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Abstract

In this thesis, the problem of Frobenius Hankel (FH) norm, H2 norm and H∞ norm
reduced order approximations will be investigated. The necessary and sufficient con-
ditions for the existence of an approximate solution within a specified error γ will
be found, these conditions are given in terms of a set of linear matrix inequalities
(LMI) and a matrix rank constraint for both continuous and discrete time multi
input-multi output systems. The alternating projection algorithm (APA) and the
cone complementarity algorithm (CCA) are used to solve the rank constraint prob-
lem and a comparison between both algorithms is presented. Numerical algorithms
which use the cone complementary algorithm and alternating projection method are
proposed and a method of finding an initial starting point is suggested. Comparison
between H2, H∞ and FH norms model reduction using LMI ′s techniques is dis-
cussed to show the effectiveness of these methods. The proposed reduction method
is extended to polytopic uncertain systems to show the effectiveness of model order
reduction using LMIs. Numerical examples are given to show and validate the ef-
fectiveness of the FH norm and H∞ norm reduced order approximations using cone
complementary algorithm to find at least as good approximates as other methods.

iii



 �������	
�	�:  

 

����    ���	�
� ���
�    ������ ��	���������        ��	� 	���� �� �������
� 	�� ����
�  ���!��
� 
 "�#$�
 � %���&
� ���
� ������ ���	�
� �
� �'��(� )� ��*�+� ,����:  

1 - 	����
 .	�#�
� %���&
� ����	� /�#�#$
� %���&
�   
2 -  �� .	�#�
� %���&
� ������ ��	���� �	��/�#�#$
� %���&
�  

    0	�
� ���
 ��� 1$�'
� �        23����� �������
� 	�� ����
�  ���!��
� ��� ��*�4 �����&     567 ��� 
        �#�
� � �*�&8
� 9��#�
� � 57&� 9�&�'	�� 9��#� )�      ���6#�
� ��6 "�'��
� �*��&:
� 9�9   �6�� 

   ����
�  ���!��
�   �������
� 	��    ��	;
� 1$�'
� ���<:
��� 
��       =	�6#� %��6�& ����
 ����7
    ��	�' �#�#$
� %���&�
>   1�$' 54�          )� 3	�'� 3��$� 3	��� ���4 )�����&
� )�' ?��
� �'�& )�7

  3��      �	 ��� ��4� ������� 	�� ����  ���!��'     5�;� 1�$' ���!�� �
�@*��& +�    ���6��
� ��A&
���#&�
��  ��3�����
� %	���
�� 5����
� .  

 �� "�'��
����#�
�9����
� 	�� ����
�  ���!��
� ��� ��#�(� ��#�	� 1$�'
� ������ ��� 
 �����$�� ���!��
� �'�	 ��4 C!
 ���7�
� ��	��
�� ���'���
��
� �8 ������� 	�� ����  ���!�� 

 1$�'
� ��4(�' �D	� ���,�:   
> .   ����' ��#& ���$������>.	�#�
� %���&
� ":�&E . 
= .  C� ��4 ���!��
� �'�	���� 5����
� )7�� 1�$'.  
  .  "�'�����#�
�9 �� �#'��
� 1:8
� ��!&�.	�#�
� %���&
� . 

 1$�'
� 5��� .	�#�
� %���&
� �������'��
� 5���
� �� ��
� @*��&
� )� 5F�> @*��& ���
� 2�#'�� 
� ��� �!���� "	�'G
� ��4 ��7 �#�#$
� %���&
� ��	� 	���� �� .	�#�
� %���&
� ������ �7 1$�'
��#�
� )�' �&	�#�
�'� �#'��
� 9(� ��#�	�' ��4� ���7�
� ��	��
�� ���'���
� ��#� �� 	����'

 %���&
�������'� ���7�
� ��	��
� �#�	�  	�� %���& ��	� 	���� �� H������� )7�� 1�$'
8'�  �	�� )� 3	�'� %���&
� 	��&� 0�' H�� )�7� ���� @*��&
� �� D�F ��� '
� ���  1$�

���'���
� ��#�(� �#�	� )� 	87> ������  �� ���7�
� ��	��
� �#�	� )>  ��	� 	���� )> ��� ��7
)�	�,� )����#�
� )� 5F�> @*��& ���� 57&� 9�&�'	�� 9��#� �������' %���&
�.  

  1$�'
� ����������' ��<:
�  ��7$��
� 5��
 �#�#$
� %���&
� ��	� 	����
 %���&
� �� + I
2��� 3	��� ?�� �'�&' %���&
� ��	� 	���� �� H�����!
 C
� � %���&.  

 

iv



Dedication

For the soul of my father, my mother, my wife and my sweet kids
Sulaiman, Abdelrahman, Janat and Dania

v



Acknowledgements

First and foremost, all praise is due to Allah, the Almighty, who gave me the op-
portunity, strength, and patience to carry out this work.

I would like to give my sincere gratitude to my supervisor Assistant Prof. Dr.
Hatem Elaydi for his continuous support, great guidance, endless help, good knowl-
edge and huge confidence he gave me.

Special thanks go to Assistant Prof. Dr. Basiel Hamed and Associate Prof. Dr.
Mohammed T. Hussein, thesis examinors, for their patient guidance and generous
support for this research. Many thanks to my department and fellow associates for
their help and support during my course of study. Finally, words will not be enough
to thank my family for their infinite support and patience.

vi



Contents

1 Introduction and Literature Review 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State Truncations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Modal Truncations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Balanced Truncations . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Balanced state space representations . . . . . . . . . . . . . . 4
1.4.2 Existence of Balanced State Space Representations . . . . . . 6
1.4.3 Balanced Truncations . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Hankel Norm Reductions . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.1 Hankel Singular Values and the Hankel Norm . . . . . . . . . 8
1.5.2 The Hankel Norm Model Reduction Problem . . . . . . . . . . 9

1.6 Statement of The Problem . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Mathematical Preliminaries 14
2.1 Elimination Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Schur Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Bounded Real Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Introduction to Linear Matrix Inequalities(LMI) . . . . . . . . . . . . 15

2.4.1 Properties of Linear Matrix Inequalities . . . . . . . . . . . . . 16
2.4.2 Applications of of Linear Matrix Inequalities . . . . . . . . . 18
2.4.3 Solution Methods for Linear Matrix Inequalities . . . . . . . 18

3 The Frobenius-Hankel Norm 19
3.1 Representation of Dynamic Systems . . . . . . . . . . . . . . . . . . . 19

3.1.1 Series Connection . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Parallel Connection . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Minimal Representation . . . . . . . . . . . . . . . . . . . . . 20

3.2 Norms of Dynamic Systems . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 The Frobenius-Hankel Norm . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Properties of the FH Norm . . . . . . . . . . . . . . . . . . . 24
3.3.2 Time Domain Properties of the FH Norm . . . . . . . . . . . 24
3.3.3 Frequency Domain Properties of the FH Norm . . . . . . . . 24
3.3.4 Relationships with Other Norms . . . . . . . . . . . . . . . . . 25

4 Model Order Reduction Using LMI 27
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 H∞ Model Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



4.2.2 Continuous-time H∞ Model Reduction . . . . . . . . . . . . . 28
4.2.3 Discrete-time H∞ Model Reduction . . . . . . . . . . . . . . . 30
4.2.4 Computational techniques for H∞ model reduction Using Al-

ternating projection method . . . . . . . . . . . . . . . . . . . 31
4.3 H∞ Model Reduction Algorithm Using the Cone Complementarity

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 H2 Model Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.1 Continuous Systems . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.2 Discrete Systems . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.3 H2 Model Reduction Algorithm Using the Alternating Projec-

tion Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.4 H2 Model Reduction Algorithm Using the Cone Complemen-

tarity Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 HFH Model Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5.2 Continuous Systems . . . . . . . . . . . . . . . . . . . . . . . 40
4.5.3 Discrete Systems . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.4 HFH Model Reduction Algorithm Using the Alternating Pro-

jection Method . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.5 HFH Model Reduction Algorithm Using the Cone Comple-

mentary Method . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Robust Model Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6.2 Polytopic Model Reduction Problem . . . . . . . . . . . . . . 45
4.6.3 Lower and Upper Bounds for γopt . . . . . . . . . . . . . . . . 47
4.6.4 Robust Model Reduction Algorithm Using the Cone Comple-

mentary Method . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Simulation Results 50
5.1 Example 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 H∞ Model Reduction Algorithm Using CCA . . . . . . . . . . 52
5.1.2 H∞ Model Reduction Algorithm Using APA . . . . . . . . . . 52

5.2 Example 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Example 3: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Coclusion and Future Work 62

Bibliography 63

Appendices 66
A Proof of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B MATLAB Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

viii



List of Tables

5.1 Performance comparison between H∞ CCA & L2 APA for a polytopic
uncertain system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Performance Comparison Between H∞ and HFH for AUTM system . 59

ix



List of Figures

3.1 Series Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Parallel Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 Hankel Singular Values for AUTM System For Example 1 & 3. . . . . 51
5.2 Gamma Convergence of Hinf MOR Using CCA when K=4. . . . . . . 52
5.3 Gamma Convergence of Hinf MOR Using CCA when K=5. . . . . . . 53
5.4 Gamma Convergence of Hinf MOR Using CCA when K=6. . . . . . . 54
5.5 Gamma Convergence of Hinf MOR Using APA. . . . . . . . . . . . . 55
5.6 Gamma Convergence of Hinf MOR Using APA. . . . . . . . . . . . . 56
5.7 Gamma Convergence of Hinf MOR Using APA. . . . . . . . . . . . . 57
5.8 The second order approximation errors at vertices using CCA, the

dashed line represents γ . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.9 Gamma Convergence of Hinf MOR Using CCA. . . . . . . . . . . . . 59
5.10 Gamma Convergence of HFH MOR Using CCA. . . . . . . . . . . . . 60
5.11 Gamma Convergence of HFH MOR Using CCA. . . . . . . . . . . . . 60
5.12 Gamma Convergence of HFH MOR Using CCA. . . . . . . . . . . . . 61

x



Chapter 1

Introduction and Literature
Review

In this chapter, we will introduce some of the popular methods to reduce the com-
plexity of models, which depends mainly on the balanced state space representation
and the Hankel singular values. These methods are balanced truncation and Hankel
norm reduction methods. Although, these methods generally do not give optimal or
suboptimal reduced order system, we can still use it as our starting points on LMI
based model reduction schemes.

1.1 Introduction

Simple models are preferred above complex models and accurate models are pre-
ferred above inaccurate models. To obtain high accuracy models, we usually need
to implement complex models, while simple models are generally inaccurate. In
this chapter, we assume that a stable linear time-invariant system is given and we
address the problem to approximate this system by a simpler one. The approximate
system is required to have a dynamic behavior which is as close as possible, to the
behavior of the system which we wish to approximate. The problem on this thesis is
an optimal model approximation. This problem is definitely a relevant one as many
models derived from first principles or identification routines tend to become com-
plex. Also, in the design and synthesis of control systems, controllers may become
too complex to be implemented.

The complexity of linear time-invariant models is generally defined as the di-
mension of the state vector of any minimal state space representation of the system.
This number is also known as the McMillan degree or the order of the system. Af-
ter the definition of complexity the model approximation problem can be stated as
follows:
Given a stable, linear time-invariant system G(s) of McMillan degree n, find a lower
order linear, time-invariant system Ĝ(s) such that the behavior B of G(s) is close
to the behavior B̂ of Ĝ(s).

There are a large number of techniques available for deriving reduced order
models and lower order controllers. One of the most commonly used methods is
the balanced truncation method. The procedure is easy to be implemented and
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also the method is extensively studied [1]. Another method is the Hankel norm
approximation [2]. As we can recognize from the model reduction techniques, there
is an error between the original high order system and the obtained reduced order
model in some sense as an index of how good the approximate is. For both of the
methods upper bounds on the error in the H∞ sense and also a lower bound for the
Hankel norm approximation method are expressed in terms of the Hankel singular
values of the original system. The previous methods do not in general produce
optimal approximates in the H∞ sense and there are several methods for H∞ optimal
model reduction are developed to reduce the error γ between the reduced and the
original model [3, 4] are examples of the developed H∞ optimal model reduction.

1.2 State Truncations

Consider a dynamical system in input-state-output form:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(1.1)

Here, we have a system with n states, m inputs and p outputs. That is, x(t) ∈ Rn,
u(t) ∈ Rm and y(t) ∈ Rp for all time instants t ∈ R. Suppose that the states x of
this system are partitioned in two components as:

x =

(
x1

x2

)

Any such partitioning causes a compatible partitioning of the system matrices as
follows:

A =

(
A11 A12

A21 A22

)
, B =

(
B1

B2

)
, C =

(
C1 C2

)

The matrix D is not affected by the partitioning of the state. If we assume that the
vector x1 has dimension k, then A11 ∈ Rk×k, B1 ∈ Rk×m, C1 ∈ Rp×k andD ∈ Rp×m.
We will have (A11, B1, C1, D) as a kth order truncation of (A,B,C,D). This kth

order truncation for the system (1.1) is:

ξ̇(t) = A11ξ(t) + B1u(t)

y(t) = C1ξ(t) + Du(t)
(1.2)

Although, the original system is stable, controllable and minimal the truncated
system may not be.

2



1.3 Modal Truncations

Consider a state space transformation:

x = T x́ (1.3)

for the system (1.1) with T a non-singular matrix of dimension n× n. Since such a
transformation only amounts to rewriting the state variable in a new basis, this
transformation does not affect the input-output behavior associated with (1.1).
Thus,

Theorem 1.1. The If Σ is represented by (1.1), then the external (or input-output

behavior) of Σ is equivalently represented by the input-state-output model

˙́x(t) = T−1ATx́(t) + T−1Bu(t)

y(t) = CTx́(t) + Du(t)

(1.4)

Proof. Can be obtained from (1.1) by substituting (1.3) in (1.1) and solving for

x́

In fact, we describe all minimal input-state-output representations of Σ by vary-
ing T over the set of non-singular matrices.
The transformation:

A → T−1AT = Á

is called a similarity transformation of the matrix A. The characteristic polynomial
of the A matrix occurring in (1.1) is the polynomial p(s) = det(sI − A).
We can write this polynomial in various formats

p(s) = det(sI − A)

= p0 + p1s + ... + pnsn

= (s− λ1)(s− λ2)...(s− λn)

(1.5)

where λ1, ..., λn are the so called modes of the system. For the modal canonical
form we assume that the natural frequencies λ1, λ2, ...λn are all different. For each
natural frequency λi there exists a (complex) eigenvector vi of dimension n such
that [λi − A]vi = 0. If we store these eigenvectors v1, ..., vn in one n × n matrix
T = [v1 v2 ... vn] then we obtain a non-singular transformation (1.3) and the trans-
formed A matrix takes the form

Á := T−1AT = diag(λ1 , ..., λn) (1.6)

3



which is called a Jordan form of the matrix A. The resulting state space system is
said to be in modal canonical form:

Definition 1.1:(Modal canonical form) The input-state-output system:

ẋ(t) = Áx(t) + B́u(t)

y(t) = Ćx(t) + D́u(t)
(1.7)

with Á = T−1AT as in (1.6), B́ = T−1B, Ć = TC and D́ = D is called a modal
canonical state space representation.

Now, suppose that the system (1.1) is stable. This implies that the modes or the
eigenvalues of the system has a negative real part. And we have 0 < |λ1| < |λ2| <
... < |λn|. If we partition

x =

(
x1

x2

)

where x1 has dimension k < n, then the truncated system is defined by leaving out
the fast modes of the system.

Definition 1.2:(Modal truncations) If (1.7) is a modal canonical state space
system, then the kth order truncation

ξ̇(t) = Á11ξ(t) + B́1u(t)

y(t) = Ć1ξ(t) + D́u(t)
(1.8)

is called the kth order modal truncation of (1.1).

1.4 Balanced Truncations

A second popular procedure for model approximation is the method of balanced
truncations. It requires a state truncation of a system which is represented in
balanced state space form. The balanced state space representation is an input-
state-output representation of the form (1.1) for which the controllability grammian
and the observability grammian are equal and diagonal.

1.4.1 Balanced state space representations

Suppose that a minimal and stable state space representation (1.1) of a dynamical
system is given. We define two matrices.
The controllability grammian associated with the system (A,B,C,D) is the matrix

P ,
∫ ∞

0

eAtBBT eAT tdt (1.9)
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Since the system is assumed to be stable, the eigenvalues of A has a negative real
part, and from this it follows that the integral in (1.9) is well defined. Note that P
is an n× n real matrix, it is symmetric.
The observability grammian associated with the system (A,B, C,D) is the matrix

Q ,
∫ ∞

0

eAT tCT CeAtdt (1.10)

Again, the stability assumption implies that the integral in (1.10) is well defined. Q
is an n× n real symmetric matrix.
Fortunately, to compute the controllability and observability grammians of a state
space system, it is not necessary to perform the integration as in (1.9) and (1.10)
the next theorem tell us how to obtain the grammians from the Lyapunov equation.

Theorem 1.2. Given a minimal and stable system (1.1), its controllability gram-

mian P is the unique positive definite solution of the Lyapunov equation

AP + PAT + BBT = 0. (1.11)

Similarly, the observability grammian Q is the unique positive definite solution of

AT Q + QA + CT C = 0. (1.12)

If the system we have is minimal, then grammians P and Q are the unique so-
lutions to (1.11) and (1.12), respectively. The computation of the grammians is
therefore equivalent to the algebraic problem to find solutions of Lyapunov equa-
tions (1.11) and (1.12). Balanced state space representations are now defined as
follows.

Definition 1.3: A minimal state space representation (1.1) is called balanced if
the controllability and observability grammians are equal and diagonal, i.e, if

P = Q = diag(σ1, σ2, ...σn)

where σi are real and positive numbers that are ordered according to

σ1 ≥ σ2 ≥ ... ≥ σn > 0.

5



1.4.2 Existence of Balanced State Space Representations

To find the balanced representation of the system (1.1), let us assume that we cal-
culated the controllability and observability grammians for the stable system (1.1)
and let us see how these grammians transform if we change the basis of the state
space. Thus, consider again the state space transformation (1.3). As we have seen,
this results in the transformed state space parameters (Á, B́, Ć, D́) as shown on def-
inition(1.1) yields that the transformed grammians take the form

Ṕ = T−1P (T−1)T ; Q́ = T T QT.

