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Abstract

In this paper I propose Bayesian estimation of a nonlinear panel data model with

a fractional dependent variable (bounded between 0 and 1). Specifically, I estimate

a panel data fractional probit model which takes into account the bounded nature

of the fractional response variable. I outline estimation under the assumption of

strict exogeneity as well as when allowing for potential endogeneity. Furthermore, I

illustrate how transitioning from the strictly exogenous case to the case of endogeneity

only requires slight adjustments. For comparative purposes I also estimate linear

specifications of these models and show how quantities of interest such as marginal

effects can be calculated and compared across models. Using data from the state of

Florida, I examine the relationship between school spending and student achievement,

and find that increased spending has a positive and statistically significant effect on

student achievement. Furthermore, this effect is roughly 50% larger in the model

which allows for endogenous spending. Specifically, a $1,000 increase in per-pupil

spending is associated with an increase in standardized test pass rates ranging from

6.2-10.1%.
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1 Introduction

This paper proposes Bayesian estimation of a panel data model with a fractional

dependent variable (bounded between zero and one) and an endogenous explanatory

variable. The model is used to analyze the relationship between public school spending

and student achievement among Florida elementary schools from 1999 through 2005.

Due to a wave of education reforms implemented in the late-90’s such as the A-plus

Plan for Education (A+ plan) and the No Child Left Behind Act (NCLB), school

spending may be determined in part by student achievement, and therefore spending is

modeled as potentially endogenous through the use of simultaneous equation modeling

(SEM) and instrumental variables (IV).

The outcome variable of interest, student achievement, is measured as the propor-

tion of each school’s students passing Florida’s standardized test, the FCAT (Florida

Comprehensive Assessment Test). Since pass rates are bounded between zero and

one, the model is presented as a nonlinear fractional response model. Tradition-

ally, fractional response data has been handled using a linear probability model or

a log-odds transformation, however, these specifications both have limitations. The

log-odds model cannot handle y values equal to zero or one without the use of ad-

ditional adjustments, and parameters of primary interest such as partial or marginal

effects can be diffi cult to interpret (Wooldridge, 2002). While the linear probability
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model assumes constant marginal effects, such that a one unit change in spending

will always change pass rates by the same amount regardless of the initial level of

school spending. If taken literally, this can lead to predicted pass rates of less than

0% or greater than 100%, which would not make sense. Furthermore, it seems more

realistic to assume that, if spending has an effect on student achievement, this effect

would likely diminish as spending increases. These limitations can be overcome by

specifying a nonlinear fractional response model which will bound the relationship

between spending and student achievement to the (0, 1) interval and allow for dimin-

ishing marginal returns (Papke and Wooldridge, 1996, 2008). When working with

panel data however, additional complexities arise due to the presence of unobserved

heterogeneity.

Empirically, unobserved heterogeneity can be incorporated through a series of

indicator variables (FE, fixed effects estimator) or as random variables fixed at the

school level (RE, random effects estimator). However, consistency of the RE estimator

hinges on a strong assumption of independence between the random effects and the

covariates, which is often unrealistic, whereas nonlinear FE models generally suffer

from an incidental parameters problem (Neyman and Scott, 1948; Lancaster, 2000).1

Therefore, to control for unobserved heterogeneity in nonlinear models, a standard

approach is to either place restrictions on the distribution of the unobserved effects

or rely on a semiparametric approach. The main advantage of a semiparametric

approach is that, by design, no restrictions need to be placed on the distribution of

1One special circumstance is the conditional logit model (also known as fixed effects logit), in
which the unobserved effects can be eliminated through the use of a conditional density. However,
this procedure is not applicable when the outcome variable is fractional (Wooldridge, 2002).
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the unobserved effects. However, a major limitation is that quantities of interest such

as marginal effects and average partial effects generally cannot be identified.

As an alternative, I employ a correlated random effects approach (Mundlak, 1978;

Chamberlain, 1982, 1984), in which dependence between the unobserved effects and

explanatory variables is allowed but is restricted through a distributional assumption.

This method is particularly attractive in the nonlinear case because it provides a sim-

ple way of avoiding the incidental parameters problem associated with the FE model

while avoiding the strong assumption of independence in the RE model. Further-

more, by making this additional assumption on the unobserved effects, quantities of

interest such as marginal effects can easily be identified (Altonji and Matzkin, 2005;

Wooldridge, 2005).

Using the correlated random effects approach, I consider Bayesian estimation of a

fractional response panel probit model, and provide an extension in order to allow for

an endogenous explanatory variable. For comparative purposes I also estimate a lin-

ear specification with correlated random effects.2 From a frequentist’s standpoint, the

fractional response panel probit model was first introduced by Papke and Wooldridge

(2008), who use the model to estimate the relationship between school spending and

student achievement among Michigan elementary schools. Papke and Wooldridge

initially assume that all explanatory variables are strictly exogenous, and estimate

the model parameters using a “generalized estimating equation”(GEE) (Liang and

Zeger, 1986)3 with the mean and variance of the fractional response variable and a

2In the linear case I consider the correlated random effects estimator instead of fixed effects be-
cause the linear fixed effects model cannot identify covariates which are time-invariant, and variables
with little time-variation, while identifiable, are often estimated imprecisely.

3GEE is similar to, and asymptotically equivalent to weighted multivariate nonlinear least squares
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“working correlation matrix”for GEE estimation. This approach does not rely on the

joint likelihood distribution of the fractional response, which can be computationally

burdensome to evaluate using frequentist methods. Once endogeneity is introduced,

however, the GEE estimation method used by Papke andWooldridge is no longer con-

sistent. Therefore, as an alternative, they estimate a less-effi cient two-step “pooled

fractional probit quasi maximum likelihood estimation”(QMLE) method,4 and after-

wards they must employ simulation methods (bootstrapping in particular) in order

to obtain asymptotic standard errors, adjusted for their two-stage approach.

In recent years the fractional probit model with endogeneity has been applied in

a variety of panel data settings. A few examples include Hanna (2010) who exam-

ined whether multinational firms increased production overseas in response to heavier

environmental regulations imposed domestically. Nguyen (2010), who analyzed the

effect of fertility on the female labor supply as measured by the fraction of hours

worked per week. Gardeazabal (2010), who examined the effect of economic fluctu-

ations on political party vote shares in Spanish general elections, and, McCabe and

Snyder (2011) who examined whether online access to academic journals increased

the citation rates of published articles.

In contrast to the Frequentist methods used in the aforementioned articles, my

approach is a likelihood based estimation method which becomes feasible through

(WMNLS). However, in many cases it is not possible to find the true variance matrix var(yi |
xi),which is needed for WMNLS. Therefore, in the GEE procedure a “working”version of var(yi | xi)
is specified based on distributional assumptions (see Imbens & Wooldridge, 2007; and Papke &
Wooldridge, 2008).

4In step one, Papke andWooldridge use a control function to estimate the equation for endogenous
school spending (the endogenous explanatory variable).Then in step two they obtain the residuals
from the spending equation and plug them into the main outcome equation to estimate the effect of
endogenous school spending on student achievement (using the pooled probit QMLE method).
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the use of a Bayesian data augmentation technique. This allows me to work di-

rectly with the joint likelihood distribution of the fractional response, and create a

fully effi cient estimation method in which all parameters and standard errors can be

estimated simultaneously through the use of Bayesian Markov Chain Monte Carlo

(MCMC) simulation methods. Using this approach, likelihood based estimation can

be performed in the case of strict exogeneity as well as in the case of an endogenous

explanatory variable, and transitioning from one model to the other only requires

slight adjustments, which are rather straightforward. Conversely, in the Frequentist

framework, this transition from a strictly exogenous model to one which allows for

endogeneity requires a more drastic change in estimation methods, which nevertheless

remains ineffi cient.

A secondary motivation for the Bayesian approach proposed here is from a pol-

icy perspective, as quantities of interest such as marginal effects can be calculated

directly and can also be interpreted as probabilities, whereas those calculated in the

frequentist’s framework can only be identified up to a scale factor (see Imbens and

Wooldridge, 2007; Papke and Wooldridge, 2008).

The analysis is related to several previous Bayesian contributions, including Al-

bert and Chib (1993), Li (1998), Chib and Carlin (1999), and Bacolod and Tobias

(2006). Albert and Chib (1993) introduce a Bayesian treatment of the discrete binary

response model using the data augmentation method. Then Li (1998) uses this data

augmentation technique to estimate a simultaneous equation model with a limited

dependent variable and an endogenous explanatory variable. Chib and Carlin (1999)

extend these methods to the longitudinal setting with the panel probit MCMC algo-
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rithm, and finally, Bacolod and Tobias (2006) employ Bayesian panel data methods

in order to analyze the relationship between school inputs and student achievement.

In this paper I provide further extensions to the panel probit model in order to allow

for a fractional outcome variable as well as a continuous endogenous covariate.

The remainder of the paper is organized as follows: In the next section I define

the fractional response panel probit model under strict exogeneity, which I refer to as

the baseline model. A Bayesian estimation method is then presented using MCMC

simulation methods, and the calculation of marginal effects is addressed. In Section

3 a respecification of the model is proposed in order to allow for an endogenous ex-

planatory variable, in which identification of the structural parameters of interest is

performed through the use of an instrumental variables (IV) technique and simulta-

neous equation modeling (SEM). In Section 4 the proposed algorithms are used to

analyze the relationship between school spending and student achievement among

Florida elementary schools. In Section 5 I outline specification tests which can be

implemented using Bayes factors as the criteria for model comparison. Finally, in

Section 6 I conclude with a summary and brief discussion.
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2 Model specification under strict exogeneity (base-

line model)

Unlike in the case of the frequentist approach, introduction of endogeneity in the

Bayesian approach leads to an estimation method which is just a slight modification

of that for the strictly exogenous model. To simplify the exposition of the model,

and estimation, I start with the baseline model under strict exogeneity. Assuming a

probit specification, I express the conditional mean of the fractional response as

E(yit|xit,gi, ci) = Φ (ci + xitβ + giφ) , (1)

where there are N independent institutions observed over T periods, such that i and t

index institutions and time respectively, and the sample consists of NT observations;

Φ(·) represents the standard normal cumulative distribution function; yit is an out-

come variable, 0 ≤ yit ≤ 1; ci represents time-constant unobserved difference across

institutions; xit denotes a 1 × k vector of explanatory variables which vary across

institutions and time; and gi denotes a 1× h vector of time-invariant regressors.5

Following Chamberlain (1982, 1984), I formalize a relationship between the indi-

5The probit function, Φ(·), is specified because we will be making use of the normal distribution
to allow for correlation between ci and xit in (1). Therefore, specifying a probit function which
also makes use of the normal distribution is a convenient choice. Alternatively, one could choose to
specify the logistic function Λ(·), however, computationally this would be more demanding.
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vidual effects and time-varying explanatory variables such that ci is a function of all

lagged, present, and future values of xit:

ci = ψ + xi1λ1 + xi2λ2 + ...+ xiTλT + ai,

ai | xi1, ...,xiT ∼ N(0, σ2
a), (2)

where ψ is an intercept term, λ1, ...,λT are k × 1 parameter vectors, and ai is a

normally distributed error term with zero mean and conditional variance σ2
a.

Combining equations (1) and (2) yields

E(yit|xit,gi, ai) = Φ (ψ + xiλ+ xitβ + giφ+ ai) , (3)

where xi = [xi1, ...,xiT ], and λ = [λ1, ...,λT ].

To simplify the notation I denote Wit = [1,xi,xit,gi] as a vector of all observable

data, Ω = [ψ,λ,β,φ] as a parameter vector, and ιT as a T -vector of ones. Then for

institution i at all time periods (3) can be written as

E(yi |Wi, ai) = Φ (WiΩ + ιTai) . (4)

The model above is specified in a semiparametric way such that the conditional mean

of yit is defined, but the distribution of yit is not. However, in this Bayesian approach

a set of augmented data is introduced in the parameter set which makes it possible to

obtain fully effi cient likelihood based estimates for the parameters in (3), even though

the distribution of yit is not explicitly specified.
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The augmented data is created by introducing a dummy vector dit (S × 1) for

each observation in the sample. These dummy vectors are constructed such that

each element, dits (s = 1, ..., S) , takes a value of either one or zero such that the

proportion of ones in dit is equal to the outcome variable, yit (the proportion of

students passing the FCAT exam at school i time t). In the application section that

follows all FCAT scores were rounded to the nearest hundredth by the FLDOE,

therefore, in such a construction S = 100.6 Thus, vector dit is treated as fully observed

for each observation, and by construction each dit vector consists of ones and zeros

such that the first 100×yit elements are ones and the following 100×(1−yit) elements

are zeros.

The dummy vector dit is defined by S latent random normal variables:

y∗its = WitΩ + ai + uits, (5)

uits ∼ N(0, 1),

such that

dits = 1, if y∗its = WitΩ + ai + uits > 0,

dits = 0, if y∗its = WitΩ+ai + uits ≤ 0.

This process defines the random variable dits, for which the likelihood function can

6As an example, if yit = 0.73, indicating that 73% of the students in school i time t passed the
FCAT exam, then the first 73 (s = 1, ..., 73) elements of dit will be equal to one and the remaining
27 (s = 74, ..., 100) elements will be equal to zero.

9



be written as

Φ(WitΩ + ai)
dits [1− Φ(WitΩ + ai)]

1−dits ,

such that

E (dits|Wit, ai) = Φ (WitΩ + ai) .

The joint likelihood for the entire dit is

Φ(WitΩ + ai)
∑S

s=1
dits [1− Φ(WitΩ + ai)]

∑S

s=1
(1−dits) . (6)

This likelihood will produce the same point estimates as the more familiar probit

likelihood function:

Φ(WitΩ + ai)
yit [1− Φ(WitΩ + ai)]

(1−yit) ,

since it is a monotonic retransformation of (6) . Specifically, raising (6) to the power

of
1

S
results in the probit likelihood function but with fractional response variable

yit, 0 ≤ yit ≤ 1, rather than a binary outcome. Thus, this allows me to specify a

fully parametric model with data augmentation in which the moment condition, (4),

is satisfied since by construction

yit =
1

S

S∑
s=1

dits.

10



Using the data augmentation technique, I include the augmented data, y∗its, directly

into the likelihood function (Tanner and Wong, 1987; Albert and Chib, 1993), and

the augmented data density for observation i, t can be written as

p(dit, y
∗
it | Ω,ai,Wit) =

1√
2π

exp

(
−.5

S∑
s=1

[
(y∗its −WitΩ− ai)′ (y∗its −WitΩ− ai)

])
×

S∑
s=1

[I(dits = 1)I(y∗its > 0) + I(dits = 0)I(y∗its ≤ 0)] , (7)

where I is simply an indicator function which takes the value 1 if the statement in

the parenthesis is true and 0 otherwise.

2.1 Prior distributions

In Bayesian statistics, inference is made based upon a posterior distribution formed by

combining information provided by data and prior knowledge about the parameters of

interest. The data are summarized in terms of the likelihood function or data density,

while the prior, which can be viewed as information provided by specialists or findings

from previous research is incorporated through a probability density function.

Bayesian estimation follows by first assigning prior distributions to all parameters

in the model. However, in many instances there is no reliable prior information

available. In this case one can proceed by using flat or “diffuse” priors so that,

relative to the likelihood function, the prior contributes very little information to the

posterior. This enables the posterior distribution to be dominated by the data (i.e.

11



likelihood function), which Gelman et al. (1995) explain allows ‘the data to speak for

itself.’7

The parameters ψ,λ,β, and φ are all assigned commonly used conjugate-normal

priors:

ψ ∼ N(ψ,H−1
ψ ), λ ∼ N(λ,H−1

λ ), β ∼ N(β,H−1
β ), φ ∼ N(φ,H−1

φ ),

which are centered at zero mean and made diffuse by choosing a large variance equal

to 10. Following Chib and Carlin (1999), these parameters are then drawn together

in one block as

Ω = [ψ,λ,β,φ] ∼ N(Ω,HΩ).

where the variance term, HΩ = 10I1+Tk+k+h. The second stage variance parameter is

also assigned a commonly used conjugate-inverse gamma prior:

σ2
a ∼ IG(aa, ba),

where the hyperparameters aa and 1/ba represent the shape and scale parameters.8

In hierarchical models care must be taken in choosing values for the hyperparame-

7Gelman et al. (2004) also note that when using a diffuse prior, the mean of the posterior
distribution will be a weighted average of the prior mean values and the standard maximum likelihood
estimates.

