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ABSTRACT 

Control systems can be solved using optimization after being parameterized. Time-

delays and uncertainty make it more difficult to obtain optimal solutions. In this work, 

it is proved that the stability properties of the time delay system can be easily and 

efficiency achieved using passivity properties in terms of Linear Matrix Inequality 

techniques (LMI) through effective and reliable optimization algorithms especially 

convex optimization tools. In this thesis we exploit an appropriate Lyapunov-

Krasovskii function that contains both double and triple integral terms and to our 

knowledge no one have used triple integral term with combination of the passivity 

conditions; thus constitute the main contribution of this thesis. Thus, constitute 

moreover, Jensen’s inequality was utilized to deal with cross product terms that 

appeared when we derive the derivation of Lyapunov-Krasovskii function. Both 

delay-independent and delay-dependent cases are considered. New delay dependent 

stability bound for particular time delay systems is derived. This is clear through 

various numerical examples solved by convex optimization algorithm specifically by 

CVX toolbox under MATLAB package. Also we deal with the uncertainty that 

appeared in the control systems with delay. The above technique is used to construct 

passive robust controller renders the closed loop uncertain time delay system (UTDS) 

asymptotically stable; in addition, the stability analysis and synthesis of time varying 

systems with state and input delays is investigated using proposed method with " 

change of variables method" which make the solution of the particular problem easy 

and construct the controller directly by inverse transformation as well be seen in the 

sequel. The effectiveness of the proposed method is shown through several numerical 

examples. Based on the proposed method exploited in this thesis, at analysis phase, 

the time delay bound achieved by our approach is less conservative. In the synthesis 

phase concerns uncertain passive and uncertain 𝐻∞  controller design less disturbance 

attenuation level of the time delay has been obtained using proposed method. 
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 هلخص 

 

 

دراست أًظوت التحكن الخطيت راث التأخير الزهٌي بٌاء على ها يعرف بخاصيت الكووى في " 

"الٌظام عي طريق تقٌيت هتبايٌت الوصفوفاث الخطيت  
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CHAPTER 1 INTRODUCTION 

1.1. Background and Motivation 

 

 

Time delay systems (TDS), in many references are known as dead time processes 

(DTP) and we encounter them in different branches in control fields, such as chemical 

engineering systems, lag transportations, product manufactories, robotics, 

telecommunications, biosystems, underwater vehicles and so on [1, 2, 3]. Time delay 

systems are difficult to deal with, because the presence of the delays may cause the 

system to be unstable or at least it degrades the performance of the control systems. 

From our knowledge during the courses studied in control theory we know that the 

delays in the systems produce a decrease in the system phase and also it impose a 

more restrictions and constraints on the system analysis and controller's design [2]. 

For these reasons and others the control issues of the time delay systems was one of 

the most important fields that attracted the attention of many engineers and 

researches. At the end, the engineers developed the first controller which takes the 

delays into account. This controller or compensator was the Smith predictor that was 

developed in 1957 but the Smith predictor has drawback that does not applicable for 

unstable systems. In spite of these efforts, several problems still remain open and 

every year many papers are written to deal with different aspect of time delay process 

control [3], and it motivates us to exploit different methods for studying the behavior 

of the time delay systems. In this work, we will deal with this topic from different 

point of view i.e. we will not follow the conventional ways based basically on the 

transfer function representation of the system, instead we will deal with state space 

representation of the system which is more suitable for modern optimization 

techniques such Linear Matrix Inequality (LMI) approach and passivity notion used in 

this theses. In literature, there are not much surveys for time delay systems based on 

passivity notions and LMI approach despite the importance for these concepts and the 

direct relation between passivity properties and stability criteria, and this is in turn 

motivates us to take and work under this topic.  It is true that the notion of passivity 

and generalization of this notion (dissipativity) date back to early 1960. The first one 

who studied the concept of passivity was Popov [3] and he related this to the electrical 

networks which contain passive elements and does not generate energy. A key 

concept of dissipative and in turn the passive systems are that of storage functions and 

supply rate functions [2,3,4], and these concepts can be understood under certain 

conditions as a Lyapunov functions and in turn we can easily express these notions in 

terms of convex optimization approaches such as in our case Linear Matrix Inequality 

(LMI) method. The main idea behind studying the dissipativity and passivity 

properties of the system is that many important physical systems have certain input-

output properties that are related to conservation, dissipation, and transport of energy 

[5], and this is in turn, lead us to so called energy based control theory that is strongly 
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deals with Lyapunov function which is known and may be the first example for the 

LMI. The most commonly used representation for describing TDSs is functional 

differential equations [6], we will deal basically with such types of TDSs. In addition, 

we will discuss the problem of robustness of TDSs, since it is very important issue in 

control theory to guarantee the stability and performance criteria for the closed loop 

control systems despite of the unmodelling errors appeared in inaccurate 

mathematical model of the real plants and the disturbances affected the control 

system, or variation of the parameters of the model. These together impose more 

difficulties for designing the controller that renders the closed loop TDS stable, and 

such controllers are called robust controllers.       

1.2. Research Problems 

One of the most properties of passivity is that, the passive systems are minimum 

phase, and thus very easy to control via state and output feedback, even if they are 

highly nonlinear and/or coupled [5]. Another important class of passivity or strict 

passivity is a structural property which is not dependent on the numerical values of 

the parameters of the systems. Then passivity considerations may be used to establish 

stability even if there are large uncertainties or large variations in the system 

parameters [5]. In the light of these properties of passivity, in this research we will 

study the stability analysis and controller design and synthesis for continuous time 

delay systems with uncertainty based basically on the notion of passivity as a 

particular form of dissipativity and ensure stability and robustness. Two cases of time 

delay system’s studying presented in this work; the first one was the independent 

delay case, in this type we excluded the delay from the studying and we take into 

account the delay matrix only, the second one dealt with the delay in the system 

(delay dependent case) and we take into account the effect of the delay on the 

performance of the system and using mathematical tools such as Jenson’s inequality 

to get maximum upper bound of the delay that can the system tolerates it without 

destroy passivity and in turn the stability of the control system. Also we designed 

state feedback (SFC) for the first type of the time delay system described here. For the 

second type we constructed state feedback controller that satisfy 𝐻∞   performance and 

state feedback controller that satisfy positive realness or passivity 𝛾𝑝   performance of 

the system. Let us summarize the stability and stabilization problems investigated in 

this thesis: 

Given TDS which contains discrete and time-varying delays in the state or in 

the control or in both the state and the input control channels, obtain improved 

stability conditions with larger upper bound of delays that the system can be tolerate 

without affecting the stability criterion. As the case study we discuss the Construct 

state feedback controller and output feedback controller render the closed loop control 

system asymptotically stable, despite the size of delay. In addition for a given UTDS 

with discrete delay in the state and with perturbation in the control gain, construct 

robust controller renders the UTDS asymptotically robustly stable. Moreover, for 

TDS with varying delays in the input and state channels, design state feedback passive 

controller such that the closed loop control system is asymptotically stable. Finally, 

for a given TDS, construct state feedback controller such that the closed loop control 

system satisfy the 𝐻∞  or passivity performances. 
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1.3. Research Objectives 

In this subsection we will sum up the steps that will be followed to get accepted 

results based on the proposed approach exploited in this thesis. Firstly, as mentioned 

above that, the basic representation for time-delay system used in recent work is 

differential deference functional, so we construct such function, called a Lyapunov-

Krasovskii function with quadratic and double integral terms which contain variable 

matrices to be found, hence guarantee the stability criterion by LMI optimization 

approach. Note that this method does not contain any tuning parameters (scalar or 

matrices) as in the case with the method in [7]. Then triple integral term used to 

reduce the conservatism of the TDS. Next, we deal with uncertainty in the controller 

itself and derive delay dependent stability and performance analysis for the robust 

control problem. After that, we used system transformation, in the sense to derive the 

upper bound of the delay; the system can be tolerated without destroying the 

passivity, hence, the stability and the performance criteria. In addition, the change of 

variables was used to make the computation effort easy and efficient.  Finally, all 

aforementioned steps were casted in LMI optimization problem. 

1.4. Literature Review 

As mentioned above in the introduction section, there are two categories when deals 

with delays in the control systems, the first one is delay-independent criterion and the 

second is delay-dependent criterion, the later is less conservative, and the former is 

applicable when the delay in the system is small, and in turn these delays impose 

restrictions on the synthesis of controller and impose difficulties for studying; thus 

motivating the researchers and control engineers to investigate. In this subsection we 

briefly address the categories of time delay systems, approach used to derive 

effectiveness results and analysis and synthesis of time delay systems based on the 

proposed approach. The two categories are delay-independent and delay-dependent 

categories, the later is less conservative and in this thesis both input delay and state 

delay are considered, in addition the uncertainty in the system is discussed, and the 

approach exploited basically based on Lyapunov-Krasovskii functional contained 

both double and triple integrals and quadratic term with combination with passivity 

conditions, then the problem casted into optimization problem subject to LMI 

constraints. Now let us list some previous works related to ours: 

1. In 1998, Lihua et. al. [8] studied the problems of robust passivity analysis and 

passification for a large class of uncertain systems with the uncertainty 

described by integral quadratic constraints. LMI solutions have been 

presented. Their results offered efficient solutions for several problems 

encountered in signal processing systems involving nonlinear elements. Their 

work was been done for system without time delay, but in my work I well give 

into consideration time delay in the control systems. 

2. In 1999, Huang et. al. [9] presented an LMI approach to the strictly positive 

real (SPR) synthesis problem by finding an output feedback K such that the 

closed loop system is SPR. They also developed necessary and sufficient 

conditions for the plant state space matrices that guarantee the existing of a 

constant output feedback gain matrix K so that the closed loop system is SPR 
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and these conditions were casted as LMIs . They showed that the existence of 

K for the closed loop system to be SPR can be used to generate an adaptive 

control regulator that can stabilize any plant with arbitrary order and unknown 

parameters and regulate its output vector to zero. They worked with positive 

realness, since there is one to one relationship between passivity and positive 

realness. However, they only dealt with systems with no time delay.   

3. In 2002, Fridman and Shaked, [10] proposed a delay-dependent solution for 

the problem of passive state feedback control of linear time invariant neutral 

and retarded type systems. The solutions provided sufficient conditions in the 

form of LMI. 

4. In 2005, Peaucelle et. al. [11] presented non-conservative LMI conditions of 

robust strict G-passification. The main goal of the paper was to obtain 

necessary and sufficient conditions of robust passifiability and to develop 

techniques of robust passification for linear proper MIMO systems. A more 

general problem of G-passification of non-square systems was studied with 

conditions and design technique heavily relied on the methodology of       

(LMI) and using appropriate software. Again, this work was on systems with 

no time delays.  

5. In 2005, Min Gang Hua et. al. [12] addressed dynamic output feedback 

passive control for neutral systems with delay in control input, and was 

concerned with the problem of passive control for a class of neutral systems 

with delay in control input. Then, they designed a dynamic output feedback 

passive controller which guaranteed the passivity of the systems, and derived 

passivity criterion in terms of LMIs. However they only addressed the specific 

kind of systems (neutral) and with delay only in control input. 

6. In 2007, Zho Bao Yan et. al. [13] addressed the problem of passivity control 

for a kind of uncertain T-S fuzzy descriptor system. They gave a method to 

check the admissibility of the system. They proposed the controller that made 

the closed loop system admissible and strictly passive in  terms of LMIs . 

There were no delays in the systems for this work.  

7. In 2008, Magdi S. Mahmoud et. al. [14] established a new results for the 

problems of the dissipative analysis and state feedback synthesis of singular 

time delay systems in the states. The developed results encompassing all 

available results on H infinity approach, passivity and positive realness for 

singular time delay systems as special cases. Both delay dependent and delay 

independent cases were investigated and all sufficient stability conditions are 

cast as a linear matrix inequality. However, they used only the delay within 

the state of the systems.. 

8. In 2008, Nichil Chopra [15] studied the passivity of feedback interconnected 

of two passive systems when there were time varying delays in the 

communication. He transformed the two systems into scattering 

representation, transmitting the scattering variables, and using time varying 

gains in the communication path, passivity of the feedback interconnection 

can be guaranteed independent on the time varying delays. As shown he didn't 

use the LMI approach to solve the problem. 
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9. In 2010 Baozhu Du [16] his thesis devoted to study the stability and 

stabilization problems of dynamic systems with various types of time delays in 

the continuous time domain. In chapter 5 he studied 𝐻∞  and passivity analysis 

via static and integral output feedback control for systems with input delay 

only. However, he did not take into account delays in both state and input 

channels. 

1.5. Contributions  

The main contributions of this thesis are the parameterization of time delay systems 

based on passivity and LMI approach. These contributions can be stated clearly as: 

In the analysis phase, the delay bound of the time delay systems is improved 

compared with existing criteria using Lyapunov Krasovskii functional which contains 

double integral terms with unknown positive definite matrices completely defined 

with the software. Thus, there is no need to tune the parameters to get better results. In 

the sequel, we get improvement compared with other criteria that depend mainly on 

tuning parameters to achieve valuable results. Also Lyapunov Krasovskii functional is 

used which contains triple integral terms with passivity concepts, and this in turn will 

give us more improvement and less conservative results. 

 In the synthesis phase, positive real lemma (passivity) and H infinity methods 

with Lyapunov Krasovskii-functional mentioned above for the closed loop systems. 

Also, robustness stability and performance for time delay systems were discussed. 

Finally, stability analysis for systems with time delays and uncertain parameters in the 

system and in the controller were addressed.  

1.6. Preliminary Work 

1.6.1 Notations & Terminology 

 Let us list some useful definitions for the proceeding work to be more understood and 

clear 

The matrix 𝑄 is said to be positive definite (positive semi definite) if the next 

inequalities hold  𝑄 > 0 (𝑄 ≥ 0) respectively. In the same fashion it said to be 

negative definite (negative semi definite) if the next hold 𝑄 < 0  𝑄 ≤ 0 . 𝑄 = 𝑄𝑇  

Symmetric matrix𝑄, 𝑄𝑇 transpose of matrix  𝑄 . 

∥. ∥∞   Infinity norm. 

∥. ∥2  Euclidian norm or 2-norm. 

 𝐿2[0, ∞)  Refers to the space of square summable infinite vector sequences. 

1.6.2 Definitions and Lemmas    

In this subsection we will discuss some useful facts and lemmas that help us to 

derive appropriate mathematical expressions through that we will get the results 

indicate the effectiveness of the proposed method: 
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Definition 1 (Bounded Real Lemma) A continuous time linear TDS with 

disturbance 𝜔 ∈ 𝐿2[0, ∞)   and regulated output 𝑧 is said to be satisfying the 

𝛾∞𝑜𝑟 𝐻∞   performance if the following conditions hold:  

1. The system is asymptotically stable for 𝜔 = 0. 

2.       Under zero initial condition, for 𝛾∞ > 0 and τ≥ 0, system ∑ satisfies           

 𝑧𝑇𝜏

0
 𝑠 𝑧 𝑠 𝑑𝑠 ≤ 𝛾∞

2  𝜔𝑇 𝑠 𝜔 𝑠 𝑑𝑠.
𝜏

0
 

Definition 2 (Positive Real lemma) A continuous time linear TDS with 

disturbance 𝜔 and regulated output 𝑧 is said to be passive if there exists a scalar 

𝛾𝑝 ≥ 0, such that under zero initial conditions and for τ ≥ 0,  2  𝜔𝑇 𝑠 𝑧 𝑠 𝑑𝑠 ≥
𝜏

0

−𝛾𝑝  𝜔𝑇 𝑠 𝜔 𝑠 .
𝜏

0
 

Lemma 1 (Schur Complement) [17]      

        
𝑄(𝑥) 𝑆(𝑥)

𝑆𝑇(𝑥) 𝑅(𝑥)
 > 0,     

 Where 𝑄 𝑥 = 𝑄𝑇 𝑥 , 𝑅 𝑥 = 𝑅𝑇 𝑥 , 𝑎𝑛𝑑 𝑆 𝑥   depends affinely on 𝑥 is 

equivalent to           

  𝑅 𝑥 > 0, 𝑄 𝑥 − 𝑆 𝑥 𝑅 𝑥 −1𝑆𝑇(𝑥) > 0, 

Or  

 𝑄 𝑥 > 0, 𝑅 𝑥 − 𝑆 𝑥 𝑄 𝑥 −1𝑆𝑇(𝑥) > 0. 

Here we use the Schur complement to convert the nonlinear inequality into 

linear inequality. 

Fact 1 for any real matrices Σ1, Σ2,, 𝑎𝑛𝑑 Σ3  with appropriate dimensions such 

that0 < (Σ3 = Σ3
T), it follows that the next 1

1 2 2 1 1 3 1 2 3 2

T T T T            [7] 

holds. 

Lemma 2 for any constant matrix 𝑀 ∈ 𝑅𝑛×𝑛 , 𝑀 = 𝑀𝑇 > 0, and a scalar 

𝛾 > 0, vector function 𝑥: [0, 𝛾] → 𝑅𝑛  such that the integrations concerned are well 

defined, then 

𝛾  𝑥𝑇 𝑠 𝑀𝑥(𝑠) ≥   𝑥 𝑠 𝑑𝑠

𝛾

0

 

𝑇

𝑀   𝑥 𝑠 𝑑𝑠

𝛾

0

 

𝛾

0

 

Lemma 3 [18] for any scalar 0h   and any constant matrix 0TM M  the 

following inequality holds  

 
2

( ) ( ) ( ) ( )            
2

T
t t t t t t

T

t h s t h s t h s

h
x u Mx u duds x u duds M x u duds

  

   
    
   

       for 

proof see the Appendix. 

Lemma 4 [19]: LetΥ, Φ, Ψ, Ω 𝑎𝑛𝑑 𝐹  be real matrices of appropriate 

dimensions such that Ω > 0  𝑎𝑛𝑑 𝐹𝑇𝐹 ≤ Ι  then we have the following 

 1. For a scalar 𝜀 > 0, Φ𝐹Ψ + (Φ𝐹Ψ)𝑇 ≤ 𝜀−1ΦΦT + εΨT𝛹. 

  

           2. For any scalar 𝜀 > 0 such that   Ω − 𝜀ΦΦT > 0, 
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  (Υ + Φ𝐹Ψ)𝑇Ω−1(Υ + Φ𝐹Ψ) ≤  ΥT Ω − 𝜀ΦΦT −1Υ  +  ε−1ΨT𝛹
         

Lemma 5[19]: For any matrices𝑥, 𝑦  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝜀 > 0, and time varying            

matrix 𝐹(𝑡) satisfying𝐹𝑇 𝑡 𝐹(𝑡) ≤ Ι, we have 𝑥𝑇𝐹 𝑡 𝑦 + 𝑦𝑇𝐹𝑇 𝑡 𝑥 ≤ 𝜀𝑥𝑇𝑥 + 𝜀−1𝑦𝑇𝑦 

1.7. Structure of the Thesis   

The thesis is organized as follows: 

Chapter 2 is dedicated to the study of the passivity analysis of TDSs 

independent of delays, passivity in the control theory and the relation between the 

passivity and the positive realness. Chapter 3 discuss the analysis and synthesis for SF 

controller independently on delay. Sufficient conditions are derived so the overall 

closed loop control system with time delay matrix renders passive, and hence 

asymptotically stable. Chapter 4 deals with systems that have the dependence of 

delays. Chapter 5 studies the construction of 𝐻∞  and 𝛾∞   performance criteria and at 

the same time construct 𝐻∞controller that meets the required performance criterion 

(disturbance attenuation bound). Chapter 6 concludes the work on this thesis. 
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CHAPTER 2 PASSIVITY ANALYSIS FOR TDS 

2.1. Introduction to Passivity in Control Theory 

Passive systems are the class of processes that dissipate certain type of physical or 

virtual energy, described by Lyapunov-like functions [4]. As mentioned in the 

previous chapter, the important concepts of passive systems are supply rate and 

storage function, see Figure (2.1).  

