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Abstract 

 

The design of controllers for nonlinear systems in industry is a complex and difficult task. 

The development of nonlinear control techniques has been approached in many different 

ways with varied results. One approach which has shown promise for solving nonlinear 

control problems is the use of fuzzy logic control. This thesis proposes a new method 

utilizing proportional–integral-derivative (PID) control as a hybrid fuzzy PID controller for 

nonlinear system. The salient feature of the proposed approach is that it combines the fuzzy 

gain scheduling method and a fuzzy Fed PID controller to solve the nonlinear control 

problem. The resultant fuzzy rule base of the proposed controller contains one part for a 

non optimized controller. This single part of the rules uses the Takagi-Sugeno method for 

solving the nonlinear problem and compares it to the mamdani method. The number of 

fuzzy rules are minimized using a method of series reduction fuzzy rule base. The 

simulation results of a nonlinear system show that the performance of a Fed PID Hybrid 

Takagi-Sugeno fuzzy controller is better than that of the conventional fuzzy PID controller 

or Hybrid Mamdani fuzzy Fed PID controller, especially using the reduction of the number 

of fired rules. 
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 ملخص البحث

 ـ غيـر الخطيـة   للأنظمـة    الـتحكم    أنظمةتصميم   حـد  أ. مهمـة معقـدة   يعتبـر   ي الصـناعة    ف

 هــي اســتخدام الــتحكم غيــر الخطيــةت حلــول لمشــاكل الأنظمــة ظهــرأي تــ الطــرقال

 -رســالة تقتــرح طريقــة جديــدة لاســتخدام الــتحكم التناســبيهــذه ال. المنطقــي الضــبابي

ــاملي ــي أي دي( التفاضــلي -التك ــة  وهــي)ب ــتحكم الضــبابية الهجين ــة ال ــي أي ( أنظم ب

ــللأنظمــة ) دي ــةغي ــع  . ر الخطي ــه يجم ــرح هــو ان ــنهج المقت ــارزة لل ــين الســمة الب ب

لحــل مشــكلة ) بــي أي دي(طريقــة الكســب المجدولــة الضــبابية وبــين الــتحكم المغــذى 

 القواعــد الناتجــة للمــتحكم المقتــرح تحتــوي علــى قســم غيــر .غيــر الخطيــةالــتحكم 

ــالي ــتخدم . مث ــد يس ــن القواع ــادي م ــزء الأح ــةالج ــاجي طريق ــوجينو  - التك ــس ل لح

لقـد تـم تقليـل عـدد القواعـد          .  ويقارنهـا مـع طريقـة المامـداني        غيـر الخطيـة   المشكلة  

ــد   ــة القواع ــتخدام طريق ــبابية باس ــبابيةالض ــليةالض ــى  .  التسلس ــأخوذة عل ــائج الم النت

 الطريقــة الجديــدة وهــي طريقــة الــتحكم الضــبابي كفــاءةجهــاز الحاســوب توضــح أن 

ســوجينو تعطــي أفضــل نتــائج مــن  –المهجــن بــي أي دي المغــذى بطريقــة التكــاجي 

ــا   ــة خصوص ــة تقليدي ــتظهر   إذاأي طريق ــالي س ــداني، وبالت ــة المام ــتخدمت طريق  اس

 .قليل عدد القواعد الضبابيةتأفضل نتائج مع 
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CHAPTER 1 

Introduction 

 

1.1 Introduction: 

Fuzzy control is considered as one of the most important sciences in our industrial 

revolution nowadays. The progress in the automation fields makes fast steps by using 

robotics and controllable machines.  

A scientific research in the area of Hybrid Fuzzy Fed PID Control will be proposed to 

increase the knowledge in this field, so the best efforts will be held to collect data from 

books and internet to support this research.  

PID control is widely used in industrial applications because of its simplicity. Stability of 

PID controller can be guaranteed theoretically, and zero steady-state tracking error can be 

achieved for linear plant in steady-state phase. Computer simulations of PID control 

algorithm have revealed that the tracking error is quite often oscillatory, however, with 

large amplitudes during the transient phase. To improve the performance of the PID 

controllers, several strategies have been proposed, such as adaptive and supervising 

techniques. 

Fuzzy control methodology is considered as an effective method to deal with disturbances 

and uncertainties in terms of ignorance and ambiguity. Fuzzy PID controller combining 

fuzzy technology with traditional PID control algorithm has become the most effective 

domain in artificial intelligence control [1],[2].  

The most common problem resulted early depending on the complexity of Fuzzy Logic 

Control (FLC) is the tuning problem. It is hard to design and tune FLCs manually for most 

machine problems especially nonlinear industrial systems. For alleviation of difficulties in 

constructing the fuzzy rule base, there is the conventional nonlinear design method which 

was inherited in the fuzzy control area, such as fuzzy sliding mode control, fuzzy gain 

scheduling [3],[4], and adaptive fuzzy control [5],[6]. The error signal for most control 

systems is available to the controller if the reference input is continuous. The analytical 
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calculations present two-inputs for FLC to employ which are proportional error signal and 

velocity error signal. PID controller is the most common controller used in industries, most 

of development of fuzzy controllers revolve around fuzzy PID controllers to insure the 

existence of conventional controllers in the overall control structure, simply called Hybrid 

Fuzzy Controllers [7],[8]. 

The key idea of the proposed method is as follows: First, the fuzzy gain scheduling method 

is applied to linearize the nonlinear system at frozen times. A fuzzy Fed PID controller is 

designed for each frozen system by replacing the conventional PID controller by an 

incremental FLC, the integral part of the PID controller is fed by a differentiated feedback 

gain, this Fed PID controller is the new method used in this thesis and it gives the best 

results anyway. Second, fuzzification of the reference input is performed for the system, 

while the control space of error signals is linearly partitioned after normalization. Third, the 

fuzzy rule base is constructed in a recursive way to obtain better nonlinear control as well 

as to guarantee closed-loop stability of the frozen system.  

It should be emphasized that because the proposed approach utilizes some modern control 

theorems, tuning the hybrid fuzzy controller is much easier than tuning a conventional 

fuzzy logic controller.  

The gain scheduling method is introduced as an effective nonlinear control method for 

nonlinear systems. Finally a novel fuzzy Fed PID controller is proposed. We show that 

recursive design of the fuzzy rule base can guarantee stability of local closed-loop systems. 

Then, control of a pole-balancing robot illustrates how the proposed design method can be 

easily applied to a nonlinear robotics system.  

 

1.2 Motivation: 

The main stimulus of choosing this thesis is nowadays progress in automation fields that 

use robotics and controllable machines which deal with nonlinear science. A huge 

knowledge in control research, intelligent control, mechanical and electrical engineering 

would be achieved. It is interesting science to be applied and developed where it is 

proposed for the industries in Gaza to apply the new technique in their working machines. 

The Hybrid Fuzzy Fed PID Control gives us more experience in control systems, Intelligent 
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systems and Mechatronics fields that help us to understand the concepts of systems 

stability, designing digital and analog controllers, and controlling industrial instruments. 

The main point which makes the decision of selecting this topic is that the subject of hybrid 

fuzzy control is very hot topic, the experience in this field is weak, at least in the Gaza 

Strip. So the work in the field of Hybrid Fuzzy Control of Mechatronics Systems will 

increase the knowledge of intelligent systems and develop the control systems which used 

in factories in Gaza.    

 
1.3 Literature Review: 

Fuzzy logic has been around since 1965, when L.A. Zadeh laid the foundation of the 

linguistic model [9]. Fuzzy sets theory provides a systematic frame work for dealing with 

different types of uncertainty with a single conceptual framework.  

The work of Mamdani and Asilian in 1975 showed the first practical application of fuzzy 

control that implemented Zadeh's fuzzy sets theory [10]. The other method in use is the 

Sugeno model, which is a nonlinear model consisting of a number of rule-based linear 

models and membership functions which determine the degrees of confidence of the rules. 

In 1993, Zhen-Yu Zhao, Masayoshi Tomizuka, and Satoru Isaka described the development 

of a fuzzy gain scheduling scheme of PID controllers for control process [4].  

A simple technique to design a generalized Sugeno-type controller (GSC) is proposed by 

Ch. Clifton, A. Homaifar and M. Bikdash in 1996 [11]. A hybrid fuzzy-PID controller is 

approximated using recursive least squares by a Sugeno-type controller. 

In 1998, Wei Li presented approaches to the design of a hybrid fuzzy logic proportional 

plus conventional integral derivative (fuzzy P+ID) controller in an incremental form [7]. 

The controller is constructed by using an incremental fuzzy logic controller in place of the 

proportional term in a conventional PID controller. 

Meng Joo Er, and Ya Lei Sun presented a new approach toward optimal design of a hybrid 

PID controller in 2001 which is applicable for controlling linear as well as nonlinear 

systems using genetic algorithms [8]. This method is difficult in math and there are clear 

ripples in the step response, also the overshoot is found. 
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In 2004, Ya Lei Sun and Meng Joo Er showed a new approach towards optimal design of a 

hybrid fuzzy controller for robotics systems [12]. The feature of their proposed approach 

combines the fuzzy gain scheduling method and a fuzzy PID controller to solve the 

nonlinear control problem, but the minimum values of the overshoot and the steady state 

error are not satisfied compared with other controllers. 

