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1 General Introduction

1.1 Environmental Processes

The processes governing environmental systems are often complex, involving different in-

teracting scales of variability in space and time. Scientists and engineers are often inter-

ested in making predictions regarding consequences of changes in environmental systems,

whether such changes are caused by natural phenomena (e.g., floods, hurricanes), engi-

neering designs (e.g., water transfer designs, construction of dams), or other human-related

changes (e.g., air pollution, water pollution, animal harvest). Such prediction problems are

often carried out using numerical models which are based on basic laws of physics (Ab-

bott and Basco 1989). For example, in problems involving incompressible fluid flow, the

mathematical models describing the process are often based on governing equations of fluid

dynamics (e.g., mass conservation, momentum conservation, and energy conservation) (e.g.,

Zienkiewicz and Taylor 2000). The deterministic nature of these models limits their abil-

ity to effectively describe “real-world” situations. Another important shortcoming of using

such models is the inability of the deterministic modeling framework to take advantage of

useful and often easy to access data obtained from the system under study. The limitations

of such modeling approaches are intensified by elements such as uncertainties involved in

choices for parameters governing the dynamics, and more importantly, the uncertainty in

appropriateness of the model considered to describe the underlying process.

Engineers and scientists, knowing the limitations of the deterministic models, have made

attempts to address these shortcomings in the recent decades. The development of inverse

modeling, data assimilation procedures, and stochastic differential equations are instances
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of such attempts to account for uncertainties in modeling environmental and physical pro-

cesses (e.g., Lynch 2005). However, these methods are often very complicated and unable

to effectively account for different sources of uncertainty as well as assimilation of different

sources of data into the model.

Statistical modeling provides a more realistic framework to address uncertainties in-

volved in the process under study. However, issues such as complexity of model structure,

high dimensionality, and non-identifiability of model parameters, present challenges which

necessitate the utilization of a priori information based on scientific knowledge and expert

opinion. The use of solutions to partial diffusion equations (PDEs), and also stochastically-

forced differential equations, in developing stochastic models have been studied in the re-

cent years (e.g., Liebelt 1967; Wunsch 1996; Lynch and McGillicuddy 2001; Lynch 2005).

However, efficient implementation of such modeling frameworks is often not extendable to

“real-world” spatio-temporal processes, due to inappropriateness or computational ineffi-

ciency of covariance-based models. Moreover, conventional covariance-based methods are

often incapable of allowing the researcher to quantify uncertainties corresponding to the

model parameters since the parameter space of most complex spatial and spatio-temporal

models is very large. Hierarchical Bayesian modeling has attracted researchers in recent

years, providing a flexible modeling alternative to address model and parameter uncertain-

ties while accounting for mathematical models describing the spatio-temporal processes in

the physical and environmental sciences (e.g., Wikle et al. 2001; Wikle 2003).
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1.2 Modeling Environmental Spatio-Temporal Processes

Spatio-temporal processes are often complex, exhibiting different scales of spatial and tem-

poral variability. Such processes are typically characterized by a large number of observa-

tions and prediction locations in space and time, differing spatial and temporal support,

orientation and alignment (relative to the process of interest), and complicated underlying

dynamics. The complexity of such processes in “real-world” situations is often intensi-

fied due to the difficulty of applying simplifying assumptions such as Gaussianity, spatial

and temporal stationarity, linearity, and space-time separability of the covariance function.

Thus, a joint perspective for modeling spatio-temporal processes, although relatively easy to

formulate, is challenging to implement. On the contrary, a hierarchical formulation allows

the modeling of complicated spatial and temporal structures by decomposing an intricate

joint spatio-temporal process into relatively simple conditional models. The main advan-

tage of the Bayesian hierarchical model over traditional covariance-based methods is that

it allows the complicated structure to be modeled at a lower level in the hierarchy, rather

than attempting to model the complex joint dependencies.

1.2.1 Hierarchical Models

The issues involved in modeling complex spatio-temporal processes necessitate a flexible

modeling framework which allows for estimation and prediction of such processes, as well

as the parameters governing the dynamics. A joint modeling approach to such complicated

processes often fails due to inability to accommodate an efficient parametrization of the

model and lack of an effective means to address spatial and temporal dependency structures.
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However, a hierarchical modeling perspective allows for modeling complex processes by

decomposing the problem into a series of simple sub-problems linked by simple rules of

probability.

A hierarchical spatio-temporal model is the product of conditional distributions for data

conditioned on a spatio-temporal process and parameters, the spatial process conditioned

on the parameters defining the spatial dependencies between process locations, and the

parameters themselves. Hierarchical modeling has many advantages such as allowing for

multiple sources of data, and the ability to consider scientifically meaningful structures in

the model, a priori.

In modeling complex processes in the presence of data, the hierarchical model is de-

scribed in terms of three basic stages (e.g., Berliner 1996):

Stage 1. Data Model: [data|process, data parameters]

Stage 2. Process Model: [process|process parameters]

Stage 3. Parameter Model: [data and process parameters].

The notation [x] refers to the probability distribution of x, and the notation [x|y] refers to the

conditional probability distribution of x given y. The basic idea is to approach the complex

problem by breaking it into simpler sub-problems. Although hierarchical modeling is not

new to statistics (Lindley and Smith 1972), this basic formulation for modeling complicated

spatial and spatio-temporal processes in the environmental sciences is a relatively new

development (e.g., Berliner 1996; Wikle et al. 1998). The first stage is concerned with the

observational process or “data model”, which specifies the distribution of the data given

the fundamental process of interest and parameters that describe the data model. The
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second stage then describes the process, conditional on other process parameters. Finally,

the last stage models the uncertainty in the parameters, from both the data and process

stages. Note that each of these stages can have many sub-stages (e.g.,Wikle et al. 1998;

Wikle et al. 2001).

Hierarchical modeling can be computationally expensive and challenging. However,

a Bayesian implementation of such models is often easy to implement. In the Bayesian

framework, one must assign prior probability densities to the unknown parameters of interest

and obtain the distribution of the process and parameters updated by the data via Bayes’

rule (i.e. posterior distributions):

[process, parameters|data] ∝ [data|process, parameters][process|parameters][parameters].

In a Bayesian modeling framework, inference is based on the posterior distribution.

The posterior distribution is often very complex and the normalizing constant integral

cannot be analytically solved. Instead, one can simulate from the posterior distribution

in a Monte Carlo framework to do inference. One popular approach used for simulating

from the posterior distributions is called Markov Chain Monte Carlo (MCMC). MCMC

methods are a class of algorithms for sampling from probability distributions based on

constructing a Markov chain that has the desired distribution as its stationary distribution

(Gelfand and Smith 1990) and includes such algorithms as Metropolis-Hastings and the

Gibbs sampler (Casella and George 1992; Robert and Casella 2005). Gibbs Sampling is the

primary algorithm of the freely-distributed software WinBUGS (Spiegelhalter et al. 2003;

http://www.mrc-bsu.cam.ac.uk/bugs). A key issue in implementation of the Gibbs sampler

(or any other MCMC sampler) is that the number of iterations of the algorithm should be
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large enough to guarantee that the chain approaches stationarity (i.e., convergence to the

target density). Typically an initial period of iterations are considered as the “burn-in”

period of the chain and are thrown-out (Congdon 2001). The number of burn-in iterations

required can be influenced by the choice of starting value as well as dependencies in model

parameters.

1.2.2 General Spatio-Temporal Models

Let Y (s, t) be a spatio-temporal process where s ∈ Ds, and Ds is a continuous or discrete

spatial domain and t ∈ Dt is a discrete temporal domain. The generality of the definition of

the spatial domain allows for the spatio-temporal process to be applicable to both cases of

continuous data and areal data. A general model relating data Z(s, t) to the “unobserved”

process Y (s, t) (in the special case where Z(s, t) and Y (s, t) have the same spatial support

and there is no missing data) can be written as:

Z(s, t) = Y (s, t) + ε(s, t), (1.1)

where ε(s, t) is a zero-mean measurement error process. The underlying process Y (s, t) can

be further decomposed into a mean process, additive error process, and spatial or temporal

random effects (e.g., Stein 1986).

Recent approaches to spatio-temporal modeling have focused on the specification of

joint space-time covariance structures (e.g., Cressie and Huang 1999; Stein 2005). However,

in high-dimensional settings with complicated non-linear spatio-temporal behavior, such

covariance structures are very difficult to formulate and/or implement. An alternative

approach to modeling such complicated processes is to use spatio-temporal dynamic models
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in a hierarchical fashion.

1.2.3 Spatio-Temporal Dynamic Models

Many spatio-temporal processes are dynamic in the sense that the current state of the

process is a function of the previous states. There are many examples of spatio-temporal

models with dynamic components in the literature (e.g.,West and Harrison 1989; Wikle et al.

1998; Wikle and Cressie 1999; Stroud et al. 2001; Wikle 2003). The joint spatio-temporal

process can be factored into conditional models based on a Markovian assumption:

[Y | {θt, t = 1, . . . , T}] = [y0]
T∏

t=1

[yt|yt−1, θt], (1.2)

where Y = (y1, . . . ,yT ), yt = (y(s1, t), . . . , y(sn, t))′ and the conditional distribution

[yt|yt−1,θt] depends on a vector of parameters θt which govern the dynamics of the spatio-

temporal process of interest. Note that the are no observations available for the initial state

y0. However in a Bayesian modeling framework this initial state of the dynamical spatio-

temporal model can be estimated through the estimated dynamical relationship between the

model states (i.e., propagator matrix) and use of a prior distribution (e.g., y0 ∼ N(ỹ0,Σ0)

where ỹ0 and Σ0 are known). An example of such spatio-temporal dynamic models is when

the process has a first-order Markovian structure:

yt = Hθtyt−1 + ηt, ηt ∼ N(0,Ση), (1.3)

where ηt is a spatial error process, and Hθt is a “propagator matrix” (sometimes called a

transition or evolution matrix) which includes the parameters that govern the dynamics of

the process. If these parameters are known or easy to estimate, an implementation of the
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model through Kalman filtering is possible (e.g., Shumway and Stoffer 2005 ; for spatio-

temporal problems see Wikle and Cressie 1999). If the parameters are unknown, Hθt can be

modeled in a hierarchical fashion by specifying prior distributions for Hθt or its parameters

θt. The hierarchical form for spatio-temporal dynamic models is sometimes motivated by

partial differential equations (PDEs) that describe the approximate behavior of underlying

physical processes (e.g., Wikle 2003).

1.2.4 PDE-based Dynamics

Spatio-temporal dynamical processes in the physical and environmental sciences are often

described by partial differential equations (PDEs). The inherent complexity of such pro-

cesses due to high-dimensionality and multiple scales of spatial and temporal variability

is often intensified by characteristics such as sparsity of data, complicated boundaries and

irregular geometrical spatial domains, among others. In addition, uncertainties in the ap-

propriateness of any given PDE for a “real-world” process, as well as uncertainties in the

parameters associated with the PDEs are typically present. These issues necessitate the

incorporation of efficient parameterizations of spatio-temporal models that are capable of

addressing such characteristics.

Finite difference methods are intuitive and easy to implement methods to discretize/solve

PDEs which result in a simple system of multiple equations. The symmetric and sparse dy-

namical structure obtained by finite difference methods often provides an efficient parametriza-

tion of the PDE. Such a framework can be effectively utilized in the context of hierarchical

Bayesian models (e.g., Wikle 2003; Wikle et al. 2003). However, the disadvantages and

limitations of the finite difference method, such as its difficulty in dealing with irregular ge-
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ometrical spatial domains and natural boundary conditions, necessitate the use of methods

that are able to address such issues.

The Galerkin finite element method (FEM) is another popular numerical method which

provides a flexible tool to discretize/solve PDEs. Finite elements provide an approximation

to the solution of the PDE, by means of compact support basis functions and thus, it is

applicable to complex geometries, as well as, regular geometrical domains. Using finite

element methods to discretize a PDE, one has to first consider a variational formulation of

the PDE and then discretize the problem by choosing appropriate compactly supported basis

functions (e.g., Zienkiewicz and Taylor 2000). The basis functions are low-order polynomial

functions which are defined to take value 1 on a single node and value 0 everywhere else.

The accuracy of solutions of the PDEs as interpolated between the grid points (nodes)

in the finite element method is usually much higher than finite difference methods. The

compact support basis functions used in the finite element method applied to transient

PDEs provide a sparse structure for the dynamical model. Such attractive attributes of the

finite element method motivate a hybrid statistical-physical setting to model environmental

spatio-temporal processes. In Chapter 2, hierarchical Bayesian modeling of PDE-based

dynamics for spatio-temporal processes motivated by their Galerkin finite element method

representations are considered and simple implementations based on advection-diffusion

equations are discussed.

1.2.5 Count Processes: Multivariate and Zero-Inflated Extensions

Environmental studies often include count processes that interact on different scales. Al-

though the study of such interactions is of great interest to researchers, modeling approaches
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required for conducting such analyses are not well-developed. Some of the factors contribut-

ing to such sparsity of methods in the literature include lack of multivariate distributions

that could provide an effective dependence structure, as well as the usual complexities

involved in joint modeling of problems in high dimensions and/or complicated covariance

structures. The analysis of count processes is often considered with simplifying assumptions

to reduce the problem to univariate cases for which an extensive methodology exists.

Multivariate count processes: Accounting for dependencies among different count

processes (e.g., abundance of species) is often necessary for environmental and ecological

scientists due to complex relationships among the processes. However, such complex de-

pendency structures are often hard or impossible to model using conventional methods

(e.g., ANOVA). Hierarchical Bayesian modeling provides a more straightforward and easy

to implement modeling framework for modeling multivariate counts. For example, in the

literature, there are several approaches described for implementing multivariate Poisson

regression (Tsionas 2001; Congdon 2001; Congdon 2005). We consider a semiparamet-

ric hierarchical Bayesian modeling framework for modeling count processes and study the

description of dependency structures in the model from two different perspectives, each

providing a subtle, yet scientifically different setting. Such different approaches for ac-

counting for dependence between count processes is necessitated by the diverse nature of

such dependencies in “real-world” problems.

Zero-inflated Poisson processes: Zero-inflated discrete models and, in particular,

zero-inflated Poisson (ZIP) models, have gained popularity among researchers in the recent

years due to their ability to account for excess zeros, a problem ubiquitous in environmental
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studies. The presence of excess zeros in environmental studies and ecological surveys often

includes two different (and theoretically distinguishable) types of zero values; structural

zeros and sampling zeros. Structural zeros are the zero values that correspond to a true

absence of the process (e.g., species not present) at that particular site. Sampling zeros

correspond to sites were the process was present (e.g., species occurred) but was not detected

(Royle 2006). Sampling zeros are unavoidable in habitat analysis due to sensitivity of

observations to habitat conditions and gear detectability issues. For example, in ecological

habitat management, sampling zeros can generate serious implications in the analysis which

can influence the ability to obtain accurate inference from the data (MacKenzie et al. 2003;

Moilanen 2002). Martin et al. (2005) make recommendations on the choice of appropriate

modeling approaches to model the source of zeros. In reality, often there exists a mixture

of sampling zeros and structural zeros which can be addressed using a zero-inflated model

if we have information on the detection probabilities. A so-called “hurdle” model or a two-

stage modeling approach is common for modeling heavy-zero data when structural zeros

are believed to be the only source of zeros (Greene 2003; Lambert 1992). For example,

zero-inflated models provide a natural setting for modeling the abundance of rare species

(Welsh et al. 1996).

Lambert (1992) employs an Expectation-Maximization (EM) algorithm (Hartley 1958;

Dempster et al. 1977) to obtain the maximum likelihood estimates for the ZIP parameters.

Hall (2000) adapts Lambert’s methodology to a ZIP model with random effects. Maximum

likelihood estimation is also possible by using non-linear mixed model estimation method

such as PROC NLMIXED in SAS (e.g., Littell et al. 2006). Although the optimization
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techniques used by most of these methods (such as PROC NLMIXED) are some of the

best ones available, convergence problems are often observed for complex models. Here, we

consider a Bayesian implementation for the ZIP models with random effects (e.g., Wikle

and Anderson 2003; Martin et al. 2005). The Bayesian implementation provides a more

flexible and reliable estimation tool.

The Bayesian modeling framework for zero-inflated models is a flexible modeling ap-

proach which not only provides a tool for the researcher to simultaneously model data with

a high percentage of zeros but also enables him/her to include scientific knowledge and/or

beliefs into the model by the means of assigning prior probabilities to the unknown variables

and using data to update these beliefs (Wikle and Anderson 2003). The coefficients in the

model are random effects. Furthermore, in the Bayesian framework, inferential statements

on model parameters (i.e., credible intervals) and p-values on hypotheses are more in line

with common sense interpretations (Congdon 2001).

In Chapter 3, semiparametric hierarchical Bayesian modeling of multivariate zero-inflated

Poisson processes are presented. Two different modeling approaches based on a multivariate

normal distribution and a multivariate Poisson distribution will be considered and results

of applying these two different approaches to an application for modeling of benthic fishes

abundance in the Missouri River will be discussed. This modeling approach can easily be

extended to model spatio-temporal count processes as discussed in chapter 4.
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1.2.6 Multiresolution and Dynamical-Resolution methods for Spatio- Tem-
poral Processes

Spatio-temporal processes are often high-dimensional and include interactions across vari-

ous spatial scales. This fact makes multiresolution approaches to modeling such processes

in a way that allows for effective dimension reduction, both appealing and necessary. One

approach to conduct modeling for such high-dimensional processes is through dimension-

reduced spectral representations of such processes. For example, let ut = (u1(s1), . . . , uT (sn))′

indicate a process at time t for locations s1, . . . , sn. A general spectral representation of ut

(vector of length n) can be written as

ut = Φat,

where Φ is an n × k matrix of spectral basis functions of choice (e.g., wavelets, EOFs,

spline bases) and at is a vector of length k (k ¿ n). Thus, the modeling procedure can

be done using at which has a substantially lower dimension compared to ut. The choice

of basis functions in Φ can accommodate various methods for efficient modeling of spatio-

temporal process. For example, using a discrete wavelet transform (DWT) the process can

be modeled in separate, but related, resolutions (several levels of coarse and fine resolutions)

resulting in a multiresolution modeling approach. This approach is discussed in Chapter 5

and examples are presented.

A useful extension of the described modeling approaches in the spectral domain (rather

than in the physical/spatial domain) is to let matrix Φ be time-varying (i.e., Φt). This

assumption, although being more intuitive and resulting in a more flexible modeling frame-

work, can be very difficult to implement and requires efficient model parameterizations in
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order to be able to estimate the model parameters (note that the number of parameters

can increase dramatically in such settings). In Chapter 5, a dynamical-resolution model

for spatio-temporal processes is discussed where a spline representation of the model based

on thin-plate spline functions with both fixed and moveable knots is employed. In this

modeling approach, the dynamical-resolution is accommodated in a hierarchical Bayesian

modeling framework using a moveable knot for which the location is estimated dynamically,

at every step of the MCMC algorithm.

1.3 Overview of Chapters

Chapter 2 describes an efficient parameterization of PDE-based dynamics motivated by a

Galerkin finite element representation. This approach, implemented within a hierarchical

Bayesian framework, allows for modeling the complex spatio-temporal dynamical processes

within both regular and irregular geometric domains. Problems such as open boundary con-

dition PDEs can be considered and treated stochastically within this modeling framework.

An application to the modeling of Sturgeon migration patterns based on data obtained from

radio-tracking tags is discussed. The approach discussed in this chapter provides a novel

method for implementing an efficiently-parameterized physical/statistical model using a

Galerkin finite element representation for PDE-based dynamical spatio-temporal processes.

Chapter 3 considers the modeling of multivariate spatio-temporal zero-inflated count

processes with applications to fisheries community-level modeling, accounting for dependen-

cies among species. Two different alternative methods for building dependency structures

into the model based on the multivariate normal distribution and multivariate Poisson dis-

tribution are presented and the applicability of each of these approaches is discussed. Also,
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a semiparametric modeling approach is considered in modeling the abundance of benthic

fishes of the Missouri River which allows for non-linearities involved in the problem by con-

sidering non-linear functions of the effects of physical variables such as temperature and

turbidity. Model comparison and selection is conducted to identify the necessity of such

non-linear terms in the models. The methodology described in this chapter is a novel ap-

proach for modeling multivariate count processes with excess zeros for which no previous

examples are found in the literature.

Chapter 4 describes an application of a hierarchical Bayesian multivariate zero-inflated

modeling approach for two possibly correlated spatio-temporal count processes. The appli-

cation consists of modeling tornado report counts for tornadoes as classified by the “Fujita”

scale. In the model described in this chapter, the effect of the El Niño/Southern Oscillation

(ENSO) on F0-F1 (“less damaging”) and F2-F5 (“more damaging”) tornadoes is considered

and spatial patterns of this effect are obtained. Also, a spatially-varying temporal trend

for these two categories of tornadoes is derived. The effect of population intensity on the

identification of tornadoes is modeled as a covariate related to the zero-inflation probability.

This chapter describes a spatio-temporal extension of the method described in Chapter 3

and provides a new method to model multivariate spatio-temporal count processes with

excess zeros.

Chapter 5 describes two different approaches for efficiently modeling high-dimensional

spatio-temporal processes by means of conducting dynamical modeling in much lower dimen-

sional setting. The first method consists of developing a multiresolution hierarchical model

by taking advantage of the multiresolution structure of Discrete Wavelet Transform (DWT).
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Using this approach first a multiresolution wavelet transform of the high-dimensional dy-

namical spatio-temporal process is obtained, then the modeling procedure is implemented

within each resolution while accounting for proper interactions between these resolutions.

Such implementation of multiresolution methods in statistical modeling is novel and no

previous examples can be found in the literature. The second approach considers a low-

dimensional spline-based model using thin-plate spline bases with both fixed and moveable

knots where the location of the moveable knot is dynamically estimated at every iteration

of the MCMC simulation. The novelty of this approach is in using moveable knots in the

context of spline-based models where one can estimate the location of the moveable knots,

while accounting for a dynamical model for the fixed knots.
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2 Galerkin Finite Element Approaches for Efficiently

Parameterizing Spatio-Temporal Dynamical Pro-

cesses

2.1 Introduction

The application of spatio-temporal methods in the physical and environmental sciences has

become increasingly popular with technological advances in remote sensing, monitoring net-

works and other methods of collecting spatial and temporal data. Parallel advancements in

computational techniques in the last decades have made such efforts possible. However, the

complexity of such processes requires the development of more advanced methods to en-

able scientists to efficiently take advantage of the information available to them. Statistical

models play an essential role in such research efforts and hierarchical Bayesian models offer

flexible tools for researchers to combine scientific knowledge (e.g. mathematical equations

based on laws of physics or representation of dynamics) and data from various spatial and

temporal scales (Wikle et al. 2001; Wikle 2003).

In this chapter, new methods for the efficient incorporation of PDE-based spatio-

temporal processes in hierarchical statistical models are described. The hierarchical Bayesian

Galerkin finite element-based spatio-temporal models considered in this chapter potentially

can be applied to dynamical processes with irregular domains, random, spatially-varying

parameters and complicated (stochastic or deterministic) boundary conditions. The next

section describes the Galerkin finite element method in general, and then relative to one-

dimensional and two-dimensional advection-diffusion PDEs. Section 3 describes the hierar-

chical Bayesian modeling approach to finite element-based dynamical processes described
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in Section 2. Section 4 describes simulations based on one-dimensional and two-dimensional

advection-diffusion PDEs and simulation results are presented and discussed in Section 5.

Section 6 discusses the application of a one-dimensional advection-diffusion model to the

problem of estimating migration (advection) and diffusion rates for shovelnose sturgeon in

the Missouri River and the results are presented in Section 7 followed by a discussion in

Section 8. Finally, Section 9 contains a conclusion.

2.2 Galerkin Finite Element Method

The Galerkin procedure is a method for solving PDEs in which the dependent variables

are represented by a sum of functions that have a prescribed spatial structure and an

associated coefficient. Such methods transform a PDE into a set of ordinary differential

equations (ODEs). The two most common Galerkin methods are spectral methods and

Finite Element Methods (FEM). Spectral methods employ orthogonal basis functions and

the FEM usually employs low-order polynomials with compact support as basis functions.