 

Figure (2.1) Illustration of supply rate and storage function 

Passivity, originally a concept from electrical network theory, was first studied 

in control theory by Popov in the 1960’s. The concept of passivity is related basically 

with the networks that consist of resistors, capacitors and inductors (RLC circuits) as 

shown in Figure (2.2). 

 

Figure (2.2) RLC circuit with power supply 𝑝 𝑡 = 𝑣 𝑡 𝑖(𝑡) 

The differential equation of this circuit is: 

𝐿
𝑑𝑖

𝑑𝑡
 𝑡 + 𝑅𝑖 𝑡 + 𝐶𝑥 𝑡 = 𝑢(𝑡)                                                                 (2.1) 

where   

𝑥 𝑡 =  𝑖(𝑡′𝑡

0
)𝑑𝑡′                                                                                         (2.2) 

The energy stored in the system is 

𝑉 𝑥, 𝑖 =
1

2
𝐿𝑖2 +

1

2
𝐶𝑥2                                                                                (2.3) 

The time derivative of the energy when the system evolves is 
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𝑑

𝑑𝑡
𝑉 𝑥 𝑡 , 𝑖 𝑡  = 𝐿

𝑑𝑖

𝑑𝑡
 𝑡 𝑖 𝑡 + 𝐶𝑥 𝑡 𝑖(𝑡)                                                 (2.4) 

Inserting the differential equation of the circuit we get 

𝑑

𝑑𝑡
𝑉 𝑥 𝑡 , 𝑖 𝑡  = 𝑢 𝑡 𝑖 𝑡 − 𝑅𝑖2(𝑡)                                                          (2.5) 

Integrating (2.5) from 𝑡 = 0 𝑡𝑜 𝑡 = 𝑇 gives  

𝑉 𝑥 𝑇 , 𝑖 𝑇  = 𝑉 𝑥 0 , 𝑖(0) +  𝑢 𝑡 𝑖 𝑡 𝑑𝑡
𝑇

0
−  𝑅𝑖2 𝑡 𝑑𝑡

𝑇

0
                (2.6) 

This means that, the energy at time 𝑡 = 𝑇 is the initial energy plus the energy 

supplied to the system by the voltage 𝑢 minus the energy dissipated by the resistor 𝑅. 

Note that if the input voltage 𝑢 is zero, and if there is no resistance, then the energy 

𝑉 .   of the system is constant. Here 𝑅 ≥ 0 𝑎𝑛𝑑 𝑉 𝑥 0 , 𝑥 (0) > 0, and it follows that 

the integral of the voltage 𝑢 and the current 𝑖 satisfies 

 𝑢 𝑠 𝑖 𝑠 𝑑𝑠 ≥ −𝑉 𝑥 0 , 𝑖(0) 
𝑡

0
                                                                 (2.7) 

The physical interpretation of this inequality is seen from the equivalent 

inequality 

 −  𝑢 𝑠 𝑖 𝑠 𝑑𝑠 ≤ 𝑉 𝑥 0 , 𝑖(0) 
𝑡

0
                                                                (2.8) 

Which shows that the energy −  𝑢 𝑠 𝑖 𝑠 𝑑𝑠
𝑡

0
  that can be extracted from the 

system is less than or equal to the initial energy stored in the system. The Laplace 

transform of the differential equation of the circuit is 

 𝐿𝑠2 + 𝑅𝑠 + 𝐶 𝑋 𝑠 = 𝑈(𝑠) 

This leads to the transfer function 
𝑋(𝑠)

𝑈(𝑠)
=

1

𝐿𝑠2+𝑅𝑠+𝐶
. It is seen that the system 

has such  transfer function is stable, and that, for 𝑠 = 𝑗𝜔, the phase of the function has 

absolute value less  or equal to 90°, that is,  

 ∠
𝑖

𝑢
(𝑗𝜔) ≤ 90° ⇒ 𝑅𝑒  

𝑖

𝑢
(𝑗𝜔) ≥ 0                                                           (2.9) 

For all 𝜔 ∈  −∞, +∞ . As shown from (2.9), the system is stable and has 

positive real part on the 𝑗𝜔 axis. 

In the light of (2.9), and because (2.7) must holds for all inputs, one obtains 

the so called positive real lemma, and there is one to one relationship between them 

based on the Kalman-Yakubovich-Popov property [5, 6]. A system is said to be 

positive real if for all 𝑡 ≥ 𝑡0 ≥ 0.  𝑢 ∈ 𝑈  

 𝑦𝑇 𝑡 𝑢 𝑡 𝑑𝑡
𝑡

𝑡0
≥ 0                                                                                   (2.10) 

Whenever, 𝑥(𝑡0) = 0.  

It is well known based on the positive real lemma stated in [7] that passivity 

conditions for LTI systems can be presented and solving using LMI approach under 

convex optimization technique. We will devote the next subsection for introducing 

LMI and Convex optimization technique.  

One of the useful results for passive systems is that, parallel and feedback 

connections of passive systems are passive and that certain strict passivity properties 

are inherent see Figure (2.3). 
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Figure (2.3) Parallel and feedback interconnection for passive systems 

2.2. Convex Optimization and LMI Technique 

 

Convex optimization problem is the one of the form  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓0 𝑥              

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓𝑖 𝑥 ≤ 𝑏𝑖 , 𝑖 = 1, … , 𝑚                                                            (2.11) 

Where, the functions 𝑓0, … , 𝑓𝑚 : 𝑅𝑛 → 𝑅 are convex, i.e. satisfy 𝑓𝑖 𝛼𝑥 + 𝛽𝑦 ≤
𝛼𝑓𝑖 𝑥 + 𝛽𝑓𝑖(𝑦) for all 𝑥, 𝑦 ∈ 𝑅𝑛  and all 𝛼, 𝛽 ∈ 𝑅 with 𝛼 + 𝛽 = 1, 𝛼 ≥ 0, 𝛽 ≥ 0 

𝑓0 is the cost function to be optimized and in the control theory terminology, it 

corresponds to some performance characteristics of the control systems, such that 

minimization the overshoot of the closed loop system, or minimization the control 

energy required for the system, or so on. The constraints in (2.11) are in the form of 

LMI. The origin of LMI goes back as far as 1890, although they were not called this 

way at that time, when Lyapunov showed that, the stability of linear system 𝑥 = 𝐴𝑥 is 

equivalent to the existence of positive definite matrix  𝑃 , which satisfies the matrix 

inequality 𝐴𝑇𝑃 + 𝑃𝐴 < 0. The term “Linear Matrix Inequality” was coined by 

Willems in 1970’s to refer to this specific LMI, in connection with quadratic optimal 

control. As mentioned above LMI is a constraint in the form: 

𝐹 𝑥  𝐹0 +  𝑥𝑖𝐹𝑖 > 0𝑚
𝑖=1                                                                           (2.12) 

Where  

𝑥 =  𝑥1, … , 𝑥𝑚  𝑇 ∈ 𝑅𝑚  is the vector of the 𝑚 variables, 𝐹𝑖 = 𝐹𝑖
𝑇 > 0 are 

given symmetric matrices. The inequality “>” means that the matrix 𝐹(𝑥) is positive 

definite, i.e., 𝑢𝑇𝐹 𝑥 𝑢 > 0 for all nonzero 𝑢 ∈ 𝑅𝑛 . 

We can say that, if you cast a practical problem as a convex optimization 

problem, then you have solved the original problem [17, 21]. 
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2.3. Passivity Properties of the Time Delay Systems 

 

In this part of the thesis we will concentrate on the passivity conditions that the 

system will be met to guarantee the asymptotic stability of the linear time delay 

system. Let the system be described as: 

 

 

0 1 1 1 2 2

1 1 11

2 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ), 0.

x t A x t A x t B w t B u t

z t C x t D u t D w t

y t C x t D w t

x t t t

 



     

  

 

 



                                               (2.13)  

Where    

( )  is the state; ( )  is the control input with ( ) 0 for 0; 

( )  is the output measurment; w(t) ;exogenous input

ux

y p

nn

n n

x t R u t R u t t

y t R R

   

 
 

 ( )  is the controlled output; znz t R

0 1 1 2 1 2 1 11 2(t) are continuous functions defined on (- ,0]. , , , , , , , ,D  A A B B C C D D   

given exogenous constant matrices with appropriate dimensions, 𝜏1 𝑎𝑛𝑑 𝜏2 are the 

state delay and the control delay respectively. The system (2.13) is approximate 

model for real system, namely for water quality system [14] and this is one of water 

quality studies on the River Nile. In a typical model, the state variables are the 

concentrations of pollutants 𝑃𝐴 (represented a mixture of the low-levels in the bio-

strata) and pollutant 𝑃𝐵 (represented the mixture of the other levels in bio-strata). The 

control variables are signals proportional to the water speed and the amount of 

effluent discharged into the reach at pre-selected points. For more detail see [14] and 

references therein. So, we are considering this system as case study for analysis 

problem. Our task is to derive the passivity conditions for the system (2.13). Firstly, 

let us introduce the definition of passivity for time-delay control system (2.13): 

 

Definition 2.1: 

The time delay control system (2.13) is said to be passive if    

 

2
0

( ) ( ) , (0, ),                                                                              (2.14)

where  some constant which depends on the initial condition of the system. In addition,

Tw t z t dt w L





   

11 11

 the

system is said to be strictly passive (SP) if it is passive and 0.TD D 

  

2.4. Stability Analysis of the Time Delay Systems 

Begin to analysis stability of the system 2.13 in the sense of passivity notation we set 

u=0. Based on definition 2 in the previous chapter mainly PRL the next theorem can 

be exploited to derive passivity property of the system stated above:   

 

Theorem 2.1 LTI TDS (2.13) is stable, if there exist positive definite matrices P and 

Q satisfying the linear matrix inequality (LMI)  
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0 0 1 1 1

11 11

0 0

( )

T T

T

A P PA Q PA PB C

Q

D D

   
 

   
     

                                                  (2.15) 

 

Or equivalently, when
11 11( ) 0TD D  , and there exist matrices 

0  and 0T n n T n nP P R Q Q R        satisfying the algebraic Riccati 

inequality (ARI): 

   
1 1

0 0 1 1 1 1 11 11 1 1( )( ) ( ) 0T T T T TA P PA Q PAQ A P PB C D D B P C                      (2.16) 

 

Then the system (2.13) is asymptotically stable and passive for all time delays in the 

state.  

 

Proof: Define a Lyapunov functional V(x (t)) as follows: 

 

1

( ( )) ( ) ( ) ( ) ( )

t

T T

t

V x t x t Px t x s Qx s ds


                                                              (2.17) 

Calculating the derivative of Lyapunov function V(x (t)) along the solution of (2.13), 

we get: 

1 1

0 1 1 1

0 1 1 1

( ( )) ( ) ( ) ( ) ( )

              ( ) ( ) - ( - ) ( - )

               =  (x (t)A ( - ) ) ( )

                + x ( ) ( ( ) ( - ) ( ))

                + ( ) (

T T

T T

T T T T T T

T

T

V x t x t Px t x t Px t

x t Qx t x t Qx t

x t A w B Px t

t P A x t A x t B w t

x t Qx

 





 



 

 

  

1 1

0 1 1 1

0 1 1 1

) - ( - ) ( - )

                = x ( ) ( ) x ( ) ( - ) x ( ) ( )

                + x ( ) ( ) ( - ) ( ) ( ) ( )

T

T T T

T T T T T T

t x t Qx t

t PA x t t PA x t t PB w t

t A Px t x t A Px t w t B Px t

 





 

 

 

 

 
1 1

0 0

1 1 1 1

1 1 1 1

               ( ) ( ) - ( - ) ( - )

                =  ( ) ( )

                + ( - ) ( )   ( ) ( - )

                ( ) ( ) x ( ) ( ) - ( - ) ( - ).

      

T T

T T

T T T

T T T T

x t Qx t x t Qx t

x t A P PA Q x t

x t A Px t x t PA x t

w t B Px t t PB w t x t Qx t

 

 

 



 



 

             

                  

       (2.18) 



13 

 

 1 1

0 0 1 1

1

1

( )

( ( )) ( ) ( - ) ( ) ( - )

( )

              0    

0 0

T

T

T

T

x t

V x t x t x t w t x t

w t

when

A P PA Q PA PB

A P Q

B P

 

 
 

 
 
  

  
 

   
 
 



                                                (2.19) 

 

So we can apply the following condition to demonstrate the passivity property for the 

control system (2.13): 

 

 0 0

1 1 1 1

1 1 11 11

( ( )) 2 ( ) ( )   ( ) ( )

                                   ( )  ( )  ( ) ( ) 2 ( )( ) ( )

                                      ( - ) ( - ) ( )(

T T T

T T T T T

T T T

V x t z t w t x t A P PA Q x t

x t A P x t x t PA x t x t PB C w t

x t Qx t w t D D

 

 

   

     

  



) ( )

                                    =  ( ) ( ) 0 T

w t

t t  

 

Where 

 1

0 0 1 1 1

11 11

                          ( )   ( ) ( - ) ( ) ,

                    = 0 0                           (2.20)

( )

                  

TT

T T

T

t x t x t w t

A P PA Q PA PB C

Q

D D

 

   
 

    
     

   

 
From Schur complement as shown in fact 1, and if (2.16) is satisfied then we 

conclude that (2.19) and (2.20) are hold. Hence,  

( ( )) 2 ( ) ( ).TV x t z t w t                                                                        (2.21) 

Integrate (2.21) from 0 1 to t t , we have  

     
1

0

0

1
( ) ( ) ( ( )) ( ( )) .

2

t

T

t

z t w t V x t V x t                                       (2.22) 

Since ( ( )) 0V x t   for  0x   and ( ( )) 0V x t   for 0x  , it follows that as 0 0t   and 

1t   that the system (2.13) is strictly passive and asymptotically stable, so the 

theorem is proved.  

Let show a numerical example to illustrate Theorem 2.1: 

 

 Example 2.1: 

 

Let the system matrices are as follow (River Nile system):  
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 

0 1

1 1 11

3 2 0 0.3
,    A

1 0 0.3 0.2

0.5
,     C 2 0 ,    [2].

0.4

A

B D

    
    

    

 
   
 

 

Using the LMI solver and solving LMI (2.15) for the system we found: 

P = 

    1.0218    0.7057 

    0.7057    3.0978 

Q = 

   2.2562    0.6588 

    0.6588    1.1545 

As shown 0 and 0T TP P Q Q    ; thus the system is asymptotically stable and 

strictly passive independent of the delay in the system. In our case the number of 

variables used to get these results is 26 while in [7&14] is 28 variables. 

 

 

 

 

 

 

 



15 

 

CHAPTER 3 CONTROLLER DESIGN VIA LMI 

TECHNIQUE 

3.1. State Feedback Controller Design 

 

Consider the system (2.13) with delays in the control input and in the state: 

When we apply state feedback controller in the form 

    ( ) ( )u t Kx t                                                                                                          (3.1) 

Where  𝐾 is a constant gain matrix to be designed later, the closed loop system is as 

follow: 

0 1 1 1 2 2

1 1 11

2 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ), 0.

x t A x t A x t B w t B Kx t

z t C D K x t D w t

y t C x t D w t

x t t t

 



     

  

 

 



                                               (3.2) 

         

 

Theorem 3.1 Consider the system (3.2), if there exist positive definite matrices

0, 0  0T T TY Y L L and M M      , and matrix Z   which satisfy the 

following LMI 

 

 

0 0 1 2 1 1 1

11 11

( )

0 0
0

0

( )

T T

T

Y A A Y L M AY B Z B Y C D K

L

M

D D

     
 

   
   
       

                          (3.3) 

 

 

 

Or if there exists 0  0T TP P and Q Q     satisfying the algebraic inequality: 
1

0 0 1 1

1

2 2

1

1 1 1 11 11 1 1 1

2

( ( ) )( ) ( ( )) 0

T T

T

T T T

A P PA Q PA Q A P

PB KQ KB P

PB C D K D D B P C D K







  



      

                                       (3.4)                                                                                            

Then the system (3.2) is SP and asymptotically stable by the state feedback controller 

(3.3).  

Proof Define a Lyapunov functional V(x(t)) as follows: 

1 2
1 2( ( )) ( ) ( ) ( ) ( ) ( ) ( )

t t
T T T

t t
V x t x t Px t x s Q x s ds x s Q x s ds

  
                        (3.5)                                                 
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Calculating the derivative of Lyapunov function V(x(t)) along the solution of (3.2) , 

we get: 

1 1 1 1

2 2 2 2

1

( ( )) ( ) ( ) ( ) ( )

              ( ) ( ) - ( - ) ( - )

               + ( ) ( ) - ( - ) ( - )

                ( ) ( ) ( ) ( )

                     ( ) ( ) (

T T

T T

T T

T T

T T

V x t x t Px t x t Px t

x t Q x t x t Q x t

x t Q x t x t Q x t

x t Px t x t Px t

x t Q x t x t

 

 

 



 

 

  

 

2 1 1 1

2 2 2

) ( ) ( ) ( )

                     ( ) ( )

                   

T

T

Q x t x t Q x t

x t Q x t

 

 

  

  

 

 0 0 1 2

1 1 1 1

1 1

2 2 2 2

1 1 1 2 2 2

  ( ) ( )

  ( ) ( )   ( ) ( )

   ( ) ( ) ( ) ( )

  ( ) ( ) ( ) ( )

   - ( ) ( ) ( ) ( ).

                  

T T

T T T

T T

T T T T

T T

x t A P PA Q Q x t

x t A Px t x t PA x t

x t PB w t w t B Px t

x t K B Kx t x t PB Kx t

x t Q x t x t Q x t

 

 

   

   

   

 

   

    

                                      (3.6) 

Apply passivity condition as follows: 

 0 0

1 1 1 1

1 1

2 2 2 2

1 1 2 2

1

( ) 2 ( ) ( )   ( ) 2 ( )

  ( ) ( )   ( ) ( )

   ( ) ( ) ( ) ( )

  ( ) ( ) ( ) ( )

   -  ( ) ( ) ( ) ( ).

