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ABSTRACT 

Orchestrating Mathematical Discussions: A Novice Teacher’s Implementation of 
Five Practices to Develop Discourse Orchestration  

in a Sixth-Grade Classroom 

Jeffrey Stephen Young 
Department of Teacher Education, BYU 

Master of Arts 

This action research study examined my attempts during a six-lesson unit of instruction 
to implement five practices developed by Stein, Engle, Smith, and Hughes (2008) to assist 
novice teachers in orchestrating meaningful mathematical discussions, a component of inquiry-
based teaching and learning. These practices are anticipating student responses to a mathematical 
task, monitoring student responses while they engage with the task, planning which of those 
responses will be shared, planning the sequence of that sharing, and helping students make 
connections among student responses. Although my initial anticipations of student responses 
were broad and resulted in unclear expectations during lesson planning, I observed an 
improvement in my ability to anticipate student responses during the unit. Additionally, I 
observed a high-level of interaction between my students and me while monitoring their 
responses but these interactions were generally characterized by low-levels of mathematical 
thinking. The actual sharing of student responses that I orchestrated during discussions, and the 
sequencing of that sharing, generally matched my plans although unanticipated responses were 
also shared. There was a significant amount of student interaction during the discussions 
characterized by high-levels of thinking, including making connections among student responses. 
I hypothesize that task quality was a key factor in my ability to implement the five practices and 
therefore recommend implementing the five practices be accompanied by training in task 
selection and creation. 

Keywords: mathematical discussion orchestration, mathematical discourse 
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Chapter 1 

Introduction 

The purpose of this study was to investigate my efforts to improve the orchestration of 

mathematical discussions. I will contextualize this study by first describing a brief history of the 

current mathematics education reform movement in this chapter. In Chapter 2, I will outline the 

definitions and characteristics of discourse as it pertains to discussion orchestration by a review 

of the relevant literature, laying a conceptual foundation for this study.  

Mathematics contributes to multiple aspects of our modern life; the ability to understand 

mathematics, statistics, and computation enables citizens to make informed decisions and nations 

to become both technologically relevant and economically competitive in a global market. The 

National Research Council (NRC, 2013) recently published a report entitled The Mathematical 

Sciences in 2025. The central focus of the report was to examine the primary role of the 

mathematical sciences in modern society. The report states that “mathematical sciences work is 

becoming an increasingly integral and essential component of a growing array of areas of 

investigation in biology, medicine, social science, business, advanced design, climate, finance, 

advanced materials, and many more” (p. 110).  

Thus, teachers of mathematics play a vital role in preparing their students to meet the 

demands of living in a modern society. As stated in the National Council of Teachers of 

Mathematics’ (NCTM, 2000) Principles and Standards for School Mathematics, “Decisions 

made by teachers, school administrators, and other education professionals about the content and 

character of school mathematics have important consequences both for students and for society” 

(p. 11). Mathematics educators of K–12 are expected to provide all students with a quality and 
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equitable mathematics education and to continually seek to improve instruction so that students 

today will be prepared to be productive citizens of tomorrow.  

For more than three decades the charge to provide all students with a quality and 

equitable education in mathematics has been the focus of the reform efforts of such mathematics 

education organizations as the NCTM and the NRC. The roots of this reform movement began in 

the late 1970s and early 1980s. At that time there was widespread concern that something was 

seriously wrong with public education in the United States because students were falling behind 

the rest of the world, especially in the fields of science, technology, and mathematics. In 

response to the growing concern over America’s future as an industrial leader, Secretary of 

Education, T.H. Bell, created the National Commission on Excellence in Education to investigate 

the quality of public education in the United States. In 1983 the commission released its report 

entitled A Nation at Risk. The report compiled summaries of many public research papers and 

public hearings on the subject of education in the United States. 

The commission’s assessment of the state of mathematics education revealed that 

mathematics “curricula [had] been homogenized, diluted, and diffused to the point that they no 

longer [had] a central purpose” (The National Commission on Excellence in Education, 1983, pp. 

61-62). Because general expectations of student performance in mathematics had deteriorated, 

the report observed that despite general grade improvement, student achievement in mathematics 

had actually declined. This was a result of school time being used “ineffectively” because 

educators were not “doing enough to help students develop either the study skills required to use 

time well or the willingness to spend more time on school work” (pp. 64-65). They observed a 

lack of teachers who possessed an understanding of the subject of mathematics, and a need for 

substantial improvement in teacher preparation programs. 
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The type of pedagogy espoused by this report was markedly different from the common 

pedagogies practiced at the time of the report—teacher-centered pedagogies that had not changed 

much since the early twentieth century. Teacher-centered pedagogies were based upon the 

assumption that only a handful of people had an innate command of mathematics. Thus, 

mathematics education during the early twentieth century emphasized learning through direct 

instruction, rote memorization, and recitation. The instructional goal for this approach was not 

necessarily to cultivate deep content knowledge, but to teach easily applied processes and 

algorithms for use by the general population. The subject of mathematics was not presented in 

coherent, integrated, or conceptual wholes, but as a collection of fragments that did not develop a 

sense of relationship to broader mathematical ideas and concepts (Bybee, 1997; DeBoer, 1997). 

This teacher-centered approach called for an active teacher role and a passive student role.  

These criticisms led mathematics educators and organizations to reevaluate how 

mathematics was being taught in public schools, which resulted in the recommendations of the 

NRC and NCTM documents previously listed, as well as other NCTM and NRC documents—

Curriculum and Evaluation Standards for Mathematics (NCTM, 1989), Professional Standards 

for School Mathematics (NCTM, 1991), Assessment Standards for School Mathematics (NCTM, 

1995, and Adding It Up: Helping Children Learn Mathematics (Kilpatrick, Swafford, Findell 

2001). These documents sought to explain the nature of mathematics, how students’ inherent 

understanding and curiosity are connected to mathematics, and how teachers can develop their 

students’ understanding. These organizations uniformly called for teachers to decrease the 

development of procedural fluency, through repeated practice of computational algorithms, and 

increase emphasis on developing students’ conceptual understanding of mathematical ideas.  
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Such documents redefine what it means to be mathematically proficient in similar ways. 

They suggest that teachers of mathematics should develop students’ abilities in reasoning, 

problem solving, connecting mathematical ideas and concepts, and expanding their ability to 

communicate their mathematical understanding. Kilpatrick, Swafford, and Findell (2001) 

outlined five distinct but interdependent strands that encompass students’ mathematical 

proficiency:  

1. Conceptual understanding of mathematical operations and relations 

2. Procedural fluency, or the skills to carry out mathematical procedures accurately, 

 efficiently, and appropriately 

3. Strategic competence in formulating, representing, and solving mathematical problems 

4. Adaptive reasoning that enables students to logically explain and justify their 

 mathematical thinking 

5. A productive disposition about the usefulness and sensibility of math when habitually

 and diligently practiced 

The NCTM (2000) gives further credence to this definition of mathematical proficiency in public 

schools, suggesting that when students are mathematically proficient, their conceptual 

knowledge is flexible, allowing them to apply their understanding of concepts from one 

mathematical setting to another. Students’ metacognitive awareness instills confidence in their 

own mathematical knowledge and allows them to establish goals for themselves.  

The fulfillment of these recommendations requires the establishment of a highly 

interactive, inquiry-based classroom community, which also profoundly affects how children 

learn mathematics. Schifter and Fosnot (1993) commented on the disconnect that occurs in 

teacher-centered mathematics classrooms: “No matter how lucidly and patiently teachers explain 
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to their students, they cannot understand for their students” (p. 9). Reform documents suggest 

that in order for teachers of mathematics to be more effective at helping students understand 

mathematics, they need to establish classroom environments that center around student thinking. 

Other inquiry-based recommendations urge teachers to establish practices that develop habits 

and processes that inspire students to become progressively autonomous in mathematics (Van de 

Walle, 2007). 

To create an environment that supports students’ mathematical autonomy, teachers are 

encouraged to put less emphasis on being the central figure during the lesson and focus more on 

engaging students in mathematical tasks, facilitating mathematical discussions, and carefully 

observing and assessing student understanding as they listen intently to students’ responses and 

solutions (Ball, 1993; Lampert, 2001; NCTM, 2000). The Professional Standards for Teaching 

Mathematics (NCTM, 1991) outlines key instructional practices that can help teachers establish 

inquiry-based classrooms. According to these standards, teachers should employ the following 

six practices: 

1. Pose “worthwhile mathematical tasks” (p. 25) 

2. “Orchestrate discourse” (p. 35) 

3. Promote “classroom discourse” (p. 45) with high levels of student engagement 

4. “Enhance discourse” (p. 52) through a variety of tools 

5. “Create a learning environment that fosters . . . mathematical power” (p. 57) 

6. Consistently analyze “teaching and learning” (p. 63) 

Instructional models that follow such guidelines have been called by many names: student-

centered learning, discovery learning (Anthony, 1973; Bruner, 1961), problem-based learning 

(Barrow & Tamblyn, 1980; Schmidt, 1983), and, most commonly, inquiry-based learning (Papert, 
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1980). These models generally follow the launch-explore-summarize-discuss (Schroyer & 

Fitzgerald, 1986) design framework. For clarity I have chosen to refer to this big-picture type of 

teaching as inquiry-based learning. 

As a teacher of elementary mathematics, I have found that the implementation of inquiry-

based lessons in mathematics is very challenging and often results in confusion of a lesson’s 

mathematical objectives. It is difficult to understand how to orchestrate a discussion around an 

authentic task so that it addresses the concept I am teaching. I often question how much control I 

should have during the lesson, how much guidance I should give, or whether I should give any at 

all. How do I help students make connections from what is being discussed to the concept I am 

trying to teach? Do my actions help students move forward in their mathematical reasoning, or 

am I confusing them? 

As I work with other teachers, I find that those teachers who attempt to engage in an 

inquiry-based process have similar frustrations and often abandon such strategies for the more 

comfortable and traditional role of teacher-centered teaching. Yet mathematical education 

research groups like NCTM and the NRC persist in emphasizing the importance of developing 

and orchestrating inquiry-based instruction.  
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Chapter 2 

Review of the Literature 

The central focus of this study is developing a novice teacher’s ability to orchestrate 

mathematical discussions. In this chapter I will outline the characteristics of mathematical 

discourse as it pertains to a classroom. I will address the many challenges that arise when 

teachers—especially novice teachers—attempt to orchestrate mathematical discussions. Finally, 

in response to the challenges that occur when attempting to orchestrate such discussion, I will 

describe five practices established by Stein, Engle, Smith, and Hughes (2008) that claim to help 

teachers facilitate mathematical orchestration.  

The inquiry-based approach to teaching mathematics provides valuable learning and 

teaching opportunities by encouraging students to take risks, make conjectures, and justify 

claims. In this environment, correctness is determined by the logic and the structure of the 

solution as well as the solution itself (NCTM, 2000; NRC, 2002; Wood, 1999). Such inquiry-

based learning communities are based on socio-cognitive and socio-culturalist theories of 

learning developed and promoted by developmentalists such as Piaget and Vygotsky. These 

theoretical rationales explain how individual mental functioning is related to social interaction. 

For example, Piaget (1928) highlighted the importance of social interaction as a means of 

promoting students’ individual reasoning. Similarly, Vygotsky (1978) conceived that social 

interaction mediates children’s learning. Therefore, social interaction is fundamental to the 

process of cognitive development. Vygotsky’s Social Development Theory directly addresses the 

important nature of social exchange in learning: 

Every function in the child's cultural development appears twice: first, on the social level, 

and later, on the individual level; first, between people (inter-psychological) and then 
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inside the child (intra-psychological). This applies equally to voluntary attention, to 

logical memory, and to the formation of concepts. All the higher functions originate as 

actual relationships between individuals. (p. 57) 

Vygotsky conceived of the learning of higher functions as a culturally embedded and 

socially mediated process. Within this process of developing knowledge, first on the social level 

and then on the individual level, is the internalization process involved in the transformation of 

social phenomena into psychological phenomena (Cobb, Wood, & Yackel, 1990). Similarly, 

Moschkovich (2007) defines mathematical discourse as both a cognitive and a social endeavor: 

“Discourse is cognitive because mathematical communication involves the showing of thought 

by using signs, tools, and meanings. However, discursive practices are social because students 

exist within a mathematical community” (p. 25). Social interaction plays a key role in the 

construction of cultural and individual meaning and in the acquisition of knowledge (Murphy, 

Wilkinson, Soter, Hennessey, & Alexander, 2009). 