This shows that the grammians depend strongly on the basis of the state space.
However, their product

Ṕ Q́ = T−1P (T−1)T T T QT = T−1PQT

so that The eigenvalues of PQ are invariant under state space transfor-
mations.
Let λ1, ..., λn denote the eigenvalues of the product PQ. Then λi are positive real
numbers for i = 1, ..., n so that it makes sense to consider their square roots

σi :=
√

λi = λ
1/2
i (PQ).

We just showed that these numbers are system invariants: they do not change by
transforming the basis of the state space. In the literature, these system invariants
play a crucial role and are called the Hankel singular values of the system (1.1) [2].
To show that balanced state space representations actually exist, we need to con-
struct a non-singular state transformation matrix T that simultaneously diagonalizes
the controllability and the observability grammians P and Q.
The algorithm (which is of course implemented in MATLAB) is as follows

INPUT: State space parameters (A,B, C, D) of a minimal, stable system of the
form (1.1)

Step 1: Compute the grammians P and Q.

Step 2: Factorize P = R> (the routine chol in MATLAB is doing this for you)

Step 3: Construct the matrix RQR> and (since it is positive definite) factorize
it as RQR> = U>Σ2U where U is a unitary matrix (i.e., UU> = U>U = I) and
Σ = diag(σ1, σ2, ..., σn) then the numbers σi are the Hankel singular values (i.e., the
square roots of the eigenvalues λi(PQ)).

Step 4: Define the non-singular matrix T := R>UΣ−1/2.

OUTPUT: the matrices (Á, B́, Ć, D́) as defined in definition(1.1).
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It is easily seen that the state transformation defined in step 4 of the algorithm
achieves that the grammians of the transformed system are

Q́ = T>QT = Σ−1/2U>RQR>UΣ−1/2 = Σ−1/2Σ2Σ−1/2 = Σ

Ṕ = T−1P (T−1)−> = Σ1/2U>R>PR−1UΣ1/2 = Σ1/2Σ1/2 = Σ

i.e., they are equal and diagonal with the Hankel singular values as diagonal ele-
ments. We thus proved the following important result

Theorem 1.3. Every stable dynamical system of the form (1.1) admits a balanced

input-state-output representation.

1.4.3 Balanced Truncations

The above interpretation justifies the following definition of a model reduction pro-
cedure based on balanced state space representations. Suppose we decompose the
state variable x of a balanced state space system as

x =

(
x1

x2

)
.

where x1 has dimension k. Then x1 can be regarded as the k most important state
components in view of both their controllability and observability properties. A
state truncation of this type is called a balanced state truncation

Definition 1.4(Balanced Truncations): If (1.1) is a stable, balanced state space
system, then the kth order truncation

ξ̇(t) = A11ξ(t) + B1u(t)

y(t) = C1ξ(t) + Du(t)
(1.13)

is called the kth balanced truncation of (1.1).

This simple approximation method provides very efficient and good approximate
models. It eliminates the poorly controllable and poorly observable states from a
state space model. The number k may in practice be determined by inspecting the
ordered sequence of Hankel singular values σ1, ..., σn. A drop in this sequence (i.e., a
number k for which σk+1/σk << 1) may give you a reasonable estimate of the order
of a feasible approximate model. If σk > σk+1 (as will be the case in many practical
situations) the kth order balanced truncation turns out to have good properties:

Theorem 1.4. Suppose that (1.1) is a balanced state space representation of a stable

system. Let k < n and suppose that σk > σk+1. Then the kth order balanced

truncation is minimal, stable, balanced.
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Now let us consider the following remarks:

Remark 1.1: If G(s) denotes the transfer function corresponding to (1.1) and Gk(s)
is the transfer function of a kth order balanced truncation of G(s) then it is known
that the error G−Gk satisfies

‖G(s)−Gk(s)‖∞ ≤ 2(σk+1 + σk+2 + ... + σn). (1.14)

Thus the maximum peak in the Bode diagram of the error system is less than twice
the sum of the tail of the Hankel singular values.

Remark 1.2: All the results of this section can be repeated for discrete time
systems. Formulas change, but the ideas are identical.

Remark 1.3: In MATLAB the relevant routines for constructing balanced state
space models are balreal for continuous time systems and dbalreal for discrete time
systems.

1.5 Hankel Norm Reductions

The Hankel norm reductions are among the most important techniques of model
reduction procedures that exist today. It is one of the model approximation pro-
cedures that produce optimal approximate models according to some well-defined
criterion that we will introduce below. It constitutes a beautiful theory associated
with the names of Nehari, Arov- Adamjan-Krein (AAK) and Glover [2, 5]. Glover
introduced state space ideas in this problem area and in our exposition we will follow
his work.

1.5.1 Hankel Singular Values and the Hankel Norm

The Hankel norm of a system is easily computed. In fact, it turns out to be equal
to the maximal Hankel singular value for the systems. For Discrete time systems is
straightforward:
The controllability grammian is the positive definite matrix

P ,
∞∑

k=0

AkBBT (AT )k (1.15)

The observability grammian is the matrix

Q ,
∞∑

k=0

(AT )kCT CAk (1.16)
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The grammians of the system are the unique positive definite solution to the Lya-
punov equations

APAT + BBT − P = 0. (1.17)

AT QA + CT C −Q = 0. (1.18)

These equations form an efficient approach to solve for the grammians.

Definition 1.5: The Hankel singular values of G(s) ∈ H2 are given by

σi(G(s)) , [λi(PQ)]
1
2 (1.19)

Where P and Q are the controllability and observability grammians of G(s).

As in the previous section, the eigenvalues λ1, ..., λn of the product PQ are input-
output invariants and their square roots σ1, ..., σn are called the Hankel singu-
lar values. We assume that the Hankel singular values are ordered according to
σ1 ≥ σ2 ≥ ..... ≥ σn ≥ 0 and we obtain the followingt result .

Theorem 1.5. If the system Σ is stable and represented by (1.1), then The Hankel

norm

‖Σ‖H = λ1/2
max(PQ) = σ1.

Proof. The proof of this theorem cab be found on [2].

Thus the Hankel norm is nothing else than the largest Hankel singular value of
the system and it can be computed directly from the product of the two grammians
associated with a state space representation of the system. The same result holds
for continuous and discrete time systems.

1.5.2 The Hankel Norm Model Reduction Problem

In the previous section we have seen how a balanced representation can lead to a
reduced order model. However, this algorithm did not allow for an interpretation as
an optimal approximation. That is, the model obtained by balanced truncation did
not minimize a criterion in which we agreed how far the nth order system Σ is apart
from a kth order approximation Σk. The Hankel-norm model reduction problem
does involve such a criterion.
Given an nth order stable system Σ, find a kth order stable system Σk so as to min-
imize the Hankel norm of the error ‖Σ− Σk‖H .
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Here, Σ − Σk is the error system which has the difference of the outputs of Σ and
Σk as its output. It turns out that the optimal model approximation problem is
solvable in the Hankel norm! Even though the Hankel norm does not allow a very
natural system theoretic interpretation this is a remarkable result. The main result
of this section is given in the algorithm below and provides an entire algorithm to
obtain a state space representation (Ak, Bk, Ck, Dk) of the optimal Hankel-norm ap-
proximant Σk of a stable system Σ in state space form [2].

INPUT The system (A, B, C, D) with (A,B) controllable (C,A) observable and
A stable.

DESIRED A system (Ak, Bk, Ck, Dk) of order ≤ k which approximates the sys-
tem (A,B, C, D) optimal in the Hankel norm.

Algorithm:

Step 1: Compute the Hankel singular values σ1, ..., σn of (A,B, C,D) and assume
that

σk > σk+1 = σk+2 = ... = σk+r > σk+r+1 ≥ ... ≥ σn > 0

i.e., σk+r has multiplicity r.

Step 2: Transform (A,B, C, D) to a partially balanced form

P = Q =

(
Σ1 0
0 Σ2

)
.

where Σ1 = diag(σ1, ..., σk, σk+r+1, ..., σn) and Σ2 = σk+1Ir. That is, the (k + 1)st

Hankel singular value is put in the south-east corner of the joint gramians.

Step 3: Partition (A,B,C, D) conformally with the partitioned gramians as

A =

(
A11 A12

A21 A22

)
, B =

(
B1

B2

)
, C =

(
C1 C2

)

Further define
Γ = Σ2

1 − σ2
k+1I.

and note that Γ is non-singular.
If m ≤ p, proceed. If m > p, replace (A,B,C, D) by (AT , CT , BT , DT ) and proceed.

Step 4: Determine a unitary matrix U satisfying B2 + CT
2 U = 0.

Step 5: Let n̂ := n− r be the state space dimension of the system defined as

Â = Γ−1(σ2
k+1A

>
11 + Σ1A11Σ1 − σk+1C

>
1 UB>

1 )

B̂ = Γ−1(Σ1B1 + σk+1C
>
1 U)

Ĉ = C1Σ1 + σk+1UB>
1

D̂ = D − σk+1U
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The gain of the error transfer function is

σmax(T (jω)− T̂ (jω)) = σk+1

for all ω ∈ R. The system Σ̂ is in general not stable, though.

Step 6: Determine the stable subsystem of Σ̂ by choosing a basis of the state
space of Σ̂ such that

Â =

(
Â− 0

0 Â+

)
, B̂ =

(
B̂−
B̂+

)
, Ĉ =

(
Ĉ− Ĉ+

)

where A− has all its eigenvalues in the open left half complex plane and A+ all
its eigenvalues in the open right half complex plane, i.e., A− is stable and A+ is
anti-stable. Â will not have eigenvalues on the imaginary axis while Â− will have
dimension ≤ k.
If m ≤ p, proceed. If m > p, replace (Â, B̂, Ĉ, D̂) by (Â>, B̂>, Ĉ>, D̂>) and proceed.

OUTPUT: Set

Ak = Â−

Bk = B̂−

Ck = Ĉ−

Dk = D̂−

Then the system Σk defined by

dξ

dt
= Akξ(t) + Bku(t)

y(t) = Ckξ(t) + Dku(t)

is a state space representation of an optimal Hankel norm approximant of Σ and the
error

‖Σ− Σk‖H = σk+1.

There are number of approaches, such as [6, 7, 8, 9], use first order necessary
conditions for optimality and develop optimization algorithms to find solutions to
resulting nonlinear equations. Most of the methods in this direction are only applica-
ble to the single input single output (SISO) case. Furthermore, it can be recognized
from [10, 11] that whether the global optimum is always achievable is unclear in the
continuous time case (while it is shown to exist in the discrete time case [12]) and
that, in the case of nonexistence of the optimum, these approaches can only find
local optima which may be far from the true (global) optimum. Even if the exis-
tence of the global optimum is guaranteed, optimization methods based on search
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algorithms can have difficulties [13]. There may be one or more local optima and
it is difficult to guarantee that the obtained solution is close to the global optimum.
Moreover, there is usually no guarantee that the chosen stopping criterion for such
a search algorithm is appropriate. To overcome these problems, several algorithms
based on algebraic methods have been proposed that directly solve a set of nonlinear
equations [13, 14, 15]. These approaches seem to have potential (in cases where the
optima are achievable), but computation cost required for such approaches is still
high and structural properties of the problem seem to require further exploitation
for algorithmic development, which prevent them from becoming useful alternatives
in practice at this moment.

1.6 Statement of The Problem

Model order reduction is one of the most widely encountered dynamical systems. A
lower order controller for high order plants is desirable, for using fewer components
in hardware implementation and obtaining higher reliability of controllers. The
effectiveness of linear matrix inequalities (LMI ′s) in linear control system synthesis
is now widely recognized. Reducing various synthesis problems can be represented
by linear matrix inequalities LMI ′s, we can obtain desired controllers efficiently and
reliably by solving those LMI ′s via convex optimization algorithms [16]. In the past
two decades, intensive research effort has been made to establish ways for reducing
general controller synthesis problems into LMI ′s. It has been shown that such
reductions are indeed possible, provided that we design state feedback or full-order
controllers that satisfy a single design specification.

This work presents a modified approach for Frobenius Hankel (FH) norm model
reduction method for the MIMO case based on linear matrix inequality (LMI)
techniques. This approach allows both continuous time and discrete time cases to
be treated in a unified manner, as in [4] for H∞ model reduction and as in [17]
for H2 model reduction. Necessary and sufficient conditions for the existence of
suboptimal approximates are expressed in bilinear matrix inequality BMI form,
which will then be converted to a set of LMI ′s and a non − convex matrix rank
constraint. Then we will use an algorithm to solve this problem. Due to the non-
convex property of the problem, the suggested method does not guarantee global
convergence. Also the algorithm essentially will solves suboptimal problems and
hence avoids the issue of existence/non-existence of the optimal solution. Moreover,
a search will be carried out for the feasible H2 error by executing feasible tests and
therefore can be terminated when a desired difference between the achieved error
and the local optimum is reached.

1.7 Thesis Outline

This thesis explores the solution technique used to reduce the order of a model using
(LMIs) and utilizing the H2 norm, H∞ norm and Frobinues Hankel norm. It is or-
ganized by chapters as follows. An introduction to linear matrix inequalities(LMIs)
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and the mathematical preliminaries necessary for working with the main topics of
this thesis are provided in Chapter 2. Chapter 3 introduces a review of system
theory and norms. The Frobinues Hankel norm is introduced in this chapter and
its properties are explored. In particular, its relationship with the H∞ and the H2

norms are investigated. Then, we introduce the computational schemes for Cone
Complementarity and Alternating Projections Algorithms for model reduction using
H∞, H2 and HFH norms in Chapter 4. Chapter 5 explores the solution and results
of the proposed assumption for order model reduction. Finally, concluding remarks
and comments on future research directions are presented in Chapter 6.
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Chapter 2

Mathematical Preliminaries

This thesis makes use of tools and ideas from several different areas of science and
mathematics. Here, in this chapter we collect the basic definitions and results so
that they may be used without any detailed explanation later in the thesis. These
topics are covered in depth in the listed references. Also, this chapter includes an
introduction to linear matrix inequalities.

2.1 Elimination Lemma

The following lemma is about the elimination of an unknown variable K from a
matrix inequality and the parameterization of one feasible K.

Lemma 2.1: Given matrices R ∈ Sm×m, U ∈ Rm×l, V ∈ Rm×k. U , V have
full column rank. Let U⊥, V⊥ denote the matrices such that [U U⊥], [V V⊥] are
square and invertible with UT

⊥U = 0, V T
⊥ V = 0. There exists a matrix K ∈ Rl×k

such that

R + UKV T + V KT UT < 0 (2.1)

if and only if

UT
⊥RU⊥ < 0 and V T

⊥ RV⊥ < 0 (2.2)

If (2.2) is satisfied and (P2Q
−1
22 P T

2 )−1 is well-defined, then one solution of (2.1) is
given by
K = (P2Q

−1
22 P T

2 )−1(P1 − P2Q
−1
22 QT

12),
where [P1 P2]=UT [V +T V⊥], Q12 = V +RV⊥, Q22 = V T

⊥ RV⊥. U+, V + represent the
pseudo-inverses of matrices U , V respectively. For the proof see [16] pages(32 -33).
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2.2 Schur Complement

Schur complement is a very useful tool to modify certain linear matrix inequality
constraints to a different form that is more suitable for the particular algorithm.
The following theorem and additional properties of determinants could be found at
[16, 18].
For all matrices A ∈ Rn×n, B ∈ Rn×u and D ∈ Ry×u,

∣∣∣∣
A B
0 D

∣∣∣∣ = det(A)det(D)

If either A or D is nonsingular, then

[
A B
BT D

]
> 0 ⇔

{
A > 0

A−BD−1BT > 0

[
A B
BT D

]
> 0 ⇔

{
D > 0

D −BT A−1B > 0

The preceding matrices are known as the Schur Complement of A and D, respec-
tively.

2.3 Bounded Real Lemma

The bounded real lemma proposed by Willems, Zhou and Khargonekar [19, 20]
converts the H∞ constraint of an LTI system to an equivalent LMI condition.

Lemma 2.2:(Bounded Real Lemma) Given an LTI system with its transfer func-
tion T (s) = D+C(sI−A)−1B. The system is asymptotically stable and ‖T (s)‖∞ < γ
if and only if there exists a matrix X = XT > 0 such that




AT X + XA XB CT

BT X −γI DT

C D −γI


 > 0 (2.3)

For more detailed information regarding the bounded real lemma the interested
reader should refer to [16, 21] also the proof of this lemma can be found in these
references.

2.4 Introduction to Linear Matrix Inequalities(LMI)

A linear matrix inequality is an expression of the form

F (x) := F0 + x1F1 + ... + xnFn < 0 (2.4)
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where

• x = (x1, ..., xn) is a vector of n real numbers called the decision variables.

• F0, ..., Fn are real symmetric matrices, i.e., Fj = F T
j , for j = 0, ..., n.

• the inequality < 0 in (2.4) means negative definite. That is, uT F (x)u < 0 for
all nonzero real vectors u. Because all eigenvalues of a real symmetric matrix
are real, (2.4) is equivalent to saying that all eigenvalues λ(F (x)) are negative.
Equivalently, the maximal eigenvalue λmax(F (x)) < 0.

It is convenient to introduce some notation for symmetric and Hermitian matri-
ces. A matrix A is Hermitian if it is square and A = A∗ = Ā> where the bar denotes
taking the complex conjugate of each entry in A. If A is real then this amounts to
saying that A = A> and we call A symmetric. The sets of all m×m Hermitian and
symmetric matrices will be denoted by Hm and Sm, respectively.

Definition 2.1:(Linear Matrix Inequality) A linear matrix inequality (LMI) is
an inequality

F (x) < 0 (2.5)

where F is an affine function mapping a finite dimensional vector space X to either
H or S.

2.4.1 Properties of Linear Matrix Inequalities

The linear matrix inequality (2.4) defines a convex constraint on x. That is, the set

δ := {x |F (x) < 0}

of solutions of the LMI F (x) < 0 is convex. Indeed, if x1, x2 ∈ δ and α ∈ (0, 1) then

F (αx1 + (1− α)x2) = αF (x1) + (1− α)F (x2) ≺ 0

where we used that F is affine and where the inequality follows from the fact that
α > 0 and (1 − α) > 0. Although the convex constraint F (x) < 0 on x may seem
rather special, it turns out that many convex sets can be represented in this way
and that these sets have more attractive properties than general convex sets.