   -  ( ) ( ) -

T T T

T T T

T T

T T T T

T T

T T

V t z t w t x t A P PA Q x t

x t A Px t x t PA x t

x t PB w t w t B Px t

x t K B Kx t x t PB Kx t

x t Qx t x t Qx t

x t C w t

 

 

   

   

   

 

   

    



1 1

1 11 11

( ) ( ) - ( ) ( )

   -   ( ) ( ) ( )( ) ( ).            

T T T T

T T T

w t C x t x t K D w t

w t D Kx t w t D D w t 

                                            (3.7) 

 1 2

0 0 1 2 1 2 1 1 1

1

2

11 11

where 

                          ( )   ( ) ( ) ( ) ( ) ,

( )

0 0
                    = 0.                           (3 . 8) 

0

( )

TT

T T

T

t x t x t x t w t

A P PA Q Q PA PB K PB C D K

Q

Q

D D

    

     
 

   
   
       

  

 

Or equivalently  

 

 

1

0 0 1 2 1 1 1

1 1

2 2 2 1 1 1 11 11 1 1 1( ( ) )( ) ( ( )) 0

T T

T T T T T

A P PA Q Q PA Q A P

PB KQ K B P PB C D K D D B P C D K



 

   

       
     (3.9)      

Post and pre-multiplying the above inequality by 
1P 
 we get the following inequality 

yields: 
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-1 T -1 -1 -1 -1 -1 -1 -1 -1 -1 T -1

0 0 1 2 1 1 1

-1 -1 T T -1 -1 T T -1 T -1

2 2 2 1 1 1 11 11 1 1 1

P A PP + P PA P + P Q P + P Q P + P PA Q A PP

+P PB KQ K B PP + P (PB -(C + D K) )(D + D ) (B P -(C + D K))P < 0     (3.10)
 

Let 
1P Y  since 10  0P so P Y   , and rearrange the inequality (3.10), we get: 

T -1 T
YA + A Y + YQ Y + YQ Y + A Q A

0 0 1 2 1 1 1

-1 T T T T T T -1 T
+B KQ K B + (B - (YC + YK D ))(D + D ) (B - (C Y + D KY)) < 0 

2 2 2 1 1 1 11 11 1 1 1
        (3.11)

As shown the problem still non convex optimization since there is nonlinear 

(quadratic) terms 1 2  Y QY and Y Q Y and products between the variables   K and Y so 

if we define a new matrix Z KY and change of variables, since we can denote  

1 2  Y QY L and Y Q Y M   and substitute into (3.10) we get: 
T -1 T

0 0 1 1 1

-1 T T T T T T -1 T

2 2 2 1 1 1 11 11 1 1 1

YA + A Y + L + M + A Q A

+B KQ K B +(B -(YC + Z D ))(D + D ) (B -(C Y + D Z)) < 0  (3.12)    
Using Schur complement definition we can convert the nonlinear inequality (3.12) 

into linear matrix inequality as shown below: 
T T

0 0 1 2 1 1 1

T

11 11

YA + A Y + L + M A Y B Z B - Y(C + D K)

* -L 0 0
                           (3.13)

* * -M 0

* * * -(D + D )

 
 
  
 
  
 

0                               

 

From Schur complement as shown in fact 1, we notice that (3.12) and (3.13) are hold. 

Hence,  
T

(3.14)V(x(t)) 2z (t)u(t).                                                                                                                        

             

 Integrate (3.14) from 0 1 to t t , we have  

    

 
1

0

t

T

0

t

1
z (t)w(t) V(x(t)) - V(x(t )) .                                                             (3.15)

2
                                                                  

Since ( ( )) 0V x t   for  0x   and ( ( )) 0V x t   for 0x  , it follows that as 0 0t   and 

1t   that there is state feedback controller (3.2) render the system (3.1) strictly 

passive and asymptotically stable, so the theorem is proved. 

From LMI (3.3) when the problem is solvable i.e. when the LMI (3.13) is feasible we 

can get the controller from the following equation: 

     

 -1K = ZY                                                                                                                 3.16                                                               

We can also get the same result by multiplying the LMI (3.13) by diag. 
1 1 1[ , , , ]P P P I  

 from both sides. Let us now see an example to show whether this 

method is workable or not. 

Example 3.1: 

 

  Consider unstable nominal system, i.e. let the matrix 0A  has at least one pole in the 

right half plane then apply theorem 3.1 to get the controller which stabilizes the 

system. Let the system represented as follows: 
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 

0 1

1 2 1 11

1 2 0 0
,    A

1 2 0.2 0.1

0 0
, ,     C 1 1 ,    [1].

0.1 1

A

B B D

   
    

    

   
      
   

 

 

 The eigenvalues of the system are 1.4742 and -2.3742. It is clear  that the system is 

unstable because it has pole in the right half plane. 

Using LMI (3.3) we can get controller with gains that stabilizes the unstable system 

 -0.1191    0.0693K 
 

When simulating the system under initial conditions the system response goes to 

infinity as time goes to infinity, hence the open loop system is unstable, see Fig.(3.1) 

 

 
Figure (3.1) Open loop free response of the system in example (3.1) 

 

It is clear from the Fig. (3.1), that is the open loop system is unstable. 

Now applying obtained controller we get the free response of the closed loop control 

system. The obtained controller actually stabilizes the unstable plant considered in 

this example, and this is clear from the free response of the closed loop control system 

when the system is affected by initial conditions and by feedback controller obtained 

the system became stable and this is in turn clear from the Fig. (3.2)  
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Figure (3.2) Closed loop free response of the system in example (3.1) 

 

Similarly, for the states of the closed loop system, the obtained controller stabilized 

the system and this is assured by convergence the states to the equilibrium state (the 

origin) as the time goes to infinity.    

 

 
 

Figure (3.3) Closed loop state trajectories of the system in example (3.1) 
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When applying the step command to the closed loop system, the output will track the 

input and staying in the prescribed trajectory, this in turn confirms the fact that the 

closed loop system is stable (asymptotically stable) by the state feedback controller. 

See Fig. (3.4).  

 
 

Figure (3.4) Closed loop step response of the system in example (3.1) 

 
Figure (3.5) Control input of the system in example (3.1) 

 

Fig. (3.5) shows the control input signal from the controller obtained.  

3.2. Stabilization by Output Passive Controller Design 

 

In many cases, it is difficult to measure all the states of the system and to construct the 

state feedback controller. In this case, we can design the output feedback controller 

since we can always get the measurements through sensors. In this section we 

construct dynamic output feedback controller for the next system: 
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0 1 1 2

2 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

x t A x t A x t B w t B u t

y t C x t D w t

    

 


                                                   (3.17) 

 

( )    ; ( )     ; ( )   u ux n nnx t R is the state u t R is the control input w t R is exogenious inputs  

( )  yn
y t R , is the output measurement.  

Required to construct linear dynamical output controller in order k in the following 

form: 

r r r r

r r r

x A x B y

u C x D y

 

 


                                                                                                   (3.18) 

 k

rwhere x R  , vector state of the controller. 

, , and r r r rA B C D  , are gain matrices with appropriate dimensions. 

 

In the particular case 0k  we have output static controller ru D y . The closed loop 

control system equation (3.17) and (3.18) when 0k  has the following form: 

 

 

 0 1 1 2 2 2

0 1 1 2 2 2 2 2

0 2 2 2 1 2 2 1

2

( ) ( ) ( ) ( ) ( ( ) ( ) ( ) )

          ( ) ( ) ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

r r r

r r r r

r r r r

r r r r

x t A x t A x t B w t B C x t D C x t D w t

A x t A x t B w t B C x t B D C x t B D D w t

A B D C x t B C x t B B D D A x t

x t A x t B C x t







      

      

      

 




2 ( )rB D w t   

(3.19) 

 

Let us define the equations above as: 

0 1 1

0 0 1 1 1 1

( )

( ( ), ( ))

 ( ) (t), , ,

cl cl cl cl cl cl

cl r

cl cl cl cl

x t A x A x B w

x Col x t x t

Let x t x A A A A B B
   

  



   



 

                                               (3.20) 

We then can rewrite equation (3.20) in the compact form as shown below: 

 

0 1 1

_

1 12 2 12 11 12 2

_ _

1 1 12 2 12 11 11 12 2

( ) ( )  ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

     

r r r r

r r r

x t A x t A x t B w t

Z t C D D C x t D C x t D D D D w t

Let C C D D C D C and D D D D D


     

   

    

   



           (3.21) 

Then the final form of the closed loop control system with output feedback controller 

yields: 

0 1 1

_ _ _

1 11

( ) ( )  ( ) ( )

( ) ( ) ( )

x t A x t A x t B w t

Z t C x t D w t


     



   

 


                                                                (3.22) 

So we can define the above matrices according to the equation (3.20) as follow: 

 
0 2 2 2 1 2 21

0 1 1

2 2

0
; ;

0 0

r r r

r r r

A B D C B C B B D DA
A A B

B C A B D

       
      

    
              (3.23) 

Theorem 3.2 For a given symmetric positive definite matrix Q if there exists positive 

definite symmetric matrix P and gain matrices , ,   r r r rA B C and D such that the 

following linear matrix inequality (LMI): 
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0 ( )0 0 2 2 2 2 2 2 1 1 2 2 1 12 2

0 02 2 2 1
0 0

0

(( ) ( ))11 12 2 11 12 2

T T T T T T T T
A P PA C D B P PB D C Q C B PB C A P PB PB D D C D D Cr r r r r r

T T T T T
C B P B C A A Q B D C Dr r r r r r

Q

Q

T
D D D D D D D Dr r

       

   

   

   

       

 
 
 
 
 
 
 

 (3.24)                                           

 

holds, then the state delay system (3.22) is asymptotically stable and passive using the 

output feedback passive controller (3.18). 

proof: First let us define the 
_ 0

0
0

Q
Q

Q

 
  
 

and 
_ 0

0,  
0

P
P

I

 
  
 

 

 As in the case of Theorem 3.1 concerned of static feedback controller we define a 

Lyapunov functional V(x(t)) as follows: 

_ _ _ _ _ _

( ( )) ( ) ( ) ( ) ( )

T T
t

t
V x t x t P x t x s Q x s ds


    

Calculating the derivative of Lyapunov function V(x (t)) along the solution of (3.22), 

we get: 
__ _ _ _ _ _ _ _ _ _ _ _

__ _ _ _ _ _ _ _ _

0 0 1 1

_ __ _ _

1 1

( ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

                ( )( ) ( ) ( ) ( ) ( ) ( )

               ( ) ( ) ( )

T T T

T

T T

T T

T T T

V x t x t P x t x t P x t x t Q x t x t Q x t

x t A P P A Q x t x t A P x t x t P A x t

w t B P x t x t B Pw

 

 
    

 

     

      

 

  

__ _ _

( ) ( - ) ( ) 

              

Tt x t Q x t  

 

 

To obtain the condition for passivity we apply the following equation: 

  

_ __ _ _ _ _ _ _

0 0

_ _ _

1 1

_ __ _ _ _

1 1

( ( )) 2 ( ) ( )  ( )( ) ( )

                                    ( ) ( ) ( ) ( ) 

                                     ( ) ( ) ( ) ( )

  

T

T T

T

T

T T T

V x t Z t w t x t A P P A Q x t

x t P A x t x t A P x t

x t P B w t w t B P x t

 
   



   

   

 



_ _ __ _ _

1

_ _ __ _ _ _

1 11 11

                                   - ( - ) ( ) - ( ) ( )

                                    ( ) ( ) ( )( ) ( )

T T T

T T T

x t Q x t x t C w t

w t C x t w t D D w t

 

  

              (3.25)               

 

Collect the same terms together we get: 
_ __ _ _ _ _ _ _

0 0

_

1

_ __ _

1 1

( ( )) 2 ( ) ( )  ( )( ) ( )

                                      2 ( ) ( ) 

                                      2 ( ) ( ) ( )

T

T T

T T

V x t Z t w t x t A P P A Q x t

x t P A x t

x t P B C w t


  



   

 

 



 

_ _ _

_ __ _

11 11

                                      ( - ) ( ) 

                                     ( )( ) ( )

T

T T

x t Q x t

w t D D w t

  

 

                                                (3.26) 
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_ _ _

1

                         =  ( ) ( ),

                          ( )   ( ) ( - ) ( )

T

T

T

t t

t x t x t w t

 

 
   

 

 

 
_ __ _ _ _ _ _ _ _

0 0 1 1 1

_

_ _

11 11

                    0

( )

T T

T

A P P A Q A P P B C

Q

D D

 
   

 
    

 
     
 

                                   (3.27) 

 

Now, if we simply substitute the corresponding values of the matrices 
_ _ _ _ _ _ _

10 1 1 11, , , , , ,A A B C D P Q into (3.27) we exactly get (3.24), after that and after some 

calculations we can derive the output passive controller that stabilizes the overall 

closed loop system and render the system passive and asymptotically stable. This 

completes the proof of Theorem 3.2. 
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CHAPTER 4 DELAY DEPENDENT PASSIVE CONT 

ROLLER ANALYSIS AND DESIGN   

 
 

As we have seen from the previous discussion we notice that all our works concern 

the so called the delay-independent delay criterion, from the name of this criterion it 

is understood that in this method the size of delay does not take into account and we 

know that this criterion is more conservatism than the delay-dependent criterion, 

especially when there is small delays in the system. In the following section we will 

deal with delay-dependent stability criterion for the time delay passive system and 

derive sufficient conditions for stability in the term of linear matrix inequality (LMI) 

as will be clear in the sequel. 

4.1. Delay-Dependent Stability Analysis 

Let us again show the dynamical system (2.13) in its nominal form i.e. when only 

exogenous inputs will affect the plan. 

                                                              

All the matrices and the arguments are identical for the system (2.13). The following 

theorem gives us the first result on the delay dependent stability for the system (2.13). 

Theorem 4.1: For a given positive scalar  , the system (2.13) with time invariant 

delay is asymptotically stable and strictly passive if there exist 0,TP P   

0  0,T TQ Q and R R    such that the following like Riccati inequality holds: 
1

0 0 1 1

1 1

1 1 11 11 1 1 1 1

2

( )( ) ( ) 0

T T

T T T

A P PA Q PA Q A P

PB C D D B P C R 



 

  

      
                                        (4.1) 

Where  

0 0 0 1 0 1

1 0 1 1 1 1

1 0 1 1 1 1

     

     

T T T

T T T

T T T

A RA A RA A RB

A RA A RA A RB

B RA B RA B RB

   

  

  

 

 

Or equivalently it is satisfying the following linear matrix inequality (LMI): 

 
2

0 0 1 1 1 1 0

2

1 1

2

11 11 1 1

2

1

( ) 0
0

( )

T T T

T

T T

A P PA Q R A P R PB C A R

Q R A R

D D B R

R









     
 

    
    
 

     

                             (4.2) 
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Then the system (2.13) will be strictly passive (SP) and asymptotically stable for all 

delays belonging for 0 ≤ 𝜏∗ ≤ 𝑡 

Proof:  let us define the following Lyapunov-Krasovskii functional for the system 

(2.13) as follows: 

1

( ( )) ( ) ( ) ( ) ( ) ( ) ( )

t
t t

T T T

t t
s

V x t x t Px t x Qx d x Rx d ds
 

      
 

                   (4.3) 

The derivative along the trajectories of (2.13) leads to the following equality: 

1

1 1

2

1 1

( ( )) ( ) ( ) ( ) ( )

              ( ) ( ) - ( - ) ( - )

                ( ) ( ) ( ) ( )

              

T T

T T

t

T T

t

V x t x t Px t x t Px t

x t Qx t x t Qx t

x t Rx t x Rx d


 

    


 



  

  

   
                                               (4.4) 

Using the Jensen's inequality (lemma 2) the last term can be bounded as follows: 

 

  

1 1 1

1

1 1

1 1 1

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) 2 ( ) ( ) ( ) ( ).

T
t t t

T

t t t

T

T T T

x Rx d x d R x d

x t x tR R

x t x tR R

x t Rx t x t R t x t Rx t

  

       

 

  

  

   
     

   
   

    
          

      

     

                                  (4.5) 

Therefore we get the following derivative for (4.5): 

0 1 1 1

0 1 1 1

1 1

2

1 1

( ( )) ( ) ( ) ( - ) ( ) ( ) ( )

                 ( ) ( ) ( ) ( - ) ( ) ( )

                ( ) ( ) - ( - ) ( - )

                 ( ) ( ) 2 (

T T T T T T

T T T

T T

T T

V x t x t A Px t x t A Px t W t B Px t

x t PA x t x t PA x t x t PBW t

x t Qx t x t Qx t

x t Rx t x Rx t





 

 

  

  



   



 
1 1

0 0 1 1

1 1 1 1

2

1 1 1 1 1

) ( ) ( )

                 ( ) ( ) ( - ) ( ) 

                 ( ) ( - ) ( ) ( ) ( ) ( )

                 ( - ) ( - ) 2 ( ) ( - ) ( -

T

T T T T

T T T T

T T T

x t Rx t

x t A P PA Q R x t x t A Px t

x t PA x t W t B Px t x t PBW t

x t Qx t x Rx t x t Rx t

 





    

  

    

  

     1)

              



     (4.6) 

Let us denote the term ( ) ( )Tx t Rx t   as    so after manipulation this term according 

to the system (2.13) yields:  

0 0 0 1 0 1

1 0 1 1 1 1

1 0 1 1 1 1

     

     

T T T

T T T

T T T

A RA A RA A RB

A RA A RA A RB

B RA B RA B RB

   

  

  

 

Now let us applied the following equation for guaranteeing the passivity conditions 

for the system (2.13): 
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 ( ) 2 ( ) ( ) ( ) ( ) ( - ) ( ) 
0 0 1 1

                 ( ) ( - ) ( )( ) ( ) ( )( ) ( )
1 1 1 1 1

2
                 ( ) ( ) ( - ) ( - )

1 1 1

              ( )(
11

T T T T T
V t z t w t x t A P PA Q R x t x t A Px t

T T T T T
x t PA x t W t B P C x t x t PB C W t

T T
x t Rx t x t Qx t

T
W t D





  

     

    

 





 

) ( ) 2 ( ) ( - ) ( - )
11 1 1 1

T T T
D W t x Rx t x t Rx t                   

(4.7) 

Note that in the above equation we used the fact that 

 2 ( ) ( ) ( ) ( ) ( ) ( )T T Tz t w t z t w t w t z t   

We can rewrite (4.7) in compact form as following: 

( ) 2 ( ) ( )

( )

  = ( ) ,
1

( )

00 0 1 1 1
2

( ) 0
1 1 0 1 1

( )
11 11 1

    

           (4.8)

T T
V t z t w t

x t

where x t

w t

TT T AA P PA Q R PA R PB C

T
Q R A R A A B

T TD D B

 

 



  



    

     

   

 
 
 
  

  
  

     
  

    
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From Schur complement, it is easy follows that (4.1) and (4.2) are hold. Hence  

( ( )) 2 ( ) ( ).TV x t z t u t  

If 0,   - ( ( )) 2 ( ) ( ) 0then V x t z t w t   and from which it follows that: 

 
1

0

1 0

1
[ ( ) ( )] ( ( )) ( ( ))

2

t

T

t

z t w t V x t V x t    

Since ( ( )) 0   0  ( ( )) 0  0V x t for x and V x t for x      , it follows that as 1t   

the system (4.1) is strictly passive and asymptotically stable for all state delays that 

satisfy 0 ≤ 𝜏∗ ≤ 𝑡. This completes the proof. 

