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Abstract 

 

 In this thesis, design techniques of coupled resonator circuits used in 

synthesizing two port filters and three port diplexers are developed to synthesize N port 

multiplexers. Novel general structures are proposed here and they can  achieve an 

arbitrary number of channels, different responses and various properties and 

characteristics. The synthesis of the proposed multiplexers is  based on optimization 

approach where the couplings coefficients between resonators presented by coupling 

matrix are found from optimization techniques by minimizing a cost function.  The cost 

function which is utilized in this thesis has been used previously in literatures. 

Scattering parameters formulas are derived to suit the N port multiplexers. Different 

structures with various properties and responses are given and their results prove the 

ability of the general structure to achieve a massive scale of interesting characteristics 

and demands. The general structure is a cascade of diplexers which may reduce the 

complexity of the structure especially during the optimization. This structure has lot of 

advantages, it has no limits for number of channels and it has no extra resonators or 

external junctions and power distribution network, also it has a small size. 
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 الملخص

انًتشابطت انًستخذيت فً تصًٍى انًششحاث ثُائٍت انُىافز  شٍٍَتقٍُاث تصًٍى دوائش انتى تطىٌش  فً هزِ انشسانت

هٍكهٍت غٍش يأنىفت عايت نلأجهضة يتعذدة انًُافز قادسة عهى تصًٍى أي  . وكزنك تى تقذٌىنبُاء الأجهضة يتعذدة انًُافز

الأجهضة يتعذدة انًُافز ٌعتًذ عهى إٌجاد أفضم  هزِ تصًٍى عذد يٍ انقُىاث باستجاباث يختهفت ويىاصفاث يتعذدة.

عهٍها يٍ دساساث  ذانت تى انحصىلهزِ انتحقق أقم قًٍت نذائشة انكهفت حٍث أٌ ن دوائش انشٍٍَيعايلاث تشابط بٍٍ 

يعادلاث عُاصش انتبذد تى اشتقاقها نتُاسب الأجهضة يتعذدة انًُافز. تى تقذٌى أيثهت يتُىعت كبشهاٌ عهى قذسة  سابقت.

هزا انهٍكم انجذٌذ انعاو عهى تحٍق الأَىاع انًختهفت يٍ الاستجابت بًىاصفاث وخصائص يتعذدة. انهٍكم انًقتشح 

لأجهضة ثلاثٍت انًُافز يًا ٌساعذ فً تقهٍم تعقٍذ انهٍكم خصىصا فً عًهٍاث تحقٍق ًٌكٍ اعتباسِ عذد يتتابع يٍ ا

دائشة عذد انقُىاث وكزنك عذو وجىد أي الأيثهٍت. هزا انهٍكم ٌحقق انعذٌذ يٍ انًًٍضاث انًتًثهت فً عذو يحذودٌت 

 م.صغش حجى انهٍك أضف إنى رنكة وذسقتىصٌع انأو وصهت إضافٍت أو شبكت ن تإضافٍ سٍٍَ
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Chapter1 

 

Introduction 

 

1.1 Overview of multiplexers and their applications 

 The term microwaves may be used to describe electromagnetic (EM) waves with 

frequencies ranging from 300 MHz to 300 GHz, which correspond to wavelengths (in 

free space) from 1 m to 1 mm. The EM waves with frequencies above 30 GHz and up to 

300 GHz are also called millimeter waves because their wavelengths are in the 

millimeter range (1–10 mm). Therefore, by extension, the RF/microwave applications 

can be referred to as communications, radar, navigation, radio astronomy, sensing, 

medical instrumentation, and others that explore the usage of frequency spectrums in 

the range of, say, 300 kHz up to 300 GHz. For convenience, some of these frequency 

spectrums are further divided into many frequency bands. Filters  play important roles 

in many RF/microwave applications. They are used to separate or combine different 

frequencies. The electromagnetic spectrum is limited and has to be shared; filters are 

used to select or confine the RF/microwave signals within assigned spectral limits. 

Emerging applications such as wireless communications continue to challenge 

RF/microwave filters with ever more stringent requirements—higher performance, 

smaller size, lighter weight, and lower cost. Depending on the requirements and 

specifications, RF/microwave filters may be designed as lumped element or distributed 

element circuits; they may be realized in various transmission line structures, such as 

waveguide, coaxial line, and microstrip. The recent advance of novel materials and 

fabrication technologies, including monolithic microwave integrated circuit (MMIC), 

microelectromechanic system (MEMS), micromachining, high-temperature 

superconductor (HTS), and low-temperature cofired ceramics (LTCC), has stimulated 

the rapid development of new microstrip and other filters. In the meantime, advances in 

computer-aided design(CAD) tools such as full-wave electromagnetic (EM) simulators 

have revolutionized filter design. Many novel microstrip filters with advanced filtering 

characteristics have been demonstrated [1]. 

 Multiplexers (MUXs) are used in communication system applications, where 

there is a need to separate a wideband signal into a number of narrowband signals (RF 

channels). Channelization of the allocated frequency band allows flexibility for the flow 

of communication traffic in a multiuser environment. Amplification of individual 

channels also eases the requirements on the high-power amplifiers (HPAs), enabling 

them to operate at relatively high efficiency with an acceptable degree of nonlinearity. 

Multiplexers are also employed to provide the opposite function, that is, to combine 

several narrowband channels into a single wideband composite signal for transmission 

via a common antenna. Multiplexers are, therefore, referred to as channelizers or 

combiners. Due to the reciprocity of filter networks, a MUX can also be configured to 

separate the transmit and receive frequency bands in a common device, referred to as a 

duplexer or diplexer. Multiplexers have many applications such as in satellite payloads, 
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wireless systems, and electronic warfare (EW) systems[2].  Figure (1.1) shows the 

function of multiplexer in satellite communication as channelizers or combiners[3].    

 
Figure (1.1): Multiplexers in satellite communication . 

