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ABSTRACT 

This thesis presents the design of two-dimensional axis magnetic lavitation  

control system. An object should be able to levitate purely with magnetics fields. 

In order to produce a stable output  and allwo  movement of the levitated object 

between two solenoids around, a two-dimensional classical feedback control may 

be utilized.   

This is accomplished by developingstate space equations to model one- and two-

dimensional magnetic lavitation. Since the system is nonlinear and open-loop 

unstable, it should be linearized around a set point.The stability is analyzed around 

possible equilibrium point in the sense of the qualitative behavior of the system 

and Lyapunov stability.  

A control startagy is developed for levitating the object purely in the vertical 

components with magnetic fields and allows movement in the horizontal 

components between two solenoids around a two-dimensional space. Negative 

feedback and lead compensators based on the linearized model of the two 

dimensional magnetic levitation system are designed to stablize the system. 

MATLAB is used in designing and simulating the system.  
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 ملخص الدراسة

 ًعي قادس ينىُ أُجسٌ ٍعذّي يجة  .الأتعاد ثْائيّظاً تحنٌ ٍغْاطيسي  تصَيٌ الأطشوحح هزٓ قذًت

حتً ينىُ اىْظاً ٍستقش و يستطيع اىجسٌ اىَعذّي و هى ٍعيق  .اىَغْاطيسيحفقط تاىقىج  اىهىاء في قيحياىت

تيِ ٍغْاطيسييِ, يَنِ استخذاً  ّظاً اىتحنٌ   الأتعاد ثْائيفي اىهىاء أُ يتحشك في ٍجاه ٍغْاطيسي 

 اىنلاسيني رو اىتغزيح اىشاجعح.

. و حيث الأتعاد ثْائيو  الأتعاديتٌ رىل عِ طشيق إيجاد اىَعادلاخ اىتفاضييح ىْظاً تعييق ٍغْاطيسي أحادي 

خطً عْذ ّقطح تشغيو  إىًأُ اىْظاً غيش خطً و غيش ٍستقش و ٍِ دوُ تغزيح ساجعح فتٌ تقشية اىْظاً 

عِ طشيق دساسح اىسيىك اىْىعي ىيْظاً  و  ٍَنْح تىاصُ ّقطحاىْظاً عْذ  ساختياسيح. ىقذ تٌ تحييو استقشا

 تاستخذاً داىح ىيثاّىف.

يث يستطيع اىجسٌ اىَعذّي و هى ٍعيق في اىهىاء اُ يتحشك في ٍجاه ٍغْاطيسي تح إستشاتيجيح تطىيش تٌ

ٍستقش, تٌ استخذاً اىتغزيح  الأتعاد ثْائيىجعو ّظاً اىتعييق اىَغْاطيسي  تيِ ٍغْاطيسييِ.  الأتعاد ثْائي

 اىَاتلاب.(. ىَحاماج اىْظاً تٌ استخذاً تشّاٍج lead compensatorsاىشاجعح اىساىثح و اىَتحنٌ)
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1. Chapter 1: Introduction 

1.1.  Introduction 

The easiest way to levitate an object electromagnetically (from a control perspective) is via 

magnetic suspension. The object that is to be levitated is placed below an electromagnet 

(only one is required), and the strength of the magnetic field produced by the electromagnet 

is controlled to exactly cancel out the downward force on the object caused by its weight. 

This method circumvents Earnshaw's theorem by making use of feedback [1]. 

Thus, the system only has to contend with one force, the levitating object's weight. This 

system works via the force of attraction between the electromagnet and the object. Because 

of this, the levitating object does not need to be a magnet. It can be any ferrous material. This 

further simplifies the design consideration.  

To prevent the object from immediately attaching itself to the electromagnet, the object's 

position has to be sensed and this information fed back into the control circuit regulating the 

current in the electromagnet. This produces the basic feedback arrangement depicted below 

in figure (1-1) 

 

Figure 1-1: The basic control arrangement of a magnetic levitation system. 

If the object gets too close to the electromagnet, the current in the electromagnet must be 

reduced. If the object gets too far, the current to the electromagnet must be increased. A 

possible physical arrangement is shown below in figure (1-2).  Controller 
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Figure 1-2: The physical model of a magnetic levitation system. 

1.2.  Motivation and Objectives 

The control of magnetic levitation technology is on the rise and the technology has been 

utilized in space, automotive, and train industries. Controlling the magnetic ball vertically is 

a simple task; however, controlling it in two-dimensions is not quite that simple but a 

challenging task. Using classical control techniques may not do the job; thus, there is a need 

to utilize nonlinear control for the design and analysis of the magnetic ball problem.   

       The main objectives of this research are: 

1. Develop the state equations of one-dimensional magnetic lavitation system. 

2. Develop the state equations for the vertical components and the horizontal 

components; the two-dimensional magnetic lavitation system. 

3.  Analyze the stability of a possible equilibrium point in the open-loop in the sense of 

the qualitative behavior of the system and Lyapunov stability .  

4. Develop a control startagy for levitating the object purely in the vertical components 

with magnetic fields, and allow movement in the horizontal components between two 

solenoids around an two-dimensional space 

5. Design a lead compensators based on the linearized model of the two-dimensional 

magnetic levitation system to stablize the system. 
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6. Simulate the system using MATLAB and implement a modular cell of the the two- 

dimensional levitator. 

1.3.  Statement of problem 

The two-dimensional levitator could be built with two solenoids; unfortunately, the equations for 

the one-dimensional levitator do not readily apply to the horizontal balancing that needs to 

happen in the two-dimensional levitator. We have to develop the mathematical model for the 

horizontal components. However the system is nonlinear and unstable; therefore, it should be 

linearized at a set point and analyze its stability. The forces that act on the horizontal and vertical 

axes are related and sometimes coupled which make it harder to model. Therefore, obtaining a 

two-dimensional model for the magnetic levitation and analyzing the stability in the sense of 

Lyapunov is still a complex problem; moreover, controlling the ball to move according to a 

reference signal horizontally and vertically is challenging.  

1.4 . Literature Review 

 W. Barie and J. Chiasson (2001) [1], described and verifiedthe design and the possibility 

of implementing one dimensional magnetic levitation system using phase lead 

compensation technique. The theoretical background of the magnetic levitation was 

studied from mathematical perspective that led to deriving the model of the main system 

and the associated controller. The design was carried out using MATLAB, following 

Root Locus method, with a primary target of levitating a steel ball of 21.6 g at a distance 

of 1 cm below the coil tip. The system was practically implemented and tested with 

actual mass. It was observed that the system has achieved the goal by levitating the object 

at predetermined distance. Moreover, it was been tested for several other masses and the 

system was capable of levitating all of them which makes it a robust system. 

 Gerardus (2012) [2], modelled the dynamics of n-dimensional levitation system for a 

particular system with certain dimensions so that the developed model cannot be 

generalized. The transfer function is developed for a system with characteristic length. 

The stability in the sense of lead copmensator was analyzed. 

 Charara(2008) [3], designed a one dimensional magnetic levitation controllers using 

Jacobian linearization, feedback linearization and sliding mode control. A controller 

based on the Jacobian linearization about a nominal operating point was designed, despite 

the fact that magnetic levitation system was described by nonlinear differential equations. 