Let us show the following example from the reference [16] to demonstrate the 

effectiveness of our method: 

4.2. Numerical Example 4.1: 

Consider the same system as in the example 2.1, and this system represents the water 

quality model for the Nile River as mentioned in the chapter 2, for convenience I 

mention the system here  

 

 

0 1

1 1 11

3 2 0 0.3
,    A

1 0 0.3 0.2

0.5
,     C 2 0 ,    [2].

0.4

A

B D

    
    

    

 
   
 

 

 

Using the LMI solver, especially CVX software, that works under Matlab package 

and solving LMI (4.3) for the system we found: 
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 𝐴0

𝑇𝑃 + 𝑃𝐴0 + 𝑄 − 𝑅
∗
∗
∗

     𝐴1𝑃 + 𝑅    
−(𝑄 + 𝑅)

∗
∗

𝑃𝐵1 − 𝐶1
𝑇     

0
−(𝐷11

𝑇 + 𝐷11)
∗

𝜏1
2𝐴0

𝑇𝑅

𝜏1
2𝐴1

𝑇𝑅

    𝜏1
2𝐵1

𝑇𝑅

−𝜏1
2𝑅  

 
 
 
 

< 0  

 

 

P = 

   10.7206    4.9587 

    4.9587    7.7119 

Q = 

   12.5853    4.1859 

    4.1859    2.5124 

R = 

    1.3180    0.7526 

    0.7526    2.9588 

 

As shown from the results we can see that we get 𝑃 = 𝑃𝑇 > 0, 𝑄 = 𝑄𝑇 > 0 and  

𝑅 = 𝑅𝑇 > 0 . Based on the theorem 4.1 we conclude that the system in example 4.1 

which represents the water-quality model under consideration is asymptotically stable 

and strictly passive (SP) for any 1  satisfying 10 1.1493  and we notice that the 

upper bound delay using our approach is larger than in the work in reference [7], since 

the delay amount obtained was 0.4 seconds.  

To verify the result let us now follow the conventional way to determine whether the 

system is stable or not, i.e. we can get the transfer function of the previous example 

then check state responses for to the system and show the behavior of the system, if 

the states when  t → ∞ go to the equilibrium i.e. to the origin then the system is 

asymptotically stable.  

 

 
Figure 4.1 Step response for Example 4.1 

 

 

In addition, the trajectories of the systems under initial conditions convergent to the 

equilibrium point (the origin) when the time goes to infinity. This is obvious from the 
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response to the initial conditions for the two states of the control system. See Fig. 

(4.1) and (4.2).  

 
(a)

 
(b) 

Figure 4.2  a ,  b Open loop state  responses for Example 4.1 

 
Figure (4.1) shows the step response of the time delay original system for example 

(4.1) (blue curve), and the approximated system by Pade approximation (red curve), 

also shown the state trajectories of the system. Fig. (4.2) shows the states converge to 

zero as time goes to infinity, so the system is asymptotically stable, and this is very 

clear from the step and state trajectories response of the system.  

4.3. Lyapunov-Krasovskii Functional with Triple Integrals 

In this section we will use the new Lyapunov-Krasovskii functional that include a 

triple integral term and we will get an improved feasible region of stability criterion, 

i.e. we expect to get larger upper bound of the delay for the time delay system under 

consideration.  



29 

 

Theorem 4.2: For a given positive scalar  , the system (4.1) with time invariant 

delay is asymptotically stable and strictly passive if there exist 0 ,TR R 

 0,TS S  0  0,T TP P and Q Q    such that the following LMI holds: 

 

 

2
0 0 0

0 0 1 1 1 0
2

0 0 0 0
1

2
( ) 0 0 0

11 11 1
2

0 0

0 0

2
2

0
2

2

 <0      4.10

T T T
A P PA Q R PA R PB C A R

T
Q R A R

T T
D D B R

S S

S

S

R







 





    

  

   

   

    

    

      

 
 
 
 
 
 
 
 
 

 
 

   
 

 
  
      

 

 

Proof: consider the following Lyapunov-Krasovskii functional candidate containing a 

triple integral term: 

 

1 2 3 4V V V V V                                               

Where  

1

2

3

2

4

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ,
2

T

t
T

t

t
t

T

t
s

t t t

T

t s

V x t Px t

V x Qx d

V x Rx d ds

V x S x d d ds





 

  

  


   

















 

  

 

 

                                                                      (4.11) 

 

Notice that the first three functional 1 2 3,      V V and V  are identical to the functional 

from Theorem 4.1, and in similar way we will derive the derivative as shown below: 

 

1

1

2 1 1

2

3 1 1

2
2 2

4

2
2 2

( ) ( ) ( ) ( )

( ) ( ) - ( - ) ( - )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2 2

     = ( ) ( )
2 2

T T

T T

t
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t

t t

T T

t s
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V x t Qx t x t Qx t
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V x t Sx t x S x d ds

x t Sx t





 

    

 
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 





 



 

   
    
   

   
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

 

  


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  ( ) ( )
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T

t s

x S x d ds


  


   

                                          (4.12) 
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By using lemma 3 the upper bound of double integral term of  
4V can be calculated as 

shown below: 

 

2

2

( ) ( ) ( ) ( )
2

( ) ( )

( ) ( )

T
t t t t t t

T

t s t s t s

T
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
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 

  

 

    
      
     

   
    

             

     

 

   

 

 

              (4.13)    

 

and we can write the previous quantity as :  

2
( ) ( ) 2 ( ) ( ) ( ) ( )

T
t t t

T T
x t Sx t Sx t x t ds x t ds S x t ds

t t t

 

  

    

  

   
   
   

                    (4.14) 

Now combine all the derivatives mentioned above we get the following: 
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1 1
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T
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



  

 
  
 

   
    

   
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        (4.15) 
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(4.16) 

Where  

0 0 0 1 0 1

1 0 1 1 1 1

1 0 1 1 1 1

     

     

T T T

T T T

T T T

A RA A RA A RB

A RA A RA A RB

B RA B RA B RB

   

  

  

 

Now for passivity analysis and to show that the system is asymptotically stable and 

strictly passive (SP) we will go to apply the passivity condition in the similar way as 

in the Theorem 4.1  



31 

 

 0 0

2

1

1 1

( ) 2 ( ) ( ) ( ) ( )

                              ( - ) ( )  ( ) ( ) 

                               ( ) ( - ) ( )( ) ( )

                             ( )

T T T

T T T

T T T

T

V t z t w t x t A P PA Q R x t

x t A Px t x t Rx t

x t PA x t W t B P C x t

x t

 



    

 

  





 

2

1 1( ) ( )+ ( ) ( ) T TPB C W t x t Sx t  

 

11 11

                             - ( - ) ( - ) - ( - ) ( - )

                             ( )( ) ( ) 2 ( ) ( )

T T

t

T T T

t

x t Qx t x t Rx t

W t D D W t x t S x t ds


   




    
 

2
2

                           ( ) ( ) ( ) ( )
2

                             ( ) ( - ) ( - ) ( )

               

T
t t

T

t t

T

x t ds S x t ds x t Sx t

x t Rx t x t Rx t

 



 

 

     
      

    

 

    
                    (4.17) 

 

Let us now write Eq.(4.17) in the compact form as follows: 

 

 

𝜉𝑇Π𝜉     when   ξT =

 
 
 
 
 
 
 

x(t)
x(t − τ)

w(t)
x (t)

 x  s ds
t

t−τ

x (s)  
 
 
 
 
 
 

                                                                          (4.18) 

Π =

 
 
 
 
 
 
 
A0

T + PA0 + Q + R     
∗
∗
∗
∗
∗

PA1 + R   
−(Q + R)

∗
∗
∗
∗
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T     
0
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∗
∗
∗
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0

−τ2S   
∗
∗

0  
0 
0

τS    
−S     

∗

0
0
0
0
0

 
τ2

2
 

2

S
 
 
 
 
 
 
 

 

                  + 𝜏2

 
 
 
 
 
 
𝐴0

𝐴1

𝐵1

0
0
0  

 
 
 
 
 
𝑇

𝑅 𝐴0 𝐴1 𝐵1 0 0 0                                                            (4.19) 

 

             

as in the proof of Theorem 4.1 and applying Schur complement we conclude that the 

LMI (4.10) holds, so the theorem is proved. 

4.4. Numerical Example (4.2): 

  

Consider the same system as in the example 1 and this system represents the water 

quality model for the Nile River, for convenience I will rewrite the system here  
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 
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Using the CVX toolbox, and solving LMI (4.10) for the system we found: 
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P = 

   13.5166    7.8249 

    7.8249    9.9649 

Q = 

   13.1563    7.3203 

    7.3203    5.4082 

R = 

    1.1927    0.3883 

    0.3883    1.7824 

S = 

  1.0e-013 * 

    0.8590   -0.0094 

   -0.0094    0.8652 

Since all matrices are positive definite this means that the water equality model under 

consideration is asymptotically stable and strictly passive for any   satisfying 

0 ≤ 2.1898 ≤ 𝑡 
And this is confirmed when we simulate the system under the influence of the initial 

conditions. The state of the system convergent to equilibrium as the time goes to 

infinity as shown in Fig. (4.3), we conclude that the system is strictly passive, hence, 

asymptotically stable  and tolerates delay up to 2.1898 seconds. 
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(a) 

 
(b) 

Figure 4.3  a and (b)state trajectories for Example 4.2 
 

It is obvious from the above figures that the delay is affected the state trajectories of 

the system, but the system still passive and hence asymptotically stable. For 

comparison see the next table. 

 

Table 1 UPPER BOUND OF TIME DELAY 

 

LKF with tuning scalar parameters 0.3621 

LKF without tuning parameters, with 

Jenson’s inequality method 

1.41925~1.4193 

LKF with triple integral term 2.1898 

 

We conclude that both theorems gave us the different upper bounds of delay for this 

system and in the both cases we get improvements over the existing results as shown 

in the comparison between the results obtained.  
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CHAPTER 5 CONTINIOUS TIME UTDS ANALYSIS 

AND   SYNTHESIS 

5.1. Overview of 𝑯∞  Control Theory 

Robustness is very important in control system design because real engineering 

systems are affected by external disturbances and measurement noises and there are 

always differences between the real plant and the mathematical models used for 

design. So, a control engineer is required to design a controller that will stabilize the 

plant, if it is not stable originally, and satisfy certain performance levels in the 

presence of disturbance signals, noise interference, unmodelled plant dynamics and 

plant-parameter variations. These design objectives are best realized via the state 

feedback mechanism [1]. As already mentioned above that there is close relation 

between passivity and robustness and this relation established via Kalman-

Yakubovich-Popov lemma and this in turn motivates us to discuss the robustness 

issue in the perspective of passivity. In this section we will discuss 𝐻∞   approach 

which addresses the robustness issue of the control systems, and this approach called 

𝐻∞  optimal control theory. In the 𝐻∞  control design framework, the 𝐻∞  robustness in 

this thesis will be taken the same as the performance objectives, that is, to minimize 

the 𝐻∞  norm of the closed loop control system to guarantee the desired performance 

specifications. This will be clear in the subsequent sections in this chapter. Figure 

(5.1) shows the standard 𝐻∞   configuration. 

 

 

Figure (5.1) the standard 𝐻∞   configuration 

Where 𝑤 denotes the external inputs of the plant, 𝑧 denotes the output signals 

to be minimized/penalized that includes both the performance and robustness 

measurements, 𝑦 is the measurements available to the controller 𝐾 and 𝑢 is the vector 

of control signals. 𝑃(𝑠) is called the generalized plant or interconnected system. The 

objective is to find the stabilizing controller  𝐾 to minimize the output 𝑧, in the sense 

of energy, over all 𝑤 with energy less than or equal to 1. Thus, it is equivalent to 

minimizing the 𝐻∞  norm of the transfer function from 𝑤 to 𝑧. 
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5.2. H infinity Controller Design for Independent Delay UTDS 

 

Let the UTDS be described as follows: 

 

𝑥  𝑡 =  𝐴 +△ 𝐴 𝑥 𝑡 +  𝐴𝑑 +△ 𝐴𝑑 𝑥 𝑡 − 𝜏1  

                   +(𝐵1 + Δ𝐵1)𝑢 𝑡 + 𝐵𝑤𝑤 𝑡                 
 

                                 𝑧 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑤𝑤(𝑡)                                                         (5.1) 

 

Where 𝐴 is the nominal state matrix, Δ𝐴 is the perturbation in the state matrix, 𝐴𝑑  is 

the delay state matrix, Δ𝐴𝑑  is perturbation in the delay state matrix, 𝐵1 is the control 

input matrix, Δ𝐵1 is the perturbation in the control input matrix, and 𝐵𝑤  exogenous 

input matrix. All matrices are in the appropriate dimensions. In this subsection we 

will design  𝐻∞  robust controller that render the closed loop control system 

asymptotically robustly stable despite of the uncertainty affected the system, in the 

same time it is acceptable to achieve 𝛾∞  performance criteria, i.e. the controller 

should minimize the infinity norm of the closed loop system that corresponds to 

disturbance attenuation level. The new quantities in the system (5.1) are △ 𝐴,△
𝐴𝑑 , 𝑎𝑛𝑑 Δ𝐵𝑢 ,   are time invariant parameter uncertainties, and assumed to be in the 

following form: 

 ∆𝐴 ∆𝐴𝑑 ∆𝐵1  = 𝐻𝐹 𝑁1 𝑁2 𝑁3                                                         (5.2) 

H, 𝑁1, 𝑁2, 𝑎𝑛𝑑 𝑁3,  are constant matrices and 𝐹 ∈ 𝑅𝑝×𝑘  is the uncertain matrix 

satisfying  

              𝐹𝑇𝐹 ≤ Ι                                                                                                       (5.3) 

The controller has the following form: 

𝑢 𝑡 =  𝐾 + ∆𝐾 𝑥(𝑡)                                                                                              (5.4)    

                                                                

Where 𝐾 ∈ 𝑅𝑚×𝑛  is the controller gain to be designed, and ∆𝐾  is the controller gain 

perturbation with the norm bounded additive form: 

∆𝐾 = ∆1= 𝐻1𝐹1𝐸1                         (5.5) 

Where 𝐻1 𝑎𝑛𝑑 𝐸1 are known matrices, and 𝐹1 is unknown matrix satisfying  

 

 𝐹1
𝑇𝐹1 ≤ Ι                                                                                                                 (5.6)                                    

 

The closed loop descriptor uncertain time delay system under the state feedback 

controller (5.4) is seems as follows: 

(ΣΔ): E 𝑥  𝑡 = 𝐴𝑐𝑥 𝑡 + 𝐴𝑑𝑐
𝑥 𝑡 − 𝜏 + 𝐵𝑤 𝑡  

                                                                 

              𝑧 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑤(𝑡)                                             (5.7) 

 

𝑥 𝑡 = 𝜙 𝑡 , 𝑡 ∈  −𝜏, 0 , 𝜏 > 0 
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Where   𝐴𝑐 = 𝐴𝐾 + Δ𝐴𝐾 +  𝐵1 + Δ𝐵1 Δ𝐾, 𝐴𝑑𝑐
= 𝐴𝑑 + Δ𝐴𝑑 , 𝐴𝐾 = 𝐴 + 𝐵1𝐾, 

𝑎𝑛𝑑 Δ𝐴𝐾 = Δ𝐴 + Δ𝐵1𝐾 = 𝑀𝐹𝑁1
 , 𝑁1

 = 𝑁1 + 𝑁3𝐾 
 

Theorem 5.1: Consider the UTDS (ΣΔ)  and controller perturbation Δ1 in (5.5) and 

(7.6), then if there exists symmetric positive definite matrices   𝑋𝑇 = 𝑋 > 0  , 

𝑄𝑇 = 𝑄 > 0  and matrix 𝑌   with appropriate dimensions and scalars 𝜀1,𝜀2 𝑎𝑛𝑑 𝜀3 

such that the next inequalities hold   

  𝑋𝑇𝐸𝑇 = 𝐸𝑋 ≥ 0                                                                                                  (5.8)  

 

 
 
 
 
 
 
 Π11

∗
∗
∗
∗
∗
∗

          𝐴𝑑

−𝑄
∗
∗
∗
∗
∗

    𝐵 + 𝐶′𝐷
0

−𝛾2
∞

𝐼
∗
∗
∗
∗

   
      Π14        

𝑁2′
0

−𝜀1,𝐼
∗
∗
∗

𝑋′𝐸1′
0
0
0

−𝜀2𝐼
∗
∗

      𝜀2𝐵1𝐻1

0
0
0
0

−𝜀2𝐼
∗

 0
0
0
0
0

𝜀2𝐻1′𝑁3′
−𝜀3𝐼  

 
 
 
 
 
 

                              (5.9) 

 

 

where Π11 = 𝐴𝑋 + 𝑋𝐴′ +  𝜀1 + 𝜀3 𝑀 ∗ 𝑀′ + 𝐵1𝑌 + 𝑌′𝐵1 + 𝐶′𝐶 

 

      Π14 = 𝑋′𝑁1
′ + 𝑌′𝑁3′ 

 

 

 

then  𝐻∞  control problem is solvable and the closed loop system is robustly stable

by the  𝐻∞  controller 𝑢 𝑡 = 𝐾𝑥 𝑡 , 𝐾 = 𝑌𝑋−1 with disturbance attenuation criterion 

𝛾∞   . 

