBM or options on

S&P 500 index or on the S&P 100 index, since these options have high

volume and high open interest which mean high liquidity. If the market is
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not liquid, it is difficult to find a buyer to close the position, and the extra

cost of illiquid market will reduce the profit. Also, applying RV in pricing

model does not work well in illiquid market since the observation frequency

is not high enough. In this study, without the ideal data, we simulate the

option prices and the underlying stock prices according to the assumptions

and presetting price model. We then use this simulated data to test and

compare the realized volatility and implied volatility measure, prediction,

option pricing and application in trading strategy.

We use the delta-neutral trading strategy which is one of the most popu-

lar dynamic volatility trading strategies. For the option pricing model, we use

the Hull and White (1987a) rather than Black-Scholes(1973) since the latter

assumes constant volatility. For the purpose of simplicity, we only use the

European style call and put options.

This paper is structured as follows: Section 3.2 describes the option pric-

ing model; Section 3.3 reviews how to measure and predict the implied

volatility; Section 3.4 introduces the measure and prediction of realized

volatility; Section 3.5 presents the ideal data and the process to simulate the

data; Section 3.6 reveals the details of the trading strategy; and Section 3.7

concludes.
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3.2 Option pricing model

Since the stock return volatility is stochastic rather than constant, the

Black-scholes(1973) model, which assumes constant volatility, is not suitable.

Recognizing the many already existing articles about the stochastic volatility

models, for this study, I used the Hull and White (1987) model to compute the

option prices.

The main assumptions in Hull-White(1987) model are: A1, The market

is frictionless, and the trading is continuous in time. There are no transaction

costs, taxes or short sale restrictions. In this study, we also consider the

situation that transaction costs are included. A short sale is a sale of a security

by an investor who does not own the asset. It is generally used to profit from an

expected downward price movement, to provide liquidity in response to buyer’s

demand or to hedge the risk of a long position in the same security. This study

fixes everyday’s investment as $100 and avoids considering the short sale. A2,

The stock price is instantaneously uncorrelated with the volatility. A3, The

correlation between the instantaneous change rate of volatility and the change

rate of aggregate consumption is constant and can be accommodated.

If the stock price is St and its instantaneous variance is Vt, under the

above assumptions, the asset price can be described in the following stochastic
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processes which has been discussed in section 2.2.2.

dS = φSdt+ σSdw (3.1)

dV = µV dt+ ξV dz (3.2)

In Hull-White model, the security f(S, σ2, t) is the present value of the expected

terminal value of f discounted at the risk free rate, thus the price of the option

is:

f(St, σ
2
t , t) = e−r(T−t)

∫
f(ST , σ

2
T , T )p(ST |St, σ2

t )dST (3.3)

Where T is the time at which the option matures, St is the security price at

time t, σt is the instantaneous standard deviation at time t, and p(ST |St, σt) is

the conditional distribution of ST given the security price and variance at time

t. V = 1
T−t

∫ T
t
σ2
τdτ denotes the mean variance over the life of the derivation

security. And the price can be written as

f(St, σ
2
t , t) =

∫ [
e−r(T−t)

∫
f(ST )g(ST |V )dST

]
h(V |σ2

t )dV (3.4)

where h is the conditional distribution of V . The inner integral produces the

Black-Scholes price.

It is assumed that the correlation ρ = 0 and µ and ξ are independent of

S(t), then the Hull and White price can be seen as the integral of the Black-

Scholes price over the conditional distribution of mean variance V and in Hull

and White(1987) model:

fHW (St, σ
2
t ) =

∫
fBS(V )h(V |σ2

t )dV (3.5)
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The Black-Scholes European call and put prices are defined as:

fBScall = SN(d1)−Xe−rTN(d2) (3.6)

fBSput = Xe−rTN(−d2)− SN(−d1) (3.7)

Where

fBScall = price of the call option

fBSput = price of the put option

S = price of the underlying stock

X = option striking price

r = risk-free interest rate

T = current time until expiration, current time is set to zero

N = the cumulative normal density function

d1 = ln(S/X)+(r+σ2/2)T

σT 1/2

d2 = d1 − σT 1/2 = ln(S/X)+(r−σ2/2)T

σT 1/2

σ = standard deviation of stock returns

By expanding Black-Scholes price fBS(V ) from its expected average vari-

ance E(V ) in a Taylor series, Hull-White also proposes a power series

approximation technique to get Hull-White price fHW as:

fHW (St, σ
2
t ) = fBS(E(V )) +

1

2

∂2fBS(E(V ))

∂V
2 E(V

2
)

+
1

6

∂3fBS(E(V ))

∂V
3 E(V

3
) + ... (3.8)

Where E(V
2
) and E(V

3
) are the second and third central moments of V . The
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result of equation (3.8) depends on the parameters µ and ξ. Assuming µ is zero

and by the moments for the distribution of V , the price is:

fHW (S, σ2) = fBS(σ2)

+
1

2

S
√
T − tN ′(d1)(d1d2 − 1)

4σ3
×
[

2σ4(ek − k − 1)

k2
− σ4

]
+

1

6

S
√
T − tN ′(d1)[(d1d2 − 3)(d1d2 − 1)− (d2

1 + d2
2)]

8σ5
(3.9)

× σ6

[
e3k − (9 + 18k)ek + (8 + 24k + 18k2 + 6k3)

3k3

]
+ ...,

where k = ξ2(T − t), the suggested value of µ is zero, k is sufficiently small

and ξ is from 1 to 4. From Hull and White(1987), ξ = 1 leads to the least bias

when pricing the options with stochastic volatilities. So we take ξ = 1 when

generating the stock prices and option prices in this study.

3.3 Implied volatility and its prediction

Guo(1999) predicted the daily volatilities for the currency exchange rate with

the Implied Stochastic Volatility Regression (ISVR) model and GARCH model

and compared the effectiveness of using these two methods on the trading

strategy. One of the conclusions in Guo(1999) is that using GARCH method on

delta-neutral trading strategy can not get significant non-zero economic profits

if the transaction cost is considered but the ISVR model can. In this study,

in order to see the performance of applying the Realized Volatility on trading
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strategy, we follow the methods in Guo(1999) to measure and predict the im-

plied volatility which is used as benchmark.

3.3.1 Implied Volatility Estimation

If the option market is informationally efficient, then the market prices of

options should reflect the market expectation of future volatility. Rather

than to guess the value of volatility parameter in option pricing model like

the Black-Scholes model, the alternative approach is to insert the actual

market option price into the pricing model and let the formula tell what the

volatility should be. The volatility obtained in this way is the implied volatility.

Let V̂ t = E(V |Ωt) denote the daily average variance which can be esti-

mated by NLS(nonlinear least square), where Vt is σ2
t in the Black-Scholes

model. In this study, I use the Black-scholes model described as equation(3.6)

and Hull-White(1987) model described as equation(3.9) separately according

to the methods of simulating the option prices. Therefore, V̂ t is to minimize

the distance between the observed market price and the theoretical option

price got from the Hull-White(1987) model as:

min
V̂ t

SSE(V̂ t) =
∑
i

[ft,i − fmodelt,i ]2 (3.10)

The risk free rate, the strike price and spot price ratio (X/S)t,i (0.8 to 1.2) and

the option’s remaining maturity time T are all given. i is the index over obser-

vations in day t, ft,i is the observed option price from market, and fmodelt,i is the
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theoretical option price either from the Black-Scholes or the Hull-White(1987)

model.

3.3.2 Implied Volatility Regression

We predict one period ahead of implied volatility based on the implied

stochastic volatility regression method. In this regression formula, the implied

volatilities are regressed over lagged implied volatilities of put options and

call options as well as two dummy variables for Monday and Friday which

are important for the weekend effect. It is believed that the implied volatility

is higher on Fridays than on Mondays because the market is closed over the

weekend, which increases the uncertainty. It’s obvious that in my simulated

data, the weekend effect can be ignored, but it is important in the real data.

The following equations are used to predict the one-period ahead volatil-

ity for call option and put option:

∆VC,t = α0 + α1Dt,1 + α2Dt,5 +
3∑
i=1

βi∆VP,t−i +
3∑
i=1

γi∆VC,t−i + εt (3.11)

∆VP,t = α0 + α1Dt,1 + α2Dt,5 +
3∑
i=1

βi∆VP,t−i +
3∑
i=1

γi∆VC,t−i + εt (3.12)

Where ∆VC,t and ∆VC,t are the changes for one day call and put option implied

volatilities. The regression uses first differences here because in many cases,

the series can be transformed from nonstationary to stationary by taking the

first difference. Dt,1 and Dt,5 are the dummy variables for weekend effects. In
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order to get the out of sample prediction, we use data of the previous year to

estimate the parameters. The result shows that, for both call and put options,

α0 , α1 and α2 are not significant. For call/put option, the one period lagged

implied volatility change of call/put option makes the greatest contribution.

The parameter values obtained from 800 simulations are shown in Table 3.2 in

appendix.

3.4 Realized volatility and its prediction

As research showed, implied volatility is a conditionally biased predictor of

realized volatility across asset markets. For example, Neely(2004) explains

the bias in the market for options on foreign exchange futures. The intuition

is that using realized volatility for option pricing can avoid the bias created by

the implied volatility. However, there is model free IV in the literature which

can reduce the bias, and it will be interesting to compare the RV and the model

free IV in the future research.

3.4.1 Realized volatility

Since volatility can not be directly observed, a lot of research has focused on

how to estimate it. However, either the approach to get it with the statistical

model such as ARCH or Stochastic Volatility, or the approach to link the

information to the volatility of the underlying asset depend on the specific
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assumptions of the models. Thus, it has the advantage to use the model free

measuring approach such as realized volatility which is the sample of variance

of returns.

It is important to choose the observation frequency of the time series. If

the frequency is too high, some properties of volatility tend to disappear such

as the leverage effect and the volatility clustering. However, if it is too low, the

measure is subject to errors. In this study, we choose the frequency as each 5

minutes.

I use the daily squared return as the indicator of volatility and calculate

it with intraday high-frequency returns. Let Sn,t denote the time n ≥ 0 stock

price at day t. The logarithmic returns with N observations per day are defined

as

rn,t = ln(Sn,t)− ln(Sn−1,t) (3.13)

Where n = 1, ..., N for N observations in one day and t = 1, ..., T for T days. We

use the logarithm here because it is closer to normality than the series in levels.

Also log transformation of realized volatility is preferred to the raw version of

RV because of its superior finite sample properties, such as, the skewness of

log transformed statistic is smaller than that of the raw form. We assume that

returns have mean zero and to be uncorrelated; the variance and covariances
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of squared returns exist and are finite. The assumptions are specified as:

E[rn,t] = 0 (A1) (3.14)

E[rn,trm,s] = 0 ∀n,m, s, t but not n = m and s = t (A2) (3.15)

E[r2
n,tr

2
m,s] <∞ ∀n,m, s, t (A3) (3.16)

Based on the assumptions, it has been shown in Heiko Ebens(1999) that an

estimator of the daily return volatility is the sum of intraday squared returns,

that is, the realized volatility is

RV 2
t =

N∑
n=1

r2
n,t =

N∑
n=1

(ln(Sn,t)− ln(Sn−1,t))
2 (3.17)

and this estimator is unbiased:

E[RV 2
t ] = σ2

t (3.18)

There are several stylized facts about realized volatility. First, there is a long

memory in the data because the autocorrelation function is dying out at a

hyperbolic rate rather than exponential. Second, the distribution of logarithm

of realized volatility is close to Gaussian. Third, the distribution in levels is

right skewed and leptokurtic.