Through the use of feedback linearization, the author transformed the system dynamics 

from complicated nonlinear ones to more simple linear dynamics to be controlled through 

the use of linear state feedback. This method has advantage over Jacobian linearization 

by allowing the control of a simple linear plant without neglecting the nonlinear dynamic 

of the system. The feedback linearization version was extremely sensitive to parameter 

variation. Thus, paper used a sliding mode controller to produce robust feedback system. 

 Katon, and Kidance (2010) [4], developed a nonlinear robust controller for the magnetic 

levitation system based on Nakamura's inverse optimal controller is developed. First, a 
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controller which compensate for gravity by feedforward input is proposed and its 

effectives by the experiment confirmed. However, the controller lacks robustness, thus an 

improved controller via adaptive control technique to recover robustness is developed. 

 Al-Muthairi and Zribi (2008) [5], proposed a sliding mode control schemes of the static 

and dynamic types are proposed for the control of a magnetic levitation system. The 

proposed controllers guarantee the asymptotic regulation of the states of the system to 

their desired values. Simulation results of the proposed controllers were given to illustrate 

the effectiveness of them. Robustness of the control schemes to changes in the parameters 

of the system was also investigated. 

1.5  Methodology 

In order to model and control a one- and two-dimensional magnetic levitation, the following 

steps are followed: 

1. Developingstate space equations to model one- and two-dimensional magnetic 

lavitation. 

2. Linearizing the system linearized around a set point. 

3. Analyzing the stability using: 

i. The qualitative behavior of the system.  

ii. Lyapunov stability. 

4. Controlling the system using: 

i. A lead compensators based on the linearized model. 

ii. Simulation the controlled system using MATLAB. 

1.6  Contribution 

This thesis presents a general mathematical model for the 2-dimmensional axis maglev system. 

The thesis also presents a control strategy using lead control. Finally, the thesis performs a 

stability analysis on the developed 2-dimensional maglev system. 

1.7 Outlines of Thesis 

This thesis is broken into several different themes: 

Chapter two: In this chapter we develop the theory behind one-dimensional and 2-dimensional 

levitation. We will derive the state equations for one-dimensional and 2-dimensional levitation. 

Chapter three: In this chapter we study mainly the stability of the equilibrium point in the sense 

of Lyapunov. Before we discuss the lyapunov stability for the two dimensional levitation system, 
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we will look at the qualitative behavior of the system at an equilibrium point, the eigenvalue and 

type of the equilibrium point 

Chapter four: In this chapter we develop the theory of a control algorithm for levitating the 

object purely with magnetic fields, and allow movement between two solenoids around an two 

dimensional space. Compensate the systems, and develop feedback diagrams to represent, the 

closed loop systems. Simulation of the two Dimensional Levitation System using SIMULINK 

Chapter five: Conclusion and future work 
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Chapter 2: Modelling of Magnetic Levitation 

2.1.  Introduction 
In this section, we develop the theory behind one -dimensional and 2-dimensional levitation.  

We will derive the state equations, we begin with the theory of levitation in one dimension, 

then follow on with the 2-dimensional. 

2.2.  Nonlinear system 

Nonlinear system representation means the characterization of nonlinear systems using 

nonlinear mathematical models. In fact, nonlinear models may be considered as a tool for 

explaining the nonlinear behavior patterns in terms of a set of easily understood elements.  

In nature, most practical systems used for control are essentially nonlinear, and in many 

applications, particular in the area of chaos, it is the nonlinear rather than the linear 

characteristics that are most used. Signals found in the physical world are also far from 

conforming to linear models.  

Indeed, the complex structure of dynamic systems makes it almost impossible to use linear 

models to represent them accurately.  

Nonlinear models are designed to provide a better mathematical way to characterize the 

inherent nonlinearity in real dynamic systems, although we may not be able to consider all 

their physical properties [5]. 

 

 

Figure 2-1: One-Dimensional Levitation Basic Setup 

2.3. One Dimensional Magnetic Ball Levitation State Equation 

The basic setup of a one-dimensional magnetic levitator is detailed in Figure 2-1. The 

direction of the current through the inductor       and the direction of the position of the 

object      are marked. The motion equation is based on the balance of all forces acting on 

the Ball. We have three forces: gravity force fg, electromagnetic force fm and the 

acceleration force   . The acceleration of an object as produced by a net force is directly 
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proportional to the magnitude of the net force, in the same direction as the net force, and 

inversely proportional to the mass of the object [5].  

2.3.1 Nonlinear Dynamic Equation 

The net forces 

                                              (2.1) 

Where; 

   
    

  
                                                   (2.2) 

  = Coil constant 

Gravitational force 

                                                         (2.3) 

Accelerations force 

     
   

   
                                               (2.4) 

The simplified equation of motion for the ball is given by 

 
   

   
      (2.5) 

Substituting (2.2) in (2.5) 

m
   

   
     

    

  


   

   
    

    

   
     ̈  ̇          (2.6)  

 

While the equation for the circuit shown in figure (2.1)  is given by 

 
  

  
             

  

  
  

 

 
  

 

 
   =                (2.7) 

It is usually desirable to operate a nonlinear system about some equilibrium point. To 

find the equilibrium condition, we must have 

 ̈   ̇    
  

  
                         (2.8) 

which implies that       ̈    ̇                           

Where; 

  ̈=Ball acceleration 
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  ̇=Ball Velocity at equilibrium 

   Equilibrium position 

  =Equilibrium current 

  = Equilibrium input volt 

At Equilibrium position the accelerations 
   

   
   and

  

  
  . This means, the magnetic 

force and the gravity force are equal, therefore the object balanced at equilibrium 

position. 

Refer to equation (2.6) 

     
    

   
  

    
   

  
   

     [√
   

  
]        (2.9)                          

We will need this equation later in this section to calculate the equilibrium current at 

selected equilibrium point. 

We may assume, without loss of generally, that      , the equilibrium voltage obtain 

from  equation (2.7)  

        [√
   

  
]                                                               (2.10) 

Equations (2.9) and (2.10) tell us that in order to keep the system at given equilibrium 

position, the equilibrium current    is directly proportional to   . 

2.3.2 Linearization 

In order to obtain a linear model of the system, author used Taylor Series Expansion of 

the first two terms [5]. 

   

   
              ̇    ̇                    

We may do this if we let 

   
   

  
       

 

  
(  

   
 

   )        
     

 

   
                        (2.11) 

   
   

  ̇
       

 

  
(  

   
 

   )                                        (2.12) 

    Equilibrium velocity at equilibrium point=0 
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(  

   
 

   )         
    

   
         

     

    
     (2.13) 

   
   

  
       

 

  
(  

   

   )                                                    (2.14) 

We note that the equation for the electrical part of the system is already linear. 

Now define the following variables 

             ̇    ̇                   

 Where: 

   = Ball position 

  =Ball velocity 

  =Drive current 

  = Input voltage 

 Refer to equation (2.7) 

  ̇  
   

  
  

 

 
   

 

 
   

Thus, state-space model is: 

⌈
  ̇

  ̇

  ̇

⌉  [

   
     

   
 

 

] [

  

  

  

]  [

 
 
 

 

]      

      [   ] [

  

  

  

]                              (2.15) 

Hence, state space model of Linearized model around certain operating point      is written as: 

⌈
  ̇

  ̇

  ̇

⌉  

[
 
 
 
 

   
     

 

   
  

     
    

 

   
 

 ]
 
 
 
 

[

  

  

  

]  [

 
 
 

 

]      

      [   ] [

  

  

  

]                     (2.16) 
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[
 
 
 

   
     

 

   
  

     

    
 

   
 

 ]
 
 
 
    , B  [

 
 
 

 

] ,   [   ]   D=[ ]        (2.17) 

  

We specify the design parameters [6]. 