Proof:  Construct a Lyapunov-Krasovskii functional with matrices 𝑃 > 0, 𝑄 > 0 

Define LKF candidate as: 

                  𝑉 𝑥 𝑡  = 𝑥𝑇 𝑡 𝑃𝑥 𝑡 +  𝑥𝑇 𝑠 𝑄𝑥 𝑠 𝑑𝑠
𝑡

𝑡−𝜏
                                    (5.10) 

Differentiating  𝑉 𝑥 𝑡    along the solution of (7.5) gives: 

 

𝑉  𝑥 𝑡  = 2𝑥𝑇 𝑡 𝑃𝐴𝑐𝑥 𝑡 + 2𝑥𝑇 𝑡 𝑃𝐴𝑑𝑐 𝑥 𝑡 − 𝜏 + 2𝑥𝑇 𝑡 𝑃𝐵𝑤𝑤 𝑡 ]           (5.11) 

+𝑥𝑇 𝑡 𝑄𝑥 𝑡 − 𝑥𝑇 𝑡 − 𝜏 𝑄(𝑥 − 𝜏) 
 

Using lemma (4), it follows that: 

 

                      2𝑥𝑇 𝑡 𝑃𝐴𝑑𝑐 𝑥 𝑡 − 𝜏 − 𝑥𝑇 𝑡 − 𝜏 𝑄(𝑥 − 𝜏) 

 

                                    ≤ 𝑥𝑇 𝑡 𝑃[𝐴𝑑𝑄−1𝐴𝑑
𝑇 + 𝐴𝑑𝑄−1𝑁2

𝑇                                       

                                   × (𝜀1𝐼 − 𝑁2𝑄−1𝑁2
𝑇)−1𝑁2𝑄−1𝐴𝑑

𝑇 + 𝜀1
−1𝑀𝑀𝑇]𝑃𝑥(𝑡) 

                                     +𝑥𝑇 𝑡 𝐴𝑑
𝑇𝑃𝑥𝑇 𝑡 − 𝜏  

2𝑥𝑇 𝑡 𝑃𝐴𝑐𝑥 𝑡 ≤ 𝑥𝑇 𝑡 { 𝑃𝐴 + 𝐴𝑇𝑃 + 𝑃𝐵1𝐾 + 𝐾𝑇𝐵1
𝑇𝑃  

                      (𝜀1 + 𝜀3)𝑃𝑀𝑀𝑇𝑃 + 𝜀1
−1𝑁1

𝑇𝑁1 + 𝜀3
−1𝐾𝑇𝑁3

𝑇𝑁3𝐾                                    

                       +𝑃𝑇𝐵1𝐻1(𝜀2
−1𝐼 − 𝜀3

−1𝐻1
𝑇𝑁3

𝑇𝑁3𝐻1)−1𝐻1
𝑇𝐵1

𝑇𝑃}𝑥(𝑡) 
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We have  Δ𝐴𝐾
𝑇 𝑃 + 𝑃𝑇Δ𝐴𝐾 = 𝑃𝑇 𝐵1 + Δ𝐵1 Δ𝐾 + Δ𝐾𝑇( 𝐵1 + Δ𝐵1 𝑇𝑃 

≤ 𝜀2𝑃𝑇 𝐵1 + Δ𝐵1 𝐻1𝐻1
𝑇 𝐵1 + Δ𝐵1 𝑇𝑃 + 𝜀2

−1𝐸1
𝑇𝐸1 

and  𝜀2 𝐵1 + Δ𝐵1 𝐻1𝐻1
𝑇 𝐵1 + Δ𝐵1 𝑇 ≤ 𝐵1𝐻1(𝜀2

−1𝐼 − 𝜀3
−1𝐻1

𝑇𝑁3
𝑇𝑁3𝐻1)−1𝐻1

𝑇𝐵1
𝑇 +

          𝜀3
−1𝑀𝑀𝑇                                                                                                          

for any scalars 𝜀𝑖 > 0, 𝑖 = 1,2,3 so that 𝜀1𝐼 − 𝑁2𝑄−1𝑁2
𝑇 > 0, 

(𝜀2
−1𝐼 − 𝜀3

−1𝐻1
𝑇𝑁3

𝑇𝑁3𝐻1)−1 > 0                                                                             

satisfying above inequalities, it follows that 𝑉 (𝑥 𝑡 ) ≤ 𝜂𝑇(𝑡)Πη(t) 

where 𝜂𝑇 = [𝑥𝑇 𝑡     𝑥𝑇 𝑡 − 𝜏   𝑤𝑇 𝑡 ],  

Π =  
Π11 𝐴𝑑

𝑇𝑃 𝑃𝐵
∗ −𝑄 0
∗ ∗ Π33

                                                                                           (5.12) 

Where, Π11 =  5.12  𝑎𝑛𝑑 Π33 = (5.13). Next the robust 𝐻∞  performance of the 

closed loop control system (5.7) will be considered under the feedback controller that 

render the system asymptotically stable and achieved disturbance attenuation under 

the reducing the infinity norm of the closed system. Let introduce the following: 

ℑ =  [𝑧 𝑡 𝑇𝑧 𝑡 − 𝛾∞
2 𝑤 𝑡 𝑇𝑤(𝑡)]𝑑𝑡

∞

0

 

 Assuming (5.3) with zero initial conditions we obtain, the closed loop control system 

(5.7) satisfies H  performance 0  , that is: 

ℑ =  [𝑧 𝑡 𝑇𝑧 𝑡 − 𝛾∞
2 𝑤 𝑡 𝑇𝑤 𝑡 + 𝑉 (𝑥 𝑡 )]𝑑𝑡

∞

0
                                               (5.13) 

consider (5.13) and (5.12), rearrange and put it in the form (5.12), after that multiply 

the LMI by 𝑑𝑖𝑎𝑔 𝑃−1, 𝐼, 𝐼 𝑎𝑛𝑑 𝑝𝑢𝑡 𝑋 = 𝑃−1, 𝑌 = 𝐾𝑃−1 and apply Schur 

complement, we get (5.9). Refer to inequality (5.9), and put 𝛾2 = 𝛾 , and since other 

variable matrices depend affine on the parameters of the problem so we have the 

following optimization problem 

𝑀𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝛾   

Subject to 

 
 
 
 
 
 
 Π11

∗
∗
∗
∗
∗
∗

          𝐴𝑑

−𝑄
∗
∗
∗
∗
∗

    𝐵 + 𝐶′𝐷
0

−𝛾 ∞𝐼
∗
∗
∗
∗

   
      Π14        

𝑁2′
0

−𝜀1,𝐼
∗
∗
∗

𝑋′𝐸1′
0
0
0

−𝜀2𝐼
∗
∗

      𝜀2𝐵1𝐻1

0
0
0
0

−𝜀2𝐼
∗

 0
0
0
0
0

𝜀2𝐻1′𝑁3′
−𝜀3𝐼  

 
 
 
 
 
 

< 0                       (5.14) 

 



38 

 

𝐸𝑇𝑋 = 𝑋𝐸 ≥ 0 

𝜀𝑖 > 0, 𝑖 = 1,2,3 , 𝑋 > 0, 𝛾 ∞ > 0 

5.3. Examples  

Example (5.1): 

Consider the same system as in [20] and the same parameters used there: 

𝐴 =  
0.1 1 0.1
0.1 0.3 0.1
0.5 0.2 0.1

 ,𝐴𝑑 =  
0.1 0 0.2
0.5 −0.1 0
0 0.1 −0.2

 ,𝐵1 =  
0.1 0
0 1

−1 1
 ,𝐵 =  

0.1 0.2
0 0.1

0.1 0
  

𝐶 =  
0.1 0 −0.1
0.2 0.5 0.1

 ,𝐷 =  
1 0.1

0.5 0.1
 , 𝑀 =  

0.1
0.1
0.2

 , 𝑁1 =  0.1 0 0.1 , 𝑁3 =

 0 0.1 , 𝐻1 =  
0.1
0.1

  and 𝐸1 =  0.1 0 0.3  

By solving optimization problem (5.14) using CVX package, we get the solution as 

follows: 

𝑋 =  
49.0626 −19.7549 0

−19.7549 9.1214 0
0 0 1.0178

  

𝑌 =  
−50.6690 −237.5030 22.1911
 −74.9826 −241.6567 −3.9298

  

𝑄 =  
120.6000 0 0

0 32.3000 0
0 0 85.7035

  

 

𝛾 ∞ = 0.0094, 𝜀1 = 2.6147, 𝜀2 = 2.5913 𝑎𝑛𝑑 𝜀3 = 2.6147 

The state feedback 𝐻∞  controller of the system (5.7) for example (5.1) is given by   

𝐾 =  
−90.0095 −220.9796 21.8032
−95.3156 −232.9267 −3.8611

  

with disturbance attenuation 𝛾∞ =  𝛾∞    =     0.0971 . On the other hand in [20] 𝐻∞  

optimization problem does not exploited, hence the robustness issue does not 

considered there, only the state feedback controller addressed and no any information 

about how much the system robustly stable.    

Example (5.2): 

Consider the same system as in [21] 

../../���%20���/SS-05-03-20.pdf
../���%20���/Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers_%20Part%20I-%20Journal%20of%20Systems%20and%20Control%20Engineering-2001-Xu-511-20.pdf
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𝐴 =  
−2 1
0 −3

 , 𝐴𝑑 =  
−1 0
0 1

 , 𝐵1 =  
1
1
 , 𝐵 =  

0.5
0

 , 𝑀 =  
0.5
0.5

 , 𝑁1 =  1 0.5 , 

𝑁2 =  1 0.4 , 𝑁3 = 0.2, 𝐶 =  
0.2 1
1.5 1

 , 𝐷 =  
1
1
  

By solving optimization problem (5.17) using CVX package, we get the solution as 

follows: 

𝑋 =  
16.4807 8.7405
8.7405 6.6289

  

 

𝑄 =  
201.9 0

0 585.2
  

 

𝑌 =  −128.0290 −84.0550  

 

𝛾 ∞ = 0.0404, 𝜀1 = 0.9517, 𝜀2 = 0.6833 𝑎𝑛𝑑 𝜀3 = 2.2436 

The state feedback 𝐻∞  controller of the system (5.7) with the system described in [21] 

is given by: 

𝐾 =  −3.4704 −8.1042  

 

with disturbance attenuation 𝛾∞ =  𝛾∞    =  0.2011 

 

We conclude that we have better result since the controller we have designed gives 

good disturbance attenuation level despite of the all uncertainties in the system and in 

the controller itself. On the other hand in [21] the disturbance attenuation level was 

𝛾∞ = 2.5. It is understood that by the controller obtained using our method attenuates 

disturbance effectively because we used the passivity conditions in our approach, but 

in the approach exploited in [21] such conditions do not used.  

5.4. Positive Realness (Passive) Controller Design for Independent 

Delay UTDS 

Follow the same procedure in the previous subsection but replace (5.13) by the 

following: 

ℑ =  [2𝑧 𝑡 𝑇𝑤 𝑡 − 𝛾𝑝𝑤 𝑡 𝑇𝑤 𝑡 + 𝑉 (𝑥 𝑡 )]𝑑𝑡
∞

0
< 0                                     (5.15) 

Little manipulation we get the following optimization problem: 
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𝑀𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝛾   

Subject to 

 
 
 
 
 
 
 Π11

∗
∗
∗
∗
∗
∗

          𝐴𝑑

−𝑄
∗
∗
∗
∗
∗

    𝐵 − 𝑋′𝐶′
0

−𝛾𝑝 − (𝐷 + 𝐷′)
∗
∗
∗
∗

   
      Π14        

𝑁2′
0

−𝜀1,𝐼
∗
∗
∗

𝑋′𝐸1′
0
0
0

−𝜀2𝐼
∗
∗

      𝜀2𝐵1𝐻1

0
0
0
0

−𝜀2𝐼
∗

 0
0
0
0
0

𝜀2𝐻1′𝑁3′
−𝜀3𝐼  

 
 
 
 
 
 

< 0             (5.16) 

 

𝐸𝑇𝑋 = 𝑋𝐸 ≥ 0 

 

𝜀𝑖 > 0, 𝑖 = 1,2,3 , 𝑋 > 0, 𝛾𝑝 > 0 

Π11  𝑎𝑠 𝑖𝑛 6.1 − 𝐶′𝐶 

Example (5.3): 

Consider the same system as in [20] 

𝐴 =  
0.1 1 0.1
0.1 0.3 0.1
0.5 0.2 0.1

 ,𝐴𝑑 =  
0.1 0 0.2
0.5 −0.1 0
0 0.1 −0.2

 ,𝐵1 =  
0.1 0
0 1

−1 1
 ,𝐵 =  

0.1 0.2
0 0.1

0.1 0
  

𝐶 =  
0.1 0 −0.1
0.2 0.5 0.1

 ,𝐷 =  
1 0.1

0.5 0.1
 , 𝑀 =  

0.1
0.1
0.2

 , 𝑁1 =  0.1 0 0.1 , 𝑁3 =

 0 0.1 , 𝐻1 =  
0.1
0.1

  and 𝐸1 =  0.1 0 0.3  

 

By solving optimization problem (5.16) using Matlab LMI Control Toolbox, we get 

the solution as follows: 

𝑋 =  
1.9893 −0.4901 0

−0.4901 1.8709 0
0 0 1.9105

  

 

𝑄 =  
2.3134 0 0

0 2.2634 0
0 0 2.2857

  

 

𝑌 =  
−0.0817 −3.9424 −0.5374
−1.2793 −2.1531 −1.9055

  

The state feedback passive controller of the system (5.7) with the system described in 

[20] is given by   

../���%20���/SS-05-03-20.pdf
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𝐾 =  
−0.5989 −2.2642 −0.2813
−0.9905 −1.4104 −0.9974

  

 

Figure (5.2) Robust performance and stability Example(5.3) 

From the plot we can observe that the response of the closed control system with 

controller (black dashed) obtained is good for disturbance rejection (green), and in 

this example we achieved the robust stability and robust performance.   

Example (5.4): 

Again consider the system [21]: 

𝐴 =  
−2 1
0 −3

 , 𝐴𝑑 =  
−1 0
0 1

 , 𝐵1 =  
1
1
 , 𝐵 =  

0.5
0

 , 𝑀 =  
0.5
0.5

 , 𝑁1 =  1 0.5 , 

𝑁2 =  1 0.4 , 𝑁3 = 0.2, 𝐶 =  
0.2 1
1.5 1

 , 𝐷 =  
1
1
  

By solving optimization problem (5.19) for the system in [21] we get the following 

results: 

𝑋 =  
1.2829 −0.9874

−0.9874 4.4460
  

 

𝑄 =  
393.42 0

0 156.95
  

 

𝑌 =  −27.7295 −29.9643  

 

 𝜀1 = 0.9517, 𝜀2 = 0.6833 𝑎𝑛𝑑 𝜀3 = 2.2436 

 

../���%20���/Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers_%20Part%20I-%20Journal%20of%20Systems%20and%20Control%20Engineering-2001-Xu-511-20.pdf
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And the state feedback passive controller is given by: 

𝐾 =  −32.3267 −13.9191  

with disturbance attenuation level 𝛾𝑝 = 0.4629 

As shown from result the state feedback controller based on passivity criterion gives 

us better result comparing with H infinity controller designed in [23], since the 

disturbance attenuation in [23] was 𝛾∞ = 2.5. 

5.5. Delay Dependent State Feedback Passive Controller Design  

Let us now study the delay dependent stability analysis for the UTDS (ΣΔ), since the 

delay independent category achieved in the previous subsection may be conservative 

when the delays are small, in this subsection we will discuss the delay dependent 

category (technique) of robust state feedback controller design for UTDS (ΣΔ). We go 

to design uncertain  controller which renders the closed loop control system described 

in (5.7) asymptotically stable with prescribed disturbance attenuation level for any 

given delay satisfying 0 < 𝜏 ≤ 𝜏 . For simplicity let us make a little modification in 

the system(5.1), and assume that there is no uncertain parameter in the input matrix 

𝐵1 and the matrix 𝐸 is an identity matrix with appropriate dimension. 

Theorem 5.2: the system (ΣΔ) is robustly stable for any time delay satisfying 

0 < 𝜏 ≤ 𝜏 , if there exist matrices such that the following LMI holds: 

 

 

𝐿   
∗   
∗  
∗

𝑑 𝐿1

  −𝐽1

 ∗
∗

 𝐿2

0
    −𝐽2

∗

 𝐿3

0
0

   −𝐽3

 < 0                                          (5.20) 

Where𝐿 =     𝐴 + 𝐴𝑑 𝑋 + 𝑋 𝐴 + 𝐴𝑑 𝑇 + 𝐵1𝑌 + 𝑌𝑇𝐵1
𝑇 +  𝜀𝑖

4
𝑖=1 𝐻𝐻𝑇         

                       +   𝜀2𝐵1𝐻1𝐻1
𝑇𝐵1

𝑇 + 𝐴𝑑 𝑋1 + 𝑋2 𝐴𝑑
𝑇 ,    

𝐿1 =  𝑋𝐴 + 𝑌𝑇𝐵1
𝑇 𝑋𝐴𝑑

𝑇 𝑋𝑁1
𝑇 + 𝐵1𝐻1

𝑇 𝑋𝑁𝑑
𝑇   

𝐿2 =  𝑋𝑁1
𝑇 𝑋𝑁2

𝑇 𝑋𝐸1
𝑇 𝐴𝑑 𝑋1 + 𝑋2 𝑁2

𝑇   

𝐿3 = 𝑋𝑇𝐶, 𝐽1 = 𝑑𝑖𝑎𝑔(𝑋1 − 𝜀5𝐻𝐻𝑇 , 𝑋2 − 𝜀6𝐻𝐻𝑇 , Ι𝜀5, Ι𝜀6  

𝐽2 = 𝑑𝑖𝑎𝑔 𝜀1, 𝜀3, 𝜀2, 𝜀4𝐼 − 𝑁𝑑 𝑋1 + 𝑋2 𝑁𝑑
𝑇 𝑎𝑛𝑑 𝐽3 = (𝐷𝑤 + 𝐷𝑤

𝑇 )  

Proof: Using Leibniz-Newton formula we can write  

  𝑥 𝑡 − 𝜏 = 𝑥 𝑡 −  𝑥 
0

−𝜏
 𝑡 + 𝜃 𝑑𝜃  

                 = 𝑥 𝑡 −  [
0

−𝜏
𝐴𝑐 𝑡 + 𝜃 + 𝐴𝑑𝑐

𝑥 𝑡 + 𝜃 − 𝜏 + 𝐵𝑤 𝑡 + 𝜃 𝑑𝜃              (5.21)                  

Substituting (5.21) into (5.7) yields 

      𝑥  𝑡 = 𝐴𝑐𝑥 𝑡 + 𝐴𝑑𝑐
{𝑥 𝑡 +  [

0

−𝜏
𝐴𝑐 𝑡 + 𝜃  
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                +𝐴𝑑𝑐
𝑥 𝑡 + 𝜃 − 𝜏 + 𝐵𝑤 𝑡 + 𝜃 ]𝑑𝜃} + 𝐵𝑤(𝑡)                                    (5.22) 

 

Here we get  𝐴𝑐 = (𝐴 + 𝐵1𝐾 + Δ𝐴 + 𝐵1Δ𝐾)                                                                

Define LKF as follows: 

𝑉 𝑥 = 𝑥𝑇 𝑡 𝑃𝑥 𝑡 + 𝑉1(𝑥)                                                                                 (5.24) 

Where 𝑉1 𝑥 =    𝑥𝑇 𝜏 𝑄1𝑥 𝜏 𝑑𝜏 +  𝑥𝑇 𝜏 𝑄2𝑥 𝜏 
𝑡

𝑡+𝜃−𝑑

𝑡

𝑡+𝜃
𝑑𝜏 

0

−𝑑
𝑑𝜃 

The derivative of 𝑉 𝑥  in (5.24) along the trajectories states i.e. the solution of the 

system (ΣΔ) with 𝑤 = 0,  with respect to 𝑡 is given by: 