3.4.2 Realized Volatility Forecast

Heterogenous Autoregressive Realized Volatility Model

A popular model is the Heterogenous Autoregressive Realized Volatility model

(HAR) from Corsi(2004). The HAR model is a component model containing
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daily, weekly and monthly realized volatility components. Although HAR has

a short memory, it is proved to have the most important properties. The HAR

model is described as:

√
RV d

t = α0 + α1

√
RV d

t−1 + α2

√
RV w

t−1 + α3

√
RV m

t−1 + εt (3.19)

where RV d
t is the daily realized variance, RV w

t−1 = 1
5

∑5
i=1 RVt−i is the weekly

realized variance, RV m
t−1 = 1

22

∑22
i=1RVt−i is the monthly realized variance, and

in the simulated data of this study, we set the data in one month as 20 for

calculating convenience. The error term εt is a white noise process.

The logarithmic version of HAR model proposed by Andersen et al.(2005)

is

ln(RV d
t ) = α0 + α1ln(RV d

t−1) + α2ln(RV w
t−1) + α3ln(RV m

t−1) + εt (3.20)

For this study, we use the logarithmic version of HAR model and adopted OLS

to estimate and forecast the realized volatility. The parameters estimated by

the regression for 800 simulations are shown in appendix Table 3.2.

3.4.3 Using the Predicted Volatility to Price the Options

We used the models described above to predict the implied volatility and

realized volatility separately and applied the Hull-White (1987) model to get

the theoretical option prices.
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The predicted prices of both calls and puts from realized and implied

volatility are all on average higher than the simulated prices. I use the

following model to find the difference between predicted price and observed

market price.

ln(ft) = α0 + α1ln(f̂t) + εt (3.21)

where ft is the simulated option price for calls or puts, and f̂t is the theoretical

prices obtained from Hull-White model with the use of implied volatility or

realized volatility. We use the log form to improve the forecast evaluation.

Table 3.3 in the appendix shows the mean squared error for the regressions for

call and put options based on implied volatility model and realized volatility

model after adjustment. On the basis of MSE, RV does better in predicting the

call option price but IV does better in forecasting the put option.

From this table, we can see that, for the call option using implied volatility,

α1 is positive and less than one and α0 is positive. This means that the model

underpredicts low priced call options and overpredicts high priced call options.

The situations are the same for call and put options priced using realized

volatility. But for put options using IV , α1 is bigger than one and α0 is negative

which means this model tends to overpredict high priced put options.
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3.5 Data

3.5.1 Simulation of Stock and Option Price

Before the availability of ideal stock price and options prices, it is meaningful

to simulate them according to the assumptions I made for the pricing mod-

els and trading strategies. In this study, we set the replications number as 800.

Stock Price Simulation

It is necessary to simulate the underlying stock price to determine the

correct option price and to estimate the premium of an option. The stock

price is dependent upon the drift rate which is the expected return of the

stock, the variance of the stock price and the interest rate. One property is

that the average holding period return on one stock tends to increase over time.

Simulating based on the Black-Scholes model’s assumptions(constant

volatility)

It is assumed that the stock prices follow a (continuous time) geometric

Brownian motion:

dS = φSdt+ σSdW (3.22)

where,

S = the current stock price
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φ = the expected return

σ = the stock return volatility

W = Brownian Motion process

dW = ε(dt)0.5, ε is the standard normal distributed random variable, i.e,

ε ∼ N(0, 1)

To get the continuous time stock price, we can solve the SDE in equation

(3.22). Let g(t, S) = lnS, by Itô’s lemma, we have

dg(t, S) =

[
∂g(t, S)

∂t
+ φ(t, S)

∂g(t, S)

∂S
+ 0.5σ2(t, S)

∂2g(t, S)

∂S2

]
dt

+σ(t, S)
∂g(t, S)

∂S
dW (3.23)

where φ(t, S) = φS and σ(t, S) = σS, thus

d(lnS) = [φ− 0.5σ2]dt+ σdW (3.24)

Integrate on both sides, we have

lnS(t) = lnS(0) + (φ− 0.5σ2)t+ σW (t) (3.25)

now the stock price can be described as

S(T ) = S(t)exp{(φ− 0.5σ2)(T − t) + σ
√
T − tε} (3.26)

where W (T )−W (t) is replaced by ε
√
T − t, ε is the standard normal as defined

above.
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We used Monte Carlo method to simulate the random trials in the pro-

cess. Through a Monte Carlo simulation, we obtain the stock price as a sample

average. We simulate the stock prices with $20 as the primary value. We then

discard the first 1000 periods of data in order to eliminate the impact of the

value of the primary stock price. Assuming that the stock market opens 250

days each year, starting from 9:00 in the morning and closing at 5:00 in the

afternoon, the number of trials for each day is 96. The 4t in this equation is

1/(250 ∗ 96) since the working days in one year is set to 250 days and we want

to get the stock prices for every 5 minutes. We take the return of the IBM

stock as a reference and set the annualized φ to 0.07 and σ to 0.29.

Simulating based on the Hull-White(1987) model’s assump-

tions(stochastic volatility)

Rather than assuming the volatility is a constant, the Hull-White(1987) model

takes the stochastic volatility which is described in equations (3.1) and (3.2).

Because it is difficult to get the analytical solution for the SDE, Monte Carlo

simulation can be used to get the numerical solution according to the following

equations:

Si = Si−1exp(φ−
Vi−1

2
)∆t+ ui

√
Vi−1∆t (3.27)

Vi = Vi−1exp(µ−
ξ2

2
)∆t+ viξ

√
∆t (3.28)

Where φ is the annualized interest rate which is set to 0.07 and µ is set to 0.

The time interval T − t is separated to n subintervals and ∆t = (T − t)/n. i is
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the index where 1 ≤ i ≤ n. ui and vi are sampled from independent standard

normal distributions. V0 can be obtained from V0 = σ2
0 where σ0 is also set to

0.29 following the IBM stock. The other parameters are defined as in previous

section. Five paths for one year’s simulated stock prices are shown in Figure

3.7.

Option Price Simulation

We also used Monte Carlo methods to simulate the prices of an European op-

tion. At maturity time t∗, the strike price is K, a call option is worth:

Ct∗ = max(0, St∗ −K) (3.29)

Where in the simulation, we randomly choose the strike/stock ratios (K/S) from

0.8 to 1.2. At any earlier time t, the option value is the expected present value:

Ct = E[PV (max(0, St∗ −K))] (3.30)

By taking the problem as the decision of a risk neutral trader, we can modify

the expected return of the stock so that it earns the risk free rate. Then we

have

Ct = e−r(t
∗−t)E∗[max(0, St∗ −K)] (3.31)

where E∗ is a transformation of the original expectation. We need to simulate

a large number of sample values of St∗ by the assumed price process and find
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the estimated call price as the average of the simulated values.

Here we take the stock prices simulated in previous subsection as the

real stock prices for each period. We set the maturity time t∗ as 30 days

for now. We simulate the stock prices Sit∗ based on the Black-Scholes or the

Hull-White(1987) model described above separately. For the first case, a set of

time-T stock prices can be got directly by the following equation

S
(i)
t∗ = St exp

(
(r − 0.5σ2)(t∗ − t) + σ

√
t∗ − t x(i)

)
(3.32)

Where i = 1, 2, ..., n and n is set 1000. St is the stock price at time t which

we take from the simulated data described in section 3.5.1. With the set of

observations, S1
t∗ , S

2
t∗ , S

3
t∗ ...S

n
t∗ , we can use it to estimate E∗[max(0, St∗ − K)]

as the average of option payoffs at maturity time t∗. With the average from

n simulations. In each simulation, Sit∗ and V i
t∗ can be obtained following the

gradual process described in equations (3.27) and (3.28). When a set of Sit∗

(where i = 1, 2, ..., n;n = 1000)are simulated, we use the average value as the

approximation to the expected stock price at time t∗, and gain the option price

as well.

Thus, the simulated European call option is

Ĉt = e−r(t
∗−t)

(
1

n

n∑
i=1

max(0, St∗,i −K)

)
(3.33)
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By a similar process I can estimate an European put option as

P̂t = e−r(t
∗−t)

(
1

n

n∑
i=1

max(0, K − St∗,i)

)
(3.34)

One set of simulation for stock prices, call option price and put option price is

shown in Figure 3.2.

3.6 The volatility trading strategy:

Delta Neutral

Although the Efficient Market Hypothesis is dominant in academic circles,

there are many traders using trading strategies in the market. Delta neutral

trading is one of the most popular strategies used in option market. In

this section, we investigate if the predictable volatility changes can make

significant economic profit by utilizing the delta-neutral strategy. There are

also other popular strategies such as Straddles Trading Strategy which can

also be used in this kind of study.

For a financial instrument, the delta is the change in value of that in-

strument when the price of the underlying asset (stock or index) increases

by one unit, and the other influences are held fixed. The value of delta

can be positive or negative according to whether the value of the financial

instrument(option) increases or decreases in response to one unit increase in

the asset (stock) price. A delta-neutral portfolio is one where the net delta of
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all components of the portfolio is zero. The significance of delta-neutral is that

a small change in the price of underlying asset (stock) will have essentially

no effect on the net value of the portfolio, that is, a delta-neutral portfolio

is insensitive to small changes in the value of the stock that governs its

components. In this study, the delta-neutral portfolio consists of selling or

buying options and taking positions on holding or selling stocks. If the hedging

position can be adjusted frequently, the delta-neutral trading strategy works

well for the Hull and White (1987) option pricing model. According to Efficient

Market Theory, the strategy should yield no extra returns, thus this study will

also test this hypothesis as a lot researches already have.

We assume that the stock agent can trade at the market prices that in-

dicate deviations from the model prices. Also we assume that the assumptions

for the Hull and White (1987) model, as I mentioned in section 3.2, hold.

There are a few steps in the experiment. Firstly, we use Monte Carlo

simulation method to simulate the underlying stock prices. We simulate

two series of stock prices separately according to the Black Scholes model

assumptions and the Hull White model assumptions. The former assumes

constant volatility and the latter assumes stochastic volatility. Then, based on

these two series of underlying stock prices, the Monte Carlo method is used

to simulate the option prices. We take these two series of underlying stock
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prices and options prices as observed prices and test the trading strategy on

them. In this research, we take the observed prices equally to the market

prices. If we can obtain real market underlying stock prices and option prices,

we would have three series of observed prices for the experiment. Secondly,

we use the observed underlying stock prices to calculate realized volatility

as in equation (3.17). The implied volatility is estimated based on the Hull

White option pricing model as in equation (3.10). Then we predict the one

period ahead of implied volatility and realized volatility as described in section

3.3.2 and 3.4.2. Thirdly, plug in the predicted implied volatility or realized

volatility to Hull White model to calculate model option prices. Comparing

these model option prices with the observed option prices, we have an indi-

cator to show that the observed option prices are over estimated or under

estimated and adjust our trading strategy according to the indicator. With

more details, the delta-hedging trading strategy process is described as follows:

• On day t, the agent can use the volatility prediction method (IV or RV)

to forecast volatility and compute the theoretical option price. The agent can

change the position daily by buying the option if it is undervalued or selling it

if it is overvalued.

