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Abstract

We consider three varied soft matter topics from a continuum fluid mechanics

perspective, namely: viscoelastic active matter, viscoelastic flows in porous media,

and contact line dynamics.

Active matter. For the purposes of this thesis, the term active matter describes

a collection of active particles which absorb energy from their local environment or

from an internal fuel tank and dissipate it to the surrounding fluid. We explore the

stability and dynamics of active matter in a biological context in the presence of

a polymeric background fluid. Using a novel coarse-grained model, we generalise

earlier linear stability analyses (without polymer) and demonstrate that the bulk

orientationally ordered phase remains intrinsically unstable to spontaneous flow in-

stabilities. This instability remains even as one takes an ’elastomeric limit’ in which

the polymer relaxation time τC →∞. The 1D nonlinear dynamics in this limit are

oscillatory on a timescale set by the rate of active forcing.

Then, by considering the rheological response of our model under shear, we

explore the mechanism behind the above generic flow instability, which we show

exists not only for orientationally ordered phases but also for disordered states deep

in the isotropic phase. Our linear stability analysis in 1D for sheared suspensions

predicts that initially homogeneous states represented by negatively sloping regions

of the constitutive curve are unstable to shear-banding flow instabilities. In some

cases, the shear-bands themselves are unstable which leads to a secondary instability

that produces rheochaotic flow states.

Consistent with recent experiments on active cellular extracts (without applied

shear) which show apparently chaotic flow states, we find that the dynamics of ac-

tive matter are significantly more complex in 2D. Focusing on the turbulent phase

that occurs when the activity ζ (or energy input) is large, we show that the char-

acteristic lengthscale of structure in the fluid l∗ scales as l∗ ∝ 1/
√
ζ. While this

lengthscale decreases with ζ, it also increases with the polymer relaxation time.
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This can produce a novel ‘drag reduction’ effect in confined geometries where the

system forms more coherent flow states, characterised by net material transport.

In the elastomeric limit spontaneous flows may still occur, though these appear to

be transient in nature. Examples of exotic states that arise when the polymer is

strongly coupled to the active particles are also given.

Flows in porous media. The second topic treats viscoelastic flows in porous

media, which we approximate numerically using geometries consisting of periodic

arrays of cylinders. Experimentally, the normalised drag χ (i.e., the ratio of the

pressure drop to the flow rate) is observed to undergo a large increase as the Weis-

senberg number We (which describes the ratio of the polymer relaxation time to the

characteristic velocity-gradient timescale) is increased. An analysis of steady flow

in the Newtonian limit identifies regions dominated by shear and extension; these

are mapped to the rheological behaviour of several popular models for polymer vis-

coelasticity in simple viscometric protocols, allowing us to study and influence the

upturn in the drag.

We also attempt to reproduce a recent study in the literature which reported fluc-

tuations for cylinders confined to a channel at high We. At low numerical resolution,

we observe fluctuations which increase in magnitude with the same scaling observed

in that study. However, these disappear at very high resolutions, suggesting that

numerical convergence was not properly obtained by the earlier authors.

Contact line dynamics. We finish by investigating the dynamics of the contact

line, i.e., the point at which a fluid-fluid interface meets a solid surface, under an

externally applied shear flow. The contact line moves relative to the wall, apparently

contradicting the conventional no-slip boundary conditions employed in continuum

fluid dynamics. A mechanism where material is transported within a ‘slip region’

via diffusive processes resolves this paradox, though the question of how the size

of this region (i.e., slip length ξ) scales with fluid properties such as the viscosity

η and the width of the interface between phases `, remains disputed within the

literature. We reconcile two apparently contradictory scalings, which are shown to

describe different limits: (a) a diffuse interface limit where ξ/` is small and (b) a
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sharp interface limit for large ξ/`. We demonstrate that the physics of the latter

(which more closely resembles real fluids in macroscopic experimental geometries)

can be captured using simulations in the former regime (which are numerically more

accessible).
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1
Introduction

Natural flows of both great beauty and importance can be found across a vast span

of lengthscales: from the organised subcellular transport of nutrients [1] (10−7 →

10−5 m), to rolling droplets on the hydrophobic surface of a butterfly’s wing [2]

(10−2 → 10−1 m), to the turbulent vortices surrounding the eye of Jupiter (∼ 104 m)

[3]. Very broadly, in this thesis we categorise such flows by the nature of their forcing,

which can be internal, external, or some combination of the two.

One example where internally driven flows have attracted particular interest is in

the burgeoning field of biologically active soft matter. This concerns the dynamics

of so-called ‘active particles’, where local flows are generated by, e.g., the rotating

flagella of a bacterium or collections of molecular motors. While the microscopic

flow field produced by these individual sub-units may be conceptually simple, the

collective behaviour of many such particles is highly non-trivial. For example, spon-

taneous chaotic flows can form especially when the energy input (or activity) is large;

1
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these are typically referred to as ‘bacterial turbulence’ [4, 5]. While this might ap-

pear qualitatively similar to inertial turbulence in an externally-driven passive fluid,

the mechanism is reversed: energy is instead injected at the smallest scales which

then ‘cascades up’ to form large scale vortex structures [5, 6]. Another important

difference is that, for active systems, this effect generally occurs at vanishingly small

Reynolds numbers.

Given the emergent complexity described above, it is unsurprising that many

early works considered the stability and dynamics of active matter within a simple

Newtonian background solvent. However, as the field develops, there is growing

impetus to connect the insight gained for these idealised fluids with more biologically

realistic environments [7, 8] as many examples of biological active matter are found

to exist and interact within complex viscoelastic fluids, such as mucus [9]. Such

environments can also be highly confined, e.g., as encountered by migrating cells

within the extracellular matrix [10]. It has also been argued that confinement of

subcellular active matter may be partly responsible for cytoplasmic streaming [1,11],

an important biological process whereby coherent fluid flows provide circulation of

nutrients and organelles within the cell [12].

As one might expect, the response of active matter to an externally applied flow

is rich. Depending on the nature of their propulsion, active particles can increase

[13] or reduce [14] the measured fluid viscosity relative to the passive equivalent

(e.g., once the internal fuel source runs out); at high concentrations, the viscosity

can practically vanish altogether producing superfluid states [15].

Ultimately, the study of active matter provides a fascinating insight into the

physics of living systems [16]. For example, at the cellular level, it can further

our understanding of cell motility [17], wound healing [18], and division [19, 20]

processes. There is also great potential in active systems for developing of materials

with tunable properties [21], and could be used in applications such as targeted drug

delivery using artificial microswimmers [22].

The following chapters of this thesis consider topics that continue the theme of

driven flow, though here the forcing is external, and not in a biological context.

The first examines pressure driven flows of viscoelastic fluids in porous media. The
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expansive/contractive nature of such geometries produces flow fields which provide

a fascinating and non-trivial superposition of shear and extensional rheology. The

effects of this are most noticeable for viscoelastic fluids, where experimental studies

have repeatedly shown that at high flow rates relative to some intrinsic relaxation

rate of the fluid (as characterised by the dimensionless Weissenberg number We),

the pressure drop required to maintain a given flow rate increases dramatically

[23]. Despite abundant experimental evidence of time-dependent states at high We,

studies eager to capture a transition to viscoelastic turbulence in porous geometries

have yet to reach a consensus as to whether this can be realised using 2D numerics

[24,25].

A final example of intriguing physics that arises under an externally driven flow

concerns the contact line — the locus of points at which a fluid-fluid (or fluid-

vapour) interface meets a solid surface — and the physics of the surrounding slip

region. The equilibrium shape of a droplet under simple conditions can be calcu-

lated from free-energy considerations involving the surface tensions of the relevant

interfaces [26]. The dynamics of the moving contact line, however, are intrinsically

non-equilibrium and therefore require a more sophisticated approach, such as using

diffuse interface models which prescribe a small interface of width ` between fluid

phases. Importantly, the degree to which the size of the slip region depends on `

remains disputed, despite the ubiquity of such models in both analytical [27,28] and

numerical [29–31] treatments of multiphase flow.

Note that a more in depth introduction to each of the above topics may be found

at the start of the corresponding chapter: we introduce viscoelastic active matter

in Chaps. 3 to 5, flows in porous media in Chap. 6, and contact line dynamics in

Chap. 7.

1.1 Layout of thesis

This thesis is organised as follows. In Chap. 2 we introduce the basic concepts

common to all research presented in this thesis. This includes the two main ap-

proaches we use to solve Stokesian hydrodynamics (generalised to allow for vis-
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Chap. 4Chaps. 3, 5 Chaps. 6, 7

internally externally
driven driven

Figure 1.1: Overview of the chapters in this thesis according to the nature of the forcing, which

may be internal (e.g., for biological active matter), external (e.g., pressure driven flow of multiphase

fluids), or both (e.g., sheared active matter).

coelastic stresses), an introduction to shear and extensional rheology, and details of

our numerical methods.

In Chaps. 3-5 we introduce and study our novel model for viscoelastic active

matter. As is typical in hydrodynamical stability theory, we consider our model in

a geometry of increasing dimensionality. We begin in Chap. 3 by describing our

model which couples active liquid-crystal hydrodynamics with polymer viscoelastic-

ity. Then, we consider the linear stability of a slab of active viscoelastic material

confined between parallel plates in 0D/1D, with no externally applied shear. By sep-

arately treating the limits in which the liquid crystal forms isotropic and nematic

phases, we derive critical activities for the onset of spontaneous flow, generalising

earlier work without polymer, which we test with nonlinear simulations.

Then in Chap. 4 we map the shear rheology of our coupled model which, given the

number of degrees of freedom, is rich and complex. Because of this, we first consider

(a) polymer, (b) passive liquid-crystal, and (c) active matter rheology separately,

allowing us to characterise and identify the variety of flow instabilities present. When

these three contributions are combined, the resulting constitutive curves (which

relate the theoretical shear stress at a given shear-rate) predict, e.g., multiple shear-

banding instabilities, or spatio-temporal chaos. These predictions are confirmed by

1D nonlinear simulations.

Chap. 5 examines how the dynamical behaviour changes when we increase the

dimensionality to include flow in 2D. We first report the results of a collaborative
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study (without polymer) exploring precisely how liquid-crystal and velocity corre-

lation lengths depend on the strength of the active stress [32]. Then by considering

phase diagrams with and without polymer, we report an ‘active drag reduction’ effect

whereby seemingly chaotic flows with no net material transport (without polymer)

develop coherent flows as polymer is added. This, we argue, arises because the

polymer acts to increase the correlation length of the fluid, suppressing small scale

structure. We then treat materials where the polymer relaxation time becomes very

long, where we find that activity-driven extensional flows can rapidly deform the

polymer. This can drive oscillatory states which cycle between rapid extensional

deformation and slow stress relaxation.

For the latter part of this thesis we leave the biological theme behind. In Chap. 6

we explore the flow of a viscoelastic fluid in a model porous medium which consists

of periodic arrays of cylinders. Using an immersed boundary numerical method, we

benchmark our code for Newtonian fluid, characterise the nature of the resulting

flow field, and identify regions where shear or extension are expected to dominate.

Then, using three popular models of polymer viscoelasticity, we map how the ratio of

drag on the cylinder to throughput changes as the Weissenberg number (which char-

acterises the ratio of flow and relaxation timescales) increases, and explore whether

time-dependent states develop at high We.

Finally, in Chap. 7 we present simulation results for multiphase flows in planar

Couette and Poiseuille flow protocols. We measure the slip length ξ and dynamic

contact angle θd as a function of fluid properties such as the viscosity η or im-

posed flow rate V0. Results are compared between independent numerical studies,

demonstrating excellent agreement.

We conclude our findings and present ideas for future work in Chap. 8.



2
Theory & Methods

While the research presented in this thesis spans a diverse range of topics, these all

contain a rheological theme, i.e., they all concern, in a general sense, the study of

material deformation and flow. For the applications considered in this thesis, many

of which are biological, these flows occur at scales where inertial effects can safely

be ignored, allowing us to assume the zero Reynolds number (Re→ 0) limit. There

is, however, a high degree of viscoelasticity throughout our work which introduces

nonlinearities into the equations of motion, rendering the resulting flow behaviour

highly nontrivial.

In this chapter, we first introduce the generalised continuum equations for in-

compressible fluid flow, which include arbitrary stresses (e.g., describing polymer

viscoelasticity) and forces (e.g., gravitational). Strategies for solving Stokesian

(i.e., zero Re) hydrodynamics, generalised to include viscoelastic stresses, are also

discussed. We then introduce basic concepts in shear and extensional rheology which

6
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Figure 2.1: Schematic of the parallel plate geometry which we consider for the majority of this

thesis. Flow is periodic in the x-direction, and bounded by solid walls in the y-direction. We

assume invariance in the z-direction (into the page) throughout.

appear throughout this thesis, including popular constitutive models for polymer dy-

namics. Finally we describe the main numerical methods that we have implemented,

specifically Fourier and finite difference schemes.

2.1 Hydrodynamics

We begin by writing the Navier-Stokes equations for incompressible flow, generalised

to include contributions from an arbitrary additional stress σ,

ρ (∂t + v.∇) v = ∇. (2ηD− pI + σ) + f , (2.1a)

∇.v = 0, (2.1b)

where ρ and η respectively are the density and viscosity of the background New-

tonian solvent. The velocity field is denoted v with the symmetrised velocity gra-

dient tensor D. The pressure, P , is determined by the incompressibility condition

Eq. 2.1b. We also include an arbitrary stress σ, which could in principle contain

contributions from e.g., a polymeric fluid, or a liquid-crystal (see Sec. 2.2.3). Fi-

nally we include a body force term f , which could be external (e.g., gravitational)

or internal (e.g., immersed boundary forces, see Sec. 6.3.1) in nature. We adopt the

quasi-2D channel geometry describe in Fig. 2.1 for the majority of this thesis, with

no-slip and no-permeation boundary conditions (BCs) on the walls (each chapter

also includes a detailed description of the geometry and BCs).

For all applications considered in this thesis the Reynolds number Re� 1, so we

can safely neglect the inertial terms on the LHS of Eq. 2.1a. We now illustrate how
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one can conveniently describe hydrodynamics in this limit using the streamfunction

formulation.

2.1.1 Streamfunction formulation

For simplicity, we can sum all additional stress and force contributions into a single

term s = f +∇.σ, so that Eq. 2.1a can be written (in the zero Re limit) as

0 = η∇2v −∇p+ s. (2.2)

Then, for two-dimensional incompressible flows, one can define a streamfunction

ψ where

v = ∇×ψ, (2.3)

and where v = (vx, vy, 0), ψ = (0, 0, ψ). Note that ψ is only defined up to an

arbitrary constant, i.e., taking ψ → ψ + A leaves Eq. 2.3 unchanged [33].

Substituting Eq. 2.3 into Eq. 2.2 and taking the curl, we eliminate the pressure

term yielding

−η∇×
[
∇2 (∇×ψ)

]
= ∇× s (2.4)

−η∇2 [∇× (∇×ψ)] = (2.5)

+η∇4ψ = ∂xsy − ∂ysx. (2.6)

Note that for the special case of 1D flow (where there is no variation in the x-

direction), force balance reduces to a third order equation in ψ

0 = ∂y (η∂yvx) + sx, (2.7)

= η∂3
yψ + sx (2.8)

The Fourier transformed equations are then

η∂3
yψ = −sx for kx = 0, (2.9)

+η
[
(ikx)

4 + 2(ikx)
2∂2
y + ∂4

y

]
ψ̃ = ikxsy − ∂ys̃x for kx 6= 0. (2.10)

The third-order equation requires three boundary conditions at each wall. As

ψ is only defined up to a constant we are free to impose ψ|y=0 = 0. Then using
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vx = ∂yψ, the second set of BCs result directly from the no-slip velocity BCs giving

∂yψ|y=0,Ly = vx|y=0,Ly . For static walls these simply become ∂yψ|y=0,Ly = 0. The

additional boundary condition for the fourth-order equation (for kx 6= 0) is then

ψ|y=Ly = 0 [34]. This is because vy|y=0,Ly = −∂xψ|y=0,Ly = 0, i.e., at the walls ψ

cannot vary with x (and so the kx 6= 0 modes must be zero).

While the streamfunction is convenient for describing two-dimensional flows, it

does not generalise to 3D1. An alternative approach, which naturally generalises to

3D, is to follow the Oseen tensor formulation. We use this for the parts of this thesis

that require biperiodic geometries, specifically the active defect study (Sec. 5.2) and

the biperiodic array of cylinders in Chap. 6.

2.1.2 Oseen formulation

Taking the Fourier transform of Eq. 2.2 yields

0 = −ηk2ṽk − ikp̃k + s̃k, (2.11)

where k denotes the wavevector. Taking the divergence of Eq. 2.11, which in Fourier

space corresponds to multiplication by ik, and by using the incompressibility con-

dition 0 = ik · ṽk (i.e., Eq. 2.1b in Fourier space), we find

0 = −k2p̃k − ik · s̃k ⇒ p̃k = −ik · s̃k
k2

. (2.12)

Inserting Eq. 2.12 into Eq. 2.11 and rearranging yields

ṽk =
1

ηk2

(
δ + k̂k̂

)
· s̃k (2.13)

This convenient form then allows one to easily calculate velocities for a given set

of forces and stresses [35]. Eq. 2.13 is local in Fourier space, meaning the problem can

be easily parallelised in a numerical implementation. Note that velocity gradients

can also easily be calculated in Fourier space

ikṽ =
ik

ηk2

(
δ + k̂k̂

)
· s̃. (2.14)

This Fourier representation naturally describes systems with periodic boundary

conditions, and generalises to any number of dimensions.

1One exception is for 3D axisymmetric flow [33].
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Implications. One important implication of Eq. 2.13 is that the k = 0 mode of

the velocity is undefined. An equivalent statement is that the velocity v in Eq. 2.2

is only defined up to an arbitrary constant.

We later model flow past a biperiodic array of cylinders (Chap. 6), where the

solution must satisfy the usual no-slip boundary conditions on the cylinder surface.

This constraint uniquely determines the solution of the zeroth mode [36]. However,

e.g., when modelling active matter in a biperiodic geometry (Sec. 5.2), no such

additional boundary condition exists. Thus it is impossible to determine the velocity

uniquely. In that case, for simplicity, we choose this arbitrary constant v0 = 0

corresponding to no net displacement of the material.

Solid walls. However the inclusion of solid walls, e.g., with no-slip boundary con-

ditions, is difficult. While in principle this can be achieved using additional image

sources [37], the numerical implementation is very complex in practice.

An alternative approach could be to simulate solid walls using immersed bound-

aries (e.g., see Sec. 7.8). However this introduces additional numerical parameters

to converge, which ideally we would like to avoid.

We have outlined the two formulations used to solve Stokesian hydrodynamics

in this thesis: we use the streamfunction when solid walls are required, and the

Oseen formulation when considering periodic systems. Details of the numerical

solution of either formulation are given later in this chapter (see Sec. 2.3). We

now consider flows of complex fluids and introduce basic concepts in shear and

extensional rheology.

2.2 Rheology

The term rheology (from the Greek rhéōs meaning “flow”) is the study of material

response to flow deformation. In order to understand the properties of a material,

and to examine the dynamics of internal microstructure, rheologists use a number of

experimental techniques which often involve shearing a material between two plates.

(See Fig. 2.2 for examples.)
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Figure 2.2: Illustration of some common experimental setups for producing shear flows. (a)

Parallel plate (top plate moves with speed V relative to the bottom plate), (b) cone and plate, and

(c) Taylor-Couette setups.

The simulations described in this thesis mainly focus on the parallel plate ge-

ometry for simplicity (Fig. 2.2a); in practice this is difficult to implement and ex-

perimentalists typically use either the cone and plate (Fig. 2.2b) or Taylor-Couette

(Fig. 2.2c) setups [38]. Simulations in these curved geometries are certainly possi-

ble [39,40]; one may also approximate them in parallel plate simulations by adding

a biasing stress gradient [41]. However the parallel plate setup is normally sufficient

as this can be seen as the limiting case in which the radii of the Taylor-Couette

cylinders are taken to infinity (with fixed spacing).

The key pair of quantities to be controlled or measured in such shear-flow ex-

periments are:

• the mean shear-rate, defined as ¯̇γ = V/Ly,

• the total shear-stress, Σxy,

where Ly is the separation of the plates, and V the velocity of the top plate. The

protocol used to examine shear rheology in this thesis fixes an imposed shear rate

and measures the stress response in time. Once the system reaches a steady state

(i.e., the stress no longer varies in time), the measurement is made. In practice,

either one of these quantities may be fixed to find the response of the other.

The experimentally measured relation between the total shear stress and strain

rate is known as a flow curve. This is related to but distinct from the constitutive

curve which tells us the predicted shear stress at an applied shear rate for a the-

oretical homogeneous system, i.e., where the shear-rate is constant across the cell.

In many cases these curves coincide, but not in general, e.g., compare black solid
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Figure 2.3: (a) Schematic flow curves for various classes of fluid in shear flow. (b) Illustration

of the distinction between a theoretical constitutive curve (black solid line) and an experimentally

measured flow curve (red dashed line).

line (constitutive curve) and red dotted line (flow curve) in Fig. 2.3b. For example,

when shear-banding instabilities are observed, the measured stress would in gen-

eral be different to that expected under the assumption of homogeneous flow (see

Sec. 2.2.2 for more details). Such curves can be used to characterise a material into

two main categories of complexity: Newtonian and non-Newtonian.

2.2.1 Newtonian and non-Newtonian fluids

The term Newtonian fluid is used to describe a simple material where shear-stress

increases linearly with the shear-rate [38]. The resulting flow curve is simply a

straight line through the origin, where the slope defines a constant viscosity, η

(Fig. 2.3a, green curve).

While this picture is valid for simple fluids such as water, there exists a large

class of non-Newtonian fluids which do not behave in this way, save perhaps at

very low shear-rates. These materials are characterised by a non-linear flow curves,

and are accompanied by a rich variety of phenomena. For example shear-thinning

(thickening) materials become proportionally easier (harder) to produce a flow in as

the stress increases, and yield stress fluids require a finite stress before they begin to

flow [42] (Fig. 2.3). These properties are important industrially as many everyday

materials (e.g., foods, cosmetics, paints, pastes) fall under these categories [43].
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Figure 2.4: Illustrative velocity profiles for homogeneous / inhomogeneous shear flows, where the

arrows denote fluid velocity. The x, y, and z directions are referred to as the flow, flow gradient,

and vorticity directions respectively.

2.2.2 Shear-banding

Shear-banding is a particularly intriguing phenomenon that can be observed in non-

Newtonian fluids, and is of both industrial and academic interest [44]. If we shear

a simple Newtonian fluid with a constant applied shear-rate at negligible values of

Re, we would expect (by solution of the Navier-Stokes equations or otherwise) that

the resulting flow field is described by a homogeneous velocity gradient across the

cell (Fig. 2.4a).

The term complex fluids generally refers to non-Newtonian materials with de-

tailed mesostructure that relaxes on relatively long timescales. These materials can

exhibit flow instabilities at large enough shear rates, that can manifest as macro-

scopic shear-bands of differing shear-rates and structure, where the more ordered

state is generally found in the higher shear-band. (See Fig. 2.5 for examples.) While

the mean shear-rate ¯̇γ across the channel is the same as it would be for a homoge-

neous flow profile, individual bands of different shear rates are observed to coexist

(Fig. 2.4b).

Theoretically, shear-banding is predicted to occur at applied shear-rates where

the underlying constitutive curve is non-monotonic, i.e., when ∂Σxy

∂ ¯̇γ
< 0 [44], though

depending on previous deformation history, this phenomenon can also be observed in

the surrounding metastable regions. The physical interpretation is that, if increas-

ing the shear-rate lowers the total stress, then a homogeneous flow is mechanically

unstable [40]. Systems with imposed shear-rates in this unstable region then recon-
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Figure 2.5: Examples of systems found to exhibit shear-banding instabilities. (a) Wormlike-

surfactants (aggregates of amphiphilic molecules), (b) onion-surfactants, (b) liquid-crystals can

exhibit both liquid and crystalline properties.

figure into low and high shear-bands. If one increases the imposed shear-rate then

the proportion of the two bands will change according to a lever rule, but the stress

remains constant.

This produces the stress plateau that is measured experimentally in flow curves

(see e.g., Fig. 2.3b) for a wide range of materials including wormlike micelles [45],

lyotropic lamellar2 liquid-crystal (LC) phases [46], and entangled polymeric mate-

rials (e.g., polymer melts and solutions) [47]. Shear-banding has been directly ob-

served for several of these materials (which we illustrate in Fig. 2.5), most notably

in wormlike micelles using nuclear magnetic resonance (NMR) [48] and ultrasound

techniques [49], but also for entangled polymers [50] and cellular proteins [51] using

particle tracking velocimetry. As the form of mesoscopic structure generally has

a strong flow dependence, bands with differing levels of ordering have also been

observed using birefringence methods [52].

Such bands have been experimentally observed with layer normals either in the

direction of the flow gradient (gradient banding) [53,54] or in the vorticity direction3

(vorticity banding) [55,56]. In this thesis we focus on the more commonly observed

gradient banding, restricting any numerical work to the flow-gradient only (1D) or

flow/flow-gradient plane (2D).

2A structure consisting of bilayers of amphiphilic molecules.
3i.e. the z-direction in Fig. 2.4
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2.2.3 Modelling complex fluids

Having introduced the key rheological quantities which can be probed in a typical

shearing experiment, we now introduce some of the theoretical models one can use

to describe complex fluids, with particular focus on shear-banding.

Complex fluids possess internal mesostructures, e.g., polymer chains or rod-like

molecules, which contribute additional stress and strongly influence the rheological

response of the fluid. To describe these effects, the stress that appears in the Navier-

Stokes equation (Eq. 2.1a) can be augmented by an additional polymeric (or other

mesoscopic) stress, σ. Forms for this stress are typically derived in terms of the

conformation or strain tensor, C, a quantity that is motivated by treating polymer

chains as pairs of beads connected by springs which form ‘dumbbells’ [38]. Here

C ∝ 〈rr〉, where r is the end-to-end vector of an entire polymer chain, or sub-chain,

depending on the level of description required.

There are a wide range of models which describe the dynamics of C and therefore

σ ∝ C [43] in response to a flow field v. As a pedagogical example we will describe in

brief the diffusive Johnson-Segalman model (dJS), before discussing improvements

and generalisations.

2.2.3.1 Diffusive Johnson-Segalman (dJS) model

The model [40,57] describes the dynamics of the polymeric stress

σ = G (C− I) , (2.15)

which can be expressed in terms of the conformation tensor C

(∂t + v.∇)︸ ︷︷ ︸
A

C =
−1

τC
(C− I) + CΩ−ΩC︸ ︷︷ ︸

B

+2a[CD]S +
`2
C

τC
∇2C. (2.16)

If there is no flow, Eq. 2.16 simply describes the relaxation of the polymeric

stress towards the isotropic (undeformed) state C → I; under an imposed flow

the symmetric (D) and antisymmetric (Ω) parts of the velocity gradient tensor

(∇v)ij = ∂ivj will in general be non-zero and will load the polymer stress. Here a is

a slip parameter that controls the ratio of deformation of the polymer with respect
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to the fluid [57]. For |a| < 1, the polymer slips relative to the fluid and the consti-

tutive curve is capable of non-monotonicity, one of the signatures of shear-banding.

(See Sec. 4.3.1 for details.) The material derivative (term A) imposes translational

(Galilean) invariance, and term B imposes rotational invariance. Parameters G (a

plateau modulus relating to the elastic properties of the material), and τ (the relax-

ation time) can be measured experimentally using e.g., small amplitude oscillatory

shear [58].

This formulation differs slightly from the original derivation of the Johnson-

Segalman model [59] due to the inclusion of an additional diffusive term which

prohibits structure forming at lengthscales smaller than the fluid microstructure `.

(We abbreviate non-diffusive [59] and diffusive [40] formulations of the model as JS

and dJS respectively.) A consequence of this non-locality is that, if a homogeneous

shear flow is unstable to the formation of shear-bands, the steady-state stress of the

shear-banded state is uniquely selected [60], consistent with experimental results

[61,62]. Without such a term, the selected stress can be history dependent [63], and

the interface between bands can be infinitely sharp which is both unphysical and

numerically problematic. Note that the dJS model reduces to the popular Oldroyd-B

model (which we use extensively in Chap. 6) for a = 1, ` = 0.

2.2.3.2 Finitely Extensible Nonlinear Elastic (FENE) models

While the JS model is unlikely to yield a microscopically faithful representation

of any real fluid, it is capable of producing non-monotonic constitutive curves (for

η/Gτ < 1/8) which are an essential feature in any study of shear-banding insta-

bilities. However as is the case with its predecessor, the Oldroyd-B model, the

behaviour of the JS model in strong extensional flows is unphysical [64]: polymer

chains can become infinitely stretched in the vicinity of stagnation points where the

extension rate is significant but the velocity field is zero. We first describe how this

issue is addressed in microscopically motivated models, specifically the FENE-P and

FENE-CR [65, 66] (finitely extensible nonlinear elastic) models, before illustrating

the effect this has on the shear and extensional rheology.

The FENE models impose finite extensibility on the polymer chains using a
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non-linear spring function of the form

k(C) =
1

1− δTr[C]
, (2.17)

where δ parametrises the degree of extensibility and where δ → 0 recovers the

Oldroyd-B model. While the essential physics is the same, FENE-P and FENE-CR

differ in how this term is incorporated into the constitutive equation and stress:

∂tC = −1

τ
(k(C)C− I) + · · · , σ = G (k(C)C− I) FENE-P, (2.18a)

∂tC = −1

τ
k(C) (C− I) + · · · , σ = Gk(C) (C− I) FENE-CR. (2.18b)

While the extensional rheology is unaffected by this distinction, the shear rheology

differs between the two models, a fact which we later exploit in Chap. 6 in our study

of viscoelastic flows in porous media.

We finish this section on constitutive modelling by presenting steady-state con-

stitutive curves for the four models described above, both in simple shear and ex-

tension, and comment on their meaning.

2.2.4 Rheology of constitutive models

Under ideal viscometric conditions, the imposed velocity gradient tensor ∇v|ij =

∂ivj, in simple shear and extension respectively, reads

∇v|shear = γ̇

0 0

1 0

 , ∇v|ext =
ε̇

2

1 0

0 −1

 , (2.19)

where the incompressibility condition ∇.v = 0 is clearly satisfied in both cases. We

determine the steady-state stress of a system subject to either flow, which can be

found either by evolving 0D simulations to steady-state, or by analytically obtaining

the steady-state solutions to the constitutive equation (i.e., by setting ∂tC = 0).

2.2.4.1 Shear flows

Fig. 2.6a shows constitutive curves for all models, in response to an applied flow

of simple shear. Both Oldroyd B and FENE-CR possess a constant shear-viscosity

(i.e., they do not shear thin). Given that their shear rheology is the same but their
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Figure 2.6: Constitutive curves for a range of models in (a) shear and (b) extension. For clarity we

ignore the solvent stress Σsol = 2ηD in (b), as this simply adds a linear contribution. Parameters:

FENE models δ = 0.001, 0.01, JS model a = 0.3.

extensional rheology differs (see below), this can be exploited to isolate extensional-

specific effects (see Sec. 6.5). The FENE-P model does shear thin however, though

the effect is not as dramatic as in the JS model whose corresponding constitutive

curve is non-monotonic. This implies that a homogeneous initial base state situated

in the negatively sloping region is susceptible to shear-banding instabilities [67], as

previously discussed in Sec. 2.2.2.

2.2.4.2 Extensional flows

The steady-state extensional constitutive curve is shown in Fig. 2.6b. First we notice

that the extensional stress diverges at ε̇τ = 1/2 for the Oldroyd-B model. This is

one of the simplest constitutive models, and describes polymer chains as beads with

a Hookean (linear) restoring force. The observed divergence implies that a steady-

state extensional stress cannot be obtained and that the dumbbells in the polymer

model will become infinitely separated as t → ∞ for dimensionless extension rates

ε̇τ > 1/2. In the JS model this divergence still exists, although it is pushed out to

larger extension rates ε̇τ > 1/2a [43].

The stress singularity can be mitigated by introducing a non-linear spring force

(Eq. 2.17), which diverges as chain separation approaches the maximum set by
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1/δ. Indeed this is the approach of the FENE-P and FENE-CR models, whose

extensional stresses are indistinguishable in steady state.

2.2.4.3 Complex flows

We have introduced the rheological properties of a selection of constitutive equations

that we will use throughout this thesis, both in simple shear and extension. While

the response is clear in these idealised protocols, the behaviour in more complex

geometries which contain some non-trivial combination the above flow types is less

obvious (this is a major theme of Chap. 6).

At our disposal are combinations of models that are (a) identical in extension

but differ in shear (FENE-P and FENE-CR), or (b) identical in shear and different

in extension (Oldroyd-B and FENE-CR). This range of constitutive behaviour will

allow us to determine which type of flow dominates in a given geometry, simply by

noting the change in response between different constitutive equations.

2.3 Numerical Implementation

We finish this chapter by describing how the equations of motion are solved nu-

merically. As a pedagogical example, we consider the Allen-Cahn reaction-diffusion

equation [68, 69] in a channel between solid walls, where φ(r, t) is a scalar order

parameter which obeys

∂tφ = −f ′(φ) +D∇2φ, (2.20)

f ′(φ) = φ3 − φ, (2.21)

with periodic boundary conditions in x and free boundary conditions at the walls,

i.e.,

φ|x=0 = φ|x=Lx , ∂yφ|y=0,Ly = 0. (2.22)

(While we do not use the Allen-Cahn model in this thesis, it is structurally similar

to the Cahn-Hilliard equation which forms a key part of the contact line study in

Chap. 7.)
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Numerically we represent φ on a discrete grid of points of spacing ∆x = Lx/Nx

and ∆y = Ly/Ny, and evolve the equation in time with timestep ∆t. Note that gen-

eralisation of the methods described here to tensorial partial differential equations

is trivial.

Solution of Eq. 2.20 may be split into two separate stages. First, we describe how

the local term, f ′(φ), is integrated in time, then separately consider the non-local

diffusive term ∇2φ.

2.3.1 Time-stepping scheme

Denoting the current timestep n, where t = n∆t, we can integrate Eq. 2.20 in time

(at each grid point) using a generalised Euler time-stepping scheme

φn+1 − φn

∆t
= θf(φn+1) + (1− θ)f(φn), (2.23)

where θ ∈ [0, 1] is an parameter controlling the relative weight of explicit (θ = 0)

and implicit (θ = 1) terms [70]. Unless specified otherwise, throughout this thesis we

will use explicit Euler (θ = 0) for solution of any local terms. However the notation

of Eq. 2.23 will remain useful in describing the solution of non-local terms (e.g., see

Sec. 7.3.1), which we now consider.

2.3.2 Fourier method

In the x-direction, the simulation box is taken to have length Lx with periodic

boundary conditions. A convenient way to evaluate gradient terms in any constitu-

tive equation is to decompose the relevant order parameter into a Fourier series

φ(x, t) =
∑
k

φ̃k(t)e
ikxx (2.24)

where kx = 2πk′x/Lx is the wavevector [71]. Taking the Fourier transform of the

non-local term, we obtain a set of uncoupled linear equations to be solved for each

mode k

∂tφ̃k = (ikx)
2Dφ̃k, (2.25)
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Using a semi-implicit time-stepping method (i.e., Eq. 2.23 with θ = 1/2), this can

be integrated in time,
φ̃n+1
k − φ̃nk

∆t
= −k2D

φ̃n+1
k + φ̃nk

2
. (2.26)

The benefits of the Fourier method become even clearer when considering higher

order derivatives (for example 4th order derivatives are required for the streamfunc-

tion formulation described in Sec. 2.1.1) as

∂nxφ(x, t) →
∑
k

(ikx)
nφ̂k(t)e

ikxx.

While finite-difference methods (described below) would require solution of an in-

creasingly complex matrix problem (as more neighbouring grid points are involved),

spectral methods implement higher order derivatives by simply multiplying increas-

ing powers of (iqk). The main numerical cost of the algorithm lies in taking Fourier

Transforms, but efficient algorithms such as the FFT (Fast Fourier Transform [72])

render this manageable.

When the full nonlinear equation Eq. 2.20 is considered, the procedure for a

given timestep is then:

1. time-step the local terms f ′(φ) (Eq. 2.23)

2. take a forward Fourier transform

3. time-step the non-local terms ∇2φ in Fourier space (Eq. 2.26)

4. take a backward Fourier transform

The Fourier method outlined above naturally describes quantities in the periodic

direction. However, depending on the boundary condition, it is not always possible

to adopt this method in the y-direction (normal to the wall). For special cases one

can use a subset of the Fourier basis, e.g., for the ‘free BC’ ∂φ|y=0,Ly = 0, a cosine

basis may be used (e.g., see Sec. 7.3).

However, particularly for more complex boundary conditions (e.g., where BCs

differ at each boundary), it is more convenient to use a finite difference discretisation

in the y-direction.
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2.3.3 Finite-difference method

The finite difference method discretises a continuous variable onto an evenly spaced

grid of positions, where spatial derivatives can be approximated by a polynomial

of values from nearby grid points. Coefficients for these polynomials can be de-

rived using a Taylor expansion around neighbouring positions in space or time. For

example, in Sec. 2.3.1 we approximated the first order time derivative of φ(y, t) as

φn+1 = φn + ∆t
∂φ

∂t

n

+O(∆t2)

∂φ

∂t
=
φn+1 − φn

∆t
+O(∆t) (2.27)

where ∆t is the time step (this is simply the explicit Euler scheme). In a similar

fashion, a second order spatial derivative could be found by summing the following

expansions

φj+1 = φj + ∆yφ′j +
∆y2

2!
φ′′j +

∆y3

3!
φ′′′j +O(∆y4)

φj−1 = φj −∆yφ′j +
∆y2

2!
φ′′j −

∆y3

3!
φ′′′j +O(∆y4)

φ′′|j =
φj+1 − 2φj + φj−1

∆y2
+O(∆y2) (2.28)

where ∆y is the spacing between grid points and j is the index associated with

the current grid point. Note that expressions for higher-order derivatives (e.g., the

streamfunction formulation requires fourth-order derivatives) can be easily obtained

by including higher order terms in the expansion.

At the walls, free boundary conditions (i.e., ∂yφ|y=0,Ly = 0) can be implemented

by the inclusion of ‘phantom points’. If the spatial index j runs from 1 (at y = 0)

to Ny (at y = Ly), then the phantom points at j = 0, Ny + 1 can be found using a

finite difference approximation, e.g.,

∂yφ1 ≈
φ0 − φ2

2∆y
= 0,

φ0 = φ2,

which then allows us to approximate ∂2
yφ at the wall

∂2
yφ1 ≈

φ0 − 2φ1 + φ2

∆y2
=

2φ2 − 2φ1

∆y2
. (2.29)
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This can easily be extended to higher order methods by inclusion of additional

phantom points φ−1, φ−2 etc.

Using Eqs. 2.27/2.28, we can now solve the non-local terms of our model PDE

using the following explicit scheme

φn+1
j − φnj

∆t
≈ D

φnj+1 − 2φnj + φnj−1

∆y2
. (2.30)

Implicit schemes, where the RHS is evaluated at timestep tn+1, instead require

solution of a linear system of equations, typically by inverting a banded matrix.

(Note that Eq. 2.29 allows us to incorporate the boundary conditions in this matrix

form.) While this inversion can be numerically costly, the benefits include increased

stability allowing for larger timesteps to be used at lower overall computational cost.

Because of this, unless otherwise specified, any finite-difference simulations described

in this report implement a semi-implicit Crank-Nicolson scheme (corresponding to

θ = 1/2 in Eq. 2.23). For brevity we have only introduced the basic ideas, for further

details see e.g., Ref. [70].

2.3.4 Hybrid method

We have shown how one can solve our model PDE, using a Fourier method in the

x-direction and finite-differencing in the y-direction. Full 2D solution then requires

a hybrid method utilising both techniques. The result is a set of finite-difference

equations which are solved for each k. The full Fourier-Crank-Nicolson scheme for

the diffusion term then reads

φ̃n+1
k,j − φ̃nk,j

∆t
= −k2D


(
φ̃n+1
k,j+1−2φ̃n+1

k,j +φ̃n+1
k,j−1

∆y2

)
+

(
φ̃nk,j+1−2φ̃nk,j+φ̃nk,j−1

∆y2

)
2

 . (2.31)

2.3.5 Convergence and validation

In any study, we check that our results are unchanged under a halving of (a) the

spatial-step size ∆x = ∆y and separately (b) the time-step ∆t. While the de-

tailed spatial structure and temporal trajectory of apparently chaotic states (see



2.4. Conclusions 24

e.g., Sec. 5.2) will differ during convergence tests, we have checked that key aver-

aged quantities such as correlation lengths or mean velocities do indeed converge.

We strive to check our results for correctness against previous results (where

possible). For example, we verify our model for flow in porous media against previous

analytical expressions (Sec. 6.3.2). If such results are not available, we can also

check that the growth rate of perturbations in any linear instability agrees with

the analytical predictions of the linearised constitutive equation. (For a detailed

example of this procedure see Sec. 4.2.)

2.4 Conclusions

In this chapter we have introduced the basic concepts in Stokesian hydrodynamics,

which are applicable throughout this thesis. Depending on the geometry of inter-

est, we showed that 2D incompressible flows can be conveniently expressed using

either the Oseen or streamfunction formulations, where either method can include

additional viscoelastic stresses with ease.

We then explained how experimentally measured flow curves can be used to

categorise materials with non-Newtonian flow behaviour. The theoretical analogue

(the constitutive curve), which considers the stress for an assumed homogeneous

flow, is also explained with particular focus on the stability implications of non-

monotonicity in shear flow. The details of the shear-banding flow instability (which

will form a key part of our stability results in Chaps. 3, 4) were presented, with

reference to the underlying constitutive curve. A selection of constitutive models

were then introduced, and their rheological responses in simple shear and extensional

were contrasted.

Finally we described how the above constitutive equations may be solved numer-

ically, both in biperiodic and channel geometries. This included an explanation of

how gradient terms are evaluated using a Fourier method in the periodic directions

and a finite-difference method in the direction normal to the walls (if present). With

the requisite background knowledge in place, we now present the first topic of study,

which concerns the stability and dynamics of active viscoelastic matter.



3
Active viscoelastic matter:

0D and 1D (no applied shear)

3.1 Introduction

Active matter can be very generally defined as the class of materials whose con-

stituents are capable of extracting energy from their environment in order to propel

themselves or the surrounding fluid [16,73]. Examples of active matter can be found

across a vast range of lengthscales, from shoals of fish (at the metre scale), to suspen-

sions of swimming bacteria (micrometre scale), to cytoskeletal components within

the cell (micro- to nanometre scale).

Such materials typically comprise elongated subunits, and can form ordered

phases with broken symmetries reminiscent of those found in liquid-crystals (LCs).

Accordingly, theoretical attempts to describe these systems using simple continuum

models typically begin with the hydrodynamic equations for a fluid of rod-like ob-

25
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Figure 3.1: Schematic of the two types of force dipole possible, and a cartoon of two of the

organisms known to produce them. Red lines indicate forces (which must sum to zero), and green

lines are suggestive of the resulting velocity field. (a) An extensile bacterium, e.g., B. subtilis. (b)

A contractile swimmer, e.g., Chlamydomonas.

jects which, depending on the nature of the symmetry, can be described by polar

p or nematic Q order parameters [16]. Such equations describe a passive LC [74],

where deviations from thermal equilibrium might result from a temperature quench

or an external driving force such as shearing walls.

Active fluids form part of an exciting class of non-equilibrium systems which

possess an additional internal forcing mechanism which originates at the microscopic

level. In the absence of external forcing, an active particle must be force free.

Therefore the simplest perturbation to the flow that can be constructed is a force

dipole. Depending on the sign of the dipole, an active particle can be classed as

extensile (where forces act from the centre of mass outwards towards the fluid) or

contractile (forces act from fluid to centre of mass). The difference between these is

most clearly illustrated for elongated particles (see Fig. 3.1 for a cartoon). However

the distinction exists even for spherically symmetric particles because the orientation

of the force dipole itself defines a director [75].

A second important distinction is the position of the force dipole centre relative

to the centre of mass. Active particles for which these are not coincident are capable

of net motion and are classed as ‘movers’ (i.e., polar), the converse being ‘shakers’

(i.e., apolar). In the following chapters we derive and study a model to describe the

latter class, with focus on applications at the subcellular level.

Interestingly, the polarity (or lack thereof) of the individual active particles does

not necessarily determine the symmetry of the macroscopic phases. For example
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Figure 3.2: Schematic demonstrating generic spontaneous flow instabilities in a flow aligning

nematic. (a) The bend mode in an extensile material. (b) The splay mode in a contractile

material.

polar particles can form nematic phases (e.g., as might be seen when two sets of

pedestrians pass in opposite directions at a zebra crossing). Indeed to lowest order,

the active stresses in polar and apolar formulations are indistinguishable [73,76]. We

will introduce the active stress in our model later in Eq. 3.26, where the magnitude

is set by the activity parameter ζ for which positive (negative) values of ζ describe

extensile (contractile) materials.

Flow instabilities. One of the most striking theoretical predictions concerning

active matter is that a bulk homogeneous suspension of orientationally ordered par-

ticles is intrinsically unstable to heterogeneous perturbations [77,78]. The origin of

this instability can be understood by considering splay and bend distortions in LCs.

To illustrate this, consider an extensile material. Here fluid is drawn in from the

particle sides and is ejected along the main axis. In a perfectly ordered material,

these activity driven flows cancel and the material remains undeformed. However

if an infinitesimal bend perturbation is introduced then these flows become unbal-

anced, producing net flow in the direction of the bend [79]. This positive feedback

loop only halts once the competition between activity and distortion free energy

balances. An analogous mechanism drives the splay instability. Pictorial demon-

strations are given in Fig. 3.2. (An exhaustive exploration of these mechanisms for

different activities and liquid-crystalline parameters is given in Ref. [80].) In essence,

curvature in the apolar nematic director field produces a local polarity, which in turn

generates local flow.
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Figure 3.3: Phase diagram displaying regions where an active nematic is unstable to splay (red

lines) and bend (black lines) instabilities in a finite system, as a function of activity ζ and the

flow-alignment parameter ξ. Extensile (contractile) corresponds to ζ greater (less) than zero, and

flow aligning (tumbling) corresponds to |ξ| greater (less) than |ξc|.

However this flow instability can be suppressed in finite systems. Using a linear

stability analysis, Voituriez et al. showed that no spontaneous flow occurs below a

critical activity threshold ζc ∝ GQ`
2
Q/L

2
y (η/γ + . . . ), where GQ is the stress scale

of the LC, `Q is a microscopic lengthscale1, Ly is the system size and the bracketed

term includes the ratio of solvent and LC viscosities [81]. The generic instability

occurs for any value of the activity in bulk active nematics, because ζc → 0 in the

infinite system size limit.