𝑉  𝑥 = 𝑥𝑇 𝑡  𝐴𝑐
𝑇𝑃 + 𝐴𝑑𝑐

𝑇 𝑃 + 𝑃𝐴𝑐 + 𝑃𝐴𝑑𝑐  𝑥 𝑡   

−2𝑥𝑇 𝑡 𝑃𝐴𝑑𝑐  𝐴𝑐𝑥 𝑡 + 𝜃 𝑑𝜃
0

−𝑡
− 2𝑥𝑇 𝑡 𝑃𝐴𝑑𝑐  𝐴𝑑𝑐𝑥 𝑡 + 𝜃 − 𝜏 𝑑𝜃

0

−𝑡
+ 𝑉 

1(𝑥)  

= 2𝑥𝑇 𝑡 𝑃𝐴𝑐𝑥 𝑡 + 2𝑥𝑇 𝑡 𝑃𝐴𝑑𝑐𝑥 𝑡 − 2𝑥𝑇 𝑡 𝑃𝐴𝑑𝑐   𝐴𝑐𝑥 𝑡 + 𝜃 𝑑𝜃
0

−𝑡
+

 𝐴𝑑𝑐𝑥 𝑡 + 𝜃 − 𝜏 𝑑𝜃
0

−𝑡
 + 𝑥𝑇 𝑡  𝑑𝑄1 + 𝑑𝑄2 𝑥 𝑡 + 𝑠(𝑥 𝑡 , 𝑡)                     (5.25) 

Where,  

𝑠 𝑥 𝑡 , 𝑡 = −  𝑥𝑇 𝑡 + 𝜃 𝑄1𝑥 𝑡 + 𝜃 𝑑𝜃 −  𝑥𝑇 𝑡 + 𝜃 − 𝑑 𝑄2𝑥 𝑡 + 𝜃 − 𝑑 
0

−𝑑
𝑑𝜃

0

−𝑑
              (5.26)                                         

Using lemma 4 gives 

           

∎ − 2𝑥𝑇 𝑡 𝑃𝐴𝑑𝑐  𝐴𝑐𝑥 𝑡 + 𝜃 𝑑𝜃
0

−𝑑
≤ 𝑑𝑥𝑇 𝑡 𝑃𝐴𝑑𝑐𝑃1𝐴𝑑𝑐

𝑇𝑃𝑥 𝑡                         

                                        +  𝑥𝑇 𝑡 + 𝜃 𝐴𝑐
𝑇𝑃1

−1𝐴𝑐𝑥 𝑡 + 𝜃 𝑑𝜃
0

−𝑑
     

≤ 𝑑𝑥𝑇 𝑡 𝑃𝐴𝑑𝑐𝑃1𝐴𝑑𝑐
𝑇𝑃𝑥 𝑡 +  𝑥𝑇 𝑡 + 𝜃 𝑊1𝑥 𝑡 + 𝜃 𝑑𝜃

0

−𝑑
                               

∎ − 2𝑥𝑇 𝑡 𝑃𝐴𝑑𝑐  𝐴𝑑𝑐 𝑥 𝑡 + 𝜃 − 𝜏 𝑑𝜃
0

−𝑑
≤ 𝑑𝑥𝑇 𝑡 𝑃𝐴𝑑𝑐 𝑃2𝐴𝑑𝑐

𝑇𝑃𝑥 𝑡    

+  𝑥𝑇 𝑡 + 𝜃 𝐴𝑑𝑐
𝑇 𝑃2

−1𝐴𝑑𝑐 𝑥 𝑡 + 𝜃 𝑑𝜃
0

−𝑑
  

≤ 𝑑𝑥𝑇 𝑡 𝑃𝐴𝑑𝑐𝑃2𝐴𝑑𝑐
𝑇𝑃𝑥 𝑡 +  𝑥𝑇 𝑡 + 𝜃 𝑊2𝑥 𝑡 + 𝜃 𝑑𝜃

0

−𝑑
                               

∎𝑃𝐴𝑑𝑐  𝑃1 + 𝑃2 𝐴𝑑𝑐
𝑇 𝑃 ≤ 𝑃𝐴𝑑 𝑃1 + 𝑃2 𝐴𝑑

𝑇𝑃 + 𝑊3                                                

Where,  

𝑊1 =  𝐴 + 𝐵1𝐾 𝑇 𝑃1 − 𝛼5𝐻𝐻𝑇 −1 𝐴 + 𝐵1𝐾 + 𝛼5
−1 𝑁1 + 𝐻1𝐾 𝑇(𝑁1 + 𝐻1𝐾)                        

𝑊2 = 𝐴𝑑
𝑇 𝑃2 − 𝛼6𝐻𝐻𝑇 −1𝐴𝑑 + 𝛼6

−1𝑁𝑑
𝑇𝑁𝑑                                                                         
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𝑊3 = 𝑃 𝐴𝑑 𝑃1 + 𝑃2 𝑁𝑑
𝑇 𝛼4𝐼 − 𝑁𝑑 𝑃1 + 𝑃2 𝑁𝑑

𝑇 −1𝑁𝑑 𝑃1 + 𝑃2 𝐴𝑑
𝑇 + 𝛼4𝐻𝐻𝑇 𝑃                                                             

For any scalars 𝛼𝑖 > 0, 𝑖 = 1,2, … ,6, 𝑃1 > 0 𝑎𝑛𝑑 𝑃2 > 0, 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡𝑃1 − 𝛼5𝐻𝐻𝑇 > 0, 

   𝑃2 − 𝛼6𝐻𝐻𝑇 > 0, 𝛼4𝐼 − 𝑁𝑑 𝑃1 + 𝑃2 𝑁𝑑
𝑇 > 0   we get  

𝑉  𝑥 ≤ 𝑥 𝑡 𝑇𝑃 Φ 𝑃, 𝑃1, 𝑃2 , 𝐾, 𝛼 1, 𝛼 2, 𝑑  𝑃𝑥(𝑡) 

Where 

Φ 𝑃, 𝑃1, 𝑃2, 𝐾, 𝛼 1, 𝛼 2, 𝑑 =  𝐴 + 𝐴𝑑 𝑃−1 + 𝑃−1 𝐴 + 𝐴𝑑 𝑇 + 𝐵1𝐾𝑃−1 + 𝑃−1𝐾𝑇𝐵1
𝑇 +

𝑃−1 𝛼1
−1𝑁1

𝑇𝑁1 + 𝛼3
−1𝑁2

𝑇𝑁2 + 𝛼2
−1𝐸1

𝑇𝐸1 𝑃−1 +  𝛼1 + 𝛼3 𝐻𝐻𝑇 + 𝛼2𝐵1𝐻1𝐻1
𝑇𝐵1

𝑇 +

𝑑𝑃−1  𝑊𝑖 + 𝑃𝐴𝑑 𝑃1 + 𝑃2 𝐴𝑑
𝑇𝑃3

𝑖=1  𝑃−1  

𝛼 1 =  𝛼1, , . . , 𝛼4 𝑇  𝑎𝑛𝑑 𝛼 2 =  𝛼5, 𝛼6 𝑇  

Now, let  𝑃−1 = 𝑋, 𝑃1 = 𝑑 −1𝑋1, 𝑃2 = 𝑑 −1𝑋2, 𝑌 = 𝐾𝑋 ⇒ 𝐾 = 𝑌𝑋−1, 𝛼 1 = 𝜀 1, 𝛼 2 =

𝑑 −1𝜀 2 , where 𝜀  1 =  𝜀1, … , 𝜀4 𝑇  𝑎𝑛𝑑 𝜀  2 =  𝜀5, 𝜀6 𝑇 . Then from the inequality (6.20) it 

is follows that  

 𝜀4𝐼 − 𝑁𝑑 𝑃1 + 𝑃2 𝑁𝑑
𝑇 > 0, 𝑃1 − 𝜀5𝐻𝐻𝑇 > 0, 𝑃2 − 𝜀6𝐻𝐻𝑇 > 0                                                                       

and  

  𝑉 (𝑥) ≤ 𝑥 𝑡 𝑇𝑋−1
 Φ  𝑋−1, 𝑑 

−1
𝑋1, 𝑑 

−1
𝑋2, 𝑌𝑋−1, 𝜀 1, 𝑑 

−1
𝜀 2, 𝑑   𝑋−1𝑥(𝑡) < 0.         (5.27)  

If this inequality holds then there is a scalar 𝑐 > 0 such that 𝑉  𝑥 ≤ −𝑐 𝑥(𝑡) 2 that 

guarantees the stability of the closed loop system. Let us now define the next 

inequality to guarantee the asymptotic stability analysis for the UTDS based on the 

passivity conditions.  

𝑉 
1 𝑥 = 𝑉  𝑥 − 2𝑧𝑇 𝑡 𝑤(𝑡)                                                                                 (5.28) 

Where 𝑉 (𝑥) as in (5.27) and−2𝑧𝑇 𝑡 𝑤 𝑡 ≤ −[𝑧𝑇 𝑡 𝑤 + 𝑤𝑇 𝑡 𝑧], substitute these 

into (5.28) we get  

𝑉 
1 𝑥 = 𝑉  𝑥 − 2𝑧𝑇 𝑡 𝑤(𝑡) = ℳ𝑇ℬℳ < 0                                                      (5.29) 

Whereℳ =  𝑥𝑇(𝑡) 𝑤𝑇(𝑡) , and  

ℬ =  
Φ 𝑋−1, 𝑑 −1𝑋1, 𝑑 −1𝑋2, 𝑌𝑋−1, 𝜀  1, 𝑑 −1𝜀 2, 𝑑  𝑋𝐶𝑇

∗ −(𝐷𝑤 + 𝐷𝑤
𝑇 )

 < 0                (5.30) 

Rearrange and use some algebra then apply Schur complement we get (5.20). 

This concludes the proof. 

Example (5.5): 

Consider the uncertain time delay system in [20], the system described as: 

(ΣΔ): E 𝑥  𝑡 = 𝐴𝑐𝑥 𝑡 + 𝐴𝑑𝑐
𝑥 𝑡 − 𝜏 + 𝐵𝑤 𝑡   

 𝑧(𝑡) = 𝐶𝑥 + 𝐷𝑤(𝑡) 
With parameters as: 
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𝐴 =  
0.1 1 0.1
0.1 0.3 0.1
0.5 0.2 0.1

 ,𝐴𝑑 =  
0.1 0 0.2
0.5 −0.1 0
0 0.1 −0.2

 ,𝐵1 =  
0.1 0
0 1

−1 1
 ,𝐵 =  

0.1 0.2
0 0.1

0.1 0
  

𝐶 =  
0.1 0 −0.1
0.2 0.5 0.1

 ,𝐷 =  
1 0.1

0.5 0.1
 , 𝑀 =  

0.1
0.1
0.2

 , 𝑁1 =  0.1 0 0.1 , 𝑁3 =

 0 0.1 , 𝐻1 =  
0.1
0.1

  and 𝐸1 =  0.1 0 0.3 , 𝑁2 =  . 2 0 −.1  

Using CVX control toolbox we get the solution of LMI (5.20) as: 

 

𝑋 =  
0.1176 −0.1009 −0.1354

−0.1009 0.5554 −0.0095
−0.1354 −0.0095 0.1896

  

 

𝑋1 =  
2.5639 4.6061 −0.0847
4.6061 29.3359 7.6159

−0.0847 7.6159 3.1463
  

 

𝑋2 =  
0.2230 −0.4501 −0.3915

−0.4501 2.3219 0.4175
−0.3915 0.4175 0.9687

  

 

𝑌 =  
−0.2721 −1.0888 −0.1086
−0.2739 −1.6853 −0.3159

  

 

𝜀1 = 0.0454, 𝜀2 = 2.7632, 𝜀3 = 0.2603,  
𝜀4 = 3.7918𝑒 − 006, 𝜀5 = 6.4960, 𝜀6 = 3.6612 

 

From theorem 5.3.1 we conclude that this system has delay dependent solution. Furthermore, 

a state feedback passive controller can be obtained: 

𝑢 𝑡 = 106  
−1.4354 −0.2785 −1.0392
−2.1183 −0.4110 −1.5335

  

which will stabilize the system for all admissible uncertainties and any  𝑑 ≤ 𝑡 ≤ 3.9431. We 

conclude based on the obtained result using proposed approach in this thesis that the system 

renders passive despite of the uncertainties affected the system and in addition, the system can 

tolerate the delay less than 3.9431, thus constitutes the one of main contribution in this thesis, 

since in the reference [20] only the delay-independent criterion considered and there is no 

information about the delay the system can be handled without affecting the stability analysis 

and performance of the closed loop control system.  

5.6. SFPC for TDS with TVD in the State and Control Channels 

The time delay systems that contain the state delay and derivative of the state delay is 

very important type, since such systems arising basically in the field of power 

systems, since these time delay systems consider the natural models of fluctuations in 
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the voltage and current in problems arising in transmission lines[22]. In this chapter 

we shall study the state feedback passive controller for time varying time delay 

system contained delays in the state and input channels and we will use the change of 

variables technique already used in the previous chapters to demonstrate the 

effectiveness of this method, since as will would be shown that this method easy to 

deal with, in addition it gives us better results comparison with the results given 

in[22]. So, consider the same system in[22]. I will rewrite it here for convenience 

 

𝑥  𝑡 = 𝐴0𝑥 𝑡 + 𝐴1𝑥 𝑡 − 𝜏1 𝑡  + 𝐴2𝑥  𝑡 − 𝜏2 𝑡  + 𝐵1𝑤 𝑡 + 𝐵2𝑢(𝑡 − 𝜏3 𝑡 )  

   

𝑧 𝑡 = 𝐶1𝑥 𝑡 + 𝐷1𝑢 𝑡 + 𝐷11𝑤(𝑡)                                                                                   
                                                                                   (5.31)

          

𝑦 𝑡 = 𝐶2𝑥 𝑡 + 𝐷2𝑤(𝑡)  

 

x t = ϕ t , t ≥ 0. 
 

Since 𝜏𝑖(𝑡), 𝑖 = 1,2,3 are arbitrary differentiable functions satisfying:  

 
0 ≤ 𝜏1 𝑡 < ∞, 0 ≤ 𝜏2 𝑡 < ∞, 0 ≤ 𝜏3 𝑡 < ∞
𝜏 1(𝑡) ≤ 𝜎1 < 1, 𝜏 2(𝑡) ≤ 𝜎2 < 1, 𝜏 3(𝑡) ≤ 𝜎3 < 1

                                               (5.32) 

 

Other notations are the same as in (2.13) in this thesis. So, we will go to construct the 

state feedback passive controller 𝑢 = 𝐾𝑥(𝑡) which renders the closed loop time delay 

time varying control system passive, hence asymptotically stable. The closed loop 

control system will be shown as: 

𝑥  𝑡 = 𝐴0𝑥 𝑡 + 𝐴1𝑥 𝑡 − 𝜏1 𝑡  + 𝐴2𝑥  𝑡 − 𝜏2 𝑡  + 𝐵1𝑤 𝑡 + 𝐵2𝐾𝑥(𝑡 − 𝜏3 𝑡 )  

   

𝑧 𝑡 = (𝐶1 + 𝐷1𝐾)𝑥 𝑡 + 𝐷11𝑤(𝑡)          
                                                                              

       

𝑦 𝑡 = 𝐶2𝑥 𝑡 + 𝐷2𝑤(𝑡)                                                                                       (5.33) 

x t = ϕ t , t ≥ 0. 
Theorem 5.3: Consider the closed system (5.33), for given 𝑄 = 𝑄𝑇 > 0, if there exist 

𝑌 = 𝑌𝑇 > 0 , 𝑀 = 𝑀𝑇 > 0  and matrix 𝐿,which satisfy the following LMI: 

 

 
 
 
 
 
 
 ℱ
∗
∗
∗
∗
∗

𝐴1𝑌

− 1 − 𝜎1 𝑀
∗
∗
∗
∗

𝐴2𝑌
0

− 1 − 𝜎2 𝑀
∗
∗
∗

𝐵2𝐿
0
0

− 1 − 𝜎3 𝑀
∗
∗

𝕳
0
0
0

−(𝐷11 + 𝐷11
𝑇 )

∗

𝑌𝐴0
𝑇

𝑌𝐴1
𝑇

𝑌𝐴2
𝑇

𝐿𝑇𝐵2
𝑇

𝐵1
𝑇

−𝑄−1 
 
 
 
 
 
 

< 0           (5.34) 

 

 Where  ℱ = 𝑌𝐴0
𝑇 + 𝐴0𝑌 + 2𝑀, 𝕳 = 𝐵1 − 𝑌𝐶1

𝑇 − 𝐿𝑇𝐷1
𝑇  

 

then the system (5.32) is passive and asymptotically stable with the state feedback 

passive controller u = Kx(t). 

 

Proof:  Define a LKF V(x t )  as follows: 

ThesisRep0508.docx#Stability analysis of the time delay systems
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𝑉 𝑥 𝑡  = 𝑥𝑇 𝑡 𝑃𝑥 𝑡 +  𝑥𝑇 𝑠 𝑄𝑥 𝑠 𝑑𝑠
𝑡

𝑡−𝜏1(𝑡)

+  𝑥 𝑇 𝑠 𝑄𝑥  𝑠 𝑑𝑠

𝑡

𝑡−𝜏2(𝑡)

 

                                              +  𝑥𝑇 𝑠 𝑄𝑥 𝑠 𝑑𝑠
t

𝑡−𝜏3(𝑡)
                                          (5.35) 

 

Calculating the derivative of (5.35) along the trajectories of (5.33) it follows that: 

 

V  xt =  x  T t Px t + xT t Px (t) 

          + xT t Qx t −  1 − τ1  t  xT t − τ1 t  Qx t − τ1 t      

          + x T t Qx  t − (1 − τ 2 t )x T t  t − τ2 t  Q t − τ2 t   

          + xT t Qx t − (1 − τ 3 t )xT t − τ3 t  Qx t − τ3 t   

         ≤  x  T t Px t + xT t Px  t + 2xT t Qx t  

              −(1 − σ1)xT t − τ1 t  Qx t − τ1 t         

             + x T t Qx  t − (1 − σ2)x T t  t − τ2 t  Q t − τ2 t   

             −(1 − σ3)xT t − τ3 t  Qx t − τ3 t   

 

         = xT t  A0
TP + PA0 + 2Q x t + 2xT t PA1x t − τ1 t    

         + 2xT t PA2x  t − τ2 t  + 2xT t PB2Kx t − τ3 t   

          + 2xT t PB1w(t) − (1 − σ1)xT t − τ1 t  Qx t − τ1 t    

          + x T t Qx  t − (1 − σ2)x T t  t − τ2 t  Q t − τ2 t   

          − 1 − σ3 xT t − τ3 t  Qx t − τ3 t  . 
Now apply this equation: 

V  xt − 2zT t w t = xT t  A0
TP + PA0 + 2Q x t + 2xT t PA1x t − τ1 t   

                                  + 2xT t PA2x  t − τ2 t  + 2xT t PB2Kx t − τ3 t   

            + 2xT t  PB1 − C1
T + KTD1

T w t − wT t  D11 + D11
T  w(t) 

                                  + x T t Qx  t ) − (1 − σ1)xT t − τ1 t  Qx t − τ1 t   

                                   −(1 − σ2)x T t  t − τ2 t  Q t − τ2 t   

                                   − 1 − σ3 xT t − τ3 t  Qx t − τ3 t  . 