• We assume that $100 worth of options and stocks are always bought

and sold, and the agent does not reinvest the profit the next day.
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• By comparing the adjusted model prices got from equation(3.21) with

the simulated option prices, we find that their trends match very well but the

values have almost constant differences. Thus, the next period theoretical

price CT
t+1 is compared with the actual market price CM

t . If CT
t+1 > CM

t meaning

the option is underpriced in period t, the agent will buy the option, and

delta-hedges the position by buying or selling the stocks. At day t + 1, the

hedged position is liquidated and the agent obtains the return.

• If CT
t+1 < CM

t , the option is overpriced, the agent should sell the op-

tions, hedge the position by buying or selling stock, and invest the left over

money on a risk-free asset.

It does not make a significant difference to consider whether the delta

neutral trading strategy can make abnormal economic profits without con-

sidering the transaction cost. We assume the transaction cost is 1% of the

option prices which include a round-trip cost of one tick plus commissions.

This number is used in many papers. 2% transaction cost is also applied in

this study. As the development of computer system and automatic trading

platform, the transaction cost is becoming less and less, giving more chances

to get profit for the trading strategies.
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The return formulas for various strategies is:

A, buy call option at price CA
t and sell stocks at price St, the absolute return is

ARt+1 = nc · [(CA
t+1 − CA

t )− δc(St+1 − St)− rT · (CA
t+1 + CA

t )]

+rF ·max{100− ncCA
t + ncδcSt, 0} (3.35)

Where δc is the delta of an European call on stock, rT is the transaction cost rate

, rF is the risk free interest rate. The last part of the equation is the surplus

money which can be invested at the risk free interest rate. nc is the amount of

call options bought which can be calculated by solving equations:

ncδc − ns = 0 (3.36)

100− ncCA
t + nsSt = 0 (3.37)

where ns is the amount of stock sold. Equation (3.36) comes from the delta-

neutral hedging and equation (3.37) follows the assumption that dollar 100 are

used each day. Then we can get

nc =

∣∣∣∣ 100

CA
t − δcSt

∣∣∣∣

B, sell call option at price CA
t and buy stock at price St, the absolute return is

ARt+1 = nc · [−(CA
t+1 − CA

t ) + δc(St+1 − St)− rT · (CA
t+1 + CA

t )] (3.38)

where

nc =
100

−CA
t + δcSt
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this comes from solving the following equations:

−ncδc + ns = 0 (3.39)

100 + ncC
A
t − nsSt = 0 (3.40)

C, buy put option and buy stock, the absolute return is

ARt+1 = np · [(PA
t+1 − PA

t )− δp(St+1 − St)− rT · (PA
t+1 + PA

t )] (3.41)

where δp denotes the delta of an American put option on stock, and

np =

∣∣∣∣ 100

PA
t − δpSt

∣∣∣∣

D, sell put option and sell stock, the absolute return is

ARt+1 = np · [−(PA
t+1 − PA

t ) + δp(St+1 − St)− rT · (PA
t+1 + PA

t )] + 200 · rF (3.42)

where

np =

∣∣∣∣ 100

−PA
t + δpSt

∣∣∣∣
We set δc to 0.5 and δp to -0.5 which denote the approximate deltas for the at-

the-money call and put options. 200 · rF is the profit by selling $100 put option

and $100 stock and investing the $200 on the risk free asset. If we set the

initial investment as $100, the relative return at time t+ 1 is

RRt+1 = ARt+1/100 (3.43)
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Considering the transaction costs, more transaction number means higher

cost. Thus, the filters are used to verify whether the profit gained from the

price deviations is large enough to outpace the transactions cost. The options

are only traded when the predicted price deviation is larger than the filter

value to reduce the transaction number and the total transaction cost. If the

value of the filter increases, the number of trades decreases. The agent can

invest in the risk-free asset on no trading days by increasing the filter value

and reducing the transaction number. We test the filter values from 2% to 5%.

For the real data, to investigate the performance of this trading strategy

based on the realized volatility, we will also compare this return with the

return of the 1 year U.S. Treasury Bill and with that of the S&P 500 index and

S&P 100 index.

We calculate the Sharp Ratio which is one of the most important risk/return

measures. This ratio describes the excess return for the extra volatility.

Higher value means better risk-return trade off, that is, lower market risk and

higher returns. The Sharp Ratio is defined as

S(x) = (rx − rf )/StdDev(rx) (3.44)

where x is the investment, rx is the average rate of return of x, rf is the return

rate of a risk-free security and StdDev(rx) is the standard deviation of rx.
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We replicate the trading process 800 times in this study. Table 3.5 to 3.7

show that when generating stock prices and option prices, and analyzing

the data with the same price model, Hull-White(1987) model, IV does better

than RV in most cases, but the difference is not big. It demonstrates that the

implied volatility model can obtain more information from the data. Also,for

both IV and RV models, when the transaction costs rise from 0 to 1%, 2%

and 5%, the profit declines accordingly but not significantly. The profits also

decline when the filter is raised and the transaction number is less.

However, when we generate the data with the basic Black-Scholes model

but analyze them with the Hull-White model, there is a bias between the two

models and the results are different. Tables 3.8 to 3.10 show the profits of the

trading strategies based on implied volatility prediction and realized volatility

forecasting. Without transaction costs, both IV model and RV model can make

profits on all the filters from 0 to 5%. The profits based on both RV and IV

models are very close. When trading on both call options and put options, RV

model dominates IV model a little on all filters except 0.05 filter. Considering

the Sharp Ratio, RV does better in most of the cases.

When taking 1% transaction cost,which is closer to the real trading than

zero transaction cost, the situation is similar to no transaction cost. The
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benefits from both models are close.

For the 2% transaction cost, when trading on both call and put options,

IV is slightly better except the 0.02 filter. Only when trading on the call

options, do both models make negative profits, but RV model loses less than IV

model. While trading on the put options only, RV model dominates IV model

significantly. For all filters, IV model can not make profit but RV model makes

positive profit and the differences are significant. Also the Sharp Ratios from

RV model are better than that from IV model in all filters.

From the latter case, we can see that if there is a bias between the data

and the pricing model, when working on the Delta-neutral trading strategy,

RV forecasting model can do at least as good as the IV forecasting model, and

it does better in more cases. In most cases, the Sharp Ratios created by RV

model are better than that of IV model.

3.7 Conclusion

There has been a lot of literature on both theoretical and empirical work

in the volatility modeling and forecasting. With the option pricing models

such as Black-Scholes and Hull-White, this research can be utilized on the

trading strategies. For example, Guo(1999) proposed that the use of the

implied stochastic volatility regression prediction method on option pricing
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can dominate the GARCH method and make profit significantly different from

zero in some situations. However, implied volatility is a biased predictor of the

realized volatility across asset markets.

In this paper, we chose the Hull-White(1987) option pricing model since

this model is based on the stochastic stock return volatility rather than

constant volatility in Black-Scholes model. For the purpose of comparison,

we modeled and predicted the implied volatility by regression. We used the

heterogenous autoregressive realized volatility model to forecast the realized

volatility. The Monte Carlo method was taken to simulate the stock price and

European call and put options with the number of simulations set to 800.

Based on the simulated data, we modeled and forecasted the implied volatility

and realized volatility and obtained the model prices of the options with the

Hull-White model. Using these predicted prices as indicators, we used the

Delta-neutral strategy, which is one of the most popular volatility trading

strategies, to verify the effect of the RV model.

The result of the trading strategy based on the simulated data shows

that,when there is no bias between the data and the pricing model, IV does

better than RV in most cases since it can obtain more information, but the

difference is not large. If there is a bias between the data and the pricing

model, both IV and RV can make profits when the transaction cost is less than
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1%. Considering the 2% transaction cost, both RV and IV can make similar

profits when trading on both call and put options. However, both RV and IV

can not make profits when trading only on call options. When trading only on

put options, only RV can make positive profits and the differences between

two models are significant. The Sharp Ratio of the return on RV model

dominates that of the IV model in most cases. This denotes that, when there

is bias between data and the pricing model, using realized volatility model on

dynamic volatility strategy works at least as good as implied volatility model

and does much better in some cases. Since there is no model that can describe

the real option prices accurately, and the bias between real data and pricing

model is bigger than that in this study, RV may do better than IV in that case.

It may serve as a useful tool for the technical trading analysis.

However, because this study is based on the simulated data, the actual

result of utilizing the market data bears further investigation. There is model

free implied volatility now, so it would be worthwhile comparing RV to this

model free IV. Moreover, in this paper, I only verify the Delta-Neutral trading

strategy. Thus, more volatility trading strategies should be tested in the future

work.
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Appendix

Figure 3.1: Five paths of simulated stock prices for one year
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Figure 3.2: One simulation of call option and put option prices for one year

α0 α1 α2 β1 β2 β3 γ1 γ2 γ3

Call 0.0003 -0.0022 0.0008 -0.7443 -0.4937 -0.4960 -12.6144 -31.6943 -2.6860

(0.0006) (0.0027) (0.0013) (0.0023) (0.0023) (0.0020) (23.5406) (37.5052) (48.7680)

Put 0.0000 -0.0000 -0.0000 -0.0005 -0.0007 -0.0010 -0.7353 -0.4830 -0.2378

(0.0000) (0.0000) (0.0000) (0.0011) (0.0009) (0.0007) (0.0030) (0.0029) (0.0023)

Table 3.1: Parameters values for the Implied Volatility Regression

Note:Based on 800 simulations; The standard errors are given in parenthesis;
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parameter α0 α1 α2 α3

estimate result -0.4278 0.0500 0.3875 0.4080

(0.0116) (0.0026) (0.0057) (0.0059)

Table 3.2: Estimate result for the HAR model

Note:Based on 800 simulations; The standard errors are given in parenthesis;

MSE

call put

IV 0.1685 7.6680e-005

RV 0.1310 0.1673

Table 3.3: Mean Squared Errors in Pricing the Options by IV and RV

Note: Based on 800 simulations; Generating data with BS model and analysis

with HW model

α0 α1

call option, IV 0.5415(0.0434) 0.9555(0.0036)

put option, IV -0.0022(0.0013) 1.0047(0.0004)

call option, RV 4.2096(0.0350) 0.7549(0.0036)

put option, RV 1.4737(0.0071) 0.6404(0.0043)

Table 3.4: Pricing the Option

Note: Based on 800 simulations; The standard errors are given in parenthesis;

Generating data with BS model and analysis with HW model
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Return(%) Sharp Return(%) Sharp Return(%) Sharp

Filter Volatility for All Ratio for Call Ratio For Put Ratio

0 IV 6.7091 1.4373 6.9209 1.2048 6.9191 1.2050

RV 5.4572 1.2091 4.9829 0.8027 4.3870 1.1942

0.01 IV 6.7089 1.4372 6.9206 1.2047 6.9178 1.2049

RV 5.4341 1.2055 4.9696 0.8007 4.3661 1.1876

0.02 IV 6.7084 1.4370 6.9200 1.2045 6.9172 1.2047

RV 5.4071 1.2025 4.9504 0.7999 4.3445 1.1833

0.05 IV 6.7023 1.4345 6.9136 1.2025 6.9108 1.2027

RV 5.2101 1.1610 4.7738 0.7712 4.2211 1.1402

Table 3.5: Daily Profits for Delta-Neutral Trading Strategy

(Generate and analysis data with HW model, No Transaction Cost)