Discourse 

 As sociocultural theories suggest, groups are distinguished by differing interaction patterns, 

or discourses. Discourse theory focuses on the tools used within social contexts, why those tools 

are used, how they communicate, and what they accomplish. Gee’s (1996) widely accepted 

definition for discourse as it pertains to a sociocultural context states the following:  

A discourse is a socially accepted association among ways of using language, other 

symbolic expressions, and ‘artifacts’, of thinking, feeling, believing, valuing and acting that 

can be used to identify oneself as a member of a socially meaningful group or ‘social 

network’, or to signal (that one is playing) a socially meaningful role. (p. 131) 
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For Gee (1996), discourse includes the way of “behaving, interacting, valuing, thinking, 

believing, speaking, and reading and writing” (p. viii). In essence then, discourse is how social 

groups’ communications characterize and define their community.  

 Discursive patterns in mathematics distinguish traditional instruction from inquiry-based 

instruction (Wood, 1999) and refer to the way in which students represent their thinking through 

varied means of communication. The Professional Standards for Teaching Mathematics (NCTM, 

1991) provides a clear definition of discourse in a mathematics classroom: 

The discourse of a classroom—the ways of representing, thinking, talking, agreeing and 

disagreeing (are) central to what students learn about mathematics as a domain of human 

inquiry. . . .When students make public conjectures and reason with one another about 

mathematics, ideas and knowledge are developed collaboratively, revealing mathematics 

as constructed by human beings within an intellectual community. . . .Students learn to use 

meaningful context, the tools of mathematical discourse—special terms, diagrams, graphs, 

sketches, analogies, and physical models, as well as symbols. (p. 34) 

Interaction aids knowledge construction; therefore, instructional strategies are more effective 

when they are interactive in nature. This perspective involves the development of complex forms 

of interaction and discourse that place students at the center of math instruction (Wood & 

Turner-Vorbeck, 2001). 

In an inquiry-based classroom, all participants bring valuable and diverse perspectives to 

mathematical situations. The unique and diverse perspectives of the individuals help to generate 

possible solutions to conjectures being made in service to solving the task. Students engage in 

discourse through representation, justification, and generalization. Students represent what they 

know through explanations, predictions, and the consideration of how to apply a solution. 
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Students are accountable to their peers and must justify their conjectures by using models and 

proofs. The wise use of questioning develops the mathematics classroom into a forum where 

generalizations of mathematical knowledge are constructed by means of student and teacher 

responses, questions, and justifications (Brophy, 2000). 

As mentioned in the Professional Standards for Teaching Mathematics (NCTM, 1991), the 

teacher’s role in orchestrating discourse is a thoughtful and active exercise. It requires a deep 

content knowledge of mathematics coupled with necessary skills for establishing an environment 

that acknowledges students as active constructors of knowledge. Meaningful discourse is created 

when the teacher engages in listening, guiding, questioning, shaping, and telling (Lobato, Clark, 

& Ellis, 2005). The resultant conversational exchanges reveal students’ thinking. As students 

share ideas and conjecture, the teacher’s role becomes that of a facilitator, clarifying students’ 

ideas and questions to enrich mathematical understanding rather than simply presenting 

mathematical approaches and demonstrating procedures to solve predictable and contrived tasks 

(Fennema et al., 1996; NCTM, 1991; Wood, 2001). 

The students’ roles as active participants require them to express their thinking in order to 

create opportunities for learning. The students generate conjectures and seek solutions to 

mathematical problems using a variety of methods and tools founded upon their own connections 

to prior mathematical experience. As teachers orchestrate discourse, the cooperative effort of the 

students establishes an environment ripe for fostering mathematical thinking that will advance 

understanding and proficiency.  

The term discourse relates to all aspects of inquiry-based lessons. For example, discourse 

occurs in the presentation, or launch, of a task. It also occurs during the exploration phase, when 

students and teacher interact informally. Although the term discourse encompasses the idea of 
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social interaction throughout a lesson, much of discursive orchestration actually occurs in the 

discussion itself. 

Challenges of Orchestrating Whole-Class Discussion 

Teachers face many challenges when attempting to orchestrate whole-class discussion 

and purposefully use students’ responses to advance whole-class understanding (Ball, 1993; 

Lampert, 2001; Stein et al., 2008). For novice teachers, using student-centered discussion as a 

method of instruction may seem as though the teacher does not provide any guidance to the 

students, but rather allows the students to control the pace and direction of the lesson (Chazen, 

2000; Chazen & Ball, 1999). Unpracticed teachers may also worry that an open forum format 

welcomes a wide array of responses which, if not prepared for, may misdirect the purpose of 

student-centered discussion and, ultimately, lead to misinterpretations. The lack of control 

teachers may feel when attempting to orchestrate student-centered discourse is likely to result in 

a diminished sense of teacher self-efficacy. 

On the other hand, Smith (1996) stated that using a teacher-centered method “allows 

teachers to build a sense of efficacy by defining a manageable mathematical content that they 

have studied extensively and then providing clear prescriptions for what they must do with that 

content to affect student learning” (p. 388). The current inquiry-based methods remove both of 

these supports. Smith (1996) also noted that in a student-centered, inquiry-based classroom, “the 

mathematics that teachers know best is reduced in value, substantial emphasis is given to 

unfamiliar content, and only the most general instructional principles are provided for teaching 

that content” (p. 388). 

Smith’s observation echoes the way many teachers misinterpret the practice of utilizing 

mathematical discussion. This misinterpretation may account for why teachers often struggle to 
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utilize such strategies appropriately. Teaching that centers around student responses may seem 

like an open forum where all responses are presented with little filtering by the teacher and 

without any attempt to highlight specific strategies that lead to solutions. However, this idea of 

orchestrating a mathematical discussion with broad, non-specific goals, which has been referred 

to as “show and tell” (Ball, 2001), distorts both the meaning and purpose of engaging students in 

a mathematical discussion. Overlooking the importance of goals and outcomes in the course of 

orchestrating a discussion will cause teacher frustration because such discussions lack structure 

and effectiveness.  

In addition, teachers who are new to orchestrating discussions will undoubtedly look to 

teacher-educators and experienced practitioners to model and make sense of discussion 

orchestration. Novice teachers who observe highly skilled facilitators and practitioners of 

discourse may become perplexed by the seemingly improvisational and effortless approach to 

conducting math-based discourse (Borko & Livingston, 1989; Sherin, 2002). The ability to 

improvise requires extensive knowledge of content, pedagogy, and developmental theory. This 

knowledge is often limited for teachers, particularly elementary school teachers, whose training 

and mathematical content knowledge is limited. This lack of training and content knowledge 

leads many teachers to feel that implementing a discussion is ineffective and often frustrates and 

confuses students rather than moving their understanding forward (Chazen & Ball, 2001; Lobato 

et al., 2005). For example, after studying inquiry-based instruction methods in my graduate 

classes, I attempted to use them in my mathematics instruction. I planned to present a task and let 

students develop their own strategies for a solution. Without anticipating what thinking might 

surface and what thinking I would use to help direct the lesson, the discussion quickly went from 

an exploration of a mathematical idea to an open-ended discussion that ultimately became a 
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fruitless and time-consuming endeavor—fruitless because students were voicing every reasoned 

strategy to solve the task, many of which were misconceived and incorrect. The many open-

ended responses left most of my students confused and frustrated. I also felt their frustration as I 

lost a day of mathematical instruction and now had to address not only the concept, but also the 

many different misconceptions that had arisen during the lesson. This type of frustration can 

cause teachers to feel a decrease in efficacy, which discourages them from orchestrating 

discussions and using inquiry-based instruction.  

Novice teachers need to prepare themselves to facilitate mathematical discussions in a 

manner that allows them to feel a sense of control (Stigler & Hiebert, 1999). Novice teachers 

often fail to understand how to direct a discussion while placing the responsibility for 

constructing knowledge upon the students. This skill requires teachers to recognize when 

important mathematical ideas are being developed or when to intervene and redirect 

conversations. However, guidance that helps teachers acquire the skills to monitor and, when 

necessary, intervene appropriately in discussion, seems to be limited (Ball, 1993; Lampert, 2001; 

Wood & Turner-Vorbeck, 2001). Teachers need a framework that is straightforward in its 

implementation and will aid them in understanding the mechanics of taking an inquiry-based 

approach by facilitating mathematical discussions (Stein et al., 2008). 

Five Practices for Facilitating Mathematical Discussion 

 In response to the struggles that teachers face when attempting mathematical discussions, 

Stein et al. (2008) suggest five practices that will help mathematics teachers conduct discussions 

in practical and intuitive ways. They believe that “novices need a set of practices they can do to 

both prepare them to facilitate discussions and help them gradually and reliably learn how to 

become better discussion facilitators over time” (p. 321). The five practices were created to make 
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discussion orchestration manageable for novice teachers by de-emphasizing the improvisational 

aspect of orchestrating mathematical discussions and shifting the focus instead to preparing for a 

well-planned discussion.  

1. “Anticipating likely student responses to cognitively demanding mathematical tasks” 

(p. 321). Rather than simply determining whether or not students will solve the task 

correctly, this practice involves anticipating how students will tackle a particular task, 

and how that thinking, be it well conceived or misconceived, relates to the 

mathematical ideas, strategies, and/or representations the teacher wants the students to 

learn. 

2. “Monitoring students’ responses to the tasks during the explore phase” (p. 321). As 

teachers interact with students during exploration, they pay close attention to the 

thinking that is elicited. They should not simply attend to which students are 

successful and which are struggling, but more importantly, they should attend to the 

underlying mathematics associated with the thinking they observe and hear. The 

anticipation of thinking associated with practice 1 enhances a teacher’s ability to 

engage in monitoring.  

3. “Selecting particular students to present their mathematical responses during the 

discuss-and-summarize phase” (p. 321). Because the teacher has anticipated the 

thinking that may arise from the task, also it is possible to anticipate which elements 

of that thinking will be shared in the discussion. In other words, anticipating potential 

thinking enables the teacher to plan the discussion in advance. Then while monitoring 

student thinking during the exploration, the teacher can look for students who exhibit 

the anticipated thinking—both well conceived and misconceived—and select those 
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students to share during the discussion. Of course, monitoring may reveal 

unanticipated thinking that may also be shared. 

4. “Purposefully sequencing the student responses that will be displayed” (p. 321). 

Deliberate choices about the order in which student thinking is shared can move the 

thinking of a whole class forward. By moving from concrete, less complex thinking to 

more abstract and complex thinking in the course of the discussion, all learners can 

access the shared thinking and develop more advanced ways of thinking as the 

discussion progresses. The planning associated with the selecting of thinking to share 

is accompanied by the sequencing of that sharing. Thus, when decisions are made 

during the monitoring as to which students will actually do the sharing, accompanying 

decisions about the order of that sharing are also made. As is the case with the 

previous practice, the sequencing decisions made during monitoring may adjust the 

planned sequencing.  

5. “Helping the class make mathematical connections between different students’ 

responses and between students’ responses to key ideas” (p. 321). To assist students 

with the advancing of their own thinking during the discussion, teachers should make 

a number of explicit moves to encourage students to make connections among the 

ideas, strategies, and representations that are shared. This avoids the “show and tell” 

phenomenon; rather than having discussions that consist of separate presentations, 

student presentations build on each other to promote deep thinking among all 

discussion participants. 

Stein, et al. (2008) proposed that the implementation of these five specific practices for 

developing mathematical discussions will increase the likelihood that teachers will use inquiry-
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based methods to advance students’ conceptual knowledge while extending the teachers’ own 

abilities to orchestrate and support discourse. The purpose of the study was to investigate my 

implementation of these five practices for facilitating mathematical discussions around 

cognitively demanding tasks. In doing this, it was my intent as a novice teacher of inquiry-based 

mathematics to develop a pedagogy that encourages student learning through the process of 

inquiry. 