             = ηT t Ωη(t)                                                                       (5.36) 

 

 

Where 

  𝜂 𝑡 =  𝑥(𝑡) 𝑥(𝑡 − τ1 t ) 𝑥  𝑡 − 𝜏2 𝑡  x t − τ3 t  𝑤(𝑡) 
𝑇
, 

 

Applying Schur complement as we already did in the previous subsequent chapters 

we get the following LMI: 

 

Ω =  

 
 
 
 
 
 
 
Ω11 𝑃𝐴1 𝑃𝐴2                  𝑃𝐵2𝐾    𝑃𝐵1 − (𝐶1 + 𝐷1𝐾)𝑇    𝐴0

𝑇

∗ − 1 − 𝜎1 𝑄      0                         0                        0                     𝐴1
𝑇

∗
∗
∗
∗

∗
∗
∗
∗

   − 1 − 𝜎2 𝑄
∗
∗
∗

0            
− 1 − 𝜎3 𝑄

∗
∗

0             
0            

−(𝐷11 + 𝐷11
𝑇 )

∗

𝐴2
𝑇

𝐾𝑇𝐵2
𝑇

𝐵1
𝑇

−𝑄−1  
 
 
 
 
 
 

                      (5.37) 

 

Where Ω11 = 𝐴0
𝑇𝑃 + 𝑃𝐴0 + 2𝑄 

 



48 

 

Pre- and post- multiplying Ω by 𝑑𝑖𝑎𝑔[𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1, 𝐼, 𝐼], we get  

 

 
 
 
 
 
 
 ℳ11

∗
∗
∗
∗
∗

      𝐴1𝑃−1

− 1 − 𝜎1 𝑃−1𝑄𝑃−1

∗
∗
∗
∗

           𝐴2𝑃−1

0
− 1 − 𝜎2 𝑃−1𝑄𝑃−1

∗
∗
∗

        𝐵2𝐾𝑃−1

0
0

− 1 − 𝜎3 𝑃−1𝑄𝑃−1

∗
∗

ℳ15        
0
0
0

−(𝐷11 + 𝐷11
𝑇 )

∗

𝑃−1𝐴0
𝑇

𝑃−1𝐴1
𝑇

𝑃−1𝐴2
𝑇

𝑃−1𝐾𝑇𝐵2
𝑇

𝐵1
𝑇

−𝑄−1  
 
 
 
 
 
 

        (5.38) 

 

Whereℳ11 = P−1A0
T + A0P−1 + 2P−1QP−1,  ℳ15 =  𝐵1 − 𝑃−1( 𝐶1 + 𝐷1𝐾 𝑇 

 

As shown from the above inequality it is not LMI since it contains nonlinear unknown 

terms, hence we will go to use as mentioned in the beginning of this section the 

change of variables method to make the previous inequality LMI. So, let Y =
P−1, P−1QP−1, L = KP−1 = KY    so the state feedback passive controller can be 

derived from K = LP−1 = LY, put these quantities in the above inequality we get the 

next LMI: 

 

ℒ =

 
 
 
 
 
 
 ℒ11

∗
∗

    

∗    
∗    
∗    

     A1Y

− 1 − σ1 M
∗
∗
∗
∗

      A2Y
0

  − 1 − σ2 M
∗
∗
∗

     B2L
0
0

− 1 − σ3 M
∗
∗

     ℒ15

0
0
0

−(D11 + D11
T )

∗

     YA0
T

    YA1
T

    YA2
T

LTB2
T

B1
T

−Q−1  
 
 
 
 
 
 

           (5.39) 

 

Whereℒ11 = YA0
T + A0Y + 2M, and ℒ15 = B1 − YC1

T − LTD1
T , put them in (5.39), we 

get (5.34). So the theorem is proved. 

 

 

Example (5.6): 

Let us see the same example as in [22]. The matrices describe the system are as 

follow: 

 

A0 =   
0 1

−1 −2
 , A1 =  

0 0
0.2 0.1

 , A2 =  
0 0

0.3 0.2
 , B1 =  

0
0.1

  

 

        B2 =  
0
1
 , C1 =  1 1 , C2 =  1 1 , D1 = D2 = D11 =  1 ,  

 

τ1 t = 2.0 + 0.3sin t , τ2 t = 3.5 + 0.4cos t , τ3 t = 4.0 + 0.2sin(t) 

 

 

Hence we haveσ1 = 0.3, σ2 = 0.4  and  σ3 = 0.2, selectQ =  
0.2 0
0 0.2

  . So using 

Matlab toolbox we solve the LMI (5.34) and obtain that: 

 

K =   −0.3271 −0.3119 ,  P =  
0.3887 0.3235
0.3235 0.4568

  

 

The results obtained here almost similar to the results obtained in the [22]. 
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5.7. PR and Passivity Analysis for TDS with Varying Delay 

     As mentioned in definition 2 and under this definition we can define the next 

statement: The closed loop system (5.39) is passive with  𝛾𝑝 > 0 if the following 

inequality holds:   

𝑉  𝑥 𝑡  − 2𝑧𝑇 𝑡 𝑤 𝑡 − 𝛾𝑝𝑤𝑇 𝑡 𝑤 𝑡 ≤ 𝜁𝑇Π𝜁 

 

Where  Π = 

 
 
 
 
 
 
 ℱ
∗
∗
∗
∗
∗

𝐴1𝑌

− 1 − 𝜎1 𝑀
∗
∗
∗
∗

𝐴2𝑌
0

− 1 − 𝜎2 𝑀
∗
∗
∗

𝐵2𝐿
0
0

− 1 − 𝜎3 𝑀
∗
∗

𝕳
0
0
0
𝜌
∗

𝑌𝐴0
𝑇

𝑌𝐴1
𝑇

𝑌𝐴2
𝑇

𝐿𝑇𝐵2
𝑇

𝐵1
𝑇

−𝑄−1 
 
 
 
 
 
 

< 0                    (5.40)                                                

 

ρ = −γp − (D0′ + D0) 

and all the others as the previous section. 

𝑉  𝑥 𝑡  − 2𝑧𝑇 𝑡 𝑤 𝑡 − 𝛾𝑝𝑤𝑇 𝑡 𝑤 𝑡 =  

 

                             𝑥𝑇 𝑡  𝐴0
𝑇𝑃 + 𝑃𝐴0 + 2𝑄 𝑥 𝑡 + 2𝑥𝑇 𝑡 𝑃𝐴1𝑥 𝑡 − 𝜏1 𝑡   

                         + 2𝑥𝑇 𝑡 𝑃𝐴2𝑥  𝑡 − 𝜏2 𝑡  + 2𝑥𝑇 𝑡 𝑃𝐵2𝐾𝑥 𝑡 − 𝜏3 𝑡   

    + 2𝑥𝑇 𝑡  𝑃𝐵1 − 𝐶1
𝑇 + 𝐾𝑇𝐷1

𝑇 𝑤 𝑡 − 𝑤𝑇 𝑡  𝛾𝑝 + 𝐷11 + 𝐷11
𝑇  𝑤(𝑡) 

                          + 𝑥 𝑇 𝑡 𝑄𝑥  𝑡 ) − (1 − σ1)xT t − τ1 t  Qx t − τ1 t   

                                   −(1 − σ2)𝑥 𝑇 𝑡  𝑡 − 𝜏2 𝑡  𝑄 𝑡 − 𝜏2 𝑡   

                                   − 1 − σ3 xT t − τ3 t  Qx t − τ3 t  . 

Rearrange and put the result in the dense form, we get (5.40). If there are  

𝑌 = 𝑌𝑇 > 0, 𝑀 = 𝑀𝑇 ≥  0,    𝑎𝑛𝑑 𝑚𝑎𝑡𝑟𝑖𝑥 𝐿  , Such that (5.40) holds, then the system 

(5.33) guaranteed to be asymptotically stable and strictly passive with disturbance 

attenuation levelγp . So using the MATLAB software, LMI toolbox or CVX program 

we can derive the passive controller 
1K LY  for time varying delay system that 

renders the overall system asymptotically stable and strictly positive real (SPR), hence 

strictly passive (SP).  

 

 

 

 

 

 



50 

 

Example (5.7): 

For the same system described in the[23],  

using CVX tool we get the next result: 

𝑌 =  
4.9512 −3.4959

−3.4959 4.0930
 > 0, 𝑀 =  

1.4670 −0.8398
−0.8398 0.6879

 > 0 

it means that the time delay time varying control system (5.39) rendered strictly 

passive (SPR) by virtue of the passive controller, 𝐾 =  −0.2216   − 0.1400  when 

γp = 0.5739 . In [23] the optimization problem not addressed, only the state feedback 

passive controller was obtained, and there was no information about the robustness of 

the closed loop control system.   
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CHAPTER 6 CONCLUSION 

It is very important issue in control theory to deal with delays occurred in different 

channels of the control system. Since delays may force the system to be unstable, it is 

essential to take them into account when discussing the stability analysis and 

synthesis of the control systems. In this thesis the problem of stability analysis of 

linear uncertain time delay systems has been addressed based on the notion of 

passivity conditions. These conditions have been expressed using a linear matrix 

inequality approach. LMI approach is very efficient tool to solve such problems, 

because it can be solved numerically using reliable and available software packages, 

such as LMI toolbox and CVX toolbox under Matlab software. The problem which 

we dealt with and solved in this thesis was to find the largest bound for the time delay 

to ensure the global asymptotic stability of the time delay systems; in addition, using 

proposed LMI approach, the robust stability analysis and synthesis was addressed, so 

that the closed loop time delay control system is asymptotically robustly stable despite 

the uncertainty. To solve these problems, the Lyapunov-Krasovskii functional that 

contains triple integral term was exploited, to improve the feasible region of stability 

criterion. It was solvable and we get better results compared with some existing ones, 

namely we have got seven times greater bound of time delay than in the works 

published by Magdi Mahmud, since the bound of delay we obtained was 2.9s; on 

other hand Magdi Mahmud’s method was 0.4seconds. The proposed solution obtained 

better results concerned the amount of delay which the system can tolerate in the 

presence of uncertain elements or behavior in the system parameters and the 

controller itself. Finally, future work can be extended to construct an efficient 

algorithm to auto tuning the parameters (scalars or matrices) to get optimal results; in 

addition, the proposed method exploited in this thesis can easily be extended for 

nonlinear systems, containing distributed delays and time delay systems with contain 

the interval matrices.    
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Appendix A 
 

proof of lemma 3: From lemma 2, the following inequality holds  

 

( ) ( ) ( ) ( ) ( )

T
t t t

T

s s s

t s x u Mx u du x u du M x u du
   

    
   

                                   

Where .t h s t    

 

 

By using fact1inequality (42) is equivalent to the following  

 

1

( ) ( ) ( )

0.

( ) ( )

t t

T T

s s

t

s

x u Mx u du x u du

x u du t s M 

 
 
  
 
 
  

 



              

 

Integrate (43) from   t h to t yields 

 

1

( , ) ( )

0.
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t t t
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t h t h s

t t t

t h s t h

t s ds x u duds

x u duds t s M ds
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
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 
 
  
 
 
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Where  ( , ) ( ) ( ) .

t

T

s

t s x u Mx u du  
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APPENDIX B 

 
MATLAB code programs 

 

******************************************************** 

Chapter 3 

The code for example 3.1  

******************************************************** 
%This is for Example 1 determines the passivity  
% and asymptotic stability for the system 
warning off 
clear all 
close all 
clc 

  
A0=[-3 -2 ;1 0];  
A1=[0 .3;-.3 -.2 ]; 
B=[.5;.4]; C0=[2 0]; D0=[2];  
setlmis([]); 
P=lmivar(1,[2 1]); 
Q=lmivar(1,[2 1]); 
lmiterm([1 1 1 P],A0',1); 
lmiterm([1 1 1 P],1,A0); 
lmiterm([1 1 1 Q],1,1); 
lmiterm([1 1 2 P],1,A1); 
lmiterm([1 1 3 P],1,B); 
lmiterm([1 1 3 0],-C0'); 
 lmiterm([1 2 2 Q],-1,1); 
lmiterm([1 3 3 0],-(D0+D0')); 
lmiterm([-2 1 1 Q],1,1); 
lmiterm([-3 1 1 P],1,1); 
ff=getlmis; 
[tt,PP]=feasp(ff); 
P=dec2mat(ff,PP,P); 
Q=dec2mat(ff,PP,Q); 
P  
Q 
x=[P*A0+A0'*P+Q P*A1 (C0'-P*B);A1'*P -Q  zeros(2,1);(C0-B'*P) 

zeros(1,2) -(D0+D0')] 
eig(x) 
if (P>0&Q>0) 
   ('the system is strictly passive and  asymptotically stable') 
else 
 ('the system is unstable') 
end 
 

 

******************************************************************** 

Chapter 2 
******************************************************************** 

%This is for Example 3.1 determines  
%State feedback control design 
warning off 
clear all 
close all 
clc 
A0=[1 0;-1 -2];A1=[0 0;.2 .1]; 
B1=[0;.1];B2=[0;1];C0=[1 1];D0=1; 
% A0=[0 0;0 1];A1=[-1 -1;0 .7];B2=[0;1];B1=[0;0];C0=[ 0 0];D0=[0]; 
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setlmis([]); 
Y=lmivar(1,[2 1]); 
L=lmivar(1,[2 1]); 
M=lmivar(1,[2 1]); 
Z=lmivar(2,[1 2]); 
lmiterm([1 1 1 Y],1,A0','s'); 
lmiterm([1 1 1 L],1,1); 
lmiterm([1 1 1 M],1,1); 
lmiterm([1 1 2 Y],A1,1); 
lmiterm([1 1 3 Z],B2,1); 
lmiterm([1 1 4 0],B1); 
lmiterm([1 1 4 Y],-1,C0'); 
lmiterm([1 1 4 -Z],-1,D0'); 
lmiterm([1 2 2 L],-1,1); 
lmiterm([1 3 3 M],-1,1); 
lmiterm([1 4 4 0],-(D0'+D0)); 
lmiterm([-2 1 1 Y],1,1); 
lmiterm([-3 1 1 L],1,1); 
lmiterm([-4 1 1 M],1,1); 
ff=getlmis; 
[tt,PP]=feasp(ff); 
Y=dec2mat(ff,PP,Y); 
 Z=dec2mat(ff,PP,Z); 
  L=dec2mat(ff,PP,L); 
  M=dec2mat(ff,PP,M); 
  Y 
  K=Z*Y^-1 

 

***************************************************************** 

Chapter 4 

Example 4.1 
******************************************************** 
%This program gives us exact strict feasible 
%solution, since in CVX context there is no direct  
% inequality such that P>0, so in this program i replaced  
%P>=0 by P>=eye(n)  
%solution of the problem , and in the same way i replaced the 

constraints  
%[]<=0 by []<=-[eye(n),........]. See the program for more details 
%Done by Mohammed H.E.Aburezeq 
% 
clear all 
close all 
clc 
A=[-3 -2;1 0];A1=[0 .3;-.3 -.2];B=[.5;.4];C=[2 0];D=[2]; 

  
cvx_begin sdp 
variable P(2,2) symmetric 
variable Q(2,2) symmetric 
variable R(2,2) symmetric 
tau=.2; 
tau=1.41925; 
% tau=2.1899 
P>=eye(2) 
Q>=eye(2) 
R>=eye(2) 
[A'*P+P*A+Q-R,   A1*P+R,        P*B-C',        tau*tau*A'*R;... 
 P*A1'+R,        -(Q+R),        zeros(2,1),    tau*tau*A1'*R;... 
 B'*P-C,        zeros(1,2),     -(D+D'),       tau*tau*B'*R;... 
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 tau*tau*R*A,   tau*tau*R*A1,   tau*tau*R*B,   -tau*tau*R]       <=-

[eye(2),zeros(2),zeros(2,1),zeros(2);... 
 zeros(2),eye(2),zeros(2,1),zeros(2);... 
 zeros(1,2),zeros(1,2),eye(1,1),zeros(1,2);... 
 zeros(2),zeros(2),zeros(2,1),eye(2,2)] 
cvx_end 
P 
Q 
R 
tau 

 

Chapter 4 

Example 4.1 

Open loop state responses  

clc 
clear all 
close all 
A =[-6.0493  -11.5232   -7.1262;1.0000         0         0; 0    

1.0000         0]; 
B=[1;0;0];C=[0.4822 -0.0578 -2.2823];D=[0]; 
TT=ss(A,B,C,D) 

  
t=[0:0.01:4]; 
U=[zeros(size(t))]; 
X0=[0.4;.2]; 
 CharPoly=poly(A) 
 Eigs0=eig(A) 
 damp(A); 
 X0=[04;.2;0.3]; 
  [Y0,t,Xo]=lsim(TT,U,t,X0);   
     Xo(101,:); 
     figure; 
     subplot(211), plot(t,Xo(:,1)); grid; 
     set(gca,'FontSize',18); 
     ylabel('{\itx}_1 ') 
     subplot(212),plot(t,Xo(:,2));grid;axis([0 4 -2 1]); 
     set(gca,'FontSize',18); 
     xlabel('\ittime(sec)'); 
ylabel('{\itx}_2 '); 

 
******************************************************* 
%Chapter5 
%Section 5.1 

%Numerical Example1 
%H infinity controller for uncertain time delay system 
****************************************************************** 

clear all 
close all 
clc 
cvx_begin sdp 
E=[1 0 0;0 1 0;0 0 0];A=[0.1 1 0.1;0.1 0.3 0.1;0.5 0.2 0.1];Ad=[0.1 0 

0.2;0.5 -0.1 0;0 0.1 -0.2]; 
B1=[0.1 0 ;0  1 ;-1 1 ];B=[0.1 0.2  ;0 0.1 ;0.1 0  ];C=[0.1 1 -

0.1;0.2 0.5 0.1];D=[1 0.1  ;.5 1 ]; 
M=[.1 ;.1 ;.2  ];N1=[.1 0 .1];N2=[.2 0 -0.1];N3=[0 .1 ];H1=[.1 ;.1  

];E1=[0.1 0 0.3]; 
epsilon1=2.6147;epsilon2=2.5913;epsilon3=2.6147; 
variable X(3,3) symmetric 
variable Q(3,3) symmetric 