Note: The returns are average in percentage; δc = 0.5, δp = −0.5; ’All’ means

trade both the call options and put options, ’Call’ means only trade on call

options and ’Put’ means only trade on put options
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Return(%) Sharp Return(%) Sharp Return(%) Sharp

Filter Volatility for All Ratio for Call Ratio For Put Ratio

0 IV 6.5218 1.4140 6.6058 1.1551 6.6033 1.1553

RV 5.2808 1.1814 4.6678 0.7573 4.2479 1.1603

0.01 IV 6.5217 1.4139 6.6056 1.1550 6.6031 1.1552

RV 5.2607 1.1789 4.6585 0.7503 4.2289 1.1547

0.02 IV 6.5214 1.4138 6.6053 1.1549 6.6027 1.1551

RV 5.2382 1.1775 4.6458 0.7570 4.2101 1.1521

0.05 IV 6.5166 1.4121 6.6006 1.1536 6.5980 1.1538

RV 5.0593 1.1420 4.4956 0.7338 4.0983 1.1153

Table 3.6: Daily Profits for Delta-Neutral Trading Strategy

(Generate and analysis data with HW model, 1% Transaction Cost)

Note: The returns are average in percentage; δc = 0.5, δp = −0.5; ’All’ means

trade both the call options and put options, ’Call’ means only trade on call

options and ’Put’ means only trade on put options
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Return(%) Sharp Return(%) Sharp Return(%) Sharp

Filter Volatility for All Ratio for Call Ratio For Put Ratio

0 IV 6.3345 1.3896 6.2907 1.1045 6.2884 1.1047

RV 5.1045 1.1529 4.3529 0.7114 4.1088 1.1259

0.01 IV 6.3345 1.3896 6.2906 1.1045 6.2883 1.1047

RV 5.0873 1.1515 4.3476 0.7115 4.0916 1.1214

0.02 IV 6.3344 1.3896 6.2905 1.1045 6.2882 1.1047

RV 5.0693 1.1518 4.3412 0.7136 4.0757 1.1203

0.05 IV 6.3308 1.3887 6.2876 1.1039 6.2853 1.1041

RV 4.9085 1.1224 4.2173 0.6957 3.9756 1.0897

Table 3.7: Daily Profits for Delta-Neutral Trading Strategy

(Generate and analysis data with HW model, 2% Transaction Cost)

Note: The returns are average in percentage; δc = 0.5, δp = −0.5; ’All’ means

trade both the call options and put options, ’Call’ means only trade on call

options and ’Put’ means only trade on put options
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Return(%) Sharp Return(%) Sharp Return(%) Sharp

Filter Volatility for All Ratio for Call Ratio For Put Ratio

0 IV 7.7868∗ 1.1740∗ 15.0281 1.1203∗ 15.0149 1.1205∗

RV 8.2809∗ 1.2047∗ 14.9382 1.1503∗ 4.8484 1.3212∗

0.01 IV 7.7772∗ 1.1708∗ 15.0146 1.1175∗ 15.0014 1.1177∗

RV 8.2541∗ 1.1991∗ 14.9015 1.4449∗ 4.8458 1.3201∗

0.02 IV 7.7271∗ 1.1548∗ 14.9413 1.1024∗ 14.9281 1.1027∗

RV 8.1062∗ 1.1664∗ 14.6929 1.1126∗ 4.8265 1.3085∗

0.05 IV 7.2472 1.0722 13.4060 0.9874 13.3947 0.9877∗

RV 6.6778 0.9986 11.8211 0.8913 4.6021 1.1829∗

Table 3.8: Daily Profits for Delta-Neutral Trading Strategy

(Generate data with BS model and analysis with HW model, No Transaction Cost)

Note:The returns are average in percentage; δc = 0.5, δp = −0.5; ’All’ means

trade both the call options and put options, ’Call’ means only trade on call

options and ’Put’ means only trade on put options; the ∗ on the data means the

case that RV performs better than IV
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Return(%) Sharp Return(%) Sharp Return(%) Sharp

Filter Volatility for All Ratio for Call Ratio For Put Ratio

0 IV 6.3188∗ 1.1320∗ 6.2555 0.3918∗ 6.2530 0.3928∗

RV 6.5251∗ 1.1345∗ 6.1655 0.4071∗ 4.3782 1.1933∗

0.01 IV 6.3337∗ 1.1428∗ 6.2877 0.3970∗ 6.2852 0.3980∗

RV 6.5656∗ 1.1520∗ 6.2499 0.4172∗ 4.3822 1.1968∗

0.02 IV 6.3456∗ 1.1519∗ 6.3496 0.4045∗ 6.3470 0.4055∗

RV 6.5621∗ 1.1614∗ 6.3149 0.4305∗ 4.3801 1.1977∗

0.05 IV 6.1493 1.0962 5.8425 0.3948∗ 5.8405 0.3958∗

RV 5.7716 1.0303 5.2434 0.3954∗ 4.2415 1.1278∗

Table 3.9: Daily Profits for Delta-Neutral Trading Strategy

(Generate data with BS model and analysis with HW model, 1% Transaction Cost)

Note: The returns are average in percentage; δc = 0.5, δp = −0.5; ’All’ means

trade both the call options and put options, ’Call’ means only trade on call

options and ’Put’ means only trade on put options; the ∗ on the data means the

case that RV performs better than IV
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Return(%) Sharp Return(%) Sharp Return(%) Sharp

Filter Volatility for All Ratio for Call Ratio For Put Ratio

0 IV 4.8509 0.9479 −2.5172 −0.3707∗ −2.5089∗ −0.3689∗

RV 4.7692 0.8816 −2.6072 −0.3685∗ 3.9081∗ 1.0649∗

0.01 IV 4.8901 0.9761 −2.4391∗ −0.3619∗ −2.4309∗ −0.3601∗

RV 4.8772 0.9256 −2.4016∗ −0.3528∗ 3.9186∗ 1.0723∗

0.02 IV 4.9641∗ 1.0262∗ −2.2421∗ −0.3434∗ −2.2341∗ −0.3416∗

RV 5.0180∗ 1.0335∗ −2.0630∗ −0.3186∗ 3.9337∗ 1.0838∗

0.05 IV 5.0515 1.0826 −1.7210∗ −0.2943 −1.7138∗ −0.2925∗

RV 4.8653 1.0298 −1.3343∗ −0.2417 3.8809∗ 1.0667∗

Table 3.10: Daily Profits for Delta-Neutral Trading Strategy

(Generate data with BS model and analysis with HW model, 2% Transaction Cost)

Note: The returns are average in percentage; δc = 0.5, δp = −0.5; ’All’ means

trade both the call options and put options, ’Call’ means only trade on call

options and ’Put’ means only trade on put options; the ∗ on the data means the

case that RV performs better than IV
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Return(%) Sharp Return(%) Sharp Return(%) Sharp

Filter Volatility for All Ratio for Call Ratio For Put Ratio

0 IV 6.7132 1.4424 6.9402 1.2106 6.9362 1.2107

RV 7.0061∗ 1.2302 6.9441∗ 1.2083 1.0937 0.2461

0.01 IV 6.7132 1.4424 6.9403 1.2106 6.9363 1.2107

RV 6.9995∗ 1.2300 6.9387∗ 1.2084 1.0624 0.2395

0.02 IV 6.7103 1.4424 6.9403 1.2106 6.9363 1.2106

RV 6.9853∗ 1.2264 6.9253 1.2050 1.0366 0.2335

0.05 IV 6.7079 1.4404 6.9339 1.2086 6.9299 1.2087

RV 6.8849∗ 1.1944 6.8269 1.1739 0.9451 0.2105

Table 3.11: Daily Profits for Delta-Neutral Trading Strategy with adjusted RV

(Generate and analysis data with HW model, No Transaction Cost)

Note: The returns are average in percentage; δc = 0.5, δp = −0.5; ’All’ means

trade both the call options and put options, ’Call’ means only trade on call

options and ’Put’ means only trade on put options
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Return(%) Sharp Return(%) Sharp Return(%) Sharp

Filter Volatility for All Ratio for Call Ratio For Put Ratio

0 IV 6.5270 1.4192 6.6249 1.1608 6.6212 1.1609

RV 6.6958∗ 1.1810 6.6288∗ 1.1587 0.9550 0.2204

0.01 IV 6.5270 1.4193 6.6251 1.1608 6.6214 1.1609

RV 6.6977∗ 1.1844 6.6319∗ 1.1624∗ 0.9271 0.2144

0.02 IV 6.5207 1.4194 6.6253 1.1609 6.6216 1.1610

RV 6.6919∗ 1.1844 6.6269∗ 1.1626∗ 0.9017 0.2089

0.05 IV 6.5231 1.4181 6.6206 1.1596 6.6109 1.1597

RV 6.6167∗ 1.1626 6.5538 1.1415 0.8235 0.1935

Table 3.12: Daily Profits for Delta-Neutral Trading Strategy with adjusted RV

(Generate and analysis data with HW model, 1% Transaction Cost)

Note: The returns are average in percentage; δc = 0.5, δp = −0.5; ’All’ means

trade both the call options and put options, ’Call’ means only trade on call

options and ’Put’ means only trade on put options
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Return(%) Sharp Return(%) Sharp Return(%) Sharp

Filter Volatility for All Ratio for Call Ratio For Put Ratio

0 IV 6.3407 1.3951 6.3095 1.1101 6.3061 1.1103

RV 6.3855∗ 1.1310 6.3134∗ 1.1082 0.8164 0.1947

0.01 IV 6.3408 1.3952 6.3099 1.1102 6.3065 1.1103

RV 6.3959∗ 1.1378 6.3251∗ 1.1154∗ 0.7918 0.1892

0.02 IV 6.3410 1.3954 6.3103 1.1103 6.3069 1.1105

RV 6.3985∗ 1.1413 6.3286∗ 1.1190∗ 0.0671 0.1842

0.05 IV 6.3383 1.3949 6.3072 1.1097 6.3038 1.1098

RV 6.3484∗ 1.1295 6.2807 1.1079 0.7018 0.1703

Table 3.13: Daily Profits for Delta-Neutral Trading Strategy with adjusted RV

(Generate and analysis data with HW model, 2% Transaction Cost)

Note: The returns are average in percentage; δc = 0.5, δp = −0.5; ’All’ means

trade both the call options and put options, ’Call’ means only trade on call

options and ’Put’ means only trade on put options
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Chapter 4

Markovitz’s Four Asset Problem,
A Geometrical Analysis

4.1 Introduction

In Markowitz(2005), the three asset mean-variance portfolio optimization

problem has been examined in the weight space. The paper has an example

with specific values of means and variances and shows that the efficient line

is limited in certain area. We want to know if it works generally and we

re-examine the problem by using a general case without specific values. As

there are many assets in one portfolio in reality, we extend the problem to

four assets thus the weight space becomes a three-dimensional coordinate.