 Conventionally, multiplexer is  achieved  by  using  a  set  of  band pass  filters  

(usually  known  as  channel filters), and  an  energy  distribution network. The  channel  

filters  pass  frequencies  within  a specified  range,  and  reject frequencies  outside  the  

specified  boundaries,  and  the  distribution network  divides  the  signal  going  into  

the  filters,  or  combines  the  signals  coming  from the filters. There are several 

approaches in designing and implementing multiplexers. The most common 

configurations are manifold coupled, circulator-coupled, and hybrid-coupled 

multiplexers [2]. The  most commonly used distribution configurations are E- or H-

plane   n-furcated power dividers[4,5], circulators [6] and manifold structures[7,8].  

Figure (1.2) shows  the configuration  of n-channel  multiplexer  with  a  1:n divider  

multiplexing network, and  figure (1.3) depicts  a  circulator  configuration, where  each  

channel  consists  of a band pass  filter  and  a  channel-dropping  circulator. The power 

divider configurations can be designed for multiplexers with wideband channels or large  

channel  separation  [4]. The  circulator  configurations  have  no  interaction  between 

channel filters and they are simple to tune. They provide flexibility in adding new 

channels or replacing the channel filters by different filters without disrupting the whole 

design. However, they  exhibit  relatively  higher  losses  since  signals  pass  through  

the  circulators  in  succession, causing extra loss per trip[2]. 

 In  manifold  configurations, channel filters  are  connected  by  transmission  

lines: microstrip,  coaxial, waveguide,  etc.  and  T-junctions. The configuration of the 

manifold multiplexer is shown in figure (1.4). Manifold configurations provide low 

insertion loss and high power handling capability.  However, they have complex design, 

and they do not have the flexibility in adding channels to an existing multiplexer, or 
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changing a channel since this requires a new design. Also, tuning the whole multiplexer 

can be time consuming [2]. 

 Other multiplexer configurations based on coupled resonators without external 

energy distribution networks have also been proposed in literature. Star-junction 

multiplexers are considered a general approach to the synthesis of microwave 

multiplexers presenting a star-junction topology (with a resonating junction) [9]. Figure 

(1.5)  shows general architecture of the resonant star-junction multiplexer[9].  Figure 

(1.6) shows a general four-channel star junction multiplexer topology [10]. The  grey 

circle in Figure (1.6)  represents a resonant junction, an extra resonator in addition to the 

resonators forming the filters. This multiplexer does not include external junctions like 

the conventional multiplexers, which makes miniaturization possible. Moreover, it has 

fewer connections  to the resonating junction than the star -junction multiplexers 

[11,12]. 

 

Figure (1.2): Configuration of multiplexer with a 1:n divider multiplexing 

network. 

 

 

Figure (1.3): Configuration of circulator-coupled multiplexer. 
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Figure (1.4): Configuration of manifold-coupled multiplexer. 

 

Figure (1.5): General architecture of the resonant star-junction multiplexer.

 

Figure (1.6): General four-channel star-junction multiplexer topology. 
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1.2 Overview of classical Analog Filters 

1.2.1. Butterworth filters 

 The first family of analog filters are the butter-worth filters which are called 

maximally flat filters. The butter-worth filter is designed to have as flat a frequency 

response as possible in the pass-band. A butter-worth filter of order n is a low pass 

analog filter with the following squared magnitude response [16]. Figure (1.7) present 

the squared magnitude response of a low pass butter-worth filter.  

 

 

Figure (1.7): Squared Magnitude Response of a Low-pass butterworth Filter. 

 

1.2.2. Chebyshev filter 

 The magnitude responses of Butterworth filters are smooth and flat because of 

the maximally flat property. However, a drawback of the maximally flat property is that 

the transition band of a Butterworth filter is not as narrow as it could be. An effective 

way to decrease the width of the transition band is to allow ripples or oscillations in the 

pass-band or the stop-band. They are two types of Chebyshev, when the ripple is in the 

pass-band, it's called Chebyshev (type I) and when the ripple is in the stop-band, it's 

called Chebyshev (type II) [16]. Figure (1.8) (a) show  Squared Magnitude Responses 

of a Chebyshev type I and figure (1.8) (b) Squared Magnitude Responses of a 

Chebyshev type II. 

  

http://en.wikipedia.org/wiki/Frequency_response
http://en.wikipedia.org/wiki/Frequency_response
http://en.wikipedia.org/wiki/Passband
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Figure (1.8): (a) Squared Magnitude Responses of a Chebyshev type I. 

   (b) Squared Magnitude Responses of a Chebyshev type II. 
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1.2.3. Elliptic filter 

 The last classical low-pass analog filter is the elliptic or Cauer filter. Elliptic 

filters are filters that are equiripple in both the pass-band and the stop-band. The elliptic 

filter has the narrowest transition edge among all types [16]. As the ripple in the stop-

band approaches zero, the filter becomes a type I Chebyshev filter. As the ripple in the 

pass-band approaches zero, the filter becomes a type II Chebyshev filter and finally, as 

both ripple values approach zero, the filter becomes a Butterworth filter. Figure (1.9) 

show  Squared Magnitude Responses of  an elliptic filter. 

 

 

Figure (1.9): Squared Magnitude Response of an elliptic Filter. 

 

1.3 Literature review 

 There have been several techniques proposed to synthesize multiplexers : 

classical methods as manifold coupled, circulator-coupled, and hybrid-coupled 

multiplexers and coupled resonator circuit as modern technique also is used in synthesis 

of multiplexers. 

 Here is a list of some previous researches interested in designing multiplexers by 

coupled resonant circuit as follows: 

1.  In [9],  a novel method for the polynomial synthesis of microwave star 

junction multiplexers with a resonating junction has been presented. The channel 

filters can be arbitrarily specified, including the assignment of transmission 

zeros. An iterative procedure has been developed for the evaluation of the 

characteristic polynomials of the multiplexer, which are subsequently used for 

http://en.wikipedia.org/wiki/Chebyshev_filter
http://en.wikipedia.org/wiki/Chebyshev_filter
http://en.wikipedia.org/wiki/Butterworth_filter
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computing the polynomials associated with the channel filters; these 

polynomials are then employed for synthesizing the filters like they were 

detached from the multiplexer. In this way, the results of the synthesis process 

are not constrained to a specific configuration, which must be only compatible 

with the assigned transmission zeros. However star junction multiplexer has 

extra junction in addition to the resonators which construct multiplexer's 

channel. 