58 

 

variable Y(2,3) 
variable gamma 
minimize (gamma) 
X>=eye(3) 
Q>=eye(3) 
 E'*X>=0 
 X'*E'>=0 
% gamma*eye(2)>=0 
[A*X+X*A'+(epsilon1+epsilon3)*M*M'+B1*Y+Y'*B1'+C'*C,  Ad,      

B+C'*D,      X'*N1'+Y'*N3',    X'*E1',        epsilon2*B1*H1,        

zeros(3,1);... 
    Ad',                                             -Q,     

zeros(3,2),    N2',             zeros(3,1),    zeros(3,1),            

zeros(3,1);... 
    B'+D'*C,                                 zeros(2,3),  -

gamma*eye(2,2),      zeros(2,1),      zeros(2,1),     zeros(2,1),           

zeros(2,1);... 
    N1*X+N3*Y,                                     N2,       

zeros(1,2),-eye(1,1)*epsilon1,   zeros(1,1),     zeros(1,1),          

zeros(1,1);... 
    E1*X,                                       zeros(1,3),  

zeros(1,2),    zeros(1,1),       -epsilon2*eye(1,1),  zeros(1,1),       

zeros(1,1);... 
    epsilon2*H1'*B1',                         zeros(1,3),  

zeros(1,2),    zeros(1,1),      zeros(1,1),        -

epsilon2*eye(1,1), epsilon2*H1'*N3';... 
    zeros(1,3),                              zeros(1,3),   

zeros(1,2),   zeros(1,1),      zeros(1,1),         epsilon2*N3*H1,    

-epsilon3*eye(1,1)]<=0 
cvx_end 
X 
Q 
Y 
K=Y*X^-1 
gamma 
gamma1=sqrt(gamma) 

 

******************************************************************* 

%Chapter5 
%Section 5.2 (Second program for Numerical example1 witten in LMI 

toolbox) 
%H infinity controller for uncertain time delay system 
********************************************************************  
clear all 
close all 
clc 
E=[1 0 0;0 1 0;0 0 0];A=[0.1 1 0.1;0.1 0.3 0.1;0.5 0.2 0.1];Ad=[0.1 0 

0.2;0.5 -0.1 0;0 0.1 -0.2]; 
B1=[0.1 0 ;0  1 ;-1 1 ];B=[0.1 0.2  ;0 0.1 ;0.1 0  ];C=[0.1 1 -

0.1;0.2 0.5 0.1];D=[1 0.1  ;.5 1 ]; 
M=[.1 ;.1 ;.2  ];N1=[.1 0 .1];N2=[.2 0 -0.1];N3=[0 .1 ];H1=[.1 ;.1  

];E1=[0.1 0 0.3]; 
epsilon1=0.1;epsilon2=2.5913;epsilon3=2.6147;alpha=0.0823 
  setlmis([]); 
X=lmivar(1,[3 1]); 
 Y=lmivar(2,[2 3]); 
Q=lmivar(1,[3 1]); 
lmiterm([1 1 1 X],A,1,'s'); 
 lmiterm([1 1 1 Y],B1,1,'s'); 
  lmiterm([1 1 1 0],C'*C); 
lmiterm([1 1 1 0],(epsilon1)*M*M'); 
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lmiterm([1 1 2 0],Ad); 
lmiterm([1 1 3 0],B); 
lmiterm([1 1 3 0],C'*D); 
lmiterm([1 1 4 -X],1,N1'); 
lmiterm([1 1 4 -Y],1,N3'); 
lmiterm([1 1 5 -X],1,E1'); 
lmiterm([1 1 6 0],epsilon2*B1*H1); 
lmiterm([1 2 2 0],-Q); 
lmiterm([1 2 4 0],N2'); 
lmiterm([1 3 3 0],-alpha*eye(2)); 
lmiterm([1 4 4 0],-epsilon1*eye(1)); 
lmiterm([1 5 5 0],-epsilon2*eye(1)); 
lmiterm([1 6 6 0],-epsilon2*eye(1)); 
lmiterm([1 6 7 0],epsilon2*H1'*N3'); 
lmiterm([1 7 7 0],-epsilon2*eye(1,1)); 
  lmiterm([-2 1 1 X],1,1); 
  lmiterm([-3 1 1 Q],1,1); 
ff=getlmis; 
[tt,PP]=feasp(ff); 
X=dec2mat(ff,PP,X); 
Y=dec2mat(ff,PP,Y); 
Q=dec2mat(ff,PP,Q); 
X 
Y 
Q 
gamma=(alpha) 
K=Y*X^-1 
ndec = decnbr(ff) 

******************************************************* 
%Chapter5 
%Section 5.1 
%Numerical Example5.2 
%H infinity controller for uncertain time delay system 
***************************************************************** 

clear all 
close all 
clc 
cvx_begin sdp 
%  E=[1 0 ;0 0]; 
A=[-2 1;0 -3];Ad=[-1 0;0 1]; 
B1=[1;1];B=[0.5;0];C=[0.2 1;1.5 1];D=[1;1]; 
M=[.5;.5  ];N1=[1 .5];N2=[1 .4];N3=[.2 ];H1=[.1  .1];E1=[0.1 1 ]; 
epsilon1=2.6147;epsilon2=2.5913;epsilon3=2.6147; 
variable X(2,2) symmetric 
variable Q(2,2) diagonal 
variable Y(1,2) 
variable alpha 
minimize (alpha) 
% alpha=2.5 
X>=eye(2) 
Q>=eye(2) 
 [A*X+X*A'+(epsilon1+epsilon3)*M*M'+B1*Y+Y'*B1',  Ad,         B+C'*D,            

X'*N1'+Y'*N3',        X'*E1',             epsilon2*B1*H1,         

zeros(2,1),          C';... 
    Ad',                                         -Q,        

zeros(2,1),          N2',                 zeros(2,1),         

zeros(2,2),            zeros(2,1),            zeros(2,2);... 
    B'+D'*C,                                 zeros(1,2),   -

alpha*eye(1,1),      zeros(1,1),          zeros(1,1),         

zeros(1,2),            zeros(1,1),            zeros(1,2);... 
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    N1*X+N3*Y,                                     N2,       

zeros(1,1),        -eye(1,1)*epsilon1,   zeros(1,1),         

zeros(1,2),            zeros(1,1),            zeros(1,2);... 
    E1*X,                                    zeros(1,2),     

zeros(1,1),         zeros(1,1),         -epsilon2*eye(1,1),  

zeros(1,2),            zeros(1,1),             zeros(1,2);... 
    epsilon2*H1'*B1',                        zeros(2,2),     

zeros(2,1),          zeros(2,1),          zeros(2,1),        -

epsilon2*eye(2,2),    epsilon2*H1'*N3',        zeros(2,2);... 
    zeros(1,2),                              zeros(1,2),     

zeros(1,1),          zeros(1,1),          zeros(1,1),         

epsilon2*N3*H1,      -epsilon3*eye(1,1),     zeros(1,2);... 
     C,                                       zeros(2,2),    

zeros(2,1),         zeros(2,1),           zeros(2,1),           

zeros(2,2),         zeros(2,1),      -eye(2)]<=0 
cvx_end 
X 
Q 
Y 
K=Y*X^-1 
alpha 
gamma=sqrt(alpha) 
******************************************************************* 

%Chapter5 

%Section 5.2 numerical example 5.2 
%Positive realness passive  controller for uncertain time delay 

system 

********************************************************* 
clear all 
close all 
clc 
cvx_begin sdp 
E=[1 0 0;0 1 0;0 0 0];A=[0.1 1 0.1;0.1 0.3 0.1;0.5 0.2 0.1];Ad=[0.1 0 

0.2;0.5 -0.1 0;0 0.1 -0.2]; 
B1=[0.1 0 ;0  1 ;-1 1 ];B=[0.1 0.2  ;0 0.1 ;0.1 0  ];C=[0.1 1 -

0.1;0.2 0.5 0.1];D=[1 0.1  ;.5 1 ]; 
M=[.1 ;.1 ;.2  ];N1=[.1 0 .1];N2=[.2 0 -0.1];N3=[0 .1 ];H1=[.1 ;.1  

];E1=[0.1 0 0.3]; 
epsilon1=2.6147;epsilon2=2.5913;epsilon3=2.6147; 
variable X(3,3) symmetric 
variable Q(3,3) diagonal 
variable Y(2,3) 
variable gamma 
minimize (gamma) 
X>=eye(3) 
Q>=eye(3) 
    E'*X'>=0 
   X'*E'>=0 
   gamma>=0 
[A*X+X*A'+(epsilon1+epsilon3)*M*M'+B1*Y+Y'*B1',  Ad,      B-X'*C',      

X'*N1'+Y'*N3',    X'*E1',        epsilon2*B1*H1,        

zeros(3,1);... 
    Ad',                                             -Q,     

zeros(3,2),    N2',             zeros(3,1),    zeros(3,1),            

zeros(3,1);... 
    B'-C*X,                                 zeros(2,3),  -gamma-

(D+D'),      zeros(2,1),      zeros(2,1),     zeros(2,1),           

zeros(2,1);... 
    N1*X+N3*Y,                                     N2,       

zeros(1,2),-eye(1,1)*epsilon1,   zeros(1,1),     zeros(1,1),          

zeros(1,1);... 
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    E1*X,                                       zeros(1,3),  

zeros(1,2),    zeros(1,1),       -epsilon2*eye(1,1),  zeros(1,1),       

zeros(1,1);... 
    epsilon2*H1'*B1',                         zeros(1,3),  

zeros(1,2),    zeros(1,1),      zeros(1,1),        -

epsilon2*eye(1,1), epsilon2*H1'*N3';... 
    zeros(1,3),                              zeros(1,3),   

zeros(1,2),   zeros(1,1),      zeros(1,1),         epsilon2*N3*H1,    

-epsilon3*eye(1,1)]<=0 
cvx_end 
X 
Q 
Y 
K=Y*X^-1 
Gamma 

********************************************************* 
 %Chapter5 
%Section 5.2 
%Numerical example2 
%Positive realness passive  controller for uncertain time delay 

system 

********************************************************* 
clear all 
close all 
clc 
cvx_begin sdp 
E=[1 0 0;0 1 0;0 0 0];A=[0.1 1 0.1;0.1 0.3 0.1;0.5 0.2 0.1];Ad=[0.1 0 

0.2;0.5 -0.1 0;0 0.1 -0.2]; 
B1=[0.1 0 ;0  1 ;-1 1 ];B=[0.1 0.2  ;0 0.1 ;0.1 0  ];C=[0.1 1 -

0.1;0.2 0.5 0.1];D=[1 0.1  ;.5 1 ]; 
M=[.1 ;.1 ;.2  ];N1=[.1 0 .1];N2=[.2 0 -0.1];N3=[0 .1 ];H1=[.1 ;.1  

];E1=[0.1 0 0.3]; 
% epsilon1=2.6147;epsilon2=2.5913;epsilon3=2.6147; 
epsilon1=0.9517;epsilon2=0.6833;epsilon3=2.2436; 
variable X(3,3) symmetric 
variable Q(3,3) diagonal 
variable Y(2,3) 
variable gamma 
minimize (gamma) 
X>=eye(3) 
Q>=eye(3) 
     E'*X'>=0 
     X'*E'>=0 
      gamma*eye(2)>=0 
[A*X+X*A'+(epsilon1+epsilon3)*M*M'+B1*Y+Y'*B1',  Ad,      B-X'*C',      

X'*N1'+Y'*N3',    X'*E1',        epsilon2*B1*H1,          

zeros(3,1);... 
    Ad',                                             -Q,     

zeros(3,2),    N2',             zeros(3,1),    zeros(3,1),            

zeros(3,1);... 
    B'-C*X,                                 zeros(2,3),  -gamma-

(D+D'),      zeros(2,1),      zeros(2,1),     zeros(2,1),           

zeros(2,1);... 
    N1*X+N3*Y,                                     N2,       

zeros(1,2),-eye(1,1)*epsilon1,   zeros(1,1),     zeros(1,1),          

zeros(1,1);... 
    E1*X,                                       zeros(1,3),  

zeros(1,2),    zeros(1,1),       -epsilon2*eye(1,1),  zeros(1,1),       

zeros(1,1);... 
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    epsilon2*H1'*B1',                         zeros(1,3),  

zeros(1,2),    zeros(1,1),      zeros(1,1),        -

epsilon2*eye(1,1), epsilon2*H1'*N3';... 
    zeros(1,3),                              zeros(1,3),   

zeros(1,2),   zeros(1,1),      zeros(1,1),         epsilon2*N3*H1,    

-epsilon3*eye(1,1)]<=0 
cvx_end 
X 
Q 
Y 
K=Y*X^-1 
gamma 

********************************************************************* 

Chapter 5 

Example 5.3 

********************************************************************* 
%Section 7 
%Passive controller design 
clear all 
close all 
clc 
cvx_begin sdp 
% % A=[-3 -2;1 0];A1=[0 .3;-.3 -.2];B1=[.5;.4];C=[2 

0];D=[2];B2=[1;1]; 
A=[.19 0;0 1.19];A1=[-.8 -1; 0 -.7];B1=[0;1];B2=[1;1];C=[0 1];D=[0]; 
 variable Y(2,2) symmetric 
 variable L(2,2) symmetric 
 variable M(2,2) symmetric 
%    variable R(2,2) symmetric 
  variable Z(1,2)  
  variable gamma 
  minimize (gamma) 
tau=2 
Y>=eye(2) 
L>=eye(2) 
M>=eye(2) 
%  R>=eye(2) 
%  [L,M;M' Y]>=0 
gamma*eye(1)>=1 
[A*Y+Y*A'+B1*Z+Z'*B1'+L-M,    M+A1*Y+B2*Z,                B1-

Y*C'+Z'*D',             tau*tau*Y*A'+ tau*tau*Z'*B1';... 
 M'+Y*A1'+Z'*B2',              -L-M,                     zeros(2,1),               

tau*tau*Y*A1'+ tau*tau*Z'*B2';... 
 B1'-C*Y+D*Z,                zeros(1,2),            -(gamma+D+D'),         

tau^2*B1';... 

   
 tau*tau*A*Y+tau^2*B1*Z,        tau*tau*A1*Y+tau^2*B2*Z,                  

tau*tau*B1,               -tau*tau*Y]<=-

[eye(2),zeros(2,2),zeros(2,1),zeros(2,2);... 
    zeros(2,2),eye(2,2),zeros(2,1),zeros(2,2);... 
    zeros(1,2),zeros(1,2),eye(1),zeros(1,2);... 
    zeros(2,2),zeros(2,2),zeros(2,1),eye(2,2)] 
cvx_end 
Y 
Z 
L 
M 
%  R 
tau 
K=Z*Y^-1 
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gamma 
******************************************************************** 

Chapter 5 

%Example 5.4 
%State feedback passive controller for the TDS 
%with time  varying delays in the state and input channels  
********************************************************************  
clear all 
close all 
clc 
A0=[0 1;-1 -2];A1=[0 0;.2 .1];A2=[0 0;0.3 

0.2];B1=[0;0.1];B2=[0;1];C1=[1 1];C2=[1 

1];D1=[1];D2=[1];D11=[1];Q=[0.2 0;0 0.2]; 
sigma1=0.3;sigma2=0.4;sigma3=0.2;   
setlmis([]); 
Y=lmivar(1,[2 1]); 
W=lmivar(1,[2 1]); 
L=lmivar(2,[1 2]); 
 lmiterm([1 1 1 Y],1,A0','s'); 
 lmiterm([1 1 1 W],2*eye(2),1); 
 lmiterm([1 1 2 Y],A1,1); 
 lmiterm([1 1 3 Y],A2,1); 
 lmiterm([1 1 4 L],B2,1); 
 lmiterm([1 1 5 0],B1); 
 lmiterm([1 1 5 Y],-1,C1'); 
 lmiterm([1 1 5 -L],-1,D1'); 
 lmiterm([1 1 1 Y],1,A0'); 
 lmiterm([1 2 2 W],-(1-sigma1)*eye(2),1); 
  lmiterm([1 2 6 Y],1,A1'); 
   lmiterm([1 3 3 W],-(1-sigma2)*eye(2),1); 
   lmiterm([1 3 6 Y],1,A2'); 
  lmiterm([1 4 4 W],-(1-sigma3)*eye(2),1); 
  lmiterm([1 4 6 -L],1,B2'); 
  lmiterm([1 5 5 0],-(D11+D11')); 
  lmiterm([1 5 6 0],B1'); 
  lmiterm([1 6 6 0],-Q^-1); 
  lmiterm([-2 1 1 Y],1,1); 
  lmiterm([-3 1 1 W],1,1); 
  ff=getlmis; 
[tt,PP]=feasp(ff); 
Y=dec2mat(ff,PP,Y); 
W=dec2mat(ff,PP,W); 
    L=dec2mat(ff,PP,L); 
Y 
W 
L 
K=L*Y^-1 

********************************************************* 

Chapter 5   

CVX package under MATLAB software 

Example 5.6 

%Passive controller design for time delay system with varying delays 
%in state and input channels 
clear all 
close all 
clc 
cvx_begin sdp 
% % A=[-3 -2;1 0];A1=[0 .3;-.3 -.2];B1=[.5;.4];C=[2 

0];D=[2];B2=[1;1]; 
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% A=[.19 0;0 1.19];A1=[-.8 -1; 0 -.7];B1=[0;1];B2=[1;1];C=[0 

1];D=[0]; 
A0=[0 1;-1 -2];A1=[0 0;.2 .1];A2=[0 0;0.3 

0.2];B1=[0;0.1];B2=[0;1];C=[1 1];C2=[1 

1];D1=[1];D2=[1];D11=[1];Q=[0.2 0;0 0.2]; 
sigma1=0.3;sigma2=0.4;sigma3=0.2;  
  variable Y(2,2) symmetric 
  variable M(2,2) symmetric 
  variable L(1,2)  
  variable gamma 
  minimize (gamma) 
Y>=eye(2) 
M>=0 
gamma*eye(1)>=0 
[A0*Y+Y*A0'+2*eye(2)*M, A1*Y, A2*Y,B2*L,B1-Y*C'-L'*D1', Y*A0';... 
 Y*A1',-(eye(2)-sigma1*eye(2))*M, zeros(2,2),zeros(2,2), zeros(2,1),                            

Y*A1';... 
 Y*A2',zeros(2,2),-(eye(2)-sigma2*eye(2))*M,zeros(2,2),zeros(2,1),                              

Y*A2';... 
 L'*B2', zeros(2,2),zeros(2,2),-(eye(2)-sigma3*eye(2))*M, zeros(2,1),                        

L'*B2';... 
 B1'-C*Y-D1*L, zeros(1,2), zeros(1,2),zeros(1,2),-gamma*eye(1,1)-

(D11+D11'), B1';... 
 A0*Y, A1*Y,  A2*Y,           B2*L,        B1,             -Q^-1]<=0 
cvx_end 
Y 
L 
M 
K=L*Y^-1 
gamma 

 

 

 

 