8Such that the mean equals 1/ba
aa−1 and variance is

1/b2a
(aa−1)2(aa−2) .
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ters, as noninformative second stage priors can lead to improper posteriors (Carlin,

1996; Hobert and Casella, 1996). Furthermore, Chib and Carlin (1999) show that

if the variance prior is “overly vague”the Markov chain will likely suffer from slow

convergence. To avoid this, the hyperparameters are set to aa = 3 and ba = 0.025,

so that the mean and standard deviation are both equal to 20, a proper, but rather

vague prior specification (see Koop, Poirier, and Tobias, 2007).

2.2 Sampling from the posterior and estimation of marginal

effects

Let ∆ equal a vector of all parameters in the model such that ∆ = (Ω, ai, σ
2
a). Then

the augmented joint posterior density, which is proportional to the product of the

augmented data density (7) and the prior distributions of the parameters Ω, ai, and

σ2
a can be written as

p(∆,y∗ | y,W) ∝

N∏
i=1

T∏
t=1

1√
2π

exp

[
−.5

S∑
s=1

(y∗its −WitΩ− ai)′ (y∗its −WitΩ− ai)
]
×

N∏
i=1

T∏
t=1

[
S∑
s=1

[I(dits = 1)I(y∗its > 0) + I(dits = 0)I(y∗its ≤ 0)]

]
×

(2π)−(1+Tk+k+h)/2 |HΩ|
1/2 exp [−.5(Ω−Ω)′HΩ(Ω−Ω)]×

N∏
i=1

1√
2πσa

exp
(
−.5a′iσ−2

a ai
)
× 1

Γ(aa)baaa
(σ2

a)
−(aa+1) exp

(
− 1

baσ2
a

)
. (8)
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The model parameters can then be estimated via Gibbs sampling (Geman and Geman,

1984). The basic idea behind the Gibbs sampler is to partition the joint posterior into

smaller blocks known as full conditional posterior densities. If analytically tractable,

these full conditional densities can then be drawn from directly, from which successive

and repeated draws will create an ergodic Markov chain —a sequence of draws which

eventually converges to some target density.9 After a number of iterations, this joint

sequence will converge to the joint posterior of interest (8). Functions of the poste-

rior such as the mean and variance can then be estimated based on the simulated

draws, and will satisfy a central-limit theorem as the length of the simulation tends

to infinity (Chib and Greenberg, 1996; Gamerman and Lopes, 2006). The parameter

estimates are then based on the following full conditional distributions (calculations

are presented in Appendix 1):

1. The conditional posterior kernel for the latent variable y∗its is normally distributed

as y∗its | yit,Wit, ai,Ω, σ
2
a ∼ N [WitΩ + ai, 1], and is truncated at zero such that

y∗its > 0 if dits = 1,

y∗its ≤ 0 if dits = 0.

9In terms of Markov Chains, ergocity is equivalent to the strong law of large numbers (Gill, 2002).
It states that if π(θ) is the target distribution and θi and θj are random draws from the chain such
that p(θi, θj) measures the probability that the chain will move from θi to θj then lim

n→∞
pn(θi, θj)

= π(θj).
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2. The full conditional density for ai | yit,Wit, y
∗
its,Ω, σ

2
a is normally distributed as

ai ∼ N
[
ai, H

−1

a

]
, where

Ha = S × T + σ−2
a

ai = H
−1

a

[
T∑
t=1

(
S∑
s=1

(y∗its −WitΩ)

)]
.

3. The full joint conditional density of block Ω =[ψ,λ,β,φ] is normally distributed

as Ω | yit,Wit, y
∗
its, ai, σ

2
a ∼ N

[
Ω,H

−1

Ω

]
, where

HΩ = HΩ + S ×
N∑
i=1

T∑
t=1

W′
itWit

Ω = H
−1

Ω

[
HΩΩ +

N∑
i=1

T∑
t=1

W′
it

(
S∑
s=1

(y∗its − ai)
)]

.

4. Finally, the full conditional density of the variance parameter σ2
a is inverse gamma,

i.e.

σ2
a | yit,Wit, y

∗
its,Ω, σ

2
a ∼ IG

N
2

+ aa,

[
b−1
a +

1

2

N∑
i=1

a′iai

]−1
 .
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Steps of the MCMC algorithm are as follows:

Algorithm 1

1. Sample y∗(1)
its from p(y∗its | yit,Wit, a

(0)
i ,Ω(0), σ2(0)

a )

2. Sample a(1)
i from p(ai | yit,Wit, y

∗(1)
its ,Ω

(0), σ2(0)

a )

3. Sample Ω(1) from p(Ω | yit,Wit, y
∗(1)
its , a

(1)
i , σ2(0)

a )

where Ω(1) = [ψ(1),λ(1),β(1),φ(1)]

4. Sample σ2(1)

a from p(σ2
a | yit,Wit, y

∗(1)
its , a

(1)
i ,Ω(1))

5. Repeat steps 1-4 R times and at each step update the conditioning variables with

their most recent values.

The Gibbs sampling process begins by assigning initial values to the parameters of

interest (a
(0)
i ,Ω(0), σ2(0)

a ), where the superscripts represent the current iteration step.

These initial values can be drawn from their corresponding prior distributions. Each

parameter is then sampled successively from their respective conditional distributions,

and at each step the parameter values are updated. The first iteration is completed

after sampling from all four conditional densities. After this process is repeated M

times, convergence to the target distribution will take place and the subsequent R−M

draws will come directly from the joint posterior of interest (8).

The model parameters were all assigned conjugate priors to ensure that each full

conditional (steps 1-4) is of known form and can be directly drawn from. For instance

the conditional posterior of Ω will be normally distributed, while the conditional

posterior of σ2
a will be inverse gamma.
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An added complication of the probit model (along with most nonlinear models) is

that the estimated slope coeffi cients, Ω, do not have a direct interpretation. Rather

they only indicate the sign (positive or negative) and statistical significance of the

estimated effect. To estimate the magnitude one must obtain the marginal effects,

which for a continuous explanatory variable, Ωj, can be calculated as

∂E(yit |Wit,ai)

∂Wj

= Ωjφ(WitΩ + ai), (9)

where φ is the standard normal probability density function (pdf). Equation (9) shows

that the marginal effects depend on the data, Wit, and on the random component, ai.

In the classical framework, estimating (9) is not particularly straightforward because

the error term, ai, is not observed. As a solution, Papke and Wooldridge (2008) have

outlined a procedure in which they eliminate ai from (9) by dividing the remaining

observed parameters (ψ,λ,β,φ) by a “scale factor”of (1 + σ2
a)

1/2. They then obtain

scaled versions of the average partial effects10 of Ωj by differentiating the adjusted

equation with respect to Wj and plugging in values for Wit such as its average over

T or over N and T.

Conversely, with the Bayesian methods proposed here, I not only obtain posterior

means for all parameters in (9) (including ai), but through Gibbs sampling I can

also obtain the entire distribution of each parameter. Therefore, the whole posterior

10Marginal effects with ai integrated or “averaged”out.
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distribution of the marginal effect is available as

∂E(yit |Wit, ai)

∂Wj

= Ω̂
(r)
j φ(WitΩ̂

(r) + â
(r)
i ), (10)

where the superscript r denotes the rth draw of the Gibbs sampler. The marginal

effects can then be calculated by simply plugging in interesting values of Wit such as

minimum or maximum values, or by averagingW over N and T . The posterior mean

of the marginal effect can then be calculated by averaging (10) over MCMC draws:

R−1

R∑
r=1

Ω̂
(r)
j φ(WitΩ̂

(r) + â
(r)
i ). (11)

Straightforward calculations of the posterior standard deviations and highest posterior

density intervals (HPDIs) are available as well.

2.3 Linear model with correlated random effects

MCMC estimation of the linear model will be very similar to the probit model outlined

above, with a few minor adjustments. Introduction of the latent variable, y∗its, is no

longer required so the full conditionals will be based on the actual joint posterior

density with likelihood function:

p(yit | Ω,ai, σ2
a, σ

2
u,Wit) =

1√
2πσu

exp
[
−.5 (yit −WitΩ− ai)′ σ−2

u (yit −WitΩ− ai)
]
, (12)
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rather than the augmented posterior (8). Therefore the full conditionals will contain

the actual data yit rather than y∗its. Furthermore, identification of the linear model

does not require any restrictions being placed on the variance parameter, σ2
u, (in

the probit model I must assume that σ2
u = 1 for identification). Consequently an

additional inverse-gamma prior for σ2
u will be introduced, and an MCMC step will be

added to the algorithm in order to estimate σ2
u. Details for the baseline linear MCMC

are provided in Appendix 2.
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3 Model specification with an endogenous explana-

tory variable (IV model)

In this section an extension to the baseline model is proposed in order to allow for

potential endogeneity of a continuous explanatory variable, denoted qit. To account

for qit, equation (5) can be rewritten as

y∗its = qitδ + ψ + xiλ+ xitβ + gi,1φ1 + ai + uits, (13)

where all I have done in (13) is added qit to the right hand side.11 The potentially

endogenous explanatory variable, qit, can then be estimated through an instrumental

variables regression (of linear form):

qit = τ i + zitγ + gi,2φ2 + εit, (14)

where τ i represents the time-constant unobserved effects; zit is a 1 × L vector of

time-varying instruments, including xit and a set of m exclusion restrictions which

enter (14) only; gi2 represents a vector of time-invariant instruments, including gi1

and any time-invariant exclusion restrictions; and εit is an idiosyncratic error term.

11In the baseline model, variable qit would have been blocked together with the other explanatory
variables in either xit or gi.
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In practice, proper exclusion restrictions may or may not be available as they must

be correlated with the endogenous explanatory variable qit, but unrelated to the

unobservables εit and uits. However, in the theoretical section that follows I assume

that valid exclusion restrictions are available in (14).

The unobserved effects, τ i, are defined (using Chamberlain’s correlated random

effects assumption) as a linear function of all time-varying explanatory variables in

all time periods:

τ i = η + zi1µ1 + zi2µ2 + ...+ ziTµT + bi

bi | zi1, ..., ziT ∼ N(0, σ2
b), (15)

where η is an intercept term, and µ1, ..., µT are L × 1 parameter vectors. Plugging

this auxiliary equation into (14):

qit = η + ziµ+ zitγ + gi,2φ2 + bi + εit, (16)

where µ = [µ1, ...,µT ].

The nature of endogeneity in qit is accounted for through the relationship between

the idiosyncratic error terms uits and εit; which for individual i at time t, I assume is

constant across the augmented data, s. Following the usual treatment of Bayesian IV

models, the error terms are assumed a joint distribution which is bivariate normal with

zero mean and variance-covariance matrix Σ (see Geweke, 1996; Chao and Phillips,

1998; Kleibergen and van Dijk, 1998; Kleibergen and Zivot, 2003; Hoogerheide et al.,
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2007) where

Σ = var

 uits

εit

 =

 σ2
u σuε

σuε σ2
ε

 ,

where var(uits) = σ2
u, var(εit) = σ2

ε and cov(uits, εit) = σuε.

To simplify notation I denoteWit = [qit, 1,xi,xit,gi1] as a matrix of all observable

data in equation (13) and Ω =[δ, ψ,λ,β,φ1] as the vector of all parameters. Similarly

Qit = [1, zi, zit,gi2] represents a matrix of observable data in equation (15) and Υ as

the vector of parameters [η,µ,γ,φ2]. The model can then be written as a system of

equations such that

y∗its = WitΩ + ai + uits,

qit = QitΥ + bi + εit. (17)

Given the formulation above, the augmented joint likelihood function is commonly

expressed as the joint bivariate normal distribution of (uits, εit). However, for com-

putational convenience the augmented likelihood function can also be written as the

product of the conditional distribution of uits given εit and the marginal distribution of

εit (Li, 1998). This allows us to write the augmented data density in a one-dimensional

form using partitioned elements ofΣ. Let∆ = [Ω,ai, σ
2
a, σ

2
u, σuε,Wit,Υ, bi, σ

2
b , σ

2
ε,Qit],

then, the augmented data density for observation i, t can be written as
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p(dit, y
∗
it, qit | ∆) =

1√
2πδu

exp

(
−.5

S∑
s=1

[
(y∗its −WitΩ− ai − δuεεit)′δ−1

u (y∗its −WitΩ− ai − δuεεit)
])
×(

S∑
s=1

[I(dits = 1)I(y∗its > 0) + I (dits = 0) I (y∗its ≤ 0)]

)
×

1√
2πδε

exp
[
−.5(qit −QitΥ− bi)′δ−1

ε (qit −QitΥ− bi)
]
, (18)

where

δu = σ2
u −

σ2
uε

σ2
ε

, δε = σ2
ε, and δuε =

σuε
σ2
ε

, (19)

and

εit = qit −QitΥ− bi.

The degree of endogeneity between qit and yit is captured through the covariance

parameter δuε. Identification of the probit model requires restrictions on one of the

variance parameters, therefore δu is set to one.
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3.1 Prior distributions

Given specification (18), all parameters can be assigned priors similar to those in

Section 2. The parameter vectors Ω and Υ are assigned conjugate normal priors:

Ω =[δ, ψ,λ,β,φ1] ∼ N(Ω,H−1
Ω ), Υ = [η,µ,γ,φ2] ∼ N(Υ,H−1

Υ ),

and are specified as diffuse, while the second stage variance parameters are assigned

conjugate inverse-gamma priors:

δε ∼ IG(aδε , bδε), σ2
a ∼ IG(aa, ba), σ2

b ∼ IG(ab, bb).

Finally, the covariance parameter (between the errors uits and εit) is assigned a diffuse

normal prior as

δuε ∼ N(δuε, H
−1
δuε

),

with δuε = 0 and H−1
δuε

= 10.
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3.2 Sampling from the posterior and estimation of marginal

effects

The full augmented posterior density is proportional to the product of the augmented

data density (18) and the prior densities of all parameters. This can be written as

p(y∗,Ω,ai, σ
2
a, δuε,Υ, bi, σ

2
b , δε | y,W,q,Q) ∝

N∏
i=1

T∏
t=1

1√
2π

exp[−.5
S∑
s=1

(y∗its −WitΩ− ai − δuεεit)′(y∗its −WitΩ− ai − δuεεit)]×

N∏
i=1

T∏
t=1

(
S∑
s=1

[I(dits = 1)I(y∗its > 0) + I (dits = 0) I (y∗its ≤ 0)]

)
×

N∏
i=1

T∏
t=1

1√
2πδε

exp
[
−.5(qit −QitΥ− bi)′δ−1

ε (qit −QitΥ− bi)
]
×

N∏
i=1

1√
2πσa

exp[−.5a′iσ−2
a ai]×

N∏
i=1

1√
2πσb

exp[−.5b′iσ−2
b bi]×

(2π)−
1+Tk+k+h+1

2 |HΩ|
1
2 exp[−.5(Ω−Ω)′HΩ(Ω−Ω)]×

(2π)−
1+Tk+L+h

2 |HΥ|
1
2 exp[−.5(Υ−Υ)′HΥ(Υ−Υ)]×

(2π)−
1
2

∣∣Hδuε

∣∣ 12 exp[−.5(δuε − δuε)′Hδuε(δuε − δuε)]×

1

Γ(aa)baaa
(σ2

a)
−(aa+1) exp

(
− 1

baσ2
a

)
× 1

Γ(ab)b
ab
b

(σ2
b)
−(ab+1) exp

(
− 1

bbσ2
b

)
×

1

Γ(aδε)b
aδε
δε

(δε)
−(aδε+1) exp

(
− 1

bδεδε

)
. (20)

The parameter estimates are then based on the following full conditional distributions

(calculations are presented in Appendix 3):
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1. The conditional posterior kernel of the latent data y∗its is normally distributed as

y∗its | yit,Wit, qit,Qit, ai, bi,Ω,Υ, δuε, σ
2
a, σ

2
b , δε ∼ N [WitΩ + ai + δuεεit, 1], and is

truncated at zero such that

y∗its > 0 if dits = 1 and

y∗its ≤ 0 if dits = 0.