   

1.4 Contribution: 

The focus of this thesis is to establish design techniques for hybrid fuzzy PID controllers 

for nonlinear systems. This thesis therefore represents a new contribution approach for PID 

controller to the development of fuzzy PID control system methodology by describing the 

details, design, and a comparison between the two most widely used fuzzy controllers (The 

Mamdani and Sugeno Models) in fuzzy control. It also presents an example of design fuzzy 

controllers for nonlinear control problem (The Inverted Pendulum) which can be 

characterized by two or four variables, that is, two or four dimensional systems. The 

simulation of the inverted pendulum is applied using Simulink MATLAB program which 

shows the step response of each model. The important step which will give a new method is 

the technique which combines the PID controller, the Fuzzy Logic, and the gain scheduling 

method.     

      

1.5 Outline of The Thesis: 

This thesis contains six chapters, the first one talk about introduction and motivation of the 

project. The second chapter presents the PID controller definition, tasks, types and tuning. 

Third chapter is Fuzzy control history, fuzzy control design, and implementation. Chapter 

four is nonlinear systems, phenomenon, common nonlinearities and nonlinear control 

problem design. Fifth chapter is the core one which is the hybrid fuzzy control problem 

design, Fed PID control and Takagi-Sugeno Fed PID control of the hybrid fuzzy control 

design, comparison and results, this chapter contains the salient feature of thesis name 

which presents the new technique. The final chapter is a conclusion chapter. 
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CHAPTER 2 

PID Controller 

 

Most industries use variety control systems to perform various tasks. The PID controller is 

the most widely used strategy in those industries, around 95%, so it is used for various 

control problems such as automated systems and plants [13]. The PID controller consists of 

three basic elements or terms, Proportional, Integral, and Derivative controller. 

 

The PID controller is implemented to meet various design specifications for the system. 

That specifications can include the rising and settling time, overshoot, the accuracy of the 

system step response and the steady state error. These specifications will appear clearly in 

the results and the illustrative examples that used in this thesis. 

  

There are many types of PID controllers, each of them has a specified function to do. The P, 

PI, PD or PID are the basic types of PID controller. Also the PID controller can be divided 

into parallel PID and series PID controller. The new idea illustrated in this research is 

called Fed PID controller as shown in Figure 2.1 [14]. 

 

2.1 PID Controllers Tasks: 

The operation of a PID controller can be understood by separating the three terms 

individually: 

The proportional control is a pure gain adjustment acting on the signal of error to provide 

the driving input to do the process. The speed of the system can be adjusted using the 

proportional control. Proportional control amplifies the error to motivate the plant towards 

the desired response. That controller can reduce the steady state error but cannot eliminate 

it. At the same time the proportional controller produces an excessive overshoot and 

oscillation [15]. 
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The integral control is used to provide the required accuracy for the control system. It is 

used to eliminate the steady state error. Usually the small integral gain is used to avoid 

noise and destabilize the closed loop system. 

 

To increase the damping in the system, derivative control action is normally introduced. 

The derivative element amplifies the existing noise which can cause problems including 

instability. The control acts on the error slope, thereby it minimize the overshoot. High 

derivative gain can increase the rising time and the settling time. 

 

Effects of each controller P, I, and D on a closed-loop system are summarized in the Table 

2.1 shown below. 

 

Table 2.1: Closed loop response of the PID controller terms  

C.L. Response Rising Time Overshoot Settling Time S.S. Error 

P Decrease Increase Small Change Decrease 

I Decrease Increase Increase Eliminate 

D Small Change Decrease Decrease Small Change 
 

 

The PID controller can be described showing a new idea is called Fed PID controller. The 

Fed PID controller provides the higher performance of the control specifications especially 

the steady state error and the overshoot which makes the minimum steady state error and 

the minimum overshoot among the other PID controllers [13],[16]. 

 

2.2 PID Controllers Types: 

Not all manufactures produce PID controllers that conform the ideal structure. So before 

tuning it is important to know the configuration of the PID algorithm. The majority of 

tuning rules are only valid for the ideal architecture. If the algorithm is different then the 

controller parameters suggested by a particular tuning methodology will have to be 

modified. 
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Ideal PID 

One disadvantage of this ideal configuration is that a sudden change in set point and hence 

error will cause the derivative term to become very large, where the mathematical 

representation of this algorithm is shown below: 









++= sT

sT
TKsT D

i
P

1
)(          (2.1) 

Where K is the gain and Tp, Ti, TD is proportional, integral and derivative time respectively, 

and the value for each of which are shown in Table 2.2 and Table 2.3. 

   

Series PID 

The mathematical representation of this algorithm is: 

( )1)( +







+= sK

s

K
KsT D

I
P         (2.2) 

As with the ideal implementation the series mode can include either derivative on the error 

or derivative on the measurement.  

 

Parallel PID 

The mathematical description is, 

sK
s

K
KsT D

I
P ++=)(         (2.3) 

The proportional gain only acts on the error, whereas with the ideal algorithm it acts on the 

integral and derivative modes as well [17]. 

 

Fed PID Controller 

This type of PID controller is considered the first contribution in this research. The name of 

Fed is quoted from the feedback, from the output to the input of the integrator. The 

feedback of the integrator is a differential feedback. This technique decreases the overshoot 

and the steady state error for any PID controller design. One can ask if the differential 

feedback acts on proportional or the derivative terms of the PID controller. Under 

experiments on the MATLAB simulation the step response shows only the positive 
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response (minimum overshoot & steady state error) for the differential feedback that acts 

on the integrator. More details will be described for this type of PID controller in Chapter 5.     

Figure 2.1 shows the step response of the proportional, derivative, and integral deferential 

feedback versus the step response of the conventional PID controller for second order 

system. The continuous line for the conventional PID controller.  

Now, the new method of designing PID controller inserted her is called Fed PID controller. 

The mathematical description of the Fed PID control is shown in equation (2.4),  

sK
sK

K
KsT D

I

I
P +







 +
+=

11
)(        (2.4) 

This type of PID controller is used to decrease the steady state error and the overshoot as 

well, which gives the better results among other controllers. 
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Figure 2.1: Step response of differential feedback applied to (a) P, (b) D, (c) I. 
 

(a) Differential P (b) Differential D 

(c) Differential I 
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General steps for PID controller design: 

Obtain an open-loop response and determine what needs to be improved  

Add a proportional control to improve the rise time  

Add a derivative control to improve the overshoot  

Add an integral control to eliminate the steady-state error 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 PID Tuning: 

A huge number of methods for control design can be applied to PID control. There are 

number of special methods that are made by training for PID control have also been 

developed, these methods are often called tuning methods.  

 

The most well known tuning methods are Ziegler and Nichols methods. They have had a 

major influence on the practice of PID control for more than half a century. The methods 

Output  

KP 

KD d/dt 

KI∫ 

+

+
+
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D 
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+

P 

I 

D 

+
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+

Output Input 

(a) Parallel PID (b) FED PID 

(c) Series PID 

Figure 2.2: PID Controllers Types (a) Parallel PID, (b) FED PID, (c) Series PID. 
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are based on characterization of dynamic process by a few parameters and simple equations 

for the controller parameters. It is surprising that the methods are so widely referenced 

because they give moderately good tuning only in restricted situations [15].  

 

The Step Response Method: 

One tuning method presented by Ziegler and Nichols is based on a process information in 

the form of the open loop step response. This method can be viewed as a traditional method 

based on modeling and control where a very simple process model is used. The step 

response is characterized by only two parameters a and L, as shown in Figure 2.2. 

 

 

The point where the slope of the step response has the maximum value is first determined, 

and the tangent at that maximum point is drawn. The intersections between the tangent and 

the coordinate axes give the parameters a and L. The a and L lengths determine the 

controller parameters which is obtained from Table 2.2.  

 

Table2.2: PID controller parameters obtained for the Ziegler-Nichols step response method. 

Controller K Ti Td Tp 

P 1/a - - 4L 

PI 0.9/a 3L - 5.7L 

PID 1.2/a 2L L/2 3.4L 
 

Figure2.3: Characteristic of the step response in the Ziegler-Nichols method 

K 

a L 
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The Frequency Response Method: 

Ziegler and Nichols develop a second method which is based on a simple characterization 

of the frequency response of the process dynamics. This design is based on knowledge of 

only one point on the Nyquist curve of the process transfer function, in a desired point 

where the Nyquist curve intersects the negative real axis as shown in Figure 2.3 [13],[18].   

  

 

 

 

 

 

 

 

 

 

 

 

The gain when the oscillation occurs is Ku and the period of the oscillation is Tu. Gain of 

oscillation and frequency of oscillation can be obtained from the Nyquist diagram where Ku 

is the inverse value when the curve intersects the x-axis. The frequency of oscillation Tu is 

obtained from the angle where the Nyquist curve intersect the unit circle  The parameters of 

the controller are then given by Table 2.3. An estimate of the period Tp of the dominant 

dynamics of the closed loop system is also given in Table 2.3. 