Definition 2.2:(System of LMIs) A system of linear matrix inequalities is a
finite set of linear matrix inequalities

F1(x) < 0, ..., Fk(x) < 0. (2.6)

We infer that the intersection of the feasible sets of each of the inequalities (2.6) is
convex. In other words, the set of all x that satisfy (2.6) is convex. The question
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now arises whether or not this set can be represented as the feasibility set of another
LMI. The answer is yes. Indeed, F1(x) < 0, ..., Fk(x) < 0 if and only if




F1(x) 0 0 . 0
0 F2(x) 0 0 0
. . F3(x) 0 . . 0

.
0 0 0 0 0 0 Fk(x)




< 0

The last inequality indeed makes sense as F (x) is symmetric (or Hermitian) for any
x. Further, since the set of eigenvalues of F (x) is simply the union of the eigen-
values of F1(x), ..., Fk(x), any x that satisfies F (x) < 0 also satisfies the system
of LMIs (2.6) and vice versa. Conclude that multiple LMI constraints can always
be converted to a single LMI constraint. A second important property amounts to
incorporating affine constraints in linear matrix inequalities. By this, we mean that
combined constraints (in the unknown x) of the form

{
F (x) < 0

Ax = b
, or

{
F (x) < 0

x = Bu + c, for some u

where the affine function F : Rn → S, matrices A and B and vectors b and c are
given can be lumped in one linear matrix inequality F̂ (x̂) < 0. More generally, the
combined equations

{
F (x) < 0

x ∈M (2.7)

where M is an affine set in Rn can be rewritten in the form of one single linear
matrix inequality F̂ (x̂) < 0. To do this, recall that affine sets M can be written as

M = {x | x = x0 + m,m ∈M0}

with x0 ∈ Rn and M0 a linear subspace of Rn. Suppose that n̂ = dim(M0) and let
e1, ..., en̂. Rn be a basis of M0. Let F (x) = F0 + T (x) be decomposed. Then (2.7)
can be rewritten as

0 > F (x) = F0 + T (x0 + n̂

n̂∑
j=1

xjej)

= F0 + T (x0) +
n̂∑

j=1

xjT (ej)

= F̂0 + x1F̂1 + ... + xn̂F̂n

=: F̂ (x̂)

(2.8)

where F̂0 = F0 + T (x0), F̂j = T (ej) and x̂ = col(x1, ..., xn̂) are the coefficients of
x − x0 in the basis of M0. This implies that x ∈ Rn satisfies (2.7) if and only if
F̂ (ˆ̂x) < 0. Note that the dimension n̂ of x̂ is at most equal to the dimension n of
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x. A third property of LMIs is obtained from a simple exercise in algebra. It turns
out to be possible to convert some non-linear inequalities to linear inequalities using
Schur complement lemma which was introduced at the beginning of this chapter.

2.4.2 Applications of of Linear Matrix Inequalities

Many optimization problems in control, identification and signal processing can be
formulated using linear matrix inequalities. Clearly, it only makes sense to cast these
problems in an LMI setting if these inequalities can be solved in an efficient and reli-
able way. Since the linear matrix inequality F (x) < 0 defines a convex constraint on
the variable x, optimization problems involving the minimization (or maximization)
of a performance function f : δ → R with δ := {x |F (x) < 0} belong to the class of
convex optimization problems. Casting this in the setting of the previous section, it
may be apparent that the full power of convex optimization theory can be employed
if the performance function F is known to be convex.
Suppose that F : X → S is affine. There are two generic problems related to the
study of linear matrix inequalities:

1. Feasibility: The question whether or not there exist elements x ∈ X such
that F (x) < 0 is called a feasibility problem. The LMI F (x) < 0 is called
feasible if such x exists, otherwise it is said to be infeasible.

2. Optimization: Let an objective function F : δ → R be given and suppose
that S = {x |F (x) < 0}. The problem to determine

Vopt = inf
x∈δ

f(x)

is called an optimization problem with an LMI constraint. This problem
involves the determination of Vopt, the calculation of an almost optimal so-
lution x (i.e., for arbitrary ε > 0 the calculation of an x ∈ δ such that
Vopt ≤ f(x) ≤ Vopt + ε), or the calculation of a optimal solutions xopt (ele-
ments xopt ∈ δ such that Vopt = f(xopt)).

2.4.3 Solution Methods for Linear Matrix Inequalities

The problems defined in the previous subsection can be solved with efficient numer-
ical tools. LMI can be solved by the Ellipsoid Algorithm. This algorithm is simple,
numerically robust and easy to implement but may be slow for larger optimization
problems. The second method for solving the LMI is the convex optimaization which
is based on the Interior point methods. These methods were developed in a series
of papers [22] and became of interest in the context of LMI problems in the work of
Yurii Nesterov and Arkadii Nemirovskii [23].
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Chapter 3

The Frobenius-Hankel Norm

3.1 Representation of Dynamic Systems

As we have shown from the control courses there are two ways to represents a linear
time-invariant (LTI) system, the first involves the input-output relationship of the
system in terms of first order differential equations. This is often called the state
space representation of the system because of the state variables. The other way
to represent the system through the Laplace transform of the impulse response of
the system. This is called the transfer function of the system.

Definition 3.1: Given the state space representation of the LTI system

ẋ = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t).
(3.1)

where x ∈ Rn is the state, u ∈ Rm is the input, y ∈ Rr is the output, the transfer
function of the system is denoted by:

G(s) =

[
A B
C D

]
, C(sI − A)−1B + D. (3.2)

Thus, through the use of expression (3.2), the transfer function of the system is
represented in terms of a state space representation.

3.1.1 Series Connection

Given two systems G1(s) and G2(s)

G1(s) =

[
A1 B1

C1 D1

]
, G2(s) =

[
A2 B2

C2 D2

]
(3.3)

connected together in series as shown in Figure (3.1), the resulting system can be
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G1(s)  G2(s)  

Figure 3.1: Series Connection.

represented as

G1(s)G2(s) =




A2 B2C1 B2D1

0 A1 B1

C2 D2C1 D2D1


 (3.4)

Note that this representation of the resultant system is not necessarily minimal.

3.1.2 Parallel Connection

 
 
 
 
 
 

   

+ 

G1(s)  

+ 

G2(s)  

Figure 3.2: Parallel Connection.

Given two systems G1(s) and G2(s) connected in parallel as shown in Figure
(3.2), the resulting system can be represented as

G1(s) + G2(s) =




A1 0 B1

0 A2 B2

C1 C2 D1 + D2


 (3.5)

Note that this representation of the resultant system is not necessarily minimal.

3.1.3 Minimal Representation

The system is said to be on a minimal representation if it has no uncontrollable or
unobservable states. If the system contains uncontrollable and unobservable states,
it can be reduced to its minimal representation by removing the uncontrollable and
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unobservable states. This can be done if the system has the following canonical form:

G(s) =




Acō A12 A13 A14 Bcō

0 Aco A23 A24 Bco

0 0 Ac̄o A34 0
0 0 0 Ac̄ō 0
0 Cco Cc̄o 0 D




(3.6)

This system is equivalent to the following system

G(s) =

[
Aco Bco

Cco D

]
(3.7)

Note that Acō represents dynamics which are controllable but not observable, Aco

represents dynamics which are both controllable and observable, Ac̄o represents dy-
namics which are observable but not controllable, Ac̄ō represents dynamics which
are neither controllable nor observable.

3.2 Norms of Dynamic Systems

In this section we will introduce the most common norms used for dynamic systems
which are H2 norm and H∞ norm.

Definition 3.2: The H2 norm of G(s) ∈ H2 is defined as

‖G(s)‖2 , [Tr{ 1

2π

∫ ∞

−∞
G(jω)T G(jω)dω}]1/2 (3.8)

The H2 norm is called the quadratic norm due to its interpretation as the integral
of the square of the impulse response.

Theorem 3.1. Given G(s) ∈ H2 and the impulse response g(t) = L−1[G(s)]

‖G(s)‖2
2 = Tr

∫ ∞

0

g(t)T g(t)dt. (3.9)

The H2 norm can be computed from a state space representation of the system.

Proof. Can be found in [24].

Theorem 3.2. Given G(s) ∈ H2 and the controllability and observability grammi-

ans P and Q,

‖G(s)‖2
2 = Tr{PCT C} = Tr{QBBT} (3.10)
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Proof. Can be found in [24].

Similar to the H2 the H∞ norm is introduced now, which is often considered as
a ”worst-case” norm and it is used in the applications with robustness issues since
it can be used to bound the performance of a system.

Definition 3.3: The H∞ norm of G(s) ∈ H∞ is defined as

‖G(s)‖∞ , sup
ω

σ̄[G(jω)] (3.11)

The H∞ norm is the equivalent to the maximum gain of the system as shown in the
following theorem.

Theorem 3.3. Given G(s) ∈ H∞

‖G(s)‖∞ = sup
ω 6=0

‖z‖2

‖w‖2

(3.12)

where z(t) is the response of G(s) to the input w(t).

Proof. Can be found in [24].

This theorem is an important robustness result since it states that if a bound
is known on the norm of the input, a bound can be calculated for the norm of the
output.

The computation of the H∞ norm is a difficult task since it can not be computed
directly. However, we can compute an upper bound of the H∞ norm as follows:

Theorem 3.4. Given G(s) ∈ H∞

G(s) =




A B

C D


 (3.13)

and γ > σ̄(D). Then H∞ < γ if and only if H has no imaginary eigenvalues where

H ,




A + BR−1DT C γ−2BR−1BT

−CT S−1C −AT − CT DR−1BT


 (3.14)

and R , I − γ−2DT D and S , I − γ−2DDT

Proof. Can be found in [24] or for more detailed see convex optimization books.
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For the case where the system is strictly proper, the theorem can be simplified
as follows:

Theorem 3.5. Given G(s) ∈ H2

G(s) =




A B

C 0


 (3.15)

Then ‖G(s)‖∞ < γ if and only if H has no imaginary eigenvalues where

H ,




A γ−2BR−1BT

−CT C −AT


 (3.16)

Equivalently ‖G(s)‖∞ < γ if and only if there exists an X ≥ 0 which satisfies the

Riccati equation

AT X + XA + γ−2XBBT X + CT C = 0 (3.17)

Thus, the H∞ norm of a system can be computed in iterative way be applying a
search algorithm to the problem of finding the smallest γ which satisfies the bound
‖G(s)‖∞ < γ. This γ is the smallest H∞ norm of the system.

3.3 The Frobenius-Hankel Norm

Medanic and Perkins introduced the Frobenius-Hankel (FH) norm for the design of
control systems in 1987 [25]. The FH norm is defined as the Frobenius norm on the
Hankel singular values. The importance of this norm comes from its relationship to
more widely known norms such as H2 and H∞ and its good computational properties
which make it suitable for use in optimization procedures.

In this section, the properties of the Frobenius-Hankel will be explored. In
particular both a time-domain and frequency-domain interpretation will be made
and a simple computational method will be shown for calculating the FH norm.
The FH norm will also be directly related to both the H2 and H∞ norms.

In the following chapters the FH norm will be used as the basis for our opti-
mization problem and applied to a model reduction problem using LMI.

Definition 3.3: The Frobenius Hankel norm of G(s)εH2 is

‖G(s)‖F , [
n∑

i=1

σ2
i (G(s))]1/2 (3.18)
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3.3.1 Properties of the FH Norm

The FH norm can be easily computed directly from the grammians P and Q.

Theorem 3.6. Given the system G(s) ε H2 and the controllability and observability

grammians P and Q resp., then is:

‖G(s)‖2
F = Tr{PQ} (3.19)

Proof. Can be found in appendix A.

As we see from the last expression, it involves the solution of two Lyapunov
equations but avoids computation of the Hankel singular values. This expression
for the FH norm is important because the trace function is more well-behaved than
the singular values function.

3.3.2 Time Domain Properties of the FH Norm

The Time domain interpretation of the FH norm is as follows:

Theorem 3.7. Given the system G(s) ε H2 and the impulse response of the system

g(t) then:

‖G(s)‖2
F = Tr

∫ ∞

0

tg(t)T g(t)dt. (3.20)

Proof. Can be found in appendix A.

Note the similarity of this expression to one given in Theorem 3.6. In fact, a
comparison of the two expressions shows that the FH norm is in fact equivalent to
a time weighted H2 norm.

3.3.3 Frequency Domain Properties of the FH Norm

The Frequency domain interpretation of the FH norm is as follows:
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Theorem 3.8. Given the system G(s)εH2 and the frequency response of the system

G(jω) = G(s)|s=jω then:

‖G(s)‖2
F =

j

2π
Tr

∫ ∞

−∞

dG(jω)

dω
G(jω)∗dω. (3.21)

Proof. Can be found in appendix A.

Note that this expression shows that there are two components to the FH norm.
The first component comes from the dG(jω)

dω
term in the above expression which

implies that the FH norm weights the ”flatness” of the transfer functions. the
second component is due to the G(jω) term in the above expression which implies
that the FH norm also weights the magnitude of the transfer function.

3.3.4 Relationships with Other Norms

The FH norm can be related to the H∞ norm through the Hankel singular values
of the system. In the following two theorems, expressions are shown which relate
the two norms using the Hankel singular values.

This first result defines an interval in which both the H∞ and FH norm must
lie. Thus, results which apply to the H∞ norm can be applied to the FH norm
through this result.

Theorem 3.9. Given the system G(s)εH2 then

σ̄(G(s)) ≤ ‖G(s)‖∞ ≤ 2
n∑

i=1

σi(G(s)). (3.22)

σ̄(G(s)) ≤ ‖G(s)‖FH ≤
n∑

i=1

σi((G(s)). (3.23)

Proof. Can be found in appendix A.

From the previous result, the H∞ norm can be bounded in term of the FH norm
which will give a measure of the closeness of the H∞ norm to the FH norm.

Theorem 3.10. Given the system G(s)εH2, then

1√
n
‖G(s)‖FH ≤ ‖G(s)‖∞ ≤ 2

√
n‖G(s)‖FH . (3.24)

Proof. Can be found in appendix A.
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These expressions establish the robustness properties of the FH norm through
the H∞ norm. Thus, since the computation of the FH norm is much simpler, we
can use the FH norm for the analysis of the robust systems.

The Frobenius-Hankel norm can also be related to the sensitivity of the H2 norm
to a shift of the eigenvalues of the system along the real axis. Such a shift in the
eigenvalues can be represented be letting A be given by:

A(α) = A0 + αI (3.25)

Thus, λ(A) = λ(A0) + α and the sensitivity of the H2 norm to a shift in the eigen-
values along the real axis is given by d

dα
‖G(s)‖2

2. The following theorem relates this
sensitivity to the FH norm.

Theorem 3.11. Let the eigenvalues of the system G(s)εH2 be given by λi = λ̄i +α,

then

d

dα
‖G(s)‖2

2 |α=0= 2‖G(s)‖2
FH . (3.26)

Proof. Can be found in appendix A.

We can conclude from the last expression, the FH norm establishes a sensitivity
measure for the H2 norm with respect to a change in the relative stability of the
system.
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Chapter 4

Model Order Reduction Using
LMI

4.1 Introduction

High-order controllers increase the hardware complexity for hardwired controllers,
which directly increases cost. For digital control, high-order controllers increase the
speed of the required processor and the sampling rate which will increases the cost of
the processors, A/D convertors and D/A convertors. So, there has been a significant
interest in the model reduction problem, namely, the problem of approximating a
high order complex system by a lower order system. Model order reduction tech-
niques aim to reduce problem complexity while simultaneously maintaining suitable
solution accuracy. A large number of techniques are available for deriving reduced
order models and lower order controllers. A number of approaches,e.g., [7, 9], use
first order necessary conditions for optimality and develop optimization algorithms
to find solutions to resulting nonlinear equations. Most of the methods in this direc-
tion are only applicable to the single input single output (SISO) case. Furthermore,
it is argued [10, 11] that whether the global optimum is always achievable is un-
clear in the continuous time case (while it is shown to exist in the discrete time
case) and that, in the case of non-existence of the optimum, these approaches can
only find local optima which may be far from the true global optimum. Although,
the existence of the global optimum is guaranteed, optimization methods based on
search algorithms can have difficulties. There may be another local optima and it is
difficult to guarantee that the obtained solution is the closest to the global optimum.
Moreover, there is no guarantee that the chosen stopping criterion for such a search
algorithm is appropriate. To overcome these problems, several algorithms based on
algebraic methods have been proposed that directly solve a set of nonlinear equa-
tions [15]. These approaches seem to have potential in cases where the optima are
achievable, but computation cost required for such approaches is still high, which
make these methods not useful alternatives.

There are different approaches has been developed at the last decade such as
[7, 9], these approaches are proposed to solve slightly modified problems for the
continuous time case, where the global optimum is proven to exist and the use of
a search algorithm makes sense. Those methods can deal with the multi input
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multi output (MIMO) case and thus favorable compared to many other methods.
A problem of those methods may be the difficulty of measuring the conservativeness
of the obtained result due to the modification of the problem.

Recently, new approaches based on LMI ′s has been developed as in [3, 4, 17];
it is emphasized that those methods deal with the original problem rather than a
modified one. Also the algorithm essentially solves suboptimal problems and hence
avoids the issue of existence/non-existence of the optimal solution. Those methods
can deal with the MIMO case and thus favorable compared to many other methods
in this respect. A problem of those methods is the use of H2 norm which deals with
the average gain and the use of H∞ which deals with the worst case gain, in our
research we will use the FH norm because of its good computational properties
which make it suitable for use in optimization problems.

4.2 H∞ Model Reduction

4.2.1 Introduction

In this section we define the H∞ optimal model reduction problem for a stable
system G of McMillan degree n with q inputs and p outputs, which can be defined
as finding a stable system Ĝ of McMillan degree n̂(< n) with the same numbers
of inputs and outputs such that the H∞ norm of the error ‖G − Ĝ‖∞ is small.
Under the same condition, the H∞ suboptimal model reduction problem is stated
as: Given γ(> 0), find, if it exists, Ĝ that achieves the H∞ error less than γ, i.e.,
achieves ‖G− Ĝ‖∞ < γ. Assuming that both G and Ĝ are strictly proper.