This feature of the Galerkin FEM motivates efficient parameterization of spatio-temporal

dynamical models. The Galerkin methods, and particularly the FEM, also provide modeling

tools to address issues such as flexible resolution and complicated boundaries, both of special

interest in modeling physical and environmental processes.

To illustrate the Galerkin procedure, consider the deterministic differential equation:

L(Ut(x)) = f(xt),

where L is the differential operator, Ut(x) is the dependent variable and f(xt) is the specified

forcing function. Thus, Ut(x) can be approximated using a series of linearly independent
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basis functions, φi(x):

Ut(x) ≈
N∑

j=1

ut,jφj(x).

The error in satisfying the differential equation is:

eN = L




N∑

j=1

ut,jφj(x)


− f(xt).

The Galerkin procedure requires that the error be orthogonal to each basis function:

eN =
∫

Ω
eNφj(x)dx = 0, for j = 1, . . . , N,

where Ω represents the domain of the study (e.g., open region in the (x, y) plane). This

requirement guarantees the Galerkin method to find the best approximation in the solution

space (i.e., the solution that is closest to the actual solution).

2.2.1 Choice of Basis Functions

In principle, any set of compactly-supported basis functions can be used in the Galerkin

FEM. However, low-order polynomials are often used as basis functions for simplicity (Bur-

nett 1987). The basis functions act as local interpolators within the elements. Often, sim-

ple piecewise linear basis functions perform well for such interpolations (e.g., Burnett 1987;

Kwon and Bang 2000; Lynch 2005). In the following examples, simple low-order polynomial

basis functions will be considered.

2.2.2 Example 1: Advection-Diffusion Equation (1-D)

Consider the following one-dimensional advection-diffusion equation:

∂U(x, t)
∂t

+ α(x)
∂

∂x
U(x, t)− ∂

∂x

(
β

∂U(x, t)
∂x

)
= 0, (2.4)
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where α(x) corresponds to the spatially-varying advection parameter and β corresponds to

the diffusion parameter. Note that the diffusion parameter, β, can also be spatially-varying,

but for illustration is considered constant here. The Galerkin procedure requires

∫

Ω

[
∂U(x, t)

∂t
+ α(x)

∂

∂x
U(x, t)− ∂

∂x

(
β

∂U(x, t)
∂x

)]
φi(x)dx = 0, for i = 1, . . . , N (2.5)

where,

U(x, t) =
N∑

j=1

uj(t)φj(x). (2.6)

To proceed, one must specify the basis functions, φj(x), j = 1, . . . , N (Figure 1). As an

example, the “hat” function which is a compactly supported basis function (i.e., it is non-

zero only in elements containing node j; Kwon and Bang 2000), is considered and is defined

as

φj(x) =





x−xj−1

∆x if xj−1 ≤ x ≤ xj

xj+1−x
∆x if xj ≤ x ≤ xj+1

0 otherwise,

where ∆x = xj − xj−1 = xj+1 − xj . A generalization of the basis functions to the case

where xj − xj−1 6= xj+1 − xj is also possible. Now, the derivative of φj(x) with respect to

x is defined as

dφj(x)
dx

=





1
∆x if xj−1 ≤ x ≤ xj

−1
∆x if xj ≤ x ≤ xj+1

0 otherwise.

Equation (2.5) involves a second derivative of the piecewise linear basis function so

integration by parts can be applied to the term involving the second derivative to avoid
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Figure 1: Schematic for the “hat” basis function.

misrepresentation of the boundary conditions (Burnett 1987):

∫

Ω

∂U(x, t)
∂t

φi(x)dx +
∫

Ω
α(x)

∂U(x, t)
∂x

φi(x)dx−
[
−β

∂U(x, t)
∂x

φi(x)
]

Ω

+
∫

Ω

∂φi(x)
∂x

β
∂U(x, t)

∂x
dx = 0, for i = 1, . . . , N, (2.7)

where Ω denotes the 1-D domain of the study (i.e., Ω is the set of all the elements). Note

that the boundary term [−β ∂U(x,t)
∂x φi(x)]Ω contains the flux, the quantity β ∂U(x,t)

∂x , which

usually has a physical interpretation and can take boundary values (zero in this case).

Now, using the definition of the basis function and the separation of variables in (2.6)

yields:

∂U(x, t)
∂x

=
N∑

j=1

uj(t)
dφj(x)

dx
,

∂U(x, t)
∂t

=
N∑

j=1

duj(t)
dt

φj(x).
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Substituting these in Equation (2.7) yields:

N∑

j=1

(∫

Ω
φi(x)φj(x)dx

)
duj(t)

dt
+

N∑

j=1

(∫

Ω

dφi(x)
dx

α(x)φj(x)dx

)
uj(t)

+
N∑

j=1

(∫

Ω

dφi(x)
dx

β
dφj(x)

dx
dx

)
uj(t) = 0, for i = 1, . . . , N. (2.8)

Using these basis functions, for each element (e) (notation (i) corresponds to parameters

associated with the ith element), analytical derivation of the integrals involved in (2.8) is

possible (Lynch 2005):

∫ (e)

φi(x)φj(x)dx =





∆x
3 , i = j

∆x
6 , i 6= j

∫ (e) dφi(x)
dx

dφj(x)
dx

dx =
dφi(x)

dx

dφj(x)
dx

∫ (e)

1dx =





−1
∆x , i = j

1
∆x , i 6= j

∫ (e) dφi(x)
dx

φj(x)dx =
dφi(x)

dx

∫ (e)

φj(x)dx =





−1
2 , i = j

1
2 , i 6= j

Note that
∫ (e)

φj(x)dx = ∆x
2 and

∫ (e) 1dx = ∆x . Substituting these values in the element

level equation (2.8), and rewriting the equation for the complete domain of the problem

(Ω), the system of equations can be written as:

G
dut

dt
= Hut−1, (2.9)

where H is a sparse matrix of α(x), β, and dx, and G is a sparse matrix of ∆x:

G =




g0,1 g2,2 0 0 . . . 0

g1,1 g0,2 g2,3 0
. . . 0

0 g1,2
. . . . . . . . .

...
...

. . . . . . . . . g0,N−1 g2,N

0 . . . . . . 0 g1,N−1 g0,N




,
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with:

g0,1 =
∆x(1)

3∆t
,

g0,N =
∆x(N)

3∆t
,

g0,i =
2∆x(i)

3∆t
, for i = 2, . . . , N − 1,

g1,i =
∆x(i)

6∆t
, for i = 1, . . . , N,

g2,i =
∆x(i)

6∆t
, for i = 1, . . . , N,

and,

H =




h0,1 h2,2 0 0 . . . 0

h1,1 h0,2 h2,3 0
. . . 0

0 h1,2
. . . . . . . . .

...
...

. . . . . . . . . h0,N−1 h2,N

0 . . . . . . 0 h1,N−1 h0,N




,

with:

h0,1 =
−β(1)

(∆x(1))2
+

α(1)

2
,

h0,N =
−β(N)

(∆x(N))2
+

α(N)

2
,

h0,i =
−2β(i)

(∆x(i))2
, for i = 2, . . . , N − 1,

h1,i =
−2β(i)

(∆x(i))2
− α(i)

2
, for i = 1, . . . , N,

h2,i =
−2β(i)

(∆x(i))2
+

α(i)

2
, for i = 1, . . . , N.

2.2.3 Discretization in Time

Here, a forward differencing method for discretizing the equation in time is utilized:

dut

dt
≈ ut − ut−1

∆t
,
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where, each of the terms in the equation is considered at the forward end of the time

step (e.g., Burnett 1987; Carey and Oden 1984). Forward differencing time discretization

yields

G
(

ut − ut−1

∆t

)
= Hut−1. (2.10)

Thus, the dynamical model can be written as

Gut = (G + ∆tH)ut−1 (2.11)

or,

ut = (I + ∆tG−1H)ut−1. (2.12)

Equation (2.12) is the desired recurrence relation.

2.2.4 Example 2: Advection-Diffusion Equation (2-D)

Consider the two-dimensional advection-diffusion equation:

∂Ut(x, y)
∂t

+
∂αx(x, y)Ut(x, y)

∂x
+

∂αy(x, y)Ut(x, y)
∂y

− β
∂2Ut(x, y)

∂x2
− β

∂2Ut(x, y)
∂y2

= 0

(2.13)

Similar to the 1-D case, ut(x, y) can be approximated using a series of linearly independent

basis functions, φi(x, y):

Ut(x, y) ≈
N∑

j=1

ut,jφj(x, y),

where,

φj(x, y) =
1

2A
(aj + bjx + cjy), j = 1, 2, 3,
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are triangular basis functions (Figure 2) and

aj =xkyl − xlyk,

bj =yk − yl,

cj =xl − xk,

with the derivatives with respect to x and y are defined as

dφj(x, y)
dx

=
(yk − yl)

2A
,

dφj(x, y)
dy

=
(xl − xk)

2A
,

where j, k, and l take values 1, 2, and 3 (the nodes of the triangular element) permuted

cyclically, and A represents the area of the triangular element:

A =
1
2

∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
.

( )
11

, yx
( )

22
, yx

( )
33

, yx

Figure 2: Schematic for the triangular basis function.
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The Galerkin procedure requires

∫∫

Ω
[
∂Ut(x, y)

∂t
+

∂αx(x, y)Ut(x, y)
∂x

+
∂αy(x, y)Ut(x, y)

∂y
− β

∂2Ut(x, y)
∂x2

− β
∂2Ut(x, y)

∂y2
]φi(x, y)dxdy = 0, for i = 1, . . . , N (2.14)

Note that equation (2.14) involves a second derivative of the piecewise linear basis

function. Applying integration by parts to the terms involving the second derivative yields:

∫∫

Ω

∂Ut(x, y)
∂t

φi(x, y)dxdy +
∫∫

Ω

∂αx(x, y)Ut(x, y)
∂x

φi(x, y)dxdy

+
∫∫

Ω

∂αy(x, y)Ut(x, y)
∂y

φi(x, y)dxdy −
[
−β

(
∂Ut(x, y)

∂x
+

∂Ut(x, y)
∂y

)
φi(x, y)

]

Ω

+
∫∫

Ω

∂φi(x, y)
∂x

β
∂Ut(x, y)

∂x
dxdy +

∫∫

Ω

∂φi(x, y)
∂y

β
∂Ut(x, y)

∂y
dxdy = 0,

for i = 1, . . . , N. (2.15)

Substituting these values into equation (2.14), the element-level equation can be written as

N∑

j=1

(∫∫

Ω
φj(x, y)φi(x, y)dxdy

)
duj(t)

dt
+

N∑

j=1

(∫∫

Ω

∂αx(x, y)φj(x, y)
∂x

φi(x, y)dxdy

)
uj(t)

+
N∑

j=1

(∫∫

Ω

∂αy(x, y)φj(x, y)
∂y

φi(x, y)dxdy

)
uj(t) +

N∑

j=1

(∫∫

Ω

∂φi(x, y)
∂x

β
∂φj(x, y)

∂x
dxdy

)
uj(t)

+
N∑

j=1

(∫∫

Ω

∂φi(x, y)
∂y

β
∂φj(x, y)

∂y
dxdy

)
uj(t) = 0, for i = 1, . . . , N, (2.16)

where Ω is the 2-D domain of study that includes all the elements. Note that the boundary

term [−β(∂Ut(x,y)
∂x + ∂Ut(x,y)

∂y )φi(x, y)]Ω contains the flux, which is zero in this case.

The general form of the dynamical model for the 2-D case is similar to the one for

the 1-D case described in (2.11). However, the values of the integrals involving the basis

functions are different due to the use of triangular elements in the 2-D problem. Similar to
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the 1-D case, analytical derivation of these integrals is possible (Lynch 2005). For example,

for the triangular element e, the integrals using the triangle integration formula can be

evaluated (Burnett 1987),

∫∫
ζm
1 ζn

2 ζp
3dxdy =

m!n!p!
(m + n + p + 2)!

2A,

where ζ1, ζ2, ζ3 represent the area coordinates for the triangular elements (i.e., ζi = φi, i =

1, 2, 3) to the arbitrary powers m, n, p, respectively. The obtained integrals are as follows.

∫∫ (e)

φi(x, y)φj(x, y)dxdy =





A(e)

6 , i = j

A(e)

12 , i 6= j,

∫∫ (e) dφi(x, y)
dx

dφj(x, y)
dx

dxdy =
∫∫ (e) (y(e)

k − y
(e)
l )

2A(e)

(y(e)
k − y

(e)
l )

2A(e)
dxdy

=





(y
(e)
k −y

(e)
l )2

4A(e) , i = j

(y
(e)
k −y

(e)
l )(y

(e)
j −y

(e)
k )

4A(e) , i = l

(y
(e)
k −y

(e)
l )(y

(e)
l −y

(e)
j )

4A(e) , i = k,

∫∫ (e) dφi(x, y)
dy

dφj(x, y)
dy

dxdy =
∫∫ (e) (x(e)

k − x
(e)
l )

2A(e)

(x(e)
k − x

(e)
l )

2A(e)
dxdy

=





(x
(e)
k −x

(e)
l )2

4A(e) , i = j

(x
(e)
k −x

(e)
l )(x

(e)
j −x

(e)
k )

4A(e) , i = l

(x
(e)
k −x

(e)
l )(x

(e)
l −x

(e)
j )

4A(e) , i = k,
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∫∫ (e) dφi(x, y)
dx

φj(x, y)dxdy =
∫∫ (e) (y(e)

k − y
(e)
l )

2
φj(x, y)dxdy

=





(y
(e)
k −y

(e)
l )

6 , i = j

(y
(e)
j −y

(e)
k )

6 , i = l

(y
(e)
l −y

(e)
j )

6 , i = k,

∫∫ (e) dφi(x, y)
dy

φj(x, y)dxdy =
∫∫ (e) −(x(e)

k − x
(e)
l )

2
φj(x, y)dxdy

=





−(x
(e)
k −x

(e)
l )

6 , i = j

−(x
(e)
k −x

(e)
l )

6 , i = l

−(x
(e)
l −x

(e)
j )

6 , i = k.

Note that
∫∫ (e)

φj(x, y)dxdy = A(e)

3 and
∫∫ (e) 1dxdxy = A(e). Substituting the values for

the integrals in equation (2.16) and rewriting the equation for the complete domain of the

problem (Ω), the general form of the dynamical equation can be written as

G
dut

dt
= Hut−1, (2.17)

where H is a sparse matrix of α(x), β, and A, and G is a sparse matrix of A, and A = [A(e)]

includes the areas for the triangular elements. However, writing a general structure for

matrices H and G is not possible in the 2-D case due to various possible arrangements of

the triangular elements. Note that the sparsity of these matrices is conserved under such

circumstances.
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2.3 Hierarchical Bayesian Modeling Approach

The hierarchical spatio-temporal model for the PDE-based process described in equa-

tions (2.11) and (2.17) can be written as

Zt =Ktut + εt, εt ∼ N(0, σ2
εI), (2.18)

Gut =(G +4tH)ut−1 + ηt, ηt ∼ N(0, σ2
ηR(θ)), (2.19)

where Zt = (z1t, z2t, . . . , zmt)′ denotes observational data, ut = (u1t, u2t, . . . , unt)′ denote

the true process at all locations of interest at time t, Kt denote the m by n “incidence”

or “mapping” matrices that for each time t map the process locations to the observation

locations, εt is the observational error, ηt represents the error for the process, and H and G

are sparse matrices as described in the previous section. Matrix R(θ) represents the spatial

correlation based on the Euclidean distance between locations (||d||) and the spatial range

parameter (θ) in the standard stationary and isotropic exponential covariogram model:

R(θ) = exp(−θ||d||). (2.20)

Note that this is just an example and more complicated spatial models could be considered.

The hierarchical Bayesian model considers prior distributions for the random and un-

known parameters, along with the data, to update the posterior distribution of the pa-

rameters. For example, for the 1-D case advection-diffusion process, both the advection

and diffusion parameters are considered as random and unknown parameters and take the

following normal prior distributions:

β ∼ N(β̃, σ2
β),

α ∼ N(α̃, σ2
αRα(θα)),
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where α̃, σ2
α, β̃, σ2

β are the hyper-parameters which could be considered as random and

having prior distributions or might be assumed as fixed and known, and Rα is the exponen-

tial covariogram model defined in 2.20. Prior distributions are also needed for the variance

of the error process, σ2
η and the variance of the measurement error, σ2

ε , as follows:

σ2
ε ∼ IG(qε, rε)

σ2
η ∼ IG(qη, rη),

where IG represents the pdf of an inverse gamma distribution. The hyper-parameters,

qε, rε, qη, and rη can be considered as fixed and known or random and having a prior

distribution. Thus, the joint posterior distribution of interest can be written as

[u1, . . . ,uT ,β, σ2
η, σ

2
ε |Z1, . . . ,ZT ] ∝

T∏

t=1

[Zt|ut, σ
2
ε ]

T∏

t=1

[ut|ut−1, σ
2
η,β]

× [u0][β][σ2
ε ][σ

2
η].

Using the Gibbs sampler, the estimation can be conducted based on conditional distributions

of each of the unknown parameters given all other parameters and data (i.e., full-conditional

distributions). See Appendix A for derivation of all full-conditional distributions.

2.4 Simulations

In this section, simulation experiments for the 1-D and 2-D advection-diffusion process are

considered and discussed. The results for the simulation experiments are presented in the

next section.
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2.4.1 Advection-Diffusion (1-D)

In the following simulation, ∆x = ∆t = 1 for 50 spatial locations and 101 time points. Note

that the FEM allows for irregular domains in which ∆x can vary over the domain. One has

to be careful in extending the model to such cases so that the stability conditions of the

PDE are not violated (Lynch 2005).

For simulations, the process is initialized using randomly generated normal variates. The

spatially-varying advection parameter, α(x), is generated by drawing from a normal density

with mean ξ and variance 0.005×R(0.005), where ξ = 1
3 sin(x), xi = 2π−(i−1)2π

n , for i =

1, . . . , n. The diffusion parameter, β, is set to be 0.1. The following relatively vague prior

distributions were assigned to the error variance parameters:

τε ≡ 1/σ2
ε ∼ Gamma(mean = 0.1, var = 10)

τη ≡ 1/σ2
η ∼ Gamma(mean = 0.1, var = 10),

and the following relatively vague prior distributions were considered for the advection and

diffusion parameters:

β ∼ N(1, 1000),

α ∼ N(0, 0.1×Rα(0.005)),

where Rα is the exponential covariagram model defined in (2.20).

Computations were conducted using MCMC methods (Gibbs sampler) with 50000 it-

erations to ensure convergence of the algorithm. The first 5000 iterations were considered

as the “burn-in” period, although the convergence was achieved during the first 1000 iter-
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ations, and posterior inference was conducted using the last 45000 iterations. Convergence

was assessed visually using the MCMC chains for the parameters.

2.4.2 Advection-Diffusion (2-D)

A simulation experiment based on a 2-D advection-diffusion model is considered and a hier-

archical Bayesian approach is presented to estimate the states of the spatio-temporal process

as well as the parameters governing the dynamics (treated as unknown parameters), in the

presence of missing observations. The 2-D advection-diffusion equation is considered with

both advection and diffusion parameters in x and y directions, as described in (2.13). Such

a parameterization enables angular outward directional movement of the flow in irregularly

defined boundaries of the model domain (Burnett 1987).

The simulation experiment is considered for a 9 by 10 rectangular shaped domain,

resulting in 90 nodes and a regular mesh constructed with triangular elements with equal

areas (3). Other characteristics of the model include: time step4t = 2, and regularly spaced

nodes with 4x = 1, 4y = 1. The process was initialized with a surface generated from

f(x) = 10/(1+ ( x
.5)2 +( y

.5)2) centered at a point with coordinates (5, 8) . The diffusion and

advection parameters (constant over the spatial domain) are set as: advection in x-direction

(αx) = −0.05, advection in y-direction (αy) = 0.01), diffusion in x-direction (βx) = 0.01,

and diffusion in y-direction (βy) = 0.01. The values assigned to the parameters governing

the dynamics results in a movement along the negative x-axis with slight upward movement

along the positive y-axis, while diffusing equally in both directions. The simulation was

evolved for 50 time steps.

The following relatively vague prior distributions were assigned to the error variance
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Figure 3: Regular mesh for 2-D advection-diffusion equation constructed using trian-
gular elements.

parameters:

τε ≡ 1/σ2
ε ∼ Gamma(mean = 1, var = 10)

τη ≡ 1/σ2
η ∼ Gamma(mean = 1, var = 10),

and the following prior distributions were considered for the advection and diffusion param-

eters:

βx ∼ N(0.05, 100),

βy ∼ N(0.05, 100),

αx ∼ N(0, 100),

αy ∼ N(0, 100).

The observations used in the hierarchical Bayesian model were obtained after randomly
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removing 50% of the points in each simulated time. The hierarchical model is similar to the

model described for the 1-D case simulation (after vectorizing the 2-D surface). Here, due

to the presence of missing values, Kt incidence matrices are used to map the observations to

the process, providing a tool to account for missing values in the estimation and prediction

process.

Similar to the 1-D case, computations were conducted using a Gibbs sampler with

50000 iterations to guarantee convergence of the algorithm. The first 5000 iterations were

considered as the “burn-in” period and posterior inference was conducted using the last

45000 iterations.

2.5 Simulation Results

The results for the hierarchical Bayesian model for the simulations described in the previous

section are presented and discussed in this section. The inference is based on samples from

the posterior density of the unknown parameters. Also a prior sensitivity analysis was

conducted in each case and the results were found to be robust to the choice of hyper-

parameters for prior distributions.

The results for the 1-D advection-diffusion simulation based on a constant diffusion pa-

rameter and spatially-varying advection parameter are encouraging. Plots for the simulated

“truth”, data, the estimated posterior mean for the experiment, and process regenerated

using the posterior mean results for the advection and diffusion parameters (using the error

process and initial values for the process as used in the original simulation) are shown in

Figure 4. Figure 5 shows the histogram of the posterior density for the diffusion parame-

ter β. The posterior mean of β is 0.1067 and the 95% credible intervals (CIs) is (0.0636,
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0.1503), which considering that a vague prior is used for this parameter, is an acceptable

estimate (the 95% CIs cover the true value,0.1). Figure 6 shows the posterior mean and

95% credible intervals (CIs) for the posterior density of α(x), as well as the true values of

the spatially-varying advection parameter and the lower and upper bounds for the prior

density considered in estimation of this vector of parameters. The results for the estimation

of α(x) considering the relatively vague prior density considered for this parameter, are

very encouraging and indicate that Bayesian learning is occurring regarding the advection

parameters.
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Figure 4: Simulation of 1-D linear advection-diffusion equation: plots for (a) simu-
lated process (“truth”), (b) data (simulation with additive noise), (c) the posterior
mean estimated using the finite element-based process model, and (d) regenerated
process (regenerated using the posterior mean estimates of advection and diffusion
parameters.).

35



0 0.05 0.1 0.15 0.2
0

200

400

600

800

1000

1200

1400

1600

β

F
re

q
u

e
n

c
y

0.0636 0.1503

Figure 5: Histogram for the posterior density for the diffusion parameter (β) for the
1-D simulation. The dashed lines indicate the 95% CIs (0.0636, 0.1503).
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Figure 6: Plot for the spatially-varying advection parameter (1-D simulation), α(x):
posterior mean (solid line), 95% credible intervals for the posterior (dashed lines), true
spatially-varying advection parameter (dash-dotted line), lower and upper bounds for
the prior distribution (dotted lines)
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The results for the 2-D advection-diffusion equation with unknown constant advection

and diffusion parameters in both x and y directions and 50% missing values are very en-

couraging. Figures 7-8 show the true process, posterior mean of the estimated process, as

well as, observations (containing missing values). The prediction of the missing values using

the posterior mean of the process states is notable, considering only 50% of the observations

were used in the prediction process.

The posterior means and 95% credible intervals (CIs) for all the parameters are shown in

Table 1. Note that the posterior results for all the parameters are acceptable (within the

95% CIs) and the posterior means are very close to the true values.

Histograms for the posterior density of the advection and diffusion parameters are shown

in Figures 9-12. Although the posterior mean values for the y-directional parameters of

advection and diffusion over-estimate the true parameter values, the 95% CIs (as shown in

Figures 10 and 12) contain the true values.