Research Questions 

Stein et al. (2008) demonstrated that richer mathematical discussions resulted from the 

implementation of the five practices. When I have observed expert teachers orchestrating 

mathematical discussions while employing inquiry-based teaching, it appeared effortless. When I 

have tried to do likewise, little learning ensued in the midst of the chaos I created. In my study, I 

applied the five practices suggested by Stein et al (2008) in order to improve my mathematical 

instruction, particularly the orchestration of mathematical discussion. Thus, the purpose of this 

study was to investigate my efforts to implement those practices. I wanted to find out what 

would happen when I used the five practices as a guide for orchestrating discussions. 

Additionally, I wanted to examine trends in my decision-making relative to those practices that 

occurred over the course of an instructional unit. To that end, I investigated the following 

specific features related to the five practices. 

In order to determine how well I was “anticipating likely student responses to cognitively 

demanding mathematical tasks” (Stein et al. 2008, p. 321), I investigated how the thinking I 

thought would occur compared to the thinking I actually observed. I was concerned with 

thinking that was well conceived along with thinking that was misconceived. 
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The “monitoring of students’ responses to the tasks during the explore phase” (p. 321) 

requires a new type of teacher-student interaction while students work independently, either in 

small groups or alone. Rather than checking to see if students were “doing the math right” while 

working independently and providing little snippets of direct instruction if they were not, I 

interacted with individual students in order to assess what mathematics they were thinking about 

and the level of complexity of that thinking. I then compared that thinking to the thinking I had 

anticipated. Additionally, I wanted to promote deeper levels of thinking through those 

interactions. Therefore, I worked on asking questions rather than simply checking student work 

or telling students how to think, and I tried to interact with as many students as possible. I 

wanted to know how many students I interacted with, how often I interacted with them, and what 

levels of thinking characterized those interactions in the explore phase. 

As a result of anticipating the thinking that might occur as students engaged in the tasks I 

presented, I planned what thinking would be shared during the discuss phase and in what order—

“selecting particular students to present their mathematical response during the discuss-and-

summarize phase” and “purposefully sequencing the student responses that will be displayed” (p. 

321). Then during the explore phase, I looked for that thinking as well as other thinking I did not 

anticipate that could be shared. I then decided which students would share and in what order. To 

get a sense for how well I was able to plan my discussions in advance, I compared my plans for 

sharing student thinking to the sharing decisions made in the course of the lesson. 

During the lessons, I focused on “helping the class make mathematical connections 

between different students’ responses and between students’ responses to key ideas” (p. 321), 

which required a whole new set of skills. My goal was to get as many students involved in the 

discussion as possible, to involve the whole class in the pursuit of mathematically-rich ideas any 
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time they occurred, and to promote deeper or higher levels of thinking in the process. To get a 

sense of how well I was accomplishing my goal, I wanted to know how many students verbally 

participated in the discussions, how often student comments were pursued, how involved the 

students were in pursuing a comment, and the depth of thinking associated with all of this 

interaction. The instructional goals were closely linked to the practices outlined by Stein et al. 

(2008) and directed the structure of the lesson and also influenced the research questions I 

wanted to answer. Therefore, this study was designed to address the following questions. 

1. How did the thinking I thought would surface as a result of engaging in the task I 

presented compare to the thinking I actually observed? 

2. What was the nature of the interaction between the students and me while I monitored 

student thinking during the explore phase? 

3. How did my plans for sharing student thinking compare to the sharing decisions made 

in the course of the lesson? 

4. What was the nature of engagement in the discussions I orchestrated? 

In summary, the research suggests that orchestrating discussion is a key teaching practice 

that can aid in the development of mathematical proficiency. Although both teacher education 

and professional development programs stress the importance of improving teachers’ discussion-

orchestration skills, teachers of mathematics still find it difficult to implement these strategies in 

their teaching practice. To provide teachers with a structure for a seemingly amorphous practice, 

Stein et al. (2008) developed a model consisting of five practices that teachers can use to 

improve mathematics discussions and elicit student interactions that advance their mathematical 

understanding. I used these five practices to improve my own discussion orchestration and 

studied what happened when I did. 
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Chapter 3 

Methods 

Stein et al.’s (2008) framework, as described in Chapter 2, gives form and function to the 

task of orchestrating mathematical discussion. The framework dispels the notion that discussion 

orchestration is entirely improvisational and encourages the development of goal-oriented 

discussions (Stein et al., 2008). My study examined the implementation of this framework by 

investigating how its implementation affected my ability to orchestrate rich mathematical 

discussions during a unit of instruction. Over the course of the study, I monitored my 

development as a discussion facilitator as I implemented the framework for orchestrating 

discussions. I prepared a two-week mathematical unit of study. Then, using the framework, I 

attempted to answer the following questions. 

1. How did the thinking I thought would surface as a result of engaging in the task I 

presented compare to the thinking I actually observed? 

2. What was the nature of the interaction between the students and me while I monitored 

student thinking during the explore phase? 

3. How did my plans for sharing student thinking compare to the sharing decisions made 

in the course of the lesson? 

4. What was the nature of engagement in the discussions I orchestrated? 

Research Design 

The focus of this research study was to examine personal practice; therefore, a practical 

action research approach was best suited for this study. Practical action research is used when 

teachers seek to examine existing problems in their own classrooms for the purpose of improving 

their students’ learning and their own professional performance (Creswell, 2008). I used the 



20 

 

Dialectic Action Research Spiral (Mills, 2000) to structure my study because it encapsulates the 

dynamic and flexible nature of the practice of action research within a four-step process:  

1. Identify a problem or area of focus that exists in your classroom,  

2.  Collect data, 

3.  Analyze and interpret the data, and  

4.  Take action that will result in a spiraling back into the process.  

Koshy (2005) noted that teachers use action research to help refine their practice, support 

students’ learning, and contribute to their own continuing professional development.  

He used the term “spiral” to describe the cyclical relationship between data collection, analysis, 

and interpretation and efforts to improve instruction. Data interpretation affected the actions I 

took to improve and refine my practice. Those active steps I took to improve my practice in-turn 

generated new data to collect and analyze. The purpose of using action research was to develop 

an individual understanding of the challenges and rewards of introducing difficult, inquiry-based 

mathematical practice, particularly discussion orchestration, into my classroom instruction. 

Context  

I am a white male, and at the time of this study, I had been a sixth-grade teacher at the 

same school in a western state for my entire six-year professional career. Prior to my career, I 

completed a degree in elementary education at a local university. As part of my pre-service 

studies, I was required to take two courses that focused on mathematical concepts and one course 

that focused on mathematics pedagogy. Though these courses were helpful in solidifying 

mathematical concepts, they did not adequately address how to orchestrate or facilitate 

mathematical discussions.  
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At the time of this study the sixth-grade team of which I was a part of functioned as a 

professional learning community (PLC). We worked collaboratively by sharing ideas and 

teaching strategies, by collectively seeking solutions to problems that our students faced, and we 

developed our mathematics units together. As a member of a sixth-grade team, I was required to 

follow the pacing inherent within those units in order to meet the common assessment standards 

we had created as a PLC. The design of the lessons developed from those unit plans had tended 

to be quite traditional, based upon a perspective that defines teaching as primarily a telling 

endeavor. Relying heavily on mathematical discussion as a vehicle for moving the understanding 

of all students forward, I departed from the traditional teaching approach and attempted to 

implement inquiry-based methods that I studied during my graduate course work.  

The unit was designed from the Common Core State Standards-Mathematics (2010) 

domain of Statistics and Probability, Standards 6.SP.1-6.SP.5.d. It focuses developing student 

understanding of the concepts of mean, median, mode, range, and the use of data and graphs to 

measure variability with emphasis on finding mean variability. Conducting my study in the 

context of teaching this topic was both strategic and necessary. It was strategic because 

teaching variability and mean deviation is fairly new to the sixth-grade core curriculum. At the 

time of this study I had only taught these concepts once the previous year, which provided me 

with an opportunity to use unfamiliar practices to teach a foreign concept. Thus, not only was I a 

novice in using orchestrating discussions but I was also a novice in teaching this specific topic. 

Teaching this topic was also necessary because it was the topic called for by my PLC’s 

curriculum map, and I generally seek to remain aligned with the other teachers in my PLC when 

it comes to the timing of mathematics instruction. 
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Participants  

Because this study was used to analyze my teaching practice and how a specific 

instructional framework was used to improve my ability to conduct and facilitate mathematical 

discussions, the intended focus was my teaching practice. However, student participation was a 

vital part of this study, so observations of that participation provided important data. Therefore, 

the students in my sixth-grade classroom were considered participants. The 33 students in my 

class—17 girls, 16 boys—came from middle-class and lower middle-class backgrounds. I was 

not required to group my students by ability for mathematics instruction; therefore, my students’ 

mathematical abilities ranged from remedial to advanced, including two students who received 

an Individual Education Plan in mathematics. Their identities were kept anonymous. Students’ 

test scores and performance assessments were not relevant to this study and therefore were not 

used. 

Data Sources 

 Two data sources were used to study the implementation of the practices and their effect 

upon mathematical discourse in my class. The first data source was the individual lesson plans I 

developed to guide my instruction. The written plans provided a portrait of how I anticipated 

student thinking, the first practice of the framework, as well as the anticipated selecting and 

sharing decisions associated with conducting the discussion, the third and fourth practices. As I 

planned each lesson, I worked through the task or tasks in an effort to anticipate how my students 

might think about them, writing my anticipations on the lesson plan itself, then used the 

anticipated thinking to plan the sharing. Copies of the lesson plans can be found in the appendix. 

 Video recordings of the lessons served as the second data source. The video recordings 

focused on the launch, explore, and discuss phases of the actual lesson. During the launch and 
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explore phases, the video focused on my interactions with students. These interactions occurred 

as I presented the task and monitored the students exploring possible solutions, occasionally 

asking about their thinking. In the final phase, named the discussion phase, the discussion 

becomes the focal point of the lesson; the video recorded whoever was speaking, which could 

have been the sharing students, listening students, or the teacher. These recordings were used to 

compare the anticipations just described to actual implementation via live feed coding. I 

compared the thinking I anticipated to the thinking that actually surfaced, the thinking I planned 

to have shared with the thinking that was actually shared, and the planned sequence of that 

sharing with the actual sequence of sharing—issues related to research questions 1 and 3. 

Additionally, the video recordings provided a record of the interactions that characterized the 

explore and discuss phases of my lessons—issues related to questions 2 and 4.  

Data Analysis 

 The five practices not only guided my efforts to enhance my discussion orchestration, but 

they also framed my study of those efforts as discussed in Chapter 2. Analysis was conducted on 

two levels—an exploration of data (Cresswell, 2008) to produce descriptions of what occurred 

during specific lessons, and then analyses of trends across all the lessons within the unit. Level 1 

analysis consisted of coding via a priori codes that reflect the features that characterize each of 

the five practices as explained in Chapter 2. Level 2 analysis examined the trends that arose as 

my students and I engaged in mathematical discussions, examining the cross-lesson effects of 

utilizing the framework upon my teaching practice and the students’ participation in the 

discussions. Thus, the features associated with Stein et al.’s (2008) five practices served as an a 

priori coding system for Level 1 analysis, upon further examination and interpretation of data, 

additional codes were developed in order to describe present and possible emerging themes, 
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patterns, or trends that arose over time (Cresswell, 2008). Therefore, the Level 2 analysis 

examined my practice across lessons within the unit and the trends associated with that practice, 

trends that revealed consistent moves across lessons in some cases, or patterns of change or 

improvement in other cases. Specific data analysis procedures relating to both analysis levels 

will be discussed in the following paragraphs, organized by the five practices and the research 

questions associated with them.  