This critical activity also depends on the mode of instability. In a finite system,

active nematics are unstable to bend and splay instabilities at distinct values of

ζc [6]. The instability that first appears (as activity is increased) depends on the

‘flow-alignment’ properties of the LC, which we parametrise in our model using ξ.

This parameter describes the relative influence of extensional and rotational flow

contributions on the nematic director. For |ξ| < |ξc|, rotation dominates and the

director continuously rotates in a tumbling motion. For |ξ| > |ξc| extension and

1This is the lengthscale at which the free energy cost of elastic distortions (parametrised by

Frank constant K) competes with the bulk free energy, and is defined as `Q =
√
K/GQ. See

Sec. 3.2.1.1 for details.
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Figure 3.4: Schematic of (a) isotropic and (b) nematic phases of a LC. While neither state

possesses translational ordering, the nematic exhibits orientational ordering.

rotation have equal effect and the director adopts a static orientation at an angle

to the flow [80]. The sign of ξ characterises the shape of the particles where ξ > 0

describes rod-like, ξ = 0 spherical, and ξ < 0 discoidal active particles. A schematic

stability diagram (generated using our linear stability analysis in Sec. 3.3) is given in

Fig. 3.3, illustrating the importance of each parameter. In our study we exclusively

focus on flow-aligning, rod-like particles, i.e., we choose ξ > ξc > 0.

In this chapter we focus exclusively on the flow instabilities that arise in systems

where there is no externally applied shear. However in Chap. 4 we consider the

shear rheology of our model.

Liquid crystals (LCs). As mentioned previously, theoretical descriptions of ac-

tive matter frequently derive from simple continuum models for the hydrodynamics

of a single-component fluid of rod-like objects which, depending on their symmetry,

can be described by polar [81, 82] or nematic order parameters [16, 76, 77]. Such

models were originally developed to describe passive LCs [74, 83], and because of

this, the field of active matter naturally inherits key concepts and terminology from

LC physics, which we now briefly introduce.

The term ‘liquid-crystal’ (LC) describes the fascinating phase of matter that lies

partway between crystalline (solid) and isotropic (liquid) states [74]. Nematic LCs

do not exhibit translational order, but do possess local orientational order which can

be characterised by a nematic director n̂, which is symmetric under n̂ → −n̂ (see

Fig. 3.4). More complex phases can also form, such as smectic LCs which form layers

that can slide over each other. Experimentally, LCs undergo a phase transition from
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Figure 3.5: Schematic showing how the (zero-shear) free energy landscape changes as a function

of IN-control parameter γ. For small values of γ there is only one minimum and therefore only one

stable state, the isotropic state. At larger γ = 2.7 (black dashed curve) a second minimum (the

nematic state) appears, though the non-zero energy barrier for the I→ N transition means that the

isotropic state remains metastable. Finally at γ = 3 (black dot-dashed line) this barrier disappears

and only the nematic state remains stable. The stability of isotropic and nematic branches is also

summarised in Fig. 3.6.
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Figure 3.6: A summary of the stability of the two branches as a function of IN-control parameter

γ (see also Fig. 3.5).

the disordered (isotropic) to the orientationally ordered (e.g., nematic) state as a

control parameter, such as temperature or concentration, is varied.

In our model, without activity or shear, the isotropic-nematic (IN) transition is

parametrised by γ, which controls the shape of the equilibrium free-energy land-

scape, see Fig. 3.5. For small γ < 2.7, the isotropic state Q = 0 minimises the

free energy. As γ is increased, a second minimum (the nematic state with Q 6= 0)

appears, though the non-zero energy barrier for the I → N transition means the

isotropic state remains metastable. Finally at large γ > 3 this barrier disappears

and only the nematic state remains stable. The stability of isotropic and nematic

branches is summarised in Fig. 3.6.
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Examples of active matter can be found in both isotropic and nematic phases,

e.g., depending on concentration [84,85]. There has been much focus on the stability

of orientationally ordered phases [77,81,86,87], or for phases close to the IN transition

[15]. However we are not aware of any detailed study that explores the nature of

the spontaneous flow instability as one transitions from a point deep in the isotropic

phase (γ < 2.7) up to the nematic phase (γ = 3). In this chapter, we contrast

the stability properties of both active-isotropic and active-nematic regimes. While

these both exhibit the generic flow instability discussed above, we will show that

the underlying mechanism is distinct.

Subcellular active matter. Fascinating examples of active matter can be found

at the subcellular level. A paradigmatic example is actomyosin, a cytoskeletal struc-

ture in which clusters of myosin molecular motors generate contractile stresses be-

tween long actin filaments [88]. (See Fig. 3.7 for schematic.) In the cell cortex, acto-

myosin forms gel-like networks. In the presence of large crosslinking proteins such as

filamin, myosin-driven activity has been observed to increase the elastic modulus by

two orders of magnitude [89]. Numerical studies also suggest that crosslinked actin

networks can exhibit LC elastomer behaviour, particularly when actin filaments are

longer than the crosslinking proteins [90]. With crosslinking suppressed however,

myosins can fluidise the actin network, significantly shortening the stress relaxation

time [91]. Actin polymerisation plays a role in cell motility where it drives the pro-

trusion of filopodia2, allowing the cell to crawl. While polymerisation has previously

been incorporated into cytoskeletal models [93], we do not include this effect in our

study.

However cytoskeletal materials are not exclusively contractile in nature. Recent

experiments [94, 95] explored the dynamics of clusters of kinesin molecular motors

in a suspension of rigid microtubule filaments, finding the resulting dynamics to be

extensile. Both kinesin and myosin (discussed above) molecular motors are powered

by hydrolysis of adenosine triphosphate (ATP); the authors control the activity

2Filopodia are narrow protrusions that extend beyond the leading edge of the cell, and play a

role in sensing and cell migration [92].
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Figure 3.7: Left: Schematic illustrating how clusters of myosin molecular motors (green units)

can generate forces between actin filaments (red lines). Right: Demonstration of how a gel-like

network of such units can produce a distribution of active contractile stresses.

of the material by varying the concentration of ATP, reporting a transition from

diffusive (at low activities) to ballistic (at high activities) dynamics. Both these

examples motivate our study, which considers mainly extensile but also contractile

dynamics within a subcellular context.

Viscoelasticity. While early studies mainly focused on the behaviour of these

active materials in a Newtonian background solvent, there has been increasing in-

terest in the dynamics of active matter in a complex, non-Newtonian environment.

Swarms of motile bacteria reside in viscoelastic fluids such as mucus or saliva. No-

tably, many bacteria excrete their own polymers [96], suggesting an advantage in

controlling the viscoelasticity of their surroundings. Subcellular active materials

such as actomyosin interact with long-chain flexible polymers and other cytoplas-

mic components, with long (possibly divergent) relaxation times. Note that while

LCs are somewhat viscoelastic (due to the slow motion of topological defects, see

Sec. 5.1), within our model local relaxations of Q are fast relative to the cytoskeletal

viscoelasticity we hope to address.

Theoretical and numerical attempts to model active matter in these environ-

ments focused first on the behaviour of individual swimmers. Single swimmers in a

viscoelastic fluid have been modelled as infinite [7] and finite [97] oscillatory sheets,

and as helices [98]. Depending on the size/frequency of oscillations, the geometry,

and the properties of the fluid, swimming speed can be either enhanced or suppressed
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relative to the Newtonian case. In Ref. [99], the authors examined the dynamics of

several classes of swimmer (e.g., sliding spheres or squirmers) in shear-thinning flu-

ids again finding that swimming speed is enhanced or hindered depending on model

specifics.

However the collective dynamics of active fluids in a viscoelastic environment has

received less attention. Bozorgi and Underhill model self-propelled polar entities

using a Smoluchowski model, coupled through the velocity field to an Oldroyd-

B fluid. In Ref. [100] the authors ignore diffusion and look at the stability of a

homogeneous isotropic base state. In the infinite system size limit k → 0, they find

that the system is always unstable to heterogeneous perturbations, where the growth

rate of the instability decreases as the polymer viscosity is increased. With diffusion

included in the analysis [101], they find that a large (but finite) polymer viscosity can

suppress the spontaneous flow instability in the infinite system size limit3. We will

show in this chapter (see Sec. 3.3.3.4) that our results for an isotropic suspension

generally agree with this study. We are unaware of any study on orientationally

ordered phases in the presence of polymer viscoelasticity. Our results show that

nematic phases remain intrinsically unstable (for any finite polymer elastic modulus

GC).

We introduce and derive a novel model exploring the competition between an

active nematic LC in a viscoelastic background. In this chapter these sectors only

influence each other indirectly via the velocity field, i.e., they are only coupled

through the Navier-Stokes equation which contains stress contributions from both Q

and C. We define the geometry and boundary conditions of the problem, enumerate

the key dimensionless groups and describe our numerical method.

Then by performing a linear stability analysis that includes the effect of the

polymeric background, we generalise earlier results in the literature for the value of

the critical activity for the onset of spontaneous flow. This criterion derives from two

modes of instability: a viscous mode (at small polymer relaxation times) in which

3See the white region in Fig. 2a of Ref. [101]
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the polymer acts purely as an additional source of viscosity, and an elastomeric mode

(at large relaxation times), which surprisingly permits spontaneous flows at finite

activity in what is effectively an elastic solid. Differences between bulk isotropic and

nematic phases are also explored.

These results are then quantitatively verified using 1D non-linear simulations,

revealing a variety of both static and oscillatory shear-banded states. The latter

exhibit oscillations on a timescale set by the polymer relaxation time, confirming a

direct role of the polymer (beyond simply providing an extra source of viscosity).

This oscillatory spontaneous flow persists even for τC → ∞, consistent with our

stability analysis, with the timescale of oscillation now set by the activity.

3.2 Description of model

We begin in this section by first describing our novel coarse-grained model for active

viscoelastic matter, which marries the active LC hydrodynamics of orientable apo-

lar particles [102] with polymer physics. The derivation of the model is explained

from free energy and non-equilibrium statistical mechanical considerations. We then

highlight the simplifications we make for the analytical and numerical studies in the

following chapters, and specify the simulation geometry, boundary conditions, key

dimensionless parameters and numerical details.

Credit for the derivation of the model is due to M. E. Cates, A. Maitra, S.

Ramaswamy, S. Banerjee, and M. C. Marchetti. Additional discussion regarding of

its construction can be found in the Supplementary Information of Ref. [103].

3.2.1 Full model

Nomenclature. For any second rank tensor A, we define the symmetric, anti-

symmetric and symmetric-traceless parts as

AS = 1/2
(
A + AT

)
, (3.1)

AA = 1/2
(
A−AT

)
, (3.2)

AST = 1/2
(
A + AT − 2/3I Tr[A]

)
. (3.3)
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We define the velocity gradient tensor (∇v)ij = ∂ivj, and denote the symmetric and

anti-symmetric forms as

D = [∇v]S = 1/2
(
∇v +∇vT

)
, (3.4)

Ω = [∇v]A = 1/2
(
∇v −∇vT

)
. (3.5)

Order parameters. We describe the orientational order of the apolar liquid-

crystalline active particles using a traceless, symmetric, second rank tensor Q which

is constructed from the director n̂ as

Qαβ = q (nαnβ − δαβ/3) . (3.6)

The deformation of the polymer is modelled by a second rank conformation tensor

C whose departure from isotropy measures local molecular strain. Depending on

the level of description, C describes the dyadic product of the end to end vector r

of either an entire polymer, or only a subsection of one.

While in principle one could additionally include variable concentration fields for

either polymer or active particles (see e.g., Ref. [104]), we assume these to be uni-

form. This corresponds to the so-called large friction limit in which all components

move with the same centre-of-mass velocity, v.

We now describe the equations of motion that determine the dynamics of the

three fields, Q, C and v. The present subsection may be skipped by the reader

primarily interested in the results of our model; we also summarise the full equations

of motion in Sec. 3.2.2.

3.2.1.1 Free energies

We begin by writing the total free energy functional for the system F =
∫
fdV ,

where f = fQ + fC + fQC contains respectively contributions from the nematic LC,

polymer and a coupling between the two. For the liquid-crystalline free energy we

use the standard form [83], which sums bulk and distortion contributions

fQ = GQ

[(
1− γ

3

)
2

Tr[Q2]− γ

3
Tr[Q3] +

γ

4

(
Tr[Q2]

)2

]
+
K

2
(∇iQjk)

2 , (3.7)
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where we have taken the standard one constant approximation for the non-local

terms [74]. Here γ is the isotropic-nematic control parameter which sets the magni-

tude of order in a fully relaxed, passive system. Modulus GQ and elastic constant

K set the relative strengths of the bulk and distortion terms. The lengthscale at

which these compete is given by the ratio `Q =
√
K/GQ.

For the polymer free energy, we follow Milner [105], setting

fC =
GC

2
(Tr[C]− ln det C) , (3.8)

where GC is the elastic modulus of the polymer. The first term describes the elastic

potential energy of a deformation, while the second term accounts for the entropy

associated with the sphericity of the molecular structure (which vanishes for isotropic

C = I) [83]. While in principle one can include gradient terms in fC analogous to the

LC free energy, this would introduce diffusive terms to both the polymer constitutive

equation and polymer stress [106]; for simplicity we follow Ref. [40] and only include

a diffusive term of kinetic origin to the polymer constitutive equation (see below).

Finally, we prescribe the lowest order coupling between the Q and C sectors

fQC = κTr[Q2] (Tr[C− I]) + 2χTr[CQ]. (3.9)

Here κ controls how the polymer pressure shifts the isotropic-nematic transition, and

can be viewed as a rescaling of the first term in the bulk LC free-energy (Eq. 3.7). By

construction, this term vanishes for a locally isotropic polymer network. The second

term is dependent on the relative orientations of Q and C, where it is preferential

for Q and C to align for χ < 0, and to be anti-parallel for χ > 0.

3.2.1.2 Equations of motion

We now describe the equations of motion for the coupled fields Q, C and v. The

couplings between these fall into three categories: reversible (no relaxation), irre-

versible (which in the absence of other couplings prescribes the relaxational dynamics

of the order parameter towards the minimum free energy), and active (which break

time-reversal symmetry).
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Nematic. The dynamics of the nematic order parameter Q contain all three cou-

plings,

∂tQij = −vk∂kQij + λQijkl∂lvk︸ ︷︷ ︸
reversible coupling

+ ΓQijklHkl︸ ︷︷ ︸
irreversible coupling

+ ζ1Qij + ζ2[Cij]
ST︸ ︷︷ ︸

active coupling

. (3.10)

The first reversible coupling term simply describes advection by the flow; the second

generalises this for rodlike molecules. To first order in Q, the flow alignment tensor

λQijkl reads

λQijkl =
λ0

2

(
δikδjl + δjkδil −

2

3
δijδkl

)
+

1

2
(δikQjl − δilQjk + δjkQil − δjlQik)

+
λ1

2

(
δikQjl + δjkQil + δjlQik + δilQjk −

4

3
δijQkl

)
. (3.11)

From this point onwards, we restrict ourselves to the specific case of needle-like

molecules and use the specific form of the flow-coupling coefficients, which can be

derived from microscopic considerations [107], and set λ0 = 2ξ/3 and λ1 = 2ξ where

ξ is the flow alignment parameter. Particles are flow aligning if |ξ| > 3q/ (2 + q) and

flow-tumbling if not [108]. The sign of ξ determines shape, where ξ > 0 describes

rod-like, ξ = 0 spherical, and ξ < 0 discoidal active particles (see also Fig. 3.3).

The third term on the RHS describes irreversible relaxation of Q towards the

free energy minimum specified by the LC molecular field,

H = − δF
δQ

+
I

3
Tr[

δF

δQ
] (3.12)

= −GQ

[(
1− γ

3

)
Q− γQ2 + γQ3

]
−GQγ

I

3
Tr[Q2] +K∇2Q

− 2κ (Tr[C]− 3) Q− 2χ

(
C− I

3
Tr[C]

)
. (3.13)

We only expand the relaxation tensor ΓQijkl to zeroth order in fields and gradients,

resulting in the scalar coefficient ΓQijkl = (GQτQ)−1δikδjl. Here GQτQ gives the rota-

tional viscosity of the LC, which we later refer to as ηQ.

The first active term in Eq. 3.10 can be absorbed into a redefinition of γ so we

suppress it, setting ζ1 = 0. The second term describes polymers that are themselves

active: in all that follows we consider the simpler case in which a passive polymer

is driven by an active nematic, and also set ζ2 = 0.
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Polymer. The constitutive equation for polymer conformation tensor C follows a

similar form,

∂tCij = −vk∂kCij + λCijkl∂lvk︸ ︷︷ ︸
reversible coupling

+ ΓCijklBkl +
`2
C

τC
∇2Cij︸ ︷︷ ︸

irreversible coupling

, (3.14)

where here we have assumed, for simplicity, that the polymers are not themselves

active and respond to nematic activity only through fluid advection. This captures

the effect of adding polymer to (say) a cell extract; alternatively, this could describe

the collective dynamics of bacterial suspensions in mucus. (In contrast, one could

build a system of polymers directly from active elements [109].)

In order to connect with the widely used JS model (see Sec. 2.2.3.1), we expand

the kinetic coupling tensor λCijkl to first order in C,

λCijkl =
a

2
(δikCjl+δjkCil+δjlCik+δilCjk)+

1

2
(δikCjl−δilCjk+δjkCil−δjlCik), (3.15)

where a is a slip parameter whose significance we discuss later (see Sec. 3.2.1.3).

The dissipative coupling through ΓCijkl is more complicated: if, like in the LC

equations, a constant isotropic kinetic coefficient is used, the resulting relaxational

form is complicated and unphysical. We instead adopt the conformation-dependent

relaxational kinetic coefficient used by Milner [105] to describe polymer gels,

ΓCijkl = 2τ−1
C

(
∂Cij
∂Σel

ml

)
Cmk , (3.16)

where

Σel = 2C · δF/δC . (3.17)

This reduces to a kinetic coefficient

ΓCijkl = (GCτC)−1(δikCjl + δilCjk + δjlCik + δjkCil) , (3.18)

if one uses only the bare polymer free-energy, but is much more complicated if one

retains couplings to the apolar order parameter, i.e., Eq. 3.9. Nevertheless, we will

use this kinetic coefficient here to construct an active model that reduces to the JS

model (as described in Sec. 2.2.3.1) in the absence of activity. Analogous with H in
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the nematic sector, the polymer molecular field B is

B = −δF
δC

(3.19)

= −GC

2

(
I−C−1

)
− κITr[Q2]− 2χQ. (3.20)

The final term in Eq. 3.14 allows for diffusion of the polymer order parameter,

following earlier studies which generalise the JS model to include diffusive effects [40].

The shortest lengthscale at which structure may appear in C is set by `C and would,

for example, describe the width of the interface between bands of differing shear-

rate [41].

For polymer solutions, even without Q, physically such a term might describe the

microscopic Brownian motion of polymer molecules [110]. Within the cytoskeleton

this could also represent diffusive transport of gel material. For a detailed evaluation

of diffusion in the nematic order parameter field see, e.g., Ref. [111]. There are also

practical numerical reasons to include a non-local term. While in theory C is coupled

to Q which does contain gradient terms, in practice this coupling isn’t strong enough

and we find structure in C on the scale of the grid spacing ∆x if the diffusive term

is neglected.

Velocity. We work in the zero Reynolds number limit, in which the centre-of-mass

velocity v is determined instantly by the dynamics of Q and C. Stokes force balance

then reads

∂βΣαβ = 0, (3.21)

where Σαβ is the total stress tensor. This sums contributions from an isotropic

pressure P , reactive stresses in Q and C, a dissipative Newtonian stress, and an

active stress

Σ = −P I + ΣQ + ΣC︸ ︷︷ ︸
reactive

+ Σdiss︸ ︷︷ ︸
dissipative

+ Σa︸︷︷︸
active

. (3.22)

The reactive contributions are given by [83,106,112]

ΣQ
ij = −(∂iQkl)

δF

δ (∂jQkl)
− λQklijHkl , (3.23)

ΣC
ij = −(∂iCkl)

δF

δ (∂jCkl)
− λCklijBkl , (3.24)
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where the kinetic coefficients λQijkl, λ
C
ijkl are defined as before. The dissipative stress

is simply

Σdiss
ij = 2ηDij , (3.25)

where η is the solvent viscosity, and D = 1/2
(
∇v +∇vT

)
is the symmetrized velocity

gradient tensor. Finally the active stress is

Σa
ij = −ζ3Cij − ζQij , (3.26)

where ζ3, ζ are active parameters. We restrict ourselves to the simpler case of an

active nematic in a passive polymer background and set ζ3 = 0. The only remaining

activity parameter ζ forms a key parameter for our study of the model.

3.2.1.3 Significance of slip parameter

The slip parameter a describes the non-affine stretch of polymer dumbbells relative

to the extension of the flow. For values of |a| < 1, the polymer slips, which can

result in constitutive curves with non-monotonic behaviour, and for the JS model

this occurs when viscosity ratio η/GCτC < 1/8 [113].

For our model to remain thermodynamically admissible in the passive limit, par-

ticular care must be taken in the derivation of the polymeric stress, ΣC . Correct

physical behaviour requires that slip parameter a appears in both the polymeric

constitutive equation and stress (as both are derived from λCijkl which contains a).

The previous derivations of the JS model (either with [40] or without diffusion [59])

set ΣC = −2BC. This stress is only accidentally admissible through a renormalisa-

tion of GC [106]. For the remainder of this thesis, we use this renormalised version

of the model exclusively. In Sec. 4.3.1, we will explore the effect this revision has

on the polymer shear rheology. In particular, we will show that constitutive curves

are non-monotonic for η/(a2GCτC) < 1/8 (see Sec. 4.3.1). Note that for a = 1, the

polymeric sector reduces to the well studied Oldroyd-B model.

3.2.1.4 Asymmetry of the stress tensor

While the majority of the stress contributions are symmetric, ΣQ contains an anti-

symmetric piece. As such, care should be taken to preserve the correct order of
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indices in Eq. 3.21. While in principle it is possible to work entirely with a sym-

metrised stress that produces the same velocity field v [114] (e.g., as in Ref. [115]),

we retain the asymmetric version for simplicity.

3.2.2 Reduced model

We now briefly summarise the condensed equation set for the model after expand-

ing out the kinetic and relaxational coefficients, and including our choice to set

additional active and coupling parameters ζ1 = ζ2 = ζ3 = κ = 0.

Constitutive Equations

(∂t + v.∇) Q = QΩ−ΩQ + 2ξ[QD]ST +
2ξ

3
D− 2ξQTr[QD] +

1

GQτQ
H

(∂t + v.∇) C = CΩ−ΩC + 2a[CD]S +
−1

τC
(C− I) +

`2
C

τC
∇2C +

−4

τCGC

χ[QC]S

Molecular Field

H = −GQ

[(
1− γ

3

)
Q− γQ2 + γQ3

]
−GQγ

I

3
Tr[Q2] +K∇2Q− 2χ

(
C− I

3
Tr[C]

)
Force balance / Stresses

∂βΣαβ = 0

Σ = −P0I + ΣQ + ΣC + Σdiss + Σa

ΣQ = −K (∇Q) : (∇Q)− 2ξ

3
H− 2ξ[QH]ST + 2[QH]A + 2ξQTr[QH]

ΣC = aGC (C− I) + 4χ
(
a[QC]S + [QC]A

)
Σdiss = 2ηD

Σa = −ζQ

3.2.3 Geometry and boundary conditions

In the majority of our study we consider a slab of active material confined between

parallel plates separated by Ly in the y-direction, as shown in Fig. 3.8. At the
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Figure 3.8: Schematic of the parallel plate geometry which we consider for the majority of the

study. For the 1D study in Chaps. 3/4 we assume invariance in x and z directions, for later 2D

studies (Chap. 5) we allow variation in x and y directions. We consider (i) static walls (Chaps. 3,

5) and (ii) sheared parallel plates (Chap. 4), where in the latter case the top plate moves with

velocity V = ¯̇γLy.

plates we choose no-slip and no-permeation boundary conditions (BCs) for v and

zero-gradient BCs for Q and C,

∂yQαβ = ∂yCαβ = 0 at y = {0, Ly} ∀α, β,

vx = vy = 0 at y = 0,

vx = V (= γ̇Ly) , vy = 0 at y = Ly,

where V = γ̇Ly is the velocity of the top wall. The special case γ̇ = 0 gives the

unsheared case studied in Chaps. 3, 5.

The above ‘free boundary condition’ employed for the nematic sector in the

context of active materials has been considered previously [15, 80] whereas other

studies have adopted anchoring BCs [116]. Different boundary conditions can result

in quantitative differences (e.g., in the threshold activity for spontaneous flow), and

care must been taken when comparing studies. However recent work in 2D employing

both free and anchoring BCs has shown that the essential physics is qualitatively

unchanged by this choice [87], particularly at larger activities where the state is

independent of finite size effects.

Equivalent boundary conditions for Q and C at the boundaries also make the

linear stability calculation analytically tractable (see Sec. 3.3). In our stability anal-

ysis, we will show that the initial condition can significantly impact the threshold for

spontaneous flow, finding states where the director is initially aligned in the x- and y-
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directions become separately unstable at activities an order of magnitude apart. We

expect that a similar effect would be observed were we to instead choose boundary

conditions that impose a director orientation at the wall, i.e., using strong anchoring

conditions. Our results suggest that prescribing a director parallel (perpendicular)

to the wall would result in a bias towards the formation of a splay (bend) shear-

banded state. Recent experiments have demonstrated that living liquid-crystals, in

which bacteria are embedded within a lyotropic LC, can be influenced by anchoring

boundary conditions in a similar fashion [117].

This chapter focuses on the 1D dynamics where we assume all quantities are

invariant in the x and z directions. We work with 3D tensors for both Q and C

which, for example, allows n̂ to point out of plane. These are embedded in a space

whose dimensionality is 0D, 1D (Chaps. 3, 4) and 2D (Chap. 5). In our simulations,

only three independent entries of Q and C become non-zero in practice [118, 119],

given that both order parameters are symmetric. In Sec. 5.2, we report the results

of a collaborative project which studied how the correlation lengths in the turbulent

active phase depend on activity. Our data (with 3D Q) demonstrated excellent

agreement with that from an independent numerical study (with 2D Q), strongly

suggesting that the key physics of such models is robust to the dimensionality of the

order parameter. Velocities are purely in the x− y plane, i.e., we impose vz = 0.

3.2.4 Units and parameters

In all that follows we work in units of length [L] = Ly = 1, time [T ] = τQ = 1, and

modulus [G] = GQ = 1. All model parameters, including our choice of units are

summarised in Table 3.1 for convenience.

As the cellular materials of interest are typically found at high concentrations,

we mainly fix the IN-control parameter γ = 3 in our numerics, corresponding to the

nematic phase in a passive LC. However we also consider the isotropic case where

γ < 2.7 in our stability analysis. We work in the zero Reynolds number limit by

setting ρ → 0, and fix the solvent viscosity η = 0.567 to allow direct comparison

with previous work [87]. We begin by setting the externally applied shear-rate γ̇ to

zero, but later explore the dynamics of a driven system where γ̇ 6= 0. In later 2D
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studies the length in the flow (periodic) direction is fixed at Lx = 4Ly.

Unless otherwise stated, we fix ξ = 0.7 (flow-aligning) and slip parameter a = 1

(no-slip), to avoid introducing any additional tumbling or shear-banding instabilities

associated with Q or C respectively. This allows us to focus on the role of activity

in the spontaneous flow instability; we later explore the role of ξ and a on the shear

rheology of our model in Chap. 4. The choice of a = 1 reduces the polymeric sector

to an Oldroyd-B fluid, meaning only affine deformation is possible. Theoretical

studies suggest this may be a reasonable assumption for dense cross-linked filaments

[120, 121]. For most of our results we tune the polymer elastic modulus GC to

maintain constant polymer viscosity (ηC ≡ τCGC = 1), though this is briefly relaxed

to explore states of infinite polymer viscosity (Sec. 3.4.2).

The microscopic lengthscale at which elastic distortions compete with the bulk

free energies is `Q ≡
√
K/GQ. Recasting the Q constitutive equation (Eq. 3.10) in

this notation, the diffusive term (originating from the molecular field4, see Eq. 3.13)

then becomes
`2Q
τQ
∇2Q. We include the analogous diffusive terms in the polymeric

sector, where the interfacial lengthscale is set by `C . In the linear stability analysis

we make no assumption about the relative strengths of these diffusive prefactors.

However unless stated otherwise, in our numerical results we constrain

`2
Q

τQ

(
≡ K

ηQ

)
=
`2
C

τC
= ∆. (3.27)

Our choice to equate diffusivities allows us to take an elastomeric limit τC → ∞

whilst retaining spatial gradients in C.

For the majority of our study, coupling between the Q and C sectors is mediated

via the fluid velocity v, i.e., polymer and nematic are only coupled in the sense that

they both contribute stresses to the Navier-Stokes equation. Recall that these sectors

can additionally be coupled thermodynamically at the free energy level for χ 6= 0

(Eq. 3.9). We briefly explore the effect of this explicit coupling in Sec. 5.6 by setting

0 < χ < min(GQ, GC), where the effects on the dynamical behaviour are dramatic.

Having fixed the majority of model parameters to appropriate values (see Ta-

ble 3.1 for a full list), three parameters remain to be varied: activity (ζ), diffusivity

4Note that `Q also appears in the stress which contains gradients in Q.
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parameter dimensions value description

system (or shared) parameters

η [ML−1T−1] = [GT ] 0.567 (fixed) solvent viscosity

Lx [L] 4 (fixed) length in periodic direction

Ly [L] 1 (fixed) distance between walls

nematic liquid-crystal parameters (Q)

GQ [G] 1 (fixed) Q modulus (appears in bulk

free energy density)

τQ [T] 1 (fixed) Q relaxation time

γ [1] 3 (fixed) IN control parameter, deep in

nematic phase

ξ [1] 0.7 (fixed) flow aligning (ξ > 3/5)

`Q =
√

K
GQ

[L] 0.002→ 0.025 (vary ∆ =
`2Q
τQ

) Frank length

polymer parameters (C)

GC [G] chosen to fix ηC = 1 (vary) C elastic modulus

τC [T] 10−2 → 106 →∞ (vary) C relaxation time

`C [L]
`2Q
τQ

=
`2C
τC

= ∆ (slaved to `Q) diffusive lengthscale

a [1] 1 (fixed) slip parameter (where a = 1

is Oldroyd-B)

activity parameters (Q)

ζ [ML−1T−2] = [G] 0.001→ 10 (vary) extensile activities (ζ > 0)

explicit coupling parameters (Q + C)

χ [G] χ� GQ, GC (vary) or 0 (fixed) free energy coupling parame-

ter

Table 3.1: Full list of model parameters, grey rows show our choice for units of length [L], mod-

ulus [G], and time [T ] respectively. Values for parameters that are fixed (unless stated otherwise)

are given.

(∆), and polymer relaxation time (τC). These are made dimensionless as

ζ̃ =
ζ

GQ

,

∆̃ =
∆τQ
L2
y

(
=

K

GQL2
y

=
`2
Q

L2
y

)
,

τ̃C =
τC
τQ
,

but by construction, in our units the tildes are redundant and we now drop them.
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parameter value description

ζ̃ = ζ/GQ 0.001→ 10 activity (ζ > 0)

∆̃ ≡ K
GQL2

y
10−5 → 6.4× 10−4 diffusive constant

τ̃C ≡ τC/τQ 10−2 → 106 →∞ ratio of relaxation times

χ̃ ≡ χ/GQ χ� GQ, GC or 0 explicit coupling strength

Table 3.2: List of key dimensionless parameters which we vary, from this point onwards we drop

tildes for clarity. (Note that we also use the symbol χ in a separate context in Chap. 6 to denote

the normalised drag.)

Note that in principle there is a 4th dimensionless parameter η̃ = η/(τQGQ), but we

fix this η̃ = 0.567 to remove this arguably less interesting dimension of parameter

space (the specific value is inherited from an earlier numerical study [87]). These

key dimensionless groups are summarised in Table 3.2.

3.2.4.1 Experimental parameter estimates

While it is very difficult to provide a direct mapping of our model parameters

to experimentally measurable quantities, we can at least provide sensible order-

of-magnitude estimates to guide our numerical study.

Our choice of dimensionless control parameters in Table 3.2 might describe a cy-

toskeletal gel similar to the recent experiments of Sanchez et al. [94], which captured

the extensile (ζ > 0) dynamics of a kinesin-microtubule mixture. The strength of

the activity was tuned experimentally using the concentration of ATP [94]. The

modulus of a contractile actin gel increases by a factor of 10 in the presence of

myosin motor activity [89] suggesting an upper bound of ζ/GQ ≈ 10. Values for

∆ are selected so that ∆x < `Q � Ly (where ∆x is the numerical grid size). The

velocity correlation length for kinesin microtubule mixtures has been estimated at

lv ≈ 100µm [94], and if we assume `Q is an order of magnitude smaller (see results in

Sec. 5.2), our simulations then imply a channel width in the range 400µm→ 3mm

as would be found in a typical microfluidic setup.

While the rheological properties of the cytoskeleton are highly complex and de-



3.3. Linear stability analysis 47

pendent on the cell type [122], representative values for a crosslinked actin gel might

be τQ ∼ 5s,GQ ∼ 1Pa [89]. A logical extension to previous studies (without poly-

mer) then sets comparable LC, polymer and solvent viscosities GQτQ = GCτC ∼ η.

In our model, the polymer could in principle describe a range of viscoelastic be-

haviours within the cell, including e.g., the cytosol, which comprises of entangled

protein filaments and organelles [123]. To encompass this diversity, we vary the poly-

mer relaxation time over several decades from τC = 10−2 (for which the polymeric

dynamics is rapid and only contribute extra viscosity) to τC →∞ (where the poly-

mer effectively acts as an elastic solid). The latter limit in our model describes an

nematic elastomer, i.e., a cross-linked polymer network with liquid-crystalline orien-

tational order [124,125]. We will refer to this limit in our results as the elastomeric

limit.

3.3 Linear stability analysis

We have introduced our model for active viscoelastic matter, indicating the sim-

plifications made for our analytical and numerical work. We also have defined the

key dimensionless parameters and geometry of the problem. It is unclear a priori

which regions of our parameter space, which is of large dimensionality, contain the

most interesting dynamical behaviour, especially as experimental suggestions for the

model parameters only yield order-of-magnitude estimates.

Therefore we proceed by first analytically considering the linearised version of

our model. This allows us to rapidly locate the key stability features such as the

thresholds for spontaneous flow, or regions where oscillatory behaviour is to be

expected. This then informs parameter selection for our non-linear numerical studies

which require significantly longer runtimes.

In this chapter we perform a stability analysis on an initially non-flowing ac-

tive viscoelastic material confined between parallel plates Ly apart. We generalise

previous results to obtain an analytical critical activity for the onset of the sponta-

neous flow instability in the presence of a polymeric background. In finite systems,

if the polymer viscosity is increased at fixed τC by increasing GC , we find that this
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critical activity is increased. Taking the infinite viscosity limit in this fashion then

completely suppresses the instability (for any finite activity). However, if instead

we fix polymer modulus GC and increase τC , the critical activity tends to a finite

constant, even in the limit τC →∞. This surprising result implies that the activity

driven spontaneous flow instability is possible in what is effectively an elastic solid,

a result that we later confirm numerically.

While these results are common to both isotropic and nematic materials, their

behaviour in the infinite system size limit differs. We show that the critical ac-

tivity vanishes as Ly → ∞ for nematic materials (recovering earlier works without

polymer), but remains finite for isotropic materials consistent with Ref. [101]. We

rationalise this difference using a rheological argument. We finish by commenting on

the generality of our results, which are robust to the inclusion of polymer diffusion.

Differences that might arise under different boundary conditions are also discussed.

3.3.1 General procedure

We begin by outlining the general procedure for the linear stability analysis, then

separately apply it to nematic then isotropic suspensions. We examine the linear

stability of an initially non-flowing, homogeneous base state to 1D perturbations in

the flow gradient direction, y. (In Chap. 4 we generalise these results to include

sheared suspensions, though the lack of an analytical base state for γ̇ 6= 0 means

the eigenvalue problem must then be evaluated numerically.) Consider first the

homogeneous base state

Qαβ = q (nαnβ − δαβ) , (3.28a)

Cαβ = δαβ, (3.28b)

γ̇ ≡ ∂yvx = 0, (3.28c)

where q is the magnitude of the order parameter. For isotropic materials q = 0,

whereas for nematics we choose coordinates such that n̂ = (1, 0, 0) or (0, 1, 0), corre-

sponding to a director oriented parallel and perpendicular to the walls respectively.

While perturbations can grow in ¯̇γ, the other elements of the velocity gradient tensor

remain zero (as vy = vz = 0, and because we assume invariance in the x/z direc-



3.3. Linear stability analysis 49

tions). To simplify the notation, we introduce a vector φ = (Q,C, γ̇) and perturb

the base state by writing

φ = φ+ δφ (3.29)

where φ =
(
Q,C, γ̇

)
. We write the perturbations as the sum of Fourier modes

δφ =
∑
k

φk(t)cos (ky) , (3.30)

with Fourier amplitudes φk =
(
Qk,Ck, γ̇k

)
, and where the wavevector k may only

take discrete values: k = πk̃/Ly where k̃ is an integer. We linearise our full set

of hydrodynamic equations about the base state to obtain coupled linear algebraic

equations for the Fourier amplitudes. Using the Stokes equation, ∇ ·Σ = 0, with Σ

the total stress tensor given in Eq. 3.22, we can express γ̇k in terms of Qk and Ck

as

γ̇k =
−1

η

(
δΣk

A + δΣk
Q + δΣk

C

)
xy
,

where δΣk denotes the k-th Fourier amplitude of the linearised part of the corre-

sponding contribution to the stress tensor. Eliminating γ̇k we finally obtain a lin-

earised set of algebraic equations for the six Fourier amplitudes pk =
(
Qk
xx, Q

k
xy, Q

k
yy ,

Ck
xx, C

k
xy, C

k
yy

)T
of the form

∂tp
k = Mk · pk . (3.31)

The eigenvalues of the matrix Mk yield the dispersion relations ωk of the lin-

ear modes of the system as functions of wavevector k. The real part of such

eigenvalues is the growth rate of the Fourier amplitudes of the perturbations in

the hydrodynamic fields. The two non-trivial eigenvalues are of quadratic form

ω± = −B ±
√
B2 − 4AC/2A, where all quantities are functions of wavevector (de-

tails are given in Apx. 3.6, including full expressions for A, B, and C). We then ask

at what value of the activity does the linear instability first appear, i.e., we find the

critical activity ζc such that

Re(ω+) = 0, (3.32)

where ω+ is the eigenvalue of Mk with the largest real part.
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Figure 3.9: Schematic demonstrating two director configurations considered in our stability

analysis. We probe the linear stability of these uniformly ordered states to splay (left) and bend

(right) instabilities respectively. The wavevector k is oriented perpendicular to the walls.

There exist two solutions to Eq. 3.32, where the critical activity with the smaller

magnitude determines the threshold of instability. The crossover between these

criteria depends on the separation of relaxation times in the problem. When the

ratio τC/τQ is small (we later quantify this), the polymer acts purely as an addi-

tional source of viscosity, resulting in a viscous criterion. However when the ratio is

very large, a new mode of instability dominates resulting in a elastomeric criterion

independent of τC .

The active LC under consideration can initially be in an isotropic or a nematic

state. While the above criteria remain qualitatively similar for both in many re-

spects, differing behaviour is observed in the infinite system size limit. The critical

activity remains non-zero for isotropic suspensions, while for nematic suspensions it

vanishes. We later rationalise this result by considering the shear rheology in the

limit of γ̇ → 0 (see Sec. 4.3.3).

3.3.2 Nematic case

Numerous examples of active biological matter can be found at high concentrations,

displaying nematic or polar order [94, 126]. Many analytical studies focus on the

stability and dynamics of such orientationally ordered phases [77, 78, 81, 87], and in

order to connect with these studies and others, we begin our study in this regime.

We later generalise our results to include isotropic base states.

The stability calculation for a nematic base state is more involved than for
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isotropic materials as the tensor Q in the base state is non-zero. In order to sim-

plify the algebra, we fix the IN control parameter γ = 3 corresponding to the end

of isotropic metastability (recall Fig. 3.6), though we have explicitly checked using

Mathematica [127] that our results for nematics are qualitatively unchanged to this

choice.

We explore two director configurations n̂ = (1, 0, 0), n̂ = (0, 1, 0) which respec-

tively probe splay and bend instabilities (see Fig. 3.9). Note that the wavevector k is

perpendicular to the former and parallel with the latter configuration. Experimen-

tally, a particular orientation could be selected by choice of boundary condition [117].

The non-trivial eigenvalues of the stability problem can be written in the quadratic

form

ω± =
−B ±

√
B2 − 4AC

2A
, (3.33)

where full expressions for A, B, and C are given in Apx. 3.6.1.2. We proceed by

considering separately the cases when the discriminant D = B2 − 4AC is positive

and negative. The former case, which occurs for small τC , results in purely real

eigenvalues and our critical activity, which requires solution of Re(ω+) = 0, can

simply be found by solving AC = 0. The latter case (for large τC) results in a pair

of complex conjugate eigenvalues, the real part of which changes sign when B = 0.

One can show (see Apx. 3.6.1) that the point of crossover between these criteria

(i.e., AC = B = 0, and therefore D = 0) occurs at

τ ∗C ≈
1 + `2

Ck
2

`2
Qk

2
τQ. (3.34)

The full analytical form of τ ∗C is too unwieldy to reproduce here so we use an approx-

imation that in practice results in a marginally smaller value of τ ∗C . (See Apx. 3.6.1

for details of the approximation.)

Interestingly, τ ∗C diverges in the infinite system size limit k → 0 implying that

only the viscous criterion ζvisc
c applies to bulk systems. This is visualised in Fig. 3.10

(left) where the crossover point between criteria (blue circles) is pushed out towards

τC →∞ as we increase the system size. We will show that ζvisc
c is the only relevant

criterion in this infinite system size limit as it tends to zero (black curves in Fig. 3.10),

‘trumping’ the (non-zero) elastomeric criterion.
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Figure 3.10: Schematic phase diagram demonstrating how viscous and elastomeric criteria

(black/red lines) behave as we approach the infinite system size limit for a nematic. Curves of de-

creasing transparency are for increasing Ly, blue dashed line bounds the oscillatory region. Every

point on the phase diagram is unstable (dotted area) for Ly → ∞. Left: At fixed GC ∼ O(1),

the crossover between criteria (τ∗C , blue circles) is pushed to increasingly larger τC as we increase

the system size. The viscous criteria tends to zero as Ly → ∞, whereas the elastomeric criterion

converges to a constant value. Right: At fixed τC ∼ O(1) the same limiting behaviour is observed

(though there is no crossover).

However all our numerical results assume a finite system size, justifying ex-

ploration of both viscous and elastomeric criteria. For our choice to fix `Q/Ly ∼

O(10−2), the crossover typically occurs at τ ∗C ∼ O(103). The physical significance of

τ ∗C can best be seen by taking the small k limit directly in Eq. 3.34 in which one re-

covers τ ∗C ≈ ηQ/(Kk
2). This is the orientational relaxation time for long-wavelength

distortions in the nematic phase. If the polymer relaxation time is longer than this,

then the polymer will appear as an elastic solid from the perspective of the active

nematic (this is the elastomeric limit). Conversely if the polymer stress can relax

faster than τ ∗C , then the polymer plays the role of a viscous fluid. The appearance

of oscillatory behaviour in the elastomeric limit is consistent with the recent work

of Bozorgi and Underhill [101] which we later discuss in Sec. 3.3.3.4.
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3.3.2.1 Viscous criterion: nematic

When τC < τ ∗C , the discriminant (D = B2 − 4AC) remains positive and the eigen-

value problem simplifies to AC = 0. Solving for ζ yields the critical activity,

ζvisc
c =

k2`2
Q

ΛτQ

(
η + 2Λ2ηQ +

a2

1 + k2`2
C

ηC

)
, (3.35)

where

Λ =

 (5ξ − 3)/12 for n̂ = (1, 0, 0) ,

(5ξ + 3)/12 for n̂ = (0, 1, 0) .
(3.36)

Note that the orientation of the director in the base state plays an important

role. In our simulations we typically fix ξ = 0.7 meaning that Λ, and therefore

ζc, changes by an order of magnitude depending on the director orientation in the

initial base state.

The lowest possible mode (k̃ = 1 ⇒ k = π/Ly) is the first to become unstable.

Substituting this into Eq. 3.35 and using K ≡ `2
QGQ recovers a form consistent with

earlier studies of orientationally ordered active matter (without polymer) [80,81],

ζvisc
c ∝ K

L2
y

[
1 + A

η

ηQ
+B(`C/Ly)

ηC
ηQ

]
. (3.37)

In essence, the critical activity describes the active stress required to overcome

the energetic cost of distorting the director field (parametrised by the Frank constant

K) within a confined space of size Ly. Gradients in the director field are an essential

ingredient of the generic flow instability, recall Fig. 3.2. The effort required to create

the distorted state also increases with solvent or polymer viscosity, as by definition a

more viscous fluid requires a larger stress to maintain a given shear-rate. Note that

if we were to adopt antagonistic anchoring boundary conditions where the director

is prescribed a different orientation at each wall, then even the passive LC state

would be distorted: in this case the critical activity vanishes and spontaneous flow

will occur for any activity [108].

We briefly validate the above criterion in the Q-only limit (i.e., ηC → 0) by

comparison with Ref. [87], which measured the threshold for the splay instability

in an extensile material, with parameters η = 0.567, ξ = 0.7, τQ = GQ = Ly = 1.

Inserting the lowest possible mode k(k̃ = 1) = π/Ly exactly recovers their result

`Q = 0.086ζ
1/2
c .
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Importantly, Eq. 3.37 also reveals that in the infinite system size limit, Ly →∞,

the critical activity ζvisc
c → 0 (see black curves in Fig. 3.10). This means that

even with polymer present, a bulk homogeneous nematic base state is intrinsically

unstable at any level of activity, however small. This feature is unique to the orienta-

tionally ordered phase; we will later show that while the spontaneous flow instability

still exists for isotropic phases, it requires finite active stress to set in.

Note that for this viscous criterion, the polymer effectively renormalises the

solvent viscosity η, i.e., η → η + a2ηC/(1 + k2`2
C). At the threshold of instability,

ω = 0 and the associated timescale τω ∝ 1/ω is effectively infinite. Therefore τC

is instantaneous in comparison and therefore does not appear directly in Eq. 3.35,

appearing only indirectly in the viscosity ηC = GCτC . The onset of the spontaneous

flow instability in finite systems can be delayed by increasing polymer viscosity ηC .

The large polymer viscosity limits (a) τC → ∞ at fixed GC and (b) GC → ∞ at

fixed τC are indistinguishable from the perspective of the viscous criterion Eq. 3.35

(equivalently one cannot distinguish black curves in Fig. 3.10 left from right).

However we will now show that this is not the case in the elastomeric regime

where τC > τ ∗C . In this limit, the resulting elastomeric criterion remains finite even

for τC →∞.