The purpose of this research is to find the exact solution of the four-asset

portfolio optimization problem, obtain the four important portfolios in this

case including the minimum variance portfolio, the maximum return portfolio

and two corner portfolios. Then we can describe the efficient line exactly in the

weight space. Dybvig(1984) shows that with non-negativity constraints, corner
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portfolios are only non-differentiable when all assets have the same mean.

We obtain the same result by showing that there is no kink on the efficient

frontier through analysing the efficient line in weight space. Furthermore,

by mapping the efficient frontier from the weight space to the mean variance

space, we will know how the portfolio weights change while the efficient

portfolio moves along the mean variance efficient frontier. In this study, to

simplify the problem and get analytical solution, we assume that there is

no correlation between assets in one portfolio. There is a lot of published

work focusing on the numerical solution of the portfolio optimization problem.

However, algebraic analysis can give us a better understanding of how the

portfolio changes. Also we can extend the problem to study how constraints

can affect the optimized portfolio.

The paper is organized as follows: Section 4.2 generalizes the three asset

problem in Markowitz (2005). Section 4.3 extends the problem to four asset

and obtain the exact solution. Section 4.4 presents the experiment results by

Monte Carlo simulation methods. Section 4.5 concludes.

4.2 Markowitz’s Three Asset Problem

We re-examine the standard Mean-Variance problem with both adding up con-

straints and non-negativity of the portfolio weights. Let Ω be the covariance
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matrix of the assets returns. We choose ω to

min
ω

1

λ
ω′Ωω − µ′ω (4.1)

or

min
ω

ω′Ωω − λµ′ω (4.2)

subject to

I ′ω = 1 (4.3)

ωi ≥ 0 for all i (4.4)

Our purpose is to find an explicit representation for the efficient frontier con-

necting the minimum variance to the maximum return portfolio and passing

through the corner portfolios. To keep the problem simple, we consider a port-

folio of three risky uncorrelated assets where their means and variances are

such that

0 < µ1 < µ2 < µ3

and

0 < σ2
1 < σ2

2 < σ2
3

In particular, we let µ2 and µ3 be defined as

µ2 = µ1 + η1, η1 > 0 (4.5)

µ3 = µ1 + η1 + η2, η1 > 0, η2 > 0 (4.6)

Markowitz(2005) examined this problem via a worked specific example. Our

approach is to examine the problem algebraically without having to specify
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specific values for the means and variances. However, like Markowitz(2005),

we examine the problem in “weight-space”. That is we examine the two dimen-

sional space spanned by two of the three assets weights. The weight of the third

asset is found from the adding up constraint. As Markowitz(2005) pointed out,

all feasible portfolios satisfying both the non-negative and the adding up con-

straints are contained on and within a triangle, in (ω1, ω2) space, with verticies

(0, 0), (1, 0) and (0, 1). Figure 4.1 illustrates this triangle.

Figure 4.1

Within and on this triangle all efficient portfolios will lie. In particular, the

minimum variance portfolio, the maximum return portfolio and the corner

portfolio between these two. Where in particular, these portfolios are located is

solely determined by the values for the means and variances. However, what



104

we show is that the corner portfolios will only lie on the vertical axis, strictly

between (0, 0) and (0, 1).

The maximum return portfolio is clearly the one where we hold 100% in

asset 3, the one with the highest mean. This is located on the diagram at the

point (0, 0).

The minimum variance portfolio will lie somewhere within the triangle

with co-ordinates (ω1, ω2) = (
1/σ2

1∑
1/σ2

j
,

1/σ2
2∑

1/σ2
j
) (See Appendix 4.6.1). Its position

within the triangle is determined purely by the σ2
j ’s. We label this point h in

the figure with co-ordinates (ωh1 , ω
h
2 ). The weight for the third asset is clearly

ωh3 = 1 − ωh1 − ωh2 =
1/σ2

3∑
1/σ2

j
. Also, within the triangle will be another point that

minimizes portfolio variance for various levels of portfolio expected return.

As in Markowitz(2005), this portfolio has the weights ωi =
µj/σ

2
j∑

µj/σ2
j
, j = 1, 2, 3.

We label this point k in the diagram with co-ordinates (ωk1 , ω
k
2) (See Appendix

4.6.2). The straight line that passes through the two points (ωh1 , ω
h
2 ) and (ωk1 , ω

k
2)

defines all portfolios with the minimum variance for various levels of expected

return. However, the only efficient portfolios are those on the line starting

from h and moving towards k and beyond. Once this line crosses over the

sides of the triangle, the portfolios become infeasible since the non-negativity

constraint is violated.
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4.2.1 Remark

While the point h can be located anywhere within the triangle, the point k will

always be such that ωk1 < ωh1 while ωk2 may be smaller, larger or equal to ωh2 .

In fact, as we will show, the point k can only fall strictly within the triangle

defined by the verticies (ωh1 , ω
h
2 ), (0, 1) and (0, 0). This also establishes the fact

that the corner portfolio can only lie on the horizontal axis.

As a means of proving the claims made in the above remark, we now

show the following:

(a) If we move along the line connecting h and k but move away from k and

past h. Then the portfolios on that part of the line are not efficient.

Consider the equation of the line connecting h and k. That is, the straight line

between (ωh1 , ω
h
2 ) and (ωk1 , ω

k
2) is given by

x2 − ωh2 =

(
ωk2 − ωh2
ωk1 − ωh1

)
(x1 − ωh1 ) (4.7)

where x1, x2 is any point on the line.

The slope of this line, given by
(
ωk
2−ωh

2

ωk
1−ωh

1

)
could be positive, negative or

zero. Substituting the expressions for the weights, given earlier, the slope can

be shown to be given by

s =
(µ3 − µ2)σ2

1 − (µ2 − µ1)σ2
3

(µ2 − µ1)σ2
3 + (µ3 − µ1)σ2

2

=
η2σ

2
1 − η1σ

2
3

η1σ2
3 + (η1 + η2)σ2

2

(4.8)
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From the expression for s, we have immediately that the sign of the slope is

determined by the numerator. Thus, if σ2
3

σ2
1
> η2

η1
, the slope is negative, if σ2

3

σ2
1

= η2
η1

,

the slope is zero and finally if σ2
3

σ2
1
< η2

η1
, the slope will be positive.

Now, let the equation of the line be given by

x2 = ωh2 + s(x1 − ωh1 ) (4.9)

We can now easily show that points on the line beyond h and in the opposite

direction to k are not efficient. Let

x1 = ωh1 + ε, 0 < ε < 1

then

x2 = ωh2 + sε

with

x3 = 1− x1 − x2

The mean of this portfolio is given by

µxp = µ′x = µ1x1 + µ2x2 + µ3x3

= µ3 − x1(µ3 − µ1)− x2(µ3 − µ2)

= µ3 − x1(η1 + η2)− x2η2

= µ3 − (ωh1 + ε)(η1 + η2)− (ωh2 + sε)η2 (4.10)

For the portfolio given by the point h, the minimum variance portfolio, we have

µhp = µ3 − ωh1 (η1 + η2)− ωh2η2 (4.11)
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Thus,

µhp − µxp = εη1 + (1 + s)εη2 (4.12)

and since (1 + s) > 0, we have that the portfolio at x is inefficient. Similarly we

can show that any points on the line to the left of h result in higher portfolio

mean and variance.

(b) The slope of the line connecting h and k is bounded within the slopes

of the two rays connecting (ωh1 , ω
h
2 ) with (0, 1) and (0, 0). Here we ask the

question: Can either of the points (0, 0) or (0, 1) lie on the line connecting h and

k?

Figure 4.2
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Consider the line connecting (0, 0) and h as in Figure 3, the slope is

s1 =
0− ωh2
0− ωh1

=
σ2

1

σ2
2

(4.13)

The question is can s be equal to or bigger than s1? Suppose s ≤ s1 holds, we

have

η2σ
2
1 − η1σ

2
3

η1σ2
3 + (η1 + η2)σ2

2

≤ σ2
1

σ2
2

(4.14)

or

σ2
1σ

2
3 + σ2

1σ
2
2 + σ2

2σ
2
3 ≤ 0 (4.15)

It is a conflict as σ2
i > 0 for all i. Thus, we have s < s1. Now consider the line

connecting (0, 1) and h as shown in Figure 3, the slope is

s2 =
1− ωh2
−ωh1

=
ωh1 + ωh2
−ωh1

= −
(

1 +
σ2

1

σ2
3

)
(4.16)

The question is can s be equal to or smaller than s2? Suppose s ≤ s2 holds, we

have

η2σ
2
1 − η1σ

2
3

η1σ2
3 + (η1 + η2)σ2

2

≥ −
(

1 +
σ2

1

σ2
3

)
(4.17)

or

η2σ
2
1σ

2
3 + η1σ

2
1σ

2
3 + (η1 + η2)(σ2

2σ
2
3 + σ2

1σ
2
2) ≤ 0 (4.18)

It is a conflict as σ2
i > 0 for all i. Thus, we have s > s2. Now the line connecting

h and k is strictly bounded inside the rays connecting (ωh1 , ω
h
2 ) with (0, 1) and

(0, 0).
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We have thus established that irrespective of where the point h is lo-

cated within the triangle all efficient portfolios will be defined by points to

its left and lying on a straight line strictly within the triangle with verticies

(ωh1 , ω
h
2 ), (0, 1) and (0, 0). The straight line will eventually cross the vertical

axis with all points beyond the crossing point defining infeasible portfolios.

However, the point of crossing and all points below on the vertical axis until we

reach the maximum return portfolio at the point (0, 0) will all define efficient

portfolios. The point of crossing is known as a turning point and it defines

what is known as a corner portfolio. This point is readily found using the

straight line

Figure 4.3
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x2 = ωh2 + s(x1 − ωh1 ) (4.19)

at the point of crossing x1 = 0 and thus letting this point be c we have

ωc2 = ωh2 − sωh1 (4.20)

with ωc3 = 1− ωc2

At this point, the portfolio’s mean is given by

µcp = µ3 − ωc2(µ3 − µ2)

= µ3 − (ωh2 − sωh1 )η2 (4.21)

Again, since

µhp − µcp = −ωh1η1 − ωh1η2(1 + s) < 0 (4.22)

The point c defines an efficient portfolio as do all points below c including

(Appendix 4.6.3), of course, the maximum return portfolio at the point (0, 0).
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Figure 4.4

4.2.2 Efficient Frontier

We now consider the means and variances of the three important portfolios

given by the points h, c and maximum return m in Figure 4.5. After some

straightforward but tedious algebra in Appendix(4.6.4) we can readily derive

explicit expressions for the portfolio means and variances which are given by

µhp =
1

B
(µ1σ

2
2σ

2
3 + µ2σ

2
1σ

2
3 + µ3σ

2
1σ

2
2) (4.23)

(σhp )2 =
σ2

1σ
2
2σ

2
3

B
(4.24)

where

B = σ2
1σ

2
2 + σ2

1σ
2
3 + σ2

2σ
2
3
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Figure 4.5

Also, in weight space, the functions of portfolio mean and variance to the asset

weights are constructed. Then at both sides of the corner point c on the efficient

frontier, the derivative of portfolio mean to variance can be calculated by the

chain rule.