2. The full conditional density for ai is normally distributed as

ai | yit,Wit, qit,Qit, y
∗
its, bi,Ω,Υ, δuε, σ

2
a, σ

2
b , δε ∼ N

[
ai, H

−1

a

]
where

Ha = S × T + σ−2
a

ai = H
−1

a

[
T∑
t=1

(
S∑
s=1

(y∗its −WitΩ− δuεεit)
)]

.

3. The full conditional of the parameter vector Ω =[δ, ψ,λ,β,φ1] is normally

distributed as Ω | yit,Wit, qit,Qit, y
∗
its, ai, bi,Υ, δuε, σ

2
a, σ

2
b , δε ∼ N

[
Ω,H

−1

Ω

]
with

HΩ = HΩ + S ×
N∑
i=1

T∑
t=1

W′
itWit

Ω = H
−1

Ω

[
HΩΩ +

N∑
i=1

T∑
t=1it

W′
it

(
S∑
s=1

(y∗its − ai − δuεεit)
)]

.

4. The posterior distribution of the variance parameter σ2
a is inverse gamma, i.e.

σ2
a | yit,Wit, qit,Qit, y

∗
its, ai, bi,Ω,Υ, δuε, σ

2
b , δε ∼ IG

N
2

+ aa,

(
b−1
a +

1

2

N∑
i=1

a′iai

)−1
 .
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5. The conditional distribution of bi is normally distributed as

bi | yit,Wit, qit,Qit, y
∗
its, ai,Ω,Υ, δuε, σ

2
a, σ

2
b , δε ∼ N

[
bi, H

−1

b

]
where

Hb = T × δ−1
ε + S × T × δ2

uε + σ−2
b

bi = H
−1

b

[
δ−1
ε

T∑
t=1

(qit −QitΥ)− δuε
T∑
t=1

(
S∑
s=1

(y∗its −WitΩ− ai − δuε(qit −QitΥ))

)]
.

6. The full conditional of the parameter vector Υ = [η,µ,γ,φ2] is normally

distributed as Υ | yit,Wit, qit,Qit, y
∗
its, ai, bi,Ω, δuε, σ

2
a, σ

2
b , δε ∼ N

[
Υ,H

−1

Υ

]
where

HΥ = HΥ +
N∑
i=1

T∑
t=1

Q′itQitδ
−1
ε + S ×

N∑
i=1

T∑
t=1

Q′itQitδ
2
uε

Υ = H
−1

Υ

[
HΥΥ +

N∑
i=1

T∑
t=1

(
δ−1
ε Q′it(qit − bi)− δuεQ′it

S∑
s=1

(y∗its −WitΩ− ai − δuεqit + δuεbi)

)]
.

7. The conditional distribution of the covariance parameter δuε is normally

distributed as δuε | yit,Wit, qit,Qit, y
∗
its, ai, bi,Ω,Υ, σ2

a, σ
2
b , δε ∼ N

[
δuε, H

−1

δuε

]
where

Hδuε = Hδuε + S ×
N∑
i=1

T∑
t=1

ε′itεit

δuε = H
−1

δuε

[
Hδuεδuε +

N∑
i=1

T∑
t=1

ε′it

(
S∑
s=1

(y∗its −WitΩ− ai)
)]

.

8. The posterior distribution of the variance parameter σ2
b is inverse gamma, i.e.

σ2
b | yit,Wit, qit,Qit, y

∗
its, ai, bi,Ω,Υ, δuε, σ

2
a, δε ∼ IG

N
2

+ ab,

(
b−1
b +

1

2

N∑
i=1

b′ibi

)−1
 .
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9. Finally, the posterior distribution of the variance parameter δε is inverse gamma,

i.e.

δε | yit,Wit, qit,Qit, y
∗
its, ai, bi,Ω,Υ, δuε, σ

2
a, σ

2
b ∼

IG

NT
2

+ aδε ,

(
b−1
δε

+
1

2

N∑
i=1

T∑
t=1

(qit −QitΥ− bi)2

)−1
 .

Steps of the MCMC algorithm are as follows:

Algorithm 2

1. Sample y∗(1)
its from p(y∗its | yit,Wit, qit,Qit, a

(0)
i ,Ω(0), σ2(0)

a , b
(0)
i ,Υ(0), δ(0)

uε , σ
2(0)

b , δ(0)
ε )

2. Sample a(1)
i from p(ai | yit,Wit, qit,Qit, y

∗(1)
its ,Ω

(0), σ2(0)

a , b
(0)
i ,Υ(0), δ(0)

uε , σ
2(0)

b , δ(0)
ε )

3. Sample Ω(1) from p(Ω | yit,Wit, qit,Qit, y
∗(1)
its , a

(1)
i , σ2(0)

a , b
(0)
i ,Υ(0), δ(0)

uε , σ
2(0)

b , δ(0)
ε )

where Ω(1)=[δ(1), ψ(1),β(1),λ(1),φ
(1)
1 ]

4. Sample σ2(1)

a from p(σ2
a | yit,Wit, qit,Qit, y

∗(1)
its , a

(1)
i ,Ω(1), b

(0)
i ,Υ(0), δ(0)

uε , σ
2(0)

b , δ(0)
ε )

5. Sample b(1)
i from p(bi | yit,Wit, qit,Qit, y

∗(1)
its , a

(1)
i ,Ω(1), σ2(1)

a ,Υ(0), δ(0)
uε , σ

2(0)

b , δ(0)
ε )

6. Sample Υ(1) from p(Υ | yit,Wit, qit,Qit, y
∗(1)
its , a

(1)
i ,Ω(1), σ2(1)

a , b
(1)
i , δ(0)

uε , σ
2(0)

b , δ(0)
ε )

where Υ(1)= [η(1),γ(1),µ(1),φ
(1)
2 ]

7. Sample δ(1)
uε from p(δuε | yit,Wit, qit,Qit, y

∗(1)
its , a

(1)
i ,Ω(1), σ2(1)

a , b
(1)
i ,Υ(1), σ2(0)

b , δ(0)
ε )

8. Sample σ2(1)

b from p(σ2
b | yit,Wit, qit,Qit, y

∗(1)
its , a

(1)
i ,Ω(1), σ2(1)

a , b
(1)
i ,Υ(1), δ(1)

uε , δ
(0)
ε )

9. Sample δ(1)
ε from p(δε | yit,Wit, qit,Qit, y

∗(1)
its , a

(1)
i ,Ω(1), σ2(1)

a , b
(1)
i ,Υ(1), δ(1)

uε , σ
2(1)

b )

10. Repeat steps 1-9 R times and at each step update the conditioning variables with

their most recent values.
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Successive draws from the conditional densities one through nine via Gibbs sam-

pling will create a sequence of draws that will eventually converge to the full posterior

(20).

Given MCMC estimates of δ(r)
ε and δ(r)

uε I then obtain estimates of the variance

parameters σ2
ε, σ

2
u, and σuε by solving the equations:

σ2(r)
ε = δ(r)

ε , σ(r)
uε = δ(r)

uε × σ2(r)
ε and σ2(r)

u = 1 +
σ

2(r)
uε

σ
2(r)
ε

Where the superscript r indicates that I obtain values for σ2
u, σ

2
ε, and σuε during each

MCMC draw (r = 1, ..., R).

For a continuous explanatory variable, Ωj, straightforward calculations of the

posterior distribution for the marginal effects follow as

Ω̂
(r)
j φ(WitΩ̂

(r) + â
(r)
i + δ̂

(r)

uε ε̂
(r)
it ). (21)
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4 Application: the effect of school spending on

student achievement

4.1 Literature

Examining the relationship between school spending and student achievement has

been the focus of a large body of work, and much debate, dating back to the Cole-

man Report (Coleman et al. 1966). The Coleman Report gained national attention

primarily because of its findings that the main determinants of student achievement

were not related to school inputs, but rather the characteristics of the student’s fam-

ily and friends. In response to these findings, numerous researchers have attempted

to analyze the relationship between school inputs (including school spending) and

student achievement using the “education production function” (EPF) — a model

which studies the relationship between inputs into the learning process and some

measure of educational output. Inputs generally include school spending or other

school resources, student and school characteristics, and family background, while

output is measured using some degree of student achievement, typically in the form

of standardized test scores (Hanushek, 2003).

Although a large number of researchers have used the EPF to examine the rela-

tionship between school spending and student achievement, little, if any consensus
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has been reached. In a series of often cited literature reviews, Hanushek (1986, 1996,

and 2003) has summarized the results of hundreds of EPFs studies dating from the

early-1970’s to mid-1990’s. Using a statistical technique known as vote counting, he

categorized the regression results of each study based on statistical significance and

direction (positive or negative). In his recent review, Hanushek (2003) showed that

out of 163 EPF studies, 66% found a statistically insignificant relationship between

school spending and student achievement, 27% found a positive (and significant) re-

lationship, and 7% were negative (and significant). Based on similar findings from his

previous reviews, Hanushek (1986) wrote “there appears to be no strong or system-

atic relationship between school expenditures and student performance”(Hanushek,

p. 1162). This statement has however been challenged by several researchers. In par-

ticular, Hedges et al. (1994) and Greenwald et al. (1996) criticized Hanushek’s vote

counting methodology, and reanalyzed the literature through meta-analysis. Both of

these studies found that a strong and positive relationship between school spending

and student achievement did in fact exist.

Other researchers have argued that the mixed conclusions found in the literature

are not due to a lacking relationship between school spending and student achieve-

ment, but are the product of modeling differences and misspecifications. In particular,

many of the traditional EPF studies may fail to account for endogeneity, arising be-

cause school spending might be correlated with unobservable determinants of student

achievement (Ferguson & Ladd, 1996; Ludwig & Bassi, 1999; Guryan, 2001; Webbink,

2005). This could occur if relevant explanatory variables, such as family inputs, are

excluded from the model (omitted variables), but are related to both school spending
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and student test scores. For example, if highly motivated parents spend additional

time helping their children with their homework, and also choose to send their children

to schools with more resources, then a researcher who does not observe parental mo-

tivation may find that school resources have a positive effect on student achievement.

However, in reality the higher achievement is due in part by parental motivation

(Tiebout, 1956; Mayer, 1997; Webbink, 2005). In this case, traditional EPF models

which assume strict exogeneity may overstate the true relationship between school

spending and student achievement. Ludwig and Bassi (1999) explained that if this

were the only reason to expect estimation bias then traditional EPF studies could be

viewed as “upper bound estimates.”However, there is also a possibility that some

schools are funded in a compensatory manner, whereby lower achieving schools in-

crease spending in an effort to raise the student achievement level. If this is true then

traditional EPF estimates may actually underestimate the true relationship between

school spending and student achievement (Heckman et al., 1996).

In an effort to account for these endogenous changes in school spending numerous

researchers have applied instrumental variable (IV) regression techniques, and have

generally found a larger positive relationship between school spending and student

achievement as compared to the traditional studies which assume strict exogeneity

(see Ferguson and Ladd, 1996; Ludwig & Bassi, 1999; Dewey et al., 2000; Roy,

2003; Levacic et al., 2005; Papke, 2005; Webbink, 2005; Jenkins et al., 2006; Papke

and Wooldridge, 2008). In practice however, finding a proper instrument can be a

challenging task as it must be correlated with school spending but have no relationship

with student achievement otherwise.
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In much of the literature, researchers have tried to solve this problem by creatively

exploiting some change in “nature,”often brought about by a new government policy

that leads to (arguably) exogenous variations in school resources. For instance, Roy

(2003), Papke (2005), and Papke and Wooldridge (2008) all used longitudinal data

to analyze the relationship between school spending and student achievement among

Michigan elementary schools in the mid 1990’s. During this time period a new law

(Proposal A) was passed which changed Michigan’s school funding scheme to one that

relied more heavily on state funding (through sales tax revenues) and less on local

property taxes. This led to large changes in school spending (see Papke, 2005), which

the researchers assumed was unrelated to student achievement. As another example,

Guryan (2001) took advantage of changes in state funding among Massachusetts

school districts caused by the Massachusetts Education Reform Act of 1993. The

policy was implemented in an effort to equalize spending across Massachusetts school

districts, which Guryan argued led to exogenous changes in district spending levels.

In many instances however, there are school systems of interest but no natural

experiments to exploit. In these cases the issue of endogeneity can still be addressed

if the researcher can locate an external instrument. For example, Dewey et al. (2000)

proposed using political variables such as whether the democratic or republican party

had control of the state government (both legislative and executive). However, this

data will not have much variation as it is can only be measured at the state level, and

therefore can only be used to compare schools across states. As another alternative

Ferguson and Ladd (1996) analyzed district-level data on Alabama schools and used

per-capita income and property values as instruments. However, this instrument
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might not be valid, as previous research has indicated that student achievement may

have a positive impact on housing prices (Hayes & Taylor, 1996; Bogart and Cromwell,

1997; Black, 1999; Weimer and Wolkoff, 2001; Figlio & Lucas, 2004).

4.2 Data summary

The purpose of the empirical work in this section is to further investigate the rela-

tionship between school spending and student achievement by analyzing data on a

large subset of Florida elementary schools, observed over a seven year period. The

paper attempts to address the endogeneity problem in a number of ways. First, data

are collected from a variety of sources in order to control for as many relevant school,

student, and family characteristics as possible. In addition, the panel data methods

outlined in Sections 2 and 3 are applied in order to allow for individual school effects

which control for any time-constant unobserved difference across schools such as (but

not limited to): school administration, school policy differences, school structural dif-

ferences, geographical differences, and other historical differences. Finally, the model

will attempt to identify a causal relationship between school spending and student

achievement through the use of SEM and IV methods in order to capture exogenous

changes in school spending.

The data are comprised of 1138 public elementary schools, located in 28 of the

larger Florida school districts. (For the purposes of this paper a large school district

is defined as one which contains at least 10 elementary schools.) The data set was

constructed using multiple sources. School-level data were collected for a seven year
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period between 1999 and 2005 from the Florida School Indicators Report (FSIR) and

the Common Core of Data (CCD), provided by the Florida Department of Education

and National Center of Education Statistics respectively. The year 1999 refers to the

school year of fall 1998 - spring 1999, and 2005 refers to the school year of fall 2004 -

spring 2005. Additional city-level data were collected for the year 2000 using the U.S.

Census Bureau’s database, and district-level data were gathered from the property

valuation and tax data spreadsheets (1999-2005) supplied by the Florida Department

of Revenue.

The FSIR database provided detailed school level information on standardized test

scores as well as school and teacher characteristics. School and teacher characteristics

included variables such as the school size (number of students), teachers’education,

the proportion of staff devoted to instruction, and school spending per-pupil (which

was converted into 1999 dollars using the Southeast CPI data.) Student composition

measures included variables such as the percentage of students classified into gifted,

special education, and English as a second language (ESOL) programs, as well as

the percentage of students absent for more than 21 days in a school year. The CCD

provided information on each school’s racial and ethnic composition and physical

location (city and zip code.) These data were then matched with data from the 2000

Census to derive adult education levels for each neighborhood. Finally, the Florida

Department of Revenue data was used to gather county level property taxes.12

The sample time period is of particular interest because it coincides with the 1999

12In Florida, a school district’s boundary is defined by the county boundary. Therefore the terms
school district and county can be used interchangeably.
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implementation of Florida’s A-plus Program for Education, a school accountability

reform aimed at increasing student achievement throughout the state. At the center

of the reform was a school grading system used by the state government to rank

each Florida public school on a scale of A through F. Grades were based mainly

on each school’s overall student performance on the FCAT exam — a high stakes

standardized test administered annually to Florida’s public school students. Schools

that received a D or an F grade were provided with assistance and intervention plans,

which if necessary included access to additional resources and the reassignment or

even replacement of school staff members. For a detailed summary of assistance

plans available for F and D schools see Chakrabarti (2007). The commissioner of

education (responsible for budget development and school assessment/accountability)

was also allowed to give preference to these schools when allocating Federal and State

grants designed to improve student achievement (FLDOE, Rule 6A-1.09981, 1999).

As a result, I believe that school spending may be determined, in part, by student

achievement, and therefore treating spending as an exogenous covariate may lead to

biased estimates.