Anticipating likely student responses. The first step in orchestrating whole-class 

mathematical discussions is to anticipate likely student responses to the mathematical tasks. I 

recorded my lesson planning on a simple lesson plan template based on the Comprehensive 

Mathematics Instruction Framework (Hendrickson, Hilton, & Bahr, 2008; see Appendices A–F). 

As part of my lesson planning, I recorded the thinking I predicted would surface during lesson 

implementation, i.e., my preconceived notions of what thinking would be present during both the 

explore and discuss phases, including possible misconceptions that might occur. I also 

investigated how the thinking I thought would occur compared to the thinking I actually 

observed. I was concerned with thinking that was well conceived along with thinking that was 

misconceived.  

Level 1 analysis consisted of watching the video recordings and comparing the thinking I 

observed to the thinking I anticipated. That is, I noted the thinking I anticipated that did occur, 

the thinking I anticipated that did not occur, and the thinking that occurred that I did not 

anticipate. While watching the video, I labeled any thinking that I had anticipated as “observed.” 

The thinking on the lesson plan that I did not observe was not labeled. When I observed thinking 

that I had not anticipated, I wrote it on the lesson plan. Then I labeled it with the words “proper 

conception” or “misconception.” These labels were tallied. I engaged in Level 2 analysis by 
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examining the trends in those tallies across lessons within the unit. These analyses were based on 

the first pass through the data.  

Monitoring students’ responses. The practice of monitoring student responses occurred 

during the explore phase of the math lessons. I wanted to know how many students I interacted 

with, how often I interacted with them, and what levels of thinking characterized those 

interactions in the explore phase. Using the video recordings, I noted which students I chose to 

interact with. Then I coded those interactions based on the cognitive level of the questions I 

asked the students according to the Hybrid List of Thinking Levels (Bahr, Bahr, & Monroe, 2011) 

as shown below in Table 1. I then tallied the number of interactions per student and the number 

of questions at each level of thinking I observed. The Hybrid List of Thinking Levels (Bahr, Bahr, 

and Monroe, 2011) was developed as a framework for analyzing thinking levels students’ surface 

during mathematical discussions. The authors used existing frameworks, and then augmented 

them through the process of examining the practice of a veteran teacher. The least complex 

levels are listed at the top of the table and the most complex levels are listed at the bottom. There 

is a gradual increase in cognitive level from top to bottom. Therefore only thinking levels that 

were present during the explore phase were recorded.  

Level 2 analysis occurred in two parts. The first part consisted of tallying the number of 

times I interacted with each student across all six lessons and tallying the total number of 

interactions per lesson. I then computed an average and range of interactions per student across 

all lessons. The second part consisted of comparing the number of questions per level per lesson 

within each lesson as well as across all lessons. Because the Hybrid List of Thinking Levels and 

Definitions was used in the analyses related to Practice 2, which occurs in the explore phase, and 

Practice 5, which occurs in the discuss phase (Research Questions 2 and 4), the second part of 
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Level 2 analysis consisted of comparing the data across both practices. Specifically, I compared 

which levels of thinking appeared, the number of times those levels appeared, and tendencies 

toward lower or higher levels of thinking. These analyses were based on the second pass through 

the data. 

Table 1 

Hybrid List of Thinking Levels and Definitions   

 

Selecting and sequencing students’ responses. Because Practice 3 and Practice 4 occur 

together in both planning and implementing, the analysis procedures relative to both practices 

occurred at the same time and are therefore discussed together here. During the explore phase, 

the practice of selecting students to share their responses to the whole class during the discuss  

phase of the lesson, as well as the order in which that thinking is shared, is influenced by the first 

practice of anticipating likely student responses to cognitively demanding mathematical tasks. In 

Thinking levels Explanation 

Short answer Very, very brief response; often an answer to a question 

Brief statement  A little more information than an answer but not very rich 

Description A rich verbalization of thinking 

Clarification  Making a description or other verbalization more clear 

Elaboration Adding more information to a verbalization 

Representation Showing thinking in one or more ways 

Translation Communicating in words or in other ways 

Comparison Determining whether or not strategies, ideas, or representations are the same or not 

Relation Determining how strategies, ideas, or representations are similar or different 

Justification Explaining why thinking is mathematically sensible 

Challenge/support Agreeing or disagreeing 

Proof  Arguing for consistency within a large domain 

Generalization  Looking for patterns, applying to different situations, predicting 
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order to get a sense for how well I was able to plan my discussions in advance, Level 1 analysis 

consisted of a comparison of my plans for sharing student thinking to the sharing decisions made 

in the course of the lesson. These decisions related to both what thinking would be shared and in 

what order. While watching the videos I noted the thinking I selected during the explore phase. I 

wrote “shared” next to each piece of thinking on the plan that was actually shared. If the 

unanticipated thinking I recorded relative to Practice 2 (Research Question 2) was also shared, I 

wrote the word “shared” next to it as well. These labels were tallied. Level 2 analysis consisted 

of examining trends in these tallies across all lessons. 

Although Stein et al. (2008) list purposeful sequencing as a separate practice, it actually 

occurs right after, if not during the practice of selection. Therefore, Level 1 analysis related to 

this practice is similar to the analysis associated with Practice 3 and occurred at the same time. I 

wrote numbers next to the thinkings I planned to share on the lesson plans to indicate the order in 

which I intended to have them shared. While watching the recordings, I wrote numbers next to 

the thinkings again in order to record the order in which they were actually shared. I then tallied 

the number of times the two sets of numbers matched each other. I only examined the 

sequencing of thinking I planned to share, although there was unanticipated thinking that was 

also shared. Level 2 analyses consisted of examining trends in these numbers across all lessons. 

The analyses relative to both practices were based on the third pass through the data. 

Helping students make mathematical connections.  

During a discussion, the members of the class fulfill multiple roles. Some of the students 

are invited to share their problem-solving thinking to the whole class, while others are invited to 

respond to that thinking as a result of their listening role. My goal was to get as many students 

involved in the discussion as possible, to involve the whole class in the pursuit of mathematically 
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rich ideas anytime they occurred, and to promote deeper or higher levels of thinking in the 

process. To get a sense of how well I was accomplishing my goal, I wanted to know how many 

students verbally participated in the discussions, how often student comments were pursued, how 

involved the students were in pursuing a comment, and the depth of thinking associated with all 

of this interaction. 

I segmented each lesson’s discussion into parts according to when a new student or new 

group of students initially shared their thinking about the task. Thus each segment consisted of 

some initial sharing, then responses by the listening students, further responses by the students 

who initially shared, and me. While analyzing the six lesson discussions, I noted the nature of the 

decisions made whenever a sharing or listening student said something. The first decision 

concerned whether or not to pursue, or follow up, on the student comment. If so, the next 

decision concerned who should pursue the comment—the student who made the comment, one 

of the listening students, or me. The third decision was concerned with the cognitive level at 

which those pursuits were directed to occur, similar to the analysis related to Practice 2.  

The Level 1 analysis relating to these decisions categorized student comments as to 

whether or not they were pursued, who was assigned to pursue them, and the cognitive levels at 

which those pursuits occurred. I used the Hybrid List of Thinking Levels and Definitions to 

measure the level of thinking that students shared during both the explore and the discuss phases 

of the lesson. As in Practice 2 (Research Question 2), Practice 5 (Research Question 4) analysis 

counted the number of thinking levels and how often those levels were presented during each 

lesson. Counts were made of the codes associated with these decisions for each lesson. As in 

Practice 2, some thinking levels did not surface during the discussion. Level 2 analysis consisted 

of examining trends in these counts across lessons. Level 2 analysis consisted of comparing the 
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data across both practices. Specifically, I compared which levels of thinking appeared, the 

number of the levels, the number of times those levels appeared, and tendencies toward lower or 

higher levels of thinking. These analyses were based on the fourth pass through the data. 

Analysis Reliability 

In order to ensure analysis reliability, my thesis chair and I jointly analyzed the data 

associated with each practice. We jointly analyzed the data obtained from the first three lessons, 

negotiating the assignment of codes and labels based upon our individual perspectives until we 

reached consensus. By the third lesson, we observed more than 90% agreement among our 

individual perspectives, so we independently analyzed the fourth lesson. There was also a more 

than 90% agreement associated with that analysis, so I performed analyses associated with the 

final two lessons myself. 

Limitations 

 This study focuses primarily upon my own practice and experience as a sixth-grade 

teacher. The results of this study are not fit for generalization in the strictest sense of the word. 

However, the results of this study may prove to be useful for teachers and teacher educators who 

are interested in developing discussion-orchestration abilities. 
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Chapter 4 

Findings  

 The findings of this study are organized and reported according to the previously 

discussed research questions and the corresponding features of the five practices developed by 

Stein et al. (2008). For instance, the findings relating to “anticipating likely student responses to 

cognitively demanding tasks” (Stein et al., 2008) will be presented first, followed by findings 

related to “monitoring students’ responses to the tasks during the explore phase” (Stein et al., 

2008), and so on. As in Chapter 3, the research questions and associated practice features will be 

discussed together. I will report the findings that have been analyzed directly from data 

collection. The deeper meaning of these findings will be further discussed in Chapter 5. 

Anticipating Likely Student Responses  

To analyze my thinking regarding this practice, I examined how my anticipation of 

student thinking compared with the actual student thinking that surfaced during the math 

lesson—both proper conceptions and misconceptions. That is, I noted the thinking I anticipated 

that did occur, the thinking I anticipated that did not occur, and the thinking that occurred that I 

did not anticipate, both proper conceptions and misconceptions. These categorizations were 

tallied and appear in Table 2. 

I anticipated that my students would construct 19 proper conceptions. Of those 19, only 

one proper conception that I anticipated did not surface during the math lessons. This indicated a 

high relationship between the proper conceptions I anticipated and those I observed. The 

relationship between anticipated misconceptions and observed misconceptions was different. 

Throughout the unit, I anticipated 11 misconceptions would surface during the math lessons. Of 

those, only seven surfaced. For example, the task for Lesson 1 required students to organize and 
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Table 2 

Comparisons of Anticipated to Observed Student Thinking  

  
Proper Conceptions 

  
Misconceptions 

  Unanticipated 
Conceptions 

 

Lesson Anticipated Observed 
Match 

Anticipated Observed 
Match 

Proper Misconceptions 

1 4 4 3 2 2 2 
2 5 4 1 1 2 1 
3 4 4 2 0 2 0 
4 2 2 2 1 2 1 
5 2 2 2 2 0 1 
6 2 2 1 1 0 1 

Total 19 18 11 7 8 6 

 

then report specific data in such a way that they could generate a graph. The data differed in 

units of time, the minimum being 30 minutes and the maximum being 27 hours. As I prepared 

for the first lesson, I explicitly recorded the misconceptions I expected to surface. I noted that 

students’ misconceptions would include overlooking the time-unit change in the data set and 

using limited interval examples to report the data. These misconceptions lead to new 

misconceptions I had not anticipated, such as my students doubling all the intervals in order to 

make the time units consistent with one another. In other words, the 30 minute interval was 

multiplied by two in order to make the unit 1 hour; however, the students also multiplied every 

other time unit by two. In total, there were 14 conceptions that surfaced during the unit that I did 

not anticipate, 8 of which were proper conceptions and 6 of which were misconceptions. 

The strong relationship between the number of anticipated and observed proper 

conceptions was consistent across lessons. A similar consistency was observed in the weaker 

relationship between anticipated and observed misconceptions although that relationship 

strengthened in the last two lessons. That is, I generally observed fewer misconceptions than I 
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anticipated. Every lesson was accompanied by thinking that I did not anticipate—sometimes 

only proper conceptions, sometimes misconceptions, and sometimes both. 

Monitoring Students’ Responses  

Two different analyses were conducted regarding the practice of monitoring students’ 

work during the explore phase. Interactions were defined as mathematical dialogues between me 

and an individual student or a small group of students. The first analysis consisted of tallying the 

number of times that an individual student, small group of students, or I initiated a mathematical 

interaction as shown in Tables three and four. Specifically, I tallied the number of times I 

initially interacted with each individual or small group across all six lessons. I then totaled the 

number of interactions per lesson.  