∂µp
∂σ2

p

|left =
∂µp
∂x2

∂x2

∂σ2
p

=
−(η1 + η2 + sη2)

2sσ22x2 − 2(1 + s)σ2
3(1− x2)

(4.25)

∂µp
∂σ2

p

|right =
∂µp
∂x2

∂x2

∂σ2
p

=
−η2

2x2(σ2
2 + σ2

3)− 2σ2
3

(4.26)

By plugging in the variables, it can be proved that the first order derivative

from both sides of corner point c are equal. This leads to the conclusion that
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there is no kink at the corner point, i.e. the mean variance frontier is continu-

ous. This result is consistent with that of Markowitz(1959) and Dybvig(1984)

who both showed that with non-negativity constraints, corner portfolios are

only non-differentiable when all assets have the same mean.

4.3 Markowitz’s Four Asset Problem

Now we extend the problem to optimize the portfolio of four risky uncorrelated

assets where their means and variances are ranked as

0 < µ1 < µ2 < µ3 < µ4

and

0 < σ2
1 < σ2

2 < σ2
3 < σ2

4

In particular, we let µ2, µ3 and µ4 be defined as

µ2 = µ1 + η1, η1 > 0 (4.27)

µ3 = µ1 + η1 + η2, η1 > 0, η2 > 0 (4.28)

µ4 = µ1 + η1 + η2 + η3, η1 > 0, η2 > 0, η3 > 0 (4.29)

All feasible portfolios satisfying both the budget constraint and the non-

negative constraint are on and inside the three-dimensional tetrahedron

(ω1, ω2, ω3) by verticies (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1) as shown in Figure

4.6.
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Figure 4.6

4.3.1 The Efficient Portfolio

The maximum return portfolio is the one which holds 100 % in asset 4 which

is at point (0, 0, 0). The minimum variance portfolio h is within the tetrahedron

and with co-cordinates

(ωh1 , ω
h
2 , ω

h
3 ) =

(
1/σ2

1∑
1/σ2

j

,
1/σ2

2∑
1/σ2

j

,
1/σ2

3∑
1/σ2

j

)
where j = 1, 2, 3, 4 (4.30)



115

and the weight of the fourth asset is obtained by

ωh4 =
1/σ2

4∑
1/σ2

j

= 1− ωh1 − ωh2 − ωh3 (4.31)

We can find another portfolio k which minimizes the variance for various levels

of given portfolio expected return.

ωki =
µj/σ

2
j∑

µj/σ2
j

, where j = 1, 2, 3, 4 (4.32)

The straight line which passes through the two points (ωh1 , ω
h
2 , ω

h
3 ) and

(ωk1 , ω
k
2 , ω

k
3) defines all portfolios with the minimum variance for various level of

expected return.

Remark 1

Now we want to show that if we move along the line connecting points h and k

but move away from k and past h, the portfolio on that part of the line are not

efficient. Any point (x1, x2, x3) on the line connecting these two points can be

described by equation

x1 − ωh1
ωk1 − ωh1

=
x2 − ωh2
ωk2 − ωh2

=
x3 − ωh1
ωk1 − ωh1

(4.33)

Also, the direction vector from point h to point k is defined as S = {l,m, n}.

Thus the point (x1, x2, x3) can also be defined as

x1 − ωh1
l

=
x2 − ωh2
m

=
x3 − ωh3

n
= t (4.34)
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where t is any number and

l = ωk1 − ωh1

m = ωk2 − ωh2

n = ωk3 − ωh3

Plugging in the values of ωhj and ωkj , we have

l =
µ1/σ

2
1∑

µj/σ2
j

− 1/σ2
1∑

1/σ2
j

=
1

σ2
1(
∑
µj/σ2

j )(
∑

1/σ2
j )

(
−η1

σ2
2

+
−η1 − η2

σ2
3

+
−η1 − η2 − η3

σ2
4

)
(4.35)

By the definition of ηi > 0, i = 1, 2, 3 we know that l < 0. Since

m =
µ2/σ

2
2∑

µj/σ2
j

− 1/σ2
2∑

1/σ2
j

=
1

σ2
2(
∑
µj/σ2

j )(
∑

1/σ2
j )

(
η1

σ2
1

+
−η2

σ2
3

+
−η2 − η3

σ2
4

)
(4.36)

m can be positive, negative or zero. Also,

n =
µ3/σ

2
3∑

µj/σ2
j

− 1/σ2
3∑

1/σ2
j

=
1

σ2
3(
∑
µj/σ2

j )(
∑

1/σ2
j )

(
η1 + η2

σ2
1

+
η2

σ2
2

+
−η3

σ2
4

)
(4.37)

n can also be positive, negative or zero.
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Now the line connecting points h and k can be described as

x1 = ωh1 + lt

x2 = ωh2 +mt

x3 = ωh3 + nt

Any points on this line beyond h and in the opposite direction to k can be ob-

tained by letting −1 < t < 0. And the corresponding portfolio has mean return

µxp = µTx = (µ1, µ2, µ3, µ4)(x1, x2, x3, 1− x1 − x2 − x3)T

= µ4 − (ωh1 + lt)(η1 + η2 + η3)− (ωh2 +mt)(η2 + η3)− (ωh3 + ηt)η3 (4.38)

At point h, the corresponding portfolio has mean return

µhp = (µ1, µ2, µ3, µ4)(xh1 , x
h
2 , x

h
3 , 1− xh1 − xh2 − xh3)T

= µ4 − ωh1 (η1 + η2 + η3)− ωh2 (η2 + η3)− ωh3 (η3) (4.39)

Now, by plugging in the values of l, m and n

µhp − µxp = (η1 + η2 + η3)lt+ (η2 + η3)mt+ η3nt

= (t)
1

(
∑
µj/σ2

j )(
∑

1/σ2
j )

[ −η2

σ2
1σ

2
2

+
−η2

1 − 2η1η2 − η2
2

σ2
1σ

2
3

+
−η2

1 − η2
2 − η2

3 − 2η1η2 − 2η1η3 − 2η2η3

σ2
1σ

2
4

+
−η2

2

σ2
2σ

2
3

+
−η2

2 − 2η2η3 − η2
3

σ2
2σ

2
4

+
−η2

3

σ2
3σ

2
4

]
> 0 (4.40)

since −1 < t < 0 and the parts in the parentheses are negative. Also the

portfolio at point h has minimum variance, the portfolio at point x is inefficient.

This shows the result.
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Remark 2: ~hk can not hit surface p3

Now we know that only the points on the line connecting points h and k and be-

tween h and k or passing k are efficient. We need to find the point c where this

line hits the surface of the tetrahedron. Notice that l < 0, i.e. when the points

from h to k and passing k, the value of x1 can only be smaller. As in Fig 4.7, we

want to show that the line ~hk can only hit the surface of x1 = 0 and the line is

contained in the tetrahedron with verticies h(ωh1 , ω
h
2 , ω

h
3 ), a(0, 1, 0), b(0, 0, 1) and

o(0, 0, 0).

Figure 4.7

The direction vector of the line ~ho is {−ωh1 ,−ωh2 ,−ωh3}. The plane through three
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points h, a and o is defined by the following equation∣∣∣∣∣∣∣∣
x1 x2 x3

ωh1 ωh2 ωh3

0 1 0

∣∣∣∣∣∣∣∣ = 0 (4.41)

where (x1, x2, x3) is any point on this plane. We can have x1(−ωh3 ) + x3(ωh1 ) = 0.

Let the four surfaces of the tetrahedron be p1, p2, p3, p4. p1 is the plane where

x1 = 0, p2 is the plane where x2 = 0, p3 is the plane where x3 = 0 and p4 is the

plane through points (1, 0, 0), (0, 1, 0), (0, 0, 1). The normal vector of plane p1 is

{A,B,C} = {−ωh3 , 0, ωh1}. Let point c be where the line ~hk hits the plane p1. Let

point c′ be such that it is on the plane p1 and the line connecting points h and

c′ is vertical to plane p1. Point c′′ is the intersection of line connecting points c

and c′ and the line connecting points a and o. As shown in Fig 4.8, the angle

between ~hc′ and ~hc is α1 and the angle between ~hc′ and ~hc′′ is α2.

Figure 4.8
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The coordinate of point c′ is (0, ωh2 , ω
h
3 ), the coordinate of point c is defined as

(0, ωc2, ω
c
3). To get the coordinate of point c′′, notice that c′′ is where the line of

axis x2 crossing the plane through points h, c′, k. The equation for this plane is∣∣∣∣∣∣∣∣
x1 x2 − ωh2 x3 − ωh3
ωh1 0 0

ωk1 ωk2 − ωh2 ωk3 − ωh3

∣∣∣∣∣∣∣∣ = 0 (4.42)

Plugging in the line of axis x2 which is x1 = 0, x3 = 0, we have

x2 = ωh2 −
ωh3 (ωk2 − ωh2 )

(ωk3 − ωh3 )
. (4.43)

And the coordinate of c′′ can be defined. The direction vector of ~hc′′ is

{l2,m2, n2} = {−ωh1 ,−ωh3 mn ,−ω
h
3}.

Assume that ~hk hits the plane p3 at point c and c is not on the intersection line

of plane p1 and p3. The following three conditions must be satisfied.

(C1) 0 < α2 < α1 < 90

(C2) ωc3 = 0

(C3) For the direction vector {l,m, n} of line ~hk or ~hc , we have n < 0 because

n = 0− ωh3 and ωh3 > 0

If we can find a conflict among these conditions, we can prove that line ~hk can

not hit plane p3. For angle α1,

cos(α1) =
|l1l +m1m+ n1n|√

l21 +m2
1 + n2

1

√
l2 +m2 + n2

=
l√

l2 +m2 + n2
(4.44)

or

1

cos2(α1)
= 1 +

m2 + n2

l2
(4.45)
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The same, for angle α2,

cos(α2) =
ωh1√

(ωh1 )2 + m2+n2

n2 (ωh3 )2

(4.46)

or

1

cos2(α2)
= 1 +

m2 + n2

n2

(
ωh3
ωh1

)2

(4.47)

From condition (C1), we have cos(α2) > cos(α1) or

1

cos2(α2)
<

1

cos2(α1)

or

n2

l2
>

(
ωh3
ωh1

)2

(4.48)

Now let Q ≡
∑
µj/σ

2
j , R ≡

∑
1/σ2

j where j = 1, 2, 3, 4, we have

l = ωk1 − ωh1 =
1

σ2
1

(µ1/Q− 1/R) (4.49)

m = ωk2 − ωh2 =
1

σ2
2

(µ2/Q− 1/R) (4.50)

n = ωk3 − ωh3 =
1

σ2
3

(µ3/Q− 1/R) (4.51)

We have proved that l < 0, thus Rµ1 −Q < 0.

From condition (C3), n < 0, thus Rµ3 −Q < 0.

Also

n2

l2
=
σ4

1

σ4
3

(Rµ3 −Q)2

(Rµ1 −Q)2
(4.52)

and

(ωh3 )2

(ωh1 )2
=
σ4

1

σ4
3

(4.53)
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Plugging in (4.52) and (4.53) to (4.48), we have (Rµ3 − Q)2 > (Rµ1 − Q)2. Since

Rµ1 −Q < 0 and Rµ3 −Q < 0, we have Rµ3 −Q < Rµ1 −Q, or µ3 < µ1. There is

a conflict. Thus, the three conditions can not be satisfied. i.e. the line ~hk does

not hit plane p3 except the intersection line of plane p1 and p3.