In order to control for endogenous school spending I used district-level property

taxes as an instrumental variable, however, it is important to note that student

achievement was measured at the school level. The chosen instrument was mea-

sured as the total dollar value of property taxes levied per capita at the district-level.

(These figures were calculated by the Florida Legislative Committee on Intergovern-

mental Relations (LCIR) staff as the total property taxes levied per county divided

by county population estimates. The Southeast Consumer Price Index (CPI) data,
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collected from the Bureau of Labor Statistics, was then used to transform these fig-

ures into 1999 dollars.) Florida public schools are financed with a mixture of state,

local and federal funding. Specifically, in 2007 Florida school districts received ap-

proximately 40% of their finances from state sources, supplied primarily from legisla-

tive appropriations; 50% from local funds, provided mainly by property taxes; and

10% from the federal government. Since school districts are funded in large part by

property taxes, this instrument should be highly correlated with school spending.

Descriptive statistics indicate that school spending per student was larger in districts

with higher property taxes per capita, as the correlation coeffi cient between these two

variables is 0.346. This indicates that the chosen instrument is moderately correlated

with the endogenous explanatory variable. This instrument has been used previously

in the literature by Ferguson and Ladd (1996), however, one issue is that student

achievement may have a positive effect on housing prices, which could invalidate the

chosen instrument (Black, 1999; Figlio and Lucas, 2004). Therefore, to dissolve any

relationship that may exist between school-level student achievement and district-

level property taxes, the sample is comprised only of those schools located within the

larger Florida school districts where there will likely be a mixture of high perform-

ing and low performing schools. Thus, even if one school displays very high student

achievement, this should not boost all property values in the entire district, merely

those located in close proximity to the high performing school. Furthermore, Florida

saw a large increase in housing prices during this time period due to increased real

estate investment (in what is commonly referred to as the housing bubble). Thus

there was an increase in property taxes and in turn an increase in school spending
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which was unrelated to student achievement. These unique circumstances provide

additional justification for the validity of the chosen instrument.

The variables used in the analysis are defined and summarized in Table 1. The

explanatory variables can be separated into three subcategories: time varying regres-

sors, xit, (including GIFT, DISAB, ABSENT, and DEGREE) which will be treated

with the Chamberlain-device, regressors with little or no variation across time, git,

(including PARENT EDUC, BLACK, HISPANIC, ENGLISH, and INSTRUCT), and

the potentially endogenous explanatory variable, qit, (EXPEND), which was measured

as real spending in 1999 dollars, and was calculated using the Southeast CPI data.

4.2.1 Standardized test pass rates and state assigned school grades

In line with the A+ plan the outcome variable of interest, student achievement, was

measured using each school’s overall FCAT performance. The FCAT exams were

graded on a scale of 1 (lowest) through 5 (highest) where levels 1 and 2 represent

“below basic”achievement and “basic”achievement respectively, while levels 3 and

above correspond to “proficiency.”The analysis focused on fourth grade reading and

fifth grade math outcomes as these were the only primary grade levels tested contin-

uously throughout the sample period.13

The FSIR database provided detailed information on the percentage of students

scoring in each of the five FCAT achievement levels. From this I created measures

13Currently the FCAT is administered to all students in grades 3 through 10, testing their knowl-
edge in math, reading, writing, and science. Though, when first implemented in 1998, the reading
exams were only given to students in grades 4, 8, and 10 while the math exams were given to stu-
dents in grades 5, 8, and 10. It was not until 2001 that the FCAT exams were extended to all grades
between third and tenth.
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indicating the percentage of fourth graders at school i time t that passed the reading

FCAT exam and the percentage of fifth graders that passed the math FCAT exam

(achieved a level 3 or higher). These outcome measures, denoted READ_PASS and

MATH_PASS, were chosen for their policy relevance as they were the main measures

used by the state to calculate school grades.

Overall, the average pass rate for the 4th grade reading exam was 57.8% and

ranged from 7% up to 99%, while the average pass rate for the 5th grade math exam

was 47.6% and ranged from 0% to 95%. Table 2 displays more descriptive summary

statistics on pass rates for the fourth grade reading FCAT. The table indicates that

for every percentile, the proportion of students passing increased in every year with

the exception of the year 2000. In the beginning of the sample period FCAT pass

rates increased slightly from one year to the next, but towards the end of the sample

period, these yearly gains were much more prominent. For example, in 1999 the

reading pass rate among the lowest 10th percentile of schools was only 27%, in 2002

it had risen to 33%, and by 2005 this had risen to 52%. For schools in the 50th

percentile, the pass rate rose from 53% in 1999 to 55% in 2002, and dramatically up

to 71% in 2005. Finally, for those in the top 90th percentile, the pass rate rose from

74% in 1999, to 75% in 2002, and 87% in 2005.
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Table 3 reports similar summary statistics for the fifth grade math FCAT exam.

The pass rates associated with the math exam were almost always lower than those

of the reading exam. However, the table reveals a similar pattern of increased im-

provement over time. Papke (2005) and Papke and Wooldridge (2008) found a similar

trend (of increased achievement) to exist among public school students in the state

of Michigan. They attributed this to “a ‘teaching to the test phenomenon,’making

the tests easier over time, increased real spending, or some combination of these”

(Papke and Wooldridge, p. 127). In this paper, I try to determine how much of this

increase in student achievement among Florida students, if any, can be attributed to

an increase in real spending.

In order to put these figures into perspective, Tables 4 and 5 illustrate how FCAT

performance varied across the state assigned school grades. For the average A school

roughly 70% of the fourth grade students passed the reading test, and 60% of the fifth

graders passed the math test. Among these students about 8% scored a perfect 5 out

of 5, and more than 25% scored a level 4, while less than 17% of the school’s students

received a level 1 (the lowest possible score). Conversely, for the average F school, the

passing rates for the reading and math exams were 22% and 15% respectively, and

for both exams, less than 1% of the student population had achieved a level 5, less

than 5% had achieved a level 4, and over 55% of the school’s students had received a

level 1.
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Table 2: Pass rates on 4th grade reading FCAT. Percentiles, 1999-2005

Year 10th 25th 50th 75th 90th

1999 27% 39% 53% 66% 74%
2000 28% 39% 51% 63% 72%
2001 31% 41% 52% 64% 73%
2002 33% 43% 55% 66% 75%
2003 37% 48% 60% 71% 80%
2004 49% 59% 69% 78% 85%
2005 52% 61% 71% 79% 87%

Table 3: Pass rates on 5th grade math FCAT. Percentiles, 1999-2005

Year 10th 25th 50th 75th 90th

1999 15% 25% 38% 50% 62%
2000 23% 32% 44% 56% 65%
2001 25% 35% 46% 58% 68%
2002 27% 36% 48% 61% 70%
2003 28% 38% 50% 61% 73%
2004 29% 39% 51% 63% 73%
2005 33% 44% 56% 67% 77%

4.2.2 Expenditures per pupil and instrumental variables

The average school in the sample spent roughly $4,700 per student in a given year (in

1999 dollars) though this ranged from $722 up to $12,808 per student. Three schools

in the sample had a budget of less than $1,000 per student (all of which were during

the 2000 school year) and seven had a budget of over $10,000 per student (all in 2005).

Interestingly, the three lowest spending schools were all located in Broward county

and were all higher performing schools as two of the three had been assigned an A

grade by the state and the third had received a B (in 2000). Conversely, the seven

highest spending schools were all located in Miami-Dade county, and among these
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Table 4: FCAT scores (by state assigned school grades) 4th grade reading exam

Percentage of Students at Each Achievement Level

School Grade % Pass Level 1 Level 2 Level 3 Level 4 Level 5

A 70.7% 16.2% 12.9% 33.0% 29.1% 8.6%
B 60.3% 23.3% 16.1% 32.9% 22.1% 5.3%
C 48.9% 32.7% 18.3% 29.8% 16.1% 3.0%
D 31.7% 50.7% 17.5% 22.2% 8.4% 1.1%
F 21.8% 61.5% 16.4% 16.9% 4.4% 0.5%

Table 5: FCAT scores (by state assigned school grade) 5th grade math exam

Percentage of Students at Each Achievement Level

School Grade % Pass Level 1 Level 2 Level 3 Level4 Level 5

A 60.5% 14.9% 24.3% 26.4% 25.7% 8.4%
B 50.3% 21.3% 28.1% 25.1% 20.1% 5.1%
C 37.4% 30.2% 32.2% 21.6% 13.3% 2.5%
D 23.9% 45.2% 30.7% 15.7% 7.1% 1.1%
F 15.03% 56.7% 28.0% 11.0% 3.7% 0.33%

schools only one was awarded an A grade, two had received C’s, and the remaining

four had all been assigned D grades (in 2005).14

Table 6 contains percentiles of spending per pupil from 1999 through 2005. For

each percentile, average expenditures per pupil rose every year except between the

years 2001 and 2002. For example, in 1999 the lowest 10th percentile of schools spent

an average of $3,371 per student, and in 2005 they spent an average of $4,282 per

student, an increase of 27% in 7 years. Among schools spending in the top 90th

percentile, average per pupil spending rose from $5,342 in 1999 to $6,954 in 2005, an

14To determine whether these outliers had any impact on the subsequent analysis, additional
MCMC simulations were performed without such outliers included. The results were unaffected.
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increase of 30% in 7 years. These figures also indicate that there was a large spending

gap between the higher spending schools and the lower spending schools during the

sample period. In each year, schools in the 50th spending percentile spent roughly

20% more than those in the 10th percentile, and schools in the top 90th spending

percentile spent roughly 60% more than those in the 10th percentile.

Table 7 reports average school spending per-student across state assigned school

grades and by year. The table indicates that, throughout the grade distribution,

school spending had increased over time. Furthermore, regardless of the year, the

lower performing D and F schools spent a considerable amount more per student than

the higher performing A, B, and C schools. For example, the average A school only

spent $3,773 per student in 1999 compared to $4,642 per student among D schools and

$5,144 among F schools. While, in 2005 average per-pupil spending among A schools

was $5,338, but over $6,000 for the lower performing D and F schools. This indicates

that Florida schools were likely funded in a compensatory manner; perhaps due in

part by the assistance and intervention plans assigned to the lower performing schools,

as mandated by the A+ plan for education. This suggests that variations in school

spending were not exogenous; rather they were determined in part by school grades

and ultimately by student achievement. I therefore adopt an instrumental variables

approach whereby the selection equation models school spending as a function of

school level characteristics as well as an additional district level exclusion restriction.

Table 8 contains summary statistics for the instrumental variable. The table

indicates that for every percentile, district level property taxes per capita increased

during every year of the sample period. For example, in 1999 median property taxes
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was roughly $374 per capita and in the year 2005 median property taxes was $492

per capita, an increase of 31%. Much of this can be attributed to the rise in housing

prices caused by the real estate boom of the late 90s and early-2000’s.

4.2.3 Additional control variables

While the main goal was to analyze the impact of school spending on student achieve-

ment, I also included additional explanatory variables for family background, student

composition, race/ethnicity, and teacher characteristics which have previously been

shown to affect student achievement.

Family background has consistently been found to be a strong indicator of student

achievement (Coleman et al., 1966; Jencks et al., 1972; Mayer, 1997; Davis-Keane,

2005). To try and account for this, much of the research attempts to include infor-

mation regarding parental education and family income. However, in two separate

studies Gyimah-Brempong and Gyapong (1991) and Dewey et al. (2000) have shown

that including family income measures (or proxies for family income) as an input in

the EPF may lead to confounding results due to endogeneity and/or multicollinear-

ity because richer families are more likely to send their children to better schools

(leading to endogeneity), or perhaps to schools that spend more money (leading to

multicollinearity). As an alternative, both Gyimah-Brempong and Gyapong (1991)

and Dewey et al. (2000) suggest using parental education as the only measure of

family background. Therefore in this analysis family background was measured using

the adult education rate (percentage of adults age 25 or older with a Bachelor’s degree

or higher) associated with each school’s neighborhood, according to the US Census
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Table 6: School level expenditures per pupil in 1999 dollars. Percentiles, 1999-2005

Year 10th 25th 50th 75th 90th

1999 $3,371 $3,655 $4,027 $4,567 $5,342
2000 $3,380 $3,690 $4,169 $4,753 $5,392
2001 $3,549 $3,907 $4,375 $5,031 $5,740
2002 $3,464 $3,878 $4,348 5,019 $5,693
2003 $3,641 $4,004 $4,577 $5,188 $5,883
2004 $3,875 $4,317 $4,903 $5,610 $6,341
2005 $4,282 $4,750 $5,377 $6,140 $6,954

(2000). The average adult education rate was 22.9%, though this ranged from 0.6%

up to 58.3%.

Student composition was controlled for with the inclusion of the percentage of

students classified into gifted, special education, and English as a second language

(ESOL) programs (Variables GIFT, DISAB, and ENGLISH respectively). On av-

erage, roughly 4% of a school’s students were classified as gifted, 15.6% as special

education, and 9.8% as limited English proficient. Gifted programs usually provide a

more advanced curriculum than those of an average student’s whereas the converse

is true for programs focusing on students with learning disabilities. Therefore I as-

sume, a priori, that schools with a higher percentage of gifted students were likely

to perform better on standardized tests, while schools with a larger proportion of

special education students may have performed worse. This latter assumption must

be considered carefully however, as many special education students were legally ex-

empt from taking the FCAT exams.15 Some researchers have proposed that schools

15State law mandates that all students in the appropriate grade levels must participate in state
assessments like the FCATs. However, the inclusion of special education students is determined by
each student’s Individual Education Plan (IEP).
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Table 7: Average expenditures per pupil by school grade and year in 1999 dollars

School Grade 1999 2000 2001 2002 2003 2004 2005

A $3,773 $4,034 $4,265 $4,226 $4,442 $4,790 $5,338
B $3,882 $3,896 $4,322 $4,431 $4,704 $5,100 $5,543
C $4,035 $4,305 $4,546 $4,747 $5,196 $5,612 $5,973
D $4,642 $5,082 $5,490 $5,300 $6,194 $6,637 $6,622
F $5,144 $4,944 - $5,811 $5,249 - $6,036

Table 8: Total taxes levied per capita (district level) in 1999 dollars. Percentiles,
1999-2005

Year 10th 25th 50th 75th 90th

1999 $229.78 $267.82 $374.30 $396.79 $402.49
2000 $234.04 $300.11 $379.98 $419.88 $452.68
2001 $241.76 $308.45 $387.19 $420.42 $471.04
2002 $274.30 $335.41 $403.42 $460.55 $508.04
2003 $291.68 $359.01 $429.89 $489.89 $523.75
2004 $306.52 $380.66 $456.77 $527.43 $555.80
2005 $352.52 $430.48 $492.17 $567.19 $604.23

may have even used this law to their advantage by classifying some of their poorer

test takers into special education programs in an attempt to raise test pass rates

(Figlio and Getzler, 2002; Jacob, 2005; Cullen and Reback, 2006). If this is true,

then DISAB may have no association or even a positive effect on FCAT pass rates.

Finally, I assume a priori that ENGLISH has a negative effect on the FCAT exams

since both exams require a comprehensive understanding of the English language.16

Among the racial/ethnicity measures, the mean percentage of Black and His-

panic students in attendance were 27% and 20.4% respectively. Previous studies have

16The negative effect of ENGLISH may be negligible because ESOL students are not required to
take the FCAT exam during their first two years in the program.
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consistently found a negative relationship between BLACK and student achievement

(Rivkin, 1995; Fryer and Levitt, 2004; Neal, 2006; Hanushek, Kain and Rivkin, 2009).

However, the effect of HISPANIC might not be as straightforward, especially in the

state of Florida. At the national level, studies have typically found that Hispanic

students score lower on standardized test scores than do White students (Ingels et

al., 1994; National Center for Education Statistics, 1998; Phillips, 2000; U.S. De-

partment of Education, 2005), which many have attributed to “language acquisition

barriers”(Wojtkiewicz and Donato, 1995; National Center for Education Statistics,

1995; Bali and Alvarez, 2004). However, in Florida the Hispanic population consists

of a large proportion of Cuban and Puerto Rican families who place a strong emphasis

on education and tend to speak better English relative to Hispanics living elsewhere

in the United States (EDRFL, 2005). Furthermore, since I am also controlling for

the proportion of students with limited English proficiency, the coeffi cient associated

with Hispanic may only capture the achievement effect for those Hispanic students

that can speak English well. Therefore, a priori, I assume that BLACK will have a

negative effect on student achievement but make no such assumptions with respect

to the HISPANIC coeffi cients.