2.  In [11], the author has presented a  novel  design  of  coupled  resonator  

star junction multiplexer which has  been  designed  at the  X-band  with  four  

non contiguous  channels. The  multiplexer topology  is  based  on coupled  

resonator  structure, and  it consists of  thirteen  waveguide  cavities,  one  of  

which  serves  as  a resonating  junction. The  multiplexer has  reduced  number 

of connections to the resonating junction and also has smaller size than other  

conventional  multiplexers,  as  it  does  not contain  manifolds,  circulators  

...etc. This design contains extra resonator which isn't used in constructing 

multiplexer's channel. 

3.  In [12], the author has proposed novel topologies of star junction 

multiplexers with resonating junctions. These proposed topologies have an 

advantage that the number of connections to the resonating junction is reduced 

and thus allowing multiplexers with more channels to be implemented. An 

optimization technique is used to synthesize the coupling matrix of the proposed 

multiplexers in this paper. However the resonating junctions have a fewer 

connection and it is an extra resonator which increase the size of multiplexer. 

4.  In [13], the authors have presented a three channel multiplexer formed 

exclusively by coupled microwave resonators, just like filters but with lager 

number of ports. This multiplexer only has three channels and this is unsuitable 

for applications which need more channels. 

5.  In [14], a novel procedure for synthesizing narrow band triplexers for 

base station combiners has been presented. The design results  have been 

represented  by the  coupling coefficients and external Qs of the  filters 

constituting the  combiner. The synthesis algorithm is  very fast and it  allows to  

obtain a quasi equiripple response in the three pass bands. This multiplexer talks 

about special case three channels while lots of applications demand larger 

number of channels. 

6.  In [15], design techniques used for two-port coupled resonator circuits 

has been extended to design three-port microwave components such as power 

dividers with arbitrary power division and diplexers with novel topologies. The 

synthesis of these devices employs similar coupling matrix optimization 

techniques to those of coupled resonator filters. The three port devices only has 

two channel but this isn't suitable for applications that need more channels.  
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1.4 Thesis motivation 

 Many techniques have been used in designing multiplexer. Each technique 

different from others and has some advantages and disadvantages as mentioned in 

section 1.1. The thesis addresses the development of a general  novel topology for N- 

channels  multiplexer by coupled resonators circuits without using external distributions 

networks and hence compact multiplexers cab be designed. Designing multiplexers in 

conventional techniques is achieved  by  using  a  set  of  band pass  filters  (usually  

known  as  channel filters), and  an  energy  distribution network (junction) which is 

used to divide the incoming signals into the N channels. Extensive work has been 

reported in literature on miniaturization of multiplexers using  specific  types  of  

compact  resonators  or  using  folded  structures.  However,  the  use  of external  

junctions  in  the  structures  of  these  diplexers  might  involve  design  complexity. 

Design  techniques  for  multiplexers  based  on  coupled  resonator  structures  without 

external  junctions  have  also  been  presented  in  literature.  These  structures  are  

miniaturized since  there  are  no  external  junctions or extra resonators in addition to 

the resonators forming filters.  Coupled  resonator  circuits  with  multiple  channels  are 

addressed  in  this  thesis  to  synthesize  compact  novel  topologies  for  multiplexers  

with  reduced design complexity and with no practical constraints in realization. Figure 

(1.10) illustrates a proposed general structure for N channel multiplexer without any 

extra resonator or any extra junction. The isolation between channels changes by 

changing number of resonators per channel and changing the position of channels. 

  

1.5 Thesis overview 

 The objective of this research work is synthesis of coupled-resonator circuits 

with multiple outputs (N channels) by extending the design techniques used for three-

port coupled resonator diplexers (two channel) proposed in[10,15]. Figure (1.11) shows 

a topology for a two-channel coupled resonator diplexer, where the circles represent 

resonators and the lines linking the resonators represent couplings. Synthesis methods 

of coupled resonator diplexers have been presented in literature. The work in this thesis 

extends the theory of two-channel coupled resonator diplexer to N- channels coupled 

resonator circuits, such as the general network shown in figure (1.10). This enables 

synthesis of other passive microwave components made of coupled resonators such as 

multi channel multiplexers. In this thesis a general novel topology of multiplexer will be 

presented and multiplexers based on the novel topologies with different number of 

channels and different number of resonators will be presented. 

 In chapter two circuits with both electrical and magnetic coupling are presented. 

A detailed derivation of the coupling matrix of multiple coupled resonators with 

multiple outputs is also presented. The relations between the scattering parameters for N 

port network in addition to the general coupling matrix are also presented in this 

chapter. These equations in chapter 2 are used as a basis to the synthesis of N channels 

multiplexers in the next chapters. 

 In chapter three, frequency transformation, derivation of cost function and 

optimization  are presented. After that in chapter four, various examples for different 

coupled resonators will be presented whereby the coupling matrix obtained from 
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optimization will be given as well as the ideal multiplexer response of the scattering 

parameters. The final chapter provides summary and conclusions drawn from this work. 

 

 

Figure (1.10): A General novel N channel multiplexer topology. 

 

 

Figure (1.11): The structure of coupled resonators diplexer 
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Chapter 2 

 

Coupled Resonator Circuits 

 

2.1 Introduction 

 Coupled resonator circuits are of importance for design of RF/microwave filters 

(and multiplexers), in particular the narrow-band pass filters that play a significant role 

in many applications. There is a general technique for designing coupled resonator 

filters in the sense that it can be applied to any type of resonator despite its physical 

structure. It has been applied to the design of waveguide filters, dielectric resonator 

filter, ceramic combline filters, microstrip filters, superconducting filters, and 

micromachined filters. This design method is based on coupling coefficients of inter 

coupled resonators and the external quality factors of the input and output resonators 

[1]. 