Similarly, we can show that ~hk can not hit plane p2 except the intersection line

of plane p1 and p2. In summary, the line ~hk always hits the surface p1.

Remark 3: ~hk can not hit surface p4

Now we want to show that the efficient line can not hit surface p4. Assume that

it hits surface p4 at point c as shown in Figure 4.9.
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Figure 4.9

If c is on the surface, the following equations are satisfied.

xc1 + xc2 + xc3 = 1 (4.54)

i.e.

xc4 = 0 (4.55)

For the portfolio at point c, the weight of asset 4 is zero. Let point c′ be the

projection of c on plane p1. There is a point f on the line ~cc′, and the distance
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between f and c is ε. Point f is inside the tetrahedron and it is between c and

c′. Thus, 0 < ε < xc1.

The mean of the portfolio at point c is given by

µcp = [xc1 x
c
2 x

c
3]


µ1

µ2

µ3


= xc1µ1 + xc2µ2 + xc2µ2 (4.56)

And the variance of the portfolio can be obtained by

(σcp)
2 = [xc1 x

c
2 x

c
3]


σ2

1 0 0

0 σ2
2 0

0 0 σ2
3



xc1

xc2

xc3


= (xc1)2σ2

1 + (xc2)2σ2
2 + (xc3)2σ2

3 (4.57)

The coordinate of point f can be defined as
xf1 = xc1 − ε
xf2 = xc2

xf3 = xc3

xf4 = ε

(4.58)

Comparing the mean of the portfolio return at point f with that at point c we
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have

µfp = [xf1 , x
f
2 , x

f
3 , x

f
4 ]


µ1

µ2

µ3

µ4



= [xc1 − ε, x
f
2 , x

f
3 , ε]


µ1

µ2

µ3

µ4


= xc1µ1 + xc2µ2 + xc2µ2 + (µ4 − µ1)ε

= µcp + (µ4 − µ1)ε

> µcp (4.59)

Looking at the variance of portfolio at point f we have

(σfp )2 = [xf1 x
f
2 x

f
3 x

f
4 ]


σ2

1 0 0 0

0 σ2
2 0 0

0 0 σ2
3 0

0 0 0 σ2
3




xf1

xf2

xf3

xf4


= (σcp)

2 + (σ2
1 + σ2

4)ε− 2xc1εσ
2
1 (4.60)

Considering the part of equation (4.60), ∆ = (σ2
1 + σ2

4)ε − 2xc1εσ
2
1. The question

is that find ε such that

(σ2
1 + σ2

4)ε− 2xc1εσ
2
1 < 0 (4.61)

or

ε < xc1
2σ2

1

σ2
1 + σ2

4

(4.62)
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As σ2
1 < σ2

4, from equation (4.62) is, we have 0 < ε < xc1. It exists such a ε that

the portfolio at point f has higher mean return and lower variance than the

portfolio at point c. Portfolio at c is not efficient which is a conflict. Thus, the

efficient line ~hk can not hit plane p4.

Remark 4

Since we have shown that, the line ~hk always hits the plane p1 where ω1 = 0,

the problem is reduced to a three-asset problem. i.e. there are ω2, ω3, ω4 in

the efficient portfolio. As in Figure 4.10, the efficient line hits axis x3 at point

g and goes to the maximum return portfolio o through the axis. To obtain

the coordinate of point c, notice that it is on the line ~hk with direction vector

{l,m, n}, thus

ωc1 − ωh1
l

=
ωc2 − ωh2
m

=
ωc3 − ωh3

n
= t (4.63)

Plugging in ωc1 = 0, we have t = −ωh1/l, and

ωc2 = tm+ ωh2 = ωh2 − ωh1
m

l
(4.64)

ωc3 = tn+ ωh3 = ωh3 − ωh1
n

l
(4.65)

On the plane p3, by dropping off asset 1, the problem is reduced to a three asset

problem which is discussed in previous section. The efficient line goes to point

g from c. The point g is on the axis x3 and the coordinate can be obtained by

ωg1 = 0 , ωg2 = 0,

ωg3 =
σ2

4(µ3 − µ2)

(µ3 − µ2)σ2
4 + (µ4 − µ2)σ2

3
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and ωg4 = 1− ωg3

Figure 4.10
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Figure 4.11

4.3.2 Efficient Frontier

We now consider the means and variances of the four important portfolios

in the four assets problem, given by the points h,c,g and m in Figure 4.12.
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Figure 4.12

After some straightforward but tedious algebra in Appendix(4.6.5), we can

derive explicit expressions for the portfolio means and variances.

1, For the minimum variance portfolio at point h, the expression are

given by

µhp =
µ1σ

2
2σ

2
3σ

2
4 + µ2σ

2
1σ

2
3σ

2
4 + µ3σ

2
1σ

2
2σ

2
4 + µ4σ

2
1σ

2
2σ

2
3

D
(4.66)

(σhp )2 =
1

R
=
σ2

1σ
2
2σ

2
3σ

2
4

D
(4.67)

where

D ≡ σ2
2σ

2
3σ

2
4 + σ2

1σ
2
3σ

2
4 + σ2

1σ
2
2σ

2
4 + σ2

1σ
2
2σ

2
3 (4.68)
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2, For the first corner portfolio at point c where the efficient line hits plane p1,

the expression are given by

µcp =
1

E

[
µ1(

µ2 − µ1

σ2
2

) + µ3(
µ3 − µ1

σ2
3

) + µ4(
µ4 − µ1

σ2
4

)

]
(4.69)

(σcp)
2 =

1

E2

[
(µ2 − µ1)2

σ2
2

+
(µ3 − µ1)2

σ2
3

+
(µ4 − µ1)2

σ2
4

]
(4.70)

where

E ≡ µ2 − µ1

σ2
2

+
µ3 − µ1

σ2
3

+
µ4 − µ1

σ2
4

(4.71)

Notice that the relationship between the portfolio mean and the portfolio

volatility

µcp = (σcp)
2E + µ1 (4.72)

Further, since

∂µcp
∂σcp

= 2σcpE (4.73)

We know that the frontier is differentiable at the corner portfolio c.

3, For the second corner portfolio at point g where the efficient line hits

the plan p2, the expression are given by

µgp =
1

F

[
µ3σ

2
4(µ3 − µ2) + µ4σ

2
3(µ4 − µ2)

]
(4.74)

(σgp)
2 =

σ2
3σ

2
4

F 2

[
σ2

4(µ3 − µ2)2 + σ2
3(µ4 − µ2)2

]
(4.75)
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where

F = σ2
4(µ3 − µ2) + σ2

3(µ4 − µ2) (4.76)

The relationship between the portfolio mean and volatility is given by

µgp =
(σgp)

2F

σ2
3σ

2
4

+ µ2 (4.77)

Further, since

∂(µp)

∂(σgp)
= 2

σgpF

σ2
3σ

2
4

(4.78)

We have that the frontier is differentiable at the corner portfolio g.

4, Finally for the maximum return portfolio at point m, the result is

straightforward and we have

µmp = µ4 (4.79)

σmp = σ4 (4.80)

With the same approach as for the three asset problem, we can prove that in

the mean variance space, there is no kink at the corner points c and g, i.e. the

mean variance frontier is continuous.
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4.4 Experimental Results

4.4.1 Experiment

Data

The data used for this study are four stock prices including SPX Index, IBM,

RIMM and Ford. The data are daily stock prices from August 18, 2004 to

August 31, 2012. The prices are fixed to 260 days for one year. The daily stock

prices are used to obtain rolling annual return from August 17, 2005 to August

31, 2012. Based on the rolling annual return, we calculate and rank the mean

and volatility for the four assets as followings

µ σ

SPX Index 0.0356 0.1917

IBM 0.1362 0.1955

RIMM 0.1745 0.8109

Ford 0.2422 1.1260

Table 4.1

Experiment and Results

From this study, the portfolio at four important points h, c, g and m are cal-

culated. The weights of the corner portfolios are calculated by the analytical

solution and the results are
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w1 w2 w3 w4

h 0.4887 0.4699 0.0273 0.0142

c 0 0.8755 0.0703 0.0542

g 0 0 0.4106 0.5894

m 0 0 0 1

Table 4.2

At the same time, we use the numerical approach to solve the problem (4.104).

By increasing the value of given portfolio return µp and solve the quadratic

problem, we can also obtain the weights for the corner portfolios as follows
w1 w2 w3 w4

h 0.4881 0.4710 0.0271 0.0137

c 0 0.8636 0.0749 0.0615

g 0 0 0.3931 0.6069

m 0 0 0.0091 0.9909

Table 4.3

We can see that the results match well. Then we can solve the curve equation

which fits the four points and can obtain any point on the curve. The result

should also match the numerical solution.

4.4.2 Monte Carlo Simulation

In previous section, we test the result on the example of four assets. However,

only doing the experiment based on one dataset is not enough. Thus we use

Monte Carlo method to repeat the experiment for more simulated dataset. We

assume the return of assets falls into the interval (0, 2) and the volatility are
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in the interval (0, 3).

Firstly, we randomly generate four asset returns with the rank of from

small to large and four volatilities as well. We combine the return and volatil-

ity in the same order to create four assets. Then we use both the numerical

method and the analytical method in this study to calculate the mean and

variance of the four important portfolios . The difference between the portfolio

variance are recorded. Repeat this process 500 times, then taking the average

of the difference we get the results in Table 4.4 as followings. We can see that

the results match well.
h c g m

Average Difference 1.2228e-06 2.1430e-04 2.9391e-06 -0.0015

Table 4.4

4.5 Conclusion

In this study, we re-examine the mean variance portfolio optimization prob-

lem in Markowitz (2005). We examine the problem in a general case without

specifying values for the means and variances. Furthermore, we extend the

problem to four assets where the weights can be described in three dimension

space. We find the analytical solution of four important portfolios including

the minimum variance portfolio h, the maximum return portfolio m and two

corner portfolios c and g. With tedious algebra, we show that, in the weight
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space, the efficient line starts from the point of minimum variance inside the

tetrahedron and always hits the plane where the lowest return asset is equal

to zero. Then the efficient line would hit the plane where the second lowest

return is equal to zero. This leads to the result that with the increase of the

given expected portfolio return, the efficient portfolio always drops off the asset

with a lower return first. By mapping the efficient portfolio from weight space

to mean variance space, we prove that there is no kink at the corner points in

mean variance space i.e. the efficient frontier is continuous. We test the solu-

tion on the example of four assets with eight years daily stock prices. Monte

Carlo simulation method is also used in this study to test wider dataset and the

results match well. This research may help us to develop a deeper understand-

ing of the efficient portfolio. The analysis in weight space may also be extended

to deal with more constraints on the portfolio weights in future research.