To control for the variation in school and teacher quality I also included measures

for teachers’education and the percentage of each school’s staff devoted to instruc-

tional purposes. Teachers’education, as measured by the percentage of teachers with

advanced degrees, is of great interest because most states associate advanced degrees

with teacher quality and award higher salaries to those holding a master’s or doc-

torate degree (Goldhaber and Brewer 1998). For example in 2005 the average salary
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for a Florida school teacher with a Bachelor’s degree was $38,516, while those with

a Master’s or Doctorate degree earned an average salary of $45,678 and $52,047 re-

spectively (Florida Department of Education, 2005). Those in favor of this increased

pay scale argue that teachers with advanced degrees have a higher level of knowledge

and expertise which they can pass on to their students. While a few studies have

suggested that this may be true (Ferguson, 1991; Greenwald et al., 1996), the ma-

jority of research has concluded that no such effect exists; teachers’education has no

significant impact on student achievement (Hanushek, 1986; Hanushek, 1997; Jepsen

and Rivkin, 2002; Rowan et al., 2002; Buddin and Zamarro, 2009). Kelly Henson,

the director of Georgia’s Professional Standards Commission, stated that one possi-

ble explanation for this relationship, or lack thereof, is that some teachers might be

“taking the path of least resistance to get a pay raise.”Suggesting that some teachers

are obtaining their advanced degrees from online colleges that offer less demanding

curricula or are receiving their degrees in fields unrelated to the subjects they teach

because the coursework might be easier. In the sample the mean proportion of teach-

ers with a master’s degree or higher was 32.1%, and approximately 65% of the school’s

staff was employed for instructional purposes. I assume a priori that the percentage

of a school’s staff devoted to instructional purposes (INSTRUCT) will be positively

associated with student achievement but make no such assumption with regards to

the percentage of teachers with an advanced degree (DEGREE.) Finally, I controlled

for the percentage of students absent for more than 21 days in a school year, as these

students miss more of the curriculum than their cohorts and therefore it is likely that

they would perform worse on the FCAT exams than the average student.
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4.3 Results

To initiate the Gibbs sampler, starting values for the model parameters were ran-

domly drawn from the uniform distribution bounded between 0 and 1, and values

for the projection error terms ai and bi were randomly drawn from the normal dis-

tribution with mean 0 and standard deviation 0.1.17 The reason for why the diffuse

priors were not used to draw the initial values was that when I did so it took consid-

erably more time for the Markov chain of the multi-parameter model to converge to

the stationary distribution. I fit the baseline models (both the linear and fractional

probit models, assuming strict exogeneity) using the algorithm outlined in Section 2,

running the Markov chains for 20,000 iterations, following an initial 5,000 replication

burn-in phase. The IV models were then estimated using the algorithm outlined in

Section 3. After some preliminary simulations, I found that the sequential draws

of the IV models (both linear and fractional probit) displayed higher degrees of au-

tocorrelation, indicating that the simulations may be slower to converge. This was

addressed by running longer MCMC simulations of 35,000 iterations with an initial

20,000 replication burn-in phase. Separate models were fit for each FCAT exam (4th

grade reading and 5th grade math).

In Table 9 I present the posterior estimates for the baseline models (linear and

fractional probit) with 4th grade reading pass rates as the dependent variable. The

table reports posterior means, posterior standard deviations (SD) and 95% highest

posterior density intervals (HPDI) for all parameters listed in Table 1. The results

found for the 5th grade math exam (reported in Table 10) were very similar to those

17For the linear model ai and bi are drawn from the standard normal distribution N(0, 1).
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presented in Table 9, and therefore I limit my discussion to the estimates associated

with 4th grade reading.

The baseline results suggest that an increase in per pupil expenditures does in

fact have a positive and significant effect on reading pass rates among 4th grade

students. This holds true for both the linear specification and the fractional probit

model. However, in the probit model the estimated spending effect is slightly smaller.

This is consistent with the notion that spending may exhibit diminishing marginal

returns which can be accounted for in the probit model. Conversely, the linear model

assumes a constant relationship between the explanatory variables and the outcome

variable, and therefore may slightly overestimate the true spending effect. Further-

more, the standard errors of the probit model are much smaller than those from the

linear specification resulting in much stronger effects. Thus, the effect of expenditure

is sharpened up with the more robust model specification. One advantage for using

the linear model, however, is that the slope coeffi cients are easy to interpret since

they have a one-to-one correspondence with the marginal effects. For instance, in

the linear model the estimated posterior mean of spending is 0.066. This implies

that a $1,000 increase in per student spending would increase reading pass rates by

6.6%. Conversely, in the probit model, the slope coeffi cient is 0.173, and is statisti-

cally significant, however, for interpretation the marginal effects must be calculated.

Therefore, I also estimate the posterior distribution for the marginal effects of all pa-

rameters (using sample average values ofWit, over N and T ) and report the posterior

means, standard deviations, and highest posterior density intervals of the marginal

effects in the last three columns of Table 9. For the marginal effect of spending, I
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find a posterior mean of 0.062, indicating that a $1,000 increase in spending would

increase pass rates by 6.2%; a nontrivial effect, almost identical to that of the linear

model.

The posterior distributions of the marginal effects of spending are plotted below

in Figures 1 and 2. For the linear model (Figure 1), the spending effect ranges from

0.0097 to 0.1202, while in the probit model (Figure 2), the posterior distribution of

the marginal effect ranges from 0.0603 to 0.0643. These plots show that the spending

effect is always positive as the entire posterior distribution is above zero in both

models.

The posterior estimates also indicate that PARENT EDUC, INSTRUCT and

GIFT all have large positive effects on reading FCAT pass rates.18 While DEGREE

has a small positive effect, and BLACK has a small negative effect. The posterior

mean for HISPANIC and ENGLISH are statistically insignificant in the linear model,

but display a positive effect in the nonlinear model, and DISAB has a positive and

significant posterior mean in both models. The latter could imply that schools were

trying to “game the system”by classifying some of their poorer test takers into test-

exempt special education programs. However, it is also possible that these estimates

are a by-product of model misspecification since the baseline models do not account

for endogenous spending. Thus, if Florida schools follow a compensatory funding

scheme these results may be biased

18According to the estimated marginal effects of the fractional probit model (reported in table 9) a
10% increase in the percentage of staff devoted for instructional purposes would, on average lead to a
4.8% increase in pass rates, while a 10% increase in the percentage of gifted students would increase
pass rates by 6.4%. Parental education has close to a one-to-one correspondence with reading pass
rates, (a 10% increase in the adult education rate would lead to a 9.2% increase in pass rates).
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In order to allow for endogenous spending I apply the IV method outlined in

Section 3. The selection equation, used to estimate school spending, includes all

explanatory variables from the original outcome equation as well as the instrument,

real property taxes per-capita measured at the district level. In Table 11 I display the

posterior results of the spending equation. Since spending is measured as a continuous

variable the selection equation is always linear, therefore the slope coeffi cients can be

treated as the marginal effects in both the linear model and the fractional probit

model.

The results reported in Table 11 indicate that the chosen instrument, property

taxes per-capita, has a strong positive effect on school expenditures in both the linear

and nonlinear model; this helps justify the choice in instruments. The table also

indicates that the proportion of students classified into gifted, special education, and

English as a second language programs all have a positive impact on school spending.

This is expected since these specialized classes are generally smaller in size and taught

by specialists or teachers with additional certifications who are typically paid a higher

salary. The proportion of teachers with advanced degrees also displays a positive

effect which is consistent with school spending patterns, as the average salary was

roughly 18.5% greater for teachers with a Master’s compared to a Bachelor’s degree,

and 35% higher for those with a Doctorate versus a Bachelor’s. Interestingly, I find

that parental education has a negative effect on school spending. This is consistent

with previous research which has indicated that, on average, higher educated parents

place a greater weight on their children’s education (Coleman, et al., 1966; Hanushek,

1996; Davis-Keane, 2005). Therefore, it is more likely that higher educated parents

55



Figure 1: Posterior distribution of spending —linear model

Figure 2: Posterior distribution of spending —fractional probit model
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would enroll their children into higher performing A or B schools, which as illustrated

in Table 7, spend less money on average than their lower performing counterparts.

Thus a higher adult education rate may be associated with lower school spending but

higher school quality.

Finally, Table 12 presents the estimated results of the structural equation with

endogenous spending and 4th grade reading pass rates as the dependent variable.

Once again the discussion is limited to the estimates associated with the 4th grade

reading exam. Estimates for the 5th grade math exam are reported in Table 13 and

are very similar to those reported in Table 12.

Similar to the baseline results, I find a spending effect that is positive and sta-

tistically significant; however, compared to the baseline model, this effect is much

larger in magnitude. In the linear IV model, the posterior mean for EXPEND is

0.101, indicating that a $1,000 increase in per pupil spending would lead to a 10.1%

increase in reading pass rates. This is more than 3 percentage points larger than the

estimated effect from the baseline linear model.

In the fractional probit IV model the posterior mean for school spending is 0.268,

which is more than 1.5 times larger than the spending coeffi cient in the baseline probit

model. To interpret this coeffi cient I calculate the marginal effects (reported in the

last set of columns of Table 12), and find an estimated spending effect (posterior

mean of the marginal effect of spending) of 9.6%. Thus, I find that the estimated

effects of both the linear IV and fractional probit IV models are similar, although the

probit estimates are slightly smaller, as are their standard errors.
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Table 11: Posterior estimates for 4th grade reading. Expenditure equation

Linear Model Fractional Probit Model

Variable Coeffi cient Coeffi cient

Mean SD HPDI Mean SD HPDI

TAXES 7.24 (0.20) (6.75, 7.54) 8.45 (0.26) (8.04, 9.04)
PARENT EDUC -1.55 (0.37) (-2.25, -0.82) -1.64 (0.35) (-2.40, -0.99)

BLACK 1.03 (0.16) (0.70, 1.34) 1.12 (0.17) (0.75, 1.40)
HISPANIC -0.44 (0.25) (-0.92, 0.04) -0.38 (0.26) (-0.89, 0.16)
ENGLISH 1.22 (0.19) (0.857, 1.59) 1.59 (0.24) (1.15, 2.09)
INSTRUCT -0.56 (0.18) (-0.91, -0.21) -1.16 (0.18) (-1.52, -0.83)
GIFT 1.25 (0.15) (0.95, 1.54) 1.40 (0.23) (0.94, 1.84)
DISAB 1.34 (0.13) (1.096, 1.61) 0.94 (0.18) (0.58, 1.26)
ABSENT -0.022 (0.22) (-0.45, 0.41) -0.20 (0.23) (-0.66, 0.23)
DEGREE 0.37 (0.07) (0.23, 0.49) 0.33 (0.07) (0.18, 0.47)

For the IV models, the posterior distributions of the marginal effects of spending

are plotted in Figures 3 and 4. For the linear IV model (Figure 3), the spending

effect ranges from 0.015 to 0.192, while for the fractional probit IV model (Figure

4), the posterior distribution of the marginal effect ranges from 0.0748 to 0.1095.

Similar to the baseline models, these plots indicate that the spending effect is always

positive as the entire posterior distribution is above zero in both models; though the

estimated marginal effects are more than 50% larger for the IV models. Observing IV

estimates above the baseline estimates is consistent with previous literature (Ferguson

and Ladd, 1996; Dewey at al., 2000; Roy, 2003; Levacic et al., 2005; Papke and

Wooldridge, 2008) and is also consistent with the idea that Florida schools were

funded in a compensatory manner.

The IV results presented in Table 12 also indicate that parental education has a

positive effect on student achievement. According to the fractional probit IV model,

a 10% increase in the adult education rate is associated with a 3.6% increase in
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reading pass rates. While this effect is nontrivial, it would be very diffi cult for a

community to increase the adult education rate by 10%, therefore its relevance from

a policy perspective is negligible. Of greater interest are the posterior estimates

associated with INSTRUCT and DEGREE, two inputs that schools do have control

over. I find that INSTRUCT has a strong positive effect on student outcomes, while

DEGREE does not. Focusing on the fractional probit IV estimates, a 10% increase

in the percentage of staff devoted to instruction (INSTRUCT) would, on average,

increase reading pass rates by 4.8%, a relatively large effect; while a 10% increase

in the percentage of teachers with advanced degrees would only increase pass rates

by 0.35%, an almost nonexistent effect. It is important to note here that this does

not imply that teacher quality is irrelevant; in fact numerous studies have found that

variations in teacher quality have a large impact on student achievement (Murnane

and Phillips, 1981; Hanushek, 1992; Rivkin et al., 2005). Rather this simply implies

that teacher’s education may not be a very strong indicator for teacher quality as was

discussed earlier.

The IV results also indicate that GIFT has a large positive effect on reading pass

rates, while the posterior mean of DISAB is now insignificant. This implies that

schools were probably not classifying the poorer test takers into test-exempt special

education programs just to boost FCAT scores, as was suggested by the baseline re-

sults. To investigate this further I look at the special education classification rate for

all Florida elementary schools in the sample between 1997 and 2005. The average clas-

sification rates are reported in Table 14. Two extra years of data are included (1997

and 1998) in order to determine whether the introduction of either the FCAT exam-
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inations (in 1998) or the implementation of school accountability reforms (in 1999)

had any impact on the classification rate. If schools were “gaming the system”and

classifying their poorer test takers into test-exempt special education programs there

would likely be a large spike in the classification rate shortly after the introduction of

the FCAT exams and/or after the A+ plan. Instead the classification rate was fairly

stable throughout the sample period, thus providing little evidence to indicate that

schools were “gaming the system.”The posterior mean of BLACK is still negative,

which is expected, while HISPANIC is now positive. This is consistent with previ-

ous research indicating that the Hispanic population in Florida places a very strong

emphasis on education (EDRFL, 2005), and also because I am already accounting

for limited English proficiency. Furthermore, Hanushek and Raymond (2004) found

that, while school accountability reforms such as the A+ plan for education led to

wider achievement gaps between Black and White students, they actually narrowed

the Hispanic-White achievement gap.
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Table 14: Special education classification rates, 1997-2005

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005

Classification Rate 14.5% 14.9% 15.1% 15.4% 15.6% 15.5% 15.9% 16.0% 15.8%

Figure 3: Posterior distribution of spending —linear IV model

Figure 4: Posterior distribution of spending —fractional probit IV model
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5 Model comparison

In this paper I consider two fractional probit models with correlated random effects:

the single equation baseline model which assumes that all explanatory variables are

exogenous and the simultaneous equation IV model which allows for endogeneity.

The single equation model is obtained by restricting the covariance parameter, δuε,

to zero while the IV model leaves δuε unconstrained. Thus I can perform a formal

test of endogeneity by setting δuε to zero and testing the null hypothesis H0 : δuε = 0

against the alternative H1 : δuε 6= 0.

Denoting M1 as the constrained model and M2 as the unconstrained model, the

Bayes factor for the null hypothesis is defined as

B1,2 =
m(y |M1)

m(y |M2)
,

where m(y|Mj) is the marginal likelihood of the model specification Mj, j = 1, 2.

Since M1 is simply a nested form of M2 The Bayes factor, BF1,2, can be calculated

by using the Savage-Dickey density ratio approach (Verdinelli and Wasserman, 1995).

Specifically,

B1,2 =
p(δ∗uε | data)

p(δ∗uε)
,
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where p(δ∗uε | data) is the posterior density of the covariance parameter, δue, and p(δ
∗
ue)

is the prior of δuε calculated at the points δ
∗
ue = 0. Estimating the prior density at

δ∗ue is straightforward, however, the unconditional posterior density p(δ
∗
ue | data) is

unknown and must be estimated using the output from the MCMC simulation. The

posterior density of δue can be estimated by averaging the full conditional densities

over the number of MCMC draws and conditioning on the model parameters and

augmented data (Deb, Munkin and Trivedi, 2009 ).19 This can be written as:

p̃(δue|data) =
1

R

R∑
r=1

p(δue | y∗(R)
its , a

(R)
i , b

(R)
i ,Ω(R),Υ(R), σ2(R)

a , σ
2(R)
b , δRε ),

which should be evaluated at δ∗ue.