 The general coupling matrix is of importance for representing a wide range of 

coupled-resonator filter topologies. It can be formulated either from a set of loop 

equations or from a set of node equations. This leads to a very useful formula for 

analysis and synthesis of coupled-resonator filter circuits in terms of coupling 

coefficients and external quality factors [1].  

 

2.2 Deriving Coupling Matrix of N-port Networks 

 In a coupled resonator circuit, energy may be coupled between adjacent 

resonators by a magnetic field or an electric field or both. The coupling matrix can be 

derived from the equivalent circuit by formulation of impedance matrix for 

magnetically coupled resonators or admittance matrix for electrically coupled resonators 

[1]. This approach has been used to derive the coupling matrix of coupled resonator 

filters, and it is adopted in [2] to derive general coupling matrix of an  N-port  n-coupled 

resonators circuit. Magnetic coupling and electric coupling will be considered 

separately and later a solution will be generalized for both types of couplings [2]. 

 

2.2.1. Circuits with magnetically coupled resonators  

 Considering only magnetic coupling between adjacent resonators, the equivalent 

circuit of magnetically coupled  n-resonators with multiple ports is shown in figure (2.1) 

[2], where  i represents loop current,  L,  C denote the inductance and capacitance, and  

R denotes the resistance (represents a port). It is assumed that all the resonators are 

connected to ports, and the signal source is connected to resonator 1. It is also assumed 

that the coupling exists between all the resonators.  
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Figure (2.1): Equivalent circuit of magnetically n-coupled resonators in N-port 

network 

  

 Using Kirchoff's voltage law, the loop equations are derived as follows, 
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where LLM ijij   and
 Lab=Lba denotes the mutual inductance between resonators a 

and b. The matrix form representation of these equations is as follows, 
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(2.2) 

or equivalently [Z].[i]=[e], where [Z] is the impedance matrix. Assuming all resonators 

are synchronized at the same resonant frequency 
LC

1
0   , where  L = L1 = L2 = … 

= Ln-1 = Ln and C = C1 = C2 = … = Cn-1 = Cn the impedance matrix [Z] can be 

expressed by    ZLFBWZ .0 where 0FBW is the fractional bandwidth, and

 Z is the normalized impedance matrix, given by, 
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 Defining the external quality factor for resonator i as iei RLQ 0 and the 
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where eiq is the scaled external quality factor FBWQq eiei . and ijm is the normalized 

coupling coefficient FBWMm ijij   

 The network representation for the circuit in figure (2.1) , considering N-ports, is 

shown in figure (2.2), where  a1,  b1,  a2,  b2,  a3,  b3, an and bn are the wave variables, 

V1, I1,  V2,  I2,  V3,  I3, Vn and In are the voltage and current variables and  i is the loop 

current. It is assumed that port 1 is connected to resonator 1, port 2 is connected to 

resonator 2, port 3 is connected to resonator 3, and port N is connected to resonator N. 

 

Figure (2.2): Network representation of N-port circuit  

 

The relationships between the voltage and current variables and the wave variables are 

defined as follows [3], 

)( NNN baRV   and )ba(
R

1
I NNN       (2.5) 

Solving the equations (2.5) for aN and bN, the wave parameters are defined as follows,
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where N is the port number, and  R corresponds to R1 for port 1, R2 for port 2,  R3 for 

port 3, and RN for port N. It is noticed in the circuit in figure (2.2) that  I1=i1,  I2= - i2,  

I3=  - i3,  IN=  - iN, and  V1=es-i1R1. Accordingly, the wave variables may be rewritten as 

follows 
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The S-parameters are found from the wave variables as follows, 
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Solving (2.2) for currents loops, 
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and by substitution of equations (2.9) into equations (2.8), we have, 
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In terms of external quality factors 
i

ei
R

FBWL
q

.0 , the S-parameters become, 
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where  qe1,  qe2,  qe3 and  qeN are the normalized external quality factors at resonators 1,  

2, 3 and N respectively. In case of asynchronously tuned coupled-resonator circuit, 

resonators may have different resonant frequencies, and extra entries  mii are added to 

the diagonal entries in  Z to account for asynchronous tuning as follows, 
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 (2.12) 

 

2.2.2. Circuits with electrically coupled resonators  

 The coupling coefficients introduced in the previous section are based on 

magnetic coupling. This section presents the derivation of coupling coefficients for 

electrically coupled resonators in an  N-port circuit, where the electric coupling is 

represented by capacitors [2]. The normalized admittance matrix  Y will be derived 

here in an analogous way to the derivation of the  Z matrix in the previous section [2].  

 Shown in figure (2.3) is the equivalent circuit of electrically coupled  n-

resonators in an N-port network, where  is represents the source current, vi denotes the 

node voltage, and  G represents port conductance. 

 

 

Figure (2.3): Equivalent circuit of electrically n-coupled resonators in N-port 

network. 

 It is assumed here that all resonators are connected to ports, and the current 

source is connected to resonator 1. Also, it is assumed that all resonators are coupled to 

each other. The solution of this network is found by using Kirchhoff‗s current law, 

which states that the algebraic sum of the currents leaving a node is zero. Using this 

law, the node voltage equations are formulated as follows, 
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where CCM ijij   and 
 Cab=Cba denotes the mutual capacitance between resonators a 

and b. The previous equations are represented in matrix form as follows, 
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(2.14) 

or equivalently [Y].[v]=[i], where [Y] is the admittance matrix. 