The results for the simulation studies encourage the application of this modeling ap-

proach to “real-world” problems. The characteristics of the finite element method provides

a natural framework for considering problems with irregular domains, stochastic bound-

ary conditions, and processes described by coupled PDEs (e.g., shallow-water equations).

The ability to consider heterogeneously distributed parameters that govern the dynamics

of the spatio-temporal process enables us to more effectively model complex processes with

realistic assumptions.
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Figure 7: Truth (left column), data (middle column), and posterior mean values (right
column) for the advection-diffusion simulation (2-D) for time steps 1-25; (a)-(c) t=1,
(d)-(f) t=10, (g)-(i) t=15, (j)-(l) t=20, (m)-(o) t=25. Note that in the representation
of the observations (figures in the second column), white colored cells indicate missing
values.
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Figure 8: Truth (left column), data (middle column), and posterior mean values
(right column) for the advection-diffusion simulation (2-D) for time steps 30-50; (a)-
(c) t=30, (d)-(f) t=35, (g)-(i) t=40, (j)-(l) t=45, (m)-(o) t=50. Note that in the
representation of the observations (figures in the second column), white colored cells
indicate missing values.
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Figure 9: Histogram for the posterior density for the advection parameter in x-
direction (αx) for the 2-D simulation. The dashed lines indicate the 95% CIs (-0.0577,
-0.0522).
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Figure 10: Histogram for the posterior density for the advection parameter in y-
direction (αy) for the 2-D simulation. The dashed lines indicate the 95% CIs (0.0118,
0.0186).
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Figure 11: Histogram for the posterior density for the diffusion parameter in x-
direction (βx) for the 2-D simulation. The dashed lines indicate the 95% CIs (0.0117,
0.0158).
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Figure 12: Histogram for the posterior density for the diffusion parameter in y-
direction (βy) for the 2-D simulation. The dashed lines indicate the 95% CIs (0.0133,
0.0189).
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2.6 Application: Estimating Migration rates for Shovelnose
Sturgeon in the Missouri River

In the period between 2004 and 2006, a study was conducted by the U.S. Geological Sur-

vey (USGS) to understand the attributes related to spawning of the shovelnose sturgeon

(Scaphirhynchus platorynchus) in the Missouri River. This study was conducted with the

goal of obtaining information to better understand the temporal and spatial attributes and

physical conditions of successful spawning for the sturgeon species in the Lower Missouri

River (Figure 13). The Lower Missouri River is defined as the 840 miles of river from

Yankton, South Dakota to St. Louis, Missouri. It starts downstream from the lower-most

mainstem dam (i.e., Gavins Point Dam) and ends at the confluence with the Mississippi

River (USGS website; URL: http://infolink.cr.usgs.gov/RSB/Hab/).

The shovelnose sturgeon is of extreme importance in the fish assemblage of the Missouri

River, especially since it is closely related to the endangered pallid sturgeon (Scaphirhynchus

albus). The shovelnose sturgeon is often considered as a surrogate of the pallid sturgeon (Ru-

elle and Keenlyne 1994; Bramblett and White 2001). The management efforts conducted to

benefit the sturgeon species in the Missouri River suffer from a lack of specific information

on the biology and ecology of declining Scaphirhynchus sturgeon.

In the study conducted by the USGS, physiological measurements associated with readi-

ness to spawn as well as behavioral data from telemetry and data storage devices (DST)

were collected. The information obtained includes time and spatial location (based on river

miles) of relocation for each tagged fish. Telemetry and DST sensor devices were placed

in 50 gravid female shovelnose sturgeon in the Lower Missouri River that were expected
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Figure 13: Map of the Lower Missouri River (Source: USGS website; URL: http://
infolink.cr.usgs.gov/ RSB/Hab/).
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Figure 14: The section of the Lower Missouri River included in the model for 2005
shovelnose sturgeon (Source: USGS website; URL: http://infolink.cr.usgs.gov/ Sci-
ence/PallidSturgeon/CERC/CERCUpdate.pdf).
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to spawn within months. The data collected using the DST sensors was retrieved after

recapture of the fish.

One of the main hypotheses considered in the design of this study was that the shovelnose

sturgeon spawning happens in a period during or after an upstream movement of the fish

(Berg 1981). The downstream dispersal follows spawning. The physical process underlying

the migration of the shovelnose sturgeon, as common in modeling animal migrations, is

considered to be based on a 1-D advection-diffusion PDE describing the spatial distribution

of a population through time (Okubo and Levin 2002). The utilization of the advection-

diffusion equation to characterize the dispersal and migration movements of fish populations

is popular among fisheries biologists (Zabel and Anderson 1997; Skalski and Gilliam 2000;

Sparrevohn et al. 2002; Zabel 2002). A hierarchical Bayesian model for estimating the

migration (advection) and diffusion rates, is developed and the performance of the model

is demonstrated using data collected in 2005 in the Lower Missouri River.

The area considered for the present model covers a section of the lower Missouri River be-

tween river miles 110 and 410 (Figure 14). A spatio-temporal grid is developed based on 32-

mile spatial increments and 4-day temporal increments. These increments are decided based

on the maximum range a boat involved in the sampling effort could travel and the length

of time in which the boats cover the length of the river. Let N(si; t) be the total number of

shovelnose sturgeons relocated in a grid cell si at time t, and Nt = (N(s1; t), . . . , N(sn; t)).

Thus, the data model can be written as

log(Nt) ≡ Zt =Ktut + εt, εt ∼ N(0, σ2
εI),

where Nt corresponds to the number of fish relocated and is strictly positive (there are no
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zero values for Nt), Kt matrices are “mapping” matrices (as described previously) which

provide a convenient framework to account for missing data in the discussed spatio-temporal

setting. The latent spatio-temporal process can be constructed based on the discretized

advection-diffusion equation as described previously. Thus, the process model can be written

as

Gut =Mut−1 + ηt, ηt ∼ N(0, σ2
ηR(θ)),

Due to presence of uncertainty about the underlying physical process, several different

models were fitted and model comparison was performed to determine which model (or

models) provides a better fit for the data. The basis of such a modeling approach has

roots in the uncertainty about the true structure of the parameters governing the dynamics

(i.e., homogeneous or heterogeneous over the spatial domain). Also, there is uncertainty

whether the pre-spawning upstream movement of the shovelnose sturgeon is more effec-

tively characterized by a diffusion equation or an advection-diffusion equation. Although

an advection-diffusion equation is considered as an appropriate model to mimic animal

movement, in this case, since the upstream movement of fish is against the flow of water,

a diffusion equation might be a more appropriate choice than an advection-diffusion equa-

tion. We consider five different models with constant and/or spatially-varying parameters,

as described below. For all of the following models, the hierarchical Bayesian framework

described in Section 2.3 applies and only the process models and the associated parameter

models (priors) differ.
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2.6.1 Model 1: Constant Diffusion

In model 1, the underlying physical process is characterized by a 1-D diffusion model with

a constant diffusion parameter over the spatial domain:

∂u(x, t)
∂t

− ∂

∂x

(
β

∂u(x, t)
∂x

)
= 0. (2.21)

The hyperparameters used in the model are shown in Table 2.

2.6.2 Model 2: Spatially-Varying Diffusion

Model 1 can be extended to include spatially-varying diffusion parameters, providing a more

flexible structure which allows for heterogeneity of the diffusion process over the spatial

domain. Thus, the diffusion equation for Model 2 can be written as

∂u(x, t)
∂t

− ∂

∂x

(
β(x)

∂u(x, t)
∂x

)
= 0, (2.22)

Table 3 shows the hyperparameters specified for Model 2.

2.6.3 Model 3: Constant Advection and Diffusion

Model 3 comprises of an advection-diffusion equation with constant advection and diffusion

parameters. Although the assumption of advection and diffusion parameters being constant

over the spatial domain seems unrealistic, it can provide an insight into the large scale

components of dynamics. Thus, the advection-diffusion equation for Model 3 is

∂U(x, t)
∂t

+ α
∂

∂x
U(x, t)− ∂

∂x

(
β

∂U(x, t)
∂x

)
= 0. (2.23)

Table 4 shows the hyperparameters specified for Model 3.
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2.6.4 Model 4: Spatially-Varying Advection and Constant Diffusion

Model 3 can be extended to include a spatially-varying advection parameter, yielding the

following advection-diffusion equation for Model 4

∂U(x, t)
∂t

+ α(x)
∂

∂x
U(x, t)− ∂

∂x

(
β

∂U(x, t)
∂x

)
= 0. (2.24)

Table 6 shows the hyperparameters specified for Model 4.

2.6.5 Model 5: Spatially-Varying Advection and Diffusion

Model 5 includes the most flexible version of the advection-diffusion equation, where both

the advection and diffusion parameters are allowed to vary over the spatial domain. In this

case the advection-diffusion equation can be written as

∂U(x, t)
∂t

+ α(x)
∂

∂x
U(x, t)− ∂

∂x
(β(x)

∂U(x, t)
∂x

) = 0. (2.25)

Table 6 shows the hyperparameters specified for Model 5.

The computations were carried out using a Gibbs sampler with 10000 iterations, where

the first 1000 iterations were discarded as the “burn-in” period for the chain to achieve

convergence.

2.7 Results

The results for all five models are presented in this section. The inference for the model

parameters is based on the posterior density of the parameters. Specifically, the posterior

mean and 95% CIs for each of the parameters are presented. Convergence was assessed by

visual inspection of the MCMC chains for the parameters and was achieved very quickly

(i.e., < 1000 iterations). The results for all the models discussed above are presented in
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the next section, followed by model comparison results and discussion. The results for the

parameters were found to be robust to the choice of hyper-parameters for prior distributions.

Model 1 Results:

The posterior mean values along with the 95% CIs for the parameters of Model 1 are shown

in Table 7.

Figure 15 shows the posterior mean for the estimated process, as well as the observations.

The histogram for the posterior mean of the constant diffusion parameter is shown in

Figure 16.
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Figure 15: The shovelnose sturgeon tracking diffusion model with constant diffusion
parameter (Model 1): (a) Data, (b) Posterior mean (eE(u|Z)).

Model 2 Results:
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Figure 16: Histogram for the posterior density for the diffusion parameter (β) for the
shovelnose sturgeon tracking diffusion model (Model 1).

The posterior mean values along with the 95% CIs for the parameters of Model 2 are shown

in Table 8.

Figure 17 shows the posterior mean for the estimated process, as well as the observations

and the plot of the posterior mean of the spatially-varying diffusion parameter and its 95%

CIs are shown in Figure 18.

Model 3 Results:

The posterior mean values along with the 95% CIs for the parameters of Model 3 are shown

in Table 9.

Figure 19 shows the posterior mean for the estimated process, as well as the observations.

Figure 20 shows the histogram for the constant advection parameter. The histogram for

the posterior mean of the constant diffusion parameter is shown in Figure 21.

Model 4 Results:

The posterior mean values along with the 95% CIs for the parameters of Model 4 are shown
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Figure 17: The shovelnose sturgeon tracking diffusion model with spatially-varying
diffusion parameter (Model 2): (a) Data, (b) Posterior mean (eE(u|Z)).
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Figure 18: Plot of the posterior mean (Solid line) and 95% CIs (Dashed lines) for
the spatially-varying diffusion parameter (β) for the shovelnose sturgeon tracking
diffusion model (Model 2).
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Figure 19: The shovelnose sturgeon tracking advection-diffusion model with constant
advection and diffusion parameters (Model 3): (a) Data, (b) Posterior mean (eE(u|Z)).
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Figure 20: Histogram for the posterior density for the advection parameter (α) for
the shovelnose sturgeon tracking advection-diffusion model with constant advection
and diffusion parameters (Model 3).
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Figure 21: Histogram for the posterior density for the diffusion parameter (β) for the
shovelnose sturgeon tracking advection-diffusion model with constant advection and
diffusion parameters (Model 3).

in Table 10.

Figure 22 shows the posterior mean for the estimated process, as well as the observa-

tions. Figure 23 shows the posterior mean and 95% CIs for the spatially-varying advection

parameters. The histogram for the posterior mean of the constant diffusion parameter is

shown in Figure 24.

Model 5 Results:

The posterior mean values along with the 95% CIs for the parameters of Model 5 are shown

in Table 11.

Figure 25 shows the posterior mean for the estimated process, as well as the observa-

tions. Figure 26 shows the posterior mean and 95% CIs for the spatially-varying advection

parameter. The plot of the posterior mean and 95% CIs for the spatially-varying diffusion

parameters are shown in Figure 27.
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Figure 22: The shovelnose sturgeon tracking advection-diffusion model with spatially-
varying advection and constant diffusion parameters (Model 4): (a) Data, (b) Poste-
rior mean (eE(u|Z)).
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Figure 23: Plot of the posterior mean (Solid line) and 95% CIs (Dashed lines) for
the spatially-varying advection parameter (α) for the shovelnose sturgeon tracking
advection-diffusion model with spatially-varying advection and constant diffusion pa-
rameters (Model 4).
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Figure 24: Histogram for the posterior density for the diffusion parameter (β) for the
shovelnose sturgeon tracking advection-diffusion model with spatially-varying advec-
tion and constant diffusion parameters (Model 4).
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Figure 25: The shovelnose sturgeon tracking advection-diffusion model with spatially-
varying advection and diffusion parameters (Model 5): (a) Data, (b) Posterior mean
(eE(u|Z)).
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Figure 26: Plot of the posterior mean (Solid line) and 95% CIs (Dashed lines) for
the spatially-varying advection parameter (α) for the shovelnose sturgeon tracking
advection-diffusion model with spatially-varying advection and diffusion parameters
(Model 5).
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Figure 27: Plot of the posterior mean (Solid line) and 95% CIs (Dashed lines) for
the spatially-varying diffusion parameter (β) for the shovelnose sturgeon tracking
advection-diffusion model with spatially-varying advection and diffusion parameters
(Model 5).
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2.8 Model Selection

A common and easy to implement method for model selection in hierarchical Bayesian

modeling is based on the so-called deviance information criterion (DIC) introduced by

Spiegelhalter et al. (2002), which is a generalization of Akaike’s information criterion (AIC).

DIC is a penalized likelihood method based on the posterior distribution of the deviance

statistic. Based on the DIC criterion, models with relatively lower DIC values indicate a

better fit to the data compared to models with higher DIC values. DIC is defined as

DIC = 2D̄ −D(θ̄),

where D̄ is the posterior mean of the deviance, and D(θ̄) is the deviance of the vector of

the posterior mean values for the model parameter vector (θ).

Due to the presence of issues discussed previously related to the choice of determining the

underlying physical process, several different models were considered and fitted to the data.

The problem of determining the appropriate underlying physical process is a very intricate

and often impossible task. However, using model selection methods, and in particular, DIC,

we will be able to draw conclusions on which models provide a better fit to the data based on

their statistical significance. Table 12, shows the DIC values calculated for the five models

fitted to the data. Model 2 has the lowest DIC value, indicating the increasing predictive

power of the model by the use of spatially-varying diffusion parameter. Another important

conclusion based on the DIC values is that the models with spatially-varying parameters

are preferred, which is an indication of the possible heterogeneous nature of the underlying

process.
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2.9 Discussion

Modeling of spatio-temporal processes with realistic assumptions considered in the hierar-

chical Bayesian finite element-based simulation experiment described in this chapter, such as

the spatially-varying advection parameter, are often intractable using other techniques. The

hierarchical Bayesian finite element-based model, discussed for the sturgeon tracking prob-

lem offers a useful platform to estimate parameters governing the dynamics while providing

predictive tools which could benefit the management of the Missouri River. Although in the

application described in the previous section, the capability of the finite element method

in discretizing the PDE-based process model on irregular spatial grids was not utilized,

such modeling framework could provide a powerful tool for applications where consider-

ing an irregular spatial grid improves the accuracy and interpretability of the model (e.g.,

irregularly-spaced grid cells defined based on distinguished habitats in the river or clusters

of migrating fish population).

An important advantage of considering models with spatially-varying parameters, other

than providing more realistic modeling assumptions, is the interpretability of such models

which helps maintain useful evidence about the behavior of the shovelnose sturgeon during

the spawning process for both the fisheries biologists studying the behavior of the shovelnose

sturgeon, and the managers attempting to make decisions to benefit this species and increase

their spawning success rates.

An overall conclusion about the five different models fitted to the data reveals that the

estimates for the constant diffusion parameters is somewhat invariant to the choice of the

model for the advection parameters (i.e., whether constant or spatially-varying advection
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was included or not). The comparison of the estimates of the diffusion parameters and the

advection parameters in Models 3-5, indicates that the diffusion component is dominant,

yielding smaller values for the advection parameters. Interestingly, the plots for spatially-

varying advection parameters in Models 4 and 5 show a slight increase in the advection

parameter over the spatial domain, indicating a relatively constant behavior of this param-

eter.

The estimates of the model parameters can provide useful information for fisheries biol-

ogists in studying the pre-spawning behavior of shovelnose sturgeon. Such information can

help determine the effect of river management actions (e.g., possible effect of dams block-

ing the upstream migration of fish, or possible effects of spring-rise) on the success of the

spawning process. For example, in Model 2, which was selected as the “best” model con-

sidering its DIC value compared to other models, the spatially-varying diffusion parameter,

as shown in Figure 18, suggests that the increasing rate of diffusion slows down at the 6th

grid node (around river mile 270) and increases with a slower rate up to the 8th grid cell

(around river mile 334) and the rate of increase for the diffusion parameter is slower for the

river miles higher than 334. Such a change in the rate of increase and value of the diffusion

parameter could provide insight about a location where the fish migration rate decreases

(e.g., due to a change in the environmental and physical conditions, or establishment of

territory in a specific segment of the river) which could be a possible indication to where

and when the spawning happened. However, since the same pattern is not apparent for

all the realizations of the MCMC algorithm, the statistical significance of this result is not

evident and no definitive conclusions can be made. Finally, making definitive conclusions
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about the spawning behavior of fish based on such indications is not recommended until

more data has been acquired.

2.10 Conclusion

A PDE-based hierarchical Bayesian model to address the modeling issues related to an

uncertain diffusion process on regular or irregular domains was developed. The methods

described in this chapter provide an effective approach to address the modeling of complex

PDE-based spatio-temporal processes in the presence of uncertainty. Critically, the finite

element method can be employed to allow for modeling the process in its natural and

realistic domain, which often includes irregular geometries for environmental and physical

processes.

The hierarchical Bayesian modeling approach presented in this chapter also allows for

considering efficient parameterization of the PDE-based dynamical model, possibly in-

cluding spatially-varying parameters, which yields flexible models with strong interpretive

power.
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Table 1: Posterior mean values for the parameters
of the 2-D advection-diffusion simulation

Parameter Posterior mean 95 % CIs

αx -0.055 (-0.0577, -0.0522)
αy 0.0152 (0.0118, 0.0186)
βx 0.0138 (0.0117, 0.0158)
βy 0.0161 (0.0133, 0.0189)
σ2

ε 0.0017 (.0016, .0019)
σ2

η 0.0053 (.0048, .0059)

Table 2: Hyperparameters
used in the constant diffu-
sion model for the shovel-
nose sturgeon tracking prob-
lem (Model 1)

Hyperparameter Value

β̃ 1
σ2

β 0.1
qε 2.1
rε 9.091
qη 2.1
rη 9.091

Table 3: Hyperparameters used in
the spatially-varying diffusion model
for the shovelnose sturgeon tracking
problem (Model 2)

Hyperparameter Value

β̃ 1
Σβ 0.01×R(0.01)
qε 2.1
rε 9.091
qη 2.1
rη 9.091
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Table 4: Hyperparameters
used in the advection-
diffusion model for the
shovelnose sturgeon tracking
problem (Model 3)

Hyperparameter Value

β̃ 1
σ2

β 0.01
α̃ 0
σ2

α 1
qε 2.1
rε 9.091
qη 2.1
rη 9.091

Table 5: Hyperparameters used in
the advection-diffusion model for the
shovelnose sturgeon tracking prob-
lem (Model 4)

Hyperparameter Value

β̃ 1
σ2

β 0.01
α̃ 0
Σα 0.01×R(0.01)
qε 2.1
rε 9.091
qη 2.1
rη 9.091
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Table 6: Hyperparameters used in
the advection-diffusion model for the
shovelnose sturgeon tracking prob-
lem (Model 5)

Hyperparameter Value

β̃ 1
Σβ 0.01×R(0.01)
α̃ 0
Σα 0.01×R(0.01)
qε 2.1
rε 9.091
qη 2.1
rη 9.091

Table 7: Posterior mean and 95% CIs for the uni-
variate model parameters in the shovelnose sturgeon
migration problem (Model 1)

Parameter Posterior Mean 95% CI

β 0.127 (-0.0117, 0.2835 )
σ2

ε 0.0903 (0.0203, 0.2697)
σ2

η 0.6215 (0.2211, 1.5108)

Table 8: Posterior mean and 95% CIs for the uni-
variate model parameters in the shovelnose stur-
geon migration problem (Model 2)

Parameter Posterior Mean 95% CI

σ2
ε 0.0789 (0.018, 0.2851)

σ2
η 8.811 (1.3914, 35.8683)
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Table 9: Posterior mean and 95% CIs for the uni-
variate model parameters in the shovelnose stur-
geon migration problem (Model 3)

Parameter Posterior Mean 95% CI

α -0.0668 (-0.5139, 0.4394)
β 0.1275 (-0.0108, 0.2916)
σ2

ε 0.08131 (0.0185, 0.2791)
σ2

η 2.0183 (0.5408, 7.1612)

Table 10: Posterior mean and 95% CIs for the uni-
variate model parameters in the shovelnose stur-
geon migration problem (Model 4)

Parameter Posterior Mean 95% CI

β 0.1299 (-0.0077, 0.2995)
σ2

ε 0.0773 (0.0188, 0.258)
σ2

η 2.6446 (0.6527, 9.363)

Table 11: Posterior mean and 95% CIs for the uni-
variate model parameters in the shovelnose stur-
geon migration problem (Model 5)

Parameter Posterior Mean 95% CI

σ2
ε 0.0763 (0.0189, 0.2501)

σ2
η 2.7248 (0.7703, 8.7204)
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Table 12: DIC values for all five different models for the
shovelnose sturgeon tracking problem

Model (parameters) DIC Value

Model 1: Diffusion Eq.(β) 498.7
Model 2: Diffusion Eq.(βsp) 245.5
Model 3: Advection-Diffusion Eq.(α, β) 425.5
Model 4: Advection-Diffusion Eq.(αsp, β) 385.0
Model 5: Advection-Diffusion Eq.(αsp, βsp) 358.5
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3 Semiparametric Zero-Inflated Models for Multi-

variate Count Processes

3.1 Introduction

The problem of having a large proportion of zero values is a common characteristic of

data obtained from environmental and ecological studies involving counts of abundance,

presence-absence or occupancy rates (Clarke and Green 1988; Welsh et al. 1996; Martin

et al. 2005; Berry et al. 2005). Ignoring and excluding zero values from the analysis of

data obtained from field studies can result in loss of important information. For example,

when studying abundance or presence-absence of species in ecological studies, having a

large proportion of zero values might be an indication of the following: (1) the species is

rare or endangered, (2) the species is hard to detect, or (3) a combination of cases (1)

and (2), a rare species that is hard to detect. The problem of dealing with rare species

and low probability of detection is very common in ecological and biological studies and so

zero-heavy data is often obtained from such studies. Thus, standard distributions such as

Poisson, binomial and negative-binomial do not provide a good fit. Zero-inflated modeling

is an appropriate approach to modeling zero-heavy data which allows the model to account

for the large proportion of zero values (e,g,. Lambert 1992; Hall 2000).