3.3.2.2 Elastomeric criterion: nematic

The above solution assumed that the discriminant D in the eigenvalue problem

was always positive. However for τC > τ ∗C , the discriminant changes sign and the
√
D term in ω+ then contributes an imaginary part to the eigenvalue, indicative of

oscillatory behaviour [128]. The elastomeric stability criterion is then obtained by

solution of B = 0, yielding

ζelast
c =

η
(

1 + `2
Ck

2 + `2
Qk

2 τC
τQ

)
+ 2`2

Qk
2τCΛ2GQ + a2GCτC

ΛτC
. (3.38)

Crucially, in contrast to the viscous criterion (Eq. 3.35), this threshold remains

finite in the elastomeric limit τC →∞ at fixed GC ,

lim
τC→∞,
k→0

ζelast
c =

a2GC

Λ
, (3.39)
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where we have also temporarily taken the infinite system size limit for clarity of

expression (see red curves in Fig. 3.10). Fascinatingly this result suggests that the

classical nematic spontaneous flow instability can still occur in what is effectively an

elastic solid, at finite activity. We later quantitatively confirm this with numerical

simulations in both 1D (Sec. 3.4.2) and 2D (Sec. 5.5.3).

Therefore, contrary to the viscous criterion, the large polymer viscosity limits

(a) τC → ∞ at fixed GC and (b) GC → ∞ at fixed τC are not equivalent: the

critical activity remains finite in the former limit whereas it diverges for the lat-

ter. This provides strong evidence that polymer viscoelasticity plays a direct role in

the instability, as τC and GC enter the above criterion independently, not just as a

viscosity renormalisation. This occurs because above τ ∗C at the threshold of insta-

bility (Re(ω±) = 0) there is a timescale associated with the imaginary component

τosc = 2π/Im(ω±) which is non-zero. This timescale can be explicitly seen in our

simulation results (for a later example see Fig. 3.13 right).

3.3.2.3 Summary: nematic

In summary, we have applied our linear stability analysis to an nematic active LC,

coupled through the flow to a polymeric background. A full analytical treatment

of the eigenvalue problem required that we consider the regimes of small and large

τC/τQ separately, resulting in the derivation of viscous and elastomeric critical ac-

tivities respectively.

In the viscous criterion the polymer simply contributes additional viscosity,

renormalising the solvent viscosity. At the onset of instability, the timescale as-

sociated with the instability is infinite; as τC is instantaneous in comparison, it may

only appear indirectly as part of the polymer viscosity. Were ζ̄visc
c the only criterion,

one could always suppress spontaneous flow by increasing ηC (at fixed τC or GC).

However for large τC , we discovered a new mode of instability. Unlike the viscous

criterion, this remains finite as τC → ∞ (at fixed τC) permitting spontaneous flow

in what is effectively a solid of infinite viscosity. As the eigenvalue associated with

this elastomeric mode has a non-zero imaginary part at the onset of instability, τC

and GC can appear independently in the criterion ζ̄elast
c . Note that this novel effect
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requires the inclusion of polymer.

3.3.3 Isotropic case

Having considered the stability of the nematic phase, we now generalise our results

to include the disordered or isotropic phase, for which there is no net orientation at

any given point in the fluid. Experimentally this could describe, for example, dilute

bacterial suspensions [117,126].

In our model, without activity or shear, the isotropic state is thermodynamically

stable when the IN-control parameter γ < 2.7, metastable for 2.7 < γ ≤ 3, and

unstable for γ > 3 [15]. We later explore the impact of this parameter on the

rheology of active materials in Sec. 4.3.3. For an isotropic state at rest, Q = 0

which significantly simplifies the base state

Qαβ = 0, (3.40a)

Cαβ = δαβ, (3.40b)

γ̇ = 0. (3.40c)

As for our nematic calculation, the non-trivial eigenvalues of the stability problem

can be written in the quadratic form

ω± =
−B ±

√
B2 − 4AC

2A
, (3.41)

where full expressions for A, B, and C are given in Apx. 3.6.1.1. As before, we

consider separately the two regimes when the discriminant D = B2 − 4AC is pos-

itive and negative. The former, which occurs for small τC , results in purely real

eigenvalues and our critical activity, which requires solution of Re(ω+) = 0, can

simply be found by solving AC = 0. The latter case (for large τC) results in a pair

of complex conjugate eigenvalues, the real part of which changes sign when B = 0.

These criteria then determine the minimum active stress required for a homogeneous

and isotropic base state to spontaneously flow.

One can show (see Apx. 3.6.1) that the point of crossover between these criteria

(i.e., AC = B = 0, and therefore D = 0) now occurs at

τ ∗C ≈
1 + `2

Ck
2

Γ̄ + `2
Qk

2
τQ. (3.42)
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Figure 3.11: Schematic stability diagrams showing both isotropic criteria in the infinite system

size limit (solid red/black lines), the lower of which bounds the region of instability (black dotted

region). Left: (ζ, τC) phase diagram at fixed GC , showing that at the point of intersection, the

most unstable mode develops an oscillatory part, i.e., Im(ω) 6= 0 (grey filled region). Right:

(ζ,GC) phase diagram at fixed τC ∼ O(1), showing that the criteria don’t intersect. Here, an

instability at fixed activity can always be suppressed at large enough GC .

where Γ̄ = 1 − γ/3. For typical parameter values, τ ∗C/τQ ranges from O(101) when

deep in isotropic phase to O(103) as γ approaches the end of metastability. We

retain the terminology of the nematic calculation and refer to the regimes where τC

is less or greater than τ ∗C as viscous and elastomeric respectively. Schematic stability

diagrams are given in Fig. 3.11 which mark both criteria and the crossover point τ ∗C .

3.3.3.1 Viscous criterion: isotropic

Beginning in the limit of small τC < τ ∗C where the discriminant D is positive, one

can show (see Apx. 3.6.1.1) that Re(ω+) = 0 when

ζ = ζ̄visc
c =

Γ̄ + k2`2
Q

Λ̄τQ

(
η + 2Λ̄2ηQ +

a2ηC
1 + k2`2

C

)
, (3.43)

where Λ̄ = ξ/3, Γ̄ = 1 − γ/3. (We use bars to denote quantities specific to the

isotropic regime.) This criterion is marked with solid black lines in Fig. 3.12 for the

limit Ly →∞. Note that as before, the lowest possible mode (k̃ = 1⇒ k = π/Ly) is

the first to become unstable.

The most striking change when compared to the equivalent nematic result (Eq. 3.35)

is that in the infinite system size limit k → 0, the criterion ζ̄visc
c remains non-zero.

This means that while the generic instability does occur in bulk isotropic suspen-
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Figure 3.12: (a) Critical activity ζ̄visc
c (Eq. 3.43) against γ in the limit Ly → ∞. (b) Inset

shows behaviour for finite systems in the vicinity of γ = 3, with multiple curves for `Q/Ly = 10−2

(red) → 10−5 (blue). For clarity, we assume ηC = 0 (no polymer), as the only contribution is to

renormalise the solvent viscosity, see Eq. 3.43.

sions [101], it only appears above a threshold active stress.

Note that this general result can be specialised to the case of no polymer by

taking ηC → 0. In this limit, the existence of a spontaneous flow instability has

been previously reported in analytical studies of isotropic phases [78,129,130]. Direct

comparison is not possible however, as both models employed in these studies include

a variable concentration field (in our model the concentration is held fixed), and

Ref. [78] also only includes an active stress in the Stokes force balance equation (our

study additionally includes liquid-crystalline stresses).

The effect of the IN-control parameter is shown in Fig. 3.12. While the critical

activity is appreciable at values of γ deep in the isotropic phase, it remains finite and

the spontaneous flow instability is predicted for large enough activities. As expected

from the form of Eq. 3.43, this threshold decreases linearly as we approach the end

of isotropic (meta)stability γ → 3− where it vanishes. This limit is consistent with

our stability results for bulk nematics in the previous section (Sec. 3.3.2), and earlier

studies [77,78,81], all of which predict that critical activities should vanish for bulk

orientationally ordered suspensions.

Note that as for the nematic case, the polymer effectively renormalises the solvent
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viscosity, i.e., η → η + a2ηC/(1 + k2`2
C). The timescale of the instability τω ∝ 1/ω

is infinite at the threshold ω = 0; τC is instantaneous in comparison and therefore

does not appear directly in Eq. 3.43. Taken by itself, Eq. 3.43 implies that one can

always suppress the spontaneous flow instability by increasing ηC (see black line in

Fig. 3.11). However we will now show that the elastomeric criterion (relevant for

τC > τ ∗C) remains finite even for ηC →∞, and the spontaneous flow instability can

be accommodated, consistent with our nematic results.

3.3.3.2 Elastomeric criterion: isotropic

For polymer relaxation times in the elastomeric regime (τC > τ ∗C), the discriminant

in Eq. 3.41 becomes negative and ω± becomes a complex conjugate pair. The critical

activity for which Re(ω+) = 0 can then be found by solution of B = 0, yielding

ζ̄elast
c =

η
[(

Γ̄ + `2
Qk

2
)
τC
τQ

+ (1 + `2
Ck

2)
]

+ 2
(
Γ̄ + `2

Qk
2
)

Λ2GQτC + a2GCτC

ΛτC
. (3.44)

As with the viscous isotropic criterion, this also clearly remains non-zero in the

infinite system size limit k → 0. Our intriguing results in the nematic elastomer

limit τC →∞ remain for isotropic base states

lim
τC→∞

lim
k→0

ζ̄elast
c =

Γ̄
(

η
τQ

+ 2Λ2GQ

)
+ a2GC

Λ
, (3.45)

where we have taken the infinite system size limit for clarity of expression. This

implies that the spontaneous flow instability persists in materials that are effectively

solid at sufficient activities, for both isotropic and nematic phases.

Note that this analysis only informs us about the linear behaviour. Once the

magnitude of perturbations become sufficiently large, non-linear terms in the consti-

tutive equations become relevant and we can no longer make quantitative predictions

about the long term behaviour. However we find that our linear results can qual-

itatively describe the nonlinear behaviour, e.g., simulation runs with parameters

for which unstable oscillatory growth is predicted (Im(ω±) 6= 0), generally develop

into nonlinear oscillatory states. For example, our simulations in Sec. 3.4.1 reveal

shear-banded flowing states where the interface position oscillates back and forth on

a timescale set by τC .
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3.3.3.3 Summary: isotropic

In summary, we have extended our linear stability analysis to describe an isotropic

active LC, coupled through the flow to a polymeric background. As for nematic

phases, solution of the eigenvalue problem required that we consider viscous and elas-

tomeric limits separately. Our analytics showed that, perhaps surprisingly, isotropic

suspensions are also capable of spontaneous flow instabilities at finite active stress.

Previous studies have shown that this can occur for γ < 3 in the vicinity of the IN

transition [15], but it was previously unclear to what extent this instability remained

as one descended deeper into the isotropic phase (by lowering γ further). One might

imagine that close to the IN transition, the flow instability simply arises because ac-

tivity induces a transition from the (thermodynamically) metastable isotropic state

to the stable nematic. However our results demonstrate that spontaneous flow can

occur even if the nematic state is unstable, i.e., we are deep in the isotropic phase

with γ < 2.7.

Related with this is the significant difference between the isotropic and nematic

criteria in the infinite system size limit Ly → ∞. The isotropic criterion ζ̄c re-

mains non-zero, as the active stress must both (a) generate enough shear to induce

orientational order and simultaneously (b) distort this to produce a spontaneously

flowing state. In contrast, the nematic criterion ζc vanishes as Ly →∞, as the active

stress required to deform a state that already possesses nematic order vanishes (this

instability mechanism, for orientationally ordered phases, is well understood).

It is also instructive to contextualise our results in a (ζ, τC) phase diagram,

which we do in Fig. 3.13 for an infinite system size at fixed GC . For small τC ,

the viscous criterion ζ̄visc
c is the first encountered as activity is increased. This is

simply a constant in the Newtonian limit τC → 0. Then as τC increases, so does

the polymer viscosity ηC = GCτC and therefore ζ̄visc
c increases. Then at τ ∗C , the

elastomeric criterion ζ̄elast
c crosses ζ̄visc

c and becomes the relevant criterion. At the

point of intersection, the eigenvalue splits into a complex conjugate pair signifying

that the instability is oscillatory in nature. This transition is characteristic of a

Hopf bifurcation.

We confirm these results numerically in Fig. 3.13b for each key region of the
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Figure 3.13: (a) Phase diagram for an isotropic suspension, where phase boundaries are con-

structed from the two critical activities in the infinite system size limit (though boundaries for a

finite system would be practically indistinguishable). The region to the right of the solid lines is

unstable, and the green shaded area marks where the dominant eigenvalue has an imaginary part.

The crossover from viscous to elastomeric behaviour is marked by the blue dashed line. (b) For

the points marked on the left phase diagram, we plot the growth of perturbations in simulations

(with k̃ = 1, Ly = 1). Consistent with our analytics, perturbations at A, B decay and those at

C, D and E grow. Points inside the green shaded region (A, C) also exhibit oscillatory behaviour

during the linear instability on a timescale τosc = 2π/Im(ω±). Parameters: γ = 2.6, GC = 0.1,

`Q = `C = 0.01.

phase diagram. Consistent with our analytics, we find that perturbations decay

when ζ is below the critical activity (points A, B) and grow when above it (points

C, D, and E). Additionally points inside the region where Im(ω±) 6= 0 (A, C)

show oscillatory behaviour, as evidenced by the fluctuations in the magnitude of

perturbations.

3.3.3.4 Connection to recent work

Recently, a paper appeared addressing similar topics from a somewhat different

perspective [101]. The authors analytically studied the spontaneous flow instability

of an active suspension embedded in a viscoelastic fluid in 2D, also by linearising

about an isotropic base state. The model used there is distinct from our Q and

C formulation. For example liquid-crystalline stresses are not included, the active
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Figure 3.14: Stability diagrams in the limit k → 0 for the dimensionless quantities De = τCζ/η

and H = ηC/η. Left: Data from Ref. [101], where colourscale marks growth-rate ω (white regions

are stable with ω < 0) and dashed black line bounds the oscillatory region. Right: Our results

cast in the same dimensionless groups, showing ζ̄visc
c (Eq. 3.43) and ζ̄elast

c (Eq. 3.44). Parameters:

γ = 2.5, GC = 1.

particles are self-propelled (i.e., movers rather than shakers), and the concentration

field can vary in space (we assume a homogeneous concentration). Despite these

differences, we find striking similarities with our isotropic results. These can readily

by visualised if we adopt the analogous dimensionless groups used in their study,

namely De = τCζ/η and H = ηC/η. (Note that this definition of De is distinct from

the Deborah number later defined in our 2D study in Chap. 5.) We plot data from

both studies in Fig. 3.14.

Firstly, both works predict that increasing H at fixed De can eventually suppress

the spontaneous flow instability, even in the infinite system size limit. Above a

certain value of De, both studies also find a region where Im(ω±) 6= 0 predicting

oscillatory behaviour, the upper part of which is predicted to be unstable. The

authors also remark on the same viscosity renormalisation that we observe in the

viscous regime.

The results differ slightly when both De and H are small. We find that a critical

De must be exceeded for spontaneous flow, whereas their study appears to report

instability as De → 0. This may in part be due to their definition of De which

conflates two limiting cases: the active polymer-free limit (τC → 0) and the passive

polymer limit (ζ → 0) limit which are both represented by De→ 0.
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criterion Ly →∞ GC → ∞

(fixed τC)

τC → ∞

(fixed GC)

isotropic

ζ̄visc
c 6= 0, finite ∞ ∞

ζ̄elast
c 6= 0, finite ∞ finite

nematic

ζvisc
c → 0 ∞ ∞

ζelast
c 6= 0, finite ∞ finite

Table 3.3: Summary of critical activities for isotropic and nematic suspensions, and their values

for several limiting cases. Limits where a criterion is not relevant, i.e., where the other criterion in

the viscous/elastomeric pair is smaller, are shaded grey.

3.3.4 Comparison of isotropic and nematic cases

Having explored the linear stability of both isotropic and nematic limits in detail,

we now briefly review our results in a wider context. We summarise the key limiting

cases in Table 3.3.

In finite systems, we found that both isotropic and nematic materials exhibit

similar characteristics. For small τC , both are susceptible to spontaneous flow in-

stabilities above a viscous critical activity ζvisc
c , proportional to the sum of viscosi-

ties. For large τC , an elastomeric criterion ζelast
c dominates instead. The limiting

behaviour as ηC → ∞ then depends on what quantities are held fixed. Critical

activities remain finite as τC → ∞ at fixed GC , but diverge for GC → ∞ at fixed

τC .

Where isotropic and nematic materials differ is in the infinite system size limit.

We find that nematic materials remain unstable for vanishingly small activities, con-

sistent with earlier work [77]. In the isotropic limit however, the stability threshold

remains non-zero, implying that a bulk (homogeneous) isotropic state will only pro-

duce spontaneous flow above a threshold active stress. This fundamental difference

between isotropic and nematic states can be cleanly rationalised from a rheological

perspective. We later explore this in detail in Sec. 4.3.3, where a non-zero externally
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applied shear is included in the problem. Essentially materials which possess a neg-

ative zero-shear viscosity are mechanically unstable at rest, i.e., conditions for which

η0 < 0 then determine the onset of flow instabilities. To summarise our argument,

we will demonstrate that as one increases the activity from zero, the zero-shear

viscosity in 0D5:

• decreases slowly for an isotropic material until it becomes negative at a non-

zero threshold ζc (i.e., at the point where the negative active stress exceeds

the positive solvent and LC stresses).

• becomes instantly negative for any positive activity in a nematic.

3.3.5 Summary: linear stability analysis

In this section, we have considered the 1D linear stability of a homogeneous slab of

active viscoelastic material initially at rest. This generalises earlier works to include

the effects of coupling to a polymeric background; it also extends previous work on

nematic phases to include isotropic (or disordered) phases.

Our results revealed two modes of instability. For short polymer relaxation

times the polymer acts as an additional source of viscosity (η → η+ ηC). Thus in a

finite system, the spontaneous flow instability at a given activity can be suppressed

by large enough viscosity ηC . However for large τC , a new elastomeric mode of

instability appears, independent from the polymer viscosity. This predicts a finite

critical activity even in materials with τC →∞, i.e., in elastic solids. These results

are general to both isotropic and nematic materials.

However, in the infinite system size limit differences appear. The critical activity

vanishes for nematic materials, and the spontaneous flow instability occurs for any

non-zero activity. Conversely isotropic materials remain stable below a threshold

ζ̄c. Experimentally one could test this in a suspension of microtubules and kinesin

molecular motors [94], where the IN control parameter γ could be controlled by vary-

ing the concentration and activity could be controlled by varying the concentration

of ATP.

5Here 0D is equivalent to the infinite system size limit as there is no meaningful lengthscale.



3.4. Spontaneous flow instabilities 65

While our results were obtained using the linearised set of equations, we ex-

pect them to be instructive even in the non-linear regime. With parameter choices

informed by our findings, we now explore the full nonlinear dynamics using 1D

simulations, quantitatively verifying the existence of both modes of instability.

3.4 Spontaneous flow instabilities

In the previous section, we generalised the results of earlier analytical studies by

deriving the critical activity for a linear instability to the onset of spontaneous flow

when polymer is added to an active material. In particular, we have shown that this

critical activity remains finite even for divergent polymer relaxation times. We now

numerically explore the 1D non-linear dynamics of our model in the context of these

linear stability results, and focus in particular on the nematic regime (with γ = 3).

Our aims in this section are twofold: (a) to quantitatively verify our analytical

stability threshold using non-linear simulations, and (b) to study and characterise

the dynamics once above this threshold.

There are three competing timescales in our model: the LC relaxation time

τQ, the polymer relaxation time τC , and the active forcing timescale τa = η/ζ as

identified in Ref. [131]. The first of these defines our unit of time; the second and

third will then form the axes of our phase diagram. Related to τa is the rescaled

active timescale τ̄a = η/(ζ − ζc) that accounts for the non-zero critical activity

that arises in finite systems (note that for nematic phases, τ̄a → τa as Ly → ∞ or

ζ →∞).

If the active timescale is faster than the other relaxational timescales, then we

might expect oscillatory dynamics [131]. We will show that this is indeed the case,

first for a material of fixed polymer viscosity ηC = 1 (where the dominant period of

oscillation τosc is set by τC) then for an elastomeric material (where τosc ∝ τ̄a). Such

oscillatory states are of particular biological interest. For example, shape oscillations

have been observed in fibroblast cells, with the period of oscillation proportional to

the myosin motor activity [132]. Schaller et al. also observed travelling density

bands in cytoskeletal extracts [133].
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We begin by exploring the competition between τ̄a and τC at fixed polymer

viscosity, where we verify our analytical results for the onset of the spontaneous

flow instability, and map the phase diagram finding a range of static and oscillatory

shear-banded states. We then take the limit τC →∞. Consistent with our analytics,

spontaneous flows occur above the predicted threshold ζc. The resulting non-linear

states are oscillatory with the dominant period of oscillation set by τ̄a.

3.4.1 Phase diagram: fixed total viscosity

We begin by considering a fluid with fixed total viscosity (and fixed polymeric viscos-

ity), but with variable polymer relaxation time. While this is arguably an artificial

construction, it allows us to check that the relevant phase boundaries aren’t depen-

dent purely on the viscous polymer contribution, allowing us to confirm the direct

role of the polymer relaxation time τC in the dynamics. We now explore the compe-

tition between active stresses and polymer relaxation processes using full nonlinear

1D simulations. Note that in this section we consider the special case where polymer

diffusion is not included, though we will later comment on the effects of its inclusion.

In Fig. 3.15a we plot the (ζ, τC) phase diagram, noting that our constraint of

ηC = 1 means that GC decreases linearly as τC increases. First we demonstrate that

our critical activity accurately predicts the onset of spontaneous flowing states: we

find quiescent states (marked by crosses) below ζc = min(ζvisc
c , ζelast

c ) and flowing

states above (marked by circles). Once this threshold is exceeded, but for ζ or τC

small, the flow field simply forms static shear-bands as is the case without polymer

[87]. However for τC or ζ large enough, we find novel oscillatory states which we

will describe in detail below.

In order to understand the mechanism behind these oscillatory states, it is

instructive to recast our data in terms of the active timescale τ̄a = η/(ζ − ζc)

(Fig. 3.15b). The (τ̄a, τC) phase diagram clearly shows that oscillatory states occur

when τc > 200τ̄a (blue line). This quite general result apparently holds across several

decades of data. The large separation of timescales required here to see oscillations

is reminiscent of earlier work which employed a coupled toy model in the context of

shear-driven rheochaos [134].
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Figure 3.15: Phase diagrams (for the same data) for 1D runs with fixed ηC = 1 (e.g., large

τC is matched by small GC). Marked are the critical activities ζvisc
c (Eq. 3.35, black line) and

ζelast
c (Eq. 3.38, red line). States are denoted by symbols: quiescent (crosses), static bands (empty

circles), oscillating bands (striped circles) or oscillating and flipping bands (filled circles) where

the flow switches direction. Examples of the states highlighted with the triangle and square are

given in Fig. 3.16 (left and right respectively). (a) Phase diagram for (ζ, τC). Green region

denotes parameters where unstable oscillatory growth is expected (from linear stability analysis).

(b) Phase diagram for (τa, τC), where oscillations are observed for τC/τ̄a > 200. Parameters:

ηC = 1, `Q = 0.004, `C = 0, γ = 3.

If the active timescale is sufficiently long, then both the polymer and the LC can

relax any activity-driven deformation, and the resulting shear-banded steady-state

is time-independent. However if the polymer cannot relax the activity induced stress

fast enough, the polymer dynamics lag behind producing oscillatory dynamics. This

is analogous to the mechanism described in Ref. [131], where the coupling was to

the concentration field (rather than a polymer as considered here).

These nonlinear results are also consistent with our linear stability analysis. We

can ask for what parameters does Re(ωk) > 0 and Im(ωk) 6= 0 at any k, i.e., when

do we see unstable oscillatory growth at any wavevector (see green shaded region

in Fig. 3.15a). This accurately describes the region where oscillatory states are

observed. To gain a clearer insight into these oscillatory states, we now focus on

two examples from the phase diagram in Fig. 3.15.
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Figure 3.16: Space time plots for the marked coordinates in the phase diagram in Fig. 3.15. The

x-axis time is t, y-axis position y, and colourscale: ηγ̇ (top row), ΣCxy (bottom row). Left col:

State with oscillating interface (ζ = 3.2, τC = 103), Right col: State with oscillating interface,

flow direction also switches (ζ = 3.2, τC = 106).

Oscillatory interface. In the first example (Fig. 3.16 left column), we observe

that the position of the interface between the shear-bands begins to oscillate, with

the period of oscillation set roughly by τC . Similarly, both the total shear stress and

throughput (defined as Ψ =
∫ Ly

0
vxdy) develop time-dependent signals (not shown).

The flow direction however remains the same (i.e., the sign of the throughput remains

constant). A space-time plot of γ̇ is shown (Fig. 3.16 left top panel).

To probe the origin of these interfacial oscillations, it is instructive to also ex-

amine the polymeric contribution to the stress, ΣC . Plotting the shear component

ΣC
xy (Fig. 3.16, bottom left) reveals that as the interface position deviates from the

centre, large polymeric stresses develop in the band occupying the smaller fraction

of the channel. Once ΣC
xy reaches some large threshold, the interface is forced to

return in the opposite direction. As the period of this oscillation is roughly τC , it

is clear that oscillations are mediated by the polymeric sector. Our results are also

reminiscent of the propagating stress waves observed during tissue growth [135,136]

which are thought to play a role in wound healing [137].

Oscillatory interface (flow direction switches). For larger τC/τa still, a sec-

ond oscillatory state develops where the interface oscillates as before on some fast

timescale, but now the flow also reverses direction on a timescale set by τ̄C . The
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corresponding space-time plots of γ̇ and ΣC
xy are shown in Fig. 3.16 (right column).

By a similar mechanism to the above, the interface position during the fast

oscillations deviates increasingly from the centre. The polymer shear stress builds

during this process and, once large enough to be comparable with other stresses,

forces the flow direction to switch.

Polymer diffusion. The above results were presented for the simple case where no

polymer diffusion is included (i.e., `C = 0). However if we include such a term, with

∆ = `2
Q/τQ = `2

C/τC , we find the initial linear stability is not oscillatory, consistent

with our linear stability results (see Apx. 3.6.2). Transient oscillations may appear

at early times in the nonlinear dynamics, but these eventually become damped and

a static shear-banded state is restored.

Having confirmed our prediction of oscillatory behaviour for large τC/τ̄a, we now

turn to the elastomeric limit of τC →∞.

3.4.2 Spontaneous flow in a solid

Consider a fluid in which the polymer relaxation time is infinite. Numerically we

achieve this by completely disabling the relaxation term���
���:

0
1
τC

(C− I). Recall that in

this limit the critical activity becomes (see Eq. 3.56),

ζc ≈ a2GC/Λ. (3.46)

We now fix ∆ = `2
Q/τQ = `2

C/τC , GC = 0.1, and use the default values of a = 1,

ξ = 0.7 to numerically examine the full non-linear dynamics for activities on either

side of6 ζc ≈ 2.4. We do so by considering a homogeneous initial condition in

which the director is orientated in the x-direction (Fig. 3.9), which we seed with a

perturbation of the form δγ̇ = δ
∑

k̃ cos(πk̃y/Ly), where δ ∼ O(10−10) and where

k̃ = 1→ 16.

Fig. 3.17a plots the time evolution of the largest shear rate perturbation, as the

activity is varied from ζ = 2 → 3.2 (crossing the critical activity). Below ζc, the

6The actual value of ζc is very slightly larger as the form given in Eq. 3.46 assumes the infinite

system size limit.
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Figure 3.17: 1D simulations with infinite polymer relaxation time, for a range of activities ζ. (a)

Evolution of shear-rate perturbations, showing growth for ζ > ζc. Panels on right show space-time

plots for ζ = 3.2 > ζc, where the x-axis is time t, the y-axis is position y, and the colourscale shows

(b) shear-rate γ̇, (c) Cxy. Parameters: a = 1, ξ = 0.7, τC →∞, GC = 0.1, ∆ = 10−4.

magnitude of each perturbation decays until it reaches the level of machine precision.

However for ζ > ζc, the perturbations grow until a non-linear state is reached. As

expected, the growth rate also increases with ζ.

Focusing on the run with large ζ = 3.2, we examine the resulting dynamics

once the perturbation becomes large enough for non-linearities to become relevant.

Without any polymer stress relaxation, a fixed shear-rate profile would result in the

polymer undergoing continuous loading and the strain would eventually diverge.

By plotting the shear-rate profile γ̇(y) as a function of time (Fig. 3.17b), we

show that such a static shear-profile doesn’t persist. Instead, travelling bands of

local shear-rate γ̇ = ±0.15 develop where the flow direction continuously switches,

effectively loading and unloading the polymer (as seen in the previous section). This

can clearly be seen in the Cxy component (Fig. 3.17b), which changes sign in phase

with the flow direction. These results are reminiscent of travelling density bands

seen experimentally in cytoskeletal extracts [133]. Interestingly, as τC is infinite, the

period of oscillation must be set by a separate timescale.

To explore the origin of this timescale, we perform simulations for a range of ζ, for

3 values of η. By taking the Fourier transform of the throughput-time signal Ψ(t) =

〈vx(t)〉y, we can identify the dominant period of oscillation τosc (see Figs. 3.18a,b).
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vent viscosity η. (a) Fourier amplitudes Ψ̃τ obtained from the throughput time series for η = 0.567

which allow us to identify the dominant period, τosc. (b) Inset showing τosc for an example

time-series. (c) Plot of τosc against the activity-above-threshold demonstrating an inverse propor-

tionality. (d) When recast in terms of τ̄a, the data in (c) roughly collapses onto a single linear

curve. Parameters: a = 1, ξ = 0.7, τC →∞, GC = 0.1, ∆ = 10−4.

Plotting this against ζ − ζc for a range of activities (Fig. 3.18c), we find that this

period of oscillation is inversely proportional to ζ − ζc. With τC infinite, the only

remaining timescale that can be constructed is then

τ̄a = η/(ζ − ζc), (3.47)

and indeed, rescaling our results in terms of τ̄a results in a reasonable curve collapse

with τosc linearly proportional to τ̄a (see Fig. 3.18d). For particularly large values

of the activity the flow becomes increasingly aperiodic and τosc becomes less clearly

defined resulting in minor deviations from the power law.

Physically τ̄a represents the timescale of active forcing, as identified in Ref.

[131]. As discussed in that study, as the active forcing is faster than the relax-

ation timescales (i.e., τa < τQ � τC), both the LC and the polymeric dynamics lag

behind, resulting in oscillatory behaviour.
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3.4.3 Summary: spontaneous flow instabilities

We have numerically verified our analytical linear stability predictions for the onset

of spontaneous flow, both at finite τC (at fixed ηC) and in the elastomeric limit

τC →∞.

In the former case, without polymer diffusion, oscillations of period τC were

observed once the polymer relaxation time exceeded the timescale of active forcing

τ̄a by a factor of ∼ 200. The onset of these oscillatory states is consistent with

our earlier linear stability analysis. Inclusion of polymer diffusion suppresses the

oscillations, at least for the parameters explored. Oscillations were also observed in

the elastomeric limit. However as the polymeric timescale is infinite in this limit,

the timescale of oscillation is instead proportional to the only remaining timescale,

τ̄a.

3.5 Conclusions

We have introduced a novel model for the study of viscoelastic active matter which

couples the dynamics of a nematic LC to a polymeric background. Constitutive

equations and stresses for the respective order parameters (Q and C) were derived

from free energy considerations. These are then supplemented by an additional

active stress of the form ΣA = −ζQ. The two sectors are then coupled via the

centre of mass velocity field v which obeys Stokesian hydrodynamics.

By focusing on the parallel plate geometry, we explored the competition between

active stresses and the distortion free energy to understand the spontaneous flow

instability in finite systems. Specifically, we generalised previous 1D linear stability

analyses to include the effects of polymer, allowing us to derive a critical activity for

the spontaneous flow instability expressed in terms of system size (Ly), viscosities

(η, ηQ, ηC), coherence lengths (`Q, `C), and polymer relaxation time (τC).

For small to medium values of τC , we found that the polymer simply renormalises

the solvent viscosity, reproducing the form of earlier criteria, e.g., as in Ref. [81]. This

would seem to imply that one can always suppress the spontaneous flow instability

with large enough polymer viscosity.
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However for very large τC (at fixed GC), we discovered a new ‘elastomeric’ mode

of instability which predicts a distinct critical activity. Fascinatingly, this remains

finite in the limit τC → ∞, suggesting that materials that are effectively solid are

at least transiently unstable to spontaneous flow instabilities.

While these criteria were derived in a channel geometry of finite width Ly, they

also provide insight into bulk behaviour in the limit Ly → ∞. For nematics we

found that the critical activity vanishes, as in previous work (without polymer). In

contrast, isotropic materials remain stable below a non-zero critical activity. This

difference can be understood by considering the zero-shear viscosity, and forms part

of our rheological study in the following chapter.

Finally we verified that our analytical results quantitatively agree7 with our

1D simulations, even for τC → ∞. The nonlinear dynamical behaviour of the

resulting 1D states depends on the ratio of polymeric and active forcing timescales

(τC and τ̄a respectively). For small τC/τ̄a, the polymer can relax any activity-driven

deformation and a static shear-banded state forms. However for τC/τ̄a > 200, the

relaxational dynamics lag behind, resulting in oscillatory states that fluctuate on a

timescale ∼ τC .

As experiments on model active systems become increasingly sophisticated, it

is natural to ask how one might test our predictions. The recent work of Sanchez

et al. [94] on kinesin-microtubule mixtures allows one to make a tentative mapping

between activity and ATP concentration, which in principle could allow one to

extract the active forcing timescale (τa) discussed above. Polymer viscoelasticity

could be effected by the inclusion of wormlike micelles with characteristic relaxation

rate τC [138]; our results suggest that oscillatory states may form for τC � τa.

In this chapter we have assumed that our active material was initially at rest.

In this case the linear stability of our model was analytically tractable. We now

turn our attention to the more general case where an external shear is applied,

and map the shear rheology. However the additional complexity of the stability

problem under applied shear means numerical solution is now essential, except in

the limit of small shear-rates. The coupled dynamics of the model, which possesses

7For a detailed description of this verification process for the general case of ¯̇γ 6= 0, see Sec. 4.2.
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multiple relaxation times, provide a rich spectrum of rheological features which we

now explore.

3.6 Appendix I

This appendix provides additional details of the linear stability calculation, and

includes comments on the generality of our results.

3.6.1 Eigenvalues

Recall that the linearised set of equations for a given wavevector k can be expressed

in the matrix form

∂tp
k = Mk · pk,

where p is a vector of Fourier amplitudes pk =
(
Qk
xx, Q

k
xy, Q

k
yy, C

k
xx, C

k
xy, C

k
yy

)T
. If the

eigenvalue with the largest real part is positive for a given wavevector k, perturba-

tions of wavelength π/k will grow and the system is unstable. Of the six eigenvalues

of M, four are trivially negative describing only relaxational and diffusive modes,

e.g., −1/τC −k2`2
C/τC . The two remaining modes can be expressed in the quadratic

form

ω± =
−B ±

√
B2 − 4AC

2A
. (3.48)

The exact expressions for A, B, and C are dependent on whether we are consid-

ering a suspension that is isotropic or nematic in the passive unsheared limit. We

begin in the isotropic limit (stable for γ < 2.7, metastable for γ ≤ 3), then repeat

the analysis for the nematic case where we fix the IN control parameter γ = 3.

3.6.1.1 Isotropic phase

For γ < 2.7 the isotropic state is stable (and is metastable for γ < 3). The corre-

sponding Q base state is simply Q̄ = 0. Coefficients A, B, and C are then

A = ητCτQ,

B = τCτQ
[
a2GC + 2GQΛ̄2

(
Γ̄ + `2

Qk
2
)
− ζΛ̄

]
+ η

[
τQ
(
`2
Ck

2 + 1
)

+ τC
(
Γ̄ + `2

Qk
2
)]
,

C =
(
Γ̄ + `2

Qq
2
) [
a2GCτC + η

(
1 + `2

Cq
2
)]

+ τQ
(
`2
Cq

2 + 1
) [

2GQΛ̄2
(
Γ̄ + `2

Qq
2
)
− ζΛ̄

]
,
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where Λ̄ = ξ/3 and Γ̄ = 1− γ/3.

At small τC/τQ, the discriminant D = B2 − 4AC is positive and we can simply

obtain the viscous critical activity from Re(ω+) = 0 by solving C = 0 for ζ. For

large τC/τQ, the discriminant is negative and the square-root only contributes an

imaginary part. The elastomeric criteria is then obtained by solving B = 0 for ζ.

The crossover between viscous and elastomeric criteria occurs at τ ∗C , which can

be found by equating ζvisc
c and ζelast

c . However the resulting expression is too com-

plex to be of practical use. Fortunately, τ ∗C approximately coincides with the first

appearance of the imaginary region at τ imag
C , which has a much simpler form.

To find τ imag
C , we first find the activities at the upper and lower bounds of the

imaginary region, ζ imag
± , by solving D = 0 for ζ. The imaginary region then begins

when ζ imag
− = ζ imag

+ , which after rearranging for τC , yields

τ imag
C ≡ 1 + `2

Ck
2

1 + `2
Qk

2 − γ
3

τQ ≈ τ ∗C . (3.49)

The slight difference between τ ∗C and τ imag
C is illustrated in Fig. 3.19.
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3.6.1.2 Nematic phase (γ = 3)

For γ = 3, the coefficients in the quadratic (Eq. 3.48) are

A = ητCτQ, (3.50)

B = τQ
[(

1 + `2
Ck

2
)
η + τC

(
a2GC − ζΛ

)]
+ `2

Qk
2τC
[
η + 2GQΛ2τQ

]
, (3.51)

C = `2
Qk

2
[(

1 + `2
Ck

2
)
η + a2ηC

]
−
(
1 + `2

Ck
2
) (
ζ − 2GQ`

2
Qk

2Λ
)

ΛτQ, (3.52)

where

Λ =

 (5ξ − 3)/12 for n̂ = (1, 0, 0) ,

(5ξ + 3)/12 for n̂ = (0, 1, 0) .
(3.53)

The procedure for viscous and elastomeric criteria is exactly as above, where the

crossover now occurs at

τ ∗C ≈ τ imag
C ≡ 1 + `2

Ck
2

`2
Qk

2
τQ. (3.54)

We finish this appendix by making some comments about the generality of our

results with regard to diffusion in the polymeric sector and boundary conditions.

3.6.2 Generality of results

3.6.2.1 Polymer diffusivity

In our analytical results so far, we have made no assumptions about the form of the

diffusive terms,
`2Q
τQ
∇2Q,

`2C
τC
∇2C. For reasons of numerical stability, in any simulation

results we fix diffusivities ∆ = `2Q/τQ = `2C/τC unless specified otherwise. If we had

instead set `Q = `C for example, the limit τC → ∞ implies a vanishingly small

polymer diffusion lengthscale, permitting infinitely sharp gradients in C. We now

explore the implications of this choice, finding that our key linear stability results

are qualitatively unchanged. Focusing on the nematic case, we plot in Fig. 3.20 both

stability criteria for three cases:

1. no polymer diffusion `C → 0,

2. polymer diffusion with `C = `Q,

3. polymer diffusion with ∆ = `2Q/τQ = `2C/τC.
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Figure 3.20: Phase diagram which demonstrates how critical activities are affected by the in-

clusion of polymer diffusion. (a) Curves for `C = 0 or `C = `Q are indistinguishable. (b) When

diffusivities ∆ = `2Q/τQ = `2C/τC are equated, a smoothing between the criteria with `C fixed or

zero (dashed lines). The region where ω has an imaginary component disappears. Parameters:

GC = 0.1.

The first and second cases are indistinguishable within the resolution of the

graph. Both also exhibit the oscillatory region where Im(ω±) 6= 0. However in the

third case when the ratios are equated, we find a smooth transition between viscous

(at low τC) and elastomeric (at high τC) criteria. The origin of this effect can be

seen by substituting ∆ into the viscous criterion Eq. 3.35,

ζvisc
c =

k2∆τQ
ΛτQ

(
η + 2Λ2ηQ +

a2

1 + k2∆τC
GCτC

)
, (3.55)

which in the limit τC →∞ becomes

lim
τC→∞

ζvisc
c =

a2GCk
2∆

Λk2∆
=
a2GC

Λ
= ζelast

c , (3.56)

i.e., the same as the elastomeric criterion Eq. 3.39.

The other notable change when we fix diffusivities is the disappearance of the

oscillatory region. To understand why, we rearrange our crossover criterion τC & τ ∗C

(Eq. 3.34). This shows that the oscillatory region occurs when

τC &
1

k2`2Q
τQ
− k2`2C

τC

, (3.57)

which diverges if we fix `2
Q/τQ = `2

C/τC .
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3.6.2.2 Importance of boundary condition

Throughout our linear stability analysis we have employed free boundary conditions

(BCs), i.e., ∂yQαβ|y=0,Ly = ∂yCαβ|y=0,Ly = 0. This choice considerably simplifies the

analytics as it permits a spatially homogeneous base state. Because of this, spatial

variations can easily be expressed in a cosine basis (see Eq. 3.30). More antagonistic

anchoring BCs can lead to inhomogeneous base states, complicating the analysis.

We can also speculate on the stability with homogeneous anchoring BCs. We

have shown that splay and bend become separately unstable at critical activities

an order of magnitude apart. One might then imagine that the effect of anchoring

conditions parallel (perpendicular) to the plate produces similar results to the splay

(bend) states probed in Eq. 3.35.



4
Active viscoelastic matter:

0D and 1D (externally applied shear)

4.1 Introduction

In the previous chapter we introduced our novel model of viscoelastic matter, cou-

pling active nematic matter to a viscoelastic polymer background. By linearising

around an initially non-flowing base state, we were able to analytically determine the

stability properties of an initially homogeneous state for both isotropic and nematic

suspensions.

In this chapter we generalise these results to describe systems under the influence

of an externally applied shear flow. We begin by reviewing previous work before

introducing the techniques and concepts used to explore the shear rheology of our

model.

79
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Figure 4.1: Demonstration of how a sheared active swimmer modifies the shear viscosity (for

the example organisms given in Fig. 3.1). Under an applied shear, the long axis of an elongated

swimmer will tend to align with the flow. This alignment effect (a) is enhanced for an extensile

swimmer reducing the viscosity and (b) is resisted for a contractile swimmer leading to an increase

in viscosity.

Literature review. Early theoretical studies made striking and general predic-

tions about the viscosity of a suspension of active particles under shear. Working

with an active stress proportional to the nematic order parameter Q, Hatwalne et

al. theorised that the shear viscosity should decrease (increase) for extensile (con-

tractile) swimmers relative to the passive case [73]. Under an imposed shear flow,

elongated active particles will tend to orient with the flow direction. A contractile

force dipole will then pull fluid back in along its long axis against the underly-

ing flow, whereas the opposite effect occurs for an extensile dipole (see Fig. 4.1).

Evidence for this result was later seen experimentally: the viscosity was indeed ob-

served to decrease in suspensions of extensile B. subtilis bacteria [14], and increase

in suspensions of contractile Chlamydomonas algae [13].

These results can be used to gain insight into the mechanism behind the spon-

taneous flow instability as explored in detail in the previous chapter. Cates et al.

showed that the constitutive curve for an extensile nematic exhibits a negative yield

stress, implying a region of negative viscosity at small shear-rates [15]. When the

constitutive equations are integrated numerically (in 1D) for an extensile active ne-

matic initially at rest, Cates et al. observed a shear-banding instability and the

negative viscosity region was replaced by a ‘superfluid’ flowing state of zero shear-

stress. This is analogous to earlier studies of complex (but passive) fluids where

non-monotonic constitutive curves where shown to be indicative of shear-banding

instabilities, see e.g., Ref. [40]. An important difference, however, is that the stress

plateau is at zero stress.
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Interestingly, shear-banding instabilities were recently observed in a solution of

passive actin filaments, which are a key component of the cell cytoskeleton [51].

The authors speculated that the observed flow inhomogeneities may help explain

the formation of local cell protrusions called pseudopodia which play a role in cell

locomotion. (For an exploration of related banding instabilities in the polymeric

sector of our model see Sec. 4.3.1.)

Microrheological techniques (where the rheological response is obtained using

local probes such as optical beads [139]) have also been successfully employed in

the context of active matter. For example, the effect of myosin molecular motors

on the mechanical properties of crosslinked cytoskeletal networks was studied using

optical traps revealing marked violations of the fluctuation dissipation theorem and

an increase in the stiffness of the network in the presence of ATP (myosin fuel

source, analogous to ζ 6= 0 in our model) [140]. Connecting with such experimental

studies, Foffano et al. numerically modelled the microrheology of an active nematic

suspension by dragging a spherical probe through the fluid. The authors found

that the effective viscosity (which can be obtained from the drag on the probe) can

vary for a given active fluid, depending on how it is measured and the probe size

[141,142]. This illustrates the care that must be taken when measuring the properties

of intrinsically non-equilibrium materials. While microrheological techniques can

allow one to obtain shear rheological properties (such as the shear viscosity), they are

generally not suitable for studying dynamic phenomena such as shear-banding [139]

which can be more cleanly observed in microfluidic setups [143].

The complexity of the biological systems of interest to our study, combined

with the large uncertainties in typical values for the various model parameters,

currently makes it difficult to compare our simulations directly with experiment.

However by characterising the general rheological features of our model in terms of

the key dimensionless parameters (see Sec. 3.2.4), we map out a phase diagram and

invite comparison with future experimental studies. We now briefly introduce the

analytical and numerical methods used to explore the shear rheology of our model.
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Figure 4.2: Schematic illustrating the difference between (a) homogeneous and (b) heterogeneous

shear flows, where the length of the arrow indicates fluid velocity. The constitutive curves presented

in this chapter are produced under the assumption of a constant velocity gradient γ̇(y) ≡ ∂yvx(y) =

¯̇γ. Our linear stability analysis examines the stability of these homogeneous states to heterogeneous

perturbations, which if determined as unstable can result in the formation of macroscopic bands of

differing shear-rate (where
∫ Ly

0
γ̇(y)dy = ¯̇γLy) as shown in (b). Plotting stress against shear-rate,

allowing for such heterogeneities, produces a flow curve.

Methodology. The simplest approach one can take to understand the rheology of

a given constitutive model is to assume that the velocity gradient tensor and order

parameters are homogeneous in all dimensions, as in Fig. 4.2a. Recall that under

the assumption of a homogeneous flow gradient ¯̇γ, one may produce theoretical

constitutive curves which plot the shear-stress (Σxy) against shear-rate (¯̇γ). Note

that in our case, the stress in the liquid-crystal sector must be calculated numerically

due to strong non-linearities in the constitutive equation (in contrast to the polymer

stress which has an analytical solution).