                                 
   

 
 

              
 

    
   

Compute the equilibrium current    at the equilibrium point           from equation (2.9)  

    [√
   

  
]     

    [√
           

           ]                       

 

The corresponding equilibrium voltage, refer to equation   (2.10) 

                                           

  

 

The resulting state space model of linearized magnetic ball levitation around (   
       ) is: 

⌈
  ̇

  ̇

  ̇

⌉  [
   

             
      

] [

  

  

  

]  [
 
 

   
]      

      [   ] [

  

  

  

] 

  [
   

             

      

]    ,     [
 
 

   
] ,   [   ] 

  [ ]                                                                           (2.18) 
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Hence, from Eq.(2.18), transfer function expression      of the linearized model is given by 

using MATLAB: 

Thus  

     
     

                     
                (2.19) 

Calculating the open loop poles of the system computed with MATLAB, we get three poles 

1. -350 (stable pole) 

2. -44.2945 (stable pole) 

3. 44.2945 (unstable pole) 

The system is unstable because it has positive pole (44.11). 

In order to determine the controllability matrix and find its rank, we use MATLAB and we 

get. 

Controllability matrix=[             ] 

Co=[
          
                  
                  

]       

 The Rank =3 = states number, therefore the system is controllable. 

2.4. Two Dimensional Magnetic Ball Levitation 

Figure 2-2 shows the basic setup for the two-dimensional levitation system. There are two 

solenoids (solinoids1, soinoids2), each of which exerts a force (   
    

) on the metallic ball. 

Each of the solenoids is run at the same or different current (           ).Although, they may 

have different inductances because of imperfect matching. The ball can levitate purely in the 

vertical components     , and in the horizontal components     , between two solenoids 

around two-dimensional space. The length of the horizontal components equals b. The two 

solenoids should be driven with the same or different voltage sources (           ). 

There are two solenoids (solinoids1, soinoids2), each of which exerts a force (   
    

) on the 

metallic ball. Each of the solenoids is run at the same or different current (           ). 

Although, they may have different inductances because of imperfect matching. The ball can 

levitate purely in the vertical components     , and in the horizontal components     , between 

two solenoids around two-dimensional space. The length of the horizontal components equals b. 

The two solenoids should be driven with the same or different voltage sources (           ). 

 

 



 

12 
 

 

Figure 2-2: Basic Setup for Two Dimensional Levitation. 

2.4.1 Vertical Component State Equation 

The forces that act on the horizontal and vertical axis are related and sometimes coupled which 

make it harder to model. Figure (2-2) and (2-3) show the total force which exerts on the ball. 

 

Figure 0-3: Forces on the Object in the two-Dimensional Case 

The total force        in the vertical direction is the sum of the vertical components of    
 

and    
. 

                                                                                      (2.20) 
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If              then our levitated object is stable at equilibrium point. 

To obtain the       , there are several possibilities: 

1. Both solenoids are driven with different currents (           ) and different voltage 

sources (           ).  

2. Both solenoids are driven with the same current                  and the same 

voltage sources                . 

The disadvantage of the first possibility is that, the order and the complexity of the system will 

increase. In order to simplify our model, the second possibility is a good candidate for our 

model. We justify this approximation by the fact that the solenoids will be as close as we can 

make them, the object will be as far away as we can allow, and the change in the angels will be 

very small compared to the change in the current and voltage passing through the 

electromagnetic. This means that the ball will be levitate in the vertical components in 

homogenous magnetic field. 

 

 

Figure 0-4: Detail analysis of the forces on the vertical and horizontal component 
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2.4.1.1 Nonlinear Dynamic Equation of the Vertical component 

Unfortunately, the equations from the one-dimensional levitator do not readily apply to the 

vertical balancing that needs to happen in the two dimensional levitator. We have to substituting 

for         in the state equation from the one dimensional levitator from section (2.3.1). 

Also, we are no longer dealing with one solenoids. Therefore, the inductances and the inductivity 

of the solenoids can be different, so we will have (       ) and (     ).  

We will try to develop our model by using the first possibility. (Both solenoids are driven with 

different currents (           ) and different voltage sources (           ). 

To simplify the model the second possibility will be used. 

Refer to equation (2.12) 

                                    

Hence, from Figure (2-4) and using the first possibility 

    
  
    

  
    

                                 (2.21) 

    
  
    

      
    

                          (2.22) 

The net forces   
in the vertical components 

   
                                         (2.23) 

Substituting (2.21) and (2.22) in (2.23) 

   
    [

  
    

  
    

             
  
    

      
    

           ]         (2.24) 

This term coupled vertical and horizontal axis and dependent on six variables. 

1. Position of the horizontal placement    

2. Position of the vertical placement    

3. The angel       as function of time 

4. The angel       as function of time 

5. The current in the first solenoid       

6. The current in the second solenoid       
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 Now we will simplify the last term by using the second possibility.(Both solenoids are driven with 

the same current                 and the same voltage source                ).When we 

assume that the placement of the solenoids are very close to each other such they produce a homogeneous 

magnetic field.  

Then (2.24) becomes:    
    [

     

  
    

             
     

      
    

           ]    (2.25)        

The ball should be levitated in the vertical component in homogenous magnetic fields, 

therefore             and excluded the horizontal component, 

Then (2.25) becomes 

   
    [

     

  
    

        
   

     

      
    

       
  ]        (2.26) 

           *
     

  
   

     

  
 +(2.27) 

The relationships between Gravitational force   and the Accelerations force    
 are obtained 

from figure (2-4). 

Gravitational force 

      (2.28) 

Accelerations force 

   
   

    

   
 (2.29) 

The simplified equation of motion for the object in the vertical components is given by 

substituting (2.28) and (2.29) in (2.27) 

 
    

   
    *

     

  
   

     

  
 +(2.30) 

Then 

    

   
    

           

   
 =   (  ̈  ̇      )              (2.31) 

Where; 

    ̈ = Ball acceleration   

    ̇ = Ball Velocity   

    = Ball position 

     = Drive current 
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Since the both solenoids should be operated with the same current the equation for the circuit 

show in figure (2.4)is given by 

                 
  

  
   

  

  
(2.32) 

             
  

  
       

       
  

  
                  


  

  
  

         

       
   

 

       
             (2.33) 

where  is the input voltage. 

At equilibrium point. We have the following condition: 

 ̈   ̇    
  

  
   (2.34) 

Which implies that   (      
̈    ̇      

)                     

Where; 

     
̈ =Ball acceleration at equilibrium = 0 

     
̇ =Ball Velocity at equilibrium = 0 

   
 =Equilibrium position 

    =Equilibrium current 

  = Equilibrium input voltage 

At Equilibrium position the accelerations 
    

   
    and 

  

  
   

Refer to equation (2.31) 

     
           

   
 

 

  
    

   

         
    

  


  

   

  √
   

         
                                           (2.35) 
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    [√
   

         
]    

                                  (2.36) 

We will need the last terms later in this section to calculate the equilibrium current at selected 

equilibrium point. 