Two popular models that account for data with excess zeros are the zero-inflated Poisson

(ZIP) and the zero-inflated negative binomial (ZINB). The ZIP model is especially useful in

analyzing count data with a large number of zero observations, whereas the ZINB model is

more appropriate for cases where an upper bound exists for the response. The ZIP model

has been applied to horticulture (Hall 2000), manufacturing (Lambert 1992), and various
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other fields of study including health operations (Wang et al. 2002), meteorology (Wikle and

Anderson 2003), and ecology (Welsh et al. 1996; Martin et al. 2005). Given the large number

of zeros that often occur in data obtained from environmental studies and possible non-linear

covariate effects in such problems, a semiparametric ZIP modeling approach for multivariate

count processes is proposed. An application of the modeling approach to fisheries data is

discussed with the goal of determining which factors are related to zero-inflation probability

for a fish species, and which factors are related to catch rates of fish, while accounting for

dependence among species. The modeling approaches for the species considered in this

problem provides a practical example for a general modeling technique to analyze fisheries

data with similar characteristics (i.e., excess zeros and dependence structure among certain

species).

The models discussed in this chapter are based on a novel statistical approach for im-

plementation of semiparametric zero-inflated models for multivariate count processes in

hierarchical Bayesian framework. Although the modeling approach discussed in this chap-

ter is intuitive and very useful for environmental and ecological applications, no examples

of such modeling approaches were found in the literature.

3.2 Modeling Dependencies Among Species

The problem of modeling dependencies among species is of particular interest to ecologists

and biologists since there is little information about the interactions among species in a com-

munity (e.g., predator-prey relationships), as well as between species and the environment

(i.e., natural habitat). The fact that such dependencies existing in natural communities

could possibly originate from several different sources transforms the task of modeling such
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phenomena into a challenging scientific problem. In this chapter, two different modeling

schemes are considered to address different types of dependencies.

For example, let Y1 = (y11, y12, . . . , y1n)′ and Y2 = (y21, y22, . . . , y2n)′ where yji indi-

cates the ith observation for species j (i = 1, . . . , n and j = 1, . . . , J), denote correlated

counts with excess zeros, assumed to have zero-inflated Poisson distributions, marginally.

Thus,

Y1 ∼

{
0 w.p. p1,0,

Poisson(µ1) w.p. 1− p1,0,

and

Y2 ∼

{
0 w.p. p2,0,

Poisson(µ2) w.p. 1− p2,0,

and Cov(Y1,Y2) > 0. The covariance structure can be defined in different fashions. The

most popular approach to modeling correlated counts is to characterize a covariance struc-

ture through a multivariate distribution for the log of the Poisson intensities (i.e. µi’s

for i = 1, 2.). Another approach to modeling correlated counts defines a covariance struc-

ture using a common latent Poisson process, yielding a multivariate Poisson distribution

(Johnson et al. 1997; Kocherlakota and Kocherlakota 1992). In this chapter, two different

models based on these different approaches for modeling dependencies among species with

application to a fisheries problem will be discussed.

3.3 Semiparametric Hierarchical Bayesian Modeling Approach
to Modeling Multivariate Count Processes

Semiparametric models are useful tools that allow for non-linear relationships between the

response variable and covariates through functions of continuous variables (covariates).

Semiparametric approaches to modeling zero-inflated count data, although providing a nat-
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ural setting for modeling “real-world” phenomena where non-linear relationships among

variables often exist, are rare in the literature (e.g., Fahrmeir and Echavarria 2006; Lam

et al. 2006).

Penalized spline regression is considered as one of the most attractive and a relatively

straightforward method for implementing scatterplot smoothing (Ruppert et al. 2003). Fol-

lowing Ruppert et al. (2003) a semiparametric regression model can be written as

yi = f(xi) + εi,

where εi are i.i.d. N(0, σ2
ε ), yi and xi denote the response and independent variables,

respectively, and f(·) is a smooth function. There are various choices for the smooth

function including smooth functions constructed using cubic splines, B-splines, truncated

polynomials, radial splines among other basis functions.

Generalized additive models (GAMs) and in particular, the generalized P-spline model,

an extension of penalized spline regression to generalized linear models (GLMs), provides

a flexible framework for scatterplot smoothing in the context of GLMs. The hierarchical

Bayesian treatment of penalized spline regression models is very easy to implement using

WinBUGS (Crainiceanu et al. 2006).

In Bayesian analysis, the use of low-rank thin-plate splines is more appealing than

other bases functions, due to mixing properties of the MCMC chains. In particular, when

compared to other bases (e.g., truncated polynomials), the parameters of the low-rank

thin-plate splines have smaller posterior correlation which improves mixing in the context

of MCMC (Crainiceanu et al. 2006). The low-rank thin plate representation of the smooth
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function, f(·), is

f(x,θ) = β0 + β1x +
K∑

k=1

uk|x− κk|3, (3.26)

where θ = (β0, β1, u1, . . . , uK)′ is the vector of regression coefficients, and κ1 < κ2 < . . . <

κK denote fixed knots. The number of knot locations, K, should be considered large enough

to ensure the desired flexibility. A common choice for knots is the sample quantiles of the

x’s (i.e. unique predictor variables); for example, κk is the sample quantile corresponding

to probability k
K+1 . To penalize for overfitting,

n∑

i=1

[yi − f(xi, θ)]2 +
1
τ
θ′Dθ,

is minimized, where τ is the smoothing parameter and D is a known positive semi-definite

penalty matrix. The penalty matrix for the thin-plate splines is the (K+2)×(K+2) matrix

D =
[

02×2 02×K

0K×2 ΩK

]
,

where the entries of the sub-matrix ΩK penalize coefficients of |x − κk|3. The penalized

spline regression model can be written as a linear mixed model (LMM)(Brumback et al.

1999)

Y = Xβ + ZKu + ε, (3.27)

where X is the matrix of covariates, ZK is an n × K matrix with the element (i, k) as

|xi − κk|3 , β and u are the regression coefficients for the non-penalized and penalized

covariates, respectively, and cov
([

u
ε

])
=

[
σ2

uΩ
−1
K 0

0 σ2
ε In

]
(e.g., Crainiceanu et al.
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2006). Using the reparameterizations b = Ω1/2
K u and Z = ZKΩ1/2

K , model (3.27) can be

rewritten as

Y = Xβ + Zb + ε, (3.28)

where cov
([

b
ε

])
=

[
σ2

b IK 0
0 σ2

ε In

]
(Crainiceanu et al. 2006). The mixed model (3.28)

is a flexible form for the MCMC-based computations to estimate the smoothing parameter

τ since we have τ = σ2
b

σ2
ε
. The estimation can also be conducted in a frequentist setting using

Best Linear Unbiased Predictor (BLUP) or Penalized Quasi-Likelihood (PQL) estimation.

3.3.1 Multivariate Normal Distribution Modeling Approach

The multivariate normal distribution is a popular choice for accounting for dependencies

among multiple response variables. Multivariate normal distributions have also been used

in modeling multivariate count data. For example, a popular method to analyze correlated

count data is to utilize a multivariate normal correlation structure in a Poisson-lognormal

regression model (Aitchison and Ho 1989; Chib and Winkelmann 2001). The semipara-

metric zero-inflated model based on a multivariate normal distribution for the log-linear

components of the model can be written in general form as,

Y ∼

{
0 w.p. p,

Poisson(µ) w.p. 1− p,
(3.29)

log(µ) = β0 + Xβ + f(Xs) + ε, (3.30)

logit(p) = γ0 + Uγ, (3.31)

where Y =
[

Y1

Y2

]
denotes the observations, µ =

[
µ1

µ2

]
denotes the Poisson intensities,

p =
[

p1

p2

]
denotes the zero-inflation probability, and ε ∼ N(0,Σ). The vectors of re-

gression coefficients denoted by β and γ, β0 and γ0 are random intercepts for the models,
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and Xn×pX and Un×pU (pX and pU denote the number of covariates in the log-linear and

logistic models, respectively) are matrices of covariates of interest with elements represent-

ing indicator variables corresponding to the covariates, as well as the continuous variables

modeled parametrically. The continuous variables to be modeled non-parametrically are

placed in matrix Xs. The smooth function f(.) in (3.30) is based on thin-plate splines as

defined by (3.26), and can be written as

f(xs, θ) = α0 + α1x
s +

K∑

m=1

bm|xs
m − κm|3,

with,

bm ∼ N(0, σ2
b ).

The logit function, commonly used in generalized linear models (GLMs) is defined as ( Mc-

Cullagh and Nelder 1989):

logit(p) = log
(

p
1− p

)
.

Note that the intercepts are considered random to help account for uncertainties such as

sampling errors and possible covariates that were excluded from the analysis. Also, note

that no additive error term is included in the logistic regression model since inclusion of

such term could possibly create identifiability issues in the estimation procedure (Hall 2000).

However, no such identifiability problems were detected regarding to the error term included

in the log-linear portion of the model.

3.3.2 Multivariate Poisson Distribution Modeling Approach

Perhaps a more natural choice for modeling correlated counts is using multivariate discrete

distributions such as a multivariate Poisson (MVPoisson) distribution. However, the compu-
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tational difficulties involved in fitting such models have traditionally prohibited researchers

from using such an approach. Recent advances in hierarchical Bayesian modeling and de-

velopment of computational methods such as MCMC, have provided easy implementation

of multivariate discrete distributions (e.g., MVPoisson).

Definition: Let Y1 and Y2 denote variables from a bivariate Poisson distribution. The

bivariate Poisson distribution is defined as

(Y1,Y2) ∼ BivPoisson(λ1,λ2, λ3), (3.32)

which is based on the joint distribution of the variables

Y1 = Z1 + Z3,

and,

Y2 = Z2 + Z3,

where Z1, Z2, and Z3 are mutually independent Poisson random variables with mean and

variances λ1, λ2, and λ3, respectively (Kocherlakota and Kocherlakota 1992; Johnson et al.

1997).

Assuming Y1 and Y2 denote variables from a bivariate Poisson distribution, the covari-

ance between Y1 and Y2 is

cov(Y1,Y2) = cov(Z1 + Z3,Z2 + Z3) = var(Z3) = λ3,

and the correlation coefficient between Y1 and Y2 is

corr(Y1,Y2) =
λ3√

(λ1 + λ3)(λ2 + λ3)
.
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The joint probability mass function derived by Campbell (1938) is

P(Y1 = y1,Y2 = y2) = e−(λ1+λ2+λ3)

min(y1,y2)∑

i=0

λ
y1−i
1 λ

y2−i
2 λi

3

(y1 − i)!(y2 − i)!i!
. (3.33)

The bivariate Poisson distribution motivates the construction of a simple, yet intuitive,

bivariate zero-inflated model which can be easily generalized to multivariate cases. The

existing literature on models based on multivariate zero-inflated distributions is sparse and

available models are often over-parameterized (e.g., Li et al. 1999). For the bivariate Poisson

variables described previously, let Z1, Z2, and Z3 denote mutually independent random

variables from a zero-inflated Poisson distribution. Thus,

Z1 ∼

{
0 w.p. p1,

Poisson(λ1) w.p. 1− p1,

Z2 ∼

{
0 w.p. p2,

Poisson(λ2) w.p. 1− p2,

and,

Z3 ∼

{
0 w.p. p3,

Poisson(λ3) w.p. 1− p3,

where p1, p2, and p3 denote the zero-inflation probability for Z1, Z2, and Z3, respectively.

Thus, Y1 = Z1 + Z3 and Y2 = Z2 + Z3 follow a bivariate Poisson distribution with excess

zeros (i.e., bivariate ZIP). The distributional assumption for Z3 in cases where there is no

information available to inform the zero-inflation probability could be modified to a regular

Poisson distribution to avoid identifiability issues in the modeling procedure.

A semiparametric hierarchical Bayesian model based on the discussed multivariate ZIP
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setting can be written as

Y1 = Z1 + Z3 and Y2 = Z2 + Z3,

Zj ∼

{
0 w.p. pj ,

Poisson(λj) w.p. 1− pj ,
(3.34)

log(λj) = βj,0 + Xβj + f(Xs), (3.35)

logit(pj) = γj,0 + Uγj , (3.36)

for j = 1, 2, 3 which denotes species 1, 2 and the latent process, respectively. This indicates

a simple model for multiple species, assuming only one overall common latent process but

more complex structures are possible. Other notations are similar to the multivariate normal

case described previously.

The next section describes an application of the hierarchical Bayesian framework for

two different semiparametric zero-inflated Poisson models for multivariate count data, as

discussed in this section, implemented using WinBUGS.

3.4 Application: Modeling Catch Per Unit Area (CPUA)

In this section, models of fish catch per unit area resulting from multiple gears for two

benthic fish species in the Missouri River are considered and the application of a hierarchical

Bayesian modeling framework is discussed.

3.4.1 Study Background

In 1995, the United States Geological Survey (USGS) and the Montana Department of Fish,

Wildlife, and Parks commenced a study to look at benthic fishes in the warm-water portion

of the Missouri River system (Berry and Young 2001; Berry et al. 2005). The Missouri

River extends 2,339 miles from southwest Montana to the Mississippi River. Benthic fish
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are fish that live or feed on the bottom of the river and are of particular interest because

of their sensitivity to changes in habitat. The main goal of the study was to evaluate the

status, distribution, and habitat associations of these fishes in the Missouri River to provide

data necessary for improvement in their management.

Included in the Missouri River benthic fishes study were 26 different species of benthic

fishes ( Berry et al. 2005). To analyze the data, researchers divided the Missouri River into

three zones; the upper zone or “least-altered zone” (LA), the middle or “inter-reservoir”

zone (IR), and the lower or “channelized zone” (CH) (see Figure 28). The LA zone included

the lower Yellowstone River. The IR zone was characterized by short riverine segments

between the six large mainstream reservoirs. The CH zone was channelized for navigation

and flows are controlled by discharges from upstream dams and by inputs from tributaries.

Each zone was then divided into segments creating a total of twenty seven segments for the

entire river. The river was partitioned into 10-100 km long segments based on geomorphic

(e.g., tributaries, geology) and constructed features (e.g., impoundments, channelization,

urban areas). Although there were twenty seven segments included in the study design,

there were only fifteen segments sampled during the three years of the study considered

here (Figure 28). The LA zone includes segments 3, 5 and 9, the IR zone includes segments

7, 8, 10, 12, 14 and 15, and the CH zone includes segments 17, 19, 22, 23, 25 and 27.

The six primary macrohabitats found in the river were identified. These macrohab-

itats were defined within segments to be “distinctive, repeatable natural and man-made

physical features” (Berry and Young 2001). In particular, macrohabitats were the inside

bend (ISB), outside bend (OSB), channel cross-over (CHXO), tributary mouth (TRM),
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secondary channel-connected (SCC), and secondary channel not-connected (SCN) as shown

in Figure 29. The three macrohabitats associated with bends (ISB, OSB and CHXO) were

considered under the label BEND, resulting in a total of four different macrohabitats for

statistical purposes. The averaging of the three BEND macrohabitats was necessary because

they were not selected independently (i.e., all three were sampled at each bend).

Common to fisheries field studies, the data obtained are based on multiple gears and

include a large proportion of zeros which makes the analysis of this data complicated. Using

standard parametric statistical methods on data from each gear separately, Berry et al.

(2005) excluded several river segments and macrohabitats from the analysis due to high

percentage of zero observations (i.e., violation of normality and homogeneity of variance

assumptions). This resulted in limitations on making comprehensive conclusions about the

complete domain of the study. In particular, the analyses conducted by Berry et al. (2005)

were limited by: 1) a large percentage of zero observations in the data set that caused loss of

power due to having to combine data at larger spatial and temporal scales, and 2) separate

analyses for each gear. These problems created issues and constraints on the usage of the

standard classic parametric statistical methods (such as ANOVA). Our goal was to develop

and implement a modeling framework which would allow us to give meaningful ecological

interpretations based on the model results and raise the predictive precision of the model

in the presence of the realistic constraints as described above. The hope is that the type of

gear, macrohabitat, segment and year will help identify characteristics that explain where

certain species are most likely to populate. Also of interest is the large number of zeros in

the data that cannot justifiably be deleted from the analysis. Therefore, these zeros must
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somehow be accounted for in the modeling process. The chosen model for this data is the

ZIP model, which will account for those parameters that help explain the mean fish count

as well as those that explain the zero-inflation probability (i.e. excess zero observations).

3.4.2 Data Collection

For each sampling effort, a simple collect and count method was used for catching the fish

where the number of fish, the fish species, and size of area sampled (estimated by width of

gear and distance covered as described in Berry et al. 2005) were recorded. Each year, for

each segment, researchers fished using as many as four of the five different gears chosen for

this study to collect fish within each of the four randomly chosen macrohabitats. Not all

gears were used in all macrohabitats because no gear was considered effective at sampling

them all. Out of these five gears, four are active gears (benthic trawl, beach seine, drifting

trammel net and electrofishing) and one is a passive gear (stationary gillnet). Active gears

are the gears that are moved over the sampling area to collect fish. Passive gears are

stationary in that they are located within the sampling area for a specific amount of time

to collect fish. In our analysis, due to uncertainty about transformation of sampled area

for the passive gear into a scale comparable to the active gears, only the active gears were

considered. Finally, not only do the different gears cover different areas, but each is designed

differently making each more prone to catch different species and sizes of fish. All of these

factors combined affect the number of fish caught in any particular sample by any particular

gear.

The process of collecting and counting the fish was repeated for three years from 1996

to 1998 (see Berry et al. 2005 for details). The process of data collection included multiple
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sub-samples of fish using different gears within each segment over randomly chosen macro-

habitats. The data used in this analysis and the analysis done by Berry et al. (2005) was

obtained after combining data in the mesohabitat (smaller scale habitat within a macro-

habitat) and the sub-sample levels resulting in data at the macrohabitat level. This was

necessitated by the varying numbers of sub-samples collected at the mesohabitat level within

the macrohabitat level. An average of the data at each sub-sample level was used to obtain

data at the macrohabitat level, so that each sub-sample had an equal level of influence on

the resulting means.

Smallmouth buffalo (Ictiobus bubalus) and bigmouth buffalo (Ictiobus cyprinellus) are

two commercially important species that can be found in many habitats in rivers. These

two species were collected and counted as part of the benthic fishes study in the Missouri

River. The resulting data contains observations greater than zero and a large portion of

zero observations (see Figure 30). There are 1477 observations for both smallmouth buffalo

and bigmouth buffalo collected over the three-year period of interest. The observations

for smallmouth buffalo included 73% zeros and the observations for bigmouth buffalo in-

cluded 77% zeros. The correlation coefficient for these two species is 0.63 (based on the

Pearson product-moment correlation) which implies a strong dependence among the two

species. Thus, there is sufficient motivation for considering a zero-inflated modeling ap-

proach, specifically a ZIP model for multivariate counts, to analyze these data where the

zero-inflated model accounts for the high percentage of zero observations and the multivari-

ate distributional assumption accounts for the dependence among these two species.

In this section, semiparametric ZIP models are considered which allow for modeling
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both sources of zeros (i.e., sampling and structural zeros) simultaneously by using the

indicator variables corresponding to gears, macrohabitats and segments as covariates for

modeling the zero-inflation probability. The covariates include data on: four different gears

including electrofishing (EF), benthic trawl (BT), beach seine (BS), and drifting trammel

net (DTN) where BS is considered as a baseline (i.e., set to zero); four macrohabitats

including tributary mouth (TRM), secondary channel-connected (SCC), secondary channel

not-connected (SCN), and Bend with TRM as a baseline; fifteen segments (3, 5, 7, 8, 9, 10,

12, 14, 15, 17, 19, 22, 23, 25, 27) with segment 25 set as a baseline; and three years (1996-

1998) with 1998 set as baseline. Another categorical variable used in the model describes

the substrate composition (sand, gravel, and silt) where silt is considered as a baseline.

Note that the choice of baseline is arbitrary and has no effect on the analysis. There

are also continuous variables that are used as covariates in the modeling process. These

covariates include depth, water temperature, conductivity, turbidity (log(turbidity) is used),

and velocity. In the models described in the next section, water temperature, depth and

log(turbidity) were chosen to be modeled non-parametrically based on exploratory analysis.

3.4.3 Model 1: Multivariate Normal Distribution

Model 1 is based on a multivariate normal distribution for Poisson log-linear regression

components of the model as described in (3.29- 3.31). The model developed in this section
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considers this approach in a semiparametric zero-inflated setting as,

Y ∼

{
0 w.p. p,

Poisson(λ′ diag(a)) w.p. 1− p,

log(λ) = β0 + Xβ + f(Xs) + ε, (3.37)

logit(p) = γ0 + Uγ, (3.38)

where Y =
[

Y1

Y2

]
is an (n1+n2)×1 stacked vector of observations (ni denotes the length of

vector Yi for i = 1, 2), λ =
[

λ1

λ2

]
, p =

[
p1

p2

]
and pj denotes the zero-inflation probability

for j = 1, 2 (species 1 is smallmouth buffalo and species 2 is bigmouth buffalo), a accounts

for the different areas (or “level of effort”) involved in each separate measurement. The

vectors of regression coefficients denoted by β and γ, β0 and γ0 are random intercepts for

the models, and X and U are (n1 +n2)×np matrices of covariates of interest with elements

representing indicator variables corresponding to the variables gear, segment, macrohabitat,

and year, as well as the continuous variables modeled parametrically (np denotes the number

of covariates). The continuous variables to be modeled non-parametrically are placed in

matrix Xs. The smooth function f(·) in (3.37) is based on thin-plate splines as defined

by (3.26), and can be written as

f(xs, θ) = α0 + α1x
s +

K∑

m=1

bm|xs − κm|3,

with,

bm ∼ N(0, σ2
b ).

Note that the covariates in the model correspond to levels of several categorical variables

which make the interpretation of the intercepts impractical. However the intercepts are
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considered random to help account for uncertainties such as sampling errors and possible

covariates that were excluded from the analysis. The coefficients of the model corresponding

to a specific level of a categorical variable are interpreted as the mean fish CPUA in that

level relative to the baseline level (the level set to zero). The choice of baseline level for a

categorical variable is arbitrary.

The hierarchical Bayesian implementation of the model requires the assignment of prior

densities to unknown parameters. Here, vague but proper prior densities are considered as

follows,

α0 ∼ N(0, 100),

α1 ∼ N(0, 100),

β0 ∼ N(0, 100),

βi ∼ N(0, 100), for i = 1, . . . , pX ,

γ0 ∼ N(0, 100),

γi ∼ N(0, 100), for i = 1, . . . , pU ,

Σ−1 ∼ Wishart(I2×2, 2),

τb ≡ 1/σ2 ∼ Gamma(mean = 0.01, var = 100),

where pX and pU denote the number of covariates included in vectors X and U, respectively.

3.4.4 Model 2: Multivariate Poisson Distribution

In Model 2 the fish counts for smallmouth buffalo and bigmouth buffalo are assumed to

follow a bivariate Poisson distribution with excess zeros as described in previous section.
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Thus, a semiparametric hierarchical Bayesian model based on this assumption is

(Y1,Y2),∼ BivPoisson(λ′1diag(a),λ′2diag(a), λ′3diag(a)), (3.39)

log(λj) = βj,0 + Xβj + fj(Xs), (3.40)

logit(pj) = γj,0 + Uγj , (3.41)

where j = 1, 2, 3, correspond to parameters of independent Poisson variables Z1, Z2, and

Z3, respectively. The other parameters and notations are defined similarly as described for

Model 1.

The prior densities required for unknown parameters in a hierarchical Bayesian setting,

are assigned using vague but proper prior distributions, similar to model 1.

3.5 Results

The inference is based on the posterior distribution of unknown parameters, as described

in previous sections. The freeware WinBUGS (Spiegelhalter et al. 2003) is used to conduct

MCMC computations. The results are obtained from WinBUGS after accounting for a

“burn-in” period for the MCMC chains to guarantee convergence to the target posterior

distribution (i.e., chain achieves stationarity). The number of iterations for the Gibbs sam-

pler was 30000, where the first 10000 iterations were considered as “burn-in” and posterior

inference was conducted using the last 20000 realizations obtained from the MCMC. Con-

vergence of the Gibbs sampler was determined based on visual inspection of three MCMC

chains with different initial values for each.

83



3.5.1 Model 1 Results

The results for parameters of the log-linear models are shown in Tables 13 and 15 for

the log-linear model (3.37) for smallmouth buffalo and bigmouth buffalo. The results for

parameters of the log-linear model for smallmouth buffalo (Table 13) imply significant effects

for log(turbidity) (posterior mean=-0.424). For the categorical variables, bend and SCN

have significantly lower mean CPUA compared to SCC and TRM (baseline), segment 14 has

a significantly lower mean CPUA compared to all other segments (including the baseline,

segment 25), the mean CPUA for years 1996 and 1997 is significantly lower than the baseline

(1998). The mean CPUAs for BT, DTN and EF are significantly lower than BS (baseline).