The homogeneous state φ̄ =
(
Q̄, C̄, ¯̇γ

)
which determines the total shear stress

Σxy at a given ¯̇γ then forms the base state which we linearise about. This allows us

to examine the stability of the base state to heterogeneous perturbations in the y-

direction, which can ultimately lead to, for example, shear banding flow instabilities.

This process must also be evaluated numerically (see Sec. 4.2 for details).

We then verify our linear stability results using 1D non-linear simulations that

allow heterogeneities to develop (see Fig. 4.2b). By recording the shear-stress at a

given ¯̇γ, we can produce flow curves which can, but do not in general, coincide with

the 0D constitutive curves. Particularly for the coupled, highly nonlinear model

considered here for active matter, the dynamical behaviour revealed by simulations
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can be time-dependent and possibly chaotic. Examples of such simulations are given

in Sec. 4.4.

In this chapter we apply these three modelling tools (0D constitutive curves, 1D

stability analyses, and 1D nonlinear simulations) to enumerate and comprehensively

explore the several types of flow instability that can arise from either Q and C

sectors. We then use this knowledge to influence the relative contributions of each

instability using experimentally realisable control parameters such as the polymer

relaxation time τC . This can result in exotic flow curves with multiple stress plateaus

and strong hysteretic effects, or ‘rheochaotic’ systems that display spatio-temporal

chaos.

4.2 Numerical solution of linear stability analysis

In generalising the stability analysis in Sec. 3.3 to describe materials driven by

external shear, i.e., ¯̇γ 6= 0, the problem becomes analytically intractable for two

reasons. Firstly, while the polymeric base state C̄ can be obtained analytically

for arbitrary γ̇, non-linearities in the liquid-crystal constitutive equation mean that

the liquid-crystalline base state Q̄ must be obtained numerically, either by time-

stepping or by setting ∂tQ = 0 and using a non-linear root finder. We take the

latter approach, using the SciPy fsolve library routine [144].

Secondly the stability matrix Mk becomes considerably more dense due to the

additional shear loading terms. To handle the additional complexity, we numerically

calculate the eigenvalues of Mk using the NumPy numerical computing library [145].

So while we can still solve the stability problem, in practice both the base state

φ̄ (Eq. 3.29) and the eigenvalues of the stability matrix Mk (Eq. 3.31) must be

calculated numerically.

We now briefly validate this procedure by comparing our (numerically evaluated)

stability analysis with our full non-linear code (in the linear regime). First we

impose that both order parameters and γ̇ are homogeneous, and evolve the system
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Figure 4.3: Verification of our (numerically solved) linear stability analysis. (a) Illustration of

how ω is extracted from nonlinear simulations by measuring the growth of perturbations in the

linear regime, where we have seeded the system with a perturbation δγ̇ = ε cos(πk̃y/Ly) with

k̃ = 4, ε = 10−8. (b) Dispersion relation which shows the growth rate ω at mode number k̃, as

calculated by a (numerically evaluated) linear stability analysis (solid black line) and as measured

from non-linear 1D simulations (squares), demonstrating excellent agreement. Parameters: ζ =

0.5, a = 0.3, τC = GC = 1, ∆ = 8× 10−5, γ̇ = 4.

of equations to steady-state (this steady-state is the same as the base state in our

linear stability analysis). We then allow heterogeneity in the y-direction, and seed

our simulations with a perturbation δγ̇ = ε cos(πk̃y/Ly) where ε = 10−8. For a

given mode number k̃, we extract the growth rate of the perturbation ω from the

slope of a log-linear plot in the linear regime (i.e., while perturbations are small

enough, see Fig. 4.3a).

In Fig. 4.3b we plot the extracted growth rate of perturbations (square symbols)

for a range of k̃ to produce a dispersion relation. On the same plot we mark the

growth rate as calculated by our (numerically evaluated) linear stability analysis1.

This demonstrates excellent agreement between our non-linear code and our stability

analysis across the full range of wavevectors tested. We now apply this technique

separately to the liquid-crystal and polymer sectors before considering the rheology

of the composite model, which couples both Q and C sectors kinematically, i.e., via

1This is continuous as we can evaluate the eigenvalue problem at any k̃, not just integer values.

Our numerics, however, are restricted to quantised perturbations.
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instability parameter range shear-rate description example

C shear-banding |a| < 1, η/ηCa2 <
1
8

γ̇τC ≈ 1/
√

1− a2 JS banding instability Fig. 4.4a

Q shear-banding ξ > ξ∗(γ) γ̇τQ ≈ 1 arises from loading terms in

Q analogous to JS

Fig. 4.4b

Q free energy γ < 2.7 γ̇τQ ≈ 0.02 shear-induced IN transition,

constit. curve can be multi-

valued in Σxy, or Σxy and γ̇,

depending on γ

Fig. 4.5

Q free energy +

activity

γ < 2.7, ζ > ζ∗ γ̇ = 0 large enough activity results

in ∂Σxy/δγ̇ < 0 at the origin

Fig. 4.9

Q free energy +

activity

γ ≥ 2.7, ζ > 0 γ̇ = 0 discontinuity at origin gives

negative yield stress (due to

nematic branch)

Fig. 4.10

Q + C (new) ζ 6= 0 various resulting from coupling of Q

and C

Fig. 4.15

Table 4.1: List of possible flow instabilities in the separate Q and C sectors and the typical

parameter values required to observe them. We also later show that the combination of Q and C

can result in new instabilities.

the fluid.

4.3 Exploration of flow instabilities

Even individually, both the liquid-crystal and polymeric sectors display rich and

exotic rheological responses. For example passive liquid-crystals exhibit a shear-

induced isotropic-nematic transition [146], extensile active nematics display an un-

usual negative yield stress [15], and the JS model is capable of shear-banding insta-

bilities [41]. We begin by describing the individual flow instabilities in both Q and

C sectors using the generalised linear stability analysis described in the previous

section. We also summarise these instabilities in Table 4.1.

Detailed knowledge of these instabilities and the parameter ranges in which they

appear will then allow us to construct exotic and novel constitutive curves which

combine two (or more) of these instabilities in the same system and so allow us to
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predict e.g., rheochaotic behaviour or multiple stress plateaus (see Sec. 4.4).

4.3.1 C-only instability

While the model used to describe the polymeric sector derives from the JS model,

the stress, when derived in a thermodynamically rigorous way (see Sec. 3.2.1.3),

gains an additional prefactor of a (the slip parameter) relative to the definition that

has typically been used in the existing literature (e.g., as in Ref. [110]). This affects

the stability properties under shear, albeit in a minor way.

In the original formulation of the JS model [59] the constitutive curve is mul-

tivalued, and therefore capable of describing shear-banding instabilities, if |a| < 1

and η/GCτC < 1/8 [113, 147]. In other words, as long as there exists some slip

(i.e., |a| < 1), it is solely the viscosity ratio that determines the monotonicity. One

can show that the instability first appears at shear-rates ¯̇γτC ≈ 1/
√

1− a2 [57].

Therefore the limit a → 1 can be seen as the limit in which the non-monotonic

region is pushed out towards γ̇ → ∞. We now generalise these results to account

for the thermodynamically correct polymer stress, showing that slip parameter a

plays a more direct role.

By setting ∂tC = 0, and assuming homogeneity in all dimensions, we can obtain

the steady state stress analytically

ΣC
xy =

GCτC γ̇a
2

1 + (1− a2) (γ̇τC)2 , (4.1)

where γ̇ is the applied shear-rate. Force balance dictates that that the total stress

ΣT
xy obeys ΣC

xy + ηγ̇ − ΣT
xy = 0. Substituting Eq. 4.1 into this expression then

produces a cubic in γ̇

ητ 2
C(1− a2)γ̇3 − ΣT

xyτ
2
C(1− a2)γ̇2 + (η + a2GCτC)γ̇ − ΣT

xy = 0. (4.2)

The discriminant,

∆γ̇ = α4(ΣT
xy)

4 + α2(ΣT
xy)

2 + α0, (4.3)

tells us that three solutions exist for the cubic in Eq. 4.2 if ∆γ̇ > 0, i.e., assuming

homogeneous flow, there exists 3 shear rates γ̇L, γ̇M , γ̇H of common stress ΣT
xy. (The

middle shear-rate solution would be unstable were we to relax our assumption of
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Figure 4.4: Constitutive curves in the passive limit with regions determined to be unstable by

the stability analysis in Sec. 3.3 marked by dashed lines. This coincides exactly with regions

where
∂Σxy

∂γ̇ < 0. The thick black dashed lines mark the predicted spinodal limit of stability of

homogeneous states. (a) Constitutive curves for polymer only, with a = 0 (black) → 1.0 (blue,

Oldroyd-B). The plot shows that instabilities occur above the critical a∗ predicted in Eq. 4.4,

i.e., for 1 > a > a∗ =
√

8η/ηC ≈ 0.28. Parameters: GQ = τQ = 0, τC = GC = 1, η = 0.01.

(b) Constitutive curves for a passive, flow-aligning liquid-crystal, for ξ = 0.6 (black) → 1.0 (blue).

The plot shows that instabilities (analogous to those seen with polymer) occur above a critical

ξ∗ ≈ 0.68. Parameters: γ = 3, GQ = τQ = 1, τC = GC = 0, η = 0.01.

homogeneity.) The discriminant ∆γ̇ is a quadratic in (ΣS
xy)

2, and is always positive

if

η

a2ηC
< 1/8, |a| < 1. (4.4)

We confirm this result by plotting in Fig. 4.4a constitutive curves as a function

of slip parameter a, marking regions determined as unstable by our linear stability

analysis with dashed lines. This confirms that susceptibility to banding occurs for

slip parameters a∗ < a < 1 where the critical slip a∗ ≡
√

8η/ηC. Interestingly this

result contrasts with the original JS model (i.e., without the renormalised stress),

as it implies that a2 can always be made small enough to restore monotonicity at

a given viscosity ratio, and therefore stability of the homogeneous flow state. As

the polymer stress is directly proportional to a, vanishingly small a means the total

stress is dominated by the Newtonian solvent, which is linear in the applied shear
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rate (i.e., monotonically increasing). The limit a → 0 corresponds to total slip in

which the polymer can only be oriented and not stretched by the flow [57]. As with

the original JS model, we observe that the shear-rate at which non-monotonicity first

appears is pushed out towards γ̇ → ∞ as a → 1. We now consider the analogous

flow instability in a passive liquid-crystal, then examine the instabilities resulting

from the shear-induced isotropic-nematic transition.

4.3.2 Passive Q instabilities

Even for passive liquid-crystals, we can identify two classes of shear-driven insta-

bilities. The first is analogous to the above JS banding instability, where now the

flow-alignment parameter ξ is the corresponding slip parameter. As with the poly-

mer, this instability originates from terms in the Q constitutive equation that couple

the velocity field to the liquid-crystal (notice the similarities between the reversible

coupling terms in Eqs. 3.10, 3.14). Recall that passive particles will tend to align

with the flow for |ξ| > ξc (as we fix γ = 3, here ξc = 3/5 [108]). We restrict ourselves

to this flow-aligning regime; the flow-tumbling case (|ξ| < ξc) has been considered

elsewhere [80,102]. We plot in Fig. 4.4b several constitutive curves as a function of

ξ, which reveal that non-monotonic regions appear for ξ > ξ∗ > ξc.

The nature of the second instability is dependent on the value of the IN control

parameter, and can be viewed from both free energy (for ¯̇γ = 0) and shear rheology

(γ̇ 6= 0) perspectives.

Case ¯̇γ = 0: Recall that for an unsheared liquid-crystal, varying an experimental

control parameter such as temperature or concentration (in thermotropic or lyotropic

LCs respectively) can drive a transition from the isotropic state (where there is no net

orientation at any given point) to the nematic state (where local orientation can be

described by an apolar director n̂). In the dynamical equation for Q, the IN-control

parameter γ determines the shape of the free-energy landscape and therefore, in the

unsheared passive limit, determines which state will form. The stability properties

of the isotropic and nematic branches are illustrated in Fig. 3.6.
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Figure 4.5: Constitutive curves illustrating the shear driven isotropic-nematic transition. The

nematic branch is ‘pulled in’ towards the origin as γ is increased. At larger γ still, the isotropic

branch retracts in towards the origin before disappearing altogether for γ > 3. Parameters:

ξ = 0.7, η = 0.001, τC = GC = ζ = 0.

Case ¯̇γ 6= 0: This transition, just described for ¯̇γ = 0, can also be visualised by

examining constitutive curves in the limit ¯̇γ → 0, as γ is increased (see Fig. 4.5),

following [146]. For small γ < 2.7, at γ̇ = 0 only the isotropic2 branch is present. As

γ → 2.7, the nematic branch (at γ̇ 6= 0) is ‘pulled in’ towards the origin. Then as

γ → 3, the isotropic branch retracts towards the origin until it disappears altogether

at γ = 3 (cf. Fig. 3.6 for ¯̇γ = 0).

More generally (for non-zero ¯̇γ) the constitutive curves in Fig. 4.5 describe how a

liquid crystal in the isotropic phase (γ < 2.7) undergoes a shear-driven transition to

the nematic phase at large enough ¯̇γ. Depending on the value of γ, the constitutive

curves can be either multivalued in γ̇ or both γ̇ and Σxy indicative of either shear

or vorticity banding [44].

4.3.3 Active Q instabilities

The instabilities considered in this chapter so far pertain to purely passive systems.

We now ask how the rheological response is affected when the liquid crystal becomes

internally driven, i.e., when the active stress Σa becomes non-zero. As detailed in

2The low-shear isotropic branch is also often referred to as the paranematic branch [146].
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Figure 4.6: (a) Plot of Qxy (which sets the active shear stress ΣAxy = −ζQxy) against shear-

rate for several values of the IN control parameter γ. Dashed lines mark solutions where the

corresponding constitutive curve is unstable. (b) Plot of ∂Qxy/∂γ̇, which tends to
Λ̄τQ

Γ̄
in the limit

γ̇ → 0 (dash-dotted lines).

Sec. 3.2.1, the only change we need make to the liquid-crystal equations to describe

the active systems of interest is the inclusion of an active stress Σa = −ζQ. As

we will show in what follows, the rheological consequences of this seemingly minor

addition are far-reaching.

We begin by exploring the origin of the spontaneous flow instability from a

rheological perspective, treating the isotropic and nematic limits separately. As

the nematic spontaneous flow instability has already attracted significant atten-

tion [15, 87, 148], we focus mainly on the isotropic regime. Ref. [149] studied the

rheology of contractile isotropic solutions using a microscopic model of sliding fil-

aments. However we are unaware of any detailed study of the extensile rheology

in this regime, nor that which explores the spontaneous flow instability from shear

rheology considerations (as we do here).

4.3.3.1 Isotropic spontaneous flow instability.

As we showed in the passive limit, for γ < 2.7 only one solution exists at ¯̇γ = 0:

the isotropic state. This state has Qxy = 0 at ¯̇γ = 0 and so contributes no active

shear stress ΣA
xy = −ζQxy (see Fig. 4.6a). The total stress is then single-valued

and continuous at ¯̇γ = 0 (see Fig. 4.9). Recall that our linear stability analysis in
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Sec. 3.3.3 predicted that an isotropic base state is susceptible to the spontaneous

flow instability above a critical activity, which remains non-zero even in the limit

Ly →∞.

In order to gain a physical understanding of this instability in the language of

constitutive curves, we now consider the total shear stress Σxy in the limit of small

shear-rate, where only terms linear in Q and γ̇ remain. We are left with contributions

from the solvent, (passive) liquid-crystal, and active stress

Σxy = ηγ̇ +
2

3
ξHxy + ΣA

xy,

= ηγ̇ + 2Λ̄Γ̄GQQxy − ζQxy. (4.5)

Using the linearised constitutive equation for Q, one can show that (see also Fig. 4.6b)

∂Qxy

∂γ̇
|γ̇→0 =

Λ̄τQ
Γ̄
, (4.6)

which diverges as γ → 3− [15]. The zero shear viscosity then reads

η0 ≡ ∂Σxy

∂γ̇
|γ̇→0 = η + 2Λ̄2ηQ − ζ

Λ̄τQ
Γ̄
, (4.7)

where the 1st term is the passive (positive) Newtonian viscosity, the 2nd term is the

passive (positive) liquid-crystal viscosity, and the 3rd term is the ‘active viscosity’

(negative for ζ > 0). Intuition from shear-banding studies tells us that negatively

sloping regions of the constitutive curve are indicative of flow instabilities. Therefore

the threshold at which η0 changes sign can be used to derive a critical activity for

the spontaneous flow instability

ζ̄c =
Γ̄

Λ̄τQ

(
η + 2ηΛ̄2

)
. (4.8)

This is simply our isotropic stability result (see Eq. 3.43 in the limit k → 0).

In order to relate this isotropic flow instability to the classical shear-banding in-

stability, consider the schematic in Fig. 4.7. First recall that if one subjects a passive

material to an applied shear-rate within the unstable region of the corresponding

constitutive curve (dashed line in Fig. 4.7a), an initially homogeneous shear-flow

state will be unstable and perturbations in the shear-rate will grow until they form

stable shear-bands at some γ̇l, γ̇h (see inset). The constitutive curve for a homo-

geneous, isotropic material is negatively sloping at the origin for ζ > ζc, as shown
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Figure 4.7: Schematic showing similarities and differences between passive and active banding

shear banding instabilities. Red lines mark the selected stress, and green circles denote the shear-

rates that form the two shear-bands. Insets mark possible profiles of γ̇ across the channel. (a)

Constitutive for a passive material, which would be expected to exhibit shear-banding instabilities

for applied shear-rates in the unstable (dashed) region. (b) Constitutive curve for an active isotropic

material with ζ > ζc. The curve is downward sloping at the origin, and the system is unstable to

forming shear-bands at ±γ̇b (see also inset).

in Fig. 4.7b. Analogously, for this system perturbations in the shear-rate will grow

eventually forming steady shear-bands at ±γ̇b (see also inset). While passive and

active instabilities are similar in the above respects, an important difference is that

the stress plateau is at zero stress in the active case.

We now demonstrate that our results are also consistent with earlier numerical

studies. Cates et al. [15] measured the zero-shear viscosity in the vicinity of the IN

transition using 1D finite-difference simulations with free boundary conditions (as

in our study) finding that as one approaches the IN transition point in an isotropic

material, η0 vanishes for extensile materials (see Fig. 4.8b red circles). The authors

speculated that the region of superfluidity occurs in extensile materials close to the

IN transition for γc(ζ, Ly) < γ < 3, though the functional form for γc(ζ, Ly) was not

given.

Our stability analysis results now allow us to determine γc(ζ, Ly). Rearranging

Eq. 3.41 (in the limit of no polymer, i.e., ηC → 0) produces

γc(ζ, Ly) = 3

[
1−

π2`2
Q

L2
y

− ζΛ̄τQ
η + 2Λ̄2ηQ

]
. (4.9)
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Figure 4.8: We plot the numerical data obtained with free BCs in Ref. [15] (red circles) and our

analytics (black line, Eq. 4.7), for (a) ζ = −0.005 and (b) ζ = +0.005 (extensile). Blue dashed line

marks the start of the superfluid window γc(ζ, L) for an extensile material (Eq. 4.9). Parameters:

η = 5/3, `Q/L = 5× 10−4, τQ = ηQ = 2.9607.

Note that in the bulk (Ly →∞) limit for vanishingly small activities (ζ → 0), γc →

3, i.e., the value at which isotropic metastability ends in a passive LC. In Fig. 4.8

we show that both the zero-shear viscosity (η0, Eq. 4.7) and the start of the window

of superfluidity for extensile materials (γc(ζ, Ly), Eq. 4.9) are in excellent agreement

with Ref. [15]. In experimental active systems, γ would typically parametrise the

concentration of rod-like active particles. Eq. 4.9 then implies that the critical

concentration, above which superfluid states of negative viscosity first appear, can

be made arbitrarily small by increasing the activity. Our results therefore show

that states deep in the isotropic phase, e.g., that might describe a dilute bacterial

suspension, can always form spontaneous flows if endowed with a large enough active

stress.

While we have mainly focused on the rheology of extensile materials so far (for

which ζ > 0), the results for contractile systems (for which ζ < 0) are also inter-

esting. As we approach the isotropic-nematic transition, Γ̄ → 0 and the zero-shear

viscosity η0 ∝ −ζ/Γ̄ diverges towards positive infinity. Experiments on contractile

algae suspensions have shown [13] a sharp increase in the viscosity as the concen-

tration is increased. Our results are also consistent with earlier analytical [149] and

numerical [15] studies of contractile active matter. We can compare directly with
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Figure 4.9: (a) Constitutive curves for increasing activities (ζ = 0, 0.01, 0.02, 0.04, 0.08, 0.16)

with γ = 2.6 (corresponding to the isotropic state in an unsheared passive system). For activities

above our analytically determined threshold (ζ > ζ̄c, see Eq. 3.43), active stresses dominate the

Newtonian stress (ηγ̇) resulting in a negatively sloping region at the origin. This instability is

also captured by our (numerically solved) linear stability analysis (where dashed line indicates

instability). (b) For each activity in the left panel, we record the evolution of perturbations in

the 1D non-linear code at ¯̇γ = 0. Perturbations grow when ζ > ζ̄c, i.e., when the corresponding

constitutive curve is negatively sloping at the origin. Parameters: τC = GC = 0, γ = 2.6,

ξ = 0.7, η = 0.001, ¯̇γ = 0.

the latter numerical study, where our analytical expression demonstrates excellent

quantitative agreement (compare red circles and black lines in Fig. 4.8a).

Finally, to further verify our results, we perform 1D nonlinear simulations. We

plot the growth of perturbations about an isotropic base state in Fig. 4.9b. This

shows that perturbations grow and develop into a non-linear flowing state when the

corresponding constitutive curve has a negative slope at ¯̇γ = 0. The point at which

the slope becomes negative (Eq. 4.8) evaluates to ζ̄c ≈ 0.063 for the parameters in

Fig. 4.9. We find that perturbations for systems with ζ < ζ̄c decay and those with

ζ > ζ̄c grow, consistent with our analytics.

4.3.3.2 Nematic spontaneous flow instability.

In the passive limit, for 2.7 < γ < 3.0 we find the coexistence of both isotropic and

nematic branches at ¯̇γ = 0. Without activity, these both have zero shear stress at
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Figure 4.10: (a) Constitutive curves for increasing activity (ζ = 0, 0.01, 0.02, 0.04, 0.08, 0.16) with

γ = 3.0 (corresponding to a nematic in the unsheared passive limit). As the nematic state has

Qxy|¯̇γ=0 6= 0, there is a non-zero active stress at the origin. For extensile systems (ζ > 0), this

discontinuity implies a spontaneous flow instability. (b) For each activity in the left panel, we

record the evolution of perturbations in the 1D non-linear code at ¯̇γ = 0. Perturbations grow

for all ζ > 0 as the corresponding constitutive curves all have a negative zero-shear viscosity.

Parameters: τC = GC = 0, γ = 3.0, ξ = 0.7, η = 0.001, ¯̇γ = 0.

¯̇γ = 0. However the latter branch has Qxy 6= 0 as ¯̇γ → 0, and thus contributes a

non-zero active stress Σa
xy = −ζQxy [15]. For extensile systems (ζ > 0) this results

in a ‘negative yield stress’ where that the shear-stress is discontinuous at the origin,

and the zero-shear viscosity η0 < 0, see Fig. 4.10a. By a similar argument as for

the isotropic case, an ordered nematic state (represented by a point at the origin) is

unstable to spontaneous flow instabilities and will form shear-bands at ±γ̇b (similar

to Fig. 4.7b). However in contrast to the isotropic case, η0 is negative for any ζ > 0.

This rheological interpretation was first reported by Cates et al. [15].

Repeating the procedure used above for isotropic materials, we again test our

predictions with 1D simulations. (See Fig. 4.10b.) This shows that (excluding

the passive case ζ = 0) perturbations grow for all activities shown, however small,

lending weight to our argument that the threshold3 ζc ≈ 0.

3Note that our simulations are intrinsically finite-size, and therefore at small enough activities

perturbations will be suppressed. For the parameters in Fig. 4.10, ζc = 8.5× 10−5 (see Eq. 3.35).
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Figure 4.11: Selection of fundamental differences in the constitutive curves for active isotropic

and active nematic materials as one approaches γ̇ → 0. (a) For isotropic materials, the active

stress must exceed a non-zero passive stress before the zero-shear viscosity η0 becomes negative.

(b) For a nematic, any active stress will create a discontinuity at the origin (with η0 negative for

extensile). This is because Q 6= 0 even at the origin, which the active stress ‘activates’ for ζ 6= 0.

4.3.3.3 Consistency with linear stability analysis.

In this section we have presented a rheological argument for the activity-driven

spontaneous flow instability purely by examination of 0D constitutive curves. To

summarise: for an isotropic material, there is a positive passive stress (which sums

viscous and liquid crystal contributions) that the negative active stress must over-

come before the spontaneous flow instability can occur (see Fig. 4.11a and recall

Fig. 4.9). Equivalently, large enough ζ is required to make η0 (Eq. 4.7) negative. For

nematics, η0 is negative for any positive activity (see Fig. 4.11b). This arises because

Qxy is non-zero as γ̇ → 0, which generates a non-zero active stress Σa
xy = −ζQxy.

In this section we have demonstrated excellent quantitative agreement for the

thresholds of both isotropic and nematic active flow instabilities between:

1. a 0D analytical rheological argument (by examining stress contributions to the

zero-shear viscosity)

2. a 1D analytical stability analysis (by calculating ζc)

3. 1D simulation results (by measuring the growth rate of perturbations at early

times in our full nonlinear code, starting from a homogeneous base state)
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4.3.4 Summary of flow instabilities

We now briefly recap the flow instabilities which we have studied using our (nu-

merically evaluated) stability analysis. These are also collated at the start of this

section in Table 4.1. In our model, the polymeric sector is described by a constitu-

tive equation identical to the JS model, apart from a renormalisation of the stress

ΣC = aGC(C − I). We presented new results for this renormalised stress which

predict shear-banding instabilities for slip parameters in the range 8η/ηC < a2 < 1,

generalising earlier work. (See Fig. 4.4a for constitutive curves.)

The analogous instability in passive liquid-crystals (resulting from similar terms

which couple Q to the flow) was also explored, and shear-banding was predicted for

ξ > ξ∗. (No analytical form is given for ξ∗.) We also reproduced earlier work [146] to

describe the shear-induced IN transition, where the isotropic and nematic branches

of the constitutive curve are connected by unstable regions. (See Fig. 4.4b / Fig. 4.5

for constitutive curves.)

For active liquid-crystals, we characterised the spontaneous flow instability at

γ̇ = 0. The nature of this instability is dependent on the IN control parameter

γ. At small γ < 2.7, a passive equilibrium LC will form an isotropic phase with

Q = 0. This can also be seen by examining the constitutive curve for a passive

LC, where only the isotropic branch of the solution remains in the limit ¯̇γ → 0.

This isotropic state contributes no active stress at ¯̇γ = 0 (as Q = 0). For large

enough activities, the (negative) active stress overcomes the (positive) passive LC

and solvent stresses and the zero-shear viscosity becomes negative, implying that the

initially homogeneous, isotropic base state becomes unstable. Indeed the threshold

at which η0 changes sign recovers our linear stability results, as is confirmed by our

numerics. While previous work has demonstrated that spontaneous flow can occur

close to the IN transition point [15], our results show that this instability can occur

arbitrarily deep into the isotropic phase.

Above γ = 2.7, there exists a nematic branch at ¯̇γ = 0, with non-zero Qxy. This

contributes an active shear stress which, for extensile systems, is negative. This

results in a negative yield stress, and therefore a negative zero-shear viscosity: the
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state is then mechanically unstable and results in spontaneous flow. In contrast to

the isotropic case, this mechanism exists for any ζ > 0. Our results reproduce and

complement the work of Cates et al. [15].

We now exploit our detailed knowledge of flow instabilities in both Q and C

sectors, in both the passive and active regimes, to construct novel constitutive curves

that incorporate competing liquid-crystal, polymer, active and viscous stresses and

exhibit various exotic combinations of the above instabilities in the same system.

These combinations of instabilities are, to our knowledge, novel to our model.

4.4 Composite constitutive curves

Having elucidated the individual sources of instabilities, we now consider the effect

when liquid crystal and polymeric sectors are coupled kinematically via the fluid

velocity field, i.e., coupling between Q and C occurs because both contribute stresses

to the Navier-Stokes equation and both react to the resulting velocity field v. We

present a selection of examples which showcase the diversity of active shear rheology.

4.4.1 Multiple shear instabilities

Recall that inclusion of non-local terms in the polymeric constitutive equation

leads to a uniquely selected plateau stress in shear-banding problems [60, 110] (see

Sec. 2.2.3.1 for details). We revisit this effect where now the total stress includes

contributions from both Q and C sectors, which both contain gradient terms in their

respective constitutive equations. The mechanism for stress selection when multiple

gradient terms are included is unclear a priori .

In the following example we combine the active Q instability (in the vanishing

γ̇ limit) with the polymeric shear banding instability (at γ̇τC ≈ 1). This produces a

constitutive curve with multiple unstable regions (as determined either by a linear

stability analysis or by inspection for regions where ∂γ̇Σxy < 0). See Fig. 4.12a/b

(black line). It is unclear a priori whether a single stress is selected for both unstable

regions or if multiple stress plateaus will result instead. We will now demonstrate

using non-linear 1D simulations that the latter mechanism is observed, and that the
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Figure 4.12: Left column: Black lines show the constitutive curves for a homogeneous system

exhibiting multiple instabilities (regions marked with dashed lines). Overlaid are flow curves

measured from 1D simulations which allow heterogeneity, sweeping ¯̇γ up (red triangles, top left)

and down (green triangles, bottom left). Two distinct selected stresses are found (marked by solid

blue horizontal lines), where the selected state is dependent on previous deformation history. At

very small applied shear-rates ¯̇γ < ¯̇γhom the flow becomes homogeneous again, because the high

shear-band becomes narrower than the lengthscale set by diffusive terms and the interface becomes

absorbed into the wall (we expect ¯̇γhom will be smaller for smaller `Q). Right column: Slices of

γ̇ across the channel for small ¯̇γ < 1.6 sweeping up (top right) and large ¯̇γ > 3.5 sweeping down

(bottom right). The stress from each slice is marked by triangles in the corresponding left column.

Parameters: η = 0.001, ζ = −0.5, a = 0.3, τC = 0.25, GC = 1, ∆ = 10−4.

chosen plateau is dependent on previous deformation history.

We adopt a protocol where we increment the applied shear-rate ¯̇γ, wait for the

system to reach a steady-state, record the shear stress, then repeat; this is typical

in shear experiments [49,56]. We also repeat the protocol but instead sweep γ̇ from

high to low shear-rates, which should reveal any hysteretic effects.

In Figs. 4.12a/b we overlay numerical data from two sweeps of the applied shear-

rate ¯̇γ, spanning nearly four decades. Firstly sweeping from low to high (Fig. 4.12a,

red triangles) reveals that for small shear-rates, the system is unstable forming

two shear-bands of shear-rate γ̇low = 0, γ̇high-1 ≈ 1.6, plotted in detail in Fig. 4.12c.

Interestingly this results in a zero-shear band at the lower wall, which in this example
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produces a zero-velocity band4. At intermediate shear-rates the constitutive curve

becomes metastable again and homogeneous flow is restored. At higher shear-rates

still (γ̇τC ≈ 1), the polymeric instability then appears, forming two shear-bands of

γ̇low = 0, γ̇high 2 ≈ 38, this time with a lower selected stress. Finally at very high

shear-rates, stability and therefore homogeneous flow are restored.

The reverse protocol instead sweeps ¯̇γ from high to low (Fig. 4.12b, green tri-

angles). We find that once the unstable region is reached at ¯̇γ ≈ 20, the system

becomes shear-banded at the lower selected stress. This banded state persists as

we decrease ¯̇γ, including shear-rates in the metastable region where ∂Σxy/∂ ¯̇γ > 0.

At ¯̇γ ≈ 0.2 the system switches to the second banded state, at a higher selected

shear-stress.

This ambiguity over state selection suggests that the shear-banded states at low

shear-rates are bistable, though whether this degeneracy would survive if our sim-

ulations included noise at every timestep is unclear. If measured experimentally,

we might expect previous deformation history to noticeably affect the rheological

response [56]. Multiple stress plateaus have been observed in other contexts. For

example a study of copolymer spherical micelle solutions found three states of in-

creasing degree of ordering as the shear-rate was increased. The transitions between

these states were marked by two stress plateaus, where multiple states were observed

to coexist [150].

While multiple instabilities were present in this example, a time-independent

steady state was always reached. We now explore some contrasting examples where

time-dependent, rheochaotic states develop. Initially, to introduce the theory behind

such flow states, we consider the case without externally applied shear before going

on to apply the understanding gained to the sheared case.

4.4.2 Rheochaos: zero applied shear

We plot in Fig. 4.13a constitutive curves for two activities. At the lower activity

(black curve), we expect an unsheared sample (¯̇γ = 0) to be unstable to the spon-

4If the order of the shear-bands was reversed then both bands would have vx 6= 0
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Figure 4.13: Left: Constitutive curves for two activities ζ = 0.75 (black) ζ = 2 (red), where

unstable regions are marked by dashed lines. The spontaneous flow instability (resulting from

the negative yield stress) predicts that shear-bands should form at the shear-rates given by solid

symbols. Our stability analysis predicts stable bands for ζ = 0.75, but unstable bands for ζ = 2.

Right: Slices of γ̇ across the cell for both activities. The time-dependent flow state for ζ = 2 can

be visualised more clearly in the space-time plot in Fig. 4.14. Parameters: η = 0.001, ζ = 0.5,

a = 0.3, τC = GC = 1, ∆ = 8× 10−5.

taneous flow instability due to the negative yield stress argument described earlier

(see Sec. 4.3.3). We then might expect the resulting state to consist of equal and

opposite static shear-bands at zero stress (black circles), which according to our

stability analysis are stable (i.e., line is solid). Indeed, we find that our 1D numerics

are consistent with this picture, and a stable banded state forms with shear-bands

at γ̇b ≈ ±0.77, see Fig. 4.13b.

However for larger activity (red curve), the region where the constitutive curve

passes through Σxy = 0 is predicted to be unstable by a linear stability analysis

(line is dashed). Therefore the bands that would form at γ̇b ≈ ±6.0 are themselves

unstable and could form further sub-bands that may not be able to settle to steady-

state.

Performing 1D numerics for this larger activity reveals that a time-dependent

state indeed develops with constantly shifting shear-bands, which we plot in Fig. 4.13c.

However the complex spatial structure makes it difficult to fully appreciate the dy-
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Figure 4.14: A simulation demonstrating a rheochaotic state, with zero applied shear. Top:

Space-time plot where the x-axis is time, the y-axis position y and the colourscale denotes shear-

rate γ̇. Bottom: Components of the shear stress (black total stress Σxy, red liquid-crystal stress

ΣQxy, green polymer stress ΣCxy and blue active stress Σaxy). Parameters: ¯̇γ = 0, η = 0.001, ζ = 2,

a = 0.3, τC = GC = 1, ∆ = 8× 10−5.

namics. Visualising the same data using a space-time plot provides a clearer way to

see the state, see Fig. 4.14 (top). This reveals that initially a pair of shear-bands

form (as seen for smaller activity) which then destabilise into further ‘sub-bands’

until the whole channel consists of bands continuously forming and disappearing.

Examining the stress-time signal (Fig. 4.14 bottom) we find correspondingly

aperiodic behaviour. While the time average of each stress component is zero, we find

the dynamics to be driven by significant fluctuations of individual stress components

about this mean. This is particularly dramatic for the active and polymer stresses

(blue and green time series respectively) which appear out of phase with each other,

and which (nearly) cancel to produce a total stress close to zero. This competition

is reminiscent of our elastomeric results in which activity-driven flows would load

the polymer until some threshold polymer stress was reached, at which point the

flow direction would switch (see Sec. 3.4.1).

The state we observe is aperiodic, and possibly chaotic. However as we do not

measure Lyaponov exponents, we are unable to distinguish truly chaotic states from

e.g., quasi-periodic states [151]. (In all that follows we neglect the distinction and use

the terms interchangeably.) This phenomenon can be labelled as rheochaos, which

refers to flow driven chaotic behaviour which is viscoelastic rather than inertial in
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nature [152–154]. However in previous studies, the forcing arises from external shear

rather than internal active stresses. Our results are reminiscent of those obtained us-

ing a (passive) toy model of wormlike micelles subject to an applied shear, where the

micellar stress is coupled to microstructure (specifically the micellar length) [153].

The authors found that when coupling was included, the high shear-rate branch

developed regions where the underlying base state was predicted to be unstable to

perturbations in the flow field. As in our study, nonlinear simulation of this toy

model revealed rheochaotic behaviour in the shear-banding regime. The authors

determined that rheochaotic behaviour is dependent on some degree of coupling be-

tween the relevant order parameters. Our model, which couples Q and C sectors

via the velocity field, clearly satisfies this requirement.

4.4.3 Rheochaos: applied shear

As mentioned above, it is not only at zero applied shear that this phenomenon

can be observed. Replotting the above constitutive curves for ζ = 0.75 to include

high-shear regions (Fig. 4.15), we find another example where one might expect

rheochaotic behaviour. This time the flow instability originates in the polymeric

sector and the unstable region starts at γ̇τC ≈ 1.

If we apply a shear-rate in the negatively sloping unstable region ¯̇γ = γ̇m, we

might expect the equivalent passive system to form static shear-bands at some γ̇l

and γ̇h. The linear stability analysis reveals that while the low-shear branch resides

in a stable region, the high shear region in which γ̇h is likely to fall is predicted to be

unstable and oscillatory, i.e., Re(ω) > 0, Im(ω) 6= 0 where ω is the most unstable

eigenvalue (see Fig. 4.15, left).

Numerical solution for an applied shear-rate in this region of negatively sloping

stress produces a state with coexistence between a spatially homogeneous shear-

band and a rheochaotic region. This can be clearly visualised using the space-time

plot in Fig. 4.15 (right). By averaging in time, we estimate the mean and standard-

deviation of the shear-rate in either region, and repeat this for the total shear-

stress. Overlaying these on the constitutive curve in Fig. 4.15 (left, blue error bars),

we find the non-linear simulation results are consistent with our explanation. Our
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Figure 4.15: Example of rheochaotic behaviour under applied shear ¯̇γ = 4. Left: Constitutive

curve where both the negatively sloping and high shear-rate regions are unstable. As the system

is unstable for our applied shear-rate ¯̇γ = 4, shear-bands form at γ̇l, γ̇h. Our linear stability

analysis predicts oscillatory growth of perturbations in the higher band, which results in chaotic

fluctuations. Variations in shear-rate and shear-stress are marked by blue error bars. Right:

Space-time plot showing coexistence of chaotic (high γ̇, lighter colours) and homogeneous (low γ̇,

dark blue) regions. Parameters: ¯̇γ = 4, η = 0.001, ζ = 0.75, a = 0.3, τC = GC = 1, ∆ = 8×10−5.

results are also consistent with those obtained using a model for wormlike micelles

in Ref. [155] where the authors reported linear instabilities in the high shear branch

of the constitutive curve when coupling was turned on. Chakrabarti et al. reported

rheochaotic behaviour in sheared, passive nematics (although without hydrodynamic

coupling to the fluid velocity). They found that strong non-linearities in the liquid

crystal equations (when driven by an imposed homogeneous shear flow) can also

result in spatiotemporal chaos [154].

4.5 Conclusions

In this chapter we have studied the shear rheology of our novel model for active vis-

coelastic matter, using three related techniques. Firstly we produce 0D constitutive

curves under the assumption of homogeneous flow. While this is analytically pos-

sible for the polymeric sector, the liquid-crystal model requires numerical solution.

We then use this solution as a base state in our linear stability analysis, which we

have generalised from the analytics of Chap. 3 (which set ¯̇γ = 0) to include sheared

materials (for which ¯̇γ 6= 0). Finally we solve the nonlinear constitutive equations
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in 1D, i.e., allowing heterogeneities in the y-direction.

We first applied these methods numerically to enumerate the possible flow in-

stabilities in Q and C sectors separately. We validated our methods by reproducing

earlier results including the shear-induced isotropic-nematic (IN) transition in pas-

sive nematics [146], and the LC shear-banding instability. We also presented new

results in which we derived the spinodal limit of stability in the C-only model,

generalising earlier work to include the effect of the renormalised polymer stress.

In principle, these results could allow one to map our model to the recent experi-

ments of Kunita et al. [51] which demonstrated shear-banding in solutions of actin

filaments as might be found in the cell cytoskeleton.

Interestingly, the nature of the active spontaneous flow instability depends on

whether the equivalent unsheared passive system forms an isotropic or nematic

phase. In the former case, we described a mechanism in which a sufficiently large

active stress is required to produce a negative zero-shear viscosity by considering

contributions to the total shear stress in the limit γ̇ → 0 (base states with negative

viscosities are mechanically unstable and are indicative of flow instabilities). Our

results show that spontaneous flows can occur even deep into the isotropic phase,

given sufficiently large extensile activity. In the latter (nematic) case, we repro-

duced the results of earlier work that showed that any extensile activity results in

a negative yield stress and therefore a negative zero-shear viscosity [15]. We also

demonstrated that our rheological arguments are entirely consistent with both our

linear stability analysis (Sec. 3.3) and our 1D nonlinear numerics.

Then by exploiting these results, we generated constitutive curves with exotic

rheological features. For example, we showed how the combination of Q and C

stresses can produce constitutive curves with multiple stress plateaus. We simulated

two protocols where we sweep the applied shear-rate up or down. These produced

flow curves which were not coincident in general, demonstrating that hysteretic

effects are present. Particularly at low shear-rates, we observe banded plug flows

where the lower shear-band is characterised by zero shear-rate. This is reminiscent

of inhomogeneous streaming flows that play a role in slime mould locomotion [156]

where it is thought that cellular protrusions could be driven by such flow instabilities
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[51].

Finally we explored the dynamics of a system characterised by an intriguing con-

stitutive curve where one or more of the shear bands (that would form according

to the classical shear-banding mechanism) are themselves predicted to be unsta-

ble. Simulations revealed the non-linear dynamics to be be aperiodic and possibly

chaotic, producing highly time dependent states where shear bands continuously

form and disappear. This is consistent with earlier studies that used models with

some degree of coupling between order parameters. Our results suggest that if

one subjects a solution of active particles embedded in a viscoelastic medium to

an applied shear γ̇τC ≈ 1, the resulting behaviour can be chaotic if energy input

(i.e., activity) is large enough. This could be realised, for example, with microfluidic

experiments on living liquid-crystals [117] in a dilute polymer solution.

In the preceding chapters, we have considered the stability and dynamics of active

matter in 1D, both with and without externally applied shear and using a range of

both analytical and numerical techniques. We now investigate the differences that

arise when we allow spatial variations in two dimensions. We will show that while the

analytical critical activities derived in this chapter remain applicable, the resulting

dynamical behaviour when these thresholds are exceeded is, in general, strongly 2D

in nature.



5
Active viscoelastic matter:

2D (no applied shear)

5.1 Introduction

In the previous chapter, assuming invariance of all hydrodynamic fields in all di-

mensions (0D) allowed us to map the rheology of active viscoelastic matter by pro-

ducing constitutive curves under the assumption of homogeneous flow. Even in this

reduced dimensionality, we were able to make striking predictions about the nature

of the spontaneous flow instability (in the infinite system size limit) based solely on

rheological arguments. Specifically we identified fundamental differences between

isotropic and nematic suspensions as we approach the infinite system size limit: the

critical activity vanishes for nematic states but remains finite for isotropic states.

By relaxing this assumption of homogeneity in the y-direction (normal to the

walls), we studied the growth of spatial perturbations in the order parameter fields.

107
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Retaining invariance in the x-direction however kept the governing equations analyt-

ically tractable. This allowed us to develop analytical insight into the spontaneous

flow instability in confined viscoelastic active matter, where the free energy cost of

distortions (required for the flowing state) competes against the active stress. We

predicted a novel mode of instability that occurs when polymer of long relaxation

times is added.

As is typical in hydrodynamic stability theory [157], we have studied our model

in a space of increasing dimension (0D, 1D, and in this chapter, 2D). Each successive

dimension informs the next, and in this chapter we will demonstrate that our lower

dimensional results remain highly relevant for our two dimensional study, accurately

predicting the onset of the spontaneous flow instability in 2D.

Due to the additional computational cost involved, we do not consider the dy-

namics of active viscoelastic matter in 3D in this thesis. However as many ex-

perimental studies involve quasi-2D geometries such as thin films [158], confined

chambers [117], or droplet surfaces [94, 159], we expect our 2D results to be rele-

vant experimentally. We now review the existing literature, particularly that which

focuses on the 2D confined geometries considered in this chapter.

Confinement. Active materials, particularly when confined in bounded geome-

tries, present a fascinating competition between active stresses and elastic distor-

tions. In Chap. 3, we generalised earlier work to include the effect of adding polymer,

deriving the critical activity that must be exceeded before the active stress can over-

come the energetic cost required to produce a distorted director field. We showed

that, in the nematic phase, this critical activity is inversely proportional to the

smallest lengthscale of confinement Ly (see Eq. 3.37). In this chapter we continue

to explore this theme of confinement in 2D showing that, particularly when polymer

is added, confined active matter breaks a macroscopic symmetry by developing net

flows within the channel. From here onwards we focus on the nematic phase observed

in many biological examples of active matter, particularly for cytoskeletal materials

such as the kinesin-microtubule mixtures studied in Ref. [94]. (By focusing on the

nematic phase, for which γ = 3, we also keep the parameter space manageable.)
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Recent experimental studies in confined geometries motivate our study. By

studying suspensions of B. subtilis, Wioland et al. observed the formation of stable

macroscopic spiral vortex structures when the bacteria were confined to an appro-

priately sized droplet [160]. It has been argued that such confinement of subcellular

active matter may be in part responsible for cytoplasmic streaming [1, 11], an im-

portant biological process where directed, coherent fluid flows provide circulation of

nutrients and organelles within the cell [12].

Keber et al. confined a kinesin-microtubule mixture to the surface of a small

spherical droplet, where geometric constraints fix the number of topological defects

(see below for an introduction to defects in active matter). This produced a range of

novel oscillatory states and dynamical changes in shape driven by protrusions remi-

niscent of those seen in crawling cells [159]. In a related study, larger droplets were

squeezed between two parallel plates forming a quasi-2D material. These droplets

were observed to develop spontaneous motility, tracing out periodic patterns in the

fluid [94]. Such experiments have provided inspiration for several numerical and

theoretical studies of ‘active droplets’ as a minimal model of cell motility. These

typically adopt a phase field (similar to that used in Chap. 7) to describe the shape

of a deformable droplet [20,161–163].