Similar tests can be imposed in order to test whether the correlated random effects

specification is appropriate by restricting λ to zero in the baseline models, and both

λ and µ to zero in the IV models. In total there are three possible specification tests

that need to be implemented. Each test compares a nested model with a non-nested

model, and therefore the Savage-Dickey density ratio approach can be applied to all

three.

First, I test whether the correlated random effects specification is appropriate in

the baseline models by testing the joint null hypothesis H0 : λ1, ...,λT = 0 against the

alternative which leaves these parameters unconstrained. The test for the joint null

hypothesis H0 : λ1, ...,λT = 0 is strongly rejected for both models as the posterior

mean and standard deviation of the estimated Bayes factor is 2.94 × 10−21 (2.21 ×
19Note: In the linear model, the posterior of δ∗ue would be conditioned with respect to all of the

same model parameters except y∗its.
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10−19) for the linear model and 3.34×10−51 (4.78×10−52) for the probit model. Thus

providing overwhelming support in favor of the CRE specification.

For the IV models, I test whether the correlated random effects specification

is appropriate in the outcome equation by testing the joint null hypothesis H0 :

λ1, ...,λT = 0 against the alternative which leaves these parameters unconstrained,

and for the expenditure equation I test the joint null hypothesis ofH0 : µ1, ...,µT = 0.

In both the linear model and the fractional probit model, the null hypotheses are

strongly rejected with posterior means and standard deviations of less than 0.001,

again providing evidence in favor of the CRE specifications.

To determine whether spending is endogenous I focus on the covariance parameter,

δuε, which captures dependence between the error term in the outcome equation, u,

and the error term in the expenditure equation ε. In Figures 5 and 6 I plot the posterior

distribution of δuε. If spending were truly exogenous, the posterior distribution of δuε

would be centered at zero. However, in the linear model (Figure 5) the posterior is

centered at −0.0761 and is separated from zero by more than two standard deviations

(0.029), and in the probit model (Figure 6) δuε is centered at −0.178 which is more

than 4 standard deviations (0.037) away from zero. This provides some evidence

of endogeneity. As a formal test I calculate the Bayes factor with null hypothesis

H0 : δuε = 0 against HA : δuε 6= 0. The posterior mean and standard deviation of the

estimated Bayes factor is 0.0014 (0.00023) for the linear model and 0.00136 (0.000195)

for the fractional probit, both of which reject the null hypothesis of no endogeneity,

thus providing evidence in favor of using the IV models over the baseline methods.

Finally, in Figure 7 I plot the marginal effects of spending at different spending
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Figure 5: Posterior distribution of deltaUE —linear IV model

Figure 6: Posterior distribution of deltaUE —fractional probit IV model
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Figure 7: Marginal effects (of school spending) at different percentiles of spending
fractional probit models

levels, using the fractional probit models. This is done to assess the importance

of using a nonlinear model to allow for diminishing marginal returns of spending.

The estimated marginal effects are calculated at the 5th, 25th, 50th, 75th, and 95th

percentiles of the spending distribution, while all other explanatory variables are

averaged over N and T. For the baseline model, the estimated marginal effects are

calculated using Equation (10), while the IV model estimates are calculated using

Equation (21). For both models I find that the marginal effects are larger among

schools with below median spending levels, and as spending increases above the 50th

percentile the marginal effects decrease. This indicates that a $1,000 increase in

spending will have a larger impact on pass rates among lower spending schools than

it would among the higher spending schools. Therefore, to capture this diminishing

marginal effect of spending on test pass rates, a nonlinear specification seems more

appropriate than the traditional linear specification.
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6 Conclusion

In this paper I used various models to examine the relationship between school spend-

ing and test pass rates among Florida elementary schools. For all models, Bayesian

estimation methods were proposed through the use of Gibbs sampling (and data aug-

mentation in the fractional probit models), which allowed for effi cient estimation of

all parameters of interest.

In the empirical analysis I did not examine the effects of school accountability

programs such as the A+ plan for education and the NCLB nor did I attempt to

identify any “teaching to the test” phenomenon. Rather, the main focus of the

analysis was to quantify a causal relationship between school spending and student

achievement.

In all model specifications I found that real school spending had a positive and

statistically significant effect on student achievement. When estimating the average

effect of spending, I found that the linear estimates and nonlinear fractional probit

estimates were very similar, although the nonlinear estimates were slightly smaller

in magnitude and more precise. When estimating the marginal effects of spending

at various spending levels, I found evidence of diminishing marginal effects, giving

greater motivation for the nonlinear models which allow for diminishing returns. Fur-

thermore, the standard errors of all variables were much smaller in magnitude in
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the nonlinear specifications than in the linear models and therefore specifying the

fractional probit led to large gains in effi ciency.

Using the MCMC algorithms proposed in this paper, it was rather straightforward

to obtain slope coeffi cients and marginal effects for the nonlinear fractional probit

models, however, estimation required the introduction of an augmented dataset which

increased the dimensions of the parameter space by S × T observations per school.

This can greatly increase computational time. However, if one needs to obtain more

precise estimates of the average effects and/or estimates beyond the average effects,

such as marginal effects across the distribution of a particular variable or variables,

then the fractional probit models may be better suited.

Finally, in both the linear and nonlinear specifications, allowing for potential

endogeneity of spending led to estimated spending effects that were roughly 50%

larger than those found in the models which assume spending is strictly exogenous.

For instance, in the single-equation baseline models the estimated effect of a $1,000

increase in per pupil spending was an average increase in pass rates ranging from

6.2% (fractional probit model) to 6.6% (linear model). Whereas, in the simultaneous

equation IV models the estimated spending effect increased to 9.6-10.1%.

Based on the formal Bayes factor specification tests, I found strong evidence in

favor of the conclusion that school spending was endogenously related to student

achievement, and in this case, failure to account for endogeneity could lead to esti-

mated spending effects which were biased downwards. Of course, the IV results relied

on the validity of the chosen instrument, and I cannot dismiss the possibility that vari-

ations in district-level property taxes were not entirely exogenous. Furthermore, in
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an effort to capture exogenous changes in the instrument, I measured property taxes

at the more aggregate district level, but test pass rates at the school level. While,

this may dissolve the relationship between property taxes and student achievement,

it left me with data that had much less variation than would data at the school level.

Therefore, leading to weaker identification of the estimated spending effects. As a

result the IV estimates were less precise than were the estimates from the baseline

specification. However, this is a typical occurrence in any IV model regardless of data

aggregation.

As a final note, while I did find that increased spending had a fairly large posi-

tive impact on student achievement, these estimated effects were based on a $1,000

increase in per-pupil spending. For the average school in the sample, this equates

to a 20% increase in spending which is rather substantial. Therefore, even though

a positive relationship between school expenditures and student achievement exists,

this does not suggest that increasing school spending would be the most effective way

to increase student achievement, only that it could be part of a more comprehensive

solution.
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Appendices

Appendix 1: MCMC calculations for fractional probit baseline

model

The full augmented joint posterior can be written as

N∏
i=1

T∏
t=1

1√
2π

exp

[
−.5

S∑
s=1

(y∗its −WitΩ− ai)′ (y∗its −WitΩ− ai)
]
×

N∏
i=1

T∏
t=1

(
S∑
s=1

[I(dits = 1)I(y∗its > 0) + I(dits = 0)I(y∗its ≤ 0)]

)
×

(2π)−(1+Tk+k+h)/2 |HΩ|
1/2 exp [−.5(Ω−Ω)′HΩ(Ω−Ω)]×

N∏
i=1

1√
2πσa

exp
(
−.5a′iσ−2

a ai
)
× 1

Γ(aa)baaa
(σ2

a)
−(aa+1) exp

(
− 1

baσ2
a

)
. (22)

The steps of the MCMC algorithm are as follows:

1. The conditional posterior kernel for the latent variable y∗its is normally distributed

as y∗its | yit,Wit, ai,Ω, σ
2
a ∼ N [WitΩ + ai, 1], and is truncated at zero such that

y∗its > 0 if dits = 1 and

y∗its ≤ 0 if dits = 0.
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This can be shown by collecting all terms related to y∗its in (22):

N∏
i=1

T∏
t=1

1√
2π

exp

[
−.5

S∑
s=1

(y∗its −WitΩ− ai)′ (y∗its −WitΩ− ai)
]
×

N∏
i=1

T∏
t=1

(
S∑
s=1

[I(dits = 1)I(y∗its > 0) + I(dits = 0)I(y∗its ≤ 0)]

)

which immediately implies that the latent variables y∗its are conditionally independent

with normal distribution y∗its | yit,Wit, ai,Ω, σ
2
a ∼ N [WitΩ + ai, 1] and each variable

is truncated at zero.

2. The full conditional density for ai is normally distributed as, ai | yit,Wit, y
∗
its,Ω, σ

2
a ∼

N
[
ai, H

−1

a

]
, where

Ha = S × T + σ−2
a

ai = H
−1

a

[
T∑
t=1

(
S∑
s=1

(y∗its −WitΩ)

)]
.

To derive this full conditional density one must use the full posterior density kernel

(22), dropping any terms that are free of ai:

N∏
i=1

T∏
t=1

1√
2π

exp

[
−.5

S∑
s=1

(y∗its −WitΩ− ai)′ (y∗its −WitΩ− ai)
]
×

N∏
i=1

1√
2πσa

exp
[
−.5a′iσ−2

a ai
]
.

Focusing only on the terms in the brackets, and once again dropping terms free of ai,
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I am left with

exp

(
−.5

S∑
s=1

[
(y∗its −WitΩ− ai)′ (y∗its −WitΩ− ai) + a′iσ

−2
a ai

])
.

Then I can rewrite the term in the bracket as

[
(y∗its −WitΩ− ai)′ (y∗its −WitΩ− ai) + a′iσ

−2
a ai

]
= y∗

′

itsy
∗
its − y∗

′

itsWitΩ− y∗
′

itsai −Ω′W′
ity
∗
its + Ω′W′

itWitΩ

+ Ω′W′
itai − a′iy∗its + a′iWitΩ + a′iai + a′iσ

−2
a ai.

Again dropping any terms multiplicatively unrelated to ai:

− y∗
′

itsai + Ω′W′
itai − a′iy∗its + a′iWitΩ + a′iai + a′iσ

−2
a ai

= a′i(1 + σ−2
a )ai − a′i(y∗its −WitΩ)− (y∗

′

its −Ω′W′
it)ai

Adding over s and t:

a′i(S × T + σ−2
a )ai − a′i

[
T∑
t=1

(
S∑
s=1

(y∗its −WitΩ)

)]

−
[

T∑
t=1

(
S∑
s=1

(
y∗

′

its −Ω′W′
it

))]
ai

= a′iHaai − a′iHaai − aiHaai.
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Then I complete the square, by adding and subtracting the term ai
′Haai:

= a′iHaai − a′iHaai − ai′Haai + ai
′Haai − ai′Haai

= (ai − ai)′Ha(ai − ai)− ai′Haai.

Since the last term is free of ai, this simplifies to

(ai − ai)′Ha(ai − ai).

From here it is straightforward to see that ai | yit,Wit, y
∗
its,Ω, σ

2
a ∼ N

[
ai, H

−1

a

]
.

3. The full conditional of parameter vectorΩ can be shown to beΩ | yit,Wit, y
∗
its, ai, σ

2
a ∼

N
[
Ω,H

−1

Ω

]
, where

HΩ = HΩ + S ×
N∑
i=1

T∑
t=1

W′
itWit

Ω = H
−1

Ω

[
HΩΩ +

N∑
i=1

T∑
t=1

W′
it

(
S∑
s=1

(y∗its − ai)
)]

.

To derive this I collect the terms of the full posterior density kernel that are multi-

plicatively related to Ω:

N∏
i=1

T∏
t=1

1√
2π

exp

[
−.5

S∑
s=1

(y∗its −WitΩ− ai)′ (y∗its −WitΩ− ai)
]
×

(2π)−(1+Tk+k+h)/2 |HΩ|
1/2 exp [−.5(Ω−Ω)′HΩ(Ω−Ω)] .
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Dropping terms unrelated to Ω:

exp

(
−.5

S∑
s=1

[
(y∗its −WitΩ− ai)′ (y∗its −WitΩ− ai) + (Ω−Ω)′HΩ(Ω−Ω)

])
.

Then I can rewrite the term in the bracket as

[
(y∗its −WitΩ− ai)′ (y∗its −WitΩ− ai) + (Ω−Ω)′HΩ(Ω−Ω)

]
= y∗

′

itsy
∗
its − y∗

′

itsWitΩ− y∗
′

itsai −Ω′W′
ity
∗
its + Ω′W′

itWitΩ + Ω′W′
itai

− a′iy
∗
its + a′iWitΩ + a′iai + Ω′HΩΩ−Ω′HΩΩ + Ω′HΩΩ.

Dropping terms unrelated to Ω:

− y∗
′

itsWitΩ−Ω′W′
ity
∗
its + Ω′W′

itWitΩ + Ω′W′
itai

+ a′iWitΩ + Ω′HΩΩ−Ω′HΩΩ−ΩHΩΩ

= Ω′(HΩ + W′
itWit)Ω−Ω′(HΩΩ + W′

ity
∗
its + W′

itai)

− (ΩHΩ + y∗
′

itsWit + a′iWit)Ω.

Adding over s, i, and t:

Ω′

(
HΩ + S ×

N∑
i=1

T∑
t=1

W′
itWit

)
Ω−Ω′

(
HΩΩ +

N∑
i=1

T∑
t=1

[
W′

it

S∑
s=1

(y∗its + ai)

])

−
(

ΩHΩ +
N∑
i=1

T∑
t=1

[
S∑
s=1

(y∗
′

its + a′i)Wit

])
Ω

= Ω′HΩΩ−Ω′HΩΩ−Ω
′
HΩΩ.
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To complete the square I add and subtract the term Ω
′
HΩΩ:

= Ω′HΩΩ−Ω′HΩΩ−Ω
′
HΩΩ + Ω

′
HΩΩ−Ω

′
HΩΩ

= (Ω−Ω)′HΩ(Ω−Ω)−Ω
′
HΩΩ.

Since the last term is free of Ω, I am left with

(Ω−Ω)′HΩ(Ω−Ω).

This shows that Ω | yit,Wit, y
∗
its, ai, σ

2
a ∼ N

[
Ω,H

−1

Ω

]
.

4. The posterior distribution for σ2
a is inverse gamma:

σ2
a | yit,Wit, y

∗
its, ai,Ω ∼ IG

N
2

+ aa,

[
b−1
a +

1

2

N∑
i=1

a′iai

]−1
 .

Collecting all terms related to σ2
a:

N∏
i=1

1√
2πσa

exp
(
−.5a′iσ−2

a ai
)
× 1

Γ(aa)baaa
(σ2

a)
−(aa+1) exp

(
− 1

baσ2
a

)
.

Grouping like terms together, and ignoring terms unrelated to σ2
a I am left with

(
σ2
a

)−(N
2

+aa+1)
exp

[
−.5σ−2

a

(
2b−1
a + a′iai

)]
.
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where, adding over i, I find that σ2
a | yit,Wit, y

∗
its, ai,Ω ∼ IG

[
aa, ba

]
, where

aa =
N

2
+ aa and ba =

[
b−1
a +

1

2

N∑
i=1

a′iai

]−1

.

This concludes the MCMC algorithm.

Appendix 2: MCMC steps for linear model with correlated

random effects

1. The full conditional density for ai is normally distributed as

ai | yit,Wit,Ω, σ
2
a, σ

2
u ∼ N

[
ai, H

−1

a

]
, where

Ha = T × σ−2
u + σ−2

a

ai = H
−1

a

[
σ−2
u

T∑
t=1

(yit −WitΩ)

]
.