 Assuming all resonators are synchronized at the same resonant frequency

LC

1
0  , where  L=L1=L2=…=Ln-1=Ln and C=C1=C2=…=Cn-1=Cn, the admittance 

matrix [Y] can be expressed by  

   Y.CFBWY 0 ,       
  (2.15) 

where 0FBW is the fractional bandwidth, and  Y is the normalized impedance 

matrix, given by, 
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(2.16) 

where P is the complex low pass frequency variable. 

 Defining the external quality factor for resonator i as iei GCQ 0 and the 

coupling coefficient as CCM ijij  , and assuming 10  for narrow band 

approximation,  Y is simplified to 
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 (2.17) 

where eiq is the scaled external quality factor FBWQq eiei . and ijm is the normalized 

coupling coefficient FBWMm ijij   

 The network representation for the circuit in figure (2.3), considering N-ports, is 

shown in figure (2.4), where  a1, b1, a2, b2, a3, b3, an and bn are the wave variables, V1, 

I1, V2,  I2, V3, I3,Vn and In are the voltage and current variables and  i is the loop current. 

It is assumed that port 1 is connected to resonator 1, port 2 is connected to resonator  2, 

port 3 is connected to resonator 3, and port N is connected to resonator N. 
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Figure (2.4): Network representation of N-port circuit.  

  

 It is noticed in the circuit in figure (2.4) that  V1=v1,  V2= v2,  V3=v3,  VN=  VN,  

and  I1=is-v1G1. Accordingly, the wave variables may be rewritten as follows, 

1

1
2 G

i
a s    

1

11
1

2

2

G

iGv
b s
  

02 a     222 Gvb   

03 a     333 Gvb   

0Na    NNN Gvb         (2.18) 

  



22 

 

The S-parameters are found from the wave variables as follows, 
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Solving (2.14) for voltage nodes 
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and by substitution of equations (2.20) into equations (2.19), we have, 
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In terms of external quality factors
i

ei
G

CFBW
q 0 , the S-parameters become, 
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 To account for asynchronous tuning, the normalized admittance matrix will have 

extra terms mii in the principal diagonal, and it will be identical to the normalized 

impedance matrix in equation (2.12). 

 

2.2.3. General coupling matrix  

 The derivations in the previous sections show that the normalized admittance 

matrix of electrically coupled resonators is identical to the normalized impedance 

matrix of magnetically coupled resonators. Accordingly, a unified solution may be 

formulated regardless of the type of coupling. In consequence, the S parameters of an 

N-port coupled resonator circuit may be generalized as, 
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The matrix [A] is given below 
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 The formulae  in (2.23) and (2.24) will be used as a basis to synthesize N-port 

coupled resonator multiplexer in the next chapters. For completeness, the general 

formulae of the scattering parameters can be derived analogously to the previous 

derivations, and they are given by  
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 The inverse of the matrix [A] can be described in terms of the adjugate and 

determinant by employing Cramer‗s rule for the inverse of a matrix, 
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where    Aadj  is the adjugate of the matrix [A], and A is its determinant. Noting that 

the adjugate is the transpose of the matrix cofactors, the (x,1) element of the inverse of 

matrix [ A] is: 
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where   Acof xy  is the (x,y) element of the cofactor matrix of [A]. By substitution of 

(2.27) into (2.25), the following equations are obtained, 
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 The coupled resonator components may be synthesized using different ways: 

analytic solution to calculate the coupling coefficients, or full synthesis using EM 

simulation tools, whereby the dimensions of the physical structure are optimized, or 

optimization techniques to synthesize the coupling matrix [m].The use of full-wave EM 

simulation is very time consuming when compared to coupling matrix optimization that 

requires significantly less computational time. Coupling matrix optimization techniques 

similar to those used to synthesize coupled-resonator filters will be utilized in the 

current work to produce the coupling matrix entries of the proposed coupled resonator 

multiplexers. The entries of the coupling matrix [m] are modified at each iteration in the 

optimization process until an optimal solution is found such that a scalar cost function is 

minimized. Optimization techniques and cost function formulation will be discussed in 

Chapter 3.  

 

2.3 Conclusion  

 The derivation of the coupling matrix of multiple coupled resonators with 

multiple outputs has been presented. A unified solution has been presented for both 

electrically and magnetically coupled resonators. The relationships between the 

scattering parameters and the coupling matrix of an N-port coupled resonator circuit 

have been formulated. The  equations in this chapter will be used as a basis in the 

synthesis of coupled resonator multiplexers in the next chapters. 
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Chapter 3 

 

Synthesis of Multiplexers using coupling Matrix Optimization 

 

3.1 Introduction 

 This chapter presents the synthesis of multiplexers using coupling Matrix 

Optimization. In chapter 1, a general overview has been presented about conventional 

multiplexers and their advantages and disadvantages. All of these multiplexers have 

different energy distribution network. 

 In chapter 2, the theory of coupled resonator circuits for multiple ports has been 

presented and coupling matrix and scattering parameters for multiple ports network 

have been derived. In this chapter, frequency transformation is presented, after that 

based on theory in chapter two, the cost function is  formulated to be used in the 

optimization algorithm. Novel coupled resonator topologies are proposed in this chapter 

and their synthesis based on coupling matrix optimization will be shown. Numerical 

examples will be shown in the next chapter. 

 

3.2 Optimization 

 Optimization theory is a body of mathematical results and numerical methods 

for finding and identifying the best candidate from a collection of alternatives without 

having to explicitly enumerate and evaluate all possible alternatives. The process of 

optimization lies at the root of engineering, since the classical function of the engineer 

is to design new, better, more efficient, and less expensive systems as well as to devise 

plans and procedures for the improved operation of existing systems. The power of 

optimization methods to determine the best case without actually testing all possible 

cases comes through the use of a modest level of mathematics and at the cost of 

performing iterative numerical calculations using clearly defined logical procedures or 

algorithms implemented on computing machines. The development of optimization 

methodology will therefore require some facility with basic vector matrix 

manipulations, a bit of linear algebra and calculus, and some elements of real analysis. 