At the cellular scale, the motility of crawling leukocytes in confined 3D envi-

ronments was studied both in-vivo and in-vitro where it was found that contractile

stresses, driven by the actomyosin complex, are responsible for propelling the nucleus

through narrow gaps [164]. Vedula et al. studied the migration of cells in an arti-

ficial channel geometry, where they observed that the mean cell velocity increased

as the channel was narrowed [165]. The flow in wide channels was characterised by

vortex-like structures whereas the flow was more directed and coherent in narrower

channels (‘coherence’ was quantified using an orientational order parameter). In

Sec. 5.4.2 we explore an effect where the correlation length of an active LC is in-

creased as polymer is added, resulting in more coherent flows and thus net material

motion.

Solid walls can have important hydrodynamic effects. Hernandez-Ortiz et al.

showed that even for dilute, independent swimmers with no collective behaviour,
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Figure 5.1: Schematic illustrating some of the topological defects found in nematic liquid crystal

phases, here for elongated apolar molecules. The red square and green circle mark the singularities

at the defect cores; we adopt this notation to label defects in any further 2D plots. Left: − 1
2

defect, note the threefold rotational symmetry. Right: + 1
2 defect, note the lack of rotational

symmetry defines a defect orientation with the defect ‘head’ to the left and ‘tail’ to the right.

walls can produce spatial fluid correlations in a confined domain that do not appear

in unbounded flows [166]. The above studies motivate us to further explore the

walled geometry which we previously considered for 1D systems in Chaps. 3, 4.

Defects. With the increase in dimensionality comes a corresponding increase in

topological complexity. Of significant importance to active matter systems is the

role of topological defects. Given a general order parameter, which may vary in

space, a topological defect can be defined as the point, line or surface where the

order parameter is discontinuous [167, 168]. In our 2D study, it is point defects of

the nematic order parameter Q that are specifically relevant.

Such defects can be characterised by the winding number, defined as the line

integral of the director angle around the core [74]. Due to the head-tail symmetry

of the nematic director, this net rotation can only take values

∆θ = 2πm (5.1)

where m is an integer or half-integer. In Fig. 5.1 we illustrate the two half-integer

defects commonly found in nematic liquid crystals. Note that the dimensionality of

both the order parameter and the space in which it exists are important. In our
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study we employ a 3D Q tensor in 2D space for which ±1
2

defects are topologically

equivalent1.

These defects can be generated in a passive nematic by, for example, a rapid

quench from the disordered to the ordered state, or by an externally applied field.

Allowing the system to equilibrate, the defect texture coarsens as oppositely charged

defects annihilate until a homogeneous state is reached, minimizing the free energy.

The defect density n, defined as the total number of defects per unit area, typically

decays as a power law in time n ∼ t−1 [169].

It is not only the relaxational dynamics that drive this coarsening process. The

hydrodynamical coupling of the director field to the velocity results in a backflow

which can accelerate +1/2 defects and slow −1/2 defects [170]. For sufficiently large

activity, an analogous ‘active backflow’ effect can dominate, dependent on the sym-

metry of the defect [171]. The threefold rotational symmetry of the −1/2 defect

means that active stresses do not contribute to the net defect motion. In contrast

the +1/2 defect has a defined polarity, and moves in the direction of the head (tail)

for extensile (contractile) systems (as defined in Fig. 5.1).

The dynamics of defect-driven active matter have been studied experimentally

with remarkable clarity in quasi-2D confined geometries [94, 159]. For sufficiently

large concentrations of ATP (parametrised by activity ζ in our simulations), concen-

trated suspensions consisting of microtubule filament bundles and clusters of kinesin

molecular motors were observed to form spontaneously flowing chaotic states consist-

ing of many ±1/2 defects [94]. In contrast to actomyosin, which is contractile [172],

the resulting dynamics is extensile with the motion of +1/2 defects consistent with

the ‘active backflow’ mechanism in Ref. [171].

Particularly in the chaotic regime that we explore later, the dynamics is driven by

continual, activity-driven creation and annihilation of defects. The total topological

charge is exactly conserved for the biperiodic case, i.e., at any point in time there

are equal numbers of +1/2 defects and −1/2 defects. However when solid walls are

included, defects can additionally form and annihilate at the boundaries which, in

general, can lead to a net topological charge.

1Note that ± 1
2 defects are distinct only if both space and order parameter are strictly 2D [168].
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Figure 5.2: Schematic of the two geometries considered in this chapter, where dotted lines indicate

periodic boundaries. a) Biperiodic geometry used to study defect dynamics (without polymer),

with sides of length Lx = Ly = 1 (see Sec. 5.2). b) Channel geometry used for the studying

confinement effects, periodic only in the x-direction (see Secs. 5.3 to 5.6). We fix Lx = 4Ly.

The first section of this chapter focuses on the steady state dynamics of defects

in the chaotic phase, relating correlation lengths to the activity. The most natural

geometry in which this can be studied is the biperiodic system (i.e., without walls)

shown in Fig. 5.2a. However for the latter sections of this chapter where we study

the effects of polymer on confined active flows, we include solid walls as in Chaps. 3,

4 (see Fig. 5.2b).

Drag reduction. Beyond a critical Reynolds number, pressure-driven pipe flow

of a passive, Newtonian fluid develops turbulent, time-dependent structure. Re-

cent theoretical, numerical and experimental studies of active matter (without poly-

mer) have noted similarities between this inertial turbulence and so called ‘active

turbulence’ (which occurs even for Re → 0), for example demonstrating that the

latter possesses the multiscale structure and energy spectra characteristic of the

former [173,174].

When this pipe flow is in the turbulent regime, a marked increase in throughput is

observed experimentally when high molecular weight polymer is added, resulting in

a drag reduction effect [175]. In this chapter we explore the analogous effect in active

systems: by adding polymer to (say) a fluid showing bacterial turbulence, we will

argue that one could effectively ‘reduce drag’ by enhancing throughput at fixed active

stress (see Sec. 5.4). Such an effect may be relevant to the cytoplasmic streaming

processes discussed above, which require coherent flows to transport nutrients within
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the cell.

In this chapter we take a numerical approach and study the 2D dynamics of

our coupled model for active viscoelastic matter. We begin in the simplest limit

where the polymer relaxation is so rapid that it does not contribute to the dynam-

ics. In the biperiodic geometry we examine the relation between activity and the

underlying lengthscale of the ‘active turbulent’ state l∗, as determined by multiple

correlation lengths. Using careful numerics we unambiguously obtain the scaling

l∗ ∼ `Q
√
GQ/ζ, in agreement with an independent numerical study performed by

our collaborators.

Then remaining briefly in the limit of no polymer, we return to the parallel plate

geometry considered previously in 1D and verify our 2D code by reproducing earlier

work [87]. This is then generalised to account for multiple initial conditions, reveal-

ing that the onset of spontaneous flow can occur at activities an order of magnitude

smaller for bend instabilities than for splay. The phase diagram, particularly in the

chaotic region, is characterised by states with no net flow in any particular direction.

However when polymer is added we demonstrate that this macroscopic symmetry

can be broken and flows with net throughput can develop. This, we argue, results

from an ‘active drag reduction’ effect whereby polymer calms small scale structure

resulting in more coherent flow states. We quantitatively confirm this by studying

the dependence of the defect density with polymer relaxation time, τC .

We then explore the limit of diverging polymer relaxation time τC , first at fixed

polymer viscosity (i.e., we take τC → ∞, GC → 0 so that ηC = GCτC is constant),

then with fixed modulus GC (so that ηC → ∞). Perhaps surprisingly, both limits

reveal that transient spontaneous flows are possible in a material that is effectively

a solid, a result quantitatively consistent with our 1D analytics in Sec. 3.3 above.

Finally we provide a selection of novel examples when the active nematic is

thermodynamically coupled to the polymer, i.e., at the level of the free energy (χ 6= 0

in Eq. 3.9). These include: an example where an initially chaotic state is driven into

an ordered, shear banded flow (which can be seen as an extreme example of drag

reduction), and shuffling, oscillatory states.
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5.2 Defect dynamics (ηC → 0)

We begin in the limit where the polymer relaxational dynamics is so fast that the

polymeric stress is negligible2. This limit provides a simple starting point for study-

ing the dynamics of active matter in 2D. To avoid sampling complications introduced

by solid walls, we adopt the biperiodic geometry in this section (Fig. 5.2a), allowing

us to obtain clear statistics for the correlation lengths with ease. We solve the equa-

tions of motion described in Sec. 3.2 numerically (without polymer, i.e., ηC → 0)

using the Fourier method described in Sec. 2.3.2.

As discussed previously, depending on the strength of the activity, active matter

can form different phases in which the nature of collective motion ranges from lam-

inar (at low activities) to turbulent (at high activities). For example, recent experi-

ments on kinesin-microtubule mixtures have revealed turbulent states which appear

to be driven by the continual creation and annihilation of defects [94, 95]; at larger

scales, dense bacterial suspensions are observed to form similar phases [126]. In or-

der to connect minimal theoretical models with such experiments, it is important to

identify the underlying lengthscales of the system and how they relate to key dimen-

sionless parameters. While there have been several recent attempts to ascertain the

relation between activity and the lengthscale of nematic structure [6, 173, 176, 177],

a consensus has yet to be reached.

Scaling arguments. Previous simulation studies of active nematics [87,108] (and

our own results, see Sec. 5.4) have shown that at low activities, the director field

forms structures which span the system size L, whereas larger activities generate

states that are both spatially and temporally aperiodic and whose structure is inde-

pendent of the system size. However, while it is clear that the correlation length of

the nematic director decreases with activity in the way just described, the precise

nature of the scaling is unclear.

Once free of the system size L (= Lx = Ly), dimensional analysis tells us that

2In practice, we simply omit the C dynamics and stress from our simulations altogether, so

that ηC → 0.
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the characteristic lengthscale l∗ of structure in the fluid should scale with the only

remaining length `Q ≡
√
K/GQ and with the following dimensionless groups

l∗ = `Q f

(
GQ

ζ
,
η

ηQ

)
. (5.2)

By considering the lengthscale at which active and passive stresses balance [173],

we might further expect that

l∗ ∝ la ≡ `Q

√
GQη

ζηQ

(
=

√
Kη

ζηQ

)
. (5.3)

(This is also consistent with our linear stability analysis results, in which
√
ζc ∝ `Q,

where ζc is the threshold for spontaneous flow.) Note that at large enough activities

l∗ will reach the microscopic lengthscale `Q at which it will presumably saturate.

The activities explored in our simulations are not large enough to produce this effect

however.

Giomi [173] obtained the scaling l∗ ∝ ζ−1/2 numerically, consistent with the

above form. In contrast, recent simulations by Thampi et al. [177] suggest that

l∗ ∝ ζ−1/4`Q. A possible source for this inconsistency in scaling exponents could

be due to differences in the Q tensor formalism: the former study uses a 2D order

parameter in 2D space, whereas the latter adopts a 3D order parameter in 2D space

(as we have done throughout this thesis).

The main aim of this section is then to resolve this discrepancy and verify the

functional form proposed in Eq. 5.3. We achieve this by performing careful numer-

ics in which we vary the activity over several decades. We have also engaged in

a collaborative project with Christina Marchetti and Prashant Mishra at Syracuse

University, in which two common variants of the Q tensor formalism are compared,

using independently developed numerical codes [32]. Excellent agreement was ob-

tained between both studies, demonstrating that our results are robust to both the

dimensionality of the order parameter and the specific details of the model.

Full details of the collaborative project can be found in Ref. [32], which addi-

tionally includes (a) an investigation of how correlation lengths in the velocity field

scale with activity, and (b) results demonstrating that the same scaling laws are

obtained for contractile active matter.
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Figure 5.3: Example showing the decrease of director correlation length as activity is increased,

once in the defect dominated chaotic regime. (a) Director correlation Cn as a function of R/L

(see Eq. 5.4). Correlation lengths (defined as R∗ for which Cn(R∗) = 1/2) are marked with black

circles, and correspond to green crosses in Fig. 5.4. (b) Director correlation Cn, where R has been

scaled by la (Eq. 5.3). This shows a reasonable curve collapse for all activities shown, strongly

suggesting that the correct scaling behaviour has been obtained. Parameters: ∆ = 5× 10−6

5.2.1 Correlation lengths

There are multiple correlation lengths that one can define to describe the spatial

structure of an active nematic. We adopt two methods for obtaining the nematic

correlation length; in principle one can also examine analogous correlations in the

velocity field [32,177].

5.2.1.1 Director correlation length

We define the director correlation function

Cn(R) =
2〈n̂(R).n̂(0)〉 − 1

2〈n̂(0).n̂(0)〉 − 1
, (5.4)

which yields the correlation in the nematic director n̂ between two points R apart.

Angular brackets 〈·〉 in the above equations indicate an average over space and time.

We then define the nematic correlation length ln such that Cn(ln) ≡ 1/2. An example

of this procedure is given in Fig. 5.3a.
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5.2.1.2 Defect density length

We define the areal defect density n as the total number of defects divided by the

simulation area LxLy. The method for numerically counting defects is described in

detail in Apx. 5.8, following Ref. [178]. By assuming a homogeneous distribution of

defects, as is reasonable in the regime of active turbulence, we then define the defect

separation length as

ld ≡
1√
n
. (5.5)

5.2.2 Results

We now present the results of 2D simulations for a range of activities in the regime of

fully developed turbulence, i.e., small enough to avoid saturation at the microscopic

length, but large enough to avoid finite system-size effects [173]. We also repeat

these simulations for several values of `Q/L in order to confirm the functional form

of Eq. 5.2. While the focus here is on extensile materials (ζ > 0), we find that our

results are generic and also hold for the contractile activities [32] (data not shown).

We begin in Fig. 5.4a by plotting the scaling of nematic and defect spacing

correlation lengths (ln, ld respectively) against ζ/GQ. At small activities we observe

saturation in the correlation lengths due to finite-size effects (see shoulder in top left

of the plot). However as the activity is increased, any dependence on the system

size is lost. Once sufficiently deep into the turbulent phase, both correlation lengths

clearly appear to scale as (ζ/GQ)−1/2 (black dashed line). Eventually we might

expect both correlation lengths to saturate as ln, ld ∼ `Q, though the activities in

our simulations are not large enough to observe this effect.

Note that the defect spacing correlation length is consistently larger than ln by a

factor ∼ 3. This is to be expected: as ln effectively measures the radius of a vortex

structure around a defect, the spacing between a pair of vortex centres will be at

least twice this.

If we now rescale both correlation lengths by `Q, each set of data collapses onto

a single curve (see Fig. 5.4b). This, combined with the excellent agreement with the
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Figure 5.4: Nematic (ln, empty symbols) and defect (ld, filled symbols) correlation lengths against

dimensionless activity ζ/GQ for an extensile nematic (ζ > 0). Data shown for `2Q = 2× 10−6 (red

circles), 5 × 10−6 (green squares), and 1 × 10−5 (blue triangles). (a) Both lengthscales scale as

∼ (ζ/GQ)
−1/2

(dashed black line). (b) The data in (a) collapses onto a single curve when (ln,

ld) are rescaled by `Q. Note: For reference, the dash-dotted line shows the scaling (ζ/GQ)−1/4

obtained in Ref. [177].

plotted power law (black dashed line), strongly suggests the scalings

ld, ln ∝ `Q

√
GQ/ζ, (5.6)

consistent with the functional form proposed in Eq. 5.2. To demonstrate this further,

we plot in Fig. 5.3b the nematic correlation function Cn(R), where R is rescaled by

la = `Q
√
GQη/ζγ. As expected, this shows a reasonable curve collapse for activities

in the regime of fully developed turbulence.

Our results also reveal a possible reason for the discrepancy with Thampi et

al. [177]: if one is not sufficiently deep into the regime of active turbulence, then

a fit will only capture the ‘shoulder’ of the data, and therefore a power law with

an exponent greater than −1/2. To illustrate this, we also display the ζ−1/4 scaling

obtained in Ref. [177] in Fig. 5.4b (dash-dotted line).

5.2.3 Summary: defect dynamics

In summary, we have shown that once in the regime of fully developed active turbu-

lence, the lengthscale of structure in the director field (as determined by two distinct



5.3. Phase diagrams (ηC → 0) 119

correlation lengths) unambiguously scales as

l∗ ∝ `Q

√
GQ/ζ. (5.7)

Results from a collaborative study [32] confirmed the above scaling, and generalised

these findings to examine the functional dependence on ηQ, finding that

l∗ ∝ `Q

√
GQη/ζηQ, (5.8)

as originally theorised (Eq. 5.3). We speculate that discrepancies in the literature

over the scaling exponents may be due to finite-size effects, whereby correlation

lengths saturate at the system size L at low activities.

5.3 Phase diagrams (ηC → 0)

By considering the 2D dynamics of our model in the limit of no polymer (i.e., ηC →

0), we have shown that the biperiodic geometry is ideal for the study of defect

dynamics, particularly in the regime of fully developed turbulence. This allowed

us to unambiguously obtain the scaling law that relates the nematic correlation

length to activity in the ‘active turbulent’ state, in agreement with an independent

numerical study [32].

Remaining briefly in this limit, we now return to the walled geometry studied

previously in 1D (Chaps. 3, 4) to introduce the phenomenology of confined active

matter in 2D. Within this geometry we will first explore, without polymer present,

the competition between activity and the distortion free energy in the channel ge-

ometry. We previously explored this competition for a 1D system using analytical

linear stability calculations (Sec. 3.3), which predicted a non-zero critical activity

for finite channel width Ly. In this section we demonstrate that these results still

inform the behaviour of 2D systems, and further perform full 2D simulations for the

nonlinear dynamics.

Geometry and boundary conditions For the remainder of this chapter we

model flows in a channel periodic in the x-direction with length Lx = 4Ly, with
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solid walls Ly apart (see Fig. 5.2b), and spatially invariant in the z-direction. The

boundary conditions at the walls are as specified in the previous two chapters, i.e.,

∂yQαβ(x, y = 0, Ly) = ∂yCαβ(x, y = 0, Ly) = vα(x, y = 0, Ly) = 0,

with periodic boundary conditions in the x-direction.

5.3.1 Throughput criterion

At time t, the throughput of the system is defined as

Ψ(t) =
1

Ly

∫ Ly

0

vx(t)dy = 〈vx(t)〉y , (5.9)

where Ψ(t) is independent of x because of fluid incompressibility. As this quantity

generally exhibits significant fluctuations in time, particularly in the chaotic regime,

we define our criterion for significant or ‘net’ throughput as being when the mean

of the throughput time-series µΨ exceeds the standard deviation σΨ, i.e.,

µΨ

σΨ

> 1, (5.10)

where

µΨ =
1

t

∫ t

0

Ψ(t′)dt′, (5.11a)

σΨ =

√
1

t

∫ t

0

(Ψ(t′)− µΨ)2 dt′ (5.11b)

converge to constant values, which are in general non-zero, as t → ∞. Note that

under this definition, even states that technically do have non-zero mean throughput

will fail the criterion if this mean is less than the standard deviation of the time-

series.

In practice, we find that the flow direction can periodically switch (e.g., as shown

in Fig. 5.5a) which, if naively averaged, would produce zero mean throughput, at

least as t → ∞. Therefore instead of using Eq. 5.11 directly, we perform a least-

squares fit, fitting the throughput histogram with two Gaussians of width σΨ, centred

at ±µΨ. We have explicitly checked that our results are robust to the number of

histogram bins used. Examples of both throughput and non-throughput states are



5.3. Phase diagrams (ηC → 0) 121

-0.05 0 0.05

Ψ

0

5

10

15

20

N
 (

n
o
rm

e
d
 c

o
u
n
ts

)

-0.01 0 0.01 0.02

Ψ

0

10

20

30

40

50

60

70

0 10000

t

-0.1

0

0.1

Ψ

0 10000

t

-0.025

0

0.025

Ψ

(a) (b)

Figure 5.5: Method for determining throughput, Ψ. (a) A state with net throughput, in which

the throughput direction switches. The red bins show the normalized histogram of Ψ(t), the solid

black line is a fit using two Gaussians at ±µΨ. In this example, the positive throughput state lasted

for shorter simulation time, hence the difference in heights (means and standard deviations are the

same). Both peaks will tend to the same height in the limit t→∞. Here ζ = 5, ∆ = 3.2× 10−4,

τC = 1. (b) A state with no net throughput for comparison, with ζ = 5, ∆ = 10−5, τC = 1.

Insets: Examples of throughput-time series for each run.

given in Fig. 5.5. We mark states satisfying this criterion in the following phase

diagrams with solid symbols, and those failing it with empty symbols. In the next

section, Sec. 5.4, we will explore the relationship between the polymer relaxation

time and throughput, where we will find that net throughput states become increas-

ingly prevalent as we increase τC .

5.3.2 Phase diagram

We begin by reviewing the results of Ref. [87] which, in the limit ηC → 0, mapped

the phase diagram exploring the competition between activity ζ and the Frank co-

herence length `Q =
√
K/GQ. The authors observed that in 1D above a critical

activity ζc (extracted by examination of 1D flow profiles for decreasing `Q), the

system undergoes a spontaneous flow instability forming shear-banded states. Re-

peating the phase diagram in 2D, these 1D shear-banded states were always observed

to destabilise forming steady (i.e., time-independent), oscillatory, or aperiodic 2D

flowing states. Their results were obtained using simulations with an initial condi-
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Figure 5.6: Phase diagrams for 2D runs in the no-polymer limit ηC → 0. States are: quiescent

(black crosses ×), banded (triangles, orange splay N / purple bend N), rolls (black diamonds �),

oscillatory (blue squares �), aperiodic (red circles ©). Filled symbols denote a net throughput

according to Sec. 5.3.1. All states are detailed in Table 5.1. Analytical stability thresholds for the

onset on spontaneous flow (ζ1D
c ) are plotted using Eq. 3.35, where dotted lines mark ζ1D

c for the

other initial condition. The thresholds above which the 1D state is unstable to 2D perturbations

(ζ2D
c ) are also plotted (these are determined numerically). Top: 2D runs with ICx (as in Ref. [87]).

Bottom: 2D runs with ICy, demonstrating that the bend flow instability appears at significantly

smaller activities than for splay. Note the large region of steady 1D banded states at small activities.

Parameters: ξ = 0.7, η = 0.567

tion (IC) designed to invoke the bend instability where the director is orientated in

the x-direction, i.e., n̂ = (1, 0, 0). We will refer to this as ICx.

First we verify our 2D code by reproducing these results with ICx, then report

new results exploring the onset of the splay instability using a second IC where

the director is aligned in the y-direction, n̂ = (0, 1, 0), which we label ICy. As one

might expect from our linear stability analysis (Sec. 3.3.3.1), we find that the phase

diagram is dependent on initial condition at small activities.
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5.3.2.1 Initial condition: n̂ = (1, 0, 0)

In Fig. 5.6a we plot the phase diagram for the same parameters as in Ref. [87], but

for a larger range of ζ and ∆ = `2
Q/τQ. As in that study, for small ∆ and ζ, we

observe steady roll states with system-size dependent structure (Table 5.1C). At

intermediate values of ζ, these rolls destabilise to form streaky, defect-driven states

with aperiodic and possibly chaotic3 dynamics. However, remnants of the system

size still remain with transient structures appearing on a lengthscale O(Ly). Finally

for very large activities, the resulting aperiodic state is defect-rich and contains no

obvious influence of the system size (Table 5.1G). This is the same regime of fully

developed ‘active turbulence’ required for our study of correlation lengths in the

previous section. These states, particularly in the chaotic regime, typically do not

posses a net throughput.

For larger values of ∆, we observe a range of oscillatory states at intermediate

activities, again consistent with Ref. [87]. These include a limit-cycle like state that

switches between banded and roll states (Table 5.1D), and a state in which defect

pairs travel along the channel in a sinusoidal fashion (Table 5.1E). As the activity

is increased, these oscillatory states gain additional frequency components when

plotting a given scalar observable (e.g., throughput) against time. When there is no

longer any discernible periodicity, we term the state aperiodic.

We also observe a narrow region where steady 1D banded states remain stable

in 2D (Table 5.1B). We label the upper bound of this region, which must be found

numerically4, as ζ2D
c . These states, which were not seen in Ref. [87], were presumably

only captured in our study due to the higher resolution of sampling in the phase

diagram. A comprehensive list of all the states observed is given in Table 5.1, which

qualitatively describes each state and provides example snapshots of the director

field.

3As previously discussed in Sec. 4.4.3, we (and the authors of Ref. [87]) do not make the

distinction between truly chaotic and e.g., quasiperiodic states. We use the terms aperiodic and

chaotic interchangeably for the remainder of this chapter.
4We find the exact position of the boundary using a bisection method, where we start with

points either side of the boundary and iterate, testing whether 2D perturbations grow or decay.
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Also plotted on our phase diagram in Fig. 5.6 is our analytical 1D critical activity

ζ1D
c (which is initial condition dependent) as derived in Sec. 3.3.2. This shows

quantitative agreement with the regions of the phase diagram exhibiting spontaneous

flowing states (i.e., any state that isn’t quiescent). This also quantitatively agrees

with the phase boundary plotted in Ref. [87].

5.3.2.2 Initial condition: n = (0, 1, 0)

We now repeat the phase diagram, this time with the director initially orientated in

the y-direction. Our 1D linear stability analysis predicted that the bend instability

(arising from ICy) should first appear at smaller ζ than the splay (arising from ICx),

see Eq. 3.36. Fig. 5.6b confirms this numerically, revealing that the shear-banded

state (purple triangles) first appears at activities an order of magnitude smaller than

for splay.

Interestingly, these 1D states remain stable in 2D for a much larger region of the

phase space, up to the (numerically measured) critical activity ζ2D
c . Therefore at

small activities, depending on the initial condition, significantly different states can

develop, e.g., rolls for ICx or shear-banded states for ICy. Then, for activities above

ζ2D
c , the phase diagram is indistinguishable from that resulting from ICx.

5.3.2.3 Alternative boundary conditions

Both our analytical and numerical results reveal the importance of initial condition

on the resulting phase diagram. However initial conditions are difficult to control

experimentally, particularly in the biological systems of interest here. Experimen-

tally, it may be more feasible to impose a fixed director configuration at the walls

(e.g., as in Ref. [117]), where n̂ is set perpendicular (parallel) to the walls to provoke

initial conditions that predispose the system to the bend (splay) instability.

5.3.3 Summary: phase diagrams

In this section, we have introduced the phenomenology of active matter in the limit

of no polymer (ηC → 0), comprehensively classifying states in the (ζ,∆) phase space

according to their temporal and spatial periodicities, reproducing earlier work [87].
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ID symbol net Ψ description snapshot of (nxny)2

A × no
quiescent state (i.e., no flow), oc-

curs if below critical activity

B N / N yes
the 1D splay / bend banded

states can persist in 2D

C � no stationary rolls

D � yes
oscillates between B (banded)

and C (rolls)

E � no
oscillatory states where through-

put is precisely zero

F � yes
some oscillatory states can also

result in net throughput

G g no

chaotic states with too much en-

ergy (ζ → ∞) appear to disrupt

any directed motion

H w yes

chaotic states with intermediate

ζ can sustain net throughput in-

definitely (rare without polymer)

Table 5.1: Description of the rich array of 2D states found in the channel geometry, all of which

can be found with or without polymer. Tabulated are: (a) symbols used in phase diagrams, (b)

whether the state has a net throughput Ψ (as defined in Sec. 5.3.1), (c) a qualitative description

of the state, (d) a snapshot of (nx, ny)2 where n̂ is the nematic director (colour scale is 0 (black)

to 0.25 (white)). States are roughly ordered by increasing activity, see Fig. 5.6 for their positions

in the phase diagram.
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At large activities, only a small number of the resulting chaotic states develop a

net flow of material along the channel, with the direction spontaneously chosen. We

have defined a criterion based on the mean and standard deviation of the throughput

to categorise such states.

We then provided new results for a second initial condition where the nematic

director is aligned in the y-direction, generalising the study in Ref. [87]. Our 1D

analytics predicted this configuration to be susceptible to bend instabilities at sig-

nificantly smaller activities then when the director is orientated in the x-direction.

This prediction is quantitatively confirmed using 2D numerics, highlighting the im-

portance of initial condition. Experimentally, we expect that surface treatment

could be used to influence the initial condition (via the boundary conditions). We

now study how the (ζ,∆) phase diagram described above changes as polymer with

increasingly long relaxation times is added, finding that the number of states with

net throughput dramatically increases.

5.4 Viscoelastic active matter

As discussed in the previous section, even without polymer we find a wide array

of states in the channel geometry which, depending on the strength of the activity

ζ and the diffusivity ∆, demonstrate either system-size dependent structures with

rolls (reminiscent of Taylor vortices) or defect-heavy system-size independent chaotic

states.

In this section we study the effect of adding polymer, which is dramatic. Partic-

ularly in the chaotic regime at large activities we show that, as polymer relaxation

time τC is increased, the parameter range where states are found with a macro-

scopic broken symmetry (specifically the net throughput in the periodic direction)

is greatly extended. This result may have particular biological significance in the

context of cytoplasmic streaming, where it is theorised that cytoskeletal materials

such as actomyosin play a role in generating coherent flows for the transport of

nutrients and organelles [1, 11].

We consider the case where the polymer relaxation time τC is at most two orders
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of magnitude larger than the nematic relaxation time τQ. This means it remains

feasible to resolve steady state dynamics on polymeric timescales in our numerics.

We later consider the elastomeric limit τC → ∞, for which it is very difficult to

obtain true steady-states numerically; there we focus on the transient behaviour

instead. For the remainder of this chapter we set slip parameter a = 1, for which

the polymeric sector becomes equivalent to an Oldroyd-B fluid. This choice means

only affine deformation is possible, which some theoretical studies suggest may be a

reasonable assumption for the dense cross-linked filaments found in the cytoskeleton

[120, 121]. In the following sections we also assume that any coupling between LC

and polymer order parameters is indirect, i.e., mediated via the fluid velocity field.

However in the final section of this chapter we briefly examine a more direct coupling

at the level of the free energy.

5.4.1 Phase diagram

In the previous section we showed that of the 2D flow states observed, only a small

fraction of these produce a net throughput when in the defect-heavy chaotic regime

typically observed experimentally. We now examine how this changes when polymer

is added with a relaxation time comparable to or greater than that of the LC.

In Fig. 5.7 we display phase diagrams without and with polymer side-by-side,

where ηC = 0 and ηC = 1 respectively. We find that our general picture of the

(ζ,∆) phase diagram obtained in the limit ηC → 0 still holds. Ordered states with

structure spanning the system size appear at low activity (e.g., banded or oscillatory

states), whereas disordered aperiodic states independent of the system size appear

at higher activities. Phase boundaries are also qualitatively similar in both cases.

However, particularly in the aperiodic regime seen at large ζ, we see the dramatic

effect of polymer: the majority of states now exhibit a net throughput (i.e., the

phase diagram predominantly consists of filled symbols).

Having demonstrated that even polymer of modest relaxation time results in a

significant qualitative change to the phase diagram, we now provide an argument

for this phenomenon by drawing an analogy with drag reduction in the context of

inertial turbulence, and study this effect quantitatively.
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Figure 5.7: Phase diagrams for 2D runs with ICy, both with and without polymer. These

demonstrate the significant increase in the number of states with net throughput in the presence

of polymer (filled symbols). Lines show (solid) the 1D instability (bending mode) of the specified

initial condition; (dotted) that of the splay mode for ICx, and (dashed) the observed crossover

line ζ2D
c beyond which 1D states always destabilise. Top: Data reproduced from Fig. 5.6 for ICy

where ηC = 0. Bottom: Simulations with polymer of relaxation time τC = 4τQ. Notice that the

majority of chaotic states now have a net throughput. Parameters: ηC = 1, a = 1.

5.4.2 Drag reduction

Recall that, for large Reynolds numbers, the flow field of a passive Newtonian fluid

in a pressure-driven pipe flow becomes turbulent, leading to noticeably reduced

throughputs [179] for a given pressure drop. When a high molecular weight polymer

is added, a marked increase in throughput is observed experimentally, resulting in

a ‘drag reduction’ effect [175].

While in our model (which assumes Re = 0) the turbulence is ‘active’ rather

than ‘inertial’ in nature, we observe an analogous effect. By adding polymer to a

fluid showing activity-driven turbulence, we argue that one could effectively ‘reduce

drag’ by enhancing throughput at fixed active stress. We observe that the polymer
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Figure 5.8: Demonstration of increased throughput at intermediate τC . We pick a point deep

in the chaotic region of the phase diagram Fig. 5.7 (top) and perform 2D runs for a number of

τC . We plot the time-averaged value of each quantity in steady-state, where vertical bars denote

the standard deviation. Left: The steady state rms velocity, vrms =
√
〈|v|2〉x (red line), is

a monotonically decreasing function of τC , but the throughput Ψ (green line) has a maximum

at intermediate τC . States where green error bars pass through zero (dotted line) fail our net

throughput criterion (see Apx. 5.3.1). Right: The time averaged defect density n is large when the

polymer relaxation is rapid but decreases as τC is increased. Parameters: ζ = 3.2, ∆ = 2×10−5,

ηC = 1.

calms the short scale structure of the active flow, decreasing the nematic defect

density and increasing the flow correlation length towards the system size, thereby

favouring restoration of a more organized flow state.

We now explore this idea quantitatively by examining this relationship between

throughput and defect density. We do so by selecting parameters representative

of fully developed active turbulence, and sweep τC at fixed ηC = 1. In Fig. 5.8a,

we first notice that the root mean square velocity, defined as vrms =
√
〈|v|2〉x,

decreases monotonically as we increase the polymer relaxation time. For small τC

the polymer simply contributes an additional solvent viscosity and the rms velocity

remains constant. However as τC > τQ, the (fixed) active stress has to work against

an increasingly elastic fluid as the large polymeric stresses cannot relax fast enough.

As τC becomes very large the polymer effectively arrests the flow (at least in steady

state, see Sec. 5.5.3 for examples of transient flow) and vrms drops off towards zero.
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The dependence of throughput Ψ on τC is not monotonic however. At small τC ,

as was shown in the previous section without polymer, the chaotic state generally

has no net throughput. Our throughput criterion (that the bimodally fitted mean

of Ψ is larger than the standard deviation) is satisfied when error bars in Fig. 5.8 do

not pass through zero. As τC increases, not only does the mean throughput increase

but fluctuations about it decrease suggesting a more coherent flow state. Finally

as τC becomes very large the flow is arrested and the magnitude of the throughput

decreases (as discussed above).

To quantitatively demonstrate the greater coherence of states once polymer dy-

namics become relevant, we also examine the defect density n shown in Fig. 5.8b.

(Alternatively we could measure correlation lengths as in Sec. 5.2, though in prac-

tice we find that the influence of walls makes it difficult to obtain reliable statistics).

This demonstrates that vrms is reasonably correlated with the defect density, consis-

tent with our findings without polymer (Sec. 5.2). Noticeably, the peak throughput

coincides with the point at which the defect density starts to decay.

5.4.2.1 Summary: Viscoelastic active matter

By considering the 2D dynamics of active viscoelastic matter when the polymer

and nematic relaxation times differ by at most 2 orders of magnitude, we can obtain

reliable steady state statistics. (This becomes numerically unfeasible for much larger

τC .) We compared phase diagrams in the (ζ,∆) plane with and without polymer

of relaxation time τC = 4τQ. This demonstrated that while the phase boundaries

separating static, oscillatory, and aperiodic states remain largely the same, when

polymer is added the majority of these states now break a macroscopic symmetry

and develop net flow in the ±x direction.

This change is most dramatic in the region of the phase diagram that is chaotic

(without polymer) where we have shown that adding polymer of increasingly large

relaxation time leads to a calming drag reduction effect where the defect density n

is reduced, favouring a more coherent flowing state with net throughput. Once τC

becomes large, however, flows become increasingly arrested by polymeric stresses

and the typical velocity scale of these coherent states reduces. Competition be-
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tween these mechanisms leads to a peak throughput when τC is roughly an order of

magnitude greater than τQ.

By restricting ourselves to comparably short polymer relaxation times, we were

able to reliably resolve steady state polymeric dynamics using our numerics. We now

consider the elastomeric limit where τC � τQ, for which this becomes increasingly

difficult. However we will show that even the transient dynamics can be very rich,

illuminating the origin of an instability where the polymer undergoes rapid growth.

The long time behaviour in this limit can also be speculated on by examining the

resulting power law behaviour.

5.5 Elastomeric active matter

As just discussed, even polymer of modest relaxation time has a significant effect on

the phase space of confined active nematics. We have studied in detail the dramatic

drag reduction effect that promotes throughput in chaotic active states. However

new and unexpected physics can also arise when this polymeric time scale becomes

effectively infinite. In the passive limit, our model could describe e.g., a nematic

elastomer [124]. Here we consider the active counterpart as could be found in an

active nematic (such as an actomyosin cell extract) within a background of lightly

cross-linked elastomer. We now address this limit in two ways: first by increasing

τC (holding ηC = 1), then with τC infinite at small finite GC (giving infinite ηC).

A priori, one might expect the flow instabilities reported in the previous section

for modest relaxation times to be completely absent in what is, after all, a solid

material. However our 1D stability analysis in Sec. 3.3 predicts that such materials

are at least transiently unstable. In this section we demonstrate using 2D numerics

that this result is generic: at large but finite activity, complex LC textures can result

from this instability which then slowly coarsen as a power law in time.

We first investigate in detail the transient dynamics of this instability, demon-

strating that the rapid extensional deformation observed in the polymer for large

relaxation times can be understood by analogy with extensional instabilities in the

passive limit. This analysis is then applied to help explain a novel oscillatory state
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at large but finite τC . Biologically, shape oscillations in developing cells are believed

to be driven by actomyosin networks [180], which have been described theoretically

using an elastic model [181].

5.5.1 Startup kinetics

In 1D, we showed both analytically and numerically that above the critical activity

ζc, perturbations in Q and C about the homogeneous state undergo exponential

growth in time until saturating (once the dynamics become non-linear). In 2D we

will show that when polymer relaxation is rapid, this activity driven spontaneous

flow instability is mostly unaffected and after the initial exponential growth of the

linear instability, a flowing steady state is quickly reached. However for polymer

relaxation times comparable or larger than the LC timescale τQ, we observe further

rapid, nonlinear extensional growth. As this effect also occurs at short times, we can

study the transient dynamics for particularly large values of τC , for which steady-

state simulations (which resolve the dynamics on a timescale τC) are unfeasible.

We begin by imposing the constraint ηC = 1 to ensure our results aren’t affected

by viscosity changes. This means the elastic modulus GC is small for large τC ; a

polymer stress of O (GQ ≡ 1) when τC is large then implies large strains. With ini-

tial condition C = I, the polymer stress ΠC = GC (C− I) is initially negligible and

the system is effectively dominated by the active nematic dynamics. For large ac-

tivities, a turbulent flow state is quickly generated including regions with significant

extension rates. As the polymer has no mechanism by which to relax its stress, this

results in considerable deformation, and particularly for τC & 2 we find that very

large polymer strains accumulate in a short time.

For our choice of a = 1, deformation is purely affine and the polymeric model

reduces to Oldroyd-B. Recall that for this model, the polymer will undergo exponen-

tial extensional growth while the extension rate (made dimensionless by τC) exceeds

1/2, and will never reach a steady-state (see Sec. 2.2.3.2). As the flow fields generated

by the active nematic in 2D are considerably more complex than pure extension,

it is instructive to consider a spatially averaged measure of extensional flow rates.

We define an extensional Deborah number De as the product of the frame invariant
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Figure 5.9: Results from 2D runs examining the short time dynamics of a point in the chaotic

region of the phase diagram. We vary τC from 10−2 (red) → 104 (blue) with logarithmic spacing,

keeping ηC constant by decreasing GC . (a) Time series of the mean Deborah number De =

τC
√

1/2 (D : D) for increasing τC . Also marked is the threshold Decrit = 1/2 above which we might

expect non-linear exponential growth (dashed line). (b) Spatial average of Tr[C − I] quantifying

the mean polymer deformation. When 〈De〉 > Dec (see left), we observe non-linear, exponential

loading of the polymer in very short times. Parameters: ζ = 2.2, ∆ = 4× 10−5, ηC = 1.

extension rate and the polymer relaxation time τC

De = τC
√

1/2 (D : D), (5.12)

where D = 1/2
(
∇v +∇vT

)
. By analogy with the pure extensional case, we might

then expect strains to grow exponentially when De > Dec ≈ 1/2. Note that the

activity driven flow field is considerably more complex than for pure extensional

flow and the comparison is only approximate.

In Fig. 5.9a we plot the spatial average of the Deborah number, 〈De〉, against

time for a range of τC . For small τC (warm colours), while 〈De〉 initially grows with

the linear instability, it remains much smaller than Dec. As such the corresponding

spatial average of the polymer deformation 〈Tr[C− I]〉, Fig. 5.9b, exhibits only the

initial linear instability at small τC .

However for large enough τC (cold colours), we find De exceeds Decrit ≈ 1/2. The

effect on the polymer is dramatic: following the initial growth of the linear instability,

we observe a second period of exponential extensional growth which generates huge

strains in very short times, see Fig. 5.9b. This process is only halted once the
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polymer stress becomes comparable with the LC, active, and solvent stresses. Note

that physically this growth would ultimately be cut off by finite extensibility or chain

rupture, neither of which are in the polymer model considered here. However we

expect the general features of this mechanism, whereby activity-driven extensional

flows subject the polymer to extensional deformation, to hold regardless of model

specifics.

We have shown here that the onset of non-linear exponential growth in the

polymer observed for large τC correlates strongly with when the average Deborah

number exceeds Dec ≈ 1/2. This is consistent with polymer-only studies in pure

extensional flows [64], and indeed our own studies in porous media (see Chap. 6).

We now apply this insight to explain the mechanism behind a novel state observed

only with polymer, where a limit cycle transitioning between banded and oscillatory

states develops.

5.5.2 Limit cycle

So far we have explored a large volume of parameter space, with the activity ζ, dif-

fusivity ∆ and polymer relaxation time τC all spanning several decades. This broad

overview has, for example, provided insight into the role of polymer in promoting net

throughput states. However, we have not yet reported in detail the dynamics of any

specific states within the phase diagram. Therefore we now provide an example of a

novel state which explicitly demonstrates the direct role of polymer viscoelasticity

in the dynamics of our coupled model.

By choosing a large polymer relaxation time τC = 1000, we can clearly separate

polymeric and active timescales, allowing us to identify their respective roles in the

dynamics. We observe that at moderate activities, independent of initial condition

(ICx or ICy), for the parameters chosen the system generally settles on a limit cycle

transitioning between quasi-1D splay and bend banded states via an intermediary

2D state.

This cycle can be clearly visualised by examining the power spectrum P (kx, t).

For a given wavevector kx, this integrates the kthx Fourier component of both dimen-

sionless order parameters over y. (For a full definition see Apx. 5.9.) A purely 1D
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Figure 5.10: Example of a limit-cycle state where the system continuously oscillates between bend

and splay shear-banded states via an intermediate roll state. (a) Plotted is the power spectrum

P (kx) (as defined in Apx. 5.9) for the first 20 Fourier modes kx (kx = 1 (red) → kx = 20 (blue)).

The transitions between states are 2D in nature, as shown by the periodic spikes in P (kx). (b) Plot

of mean polymer deformation as measured by 〈Tr[C− I]〉. Right: Snapshots for the times marked

in (a)/(b) of (nxny)2 (colourmap), director n̂ (red lines), and defects (symbols). Parameters:

ζ = 1.24, ∆ = 1.6× 10−4, τc = 1000, ηC = 1.

state would therefore measure P (kx, t) = 0 for kx > 0. This allows us to quanti-

tatively describe the degree of inhomogeneity in the x direction, which we plot in

Fig. 5.10a.

Allowing time first for the system to reach a steady-state (i.e., t < 2000), the

initial state that forms (see t1 = 2300) is a quasi-1D shear-banded state, with flow

resulting from the bend deformation. As P (kx, t) is non-zero, the state is not truly

1D. However variations of the order parameters in x are negligible and cannot easily

be discerned by eye.

At large activities in 1D the bend state destabilises to form the splay banded

state [182]. A similar mechanism also occurs here in 2D, where the director in the

central region rotates by π/2 to form a splay banded state (see t2 = 3620). This

process initially happens at a single x position, then the instability propagates along

the interface until the whole system is splayed. This symmetry breaking results in

a brief spike in P (kx, t) (e.g., at t = 2800).

This splay state then apparently remains stable for a time ∼ τC , before devel-
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oping a roll-like instability (see t3 = 4400) characterised by alternative pairs of ±1/2

defects. This is captured by the rapid growth in P (kx, t) which displays significant

weight at non-zero wavevectors, even for large kx, indicating short scale structure.

This structure then relaxes, with the highest modes relaxing quickest, and the sys-

tem returns to the initial bend state where the cycle repeats.

The effective dimensionality of the state directly impacts the polymeric dynam-

ics, which we characterise using 〈Tr[C − I]〉 as before (Fig. 5.10b). Due to incom-

pressibility, extensional flows can only exist in two or more dimensions, and therefore

are not observed in the quasi-1D shear-banded states. As such the polymer trace

in these states simply relaxes on a timescale τC . However the 2D roll state permits,

and indeed contains, regions of extensional flow. Consistent with the mechanism de-

scribed in the previous section, τC can exceed the timescale of these flows resulting

in the same non-linear exponential growth of C, resetting the cycle.

We have analysed, in detail, a state with visible influence from polymeric cou-

pling. Reminiscent of the 1D instability of the bend state at high activity [182],

we observe a quasi-1D bend → splay transition. Contrary to the 1D case how-

ever, this splay state is then itself unstable to 2D perturbations forming a transient

roll-like state. This produces extensional flows which, consistent with our earlier re-

sults, rapidly generates significant polymeric deformation. Finally the 2D structure

relaxes and the cycle repeats.

So far we have approached the elastomeric limit at fixed polymer viscosity (with

finite τC). In the final part of this section, we demonstrate the generality of our

results by setting τC →∞ at fixed elastic modulus GC .

5.5.3 Spontaneous flow in a solid

Earlier work [80,81,108] and our own linear stability results in the polymer-free limit

(Sec. 3.3) showed that the active spontaneous flow instability in a finite system can

always be suppressed by a large enough viscosity. By approaching the elastomeric

limit τC →∞ at fixed ηC = 1 in the preceding sections, we have avoided the impli-

cations of such an effect. However, the vanishingly small elastic modulus required

to maintain this constraint may be unphysical.
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Figure 5.11: Results from 2D runs with τC → ∞. We vary GC from 10−8 (blue) → 10−1 (red)

with logarithmic spacing. (a) Areal defect density n against time. Steps arise because n is discrete.

(b) Scalar measure of polymer stress GC〈Tr[C−I]〉. Parameters: ζ = 3.2, ∆ = 8×10−5, τC →∞.

Therefore we now demonstrate the generality of our spontaneous flow results

by additionally considering the limit τC → ∞ at fixed GC . Without polymer, an

infinite viscosity might imply that spontaneous flow is always suppressed. However

our 1D results with polymer showed both analytically and numerically that such an

instability is possible due to the existence of an elastomeric instability mode that

implies that ζc remains finite as τC →∞: we now show that this result also holds in

2D. Numerically we implement this limit simply by disabling the polymer relaxation

term in Sec. 3.2.2 altogether, i.e.,���
���:

0−1
τC

(C− I).