We may assume, without loss of generally, that      , the equilibrium voltage obtain from 

equation (2.33)  

                    

                      [√(
   

       
)]    

      (2.37) 

Equations (2.36) and(2.37) tell us that in order to keep the system at given equilibrium position, 

the equilibrium current   is directly proportional to    
  

Now, we linearrized the nonlinear equation (2.26) at equilibrium point 

    

   
   (     

)    ( ̇     
̇ )                    

We may do this if we let 

   
   

   
       

 

  
(  

           

   
 )        

            
 

    
     (2.38) 

   
   

   ̇
       

 

   
(  

           

   
 )                          (2.39) 

    Equilibrium velocity at equilibrium point=0 

   
   

  
       

 

  
(  

           

   
 )         

            
     

            (2.40) 

   
   

  
       

 

  
(  

           

   
 )                                      (2.41) 

We note that the equation for the electrical part of the system is already linear. 

Define the variables 

             ̇    ̇                   

Where: 

   = Ball position 

   =Ball velocity 
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   =Drive current 

   = Input voltage 

This implies: 

  ̇   ̇        ̇  
  

  
 

Refer to equation (2.33) 

  ̇  
   

  
  

         

       
   

 

       
      

and obtain the linearized state-space model 

⌈
  ̇

  ̇

  ̇

⌉  [

   
     

   
      

       

]+[

  

  

  

] [

 
 
 

       

]        

      [   ] [

  

  

  

]                         (2.42) 

Hence, state space model of Linearized  model around certain operating point     
  is written 

as: 

⌈
  ̇

  ̇

  ̇

⌉  

[
 
 
 
 

   
            

 

    
   

            

     
 

   
      

       ]
 
 
 
 

[

  

  

  

]  [

 
 
 

       

]        

   
    [   ] [

  

  

  

]                     (2.43) 

 

  

[
 
 
 
 

   
           

 

    
   

            

     
 

   
      

       ]
 
 
 
 

    ,  [

 
 
 

       

] ,   [   ]  [ ]  

                                                                                                               (2.44) 
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We specify the design parameters [6]: 

                                              
   

 
   

                
   

 
                           

 

    
   

To compute the equilibrium current   at this equilibrium point     
         

From equation (2.36) 

    [√
   

         
]    

  

    [√
           

                           
]                     

The corresponding equilibrium voltage, refer to equation                  (2.37) 

                                               

The resulting state space model of linearized magnetic ball levitation around (   
       ) is: 

⌈
  ̇

  ̇

  ̇

⌉  [
   

             
      

] [

  

  

  

]  [
 
 
  

]      

   
    [   ] [

  

  

  

] 

  [
   

             

      

]    ,   [
 
 
  

] ,   [   ] 

  [ ]                                                                                    (2.45) 

Hence, from Eq.(2..45), transfer function expression       of the linearized model is given by 

using MATLAB: 

      
     

     
 

        

                   
                        (2.46) 

Calculating the open loop poles of the system computed with MATLAB, we get three poles 

4. -350 (stable pole) 

5. -44.2945 (stable pole) 

6. 44.2945 (unstable pole) 
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The system is unstable because it has positive pole (44.42). 

In order to determine the controllability matrix and find its rank, we use MATLAB and we get. 

Controllability matrix Co =[             ] 

    [
           

                  

                         

]   

The rank of the controllability matrix =3  

The system is controllable because it has full rank (i.e. if rank(CO) = n where n is the number of 

states ). Our system has three states. 

2.4.2 Horizontal Component State Equation 

In the last section (2.4.1), we analyzed the forces that act on the vertical axis and developed the 

mathematical model for the vertical component. As we can see in figure (2-4), the vertical and 

the horizontal components are geometrically coupled which make it harder to model. If  

           then our levitated object is stable at equilibrium point in the horizontal component. 

To develop our dynamic model for the horizontal components, we assume that the ball moves 

stably between the two solenoids, There are several possibilities to obtain        . 

1. Drive the both solenoids with different currents (           ) and different dependence 

voltage source (           ). 

2. Drive the both solenoids with different currents (           ) and different independence 

voltage source (           ). 

3. Both solenoids have the same or different inductance driving with the same current 

                and different independence voltage source (           ).(special 

case of the second possibility) 

4. Both solenoids are driven with different currents (              ) and different 

independence voltage source (           )..The ball should be put at start point under 

solenoid1 and move horizontal to solenoids2. Figure (2-4) shows the movement. 

Now, we will discuss all possibilities 

 The disadvantage of the first possibility is that the order and complexity of the system 

will be increase. The system is hard to model. 

 As mentioned in the first possibility, order and complexity of the system will be 

increased however; the control theories and model building of vertical and horizontal 

allow the movement between two solenoids.   
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 The advantage of the third possibility is that the order and the complexity of the 

system will be minimum however, the disadvantage that the ball will be balanced or 

has an equilibrium point in horizontal components between the solenoids dependent 

on geometric coupled of the vertical and horizontal components and independent on 

the current     .In the next section this theorem will be proved. 

 The last possibility in our system could be have one equilibrium points, Our main 

objective that the object should be moved stable between two solenoids, therefore we 

have to linearized our horizontal model at selected equilibrium point. 

In the next section, we will try to develop our model by using the second possibility. The third 

possibility will be discussed and proved as special case of the second possibility. According the 

disadvantages of special case of the second possibility, the last possibilities can simplify the 

model. 

2.4.2.1 Nonlinear Dynamic Equation of the Horizontal component 

Refer to figure (2-4), the total force       in the horizontal direction is the sum of the vertical 

components of     and    . 

                                               

The net acceleration    
forces in the horizontal components 

   
                                       (2.47) 

Now, we will develop our model by using the second possibility in the last section“Drive the both 

solenoids with different currents (           ) and different independence voltage source (           )” 

refer to figure (2.4) 

    
   
    

  
    

                                (2.48)  

    
   
    

      
    

                        (2.49) 

   = Coil constant of the first solenoids. 

   = Coil constant of the second solenoids. 

Substituting (2.48) and (2.49) in (2.47) 

   
 [

   
    

  
    

            
   
    

      
    

           ] (2.50) 

Where 
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√   
    

 
(2.51)   

           
      

√      
    

 
                         (2.52)       

The accelerations force    
  

    

   
                (2.53) 

Substituting in (2.50) 

 
    

   
 [

   
    

  
    

            
   
    

      
    

           ]          (2.54) 

This term coupled vertical and horizontal axis and dependent on six variables. 

1. Position of the horizontal placement    

2. Position of the vertical placement    

3. The angel       as function of time 

4. The angel       as function of time 

5. The current in the first solenoid       

6. The current in the second solenoid        

Before go toward and try to simplify the last term, we want to prove the disadvantage by using 

the third possibility “Both solenoids have the same or different inductance driving with the same 

current                 and different independence voltage sources (           )”. 

Rewrite (2.54) according the third possibility 

 
    

   
 [

  
    

  
    

            
  
    

      
    

            ]            (2.55) 

Assume that the ball has an equilibrium point in the horizontal components. This can be when 

the total forces which exerts on the ball           

Substituting in (2.55) 

  [
  
    

  
    

            
  
    

      
    

            ]            (2.56) 


  
    

  
    

            
  
    

      
    

                              (2.57) 
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                             (2.58)        

As we seen in last term the equilibrium point is only dependent on the inductance of solenoids 

and the geometries of the system and not more dependent on the current. But the current will be 

needed to control the motion of the ball in the horizontal component; therefore, we will use the 

last possibility. This demonstrates and proves the useless and the disadvantage by using the third 

possibility. 