The results for bigmouth buffalo (Table 15) show significant effects for conductivity

(posterior mean= -9.991). The significant patterns based on the categorical variables include

significantly low mean CPUA in segments 5, 12, 19 and 23 compared to all other segments

including segment 25 (baseline), and significantly low mean CPUA for BT compared to all

other gears including BS (baseline). The mean CPUA for gravel is significantly lower than

sand and silt (baseline).

The only parameters that significantly impact the zero-inflation probability of small-

mouth buffalo are segment 9 with a significantly decreasing effect (compared to the other

segments including the baseline, segment 25), electrofishing with a significantly decreasing

effect (compared to the other gears including the baseline, beach seine), depth (poste-

rior mean= -6.404), conductivity (posterior mean= -11.889), water temperature (posterior

mean= 1.184), and gravel with a significantly decreasing effect (compared to sand and silt)

(Table 14). For bigmouth buffalo, the only parameters that significantly impact the zero-
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inflation probability is depth with a significantly increasing effect (posterior mean= -16.652)

(Table 16). The posterior mean values for the correlation matrix of the multivariate nor-

mal effects is 0.92 with 95% credible intervals (CIs) (0.82, 0.975 ) suggesting a very strong

relationship between the two species under study.

Figure 31 shows the thin-plate spline fit as well as 95% CIs for water temperature,

log(turbidity) and depth for both species. The non-linear effect of water temperature is

strong for both species with peaks around 15 to 25 degrees for smallmouth buffalo and

below 15 degrees for bigmouth buffalo, indicating the habitat choice of these two species.

The effect of log(turbidity) has a slight departure from linearity for both species, showing

a decreasing trend for smallmouth buffalo and an increasing trend for bigmouth buffalo.

The fitted functions for depth show a slightly non-linear effect for both species with peaks

around 5 to 8 meters.

3.5.2 Model 2 Results

The results for parameters of the log-linear models are shown in Table 17-19 for the log-linear

model (3.40) for smallmouth buffalo and bigmouth buffalo. The results for parameters of the

log-linear model for smallmouth buffalo (Table 17) imply significant effects for conductivity

(posterior mean=-1.481) and water temperature (posterior mean= 0.327). For the categor-

ical variables, bend has significantly lower mean CPUA compared to other macrohabitats

including TRM (baseline) and SCN has a significantly higher mean CPUA compared to

other macrohabitats including TRM (baseline), segments 3, 10, 17, 19 and 27 have signifi-

cantly higher mean CPUA compared to all other segments (including the baseline, segment

25), the mean CPUA for year 1996 is significantly lower than the 1997 and the baseline

85



(1998). The mean CPUAs for BT and DTN are significantly lower than BS (baseline).

Gravel has a significantly lower mean CPUA compared to sand and silt (baseline).

The results for bigmouth buffalo (Table 19) show significant effects for water tempera-

ture (posterior mean= 20.077). The significant patterns based on the categorical variables

include significantly low mean CPUA for bend compared to all other macrohabitats, signifi-

cantly lower mean CPUA for segments 3, 9 and 12 compared to all other segments including

segment 25 (baseline), significantly higher mean CPUA for segments 8 and 14 compared to

all other segments including segment 25 (baseline), and significantly lower mean CPUA for

gravel and sand compared to silt (baseline).

The only parameters that significantly impact the zero-inflation probability of small-

mouth buffalo are bend and SCC with a significantly decreasing effect (compared to SCN

and TRM), SCN with a significantly increasing effect (compared to bend, SCC and TRM),

electrofishing with a significantly decreasing effect (compared to the other gears including

the baseline, beach seine), segments 7 and 14 with a significantly increasing effect (compared

to all other segments including the baseline, segment 25), depth (posterior mean= -3.5),

conductivity (posterior mean= -7.8), velocity (posterior mean= -14.5), water temperature

(posterior mean= 1.5), and gravel with a significantly decreasing effect (compared to sand

and silt)(Table 18). For bigmouth buffalo, the only parameters that significantly impact the

zero-inflation probability are bend and SCC (compared to SCN and TRM), and segments

3 and 7 with a significantly decreasing effect (compared to all other segments including the

baseline, segment 25), segment 5 with a significantly increasing effect (compared to all other

segments including the baseline, segment 25)(Table 20).
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Figure 32 shows the thin-plate spline fit as well as 95% CIs for water temperature,

log(turbidity) and depth for both species. The non-linear effect of water temperature is

strong for both species with peaks around 15 to 25 degrees for smallmouth buffalo and

below 15 degrees for bigmouth buffalo, indicating the habitat choice of these two species.

The effect of log(turbidity) has a slight departure from linearity for both species, showing a

decreasing trend for smallmouth buffalo and an increasing trend for bigmouth buffalo. The

fitted functions for depth show a non-linear effect for smallmouth buffalo with peak around

5 to 8 meters. However, the effect of depth for bigmouth buffalo is only slight non-linear,

showing a strong decreasing trend.

3.5.3 Model Comparison

There are several approaches for conducting model comparison and selection in hierarchical

Bayesian settings. Approaches based on Bayes factors, and also measures such as deviance

information criterion (DIC), although gaining popularity among researchers, are either dif-

ficult to implement or difficult to interpret. In the context of zero-inflated modeling, the use

of traditional DIC formulation for mixture models is not recommended (Spiegelhalter et al.

2002). However, there are alternative formulations of DIC available that are appropriate

for cases of mixture models and missing data models (Celeux et al. 2003).

The model comparison approach used in this chapter is based on posterior predictive

loss criteria (Gelfand and Ghosh 1998), which is easy to implement using output from

MCMC posterior simulation. Another advantage of this approach is its powerful and prac-

tical interpretability, specifically in problems where predictive power of the analysis is of

interest. The posterior predictive loss approach considered here is based on a squared error
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loss (Gelfand and Ghosh 1998; Banerjee et al. 2004), where the predictive power of the

model is appraised under a squared error loss function using predictions of replicates of the

observed data, Yl,rep, l = 1, . . . , n.

Under a squared error loss, the posterior predictive loss criterion is

Dk =
k

k + 1
G + P, (3.42)

where

G =
n∑

l=1

(µl − yl,obs)2, and P =
n∑

l=1

σ2
l ,

with µl = E(Yl,rep|y) and σ2
l = Var(Yl,rep|y) representing the mean and the variance of the

predictive distribution of Yl,rep given the observed data y, respectively. In (3.42), G is a

measure of goodness-of-fit and P is a penalty term to avoid overfitting. The model selection

is insensitive to the choice of k (weights on the departure from the observed data) in (3.42).

Finally, the models with better predictive power are the models with lower Dk values. In

this chapter, value of k = 1 is considered to conduct model comparison based on 10000

replicated predictions for each model and for each species. The results based on posterior

predictive loss criteria for both models are presented in Table 21. The results show that

Model 2 (multivariate Poisson) is a better choice for modeling smallmouth buffalo due to

lower D1 value for Model 2 compared to Model 1. The results for bigmouth buffalo indicate

a lower value for D1 for Model 1 (multivariate normal) however a more careful assessment

of the values of G and P for both models indicates that Model 1 (multivariate normal)

tends to “overfit” the data. In general, models that overfit do better on the goodness of fit

(i.e., smaller value for G) but tend to inflate the variance (i.e., larger value for P ) (Banerjee
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et al. 2004).

3.6 Discussion

The smallmouth buffalo and the bigmouth buffalo are closely related species. The results

for Model 1 show a high estimated correlation (obtained using the posterior mean estimates

of the variance components associated with the multivariate normal error) for these two

species with the posterior mean of 0.92. The high correlation could be due to ecologi-

cal and biological similarities among the species, as well as similar habitat preference and

physical attributes of these habitats. The results also present descriptive patterns of abun-

dance of fish, as well as effectiveness of certain gears. The results show that both species

were caught more in deeper water, water temperatures between 15◦C to 20◦C, and lower

log(turbidity). The abundance of both species is significantly lower in some inter-reservoir

segments compared to most other segments. Note that segment 12 includes the Garrison

dam and segment 14 includes the Fort Randall Dam. The bigmouth buffalo is also less

abundant in most channelized segments near Kansas City. The least effective gear for the

bigmouth buffalo is benthic trawl with a significantly lower mean CPUA for this species

and the most effective gear for smallmouth buffalo is beach seine. Both species were caught

less in bend macrohabitats. Smallmouth buffalo are also less abundant in secondary chan-

nel non-connected macrohabitats. Bigmouth buffalo are also less abundant in secondary

channel connected macrohabitats. The temporal pattern for smallmouth buffalo indicates

that the number of smallmouth buffalo has increased in 1998 compared to 1996 and 1997.

Bigmouth buffalo are less abundant in gravel.

The results for Model 2 show mostly similar patterns. However, a higher number of
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variables become significant based on this model. The results show significant effect for wa-

ter temperature with more fish caught at temperatures between 15◦C to 20◦C. The results

also show more smallmouth buffalo were caught at lower log(turbidity), higher depth and

lower conductivity while more bigmouth buffalo were caught at higher log(turbidity), and

in shallower depths. Both species are less abundant in bend macrohabitats. Smallmouth

buffalo are more abundant in secondary channel non-connected. Smallmouth buffalo are

more abundant in most channelized segments and some inter-reservoir segments while big-

mouth buffalo are more abundant in some inter-reservoir segments and are less abundant

in some least-altered segments. Smallmouth buffalo had the lowest mean CPUA in 1996

while bigmouth buffalo were more abundant in 1996. Smallmouth buffalo are less abundant

in gravel. The least effective gears for smallmouth buffalo are BT and DTN while there are

no significant results on the performance of gears for bigmouth buffalo.

Berry and Young (2001) indicate that the spawning of smallmouth buffalo initiates

at 13◦C by rising water levels and increasing temperatures. The results based on the

estimated function fit for both models, as described above, could possibly be related to a

preferred temperature range for spawning, resulting in a higher abundance of fish in water

temperatures between 15◦C and 20◦C. The estimated function for water temperature for

bigmouth buffalo shows a similar pattern to the ones discussed for smallmouth buffalo for

Model 2, although the results for bigmouth buffalo in Model 1 are different. Berry and Young

(2001) indicate that bigmouth buffalo spawning occurs in spring with water temperature

of 14◦C. The estimated function using Model 2 shows a clear change of pattern around

20◦C which could be due to spawning of the species. Berry and Young (2001) indicate that
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smallmouth buffalo typically inhabits large rivers and prefer deep, clear, warm waters. The

results from Model 2 are in agreement with these characteristics. Berry and Young (2001)

also indicate that bigmouth buffalo spawn in spring when water temperatures reach 14◦C

in shallow areas. The results from Model 2 are in complete agreement with their findings.

Berry et al. (2005) indicate that smallmouth buffalo was rarely found in high velocity

habitats (e.g., channel cross-over, and outside bend). Models 1 and 2 results are in agree-

ment with their findings, showing lower catch in bends. Berry et al. (2005) also showed

that smallmouth buffalo were usually found in TRMs and SCNs with low turbidity, low

percentage of slit, and high temperatures. Model 1 results are in partial agreement with

their findings, showing high mean CPUA for TRMs and low log(turbidity). However, Model

2 results show higher mean CPUA for both TRMs and SCNs and high temperatures. Berry

et al. (2005) did not find any significant segment contrasts for smallmouth buffalo. However,

they reported that catches were lower in the IR segments than the LA and CH segments,

and lower in segment 12 downstream from Garrison Dam than upstream. Model 1 results

show segment 14 has a significantly lower mean CPUA compared to all other segments,

and Model 2 results show that segments 3, 10, 17, 19 and 27 have significantly higher mean

CPUA compared to all other segments.

Berry et al. (2005) show that bigmouth buffalo was abundant in all segments with

highest total catch in the IR zone. Models 1 and 2 results partially support their findings

(some of the IR zone segments have higher mean CPUA). Berry et al. (2005) show that most

of the bigmouth buffalo catch was done using beach seine or by electrofishing. However,

they do not show statistical analysis due to low catch. Model 1 results show that more
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fish were caught using beach seine than benthic trawl (Model 2 results show no significant

differences among gears). Berry et al. (2005) also state that bigmouth buffalo were more

present in low velocity, high temperatures and finer substrates. However, they mention this

finding is based on visual inspection of the catch per effort plots. Model 2 results show

higher catch in high temperatures and finer substrates (significantly higher mean CPUA

for slit compared to gravel and sand).

A comparison between the results obtained from both models show very similar results

for the parameters of the logistic regression models. However, Model 2 results show a higher

number of significant parameters and also the results are in agreement with findings from

previous studies. Considering this and also based on the model comparison results discussed

in the previous sections, there is strong evidence that Model 2 provides a more suitable and

accurate modeling framework to study these species. However, care should be given to the

generalization of such a statement when analyzing data from other species. Here, there is

a very strong dependence among the two species which can be modeled better through a

joint distribution assumption.

3.7 Conclusion

In this chapter, semiparametric hierarchical Bayesian models for multivariate count pro-

cesses were discussed and an application to modeling fish catch per unit area based on

observations on two closely relates species of benthic fish in the Missouri River was pre-

sented. Two different modeling approaches to analyze these data were considered and results

were discussed. The modeling frameworks described in this chapter allow for several issues

such as correlated counts, possible non-linear relationships, and parameter uncertainties,
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as well as excess zeros that are common problems in environmental studies to be modeled

simultaneously.
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Table 13: Model 1- Posterior mean and 95% Cred-
ible Intervals (CIs) for the log-linear model param-
eters for smallmouth buffalo

Parameter Posterior Mean 95% CI

intercept -5.744 (-8.584, -2.978)
Bend -1.849 (-2.879, -0.381)
SCC -0.734 (-1.919, 0.686)
SCN -2.109 (-3.899,-0.414)
Seg3 1.597 (-0.498,3.615)
Seg5 -0.618 (-2.426,1.177)
Seg7 -0.129 (-2.008,1.451)
Seg8 -1.329 (-3.038,0.318)
Seg9 -1.289 (-3.304,0.321)
Seg10 -0.034 (-2.051,1.934)
Seg12 -1.657 (-4.539,0.847)
Seg14 -1.955 (-4.070,-0.246)
Seg15 -1.147 (-2.757,0.386)
Seg17 -0.558 (-2.049,0.990)
Seg19 -0.338 (-2.130,1.237)
Seg22 -0.029 (-1.604,1.567)
Seg23 -0.932 (-2.480,0.423)
Seg27 -0.685 (-2.637,1.281)
Year96 -1.701 (-3.094,-0.508)
Year97 -0.986 (-1.812,-0.191)
BT -13.039 (-17.200,-9.889)
DTN -11.023 (-12.790,-9.043)
EF -4.816 (-5.991,-3.463)
Depth 0.335 (-0.024,0.694)
Cond -0.029 (-0.464,0.346)
LogTurb -0.424 (-0.624,-0.090)
Gravel -0.986 (-2.401,0.539)
Sand 0.5696 (-0.148 , 1.363)
WaterTemp 0.112 (-0.028 ,0.228)
Velocity 0.881 (-0.793,2.288)
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Table 14: Model 1- Posterior mean and 95% Credi-
ble Intervals (CIs) for the logistic regression model
parameters for smallmouth buffalo

Parameter Posterior Mean 95% CI

intercept -15.178 ( -28.640, -3.525)
Bend -3.856 ( -11.630, 2.265)
SCC -2.440 ( -11.570, 5.331)
SCN -5.544 ( -18.390, 4.250)
Seg3 -2.502 ( -15.260, 7.856)
Seg5 -7.950 ( -18.010, 1.972)
Seg7 7.023 ( -2.981, 17.030)
Seg8 -3.973 ( -17.233, 6.935)
Seg9 -16.891 ( -31.201, -3.562)
Seg10 0.079 ( -10.530, 13.611)
Seg12 4.658 ( -15.786, 20.131)
Seg14 -9.293 ( -22.880, 0.873)
Seg15 8.244 ( -2.979, 18.891)
Seg17 -5.787 ( -22.030, 5.646)
Seg19 4.708 ( -12.620, 15.160)
Seg22 -7.927 ( -19.340, 1.554)
Seg23 -3.574 ( -16.840, 7.198)
Seg27 1.317 ( -13.001, 11.420)
BT -0.201 ( -19.381, 21.411)
DTN -2.940 ( -19.244, 9.639)
EF -13.347 ( -21.762, -6.591)
Depth -6.404 ( -16.260, -0.360)
Cond -11.889 ( -15.980, -7.370)
LogTurb -0.031 ( -1.662, 1.566)
Gravel -13.390 ( -23.930, -5.369)
Sand 1.691 ( -6.980, 8.896)
WaterTemp 1.184 ( 0.606, 1.835)
Velocity -12.336 ( -23.901, 0.817)
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Table 15: Model 1- Posterior mean and 95% Cred-
ible Intervals (CIs) for the log-linear model param-
eters for bigmouth buffalo

Parameter Posterior Mean 95% CI

intercept -13.039 (-17.200, -9.889)
Bend -11.023 (-12.790, -9.043)
SCC -4.816 (-5.991, -3.462)
SCN 0.335 (-0.024, 0.694)
Seg3 -0.029 (-0.464, 0.346)
Seg5 -0.424 (-0.625, -0.090)
Seg7 0.881 (-0.792, 2.288)
Seg8 0.112 (-0.028, 0.228)
Seg9 -0.986 (-2.401, 0.539)
Seg10 0.569 (-0.148, 1.363)
Seg12 -7.371 (-11.170, -4.682)
Seg14 -1.999 (-3.467, 0.116)
Seg15 -1.044 (-2.409, 0.109)
Seg17 -0.993 (-3.647, 1.263)
Seg19 -9.579 (-24.416, -0.539)
Seg22 -1.697 (-5.863, 1.753)
Seg23 -5.238 (-9.652, -1.452)
Seg27 -1.057 (-3.672, 1.614)
Year96 -0.092 (-2.761, 2.521)
Year97 -0.064 (-4.104, 3.782)
BT -10.147 (-20.560, -1.724)
DTN -0.775 (-4.269, 2.797)
EF -1.541 (-4.103, 1.532)
Depth -1.660 (-5.168, 1.385)
Cond -9.991 (-23.760, -1.397)
LogTurb -1.601 (-6.652, 2.142)
Gravel -5.299 (-8.657, -2.061)
Sand -1.088 (-2.422 , 0.457 )
WaterTemp 2.038 (-0.369 , 4.013)
Velocity -0.843 (-4.528, 2.362)
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Table 16: Model 1- Posterior mean and 95% Cred-
ible Intervals (CIs) for the logistic regression model
parameters for bigmouth buffalo

Parameter Posterior Mean 95% CI

intercept 2.871 ( -7.518 , 11.340)
Bend 9.084 ( -5.818 , 21.414)
SCC -13.507 ( -27.340 , 3.998)
SCN 0.596 ( -15.791 , 24.480)
Seg3 2.763 ( -17.230 , 22.291)
Seg5 -5.217 ( -22.290 , 10.640)
Seg7 -1.355 ( -19.870 , 13.170)
Seg8 2.160 ( -13.831 , 17.720)
Seg9 -3.176 ( -20.611 , 12.970)
Seg10 -3.250 ( -20.370 , 12.320)
Seg12 1.229 ( -19.650 , 16.120)
Seg14 -2.199 ( -18.780 , 11.920)
Seg15 0.020 ( -17.450 , 16.450)
Seg17 -2.871 ( -17.390 , 14.100)
Seg19 -0.138 ( -19.190 , 17.290)
Seg22 1.859 ( -16.790 , 23.860)
Seg23 2.167 ( -18.861 , 20.140)
Seg27 1.673 ( -15.432 , 23.481)
BT 3.685 ( -17.661 , 22.831)
DTN -0.096 ( -19.730 , 23.640)
EF -7.463 ( -27.730 , 9.381)
Depth -16.652 ( -27.850 , -8.463)
Cond -0.566 ( -5.526 , 3.706)
LogTurb -2.354 ( -5.725 , 0.441)
Sand 3.484 ( -15.260 , 20.561)
Gravel 7.154 ( -10.230 , 21.960)
WaterTemp 0.229 ( -0.942 , 0.960)
Velocity -3.732 ( -19.371 , 13.660)
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Table 17: Model 2- Posterior mean and 95% Credi-
ble Intervals (CIs) for the log-linear model parame-
ters for smallmouth buffalo

Parameter Posterior Mean 95% CI

intercept -15.648 (-18.200, -12.989)
Bend -2.616 (-3.934, -1.093)
SCC -2.246 (-3.865, 0.017)
SCN 8.926 (4.704, 12.430)
Seg3 4.865 (2.268, 7.361)
Seg5 -4.452 (-21.060, 6.750)
Seg7 0.378 (-2.954, 3.800)
Seg8 -8.314 (-23.190, 3.791)
Seg9 -1.183 (-4.066, 0.844)
Seg10 5.389 (1.774, 9.450)
Seg12 6.969 (-3.421, 10.920)
Seg14 1.502 (-0.705, 3.792)
Seg15 -6.254 (-20.900, 5.283)
Seg17 4.622 (1.257, 7.741)
Seg19 5.208 (2.143, 8.143)
Seg22 -2.759 (-20.101, 4.991)
Seg23 -4.818 (-19.831, 5.833)
Seg27 5.269 (1.675, 9.080)
Year96 -4.359 (-7.707, -1.797)
Year97 -0.153 (-1.272, 0.944)
BT -10.583 (-19.980, -4.895)
DTN -8.892 (-14.180, -4.228)
EF -2.752 (-5.894, 0.507)
Depth 0.085 (-0.693, 0.729)
Cond -1.481 (-2.198, -0.735)
LogTurb -0.044 (-0.536, 0.317)
Gravel -4.106 (-6.515, -1.616)
Sand 0.075 (-1.489, 1.377)
WaterTemp 0.327 (0.260, 0.406)
Velocity -0.047 (-2.642, 2.039)
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Table 18: Model 2- Posterior mean and 95% Credi-
ble Intervals (CIs) for the logistic regression model
parameters for smallmouth buffalo

Parameter Posterior Mean 95% CI

intercept -14.145 ( -31.660, -0.640)
Bend -10.059 ( -17.920, -0.882)
SCC -6.679 ( -12.740, -0.705)
SCN 13.331 ( 3.909, 24.352)
Seg3 -5.972 ( -13.961, 7.425)
Seg5 4.798 ( -10.301, 21.520)
Seg7 -11.494 ( -23.131, -1.246)
Seg8 3.471 ( -17.522, 18.920)
Seg9 -6.301 ( -18.860, 1.844)
Seg10 0.057 ( -8.201, 9.428)
Seg12 12.152 ( -0.025, 23.142)
Seg14 -8.902 ( -20.050, -0.786)
Seg15 5.305 ( -12.841, 28.511)
Seg17 -5.699 ( -14.900, 5.379)
Seg19 -2.383 ( -10.210, 7.527)
Seg22 2.458 ( -9.583, 15.181)
Seg23 1.544 ( -18.021, 23.951)
Seg27 3.895 ( -3.636, 14.610)
BT 0.429 ( -21.880, 16.450)
DTN -5.635 ( -20.251, 6.897)
EF -6.609 ( -12.850, -2.517)
Depth -3.510 ( -6.428, -1.031)
Cond -7.841 ( -13.080, -4.984)
LogTurb -0.257 ( -1.247, 1.057)
Gravel -7.417 ( -19.051, -0.486)
Sand 1.859 ( -3.067, 7.889)
WaterTemp 1.488 ( 1.009, 2.280)
Velocity -14.524 ( -31.303, -5.544)
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Table 19: Model 2- Posterior mean and 95% Credible
Intervals (CIs) for the log-linear model parameters
for bigmouth buffalo