In Fig. 5.11 we plot the defect density of the LC and the mean extensional stress

of the polymer against time, for a range of polymer elastic moduli GC = 10−8 →

10−1. As GC � GQ, the sample can strongly deform before its small elastic modulus

has appreciable influence5. This effect can be seen in the rapid growth of the defect

density n at early times, Fig. 5.11a, indicating the formation of complex LC textures.

As we showed previously in Sec. 5.5.1, regions of extensional flow rapidly stretch the

polymer resulting in exponential growth at early times. (See Fig. 5.9b.)

However once the polymer stress ∼ O(GQ), the turbulent state arrests into a

complex but almost frozen defect pattern. Thereafter the defect density decays

5A similar phenomenon is observed in the context of polymeric glasses [183].
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slowly, roughly as t−1, which is the classical result for passive nematic coarsen-

ing [169]. This process is slow enough that the strain pattern created by the arrested

active turbulence might easily be mistaken for a final steady state. Particularly

as no polymer relaxation can occur, the polymer trace continues to grow at long

times. However the process is slow, occurring only logarithmically in time. Our

arrest mechanism, where strong polymer stretching in extensional flow regions cre-

ates strong stresses in opposition, may relate closely to the drag reduction effects

reported earlier.

5.5.3.1 Summary: elastomeric active matter

In this section we examined the limit in which the polymeric relaxation time τC

is effectively infinite, corresponding to an active nematic elastomer. This might

describe, for example, crosslinked actin networks found in the cytoskeleton [90].

We first approached this limit by holding viscosity ηC fixed. By studying the

startup behaviour, we observed that at early times the polymer stress is negligible

and the dynamics is mainly prescribed by the active nematic. The extensional

flows generated by the resulting turbulent state can induce large polymeric strains

which grow exponentially in time. Drawing analogy with the known extensional

catastrophe in the Oldroyd-B model, we produced a criterion for the appearance

of this rapid polymer growth based on a Deborah number describing the ratio of

extensional and relaxational timescales.

Insight into this extensionally driven polymer deformation then helped explain

a novel state that cycles between bend (quasi-1D) → splay (quasi-1D) → roll-like

(2D) states, on a timescale set by τC (� τQ). The 2D state generates extensional

flows that rapidly deform the polymer, resetting the cycle. Finally we took a distinct

elastomeric limit, instead fixing GC with τC infinite (implying an infinite polymer

viscosity). Even then we observed a transient spontaneous flow instability (consis-

tent with our 1D work) in which complex LC textures initially form before coarsening

slowly in time once polymer stresses become appreciable.

In our study so far, the interaction between polymer and active nematic is indi-

rect, mediated only via the background velocity v. For the remainder of this chapter
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we briefly consider the limit in which these sectors become antagonistically coupled

at the level of the free energy. This produces an array of novel states which we now

explore.

5.6 Explicit coupling

As we have demonstrated in the preceding sections, even when polymer and active

nematic are only coupled kinematically (i.e., through the velocity field) the effects

are dramatic. In particular, polymer can have a calming effect, suppressing defect

creation and promoting coherent flow states with a net throughput (Sec. 5.4.2).

Returning to the situation where τC remains finite and comparable to τQ, we

conclude this chapter by considering a more direct coupling between Q and C as

prescribed by the free energy,

fQC = κTr[Q2] (Tr[C− I]) + 2χTr[CQ].

Here the first term controls how the polymer pressure shifts the isotropic-nematic

transition; for simplicity we suppress this effect by setting κ = 0. The second term

depends on the relative orientations of Q and C. For χ < 0 it is energetically

favourable for Q and C to align. For example, experiments (in the passive limit)

suggest that single semi-flexible polymers can couple to the nematic director field

in this fashion [184]. However this configuration generally arises even for χ = 0 due

to the reversible coupling with the velocity field, and the effect of χ < 0 on the

dynamics is minor.

Therefore in this section we only consider the more antagonistic coupling χ > 0,

where Q and C now prefer to be anti-parallel. Given the dimensionality of parameter

space even without explicit coupling, we do not perform an exhaustive parameter

sweep and instead present a selection of some of the more intriguing and novel states

observed. We find that for large values of χ our simulations fail to obtain a finite,

steady-state solution for Q and C, even in 0D. Therefore in our numerics we restrict

χ to values |χ| < min(GQ, GC) for which finite solutions can be found.
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Figure 5.12: Example where an initially chaotic state organises into a coherent shear-banded

state with defects (advect with the flow) embedded in the interface. Left: Time evolution of the

power spectrum P (kx, t), averaged over y (for kx = 1, red → kx = 20, blue). The initial chaotic

state has considerable Fourier amplitudes, but these are attenuated once the polymer coupling

becomes significant. Right: Snapshots of (nxny)2 for the states marked left at times (c) t = 50,

(d) t = 700 and (e) t = 3800. Parameters: ζ = 3.2, ∆ = 4× 10−5, τC = 10, χ = 0.002.

5.6.1 Example states

5.6.1.1 Shear Bands with interfacial defects

The first example demonstrates an intriguing, polymer-driven disorder-order tran-

sition. Choosing parameters characteristic of the chaotic state (when χ = 0), we

initially find the defect-rich disordered state observed without polymer (Fig. 5.12c).

However as the simulation progresses, ordered regions of nearly uniform director n̂

spread in from the walls towards the centre of the channel, forming an increasingly

shear-banded like state (Fig. 5.12d). Eventually, the only remaining evidence of the

earlier chaotic state are pairs of defects embedded in the interface (Fig. 5.12e).

This transition can be seen quantitatively by examining the power spectrum

P (kx, t) in Fig. 5.12a. During the initial chaotic phase, the first 20 wavevectors

(plotted) contribute significantly to P (kx, t), indicating appreciable spatial struc-

ture in the x-direction, with dynamics aperiodic in time. At long times, once the

banded state forms, all amplitudes P (kx, t) are attenuated, particularly at large
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Figure 5.13: Example of an transient spiral structure (spiral region with two green + 1
2 defects

at the centre, cf. Ref. [11]), which is advected along the channel by the surrounding chaotic flow.

In this instance, the spiral lasts for a time ∼ 300τQ. Colourmap shows (nxny)2. Parameters:

ζ = 3.2, ∆ = 4× 10−5, τC = 10, χ = 0.002.

kx. This (admittedly extreme) example is consistent with our drag reduction argu-

ment, whereby polymer calms short-scale structure. Snapshots of the evolution of

this state in Fig. 5.12c/d/e demonstrate a clear transition from a disordered to an

ordered state.

Correlated with this suppression of short scale structure is a dramatic increase

in the throughput (Fig. 5.12b). While the chaotic state at early times has zero mean

throughput, the latter banded-state develops a strong net flow in a spontaneously

chosen direction, in this example towards the right.

Interestingly, during the intermediate phase between chaotic and banded states,

we occasionally find transient, rotating spiral structures, which when viewed macro-

scopically6, possess an integer topological charge +1 (see Fig. 5.13). Such structures

are more commonly observed in polar materials. Experiments probing the dynam-

ics of cytoskeletal extracts that comprise polar filaments observe self-organisation

resulting in coherent spiral structures for both actomyosin complexes [133] and ki-

nesin/microtubule mixtures [185]. Attempts to theoretically model such materials

using a polar order parameter also predict similar structures [186–188].

These spirals are not typically observed in apolar, nematic, materials which

instead form ±1
2

defects [94], consistent with the previous numerical results in this

chapter (without explicit coupling). (One exception to this is in highly confined

6Microscopically, at the heart of the structure, we find a pair of +1/2 defects though these are

close enough that the effective director field forms a spiral pattern of topological charge +1.
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Figure 5.14: Example of an exotic oscillatory state which coherently shuffles left and right on a

timescale of order τC . Left: Snapshot of the state where (nxny)2. Right: Throughput time-series

showing the oscillatory nature of the state. Parameters: ζ = 6, ∆ = 10−4, τC = 10, χ = 0.002.

cylindrical geometries, as studied in Ref. [11]. There the authors found a single +1

defect at low activities, which then split into a pair of +1/2 defects as the activity was

increased.) It appears that antagonistic coupling can help promote integer defects,

but the detailed mechanism for this remains unclear.

5.6.1.2 Shuffling state

Increasing the activity (with all other parameters fixed) can disrupt the above shear-

banded state. The result, Fig. 5.14, is a state that shuffles back and forth as a whole,

with defects travelling along regions in which the degree of ordering q (principle

eigenvalue of Q) is small. This mechanism is similar to that reported in Ref. [182]

(without polymer), where defect motion in ‘walls’ (regions of high local distortion)

was observed. The throughput time-series (Fig. 5.14 bottom) shows that the net flow

direction switches direction periodically on a timescale ∼ O(τC), again confirming

the direct influence of polymer on the dynamics.

5.6.1.3 Order-disorder coexistence

With a larger coupling constant (χ = 0.004), even stranger states can develop.

Fig. 5.15 shows an example of a state exhibiting coexistence between chaotic/oscillatory

regions (where the director is in-plane) and pseudo-quiescent regions (where the di-

rector is pointing out of the page). Here the active region travels back and forth,
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Figure 5.15: Example showing coexistence of ‘bubbling’ active domains and regions where the

director is out of plane (black). Parameters: ζ = 6, ∆ = 10−4, τC = 10, χ = 0.004.

trapped between the plates. These quiescent regions are likely to be a result of our

geometry where we embed a 3D order parameter in a 2D space, combined with order

parameters whose major axes do not want to be aligned (for χ > 0). It is likely

that simulations in 3D space are required to fully resolve the dynamical behaviour

of this state, which we expect would show structure and fluctuations also in the

z-direction. Repeating the simulations a number of times with different seeds for

the 2D perturbation, we find that these pseudo-quiescent regions sometimes grow,

and can envelope the whole system.

5.6.1.4 Summary: explicit coupling

Given the complexity of parameter space, we have only devoted a small part of our

study to the limit where the order parameters Q and C are coupled explicitly at the

level of the free energy. In this section we presented a small selection of the states

resulting from this more direct coupling.

The first of these exhibits a novel disorder-order transition in which the small-

scale structure of an initially chaotic state is smoothed out as the polymeric influence

increases until eventually a shear-banded state forms, often with residual defects

travelling in the interfacial region. We then described two oscillatory states which

(a) shuffle back and forth in the channel on a timescale ∼ O(τC), and (b) exhibit a

coexistence of shifting quiescent and active regions. Even this modest selection of

states demonstrates the wide range of dynamical behaviour possible in our coupled

model. Future work could certainly look at this fascinating explicitly coupled regime,

perhaps in a more systematic fashion.
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5.7 Conclusions

Chaps. 3 to 5 introduced our novel model for active viscoelastic matter. In a simpli-

fied 1D geometry, where all fields may only vary in the y-direction, we established

both the linear stability properties (analytically) and the non-linear dynamical be-

haviour (numerically). These results were used to derive critical activities for the

spontaneous flow instability, and demonstrate that flowing states are possible even

in the limit τC → ∞. While this 1D assumption greatly simplified the analytical

and numerical complexity of our study, it becomes increasingly unphysical as the

activity is increased. In this chapter therefore, we took a numerical approach to

study the differences and similarities between the 1D and 2D dynamical behaviour.

We began in the limit in which polymer has no influence (ηC → 0) where we

reported a collaborative study examining how the characteristic lengthscale of the

active turbulent state, l∗, scales with activity. Two independent numerical studies

in a biperiodic geometry found that l∗ ∼ `Q (GQ/ζ)1/2. This result could in principle

allow one to relate experimental control parameters (such as ATP concentration [95])

to the equivalent model parameter (activity). Future studies could extend this to

include the effects of polymer. Our results in the channel geometry, that show that

defect creation is suppressed as τC is increased, suggest that correlation lengths

should increase with τC .

Remaining briefly in the no-polymer limit, we then adopted the channel geometry

of our 1D study. We verified our numerics by comparison with existing work before

generalising to include an alternative initial condition. We observed spontaneously

flowing states above a critical activity, consistent with our linear stability analysis.

Interestingly, we found bistable states at small activities, where the chosen state is

strongly dependent on initial condition. Our results highlight the care that must be

taken when relating numerically obtained phase diagrams to experiment.

In the turbulent, defect-rich regime typically seen experimentally, the velocity

field (without polymer) generally does not produce net material transport. However

biological processes such as cytoplasmic streaming (at the subcellular level) or cell

migration in confined geometries (at the supracellular level) require net flows. We
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introduced an order parameter to quantify the throughput of a given system.

When we include polymer of a relaxation time comparable to the LC, through-

puts in the chaotic regime were significantly increased. We described a mechanism,

analogous to polymer-controlled drag-reduction in inertial turbulence, where the

polymer calms short scale structure and suppresses defect formation, promoting co-

herent flow states. Based on the above defect scaling results, we might expect that

these coherent flows would ultimately be destroyed at very large activities, although

our numerics do not extend into this regime.

We then explored the physics of the limit of diverging τC , first at fixed viscosity

then at fixed modulus GC . We explored a phenomenon where large polymer defor-

mation would occur in short times. This, we argued, results when the polymeric

timescale exceeds the timescale of activity-generated extensional flows, analogous

to the (unphysical) behaviour of the Oldroyd-B model in pure extension. In light

of these results, future studies might generalise the polymeric constitutive equation

to include more physical extensional behaviour, for example by including finite ex-

tensibility of the polymer chains. This mechanism then was employed to explain

the dynamics of a novel, oscillatory limit cycle where the system switches between

quasi-1D banded states and a 2D roll state. Rapid polymeric deformation occurs in

the latter (which contains extensional flows), which relaxes during the shear-banded

states (which do not).

Setting τC → ∞, we found transient spontaneous flows, consistent with our 1D

analytical prediction. The turbulent state that forms initially ‘freezes in’ as the

polymer stress becomes appreciable, after which the LC defects slowly annihilate,

and the nematic structure coarsens slowly as a power law in time.

Finally we explored some of the novel states generated when Q and C are explic-

itly coupled. In this limit, for example, states were found where the polymer drives

a disorder-order transition. Oscillatory shuffling states were also observed with the

timescale of oscillations set by τC . We do not perform an exhaustive survey of pa-

rameter space, instead sampling a small number of points. The rich array of states

observed invites a more systematic exploration of phase space in future works.
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Figure 5.16: Schematic demonstrating how the topological charge and position of a defect is

found numerically. The director angle is extracted on the regular grid, and the change in angle

integrated round the four nearest grid points. After accounting for the head-tail symmetry of

the director n̂, any square where the integrated angle is non-zero contains a defect. Here we

demonstrate the process for a −1/2 defect (green wedges indicate the angular change from site to

site). Red square marks the (approximate) location of the defect core.

5.8 Appendix I: Numerically counting defects

We now describe how we numerically identify and classify topological defects in the

director field, following the method first described by Bowick et al. [189] (we adopt

the algorithm as described in the Appendix of Ref. [190]). As introduced in Sec. 2.3,

we solve the PDEs for Q, C and v on a regular square grid of spacing ∆x. At each

spatial point we calculate the director angle θ. We then take the line integral around

each square of adjacent grid points, making sure the change in angle between each

grid point δθi respects the head-tail symmetry of n̂, i.e.,

δθi =


θi+1 − θi if |θi+1 − θi| ≤ π/2

θi+1 − θi + π if θi+1 − θi < −π/2

θi+1 − θi − π if θi+1 − θi > +π/2.

(5.13)

The topological charge m is then

m =
1

2π

∑
i

δθi, (5.14)

where non-zero m indicates that a defect lies somewhere between the four points.

This procedure is illustrated for a −1/2 defect in Fig. 5.16. While we can precisely

obtain the charge of the defect, the position is only known to within ∆x. However
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as we converge our results ∆x → 0, we can always obtain the defect position with

arbitrary precision if required.

5.9 Appendix II: Power spectrum

In the previous chapter we considered the simplified dynamics that arise when we

assume invariance in the x and z-directions. In order to examine the stability of

these 1D states in 2D, and to allow us to quantify the calming effects of polymer, it

is useful to have a quantitative description of the degree of spatial structure in the

x-direction.

We take the x Fourier transform of all non-zero order parameters, and combine

these in vector form φ = (Qxx, Qxy, Qyy, Cxx, Cxy, Cyy). We then define the power

spectrum

P (kx) =
6∑
i

∫ Ly

0

dy|φi(kx, y)|2, (5.15)

where kx is the wavevector in the x-direction.



6
Viscoelastic flows in porous media

6.1 Introduction

The term “porous media” describes a very broad class of materials that comprise

of an interconnected network of cavities of varying size [191]. Given the ubiquity of

porous materials, from the artificial (paper, textiles) to the natural (soil, aquifers,

biological tissue), it is no surprise that their flow properties have attracted consid-

erable interest from industry, particularly in the oil recovery sector [192–194].

While the behaviour of Newtonian flows in porous media is generally well under-

stood [195], many fluids of industrial importance exhibit non-Newtonian behaviour

at high flow rates [38]. Notably, at high flow rates relative to some intrinsic relaxation

time of the fluid, a large increase is observed in the pressure drop require to maintain

a given flow rate. See, e.g., Ref. [23]. The ability to accurately predict and charac-

terise this increase is of great importance to many industrial processes. Additionally,

148
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at these high flow rates, the flowing state can become unsteady [194,196,197]. Such

an instability can pose complications for industrial processing. This phenomenon is

also of fundamental interest in the study of elastic instabilities in general [198].

In this chapter we begin by reviewing the large body of literature that considers

porous materials, which has enjoyed many successes in modelling flows, at least

in simple geometries (Sec. 6.1.1). However our survey demonstrates that conclusive

numerical agreement over the nature of both the upturn in the drag, and fluctuations

in the flow field, has yet to be reached.

We then outline the idealised geometries within which we can cleanly examine the

phenomenology of porous flows in 2D, and define the key dimensionless parameters

with which to characterise the flow (Sec. 6.2). A full hydrodynamical treatment of

the problem requires care as convergence is notoriously difficult in such geometries

[199]. Therefore we have developed three independent numerical techniques during

our study, which we describe in Sec. 6.3. Particular focus is given to the immersed

boundary method (IBM), as the majority of our results were obtained using this

method. These codes are then carefully benchmarked against each other and against

known analytical/numerical results.

We present an analysis of the types of flow typically encountered in our model

geometries, identifying regions dominated by shear and extension in the Newtonian

limit (Sec. 6.4.1). While the velocity field does change as viscoelasticity is intro-

duced, the difference for moderate Weissenberg numbers is sufficiently small that

our Newtonian analysis remains pertinent. Therefore given knowledge of a non-

Newtonian fluid and its response in simple rheological protocols, this allows us (a)

to make qualitative predictions about its response in these complex geometries, and

(b) to be able to tailor this response using that information. For example, one could

hope ultimately to be able to influence the point at which the upturn in the drag

occurs by tuning properties of the viscoelastic fluid.

Numerical results are then presented for several constitutive models in these

idealised porous geometries, which capture the large upturn in the drag seen exper-

imentally in a biperiodic flow cell. Without walls we probe how the flow response

depends on the cylinder radius R. At small R the Newtonian flow field is charac-
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terised by extensional flows in the wake; for large R shearing in the vertical gap

between cylinders appears to be the dominant feature. Consistent with this is our

observation that the upturn in the drag appears at a constant We ≈ Weup if one

adopts an ‘extensional Weissenberg number’ at small R and a shear definition at

large R.

When walls are included, numerical convergence is particularly difficult. Our

initial simulations, which were later discovered to be under-resolved, exhibited the

onset of fluctuations above a critical Weissenberg number We ∼ O(1) which grow

in magnitude as (We−Weosc)1/2 consistent with the results of Ref. [25]. However

rigorous convergence checks revealed this to be a numerical artefact: we find that

resolutions an order of magnitude greater than in Ref. [25] are required for con-

vergence, suggesting their results could be susceptible to a similar numerical issue.

We finish the chapter with some concluding remarks about our work and suggest

possibilities for future study.

6.1.1 Literature review

Early theoretical attempts at understanding flows in porous media adopted a coarse-

grained approach, discarding microscopic details in favour of macroscopic properties.

D’arcy [200] wrote a general form relating the pressure drop per unit length ∆P/L

to the mean velocity scale V
∆P

L
=
ηV

K
, (6.1)

where η is the viscosity and K is the permeability, a constant which should only

depend of the properties of the media, but is unknown a priori. This permeability

was later analytically related to the porosity ε (the ratio of free volume to total

volume) by the Blake-Kozney-Carman equation [201], which proved successful in

describing a range of simple flows. However the validity of this picture remains

limited to inertialess, Newtonian flows.

Later studies took a more microscopic view of porous materials, considering ide-

alised geometries constructed from periodic arrays of spheres or cylinders. Sangani

and Acrivos [202] studied the drag on square and hexagonal biperiodic arrays of

cylinders by deriving analytical expressions in both the dilute and concentrated lim-



6.1. Introduction 151

its, and by calculating the flow field numerically across the full range of volume

fractions. Larson and Higdon reproduced these results using a boundary-integral

technique, with more focus on the details of the flow field [203]. Skartsis et al.

performed finite-element simulations and experiments with carbon fibre beds, find-

ing good agreement with the above studies [195]. They declared the Newtonian

problem, at least for the idealised geometries considered in this chapter, solved.

The jump in complexity when making the natural generalisation to include non-

Newtonian fluids poses significant further challenges. Experiments based on the

biperiodic geometry discussed above, and sketched in Fig. 6.1a, consistently showed

a dramatic upturn in the drag on the cylinder (CD) relative to that observed for a

Newtonian fluid of matched viscosity as the degree of viscoelasticity (Weissenberg

number We) was increased past a critical value Wec [23, 204, 205]. This increase

was typically accompanied by the development of time-dependent flow fields [196].

Additionally at low We a subtle effect was sometimes observed where the drag force

initially exhibits a small decrease relative to the Newtonian case [206]. The origin

of this is often attributed to shear thinning effects [207,208].

However early simulations of Oldroyd-B and Upper-Convected Maxwell (UCM)

fluids, which do not shear-thin, also observed this decrease [24, 209, 210]. While

these studies consistently captured this low We behaviour, the dramatic upturn ob-

served experimentally at high We was not seen, mainly due to insufficient numerical

resolution at high We.

A later numerical study of a FENE-CR fluid past a single cylinder between

walls [211] obtained steady solutions for a large range of We if symmetry is imposed

along the horizontal centreline. With that assumption relaxed, time dependent

states develop above a critical We originating from the downstream face of the

cylinder. The measured drag for the unsteady states is larger than those with

imposed symmetry.

For a linear array of cylinders between walls, Smith et al. [212] reproduced some

of the experimentally observed characteristics (specifically the wavevector and crit-

ical We) of the instability at high We using a numerically calculated linear stability

analysis, but the transition to a 3D steady state is contrary to the time-dependent
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states found experimentally [196]. Sahin and Wilson extended this work [213], find-

ing that wavelength of the instability scales with the cylinder spacing for closely

spaced cylinders, and with the width of the wake for larger cylinder spacings.

More recently, Gillissen used a Lattice-Boltzmann code to study a FENE-P fluid

flowing past biperiodic hexagonal array of cylinders without walls [208], finding both

the initial downturn and significant upturn. However no time-dependent solutions

were reported. Vázquez-Quesada and Ellero performed 2D smooth particle hydro-

dynamics (SPH) simulations of cylinders between solid walls [25, 214], which also

captured both the initial downturn and a appreciable later upturn. However at high

We the results depart from earlier numerical work [196] as the authors report a

time-dependent state.

Clearly quantitative agreement between independent codes has yet to be reached,

particularly with regard to the nature of the upturn in the drag. We are unaware of

any single study that considers the variety of constitutive models used here (carefully

chosen in order to probe the shear and extensional responses) in such a wide range

of geometries (i.e., examining dependence on cylinder radius for two orientations of

a biperiodic array, and the dependence on horizontal spacing for arrays of cylinders

confined between walls).

The objectives of this numerical study are therefore to capture, characterise and

understand:

(a) the mild downturn in drag at low We,

(b) the dramatic increase in drag at higher We,

(c) any time-dependent states (if they exist), which are seen experimentally at

high We.

We aim to achieve this by performing continuum simulations in four different

idealised periodic cylinder geometries that present the flow with alternating regions

of expansion and contraction as well as regions of strong shear. By exploiting the

properties of simple polymer constitutive models in shear and extension, we aim

to also to understand how these effects stem from the fluid’s underlying rheological

response, as measured in simpler geometries.
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Figure 6.1: Our model of a porous material, with a typical simulation cell indicated by the

dashed lines. (a) A square biperiodic array of cylinders, where the imposed flow is orientated at

0◦ (Θa) or 45◦ (Θb). (b) Array of cylinders contained between solid walls, with cylinders spaced

by Lx = 0.625 (Θc) or 1.5 (Θd).

6.2 Model

6.2.1 Geometry

Real porous materials exhibit a wide distribution of pore sizes, with morphologies

ranging from smooth rounded surfaces to abrupt, angular structures [215]. However

as a starting point to understanding flows in generic porous media, we begin here

with a simplified model porous geometry. We adopt one of the most common choices,

both experimentally and theoretically, and model pores as the spaces between an

array of cylindrical posts. We assume spatial invariance of all quantities in the z-

direction (parallel to the cylinders) so our simulations are purely two dimensional.

We return at the end of the chapter to comment further on this assumption.

In particular, we define several variants of this geometry. The first considers

an infinite (biperiodic) array of cylinders of variable radius R (Fig. 6.1a) spaced by

Lx = Ly = L, with the flow at an angle θ to the array. We consider two cases

θ = 0◦, 45◦ which we label Θa and Θb. Note that any colour maps presented for

the latter orientation are rotated so that the flow is always from left to right. We

show in Sec. 6.4.1 that for small R, these geometries are both mainly characterised

by extensional flows in the wake of the cylinder. At larger R the behaviour is more

distinct: Θa becomes more shear dominated in the region around the top/bottom

edges of the cylinder and develops small recirculating regions, whereas Θb retains a
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balance of shear and extensional flows.

In the second model system we include solid walls at y = 0, Ly and place cylinders

Lx apart, now periodic only in the x-direction (Fig. 6.1b). This arguably more

artificial geometry is more widely considered in the literature. In particular, the

single-cylinder limit (Lx →∞) has become a notable benchmark problem for both

Newtonian and non-Newtonian flows (see Sec. 6.3.2.1). Following early studies [24,

25], we fix R/Ly = 0.25, and focus on two cylinder spacings, Lx = 1.5 (widely

spaced) and Lx = 0.625 (closely spaced), which we label Θc and Θd respectively.

We then impose either a flux Q ≡ V Ly (where V = 1/Ly

∫ Ly

0
vxdy is the mean

velocity in the flow direction passing a vertical line) or pressure drop ∆P , and mea-

sure the remaining quantity. Without walls present, force balance directly relates

this pressure drop to the integrated force on the cylinder (∆P = 1
LxLy

∫
fdx). With

walls there is an extra contribution to ∆P from the drag against the walls. While

some earlier studies only report the drag on the cylinder, we choose here to report

∆P (thereby including the drag on the walls) as this is the quantity that is ex-

perimentally measurable. Though our results are qualitatively unchanged by this

difference, we feel this provides a closer link to experiment. Therefore, unless other-

wise specified (e.g., when comparing to older work), all results presented here report

the total pressure drop.

In these geometries we consider the dynamics of a simple polymeric fluid with

relaxation time τ and elastic modulus G in an incompressible Newtonian background

solvent of viscosity η. Experimentally the Reynolds number is generally estimated

to be Re � 1 [24, 216], therefore we work in the limit of Stokes flow (Re → 0).

In removing inertial terms from the Navier-Stokes equation, any flow instabilities

can be wholly attributed to non-linear effects of the polymeric fluid, specifically

elasticity.

6.2.2 Dimensionless parameters

In what follows we work in units of length [L] = Ly = 1, time [T ] = L2
y/Q =

Ly/V = 1 and modulus [G] = ηV/Ly = 1, by considering the following dimensionless

quantities.
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First we define the post radius R̃ ≡ R/Ly, and horizontal cylinder spacing L̃x =

Lx/Ly; from herein we drop the tildes for clarity. (Additionally one could define the

area fraction φ = PπR2

LxLy
, where P is the number of cylinders. In practice we use a

single cylinder for the majority of this study so R is sufficient.)

The ratio of the pressure drop ∆P to flux Q defines the drag coefficient

CD =
L∆P

ηQ
=

∆P

ηV
, (6.2)

where the solvent viscosity η renders the quantity adimensional. For Stokes flow of

a Newtonian fluid, CD is only dependent on R (i.e., it is independent of what value

of Q or ∆P we impose, or indeed the angle of imposed flow).

The degree of viscoelasticity can be parametrised by considering the product of

the relaxation time of the polymer and a typical shear-rate in the porous geometry,

defining a Weissenberg number We. This is typically chosen in the literature as in

Eq. 6.3a. However the region of strongest shear is over the tops of the cylinders as

the fluid passes through a vertical constriction of size Ly−2R

α
(where α = 1 without

walls, and α = 2 with walls), leading to a typical shear-rate of αV
Ly−2R

. We use this

to define a more representative Weissenberg number

We =


τV

R
typical literature definition (6.3a)

α
τV

Ly − 2R
our new definition, (6.3b)

which now reflects that We should increase as the constriction becomes narrower.

(The previous definition decreases as the constriction becomes narrower.) While

shortcomings in the use of Eq. 6.3a have been noted before [23, 24], many studies

fix R = 0.25 for which Eqs. 6.3a and 6.3b (with α = 2) are equivalent. Note that

Eq. 6.3b effectively defines a shear Weissenberg number. We will later show that

recasting our results using an alternative ‘extensional Weissenberg number’ can be

more appropriate for the extension dominated flows seen at small R (Sec. 6.5.2.1).

Defining the viscosity ratio β = η
η+Gτ

fixes the polymer modulus, and we retain

the common literature value of β = 0.59 (see e.g., Ref. [217]) to allow comparison

with earlier work. Finally we define the normalised drag χ = CD(We)
CD(We=0)

, which relates

the drag coefficient of a non-Newtonian fluid to its behaviour in the Newtonian limit.
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imposed parameter definition description

R̃ = R/Ly cylinder radius

L̃x = Lx/Ly cylinder spacing (in x-direction)

We = αV τ/ (Ly − 2R) Weissenberg number (α = 1 without

walls, α = 2 with walls)

β = η/ (η +Gτ) viscosity ratio (fixed at 0.59)

measured quantity definition description

CD = ∆P/ (V η) drag coefficient (constant for a Newto-

nian fluid at fixed R, Lx)

χ = CD(We)/CD(We = 0) drag (normalised by Newtonian value)

Table 6.1: Summary of dimensionless parameters. Note that for our choice of units the tildes are

redundant, and we now drop them for clarity.

Thus χ > 1 means that a larger pressure drop is required to maintain a given Q

relative to the Newtonian case, as is the case at large We.

These dimensionless parameters are collated in Table 6.1. In summary, having

fixed β = 0.59, we vary We along with R (for geometries Θa,b) or Lx (for Θc,d) and

observe how the normalised drag χ depends on these quantities.

6.2.3 Choice of protocol

Both experimentally and numerically, a choice must be made for which quantity

from ∆P and Q to impose and which to measure. In experiments, typically the

latter is imposed [197,204,218]; numerically we have the capability to impose either

quantity.

Interestingly, the choice of imposed quantity may affect the nature of any fluc-

tuations (if present). If ∆P is imposed then both CD and We (which both depend

on Q) will vary in time for an unsteady flow state. However imposing Q can only

lead to fluctuations in CD, not in We. Therefore a plot of χ against We, where the

standard deviation of the time-series of a given quantity is marked with error bars,

will differ for the two protocols if fluctuations are observed.

For the biperiodic case (no walls), this distinction is not relevant as we see

no difference in our simulation results between imposed Q and imposed ∆P (see
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Fig. 6.13a inset). This is consistent with the recent biperiodic simulations of Gillissen

[208] (where ∆P is imposed), which also did not display any time-dependence.

However the recent simulations (with walls) of Vázquez-Quesada et al. [25] ex-

hibited fluctuations at high values of We. Their simulations impose a pressure drop,

as appears to be common in earlier studies [24,208]. Whether the same fluctuations

would appear for imposed Q remains an open question. Our own results with walls

(also with imposed ∆P ) fail to reproduce these fluctuations once the spatial mesh is

converged upon and we will argue that the results of Ref. [25] may not be properly

converged (see Sec. 6.5.3.2).

6.3 Numerical methods

There are several numerical approaches that one may take to simulate this model

geometry, three of which we outline here: (i) an immersed boundary method (IBM),

(ii) a phase field method, and (iii) a propagator method. We find excellent agree-

ment between all three in the Newtonian limit. Our results with viscoelasticity

included were primarily obtained using (i). Method (ii) has been implemented suc-

cessfully for moderate We, but became unstable at higher We. Less progress has

been made implementing (iii) for non-Newtonian fluids, and we do not report this

here. Therefore unless otherwise stated, all results presented below were obtained

using (i), with the other methods used mainly for validation. Descriptions of (ii)

and (iii) are given in Apx. 6.7.

6.3.1 Immersed boundary method

The “immersed boundary method” (IBM) was initially developed by Peskin in the

context of modelling blood flow past heart valves [219, 220], though the term has

since come to describe a general class of related methods [221]. In general terms,

the method couples the familiar Eulerian description of the Navier-Stokes equations

on a regular grid to a Lagrangian description of a material surface of arbitrary

shape (which does not necessarily coincide with a rectangular grid). Information is

then transferred between these using smoothed Dirac delta functions. Whilst the
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(a) Illustration of a Eulerian grid point

(black dot sitting on the regular grid) and

a series of Lagrangian points (red dots, off

grid). Numerical discretisations for the Eu-

lerian (∆x, ∆y) and Lagrangian (h) fields

are also marked.

(b) Illustration of, for example, how the La-

grangian force density F(ξ, t) is distributed to

the Eulerian forces f(r, t). Grid points closer

to the Lagrangian point recieve a larger con-

tribution as indicated (roughly) by the size of

the black dots.

Figure 6.2: Schematics illustrating the differences between Eulerian and Lagrangian formulations,

and how to connect the two.

immersed boundary formulation can in general describe arbitrary translations and

deformations, the porous model geometry only requires static posts of fixed shape,

which leads to significant simplifications to the algorithm. We begin by presenting

the general formulation, then indicate the simplifications that can be made for our

model.

Mathematical description. For incompressible Stokes flow in a domain Ω, with

a no-slip boundary condition on the cylinder surface Γ, force balance is given by

0 = η∇2v +∇.Σ−∇p+ f , (6.4)

where Σ is a tensor representing the polymeric stress, and f is an arbitrary body

force that we discuss further below. Incompressibility further demands that

0 = ∇.v. (6.5)

In 2D, a fixed position r ∈ Ω in this Eulerian frame is then described by

r = (x, y), with the velocity and force at that point given by v(r, t) and f(r, t)
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respectively. To describe a body of arbitrary shape, we further can define a La-

grangian coordinate ξ ∈ Γ so that the position of the immersed boundary can be

written as X(ξ, t), and the force density in the boundary as F(ξ, t). The relation

between these two formulations is illustrated in Fig. 6.2a.

Given the Lagrangian force density F(ξ, t), the force on the fluid in the Eulerian

frame is given by

f(r, t) =

∫
Ω

F(ξ, t)δ(r−X(ξ, t))dξ. (6.6)

Conversely given the velocity in the Eulerian frame, the velocity of the material

boundary U can be obtained by

U(ξ, t) ≡ ∂X(ξ, t)

∂t
=

∫
Ω

v(r, t)δ(r−X(ξ, t))dx. (6.7)

Infinitely localised Dirac delta functions are of course unfeasible to to imple-

ment numerically as they would introduce unwanted discontinuities. This is avoided

by defining a smoothed delta function δP (r) = δxP (x)δyP (y) which distributes the

function to neighbouring points (see Fig. 6.2b for schematic). As with the mathe-

matically defined Dirac delta δ, this must integrate to unity and should approach δ

as grid spacing ∆x,∆y → 0 [220] (see below for details of the discretisation). While

there are multiple candidates for this smoothed function [222,223], we proceed with

the implementation described by Lai & Peskin [224]

δP (r) =



1

8h

3− 2
|r|
h

+

√
+1 + 4

|r|
h
− 4

(
|r|
h

)2
 |r| ≤ h

1

8h

5− 2
|r|
h
−

√
−7 + 12

|r|
h
− 4

(
|r|
h

)2
 h ≤ |r| ≤ 2h

0 otherwise,

(6.8)

where r is the separation between a given Eulerian and Lagrangian point, and h is

the grid spacing in that direction.

Finally we must prescribe an expression for the Lagrangian force density F. For

our rigid, non-moving post this is done by specifying an equilibrium configuration

for the boundary X0(ξ), and imposing a Hookean restoring force when the boundary

deviate from this

F(ξ, t) = −κ (X(ξ, t)−X0(ξ)) , (6.9)
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where κ is a large spring constant. Though not required for our purposes, F can

be generalised to include other contributions such as an optimal curvature for de-

formable objects [225]. Note that in principle X0 may be made time-dependent to

describe moving objects.

While Eqs. 6.4, 6.6, 6.7 and 6.9 provide a general formulation for a deformable,

moving boundary, our problem permits some simplifications to be made. Firstly, as

our equilibrium configuration X0 is independent of time, we can differentiate Eq. 6.9

with respect to time, yielding an evolution equation for the force,

∂F(ξ, t)

∂t
= −κU(ξ, t). (6.10)

Indeed in the limit κ→∞, the post is static so we need not actually evolve the

position of the post, i.e., we set X(ξ, t) = X0 (ξ) ∀t. We have carefully checked that

this method agrees with the arguably more rigorous method in which we update

X(ξ, t+ ∆t) = X(ξ, t) + ∆tU(ξ, t) at each timestep, allowing the cylinder to deform

and move slightly.

Discretisation. Some care is required in numerically discretising the above equa-

tions. As before, we discretise the Eulerian equations such that spatial step sizes

h = ∆x = Lx/Nx = ∆y = Ly/Ny. Similarly, a Lagrangian boundary of length

LB is divided into M sections of length ∆s = LB/M . The optimal ratio of these

stepsizes α = ∆s/h, is unclear a priori ; for too small a value of α we oversample

the boundary forces, for too large an α we can suffer from fluid leakage through the

spaces between immersed boundary points. In what follows we set α = 2, though

we have checked that our results are robust to this choice.

The full numerical scheme, at time t = n∆t, with spatial points denoted rij =

(x, y) = (i∆x, j∆y) and Lagrangian point ξk = k∆s is then

Cn+1(rij)−Cn(rij)

∆t
= g

(
Cn+1(rij),C

n(rij),v
n(rij)

)
(6.11a)

Fn+1(ξk)− Fn(ξk)

∆t
= −κ

∫
Ω

vn(r)δ (r−X(ξk)) dr (6.11b)

fn(rij) =

∫
Γ

Fn+1(ξk)δ (rij −X(ξk)) dξ (6.11c)

η∇2vn+1 = ∇pn − fn −Σ(Cn+1) (6.11d)
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where g is a general polymer constitutive equation, and where Eq. 6.11d is solved

either by streamfunction (when walls are included) or Oseen tensor (without walls)

techniques, as described in Sec. 2.1.

In summary, we (a) use an explicit Euler time-stepping scheme to evolve the

Lagrangian forces F so as to effect Hookean restoring springs (Eq. 6.11b) that im-

pose v = 0 at the cylinder surface, (b) transfer these forces to the Eulerian grid

f (Eq. 6.11c), then (c) update the velocity everywhere in the simulation cell using

these Eulerian forces (Eq. 6.11d).

The general discretisation outlined above naturally imposes a flux. To instead

impose a pressure drop in the biperiodic case, we follow the approach of Teran

and Peskin [36] who showed that the flux can be determined by requiring that the

integral of the total force (which includes the immersed boundary forces and the

external forcing) and its time derivative are zero, i.e.,
∫

Ω
f = ∂t

∫
Ω

f = 0. When

imposing a pressure drop with walls, the flux naturally results from solving Eq. 6.11

with no-slip and no-permeation boundary conditions at the walls.

6.3.2 Convergence and benchmarking

We have ensured that in what follows, all our results are fully converged on both

spatial stepsize and timestep. In the high Weissenberg number regime with walls,

we found convergence particularly difficult to achieve. Data from our initial (uncon-

verged) simulation runs in this regime showed fluctuations consistent with a recent

study [25], however thorough convergence tests later revealed this to be a numerical

artefact (see Sec. 6.5.3).

We begin by verifying our code in the Newtonian limit, for which several analyti-

cal results exist. While there is less agreement in the literature for viscoelastic flows

(i.e., We > 0), we do demonstrate reasonable agreement with earlier studies, at least

at small We (see Sec. 6.5.3.1). Of the two geometries, that with cylinders confined

between walls has received more attention, at least in recent studies. As there are

fewer existing results for the biperiodic system, we mainly verify our results using

the three independent codes outlined above (i.e., IBM, phase-field, and propagator

methods).
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x
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Faxen analytical

Figure 6.3: Comparison of our IBM simula-

tions with Faxen’s analytical result for a sin-

gle cylinder in a channel [226], for a range

of R. We find that a cylinder spacing of

Lx = 4 is sufficient to reproduce the single

cylinder result. The drag force for the largest

R is slightly lower than the analytical result,

though this is consistent with other numerical

studies [24,227].
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Figure 6.4: Vertical slices of vx in the chan-

nel geometry at various x for Lx = 1.5,

showing good agreement between our IBM

results (solid lines) with the SPH results of

Ellero [227] (symbols). The SPH data was

extracted using an online tool [228].

6.3.2.1 Validation with walls

Faxen used the method of images to find an analytical solution for a single cylinder

between walls [226]. In theory, our simulations require Lx → ∞ to effect a single

cylinder; in practice Lx > 4 is large enough to satisfactorily reproduce his result,

see Fig. 6.3.

Numerical studies of a periodic array of cylinders between walls also provide

ample data for comparison, e.g., the recent smoothed particle hydrodynamics (SPH)

simulations of Ellero et al. [227]. Individual 1D slices of the velocity profile (Fig. 6.4)

show excellent quantitative agreement, and full 2D velocity maps of vx (velocity

component in the flow direction) agree for both wide (not shown) and close (Fig. 6.5)

spacings of cylinders in the flow direction.



6.3. Numerical methods 163

Figure 6.5: Colourmap of vx in the channel geometry showing good agreement between our

simulations (left) and those of Ellero et al. [227] (right), for Lx = 0.625.

6.3.2.2 Validation without walls

As there is less focus on the biperiodic case in the literature, we first validate the

three methods (IBM, phase-field, propagator) against each other. All show excellent

agreement when comparing slices of the velocity field (Fig. 6.6), with the caveat that

the phase-field method leads to a marginally different flow field, due to a slightly

different “effective radius” resulting from the finite interfacial width `. Morris et al.

benchmark their SPH code for a range of Re [229] and we find good agreement with

their results in the Re→ 0 limit (Fig. 6.7).

We must also check that our simulations give sensible results for a wide range of

radii, R. Sangani and Acrivos derived analytical expressions for the drag coefficient

CD for a biperiodic array in both the dilute (R → 0) and concentrated (R →

L/2) limits, and calculated exact solutions numerically using a series expansion at

intermediate R. We find that all three of our simulation methods are in excellent

agreement with their work, across the full range of radii (see Fig. 6.8).
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Figure 6.6: Comparison of our three numer-

ical techniques, showing slices of vx along the

horizontal (y = Ly/2) and vertical (x = Lx/2)

centerlines for R = 0.25. Velocity at cell edge

slightly bigger for phase-field because the dif-

fuse interface between fluid and post leads to

an effective radius slightly larger than R. IBM

and propagator results are indistinguishable.
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Figure 6.7: Comparison of our IBM results

(solid lines) and the SPH results (symbols,

with Re = 0.03) of Morris et al. [229]. Slices of

vx at x = 1/2Lx, Lx for R = 0.3 demonstrate

excellent agreement between the two codes.

Note: a slightly larger flux (Q = 1.32) has been

imposed to match their parameters. The SPH

data was extracted using an online tool [228].
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Figure 6.8: Simulations using the propagator (left), immersed boundary (mid) and phase-field

(right) methods, all showing excellent agreement with the drag coefficient obtained by Sangani and

Acrivos [202], across a wide range of R.
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6.4 Newtonian Flows

While this work ultimately aims to understand the flow of complex fluids in porous

media, much insight can be gained even by studying the Newtonian behaviour.

We have shown that given the maturity of analytical, numerical and experimental

studies, there exist many Newtonian benchmarks which our numerical codes can be

checked against in quantitative detail.

Analysis of velocity maps can yield crucial information about the character of

the flow as it passes the cylinders, elucidating in which regions extensional or shear

rheology dominate. These maps remain instructive in the non-Newtonian limit.

At small values of We the velocity field is largely unchanged [24, 230], but even

for large We the general qualitative description will remain useful. Once we have

decomposed the key features of the flow in the Newtonian limit into shear and

extension, we can then examine the relevant constitutive curve for a given model

to gauge the response. While this cannot provide quantitative information (such as

the exact point of upturn) without simulation, this will allow us to make qualitative

predictions about the response of different constitutive models.

6.4.1 Flow field characterisation

We have at our disposal a wide range of constitutive models with which we may

model polymeric fluids. The behaviour of these models is typically known analyt-

ically in simple rheological flows such as planar extension or simple shear. Flows

in porous media typically consist of a non-trivial combination of these flow types -

for example the region of fluid flow past the top of the cylinder is shear dominated,

whereas the region where the flow divides to pass the cylinder is extension domi-

nated. To decode these we must develop a robust description of the flow character.

The necessary information is encoded in the velocity gradient tensor, which can
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q = −1 q = 0 q = +1

Figure 6.9: A schematic representation of the three main flow types: rotation (left), shear (mid),

and extension (right).

be decomposed in symmetric and anti-symmetric contributions,

K =

∂xvx ∂xvy

∂yvx ∂yvy

 (6.12)

= ε̇

+1 0

0 −1

+
γ̇

2

 0 +1

+1 0


D, symmetric

+
ω

2

 0 +1

−1 0


Ω, antisymmetric

. (6.13)

The eigenvalues of the symmetric and anti-symmetric parts are respectively

λD = ±
√
ε̇2 +

1

4
γ̇2 (6.14)

λΩ = ±
√
−1

4
ω2. (6.15)

These can be combined (see, e.g., Refs. [205,208]) to give a frame invariant descrip-

tion of the flow character,

q =
λ2

D − λ2
Ω

λ2
D + λ2

Ω

. (6.16)

There then exist three distinct rheological regimes which can be captured by this

analysis. The limit q = +1 describes extensional (equivalently pure shear) flows; for

q = −1, the contribution is solely from λΩ instead implying rotational flow. Finally

when q = 0, the rate of rotation matches the rate of straining. Superimposing

rotation (q = −1) and pure shear (q = +1) then gives us simple shear. The three

cases are illustrated in Fig. 6.9.
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6.4.2 Results for Newtonian fluids

Armed with a quantitative measure for flow character, we can characterise the flow

fields in our porous geometry, for a range of radii and flow configurations. We present

colour maps for q in Figs. 6.10/6.11, and interpret their meaning below. One caveat

with this analysis is that the magnitude of the flow gradient is not represented,

e.g., a very large pure extensional flow ε̇ is indistinguishable from a very weak (yet

pure) one. However we have checked separately that the key flow regions identified

below generally coincide with regions of strong flow gradients.