In order to simplify the term (2.54), we will get the last possibility in consideration.(Both 

solenoids are driven with different currents (              ) and different independence voltage 

sources(           ). 

From equation (2.54), we have  

 
    

   
 [

  
    

  
    

 
          

  
    

      
    

 
         ] 

Rewrite equation (2.54) according the last possibility and drive the solinoid1 with constant 

current     
 

 
    

   
 [

  
    

  
    

           
     

      
    

          ]           (2.59) 

We simplify the last equation if we assume                                    . We 

justify this approximation by the fact that the solenoids will be as close as we can make them and  

   and    do not change appreciably during the course of the horizontal transits. 

We modify the equation (2.59) 

 
    

   
 (

   
     

  
  

     

      
 )       

    

   
 

 

 
(
   
     

  
  

     

      
 ) 


    

   
 (

   
     

   
  

     

       
 )=   (  ̈   ̇      )                         (2.60) 

Where 

    ̈ =Ball acceleration   

    ̇ =Ball Velocity   

    Ball position 

     =Drive current 
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The both solenoids should be operated with different currents, however the current    
of 

solenoid-1 is constant, therefore we get only the current of solenoid-2 in consideration. The 

equation for the circuit shown in figure (2.5)is given by 

            
  

  
  

  

  
                            (2.61) 


  

  
  

   

  
   

     

  
         

Where   is the input voltage. 

At equilibrium point, we have the following condition:

 ̈   ̇    
  

  
                      (2.62) 

This implies: 

   
̇ =Ball Velocity at equilibrium 

   
  Equilibrium position 

  =Equilibrium current = constant 

  = Equilibrium input volt =constant 

At Equilibrium position the accelerations 
    

   
 =0 

  (
   
    

   
  

     

       
 )       

  
    

(     )
  

   
     

   
         (2.63)

In the special case          and     
  

Substituting (2.63) 

   
        

             
 

 
                    (2.64) 

That means, when the both solenoids have the same inductance and driven with same current, the 

ball will balance in the middle between the two solenoids. 

From equation (2.63) the equilibrium current    

  
  

   
     (     )

 

   
    

    
(     )   

   
√

    

   
 (2.65)

We will need this equation later in this section to calculate the equilibrium current at selected 

equilibrium point. 
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The equilibrium voltage obtain from equation (2.61)  

          
(     )   

   
√

    

   
      (2.66) 

2.4.2.2 Linearization 

Now, we linearrized the nonlinear equation (2.60) at equilibrium point 

    

   
    (     

)    ( ̇     
̇ )    (     

)          
   

Refer to equation (2.60) 

    

   
 (

   
     

   
  

     

       
 )  

We may do this if we let 

   
   

   
       

 

  
(
   
     

   
  

     

       
 )         

    
     

    
  

   
    

 (     )
    

(2.67)                       

   
   

   ̇
       

 

   
(
   
     

   
  

     

       
 )               (2.68) 

    Equilibrium velocity at equilibrium point=0 

   
   

   
       

 

   
(
   
     

   
  

  
    

       
 )          

      

 (     )
        (2.69) 

   
   

   
       

 

  
(
   
     

   
  

  
    

       
 )          0           (2.70)   

We note that the equation for the electrical part of the system is already linear. 

Define the variables 

             ̇    ̇                   

 Where: 

   = Ball position 

  =Ball velocity 

  =Drive current 

  = Input voltage 
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This implies: 

  ̇   ̇        ̇  
  

  
 

Refer to equation (2.6) 

  ̇  
   

  
  

   

  
   

     

  
  

Thus, state-space model is: 

⌈
  ̇

  ̇

  ̇

⌉  [

   
     

   
   

  

].[

  

  

  

] [

 
 
 

  

]        

      [   ] [

  

  

  

]                         (2.71) 

Hence, state space model of Linearized model around certain operating point     
  is written as: 

⌈
  ̇

  ̇

  ̇

⌉  

[
 
 
 
 

   

 
    

     

    
  

   
    

 (     )
   

      

 (     )
 

   
   

  ]
 
 
 
 

[

  

  

  

]  [

 
 
 

  

]            

   
    [   ] [

  

  

  

]                     (2.72) 

  

[
 
 
 
 

   

 
    

     

    
  

   
    

 (     )
   

      

 (     )
 

   
   

  ]
 
 
 
 

    ,   [

 
 
 

  

] ,   [   ] 

  [ ]                                                                                                                (2.73) 

We specify the design parameters [6]: 
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The first solenoid should be driven with constant current; therefore we get the calculated 

equilibrium current of the vertical component in the last section as constant current    
 

           . 

Hence, the equilibrium current    at this equilibrium point     
                    

from equation (2.65) 

    
(     )   

   
√

    

   
  

   
                      

    
√

           

           
               

 

The corresponding equilibrium voltage, refer to equation (2.66) 

                                       

The resulting state space model of linearized magnetic ball levitation around (   
       ) is: 

⌈
  ̇

  ̇

  ̇

⌉  [
   

            
      

] [

  

  

  

]  [
 
 

   
]      

   
    [   ] [

  

  

  

] 

  [
   

            

      

]    ,   [
 
 

   

] ,   [   ] 

  [ ]                                                                                           (2.74) 

Hence, from Eq.(2.45), transfer function expression       of the linearized model is given by 

using MATLAB: 

 Thus,       
     

     
 

         

                      
                                    (2.75) 

Calculating the open loop poles of the system computed with MATLAB, we get three poles 

1. -350 (stable pole) 

2. -25.5734(stable pole) 
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3. 25.5734 (unstable pole) 

The system is unstable because it has positive pole (36). 

In order to determine the controllability matrix and find its rank, we use MATLAB and we get. 

Controllability matrix Co =[             ] 

Co =[
           
                   
                  

] 

The rank of the controllability matrix =3  

 The system is controllable because it has full rank (i.e. if rank (CO) = n where n is the number 

of states). Our system has three states. 
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Chapter 3: Qualitative Behaviour and Lyapunov 

Stability 

3.1. Introduction 

Stability theory plays a central role in system theory and engineering. The two dimensional 

levitation systems is open-loop unstable and there is a nonlinear relationship between force, 

current, and the distance between the poles of the solenoids and the object. Equilibrium is 

reached when the magnetic force balances the gravitational force. The instability arises because a 

slight deviation from this equilibrium drives the ball further from the equilibrium point. As 

shown in chapter 2 we traditionally solve this nonlinear controls problem by linearzing about an 

equilibrium g point. 

This chapter is concerned mainly with stability of the equilibrium point in the sense of lyapunov. 

Before we discuss the lyapunov stability for the two dimensional levitation system, we will look 

at the qualitative behavior of the system at an equilibrium point, the eigenvalue and type of the 

equilibrium point.   

3.1.1 Basic stability theorem of Lyapunov 

Lyapunov theory is used to make conclusions about trajectories of a system  without finding the 

trajectories, that means without solving the differential equation [7]. 

A positive definite function        is positive definite if 

          for all      

          if and only if x = 0 

                     

A continuous function        is  decrescent  if for some      and some continues, strictly 

increasing function         

                                ‖ ‖  

The function        is defined as generalized energy function. The time derivate  ̇       of 

       is taken along the trajectories of the system and associated generalized dissipation 

function. 