2. The full joint conditional density of block Ω =[ψ,λt,β,φ] is normally distributed

as Ω | yit,Wit, ai, σ
2
a, σ

2
u ∼ N

[
Ω,H

−1

Ω

]
, where

HΩ = HΩ +
N∑
i=1

T∑
t=1

σ−2
u W′

itWit

Ω = H
−1

Ω

[
HΩΩ +

N∑
i=1

T∑
t=1

σ−2
u W′

it(yit − ai)
]
.
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3. The conditional posterior distribution for σ2
u is inverse gamma:

σ2
u | yit,Wit, ai,Ω, σ

2
a ∼ IG

NT
2

+ au,

[
b−1
u +

1

2

N∑
i=1

T∑
t=1

(yit −WitΩ− ai)2

]−1
 .

4. The conditional for σ2
a is inverse gamma:

σ2
a | yit,Wit, ai,Ω, σ

2
u ∼ IG

N
2

+ aa,

[
b−1
a +

1

2

N∑
i=1

a′iai

]−1
 .

This concludes the MCMC algorithm.
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Appendix 3: MCMC calculations for fractional probit IVmodel

The full augmented posterior distribution of the IV model is proportional to

N∏
i=1

T∏
t=1

1√
2π

exp

[
−.5

S∑
s=1

(y∗its −WitΩ− ai − δuεεit)′(y∗its −WitΩ− ai − δuεεit)
]
×

N∏
i=1

T∏
t=1

1√
2πδε

exp
[
−.5(qit −QitΥ− bi)′δ−1

ε (qit −QitΥ− bi)
]
×

N∏
i=1

T∏
t=1

(
S∑
s=1

[I(dits = 1)I(y∗its > 0) + I(dits = 0)I(y∗its ≤ 0)]

)
×

N∏
i=1

1√
2πσa

exp[−.5a′iσ−2
a ai]×

N∏
i=1

1√
2πσb

exp[−.5b′iσ−2
b bi]×

(2π)−
1+Tk+k+h+1

2 |HΩ|
1
2 exp[−.5(Ω−Ω)′HΩ(Ω−Ω)]×

(2π)−
1+TL+L+h

2 |HΥ|
1
2 exp[−.5(Υ−Υ)′HΥ(Υ−Υ)]×

(2π)−
1
2

∣∣Hδuε

∣∣ 12 exp[−.5(δuε − δuε)′Hδuε(δuε − δuε)]×

1

Γ(aa)baaa
(σ2

a)
−(aa+1) exp

(
− 1

baσ2
a

)
× 1

Γ(ab)b
ab
b

(σ2
b)
−(ab+1) exp

(
− 1

bbσ2
b

)
×

1

Γ(aδε)b
aδε
δε

(δε)
−(aδε+1) exp

(
− 1

bδεδε

)
. (23)
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The steps of this MCMC algorithm are as follows:

1. The posterior distribution of the latent dependent variable y∗its is normally distrib-

uted as

y∗its | yit,Wit, qit,Qit, ai, bi,Ω,Υ, δuε, σ
2
a, σ

2
b , δε ∼ N [y∗its + WitΩ + ai + δuεεit, 1], and

is truncated at zero such that

y∗its > 0 if dits = 1 and

y∗its ≤ 0 if dits = 0,

which is based on the y∗its terms of the augmented posterior distribution

N∏
i=1

T∏
t=1

1√
2π

exp

[
−.5

S∑
s=1

(y∗its −WitΩ− ai − δuεεit)′(y∗its −WitΩ− ai − δuεεit)
]
×

N∏
i=1

T∏
t=1

(
S∑
s=1

[I(dits = 1)I(y∗its > 0) + I(dits = 0)I(y∗its ≤ 0)]

)
.

2. The full conditional density for ai is normally distributed as

ai | yit,Wit, qit,Qit, y
∗
its, bi,Ω,Υ, δuε, σ

2
a, σ

2
b , δε ∼ N

[
ai, H

−1

a

]
where

Ha = S × T + σ−2
a

ai = H
−1

a

[
T∑
t=1

(
S∑
c=1

(y∗its −WitΩ− δuεεit)
)]

.
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To derive this, I drop any terms from equation (23) that are multiplicatively unrelated

to ai:

N∏
i=1

T∏
t=1

1√
2π

exp

[
−.5

S∑
s=1

(y∗its −WitΩ− ai − δuεεit)′(y∗its −WitΩ− ai − δuεεit)
]
×

N∏
i=1

1√
2πσa

exp[−.5a′iσ−2
a ai].

Once again dropping terms free of ai:

exp

(
−.5

S∑
s=1

[
(y∗its −WitΩ− ai − δuεεit)′(y∗its −WitΩ− ai − δuεεit) + a′iσ

−2
a ai

])

Then I can rewrite the term in the bracket as

[
(y∗its −WitΩ− ai − δuεεit)′(y∗its −WitΩ− ai − δuεεit) + a′iσ

−2
a ai

]
= y∗

′

itsy
∗
its − y∗

′

itsWitΩ− y∗
′

itsai − y∗
′

itsδuεεit −Ω′W′
ity
∗
its + Ω′W′

itWitΩ

+ Ω′W′
itai + Ω′W′

itδuεεit − a′iy∗its + a′iWitΩ + a′iai + a′iai + a′iδuεεit

− ε′itδ
′
uεy
∗
its + ε′itδ

′
uεWitΩ + ε′itδ

′
uεai + ε′itδ

′
uεδuεεit + a′iσ

−2
a ai.

Again dropping terms free of ai:

− y∗
′

itsai + Ω′W′
itai − a′iy∗its + a′iWitΩ + a′iai + a′iai + a′iδuεε

′
it + ε′itδ

′
uεai + a′iσ

−2
a ai

= a′i(1 + σ−2
a )ai − a′i(y∗its −WitΩ− δuεε′it)− (y∗

′

its −Ω′W′
it − ε′itδ′uε)ai.
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Adding over s and t:

a′i(S × T + σ−2
a )ai − a′i

(
T∑
t=1

[
S∑
s=1

(y∗its −WitΩ− δuεε′it)
])

−
(

T∑
t=1

[
S∑
s=1

(
y∗

′

its −Ω′W′
it − ε′itδ′uε

)])
ai

= a′iHaai − a′iHaai − aiHaai.

Then I complete the square, by adding and subtracting the term ai
′Haai:

= a′iHaai − a′iHaai − aiHaai + ai
′Haai − ai′Haai

= (ai − ai)Ha(ai − ai)− ai′Haai.

Since the last term is free of ai, this simplifies to

(ai − ai)Ha(ai − ai).

From here it is straightforward that

ai | yit,Wit, qit,Qit, y
∗
its, bi,Ω,Υ, δuε, σ

2
a, σ

2
b , δε ∼ N

[
ai, H

−1

a

]
.

96



3. The full conditional density of the parameter vector Ω is normally distributed as

Ω | yit,Wit, qit,Qit, y
∗
its, ai, bi,Υ, δuε, σ

2
a, σ

2
b , δε ∼ N

[
Ω,H

−1

Ω

]
where

HΩ = HΩ + S ×
N∑
i=1

T∑
t=1

W′
itWit

Ω = H
−1

Ω

[
HΩΩ +

N∑
i=1

T∑
t=1

(
W′

it

S∑
s=1

(y∗its − ai − δuεεit)
)]

.

To show this I collect all terms from equation (23) that are related to Ω:

N∏
i=1

T∏
t=1

1√
2π

exp[−.5
S∑
s=1

(y∗its −WitΩ− ai − δuεεit)′(y∗its −WitΩ− ai − δuεεit)]

×(2π)−(1+Tk+k+h/2) |HΩ|
1
2 exp[−.5(Ω−Ω)′HΩ(Ω−Ω)].

Once again dropping terms free of Ω I am left with

exp(−.5
S∑
s=1

[(y∗its −WitΩ− ai − δuεεit)′(y∗its −WitΩ− ai − δuεεit)

+(Ω−Ω)′HΩ(Ω−Ω)]).

Then I can rewrite the term in the bracket as

[(y∗its −WitΩ− ai − δuεεit)′(y∗its −WitΩ− ai − δuεεit) + (Ω−Ω)′HΩ(Ω−Ω)]

= y∗
′

itsy
∗
its − y∗

′

itsWitΩ− y∗
′

itsai − y∗
′

itsδuεεit −Ω′W′
ity
∗
its + Ω′W′

itWitΩ + Ω′W′
itai

+Ω′W′
itδuεεit − a′iy

∗
its + a′iWitΩ + a′iai + a′iai + a′iδuεεit − ε′itδ′uεy∗its + ε′itδ

′
uεWitΩ

+ε′itδ
′
uεai + ε′itδ

′
uεδuεεit + Ω′HΩΩ−Ω′HΩΩ−Ω′HΩΩ + Ω′HΩΩ.
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Again dropping terms unrelated to Ω:

− y∗
′

itsWitΩ−Ω′W′
ity
∗
its + Ω′W′

itWitΩ + Ω′W′
itai + Ω′W′

itδuεεit

+ a′iWitΩ + ε′itδ
′
uεWitΩ + Ω′HΩΩ−Ω′HΩΩ−Ω′HΩΩ

= Ω′(HΩ + W′
itWit)Ω− (Ω′HΩ + y∗

′

itsWit − a′iWit − ε′itδ′uεWit)Ω

− Ω′(HΩΩ + W′
ity
∗
its −W′

itai −W′
itδuεεit).

Adding over s, i, and t:

Ω′

(
HΩ + S ×

N∑
i=1

T∑
t=1

W′
itWit

)
Ω

−
(

Ω′HΩ +
T∑
t=1

N∑
i=1

[
Wit

S∑
s=1

(y∗
′

its − a′i − ε′it)
])

Ω

− Ω′

(
HΩΩ +

T∑
t=1

N∑
i=1

[
W′

it

S∑
s=1

(y∗its − ai − δuεεit)
])

= Ω′HΩΩ−Ω
′
HΩΩ−Ω′HΩΩ.

To complete the square, I add and subtract ΩHΩΩ:

= Ω′HΩΩ−Ω
′
HΩΩ−Ω′HΩΩ + ΩHΩΩ−ΩHΩΩ

= (Ω−Ω)′HΩ(Ω−Ω)−ΩHΩΩ.

Since the last term is free of Ω, I am left with

(Ω−Ω)′HΩ(Ω−Ω).
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Which shows that Ω | yit,Wit, qit,Qit, y
∗
its, ai, bi,Υ, δuε, σ

2
a, σ

2
b , δε ∼ N

[
Ω,H

−1

Ω

]
.

4. The posterior distribution of the variance parameter σ2
a is inverse gamma, i.e.

σ2
a | yit,Wit, qit,Qit, y

∗
its, ai, bi,Ω,Υ, δuε, σ

2
b , δε ∼ IG

N
2

+ aa,

(
b−1
a +

1

2

N∑
i=1

a′iai

)−1
 .

This is derived by collecting all terms in (20) that are multiplicatively related to σ2
a:

N∏
i=1

1√
2πσa

exp[−.5a′iσ−2
a ai]×

1

Γ(aa)baaa
(σ2

a)
−(aa+1) exp

(
− 1

baσ2
a

)
.

Grouping like terms together, and ignoring terms unrelated to σ2
a I am left with

(
σ2
a

)−(N
2

+aa+1)
exp

[
−.5σ−2

a

(
2b−1
a + a′iai

)]
.

where, adding over i, I find that σ2
a | yit,Wit, qit,Qit, y

∗
its, ai, bi,Ω,Υ, δuε, σ

2
b , δε ∼

IG
[
aa, ba

]
where

aa =
N

2
+ aa and ba =

[
b−1
a +

1

2

N∑
i=1

a′iai

]−1

.

5. The full conditional of bi is distributed normally as

bi | yit,Wit, qit,Qit, y
∗
its, ai,Ω,Υ, δuε, σ

2
a, σ

2
b , δε ∼ N

[
bi, H

−1

b

]
where

Hb = T × δ−1
ε + S × Tδ2

uε + σ−2
b

bi = H
−1

b

[
δ−1
ε

T∑
t=1

(qit −QitΥ)− δuε
T∑
t=1

(
S∑
s=1

(y∗its −WitΩ− ai − δuε(qit −QitΥ))

)]
.
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To show this I collect all terms from equation (23) that are related to bi:

N∏
i=1

T∏
t=1

1√
2π

exp[−.5
S∑
s=1

(y∗its −WitΩ− ai − δuεεit)′(y∗its −WitΩ− ai − δuεεit)]×

N∏
i=1

T∏
t=1

1√
2πδε

exp
[
−.5(qit −QitΥ− bi)′δ−1

ε (qit −QitΥ− bi)
]

×
N∏
i=1

1√
2πσb

exp[−.5b′iσ−2
b bi],

where εit = qit −QitΥ− bi. This can be written as

N∏
i=1

T∏
t=1

1√
2π

exp[−.5
S∑
s=1

(y∗its −WitΩ− ai − δuε(qit −QitΥ− bi))′ ×

(y∗its −WitΩ− ai − δuε (qit −QitΥ− bi))]×

N∏
i=1

T∏
t=1

1√
2πδε

exp
[
−.5(qit −QitΥ− bi)′δ−1

ε (qit −QitΥ− bi)
]

×
N∏
i=1

1√
2πσb

exp[−.5b′iσ−2
b bi]

Again dropping terms unrelated to bi I am left with

exp[−.5
S∑
s=1

(y∗its −WitΩ− ai − δuε(qit −QitΥ− bi))′

×(y∗its −WitΩ− ai − δuε(qit −QitΥ− bi))]

× exp
[
−.5(qit −QitΥ− bi)′δ−1

ε (qit −QitΥ− bi)
]
× exp[−.5b′iσ−2

b bi]

= exp(−.5
S∑
s=1

[(y∗its −WitΩ− ai − δuεqit + δuεQitΥ + δuεbi)
′

×(y∗its −WitΩ− ai − δuεqit + δuεQitΥ + δuεbi)

+(qit −QitΥ− bi)′δ−1
ε (qit −QitΥ− bi) + b′iσ

−2
b bi]).
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Then I can re-write the term in the bracket as

[(y∗its −WitΩ− ai − δuεqit + δuεQitΥ + δuεbi)
′ ×

(y∗its −WitΩ− ai − δuεqit + δuεQitΥ + δuεbi)

+ (qit −QitΥ− bi)′δ−1
ε (qit −QitΥ− bi) + b′iσ

−2
b bi]

= y∗
′

itsy
∗
its − y∗

′

itsWitΩ− y∗
′

itsai − y∗
′

itsδuεqit + y∗
′

itsδuεQitΥ + y∗
′

itsδuεbi

− Ω′W′
ity
∗
its + Ω′W′

itWitΩ + Ω′W′
itai + Ω′W′

itδuεqit −Ω′W′
itδuεQitΥ

−Ω′W′
itδuεbi − a′iy

∗
its + a′iWitΩ + a′iai + a′iδuεqit − a′iδuεQitΥ + a′iδuεbi

− q′itδ
′
uεy
∗
its + q′itδ

′
uεWitΩ + q′itδ

′
uεai + q′itδ

′
uεδuεqit − q′itδ′uεδuεQitΥ− q′itδ′uεδuεbi

+ Υ′Q′itδ
′
uεy
∗
its −Υ′Q′itδ

′
uεWitΩ−Υ′Q′itδ

′
uεai −Υ′Q′itδ

′
uεδuεqit + Υ′Q′itδ

′
uεδuεQitΥ

+ Υ′Q′itδ
′
uεδuεbi + b′iδ

′
uεy
∗
its − b′iδ′uεWitΩ− b′iδ′uεai − b′iδ′uεδuεqit + b′iδ

′
uεδuεQitΥ

+ b′iδ
′
uεδuεbi + q′itδ

−1
ε qit − q′itδ−1

ε QitΥ− q′itδ−1
ε bi −Υ′Q′itδ

−1
ε qit + Υ′Q′itδ

−1
ε QitΥ

+ Υ′Q′itδ
−1
ε bi − b′iδ−1

ε qit + b′iδ
−1
ε QitΥ + b′iδ

−1
ε bi + b′iσ

−2
b bi.