Table 3  

Number of Initial Explore Interactions per Lesson 

Lesson Interactions 

1 38 
2 17 
3 7 
4 9 
5 17 
6 30 

Total 118 
 

The number of interactions per lesson ranged from seven to 38 with a mean of 

approximately 19 overall interactions and three interactions per student per lesson. However the 

number of interactions with individual students across all lessons ranged from zero to 11. These 

data do not reveal any general or consistent pattern that would specify how I interacted with any 

students or how those interactions were distributed across lessons. Some students were not 

interacted with at all, some were only interacted with once or twice across all six lessons, and 
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others were interacted with almost every lesson. There were even two students who were 

interacted with more than once per lesson on average 

Table 4  

Number of Teacher-Student Interactions During Explore Phase 

Number of Students Interactions Received Per 
Student 

4 0 
3 1 
3 2 
8 3 
7 4 
5 5 
2 6 
1 9 
1 11 

 

During the second analysis, the cognitive level of the questions I asked during 

interactions with students was determined and tallied as shown in Table 5. These cognitive levels 

are described in Chapter 3, Table 1. Next, the number of questions per level per lesson was 

compared, as well as across all lessons. I first tallied the number of initial interactions; however, 

during the course of interacting with one student or a small group of students, many different 

thinking levels surfaced. Therefore the total of all thinking levels exceeds the total number of 

interactions as shown in Table 3. 

As stated in Chapter 3, not all of the thinking levels appear on this table—only those that 

were observed as I interacted with students during the monitoring phase. Of the 13 cognitive 

levels that could characterize student responses, seven actually appeared to varying degrees. 

There were six levels of thinking that did not appear—brief statement, representation, translation, 

comparison, relation, and proof—and thus are not shown in the table. The most common 
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cognitive levels were description (60), clarification (49), and justification (21). 

Challenge/support, elaboration, short answer and generalization appeared less frequently. The 

thinking levels absent from the discussion were brief statement, translation, comparison, and 

proof. 

Table 5 

Occurrences of Cognitive Level of Teacher Interactions During Explore Phase  

Lesson SA D CA E J C/S G 

1 0 16 12 0 5 0 0 
2 0 2 3 2 0 0 0 
3 1 8 1 1 3 0 0 
4 0 3 6 0 6 0 1 
5 2 9 14 0 3 1 0 
6 0 22 13 0 4 3 0 

Total 3 60 49 3 21 4 1 
Note. SA = short answer; D = description; CA = clarification; E = elaboration; J = justification;  

C/S = challenge/support; G = generalization. 

Selecting and Sequencing Students’ Responses 

Because the process of selecting students to share during the discuss phase is linked to 

the process of sequencing as discussed in Chapter 3, the results of analyses relating to these two 

practices are shown together. As I planned each lesson I anticipated specific thoughts and 

strategies that might surface during the explore phase and would then be shared during whole-

class discussion. I also planned the order in which those thinkings would be shared, assuming 

they actually surfaced. However, I also knew there might be thinkings I did not anticipate. 

During my examination of the recordings I compared the thinkings I anticipated sharing to the 

thinkings I actually shared. Additionally, I compared the order in which the thinkings were 

shared to the order in which I planned to share them.  
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Table 6 displays the number of ideas I intended to share as described by the lesson plans 

for each day, the number of those ideas that were actually shared, and the number of unintended 

shared ideas that occurred. The last column in the table summarizes the comparison between the 

planned sequence of sharing and the sequence that actually occurred. Because the planned 

sequence was based on the thinking that was anticipated to occur, the only relevant thinking to 

this analysis was the observed thinking that matched the anticipated. In other words, anticipated 

thinking that was not observed, as well as unanticipated thinking that was shared, were not 

considered in the analysis related to sequencing and is not accounted for in the table below. 

Table 6  

Intended and Observed Sharing and Sequencing 

Lesson Intended Sharings Intended Sharings 
Observed 

Unintended Sharings Matches Between 
Intended and 

Observed 
Sequencing 

1 4 2 1 2 
2 3 2 0 2 
3 2 2 1 2 
4 2 1 2 1 
5 2 1 0 1 
6 2 2 0 2 

Total 15 10 4 10 
 

Of the 15 overall thinkings I intended to share, 10 of them were actually shared. There 

was only one lesson, Lesson 6, in which the intended sharing and sequencing matched the actual 

sharing and sequencing that occurred during the lesson. In Lesson 2, Lesson 4, and Lesson 5, I 

selected fewer strategies to share than I had previously anticipated. In Lesson 1 and Lesson 3, I 

selected more strategies to share than I had previously anticipated. If only examining the 
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sequence of sharing I anticipated is considered, then the sequence that my students actually 

shared always matched the actual sequencing. 

 

Helping Students Make Mathematical Connections  

During a discussion, the members of the class fulfill multiple roles. Some of the students 

are invited to share their problem-solving thinking to the whole class, while others are invited to 

respond to that thinking as a result of their listening role. The teacher orchestrates the discussion, 

and on occasion, participates in a manner similar to the listening students. The expectation is for 

students to interact with one another during the lesson in order to build the mathematical 

understanding of all. All three roles were observed in every lesson.  

While analyzing the six lesson discussions, I noted the nature of the decisions made in the 

moments whenever a sharing or listening student said something. The first decision concerned 

whether or not to pursue, or follow up, on the student comment. If yes, then the next decision 

concerned who should pursue the comment—the student who made the comment, another 

student, or myself. The third decision was concerned with the cognitive level at which those 

pursuits were directed to occur, similar to the analysis related to Practice 2. The first analysis 

relating to these decisions categorized them as to whether or not they were pursued and who was 

assigned to pursue them. These categorizations were then tallied, as shown in Table 7. As 

discussed in Chapter 3, the discussion was divided into segments according to when a new 

student or group of students shared their thinking about the task. Thus each segment began with 

some initial sharing, and then continued with responses, or “pursuits,” by the listening students, 

the sharing student or students, and me. The number of sharing students is displayed along with 
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the number of times pursuits were conducted by those students, the listening students, and by me. 

The number of student comments that were not pursued is also shown. 

Table 7  

Pursuits of Questions During Connection Practice 

 
 

Lesson 

 

Initial 
Sharing 

Pursuits by 
Sharing 
Students 

Pursuits by 
Listening 
Students 

Total 
Students 
Pursuits 

 

Pursuits by 
Teacher 

 

Total 
Pursuits 

 

Comments Not 
Pursued 

1 3 13 10 23 6 29 0 
2 3 5 15 20 5 25 1 
3 2 6 19 25 2 27 4 
4 3 12 10 22 6 28 0 
5 1 15 25 40 4 44 1 
6 2 1 4 5 3 8 1 

Total 21 52 83 135 26 161 7 
 

Overall, the listening students pursued more comments than the sharing students. However, there 

were two lessons when the sharing students pursued more comments than the listening students: 

Lessons 1 and 4. In every lesson, I pursued more than one comment made by the listening or 

sharing students rather than directing other students to pursue them. However, the number of 

times I did the pursuing was far less than the number of pursuits made by students. There were 

seven instances when students made comments that I chose not to have pursued. In all six 

lessons, the number of comments pursued far outnumbered the comments not pursued. There 

was a mean of 27 pursuits per lesson.  

 The second analysis consisted of categorizing the cognitive levels of each pursuit and 

then tallying the number of pursuits within each category along with percentages of the total 

pursuits, as shown in Table 8.  

Not all of the thinking levels appear on this table. Only the thinking levels that were 

observed were coded and therefore reported. Of the 13 different levels of thinking that could 
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have been observed, nine were present during the lessons. The number of pursuits in each 

cognitive category ranged from one to 42. The levels that occurred most frequently were 

justification, which occurred 27% of the time, challenge/support, description, clarification, 

relation, and short answer. Elaboration, generalization, and representation occurred less 

frequently. Brief statements, translations, comparisons, and proofs were not observed during the 

unit and do not appear in the table.  

Table 8  

Cognitive Levels of Discussion Pursuits  

 
Lesson 

 
SA 

 
D 

 
CA 

 
E 

 
RP 

 
RN 

 
J 

 
C/S 

 
G 

1 1 3 7 1 0 7 10 6 0 
2 6 3 5 1 0 5 9 0 0 
3 5 8 4 5 1 3 7 0 0 
4 1 8 2 2 0 3 6 5 1 
5 2 0 5 0 0 0 9 15 0 
6 0 2 0 0 0 0 1 7 0 

Total 15 24 23 9 1 18 42 33 1 
% of 
Total 

Pursuits 

 
9% 

 
14% 

 
14% 

 
5% 

 
.006% 

 
11% 

 
27% 

 
20% 

 
.006% 

Note. SA = short answer; D = description; CA = clarification; E = elaboration; RP = representation; RL = relation;  
J = justification; C/S = challenge/support; G = generalization. 

 

Generally, more thinking levels were pursued during the discussions than during the 

explorations (monitoring), and, unlike monitoring, the discussions yielded higher-level thinking. 

For example, approximately 47% of the comments pursued by students and me during the 

discussion were pursued through justifying or challenging/supporting student comments, while 

during the explore phase only 24% of the comments were focused on those two levels. 

Additionally, 11% of the comments pursued by students involved observing relationships among 

comments. Some lower levels of thinking among the students, specifically relating and clarifying, 
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trended downward towards the end of the unit, while description, another example of lower-level 

thinking, trended upward, similar to the analysis related to Practice 2. 

Data from the two analyses were combined in order to examine the relationships among 

the decisions to pursue, (i.e., the decisions about who was selected to pursue and the cognitive 

level of that pursuit) as shown in Table 9. The levels of thinking associated with my pursuits 

were much different than the thinking levels pursued by the listening and sharing students. While 

I tended to focus on lower levels of thinking, my students engaged in higher-level thinking when 

pursuing students’ comments. For example, I focused a great deal on clarification of student 

thinking in my pursuits, while my students tended to pursue the thinking levels that were 

challenging and supporting or justifying claims. Indeed, justifying and challenging/supporting 

student thinking accounted for 47% of the thinking levels present during the discussion, while I 

only engaged in justifying and challenging/supporting. 

Table 9 

Relationships Among Pursuit Decisions and Cognitive Level of Each Pursuit  

Pursuer SA D CA E RP RN J C/S G 

Student 1 2 15 1 1 1 3 6 1 
Teacher 9 21 4 5 0 15 41 28 1 
Note. SA = short answer; D = description; CA = clarification; E = elaboration; RP = representation; RL = relation;  

J = justification; C/S = challenge/support; G = generalization. 

 
Summary 

The analyses revealed important trends among the data. As to anticipating student 

thinking, there was a greater correspondence between the anticipation and observation of proper 

conceptions than between anticipated and observed misconceptions. Additionally, most lessons 

were accompanied by thinking not anticipated in the lesson plans. Regarding monitoring during 
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the explore phase, there was a large number of teacher-student interactions. There was a wide 

range as to the number of times individual students were interacted with across the lessons. Also, 

a wide range of cognitive levels characterized the comments in these interactions, with a 

tendency, however, toward lower levels. During the discussions, about half of the strategies 

shared matched the lesson plans. In the case of that match, (i.e., when the strategies shared 

matched the lesson plans), the sequence of that sharing also matched the planned sequences 

within the lesson plans. A large number of students participated, and the number of listening 

student participations exceeded the number of sharing student participations. Those sharings 

evidenced a wide range of cognition with a tendency toward higher levels of thinking than was 

elicited during the explore phase.  
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Chapter 5 

Discussion 

The purpose of this study was to investigate my efforts to implement the Stein et al. 

(2008) practices. I wanted to find out what would happen when I used the five practices as a 

guide for orchestrating discussions and to examine trends in my decision-making relative to 

those practices that occurred over the course of an instructional unit. In this chapter I will explore 

the findings through the discussion of the numerical data, and through examples of conversation 

and classroom vignettes that exemplify the findings. I will also interpret the findings and share 

conjectured explanations. As in the previous two chapters, the research questions and associated 

practice features will be used to organize this chapter.  