 ̇      
  

   
   

  

   
   

  

   
    

Let        be a positive definite function with derivative  ̇ along the trajectories of the system. 

1. If         is locally positive definite and  ̇         locally in x and for all  , then the 

origin of the system is locally stable (in the sense of Lyapunov). 
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2. If         is locally positive definite and decrescent, and   ̇         locally in x and 

for all  , then the origin of the system is uniformly locally stable (in the sense of 

Lyapunov). 

3. If         is locally positive definite and decrescent, and   ̇         is locally positive 

definite, then the origin of the system is uniformly locally stable (in the sense of 

Lyapunov). 

4. If         is positive definite and decrescent, and   ̇         is positive definite, then 

the origin of the system is globally uniformly asymptotically stable (in the sense of 

Lyapunov). 

The conditions of Lyapunov’s theorem are only sufficient. Failure of a Lyapunov function 

candidate to satisfy the conditions for stability or asymptotic stability does not mean that the 

equilibrium point is not stable or asymptotically stable. It only means that such stability property 

cannot be established by using this Lyapunov function candidate. 

3.1.2 Vertical Components Qualitative Behaviour 

To classify the equilibrium point, first calculate the eigenvalues of the  matrix the of the  

linearized A-Matrix of the vertical component, refer to equation (2.43), the linearized state space 

dynamic model of vertical components  at equilibrium point    
=0.01m is: 

  [
   

             
      

]  

Compute the eigenvalues of A-Matrix with MATLAB 

         ,            ,        

That implies the system is unstable, because the eigenvalues are of opposite sign, the equilibrium 

point is a saddle; trajectories approach asymptotically the eigenvector associated with the 

positive eigenvalue [7]. 

3.2 Horizontal Components Qualitative Behaviour 

We do the same as the last section. Classify the equilibrium point, first calculate the eigenvalues 

of the matrix the of the  linearized A-Matrix of the horizontal component, refer to equation 

(2.43), the linearized state space dynamic model of vertical components  at equilibrium point 

   
=0.04m is: 

 Refer to (2.610), the operating point equation for horizontal component 
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  [
   

            

      

]  

Compute the eigenvalues of A-Matrix with MATLAB 

         ,            ,         

The equilibrium point is a saddle point, so the system is unstable see last section.  

3.3 Lypanuov stability for the vertical components 

Refer to (2.43) equation, the linearized state space dynamic model of vertical components is: 

   

[
 
 
 
 

   
            

 

    
   

            

     
 

   
      

       ]
 
 
 
 

 

A possible definite generalized energy Lypanuov function candidate is:    

      
 

 
  

  
 

 
  

  
 

 
  

 , where      is a positive definite function.  

This implies a according the basic stability theorem of Lyapunov section (3.1.3) 

 ̇  
  

   
   

  

   
   

  

   
           

 ̇          (
           

 

    
   

            

     
 )    ( 

      

       
)      (3.2) 

However, at the equilibrium point the acceleration     , substituting into    (3.1) 

 ̇         ( 
      

       
)   

   
      
(     )

        

As can be seen from above equation the   ̇    and  ̇ is not decresent function. Refer to first 

basic stability theorem of Lyapunov section (3.1.3), we conclude that the above system is at the 

equilibrium point stable in the sense of Lyapunov.  

3.2 Lypanuov stability for the Horizontal components 

Refer to (2.72) equation, the linearized state space dynamic model of horizontal components is: 
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[
 
 
 
 

   
    

     

    
  

   
    

 (     )
   

      

 (     )
 

   
   

  ]
 
 
 
 

   

A possible Lypanuov candidate is       
 

 
  

  
 

 
  

  
 

 
  

 ,  where      is a positive 

definite function 

 ̇  
  

   
   

  

   
   

  

   
     

This implies a according the basic stability theorem of Lyapunov section (3.1.3)      

 ̇          (
    

 
    

   
  

   
 
   

   
 )    ( 

   
  

)    (3.2) 

Therefore, at the equilibrium point the acceleration    , substituting into (3.2 

 ̇         ( 
   

  
)    

   
  

       

As can be seen by above equation the   ̇    and  ̇ is not decresent function. By applying the 

first basic stability theorem of Lyapunov section (3.1.3), we conclude the above system is at the 

equilibrium point stable in the sense of Lyapunov.  
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Chapter 4: Controller Design 

4.1 Introduction 

In this chapter, we develop the control strategy for levitating the ball purely with magnetic fields, 

and allow movement between two solenoids around an two dimensional space. We will find 

ways to compensate the systems, and develop feedback diagrams to represent, the closed loop 

systems.  We begin with the theory of the control strategy, and then follow on with the 2-

dimensional compensation.  

4.2 Control Strategy of two dimensional levitation system 

Each of the solenoids is run at different current, although they may have different inductances 

because of imperfect matching, our algorithm for moving the object from      to       

has two parts: 

1. Stabilize the sum of the vertical components of    and     against the force of 

gravity mg and drive the both solids equally, We justify this approximation by the 

fact that the solenoids will be as close as we can make them, the object will be as 

far away as we can allow from the solenoids. 

 

2. Stabilize the horizontal components of    and     against the each other and drive 

the both solenoids differently.  

3. Switch between the vertical component and the horizontal components. if the 

object should be have movement between the solenoids 

The two dimensional levitator could be built with any number of solenoids within reason.  To 

design an arbitrarily sized system, it suffices to show how to create stable levitation and 

movement between two solenoids.  This is because we can use a circuit to switch between pairs 

of solenoids:  Using one pair to transfer the object from point A to B and another to transfer it 

from point B to C.  

4.3  Control problem description 

As shown in chapter 2 and 3, open loop nonlinear system is unstable and its specification is not 

adequate. Thus, stability and performance criteria will be solved. Then, an equivalent, linear 

expression of the resulting system will be driven and used at the next chapter. 

Hence, the requirements of the controller is to be able to position the ball at any arbitrary 

location stable  in the vertical components with magnetic fields and allows movement smoothly 

in the horizontal components between two solenoids around a two-dimensional space. 

In order to make the system stable and according the control strategy of two dimensional 

levitation system (section 4.2), two dimensional controllers are needed, one to control the most 
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important component the fastest, namely the vertical component and the other slowly change the 

object so that the horizontal position changes.  

 

From equation (2.46),         
     

     
 

        

                   
    and 

From equation (2.75),        
     

     
 

      

                      
 

Figure (4-1) shows the step response of the vertical component without applying any controller, 

therefore when no controller applied to the system the ball will fall down or attract to the 

solenoid. 

 

Figure 4-1: The step response of the vertical component without applying any controller 

Figure shows (4-2) the step response of the horizontal component without applying any 

controller, therefore the ball will attract from one of the two solenoids. 
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Figure 4-2: The step response of the horizontal component without applying any controller 

A root locus plot using MATLAB is shown in figures (4-3) and (4-4) for the uncompensated 

transfer functions       of vertical component and of the uncompensated transfer function 

      of vertical component. 

As can seen from figures (4-3) and (4-4), the vertical component have the positive pole 

(44.2945) and the horizontal components the positive pole (25) in the right half plan and no 

value of system gain can nullify the effect of this poles to stabilize the system.  