 

Table2.3: PID controller parameters for the Ziegler-Nichols frequency response method. 

Controller K Ti Td Tp 

P 0.5Ku - - Tu 

PI 0.4Ku 0.8Tu - 1.4Tu 

PID 0.6Ku 0.5Tu 0.125Tu 0.85Tu 
 

Figure2.4: Characteristic of the frequency response in the Ziegler-Nichols method 
 

-1 

1/ Ku 
1 

1 

Φ
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The most salient problem in the PID controller is the tuning of the proportional, integral 

and derivative gain. The tuning problem wastes time, money and efforts. So, the fuzzy 

control is used as a good approach to solve the problem of tuning that is done by 

supervisory fuzzy PID control. Also a salient feature can be done using hybrid fuzzy PID 

control by adding the gain scheduling method as illustrated in the research.   
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CHAPTER 3 

Fuzzy Logic Control 

 

Fuzzy logic is the logic that deals with fuzzy sets. The concept of fuzzy sets and fuzzy logic 

are used in fuzzy control. A fuzzy set is a set that does not have sharp or crisp boundaries. 

In other words, there is a softness associated with the membership of elements in fuzzy set. 

Fuzzy set theory has been developed over the past years as means for describing sets whose 

boundaries are vague or imprecise. 

   

3.1 Fuzzy Logic History: 

The first paper published in Fuzzy set theory was by Lotfi Zadeh. He was one of the 

leading authorities in control theory in early 1960’s. Lot of questions couldn't be explained 

with true or false logic. Since Boolean logic couldn't answer some of these questions with a 

simple yes or no, then fuzzy logic should be used. If you were to humanize a computer, you 

will have to use fuzzy logic to imitate the way a human brain works, and attempt to turn 

artificial intelligence into real intelligence. The way that humans think uses fuzzy logic. 

 

Japanese were the first to use fuzzy logic in application in 1980's. Japanese and Korean 

companies are using fuzzy logic to enhance things like computers, air conditioners, 

automobile parts, cameras, televisions, washing machines, and robotics. In October of 1993, 

at the Tokyo Motor show, Mitsubishi had a computer which imitates the information 

processing in a driver's brain. The computer studies the driver's normal driving habits and 

selects a response from different situations that could happen. If a built in radar system 

detects an object in the road, then the fuzzy logic system would decide whether or not the 

driver was aware of the obstacle based on previous driving patterns. If the driver does not 

respond as the computer predicted, then the computer can automatically take control of the 

brakes to avoid a collision [19]. 
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3.2 Fuzzy Logic & Fuzzy Control: 

Fuzzy logic has become a common well known word in machine control. However, the 

term itself provides certain skepticism, sounding equivalent to half-baked logic or 

ambiguous logic. Fuzzy logic is a way of interfacing analog processes that move through a 

continuous range of values, to a digital computer, that seems to be well-defined discrete 

numeric values [20]. 

 

For example, consider an antilock braking system, directed by a microcontroller. The 

microcontroller has to make decisions based on brake temperature, speed, and other 

variables in the system. The variable temperature in this system can be divided into a range 

of states, such as: cold, cool, moderate, warm, hot, and very hot. An arbitrary threshold 

might be set to divide warm from hot, but this would result in a discontinuous change when 

the input value passed over that threshold. 

 

The way around this is to make the states fuzzy, that is, allow them to change gradually 

from one state to the next. You could define the input temperature states using membership 

functions as shown in Figure 3.1: 

 

 

 

  

 

 

 

 

With this scheme, the input variable's state no longer jumps abruptly from one state to the 

next. Instead, as the temperature changes, it loses value in one membership function while 

gaining value in the next. At any one time, the truth value of the brake temperature will 

COLD          COOL     NORMAL    WARM          HOT 

1
 
 
 
 
 
 
0

T0    T1        T2  T3     T4         T5              T6 

Figure 3.1 Membership function 
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almost always be in some degree part of two membership functions: 0.7 normal and 0.3 

warm, or 0.8 normal and 0.2 cool, and so on.  

 

A fuzzy set is represented by a membership function which gives a degree of membership 

within the set of any element of the universe of discourse. The membership function maps 

the elements of the universe onto numerical values in the interval [0,1]. 

 

Basic operations on sets in crisp set theory are the set complement, set intersection, and set 

union. Fuzzy set operations are very important because they can describe intersections 

between variables 

 

For a given element x of the universe, the following function theoretic operations for the set 

theoretic operations of union, intersection, and complement are defined [21]: 

 

Intersection (AND): 

Consider two fuzzy sets A and B, as shown in Figure 3.2, in the same universe X. A∩B 

µA∩B(x)=µA(x)^µB(x)=min[µA(x).µB(x)]  ∀ x∈X   

 

 

 

 

 

 

 

 

Union (OR): 

Consider two fuzzy sets A and B in the same universe X. AU B is the whole area covered 

by the sets as shown in Figure 3.3. 

µAUB(x)=µA(x)^µB(x)=max[µA(x).µB(x)]  ∀ x∈X   

 

x

1 

Figure 3.2 Intersection of fuzzy sets A and B 
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Complement (NOT): 

Consider a fuzzy set A in universe X. Its complement A  as displayed in Figure 3.4. 

µ A (x) =1- µA(x) ∀ x∈X   

The connective operator used mostly in fuzzy logic control is the minimum (AND)   

 

 

 

 

 

 

 

 

 

The most popular choices for the shape of the membership function are the trapezoid-

shaped, the bell shaped, the triangle-shaped and Gaussian function as shown in Figure 3.5. 

 

The concept of a linguistic variable, which is naturally ambiguous, is basic to the 

understanding of fuzzy logic control. In particular, it can employ fuzzy sets to represent 

linguistic variables. A linguistic variable can be regarded either a variable whose value is 

fuzzy number or as a variable whose values are defined in linguistic terms.  

 

 

 

1 

x

Figure 3.4 Complement of fuzzy sets A 

1 

x

Figure 3.3 Union of fuzzy sets A and B 
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Assume the two input variables are (brake temperature) and (speed) that have values 

defined as fuzzy sets. The output variable, (brake pressure), is defined by a fuzzy set that 

can have values like (static), (slightly increased), (slightly decreased), and so on.  

 

This rule is very puzzling since it looks like it could be used without bothering with fuzzy 

logic, but the decision based on these results are combined to give a specific (crisp) answer, 

the actual brake pressure, a procedure known as (Defuzzification). The combination of 

fuzzy operations and rule-based describes a (fuzzy expert system). 

 

Traditional control systems are based on mathematical models in which the control system 

is described using one or more differential equations that define the system response to its 

x

Figure 3.5 Membership Functions (a) Bell-Shaped (b) Triangular (c) Trapezoidal (d) Gaussian. 

1 

x

Fuzzy Fuzzy 

(a) 

1 

Fuzzy Fuzzy 

(b) 

1 

x

Fuzzy Fuzzy 

(c) 

1 

Fuzzy Fuzzy 

(d) 
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inputs. Such systems are often implemented as "proportional-integral-derivative (PID)" 

controllers. They are the products of decades of development and theoretical analysis, and 

are highly effective. 

 

If PID and other traditional control systems are so developed, it has problems versus the 

fuzzy control. Fuzzy control has some advantages. In many cases, the mathematical model 

of the control process may not exist, or may be too expensive in terms of computer 

processing power and memory, and a system based on experimental rules may be more 

effective. 

 

Furthermore, fuzzy logic is well suited to low-cost implementations. Such systems can be 

easily upgraded by adding new rules to improve performance or add new features. In many 

cases, fuzzy control can be used to improve existing traditional controller systems by 

adding an extra layer of intelligence to the current control method [22].  

 

3.3 Fuzzy Control Implementation: 

Fuzzy controllers’ concepts are very simple. They consist of three main stages as shown in 

Figure 3.6, an input stage, a processing stage, and an output stage.  

  

The input stage maps sensor or other inputs, such as switches to the appropriate 

membership functions and truth values. The processing stage enables each rule and 

generates a result for each, then combines the results of the rules. Finally, the output stage 

converts the combined result back into a specific control output value. 

 

 

 

 

 

 

 

Input Processing Output 

Figure 3.6: Fuzzy Control System 
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As discussed previously, the most common shapes of membership functions used are 

triangular, trapezoidal, Gaussian and bell curves, but the shape is generally less important 

than the number of curves and their placement. 

The major components to design the fuzzy logic control shown in Figure 3.7 are the 

Fuzzification, knowledge base, decision making logic, and Defuzzification [20],[23].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.1 Fuzzification: 

The Fuzzification comprises the process of transforming crisp values into grades of 

membership for linguistic terms of fuzzy sets. The membership function is used to 

associate a grade to each linguistic term. Fuzzification plays an important role in dealing 

with uncertain information which might be objective in nature.  