Anticipating Likely Student Responses  

In order to determine how well I was “anticipating likely student responses to cognitively 

demanding mathematical tasks” (Stein et al., 2008, p. 321), I investigated how the thinking I 

predicted would occur compared to the thinking I actually observed. I was concerned with 

thinking that was well conceived along with thinking that was misconceived. Interestingly, 

nearly all of the thinking I anticipated that would occur that could be considered well conceived 

was actually observed.  

However, there was a greater discrepancy between anticipated and observed thinking in 

the case of misconceptions and unanticipated thinking. Much fewer misconceptions were 

observed than I anticipated. This observation suggests that I underestimated the ability of my 

students to construct mathematically sound understanding in inquiry-based contexts, (i.e., 

contexts in which I do not tell them how or what to think). This conclusion is even more 
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surprising to me because of the abstract nature of this particular unit of instruction—statistics—

and my own lack of familiarity with statistics and how to teach it.  

Additionally, there was a substantial amount of student thinking that I observed that I did 

not anticipate, split almost evenly between well conceived and misconceived. I believe that my 

inability to anticipate students’ thinking was because of my lack of content knowledge about 

statistics and the associated student thinking. My unfamiliarity with the topic made it difficult to 

teach because I did not have enough experience to anticipate what misconceptions students 

would have. It is also important to note that I was still working out my own misconceptions of 

how to present appropriate tasks and how to connect those tasks to the real world.  

Overall, it appears I have much to learn about the nature of student thinking in the 

context of statistics in order to engage in the critical component of discussion orchestration based 

on the anticipation of student thinking about a given task. However, I was encouraged by trends 

in this study that indicate that there was improvement in my ability to anticipate students’ 

misconceptions over a six-day unit. Engaging in this process in an introspective and thoughtful 

way encouraged me to become acutely aware of my weaknesses and seek out advice on how to 

improve my practice in developing tasks and to then anticipate students’ thinking. This 

knowledge is important in improving the quality of my interactions with students during the 

explore phase, planning and sequencing student sharing in order to more fully advance the 

thinking of all students, and for dealing with the in-the-moment pursuit decisions that occur 

during the discuss phase in a way that promotes deep mathematical understanding.  

Monitoring Students’ Responses  

I was learning to engage in a new type of teacher-student interaction while “monitoring 

students’ responses to the tasks during the explore phase” (Stein et al., 2008, p.321). 
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Traditionally my purpose in interacting with students as I monitor them was to provide direction 

and instruction when they are struggling with a new concept. In place of this practice, I 

interacted with the individual students or small groups in order to assess what mathematics they 

were thinking about and the level of complexity of that thinking. I then compare that thinking to 

the thinking I anticipated, and to advance that thinking in order to encourage deeper levels of 

understanding.  

This effort required asking questions much more frequently than I was used to rather than 

simply checking student work or telling students how to think, as well as making a conscious 

effort to interact with as many students as possible. Therefore, I gathered data on the number of 

students I interacted with, how often I interacted with them, and what levels of thinking 

characterized those interactions in the explore phase. Those data revealed a very uneven, 

inconsistent pattern to my interactions.  

Some students were interacted with quite frequently over multiple lessons and others 

received little or no interactions at all. There are four possible explanations for this observation. 

First, the way I gathered data about monitoring did not allow for interactions that were 

observation only. Thus, I could monitor student thinking from a small number of students 

without engaging in a conversation with them at all. Second, one student was so far advanced 

that I had to interact with him consistently just to keep him engaged. Third, at the other end of 

the spectrum there were students who required more interaction then other students in order for 

me to thoroughly monitor their thinking. Fourth, three students did not provide signed consent 

forms.  

My efforts to continue improving my discussion orchestration will focus in part upon 

evening out these interaction patterns. Doing so will inform the final selection and sequencing 
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decisions I make before the discussion begins to ensure a more broad-based representation of 

student thinking across all students. 

The limited number of thinking levels I used to question my students may have been due 

in part to the complex nature of those interactions. That is, the students’ thinking that 

characterized those interactions was difficult to understand. For instance, in the first lesson, 

students were given a task to organize data so they could find the mean, median, mode, range, 

and then generate some sort of graph. The data consisted of hours that students spent online per 

week and ranged from 0.5 hours per week to 30 hours per week. All of the values were whole 

numbers except one. One student doubled all the values in the data set but it was difficult to 

understand her reasoning. Only after a lengthy exchange was I able to determine that she was 

trying to use only whole numbers, so she multiplied all of the values by two in order to make half 

a value of one.  

As part of a sixth-grade team, I participate in developing common lesson plans, pacing 

guides, and assessments. I did not account for the fact that the pacing and objectives of a more 

traditional classroom was not conducive to teaching using inquiry-based mathematics. I was 

engaging in inquiry-based instruction while using traditional teacher-centered objectives and 

pacing. Because of this, the first few tasks and objectives became bloated. This caused some 

students to become anxious or confused because of the complexity of the tasks being required of 

them. Therefore, in order to create an environment conducive to student inquiry and discussion, I 

not only had to use Stein et al.’s (2008) five practices, but I also had to learn how to create 

appropriately paced tasks and activities that would allow student to use their innate curiosity 

combined with their background knowledge to build their understanding.  
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I had to ask lower level questions to help students clarify their own thinking while 

advance my own comprehension of that thinking. I consulted with my mentor in order to develop 

less complex tasks, thus providing a better opportunity for students to construct knowledge and 

an opportunity to advance my students’ thinking via higher level. The five-practices model 

emphasizes the importance of using tasks to stimulate exploration and discussion, but does not 

necessarily help novice teachers develop appropriate mathematical tasks. This problem has to do 

more with content area literacy and conceptual knowledge than with developing practices. I 

believe that this is one issue that novice teachers who want to become experts at using inquiry-

based learning may need help in resolving.  

The preponderance of lower-level thinking is illustrated in the following example. During 

the initial lesson for the unit, I put students into groups of three and together asked them to 

organize a data set into intervals. The set of numbers represented both hours and minutes. One 

group noted the difference in the units of time. In this exchange, they are discussing about how 

to deal with it. All of my questions illicit lower level thinking. (I am “Jeff” and a single initial 

identifies students.)  

L:  There’s a random minutes thing over there so . . .  

Jeff:  You noticed that huh? 

J:  Yeah we just noticed that. We thought it was thirty hours. Then we noticed it said 

minutes. 

C:  So we had to do half-hours. 

Jeff:  Huh? 
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C:  We had to do half-hours. 

Jeff:  Okay, so is that how you’re going to fix that? 

C:  So, should we do that? Do you think that will work? 

L:  Yeah. 

Jeff:  All right, so what are you going to do? How are you going to put this stuff 

together? 

J:  How we planned on doing it is putting it in one of these (points to an interval 

table). Putting in the graph table, listing what all the times are, the hours, and then 

we planned on making a pictograph. We plan on making that, and then we’re 

going to do the mean, median, and mode and range, if the range needs to be 

involved.  

Another interesting set of observations that is also relevant to Practice 5 as well as 

Practice 2 is that there were more thinking levels associated with the discussions than with the 

explorations (monitoring), and with a greater amount of higher-level thinking. In addition to the 

issues associated with task complexity discussed in the previous paragraph, I conjecture this 

observation is due to focusing more on finding out what students were thinking in the explore 

phase than on advancing that thinking, whereas during the discuss phase, advancing was more of 

a focus. 

Selecting and Sequencing Students’ Responses 

My analysis concerning “selecting particular students to present their mathematical 

response during the discuss-and-summarize phase” and “purposefully sequencing the student 
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responses that will be displayed” (Stein et al., 2008, p.321) occurred together. During lesson 

planning, I decided what thinking would be shared during the discuss phase and in what order—

all based on the thinking I anticipated would occur. Then during the explore phase, I determined 

how to implement that planning by looking for anticipated thinking, as well as other thinking I 

did not anticipate, that could be shared. I then decided which students would share and in what 

order. In order to get a sense for how well I was able to plan this aspect of my discussion 

orchestration in advance, I compared the planning to the sharing decisions made in the course of 

lesson implementation.  

In one sense, my discussion planning was validated because all the thinking I planned to 

have shared was shared. However, the planning was not as effective as that observation would 

suggest for three reasons. First, not all the thinking I anticipated actually occurred, meaning there 

was thinking I planned to share that I could not. Second, my ability to anticipate student thinking 

was broad and unfocused, (e.g., much of my anticipations were so general as to provide little 

guidance for planning the selections and sequencing decisions associated with the discussion). 

Third, there was a great deal of unanticipated thinking that was also shared, providing additional 

evidence of the importance of being able to anticipate student thinking in the first place. That is, 

I had to make a large number of in-the-moment decisions about the selecting and sharing of 

student thinking because of my inability to anticipate thinking that would appear during the 

lesson that hampered the flow of the discussion. For instance, during the first lesson, students 

brought up a misconception that interrupted the direction of the lesson. The comments were good, 

and I knew it would help direct the lesson to our learning outcome, but at the same time it moved 

the discussion away from what we were talking about. Had I been able to be more specific with 

my anticipation of student thinking, I might have anticipated this misconception surfacing and 
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been prepared to position it in our discussion to enhance the overall understanding of my 

students. As the quality of the tasks improved across the unit, my ability to anticipate student 

thinking also improved, leading to improvement in my selecting and sequencing decisions. I 

agree with Reys and Long (1995) when they said the single most important decision a teacher 

makes is determining the task to present and when to present it. 

Helping Students Make Mathematical Connections 

Helping the class make mathematical connections required three in-the-moment decisions 

in order to get as many students involved in the discussion as possible, to involve the whole class 

in the pursuit of mathematically-rich ideas anytime they occurred, and to promote deeper or 

higher levels of thinking in the process. The first decision concerned whether or not to pursue, or 

follow up, on the student comment. During each discussion, my overall goal was to direct 

student thinking to the ultimate unit objective, which was to develop an understanding of mean 

deviation. Therefore the comments I pursued were comments that would connect back to the 

learning objective. In addition, it is also important to note that there were a few instances where a 

student comment prompted me to ask a question that I had not anticipated asking in order to 

provoke student thinking. The challenge of orchestrating the pursuit of student comments is 

illustrated in the following example. 

 During the fourth lesson, students were exploring the similarities and differences between 

two data sets. I chose a pair of students, S and B, to share their ideas. During the discussion, S 

noted, “I found it kind of odd that even though they had the same range and median they had 

different first and third quartiles.” I chose to pursue this comment because it was an unprompted 

remark that focused specifically on that day’s objective. I directed the question to the class “How 
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come you can have two different minimums and maximums and the same range?” This opened 

up the conversation for students to explore this idea. 

 During the same conversation, S made another comment directed toward the previous 

question. He stated, “Even if there are some differences in a data set, there can always be 

similarities, and there can be infinite amount of possibilities in data distribution.” This comment 

also provided another opportunity to explore this concept at an even deeper level; however, the 

level of understanding that my students had illustrated during the lesson demonstrated that they 

were not ready to explore that comment. More importantly, they were trying to attain a learning 

outcome of noting that data sets can have similarities and differences in data distribution. 

Therefore I chose not to pursue this response because found that pursuit of such thinking might 

result in confusion and frustration.  

If a comment was deemed pursuable, the next decision concerned who should pursue the 

comment—the student who made the comment, another student, or me. In some instances, I 

would appoint myself to be the “pursuer” if a comment needed to be pursued and it appeared that 

other student pursuers were missing the mark relative to the mathematics inherent in the 

comment (i.e., not really thinking in a way that pushed the other students’ understanding 

forward). As the unit progressed, I did not feel the need to be the pursuer as frequently because 

the students became more independent and confident with contributing pursuing responses. 

The third decision was concerned with the cognitive level at which those pursuits were 

directed to occur, similar to the analysis related to Practice 2. During the first two lessons I spent 

a lot of time inviting students to restate and clarify or elaborate upon student thinking—relatively 

low levels of thinking. As the unit progressed I found the amount of clarifying by me decreased, 

while my challenging of students—a higher thinking level—increased. There may have been 
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three reasons for this observation. First, my ability to orchestrate discussions improved. Second, 

it may have been that my students’ conceptual understanding was solidifying so they were 

spending less time exploring strategies and more time determining which strategies worked and 

why. Third, as discussed, the quality of the tasks presented in later lessons may have lead to 

higher levels of questioning in the explore phases. It would make sense that changes in task 

quality may have also made it easier to promote higher levels of thinking in the discuss phase. 