4.2.2 Continuous-time H∞ Model Reduction

Firstly let us define the state space realizations of the error system E(s), let G(s)
and Ĝ(s) be

G(s) =

[
A B
C 0

]
(4.1)

Ĝ(s) =

[
Â B̂

Ĉ 0

]
(4.2)

where A ∈ Rnxn, B ∈ Rnxq, C ∈ Rpxn, Â ∈ Rrxr, B̂ ∈ Rrxq, Ĉ ∈ Rpxr. A state space
realization of the error system is

E(s) = G(s)− Ĝ(s) =




A 0 B

0 −Â −B̂

C −Ĉ 0


 =:

[
AE BE

CE 0

]
(4.3)

The following theorem provide necessary and sufficient conditions for the solution
of the γ-suboptimal H∞ model reduction problem in terms of LMIs, and an explicit
parametrization of all reduced-order models that correspond to a feasible solution.
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Theorem 4.1. There exists an n̂th-order system Ĝ to solve the γ-suboptimal H∞

model reduction problem if and only if there exist matrices X > 0 and Y > 0 such

that the following conditions are satisfied:

AX + XAT + BBT < 0 (4.4)

AT Y + Y A + CT C < 0 (4.5)


X γI

γI Y


 ≥ 0 (4.6)

and

rank




X γI

γI Y


 ≤ n + n̂ (4.7)

All γ-suboptimal n̂th-order models that correspond to a feasible matrix pair (X, Y )

are given by




D̂ Ĉ

B̂ Â


 = Ĝ1 + Ĝ2LĜ3, (4.8)

where L ∈ R(p+n̂)×(m+n̂) is any matrix such that ‖L‖ < 1, and

Ĝ1 = (M1 −Q12Q
−1
22 MT

2 )(M2Q
−1
22 MT

2 )−1,

Ĝ2 = (−Q11 + Q12Q
−1
22 QT

12 −G1G
2
3G

T
1 )

1
2 ,

Ĝ3 = (−M2Q
−1
22 MT

2 )
1
2 ,

(4.9)

where

M1 $




0 0

0 R2
x


 , M2 $




0 I

RxL
T
x 0


 ,

Q11 $




−γ2I CLxRx

RxL
T
x CT 0


 , Q12 $




CX D

RxL
T
x AT 0


 ,

Q22 $




AX + XAT B

BT −I




(4.10)
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Where Rx ∈ Rn̂×n̂ is an arbitrary positive-definite matrix and Lx ∈ Rn×(n̂) is an

arbitrary matrix factor such that

LxL
T
x = X − γ2Y −1. (4.11)

Proof. For the proof of this theorem see [4].

As we can see from the previous theorem the γ-suboptimal H∞ model reduction
problem is characterized as a feasibility problem of finding a pair of positive-definite
matrices (X, Y ) in the intersection of the constraint sets (4.4)-(4.7). The constraints
(4.4)-(4.6) are convex LMIs, but the coupling constraint set (4.7) is non-convex.
Numerical algorithms based on cone complementary method and alternating pro-
jections onto the constraint sets (4.4)-(4.7) will be presented to find a solution of
the non-convex feasibility problem.

The solution of the optimal H∞ model reduction problem is obtained by solving
the following non-convex minimization problem:

minimizeX,Y γ

subject to

(4.4)− (4.7)

(4.12)

4.2.3 Discrete-time H∞ Model Reduction

The following theorem provide necessary and sufficient conditions for the existence
of a solution to the discrete-time γ-suboptimal ‖G‖∞ model reduction problem and
a state-space parametrization of all reduced order models [4].

Theorem 4.2. There exists an n̂th-order system Ĝ to solve the discrete-time γ-

suboptimal H∞ model reduction problem if and only if there exist matrices X > 0

and Y > 0 such that the following conditions are satisfied:

X − AXAT −BBT < 0 (4.13)

Y + AT Y A + CT C < 0 (4.14)



X γI

γI Y


 ≥ 0 (4.15)

and

rank




X γI

γI Y


 ≤ n + n̂ (4.16)
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All γ-suboptimal n̂th-order models that correspond to a feasible matrix pair (X, Y )

are given by




D̂ Ĉ

B̂ Â


 = Ĝ1 + Ĝ2LĜ3, (4.17)

where L ∈ R(p+n̂)×(m+n̂) is any matrix such that ‖L‖ < 1, and

Ĝ1 = −(ΓT ΦΓ)−1ΓT ΦΘRΛT (ΛRΛT )−1

Ĝ2 = (ΓT ΦΓ)−
1
2 ,

Ĝ3 = (Ω− ΩΛRΘT [Φ− ΦΓ(ΓT ΦΓ)−1ΓT Φ]ΘRΛT Ω)
1
2 ,

(4.18)

where

Φ $ (Q−ΘRΘT + ΘRΛT (ΛRΛT )−1ΛRΘT )−1,

Q $




X̄ 0

0 γ2I


 , R $




X̄ 0

0 I


 , Ω $




I 0

0 X−1
c


 ,

X̄ $




X Xpc

XT
pc Xc


 , Λ $




0 0 I

0 I 0


 ,

Θ $




A 0 B

0 0 0

C 0 D




, Γ $




0 0

0 I

−I 0




(4.19)

and Xpc, Xc are arbitrary matrices such that X̄ > 0

Proof. Can be found in [4].

4.2.4 Computational techniques for H∞ model reduction Us-

ing Alternating projection method

Alternating projection methods have been used in the past to solve statistical esti-
mations and image restoration problems. They provide iterative schemes for finding
a feasible point in the intersection of a family of convex sets. The basic idea is that
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of a cyclic sequence of projections onto the constraint sets. Recently alternating
projections have been used in control design and model and controller order reduc-
tion problems. In this chapter the alternating projection method [26] is employed
for finding reduced order models. We will consider a special case of alternating pro-
jection method which can deal with a family of closed convex sets, in our case we
have a pair of sets C1 and C2 in the space Sn × Sn and assume that the intersection
of these sets is non-empty set. The feasibility problem of finding an element in the
intersection C1 ∩ C2 is considered. Let PCi

(X) denotes the orthogonal projection of
X onto the set Ci, which is equivalent to that, the matrix in Ci which has minimum
distance from the matrix X. Now from the general case of alternating projection
method we can define our case, suppose that C1 and C2 are closed and convex. Then,
starting from any element (X0, Z0) in the space, the sequence of alternating projec-
tions

(X1, Z1) = PC1(X0, Z0)

(X2, Z2) = PC2(X1, Z1)

.

(X2m−1, Z2m−1) = PC1(X2m−2, Z2m−2)

(X2m, Z2m) = PC2(X2m−1, Z2m−1)

.

always converges to an element in the intersection C1 ∩ C2 provided that the inter-
section is non-empty. If we have C1 or C2 is non-convex then global convergence is
not guaranteed. However, if a starting point is in a neighborhood of a feasible solu-
tion local convergence is guaranteed, the alternating projection method can yield a
sequence converging to an element in the intersection. In the case of the H∞ model
reduction problem, C1 can be taken as

C1 = {(X, Z)|X ∈ Sn, Z ∈ Sn, (4.4), (4.5), (4.6)}

in the continuous time case, and

C1 = {(X, Z)|X ∈ Sn, Z ∈ Sn, (4.13), (4.14), (4.15)}

in the discrete time case. Also,

C2 = {(X, Z)|X ∈ Sn, Z ∈ Sn, (4.7) or (4.16)}

for either case. Note that C1 is convex while C2 is not. By equipping the space
Sn × Sn with the inner product

〈(X1, Z1)(X2, Z2)〉 = Tr{X1X2}+ Tr{Z1Z2}

the orthogonal projection of (X0, Z0) ∈ Sn×Sn onto C1 can be found by solving the
following convex optimization problem [26]:
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minimize Tr{S + T}

subject to

[
S (X −X0)

(X −X0) I

]
≥ 0,

[
T (Z − Z0)

(Z − Z0) I

]
≥ 0,

(X, Z) ∈ C1, S, T ∈ Sn.

Since C2 is not convex, there may be more than one matrix pair that solves the
projection PC2(X0, Z0). So, we can find more than one matrix pair that minimize
the distance from (X0, Z0). From [ [27], Section 7.4], let Z0 = UΣV ∗ be a singular
value decomposition of Z0. Then a projection of (X0, Z0) onto C2 is given by

PC2(X0, Z0) = (X0, UΣrV
∗)

where Σr is a diagonal matrix obtained from Σ by replacing the (n − r) smallest
diagonal elements of Σ by zero.
Suggested algorithm for γ-suboptimal H∞ model reduction.

Model Reduction Scheme

1-Find X, Z ∈ Sn and an H∞-norm bound that satisfy (4.4)-(4.7) in the continuous
time case (resp., (4.13)-(4.16) in the discrete time case).
2-Reduce γ Find X, Z ∈ Sn that satisfy (4.4)-(4.7) (resp., (4.13)-(4.16)) using the
alternating projection method, taking (X, Z) from the previous step as a starting
point.
3-If successful, go back to Step 2. Otherwise, compute an approximant from the
best (X, Z) available.

A bisection approach can be used to seek for the minimum H∞ norm bound
γ that solves the optimal H∞ model reduction problem (4.12). If the alternating
projection algorithm in Step 2 does not converge, then the value of γ should be
increased. Note that the algorithm does not guarantee convergence to a global so-
lution. When a feasible solution (X, Y ) is found, all H∞ reduced-order models that
correspond to this solution can be obtained from the parametrization (4.8)-(4.10)
for the continuous-time problem or (4.17)-(4.19) for the discrete-time problem. A
balanced truncation or a Hankel model reduction method can be used to obtain the
initial values for (X, Y ) and γ in Step 1. For the continuous-time case the following
LMI should be solved for Ȳ :




Ȳ (Ā + B̄ḠM̄) + (Ā + B̄ḠM̄)T Ȳ Ȳ (D̄ + B̄ḠĒ) (C̄ + H̄ḠM̄)T

(D̄ + B̄ḠĒ)T Ȳ −γ2I F̄ + H̄ḠĒ
(C̄ + H̄ḠM̄) F̄ + H̄ḠĒ −I


 < 0 (4.20)

where

Ā =

[
A 0
0 0

]
, B̄ = M̄ =

[
0 0
0 I

]
, Ē =

[
I
0

]
, (4.21)
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C̄ =
[

C 0
]
, H̄ =

[ −I 0
]
, F̄ = D, (4.22)

and the matrix

Ḡ =

[
D̂ Ĉ

B̂ Â

]
, (4.23)

contains the reduced-order model from the balanced truncation or the Hankel model
reduction. The initial values of X and Y are obtained from the 1-1 blocks of the
matrices X̄ and Ȳ , respectively, where

X̄ = γ2Ȳ −1

The corresponding value of γ = γlb or γ = γub should be used in the LMI (4.20),
where γlb and γub are will be defined in (4.25) and (4.26), respectively. For the
discrete-time case, the following LMI should be solved for X̄:

[
X̄ 0
0 γ2I

]
>

[
Ā + B̄ḠM̄ D̄ + B̄ḠĒ
C̄ + H̄ḠM̄ F̄ + H̄ḠĒ

] [
X̄ 0
0 I

] [
Ā + B̄ḠM̄ D̄ + B̄ḠĒ
C̄ + H̄ḠM̄ F̄ + H̄ḠĒ

]T

(4.24)

where the matrices Ā, B̄, C̄, D̄, D̄, Ē, M̄ , H̄, F̄ and Ḡ are defined as before. The
LMIs (4.20) and (4.24) follow from the Bounded Real Lemma [16].

4.3 H∞ Model Reduction Algorithm Using the

Cone Complementarity Method

In this section the Cone Complementarity Algorithm (CCA) which was proposed
by El Ghaoui as a method to obtained reduced order controllers [28] will be imple-
mented for solving the model order reduction problem, extensive experiments were
performed using the CCA method in the solution of reduced order output feedback
and static output-feedback problems. The same problem was solved using cone
complementarity algorithm and methods such as: D-K iteration [30] and min-max
algorithm [29], the comparison between the methods showed that in most of the
cases the cone complementarity algorithm found a static controller in only one iter-
ation and that the D-K iteration failed in the majority of the cases. This numerical
study shows the effectiveness of the method in finding a solution, and also in conver-
gence speed. Since the model reduction of dynamical systems has some similarities
with the controller reduction problem and in view of the effectiveness of the CCA to
handle non-convex constraints, we will customize the method to the model reduc-
tion problem. According to [28] the idea of the Cone Complementarity Algorithm
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is to associate the constraint (4.7) ((4.16) for discrete system) with the minimum
of Tr(XY ). Although, it is still a non-convex condition, it is easier to deal with
compared with rank conditions. Then we have an equivalent problem formulation

minimize Tr(XZ)

subject to

(4.4)− (4.6)

This problem called the cone complementarity problem, since it extends linear com-
plementarity problems to the cone of positive semi definite matrices. Since the
objective function is non-convex, we have to linearize the function in the neighbor-
hood of a local point. To solve our problem using CCA, firstly find a feasible point
(Xo, Y o) then a linear approximation of Tr(XY ) at this point will be investigated.
This linear approximation of Tr(XY ) was proposed by Frank and Wolfe [31]. The
linearization takes the form:

Φlin = Tr(Y oX + XoY )

Then we have a local searching algorithm is described as follows:

1. Find a feasible point X0 , Y0, if there are none, exit. Set k = 0.

2. Find Xk+1, Yk+1 that solve the LMI problem subject to (4.4)-(4.6)

3. If a stopping criterion is satisfied, exit. Otherwise, set k = k + 1 and go back
to step (2)

The result of this algorithm is the solution for the suboptimal H∞ problem, the next
step is to solve the non-convex minimization problem

minimize γ

subject to

(4.4)− (4.7)

Which gives us the solution to the optimal problem. To solve this problem a model
reduction scheme based on the cone complementarity algorithm and a bisection al-
gorithm is implemented as follows:

Model Reduction Scheme

Note that, from the hankel singular values [2] we have the upper and lower
bound of the of the optimal γopt for the n̂th-order model reduction as follow:

γopt ≥ γlb , σk+1(G(s)) (4.25)

γopt ≤ γub , 2
n∑

j=k+1

σj(G(s)) (4.26)

The model reduction scheme as follows:
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1. Set γlb and γub equal to the values found in (4.25) and (4.26). Select n̂ < n ,
where n̂ is the desired order of the reduced model.

2. Calculate tolerance tol = γub−γlb

γlb
. If tol ≤ ε and rank

[
X γI
γI Y

]
≤ n + n̂,

exit. Otherwise go to step (3).

3. Set γ equal to γub+γlb

2
, and apply Cone Complementarity Algorithm to find

feasible X and Y.

4. Check X and Y resulting from the previous step, if X, Y are feasible then

calculate nr = rank

[
X γI
γI Y

]
− n.

5. If nr > n̂ then set γub = γ; if not, then set γlb = γ. Go back to step (2)

After the sub-optimal γ is found, with its associated X and Y matrices, the last step
is to obtain a realization for the H∞ reduced model using equations (4.8)-(4.10) (
(4.17)-(4.19) for the discrete-time problem).

4.4 H2 Model Reduction

In this section we define the H2 optimal model reduction problem for a stable system
G of McMillan degree n with q inputs and p outputs, which can be defined as finding
a stable system Ĝ of McMillan degree n̂(< n) with the same numbers of inputs and
outputs such that the H2 norm of the error ‖G − Ĝ‖2 is small. Under the same
condition, the H2 suboptimal model reduction problem is stated as: Given γ(> 0),
find, if it exists, Ĝ that achieves the H2 error less than γ (‖G− Ĝ‖2 < γ). Assuming
that both G and Ĝ are strictly proper.

4.4.1 Continuous Systems

The H2 optimal model reduction can be defined as [11, 17]:

minimize γ (> 0)

subject to AEP + PAT
E + BEBT

E < 0, (4.27)

P > 0, (4.28)

Tr{CEPCT
E} < γ2 (4.29)

Partition P conformably with AE and write

P =

[
P11 P12

P T
12 P22

]
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where P11 ∈ Sn, P12 ∈ Rn×n̂, P22 ∈ Sn̂. Then, from the Schur complement formula
as in section 2.2, inequality (4.27) is equivalent to

[
AEP + PAT

E BE

BT
E −I

]
=:




AP11 + P11A
T AP12 + P12Â

T B

P T
12A

T + ÂP T
12 ÂP22 + P22Â

T B̂

BT B̂T −I


 < 0 (4.30)

Using a slack variable W ∈ Sp, inequalities (4.28) and (4.29) can be expressed as:

Tr(W ) < γ2 (4.31)

[
W CEP

PCT
E −I

]
=:




W CP11 − ĈP T
12 CP12 − ĈP22

P11C
T − P12Ĉ

T P11 P12

P T
12C

T − P22Ĉ
T P T

12 P22


 > 0 (4.32)

It is observed that neither (4.30) nor (4.32) is an LMI since there are bilinear terms
such as ÂP12. In the next two theorem we will define the H2 optimal model order
reduction for stable continuous and discrete systems respectively.

Theorem 4.3. Consider a stable continuous time system G(s) =




A B

C 0


 of

McMillan degree n. There exists a stable continuous time system Ĝ(s) of McMillan

degree at most n̂ that satisfies ‖G(s)−G(s)‖2 < γ if and only if there exist X, Z ∈ Sn

satisfying

AX + XAT + BBT < 0 (4.33)

A(X − Z) + (X − Z)AT < 0 (4.34)

Tr{C(X − Z)CT} < γ2 (4.35)

Z ≥ 0 (4.36)

rankZ ≤ r (4.37)

Proof. For the proof of theorem see [17]

as we can see inequalities (4.33)-(4.36) are convex constraints, whereas rank
constraint (4.37) is not. An optimization problem is a non-convex problem. If X
and Z that satisfy (4.33)-(4.37) are found, then a reduced order model that achieves
the error less than γ can be obtained by firstly using P11 = X, computing P12, P22

from a decomposition of Z and then solving an LMI feasibility problem (4.30),
(4.31), (4.32) for Â, B̂, Ĉ.
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4.4.2 Discrete Systems

Similar to the continuous time case the discrete time case model order reduction
problem of the original system G(z) is the reduced order approximant Ĝ(z) that
achieves the H2 error less than γ (‖G − Ĝ‖2 < γ). The model reduction problem
can be expressed identically to the continuous time case except for (4.27), which is
to be replaced with

AEPAT
E − P + BEBT

E < 0. (4.38)

Similar to the continuous time case, necessary and sufficient conditions with respect
to two symmetric matrices are derived.

Theorem 4.4. Consider a stable discrete time system G(z) =




A B

C 0


 of

McMillan degree n. There exists a stable continuous time system Ĝ(z) of McMillan

degree at most r that satisfies ‖G(z)−G(z)‖2 < γ if and only if there exist X, Z ∈ Sn

satisfying

AX + XAT −X + BBT < 0, (4.39)

A(X − Z)AT − (X − Z) < 0 (4.40)

Tr{C(X − Z)CT} < γ2 (4.41)

Z ≥ 0 (4.42)

rankZ ≤ r (4.43)

For the proof of theorem see [17]. Similar to the continuous time systems, in-
equalities (4.39)-(4.42) are LMIs and thus convex, but the rank constraint (4.43) is
not. It makes the problem a non-convex problem.

4.4.3 H2 Model Reduction Algorithm Using the Alternating

Projection Method

The following algorithm is suggested for H2 model reduction.