We use mathematical concepts and constructions not simply to add rigor to the 

proceedings but because they are the language in terms of which calculation procedures 

are best developed, defined, and understood. Because of the scope of most engineering 

applications and the tedium of the numerical calculations involved in optimization 

algorithms, the techniques of optimization are intended primarily for computer 

implementation. However, although the methodology is developed with computers in 

mind, we do not delve into the details of program design and coding. Instead, our 

emphasis is on the ideas and logic underlying the methods, on the factors involved in 

selecting the appropriate techniques, and on the considerations important to successful 

engineering application [1]. 
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 The problem of optimization may be formulated as minimization of a scalar 

objective function  U , where  U  is also known as an error function or cost 

function because it represents the difference between the performance achieved at any 

stage and the desired specifications. For example, in the case of a microwave filter, the 

formulation of  U  may involve the specified and achieved values of the insertion 

loss and the return loss in the pass band, and the rejection in the stop band. In this thesis, 

the optimization process aims to minimize the cost function which is specified by the 

reflection loss, transmission loss and the locations of reflection zeros.  The outputs of 

optimizations are coupling coefficients and the locations of reflection zeros.   

Optimization problems are usually formulated as minimization of  U . This does not 

cause any loss of generality, since the minima of a function  U  correspond to the 

maxima of the function –  U . Thus, by a proper choice of  U , any maximization 

problem may be reformulated as a minimization problem.   is the set of designable 

parameters whose values may be modified during the optimization process. In 

microwave filters, firstly elements of  could be the values of capacitors and inductors 

for a lumped-element or low pass prototype filter, or they could be coupling coefficients 

for a coupled resonator circuit. But at last, elements of   could directly include the 

physical dimensions of a filter, which are realized using microstrip or other microwave 

transmission line structures. Usually, there are various constraints on the designable 

parameters for a feasible solution obtained by optimization. For instance, available or 

achievable values of lumped elements, the minimum values of microstrip line width, 

and coupled microstrip line spacing that can be etched. The elements of  define a 

space. A portion of this space where all the constraints are satisfied is called the design 

space D. In the optimization process, we look for optimum value of  inside D [2]. 

 In microwave coupled resonator optimization problems, as well as real world 

optimization problems, the cost function of many variables will have several local 

minima, one of them is the global minimum. Local optimization methods are used to 

find an arbitrary local minimum, which is relatively straightforward. However, finding 

the global minimum is more challenging and global optimization methods can be used. 

Local optimization algorithms strongly depend on the initial values of the control 

parameters. The initial guess should be given as an input to the algorithm that will seek 

a local minimum within the local neighborhood of the initial guess. However, this local 

minimum is not guaranteed to be the global minimum. Global optimization  algorithms 

generally do not require initial guess for the control variables, as they generate their 

own initial values, and they seek the global minimum within the entire search space. In 

comparison to local methods, global optimization  methods are much slower and may 

take hours or even days to find the optimal solution for problems with tens of variables. 

Global algorithms tend to be utilized when the local algorithms are not adequate, or 

when it is of great importance to find the global solution [3]. 

 Lots of optimization methods have been developed for solving constrained and 

unconstrained  optimization problems.  Direct Search Optimization is an approach used 

in solving optimization problems. It makes repeated use of evaluation of the objective 

function and does not require the derivatives of the objective function. Two typical 

types of the direct search method are described as follows. Powell‘s method is a 

powerful direct search method for multidimensional optimization. A genetic algorithm 

is the other type of the direct search method which starts with an initial set of random 
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configurations and uses a process similar to biological evolution to improve upon them. 

The set of configurations is called the population. During each iteration, called a 

generation, the configurations in the current population are evaluated using some 

measure of fitness [2]. 

 The Nelder-Mead simplex algorithm is an enormously popular direct search 

method for multidimensional unconstrained minimization. It's especially popular in the 

fields of chemistry, chemical engineering, and medicine. This method attempts to 

minimize a scalar-valued nonlinear function of real variables using only function 

values, without any derivative information (explicit or implicit) [4]. This algorithm is 

applied by using "fminsearch" function available in MATLAB  to solve optimization 

problems in this thesis. 

 In a gradient-based optimization method, the derivatives of an objective function 

with respect to the designable parameters are used. The primary reason for the use of 

derivatives is that at any point in the design space, the negative gradient direction would 

imply the direction of the greatest rate of decrease of the objective function at that point 

[2].    

 Lots of papers talk about synthesizing filters or diplexers using optimization 

approach. In [6], The authors have used optimization approach in the their paper to 

synthesize a three channel multiplexer exclusively by coupled microwave resonators. 

 Also in [7] the authors have synthesized diplexers by applying coupling matrix 

optimization techniques to those of coupled resonator circuits. After that, in [8] the 

author proposed novel topologies of star-junction multiplexers with resonating 

junctions. An optimization technique has been used to synthesize the coupling matrix of 

the proposed multiplexers in this paper. Also in [9], the author presented a  novel  

design  of  coupled  resonator  star-junction multiplexer which was  designed  at the  X-

band  with  four  non contiguous  channels by optimization method. 

 Finally in [10], the authors have synthesized filters by optimization a cost 

function  based on the Hausdorff  distance between the template sets (the sets of zeros 

and poles of  template filter reflection and transmission characteristics). 

 

3.3 Frequency transformation  

 The specifications of a multiplexer are usually given in the band-pass frequency 

domain, in which the real multiplexer operates. As mentioned earlier, the design of the 

proposed multiplexers takes place in the normalized frequency domain as a low pass 

prototype. Therefore, a frequency transformation from band pass frequency domain to 

normalized frequency domain is needed. This section presents frequency transformation 

formulas of band pass multiplexer with given specification to a low pass prototype. 

Equation (3.1) is used to calculate the normalized value for each edge in the 

multiplexer's channels. An illustration of the frequency mapping is shown in figure 

(3.1). The frequency edges of the bands of the multiplexer are ω1, ω2, ω3,....... and ωn. 