Parameter Posterior Mean 95% CI

intercept -10.583 (-19.980 , -4.895)
Bend -8.892 (-14.180 , -4.228)
SCC -2.752 (-5.894 , 0.507)
SCN 0.085 (-0.693 , 0.729)
Seg3 -1.481 (-2.198 , -0.735)
Seg5 -0.044 (-0.536 , 0.317)
Seg7 -0.047 (-2.642 , 2.039)
Seg8 0.327 (0.260 , 0.406)
Seg9 -4.106 (-6.515 , -1.616)
Seg10 0.075 (-1.489 , 1.377)
Seg12 -20.624 (-22.860 , -18.520)
Seg14 8.277 (4.690 , 11.750)
Seg15 0.355 (-1.928 , 3.106)
Seg17 1.307 (-2.105 , 4.985)
Seg19 -1.405 (-19.800 , 14.940)
Seg22 -1.625 (-19.860 , 14.050)
Seg23 -3.771 (-20.462 , 11.180)
Seg27 -3.033 (-15.490 , 7.375)
Year96 12.781 (10.549 , 14.820)
Year97 11.941 (-3.020 , 21.290)
BT -6.221 (-18.680 , 6.693)
DTN -0.338 (-1.472 , 1.148)
EF -4.661 (-9.448 , 1.808)
Depth -1.257 (-19.752 , 13.850)
Cond -3.508 (-21.830 , 13.690)
LogTurb -2.086 (-19.731 , 14.672)
Gravel -14.579 (-20.732 , -8.054)
Sand -2.712 (-4.665 , -0.695)
WaterTemp 20.077 (17.640 , 22.090)
Velocity -3.012 (-20.990 , 12.250)
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Table 20: Model 2- Posterior mean and 95% Credi-
ble Intervals (CIs) for the logistic regression model
parameters for bigmouth buffalo

Parameter Posterior Mean 95% CI

intercept -6.609 ( -12.850, -2.516)
Bend -3.510 ( -6.428, -1.032)
SCC -7.841 ( -13.080, -4.984)
SCN -0.257 ( -1.247, 1.057)
Seg3 -14.524 ( -31.303, -5.544)
Seg5 1.488 ( 1.009, 2.280)
Seg7 -7.418 ( -19.051, -0.486)
Seg8 1.859 ( -3.067, 7.889)
Seg9 -4.701 ( -19.391, 4.042)
Seg10 10.077 ( -1.339, 19.870)
Seg12 -5.858 ( -21.461, 3.244)
Seg14 2.294 ( -9.110, 11.850)
Seg15 0.498 ( -22.740, 20.490)
Seg17 -1.236 ( -18.910, 16.910)
Seg19 2.306 ( -13.320, 16.792)
Seg22 -4.685 ( -25.412, 6.871)
Seg23 7.529 ( -1.760, 16.090)
Seg27 -0.053 ( -14.070, 12.900)
BT -3.849 ( -20.311, 7.681)
DTN -10.416 ( -26.470, 2.595)
EF -8.460 ( -19.390, 2.992)
Depth 3.473 ( -9.566, 22.280)
Cond 5.229 ( -12.400, 21.240)
LogTurb 2.899 ( -15.182, 21.630)
Gravel 4.741 ( -19.410, 21.740)
Sand 12.471 ( -12.320, 29.081)
WaterTemp 3.842 ( -3.549, 14.270)
Velocity 3.308 ( -15.641, 26.590)
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Table 21: Model comparison results for Model 1 (multivariate nor-
mal) and Model 2 (multivariate Poisson) based on posterior predic-
tive loss criteria

Species Model G P D1

Smallmouth buffalo Multivariate Poisson 108.65 415.17 469.49
Bigmouth buffalo Multivariate Poisson 77.56 585.46 624.24
Smallmouth buffalo Multivariate Normal 48.58 465.84 490.13
Bigmouth buffalo Multivariate Normal 12.69 590.21 596.55
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Figure 28: Missouri River Benthic Fishes Study area from Montana to its confluence
with the Mississippi River in Missouri (♦ = Least-Altered (LA), © = Inter-Reservoir
(IR), Channelized (CH) Segments).
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Figure 29: Schematic showing macrohabitats sampled during the Benthic Fishes
Study.
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Figure 30: Frequency of total fish count for smallmouth buffalo and bigmouth buffalo
(grouped).
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Figure 31: Model 1 (Multivariate Log-Normal)-Thin-plate spline smooth function fit
(solid line) and 95% CIs (dashed lines) for water temperature for both species: (a)
Water temperature (smallmouth buffalo), (b) Water temperature (bigmouth buffalo),
(c) Log(Turbidity) (smallmouth buffalo), (d) Log(Turbidity) (bigmouth buffalo), (e)
Depth (smallmouth buffalo), and (f) Depth (bigmouth buffalo).
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Figure 32: Model 2 (Multivariate Poisson)-Thin-plate spline smooth function fit (solid
line) and 95% CIs (dashed lines) for water temperature for both species: (a) Wa-
ter temperature (smallmouth buffalo), (b) Water temperature (bigmouth buffalo),
(c) Log(Turbidity) (smallmouth buffalo), (d) Log(Turbidity) (bigmouth buffalo), (e)
Depth (smallmouth buffalo), and (f) Depth (bigmouth buffalo).
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4 Semiparametric Spatio-Temporal Zero-Inflated

Models for Multivariate Count Processes

4.1 Introduction

Spatio-temporal count observations obtained from environmental and ecological processes

are often characterized by zero-inflation due to sampling complexities involved in such

surveys. The application of zero-inflated modeling for spatio-temporal processes is recent

and there are only a few examples of spatio-temporal extensions of zero-inflated modeling

available in the literature (e.g., Wikle and Anderson 2003; Fernandes et al. 2006).

Another important characteristic of environmental and ecological problems is that often

interaction and intricate relationships among different sub-processes (i.e., correlated zero-

inflated count processes) exist. These interdependencies among the sub-processes are often

ignored in most modeling attempts. To address these issues, in this chapter, the semi-

parametric zero-inflated modeling of multivariate count processes described in the previous

chapter, is extended to spatio-temporal count processes. Finally, an application to jointly

modeling “less damaging” and “more damaging” tornado counts is presented, followed by

a discussion of the results and general conclusions.

The method discussed in this chapter is a novel method for modeling of multivariate

spatio-temporal count processes with excess zeros while accounting for non-linear effects

of covariate information. The methodology presented in this chapter is new and no other

examples of such modeling attempts can be found in the statistical modeling literature.

Such a modeling approach can be very useful for environmental and ecological applica-

tions where count processes often exhibit characteristics such as excess zeros and non-linear
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relationships.

4.2 Modeling Approach

In this section, a spatio-temporal extension of a multivariate zero-inflated Poisson distribu-

tion, as described in the previous chapter, is considered. Thus,

Y1t = Z1t + Z3t,

and,

Y2t = Z2t + Z3t,

for t = 1, . . . , T where (Y1t, Y2t) ∼ BivPoisson(λ1t, λ2t, λ3t), Z1t, Z2t, and Z3t are mutually

independent Poisson random variables with mean and variances λ1t, λ2t, and λ3t, respec-

tively. Thus, the covariance between Y1t and Y2t is

cov(Y1t, Y2t) = cov(Z1t + Z3t, Z2t + Z3t) = var(Z3t) = λ3t,

for t = 1, . . . , T .

To construct a multivariate spatio-temporal zero-inflated Poisson model let Z1t, Z2t, and

(possibly) Z3t denote mutually independent random variables from a zero-inflated Poisson

distribution. Thus,

Z1t ∼

{
0 w.p. 1− p1t,

Poisson(λ1t) w.p. p1t,

Z2t ∼

{
0 w.p. 1− p2t,

Poisson(λ2t) w.p. p2t,

and,

Z3t ∼

{
0 w.p. 1− p3t,

Poisson(λ3t) w.p. p3t,
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where p1t, p2t, and p3t denote the zero-inflation probability for Z1t, Z2t, and Z3t, respectively.

Thus, Y1t = Z1t +Z3t and Y2t = Z2t +Z3t follow a bivariate Poisson distribution with excess

zeros. The common latent process, Z3t, can be assumed to follow either a standard Poisson

distribution or a zero-inflated Poisson (ZIP) distribution. However, if one considers the case

where Z3t is assumed to follow a ZIP distribution, care should be given in parameterizing

the model as the estimation of the zero-inflation probability might be impossible where there

are no covariates that can be linked to the common zero-inflation process. A semiparametric

approach to modeling multivariate ZIP as described in the previous chapter can be easily

extended to the spatio-temporal case. Another useful semiparametric approach in spatio-

temporal settings is to take advantage of nonparametric techniques in a dimension reduction

capacity. This idea has been implemented for an application of the semiparametric spatio-

temporal multivariate ZIP model which will be discussed in the next section.

4.3 Application: Modeling Tornado Counts

In this section, an application of semiparametric spatio-temporal zero-inflated modeling

of multivariate count processes is considered for a “real world” problem in climatological

analysis of tornado report counts. The analysis is based on tornado reports submitted to

the National Weather Service (NWS) over years 1953-1995. These data are archived at

the National Oceanic and Atmospheric Administration (NOAA) Storm Prediction Center

(SPC). Each tornado report includes the time and location of the initial and final observation

of the tornado, estimated tornado path width, damage rating, estimated dollar amount

of damage produces by the tornado, and other forms of severe weather observed in the

immediate vicinity of the tornado. A 2400 km × 1700 km grid of 50-km boxes was overlaid
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on the continental U.S. with the upper left grid box centered at approximately 45.5◦ N, 105◦

W, resulting in 2160 grid boxes. Only tornado report counts east of 105◦ W were considered,

due to very infrequent occurrence of tornadoes within the Rocky Mountains and along the

west coast. For every year, the number of observations at the initial positions of all tornadoes

(F0-F5) that occurred within each grid box were tallied. The “F”, which stands for “Fujita

scale”, is a rating system for tornado damage where F0 represents “minimal damage” and

F5 represents “complete destruction”.

Wikle and Anderson (2003) analyzed these data using a spatio-temporal zero-inflated

Poisson model, due to a significant number of zero counts over the domain (approximately

90% of the observations are zero). Using this modeling approach, they found evidence of

a significant temporal trend with spatial variation in the data and a significant association

of an index of El Niño activity with the tornado count reports over the continental U.S.,

with substantial regional variability. Figure 33, shows a time series for the annual index

of the El Niño/Southern Oscillation (ENSO) phenomenon, as given by the Niño3.4 index

(Trenberth 1997), for years 1953-2001. The approach utilized in Wikle and Anderson (2003)

is extended to the case of multivariate count processes in order to conduct the analysis based

on two separate zero-inflated count processes for “less damaging” tornadoes (F0-F1) and

“more damaging” tornadoes (F2-F5), while accounting for possible correlation among these

processes. Accounting for such a correlation seems both necessary and realistic since the

presence of common climatological phenomena and processes that impact the development

of all (less damaging and more damaging) tornadoes is very possible (however the nature of

such associations might differ). The assumption of zero-inflation is necessary since both F0-
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F1 and F2-F5 tornado report counts include a high percentage of zero values (approximately

83% zeros for F0-F1 tornado counts and approximately 93% zeros for F2-F5 tornado counts).
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Figure 33: Time series for the annual index of the El Niño/Southern Oscillation
(ENSO) phenomenon for years 1953-2001.

4.4 Model

In this section a semiparametric hierarchical Bayesian modeling framework will be consid-

ered to model the two groups of tornado counts (F0-F1 and F2-F5) jointly. In order to

model the effect of ENSO on these tornado counts, a threshold modeling approach (Tong

1993) will be considered for the log-linear regression component of the model. In the logistic

regression part of the model for the zero-inflation probability, population for each observa-

tion is used as a covariate. This was motivated by a previous study (Anderson et al. 2007)

where the effect of population on identifying tornadoes was found to be influential.
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4.4.1 Data Model

Let Y1,t = Z1,t + Z3,t indicate F0-F1 tornado counts at time t and Y2,t = Z2,t + Z3,t

indicate F2-F5 tornado counts at time t where Yj,t = (Yj,1(s1), . . . , Yj,T (sn))′ for j = 1, 2,

Zk,t = (Zk,1(s1), . . . , Zk,T (sn))′ for k = 1, 2, 3, for locations s1, . . . , sn and times t = 1, . . . , T .

Here, Z1,t and Z2,t are assumed to follow a zero-inflated distribution with intensity λj,t =

(λj,1(s1), . . . , λj,T (sn))′, and zero-inflation probability pj,t = (pj,1(s1), . . . , pj,T (sn))′, j =

1, 2 (i.e., Zj,t ∼ ZIP (λj,t,pj,t)). In this problem, Z3,t is assumed to follow a Poisson

distribution with intensity λ3,t = (λ3,1(s1), . . . , λ3,T (sn))′. Thus,

Zj,it|λj,it, pj,it ∼





Poisson(λj,it), w.p. pj,it,

0 w.p. 1− pj,it,
(4.43)

and,

Z3,it|λ3,it ∼ Poisson(λ3,it) (4.44)

for i = 1, . . . , n, j = 1, 2, and t = 1, . . . , T .

4.4.2 Process Models

The process models include log-linear threshold regression model for Poisson intensity and

logistic regression for the zero-inflation probability. The log-linear regression model for

log(λj,t) = µj + βj,0t +





βj,1xt + εj,1t, xt ≥ c1

βj,2xt + εj,2t, c1 < xt ≤ c2

βj,3xt + εj,3t, xt > c2

(4.45)

113



for t = 1, . . . , T , βj,i = (βj,i(s1), . . . , βj,i(sn))′ for i = 0, . . . , 3, and εj,kt ∼ N(0, σ2
εI), for

j = 1, 2, 3 and k = 1, 2, 3. Constants c1 and c2 are 33.3rd and 66.7th percentiles of the

ENSO time series.

The threshold modeling approach is considered due to known non-linear behavior of the

atmospheric response to ENSO which consists of the episodic warming and cooling of ocean

waters with periods of approximately 3-5 years (Hannachi 2001; DeWeaver and Nigam

2002). Such time-varying behavior of ENSO phenomenon could effectively be addressed

using a threshold modeling approach as considered in this section. The ENSO time series

shown in Figure 33 consists of three different states of the ENSO phenomenon with highest

values corresponding to El Niño, the lowest values corresponding to La Niña, and the middle

range of values corresponding to normal seasons where neither El Niño nor La Ninña were

occurring.

A semiparametric regression modeling approach based on thin-plate spline functions is

considered in order to significantly reduce dimensionality for the model. Thus, the spatially-

indexed regression parameters, βj,i (j = 1, 2, 3 and i = 0, . . . , 3) can be written as

βj,i = Φbj,i, (4.46)

where Φ is an n×k matrix of thin plate spline bases, and k is chosen to be much smaller than

the model dimensionality (k ¿ n = 2160) which provides a method to reduce dimensionality

in the model. In this problem k = 20 is used, but k = 50 was also considered to assess

sensitivity analysis of the model to the choice of k. Knot selection was implemented using

the Clara algorithm in the R SemiPar package.
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The logistic regression for the zero-inflation probability can be written as

logit(pj,t) = αj,0 + xpαj + ηj , ηj ∼ N(0, σ2
j,ηI) (4.47)

where xp denotes population (for each grid box) and j = 1, 2. Note that there is a known

identifiability issue with considering a semiparametric model for the zero-inflation proba-

bility (see Fahrmeir and Echavarria 2006).

4.4.3 Parameter Models

The hierarchical Bayesian framework considered requires the assignment of prior distribu-

tion for all the unknown parameters. The following relatively vague prior distributions are

considered for the unknown parameters:

bj,i ∼ N(0, 10× I),

µj ∼ N(0, 100× I),

αk,0 ∼ N(0, 100),

αk,1 ∼ N(0, 100),

τj,εi ≡ 1/σ2
j,εi
∼ Gamma(mean = 1, var = 10),

τk,η ≡ 1/σ2
k,η ∼ Gamma(mean = 1, var = 10),

for j = 0, . . . , 3 and k = 1, 2. All the hyperparameters are considered to be known as

indicated above.

4.4.4 Model Implementation

The joint posterior distribution of the hierarchical model described above, cannot be evalu-

ated analytically and numerical simulation methods must be used. This numerical simula-
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tion can be done using MCMC methods and in particular Gibbs sampler with Metropolis-

Hastings steps can be employed to generate samples from the posterior distribution. The

posterior distribution of all the processes and parameters given the observations, and full-

conditional distributions are shown in Appendix B. The MCMC strategy for threshold model

is similar to the method described in Carlin et al. (1992). Metropolis-Hastings steps are

needed within the Gibbs algorithm to generate samples from the conditional distributions

for λ’s and p’s.

The MCMC simulations were run for 100,000 iterations from which the first 20,000

iterations were ignored as “burn-in”. The convergence of the MCMC algorithm was checked

by visual inspection of the chains.

4.5 Results

The results for spatially-varying coefficients of the log-linear models are shown in Figures 34-

37. These results are based on MCMC posterior means. Figure 37 shows the posterior means

and standard deviations for the µ spatial process for both F0-F1 and F2-F5 tornadoes.

Figure 38 shows the results for the parameters of the log-linear model for the common

Poisson latent process. Figure 39 shows the spatial pattern of zero-inflation probability as

presence (probability > 0.5)-absence (probability< 0.5)) over the domain of the study.

The results for the log-linear models for the Poisson intensities show substantially dif-

ferent spatial patterns for both categories. For example, the normal and El Niño seasons

seem to have reverse effects on the spatial variability of tornado counts, while the effect of

the La Niña seasons show similar spatial patterns for both categories of tornadoes. Table 22

shows the posterior means for the univariate parameters. The effect of population does not
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seem to be significant for either of the tornado categories.

Table 22: Posterior mean and 95% Credible In-
tervals (CIs) for the univariate model parame-
ters

Parameter Posterior Mean 95% CI

α1,0 -0.46 (-1.9,0.56)
α1,1 -0.04 (-0.79, 0.67)
α2,0 -0.85 (-2.65, 0.43)
α2,1 0.24 (-0.52, 0.98)
σ2

1,1,ε 0.874 (0.79, 0.96)
σ2

1,2,ε 1.004 (0.87, 1.16)
σ2

1,3,ε 1.006 (0.89, 1.12)
σ2

2,1,ε 0.82 (0.75, 0.88)
σ2

2,2,ε 1.8 (1.64, 1.96)
σ2

2,3,ε 1.94 (1.76, 2.12)
σ2

1,η 1.93 (1.23, 2.68)
σ2

2,η 1.68 (1.01, 2.43)

4.6 Discussion

The results for the tornado climatological effects are very smooth due to the low number

of spline knot points selected for the model. However, these estimates enable us to get a

sense of the large scale spatial patterns of tornado counts with regards to these effects. For

example, Figures 36(a) and (c) show substantially different temporal patterns for the F0-F1

and F2-F5 tornado counts. The spatial field for the posterior means of the temporal trend

of F0-F1 tornado counts show an increasing trend in the west plains, slight increase in the

Great Lakes area and nearly constant everywhere else (Figure 36(a)). The spatial field for

the posterior means of the temporal trend of F2-F5 tornado counts shows increasing trend
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(a) (b)

(c) (d)

(e) (f)

Figure 34: Posterior means and standard deviations for F0-F1 tornadoes: (a) La Niña
seasons (β1) (posterior mean), (b) La Niña seasons (β1) (posterior standard devia-
tion), (c) Normal seasons (β2) (posterior mean), (d) Normal seasons (β2) (posterior
standard deviation), (e) El Niño seasons (β3) (posterior mean), (f) El Niño seasons
(β3) (posterior standard deviation).
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(a) (b)

(c) (d)

(e) (f)

Figure 35: Posterior means and standard deviations for F2-F5 tornadoes: (a) La Niña
seasons (β1) (posterior mean), (b) La Niña seasons (β1) (posterior standard devia-
tion), (c) Normal seasons (β2) (posterior mean), (d) Normal seasons (β2) (posterior
standard deviation), (e) El Niño seasons (β3) (posterior mean), (f) El Niño seasons
(β3) (posterior standard deviation).
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(a) (b)

(c) (d)

Figure 36: Posterior means and standard deviations for linear trend : (a) F0-F1
(β0) (posterior mean), (b) F0-F1 (β0) (posterior standard deviation), (c) F2-F5 (β0)
(posterior mean), (d) F2-F5 (β0) (posterior standard deviation).

120



(a) (b)

(c) (d)

Figure 37: MCMC results for µ spatial process for: (a) F0-F1 (µ1) (posterior mean),
(b) F2-F5 (µ2) (posterior mean), (c) F0-F1 (µ1) (posterior standard deviation), (d)
F2-F5 (µ2) (posterior standard deviation)
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(a) (b)

(c) (d)

Figure 38: Posterior means for the common Poisson latent process (Z3): (a) Linear
trend (β0), (b) La Niña seasons (β1), (c) Normal seasons (β2),(d) El Niño seasons
(β3).
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(a)

(b)

Figure 39: Presence-absence map of zero-inflation probabilities for years 1953-2001.
Value 1 indicates zero-inflation probability higher than 0.5 and value 0 indicates zero-
inflation probability lower than 0.5: (a) F0-F1, (b) F2-F5.
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in the west plains (similar to the trend for F0-F1), increasing trend in the northern part of

the domain, and also slight increase in the southern part of the domain (Figure 36(c)).

Figures 34 and 35 show climatological effects of ENSO on tornado counts for F0-F1 and

F2-F5 tornadoes, respectively. Comparison of Figures 34(a) and 35 (a) show a similar spatial

pattern of increasing tornado counts for both groups during La Niña seasons with a general

north to south variation. However the intensity of F0-F1 tornadoes is substantially higher.

This indicates that overall, during La Niña seasons, higher numbers of tornadoes occur

in the southern part of the U.S. Figures 34(e) and 35 (e) indicate substantially different

patterns for F0-F1 and F2-F5 tornadoes during El Niño seasons. For F0-F1 tornadoes,

during El Niño seasons, more tornadoes occur in the south (Texas and Louisiana) and the

northeast U.S. For F2-F5 tornadoes, more tornadoes are observed in the northern part of the

U.S. during El Niño seasons. The spatial patterns of tornado counts during normal seasons

(i.e., no El Niño or La Niña) is substantially different for F0-F1 and F2-F5 tornadoes with

higher F2-F5 tornado counts in the south, southeast and midwest, and higher F0-F1 tornado

counts in the northeast. Most of the general results are in agreement with previous studies

(Wikle and Anderson 2003). However, such modeling perspective for studying F0-F1 and

F2-F5 tornadoes separately, while accounting for correlation, has not been done previously,

which makes these results unique and not directly comparable to results of previous studies.

Figure 38 shows the posterior means for the parameters of the log-linear model for the

Poisson intensity of the common latent process. Note that the intensity of the common

latent process accounts for the correlation between the F0-F1 and F2-F5 tornadoes pro-

cesses. Figure 38(a) shows the linear temporal trend for the latent processes which shows
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an increasing trend for the correlation between the F0-F1 and F2-F5 counts in the west

plains (New Mexico and Colorado), slight increase in the midwest areas (intersection of

Missouri, Kansas, Oklahoma and Arkansas; Tennessee and Kentucky), and slight increase

in the northern part of the U.S. (Great Lakes area and South Dakota). Figure 38(b)-(d)

show the climatological effects of ENSO on the intensity of the common latent process.

Figure 38(b) shows increasing correlation between F0-F1 and F2-F5 tornadoes during La

Niña seasons in the southern U.S. with the highest values around the Florida panhandle.

Figure 38(c) shows increasing correlation between F0-F1 and F2-F5 tornadoes during nor-

mal seasons in the northeast U.S. and slight increase for the southwest. Figure 38(d) shows

increasing correlation between F0-F1 and F2-F5 tornadoes during El Niño seasons in the

southern part of the U.S., with the highest values in Louisiana and Mississippi.

Figure 39 shows a presence-absence of the zero-inflation probability based on the mean

of the zero-inflation probability estimates for 1953-2001. This map could be considered as

an indicator of the areas with excess zero tornado counts. For example, there is a large area

in northern Mississippi with high zero-inflation probability of F2-F5 tornados. However the

same area has low zero-inflation probabilities for F0-F1 tornadoes. This could indicate the

higher number of occurrences of F0-F1 than F2-F5 tornadoes in that area or could possibly

indicate misclassification of tornadoes resulting in under counts of F2-F5 tornadoes. The

results for the population effects do not show a significant effect of population density on the

zero-inflation probabilities. These results are not necessarily in disagreement with a previous

study where such influence was found to be important (Anderson et al. 2007). Anderson

et al. (2007) showed that population influence on tornado detectability is significant in
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most urban and highly populated areas they studied. The model described in this chapter,

as it is, does not have the capability to model the effect of population in such a fashion

(i.e., distinction between high and low-populated areas). However, the discussed results can

motivate future studies to investigate this hypothesis.