There was some evidence that my efforts related to Practice 5 produced high levels of 

engagement. First, there were a large number of student comments during the discussion, 

particularly when compared to the number of comments I made. Of course I spoke frequently, 

but more often to simply facilitate the discussion rather than to comment as a student would. 

Second, a much larger number of comments were made by students listening in comparison to 

the initial sharing than by the students who initially shared. Third, many more comments were 

pursued. 

 Rochat (2001) and others document the strong relationship between levels of interaction 

and engagement in mathematical discussions and the depth of thinking those discussions 

promote. Not surprisingly, there was a greater degree of high-level thinking evidenced in the 

discuss phases than in the explore phases because the interaction level was greater. Mean 

deviation in and of itself is a very complex concept to understand. For sixth-grade students who 

have not experienced statistical concepts, the idea is foreign. Asking students to develop their 

own understanding of mean deviation using very little references to what they already know 

becomes very difficult. During this unit I was concerned that this new approach to learning with 

the addition of complexity and rigor might confuse and frustrate my students. However, during 

each lesson I was pleased to find that the students were advancing their own thinking. For 
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instance, during the third lesson I expected my students would be able to compare the 

distributions associated with the two sets of data. Students grappled with trying to discover 

differences between two particular data sets that had the same median, mean, and range, yet 

looked completely different. However, student S commented that there was a difference in “how 

far the numbers are away from the mean.” He noted that the numbers were arranged differently 

because of the spread of data. This moment was an enormous leap forward in the students’ 

conceptual understanding. Because of the comment made by S, students were able to explore and 

discuss the distinct characteristics of data spread and its relationship with mean, median, mode, 

and range. Because one student was able to recognize data spread, it created the opportunity for 

all of my students to advance their thinking in an organic and natural way.  

Conclusion  

The findings of this study contribute generally to the body of literature devoted to 

developing a teacher’s ability to orchestrate mathematical discussions. Though this study may be 

limited in scope to one teacher’s experience in developing and implementing discussion 

orchestration practices, it does provide the perspective of a novice teacher’s experience. The 

work of Stein et al. (2008) is one of few research-based guides for explaining how a teacher can 

develop mathematical discussion-based practice. It also provides examples of teachers engaging 

in such practices but does not give a personal perspective on how teachers, particularly novice 

teachers, implement these practices in their classrooms. The results of this study report both the 

success of using these practices in my math practice and explain some of the difficulties I had in 

implementing these new practices.   

More importantly, the findings of this study have specifically impacted my own personal 

teaching practice. Studying my own practice has encouraged me to think about mathematical 
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instruction in a way that I have never thought about before. It has resulted in recognizing many 

weaknesses in my own understanding of mathematical concepts. These weaknesses hindered my 

ability to develop and anticipate my students’ mathematical thinking, which put me at a 

disadvantage when I engaged my students in mathematical discussions. This insight has spurred 

me to further my mathematical understanding through professional development. Therefore, 

even though this practice exposed many faults in my own teaching, it has had a positive impact 

on my teaching.  

 This study of my own practices did not only uncover weaknesses, but it also revealed 

strengths that I have in orchestrating discussions. I have taught sixth grade for six years, and 

although I would not say I understand all the mathematics I teach at a deep level, I have become 

familiar with most of the sixth-grade core. However, for this study I developed lessons around a 

topic I was unfamiliar with, yet was still able to achieve some degree of discussion orchestration 

quality and help my students succeed. Using the five practices helped me to frame my 

discussions and yielded what I consider to be a successful outcome to the unit. As students were 

able to construct their knowledge, I was pleased to find that during most of the lessons I was able 

to interact with students in ways that kindled their curiosity and provoked their thinking, without 

giving away “the right answer,” thus providing students with an opportunity to collectively build 

proper mathematical conceptual understanding. 

 The utilization of these five practices also improved my teaching by helping me 

understand that task appropriateness affects my ability to accurately anticipate proper 

conceptions and misconceptions that might surface during the lesson. As my ability to anticipate 

student thinking increased, my ability to promote deeper thinking and to help students make 

connections also increased.   
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 These improvements in my practice had a positive influence on student learning as well. 

As my students engaged in task exploration and discussion, the class culture began to change. 

Students’ thinking and strategies for possible solutions not only focused on their own 

background knowledge, but also began to go beyond that background knowledge. Furthermore, 

student disagreements became more conceptual and less procedural. There was also an 

improvement in how students reported mathematical understanding through their examples, 

writing, and oral presentations. Finally, at the end of the year my students performed slightly 

better than the other sixth-grade classes on the mathematics portion of the end-of-level test. This 

is the first time in my six years of teaching that my class as a whole outscored the other sixth-

grade classes in my school. 

Contributions and Recommendations for Future Research  

 The five practices used in this study were based on an article written by Stein et al. 

(2008). In this article, the authors share vignettes of teachers attempting to use mathematical 

discussions and then compare their five practices to the actual teacher’s discussion orchestration. 

This study contributes a personal perspective and narrative of how a novice teacher implements 

these practices. Beyond my personal perspective, this study also shares successes and pitfalls that 

I experienced as I implemented these practices into my pedagogy. 

 The six-lesson unit provided me with a deeper understanding of how to orchestrate 

mathematical discussions and yielded successful lessons. However, there are still many aspects 

of orchestrating mathematical discussions that need exploration and refinement. As I continue to 

research the implementation of these practices in my classroom instruction, my personal 

recommendations are to study both depth of teachers’ mathematical understanding and how it 

affects this process as a whole, as well as looking at how depth of knowledge affects teacher-
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prepared tasks. It is important to note that discussion is only a small part of inquiry-based 

instruction and studies could be conducted about whole inquiry-based lesson preparation and 

assessment.  
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Appendix  

CMI DEVELOP LESSON PLAN 1 

In the context of a word problem involving Mean, Median, Mode, Range, Frequency Tables, and Histograms, students will 
perform the following: 

 Surface ideas such as what is the best strategy to organize and report data. 
 Invent strategies to determine how data can be organized.  
 Create representations that organize and present data clearly and accurately. 
 Organize that information into intervals.  

Relative to standard 6.SP.5a, summarize numerical data as by reporting the number of observations.  
Launch Explore Discuss 

Task: During the PM small group 
time, a survey was taken as to how 
much time students spent on the 
internet per week. The following 
results were given: 
27h, 10h, 14h, 12h, 5h, 13h, 0.5h, 
10h, 8.5h, 12h, 13h, 3h, 25h, 8h  

Organize and be prepared to report 
this information in such a way that 
we could generate a graph. Find the 
mean, median, mode, and the range 
of the data listed. 
Mean: 11.5 
Median:11 
Mode: 10, 12, 13 
Range: 26.5 

Check students’ understanding of 
the task itself—not how to solve 
it.  

Materials 
•Math books (page 484) 
•Pencils 
•Paper 
•Butcher paper 
•Markers 
•Pre-organized groups 

Grouping (Individual, group size, 
etc.) 
Working in pairs of two or a group 
size of three. 

Vocabulary: frequency table, 
histogram, intervals 

Anticipated Thinking 
Conceptions 

 Appropriate use of mean, 
median, mode, and range.  

 Students will organize their 
data within intervals.  

 Students will use histograms 
with intervals to show the data 
distribution.  

 Students will use non-interval 
reports of data distribution such 
as bar graphs, line (dot) plots, 
frequency tables.  

Misconceptions 
 Intervals overlooking the unit 

change in the data set (minute 
vs. hours)  

 Appropriate handling of 30-
minute unit change 

 Intervals sets to 5  

Questions 
I will focus on asking questions that lead 
students to think about how they are 
graphing and organizing the data. 

Intended Sharing Order 
 
Accountability for Listening Students 
(Random vs. volunteer, individual vs. 
group) 

 Students will use non-interval 
reports of data distribution by 
showing a (dot) plot 

 Frequency table with non-intervals 
 Frequency table with intervals 
 Histograms with intervals 

Listening Student Responsibilities (think, 
talk, moves, etc.) 

 Compare: Students will compare 
what they have done to what their 
fellow students have done.  

 Relation: Students will relate what 
the sharing or volunteering students 
have done to their own work.  

 Challenge/Support: Listening 
students are expected to challenge 
or support the sharing student’s 
presentations. 
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CMI DEVELOP LESSON PLAN 2 
 

In the context of a word problem involving Use the absolute deviation and mean absolute deviation. Students will perform the 
following: 

 Surface ideas such as equal measurement in data distribution. How to communicate graphically equal data distribution. 
 Invent strategies to illustrate equal data distribution (some students may find new strategies while others will possibly 

rely upon strategies they have learned about previously). 
 Create representations that show data distribution. 

Relative to (specific mathematical goal from Core Curriculum) 6.SP.4, display numerical data in plots on a number line 
including, dot plots, histograms, and box plots. 

Launch Explore Discuss 
Task (word problem) 
The following data shows the counts of 
raisins in small boxes (display box): 27, 
29, 27, 25, 25, 27, 32, 30, 28, 32, 26, 
31. Use any strategy you are familiar 
with that will accurately describe the 
distribution of the data set.  
 
Check students' understanding of the 
task itself—not how to solve it. 
Restate expectation which is to use the 
data set to describe data distribution 
 
Materials 

 Butcher paper  
 Markers 
 Calculators 

 
Grouping (Individual, group size, 
etc.) 
Students will be grouped into pairs. 

Anticipated thinking 
Conceptions 

 Students will find the mean 
of the data set.  

 Students will find the range 
of the numbers and list those 
numbers in order.  

It is likely that students will display 
their information using the following 
graphic representation: 

1.Dot (or line) plot  
2.Frequency table  
3.Histogram 

Misconceptions 
Students will not understand what the 
task is asking of them and will be 
unable to begin without my prompts in 
the right direction  
 
Representations  
Students will use histograms, line 
graphs, or frequency tables to show 
data distribution.  
 
Questions 
How can you visually show what the 
data is telling you? 

Intended Sharing Order 
1. First sharing students will show the 

median as the measure of central 
tendency but will not divide the data 
set into quartiles.  

2. Second sharing students will show how 
the data is distributed using the median 
as the measure of central tendency and 
dividing it into four quartiles.  

3. Third and final students will accurately 
be able to replicate how they found the 
median to show how they also found 
the first and third quartiles in a box 
plot.  

Accountability for Listening Students 
(Random vs. volunteer, individual vs. 
group) 
After the sharing student presents 
information, I will provide an opportunity 
for student responses. Volunteers (listening 
students) will be asked to provide feedback 
to the sharing students. However, I may 
need to call on students based on my 
observations during the exploration as well 
as the students’ willingness to share. 

Listening Student Responsibilities (think, 
talk, moves, etc.) 

 Compare: Listening students 
compare their graphic 
representations of the data set 
with the sharing students. 

 Challenge/support: I intend to 
have the students spend more time 
challenging the sharing student’s 
representations. 
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CMI DEVELOP LESSON PLAN 3 
 

In the context of a word problem involving the absolute deviation and mean deviation of a data set students will perform the 
following: 

 Surface ideas such as how to summarize and describe data and how it is distributed.  
 Invent strategies to find the standard deviation from the median data value.  
 Create representations that of how to find those data values.  

Relative to 6. SP. 5c, summarize numerical data sets in relation to their context, such as by giving quantitative measure of center 
(median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall 
pattern and any striking deviations from the overall patterns with reference to the context in which the data were gathered.  

Launch Explore Discuss 
Task (Word Problem) 
The following sets show students’ test 
scores over a period of time: 
Set A: 1, 5, 6, 4, 3, 7, 4, 9, 6, 4, 9 
Set B: 1, 8, 6, 9, 8, 2, 4, 2, 8, 2, 5 
Using this information what is the 
same between the two sets and what is 
different.  
 