Knowledge Base 

Fuzzification Defuzzification 

 

Decision making 

logic 

Controlled System 

R(t) 

FLC  
Input 
State 

Control Signal State Variable 

Fuzzy Logic Controller 

Figure 3.7: Fuzzy Logic Controller Configuration  



 20 

3.3.2 Knowledge Base: 

The knowledge base of Fuzzy Logic Controller (FLC) is comprised of two parts: a data 

base and a fuzzy control rule base. Some issues will be discussed relating to the data base 

in this part and the rule base in the next part [21]. 

In the data base part, there are four principal design parameters for an FLC: discretization 

and normalization of universe of discourse, fuzzy partition of input and output spaces, and 

membership function of primary fuzzy set. 

A fuzzy system is characterized by a set of linguistic statements usually represented in the 

form of “if-then” rules. In this section, we examine several topics related to fuzzy control 

rules: 

1- Source of fuzzy control rules 

There are two principal approaches to the derivation of fuzzy control rules. The first is a 

heuristic method in which rules are formed by analyzing the behavior of a controlled 

process. The derivation relies on the qualitative knowledge of process behavior. The second 

approach is basically a deterministic method which can systematically determine the 

linguistic structure of rules. 

We can use four modes of derivation of fuzzy control rules. These four modes are not 

mutually exclusive, and it is necessary to combine them to obtain an effective system. 

• Expert experience and control engineering knowledge: operating manual and 

questionnaire. 

• Based on operators’ control actions: observation of human controller’s actions in 

terms of input-output operating data. 

• Based on the fuzzy model of a process: linguistic description of the dynamic 

characteristics of a process. 

• Based on learning: ability to modify control rules such as self-organizing controller. 

2- Types of fuzzy control rules 

There are two types of control rules: state evaluation control rules and object evaluation 

fuzzy control rules. 
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a) State evaluation fuzzy control rules [22]: State variables are in the antecedent part of 

rules and control variables are in the consequent part. In the case of MISO (multiple input 

single output), they are characterized as a collection of rules of the form. 

 
R1: if x is A1, … and y is B1 then z is C1 
R2: if x is A2, … and y is B2 then z is C2     (3.1) 
… 
Rn: if x is An, … and y is Bn then z is Cn 

 
where x, … y and z are linguistic variables representing the process state variable and the 

control variable. Ai, … Bi and Ci are linguistic values of the variables x, … y and z in the 

universe of discourse U, … V and W, respectively i = 1, 2, … , n. That is, 

 

WCWz

VBVy

UAUx

i

i

i

⊂∈

⊂∈

⊂∈

,

,

...

,

        (3.2) 

 
In a more general version, the consequent part is represented as a function of the state 

variable x, … y. 

Ri: if x is Ai, … and y is Bi then z = fi(x, … y)     (3.3) 

The state evaluation rules evaluate the process state at time t and compute a fuzzy control 

action at time t. 

b) Object evaluation fuzzy control rules: It is also called predictive fuzzy control. They 

predict present and future control actions, and evaluate control objectives. A typical rule is 

described as 

R1: if (z is C1 → (x is A1 and y is B1)) then z is C1. 
R2: if (z is C2 → (x is A2 and y is B2)) then z is C2.    (3.4) 
… 
Rn: if (z is Cn → (x is An and y is Bn)) then z is Cn. 

 
A control action is determined by an objective evaluation that satisfies the desired states 

and objectives. Note x and y are performance indices for the evaluation and z is control 

command. 
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In linguistic terms, the rule is interpreted as: if the performance index x is Ai and index y is 

Bi when a control command zi is Ci, then this rule is selected, and the control command Ci 

is taken to be the output of the controller. 

 

3.3.3 Decision Making: 

In decision making logic part, there are lot of inference methods described like: Mamdani 

method, Larsen method, Tsukamoto method, and Takagi-Sugeno-Kang (TSK) method. The 

most important and widely used in the environment of fuzzy control are the Mamdani and 

Takagi-Sugeno methods [24]. 

 

3.3.4 Mamdani Method: 

In 1974, Mamdani published the first paper for fuzzy applications [1]. Mamdani method 

was proposed as an attempt to control a steam engine and boiler combination by 

synthesizing a set of linguistic control rules obtained from experienced human operators.  

The source of knowledge of fuzzy logic to construct the control algorithm comes from the 

control protocol of the human operator. This protocol consists of a set of conditional (If-

Then) statements, where the first part of each contains a so-called condition (antecedent) 

while the second (consequent) part deals with an action (control) that has to be taken. 

Therefore, it mimics the human strategy which control is to be realized when a certain state 

of the process controlled is observed. IF(a set of conditions are satisfied) THEN (a set of 

consequences can be inferred). In classical (crisp) logic, a proposition P is either true or 

false. In fuzzy logic, a proposition P is assigned a degree of truth or falsity (P can be any 

value on the interval [0,1]) with the fuzzy set involved. A fuzzy logic proposition, P, it can 

be expressed as “IF x is A THEN y is B,” implying that P induces a possibility distribution 

of y given x. Basically, fuzzy control rules provide a convenient way for expressing control 

policy and domain knowledge and have the form (Mamdani): 

R1: if x is A1, … and y is B1 then z is C1 
R2: if x is A2, … and y is B2 then z is C2     (3.5) 
….. 
Rn: if x is An, … and y is Bn then z is Cn 
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Fuzzy Implication Functions: 

Fuzzy control rule is a fuzzy relation which is expressed as a fuzzy implication. It is also 

described as how a variety of fuzzy implication relations or Zadeh extension principle 

might be used to derive the fuzzy relational equations. A fuzzy control rule, “IF x is A 

THEN y is B”, is represented by fuzzy implication function and is denoted by A→B, where 

A and B are fuzzy sets in universes U and V with membership function µA and µB, 

respectively. Several methods for obtaining the solution of fuzzy implication function are 

described here [20]: 

 

(1) Mini-operation rule of fuzzy implication [Mamdani]: 

∫
×

∧
=×=→

VU

BA

vu

vu
BABA

),(

)()( µµ
       (3.6) 

(2) Product-operation rule of fuzzy implication [Larsen]: 

∫
×

=×=→
VU

BA

vu

vu
BABA

),(

)()( µµ
       (3.7) 

(3) Material implication: 

BORANOTBA )(=→         (3.8) 

(4) Propositional calculus: 

)()( BANDAORANOTBA =→        (3.9) 

(5) Extended propositional calculus: 

 BORBNOTANOTBA )( ×=→        (3.10) 

(6) Generalization of modus ponens: 

 }],1,0[sup{ BBAcBA ≤×∈=→        (3.11) 

(7) Generalization of modus tollens: 

 }],1,0[inf{ AtAtBA ≤+∈=→        (3.12) 

 

The rules contain the condition as well as the action part of the linguistic terms that reflect 

the operator knowledge of the process. Also, they give a clear impression of the level of 
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precision at which one has to perform computations in order to mimic a human behavior. 

The linguistic terms suggest work with sets rather than with single numerical quantities. 

While building the linguistic variables for a process, some aspects can be taken into 

account as stated in [23]: 

• Characteristics of human control behavior. 

• Development of process control skills. 

• Individual differences between process operators. 

• Task factor affecting performance. 

• Organization of the operator control behavior. 

 

3.3.5 Takagi-Sugeno Method: 

In 1985, Takagi and Sugeno published the paper of fuzzy systems [25]. The fuzzy inference 

system proposed by Takagi and Sugeno, known as the T-S model in fuzzy system literature 

provides a powerful tool for modeling complex nonlinear systems. The basic idea of the T-

S model is the fact that an arbitrary complex system is a combination of mutually inter-

linked subsystems. Schematic representation of a Takagi-Sugeno fuzzy system is shown in 

Figure 3.4. Given properly defined input variables and membership functions, the Takagi-

Sugeno fuzzy rules for a system considered herein are in the form of 

Ri: IF x1 is Ai1 and … and xm is Aim THEN     (3.13) 

Yi = ai1x1+…+aimxm+ai0 

Where Ri(i=1,2,…,c) denotes the ith fuzzy rule, xj (j=1,2,…m) are the input (antecedent) 

variables, yi are the rule output variables, Ai1, …Aim are fuzzy sets defined in the 

antecedent space, and ai1,…aim, ai0 are the model consequent parameters that have to be 

identified in a given input crisp vector x=(x1,…xm)
T , the inferred global output of the 

Takagi-Sugeno model is computed by taking the weighted average of individual rules’ 

contributions 
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Where τi(x) is the degree of fulfillment of the i
th fuzzy rule, defined by  

τi(x)= Min{µAi1(x1) … µAim(xm)} or      (3.15) 

τi(x)= µAi1(x1). µAi2(x2)… µAim(xm) i=1,2,…,c 

for the minimum and product conjunction operators, respectively. µAij : R→ [0,1] is the 

membership function of the antecedent fuzzy set Aij [11],[12]. That represented clearly in 

Figure 3.8 which shows the schematic representation of Takagi-Sugeno model. 