1. Find X, Z ∈ Sn and an H2-norm bound that satisfy (4.33)-(4.37) in the
continuous time case (resp., (4.39)-(4.43) in the discrete time case).

2. Reduce γ. Find X, Z ∈ Sn that satisfy (4.33)-(4.37) (resp., (4.39)-(4.43)) using
the alternating projection method, taking (X, Z) from the previous step as a
starting point.
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3. If successful, go back to Step 2. Otherwise, compute an approximant from the
best (X, Z) available by solving a feasibility problem (4.30), (4.31) and (4.32)

We can use a bisection method with respect to γ on the implementation of our
algorithm. We can conclude that, since our problem is non-convex, it is important
to find a good starting point in Step 1 to have initial γ close to the optimal γ, which
may be achieved by having (X, Z) close to the optimum.

4.4.4 H2 Model Reduction Algorithm Using the Cone Com-

plementarity Method

Similar to H∞ problem we have an equivalent problem formulation

minimize Tr(XZ)

subject to

(4.33)− (4.36)

This problem can be called the cone complementarity problem, to solve this problem
firstly a feasible point is found (Xo, Y o) and then a linear approximation of Tr(ZY )
at this point will be found similar to H∞ case:

Φlin = Tr(ZoX + XoZ)

The local searching algorithm is described as follows:

1. Find a feasible point X0 , Z0, if there are none, exit. Set k = 0.

2. Find Xk+1, Zk+1 that solve the LMI problem subject to (4.33)-(4.36)

3. If a stopping criterion is satisfied, exit. Otherwise, set k = k + 1 and go back
to step (2)

The result of this algorithm is the solution for the γ-suboptimal H2 problem, the
next step is to solve the non-convex minimization problem

minimize γ

subject to

(4.33)− (4.36)

To solve this problem a model reduction scheme based on the cone complementarity
algorithm and a bisection algorithm is implemented as follows:

Model Reduction Scheme

1. Set γlb and γub equal to the values found in (4.25) and (4.26). Select n̂ < n ,
where n̂ is the desired order of the reduced model.
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2. Calculate tolerance tol = γub−γlb

γlb
. If tol ≤ ε and rank

[
X γI
γI Z

]
≤ n + n̂,

exit. Otherwise go to step (3).

3. Set γ equal to γub+γlb

2
, and apply Cone Complementarity Algorithm to find

feasible X and Z.

4. Check X and Z resulting from the previous step, if X, Z are feasible then

calculate nr = rank

[
X γI
γI Y

]
− n.

5. If nr > n̂ then set γub = γ; if not, then set γlb = γ. Go back to step (2)

After the sub-optimal γ is found, with its associated X and Y matrices, the last step
is to obtain a realization for the H2 reduced model by solving a feasibility problem
(4.30), (4.31) and (4.32).

4.5 HFH Model Reduction

4.5.1 Introduction

In this section we define the HFH optimal model reduction problem for a stable
system G of McMillan degree n with q inputs and p outputs, which can be defined
as finding a stable system Ĝ of McMillan degree n̂(< n) with the same numbers
of inputs and outputs such that the HFH norm of the error ‖G − Ĝ‖FH is small.
Under the same condition, the HFH suboptimal model reduction problem is stated
as follows:
Given γ(> 0), find, if it exists, Ĝ that achieves the HFH error less than γ (‖G −
Ĝ‖FH < γ). Assuming that both G and Ĝ are strictly proper. As we see our
minimizing problem of the error ‖G − Ĝ‖FH < γ is nothing more than minimizing
(Tr{PQ})(1/2) < γ or Tr{PQ} < γ2 from Theorem 3.6 where P and Q are the
grammians of the error system (4.3).

4.5.2 Continuous Systems

In this subsection the continuous time case is considered and necessary and sufficient
conditions for the existence of a reduced order model achieving a specified error are
derived. Then the HFH optimal model reduction can be expressed as:

minimize γ (> 0)

subject to AEP + PAT
E + BEBT

E < 0, (4.44)

AT
EQ + QAE + CT

ECE < 0, (4.45)

P > 0, (4.46)

Q > 0, (4.47)

Tr{PQ} < γ2 (4.48)
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To guarantee the stability of the reduced order system Ĝ the matrices P, Q ∈ sn+n̂

must be positive definite matrices which is equivalent to the stability of Ĝ under the
assumption that (AE, BE) is controllable and (AE, CE) is observable. Partition P
conformably with AE and write

P =

[
P11 P12

P T
12 P22

]

where P11 ∈ Sn, P12 ∈ Rn×r, P22 ∈ Sr. Then, from the Schur complement formula
as in section 2.2, inequality (4.44) is equivalent to

[
AEP + PAT

E BE

BT
E −I

]
=:




AP11 + P11A
T AP12 + P12Â

T B

P T
12A

T + ÂP T
12 ÂP22 + P22Â

T B̂

BT B̂T −I


 < 0 (4.49)

Partition Q conformably with AE and write

Q =

[
Q11 Q12

QT
12 Q22

]

where Q11 ∈ Sn, Q12 ∈ Rn×r, Q22 ∈ Sr. Then, from the Schur complement formula
as in section 2.2, inequality (4.45) is equivalent to

[
AT

EQ + QAE CT
E

CE −I

]
=:




AT Q11 + Q11A AT Q12 + Q12Â CT

ÂT QT
12 + QT

12A ÂT Q22 + Q22Â −ĈT

C −Ĉ −I


 < 0 (4.50)

Assuming that, the error system is on balanced realization then we have P = Q =
Σ = QT . Using a slack variable W ∈ Sn, inequalities (4.46), (4.47) and (4.48) can
be expressed as:

TrW < γ2 (4.51)[
W Σ
Σ −I

]
> 0 (4.52)

It is observed that neither (4.49) nor (4.50) is an LMI since there are bilinear terms
such as ÂP12. Now those conditions are expressed with respect to two decision vari-
ables symmetric matrices by eliminating Â, B̂, Ĉ.
As we see from the properties of the FH norm and its relationship with H∞ norm
as given in Chapter 3 on similar way to the H∞ model order reduction we can define
the HFH model order reduction for a stable continuous time system G(s) of McMil-
lan degree n as follows:
Similar to the H2 and H∞ the necessary and sufficient condition for reducing a sta-
ble continuous time system G(s) of McMillan degree n to a stable continuous time
system Ĝ(s) of McMillan degree at most n̂ that satisfies ‖G(s) − G(s)‖FH < γ as
follows: The reduced system of the smallest error as possible exists if and only if
there exist X, Z ∈ Sn satisfying
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AX + XAT + BBT < 0 (4.53)

AT Z + ZA + CT C < 0 (4.54)

X > 0 (4.55)

Z > 0 (4.56)

rank

[
X γI
γI Z

]
≤ n + n̂ (4.57)

Inequity (4.53) is derived from equation (4.49) using elimination theorem and sim-
ilarly inequality (4.54) is derived from equation (4.50) for the derivation of these
equation see the proof of (Theorem 1 [17]), equations (4.55) and (4.56) are neces-
sary condition for the controllability and observability of the reduced order system
similar to the H∞ model order reduction and the last equation is necessary of obtain-
ing the desired order n̂ for the reduced system. As we see inequalities (4.53)-(4.56)
are convex constraints but the rank constraint (4.57) is not. This optimization
problem under those constraints is a non-convex problem. If X and Z that satisfy
(4.53)-(4.56) are found, then a reduced order model that achieves the error less than
γ can be obtained by one of the two methods, solving an LMI feasibility problem
(4.49), (4.50), (4.51) and (4.52) for Â, B̂, Ĉ or by obtaining the realization for the
reduced model reduction using equations (4.8)-(4.10).

4.5.3 Discrete Systems

For a stable discrete time system with state space realizations of the original system
G(z), the reduced order approximant Ĝ(z) and the error system E(z) are given as
in the continuous time case. The model reduction problem can be expressed simi-
lar to the continuous time system except for (4.44) and (4.45) which is replaced with

AEPAT
E − P + BEBT

E < 0. (4.58)

AT
EQAE −Q + CT

ECE < 0. (4.59)

Similar to the continuous time case, necessary and sufficient conditions with respect
to two symmetric matrices are derived.
Assume we have a stable discrete time system G(z) of McMillan degree n. There
exists a stable discrete time system Ĝ(z) of McMillan degree at most n̂ that satis-
fies ‖G(z) − G(z)‖FH < γ as follows: The reduced system of the smallest error as
possible exists if and only if there exist X, Z ∈ Sn satisfying
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AXAT −X + BBT < 0, (4.60)

AT ZA− Z + CT C < 0 (4.61)

X > 0 (4.62)

Z > 0 (4.63)

rank

[
X γI
γI Z

]
≤ n + r (4.64)

As is the case with continuous time systems, inequalities (4.60)-(4.63) are LMIs and
thus convex, but the rank constraint (4.64) is not. It makes our reduction problem
a non-convex problem.

4.5.4 HFH Model Reduction Algorithm Using the Alternat-

ing Projection Method

The following algorithm is suggested for HFH model reduction using APA:

1. Find X, Z ∈ Sn and an HFH-norm bound that satisfy (4.53)-(4.57) in the
continuous time case (resp., (4.60)-(4.64) in the discrete time case).

2. Reduce γ. Find X, Z ∈ Sn that satisfy (4.53)-(4.57) (resp., (4.60)-(4.64)) using
the alternating projection method, taking (X, Z) from the previous step as a
starting point.

3. If successful, go back to Step 2. Otherwise, compute an approximant from the
best (X, Z) available by solving a feasibility problem (4.30), (4.31) and (4.32)

A bisection approach can be used to seek for the minimum HFH norm bound γ
that solves the optimal HFH model reduction problem. If the alternating projection
algorithm in Step 2 does not converge, then the value of γ should be increased.
Note that the algorithm does not guarantee convergence to a global solution. It is
important to find a nice starting point in Step 1. This is because it can determine
whether an approximant which is close to the global optimum will be obtained. Also,
Step 2 is not in general an inexpensive task and it is desired to have initial γ close
to the optimal γ, which may be achieved by having (X, Z) close to the optimum.

4.5.5 HFH Model Reduction Algorithm Using the Cone Com-

plementary Method

Similar to H∞ and H2 problem we have an equivalent problem formulation

minimize Tr(XZ)

subject to

(4.53)− (4.56)
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To solve this problem firstly a feasible point is found (Xo, Zo) and then a linear
approximation of Tr(XZ) at this point will be found as:

Φlin = Tr(ZoX + XoZ)

This searching algorithm is described as follows:

1. Find a feasible point X0 , Z0, if there are none, exit. Set k = 0.

2. Find Xk+1, Zk+1 that solve the LMI problem subject to (4.53)-(4.56)

3. If a stopping criterion is satisfied, exit. Otherwise, set k = k + 1 and go back
to step (2)

The result of this algorithm is the solution for the γ-suboptimal HFH problem, the
next step is to solve the optimal problem. This is done by solving the non-convex
minimization problem

minimize γ

subject to

(4.53)− (4.56)

To solve this problem a model reduction scheme based on the cone complementarity
algorithm and a bisection algorithm is implemented as follows:

Model Reduction Scheme

1. Set γlb and γub equal to the values found in (4.25) and (4.26). Select n̂ < n ,
where n̂ is the desired order of the reduced model.

2. Calculate tolerance tol = γub−γlb

γlb
. If tol ≤ ε and rank

[
X γI
γI Z

]
≤ n + n̂,

exit. Otherwise go to step (3).

3. Set γ equal to γub+γlb

2
, and apply Cone Complementarity Algorithm to find

feasible X and Z.

4. Check X and Z resulting from the previous step, if X, Z are feasible then

calculate nr = rank

[
X γI
γI Z

]
− n.

5. If nr > n̂ then set γub = γ; if not, then set γlb = γ. Go back to step (2).

After the sub-optimal γ is found, with its associated X and Z matrices, the last step
is to obtain a realization for the HFH reduced model by solving a feasibility problem
(4.49), (4.50) (4.51) and (4.52) or by obtaining the realization for the reduced model
reduction using equations (4.8)-(4.10).
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4.6 Robust Model Reduction

In this section the optimal model order reduction for polytopic uncertain linear
systems is investigated to show the effectiveness of the CCA.

4.6.1 Introduction

Similar to model reduction of certain systems the H∞ optimal model reduction
problem for polytopic uncertain linear systems will be the topic of this section. We
want to reduce the model complexity while maintaining an accurate approximation
of the original system. The ordinary techniques such as balanced truncation [1] or
optimal Hankel norm model reduction [2], are widely used to reduce the order of
the state-space realization of Linear Time Invariant (LTI) systems, where as little
work has been done for the model reduction of uncertain systems such as [32]. The
objective of this section is to duplicate the result found by [32] for model reduction
for polytopic uncertain systems using (LMI) based on the model reduction procedure
proposed by El Ghaoui [4].

4.6.2 Polytopic Model Reduction Problem

Consider a polytopic uncertain linear system G
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t).
(4.65)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. The state-space matrices
of G, A(t), B(t), C(t), D(t) are continuous functions of time since we have some
entries of these matrices as an interval, and we will define the evolve of G as:

Ω , Co{
(

Ai Bi

Ci Di

)
, i = 1, 2, 3, ...., L } (”Co” refer to convex hull)

= {
L∑

i=1

αi

(
Ai Bi

Ci Di

)
, ∀αi ≥ 0,

L∑
i=1

αi = 1 }
(4.66)

Note that, G is a set of LTV systems. Introducing a set of continuous functions:

A , {α : R+ → RL, such that αi(t) ≥ 0,
L∑
i

αi = 1, ∀t ∈ R+}, (4.67)

and we assume one to one correspondence between allowable LTV systems from G
and functions α ∈ A. Then for any LTV system T ∈ G, there exists α ∈ A such that

T (.) =

[
A(.) B(.)
C(.) D(.)

]
=

L∑
i=1

αi(.)

[
Ai Bi

Ci Di

]
, (4.68)
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We will also use the notation Tα to emphasize the dependence of T on a particular
α ∈ A. The uncertain system G is assumed to be quadratically stable, which means
thst, there exists a matrix P ∈ Sn×n, P > 0 such that

AT
i P + PAi < 0, i = 1, 2, ... L.

For our model reduction problem, we want to find a polytope of the form

Ωr , Co{
(

Ar
i Br

i

Cr
i Dr

i

)
, i = 1, 2, ..., L } (4.69)

in other words a n̂th-order (n̂ < n) polytopic uncertain system Gn̂

ẋn̂(t) = An̂x(t) + Bn̂u(t))

yn̂(t) = C n̂x(t) + Dn̂u(t).
(4.70)

Where as Gn̂ is a good approximation of the original polytopic uncertain system
G in the induced L2 norm sense. So we can conclude that, the model reduction
problem of polytopic uncertain system is to find the reduced order systems 2m

where m is the number of the uncertain elements in G(s). So in our problem we
would like to solve the following reduction problem.

Definition 4.1: Consider a scalar γ > 0, a quadratically stable, nth-order polytopic

uncertain linear system G defined by (4.65) (4.66). If there exists a polytope Ωn̂ (as-

sociated with a n̂th-order (n̂ < n) uncertain model Gn̂), such that for any continuous

function α ∈ A
‖Tα − T i

α‖i,2 < γ,

where

Tα(.) =
L∑

i=1

αi(.)




Ai Bi

Ci Di


 , T n̂

α (.) =ss=
L∑

i=1

αi(.)




An̂
i Bn̂

i

C n̂
i Dn̂

i


 ,

then we say the Polytopic Model Reduction Problem is solvable [32].
The following theorem is the main result and provides a solution to this problem ,
where γ is an upper bound for the worst-case approximation error between a given
polytopic uncertain system and its reduced-order models.

Theorem 4.5. Given γ > 0, the Polytopic Model Reduction Problem is solvable if

there exist positive definite matrices X, Y ∈ Sn×n, such that
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AiX+XAT
i +

BiB
T
i

γ
< 0 (4.71)

AT
i Y +Y Ai +

CT
i Ci

γ
< 0 (4.72)




X I

I Y


 ≥ 0 (4.73)

rank




X I

I Y


 ≤ n + n̂ (4.74)

If (4.71)- (4.74) are satisfied, then the vertices of one feasible polytope Ωr are
given by

Ar
i = (NT L−1

i N)−1[I −NT L−1
i AT

i N ], (4.75)

Br
i = −(NT L−1

i N)−1NT L−1
i Y Bi, (4.76)

Cr
i = −CiL

−1
i AT

i N − CiL
−1
i N(NT L−1

i N)−1[I −NT L−1
i AT

i N ], (4.77)

Dr
i = Di − CiL

−1
i [I −N(NT L−1

i N)−1NT L−1
i ]Y Bi, (4.78)

where Li = AT
i Y + Y Ai for i = 1, 2, ..., L. NNT = Y −X−1 and N is of full column

rank m ≤ n̂. Finally, the reduced-order model Gn̂ associated with Ωn̂ is quadratically
stable.

4.6.3 Lower and Upper Bounds for γopt

Similar to the certain system case we can define upper and lower bounds of the error
between the original and the reduced system in the following theorem.

Theorem 4.6. Given a quadratically stable, polytopic uncertain linear system G
defined by (4.65) - (4.66). Let Ti(s), i = 1, 2, , L denote those LTI systems at the

vertices of the polytope Ω, and σk+1(Ti(s)) the (k+1)th largest Hankel singular value

of Ti(s). The optimal γopt of the Polytopic Model Reduction Problem is bounded

below by

γopt ≥ γlb , max
i=1,2,3,....,L

σk+1(Ti(s)) (4.79)

Also an upper bound of γopt is obtained as follows

γopt ≤ γub , 2
n∑

j=k+1

σ̂j (4.80)
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where σ̂j is a generalized Hankel singular value and σ̂1 > ... > σ̂k > ˆσk+1 > ... >

σ̂n > 0.

To obtain the generalized Hankel singular values of a polytopic uncertain system
G, which is defined by (4.65) and (4.66), let P , Q be any solution of LMIs:

AiP + PAT
i + BiB

T
i < 0 i = 1, 2, ....., L, (4.81)

AT
i Q + QAi + CT

i Ci < 0 i = 1, 2, ....., L, (4.82)

The existence of such P , Q is guaranteed by the quadratic stability assumption of
the uncertain system. Then there exists a non-singular matrix Γ such that

ΓPΓT = Γ−T QΓ−1 = Σ̂ =

[
Σ̂1 0

0 Σ̂2

]
(4.83)

Where
Σ̂1 = diag(σ̂1 > ... > σ̂k), Σ̂2 = diag( ˆσk+1 > ... > σ̂n)

where σ̂1 > ... > σ̂k > ˆσk+1 > ... > σ̂n > 0. As a generalization to the concept
of Hankel singular values [2] for an LTI system, we will call σ̂j, j = 1, 2, ..., n
generalized Hankel singular values of the uncertain system G. Since the solution of
P , Q is not unique, then in order to obtained an upper bound as small as possible,
an additional minimization objective is added to the set of LMIs (4.81) to (4.82), for
this particular case minimizing the trace(P + Q) is used as an heuristic condition.
For additional details on the γ bounds see [32].