Check students' understanding of 
the task itself—not how to solve it. 
Specific questions to ask students to 
clarify understanding:  

 What is this question asking 
you to do?  

 Where is a starting point to 
find this information? 

 Do you need to put the 
numbers in order? 

 Is it helpful to find the 
mean? Why? 

Materials 
 Dry erase boards or paper 
 Dry erase markers or pencils 

 
Grouping (Individual, group size, 
etc.) 
Students will work individually but 
will check their work with other 
students. 

Anticipated Thinking 
Conceptions 

 Students will organize the 
data in order to find the 
median and the mean. 

 Students will use the median 
as a central measurement. 

 Using the organized data, 
students will recognize a 
change in distribution. 

Misconceptions 
 Students will see that both 

sets have the same median 
and mean, but may not see 
the difference in the mean 
distribution. 

 Students may be unable to 
find the differences between 
the two sets because of their 
similar means and medians 

 
Representations  
Students will use box plots, line 
graphs, or frequency tables to show 
data distribution 
 
Questions 

 How would you find the 
distance between each 
number? 

 Is there an operation that can 
show you the distance 
between each number? 

 It is helpful to find the 
median? Why? 

 How do you find the range of 
data set? How could you use 
that information to help you 
find the IQR? 

Intended Sharing Order 
 Students will organize the data in order 

to find the median and the mean. 
 Students will use the median as a 

central measurement and the see the 
difference of data distribution. 

Accountability for Listening Students 
(Random vs. volunteer, individual vs. 
group) 
Listening students will be called upon 
through a combination of volunteer and 
random questioning. Students will be 
selected individually to challenge or support 
the sharer’s examples and ideas. 

Listening Student Responsibilities (think, 
talk, moves, etc.) 

 Compare: Listening students 
compare responses to the question 
with the presentation of the data 
set. 

 Challenge/support: Students who 
disagree with presented solutions 
are expected to challenge the 
sharing students’ comments. 
Students who support the solutions 
are expected to defend the 
listening students’ comments. 
Students may be called upon at 
random or volunteer by raising 
their hand during the discussion. 
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CMI DEVELOP LESSON PLAN 4 
 

In the context of a word problem involving   Find the differences in distributional spreads--first time in pairs and the second time 
individually, students will perform the following: 

 Surface ideas such as how the measure of data can be spread to show distribution. Students will pay particular attention 
to how the mean, median, and range can be similar and still yield a different spread of information.  

 Invent strategies to illustrate how the information is distributed.  
 Create representations that prove the data spread can be different even though the mean, median, and range can be the 

same.  

Relative to 6. SP. 5c, summarize numerical data sets in relation to their context, such as by giving quantitative measure of center 
(median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall 
pattern and any striking deviations from the overall patterns with reference to the context in which the data were gathered.  

Launch Explore Discuss 
Task (Word Problem) 
The following data sets show the age 
range of kids who attended a movie. 
Set A went to see one movie. Set B 
went to see another. 
Set A: 7, 7, 8, 9, 12, 13, 13, 13, 17 
Set B: 6, 8, 8, 8, 12, 12, 14 15, 16 
Using the data shown, which set has a 
greater spread (distribution)? Why do 
you think this is?  
Individual Task 
Set A: 2, 4, 4, 4, 6, 7, 8,  
Set B: 3, 3, 3, 4, 5, 7, 10 
Using the data shown, which set has a 
greater spread (distribution)? Why do 
you think this is?  
 
Check students' understanding of 
the task itself—not how to solve it. 
Watch for students who struggle with 
finding the information and how to 
spread it. Provide opportunities to 
share personal examples.  

Materials 
 Dry erase boards or paper 
 Dry erase markers or 

pencils 
 
Grouping (Individual, group size, 
etc.) 
Initially, students will work on the 
problem individually; however, 
students will also share ideas during 
key points of the explore phase.  
 

Anticipated Thinking 
Conceptions 

 Students will show the best 
representation of data spread by 
using the mean deviation. 

 Students will show how to find 
the mean of the data set and find 
the mean deviation of a score.  

Misconceptions 
 Misconceptions may arise as to 

what data best represents the 
mean deviation. 

 Some students may struggle with 
understanding how to find the 
spread of information and will 
need help in finding a starting 
point. 

 
Representations  
Students will use box plots, line graphs, or 
frequency tables to show data distribution 
 
Questions 

 How are you representing your 
data? 

 What does the data tell you about 
representing the data shown? 

  

Intended Sharing Order 
 A student who has found the mean 

absolute deviation will share their 
information first. Students will 
recognize the relationship between 
finding the mean and relating it to 
the mean absolute deviation. Using 
this information, they will 
strategize an attempt to find the 
mean absolute deviation in a 
similar manner. 

 Second, a student will share how to 
find the inter-quartile range. 
Students will recall using box plots 
to help them establish the first and 
third quartile to find the inter-
quartile range. 

Accountability for Listening Students 
(Random vs. volunteer, individual vs. 
group) 
Volunteers will be called upon during 
the discussion to share the relationships 
between what they did and what the 
sharer did. 

Listening Student Responsibilities 
(think, talk, moves, etc.) 

 Relation: Listening students 
will find the relationship 
between the sharing students’ 
ideas and representations and 
their own.  
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CMI DEVELOP LESSON PLAN 5 
 

In the context of a word problem involving finding the mean distribution of a data set, students will perform the following: 
 Surface ideas such as how to represent the distance between the numbers in the data set and the mean by using one 

number.  
 Invent strategies to Invent strategies to express how the data is spread out.  
 Create representations that show how the student was able to find an acceptable number (the mean deviation) to 

represent the spread of each data value from the mean.  

Relative to 6. SP. 5c, summarize numerical data sets in relation to their context, such as by giving quantitative measure of center 
(median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall 
pattern and any striking deviations from the overall patterns with reference to the context in which the data were gathered.  

Launch Explore Discuss 
Task (Word Problem) 
Group Task 
Complete the following information 
below: Mean, Median, Mode, and 
Range. Be prepared to justify your 
answers. 
Set A: 1, 3, 3, 5, 5, 5, 7, 7, 9  
Set B: 1, 4, 4, 4, 5, 6, 6, 6, 9  
Working together in a pair can you 
represent how the data is spread out 
using one number? 
 
Individual Task 
Set A: 4, 5, 6, 7, 8, 9, 10, 11, 12 
Set B: 4, 6, 6, 6, 8, 10, 10, 10, 12 
By yourself, represent how the data is 
spread out using one number. 
 
Check students' understanding of the 
task itself—not how to solve it. 
Ask for questions. Provide clarification 
as needed. 

Materials 
 Scratch paper 
 Pencils 

 
Grouping (Individual, group size, 
etc.) 
Students will work in pairs to 
brainstorm ideas on how to measure the 
distribution using one letter to represent 
mean deviation. 
 

Anticipated Thinking 
Conceptions 

 Students will use the word 
“average” to help explain how 
to find the mean deviation 
from the median. 

 Students will show the 
distance between individual 
values using the mean 
deviation 

Misconceptions 
 Students will misconceive how 

to best represent the spread of 
information because they may 
confuse finding the mean 
deviation with simply finding 
the mean. 

 
Representations  
Students will use box plots, line graphs, 
or frequency tables to show data 
distribution 
 
Questions 

 How are you representing your 
data? 

 Which numbers could show 
how spread apart the numbers 
are? 

 Are there strategies that helped 
you find numbers that helped 
represent the data sets? How 
did you find those specific 
numbers? 

Intended Sharing Order 
I intend to show information as it 
progresses: 
 Misconception: Students will 

mistake finding the mean deviation 
with simply finding the mean. 

 Conception: Students will show the 
distance between individual values 
using the mean deviation. 

Accountability for Listening Students 
(Random vs. volunteer, individual vs. 
group) 
Students will be called upon at random to 
support or challenge the sharers’ 
comments. Some students will be 
selected to volunteer key information 
about the mean if there is a need for 
clarification. 

Listening Student Responsibilities 
(think, talk, moves, etc.) 

 Relation: Listening students 
will find the relationship 
between the sharing students’ 
ideas and representations and 
their own.  
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CMI DEVELOP LESSON PLAN 6 

In the context of a word problem involving finding the mean distribution of a data set, students will perform the following: 
 Surface ideas such as how to represent the distance between the numbers in the data set and the mean by using one 

number.  
 Invent strategies to Invent strategies to express how the data is spread out.  
 Create representations that show how the student was able to find an acceptable number (the mean deviation) to 

represent the spread of each data value from the mean.  

Relative to 6. SP. 5c, summarize numerical data sets in relation to their context, such as by giving quantitative measure of center 
(median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall 
pattern and any striking deviations from the overall patterns with reference to the context in which the data were gathered.  

Launch Explore Discuss 
Task (Word Problem) 
Individual Task 
Set: 2, 2, 5, 5, 6, 10, 10, 12, 14, 16, 
18.  
Find the mean deviation to represent 
the separation from each number. 
 
Check students' understanding of 
the task itself—not how to solve it. 
Ask for questions. Provide 
clarification as needed. 

Materials 
 Scratch paper 
 Pencils 

 
Grouping (Individual, group size, 
etc.) 
Students will work individual to 
determine the distribution of data 
using one letter to represent the mean 
deviation.  
 

Anticipated Thinking 
Conceptions 

 Students will apply previous 
understanding of how to find 
a mean of a data and apply it 
to finding the mean deviation 
of a score. 

 Students will find the mean 
deviation by determining the 
mean of a data set and will 
use the same strategy to find 
the mean deviation as they 
would to find the mean of a 
data set. 

Misconceptions 
 Measuring the data from the 

center of the mean and not the 
median. 

 
Representations  
Students will draw or write their 
responses. 
 
Questions 

 How are you representing 
your data? 

 Which numbers could show 
how spread apart the numbers 
are? 

 Are there strategies that 
helped you find numbers that 
helped represent the data 
sets? How did you find those 
specific numbers? 

Intended Sharing Order 
I intend to show information as it 
progresses: 
 Measuring the data from the center of 

the mean and not the median, because 
this set has a different mean than 
median. 

 Conception: Students will find the 
mean deviation by determining the 
mean of a data set and will use the 
same strategy to find the mean 
deviation as they would to find the 
mean of a data set. 

Accountability for Listening Students 
(Random vs. volunteer, individual vs. 
group) 
Students will be held accountable for their 
responses and may be called upon at random 
to support or challenge the sharers’ 
comments. I anticipate that I will call upon 
some students to volunteer key information 
about the mean if there is a need for 
clarification. 

Listening Student Responsibilities (think, 
talk, moves, etc.) 

 Challenge/Support: Listeners need 
to agree or disagree with the 
sharer. 

 Justifications: Listening students 
would be prepared to justify their 
own thinking as well as require 
justification from the sharing 
students.  

 
 


	Brigham Young University
	BYU ScholarsArchive
	2015-06-01

	Orchestrating Mathematical Discussions: A Novice Teacher's Implementation of Five Practices to Develop Discourse Orchestration in a Sixth-Grade Classroom
	Jeffrey Stephen Young
	BYU ScholarsArchive Citation


	TITLE PAGE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9

	Chapter 1 Introduction
	Chapter 2 Review of the Literature
	Discourse
	Challenges of Orchestrating Whole-Class Discussion
	Five Practices for Facilitating Mathematical Discussion
	Research Questions

	Chapter 3 Methods
	Research Design
	Context
	Participants
	Data Sources
	Data Analysis
	Anticipating likely student responses.
	Monitoring students’ responses.
	Selecting and sequencing students’ responses.
	Helping students make mathematical connections.

	Analysis Reliability
	Limitations

	Chapter 4 Findings
	Anticipating Likely Student Responses
	Monitoring Students’ Responses
	Selecting and Sequencing Students’ Responses
	Helping Students Make Mathematical Connections
	Summary

	Chapter 5 Discussion
	Anticipating Likely Student Responses
	Monitoring Students’ Responses
	Selecting and Sequencing Students’ Responses
	Helping Students Make Mathematical Connections
	Conclusion
	Contributions and Recommendations for Future Research

	References
	Appendix