 

 

3.3.6 Mamdani versus Takagi-Sugeno: 

A brief description of the most popular methods used in fuzzy logic control is represented. 

The first one, Mamdani type fuzzy models are systems based on fuzzy (If-Then) rules with 

linguistic fuzzy sets in both antecedents and consequents. This type of fuzzy systems is 

named after E.H. Mamdani, who was the first researcher to use fuzzy logic. 

The T-S and later the Sugeno and Kang, this type is similar to the Mamdani type model in 

the sense that they are both described by (If-Then) rules and that their antecedents have 

linguistic fuzzy sets. However T-S models differ in the consequents which are represented 

by analytic dynamical or algebraic equations. The system dynamics are written as a set of 

fuzzy implications which characterize local models in the state space. The main feature of 

Low Medium High 

Y 
1
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1
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2
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Figure 3.8: Schematic representation of Takagi-Sugeno model 
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T-S fuzzy model expresses the local dynamics of each fuzzy rule by a linear dynamical 

model. The overall fuzzy model is achieved by blending of these rules. This type of 

modeling was able to approximate nonlinear systems efficiently. Since the local models are 

linear, the linear control methodology can be used to design the local controllers, so we 

obtain a global controller for the system. 

 

The advantages of Mamdani Model: 

1- It is better suited to human input. 

2- It has gained widespread acceptance. 

3- It is widely used for second order systems with both linear and nonlinear 

characteristics. 

4- It is easy to implement. 

 

The advantages of Takagi-Sugeno Model: 

1- Better suited to mathematical analysis. 

2- Computationally efficient. 

3- Works well with optimization and adaptive technique. 

4- Work better in multi dimensional systems than Mamdani model. 

5- Provides a more systematic approach to the design of Fuzzy Logic Controller. 

6- It is uses less fuzzy variables than the Mamdani model, since the low numbers of 

fuzzy variables ill reduces the number of implications. 

7- It is the only fuzzy model that allows a stability analysis using Lyapunov’s direct 

method (for nonlinear systems). 

 

3.3.7 Defuzzification: 

The output decision of a fuzzy logic controller is a fuzzy value and is represented by a 

membership function to precise quantity.  A defuzzification process is aimed at producing a 

non-fuzzy control action that represents the possibility distribution of an inferred fuzzy 

control action. There are several methods available for defuzzification of fuzzy control 

inference [23]: 
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1. Center of Area: this method is the best known method for defuzzification. In this 

method: 
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     (3.16) 

where l is the number of quantification levels of the output, wi is the amount of 

control action at the quantification level i, and µf(wi) is the membership grade of wi 

in f. This method determines the center of area below which is the combination of 

membership functions. 

   

2. Centroid Method: In this method, the weighted average of the membership function 

or the center of the gravity of the area bounded by the membership function curve is 

computed to be most typically crisp value of the fuzzy quantity. This method is the 

most widely used. This method yields  
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where n is the number of rules with firing weight wi and zi is the amount of control 

action recommended by rule i.  

 

3. Center of Largest Area: This method is applied when the overall output fuzzy set is 

nonconvex, that is, consists of at minimum two convex subsets. This method then 

finds the convex fuzzy subset with the largest area and defines the crisp output 

value to be the center of area particular fuzzy subset. 

 

4. Mean of Maxima (MOM): this method can be divided to three methods: 

a. Minimum of Maxima 
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b. Middle of Maxima 

c. Maximum of Maxima 

 

These three methods are used when the membership grade has a unique peak point. The 

crisp value corresponding to the peak of the membership is taken as the best value of 

the fuzzy quantity. 
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where l is the number of quantified w values which reach their maximum membership. 

 

5. Height: This is a method that uses the individual clipped or scaled control outputs. 

Height method takes the peak value of each clipped and builds the weighted sum of 

these peak values. It is the only method that will be used, when the output is 

singleton 
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where p(i) is the peak value of the output, hi is the height of clipped fuzzy sets, and n 

is the number of rules in the system. 

 

Example 3.1 and 3.2 illustrate the Mamdani versus Takagi-Sugeno methods as shown:   

Example 3.1: Consider a Mamdani FLC consisting of two rules and let the inputs be. 

1613 21 ==
••

xandx   

R1: IF x1 is Medium Positive and x2 is Small Positive THEN y is Medium Positive. 

R2: IF x1 is Small Positive and x2 is Medium Positive THEN y is Small Positive. 

x1 and x2 are the inputs of the system and y is the output. From Figure 3.9 you can obtain: 

R1:  µMP( 1

•

x ) = 0.25  µSP( 2

•

x ) = 0.7 

R2:  µSP( 1

•

x ) = 0.85   µMP( 2

•

x ) = 0.5 
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The weight of rule 1, and rule 2 are calculated by: 

w1 = min(µMP( 1

•

x ), µSP( 2

•

x )) = min(0.25, 0.7) =0.25 

w2 = min(µSP( 1

•

x ), µMP( 2

•

x )) = min(0.85, 0.5) = 0.5 

The control actions will be obtained by using the Centroid Method: 
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 = (0.25*20+0.5*10) / (0.25+0..5) =13.333 

                                                                                                                                                                                                                                                                                                                                     

 

 

 

 

 

 

 

 

 

 

 

 

So the control action effected on the output function is 13.33. 

  

Example 3.2: Consider a Sugeno FLC consisting of two rules and let the inputs be  

279 21 ==
••

xandx  

R1: IF x1 is SMALL and x2 is BIG THEN u1=x1+4x2+1. 

R2: IF x1 is BIG and x2 is MEDIUM THEN u2=2x1-3x2+2. 

From Figure 3.10 we can obtain: 

µSMALL( 1

•

x ) = 0.6  µMEDIUM( 2

•

x ) = 0.7 

Medium 
Positive 

10 30 
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Small 
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10 30 

0 20 x1=13 

0.5 

0.7 
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Medium 
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0 20 

10 30 x2=16 

Figure 3.9: Defuzzification of the combined rules 
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µBIG( 1

•

x ) = 0.4   µBIG( 2

•

x ) = 0.45 

The rule weights of R1 and R2 we obtain: 

min(0.6, 0.45)=0.45  min(0.4, 0.7)=0.4 

The output of rule R1 and R2 we have: 

u1= 9 + 4*27 + 1 = 118 

u2= 2*9 - 3*27 + 2 = - 61 

So the two pairs corresponding to each rule are (0.45, 118) and (0.4, -61) thus by taking the 

weighted normalized sum we get: 

u = (0.45*118+0.4*(-61)) / (0.45+0.4) = 33.765 

  

  

 

 

 

 

 

 

 

The control action acted on the output function is 33.765. 

 

The previous two examples show a brief description for Mamdani and Takagi-Sugeno. 

Where, Mamdani deals only with linguistic output, but the Sugeno deals with nonlinear 

functions and algebraic equations as shown above that grants more flexibility in real life 

where most of real dynamical systems are nonlinear systems.  

Figure 3.10: Fuzzification Procedure 
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CHAPTER 4 

Nonlinear Systems 

 

The analysis and design of nonlinear dynamical systems in electrical circuits, mechanical 

systems, control systems and other engineering fields needs a wide range of nonlinear 

systems tools. In this work, we introduce some of these tools which used in the design of 

nonlinear systems illustrated in this thesis. 

 

4.1 What is Nonlinear? 

Extensive theoretical techniques for the analysis and design of linear control systems have 

been developed over the last 50 years. Unfortunately, practically, all systems exhibit 

nonlinear behavior and the use of linear analysis only, may not provide an adequate 

description of the behavior. Linear systems have the important property that they satisfy the 

superposition principle. This leads to many important advantages in methods for their 

analysis. For example, in a simple feedback loop with both set point and disturbance inputs, 

they effect on the output when they are applied simultaneously that is the same as the sum 

of their individual effects when applied separately. This would not be the case if the system 

were nonlinear. Thus, mathematically a linear system may be defined as one which with 

input x(t) and output y(t) satisfies the property that the output for an input ax1(t)+bx2(t) is 

ay1(t)+by2(t), if y1(t) and y2(t) are the outputs in response to the inputs x1(t) and x2(t), 

respectively, a and b are constants. A nonlinear system is defined as one which does not 

satisfy the superposition property. The simplest form of nonlinear system is the static 

nonlinearity where the output depends only on the current value of input but in a nonlinear 

manner, for example the mathematical relationship  

)()()( 3 tbxtaxty +=          (4.1) 

where the output is a linear plus cubed function of the input. 

Moreover, the relationship could involve both nonlinearity and dynamics so it might be 

described by the nonlinear differential equation  
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From an engineering viewpoint it may be desirable to think of this equation in terms of a 

block diagram consisting of linear dynamic elements and a static nonlinearity, which in this 

case is a cubic with input ty ∂∂  and output 3)( tya ∂∂ . A major point about nonlinear 

systems is that their response is amplitude dependent so that if a particular form of 

response, or measurement of it, occurs for one input magnitude it may not result for another 

input magnitude. This means that in a feedback control system with a nonlinear plant, if the 

designed controller does not produce a linear system then, to adequately describe the 

system behavior, one need to investigate the total allowable range of the system variables. 