4.7 Conclusion

In this chapter, extension of semiparametric hierarchical Bayesian modeling to multivari-

ate zero-inflated spatio-temporal count processes was considered and an application was

discussed. Modeling such processes is a complex problem. The methodology discussed in

this chapter, although based on a joint distributional perspective, is easy to implement in

a hierarchical modeling framework. The application discussed can motivate studies of dif-

ferent environmental processes with similar characteristics (correlated zero-inflated count

processes).
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5 Multiresolution and Dynamic Resolution Hier-

archical Models for Spatio-Temporal Dynamical

Processes

5.1 Introduction

The complexity of spatio-temporal processes and large number of observations common in

environmental and physical sciences necessitates the use of hierarchical models with sparse

structures and efficient parameterizations. In this chapter two different dimension-reduced

modeling approaches for such spatio-temporal processes are described. These approaches

take advantage of multiresolution and spline-based modeling methods in a Bayesian hi-

erarchical framework and use the minimum number of effective parameters possible to

allow sub-processes at different scales to interact. The computational efficiency obtained

by applying these multiresolution methods to such hierarchical models make these methods

preferable to traditional covariance-based space-time statistical methods for very large data

sets.

Using hierarchical Bayesian approaches, efficient modeling of complex spatio-temporal

processes is possible via mapping the dynamics to hidden processes which are substantially

lower in dimensionality. Such approaches are especially useful for cases where an efficient

parameterization of state transition functions (i.e., propagation matrix) is difficult (or im-

possible), and/or the underlying dynamics of the spatio-temporal process in not known.

Only a few examples of multiresolution methods for spatial and spatio-temporal processes

were found in the statistical modeling literature (e.g., Nowak 1998; Nychka et al. 2002;

Ferreira et al. 2006; for spatio-temporal models see Berliner et al. 1999; Wikle et al. 2001;
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Johannesson et al. 2007).

The first method discussed in this chapter is designed to utilize multiresolution bases

(e.g., wavelets) in order to model a spatio-temporal process by accounting for the dynamical

relationships between a low-order subset of the multiresolution coefficients. The flexibility

that this approach provides allows for rigorous modeling of the process at any level of

detail that is of interest (i.e., coarse or fine scales of information). Such a framework

provides a flexible tool for modeling dynamical spatio-temporal processes that accommodate

computational efficiency (e.g., modeling large scale dynamics using coarse scale information)

and resolution (modeling small scale dynamics using fine scale information). However,

it should be noted that often there is a trade-off between computational efficiency and

resolution. By using this approach, one has the option to emphasize one or the other as

desired based on the application for which it is being used.

The second method described in this chapter describes spline-based models for dynam-

ical spatio-temporal processes. Traditionally, spline-based models with fixed knot locations

have been used to model spatial and spatio-temporal processes (e.g., van der Linde et al.

1995; O’Connell and Wolfinger 1997; Luo and Wahba 1998; Guttorp et al. 2006). How-

ever, there is uncertainty in defining the effective number of knots as well as the location

of knots. In the method described in this chapter, spline-based models are considered with

both fixed and moveable knots where the location of the moveable knots can be estimated

dynamically. Such complex structure can be easily implemented in a hierarchical Bayesian

modeling framework. Similar to the first method, using this approach, the modeling of the

dynamical spatio-temporal processes can be implemented using a low-dimensional subset of
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spline coefficients.

5.2 Methods

This section describes two different multiresolution methods for modeling spatio-temporal

processes. The models constructed using these two methods are fundamentally different

and thus the performance of these models are not necessarily comparable. However, the

general modeling framework is very similar in the sense that for both methods the modeling

of the spatio-temporal processes can be implemented using a low number of coefficients in

the spectral space.

In the hierarchical modeling framework, the data model can be written as

Zt = Ktut + εt, (5.48)

where Zt = (z1t, . . . , zmt)′ denotes observations at time t from an unobserved spatio-

temporal process ut = (u1t, . . . , unt)′, Kt represent an incidence (or mapping) matrix (with

0 or 1 elements) for time t , and εt ∼ N(0, σ2
εI) represents measurement error. Note that

the dimensionality of Zt and ut can be different and this is allowed by the incidence matrices

(Kt’s).

Often the process ut is high-dimensional (i.e., large n) with substantially lower number

of time points (i.e., small T ). A first-order spatio-temporal dynamic model for this process

can be defined as

ut = Hut−1 + νt, (5.49)

where H is an n×n propagator matrix and νt is a Gaussian noise process which is indepen-

dent in time and correlated in space (i.e., νt ∼N(0,Σν)). However, for environmental studies
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where often the number of locations n is much larger than the number of times T for which

observations are available, it is difficult or impossible to estimate H and Σν . Alternatively,

using spectral methods, the modeling procedure can be conducted on a dimension-reduced

subset or transformation of the process in cases where parameterization of these matrices

(H and Σν) is not possible. In general, a spectral representation of the process at time t

can be written as

ut = Ψat, (5.50)

where Ψ is an n× k (n ¿ k) matrix of basis functions and at is a k × 1 vector of spectral

coefficients. The modeling of the dynamical relationships will be implemented on the hidden

process (at) which has a much lower dimension than the original process (ut). Thus, the

dynamical model can be written as,

at = Mat−1 + ηt, ηt ∼ N(0,Ση), (5.51)

where M = Ψ′HΨ and Ση = Ψ′ΣνΨ. However, this is not helpful since the estimation

of H and Σν is difficult, if not impossible, as discussed previously. Rather, the estimation

of low-dimensional matrices, M and Ση, can be done in the linear dynamical space. In

this section, two different methods for implementing such a dimension-reduced dynamical

modeling approach are discussed.

5.2.1 Method 1: A Multiresolution Hierarchical Model with a Hidden
Dynamic Process

In this section a hierarchical model based on multiresolution bases is considered.
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The process model can be written by first considering the multiresolution transformation

ut = Wαt, (5.52)

where W, similar to Ψ in (5.50), is an n×n matrix of multiresolution bases (e.g., wavelets)

and αt’s are time-varying multiresolution coefficients. For each resolution, j, αt is condi-

tioned on a common underlying dynamical process, bt,

αj
t = Φjbt + γj

t , γj
t ∼ N(0,Σj

γ), (5.53)

where Σj
γ = σ2

γj for simplicity, for each multiresolution scale, j = 0, . . . , J , and the control-

ling dynamics are given by

bt = Hbbt−1 + ηt, ηt ∼ N(0,Ση), (5.54)

where Φj is known with dimensionality nj × p (p ¿ Σjnj) and the dimensionality of bt is

much lower than αt. Alternatively, model 5.54 can applied in each resolution separately

(i.e., bj
t = Hj

bb
j
t−1 + ηj

t , ηj ∼ N(0, Σηj ) for j = 1, . . . , J)). The matrices Hb and Ση are

then given prior distributions

vec(Hb) ∼ N( h̃b,Σh),

Σ−1
ηj ∼Wishart((Sν)−1, ν), for j = 1, . . . , J,

where vec(·) denotes the matrix vectorizing operator (i.e., stacks the columns of a matrix

on top of each other).

The dimension reduction discussed previously is implemented through the Φj matrices.

Using these matrices, a subset of the multiresolution coefficients can be obtained and a
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dynamical model can be considered as described in (5.54). There are many choices for Φj

matrices including mapping matrices which map large-scale or small-scale coefficients to

some or one of multiresolution coefficients (e.g., wavelet coefficients b’s), empirical orthog-

onal functions (EOF′s) in spectral space, and other analytical basis functions of choice.

Figure 40 shows a typical representation of the coefficients of a 2-D wavelet transform.

This representation allows for modeling the dynamics on each resolution separately while

allowing for interactions between scales. For example, the dynamics can be modeled using

the coarsest scale (SJ) which has substantially lower number of coefficients compared to the

original image. This is possible by using Φj matrices as mapping matrices (i.e., matrices

with 0’s and 1’s as elements) which map subsets of a’s to a few number of b coefficients.

s0 s0

s1s1

s1

s0

s3

s2 s2

s2

Figure 40: Schematic for coefficients of a discrete wavelet transform (DWT) of an
image for three levels of resolution. Each level of resolution is shown as Sj where
j = 0, . . . , 3.

Using a hierarchical Bayesian modeling framework, one needs to define prior distribu-

tions for all the unknown parameters. Here, the following relatively vague prior distributions
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are defined for all the unknown parameters

b0 ∼ N(0, 100× I),

h ∼ N(0, 10× I), where h ≡ vec(Hb),

σ2
ε ∼ IG(qε = 2, rε = 9.99),

σ2
γj ∼ IG(qγj = 2, rγj = 9.99),

Σ−1
ηj ∼Wishart(S = 5× I, ν = 20), for j = 1, . . . , J,

Thus, the estimation of model parameters can be carried out using Gibbs sampling. Ap-

pendix C shows all the full-conditional distributions required for the Gibbs sampling algo-

rithm.

5.2.2 Method 2: A Dynamic Resolution Hierarchical Model with Move-
able Knots

A very important task in modeling with basis functions (e.g., spline bases) is determining the

number and topology of the bases (e.g., location of spline knots). Choosing pre-determined

number and location of the knots may yield inflexible and/or ineffective models. This is

particularly important in modeling high-dimensional spatio-temporal processes where ob-

taining a low number of effective bases is important to increase computational efficiency

while maintaining resolution. In the context of spline-based models, often a predetermined

number of fixed knot points are used (e.g., Ruppert et al. 2003). Alternatively, adaptive

spline methods have been proposed to introduce more flexibility into this modeling frame-

work. Some of these methods include time-varying splines (e.g., Harvey and Koopman

1993), Bayesian subset selection for spline models (e.g., Smith and Kohn 1997); Denison
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et al. 1998), Bayesian varying-coefficient spline models (e.g., Biller and Fahrmeir 2001;

Eubank et al. 2004), and free-knot spline models in a Bayesian setting (e.g., Holmes and

Mallick 2003).

In this section, a spline-based hierarchical Bayesian model with dynamical resolution

(i.e. moveable spline knots) is considered. This approach allows for effective modeling

of spatio-temporal processes using a small number of spline bases which are dynamically

chosen. Here, the spectral transformation matrix (Ψ) in (5.50), is assumed to be a time-

varying matrix of thin-plate spline basis functions. This assumption, which introduces extra

flexibility in the model, is accommodated by considering both fixed and moveable knots for

the spline bases. Note that careful treatment of elements of the dynamical model is required

as a consequence of considering moveable knots. For example, let Ψ be an n × k matrix

of spline bases with k − b fixed knots and b moveable knots. Thus, Ψ = Ψ(xm
t ,ym

t ) where

(xm
t ,ym

t ) denote the coordinates for the moveable knots (superscript m indicates that the

coordinates belong to a moveable knot). The spectral representation of the process at time

t can be written as

ut = Ψ(xm
t ,ym

t )at, (5.55)

where the (i, k) element of matrix Ψ is s2
i,k log(si,k), for i = 1, . . . , n, and k = 1, . . . , K, with

si,k =
√

(xi − κk)2 + (yi − κk)2 (κ denotes the set of coordinates of the knots).

In this case at =
[

af
t

am
t

]
where af

t indicates spectral coefficients related to the fixed

knots, and am
t spectral coefficients related to the moveable knot(s). Thus, the dynamical
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model can be defined for coefficients of the fixed knots

af
t = Gaf

t−1 + ηf
t , ηf

t ∼ N(0,Σf
η). (5.56)

Note that keeping track of these moveable coefficients in the MCMC algorithm is difficult,

if not impossible (e.g., two moveable knots could possibly switch locations and the MCMC

algorithm will not be able to recognize such an effect). Moreover, at each time step, these

coefficients could possibly correspond to different knot locations with differing dynamics.

Thus, dynamical treatment of these coefficients is not feasible. However, the coefficients

corresponding to the moveable knots can be estimated non-dynamically by drawing samples

from the full-conditional distributions of these coefficients for each time t.

The estimation of the location of the moveable knots can be conducted by estimating

the coordinates of these knots. Here, a simple random walk model for the coordinates is

considered. Thus,

xm
t = xm

t−1 + νx
t , νx

t ∼ N(0,Σx
ν),

ym
t = ym

t−1 + νy
t , νy

t ∼ N(0,Σy
ν),

where it is assumed Σx
ν = σ2

νxI and Σy
ν = σ2

νyI, for simplicity.

Using a hierarchical Bayesian framework, the estimation of the unknown parameters can

be conducted, after assigning prior distributions to all the unknown parameters, based on

Gibbs sampling with Metropolis-Hastings steps for the estimation of coordinates (xm and
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ym) for the moveable knot. The following relatively vague prior distributions are considered:

am
t ∼ N(0, 10× I), for t = 1, . . . , T,

af
0 ∼ N(0, 10× I),

g ∼ N(0, 100× I), where g ≡ vec(G),

σ2
ε ∼ IG(qε = 2, rε = 9.99),

(Σf
η)−1 ∼Wishart(S = 5× I, ν = 20),

σ2
νx
∼ IG(qη = 2, rk,η = 9.99),

σ2
νy
∼ IG(qη = 2, rk,η = 9.99).

The details for the derivation of the full-conditional distributions are shown in Appendix

D.

5.3 Example: Advection-Diffusion Simulation

In this section a simulation based on a 2-D advection-diffusion equation is considered. The

2-D advection-diffusion equation used to generate the process is similar to that in equation

(2.23) described in Chapter 2. The simulation experiment is considered for a 16 × 16

rectangular shaped domain (4x = 4y = 1 for 50 time steps with 4t = 2. Finally, 50% of

the observations were removed at random for each time t (t = 1, . . . , 50).

The methods described in the previous section are employed to estimate the spatio-

temporal process with “missing data”. Method 1 was used based on a 2-D Daubechies-4

(Daubechies 1988) wavelet transform and the modeling of the dynamics was conducted

using three levels of resolution where only six elements for the dynamical model (i.e., bt =

Hbbt−1 + ηt) were considered. These six elements were chosen such that for the vectorized
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wavelet transform (i.e., at which is a vector of length 256) at each time step, four elements

(the first four elements in vector bt) correspond to the first four wavelet coefficients of

the coarsest scale, S3, one element corresponds to 5th-128th wavelet coefficients (the fifth

element in vector bt), and one element corresponds to the remaining wavelet coefficients,

coefficients 129-256 (the sixth element in vector bt). This was done by using φj mapping

matrices with 0’s and 1’s as elements. Method 2 was employed based on a thin-plate spline

representation with twenty eight fixed knots and four moveable knots (i.e., dimensionality

of Ψ = 256× 32) which were initialized at points with coordinates (5,3), (6,8), (14,4), and

(13,10) and were allowed to move independently.

The number of iterations for the MCMC was 25000, where the first 5000 iterations were

discarded as “burn-in”. For both models, convergence was achieved relatively quickly (i.e.,

<2000 iterations). Convergence was assessed visually, using the MCMC trace plots for the

parameters.

5.3.1 Simulation Results

Figures 41 and 42 show the results for both methods along with observations and the

true process. The model results for the simulated data are difficult to analyze without

a quantitative measure of model performance. Here, Root Mean Squared Error (RMSE)

which is a simple method for assessing the fit of the model to the data, is considered. Thus,

the model which minimizes

RMSE(Mj) =

√√√√ 1
nT

T∑

t=1

n∑

i=1:

(µt(si)− ut(si))2, (5.57)
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for model Mj (j = 1, 2) is regarded as the model which fits better to the data. Note that

µt denotes the posterior mean of the estimated process. The calculated RMSE value for

M1 (wavelet-based multiresolution model) is 0.1367, while the RMSE for M2 (spline-based

dynamic resolution model) is 0.1325. The values for RMSEs suggest that Model 2 fits

better to the data compared to Model 1. However, a more careful assessment of the plots in

Figures 41 and 42 shows that Model 1 does a better job in capturing the diffusive behavior

(i.e., dynamics) of the simulated spatio-temporal process, while Model 2 seems to interpolate

the missing observations better (note that Model 2 overestimates the diffusive behavior of

the process). As stated earlier, these two models are based on completely different methods

and not necessarily comparable. However, the results for the simulation experiment could

provide more insight on the strengths and weaknesses of each of these modeling approaches.

5.4 Application: Nowcasting Radar Reflectivities

Nowcasts are short-period forecasts of radar reflectivities to predict heavy rainfall. Most

common nowcasting methods are based on either deterministic models such as “Gandolf”

(Pierce et al. 2000) and “Nimrod” (Golding 2000), or extrapolation methods such as the

Thunderstorm Identification, Tracking, Analysis and Nowcasting (TITAN) system (Dixon

and Wiener 1993), the Storm Cell Identification and Tracking (SCIT) system (Johnson et al.

1993). These methods, although being used widely, have limitations (e.g., see Xu et al. 2005

for details) and more importantly do not realistically account for prediction uncertainty.

Recent developments in weather radar nowcasting include methods that consider predic-

tion uncertainty. Examples of such methods include Spectral Prognosis (S-PROG) system

(Seed 2003) and a kernel-based physical/statistical model developed by Xu et al. (2005).
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Xu et al. (2005) considered a hierarchical Bayesian modeling approach for a spatio-temporal

dynamical model which is efficiently parameterized within a kernel-based integro-difference

equation framework. In this section the multiresolution and dynamic resolution methods

described previously, are employed for a problem in weather radar nowcasting.

5.4.1 Data and Methods

The data considered in this section includes 11 time steps of observed radar reflectivities

at 10 minute intervals from San Antonio, TX on July 5, 2002 which contained a series of

intense convective storm cells that moved over the area resulting in some flash flooding. The

observations are NEXRAD LEVEL II data reduced to a 16×32 grid of 4-km resolution pixels

obtained from a mosaic of three radars including Corpus Christi, TX (KCRP), Brownsville,

TX (KBRO) and San Antonio, TX (KEWX).

In this section an application of the methods described for nowcasting radar reflectivi-

ties is considered. Two models are considered to conduct nowcasting for radar reflectivities

using the first 10 time steps as “data” in order to forecast the radar reflectivities for the

11th and 12th time steps. Model 1 is a wavelet-based multiresolution model using Method

1, where the dynamics are modeled rigorously on the coarsest scales (i.e., bj
t = Hj

bb
j
t−1+ηj

t ,

ηj ∼ N(0, Σηj ) for j = 2, 3) where bj ’s are vectors of length 8, and simple autoregressive

models for the finer scales (j = 0, 1) where bj ’s are vectors of length 32 and 128. Model 2

is a dynamic resolution model described in Method 2, with 24 fixed knots and 5 moveable

knots where the coordinates for one the moveable knots are initialized at points with coor-

dinates (6,6), (11,6), (16,6), (21,6), and (26,6). These moveable knots are allowed to move

independently of each other.
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The number of MCMC iterations for Model 1 was considered as 25000 iterations with

the first 5000 discarded as the “burn-in” period. For Model 2, 50000 iterations with 10000

iterations for the “burn-in” period was used. For each model, convergence was assessed by

visual check of the MCMC chains for the parameters.

5.5 Results and Discussion

Figures 43 and 44 show the results for both models for time steps 1-10. The smoothness of

the estimated radar reflectivities is due to the coarse level modeling in Model 1 (wavelet-

based multiresolution model) and the low number of spline knots in Model 2 (spline-based

model). Nowcasting results for Model 1 for time steps 11 and 12 are shown in Figure 45.

No reasonable nowcasts for time steps 11 and 12 were obtained using Model 2. This is

due to the fact that modeling such an intensifying storm system is only possible through

linear dynamics with explosive behavior (i.e., as defined through the eigenvalues of the

propagator matrix; the absolute values of the eigenvalues must be smaller than 1 in order

for the dynamical model to be non-explosive).

The nowcasting results for time step 11 and 12 obtained from Model 1 provides a large

scale forecast of the radar reflectivities for this time step. Considering that the modeling was

conducted using a low number of wavelet coefficients, with focus on modeling on the coarse

level, this nowcasting result is promising. The forecast for time step 12 is less accurate and

shows explosive behavior. Model 2 results for radar reflectivities for time steps for which

observation were available are very smooth due to the low number of spline knots and the

smoothness can be reduced by adding more knots. However, other methods to increase

the nowcasting ability of this modeling approach should be considered as increasing the
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number of spline knots will result in dramatic increase in the computational time required

for the MCMC algorithm. Other possible methods to consider in this framework include

more effective methods of propagating the moveable knots (i.e., more complicated models

for the coordinates of the moveable knots), and also incorporating meteorological variables

to inform the evolution of the coordinates of the moveable knots.

Plots of the moveable and fixed knots are shown in Figures 43 and 44 which show the

adaptation of the moveable knots as the dynamics changes. Note that the moveable knots

slightly move during the first five time steps, but as the complexity of the process increases

during time steps 6-10, the moveable knots significantly change locations. As illustrated in

Figure44, the relocation of the moveable knots corresponds to the intensifying parts of the

process.

Reduced computational time is essential in nowcasting weather radar images. The main

advantage of the wavelet-based multiresolution model (Model 1) described in this chapter

is to provide a setting for conducting such reduced-dimension modeling. However, the

ability of the model to conduct nowcasts beyond one time step should be increased which

could possibly be accommodated by considering more complicated methods of modeling the

dynamics in the wavelet space (e.g., more complex interaction between the multiresolution

scales).

Finally, the main disadvantage of using linear dynamics to model intensifying storm pro-

cesses is the possible explosive behavior (as discussed previously) which could limit the abil-

ity of the model in providing useful nowcasts. Alternatively, one could impose restrictions

to force the system to have a non-explosive behavior and control for explosive growth using
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“growth” processes such as suggested by density dependent processes in ecology (Hilborn

and Mangel 1997).

5.6 Conclusion

In this chapter, two different dimension-reduced modeling approaches for effective model-

ing of high-dimensional dynamical spatio-temporal processes were considered and imple-

mentation of these models for a simulated example and an application to weather radar

nowcasting was discussed. Spatio-temporal processes are often high-dimensional and thus

efficient approaches to reduce dimensionality while accounting for the underlying dynamical

relationships among the sub-processes seem necessary. The multiresolution and dynamic

resolution methods discussed in this chapter provide for such effective modeling of dynam-

ical spatio-temporal processes, specifically when the underlying dynamics is not known.
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Figure 41: Truth (left column), data (second column), Method 1 posterior means
(third column), and Method 2 posterior means (right column) for the advection-
diffusion simulation (2-D) for time steps 5-25; (a)-(d) t=5, (e)-(h) t=10, (i)-(l) t=15,
(m)-(p) t=20, (q)-(t) t=25. Note that in the representation of the observations (fig-
ures in the second column), white colored cells indicate missing values.
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Figure 42: Truth (left column), data (second column), Method 1 posterior means
(third column), and Method 2 posterior means (right column) for the advection-
diffusion simulation (2-D) for time steps 30-50; (a)-(d) t=30, (e)-(h) t=35, (i)-(l)
t=40, (m)-(p) t=45, (q)-(t) t=50. Note that in the representation of the observations
(figures in the second column), white colored cells indicate missing values.
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Figure 43: Data (left column), Model 1 (multiresolution model) posterior means (sec-
ond column), Model 2 (dynamic resolution model) posterior means (third column),
and knot locations for Model 2 where (·) indicates the grid coordinates, (+) indicates
the fixed knots, and (∗) indicates the moveable knots (right column) for radar reflec-
tivities for time steps 1-5; (a)-(d) t=1, (e)-(h) t=2, (i)-(l) t=3, (m)-(p) t=4, (q)-(t)
t=5.
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Figure 44: Data (left column), Model 1 (multiresolution model) posterior means (sec-
ond column), Model 2 (dynamic resolution model) posterior means (third column),
and knot locations for Model 2 where (·) indicates the grid coordinates, (+) indicates
the fixed knots, and (∗) indicates the moveable knots (right column) for radar reflec-
tivities for time steps 6-10; (a)-(d) t=6, (e)-(h) t=7, (i)-(l) t=8, (m)-(p) t=9, (q)-(t)
t=10.
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Figure 45: Nowcasting results for Model 1 (multiresolution model) for time steps 11
and 12; (a) Data (“Truth”) (t=11) (b) Forecast (t=11): posterior mean, (c) Standard
deviation of forecast (t=11), (d) Data (“Truth”) (t=12) (e) Forecast (t=12): posterior
mean, (f) Standard deviation of forecast (t=12).
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6 General Conclusions

Models discussed in the previous chapters illustrate the utilization of observational data to

characterize spatio-temporal environmental processes. The increasing availability of data

from different sources (e.g., remote sensing, monitoring networks) and different scales (i.e.,

spatial, spatio-temporal) present modeling challenges which can be effectively described

using efficient parameterizations of spatio-temporal processes. Future research directions

in this area require attempts to effectively model complicated processes while retaining the

efficiency of the models. Hierarchical Bayesian models present a flexible modeling tool that

allows for improvements in both of these areas simultaneously while enabling the use of

data obtained from multiple sources and scales.