Geometry Θa. For small R (Fig. 6.10 top left), we observe large regions of ex-

tension (q = +1, white) along the horizontal centreline as the flow diverges to pass

around the cylinder and again as it converges downstream. Looking at the vertical

gap between cylinders we find a mixture of rotational (q = −1 black) and shear

(q = 0 pink) flows. However the dominant flow type for small R is extension, and

this is reflected in our later viscoelastic results (see Fig. 6.17a top row).

However as R increases (Fig. 6.10 top right) the vertical and horizontal gaps

between the cylinder and its periodic images become smaller. The flow character

shifts, with the flow field now dominated by a large region of strong shearing around

the tops of the cylinders. The large extensional region in the cylinder wake is

mitigated, and is replaced (for R > 0.3 [205]) by recirculating regions. These regions

promote a channel-like structure in the flow field [231], resulting in strong shear

effects. This analysis is also consistent with our later viscoelastic results which show

largest deformation of the polymer around the tops of the cylinders (see Fig. 6.17a

bottom row).

Geometry Θb. For small R (Fig. 6.10 bottom left), we again see that the flow

character is dominated by strong extensional effects along the horizontal centreline.

The effect is even more prominent than for Θa as the gap between cylinders in which

the wake forms is
(√

2− 1
)
L longer. Regions of extension also now extend quite

far out vertically from the horizontal centreline.

The gaps between the cylinders are smallest in the diagonal directions and, par-
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Θb
→

Θa
→

R = 0.1 ↓ R = 0.35 ↓

Figure 6.10: Flow character q for R = 0.1 (left column), R = 0.35 (right column), and for two

flow orientations Θa (top row), Θb (bottom row). Colourmap shows black (q = −1, rotation) →

pink (q = 0, shear) → white (q = +1, extension). Streamlines are marked with red lines. Maps

have been orientated so that flow is always from left to right. Lower images also include part of

neighbouring unit cell and so appear larger.
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Figure 6.11: Flow character q (Eq. 6.16) for the two channel geometries. Left: Geometry Θc,

where Lx = 1.5. Right: Geometry Θd, where Lx = 0.625.

ticularly for large R, strong shear flows can be observed in this region (Fig. 6.10

bottom left). However, contrary to Θa, appreciable extensional flows also remain in

the wake of the cylinder. This can be understood by thinking of the limit of closely

packed cylinders: for Θa the wake region disappears as R → L/2, whereas for Θb

the gap remains open (there is a space of length (
√

2− 1)R for touching cylinders).

Our viscoelastic results (see Fig. 6.17) reflect this strong extensional component in

the wake, and display appreciable deformation downstream of the cylinder for both

small and large R. The flow character of Θb appears largely independent of R as

the same features remain, only compressed to fit the smaller available area.

Geometries Θc/Θd. In geometries Θc, Θd we include solid, planar walls at y =

0, Ly. Colourmaps showing the flow character q are given in Fig. 6.11. The main

difference with the biperiodic geometries is the region of strong shear (q = 0) near the

walls, which appears for both cylinder spacings. However, only the closely spaced

cylinders exhibit a recirculating regions (as seen for Θa at large R). In contrast,

flow past the widely spaced (Θc) is unbroken. These colour maps also show that

extensional flows in the wake are much more significant for Θc than for Θd, as there

is a larger space for the wake to develop.
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6.4.2.1 Limitations of analysis

The analysis so far has assumed that the polymer-fluid interaction is completely

local. However the effect of advective terms in the polymer constitutive equation,

(v.∇)C, cannot be ignored. Deformation in one region, for example due to exten-

sion, could then be advected to another region, where for example we might expect

shear effects to dominate. By the same argument, diffusive terms (if included) of

the form ∇2C could cause deformation to be spread to neighbouring regions, though

we expect advective terms to have the most significant effect. Note that v(r) itself

will change once an appreciable polymer stress develops, though for moderate We

the effect is small enough for our analysis to remain useful.

6.4.2.2 Implications for non-Newtonian fluids

While the preceding analysis was performed for a Newtonian fluid, the insight gained

remains a useful roadmap for a viscoelastic fluid. Based on the colourmaps of q, we

might expect qualitatively different responses for a non-Newtonian fluid as we vary

R. Specifically increasing R should have more effect for Θa, as the flow character

exhibits more significant changes (from extension to shear dominated) than for Θb

(which retains both shear and extensional regions across the range of R). This

indeed is the case as we later show in Sec. 6.5.2.1 (compare Figs. 6.17a/b).

In order to understand the upturn in the drag, we can combine our understanding

gained from colourmaps of q with knowledge of the rheological response of consti-

tutive models in extension and simple shear. This should also allow us to influence

the drag response of a fluid. For example, if for a given geometry the colour map of

q shows large regions of extensional behaviour (q = +1), we might expect that the

FENE-CR model exhibits a lower drag relative to Oldroyd-B, due to differences in

their extensional rheology (see Sec. 6.5.1). However, if regions of shear (q = 0) are

more prominent, then we might expect similar behaviour as both models share the

same shear rheology. We now apply the insight gained for simple Newtonian flows

to several complex, non-Newtonian fluids, doing so for a variety of geometries.
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6.5 Viscoelastic Flows

With confidence in carefully benchmarked numerics, and with a firm understanding

of the key flow regimes that arise in our ideal porous geometries for Newtonian flows,

we are well placed to investigate the non-Newtonian behaviour. We consider two

main classes of geometry: the unbounded biperiodic array of cylinders, and the line

of uniformly spaced cylinders confined between walls.

In particular, we are interested in how the normalised drag χ varies as we increase

We. Both experimentally [23] and numerically, plotting χ against We consistently

shows two key features: an initial mild downturn in χ, followed by a significant

increase above We ≈ O(1) beyond which a transition to a time-dependent flowing

state is often observed. In this study we aim to capture all these pieces of physics,

and make some headway into understanding their origin by exploiting the properties

of basic constitutive models in simple rheological protocols.

We are not aware of any 2D numerical study in the biperiodic geometry that

captures fluctuations at high We, and while our results using IBM simulations are

no exception, we do see the large increase in drag. Backed by our Newtonian analysis

in the preceding section, we develop a robust prediction for the value of We at which

the upturn occurs.

Interestingly, for pressure-driven flow past closely spaced cylinders with walls,

recent SPH simulations have for the first time reported fluctuations which, above a

threshold value Wec, scale in magnitude as ∼ (We−Wec)
1/2 [25]. Inspired by this

result, we attempt to reproduce these fluctuations using our immersed boundary

code. While we do observe fluctuations (and the same scaling) at low resolutions,

these disappear at sufficiently fine grid spacing, suggesting the results of Ref. [25]

may be a numerical artefact.

6.5.1 Recap of constitutive models

We begin by briefly recapping the rheological properties of the models used in this

study (see also Sec. 2.2.3). Despite concerns regarding unphysical behaviour, partic-

ularly in strong extensional flows [64], the Oldroyd-B model has remained a bench-
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Figure 6.12: Steady state (a) extensional and (b) shear constitutive curves demonstrating the

key rheological properties of Oldroyd-B, FENE-CR, and FENE-P models. Parameters: η = 0

mark fluid in studies of flows past cylinders as it provides one of the simplest descrip-

tions of both viscous and elastic behaviour. The model is microscopically motivated

by the description of polymer chains as pairs of beads connected by Hookean springs.

While this simple description holds at small dimensionless extension rates (ε̇τ � 1),

for a steady imposed flow with ε̇τ > 1/2, molecules tend towards a state of infinite

stretch and no steady-state extensional stress is reached, see Fig. 6.12a.

More sophisticated models, such as FENE-CR and FENE-P which we addition-

ally consider here, remedy this by imposing finite extensibility on the chains using

a non-linear spring function of the form

k(C) =
1

1− δTr[C]
, (6.17)

where the limit δ → 0 reduces to Oldroyd-B. The effect on the extensional rheology

is shown in Fig. 6.12a where we see that steady-state extensional stresses may be

obtained above ε̇τ > 1/2 for both FENE-CR and FENE-P. Note that the FENE

models are indistinguishable in pure extensional flows. Plotting the steady-state

shear constitutive curve (Fig. 6.12b) shows that while both Oldroyd-B and FENE-

CR have a constant shear viscosity, FENE-P starts to shear thin above γ̇τ ≈ 1 [232].

Inclusion of diffusive terms. We have included an important modification to

the original equations by introducing a diffusive term, `2/τ∇2C, where ` is a small
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lengthscale below which gradients in C are suppressed. We fix ` = 0.01 in all

that follows. Similar modifications to the JS model (which reduces to Oldroyd-B

when slip parameter a = 1) have been made in the context of shear banding [110].

Specifically in the context of porous media, Gillissen included diffusive terms in his

study of a FENE fluid past a biperiodic array of cylinders [208]. Thomases et al.

also recently showed that a small diffusive contribution can support a finite polymer

stress in a qualitatively similar fashion to FENE models [233,234].

Strictly, gradient terms in C require a boundary condition (BC) at the walls and

at the cylinder surface. For simplicity we choose zero gradient at the walls ∂yC = 0

(when present). Because our simulations include polymer everywhere, including

inside the posts, we do not specify a BC on the cylinder edge. Because no shear

banding effects occur for the constitutive models under consideration we anticipate

that this is unimportant. Since the results presented here were obtained, we have

developed the ability to impose ∂⊥C = 0 at the cylinder edge (see Sec. 7.8 for details

of a related implementation), and future work will include this.

6.5.1.1 Characterisation of polymer

Analogous to the decomposition in Eq. 6.15, we can extract the principle eigenvalue

of C

λC =
T +
√
T 2 − 4∆

2
(6.18)

where T = Cxx + Cyy is the trace, and ∆ = CxxCyy − CxyCxy the determinant of

C. This defines a single quantity that, at any point in space, describes the degree

of deformation of the polymer molecules in that vicinity allowing us to at least

qualitatively compare with experiments which probe the polymeric microstructure,

such as flow birefringence [52,235] or NMR spectroscopy [48].

6.5.2 Biperiodic geometries

We now report our main viscoelastic results, beginning with the simpler class of

geometry, i.e., the biperiodic array of cylinders without walls. For a Stokes flow of

a Newtonian fluid, there is no difference between the two flow orientations (Θa, Θb)
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Figure 6.13: Normalised drag χ plotted against (a) shear Eq. 6.19 and (b) extensional Eq. 6.20

Weissenberg numbers for Θa. This shows that the upturns (solid black triangles) for large R are

given by a constant Weshear, and by a constant Weext for small R. Both plots show data from

the same set of simulations, for a range of radii R = 0.10 (red) → 0.35 (blue) with an Oldroyd-B

fluid. Inset (a) demonstrates that we obtain the same drag if we instead impose ∆P and measure

Q (and therefore We).

when measuring the force exerted on the cylinder. This results from the linearity

of Stokesian force balance and the symmetry of the square array. However given

that the flow character q is noticeably different for each configuration, we expect

non-Newtonian fluids to exhibit marked differences between the two orientations

as we vary R. All of our biperiodic results were obtained by imposing a flux and

measuring the pressure drop. However we have explicitly checked that these are

unchanged if instead we impose a pressure drop (see Fig. 6.13a inset).

6.5.2.1 Biperiodic geometry: flow orientation Θa

Our analysis of configuration Θa (where the imposed flow is at 0◦ to the array) in

the Newtonian limit revealed that while the flow field in general comprises a mixture

of extensional and shear flows, the clear trend is that extensional flows dominate at

small R, and shear flows dominate at large R.

With this in mind, we begin by plotting the normalised drag χ against our

definition of the Weissenberg number (which captures the effects of shear between
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cylinders),

Weshear ≡We = α
V τ

Ly − 2R
where α = 1 (no walls), (6.19)

for a range of post radii R (Fig. 6.13a). At vanishingly small We, we recover the

Newtonian limit χ = 1 (as expected by definition). As we increase We, the nor-

malised drag exhibits a slight decrease. While this is consistently observed in other

studies [25, 208, 236], the result is counter-intuitive as the fluid under consideration

(Oldroyd-B) exhibits neither shear- nor extension-thinning (see Fig. 6.12). However

there is not yet a clear explanation for this phenomenon. The depth of the down-

turn becomes most pronounced at large R, for which shearing flows dominate. Then

beyond the upturn, defined as the point at which ∂χ
∂We

= 0, we see the large increase

in the drag observed experimentally.

Interestingly, the Weissenberg number at which the upturn occurs, Weup, ex-

hibits a dependence on R. We now ask, in light of the understanding gained from

the Newtonian flow physics, if we can understand this dependence and therefore try

to predict the point of upturn for any cylinder radius.

For large R, the flow field consists mainly of shearing regions (see Fig. 6.10, top

right). In Fig. 6.14, we plot the Weissenberg number at which the upturn occurs,

defined as Weup ≡ We
(
∂χ
∂We

= 0
)
, as a function of R. This reveals that for large R

our definition of the Weissenberg number, which was motivated by the shear-rate

in the gap between cylinders, predicts a single number for the point of the upturn

Weup
shear ≈ 0.43. This demonstrates that the key physics at large R is captured by a

shear Weissenberg number.

However at small R, the flow field is dominated by extensional effects in the

cylinder wake (see Fig. 6.10, top left), and our shear-based Weissenberg number

fails to predict a single point of upturn. We can instead define an extensional

Weissenberg number

Weext = ε̇maxτ, (6.20)

where ε̇max is the maximum extension rate along the horizontal centreline. Re-

plotting the same data using Weext (see Fig. 6.13b), we find that this extensional

Weissenberg number yields a single value for the upturn in the small R limit,

Weup
ext ≈ 0.45. Above R ≈ 0.2, we find that the definition no longer predicts a
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Figure 6.15: Replotting the data in

Fig. 6.13 using max(Weshear,Weext) for any

run, we find that the upturn is well described

by a single value Weup ≈ 0.42 (dashed line).

Upturns in χ are marked with solid black tri-

angles.

single value, as we transition to the shearing regime. This crossover between shear

and extension dominated regimes is most clearly illustrated in Fig. 6.14, where we

plot Weup against R for our two definitions. This shows a transition between the

two regimes at R ≈ 0.2.

We have shown that no single Weissenberg number can accurately predict the up-

turn across the full range of R, due the combination of extensional and shear effects.

However applying shear- and extensional specific Weissenberg numbers to the large

and small R regimes respectively, demonstrates that a single value for the upturn

can be obtained, with the crossover occurring at R ≈ 0.2. This suggests that to pre-

dict the Weissenberg number of the upturn Weup, at any radius considered here, we

could define a composite Weissenberg number, e.g., Wecomp ≡ max (Weshear,Weext),

which encompasses both shear and extensional regimes. Replotting our data using

this definition (Fig. 6.15) demonstrates that we can predict the point of upturn with

reasonable accuracy across the full range of radii considered.

Having explored the response of an Oldroyd-B fluid, we now ask how these results

are modified by more sophisticated constitutive models (FENE-P and FENE-CR),
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Figure 6.16: Differences in the χ−We curves between Oldroyd-B and (a) FENE-CR, (b) FENE-

P models, for R = 0.1 (red curves) and 0.35 (blue curves). Parameters: δ = 0 (Oldroyd-B),

0.001, 0.01, geometry Θa.

by focusing on one small R = 0.1 (extension dominated) and one large R = 0.35

(shear dominated). Additionally we consider colour maps of λC (the largest eigen-

value of the conformation tensor, Eq. 6.18) to examine where significant deformation

occurs.

FENE-CR. In Fig. 6.16a we explore how the χ −We curves change as the ex-

tensibility δ is increased from zero (where δ = 0 corresponds to Oldroyd-B). While

the steady-state shear behaviour of FENE-CR is identical to that of Oldroyd-B, in

extensional flow the FENE-CR model mitigates the divergence of the steady-state

extensional viscosity seen with the Oldroyd-B model (see Fig. 6.12a). Therefore

if shear flows are dominant then we should expect little change between the two

models. In contrast if extensional flows are strong then there should be a marked

difference in the polymer response between FENE-CR and Oldroyd-B.

For small R = 0.1 (Fig. 6.16a red curves), we observe that the non-linearity

of the spring force only becomes effective once past the upturn, suggesting that

extensional deformation is a key component of the drag increase. The colour maps

of λC are also informative. At small R (Fig. 6.17a top row), the flow character q (left

panel) tells us that the extensional flows in the wake dominate. As expected, this

is reflected in λC which shows more dramatic deformation for Oldroyd-B (middle



6.5. Viscoelastic Flows 178

(a) Orientation Θa. Top row : R = 0.1, We = 0 (left), We = 1.25 (mid and right).

Bottom row : R = 0.35, We = 0 (left), We = 1 (mid and right).

(b) Orientation Θb. Top row : R = 0.1, We = 0 (left), We = 1.25 (mid and right).

Bottom row : R = 0.35, We = 0 (left), We = 1 (mid and right).

Figure 6.17: Flow character and response of Oldroyd-B and FENE-CR fluids in Θa and Θb

orientations. Flow is always from the left. Left col: flow character q for We = 0, where white

denotes extension and purple denotes shear, also shown are streamlines (red lines). Principle

eigenvalue of strain tensor λC for Oldroyd-B (mid col) and FENE-CR (right col, with δ = 0.001).

Radii are R = 0.1 (top rows), R = 0.35 (bottom rows).
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panel) than for FENE-CR (right panel).

Interestingly, at large R = 0.35 (Fig. 6.16a blue curves) where shear is the

dominant flow character, we observe that the drag increases with δ at a given We,

despite both models having the same shear-response. This is qualitatively similar

to the results of Liu [196] (differences in values for β and δ make direct comparison

difficult). A possible explanation is that polymer molecules undergo elongation

upstream, allowing them to align as they pass in the vertical gap between cylinders:

as δ increases this elongation is suppressed be the FENE spring force, and the effect

is lessened, resulting in an increase in the drag χ.

To add further weight to this argument, we examine the relevant colourmap

(Fig. 6.17a bottom row). Indeed we find noticeably less deformation for FENE-CR,

even though its shear rheology is indistinguishable from Oldroyd-B. This intriguing

result implies that the deformation in the sheared region near the cylinder tops must

partly arise from the advected result of earlier extensional deformation, for which

the two models differ in response. Our results highlight that while the local analysis

of Sec. 6.4 is instructive, convective effects clearly cannot be ignored.

FENE-P. The response of FENE-P, which shear-thins relative to the other models

(see Fig. 6.12b), is shown in Fig. 6.16b. For R = 0.35, where shear flows are

particularly prevalent, the drag decreases relative to Oldroyd-B. This is because the

polymer viscosity reduces as the flow rate, and therefore the characteristic shear-rate,

increases. Interestingly, this shear-thinning effect appears to overcome the increase

in drag (relative to Oldroyd-B) observed for the FENE-CR model (see above).

For the smaller radius R = 0.1, the shear-thinning effect can still be seen, though

we find large values of δ are required before the effect is appreciable (i.e., before

the FENE-P data differs significantly from FENE-CR). This is consistent with our

assertion that extension dominates at small R, where we expect the key physics to

be relatively insensitive to the shear rheology of the fluid.
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Figure 6.18: Normalised drag χ against We for R = 0.1, 0.35, for an Oldroyd-B fluid in geometry

Θb. Triangles mark the point of upturn in the drag.

6.5.2.2 Biperiodic geometry: orientation Θb

For orientation Θb (where the imposed flow is at 45◦), we still observe a downturn

but surprisingly it is significantly less pronounced, see Fig. 6.18. Our results in

configuration Θa suggest that upstream extensional deformation, which remains a

strong feature here, should produce an effective shear thinning effect (despite the fact

that in simple shear, Oldroyd-B doesn’t shear thin). This however is not reflected

in the downturn.

A possible reason could be that shearing in the immediate vicinity of the cylin-

der top/bottom is less prominent (compare left column of Fig. 6.17a and 6.17b).

Particularly at small R we also see that the upturn sets in at a much earlier We,

likely due to the greater prominence of regions of extensional flow.

An examination of the colour maps of λC in Fig. 6.17b reveals that both small

and large R are dominated by extensional effects in the cylinder wake. This is

consistent with the observation made earlier for Newtonian flows in Sec. 6.4.1 that

changing radius has little effect in geometry Θb. The large deformation seen in the

wake is again mitigated by the extensional regularisation of FENE-CR (compare

middle and right columns in Fig. 6.17b).
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6.5.2.3 Finite size effects.

Note that we did not find evidence of fluctuations across the full range of parameters

explored, for either biperiodic geometry. It is natural to ask whether this absence is

due to finite size effects, i.e., are we missing fluctuations with wavelengths greater

than Lx?

To address this we repeated simulations for a range of We in both geometries

with L′x = 2Lx (two posts) and L′x = 4Lx (four posts). In both cases the results

were exactly as for the single cylinder, with no fluctuations of any kind observed.

While it is possible that fluctuations only appear at wavelengths longer than the

maximum of 4 cylinders considered here, this seems unlikely given that we observe

no indication of the instability in these smaller simulation boxes.

6.5.3 Walled geometries

We now turn our attention to the walled geometry, which has been more widely

considered in the literature [25,211–213,237]. We follow the convention of fixing the

cylinder radius at R = 0.25 [24, 25] and now take the horizontal distance between

cylinder centres, Lx, as the quantity to be varied in our numerics. Note that Lx = 2R

corresponds to touching cylinders, and Lx →∞ is the single cylinder limit.

We consider here two cases, widely spaced (Θc, Lx = 1.5) and closely spaced

(Θd, Lx = 0.625) cylinders. The former forms a reasonable approximation to the

single cylinder limit, and we observe only steady flow solutions for the range of We

explored. Our results are in reasonable agreement with previous studies, though we

do not reproduce the fluctuating state seen at high We in Ref. [25]. This may by

due to convergence issues, as we discuss below.

The more severe diverging-converging nature of the closely-spaced geometry (Θd)

leads to more intriguing results. Ref. [25] reports time-dependent steady-states that

we discuss in detail in Sec. 6.5.3.2 below. While we can reproduce these fluctua-

tions at low numerical resolution, our fully converged results produce only time-

independent states, suggesting that the physics reported in that study may be a

numerical artefact of poor grid resolution.
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Figure 6.19: Normalised drag against We for widely spaced cylinders Θc. Also shown are data

for the same parameters from Refs. [24,25], (and single cylinder data from Ref. [230], blue dashed

line). Note: to allow comparison with these studies, we temporarily adopt the drag definition

which only includes contributions from the cylinder (not the walls), which we label χ̄.

6.5.3.1 Walled geometry: widely spaced Θc

In the biperiodic geometries considered thus far, the pressure drop can be directly

obtained from the force on the cylinder (see also the discussion in Sec. 6.2.1). In the

channel geometry the pressure drop also includes a contribution from the forces on

the walls and is no longer equivalent to the cylinder forces alone. For both geometries

we report the normalised drag χ which includes wall effects (when present). However

in order to compare with earlier works that only report the force on the cylinder

(i.e., not the total pressure drop), we also temporarily adopt the normalised cylinder

drag χ̄ which ignores the wall contribution (this quantity is only plotted in Fig. 6.19,

the remainder of our work uses χ). Note that χ̄ = χ for biperiodic geometries.

Plotting χ̄ against We in Fig. 6.19 shows qualitatively similar behaviour to the Θa

biperiodic geometry: initially a downturn is seen in the normalised drag, followed

by an upturn at We ≈ 0.8. We also plot the results of [24, 25] with which we

find reasonable qualitative agreement, and quantitative agreement on the point of

upturn. Unlike the work of Vázquez-Quesada et al. however, we fail to capture

fluctuations across the range of We studied. It is possible that such fluctuations

might also appear at higher values of We, though we find numerical convergence
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impractical once beyond We ≈ 1.75.

Interestingly, plotting the results of Alves et al. for a single cylinder [230] reveals

that even Lx = 1.5 is a reasonable approximation to this limit, at least in terms of

the drag. This is consistent with the observations of Liu et al. [24] that for Lx = 1.5,

the flow at the midpoint between cylinders is “95% that of fully developed channel

flow”.

Comparing with the closely spaced geometry (Fig. 6.20), we find that the widely

spaced cylinders exhibit a significantly larger downturn. Given that the wake region

(the gap between cylinders) is 8 times larger for Θc, significant extensional flows can

develop. Consistent with the mechanism described for Θa (where elongated chains

upstream can be advected past the shear region at lower stress) it is our observation

that the downturn is more pronounced for Θc than Θd.

6.5.3.2 Walled geometry: closely spaced Θd

For the closely spaced cylinders, we now return to our original definition of the

normalised drag χ based on the total pressure drop. We initially see a less pro-

nounced downturn in χ at small We relative to Θc (Fig. 6.19), but flows similarly

remain time-independent Fig. 6.20 (inset). Beyond a critical We, our numerical

results seemingly exhibit two dramatic yet distinct regions where the drag increases,

and time-dependent flows develop, consistent with earlier studies [25]. However we

later discovered during rigorous convergence tests that such oscillations are purely

a numerical artefact.

We first present the non-converged results and speculate on their relation to

existing work in the literature, then present some preliminary (converged) results

and discuss how more rapid convergence could be achieved in future studies.

Non-converged results. At a critical Weissenberg number Weosc ≈ 1.85, our

non-converged data exhibits a region where the normalised drag dramatically in-

creases above χ = 1, see Fig. 6.20a. Examining an example time series We(t) in

this region (Fig. 6.20b, series B) reveals that the flow becomes oscillatory, with a

well defined period ∼ 4τ . In this oscillatory regime at least, the magnitude of the
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Figure 6.20: (a) Normalised drag against We for the closely spaced geometry Θd. For Ny = 512

(black circles, under-resolved) we observe three regimes: steady (low We), oscillatory (interme-

diate We), and aperiodic (large We). Inset shows the initial mild downturn. Data from higher

resolution runs (red squares Ny = 768, green triangles Ny = 1024) are also marked. (b) Time

series, rescaled by τ , for the marked points in (a) with Ny = 512.

fluctuations (taken here as the standard deviation of the time series in Fig. 6.21b)

appears to scale as ∼ (We−Weosc)1/2 (see Fig. 6.21b). This is the same scaling as

identified by Vázquez-Quesada et al. (Fig. 6.21a and Ref. [25]), and is suggestive of

a supercritical Hopf bifurcation [128].

At higher We still, a second transition to a distinct time-dependent state can

be seen, now characterised by an increasingly aperiodic time series We(t), albeit

one where the dominant period is still ∼ 4τ (see Fig. 6.20b, series C). This is

also accompanied by a large increase in the drag. The scaling behaviour of the

fluctuations in this regime is harder to ascertain without longer statistical averaging,

however a least-squares fit suggests that these also grow as∼ (We−Weaper)1/2, where

Weaper ≈ 2.95. (See Fig. 6.21b.)

Converged results. The time required to run the above simulations (with Ny =

512) is of the order of weeks. This is mainly because the Hookean restoring force

for the immersed boundary involves a large spring constant (see Eq. 6.10), which in

turn demands particularly small timesteps.

In order to run simulations at higher resolutions within a practical timeframe, we
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Figure 6.21: (a) Data from Ref. [25] showing a increase in fluctuations above Weosc ∼ 1.1.

(b) Plot of the standard deviation σWe against mean µWe , extracted from the time series We(t).

Data from higher resolution runs (magenta squares Ny = 768, cyan triangles Ny = 1024) are also

marked.

found it necessary to develop a parallel version of the code. However the increased

computational cost means we have only checked a small number of points, which we

overlay on Figs. 6.20, 6.21 (magenta squares Ny = 768, cyan triangles Ny = 1024).

At small We, this shows that our results are converged for Ny = 512. However

as We increases, we see that Ny = 512 is no longer sufficient to resolve the dynamics

and that Ny = 768 or even Ny = 1024 is required. Importantly, at these higher

resolutions the fluctuations seen for Ny = 512 disappear, suggesting that Hopf-like

instability described in Fig. 6.21b is simply an artefact of under-resolution.

The maximum resolution used in the SPH simulations of Ref. [25] is 120 × 192

particles. While SPH resolutions can not directly be compared with the number

of points in a finite-difference scheme, we suspect that the fluctuations reported in

that study are a numerical artefact of similar origin. Our results show that, in order

to fully converge, resolutions an order of magnitude finer than used in Ref. [25] are

required. Another possible explanation for the difference is that the SPH method

used in Ref. [25] intrinsically requires a non-zero Reynolds number, although this is

small enough (Re ∼ O(10−2)) that inertial instabilities are unlikely to be responsible.

Another consequence of the method is that the fluid is not completely incompressible

(in contrast we set ∇.v = 0), meaning that there is finite speed of sound.

We have checked that the results presented earlier in this chapter do not suffer
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from under-resolution. In those cases, the contractive-expansive nature of the flow

is considerably less severe than for θd, and the convergence requirements are less

severe.

Strategies for faster convergence. Clearly the severe convergence requirements

of the confined cylinder geometry are problematic. We finish by proposing some

strategies for increasing the efficiency of our numerics in future works.

The main timestep constraint arises for the immersed boundary force evolution

equation (see Eq. 6.10). In contrast the timestep required for the polymeric dynamics

is comparatively large. Therefore one strategy might then be: at each ‘polymeric

timestep’ (which is relatively large), iteratively solve immersed boundary forces at a

much smaller timestep (with C fixed). Another option might be to adopt the method

proposed by Hulsen et al. [199], which casts the polymer constitutive equation in

a form where the logarithm of the conformation tensor C is evolved, leading to

increased numerical stability.

6.6 Conclusions

The problem of viscoelastic flow past an array of cylinders, acting as a minimal

model of a real porous material, has attracted the attention of the fluid dynamics

community for a some time. Part of the reason the field remains so active is that

numerical convergence is notoriously difficult, and some 20 years after the initial

viscoelastic simulations were performed consensus is yet to be reached. Specifically,

the benchmark problem of 2D pressure-driven flow of an Oldroyd-B fluid past an ar-

ray of confined cylinders, and whether unsteady solutions exist at high We, remains

open.

Our results using immersed boundary simulations demonstrated that poorly con-

verged results can still produce plausible physics at high We. For example at

large We, using resolutions comparable with Ref. [25] (who report fluctuations),

we observed the development of oscillatory steady-states where the timescale of

fluctuations is set by the polymer relaxation time τ . These grew in magnitude as

∼ (We−Weosc)
1/2, as reported in Ref. [25]. We found that resolutions an order of
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magnitude greater than Ref. [25] were required for full convergence, at which the

above fluctuations no longer appear. Importantly, seemingly convincing physics can

arise in non-converged simulations, where oscillations appear on a timescale set by

the polymer relaxation time.

Convergence in the lesser studied biperiodic geometry was easier to obtain. We

began in this geometry by considering Newtonian flow, which we analysed to identify

the regions dominated by shear or extension. When the imposed flow is head on

Θa, the flow field at small R is dominated by extensional flows in the wake of the

cylinder. In contrast at large R, shearing past the cylinder tops dominates. Our

viscoelastic results suggest that care should be taken when defining the Weissenberg

number, as many numerical studies fix the cylinder size and therefore do not fully

explore the dependency of We on R. Indeed by adopting separate definitions of

shear and extensional Weissenberg numbers at large and small R respectively, we

can accurately predict the point of upturn in the drag for all R considered. While our

extensional Weissenberg number is unknown a priori , our results do illustrate that

the physics of flow in porous media is not well represented by a single dimensionless

number. The dominant flow type varies greatly with pore size, and this should be

accounted for in any definition of the Weissenberg number.

The above flow character analysis is local and neglects the effects of advection. To

address this, we studied how the polymer deformation varies between constitutive

models whose rheological behaviour is identical in simple shear, but different in

extension (i.e., comparing Oldroyd-B and FENE-CR models). Interestingly, at large

R, we observed less deformation in the shearing regions for FENE-CR, despite both

models sharing a common shear rheology. This suggests that upstream extensional

deformation may also contribute as the polymer is advected through the vertical

gap between cylinders.

While the upturn in the drag can be reliably captured using a minimal 2D model

of viscoelastic flow in porous media, it appears that the time-dependent states seen

experimentally at larger We remain elusive. Whether these states would eventu-

ally develop at large enough We, or in fully 3D simulations, would form a natural

extension for future work (see Sec. 8.2 for details).
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+1
φ

`

fluid cylinder fluid

Figure 6.22: Schematic demonstrating how the phase field method works, plotting the profile of

φ in a slice through a cylinder. Solid regions (φ = +1) are separated from fluid regions (φ = −1)

by a diffuse interface of width `.

6.7 Appendix I: Alternative numerical methods

The main numerical method used in this chapter is the immersed boundary method

(described in Sec. 6.3). However during the project we also developed two other

numerical methods: as these proved impractical at high We, these were mainly used

to verify the immersed boundary code (at low to intermediate We).

6.7.1 Phase field

The phase field method, inspired by the work of Tanaka [238], models everywhere in

the simulation cell as containing polymer, including inside the cylinders. Note that

this technique is related to the phase field model used in Chap. 7. As both phase

field and propagator methods only form a minor part of the study, we only briefly

sketch their derivations here.

We introduce a phase field φ which prescribes which regions of the simulation

are fluid (φ = −1) and which are solid (φ = +1). The relaxation time and elastic

modulus of the polymer are then made functions of φ

τ = τ(φ) = τfluid +

(
φ+ 1

2

)
τsolid (6.21)

G = G(φ) = Gfluid +

(
φ+ 1

2

)
Gsolid, (6.22)

where τfluidGfluid = η(1−β)
β

, and τsolidGsolid is converged → ∞. These functions are

chosen to yield values describing a typical polymer (or Newtonian fluid with τfluid →

0) in the fluid region, and very large in the cylinder region so as to effect a solid

cylinder.
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The two phases are separated by a tanh profile of width ` to avoid discontinuities

in the simulation. An visual overview of the method is given in Fig. 6.22. For the

dynamics of φ we then take

∂tφ+ v.∇φ = 0. (6.23)

Finally we tether the solid post in place by introducing a Hookean restoring force

f(r, t) = −κφ(r, t) (xCM(t)− x0) , (6.24)

where xCM(t) is the centre of mass position of the cylinder, x0 is the desired location,

and κ is a large spring constant which we converge κ→∞. This in practice renders

v = 0 in Eq. 6.23, resulting in a static post.

6.7.2 Propagator method

Whereas the latter methods impose tether forces allowing us to converge on a no-slip

boundary condition at the cylinder surface (by taking κ → ∞), our third method

rigorously imposes it. Credit is due to Prof. Suzanne Fielding who developed the

method (in the context of squirming microswimmers [239], though it is also descends

from the Stokesian Dynamics formulation of Brady and Bossis [240]).

We sketch here the derivation. First we add a source term to the Stokes force

balance equation for the pth cylinder of the form

fp(r, θ) = δ(r −R)f(θ), (6.25)

where δ is the Dirac delta function, and (r, θ) are radial coordinates relative to the

cylinder centre. Radial and tangential components of this f are then decomposed

into Fourier modes in θ.

In order to satisfy force balance, we construct the matrix which describes the

linear relationship between velocities and forces. We invert this to find the Fourier

components eimθ of f needed to ensure that the velocity boundary conditions (no-slip

and no-permeation) are satisfied at the cylinder surface. These Fourier components

then allow us to reconstruct the velocities anywhere in the cell. We converge our

numerics on the number of surface modes.
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The generalisation to include polymer is rather involved. Briefly, gradients in the

polymer stress contribute a second source term to force balance S = ∇.Σ which is

known, and when Fourier transformed can be included in the linear algebra problem

outlined above. Velocities are reconstructed with the inclusion of this extra source

term, and in turn are fed back into the polymer evolution equation. While we

successfully managed to implement this viscoelastic generalisation, the increased

CPU time required to calculate the flow everywhere in the simulation cell at each

timestep proved prohibitively large for practical use, particularly at large We.



7
Contact line dynamics

7.1 Introduction

Understanding the way in which a contact line (the line along which an interface

separating two immiscible fluids intersects a solid boundary wall) moves under an

imposed flow is a problem of fundamental importance in wetting dynamics. It under-

pins a wide range of phenomena in nature, for example in the functional adaptation

of many biological systems [2,241,242], as well as in technological applications: from

oil recovery [243] to inkjet printing and microfluidics [244]. From these examples, it

has become clear that experimental progress needs to be accompanied by the devel-

opment of physical models and computational methods that can accurately capture

wetting dynamics, even in complex geometries.

We begin by introducing some basic concepts in wetting and relate these to

the contact line singularity, before reviewing previous theoretical and numerical

191
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Figure 7.1: (a) Schematic of a liquid droplet on a solid substrate at equilibrium, and the equi-

librium contact angle it defines, θeq. Marked are the surface tensions for the solid, liquid and

gas phases. (b) Examples of four possible states corresponding to θeq = 0 (complete wetting),

0 < θeq < 180◦ (partial wetting/non-wetting), and θeq = 180◦ (completely dry). Also marked

(where possible) are the tangents that the droplet makes to the surface (red lines).

attempts to remedy it.

Wetting. The fluid mechanics of wetting has attracted a long history of study

[245]. Over two centuries ago, Young related the contact angle of a fluid droplet at

equilibrium on a smooth solid substrate to the surface tensions between solid, liquid

and gas (σgl, σsg, σsl) via the formula [26]

cos θw =
σsg − σsl
σgl

, (7.1)

which we illustrate schematically in Fig. 7.1a. This represents the minimum free-

energy configuration of the droplet. There are then several possible states that the

droplet can adopt, depending on the properties of the fluid and the substrate.

If σgl = σsg − σsl, then the contact angle is zero and the resulting state is one of

perfect or complete wetting, i.e., the equilibrium state consists of a macroscopic liquid

layer covering the whole substrate. States where 0 < θeq < 90◦ are then referred to

as partially wetting. For θeq > 90◦ the droplet is described as partially non-wetting,

characterised by the intrusion of gas ‘wedges’ from the sides on the droplet forming

a bead. The other extremum is then θeq = π, i.e., the total non-wetting state. The

latter is particularly rare save, for example, mercury on a solid surface. Examples

of these are all given in Fig. 7.1b. Transitions between these states can be driven

by changing the surface tension. For example, Lee et al. showed that a non-wetting
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Figure 7.2: Schematic of the wedge flow in the vicinity of a contact line, from the frame of

reference in which the contact line is static. The contact line points in the direction perpendicular

to the page (at the white circle).

material can be made to wet (partially or totally) by lowering the surface tension

on the fluid interface using surfactants [246].

Note that Eq. 7.1 also applies if we replace the gas phase with a second liquid,

immiscible with the original liquid phase, as considered throughout this chapter. Our

model describes two immiscible fluids with neutral wetting conditions, i.e., with an

equilibrium contact angle θeq = 90◦. However other wetting conditions can easily be

included by introducing a more general boundary condition [28,30].

While the static behaviour of a droplet can be treated purely from free energy

considerations, for most practical applications the fluids are not at rest and the

dynamics of the fluid-fluid interface become important.

Contact line singularity. Any purely macroscopic treatment, where the two

fluids are considered to be separated by a strictly sharp interface, and subject to

a strictly no-slip condition on the fluid-velocity at the solid wall, has long been

recognised to predict a non-integrable stress singularity for any non-zero velocity

of the contact line [247, 248]. To understand the origin of this singularity, it is

instructive to consider fluid motion in the reference frame of the contact line (see

Fig. 7.2).

We recap here the simplified argument of de Gennes [248]. The typical velocity

gradient as we approach the contact line from the right is dyux ∼ V/h. The viscous

dissipation across the film width is
∫ h

0
dyη (dyux)

2 = ηh
(
V
h

)2
[249]. Integrating this
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from a reference Lout in towards a cutoff distance Lcut from the contact line gives a

viscous dissipation per time per length of

Dvisc ≈
∫ Lout

Lcut

ηh

(
V

h

)2

dx ≈ η
V 2

θ

∫ Lout

Lcut

dx

x
=
ηV 2

θ
ln(Lout/Lcut), (7.2)

where we have used the fact that h(x) ≈ θx for small contact angles. This diverges

logarithmically in the limit of slip, i.e., Lcut → 0. This is clearly at odds with the

commonplace experience that the contact line does, in fact, move!

To regularise this singularity, the macroscopic picture must be supplemented

by additional physics that intervenes on shorter, microscopic lengthscales. One

approach is to relax the no-slip boundary condition on the fluid velocity, by inserting

a slip boundary condition in a region of microscopic size ξ in the vicinity of the

contact line. This can be done by hand [250, 251], for example by imposing a slip

velocity vs = U exp(−|x|/ξ), where x is the distance along the wall away from the

contact line, or by choosing vs = ξσ/η, where σ and η are the wall stress and fluid

viscosity respectively. In any computational study, slip can also arise indirectly as

a numerical artefact [252].

Diffuse interface modelling. Another approach is to keep the no-slip boundary

condition and instead to recognise that any interface between two fluids can never be

perfectly sharp, but in practice must have some non-zero microscopic diffuse width

`. Accordingly, the use of diffusive interface models [28, 253] has gained increasing

popularity in recent years. A diffuse interface model of liquid-gas coexistence then

accommodates contact line motion by a condensation-evaporation mechanism which,

in some small region within close proximity of the contact line, slowly transfers

matter from one side of the interface to the other [27, 254–256]. Similarly, a diffuse

interface model of coexisting immiscible binary fluids accommodates contact line

motion via a slow intermolecular diffusion of the two fluids across the interface

between them, again acting in a small region in the vicinity of the contact line

[28,29,255].

Diffuse interface models [28,253] are also convenient to implement numerically. A

phase field (which we describe using a scalar order parameter φ (x, t)) is introduced

to distinguish one fluid from another, with the length scale that characterises the
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Figure 7.3: Schematic illustration of a diffuse interface model in the vicinity of the slip region,

where bulk fluid phases (where the order parameter φ± = ±1) are separated by a interface of finite

width `. The characteristic slip length ξ is also marked.

variation of this field across the interface between the fluids prescribing the interfacial

width, `. (See Fig. 7.3.) An advection-diffusion (Cahn-Hilliard) equation then

determines the evolution of this order parameter, and hence of the interface position.

This is solved in tandem with the Navier-Stokes equation for the fluid velocity field.

A key advantage of this approach is that all computational grid points are treated on

an equal footing, without any need to explicitly track the position of the interface.

In this way, even complex flow geometries can be simulated conveniently.

It is important to emphasize, as first elucidated by Cox [257], that although

the physical origins of contact line motion may differ according to the detailed

microscopic physics invoked (wall slip, intermolecular diffusion across the interface,

etc.), the macroscopic hydrodynamics far from the contact line nonetheless converges

to a universal solution that is informed by the microscopics only in the sense of

being rescaled by a single parameter, the “slip length” ξ, that emerges from this

underlying microscopic physics. An important problem within any model of the

microscopics is therefore to determine this emergent slip length ξ: not only because

it is a key variable that determines the macroscopic wetting and fluid dynamics,

but also because it sets a scale to which other length scales (surface heterogeneities,

droplet size, etc.) must be compared.
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Aims of chapter. With that motivation in mind, the primary aim of this chapter

is to determine the scaling of the slip length within a diffuse interface model of im-

miscible binary fluids. We assume the fluids to have matched viscosity η, and denote

by M the mobility parameter characterising the rate of intermolecular diffusion in

the Cahn-Hilliard equation. In the existing literature, (at least) three apparently

contradictory scalings have been proposed. Several authors (e.g., Refs. [28,30]) sug-

gest that ξ ∼ lD where lD = (Mη)1/2 is the characteristic lengthscale below which

intermolecular diffusion dominates advection and above which the opposite is true.

For convenience we call this the diffusion length in what follows, and we emphasise

that it is determined only by the macroscopic quantities M and η. In contrast, Bri-

ant and Yeomans [29] suggest a different scaling, ξ ∼
√
lD`, which is the geometric

mean of the macroscopic diffusion length and the microscopic interface width. And

while these two proposed scalings do not have any dependence on the imposed flow

velocity, Ref. [258] in contrast suggested that the slip length does depend on the

velocity as ∝ V
−1/2

0 .

In view of these apparently contradictory predictions, an important contribution

of this work is to provide a coherent picture that fully reconciles two of these existing

predictions, by showing each to apply in a different regime of parameter space.

(Qualitative similarities with the third are found at large velocities, though we do

not obtain their precise scaling.) This is achieved by extensive numerical studies

performed across unprecedently wide ranges of the two relevant control parameters.

Specifically, we explore four decades of the dimensionless ratio Mη/`2 = l2D/`
2 of the

(squared) macroscopic diffusion length to the (squared) microscopic interface width;

and three decades of the Capillary number Ca ≡ ηV0/σ, which adimensionalises the

imposed flow velocity V0 in terms of an intrinsic interfacial velocity scale (here σ

is the interfacial surface tension, see Eq. 7.6). Moreover, we use three different,

independently designed (and coded) numerical methods, and show their results to

be in excellent quantitative agreement across all decades.

For small values of the Capillary number Ca, corresponding to low imposed flow

velocities, we demonstrate that the slip length converges to a well-defined value

that is independent of the velocity V0. Any dependence on the velocity is only
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observed for Ca > 0.01, and while we do observe a decrease in the slip length in

this fast flowing regime, our data do not appear to recover the power law ξ ∝ V
−1/2

0

proposed analytically in Ref. [258].

The chapter generally focuses on the slow flow regime, Ca < 0.01, in which the

slip length ξ is independent of the flow rate V0. We show that, in the limit of large

lD/`, the slip length scales as ξ ∝ lD, informed only by the macroscopic lengthscale

lD. This agrees with the original prediction of Refs. [28, 30] and corresponds to the

sharp interface limit of the diffuse interface model, in which the microscopic length `

essentially drops out of the problem, apart from the role it plays in regularising the

contact line singularity. In contrast, for small lD/` we find that the slip length scales

as ξ ∝ (lD`)
1/2, as proposed by Ref. [29]. This corresponds to the diffuse interface

limit in which the emergent slip length does depend on the underlying microscopic

length `. In this way we reconcile the two previously apparently contradictory

scalings, showing each to apply in a different limiting regime of lD/`. The crossover

between these two is furthermore consistent with the sharp interface limit discussed

by [30].

The fact that the slip length ξ is in general different from the interface width

l, and indeed greatly exceeds it for large lD/`, has a clear practical consequence

for any simulation: the resolution of the full wetting dynamics appears only on a

lengthscale corresponding to the larger of the interface width and the slip length.

This, in turn, limits the region of parameter space that can be considered reliable

in any numerical study.