For a linear system one can claim that a system has an optimum response, assuming 

optimum is precisely defined, for example minimization of the integral squared error, using 

results obtained for single input amplitude. On the other hand for a nonlinear system the 

response to all input amplitudes must be investigated and the optimum choice of parameters 

to minimize the criterion will be amplitude dependent. Perhaps the most interesting aspect 

of nonlinear systems is that they exhibit forms of behavior that aren't possible in linear 

systems and more details will be discussed later [6]. 

 

4.2 Nonlinear Phenomenon: 

There are a lot of nonlinear phenomena that will be described here to ensure the criterion of 

the nonlinear systems that can take place only in the presence of nonlinearity, and hence 

they cannot be described by linear models. So the following examples describe the 

nonlinear phenomena: 

 

Finite escape time: 

The state of an unstable linear system goes to infinity as time approaches infinity, a 

nonlinear systems’ state, however, can go to infinity in finite time as shown Figure 4.1. 
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Multiple isolated equilibria: 

A linear system can have only one isolated equilibrium point, thus, it can have only one 

steady state operating point that attracts the state of the system irrespective of the initial 

state. A nonlinear system can have more than one isolated equilibrium point as shown in 

Figure 4.2. The state may converge to one of several steady state operating points, 

depending on the initial state of the system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Finite escape time phenomenon. 

Figure 4.2: Multiple isolated equilibria.  
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Limit cycles: 

For a linear time invariant system to oscillate, it must have a pair of eignvalues on the 

imaginary axis, which is a nonrobust condition that is almost impossible to maintain in the 

presence of perturbations. The amplitude of oscillation will be depend on the initial state. In 

real life, stable oscillation must be produced by nonlinear systems. There are nonlinear 

systems that can go into an oscillation of fixed amplitude and frequency, irrespective of 

initial state. This type of oscillation is known as a limit cycle as shown in Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

These types of phenomena will be used in the most nonlinear subjects, so there are more 

than those types but will not be illustrated because of the concentration of the nonlinear 

subject in this report [26]. 

   

4.3 Common Nonlinearities: 

In the following subsections, various nonlinearities which commonly occur in practice are 

presented. 

 

Memoryless nonlinearities: 

They are called memoryless, zero memory or static because the output of the nonlinearity at 

any instant of time is determined uniquely by its input at that instant; it does not depend on 

the history of the input, Figure 4.4 shows some of Memoryless common nonlinearities. 

Figure 4.5 shows characteristics of the hysteresis type which is a relay with hysteresis.  

Figure 4.3: Two types of limit cycles. 
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Nonlinearity with memory 

Quite frequently, we encounter nonlinear elements whose input-output characteristics have 

memory; that is, the output at any instant of time may depend on the whole history of the 

input [26]. 

 

4.4 Nonlinear Control Problem: 

Generally, most of robotics systems are nonlinear systems. One common task in robotics 

system control is to demand the robot or parts of the body to follow a given reference 

trajectory [27]. Tracking control of system dynamics may change significantly. Hence, 

-1 

1 k 

d 

q 

q/2 d 

Relay Saturation 

Quantization Dead zone 

Figure 4.4 Memoryless common nonlinearities 
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instead of trying to model the system, a more feasible solution is to schedule the gains at 

each operating point. Since human expert can describes the system in a natural language 

better than mathematical equations, fuzzy control is also commonly used in nonlinear 

control of robotics systems [12],[28]. 

 

 

 

 

 

 

 

 

 

 

 

A. Gain Scheduling Method 

Nonlinear systems can be generally expressed by the following nonlinear autonomous 

system equation: 

uxgxfx )()( +=
•

         (4.3) 

Where 1
21 ],....,,[ ×∈= nT

n Rxxxx  is the state vector, 1
21 ],....,,[ ×∈= mT

m Ruuuu is the control 

input vector, )(xf and 1)( ×∈ nRxg  are vector functions of states. 

Assume 1)( ×∈ nd Rtx is the given reference trajectory whose corresponding reference input is 

ud(t) 

dddd uxgxfx )()( +=
∗

        (4.4) 

Taking Lyapunov linearization around the operating points (xd, ud), we have  

L+ 

L- 

S- S- 

Figure 4.5 Relay with Hysteresis 
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))(())(( dddd
d

uuxBxxxAxx −+−+=
••

      (4.5) 

Where 

dxx

d

dx

df
xA

=

=)(      )()( dd xgxB =        (4.6) 

Let 
d

d xxexxe
•••

−=−= ,  and         (4.7) 

System (4.5) is equivalent to 

edd uBeAe +=
•

         (4.8) 

 

where Ad and Bd are assumed to be transformed into diagonal CCF, which is valid for many 

robotics systems. Because the reference trajectory xd is a function of time, the nonlinear 

system (4.3) can be linearized at frozen time τ so that the tracking problem of the nonlinear 

system is transformed into a stabilization problem of the linear system (4.8) in the error 

state space. The equilibrium points are shifted from the reference trajectory points xd(τ) to 

the origin. However, the aforementioned conventional gain-scheduling method employs 

linearization between two consecutive operating points. If the system states vary 

significantly along the time axis, global stability will be a problem. An alternative solution 

is to utilize fuzzy rules containing expert knowledge to perform smoother interpolation of 

all the operating points in the control envelope [29]. 

 

B. Fuzzy Gain Scheduling 

At some frozen times τi the corresponding control input can be approximated by (4.4), 

which is xd(τi) or x
i shortly. In partitioning the state space, this xi will be the centers of 

membership functions (MFs), LXi [30]. The nonlinear system given by (4.3) can, therefore, 

be transformed into several local linearized systems  

eidi BuAeeTHENLXisxIFR +=
•

,:       (4.9) 

where Ai and Bi are system state matrices corresponding to xi . 
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The control law to be designed is 

edidi uuuTHENLXisxIFR +=,:       (4.10) 

 

where ud is the control input corresponding to the reference input xd  and  ue is the control 

input derived from error inputs. 

The conventional approach of using the gain scheduling method is to design a linear 

controller for each local system in (4.9). The main advantage of this approach is that the 

powerful linear control theory may be applied. However, some simple nonlinear controllers 

like fuzzy PID controllers could be a better choice for handling the system nonlinearities. 

Then, the fuzzy PID controllers for local systems may be embedded in the global fuzzy 

gain scheduling rules to improve the integrity of the design [8], Moreover; the fuzzy Fed 

PID controller will give more optimal solution than any previous controllers as shown in 

the results in the following chapter. 
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CHAPTER 5 

Hybrid Fuzzy Control Design 

 

In this chapter, a fuzzy Fed PID controller is proposed to the enhanced control of the local 

linearized systems. By employing recursive feedback and appropriate tuning of 

conventional derivative gain, the fuzzy Fed PID controller guarantees sector conditions of 

the output [11]. Local stability analysis also explores the relationship between the 

conventional derivative gain and the fuzzy gain. Although the proposed controller is 

developed as a hybrid fuzzy Fed PID controller, the overall structure shows its potential to 

be a new form of standalone Fed FLC as depicted in Figure 5.1. 

 

5.1 Hybrid Fuzzy Fed PID Control: 

A fuzzy PID controller is proposed by discretizing the conventional PID controller and 

constructing from simple linear fuzzy rules in an incremental way. However in this chapter, 

a new type of fuzzy PID controller is proposed based on fuzzy Fed PID control structure 

using Mamdani versus the Takagi-Sugeno method [31].  

 

The fuzzy Fed PID controller is constructed in an incremental way by employing both error 

signals and recursive feedback signals as inputs to Fed PID. The main idea is found in the 

integral side, where the integral side when it is fed by a deferential feedback gives us a null 

overshoot and a null steady state error, the enhancement is very significant using Fuzzy Fed 

PID controller. The most widely adopted conventional PID controller structure used in 

industrial applications is the following structure [32]: 

)()()()( teKteKteKtu a
C
Dp

C
Iv

C
PPID ++=       (5.1) 

 

where KP, KI, and KD are the conventional proportional, integral, and derivative gains, 

respectively, and uPID(t) is the controller output and ev(t) is the velocity error signal, 

ep(t)=∫ev(t) is the proportional error signal and ea(t)=dev(t)/dt is the acceleration error signal. 
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The parameters in equation (5.1) form the PID controller and can be replaced by the 

following linear fuzzy rules: 

j
PIDPID

j
vv

j
pp

j DUisuTHENLEiseANDLEiseIFR ,:     (5.2) 

Where j
v

j
p LEandLE  are the linguistic values of the error signals of the jth fuzzy rule and 

j
PIDDU is the desired function value of the output uPID(t) 

The first look to the Fed PID gives the following equation: 

)()()5.0()()( teKteKteKtu a
C
Dp

C
Iv

C
PPID ++=       (5.3) 

But the real output is differ when the Fed PID controller is used, where the Fed PID 

controller has overshoot and steady state error less than the conventional PID controller. 