The methods discussed in this dissertation include a wide scope of problems related

to the modeling of spatio-temporal environmental processes. Specifically, methods were

described for efficient modeling of spatio-temporal processes using discrete- and continuous-

valued data.

The methods described for continuous data included the following cases for dynamical

spatio-temporal processes:

(a) Partially known dynamics which can be described (partially) by deterministic PDE

models (e.g., PDE models based on physics, biology) with random parameters, expressed

hierarchically.

(b) Unknown dynamics which can be modeled using multiresolution hidden processes.

Future research efforts in these areas should be focused on increasing model efficiency

while maintaining model accuracy. PDE-based models can be used as prior information in
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estimating the process, along with data, in the context of hierarchical Bayesian modeling.

Such coupling of data and scientific knowledge can accommodate modeling of complicated

processes. The method described in Chapter 2 provides simple examples of such a modeling

technique. For example, using data and a simple linear PDE, the modeling of many non-

linear processes can become feasible. The advantages of such modeling approaches go

beyond computational efficiency and make the task of modeling of many complex processes

possible.

Multiresolution methods have been under-utilized in spatio-temporal modeling. As

methods of collecting data become more advanced, researchers become more interested

in the modeling of very high-dimensional spatio-temporal processes and multiresolution

methods can play a significant role in modeling such complex processes. The methods

described in Chapter 5 motivate the use of such multiresolution methods for modeling

spatio-temporal processes.

The methods described for discrete data include methodology for semiparametrically

modeling multivariate count processes with excess zeros. This modeling approach was

discussed in general and was extended to spatio-temporal processes. This novel methodology

can be used to model many environmental and ecological count processes which often have

complicated dependence structures, non-linear covariate effects, and excess zeros for the

observations (due to inefficient sampling and/or heterogeneous patterns of presence/absence

of the process). Often, the statistical models used for modeling such processes are incapable

of addressing these common issues. Thus, the development of new methodology to account

for these issues is both necessary and appealing.
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Modeling dependencies among environmental count processes is complicated. The mod-

eling approaches described in Chapters 3 and 4, address the development of such depen-

dencies for certain cases where the dependencies among count processes are described by

environmental factors (e.g., common habitat use for certain species; common climatolog-

ical effects for tornadoes). Another important issue regarding dependencies among count

processes is based on conditional dependence among two or more count processes due to

presence of one or more common factor which is also a count process. Examples of such

dependency structures are ubiquitous in ecology and include multi-species predator-prey

models where two (or more) different species have the same species as prey. The inherent

conditional structure of hierarchical Bayesian modeling framework provides a natural setting

to address such conditional dependence structures. Future extensions of the methodology

discussed in Chapters 3 and 4 include (but are not limited to) the development of models

accounting for conditional dependencies among multivariate count processes.
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Appendix A: Full-Conditionals

Consider the following hierarchical model for the 1-D advection-diffusion:

Zt =Ktut + εt, εt ∼ N(0, σ2
εI),

Gut =Mut−1 + ηt, ηt ∼ N(0, σ2
ηR(θ)),

where M ≡ G +4tH(β,4x,4y) and G = G(4x,4y). Let:

u0 ∼ N(ũ0,Σ−1
0 ),

β ∼ N(β̃, σ2
β),

α ∼ N(α̃, σ2
αR(θ)).

The notation [x] is used to specify the probability distribution of x. The posterior distribu-

tion of interest can now be written as:

[u1, . . . ,uT ,β, σ2
η, σ

2
ε |Z1, . . . ,ZT ] ∝

T∏

t=1

[Zt|ut, σ
2
ε ]

T∏

t=1

[ut|ut−1, σ
2
η,β]

× [u0][β][σ2
ε ][σ

2
η].

The full-conditional distributions are:

• [u0|·] ∝ [u1|u0][u0]

u0|· ∼ N(A0b0,A0),

where,

A0 = (M′R(θ)−1M/σ2
η + Σ−1

0 )−1,

b0 = (u′1G
′R(θ)−1M/σ2

η + ũ′0Σ
−1
0 )′.
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• [ut|·] ∝
∏T−1

t=1 [Zt|ut][ut|ut−1][ut+1|ut]

ut|· ∼ N(Atbt,At),

where,

At = (K′
tKt/σ2

ε + (M′R(θ)−1M + G′R(θ)−1G)/σ2
η)
−1,

bt = (Z′tKt/σ2
ε + (u′t−1M

′R(θ)−1G + u′t+1G
′R(θ)−1M)/σ2

η)
′.

• [uT |·] ∝ [ZT |uT ][uT |uT−1]

uT |· ∼ N(ATbT ,AT ),

where,

AT = (K′
TKT /σ2

ε + G′R(θ)−1G/σ2
η)
−1,

bT = (Z′TKT /σ2
ε + u′T−1M

′R(θ)−1G/σ2
η)
′.

• [β|·] ∝ ∏T
t=1[ut|ut−1, β][β]

β|· ∼ N(Ab,A)

where,

A = ((4t)2
T∑

t=1

( diag(ut−1)′F1′R(θ)−1F1 diag(ut−1)/σ2
η) + R(θ)−1/σ2

β)−1,

b = (4t

T∑

t=1

((−u′tP
′
t + u′t−1P

′
t−1)R(θ)−1F1 diag(ut−1)/σ2

η) + β̃R(θ)−1/σ2
β)′.

(Note: Pt ≡ G + F2 diag(ut)α and F1 is a sparse matrix such that Hut ≡

F1 diag(ut)β + F2 diag(ut)α.)
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• [α|·] ∝ ∏T
t=1[ut|ut−1,α][α]

α|· ∼ N(Ab,A)

where,

A = ((4t)2
T∑

t=1

( diag(ut−1)′F2′R(θ)−1F2 diag(ut−1)/σ2
η) + R(θ)−1/σ2

α)−1,

b = (4t
T∑

t=1

((−u′tQ
′
t + u′t−1Q

′
t−1)R(θ)−1F2 diag(ut−1)/σ2

η) + α̃R(θ)−1/σ2
α)′.

(Note: Qt ≡ G + F1 diag(ut)β and F2 is a sparse matrix such that Hut ≡

F1 diag(ut)β + F2 diag(ut)α.)

• [σ2
ε |·] ∝

∏T
t=1[Zt|ut, σ

2
ε ][σ

2
ε ]

σ2
ε |· ∼ IG(q, r)

where,

q = qε + nT/2,

r = (1/rε + 0.5
T∑

t=1

((Zt −Ktut)′(Zt −Ktut)))−1

• [σ2
η|·] ∝

∏T
t=1[ut|ut−1, σ

2
η][σ

2
η]

σ2
η|· ∼ IG(q, r)

where,

q = qη + nT/2,

r = (1/rη + 0.5
T∑

t=1

((Gut −Mut−1)′R(θ)−1(Gut −Mut−1)))−1.
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Appendix B: Full-Conditionals

The posterior distribution of all the processes and parameters given the observations can

be written as

[Z1,t, . . . ,Z1,T ,Z2,t, . . . ,Z2,T ,Z3,t, . . . ,Z3,T , λ1,1, . . . ,λ1,T ,λ2,1, . . . ,λ2,T , λ3,1, . . . , λ3,T ,p1,1,

. . . ,p1,T ,p2,1, . . . ,p2,T ,b1,0,b1,1,b1,2,b1,3,b2,0,b2,1,b2,2,b2,3,b3,0,b3,1,b3,2,b3,3, µ1, µ2,

α1,0, α1,1, α2,0, α2,1, σ
2
1,η, σ

2
2,η, σ

2
1,1,ε, σ

2
1,2,ε, σ

2
1,3,ε, σ

2
2,1,ε, σ

2
2,2,ε, σ

2
2,3,ε, σ

2
3,1,ε, σ

2
3,2,ε, σ

2
3,3,ε|Y1,1,

. . . ,Y1,T ,Y2,1, . . . ,Y2,T ] ∝ {
T∏

t=1

[Y1,t|Z1,t,Z3,t][Y2,t|Z2,t,Z3,t][Z1,t|λ1,t,p1,t][Z2,t|λ2,t,p2,t]

× [Z3,t|λ3,t][λ1,t|µ1,b1,0,b1,1,b1,2,b1,3, σ
2
1,1,ε, σ

2
1,2,ε, σ

2
1,3,ε][λ2,t|µ2,b2,0,b2,1,b2,2,b2,3, σ

2
2,1,ε,

σ2
2,2,ε, σ

2
2,3,ε][λ3,t|µ3,b3,0,b3,1,b3,2,b3,3, σ

2
3,1,ε, σ

2
3,2,ε, σ

2
3,3,ε][p1,t|α1,0, α1,1, σ

2
1,η][p2,t|α2,0, α2,1,

σ2
2,η]}[α1,0][α1,1][α2,0][α2,1][µ1][µ2][b1,0][b1,1][b1,2][b1,3][b2,0][b2,1][b2,2][b2,3][b3,0][b3,1][b3,2]

× [b3,3][σ2
1,1,ε][σ

2
1,2,ε][σ

2
1,3,ε][σ

2
2,1,ε][σ

2
2,2,ε][σ

2
2,3,ε][σ

2
3,1,ε][σ

2
3,2,ε][σ

2
3,3,ε][σ

2
1,η][σ

2
2,η].

This complicated posterior distribution can be numerically evaluated using MCMC methods

and in particular the Gibbs sampler based on full-conditional distributions of the unknown

processes and parameters. Also, Metropolis-Hastings steps within the Gibbs algorithm are

required for the simulation of λ’s and p’s.

The full-conditional distributions are:

• [vm,it = log(λm,t(si))|·] for t=1,. . . ,T, m = 1, 2, and i = 1, . . . , n.

M-H step:

1. Generate v∗m,it ∼ N(v(j−1)
m,it , θ) at the jth MCMC iteration, and compute ratio:

r =
[Ym,t(si)|v∗m,it][v

∗
m,it|µ(j−1)

m ,b(j−1)
m,0 ,b(j−1)

m,1 ,b(j−1)
m,2 ,b(j−1)

m,3 , σ
2,(j−1)
m,1,ε , σ

2,(j−1)
m,2,ε , σ

2,(j−1)
m,3,ε ]

[Ym,t(si)|v(j−1)
m,it ][v(j−1)

m,it |µ(j−1)
m ,b(j−1)

m,0 ,b(j−1)
m,1 ,b(j−1)

m,2 ,b(j−1)
m,3 , σ

2,(j−1)
m,1,ε , σ

2,(j−1)
m,2,ε , σ

2,(j−1)
m,3,ε ]

.

154



2. Set v
(j)
m,it = v∗m,it with probability min(r,1); otherwise set v

(j)
m,it = v

(j−1)
m,it

• [v3,it = log(λ3,t(si))|·] for t=1,. . . ,T, and i = 1, . . . , n.

M-H step:

1. Generate v∗3,it ∼ N(v(j−1)
3,it , θ) at the jth MCMC iteration, and compute ratio:

r =
[Y1,t(si)|v∗3,it][Y2,t(si)|v∗3,it][v

∗
3,it|w(j−1)]

[Y1,t(si)|v(j−1)
3,it ][Y2,t(si)|v(j−1)

3,it ][v(j−1)
3,it |w(j−1)]

.

where w(j−1) ≡ {µ(j−1)
3 ,b(j−1)

3,0 ,b(j−1)
3,1 ,b(j−1)

3,2 ,b(j−1)
3,3 , σ

2,(j−1)
3,1,ε , σ

2,(j−1)
3,2,ε , σ

2,(j−1)
3,3,ε }

2. Set v
(j)
3,it = v∗3,it with probability min(r,1); otherwise set v

(j)
3,it = v

(j−1)
3,it

• [Pm,it = logit(pm,t(si))|·] for t=1,. . . ,T, m = 1, 2, and i = 1, . . . , n.

M-H step:

1. Generate P ∗
m,it ∼ N(P (j−1)

m,it , θ) at the jth MCMC iteration, and compute ratio:

r =
[Ym,t(si)|P ∗

m,it][p
∗
m,it|α(j−1)

m,0 , α
(j−1)
m,1 σ

2,(j−1)
m,η ]

[Ym,t(si)|P (j−1)
m,it ][p(j−1)

m,it |α(j−1)
m,0 , α

(j−1)
m,1 σ

2,(j−1)
m,η ]

.

2. Set P
(j)
m,it = P ∗

m,it with probability min(r,1); otherwise set P
(j)
m,it = P

(j−1)
m,it

• [bk,0|·] ∝ {∏T
t=1[vk,it|bk,0][bk,0]

bk,0|· ∼ N(Ab,A),

where,

A = (
T∑

t=1

t2Φ′Σ−1
ε Φ + Σ−1

b0 )−1,

b =
T∑

t=1

Φ′(vk,t − Φµ− ΦB∗) + Σ−1
b0 b̃0,
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where B∗ is structured using elements of bk, ixt (t = 1, . . . , T ) and reordered according

to the association of each element to one of the ENSO categories (El Niño, La Niña

or regular seasons). Σε is constructed similarly using σ2
i,ε’s (i = 1, 2, 3).

• [bk,i|·] ∝ {∏T
t=1[vk,it|bk,i][bk,i]

bk,i|· ∼ N(Ab,A),

where,

A = ((xi ⊗ Φ)′(xi ⊗ Φ)/σ2
k,i,ε + Σ−1

bi )−1,

b = (vec(vk,i,t)− (1⊗ Φ)µ− (t⊗ Φ)bk,0)/σ2
k,i,ε) + Σ−1

bi b̃i,

where i = 1, 2, 3.

• [αk,0|·] ∝ {∏T
t=1[Pk,it|αk,0][αk,0]

αk,0|· ∼ N(Ab,A),

where,

A = 1/(T/σ2
η + σ2

α0),

b =
T∑

t=1

(Pk,t − αk,1xp) + α̃0/σ2
α0,

• [αk,1|·] ∝ {∏T
t=1[Pk,it|αk,1][αk,1]

αk,0|· ∼ N(Ab,A),
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where,

A = 1/(x′pxp/σ2
η + σ2

α1),

b =
T∑

t=1

x′p(Pk,t − αk,0) + α̃1/σ2
α1,

• [σ2
k,i,ε|·] ∝

∏T
t=1[vk,it|σ2

k,i,ε][σ
2
k,i,ε]

σ2
k,i,ε|· ∼ IG(q, r)

where,

q = qk,i,ε + nTi/2,

r = (1/rk,i,ε + 0.5
T∑

t=1

(vk,it − Φµk − Φbk,0ti − Φbk,ixti))
−1

where k = 1, 2, 3, i = 1, 2, 3 and ti indicates the time components associated with the

ith ENSO category.

• [σ2
k,η|·] ∝

∏T
t=1[Pk,t|σ2

k,η][σ
2
k,η]

σ2
k,η|· ∼ IG(q, r)

where,

q = qk,η + nT/2,

r = (1/rk,η + 0.5
T∑

t=1

(Pk,t − αk,0 − αk,1Xp))−1

where k = 1, 2.
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Appendix C: Full-Conditionals

Consider the following hierarchical model for the wavelet-based multiresolution model de-

scribed in Chapter 5 (Method 1):

Zt =KtWat + εt, εt ∼ N(0,σ2
εI),

aj
t =Φjbt + γj

t , γj
t ∼ N(0, σ2

γjI),

bt =Hbbt−1 + ηt, ηt ∼ N(0,Ση),

where W (note that Yt = Wat) is a matrix of multiresolution wavelet bases, and j denotes

resolution scales (j = 0, . . . , J). Let:

b0 ∼ N(b̃0,Σ−1
0 ).

Thus, the posterior distribution of interest can now be written as:

[a1, . . . ,aT ,b0, . . . ,bT ,Hb,Ση, σ
2
ε |Z1, . . . ,ZT ] ∝

T∏

t=1

[Zt|at, σ
2
ε ]

T∏

t=1

[aj
t |bt, σγj ]

T∏

t=1

[bt|bt−1,Ση]

× [b0][σ2
ε ][σ

2
γj ][Ση].

The full-conditional distributions are:

• [at|·] ∝
∏T−1

t=1 [Zt|at][at|bt]

at|· ∼ N(Atbt,At),

where,

At = (K′
tKt/σ2

ε + I/σ2
γ)−1,

bt = (Z′tKtW/σ2
ε + (b′tΦ

′)/σ2
γ)′.
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• [b0|·] ∝ [b1|b0][b0]

b0|· ∼ N(A0b0,A0),

where,

A0 = (H′
bΣ

−1
η Hb + Σ−1

0 )−1,

b0 = (b′1Σ
−1
η Hb + b̃

′
0Σ

−1
0 )′.

• [bt|·] ∝
∏T−1

t=1 [at|bt][bt|bt−1][bt+1|bt]

bt|· ∼ N(Abt,A),

where,

A = (Φ′Φ/σ2
ε + Σ−1

η + H′
bΣ

−1
η Hb))−1,

bt = (a′tΦ/σ2
ε + b′t−1H

′
bΣ

−1
η + b′t+1Σ

−1
η Hb)′.

• [uT |·] ∝ [ZT |uT ][uT |uT−1]

uT |· ∼ N(AbT ,A),

where,

A = (Φ′Φ/σ2
ε + Σ−1

η Hb))−1,

bT = (a′TΦ/σ2
ε + b′T−1H

′
bΣ

−1
η )′.

• [σ2
ε |·] ∝

∏T
t=1[at|bt, σ

2
ε ][σ

2
ε ]

σ2
ε |· ∼ IG(q, r)

159



where,

q = qη + nT/2,

r = (1/rη + 0.5
T∑

t=1

((at −Φbt)′(Gat −Φbt)))−1.

• [Σ−
η 1|·] ∝ ∏T

t=1[bt|bt−1,Ση][Σ2
η]

Σ2
η|· ∼Wishart




(
T∑

t=1

((at −Φbt)′(Gat −Φbt)) + Sν

)−1

, ν + T


 .

• [hb ≡ vec(Hb)|·] ∝ [B1|B0,Ση][Ση]

hb|· ∼ N(Ab,A),

where,

A = (B0 ⊗ I)′Σ−1
η (B0 ⊗ I) + Σ−1

h ,

b = (B1 ⊗ I)′Σ−1
η vec(B0) + Σ−1

h h̃b).

and

B1 ≡ (b1, . . . ,bT )′,

B0 ≡ (b0, . . . ,bT−1)′.
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Appendix D: Full-Conditionals

Consider the following hierarchical model for the spline-based dynamic resolution model

described in Chapter 5 (Method 2):

Zt =KtΦ(xm
t , ym

t )at + εt, εt ∼ N(0, σ2
εI),

af
t =Gaf

t−1 + ηf
t , ηf

t ∼ N(0, Σηf ),

where Φ = Φ(xm
t , ym

t ) (note that u = Φ(xm
t , ym

t )at) is a matrix of spline bases (e.g., thin-

plate spline bases), and f and m denote fixed and moveable knots, respectively. Let:

af
0 ∼ N(ãf

0 ,Σ−1
0 ).

The spline coefficients corresponding to the moveable knots will be sampled non-dynamically.

Thus, the following prior distribution is considered

am
t ∼ N(ãm

t ,Σ−1
0 ),

for t = 1, . . . , T .

The posterior distribution of interest can now be written as:

[a1, . . . ,aT ,G,Ση, σ
2
ε , x

m
1 , . . . , xm

T , ym
1 , . . . , ym

T |Z1, . . . ,ZT ] ∝
T∏

t=1

[Zt|at, σ
2
ε ]

T∏

t=1

[af
t |af

t−1, σηf ]

× [af
0 ]

T∏

t=1

[am
t ]

T∏

t=1

[xm
t |xm

t−1, σ
2
νx

]
T∏

t=1

[ym
t |ym

t−1, σ
2
νy

][xm
0 ][ym

0 ][σ2
ε ][σ

2
ηf ].

The full-conditional distributions are:

• [af
0 |·] ∝ [af

1 |af
0 ][af

0 ]

af
0 |· ∼ N(A0b0,A0),
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where,

A0 = (G′G/σ2
ε + Σ−1

0 )−1,

b0 = (af ′
1 G/σ2

ε + ãf ′
0 Σ−1

0 )′.

• [af
t |·] ∝

∏T−1
t=1 [Zt|af

t ][af
t |af

t−1][a
f
t+1|af

t ]

af
t |· ∼ N(Abt,A),

where,

A = (Φ′Φ/σ2
ε + Σ−1

η + G′Σ−1
η G))−1,

bt = (Z′tΦ/σ2
ε + af ′

t−1G
′Σ−1

η + af ′
t+1Σ

−1
η G)′.

• [af
T |·] ∝ [ZT |aT ][aT |aT−1]

aT |· ∼ N(AbT ,A),

where,

A = (Φ′Φ/σ2
ε + Σ−1

η G))−1,

bT = (Z′TΦ/σ2
ε + af ′

T−1G
′Σ−1

η )′.

• [σ2
ε |·] ∝

∏T
t=1[Zt|at, σ

2
ε ][σ

2
ε ]

σ2
ε |· ∼ IG(q, r)

where,

q = qη + nT/2,

r = (1/rη + 0.5
T∑

t=1

((Zt −Φaf
t )′(Zt −Φaf

t )))−1.
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• [Σ−1
η |·] ∝ ∏T

t=1[a
f
t |af

t−1,Ση][Σ2
η]

Σ−1
η |· ∼Wishart




(
T∑

t=1

((Zt −Φat)′(Zt −Φat)) + Sν

)−1

, ν + T


 .

• [g ≡ vec(G)|·] ∝ [B1|B0,Ση][Ση]

g|· ∼ N(Ab,A),

where,

A = (B0 ⊗ I)′Σ−1
η (B0 ⊗ I) + Σ−1

g ,

b = (B1 ⊗ I)′Σ−1
η vec(B0) + Σ−1

g g̃).

and

B1 ≡ (a1, . . . ,aT )′,

B0 ≡ (a0, . . . ,aT−1)′.

• [xm
t |·] for t = 1, . . . , T .

M-H step:

1. Generate xm∗
t ∼ N(xm,(j−1)

t , θ) at the jth MCMC iteration, and compute ratio:

r =
[Zt|Φ(xm∗

t , y
m,(j−1)
t ),at][xm∗

t |xm,(j)
t−1 , ν

(j−1)
x ]

[Zt|Φ(xm,(j−1)
t , y

m,(j−1)
t ),at][x

m,(j−1)
t |xm,(j)

t−1 , ν
(j−1)
x ]

.

2. Set x
m,(j)
t = xm∗

t with probability min(r,1); otherwise set x
m,(j)
t = x

m,(j−1)
t

• [ym
t |·] for t = 1, . . . , T .

M-H step:
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1. Generate ym∗
t ∼ N(ym,(j−1)

t , θ) at the jth MCMC iteration, and compute ratio:

r =
[Zt|Φ(xm,(j)

t , ym∗
t ),at][ym∗

t |ym,(j)
t−1 , ν

(j−1)
y ]

[Zt|Φ(xm,(j)
t , y

m,(j)
t ),at][y

m,(j−1)
t |ym,(j)

t−1 , ν
(j−1)
y ]

.

2. Set y
m,(j)
t = ym∗

t with probability min(r,1); otherwise set y
m,(j)
t = y

m,(j−1)
t
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