4.6.4 Robust Model Reduction Algorithm Using the Cone

Complementary Method

similar to certain system model reduction problem we have an equivalent problem
formulation

minimize Tr(XY )

subject to

(4.71)− (4.73)

To solve this problem, firstly, a feasible point is found (Xo, Y o) and then a linear
approximation of Tr(XY ) at this point is treated as proposed by Frank and Wolfe
[31], which linearization takes the form:

Φlin = Tr(Y oX + XoY )

Then the CCA searching algorithm is described as follows:

1. Find a feasible point X0 , Y0, if there are none, exit. Set k = 0.

2. Find Xk+1, Yk+1 that solve the LMI problem subject to (4.71)- (4.73)
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3. If a stopping criterion is satisfied, exit. Otherwise, set k = k + 1 and go back
to step (2)

The result of this algorithm is the solution for the γ suboptimal H∞ problem, the
next step is to solve the optimal problem. This is done by solving the non-convex
minimization problem

minimize γ

subject to

(4.71)− (4.74)

To solve this problem a model reduction scheme based on the cone complementarity
algorithm and a bisection algorithm is implemented as follows:

Model Reduction Scheme

1. Set γub and γlb equal to the values found in (4.79) and (4.80). Select n̂ < n ,
where n̂ is the desired order of the reduced model.

2. Calculate tolerance tol = γub−γlb

γlb
. If tol ≤ ε and rank

[
X γI
γI Y

]
≤ n + n̂,

exit. Otherwise go to step (3).

3. Set γ equal to γub+γlb

2
, and apply Cone Complementarity Algorithm to find

feasible X and Y.

4. Check X and Y resulting from the previous step, if X, Y are feasible then

calculate nr = rank

[
X γI
γI Y

]
− n.

5. If nr > n̂ then set γub = γ; if not, then set γlb = γ. Go back to step (2).

After the suboptimal γ is found, with its associated X and Y matrices, the last step
is to obtain a realization for the H∞ reduced model by solving equations (4.75),
(4.76), (4.77) and (4.78)
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Chapter 5

Simulation Results

After introducing the LMI model order reduction techniques using the alternating
projection algorithm and the cone complementarity algorithm, in this section MAT-
LAB LMI Toolbox Software Package is used for testing the previously mentioned
algorithms. In the following three examples, we will firstly, in Example 1 and Ex-
ample 2 compare between the APA and CCA to show which algorithm gives better
approximate. In Example 3, we will implement the HFH model reduction using
CCA. Note that, in Example 1 and Example 3 the original system is of order 12 and
we will find a reduced order systems of order 4, 5, and 6 which means that, both of
the two examples have three parts.

5.1 Example 1:

In this example, the real AUTM system, a 2-input, 12-state, 2-output model of an
automotive gas turbine is used, which was studied in [33]. The following is a state-
space representation of this model, taken from [33]:

G(s) =

[
A B
C 0

]

where

A =




0 1 0 0 0 0 0 0 0 0 0 0

−0.202 −1.15 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 −2.36 −13.6 −12.8 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 −1.62 −9.14 −9.15 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 −188.0 −111.6 −116.4 −20.8
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B =

[
0 1.0439 0 0 −1.794 0 0 1.0439 0 0 0 −1.794
0 4.1486 0 0 2.6775 0 0 4.1486 0 0 0 2.6775

]T

C =

[
0.264 0.806 −1.42 −15.0 0 0 0 0 0 0 0 0

0 0 0 0 0 4.9 2.12 1.95 9.35 25.8 7.14 0

]

The Hankel singular values of the systems σi, i = 1, 2, 3, .... 12 are

7.1833, 1.4904, 0.92791, 0.58756, 0.46331, 0.23683, 0.16132,

0.093582, 0.56596× 10−3, 0.20608× 10−4, 0.1424× 10−5, 0.34341× 10−7.

Reduced order models of McMillan degrees 4, 5, 6 are sought. According to

1 2 3 4 5 6 7 8 9 10 11 12
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Order

ab
s

Hankel Singular Values

Figure 5.1: Hankel Singular Values for AUTM System For Example 1 & 3.

(4.25),(4.26):

γlb , σk+1(G(s)) ≤ γopt ≤ γub , 2
n∑

j=k+1

σk+1(G(s))

So for K=4 the range of the optimal γ is:

0.4633 ≤ γopt ≤ 1.9755 (5.1)

For K=5 the range of the optimal γ is:

0.2368 ≤ γopt ≤ 1.0347 (5.2)

For K=6 the range of the optimal γ is:

0.1613 ≤ γopt ≤ 0.5479 (5.3)
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5.1.1 H∞ Model Reduction Algorithm Using CCA

For the implementation of the CCA we solve the feasibility LMI problem without
the rank constraint from which we will take our starting points (Xo, Yo) then, we
will start with γ = γlb+γub

2
to solve our model reduction problem using CCA and we

will use the bisection algorithm for next γ the following examples will illustrate the
efficiency of this algorithm.
For k = 4 ⇒ we have γ = 0.5859 and the number of iteration is 56 as shown on
Figure 5.2.
For k = 5⇒ we have γ = 0.2509 and the number of iteration is 34 as shown on
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Figure 5.2: Gamma Convergence of Hinf MOR Using CCA when K=4.

Figure 5.3.
For k = 6 ⇒ we have γ = 0.1726 and the number of iteration is 44 as shown on

Figure 5.4.

5.1.2 H∞ Model Reduction Algorithm Using APA

For the implementation of the APA, firstly, reduced-order model from the balanced
truncation or the Hankel model reduction must be solved from which We will find
the initial γ then We will solve (4.20) for initial (Xo,Yo). The bisection algorithm
for next γ will be implemented.

For k=4
we have γ = 0.9589 and the number of iteration is 18 as shown on Figure 5.5.
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Figure 5.3: Gamma Convergence of Hinf MOR Using CCA when K=5.

For k=5
we have γ = 0.4024 and the number of iteration is 3 as shown on Figure 5.6.

For k=6 ⇒ we have γ = 0.2562 and the number of iteration is 21 as shown on
Figure 5.7.

As it is clear from the result the cone complementarity algorithm gives better
results (smaller upper bound of the error) than the alternating projection method
for the three cases of model order reduction. Also, as we see from the results
the convergence speed of the alternating projection method is faster but we can
not say that the alternating projection algorithm is faster because of the significant
improvement on the upper bound of the error. On the next example we will consider
an example which has been investigated using alternating projection method and
we will compare it to the result we obtained using cone complementarity algorithm
since in this example the system is uncertain and the convergence speed becomes
important as the system uncertainties increases.

5.2 Example 2:

In this example, a polytopic uncertain plant G , a 3-input, 4-state, 3-output model,
which is studied in [34] will be investigated to demonstrate the efficiency of our H∞
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Figure 5.4: Gamma Convergence of Hinf MOR Using CCA when K=6.

model reduction algorithm using Cone Complementary Algorithm. The following is
a state-space representation of this model:

A =




−2 3 −1 1
0 −1 1 0
0 0 a33(t) 12
0 0 0 −4




B =




−2.5 b12(t) −1.2
1.3 −1 1
1.6 2 0
−3.4 0.1 2




C =



−2.5 1.3 1.6 −3.4

0 −1 2 0.1
−1.2 1 0 2




Where a33 ∈ [−3.5, −2.5] and b12 ∈ [−0.5, 0.5] The Generalized Hankel singular
values of the system are σ̂i, i = 1, 2, 3, 4 are

6.9034, 5.4239, 3.2328, 1.0424

We are interested on a second order approximation of the system, from theorem 4.6,
the lower and upper bounds for γopt are

γlb , max
i=1,2,3,....,L

σk+1(Ti(s)) = 3.14 ≤ γopt ≤ γub , 2
n∑

j=k+1

σ̂j = 8.47

We will solve the problem using the H∞ model order reduction using cone comple-
mentarity algorithm and we will compare our results with the results obtained by
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Figure 5.5: Gamma Convergence of Hinf MOR Using APA.

l2 norm model order reduction using alternating projection method algorithm [32].
The corresponding second-order polytope obtained through the Cone complemen-
tarity method is as follows:

Ωr,2 , Co{
(

Ar
i Br

i

Cr
i Dr

i

)
, i = 1, 2, 3, 4}

where

Ar
1 = Ar

2 =

[ −1.8925 1.9635
−0.2466 −0.5270

]
, Ar

3 = Ar
4 =

[ −1.1861 1.2752
−0.5740 −0.2864

]
,

Br
1 =

[
3.8290 −2.2179 −3.6554
−0.1263 −0.8196 1.4538

]
, Br

2 =

[
3.8290 −1.6538 −3.6554
−0.1263 −0.5373 1.4538

]
,

Br
3 =

[
3.6259 −2.2844 −3.4390
0.0121 −0.7896 1.3544

]
, Br

4 =

[
3.6259 −1.7422 −3.4390
0.0121 −0.5034 1.3544

]
,

Cr
1 = Cr

2 =



−1.5068 0.1575
−1.8050 0.8617
−0.9083 0.2666


 , Cr

3 = Cr
4 =



−1.6017 0.2565
−1.9214 0.9381
−0.8263 0.2180


 ,

Dr
1 =




3.0400 0.0636 −0.3172
0.1109 0.1796 −0.5675
0.3416 −0.1381 0.4199


 , Dr

2 =




3.0400 −0.2805 −0.3172
0.1109 0.2949 −0.5675
0.3416 −0.2816 0.4199


 ,

Dr
3 =




3.0637 0.0726 −0.3463
0.1654 0.1902 −0.6027
0.3003 −0.1455 0.4447


 , Dr

4 =




3.0637 −0.2681 −0.3463
0.1654 0.3061 −0.6027
0.3003 −0.2890 0.4447




For k = 2 ⇒ we have γ = 3.3103 and the number of iteration is 167.
The approximation errors of the second-order model at its polytope vertices are
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Figure 5.6: Gamma Convergence of Hinf MOR Using APA.

Table 5.1: Performance comparison between H∞ CCA & L2 APA for a polytopic
uncertain system

Method n ⇒ K γ Iterations

APA 4 → 2 3.79 255
CCA 4 → 2 3.3103 167

shown in Figure 5.8 and the γ convergence curve is given in Figure 5.9. Alternatively,
the model reduction problem has been solved using alternating projection method
[32]. The sub-optimal γ level achieved is 3.79, which is slightly worse than the cone
complementarity algorithm. On the other hand, the computational scheme based on
cone complementarity algorithm is much faster than alternating projection method.
From the Table 5.1 the CCA method is faster than the APA approach.

5.3 Example 3:

In this example we will solve the first problem AUTM system model reduction using
HFH model order reduction using CCA according to the reduction scheme given in
Chapter 4.
For k=4 ⇒ we have γ = 0.5811 and the number of iteration is 199 as shown on
Figure 5.10.
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Figure 5.7: Gamma Convergence of Hinf MOR Using APA.

The reduced order system is:

Ar =




−0.3820 0.4783 0.2868 0.4002
0.0027 −1.6693 0.4012 1.7412
−0.1845 −0.0127 −0.0598 −0.5252
−0.3510 0.7043 0.1647 −1.1161




Br =




2.8389 0.9943
−0.3244 3.7565
3.9492 0.5817
−0.2907 −1.4660


 ,

Cr =

[
0.1232 1.1940 −0.2259 −1.0859
0.6279 −0.5821 −0.0115 0.0836

]

For k = 5 ⇒ we have γ = 0.2477 and the number of iteration is 119 as shown on
Figure 5.11.

The reduced order system is:

Ar =




−0.1372 0.9890 −0.2382 0.2155 −0.0664
−1.7142 −1.4463 0.2037 1.0936 −0.2285
0.6898 0.3873 −1.2437 −0.7646 −0.6301
0.1521 0.0538 −0.3034 −0.3602 −0.1061
0.0410 0.0373 0.2304 0.0358 −0.0531
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Figure 5.8: The second order approximation errors at vertices using CCA, the dashed
line represents γ

Br =




3.2138 1.4084
−2.4190 1.0508
−1.0266 3.8599
6.4252 2.5705
−1.9309 −0.6574




,

Cr =

[ −0.0828 −0.0509 0.7600 0.2806 0.1465
−0.1489 −0.8081 0.0920 0.2897 −0.0579

]

For k=6 ⇒ we have γ = 0.1719 and the number of iteration is 102 as shown on
Figure 5.12.

and the reduced order system is:

Ar =




−1.1031 1.0016 0.1277 1.0128 −0.0389 3.6944
−2.6459 −0.8348 0.3200 1.5121 −0.0593 5.4403
0.7966 0.0358 −1.2137 −0.7190 −0.6867 −2.2714
0.8158 −0.1821 −0.4073 −0.7915 −0.1075 −3.6803
0.1101 0.0097 0.2143 −0.0297 −0.0517 −0.2794
3.8645 −0.3498 −1.1746 −2.6351 −0.0996 −13.5736




,

Br =

[
2.3694 −4.1339 −0.5646 8.4467 −2.3688 3.2309
1.2201 0.3114 5.0491 3.1056 −0.7754 1.6663

]T

,

Cr =

[ −0.1326 −0.0060 0.6320 0.2130 0.1309 0.5531
−0.5555 −0.5311 0.1115 0.4466 −0.0151 1.7789

]
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Figure 5.9: Gamma Convergence of Hinf MOR Using CCA.

Table 5.2: Performance Comparison Between H∞ and HFH for AUTM system

Norm Method n ⇒ K σk+1 γ

H∞ CCA 12 → 4 0.46331 0.5859
HFH CCA 12 → 4 0.46331 0.5811
H∞ CCA 12 → 5 0.23683 0.2509
HFH CCA 12 → 5 0.23683 0.2477
H∞ CCA 12 → 6 0.16132 0.1726
HFH CCA 12 → 6 0.16132 0.1719

Table 5.2 summarizes the comparison between the H∞ and HFH model order
reduction using cone complementarity algorithm for the AUTM system for K =
4, 5, 6. We can conclude from this table that HFH is slightly better than H∞ but
it needs more iterations to achieve the suboptimal solution. Also by the comparing
of the result with the results obtained in [17] for H2 model reduction we find an
improvement on the error between the original and the reduced systems by using
H∞ and HFH cone complementarity algorithm.
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Figure 5.10: Gamma Convergence of HFH MOR Using CCA.
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Figure 5.11: Gamma Convergence of HFH MOR Using CCA.
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Figure 5.12: Gamma Convergence of HFH MOR Using CCA.
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Chapter 6

Coclusion and Future Work

This thesis addressed the problem of optimal model order reduction which is one
of the most widely problems encountered dynamical systems. There is a trade off
between the system simplicity and accuracy, simple systems are inaccurate where
as complex system is expensive in the implementation. A reliable lower order con-
troller for high order plants is desirable. The effectiveness of linear matrix inequali-
ties (LMI ′s) in linear control system synthesis is now widely recognized. Reducing
various synthesis problems can be represented by linear matrix inequalities LMI ′s,
we can obtain desired controllers efficiently and reliably by solving those LMI ′s via
convex optimization algorithms. We considered the H∞, HFH , H2 model reduction
problem using LMI. Necessary and sufficient conditions for the existence of a subop-
timal reduced order model was derived for both continuous and discrete time cases
by means of LMI techniques. The resulting constraints are quasi-convex and do
not allow globally convergent algorithms to be developed. A numerical algorithms
were proposed which utilized the CCA and APA. A comparison between the CCA
and the APA had been investigated which proved that, the CCA gave better re-
sults but it needs more iterations for certain LTI systems. The proposed H∞ and
HFH algorithm using CCA can find suboptimal approximates which are at least as
good as those computed by previously proposed methods, which is demonstrated by
numerical examples.

An extension for the CCA, model order reduction of polytopic uncertain systems
had been outlined and implemented for H∞ which gave results as good as those
computed by other methods, again here, we compared the CCA with the APA
which proved that the CCA not only can find a lower upper bound than the APA,
but also its computational time is very low compared with the second method for
polytopic uncertain systems. This fact made the CCA a good alternative to handle
large dimensional uncertain polytopic systems. CCA has several advantages and
covers both continuous and discrete time systems similar to APA. The difference in
the programs is trivial.

As a future work the proposed algorithm can be extended to cover other types of
uncertain system such as frequency weighted uncertain systems, also more investi-
gation about the implantation of uncertain model reduction using H2 norm or HFH

norm using CCA can be outlined. New areas of research are open in the application
of the CCA to problems with quasi-convex constraints.
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Appendix A

Proof of Theorems

On appendix A we provide the proofs of the theorems and definition for the com-
pleteness of this report.

Proof of Theorem 3.6:

Proof. From definition (3.2),

‖G(s)‖2
F = Tr{Σ2} (A.1)

where Σ = diag(σ1...σn). Since there exists T nonsingular such that T−T PT−1 = Σ

and TQT T = Σ

‖G(s)‖2
F = Tr(T−T T T )Σ(TT−1)Σ

= Tr(T T ΣT )(T−1ΣT−1)

= Tr{PQ}.

(A.2)

Proof of Theorem 3.7:

Proof. From Theorem3.6

‖G(s)‖2
F = Tr{PQ} (A.3)

From equations (1.9) and (1.10)

Tr{PQ} = lim
T→∞

Tr[

∫ T

0

eAtBBT eAT tdt][

∫ T

0

eAT τCT CeAτdτ ] (A.4)

which is equivalent to

Tr{PQ} = lim
T→∞

Tr

∫ T

0

∫ T

0

[CeAt(t+τ)B][CeAt(t+τ)B]T dtdτ ] (A.5)
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Let g(τ)τ , CeAτB,

Tr{PQ} = lim
T→∞

Tr

∫ T

0

∫ T

0

g(t + τ)T g(t + τ)dtdτ (A.6)

Tr{PQ} = lim
T→∞

Tr

∫ T

0

∫ T+τ

τ

g(t)T g(t)dtdτ (A.7)

Let H(τ)τ ,
∫ T+τ

τ
g(t)T g(t)dt.