Fuzzy FED PID controller  

8.8

KP1

1

KI1

1

KD1

1

s

Integrator1

GS SISO

u = u(w,x)

Input scheduling1

Fuzzy PID1

du/dt

Derivative2

du/dt

Derivative1

Nonlinear SISO system

x' = f(x) + g(x) u

y = h(x)

 Controlled system 1

Figure 5.1: Overall Control Structure 
 

KI 

KD 

KP 
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Note that the output feedback from the integrator is taken from the output of the 

defuzzification process which gives the best results showing in the illustrative example.  

 

The example will be illustrated to make sure of the proposed results, which gives the 

minimum overshoot and minimum steady state error. In the example, the proposed 

controller is used in Mamdani and Takagi-Sugeno fuzzy control with an inverted pendulum 

robot, that robot is used in the most of our applications because of nonlinearity problem and 

marginally stability. The dynamic equation of the inverted pendulum robot is given by 

)cos34()(

cossinsin)(
2

2

θ

θθθθ
θ

pcp

pcp

mlmm

Flmgmm

−+

−−+
=

•
••

      (5.4) 

Where θ is the angle between the pendulum and the vertical, the angular velocity is 

expressed by
•

θ , the force which acts on the cart is F, the gravity acceleration g is 9.8m/sec2 , 

mc and mp are the mass of cart and the mass of pole respectively, and l is the half length of 

the pendulum. The system equation is written as follow: 

uxgxfx )()( +=
•

         (5.5)  

Where  
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The last two equations are used for simulation without a previous technique of linearization 

because of two methods are used, the first one is the gain scheduling method which divides 

the system into small areas to relent using of iterations, the second method is the fuzzy PID 
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controller that uses the linguistic formulas and by default it makes a linearization of the 

nonlinear system. The addition of the two methods is called hybrid fuzzy PID controller 

[33],[34].  

 

Let us discuss briefly the pendulum and give the numerical calculations and membership 

functions equations. As discussed, the angular position isθ , the angular velocity is 
•

θ , the 

external force F is applied to the cart. The gravity acceleration, g is 9.8 m/s2 , the mass of 

the cart, mc is 1.0kg, the mass of the pole, mp is 0.1kg and the half length of the pole, l is 

0.5m. Say that x=[θ  
•

θ ]T and u=F. Assume that the pole angle is required to follow a 

particular trajectory  θ d , now we can calculate the corresponding control input, ud, at a 

frozen times. Then the system can then be linearized to )()( dddd
d

uuBxxAxx −+−+=
••

 

where xd=[θ d     
•

θ d]T, Ad=df/dx|x=x
d, and Bd=g(xd). 

The simulation program used to simulate hybrid fuzzy Fed PID control is the MALAB 

Simulink program. The membership functions are shown bellow and the error signals are 

the membership functions for the inputs where input 1 is the error signal, input 2 is error 

differentiation, and input 3 is the error integration. Also function1, 2, and 3 are: 

( ) ( )( )( ) ( )
( ) ( )( ) ( )
( ) ( )( )( ) ( )35.1/exp

2/exp

15.1/exp

2

2

2

FunctionTK

FunctionTK

FunctionTK

uuneg

uuzero

uupos

+−=

−=

−−=

θθµ

θθµ

θθµ

    (5.6) 

Figure 5.2 shows the Nyquist diagram for the inverted pendulum which determine the gain 

of oscillation Ku and the frequency of oscillation Tu: 

Frequency of oscillation is Tu= 3.5867e-7 Hz and the gain of oscillation is Ku= 27. 

 

( ) ( )( )( ) ( )
( ) ( )( ) ( )
( ) ( )( )( ) ( )35.175278110.8exp

275278110.8exp

15.175278110.8exp

2

2

2

Function

Function

Function

neg

zero

pos

+−=

−=

−−=

θθµ

θθµ

θθµ

     (5.7) 
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5.2 Fuzzy PID Controller Rules:  

Beside the point of the amount of masses and measurements of the pendulum, the most 

point to be focused is the Fed Fuzzy PID controller that makes lower overshoot and 

minimum steady state error. This technique always makes the best results shown in Figure 

5.3, the fuzzy rules of the Fed PID controller using Takagi-Sugeno shown bellow is better 

than the results of Hybrid fuzzy Fed PID controller: 
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Figure 5.2: Nyquist diagram of the open loop inverted pendulum 
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For the fuzzy proportional integrator differentiator:  

    

1.If (input1 is   -ve) and (input2 is   -ve) and (input3 is   -ve) then (output1 is Function1)   

2.If (input1 is   -ve) and (input2 is   -ve) and (input3 is zero) then (output1 is Function1)   

3.If (input1 is   -ve) and (input2 is   -ve) and (input3 is  +ve) then (output1 is Function1)   

4.If (input1 is   -ve) and (input2 is zero) and (input3 is   -ve) then (output1 is Function1)   

5.If (input1 is   -ve) and (input2 is zero) and (input3 is zero) then (output1 is Function2)   

6.If (input1 is   -ve) and (input2 is zero) and (input3 is  +ve) then (output1 is Function2)   

7.If (input1 is   -ve) and (input2 is  +ve) and (input3 is   -ve) then (output1 is Function2)   

8.If (input1 is   -ve) and (input2 is  +ve) and (input3 is zero) then (output1 is Function3)   

9.If (input1 is   -ve) and (input2 is  +ve) and (input3 is  +ve) then (output1 is Function3)   

10.If (input1 is zero) and (input2 is  -ve) and (input3 is  -ve) then (output1 is Function1) 

11.If (input1 is zero) and (input2 is  -ve) and (input3 is zero) then (output1 is Function2)) 

12.If (input1 is zero) and (input2 is  -ve) and (input3 is +ve) then (output1 is Function2)  

13.If (input1 is zero) and (input2 is zero) and (input3 is  -ve) then (output1 is Function2)  

14.If (input1 is zero) and (input2 is zero) and (input3 is zero) then (output1 is Function2) 

15.If (input1 is zero) and (input2 is zero) and (input3 is  +ve) then (output1 is Function2)  

16.If (input1 is zero) and (input2 is  +ve) and (input3 is   -ve) then (output1 is Function2)  

17.If (input1 is zero) and (input2 is  +ve) and (input3 is zero) then (output1 is Function2)  

18.If (input1 is zero) and (input2 is  +ve) and (input3 is  +ve) then (output1 is Function3)  

19.If (input1 is  +ve) and (input2 is   -ve) and (input3 is   -ve) then (output1 is Function1)  

20.If (input1 is  +ve) and (input2 is   -ve) and (input3 is zero) then (output1 is Function2) 

21.If (input1 is  +ve) and (input2 is   -ve) and (input3 is  +ve) then (output1 is Function3)  

22.If (input1 is  +ve) and (input2 is zero) and (input3 is   -ve) then (output1 is Function2)  

23.If (input1 is  +ve) and (input2 is zero) and (input3 is zero) then (output1 is Function2)  

24.If (input1 is  +ve) and (input2 is zero) and (input3 is  +ve) then (output1 is Function3)  

25.If (input1 is  +ve) and (input2 is  +ve) and (input3 is   -ve) then (output1 is Function3)  

26.If (input1 is  +ve) and (input2 is  +ve) and (input3 is zero) then (output1 is Function3)  

27.If (input1 is  +ve) and (input2 is  +ve) and (input3 is  +ve) then (output1 is Function3)  
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Figure 5.3 illustrates the membership functions of the inputs and outputs of the desired 

controller, the blue color (left) for the membership function point to the negative input, the 

green (mid) one point to the zero membership and the red (right) point to the positive 

membership for each input 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: membership functions of the inputs to the controller and the output 
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Figure 5.4 illustrates the step response of hybrid fuzzy Fed PID controller versus 

conventional PID controller using Mamdani technique, the results are shown in Figure 5.4 

clearly give the best steady state error and the best overshoot but give a delay: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As illustrated in the Figure 5.4, the overshoot of Hybrid Fuzzy Fed PID using the Mamdani 

method is less value than the overshoot of the conventional PID controller that satisfy the 

idea of using the fuzzy control is better than conventional PID in maximum overshoot and 

the steady state error.  
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Figure 5.4: Stabilization control of the PID versus Fed PID (Mamdani) Long rule 
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Figure 5.5 illustrates the step response of hybrid fuzzy Fed PID controller (Takagi-Sugeno) 

versus conventional PID controller: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure illustrates the Mamdani versus Fed Sugeno Hybrid Fuzzy PID controller where 

the Fed Takagi-Sugeno achieves the zero overshoot but the Mamdani makes some 

overshoot, in addition the Fed Takagi-Sugeno has steady state error less value than 

Mamdani method.  

Figure 5.5: Stabilization control of the PID versus Fed PID (Takagi-Sugeno) 
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Figure 5.6 illustrates the step response of hybrid fuzzy Fed PID controller (Takagi-Sugeno) 

versus hybrid fuzzy Fed PID controller (Mamdani): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Fed Takagi-Sugeno achieves the zero overshoot but the Fed Mamdani makes some 

overshoot, in addition the Fed Takagi-Sugeno has steady state error less value than 

Mamdani method. Anyway, when the Fed theorem is used the minimum steady state error 

and the minimum overshoot will be achieved.   