We provide additional evidence for the distinction between the diffuse interface

limit lD/`� 1, in which the microscopic physics informs ξ, and the sharp interface

limit lD/`� 1, in which it does not, by performing further simulations in which the

we modify the interfacial (microscopic) contribution to the underlying free energy

functional of the binary fluid (Sec. 7.4.2). We show that the slip length depends on

this modification only in the diffuse interface regime. In the sharp interface regime

of large lD/`, the slip length continues to depend only on the macroscopic dynamical

variables, η and M , free of this modification to the microscopic interfacial term.

Finally, we test the validity of Cox’s formula [257] for the dynamic contact angle
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as function of the Capillary number in the different slip length regimes (Sec. 7.4.3).

Our numerical results are in good agreement with Cox’s analytical result if we

allow the slip length to be rescaled by a dimensionless parameter. Moreover this

parameter appears, suggestively, to converge to unity in the sharp interface limit,

but is significantly smaller in the diffuse interface limit.

We now describe the models, methods and setups we employ to compute the slip

lengths and dynamic contact angles, then present our results in Sec. 7.4. Finally,

we summarise our key findings and discuss avenues for further work in Sec. 7.5.

7.2 Model

In this section we specify the model that we shall use throughout this chapter,

starting with the thermodynamics in Sec. 7.2.1 then the dynamical equations of

motion in Sec. 7.2.3. We then specify the flow geometry and boundary conditions

in Sec. 7.2.4.

7.2.1 Thermodynamics

We consider a binary mixture of two mutually phobic fluids, A and B, and denote the

volume fraction of fluid A by the continuum phase field φ(r, t). The volume fraction

of fluid B is then simply 1-φ by mass conservation and need not be considered

separately. We consider a Landau free energy [169]

F =

∫
V

fφ dV =

∫
V

[
G

4
(φ2 − 1)2 +

G`2

2
(∇φ)2

]
dV, (7.3)

which allows a coexistence of two bulk phases: an A-rich phase with φA = 1 and a

B-rich phase with φB = −1. The bulk constant G has dimensions of energy per unit

volume (or equivalently of force per unit area, and so modulus). If the two fluids

have different affinities to the solid surface, a surface (wetting) contribution to the

free energy must be added [30,259,260] to the right hand side of Eq. 7.3.

The chemical potential µ follows as a functional derivative of free energy density

ψb with respect to φ, giving

µ = −Gφ+Gφ3 −G`2∇2φ. (7.4)
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In equilibrium the chemical potential µ = 0. Assuming a flat interface of infinite

extent in the y − z plane, with the interfacial normal in the x direction and the

interface located at x = 0, we then obtain an interfacial solution of the form

φ = tanh

(
x√
2`

)
, (7.5)

with a homogeneous B-rich phase for x � −` and homogeneous A-rich phase for

x� `. The interfacial constant ` specifies the characteristic length scale over which

φ varies in between these two phases, and so corresponds to the interfacial width.

The surface tension associated with this interface is given by [29]

σ =
2
√

2G`

3
. (7.6)

7.2.2 Generalisation of Landau φ4 theory

So far, we have specified the Landau free energy in the form most commonly used

in the literature. It will also be instructive in what follows to consider the extent to

which our results for the slip length do or don’t depend on the microscopic details

of the model used. Accordingly, we now generalise the free energy slightly to give

F ′ =

∫
V

f ′φ dV =

∫
V

[
G

4
(φ2 − 1)2 +

Gl2

2
(∇φ)2 + α

Gl4

4
(∇2φ)2

]
dV. (7.7)

Compared to the original free energy defined above, this has an additional interfacial

curvature term of amplitude set by α. The associated chemical potential is

µ = G
(
−φ+ φ3 − `2∇2φ− α`4∇4φ

)
. (7.8)

It is important to note that the bulk terms are unaltered, with the modification af-

fecting only interfacial gradient terms involving powers of l∇. A careful comparison

of the original model, for which α = 0, with this generalised model, for which α > 0,

will allow us to demonstrate below that the contact line’s slip length is independent

of the microscopic details, as specified by α, in the sharp interface regime lD/l� 1.

In contrast, in the diffuse interface regime lD/l � 1 we do find that the slip length

depends on the microscopics, via α.
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7.2.3 Equations of motion

The dynamics of the order parameter field is specified by the Cahn-Hilliard equation

(see e.g., [169]) generalised to include an advective term:

(∂t + v.∇)φ = M∇2µ. (7.9)

Here M is the molecular mobility, which we assume constant. The fluid velocity and

pressure fields, v(r, t) and p(r, t), obey the continuity and Navier-Stokes equations

∂tρ+∇.(ρv) = 0, (7.10a)

ρ (∂t + v.∇) v = η∇2v −∇p− φ∇µ. (7.10b)

We denote by ρ and η the fluid density and viscosity respectively, assuming through-

out that the two fluids are perfectly matched in both density and viscosity. In the

Navier-Stokes equation, gradients in the chemical potential contribute an additional

forcing term to the fluid motion, φ∇µ, which can also be written as −µ∇φ [261].

We assume throughout incompressible flow and also take the inertialess limit of

zero Reynolds number (Stokes flow). These limits can be implemented exactly for

two of our numerical methods (MI and MII described in Sec. 7.3 below) by setting to

zero the terms on the left-hand-sides of Eq. 7.10a (incompressibility) and Eq. 7.10b

(zero inertia). The Lattice-Boltzmann method (MIII) intrinsically requires a small

but non-zero inertia and compressibility, though our numerical results confirm the

effects of this difference to be negligible for the problem considered here.

7.2.4 Geometry, initialisation and boundary conditions

We consider flow between infinite flat parallel plates a distance Ly apart, with plate

normals in the y direction. The phase field is initialised in an equilibrium state

with a bridge of A-rich phase, in which φ = +1, separated by two vertical diffuse

interfaces of width ` at x = Lx/4 and 3Lx/4 from B-rich phases on either side,

where φ = −1. The equilibrium contact angle is taken to be θeq = 90◦ (see Fig. 7.4),

corresponding to neutral wetting conditions. Throughout we define the position of

the interface itself by the locus φ = 0.
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Figure 7.4: Schematics illustrating typical steady-states in our channel geometry, in the reference

frame in which the contact line is static. Marked are the key lengthscales: slip-length ξ, interface

displacement d, channel dimensions Lx, Ly, and diffuse interface width `. In panel (a) a shear flow

is imposed by moving the plates with equal and opposite velocities ±V0. In panel (b) a Poiseuille

flow is imposed by applying a pressure drop along the length of the channel. The definitions for

the dynamic (θd, macroscopic) and equilibrium (θeq, microscopic) contact angles are also shown.

The fluid is taken to be initially at rest with v = 0 everywhere. Starting from this

initial condition, we then implement one of two common flow protocols: boundary-

driven planar Couette flow and pressure-drive planar Poiseuille flow.

In the first of these, a constant shear-rate γ̇ is applied by moving the top and

bottom plates at velocities V0 = ±1
2
γ̇Ly. This deforms the phase field and for small

Ca ≡ ηV0/σ . 0.1 a steady state is reached in which the interface has displaced a

distance d ∝ ±Ca at the top and bottom walls, as shown in Fig. 7.4a. The deformed

bridge is then stationary, with the contact lines moving at a velocity ∓V0 relative

to the top and bottom walls.

In the Poiseuille protocol the flow is driven by an imposed pressure drop ∆P

along the length of the channel. A steady state then develops in which the bridge

migrates along the channel at a constant speed, with the contact lines moving along

each wall with a measured velocity V0. In the reference frame of the contact line,

therefore, both walls move with a velocity −V0. By fitting the interface in the central

region of the channel (between y = 1
4
→ 3

4
) to a circle, see Fig. 7.4b, we define the

dynamic contact angle θd as the angle of intersection this circle makes with the wall.

The dynamic contact angle is in general different from the equilibrium contact angle.

In the flow direction x the cell is taken to have length Lx = 2Ly, with periodic

boundary conditions on both φ and v. All quantities are assumed invariant in

the z direction. At the plates we assume boundary conditions of no-slip and no-

permeation for the fluid velocity. As there are subtle differences in the φ boundary
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Figure 7.5: Illustration of our definition of the slip length ξ, defined as the position of the first

local maximum of v.∇φ as measured along the interface (defined as the locus φ = 0).

condition between the three numerical methods (which have no appreciable effect

on our results), we defer discussion of these to the relevant numerical sections.

7.2.5 Definition of the slip length

In steady state, the Cahn-Hilliard equation of motion for the order parameter reads

v.∇φ = M∇2µ. (7.11)

In Fig. 7.5, we plot the way in which v.∇φ typically varies along the fluid-fluid

interface (taken as the locus φ = 0). Ref. [29] defines the slip length as the point at

which M∇2µ reaches -10% of the value at the wall after passing the first maximum,

as measured along the interface. We adopt a related definition and take the slip

length ξ to be given by the distance from the wall of this local maximum.

7.2.6 Dimensionless groups

In what follows we work in units of length [L] = Ly = 1, time [T ] = τ ≡ `2/ (MG) =

1 and modulus [G] = G. After taking the zero Reynolds limit ρ→ 0 and fixing the

aspect ratio Lx

Ly
= 2, there remain four dimensionless parameters which we can vary.

The main parameter for our study is the ratio of diffusive and interfacial lengthscales

Mη/`2 which we vary in the range 0.0025 → 10, and where the lower and upper

limits correspond to the diffuse and sharp limits.

We will later demonstrate that the slip length converges as the Capillary number,

Ca = ηV0/σ → 0 (see Fig. 7.9a). However we also later explore the effect of non-zero
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parameter value description

Mη/`2 10−3 → 101 ratio of diffusive and interfacial lengthscales

Ca = ηV0/σ 10−4 → 10−1 Capillary number

`/Ly 0.01→ 0.025 ratio of interface width to system size

α 0, 0.1, 1 strength of curvature term

Table 7.1: Summarised list of dimensionless parameters for our contact line study.

Ca on the dynamic contact angle in Sec. 7.4.3. We chose ∆x < `� Ly, taking care to

avoid finite size effects (see Sec. 7.3.1.1). We find that our results are unchanged for

`/Ly . 0.02, consistent with other studies [30]. These key dimensionless parameters

are summarised in Table 7.1.

7.3 Numerical methods

We have described in detail our model for a two-phase fluid (where phases are

separated by a diffuse interface of width `) and explained how externally driven

flows can be imposed using either Planar-Couette and Poiseuille protocols. Now we

detail how this model can be solved numerically. In Ref. [262], we report a numerical

study where three independent codes were used, demonstrating excellent agreement

between all three. Here we focus on the method contributed by this author (Method

I ); a brief overview of the other techniques used (Method II / Method III ) is given

in Apx. 7.8. Unless otherwise specified, any data shown was obtained using Method

I.

7.3.1 Method I

Within this method, at each numerical timestep we separately (a) solve the hydro-

dynamic sector of the dynamics to update the fluid velocity field v at fixed phase

field φ, then (b) update the phase field at fixed fluid velocity field. In part (a) we

use a streamfunction formulation to ensure that the incompressibility condition is

automatically satisfied (see Sec. 2.1.1).
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For the phase field dynamics in (b) we use a third order upwind scheme to

update the convective term on the left hand side of Eq. 7.9. The gradient terms on

the right hand side are solved using a Fourier spectral method using both sine and

cosine modes in the periodic x direction and only cosine modes in the y direction

for consistency with the imposed boundary conditions

∂yφ = ∂3
yφ = ∂5

y = 0 (7.12)

at the walls y = 0, Ly. The last equality need only be imposed in the case α 6= 0.

Note that while this condition automatically ensures zero gradient of the chemical

potential (as used for Methods II and III), it is actually a stronger condition than

that in demanding all the relevant odd derivatives of φ to vanish separately. We

do, however, find no difference in our numerical results between these boundary

conditions.

For the time-stepping we adopt a method originally proposed by Eyre [263]

(and later studied in depth in Ref. [264]) which splits the free energy term into

an expansive part, −∇2φ, and a contractive part, ∇2(φ3), −∇4φ. These are then

distributed between the nth and (n+ 1)th timesteps as

φn+1 − φn

∆t
= MG

[(
−`2∇4φ+ 2∇2φ

)n+1
+
(
∇2φ3 − 3∇2φ

)n]
, (7.13)

where ∆t is the timestep. This method permits significantly larger timesteps than,

for example, a Crank-Nicolson algorithm in which all terms are split equally between

the nth and (n+1)th timesteps. When present, i.e., for α > 0, the sixth order gradient

term is treated fully implicitly.

In our study we vary Mη/`2 (ratio of diffusive and interfacial lengthscales) over

four decades. The details of numerical convergence then depend on whether Mη/`2

is much greater or less than 1. For Mη/`2 � 1, slip lengths are of the order of the

interfacial thickness ` and require a fine grid to be accurately resolved. However

in this limit the system reaches a steady-state relatively quickly. For Mη/`2 � 1

the converse is true: the larger slip lengths involved permit usage of a coarser grid

but simulations take much longer to equilibrate. While these effects do cancel to

a degree, our simulations generally take longer at large values of Mη/`2. We have

explicitly verified that all our results are converged by checking that the slip length
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Figure 7.6: Example of a simulation where finite-size effects are pathological. Colourmap shows

φ where interfacial displacement d is so large that the phases wrap round the simulation cell (which

is periodic in the x-direction), and interact with the central region. We avoid this by converging

Ca→ 0 (and therefore d→ 0).

is not significantly changed after halving both space- and time-step, see Apx. 7.6 for

full convergence details.

7.3.1.1 Finite-size effects

In Apx. 7.7 we show that the steady-state displacement of the interface d increases

linearly with the Capillary number Ca = ηV0/σ = ηV0/
√

8/9G`; increasing Mη/`2 at

fixed wall speed also then increases the displacement. When d ∼ O(Lx/2), the inter-

face wraps around due to the periodic boundary conditions in the x-direction and can

interact with the remaining interfacial region in the vicinity of x, y = (Lx/2, Ly/2)

where v ≈ 0. A pathological example of this phenomenon is given in Fig. 7.6. As

d is proportional to the Ca, if any parameter selection suffers from such finite-size

effects, we can simply use a smaller value of Ca to reduce the displacement. (See

Fig. 7.13 for details.)

In principle, in the limit of very large Mη/`2 the slip length ξ can also approach

the channel width size Ly. However this can be avoided by reducing `/Ly (effectively

making the channel wider). We have explicitly checked that all results presented in

this chapter do not suffer from either of these finite-size effects.
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7.4 Results

Having introduced our model, and the three independent numerical techniques used

to solve it, we now present our main results. We start in Sec. 7.4.1 by considering

the standard φ4 Landau free energy (α = 0), before in Sec. 7.4.2 appraising the

robustness of our findings to the inclusion of the additional interfacial gradient

(curvature) term in the free energy (α > 0). In Sec. 7.4.3, we compare our numerical

results for the dynamic contact angles to the analytical predictions of Cox [257].

7.4.1 Standard φ4 theory

As discussed previously, two apparently contradictory scaling laws have been pro-

posed for the contact line’s slip length ξ in the existing literature. Several authors

have proposed [28,30] that the slip length is proportional to the diffusive lengthscale

lD, which describes the length below which intermolecular diffusion dominates ad-

vection and above which the opposite is true, giving ξ ∝ lD = (Mη)1/2. In contrast,

the lattice Boltzmann simulations and scaling arguments of Ref. [29] suggest that

the slip length depends not only on this macroscopic diffusive lengthscale lD, but

also on the microscopic interfacial width `, such that ξ ∝ (lD`)
1/2.

To resolve this apparent discrepancy we have performed extensive numerical

simulations of the moving contact line problem across four decades of the relevant

dimensionless control parameter Mη/`2 = l2D/`
2. Moreover, to ensure our results

are free of algorithmic artefacts we have used (across the entire range) the three

different, independently designed and coded numerical techniques just described.

We focus the discussion in this section on the case of planar Couette flow, returning

to consider planar Poiseuille flow subsequently.

The slip length, as determined by our three numerical techniques, is plotted

against Mη/`2 in Fig. 7.7. As can be seen, all three give virtually indistinguishable

results across all four decades of Mη/`2. Over this range we can distinguish two

distinct regimes: a (i) diffuse interface regime when Mη/`2 � 1, in which ξ ∝

(lD`)
1/2, and (ii) a sharp interface regime when Mη/`2 � 1, in which ξ ∝ lD. In

between these two distinct regimes is a broad crossover window that itself spans
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Figure 7.7: Data from all three numerical methods for Couette flow clearly demonstrating both

the diffuse- and sharp-interface limits for small and large Mη/`2 respectively.

around the decade either side of Mη/`2 ≈ 0.15. In this way, importantly, our results

encompass and unify both of the two previously apparently contradictory scalings

put forward in the literature, by showing each to apply in a different regime of the

relevant dimensionless control parameter, Mη/`2.

In addition to the two basic lengthscales lD and ` present in the model equations,

out of which the slip lengthscale ξ emerges in the manner just described, there are

two other lengthscales set by the system size Ly and the discretisation scale ∆x.

We have ensured that the results presented in Fig. 7.7 are independent of possible

finite size effects due to Ly and ∆x. The former is a particular hazard in the limit of

large Mη/`2, where the slip length ξ becomes large (see Sec. 7.3.1.1). On the other

hand, the simulation results are susceptible to the latter in the limit of small Mη/l2,

where the slip length becomes small. Therefore we carefully converge ∆x→ 0 in all

our results (see Apx. 7.6 for convergence details).

Scaling arguments. Having shown that our numerical results capture both the

sharp interface limit of ξ ∝ lD (for large Mη/`2), and the diffusive interface limit

of ξ ∝ (lD`)
1/2 (for small Mη/`2), we are now in a position to reprise carefully the

scaling arguments put forward in the earlier literature for each of these two scaling

forms separately, and to discuss the validity of the assumptions made in arriving at
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these functional forms.

Yue et al. [30] provided a scaling argument in the sharp interface limit by in-

tegrating the Stokes and steady-state Cahn-Hilliard equations over a slip region of

spatial extent set by the slip length ξ. Integrating the Stokes equation gives∫ ξ

−ξ

[
η∇2v −∇p+ µ∇φ

]
dx = 0. (7.14)

Because the pressure attains the same, constant value on either side of the interface,

far from the contact line, the contribution from the second term in the integral is

zero. If Vmax and µmax represent the magnitudes of the velocity and the chemical

potential for a given flow setup, the first term scales as ηVmax/ξ, while the third

term is proportional to µmax. Thus, we have

µmax ∼ ηVmax/ξ. (7.15)

Carrying out a similar analysis for the Cahn-Hilliard equation,∫ ξ

−ξ

[
v.∇φ−M∇2µ

]
dx = 0, (7.16)

gives

Vmax ∼Mµmax/ξ. (7.17)

Combining Eqs. 7.15 and 7.17, then gives the scaling law prediction

ξ ∼ (Mη)1/2, (7.18)

which our numerical results indeed confirmed in the sharp interface limitMη/`2 � 1.

To understand the way in which this sharp interface prediction then breaks down

in the diffuse interface regime Mη/`2 � 1 requires a careful consideration of the

spatial window of integration in Eqs. 7.14 and 7.16. In particular, in this diffuse

interface limit the slip length ξ is less than the interfacial width `: recall the bottom

leftmost data points in Fig. 7.7. But to capture the key physics, one must make

sure still to integrate over the entire width ` of the interface and not just over a

spatial window of a size equal to the (smaller) slip length ξ, otherwise the variation

in φ across the interface will not be fully accounted for. Integrating the Stokes and
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Cahn-Hilliard equations in this way then gives∫ +`

−` [η∇2v −∇p+ µ∇φ] dx = 0, (7.19)∫ +`

−` [v.∇φ−M∇2µ] dx = 0, (7.20)

and the following scalings

µmax ∼ ηVmax`/ξ
2, (7.21)

Vmax ∼Mµmax`/ξ
2, (7.22)

ξ4 ∼Mη`2. (7.23)

This was indeed the analysis performed in Ref. [29]. The scaling law and numerical

results obtained by these authors are therefore not incorrect. They are merely

probing a different region of phase space compared to the other authors.

In between the sharp and diffuse interface regimes is a smooth crossover where the

behaviour varies smoothly from one scaling law to another. We define the crossover

point by fitting the power laws in the sharp and diffuse interface regimes separately,

and finding where these two fits intersect each other. This occurs at lD/` = 0.38, in

broad agreement with the sharp interface criterion lD/` > 0.25 proposed by Yue et

al. [30].

We finally note that the values of the slip length presented in Fig. 7.7 are indepen-

dent of the wall velocity, and correspondingly of the Capillary number Ca = ηVwall/σ,

provided that Ca . 0.01. We later demonstrate this independence explicitly for the

case of planar Poiseuille flow (see Fig. 7.9).

7.4.2 Influence of a curvature term

In this section we test the extent to which our results for the slip length do or do

not depend on the microscopic details of the diffuse interface model. In particular,

we might intuitively expect the slip length to be independent of microscopics in

the sharp interface regime, but dependent on microscopics in the diffuse interface

regime. Our results below indeed confirm this intuition.

There are many possible ways to modify the basic Landau φ4 theory for which

we presented results in the previous subsection. We focus here on the simple but
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Figure 7.8: Numerical data demonstrating how slip lengths in the diffuse-interface limit are

affected by the inclusion of a curvature free energy term in planar Couette flow. (a) Slip length ξ

normalised by ` against Mη/`2 for α = 0 (red circles), 0.1 (green squares), and 1 (blue triangles).

(b) Plot of percentage change (relative to α = 0) as a function of Mη/`2, which becomes negligible

above Mη/`2 ∼ O(1).

non-trivial extension made by introducing the additional interfacial curvature term

with a strength set by α in Eq. 7.7.

Fig. 7.8 shows our numerical results for α = 0.1 and 1.0. Shown in the same plot

for comparison are our original results, already presented in the previous subsection,

for the φ4 theory (α = 0). As can be seen, the introduction of the curvature term

quantitatively affects the slip length in the diffuse interface regime. This is to be

expected: in this regime the physics of the problem is determined not only by

macroscopic quantities, but by the microscopic gradient contributions to the free

energy.

As the control parameter Mη/l2 increases into the sharp interface regime the

dependence of the slip length on this microscopic parameter α dramatically decreases

so as to become negligible in the sharp interface limit Mη/`2 →∞. This is expected

intuitively. The role of the curvature term is to modify the flow and interfacial profile

within a length scale comparable to `.

In the sharp interface limit, the dominant length scale which determines the

diffusive transport across the fluid-fluid interface, ξ, is larger than l. Thus, the
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scaling argument presented in the previous sub-section is still valid. In the diffuse

interface limit, on the other hand, the variation of the order parameter is intrinsically

coupled to the flow around the contact line. We find that, for small α, the net effect

of the curvature term is to broaden the diffuse interface. This is consistent with the

results in Fig. 7.8, where the effective slip length ξ increases with α.

7.4.3 Relation to Cox’s result

The results presented so far have demonstrated that, in the sharp interface limit,

the emergent slip length is independent of the microscopic details of the models

employed. In particular, it is independent of the form of the diffusive gradient terms

that prescribe the structure of the interface between the phases. Instead, it depends

only on the macroscopic physical constants of the model.

While this is clearly an important finding in terms of our physical understanding

of the moving contact line problem, in numerical practice this sharp interface limit

Mη/l2 → ∞ can be difficult to attain. The time taken to attain a steady state

increases dramatically with increasing Mη/l2. Accordingly, inordinately long run

times were required to obtain the rightmost data points in Fig. 7.7.

With this in mind, we now turn to address a question of practical numerical im-

portance: do simulations carried out in the diffuse interface regime still reproduce

the expected macroscopic dynamics far from the contact line? We study this ques-

tion in the context of the Poiseuille flow protocol. (See Fig. 7.4b for a schematic.)

We first check that the slip length obtained for Poiseuille flow is equivalent to

that for planar Couette flow. In Fig. 7.9a, we show that the slip length converges

to a constant value ξ → ξ0 as Ca→ 0, as for the Couette protocol1. The slip length

starts to decrease as Ca is increased above Ca ≈ 0.01, although we do not appear

to reproduce the scaling V
−1/2

0 of Ref. [258]. The slip lengths for the Poiseuille

flow are plotted in the inset of Fig. 7.9a, and they are compared to the best fit

power laws extracted for planar Couette flow in both the diffuse and sharp interface

regimes. This shows excellent agreement, demonstrating that the slip length is a

1The variation in ξ for Ca < 0.01 is less than 0.5%.



7.4. Results 212

0.0001 0.001 0.01 0.1

Ca

0.8

0.9

1
ξ

C
a
 /

 ξ
0

10
-2

10
-1

10
0

Mη / l
2

10
0

10
1

ξ 0
 /

 l

(Mη/l
2
)
1/2

(Mη/l
2
)
1/4

(a)

0.0001 0.001 0.01 0.1

Ca

80

100

120

140

160

180

θ
d

10
-2

10
-1

10
0

10
1

Mη / l
2

0

0.2

0.4

0.6

0.8

1

β

(b)

Figure 7.9: Numerical data for the Poiseuille flow protocol for increasing Ca, where Mη/l2 =

0.01 (black circles ©), 0.1 (red squares �), 1 (green diamonds ♦), 4 (blue triangles 4). (a)

Demonstration that the slip length converges to a constant value ξ0 as Ca → 0. The inset shows

that the measured value of ξ0 (using the Poiseuille flow protocol) is in good agreement with the

best fit power laws obtained for shear flow in Fig. 7.7. (b) Symbols mark the dynamic contact

angle θd as measured from simulation. The solid lines show the analytical predictions of [257]

where δ = βξCa/Ly. The inset shows the best fit values of β which appear to converge β → 1 in

the sharp interface limit, Mη/l2 →∞.

general property of the fluid mixture, and not dependent on a specific flow protocol.

Next we study how the dynamic contact angle, defined in Fig. 7.4b, depends

on the Capillary number Ca. The simulation results are to be compared to the

analytical predictions of Cox [257], who derived the following relation

g(θd) = g(θeq) + Ca ln(δ−1), (7.24)

where θd is the dynamic contact angle, θeq is the contact angle at equilibrium (here

90◦), and δ is the ratio of the microscopic slip length to some characteristic macro-

scopic lengthscale of the system, which we choose here to be the channel width Ly.

For fluids of matched viscosity, the function g is defined as follows

g(θ) =

∫ θ

0

πφ(π − φ) + (2πφ− π2) sinφ cosφ− π sin2 φ

2π2 sinφ
dφ. (7.25)

The simulation results are plotted in Fig. 7.9b for four values of Mη/`2, including

parameters belonging in the diffuse and sharp interface limits, as well as the crossover

regime. Choosing δ = βξCa/Ly, where β is a fitting parameter, we find that across
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the full range of both Ca and Mη/`2, the dynamic contact angle θd depends on Ca in

a functional form which is in excellent agreement with Cox’s formula. Interestingly,

as shown in the inset of Fig. 7.9b, the fitting parameter β appears to converge to

unity in the sharp interface limit, Mη/`2 →∞.

Our results therefore suggest that simulations in the diffuse interface limit can

still reliably capture the correct macroscopic physics (such as the dynamic contact

angle θd), so long as the slip length is suitably corrected. Increasingly minor cor-

rections are needed as one approaches the sharp interface limit, and we expect that

Cox’s result would be directly obtained for Mη/`2 → ∞. A final demonstration of

this process is given in Fig. 7.10. If we rescale the slip lengths shown in Fig. 7.9a

inset by the corresponding value of β, we find that our data approximately recovers

the sharp interface scaling of ξ/` ∝ (Mη/`2)
1/2

, even in the diffuse interface limit.

This demonstrates that one can convincingly reproduce the physics of the sharp in-

terface limit using diffuse interface simulations, which crucially are more accessible

numerically.
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7.5 Conclusions

The problem of the moving contact line, and the paradoxical implications that arise

in a continuum fluid dynamical treatment, still attracts attention several decades

after its conception. Apparent discrepancies in the scaling behaviour of the slip

length (the lengthscale near the wall at which the fluid interface deviates from its

macroscopic behaviour) have the potential to threaten the legitimacy of previous

numerical studies. A key result of our work, obtained using careful numerics span-

ning several orders of magnitude in the relevant control parameter, is to show that

in fact both scalings are correct and simply describe different limiting behaviours.

In the diffuse interface limit, corresponding to when the ratio of the macroscopic

diffusion length lD and interface width ` is small, we find that the slip length scales

as the geometric mean of the two lengths as in Ref. [29], i.e., ξ ∼
√
lD`. Conversely

for large lD/`, i.e., in the sharp interface limit, the slip length simply scales as ξ ∼ lD

as obtained in Refs. [28,30]. The crossover occurs at lD/l ≈ 0.38, in broad agreement

with the sharp interface criterion of Ref. [30]. Our results also show that the slip

lengths obtained in planar Couette and Poiseuille flow protocols agree, indicating

that the above scalings are generic. As long as care is taken to use the larger of lD

and ` when considering the physics of the slip region, the appropriate scaling laws

can also be recovered analytically.

We then demonstrated that modifying the microscopic interfacial terms in the

free energy functional of our model affects the value of the slip length only in the

diffuse interface regime. In the sharp interface limit, the slip length depends only

on macroscopic dynamical variables and not on the specifics of the interface model.

Finally we showed that the dynamic contact angle dependence on the Capillary

number Ca is in excellent agreement with theoretical prediction by Cox [257], if we

allow the slip length to be rescaled by a dimensionless prefactor. This prefactor

appears to converge to unity in the sharp interface limit, but is significantly smaller

in the diffuse interface limit. Therefore as long as one corrects appropriately, our

results show that simulations in the diffuse interface limit (for which numerical

convergence is easier to obtain) can still produce the correct macroscopic physics.
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Figure 7.11: Data from convergence tests that were performed for our spectral method for

example points in (a) the diffuse interface limit (Mη/`2 = 0.005) and (b) the sharp-interface limit

(Mη/`2 = 3.2).

7.6 Appendix I: Numerical convergence

Grid convergence. We present convergence tests in Fig. 7.11 for two different

values of Mη/`2, within the diffuse and sharp interface limits respectively. Interest-

ingly, in the former limit we observe a curve collapse when we rescale the spatial

stepsize ∆x by `, suggesting that as long as the interface is sufficiently resolved (here

sufficiently resolved means ∼ 12→ 20 grid points), the width itself does not appear

to matter.

In the sharp interface limit, we observe a slight oscillation for the larger of the

interfacial widths tested. This could be due to an aliasing effect where the measured

value of the slip length is weakly dependent on the proximity of the nearest numerical

grid point. Note that while there is some variation ξ even for the smallest grid sizes,

the size of the symbol used to display this data point in Fig. 7.7 is ∼ O(1), i.e., twice

the y-range considered in Fig. 7.11b. Therefore we can be confident that our data

is sufficiently converged for the purposes of our study.

Phase conservation. The Cahn-Hilliard equation is phase conservative [169].

Therefore as a final numerical check, we verify that variations in the total phase
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∫

[φ(t)− φ(0)] dA. As the Cahn-Hilliard equation is conservative, this

should be zero. We indeed find all our simulations remain comfortably within machine precision

for all parameters. Shown is data for Mη/`2 = 0.0025 (red lines) → 2 (blue lines), with α = 1.

remain negligible, i.e., the quantity

ε(t) =

∫
[φ(t)− φ(0)] dA (7.26)

remains of the order of machine precision throughout the simulation. In Fig. 7.12

we plot ε(t) demonstrating that changes to the total phase indeed remain within

machine precision, even when curvature is included, i.e., α 6= 0.

7.7 Appendix II: Interfacial displacement

While not crucial to our understanding of the slip length, it is still useful to ascertain

how the displacement of the interface d, as defined in Fig. 7.4, scales with our

key dimensionless quantities. For example, this allows us to circumvent finite-size

effects where the interface interacts with itself after wrapping around on our periodic

simulation box (see Sec. 7.3.1.1).

We show in Fig. 7.13 that d scales linearly with the Capillary number Ca.

Therefore finite-size effects can always be avoided by reducing the wall velocity

(as Ca ∝ V0). The inset in Fig. 7.13 shows minor deviations from this linear scaling
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at large Ca. Because most of our results are presented in the Ca → 0 limit this is

inconsequential.

7.8 Appendix III: Alternative numerical methods

In this appendix we provide a brief overview of the other two numerical methods

used in Ref. [262], as we compare data from Method I against these.

Method II: Immersed boundary

In method II we use a biperiodic box that conveniently enables us to solve both the

hydrodynamic sector of the dynamics (again in the incompressible streamfunction

formulation at zero Reynolds number) and the diffusive part of the concentration

dynamics using fast Fourier transforms in both spatial dimensions.

To incorporate the walls of the flow cell at y = 0, Ly, a set of immersed boundary

forces are included using smoothed Peskin delta functions as source terms in the

Stokes equation along the desired location of each wall (as discussed in Sec. 6.3.1 in

the context of porous media, see also Refs. [220,224]). The force required to ensure
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zero velocity at the location of each delta function is then evolved as

∂tF = −κ (V −V0) , (7.27)

where V0 is the prescribed wall velocity, and where κ is a spring constant which we

converge κ→∞ in successive runs.

For the phase field, we assume the boundary conditions ∂yµ = 0 at the plates y =

0, Ly. This is implemented in an analogous way to the no-slip boundary condition,

by means of adding an extra source term contribution

∂tφ = −Kn̂.∇µ (7.28)

to the equation of motion for the concentration at the location of the Peskin delta

functions, where n̂ is a unit vector normal to the wall.

Method III: Lattice Boltzmann

Method III employs a standard free energy lattice Boltzmann method to solve the

binary fluid equations of motion [260]. The algorithm derives from the Boltzmann

equation: by representing a typical volume element of fluid at each grid point with a

particle velocity distribution function, the continuum continuity equations (Eq. 7.10)

can be solved. An analogous distribution function describes the phase field. Full

details of the scheme may be found in Ref. [262].

A bounce-back rule for the distribution functions is used to ensure no-slip and

no-penetration boundary conditions at the two walls [265] (i.e., boundary conditions

∂yµ = 0 are satisfied at the plates y = 0, Ly).



8
Conclusions

In this thesis we have considered a variety of topics within soft matter physics with

strong biological and industrial themes, for which zero Reynolds number fluid dy-

namics plays an integral role. Some of the problems considered are long-standing,

where our contribution has been to carefully resolve the differences between contra-

dictory results within the literature. Other topics are more nascent, and naturally

lead to more exploratory studies. The latter describes our active matter study,

whose results we now summarise.

8.1 Viscoelastic active matter

Summary of main results. As is customary in hydrodynamic stability, we con-

sidered the stability and dynamics of our model of viscoelastic active matter in a

space of increasing dimensions:

219
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• in 0D we obtained the homogeneous base state (both with and without the

effect of external shear)

• in 1D we treated the linear stability of this base state to perturbations in the

direction normal to the walls, and numerically studied the resulting nonlinear

dynamics as τC is increased

• in 2D we used nonlinear simulations to study how the dynamics of our coupled

model depend on the polymer relaxation time

The stability of active matter within a Newtonian fluid background has received

much attention. One of the seminal results of active matter theory is the generic

spontaneous flow instability, in which orientationally ordered phases were shown to

be intrinsically unstable [77,78].

One of our key results was the generalisation of this to include coupling with a

polymeric medium, where we showed that the bulk active nematic flow instability

persists even in the presence of polymer. Perhaps surprisingly, this result holds even

for divergent polymer relaxation times (which we denote as the elastomeric limit),

as might describe a crosslinked polymer gel within the cell cytoskeleton. Simulations

in 1D confirmed that such states exist, where the nonlinear dynamical behaviour

consists of oscillatory states with travelling shear-bands.

As one might expect given the large number of degrees of freedom in our coupled

model, the rheological response of viscoelastic matter is highly complex. We system-

atically explored the flow instabilities in passive liquid-crystal and polymer sectors,

and the spontaneous flow instability in active matter. While previous studies have

shown that isotropic states can spontaneously flow close to the isotropic-nematic

transition [15], our results show that this instability is general and extends deep

into the isotropic phase, given a sufficiently large activity. The mechanism for the

isotropic instability can be made apparent by considering the shear-stress in the

limit ¯̇γ → 0. We demonstrated that the negative active stress must exceed the

positive LC and solvent stresses before spontaneous flows may occur: the activity

at which this occurs matches our stability analysis exactly.
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We then took a numerical approach to study the 2D dynamics. Starting in the

limit in which the relaxation time of the polymer is so rapid that the dynamics

do not contribute, we examined how the characteristic lengthscale of the ‘activity-

driven turbulence’ phase, l∗, scales with activity. As experimental studies become

increasingly sophisticated [94, 95, 159], the need for a clear connection between ex-

periment and theory becomes increasingly apparent. Contradictory scalings within

the literature [173, 177] prompted a collaborative study using two different formu-

lations of active nematics, with independently developed numerical methods [32].

We unambiguously demonstrated that l∗ ∼
√
GQ/ζ, provided the system is free of

finite-size effects. In principle our results could be used to connect experimental

control parameters (such as the concentration of ATP or persistence length of the

filaments) to the relevant model parameters (activity ζ, Frank length `Q).

Then, by adding polymer of increasingly long relaxation times τC , we examined

the effect of viscoelasticity on the phase behaviour, with particular focus on the

active turbulent phase. In this phase, without polymer present, confined active

matter doesn’t produce appreciable net material transport [87]. However, subcellular

examples such as actomyosin or kinesin-microtubule complexes are thought to play a

role in cytoplasmic streaming [1,266,267], a process in which nutrients and organelles

are transported within the cell. Motivated by these results, we showed that as one

increases τC , defect creation in the turbulent phase is suppressed resulting in a more

coherent flow field, creating states with a clear net throughput. For very large τC ,

the flow is arrested and throughputs drop back towards zero. We hope that these

results might prompt further experimental studies into the role of viscoelasticity in

confined active matter.

We then demonstrated that these spontaneously flowing states still can occur

in the elastomeric limit τC → ∞, consistent with our linear stability analysis. The

turbulent state that initially forms contains regions of strong extensional flow; this

rapidly deforms the polymer and the chaotic nematic texture freezes in, before grad-

ually coarsening. Finally we examined the effect of including an antagonistic free en-

ergy coupling between the polymer and nematic sectors. Depending on the strength

of the coupling, we find an extreme example of the above drag reduction effect,
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regions where the director is rotated out of plane, and oscillatory states that shuffle

within the channel on a timescale O(τC).

Outlook for future work. We have studied the role of confinement in promoting

coherent flow states (see e.g., Sec. 5.4.2). In vitro, cells must navigate through

complex geometries such as the extracellular matrix [10]. The channel geometry

employed in Chaps. 3 to 5 is much simpler in comparison. An interesting extension

could be to model active matter in a porous geometry (e.g., as considered in Chap. 6).

This is related to, but distinct from, the work of Ref. [162] where a passive droplet

was embedded in an active fluid within a channel.

One of the more ambitious extensions of our active matter study might be to

develop a minimal model of the cell. For example, one could introduce a phase

field to allow the degree of polymer viscoelasticity, as parametrised by modulus GC

and relaxation time τC , to vary as a function of space and time (see Sec. 6.7.1 for

details in the context of porous media). This could be used to effect a deformable

nucleus, which could be subject to rotation by the surrounding active fluid. While

previous studies have adopted similar approaches [163], we are not aware of any

which consider viscoelasticity throughout the model cell, or where the rigidity of

the nucleus can be controlled with ease.

Finally we could adopt a more physical model for the polymeric sector. While its

simplicity makes it ideal for this study (for which the rheology of the cytoskeleton

is modelled at a coarse-grained level), the Oldroyd-B model exhibits notable defi-

ciencies in pure extensional flows [64]. The chaotic activity-driven states reported

in Sec. 5.5.1 contain strong extensional flows, and while we still expect the gen-

eral physics to hold, where rapid activity-driven deformation of the polymer was

observed, the effect of FENE regularisation (as described in Sec. 2.2.3.2) would no

doubt be insightful.

8.2 Viscoelastic flows in porous media

Summary of main results. Leaving the biological theme behind, the remaining

topics in the thesis concerned externally driven flows, particularly those of industrial
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interest. In this first study, we developed 2D model porous geometries consisting of

periodic arrays of cylinders within which to study the dynamics and response of a

viscoelastic fluid. Experimentally, a large upturn in χ (the pressure drop required to

maintain a given flux) is consistently observed at high Weissenberg numbers (We)

which is typically accompanied by time-dependent states. Using several popular

models of polymer viscoelasticity in our simplified model geometries, we attempted

to capture this upturn and any associated effects (if present) numerically.

A surprising level of insight can be gained from analysing of the Newtonian flow

field. By comparing the rheological response of a given fluid in simple viscometric

flows (such as simple shear or extension) with the dominant type of flow deforma-

tion in (Newtonian) porous flows, we made qualitative predictions regarding the

response of our different constitutive models. For example, we found that flow past

a small cylinder produces strong extensional flows in the wake; models which pro-

duce smaller extensional stresses in pure extensional flow (e.g., compare FENE-CR

and Oldroyd-B) exhibited less dramatic upturn in the drag.

However a purely local analysis, in which advective effects are ignored, fails to

capture the physics in full. Flows past large cylinders appeared to be dominated by

shearing in the vertical gap between cylinders. However models with identical shear

but differing extensional rheologies produced different drag responses, leading us to

conclude that upstream extension deformation must also play a role.

Finally we attempted to reproduce the results of an intriguing recent study [25]

which, contrary to previous work, reported time-dependent states when the cylinders

were confined between walls. While our initial simulations displayed fluctuations in

the flux (at fixed pressure drop) which grow in magnitude as ∼ (We−Wec)
1/2 (as in

that study), these disappeared at very fine grid resolutions, an order of magnitude

larger than used in Ref. [25]. While our results suggest that 2D flows of an Oldroyd-

B fluid remain time-dependent, at least within the range of numerically accessible

We, the equivalent study in 3D remains open as we now discuss.

Outlook for future work. One of the most natural generalisations to our 2D

porous media study is to consider three-dimensional flow. Experimental studies re-
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port crossing streaklines in the time-dependent flow regime [194, 196], suggesting

that the instability is 3D in nature. The severe convergence requirements demon-

strated in Sec. 6.5.3.2 make this a daunting task, though this could be improved with

parallel simulation code and algorithmic refinements. The transition to 3D could

also be made by only including a small number of Fourier modes in the z-direction

initially.

Another option might be to explore related geometries where contractive/expansive

flows are still present, but where numerical convergence is more feasible. Wavy-

walled channels reproduce some of the key flow features of porous media [268,269],

but avoid the stagnation point in the cylinder wake which can be numerically dif-

ficult to resolve. Future studies could examine the effect of varying the amplitude

and phase of the channel wall structure, and could be readily implemented using our

immersed boundary numerical methods. Finally we could also consider the effect

of selecting a more microscopically motivated model, such as the Rolie-Poly model

which describes entangled polymeric materials [270,271].

8.3 Contact line dynamics

Summary of main results. The final topic considered in this thesis addressed

a long-standing problem in fluid dynamics concerning the physics of the moving

contact line. Using a diffuse interface model in which two fluid phases are separated

by an interface of width `, we studied numerically the response under an externally

applied shear or pressure drop. In particular we focused on the ‘slip length’ ξ, the

emergent lengthscale at which the shape of the fluid-fluid interface deviates from

its macroscopic behaviour as one approaches the contact line. The question of how

the slip length scales with (a) the diffusive lengthscale lD at which diffusive and

advective effects are comparable and (b) the interface width `, remains unclear in

the existing literature.

By varying lD/` over several decades, our numerical results reconciled two con-

tradictory scaling behaviours which have been reported in the literature: if lD is

smaller than the interface width ` (i.e., the diffuse interface limit of Ref. [29]), then



8.3. Contact line dynamics 225

ξ ∼
√
ld`, whereas if lD/` is large then ξ ∼ lD (i.e., the sharp interface limit of

Refs. [28, 30]). One might then expect that the exact details of the microscopic

model do not matter in the latter limit where the slip length no longer depends on

`. By modifying the free energy functional to include a curvature term we showed

that this is indeed the case. Reassuringly, we also found that the slip length does

not depend on the flow protocol used suggesting that the physics of the contact line

captured in this study should apply generally in more complex geometries.

The above results focus on the limit in which the Capillary number Ca→ 0; we

concluded our study by comparing our numerical data for increasing Ca against the

established analytical result of Cox [257] who predicted that the dynamic contact

angle θd, i.e., the angle at which the macroscopic interface shape would intersect

the wall, increases and eventually diverges as Ca is increased. We found excellent

agreement between the two, if one allows ξ to be rescaled by a constant prefactor.

Encouragingly, this prefactor appears to converge to unity in the sharp interface

limit in which Cox’s original calculation was performed. Perhaps more remarkable

is the fact that our results deep into the diffuse interface regime still reproduce the

correct macroscopic physics, if slip lengths are corrected appropriately.

Ideally one would like the slip length to be independent of the interface width `

as this is essentially a numerical parameter, if one considers that real fluid interfaces

are typically many orders of magnitude thinner than any macroscopic length. Indeed

our simulations which approach the sharp interface limit appear to reproduce key

analytical results without need for correction. Simulations in the diffuse interface

regime overestimate the slip length relative to an ‘ideal’ sharp interface limit; an

important contribution of our work is to show that if this is carefully corrected for

then one can effect sharp interface hydrodynamics at reduced numerical cost.

Interestingly, experimental systems consisting of colloid-polymer mixtures are

known to phase separate into colloid-rich and colloid-poor domains, with an interface

width that is of order 1 micron [272, 273], much larger than the typical value for

molecular fluids. It would be interesting to see if such a system can be exploited to

realise the different contact line slip regimes discussed here experimentally.
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Outlook for future work. We demonstrated that even for simple planar Couette

or Poiseuille flows, numerical solution of the contact line dynamics requires care.

However identification of the two clear limiting cases (diffuse and sharp interface

limits), and the convergence criteria within each of these paves the way for future

computational work.

Our study made the assumption that both fluid phases were of matched viscosity.

A natural generalisation would be to include fluids of differing viscosities η±. We

can speculate that the leading order effect of such a change is that the viscosity in

our dimensionless control parameter, Mη/`2, maps to some combination of the new

viscosities, e.g., Mη/`2 →M
√
η+η−/`

2.

Another logical extension might be to introduce a more complex geometries.

The immersed boundary method, which was successfully employed in the contact

line study (see Sec. 7.8), naturally describes non-trivial geometries. Pressure driven

flow past a biperiodic array of cylinders (as used in the porous media study in

Chap. 6) might provide an ideal starting point. Such a study should be of particular

interest to oil recovery, where insight into multiphase flows within a porous medium

is desired [243]. For example, our simulations could be generalised to describe an

oil droplet squeezing out of a constriction when subjected to a pressure drop.

We could also apply our understanding of physics in the slip region to the prob-

lem of the rolling droplet. While detailed analytical results exist [274], a careful

comprehensive numerical treatment of the problem has not yet been attempted.

Finally, we hope that the results presented in this thesis will help unify the

understanding of several long-standing problems in fluid mechanics (i.e., contact

line dynamics & flows in porous media), and encourage further study of viscoelastic

active matter, both experimentally and theoretically.
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