Therefore, insertion of a phase lead compensator is a must to pull the root locus into the left half 

plan. The pole of the lead compensator should be introduced as such that it is in deeper location 

than the deepest left hand pole of the system. If the gain of the lead compensators large, all the 

poles of the system are in the left half plane and the system is stable. A phase lead controller is 

chosen because it is simplest method to achieve stability of a magnetic levitation system. A root 

locus method is followed for the fact that it offers the clear advantage of giving the designer the 

ability of choosing the pole and zero location thus impose control over the transit response. 

However the phase lead controller is not the optimal controller to achieve any transit response 

because its control gain is limited and have only one pole and one zero at the real axis. 
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Figure 4-3: Root locus plot for uncompensated vertical component 

 

Figure 4-4: Root locus plot for uncompensated horizontal component. 
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The transfer function for a lead-compensator is     
   

   
, where k, z, and p are the 

compensator gain, zero, and pole respectively. To make the compensator work correctly,       

must be satisfied and the zero and the pole should be located on the real axis. In the next section 

two lead compensators will be designed, one to stabilize the vertical component and the other to 

stabilize the horizontal component according a specified transfer function [3].  

4.3.1 Design Phase Lead Compensator for the vertical component 

In order the controller to be able to position the ball at an equilibrium point in the homogenous 

magnetic field of the vertical component and move the ball smoothly to desired position and hold 

it at equilibrium point horizontally, we define the following specification [6]: 

 Overshoot, OS= 5%                                                             (4.1) 

 Settling Time,  =0.08 sec                                                    (4.2) 

The second order prototype is  
  

 

           
  

                                (4.3) 

To obtain the desired pole, we need to translate the system specification to ζ and    such as: 

 ζ =√
       

          
 =√

         

            
 = 0.6901                                   (4.4) 

   
 

   
    ,     is ± 2%                                           (4.5) 

    
 

   
 

 

           
                                         (4.6)  

     √     =        √             = 52.435           (4.7) 

 The desired poles are: 

                                           
                                        
                                                   

                                         
                                       
                                                                                                     (4.8)                                                

Substituting (4.4) and (4.5) into (4.3) 

      
                   

                              
  

        

                  
 

With characteristic equation                                    (4.9) 
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and the poles [                             ] 
 

A step response plot using MATLAB is shown in figures (4-5) for the estimated compensated 

transfer functions       of vertical component and of the compensated transfer function 

      of vertical component. Figure (4-6) show the schematic diagram of compensated vertical 

component.  

 

 

Figure 4-5: Output signal of estimated compensated two dimensional levitator. 

In order to obtain the compensator gain = k, zero = z, and pole = p according the design constrain 

ζ= 0.6901    = 0.08 sec, a SISO Design Tool by MATLAB approach can be employed to find 

the appropriate values of k, z, and p [11].  

Refer to equation (2.46),         
     

     
 

        

                   
   

    

From the denominator of the transfer function, the open loop poles of the system are calculated as 

-350, 44.2945 and -44.2945. 
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Figure 4-6: Schematic diagram showing compensated vertical component. 

 

Figure 4-7: Design approach showing lead compensator design by using SISOTOOL. 

      

- 

+ 
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 A zero has to be added between the first left hand plane and the origin i.e., between -44.2945 

and origin. The pole of the compensator should be introduced as such that it is deeper location 

than the deepest left hand pole -350 of the system. This approach is showing in figure 4-7 to 

design the lead compensator of the vertical component with the given constraint for ζ= 0.6901    

= 0.08 sec. We obtained the lead compensator transfer function         
       

        
  , where 

k=4690,  z =34.71, and p= 354.44.We note that the controller have a big gain K because the 

sensor gain is neglected   in the feedback path and the transfer function is dependent from the 

input current and not the voltage[5].  

The closed loop transfer function = 
                  

                             
     (4.10) 

with the poles 1.0e+02 *(-5.3427, -0.7099 ± 1.4877i, -0.2819) 

Figure (4-8) show the step response of the compensated vertical component with     
                    

 

Figure 4-8: Step response of the compensated vertical component 
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4.3.2 Design Phase Lead Compensator for the horizontal component 

Figure (4-9) show the schematic diagram of compensated vertical component. 

 Figure 4-9: Schematic diagram showing compensated horizontal component. 

We get the same specification from the last section ζ= 0.6901    = 0.08 sec. refer to equation 

(2.75) 

      
     

     
 

      

                      
  

From the denominator of the transfer function, the open loop poles of the system are calculated as 

-350, 25.5734 and -25.5734. 

Like the last section a SISO Design Tool by MATLAB approach can be employed to find the 

appropriate values of k, z, and p of the lead compensator. 

We obtained the lead compensator transfer function          
    

     
  , where k=10590,  z =24, 

and  p= 360 

The closed loop transfer function 
                   

                                     
      (4.11) 

with the poles 

   1.0e+02 *(-5.1684, -0.8506 ± 1.1983i, -0.2304) 

Figure (4-10) show the step response of the compensated vertical component with 

                        

 

      

- 

+ 
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Figure 4-10: Step response of the compensated horizontal component. 

4.4  Simulation and Result 

4.4.1 Modelling and Simulation of the Vertical Component 

In order to obtain the complete linearized SIMULINK model of the vertical component, the 

output gain and the input gain should be considered. The output gain P is defined as [3]: 

    
  

   
                               (4.12)    

Where  

    is the ball position in the vertical component. 

       is the steady state value of the system by defined input.  
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Hence, the model will be build with the linearized state space, therefore output gain can be 

obtained from the steady state of the closed loop transfer function of the compensated vertical 

component. Refer to section (2.4.1), the calculated equilibrium current   =          and 

equilibrium voltage   =        . 

Refer to equation (4.10) 

    
     

     
 

                  

                             
   

                       
                  

                             
      (4.13) 

Taking Laplace transform of          
     

 
     (4.14) 

Substituting (4.14) and (4.13) into 

            
     

 
    
   

                   

                             
        

        

        
 = 0.39 

Substituting the above value and the equilibrium point    
       of the vertical component 

in equation (4.12) 

  
  

   
 

   

   
  

    

    
                                     

Refer to equation (2.37) 

              , Thus, the input gain  
  

  
 

 

      
 

 

       
        

 

 

Figure 4-11: SIMULINK linearized state space model of vertical component. 
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 SIMULINK model for the compensated closed loop control system of the linearized state space 

model of vertical component is shown in Figure (4-11).  

 

Figure 4-12: The ball levitates in the vertical component exactly at the equilibrium point 0.01m with equilibrium 

voltage 1.712V as square wave set point. 

Previous figures show that our developed lead compensator in the last section work properly and 

can work with different set points. The ball levitates in the vertical component exactly at the 

equilibrium point 0.01m with equilibrium voltage 1.712V as square wave set point. 