Again I drop terms unrelated to bi to get

y∗
′

itsδuεbi −Ω′W′
itδuεbi + a′iδuεbi − q′itδ′uεδuεbi + Υ′Q′itδ

′
uεδuεbi

+ b′iδ
′
uεy
∗
its − b′iδ′uεWitΩ− b′iδ′uεai − b′iδ′uεδuεqit + b′iδ

′
uεδuεQitΥ + b′iδ

′
uεδuεbi

− q′itδ
−1
ε bi + Υ′Q′itδ

−1
ε bi − b′iδ−1

ε qit + b′iδ
−1
ε QitΥ + b′iδ

−1
ε bi + b′iσ

−2
b bi

= b′i(δ
′
uεδuε + δ−1

ε + σ−2
b )bi

− (y∗
′

itsδuε + Ω′W′
itδuε − a′iδuε + q′itδ

′
uεδuε −Υ′Q′itδ

′
uεδuε + q′itδ

−1
ε −Υ′Q′itδ

−1
ε )bi

− b′i(δ
′
uεy
∗
its + δ′uεWitΩ + δ′uεai + δ′uεδuεqit − δ′uεδuεQitΥ + δ−1

ε qit − δ−1
ε QitΥ).
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Grouping terms together and adding over s and t:

b′i
(
S × Tδ2

uε + T × δ−1
ε + σ−2

b

)
bi

−
(
δ−1
ε

T∑
t=1

(q′it −Υ′Q′it)− δuε
T∑
t=1

(
S∑
s=1

[
y∗

′

its −Ω′W′
it − a′i − δuε(q′it −Υ′Q′it)

]))
bi

− b′i

(
δ−1
ε

T∑
t=1

(qit −QitΥ)− δuε
T∑
t=1

(
S∑
s=1

[y∗its −WitΩ− ai − δuε(qit −QitΥ)]

))

= b′iHbbi − bi
′
Hbbi − b′iHbbi.

Then I complete the square by adding and subtracting the term bi
′
Hbbi:

= b′iHbbi − bi
′
Hbbi − b′iHbbi + bi

′
Hbbi − bi

′
Hbbi

= (bi − bi)′Hb(bi − bi)− bi
′
Hbbi.

Since the last term is free of bi this simplifies to

(bi − bi)′Hb(bi − bi).

From here it is straightforward that bi | yit,Wit, qit,Qit, y
∗
its, ai,Ω,Υ, δuε, σ

2
a, σ

2
b , δε ∼

N
[
bi, H

−1

b

]
.
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6. The full conditional density of the parameter vector Υ is normally distributed as

Υ | yit,Wit, qit,Qit, y
∗
its, ai, bi,Ω, δuε, σ

2
a, σ

2
b , δε ∼ N

[
Υ,H

−1

Υ

]
where

HΥ = HΥ +

N∑
i=1

T∑
t=1

Q′itQitδ
−1
ε + S ×

N∑
i=1

T∑
t=1

Q′itQitδ
2
uε

Υ = H
−1

Υ

[
HΥΥ +

N∑
i=1

T∑
t=1

(
δ−1
ε Q′it(qit − bi)− δuεQ′it

S∑
s=1

(y∗its −WitΩ− ai − δuεqit + δuεbi)

)]
.

To show this I collect all terms from equation (23) that are related to Υ:

N∏
i=1

T∏
t=1

1√
2π

exp[−.5
S∑
s=1

(y∗its −WitΩ− ai − δuεεit)′(y∗its −WitΩ− ai − δuεεit)]×

N∏
i=1

T∏
t=1

1√
2πδε

exp
[
−.5(qit −QitΥ− bi)′δ−1

ε (qit −QitΥ− bi)
]
×

(2π)−(1+Tk+L+h)/2 |HΥ|
1
2 exp[−.5(Υ−Υ)′HΥ(Υ−Υ)].

where εit = qit −QitΥ− bi, so this can be written as

N∏
i=1

T∏
t=1

1√
2π

exp[−.5
S∑
s=1

(y∗its −WitΩ− ai − δuε(qit −QitΥ− bi))′

×(y∗its −WitΩ− ai − δuε(qit −QitΥ− bi))]×

N∏
i=1

T∏
t=1

1√
2πδε

exp
[
−.5(qit −QitΥ− bi)′δ−1

ε (qit −QitΥ− bi)
]
×

(2π)−(1+Tk+L+h)/2 |HΥ|
1
2 exp[−.5(Υ−Υ)′HΥ(Υ−Υ)].
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Again dropping terms unrelated to Υ, I have

exp[−.5
S∑
s=1

(y∗its −WitΩ− ai − δuε(qit −QitΥ− bi))′

×(y∗its −WitΩ− ai − δuε(qit −QitΥ− bi))

+ (qit −QitΥ− bi)′δ−1
ε (qit −QitΥ− bi) + (Υ−Υ)′HΥ(Υ−Υ)].

Then I can re-write the term in the bracket as

[(y∗its −WitΩ− ai − δuεqit + δuεQitΥ + δuεbi)
′ ×

(y∗its −WitΩ− ai − δuεqit + δuεQitΥ + δuεbi)

+(qit −QitΥ− bi)′δ−1
ε (qit −QitΥ− bi) + (Υ−Υ)′HΥ(Υ−Υ)]

= y∗
′

itsy
∗
its − y∗

′

itsWitΩ− y∗
′

itsai − y∗
′

itsδuεqit + y∗
′

itsδuεQitΥ + y∗
′

itsδuεbi

− Ω′W′
ity
∗
its + Ω′W′

itWitΩ + Ω′W′
itai + Ω′W′

itδuεqit −Ω′W′
itδuεQitΥ

− Ω′W′
itδuεbi − a′iy∗its + a′iWitΩ + a′iai + a′iδuεqit − a′iδuεQitΥ + a′iδuεbi

− q′itδ
′
uεy
∗
its + q′itδ

′
uεWitΩ + q′itδ

′
uεai + q′itδ

′
uεδuεqit − q′itδ′uεδuεQitΥ− q′itδ′uεδuεbi

+ Υ′Q′itδ
′
uεy
∗
its −Υ′Q′itδ

′
uεWitΩ−Υ′Q′itδ

′
uεai −Υ′Q′itδ

′
uεδuεqit + Υ′Q′itδ

′
uεδuεQitΥ

+ Υ′Q′itδ
′
uεδuεbi + b′iδ

′
uεy
∗
its − b′iδ′uεWitΩ− b′iδ′uεai − b′iδ′uεδuεqit + b′iδ

′
uεδuεQitΥ

+ b′iδ
′
uεδuεbi + q′itδ

−1
ε qit − q′itδ−1

ε QitΥ− q′itδ−1
ε bi −Υ′Q′itδ

−1
ε qit + Υ′Q′itδ

−1
ε QitΥ

+ Υ′Q′itδ
−1
ε bi − b′iδ−1

ε qit + b′iδ
−1
ε QitΥ + b′iδ

−1
ε bi + Υ′HΥΥ−ΥHΥΥ−Υ′HΥΥ

+ Υ′HΥΥ.
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Collecting terms multiplicatively related to Υ:

y∗
′

itsδuεQitΥ−Ω′W′
itδuεQitΥ− a′iδuεQitΥ− q′itδ′uεδuεQitΥ

+ Υ′Q′itδ
′
uεy
∗′
its −Υ′Q′itδ

′
uεWitΩ−Υ′Q′itδ

′
uεai −Υ′Q′itδ

′
uεδuεqit

+ Υ′Q′itδ
′
uεδuεQitΥ + Υ′Q′itδ

′
uεδuεbi + b′iδ

′
uεδuεQitΥ

− q′itδ
−1
ε QitΥ−Υ′Q′itδ

−1
ε qit + Υ′Q′itδ

−1
ε QitΥ + Υ′Q′itδ

−1
ε bi

+ b′iδ
−1
ε QitΥ + Υ′HΥΥ−Υ′HΥΥ−Υ′HΥΥ + Υ′HΥΥ

= Υ′(HΥ + Q′itδ
′
uεδuεQit + Q′itδ

−1
ε Qit)Υ

− (Υ′HΥ + q′itδ
−1
ε Qit − b′iδ−1

ε Qit − y∗
′

itsδuεQit + Ω′W′
itδuεQit

+ a′iδuεQit + q′itδ
′
uεδuεQit − b′iδ′uεδuεQit)Υ

− Υ′(HΥΥ + Q′itδ
−1
ε qit −Q′itδ

−1
ε bi −Q′itδ

′
uεy
∗
its + Q′itδ

′
uεWitΩ

+ Q′itδ
′
uεai + Q′itδ

′
uεδuεqit −Q′itδ

′
uεδuεbi).
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Summing over s, i, and t, I get

Υ′

(
HΥ + S ×

N∑
i=1

T∑
t=1

Q′itQitδ
2
uε +

N∑
i=1

T∑
t=1

Q′itQitδ
−1
ε

)
Υ

−(Υ′HΥ +
N∑
i=1

T∑
t=1

[δ−1
ε Qit(q

′
it − b′i)

−δuεQit

S∑
s=1

(y∗
′

its −Ω′W′
it − a′i − q′itδuε + b′iδuε)])Υ

−Υ′(HΥΥ +
N∑
i=1

T∑
t=1

[δ−1
ε Q′it(qit − bi)− δuεQ′it

S∑
s=1

(y∗its −WitΩ− ai − δuεqit + δuεbi)

δuεQ
′
it

S∑
s=1

(y∗its −WitΩ− ai − δuεqit + δuεbi)])

= Υ′HΥΥ−Υ
′
HΥΥ−Υ′HΥΥ.

To complete the square I add and subtract Υ
′
HΥΥ:

Υ′HΥΥ−Υ
′
HΥΥ−Υ′HΥΥ + Υ

′
HΥΥ−Υ

′
HΥΥ

= (Υ−Υ)′HΥ(Υ−Υ)−Υ
′
HΥΥ.

Since this last term is free of Υ I am left with

(Υ−Υ)′HΥ(Υ−Υ).

From here you can see thatΥ | yit,Wit, qit,Qit, y
∗
its, ai, bi,Ω, δuε, σ

2
a, σ

2
b , δε ∼ N

[
Υ,H−1

Υ

]
.

7. The full conditional density of the covariance parameter δuε is normally distributed
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as δuε | yit,Wit, qit,Qit, y
∗
its, ai, bi,Ω,Υ, σ2

a, σ
2
b , δε ∼ N

[
δuε, H

−1

δuε

]
where

Hδuε = Hδuε + S ×
N∑
i=1

T∑
t=1

ε′itεit

δuε = H
−1

δuε

[
Hδuεδuε +

N∑
i=1

T∑
t=1

ε′it

(
S∑
s=1

(y∗its −WitΩ− ai)
)]

.

To show this I collect all terms from equation (21) that are related to δuε:

N∏
i=1

T∏
t=1

1√
2π

exp[−.5
S∑
s=1

(y∗its −WitΩ− ai − δuεεit)′(y∗its −WitΩ− ai − δuεεit)]×

(2π)−
1
2

∣∣Hδuε

∣∣ 12 exp[−.5(δuε − δuε)′Hδuε(δuε − δuε)].

Dropping any terms unrelated to δuε:

exp[−.5
S∑
s=1

(y∗its−WitΩ−ai−δuεεit)′(y∗its−WitΩ−ai−δuεεit)+(δuε−δuε)′Hδuε(δuε−δuε))].

Multiplying out the terms within the brackets:

[
(y∗its −WitΩ− ai − δuεεit)′(y∗its −WitΩ− ai − δuεεit) + (δuε − δuε)′Hδuε(δuε − δuε)

]
= y∗

′

itsy
∗
its − y∗

′

itsWitΩ− y∗
′

itsai − y∗
′

itsδuεεit −Ω′W′
ity
∗
its + Ω′W′

itWitΩ + Ω′W′
itai

+ Ω′W′
itδuεεit − a′iy∗its + a′iWitΩ + a′iai + a′iai + a′iδuεεit − ε′itδ′uεy∗its + ε′itδ

′
uεWitΩ

+ ε′itδ
′
uεai + ε′itδ

′
uεδuεεit + δ′uεHδuεδuε − δ

′
uεHδuεδuε − δ

′
uεHδuεδuε + δ′uεHδuεδuε.
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Again dropping any terms multiplicatively unrelated to δuε:

− y∗
′

itsδuεεit + Ω′W′
itδuεεit + a′iδuεεit − ε′itδ′uεy∗its + ε′itδ

′
uεWitΩ

+ ε′itδ
′
uεai + ε′itδ

′
uεδuεεit + δ′uεHδuεδuε − δ

′
uεHδuεδuε − δ

′
uεHδuεδuε

= δ′uε(Hδuε + ε′itεit)δuε − (δ′uεHδuε + y∗
′

itsεit −Ω′W′
itεit − a′iεit)δuε

− δ′uε(Hδuεδuε + ε′ity
∗
its − ε′itWitΩ− ε′itai).

Summing over s, i, and t

= δ′uε

(
Hδuε + S ×

N∑
i=1

T∑
t=1

ε′itεit

)
δuε

−
(
δ′uεHδuε +

N∑
i=1

T∑
t=1

[
εit

S∑
s=1

(y∗its −Ω′W′
it − a′i)

])
δuε

− δ′uε

(
Hδuεδuε +

N∑
i=1

T∑
t=1

[
ε′it

S∑
s=1

(y∗its −WitΩ− ai)
])

= δ′uεHδuεδuε − δ
′
uεHδuεδuε − δ′uεHδuεδuε.

To complete the square I add and subtract δ′uεHδuεδuε:

δ′uεHδuεδuε − δ
′
uεHδuεδuε − δ′uεHδuεδuε + δ

′
uεHδuεδuε − δ

′
uεHδuεδuε

= (δuε − δuε)′Hδuε(δuε − δuε)− δ
′
uεHδuεδuε.

Since this last term is free of δuε I am left with

(δuε − δuε)′Hδuε(δuε − δuε).
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From here it is clear that δuε | yit,Wit, qit,Qit, y
∗
its, ai, bi,Ω,Υ, σ2

a, σ
2
b , δε ∼ N

[
δuε, H

−1

δuε

]
.

8. The posterior distribution of the variance parameter σ2
b is inverse gamma, i.e.

σ2
b | yit,Wit, qit,Qit, y

∗
its, ai, bi,Ω,Υ, δuε, σ

2
a, δε

∼ IG

N
2

+ ab,

(
b−1
b +

1

2

N∑
i=1

b′ibi

)−1
 .

This is derived by collecting all terms in (23) that are multiplicatively related to σ2
b .

N∏
i=1

1√
2πσb

exp[−.5b′iσ−2
b bi]×

1

Γ(ab)b
ab
b

(σ2
b)
−(ab+1) exp

(
− 1

bbσ2
b

)
.

Dropping terms unrelated to σ2
b :

(
σ2
b

)−(N
2

+ab+1)
exp

[
−.5σ−2

b

(
2b−1
b +

N∑
i=1

b′ibi

)]
.

From here I can see that σ2
b | yit,Wit, qit,Qit, y

∗
its, ai, bi,Ω,Υ, δuε, σ

2
a, δε ∼ IG

[
ab, bb

]
where

ab =
N

2
+ ab and bb =

[
b−1
b +

1

2

N∑
i=1

b′ibi

]−1

.

9. The posterior distribution of the variance parameter δε is inverse gamma, i.e.

δε | yit,Wit, qit,Qit, y
∗
its, ai, bi,Ω,Υ, δuε, σ

2
a, σ

2
b

∼ IG

NT
2

+ aδε ,

(
b−1
δε

+
1

2

N∑
i=1

T∑
t=1

(qit −QitΥ− bi)2

)−1
 .
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To show this I collect all terms related to δε and am left with

N∏
i=1

T∏
t=1

1√
2πδε

exp
[
−.5(qit −QitΥ− bi)′δ−1

ε (qit −QitΥ− bi)
]
×

1

Γ(aδε)b
aδε
δε

(δε)
−(aδε+1) exp

(
− 1

bδεδε

)
.

Dropping terms unrelated to δε, and simplifying I get

(δε)
−(NT

2
+aδε+1) exp

[
−.5δ−1

ε

(
2b−1
δε

+

N∑
i=1

T∑
t=1

(qit −QitΥ− bi)2

)]
.

Which shows that δε | yit,Wit, qit,Qit, y
∗
its, ai, bi,Ω,Υ, δuε, σ

2
a, σ

2
b ∼ IG

[
aδε , bδε

]
where

aδε =
NT

2
+ aδε and bδε =

[
b−1
δε

+
1

2

N∑
i=1

T∑
t=1

(qit −QitΥ− bi)2

]−1

.

This concludes the MCMC algorithm.
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