Tr{PQ} = lim
T→∞

Tr

∫ T

0

H(τ)dτ (A.8)

Integrating by parts,

Tr{PQ} = lim
T→∞

Tr[H(τ)τ |T0
∫ T

0

τdH(τ)] (A.9)

Tr{PQ} = lim
T→∞

Tr[

∫ T

0

(T − t)g(t + T )T g(t + T ) + tg(t)T g(t)dt] (A.10)

In the limit as T →∞, g(t + T ) → 0, thus

Tr{PQ} = Tr

∫ ∞

0

tg(t)T g(t)dt. (A.11)

Proof of Theorem 3.8:

Proof. Applying Parseval’s Theorem to (3.20) yields

‖G(s)‖2
F =

1

2π
Tr

∫ ∞

−∞
F [tg(t)]F [tg(t)]∗dω

=
1

2π
Tr

∫ ∞

−∞
j(

dG(jω)

dω
)G(jω)∗dω

(A.12)
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Proof of Theorem 3.9:

Proof. The first expression has been shown befor. To show the second, begin first

with the upper bound.

(
n∑

i=1

σi)
2 = (

n∑
i=1

σi)(
n∑

j=1

σj)

=
n∑

i=1

n∑
j=1

σiσj

=
n∑

k=1

σ2
k +

n∑

i=1,i 6=j

n∑
j=1

σiσj

≥
n∑

k=1

σ2
k = ‖G(s)‖2

FH

(A.13)

The lower bound follows directly from

‖G(s)‖2
FH =

n∑
i=1

σ2
i ≥ σ̄2. (A.14)

Proof of Theorem 3.10:

Proof. To show the lower bound, first note that

n∑
i=1

σ2
i ≤ nσ̄2. (A.15)

then it follows from (3.22) that

‖G(s)‖∞ ≥ σ̄ ≥ 1√
n
‖G(s)‖FH (A.16)

which proofs the lower bound. To show the upper bound, note that

n∑
i=1

σi = ET Σ (A.17)

where ET , [1 1 ... 1] andΣ , [σ1 σ2 .... σn]. The Frobenius norm of a matrix is

defined as

‖G(s)‖Fr , [TrAT A]
1
2 . (A.18)
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Since the Frobenius norm is valid matrix norm

‖ET Σ‖Fr = ‖ET‖Fr‖Σ‖Fr

= [TrET E]
1
2 [TrΣT Σ]

1
2

=
√

n‖G(s)‖FH

(A.19)

However, since ET Σ is a positive valued scalar,

‖ET Σ‖Fr = ET Σ (A.20)

Thus,
n∑

i=1

σi ≤
√

n‖G(s)‖FH . (A.21)

Proof of Theorem 3.11:

Proof. Let

J , ‖G(s)‖2
2 = Tr{PCT C} (A.22)

Where

AP + PAT + BBT = 0 (A.23)

Then

dJ

dα
= Tr{PαCT C} (A.24)

where Pα , dP
dα

satisfies

APα + PαAT + 2P = 0 (A.25)

Let Q satisfy

QA + AT Q + CT C = 0 (A.26)

Then, using the properties of the trace, it cab be shown that

Tr{PαCT C} = 2Tr{PQ}. (A.27)

Thus

dJ

dα
= 2Tr{PQ} = 2‖G(s)‖2

FH . (A.28)
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Appendix B 
MATLAB Codes 
H∞ Model Reduction Using APA: 
Main file 
clear all; 
Erof=1e-3; 
clc; 
time=clock; 
system; 
n= size(A1,1); % number of states 
G=pck(A1,B1,C1,D1); 
%GG=ss(A1,B1,C1,D1); 
% Desired order of the reduced system 
k=6; 
% Upper and lower boundaries for gamma optimal 
 [du,hk]=sysbal(G); 
% Calculating the lower bound 
 gl=sum(hk(k+1:length(hk))); % Gamma lower bound 
% Calculating the upper bound 
 gu=2*sum(hk(k+1:length(hk))); % Gamma upper bound  
 flag=0; 
flag2=0; 
itr=0; 
itr_d=[]; 
[Xo,Yo,gama]=init1(G,k,gu); 
while flag==0 
  tol=(gu-gl)/gl; 
     if (tol <= 0.01) & flag2==1 
     gama 
     flag = 1; 
     else 
       %gama=(gu+gl)/2; 
         [lmis]=deflmi(G,gama); % See file setlmi.m 
        for i=1:10 
           [Xin, Yin]= truncation(Xo,Yo,G,gama,k) 
           itr=itr+1; 
           itr_di=[itr  gama]; 
           itr_d=[itr_d ;itr_di]; 
           Km=[Xin eye(n); 
           eye(n) Yin]; 
            nr=rank(Km,Erof)-n 
          if nr <= k 
           Xop=Xin; 
           Yop=Yin; 
           flag1=1; 
           break 
          else 
                 Xo=Xin; 
                 Yo=Yin; 
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                flag1=0; 
%               
              end 
          end 
        end 
     if flag1==1 
       gu=gama 
       flag2=1 
     else 
       gl=gama 
       flag2=0 
     end 
    gama=(gu+gl)/2; 
end 
   
l= itr_d(:,1); 
mm = itr_d(:,2); 
figure(3); 
plot(l,mm,'*'); 
%legend( 'Original model', 'Reduced order model','n=',num2str(n)', 
'k=',num2str(k),3); 
xlabel('Gamma Convergence','FontSize',14); 
ylabel('Iteration','FontSize',14); 
%legend( 'Original model', ' Reduced order model',4); 
%title(' Gamma Convergence ',['No of iteration=', 
num2str(size(l,1)]) ;%,['k=',num2str(k)] ); 
% Function modrec reconstruct a realization for 
% the reduced order system 
[Gr]= modrec(G,Xop,Yop,k,gama); % See file modrec.m 
% Checking process (optional) 
time=etime(clock,time); 
time 
gama 
 
System definition file: 
 
A1 = [0 1 0 0 0 0 0 0 0 0 0 0 ; 
    -0.202 -1.15 0 0 0 0 0 0 0 0 0 0 ; 
    0 0 0 1 0 0 0 0 0 0 0 0 ; 
    0 0 0 0 1 0 0 0 0 0 0 0 ; 
     0 0 -2.36 -13.6 -12.8 0 0 0 0 0 0 0 ; 
    0 0 0 0 0 0 1 0 0 0 0 0 ; 
    0 0 0 0 0 0 0 1 0 0 0 0 ; 
    0 0 0 0 0 -1.62 -9.4 -9.15 0 0 0 0 ; 
    0 0 0 0 0 0 0 0 0 1 0 0 ; 
    0 0 0 0 0 0 0 0 0 0 1 0 ; 
    0 0 0 0 0 0 0 0 0 0 0 1; 
    0 0 0 0 0 0 0 0 -188 -111.6 -116.4 -20.8]; 
       
  
B1= [ 0  0; 4.1486 1.0439; 0 0; 0 0; 2.6775  -1.794; 0  0; 0  0; 
4.1486 1.0439 ;0  0; 0  0; 0  0; 2.6775 -1.794]; 
C1= [0.2640 0.8060 -1.420 -15.0 0 0 0 0 0 0 0 0; 
    0 0 0 0 0 4.9 2.12 1.95 9.35 25.8 7.14 0]; 
D1=zeros(2); 
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Starting Points: 
General definition of the lmi problem 
 function [Xo,Yo,gamma]=init1(sys,k,gu) 
[a1,b1,c1,d1]=unpck(sys); 
%[a1,b1,c1,d1]=unpck(G); 
n= size(a1,1); % number of states 
u= size(b1,2); % number of inputs 
y= size(c1,1); % number of outputs 
G=ss(a1,b1,c1,d1); 
%hankelsv(G) 
%GRED = reduce(G,k); 
[sysout,sv] = sysbal(sys); 
GRED = hankmr(sysout,sv,k); 
[ar,br,cr,dr]=unpck(GRED); 
  
AA=[a1 zeros(n,k) ; zeros(k,n) ar]; 
BB=[b1;br]; 
CC=[c1  -cr]; 
DD=d1; 
gg=ss(AA,BB,CC,DD); 
  
gamma=norm(gg,inf); 
[A2,B2,C2,D2]=unpck(sysout); 
sys1=ss(A2,B2,C2,D2); 
  
co = gram(sys1,'c'); 
oo = gram(sys1,'o'); 
Xo=(gu)*inv(co); 
Yo=co/(gu); 
 

General Definition of the LMI Problem 
 
% deflmi.m 
function [lmis]=deflmi(G,gamma) 
% Getting back system information 
 %====================== 
% SET THE LMI PROBLEM 
%====================== 
%Defining the LMI variables 
[A,B,C,D] = unpck(G); 
n= size(A,1); % number of states 
setlmis([]); 
idX=lmivar(1,[n 1]); 
idY=lmivar(1,[n 1]); 
%Defining the LMI's 
[A,B,C,D] = unpck(G); 
%First set of LMIs 
T=1; 
lmiterm([T 1 1 idX],A,1,'s'); % LMI : A*X+X*A' 
lmiterm([T 1 1 0],B*B'); % LMI : B*B' 
 % Second set of LMIs 
lmiterm([T 1 1 idY],1,A,'s'); % LMI : Y*A+A'*Y 
lmiterm([T 1 1 0],C'*C); % LMI : C'*C 
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% Last LMI 
lmiterm([-T 1 1 idX],1,1); % LMI : X 
lmiterm([-T 2 1 0],gamma); % LMI : gama*I 
lmiterm([-T 2 2 idY],1,1); % LMI : Y 
%System definition 
lmis=getlmis; 
%==================================== 
% SOLVE LMI problem including rank condition 
% by Alternating projection  method 
%==================================== 
%Finding Xo and Yo 
% h= decnbr(lmis); 
% [tmin,xfeas]=feasp(lmis); 
% Xo = dec2mat(lmis,xfeas,idX); 
% Yo = dec2mat(lmis,xfeas,idY); 
 

Alternating Projection Algorithm: 
  
function [Xop, Yop,flag1]= truncation(Xin,Yin,G,gama,k) 
temp1=inv(Xin)+Yin; 
temp2=Yin-inv(Xin); 
Km=redrank(temp2,k); % See file redrank.m 
Xou=inv((temp1-Km)/2); 
You=(temp1+Km)/2; 
n=size(Xou,1); 
delta=-1e-10; 
flagx=0; 
flagy=0; 
%%%%%%%%%%%% 
[A,B,C,D]=unpck(G); 
n= size(A,1); % number of states 
% Verifying LMI solution 
eigtemp = 0; 
eigtempy = 0; 
temp=A*Xou+Xou*A'+(B*B'); 
eigtemp = max(eig(temp)); 
  
temp1=A'*You+You*A+(C'*C); 
 eigtempy= max(eig(temp1)); 
if (eigtempy < delta) 
      Yop = Yin; 
     flagy=1; 
     % break 
     %return 
end % Taking decision according to the previous step 
if (eigtemp < delta) 
     Xop = Xin; 
     flagx=1; 
     %break   
end 
if (flagy & flagx) 
    flag=1 
   return 
else 
W=Xin; 
V=Yin; 
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% Initial values for the loop 
[A,B,C,D] = unpck(G); 
n= size(A,1); % number of states 
  
delta=-1e-10; 
  
R=eye(n); 
DD=eye(n); 
setlmis([]); 
idX=lmivar(1,[n 1]); 
idY=lmivar(1,[n 1]); 
idT=lmivar(1,[n 1]); 
idS=lmivar(1,[n 1]); 
  
%Defining the LMI's 
[A,B,C,D] = unpck(G); 
%First set of LMIs 
T=1; 
lmiterm([T 1 1 idX],A,1,'s'); % LMI : A*X+X*A' 
lmiterm([T 1 1 0],B*B'); % LMI : B*B' 
 lmiterm([-T 1 1 0],delta); 
  
% Second set of LMIs 
lmiterm([T 1 1 idY],1,A,'s'); % LMI : Y*A+A'*Y 
lmiterm([T 1 1 0],C'*C); % LMI : C'*C 
 lmiterm([-T 1 1 0],delta); 
% thirs LMI 
lmiterm([-T 1 1 idX],1,1); % LMI : X 
lmiterm([-T 2 1 0],gama); % LMI : gama*I 
lmiterm([-T 2 2 idY],1,1); % LMI : Y 
% Forth LMI 
lmiterm([-T 1 1 idT],1,1); % LMI : T 
lmiterm([-T 2 1 idX],1,1); % LMI : X 
lmiterm([-T 2 1 0],-Xou); % LMI : -Xo 
lmiterm([-T 2 2 0],1); % LMI : I 
% Last LMI 
lmiterm([-T 1 1 idS],1,1); % LMI : S 
lmiterm([-T 2 1 idY],1,1); % LMI : Y 
lmiterm([-T 2 1 0],-You); % LMI : Yo 
lmiterm([-T 2 2 0],1); % LMI : I 
  
%System definition 
lmis=getlmis; 
h= decnbr(lmis) 
Accuracy=1; 
Conv=1; 
Crt=0; 
Ecov=1e-2; % Epsilon tolerance for slow convergence 
% (less than 1% in variation) 
% Initial values for the mincx funtions 
xinit=zeros(h,1); 
while Conv > Ecov % Slow convergence criteria 
Crtold=Crt; 
%---------------------FOR LOOP----------------------------- 
c=zeros(h,1); 
for j=1:h % Inner loop to determine vector c 
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[Tj,Sj]=defcx(lmis,j,idT,idS); 
c(j)=trace(Tj+Sj); 
%c(j) = sum(diag(Tj))+sum(diag(Sj)); 
end 
%---------------------------------------------------------- 
  
options=[10e-5,0,0,0,1]; 
[copt,Xopt] = mincx(lmis,c,options,xinit,[]); 
xinit = mat2dec(lmis,W,V,DD,R); % Initial guess for the next 
iteration 
Xk=dec2mat(lmis,Xopt,idX); % Building matrix Xn from decision vector 
Yk=dec2mat(lmis,Xopt,idY); % Building matrix Yn from decision vector 
Sk=dec2mat(lmis,Xopt,idS); % Building matrix Xn from decision vector 
Tk=dec2mat(lmis,Xopt,idT); % Building matrix Yn from decision vector 
  
Crt= trace(Sk+Tk); 
Conv=abs((Crt-Crtold)/Crt); 
W=Xk; 
  
%Yn=Yk;       
V=redrank(Yk,k); 
  
%V=Yn; 
end 
%---------------------------------------------------------- 
Xop=W; % Displaying results 
Yop=V;     
flag1=flagx+flagy; 
end  
  
Model Reconstruction:   
 
% LINEAR MODEL REDUCTION 
% modrec.m 
function [Gr]=modrec(G,Xoptimal,Yoptimal,k,g) 
% % 
 [A,B,C,D]=unpck(G); 
n= size(A,1); % number of states 
p=size(C,1); 
m=size(B,2); 
  
%Building matrix J 
J=Yoptimal-g*g*inv(Xoptimal); 
[u,s,v]=svd(J); 
Lx=u(:,1:k)*sqrt(s(1:k,1:k)); % N*N' = Yopt-inv(Xopt) 
% Initialize loop variables 
% Gr=[]; 
%         L=A'*Yoptimal+Yoptimal*A; 
%         h=inv(N'*inv(L)*N); %dummy variable 
%         Ar=h*(eye(k)-N'*inv(L)*A'*N); 
%         Br=-h*N'*inv(L)*Yoptimal*B; 
%         Cr=-C*inv(L)*A'*N-C*inv(L)*N*Ar; 
%         Dr=D-C*inv(L)*(eye(n)-
N*inv(N'*inv(L)*N)*N'*inv(L))*Yoptimal*B; 
%         Gr=pck(Ar,Br,Cr,Dr); 
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 Gr=[]; 
setlmis([]); 
L = lmivar(2,[p+k m+k]);  
lmiterm([-1 1 1 0],1); 
lmiterm([-1 1 2 L],1,1);                      
lmiterm([-1 2 2 0],1); 
  
lmiterm([-2 1 1 L],1,1);  
  
L_lmi=getlmis; 
[topt,xopt] = feasp(L_lmi); 
l = dec2mat(L_lmi,xopt,L) 
Rx=inv(Lx'*inv(L)*Lx); %dummy variable 
  
M1=[zeros(p,m) zeros(p,k); 
    zeros(k,m)   Rx*Rx]; 
Q22=[A*Xoptimal+Xoptimal*A'  B; B'  -eye(m)]; 
Q11=[-g*g*eye(p) C*Lx*Rx;Rx*Lx'*C'   zeros(k)]; 
Q12=[C*Xoptimal    D; Rx*Lx'*A'     zeros(k,p)]; 
M2=[zeros(m,n) eye(m); Rx*Lx' zeros(k,m)]; 
G1=(M1-Q12*inv(Q22)*M2')*inv(M2*inv(Q22)*M2'); 
G3=sqrt(M2*inv(Q22)*M2'); 
G2=(-Q11+Q12*inv(Q22)*Q12'-G1*G3*G3*G1'); 
G=G1+G2*L*G3 
Dr=zeros(p,m); 
 for i=1:p 
     for j=1:m 
         Dr(i,j)=G(i,j); 
     end 
 end 
  
 Cr=zeros(p,k); 
 for i=1:p 
     for j=m+1:m+k 
         Cr(i,j-m)=G(i,j); 
     end 
 end 
 Br=zeros(k,m); 
 for i=p+1:p+k 
     for j=1:m 
         Br(i-p,j)=G(i,j); 
     end 
 end 
Ar=zeros(k,k);  
  
  for i=p+1:p+k 
     for j=m+1:m+k 
         Ar(i-p,j-m)=G(i,j); 
     end 
  end 
 Gr=pck(Ar,Br,Cr,Dr);           
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HFH Model Reduction Using CCA: 
Main file 
% System definition file  
% Input the system 
clear all; 
Erof=1e-3; 
clc; 
time=clock; 
%System matrices definition 
system;  
packfile; % See file packfile.m 
% Desired order of the reduced system 
k=5; 
% Upper and lower boundaries for gamma optimal 
[gl,gu]= SDB(G,VSinf,k); % See file SDB.m 
flag=0; 
flag2=0; 
itr=0; 
itr_d=[]; 
itr_dd=[]; 
while flag==0 
tol=(gu-gl)/gl; 
if (tol <= 0.01) & flag2==1 
gama 
flag = 1; 
else 
gama=(gu+gl)/2; 
[lmis,Xo,Yo]=deflmi(G,VSinf,gama); % See file setlmi.m 
itr=itr+1; 
for i=1:10 
[Xin,Yin,itr_d]=cca(lmis,Xo,Yo,gama,k,n,itr_d); % See file cca.m 
Km=[Xin eye(n); 
eye(n) Yin]; 
nr=rank(Km,Erof)-n 
if nr <= k 
Xop=Xin; 
Yop=Yin; 
flag1=1; 
break 
else 
Xo=Xin; 
Yo=Yin; 
flag1=0; 
end 
% end 
end 
if flag1==1 
gu=gama 
flag2=1 
else 
gl=gama 
flag2=0 
end 
end 
end 
 [Gr]= modrec(G,VSinf,Xop,Yop,k); % See file modrec.m 
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time=etime(clock,time); 
clc; 
l= size(itr_d,1); 
mm =1:1:l; 
figure(3); 
plot(mm,itr_d(:,2)); 
grid on; 
xlabel('Gamma Convergence','FontSize',14); 
ylabel('Iteration','FontSize',14); 
title(['Gamma Convergence when K=',num2str(k)],'FontSize',14); 
time 
gama 
============================================================= 