4.6 Appendix

4.6.1 Minimum Variance Portfolio

The question is

min
ω

1

2
ω′Ωω (4.81)

subject to

I ′ω = 1 where I ′ = [1, 1, ...] (4.82)

ωj ≥ 0 for all j (4.83)
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Now we have

L =
1

2
ω′Ωω − θ(I ′ω − 1) (4.84)

∂L

∂ω
= Ωω − θI = 0 (4.85)

∂L

∂θ
= ω′I − 1 = 0 (4.86)

from (4.85)

ω = θΩ−1I (4.87)

from (4.86)

ω′I = 1 (4.88)

using (4.88) in (4.87)

1 = ω′I = θI ′Ω−1I (4.89)

or

θ =
1

I ′Ω−1I
(4.90)

plug (4.90) into (4.87)

ω =
Ω−1I

I ′Ω−1I
(4.91)

since

Ω =

(
σ2
1 0 0

0 σ2
2 0

0 0 σ2
3

)
(4.92)
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and

Ω−1 =

(
1/σ2

1 0 0

0 1/σ2
2 0

0 0 1/σ2
3

)
(4.93)

plug Ω−1 into (4.91), we have

ω =

(
1/σ2

1

1/σ2
2

1/σ2
3

)
1∑
1/σ2

j

(4.94)

that is, the minimize variance portfolio has assets weights

ωj =
1/σ2

j∑
1/σ2

j

(4.95)

4.6.2 Efficient Portfolio with Given Expected Return

The problem is to minimize the portfolio variance based on the given expected

portfolio return and budget constraints. Now the problem is

min

{
1

2
ωTΩω

}
(4.96)

s.t. ATω = B (4.97)

where ω is the weight of n assets in portfolio. µ =


µ1

...

µn

 is the return of n

assets. I =


1

...

1

, A =
[
µ I

]
and B =

[
µp

1

]
where µp is the given portfolio

return. So the constraints can also be written as µTω = µp and ITω = 1.

This Mean-Variance problem has only equality constraints and can be
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solved analytically. Let the Lagrange be

L =
1

2
ωTΩω + θT (B − ATω) (4.98)

The first order conditions are

Ωω − Aθ = 0 (4.99)

ATω = B (4.100)

And the solution is

ω = Ω−1Aθ (4.101)

θ = (ATΩ−1A)−1B (4.102)

In this study, to simplify the question, we assume that there is no correla-

tion between different asset. Thus by applying equation (4.101), the portfolio

weights at point k is given by

ωhi =
µj/σ

2
j∑4

i=1 µi/σ
2
i

(4.103)

Note that with the change of the given expected portfolio return µp, the solution

moves along the efficient line. And the corresponding portfolio mean and vari-

ance also moves along the efficient frontier. If we add inequality constraints

to the (4.97) such as the no short selling constraints ωi ≥ 0, the problem is

described as

min

{
1

2
ωTΩω

}
(4.104)

s.t. ATω = B

ωi ≥ 0
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There will be no analytical solution to the equation (4.104) and the numerical

methods have to be used to solve the quadratic problem.

4.6.3 Efficient Portfolio Area Beneath Point c

Points beneath c on the vertical axis are efficient. Figure 4.4. Suppose x2 =

ωc2 − ε where 0 < ε < 1. The portfolio return at point x is

µxp = µ3 − η2(ωc2 − ε) (4.105)

and

µcp − µxp = −η3ε < 0 (4.106)

Thus, x is an efficient point.

4.6.4 Explicit Expressions for the Portfolio Mean and

Variance in Three Asset Problem

1, The minimum variance portfolio h. Since we have ωhi =
1/σ2

i∑
1/σ2

j
, we have

µhp = ( µh1 µh2 µh3 )

(
ωh
1

ωh
2

ωh
3

)
= µ1

1/σ2
1∑

1/σ2
j

+ µ2
1/σ2

2∑
1/σ2

j

+ µ3
1/σ2

3∑
1/σ2

j

=
µ1σ

2
2σ

2
3 + µ2σ

2
1σ

2
2 + µ3σ

2
1σ

2
2

B
(4.107)

where

B = σ2
2σ

2
3 + σ2

1σ
2
2 + σ2

1σ
2
3 (4.108)
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Also, the portfolio variance is

(σhp )2 = ( ωh
1 ωh

2 ωh
3 )

(
σ2
1 0 0

0 σ2
2 0

0 0 σ2
3

)(
ωh
1

ωh
2

ωh
3

)
= (ωh1 )2σ2

1 + (ωh2 )2σ2
2 + (ωh3 )2σ2

3

=
1/σ2

1∑
1/σ2

j

+
1/σ2

2∑
1/σ2

j

+
1/σ2

3∑
1/σ2

j

=
1

σ2
j

=
σ2

1σ
2
2σ

2
3

B
(4.109)

2, The corner portfolio c. We have

ωc1 = 0 (4.110)

ωc2 = ωh2 − sωh1

=
1/σ2

2∑
1/σ2

j

−
(

η2σ
2
1 − η1σ

2
3

η1σ2
3 + (η1 + η2)σ2

2

)(
1/σ2

1∑
1/σ2

j

)
=

(µ2 − µ1)σ2
3

(µ2 − µ1)σ2
3 + (µ3 − µ1)σ2

2

(4.111)

ωc3 = 1− ωc1 − ωc2 =
(µ3 − µ1)σ2

2

(µ2 − µ1)σ2
3 + (µ3 − µ1)σ2

2

(4.112)

thus,

µcp = ( µc1 µc2 µc3 )

(
ωc
1
ωc
2
ωc
3

)
=

µ2(µ2 − µ1)σ2
3 + µ3(µ3 − µ1)σ2

2

A
(4.113)

where

A = (µ2 − µ1)σ2
3 + (µ3 − µ1)σ2

2 (4.114)
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and the portfolio variance is

(σcp)
2 = (ωc1)2σ2

1 + (ωc2)2σ2
2 + (ωc3)2σ2

3

=
σ2

2σ
2
3

A2

(
σ2

3(µ2 − µ1)2 + σ2
2(µ3 − µ1)2

)
=

σ2
2σ

2
3

A2

(
σ2

3(µ2 − µ1)µ2 + σ2
2(µ3 − µ1)µ3 − µ1A

)
=

σ2
2σ

2
3

A2
(Aµcp − Aµ1)

=
σ2

2σ
2
3

A
(µcp − µ1) (4.115)

3, For the maximum return portfolio m,

µmp = µ3 (4.116)

(σmp )2 = σ2
3 (4.117)

4.6.5 Explicit Expressions for the Portfolio Mean and

Variance in Four Asset Problem

1, For the minimum variance portfolio at point h, the weights for the four as-

sets are given by ωhi =
1/σ2

i

R
where R ≡

∑4
i=1 1/σ2

i and the portfolio mean and
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variance can be calculated as

µhp =
[
µ1 µ2 µ3 µ4

]

ωh1

ωh2

ωh3

ωh4


=

µ1
1
σ2
1

+ µ2
1
σ2
2

+ µ3
1
σ2
3

+ µ4
1
σ2
4

R

=
µ1σ

2
2σ

2
3σ

2
4 + µ2σ

2
1σ

2
3σ

2
4 + µ3σ

2
1σ

2
2σ

2
4 + µ4σ

2
1σ

2
2σ

2
3

D
(4.118)

(σhp )2 =
[
ωh1 ω

h
2 ω

h
3 ω

h
4

]

σ2

1 0 0 0

0 σ2
2 0 0

0 0 σ2
3 0

0 0 0 σ2
4




ωh1

ωh2

ωh3

ωh4


= (ωh1 )2σ2

1 + (ωh2 )2σ2
2 + (ωh3 )2σ2

3 + (ωh4 )2σ2
4

=
1

R
=
σ2

1σ
2
2σ

2
3σ

2
4

D
(4.119)

where

D ≡ σ2
2σ

2
3σ

2
4 + σ2

1σ
2
3σ

2
4 + σ2

1σ
2
2σ

2
4 + σ2

1σ
2
2σ

2
3 (4.120)

2, For the first corner portfolio at point c where the efficient line hits plane p1.

The efficient line
−→
hk has equation

x1 − ωh1
l

=
x2 − ωh2
m

=
x3 − ωh3

n
= t (4.121)

where l,m, n has been defined in previous section. Since the corner portfolio

c is at where the efficient line hits plane p1 where ωc1 = 0. Plug in this to the

equation (4.121), we have

t = −ω
h
1

l
=

ωh1
ωh1 − ωk1

=
Q

Q−Rµ1

(4.122)
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then we have

ωc2 ≡ xc2 = tm+ ωh2 =
µ2 − µ1

σ2
2(Q−Rµ1)

(4.123)

ωc3 ≡ xc3 = tn+ ωh3 =
µ3 − µ1

σ2
3(Q−Rµ1)

(4.124)

ωc4 ≡ xc4 = 1− xc2 − xc3 =
(µ2 − µ1)/σ2

2

E
(4.125)

the portfolio mean and variance can be calculated as

µcp = µ2ω
c
2 + µ3ω

c
3 + µ4ω

c
4

=
1

E

[
µ2(

µ2 − µ1

σ2
2

) + µ3(
µ3 − µ1

σ2
3

) + µ4(
µ4 − µ1

σ2
4

)

]
(4.126)

(σcp)
2 = (ωc2)2σ2

2 + (ωc3)2σ2
3 + (ωc4)2σ2

4

=
1

E2

[
(µ2 − µ1)2

σ2
2

+
(µ3 − µ1)2

σ2
3

+
(µ4 − µ1)2

σ2
4

]
(4.127)

where

E ≡ µ2 − µ1

σ2
2

+
µ3 − µ1

σ2
3

+
µ4 − µ1

σ2
4

(4.128)

From the expression of the portfolio variance, we know

(σcp)
2 =

1

E2
[
µ2(µ2 − µ1)

σ2
2

+
µ3(µ3 − µ1)

σ2
3

+
µ4(µ4 − µ1)

σ2
4

−µ1

(
(µ2 − µ1)

σ2
2

+
(µ3 − µ1)

σ2
3

+
(µ4 − µ1)

σ2
4

)
]

=
1

E
(µcp − µ1) (4.129)

then we have

µcp = (σcp)
2E + µ1 (4.130)
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Further, since

∂µcp
∂σcp

= 2σcpE (4.131)

We know that the frontier is differentiable at the corner portfolio c.

3, For the first corner portfolio at point g where the efficient line hits

plane p2. Since we have proved that ωg1 = 0 and ωg2 = 0 and the question has

been reduced to three asset problem. From the results in section 4.3.1, we

have ωg3 = (σ2
4(µ3 − µ2))/F and ωg4 = 1− ωg3 and the portfolio mean and variance

are calculated as

µgp =
1

F

[
µ3σ

2
4(µ3 − µ2) + µ4σ

2
3(µ4 − µ2)

]
(4.132)

(σgp)
2 =

σ2
3σ

2
4

F 2

[
σ2

4(µ3 − µ2)2 + σ2
3(µ4 − µ2)2

]
(4.133)

where

F = σ2
4(µ3 − µ2) + σ2

3(µ4 − µ2) (4.134)

The relationship between the portfolio mean and volatility is given by

(σgp)
2 =

σ2
3σ

2
4

F 2

[
σ2

4µ3(µ3 − µ2) + σ2
3µ4(µ4 − µ2) + µ2

σ2
4(µ2 − µ3) + σ2

3(µ2 − µ4)

A

]
=

σ2
3σ

2
4

F 2
(µgp − µ2) (4.135)

i.e

µgp = µ2 +
(σgp)

2F

σ2
3σ

g
p

(4.136)
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Further, since

∂(µp)

∂(σgp)
= 2

σgpF

σ2
3σ

2
4

(4.137)

We have that the frontier is differentiable at the corner portfolio g.
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