These frequencies are mapped into low pass prototype frequencies (x) using the 

following transformation formula [3,5]. 
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Figure (3.1): Low pass to band pass transformation 
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Solving equations (3.2) and (3.3) yields, 

n 10             (3.4) 

FBW

xn    where 
0

1



 
 nFBW         (3.5) 

 The value of the low pass cutoff frequency
nx is normally taken as  2π radian/sec, 

and the values of 
mx  can now be found from equation (3.1) [3]. 
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3.4 Derivation of cost function  

 A cost function that is used in the optimization of the coupling matrix of coupled 

resonator multiplexer is formulated here. For two ports filter in [11] 
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 sE

sF
sS 11  
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Substituting (3.6) in the energy conservation formula 
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and manipulating, the following expression is achieved  
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where E, F and P are all normalized such that their highest degree coefficients are equal 

to one. 

 "This shows that apart from the, scaling factor   ,  a combination of any two 

polynomials can completely describe the response. The problem is  resolved  by 

analytically calculating the external quality factors. Setting these factors to  their correct 

values at the outset of the optimization cancels the need to  invoke the ripple at any 

stage of the synthesis procedure. Consequently, a combination of any two polynomials 

can completely determine the response as long as the quality factors are predetermined. 

As far as speed is concerned, polynomials F and P prove most efficient to use in the 

cost function" [11]. 

The cost function formulated as  
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,      (3.9) 

where R is the number of reflection zeros. 

 This is derived in chapter (4) in [3] for diplexers and utilized here for 

multiplexers. For a coupled resonator multiplexer, the reflection and transmission 

functions may be defined in terms of polynomials as follows, 
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sS 11 , 
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 where the roots of  F(s) correspond to the reflection zeros, the roots of  PN(s) 

correspond to the transmission zeros of the filter frequency response at ports N,  ε is a 

ripple constant, and  E(s) roots correspond to the pole positions of the filtering function. 

The initial cost function may be written in terms of the characteristic polynomials as 

follows,
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 where M is the number of ports, tiS are the frequency locations of transmission 

zeros of 1NS , TN is the number of the transmission zeros of 1NS , R is the total number of 

resonators in the multiplexer,  LR is the desired return loss in dB (LR<0), and  rjS and pvS

are the frequency locations of  the reflection zeros and the peaks' frequency values of  

11S  in the pass band. The last term in the cost function is used to set the peaks of 

 
 
 sE

sF
sS 11 to the required return loss level. It is assumed here that all channels of the 

multiplexer have the same return loss level. 

 Recall from section (2.2.3),  that for a N-port network of multiple coupled 

resonators, the scattering parameters are expressed the in terms of the general matrix [A] 

(equation (2.28)) as follows, 
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 where x is the port connected to resonator x, y is the port connected to resonator 

y, ΔA is the determinant of the matrix [A] and cofxy is the cofactor of matrix [A] 

evaluated by removing the x
th

 row and the y
th

 column of [A]. 

 By equating (3.10) and (3.12), the polynomials  P1(s),  P2(s),  F(s) and  E(s) are 

expressed in terms of the general matrix [A] as follows, 
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   ssE A           (3.13) 

 By substitution of the polynomials in equation (3.13) into equation (3.11), the 

cost function is now expressed in terms of determinants and cofactors of the matrix [A] 

and the external quality factors as follows, 
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 where qe1 and qeN are the external quality factors at ports 1 and N respectively, 

ΔA(S=x( is the determinant of the matrix [A] evaluated at the frequency variable x, and 

cofab ([A(s=v)]) is the cofactor of matrix [A] evaluated by removing the a
th

 row and the 

b
th

 column of [A] and finding the determinant of the resulting matrix at the frequency 

variable s=v. 

 The  first term  in  the  cost  function  is  used  if  the  multiplexer  characteristics 

contain transmission zeros. However, for a Chebyshev response, this term may be used 

to minimize the  transmission  of  each  channel  at  the  pass band  of  the  other 

channel,  thus  increasing  the isolation between channel ports. Consequently, the 

frequency locations sti are chosen to be the band edges of the channel at port m. In 

another word, this term is used in Chebyshev when much steeper edges of the channels  

are needed. 

 The  low pass  frequency  positions  of  the  reflection  zeros of  the  multiplexer  

are  initially  set to  be equally  spaced  in  the  optimization  algorithm,  and  later  these  

positions  are  moved  until equiripple  level  at  specified  insertion  loss  is  achieved.   

 The  initial  guess  of  the  locations  of  reflection  zeros  within  a  multiplexer  

channel  is  presented here. For a multiplexer channel with edges of (x1,x2) Hz, the 

leftmost reflection zero is located at (x1+0.02)i Hz, and the rightmost reflection zero is 

located at (x2-0.02)i Hz. The other reflection zeros are equally spaced between 

(x1+0.02)i and (x2-0.02)i with frequency spacing as follows: 
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 where m is  the  total  number  of  reflection  zeros  within  a  multiplexer  

channel. 

 The  values  of  the  external  quality  factors  are numerically  calculated, and  

their  values  are  set  at  the beginning  of  the  algorithm This reduces the optimization 

parameters set and improves the convergence time. 
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 The normalized external quality factors of these filters are related by: 
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 where 
21xexq  is  the  normalized  external  quality  factor  of  the  filter  with  

edges  of x1  and x2, N is total number of channels and qe±1 is  the  normalized  external  

quality  factor  of  the  filter  with  edges  of  ±1,  that  can  be calculated from the g-

values. 

 For  a  symmetrical  multiplexer  with  channel  edges (x1,x2), the normalized  

external  quality  factor  at  port  (m) are  calculated  from first equation in equation 

(3.16),  and the normalized external quality factor at the common port 1  is calculated  

from second equation in equation (3.16).  

 The  variables  that  need  to  be optimized  in  the  optimization  algorithm  are 

the  coupling  coefficients  and  also  the  frequency  locations  of  the  reflection  zeros. 