Figure 5.6: Stabilization control of the Fed PID (Mamdani) versus Fed PID (Takagi-Sugeno) 
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5.3 Minimizing the number of rules of the Fuzzy PID Controller: 

In this section the series reduction method will be used for redesigning inputs and the 

number of rules. Theoretically, the number of rules that cover all possible input variations 

for a five term fuzzy controller is (n1×n2×n3×n4×n5). Where (n1×n2×n3×n4×n5) are the 

number of membership functions or linguistic labels of the five input variables. In a 

particular case, if n1=n2=n3=n4=n5=5, then the number of rules will be 3125 as shown in 

Figure 5.7. In practical applications, the implementation of such a large rule base will take a 

lot of reasoning time besides a large amount of process memory [35].  
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The 27 rules used in the inverted pendulum example can be reduced using the series 

method shown in the Figure 5.8 

 

The fuzzy PID controller is divided into two main rules the PD rules and the Integrator 

rules, I divided the integrator rules to make a feedback from the output of the integrator 

with a deferential feedback to the input of the integrator, this technique always makes the 

best results referred to optimization in the direction of reducing the number of rules, the 

fuzzy rules of the Fed PID controller shown below: 

 

For the fuzzy Fed integrator: 

IF (ep is –ve ) THEN (uPID is –ve ) 

IF (ep is zero) THEN (uPID is zero) 

IF (ep is +ve ) THEN (uPID is +ve ) 
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Figure 5.8: Reduction of the inverted pendulum Fed PID controller rules 
using series method 
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For the fuzzy proportional differentiator:     

IF (ev is –ve ) AND (ea is –ve ) THEN (uPID is –ve ) 

IF (ev is –ve ) AND (ea is zero) THEN (uPID is –ve ) 

IF (ev is –ve ) AND (ea is +ve ) THEN (uPID is zero) 

IF (ev is zero) AND (ea is –ve ) THEN (uPID is –ve ) 

IF (ev is zero) AND (ea is zero) THEN (uPID is zero) 

IF (ev is zero) AND (ea is +ve ) THEN (uPID is +ve ) 

IF (ev is +ve ) AND (ea is –ve ) THEN (uPID is zero) 

IF (ev is +ve ) AND (ea is zero) THEN (uPID is +ve ) 

IF (ev is +ve ) AND (ea is +ve ) THEN (uPID is +ve ) 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
The results of the reduced rules are shown in Figure 5.10 that illustrates a good overshoot 

and a good steady state error which nearly equals to that used in 27 rules but don’t forget 

that the optimization in rules numbers qualifies big processes to be reserved. The 27 rule 

TS Fed PID achieves null overshoot and very small steady state error, and the 12 rule TS 

Fed PID has some overshoot and small steady state error. But the 27 rule wastes time, 

processing and money where that is not achieved in 12 rule TS Fed PID. A numerical 

values can be exactly illustrated in Table 5.1. 
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Figure 5.9: Fuzzy Fed PID controller with only 12 rule 
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Table 5.1 illustrates the cooked results of the proposed approach and compares it with three 

previous studies in two salient issues, steady state error and overshoot. The first study is the 

Hybrid Fuzzy PI plus Conventional D Control of Linear and Nonlinear Systems [8]. The 

second study is the study of hybrid fuzzy control of robotics systems which illustrates the 

output control [12]. While the other study view a fuzzy control system via linear matrix 

inequalities [36]. 

 

Table 5.1: SSE and maximum OS of various control approaches.  

Desired Control Approach OS% SSE 

Mamdani Conventional PID Control  1.60 3.10E-3 

Mamdani Hybrid Fuzzy Fed PID Control  0.90 1.20E-3 

Mamdani Hybrid Fuzzy PID Control  1.10 1.50E-3 

Takagi-Sugeno Hybrid Fuzzy Fed PID Control  0.00 0.17E-3 

Mamdani Hybrid Fuzzy Fed PID Control  0.90 1.20E-3 

Takagi-Sugeno Hybrid Fuzzy Fed PID Control  0.00 0.17E-3 

Hybrid Fuzzy PI+D Control of Nonlinear Systems [8] 2.61 0.00E-3 

Hybrid Fuzzy PID Control of Robotics Systems [12] 0.47 4.00E-3 

Fuzzy Control Systems via LMIs [36] 0.93 0.00E-3 

27 rules Takagi-Sugeno Hybrid Fuzzy Fed PID Control  0.00 0.17E-3 

12 rules Takagi-Sugeno Hybrid Fuzzy Fed PID Control  0. 34 1.80E-3 

 

Figure 5.11 shows the step response of the previous work for the fourth part of Table 5.1 
where figure (a) illustrates the Hybrid Fuzzy PI+D Control of Nonlinear Systems [8], figure 
(b) illustrates Hybrid Fuzzy PID Control of Robotics Systems [12] and figure (c) illustrates 
Fuzzy Control Systems via LMIs step response. 
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Figure 5.11: A step response for some previous work. (a) Hybrid Fuzzy PI+D 
Control of Nonlinear Systems. (b) Hybrid Fuzzy PID Control of Robotics 

Systems. (c) Fuzzy Control Systems via LMIs 
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The salient disadvantage in Fed PID control is the delay time. Delay time is the half time of 

the unit step response where the half time cross the curve. Delay time is proportional with 

rising time.  Table 5.2 illustrates the results of the proposed approach and compares it with 

three previous studies in rising time.  

 

Table 5.2: Rising time various control approaches. 

Desired Control Approach Rising Time (sec) 

Mamdani Conventional PID Control  1.876 

Mamdani Hybrid Fuzzy Fed PID Control  2.135 

Mamdani Hybrid Fuzzy PID Control  1.645 

Takagi-Sugeno Hybrid Fuzzy Fed PID Control  1.952 

Mamdani Hybrid Fuzzy Fed PID Control  1.783 

Takagi-Sugeno Hybrid Fuzzy Fed PID Control  1.952 

Hybrid Fuzzy PI+D Control of Nonlinear Systems [8] 1.034 

Hybrid Fuzzy PID Control of Robotics Systems [12] 0.893 

Fuzzy Control Systems via LMIs [36] 1.356 

27 rules Takagi-Sugeno Hybrid Fuzzy Fed PID Control  1.952 

12 rules Takagi-Sugeno Hybrid Fuzzy Fed PID Control  2.078 

 

Simply, you can compare among various values of rising time. The rising time increase in 

each control when the improvement in overshoot and steady state error. In other words, 

when the Fed PID control is used, the improvement in overshoot and steady state error is 

achieved, then, the delay time will be increase.      
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CHAPTER 6 

Conclusion 

In this thesis, a new approach of control design of a hybrid fuzzy Fed PID controller was 

proposed using the Takagi-Sugeno method. Instead of analyzing the fuzzy controller by 

numerical calculations, the proposed design method focused on constructing the fuzzy rule 

base. The proposed controller demonstrated excellent control performance for nonlinear 

robot which depended on the hybridizing of the gain scheduling method and Fed PID 

Takagi-Sugeno controller which gave the best control specifications towards the 

conventional PID, fuzzy PID and hybrid fuzzy PID. The proposed problem was considered 

one of the hottest and useful topics in the area of fuzzy control field related with robotics 

systems. The research began with a brief description of PID control and a quick eye on the 

Fed PID control. Then the research goes to a detailed illustration to the fuzzy control and its 

implementation beside the small points which be lemmas today. The implementation of the 

hybrid fuzzy Fed PID control design was defined and designed in the fifth chapter and give 

the best results among the other old results without using the Fed PID. The nonlinear 

chapter was adopted without details of nonlinear systems, but only it described the system 

and the method which used in the design. Finally, made of reduction of the fuzzy rules, the 

conclusion and the future work.        

 

Future research can be done in the area of Hybrid Fuzzy Fed PID controller design by 

extending the results obtained here to the case of output feedback controllers. The results 

can be extended to the problem of non-fragile implementation of such controllers. Our 

approach was able to provide resiliency with respect to the controller gains. However, in 

practice one might need to have resilience with respect to variations in the electronic 

components that the controller is made of. Also the effect of truncation of the parameters 

can be an important research direction. In the area of T-S fuzzy systems, we need to look 

for stability results that take into account the properties of fuzzy implications and 

membership functions to reduce the conservatism in our stability results. In other words, we 
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did not utilize the membership functions in proving our stability results. However, if the 

membership functions are available, we should look for stability results that use the 

information of the membership functions. Another direction for future research is the 

approximation accuracy of T-S fuzzy systems. At present this is a very active area and 

several researchers have reported some relative success. Also the concentration on the 

robust control and the uncertainty field can be developed and applied for the Fed PID 

control [37]. The implementation of the new idea on the FPGA can be considered one of 

hot topics to be applied in the field of applied engineering. 
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