System 
 
% System definition file AUTM system 
A1 = [0 1 0 0 0 0 0 0 0 0 0 0 ; 
    -0.202 -1.15 0 0 0 0 0 0 0 0 0 0 ; 
    0 0 0 1 0 0 0 0 0 0 0 0 ; 
    0 0 0 0 1 0 0 0 0 0 0 0 ; 
     0 0 -2.36 -13.6 -12.8 0 0 0 0 0 0 0 ; 
    0 0 0 0 0 0 1 0 0 0 0 0 ; 
    0 0 0 0 0 0 0 1 0 0 0 0 ; 
    0 0 0 0 0 -1.62 -9.4 -9.15 0 0 0 0 ; 
    0 0 0 0 0 0 0 0 0 1 0 0 ; 
    0 0 0 0 0 0 0 0 0 0 1 0 ; 
    0 0 0 0 0 0 0 0 0 0 0 1; 
    0 0 0 0 0 0 0 0 -188 -111.6 -116.4 -20.8]; 
       
  
B1= [ 0  0; 4.1486 1.0439; 0 0; 0 0; 2.6775  -1.794; 0  0; 0  0; 
4.1486 1.0439 ;0  0; 0  0; 0  0; 2.6775 -1.794]; 
 
C1= [0.2640 0.8060 -1.420 -15.0 0 0 0 0 0 0 0 0; 
    0 0 0 0 0 4.9 2.12 1.95 9.35 25.8 7.14 0]; 
D1=zeros(2); 
  
Ac= [A1]; 
Bc= [B1]; 
Cc= [C1]; 
Dc= [D1]; 
 

Lower and Upper Boundaries 
 
% SDB.m 
% The function bounds provides upper (ub) and 
% lower (lb) boundaries for the calculation of 
% gamma optimal, given the desired order of the 
% reduced system. 
function [gl,gu]= SDB (G,VSinf,k) 
% Retrieving system information 
VA=VSinf(1); 
VB=VSinf(2); 
VC=VSinf(3); 
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VD=VSinf(4); 
NV=VSinf(5); 
n=VSinf(6); 
% Creating the system matrices 
hk=[]; 
for r=1:VSinf(5) 
Gi=xtracti(G,r,1); 
[du,hki]=sysbal(Gi); 
hk=[hk hki(k+1)]; % Concatenation of the Hankel 
% singular values of each vertix 
end 
% Calculating the lower bound 
gl=max(hk); % Gamma lower bound 
% Calculating the upper bound 
[vma,vmb,vmc,vmd]= vm(G,VSinf); % See file vm.m 
%Defining the LMI variables 
setlmis([]); 
P=lmivar(1,[n 1]); 
Q=lmivar(1,[n 1]); 
%Defining the LMI's 
T=1; % Number of the lmi 
for i=1:VA 
for j=1:VB 
  
Ai=xtracti(vma,i,1); 
Bi=xtracti(vmb,j,1); 
%First set of LMIs 
lmiterm([T 1 1 P],Ai,1,'s'); % LMI : A*P+P*A' 
lmiterm([T 1 1 0],Bi*Bi'); % LMI : B*B' 
T=T+1; 
end 
end 
for i=1:VA 
for p=1:VC 
Ai=xtracti(vma,i,1); 
Ci=xtracti(vmc,p,1); 
% Second set of LMIs 
lmiterm([ T 1 1 Q],Ai',1,'s'); % LMI : Q*A+A'*Q 
lmiterm([ T 1 1 0],Ci'*Ci); % LMI : C'*C 
T=T+1; 
end 
end 
lmiterm([-T 1 1 P],1,1); % Third LMI 
lmiterm([-T 2 2 Q],1,1); 
upperb=getlmis; 
% Starting minimization of the gamma upper limit 
h= decnbr(upperb); 
c=zeros(h,1); 
%---------------------FOR LOOP----------------------------------- 
 for j=1:h, % Inner loop to determine vector c 
[Pj,Qj]=defcx(upperb,j,P,Q); 
c(j)=trace(Pj+Qj); 
end 
%---------------------------------------------------------------- 
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options=[1e-5,0,0,0,1]; 
[copt,Xopt] = mincx(upperb,c,options); 
Popt=dec2mat(upperb,Xopt,P); 
Qopt=dec2mat(upperb,Xopt,Q); 
R=chol(Popt); % R'*R = P 
[u,s,v]=svd(R*Qopt*R'); 
T=inv(R'*u*inv(sqrt(sqrt(s)))); 
sigma=T*Popt*T'; 
temp=diag(sigma); 
gu=2*sum(temp(k+1:length(temp))); % Gamma upper bound 
 

General definition of the LMI problem 
% deflmi.m 
% General definition of the lmi problem 
function [lmis,Xo,Yo]=deflmi(G,VSinf,gama) 
% Getting back system information 
VA=VSinf(1); 
VB=VSinf(2); 
VC=VSinf(3); 
VD=VSinf(4); 
NV=VSinf(5); 
n=VSinf(6); 
[vma,vmb,vmc,vmd]= vm(G,VSinf); 
%====================== 
% SET THE LMI PROBLEM 
%====================== 
%Defining the LMI variables 
setlmis([]); 
idX=lmivar(1,[n 1]); 
idY=lmivar(1,[n 1]); 
%Defining the LMI's 
T=1; % Number of the lmi 
lmiterm([-T 1 1 idX],1,1); % LMI : X>0 
T=T+1 
lmiterm([-T 1 1 idX],1,1); % LMI : X>0 
T=T+1 
for i=1:VA 
for j=1:VB 
Ai=xtracti(vma,i,1); 
Bi=xtracti(vmb,j,1); 
%second set of LMIs 
lmiterm([T 1 1 idX],Ai,1,'s'); % LMI : A*X+X*A' 
lmiterm([T 1 1 0],Bi*Bi'/gama); % LMI : B*B'/gama 
T=T+1; 
end 
end 
for i=1:VA 
for p=1:VC 
Ai=xtracti(vma,i,1); 
Ci=xtracti(vmc,p,1); 
% third set of LMIs 
lmiterm([T 1 1 idY],1,Ai,'s'); % LMI : Y*A+A'*Y 
lmiterm([T 1 1 0],Ci'*Ci/gama); % LMI : C'*C/gama 
T=T+1; 
end 
end 
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% Last LMI 
%lmiterm([-T 1 1 idX],1,1); % LMI : X 
%lmiterm([-T 2 1 0],1); % LMI : 1 
%lmiterm([-T 2 2 idY],1,1); % LMI : Y 
%System definition 
%System definition 
lmis=getlmis; 
%==================================== 
% SOLVE LMI problem including rank condition 
% by cone complementarily method 
%==================================== 
%Finding Xo and Yo 
h= decnbr(lmis); 
[tmin,xfeas]=feasp(lmis); 
Xo = dec2mat(lmis,xfeas,idX); 
Yo = dec2mat(lmis,xfeas,idY); 
 

CONE COMPLEMENTARITY ALGORITHM 
 
% cca.m 
% CONE COMPLEMENTARITY ALGORITHM 
function [Xin,Yin,itrd]=cca(lmis,Xo,Yo,gama,k,n,itr_d) 
W=Xo; 
V=Yo; 
m=size(itr_d,1); 
setlmis([]); 
idX=lmivar(1,[n 1]); 
idY=lmivar(1,[n 1]); 
h= decnbr(lmis); 
Accuracy=1; 
Conv=1; 
Crt=0; 
Ecov=1e-2; % Epsilon tolerance for slow convergence 
% (less than 1% in variation) 
% Initial values for the mincx funtions 
xinit=zeros(h,1); 
while Conv > Ecov % Slow convergence criteria 
Crtold=Crt; 
m=m+1; 
itr_di=[m  gama]; 
itrd=[itr_d ;itr_di]; 
  
%---------------------FOR LOOP----------------------------- 
c=zeros(h,1); 
for j=1:h % Inner loop to determine vector c 
[Xj,Yj]=defcx(lmis,j,idX,idY); 
c(j)=trace(V*Xj+W*Yj); 
end 
%---------------------------------------------------------- 
options=[10e-5,0,0,0,1]; 
[copt,Xopt] = mincx(lmis,c,options,xinit,[]); 
xinit = mat2dec(lmis,W,V); % Initial guess for the next iteration 
Xk=dec2mat(lmis,Xopt,idX); % Building matrix Xn from decision vector 
Yk=dec2mat(lmis,Xopt,idY); % Building matrix Yn from decision vector 
Crt= trace(V*Xk+W*Yk); 
Conv=abs((Crt-Crtold)/Crt); 
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W=Xk; 
V=Yk; 
end 
%---------------------------------------------------------- 
Xin=W; % Displaying results 
Yin=V; 
 
% modrec.m 
% model reconstruction code 
function [Gr]=modrec(G,VSinf,Xoptimal,Yoptimal,k) 
% Getting back system information 
VA=VSinf(1); 
VB=VSinf(2); 
VC=VSinf(3); 
VD=VSinf(4); 
NV=VSinf(5); 
n=VSinf(6); 
[vma,vmb,vmc,vmd]= vm(G,VSinf); 
%Building matrix J 
J=Yoptimal-inv(Xoptimal); 
[u,s,v]=svd(J); 
N=u(:,1:k)*sqrt(s(1:k,1:k)); % N*N' = Yopt-inv(Xopt) 
% Initialize loop variables 
Gr=[]; 
%for i=1:NV            %%%seeeee 
%ivv =[ ivv ; i];        %% 
%end                   %%% 
  
% Main loop 
for i=1:VA 
  for j=1:VB 
    for p=1:VC 
      for q=1:VD 
        Ai=xtracti(vma,i,1); 
        Bi=xtracti(vmb,j,1); 
        Ci=xtracti(vmc,p,1); 
        Di=xtracti(vmd,q,1); 
        Li=Ai'*Yoptimal+Yoptimal*Ai; 
        h=inv(N'*inv(Li)*N); %dummy variable 
        Ari=h*(eye(k)-N'*inv(Li)*Ai'*N); 
        Bri=-h*N'*inv(Li)*Yoptimal*Bi; 
        Cri=-Ci*inv(Li)*Ai'*N-Ci*inv(Li)*N*Ari; 
        Dri=Di-Ci*inv(Li)*(eye(n)-
N*inv(N'*inv(Li)*N)*N'*inv(Li))*Yoptimal*Bi; 
        Gri=pck(Ari,Bri,Cri,Dri); 
        Gr=[ Gr; Gri]; 
      end 
    end 
   end 
end 
  
Gr= vpck(Gr,[1:NV]); 
 
 
 

82



 
Orthogonal projection of a symmetric matrix: 
% redrank.m 
% NONCONVEX SET for Alternating projection method 
% Orthogonal projection of a symmetric matrix to a 
% given order NR symmetric matrix. 
% 
function zout = redrank(zin,nr) 
[nx,dum] = size(zin); 
[u,d,v] = svd(zin); 
for i = nr+1:nx 
d(i,i) = 0.0; 
end 
zout = u*d*v'; 
zout = (zout+zout')/2;  
 
This file used for uncertain system:  
% Obtain information from the system such as number 
% of inputs, outputs, states and 
% pack the matrices in a varying matrix format 
% Getting system information 
n= size(A1,1); % number of states 
u= size(B1,2); % number of inputs 
y= size(C1,1); % number of outputs 
% Getting the number of vertices of each matrix 
VA= size (Ac,1)/n; % # of vertices of A 
VB= size (Bc,1)/n; % # of vertices of B 
VC= size (Cc,1)/y; % # of vertices of C 
VD= size (Dc,1)/y; % # of vertices of D 
NV=VA*VB*VC*VD; % Total number of vertices 
VSinf=[ VA VB VC VD NV n u y]; 
% Creating the varying matrices 
iv=[]; 
for i=1:NV 
iv=[ iv ; i]; 
end 
vma= vpck(Ac,iv(1:VA,1)); 
vmb= vpck(Bc,iv(1:VB,1)); 
vmc= vpck(Cc,iv(1:VC,1)); 
vmd= vpck(Dc,iv(1:VD,1)); 
G=[]; 
for i=1:VA 
for j=1:VB 
for p=1:VC 
for q=1:VD 
Ai=xtracti(vma,i,1); 
Bi=xtracti(vmb,j,1); 
Ci=xtracti(vmc,p,1); 
Di=xtracti(vmd,q,1); 
Gi=pck(Ai,Bi,Ci,Di); 
G=[G ; Gi]; 
end 
end 
end 
end 
G=vpck(G,iv(1:NV,1)); 

83



clear Gi Ai Bi Ci Di i j p q; 
================================================================ 
Alternating Projection Algorithm:  
% trunc.m 
function [Xop, Yop,flag1]= trunc(Xin, Yin,G,gama,VSinf,k) 
temp1=inv(Xin)+Yin; 
temp2=Yin-inv(Xin); 
Km=redrank(temp2,k); % See file redrank.m 
Xou=inv((temp1-Km)/2); 
You=(temp1+Km)/2; 
n=size(Xou,1); 
delta=-1e-10; 
flagx=0; 
flagy=0; 
[Xop,flagx]= xproj(Xou,G,VSinf,gama,delta); % See file xproj.m 
[Yop,flagy]= yproj(You,G,VSinf,gama,delta); % See file yproj.m 
flagx; 
flagy; 
flag1=flagx+flagy; 
 
% xproj.m 
function [Xop,flagx]= xproj(Xou,G,VSinf,gama,delta) 
VA=VSinf(1); 
VB=VSinf(2); 
NV=VSinf(5); 
n=VSinf(6); 
[vma,vmb,vmc,vmd]= vm(G,VSinf); 
% Verifying LMI solution 
eigtemp = zeros(VA*VB,1); 
t=1; 
for i=1:VA 
for j=1:VB 
a=xtracti(vma,i,1); 
b=xtracti(vmb,j,1); 
temp=a*Xou+Xou*a'+(b*b')/gama; 
eigtemp(t,1) = max(eig(temp)); 
t=t+1; 
end 
end 
% Taking decision according to the previous step 
if (max(eigtemp) < delta) 
     Xop = Xou; 
     flagx=1; 
    % break 
    return 
else 
%Defining the LMI variables 
setlmis([]); 
idX=lmivar(1,[n 1]); 
idZ=lmivar(1,[n 1]); 
%Defining the LMI's 
  
T=1; % Number of the lmi 
for i=1:VA 
  for j=1:VB 
     Ai=xtracti(vma,i,1); 
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     Bi=xtracti(vmb,j,1); 
     %First set of LMIs 
     lmiterm([T 1 1 idX],Ai,1,'s'); % LMI : A*X+X*A' 
     lmiterm([T 1 1 0],Bi*Bi'/gama); % LMI : B*B'/gama 
     lmiterm([-T 1 1 0],delta); 
     T=T+1; 
   end 
end 
    lmiterm([T 1 1 idZ],-1,1); 
    lmiterm([T 2 1 idX],-1,1); 
    lmiterm([T 2 1 0],Xou); 
    lmiterm([T 2 2 0],-1); 
   lmis = getlmis; 
   nvar = decnbr(lmis); 
   cvec = zeros(nvar,1); 
   for j = 1:nvar 
      vz = defcx(lmis,j,idZ); 
      cvec(j,1) = trace(vz); 
   end 
  [copt,xopt] = mincx(lmis,cvec,[1e-2 100 -1 0 1]); 
  Xop = dec2mat(lmis,xopt,idX); 
  flagx=0; 
end 
 
 
% yproj.m 
function [Yop,flagy]= yproj(You,G,VSinf,gama,delta) 
VA=VSinf(1); 
VB=VSinf(2); 
VC=VSinf(3); 
NV=VSinf(5);            
n=VSinf(6); 
[vma,vmb,vmc,vmd]= vm(G,VSinf); 
 
% Verifying LMI solution 
eigtemp = zeros(VA*VC,1); 
t=1; 
for i=1:VA 
for j=1:VC 
a=xtracti(vma,i,1); 
c=xtracti(vmc,j,1); 
temp=a'*You+You*a+(c'*c)/gama; 
eigtemp(t,1) = max(eig(temp)); 
t=t+1; 
end 
 
end 
 
 
% Taking decision according to the previous step 
 
if (max(eigtemp) < delta) 
     Yop = You; 
     flagy=1; 
    % break 
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Return 
Else 
%Defining the LMI variables 
setlmis([]); 
idY=lmivar(1,[n 1]); 
idZ=lmivar(1,[n 1]); 
%Defining the LMI's 
  
T=1; % Number of the lmi 
for i=1:VA 
  for j=1:VC 
     Ai=xtracti(vma,i,1); 
     Ci=xtracti(vmc,j,1); 
     %First set of LMIs 
     lmiterm([T 1 1 idY],1,Ai,'s'); % LMI : A*X+X*A' 
     lmiterm([T 1 1 0],Ci'*Ci/gama); % LMI : B*B'/gama 
     lmiterm([-T 1 1 0],delta); 
     T=T+1; 
   end 
end 
    lmiterm([T 1 1 idZ],-1,1); 
    lmiterm([T 2 1 idY],-1,1); 
    lmiterm([T 2 1 0],You); 
    lmiterm([T 2 2 0],-1); 
   lmis = getlmis; 
   nvar = decnbr(lmis); 
   cvec = zeros(nvar,1); 
   for j = 1:nvar 
      vz = defcx(lmis,j,idZ); 
      cvec(j,1) = trace(vz); 
   end 
  [copt,yopt] = mincx(lmis,cvec,[1e-2 100 -1 0 1]); 
  Yop = dec2mat(lmis,yopt,idY); 
  flagy=0; 
end 
 
 
 
 

86