4.4.2 Modelling and Simulation of the Horizontal Component 

It is the same as the vertical component, the model will be build with the linearized state space, 

therefore output gain can be obtained from the steady state of the closed loop transfer function of 

the compensated horizontal component. Refer to section (2.4.2), the calculated equilibrium 

current   =         and equilibrium voltage   =        . 
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Refer to equation (4.10) 

    
     

     
 

                   

                                     
   

                        
                   

                                     
      (4.15) 

Taking Laplace transform of          
     

 
     (4.16) 

Substituting (4.14) and (4.13) into 

             
     

 
    
   

                   

                                     
  

        
        

        
 = 0.9691 

Substituting the above value and the equilibrium point    
       of the vertical component in 

equation (4.16) 

     
  

   
 

   

   
  

    

      
                                    

Refer to equation (2.66) 

        , Thus, the input gain  
  

  
 

 

   
 

 

   
        

 

Figure 4-13: SIMULINK linearized state space model of horizontal component 

We can see from figure (4-14) that the developed lead compensator of the horizontal component 

in the last section works properly. The ball stands exactly at 0.04m between the two solenoids 

horizontally with equilibrium voltage 2.5691V as square wave set point.   
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Figure 4-14: The ball stands exactly at 0.04m between the two solenoids horizontally with equilibrium voltage 

2.5691V as square wave set point 

4.4.3  Overall Modelling of Vertical and Horizontal Component 

Figure (4-15) shows the overall nonlinear model. As we can be seen both components the 

vertical and horizontal are driven with different currents (              ) and different 

independence voltage sources (           ). Voltage changing at the second solenoids let the 

ball go in movement because the first solenoids should be driven with constant voltage or with 

the vertical current if the vertical component is off. One way to make the system stable is to 

control the most important component, therefore making sure the ball is stable in the vertical 

dimension, slowly change the ball so that the horizontal position changes but all the time we 

have to switch between the vertical component and the horizontal components, if the ball should 

be moved between the solenoids.  

However, the horizontal component controller job is that keeping the movement ball stand at the 

equilibrium point between the two solenoids.  The closed loop control system shown in figure (4-

16) was simulated using SIMULINK and the results closely analyzed. The objective of this 
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simulation was to get a better understanding of control strategy of two dimensional levitation 

system and the individual effects of switch strategy between the vertical and the horizontal 

components. The movement of the ball from point 0 to point b between the two solenoids is not 

appearing in this simulation see figure (2-4). However, the horizontal component controller job 

is that keeping the movement ball stand at the equilibrium point between the two solenoids.  

  

 

Figure 4-15: SIMULINK Nonlinear Model of the overall system  
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Figure 4-16: SIMULINK Model of the overall system . 

 

 

 

Figure 4-17: The ball levitates in the vertical component at an equilibrium point 0.01m with square wave set point 

0.01. 
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Figure 4-18: The ball stands at 0.04m between the two solenoids horizontally with square wave set point 0.04. 

 Figure 4-17 present real time simulation results of the compensated vertical component of two 

dimensional levitation systems. Only the vertical component turned on, horizontal component is 

turned off.  The gain values have been selected. to simulation the ball position (set point= 0.01), 

function generator is used. As can be seen the ball will move up and down smoothly and stable, 

overshoot is nearly 5%. 

Finally figure 4-18 show the simulation only the horizontal component turned on, vertical 

component is turned off.  The ball stands between the two solenoids stable but the overshoot is 

more as 5% but although is acceptable.  
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Chapter 5: Conclusion and Future Work 

 

In this thesis, we have developed the state space equations and the transfer functions to 

model one- and two-dimensional magnetic lavitation system. The system is linearized around 

a set point.The syetem unstability is proved around possible equilibrium point in the sense of 

the qualitative behavior of the system. A Lyapunov based stability analysis was performed to 

prove the stability the system. 

A control startagy is developed for levitating the object purely in the vertical components 

with magnetic fields, and allow movement in the horizontal components between two 

solenoids around an two-dimensional space. 

Negative feedback and lead compensators based on the approximatelinearized model of the 

two dimensional magnetic levitation system are designed to stablize the system. We consider 

two linear compensators, one for the verical components and the other for the horizonatl 

components and show that two dimensional magnetic lavitation system can be stabilized by 

an appropriate selection of the parameters of the compensators.The simulation show that lead 

compensation for the verical components and the for the horizonatl components will suffice 

to stablize the system, as long the gain is larg enough. finally a real time simulation using 

SIMULINK of the compensated two dimensional levitation system was implemented. The 

result shows, the object in the vertical component will move up and down smoothly and 

stable and stand stable between two solenoids.   

 

Future work includes: 

1. Find the switch frequency to swith between pairs of solinoids, to stablize the vertical 

and the horizontal components 

2. Implement the controller practically on a digital platform. 

3. Toimprove the syetem perfromance,several strategies can be employed, such as 

sliding mode control, adaptive control and optimal control.
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Appendix 
1. Computation the transfer function, poles, controllability matrix and it’s rank of one dimensional magnetic 

levitation system. 
%Computation the transfer function, poles, uncompensated root locus,  
% controllability matrix and its rank of one dimensional magnetic levitation system 

 
A=[0 1 0;1962 0 -56.7011;0 0 -350] 

B=[0;0;100] 

C=[1,0,0] 

D=0; 

G=ss(A,B,C,D) 

[num,den]=ss2tf(A,B,C,D) 

G=tf(num,den) 

pole(G)  

Co=ctrb(A,B) 

rank(Co) 

 

 

2 .Computation the transfer function, poles, uncompensated root locus, controllability matrix and its rank for vertical 

component of two dimensional magnetic levitation system. 

%Computation the transfer function, poles, uncompensated root locus,  
% controllability matrix and its rank of vertical  
% component of two dimensional magnetic levitation system 

 
A=[0 1 0;1962 0 -80.1875;0 0 -350] 
B=[0;0;50] 
C=[1,0,0] 
D=0; 
G=ss(A,B,C,D) 
[num,den]=ss2tf(A,B,C,D) 
G=tf(num,den)  
pole(G) 
Co=ctrb(A,B) 
rank(Co)  
step(-G) 
 

  

 

 

3. Computation the transfer function, poles, uncompensated root locus, controllability matrix and its rank for 

horizontal component of two dimensional magnetic levitation system. 

Computation the transfer function, poles, uncompensated root locus,  
% controllability matrix and its rank of horizontal  
% component of two dimensional magnetic levitation system 
 

A=[0 1 0;654 0 -13.3646;0 0 -350] 

B=[0;0;100] 

C=[1,0,0] 

D=0; 

G=ss(A,B,C,D) 

[num,den]=ss2tf(A,B,C,D) 

G=tf(num,den)  

pole(G) 

rlocus(-G) 

sgrid 

Co=ctrb(A,B) 

rank(Co) 
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4. Computation the compensated vertical component with Lead compensator 

% Computation the compensated vertical component with Lead compensator  
a=34.71 

b=354.44 

Kc=4690 

sys2=1 

num1=4009.37; 

den1=1;  

den2= 350; 

den3=-1962; 

den4=-686700; 

G=tf([num1],[den1 den2 den3 den4]) 

sysnum=Kc*num1*[0  0 0 1 a]; 

sysden=conv([1 b],[den1 den2 den3 den4]); 

sys1=tf(sysnum,sysden) 

sysfun=feedback(sys1,sys2) 

pole(sysfun) 

figure(1) 

step(sysfun) 

  

 

5. Computation the compensated horizontal component with Lead compensator 

% Computation the compensated vertical component with Lead compensator  
 
a=24.3 
b=360.2 
Kc=10590 
sys2=1 
num1=1336; 
den1=1;  
den2= 350; 
den3=-654; 
den4=-228900; 
G=tf([num1],[den1 den2 den3 den4]) 
sysnum=Kc*num1*[0  0 0 1 a]; 
sysden=conv([1 b],[den1 den2 den3 den4]); 
sys1=tf(sysnum,sysden) 
sysfun=feedback(sys1,sys2)  
pole(sysfun) 
figure(1) 

step(sysfun) 

 

 

 

 