 

3.5 Multiplexer with the novel topology 

 Two general coupled resonator multiplexer topologies are proposed here. They 

are shown in figures (3.2) and (3.3) and they can achieve Chebyshev and quasi-elliptic 

responses respectively. Firstly, the design started with simple structure for four 

Chebyshev channels and it was consisted of eight resonators and one resonator per 

channel, then the total number of resonators was increased by increasing the number of 

resonators per channels. After that, quasi-elliptic responses was achieved. Finally, the 

number of channels was increased and six channels multiplexer was given as an 

example. 

 As shown in figure (3.2) and figure (3.3) where figure (3.2) represents a general 

structure proposed for multiplexer having Chebyshev response and figure (3.3) 

represents a general structure proposed for multiplexer having quasi elliptic response, 

the multiplexer consists of n resonators where n is the total number of resonators, and c 

is the number of the upper arms or lower arms. These resonators are distributed on 2c 

channel. The lower arms are mirror of the upper arms (symmetrical channels)  and each 

arm represents a channel consisted of r resonators. In figure (3.4), the channels in the 

positive side are from upper arms and the channels in the negative side are from lower 

arms. 

 Figure (3.4) shows that in this topology the number of channels can be an 

arbitrary number which is dependent on the number of arms meaning that it can be 
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increased by increasing the number of arms.  Also the number of resonators per arm r 

can change the isolation between channels and improve the selectivity. In other words 

increasing the number of resonators per arm increases the isolation. 

 Resonators in each arm should have different self-resonant frequencies (Mii) to 

separate the multiplexer channels from each other. The resonators in the vertical branch 

should have different self-resonant frequencies to achieve disjoint frequency bands at 

the different channels. Consequently, for the high frequency channels to be at upper 

arms (ports), the resonators above the junction resonator should have positive frequency 

offsets (Mii > 0), and for the low frequency channel to be at lower arms (ports), the 

resonators below the junction resonator should have negative frequency offsets                

( Mii < 0). This is supposed to reduce the complexity by achieving symmetry but in 

general channels' self resonant frequencies may be interchanged between some channels 

to achieve some advantages such as interchanging the positions of channels to improve 

the isolation. 

 It should be noted that the work on novel multiplexer topologies started from a 

simple eight resonator structure, with  n = 8 and  r = 1, followed by other experiments 

on adding arms to increase channels, also followed by other experiments on adding 

resonators to the vertical arms until arriving to the generalized topology given in figure 

(3.2). The junction resonator takes important part in power distribution and also it 

contributes to the filter transfer function. 

 
 

Figure (3.2): general structure proposed for multiplexer having Chebyshev 

response 
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Figure (3.3): general structure proposed for multiplexer having quasi elliptic 

response 

 The topology of the multiplexer has been enforced in the optimization 

algorithm, and the following conditions for coupling coefficients have been applied to 

simplify the optimization problem: 

1. The self-resonant frequencies (Mii) in the lower arm are the negative of the self-

resonant frequencies (Mii) in the upper arms as below 
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2. The self-resonant frequencies (Mii) for resonators in the horizontal line equal 

zero. 
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3. The coupling coefficients between the resonators in upper arms are equal to 

those in lower arms as below 
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Figure (3.4): Channels in low pass prototype 

 The bandwidth of each channel can be determined by choosing the values of 

edges of channels x1, x2, x3, x4,.......,x2c-1 and x2c. Channels may have different 

characteristics, some of them have Chebyshev responses and others have elliptic 

response.  

 

 

3.6 Conclusion 

 In this chapter, the synthesis procure of coupled resonator multiplexers is 

presented. Frequency transformation formulas as well as cost function have been 

shown. An overview of number of optimization methods and algorithms in general have 

been presented.  The frequency transformation from band pass to low pass for 

multiplexers has been derived, also the derivation of cost function used in multiplexer 

synthesis  has been declared. Finally the proposed topologies for multiplexer with both 

Chebyshev and elliptic response were introduced to be used in the next chapter. 

Numerical examples will be presented in the next chapter.  
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Chapter 4 

 

Numerical Examples for Coupled Resonator Multiplexers  

 

4.1 Examples of multiplexers with novel Topology 

 In this chapter, nine examples of multiplexers with the proposed novel 

topologies are given where each example has different characteristics from others and 

each example with different characteristics gives a proof for validity of the new 

topology. The first example is the simplest example which consists of minimum number 

of resonators in the simplest image to construct four channels multiplexer. In the next 

example the number of resonators per arm is increased and thus the total number of 

resonators is increased which declares that the isolation between each channel can be 

improved by this way. The third example is as the previous one, but it has wider 

bandwidth than the second example. All the first three examples have Chebyshev 

response, however in the fourth example Quasi-Elliptic responses are achieved. The 

isolation in example number four is better than isolation in example three because the 

number of resonators in example four is larger than that in example three, and the 

channels are sharper than channels in third example due to quasi elliptic response in 

example four. In the fifth example both the Chebyshev and Quasi elliptic response are 

achieved in the same structure, where two channels have Chebyshev response and the 

other two channels have Quasi elliptic response. In all previous examples the frequency 

locations of reflection zeros were not optimized , but only were the coupling 

coefficients. But in sixth example, both the coupling coefficient and frequency location 

of reflection zeros are optimized to get equal S11 peaks with -20 dB return loss. In the 

seventh example the number of channels is increased to six channels by increasing 

number of arms. In the eighth example the isolation is improved by interchanging the 

position of channels as another way to improve the isolation. Finally, in ninth example 

the two inner channels have a different order and number of resonators from the two 

outer channels and the validity of the results have been checked . All previous examples 

show that the number of channels can be controlled by number of arms, and number of 

resonators can be changed to get different characteristics, also any type of responses can 

be achieved, all that based on coupled resonators circuits. 

 The synthesis procedure starts with frequency transformation from band pass to 

low pass prototype using normalization equations or transformation equations (3.1-3.5). 

After that using equations (3.15, 3.16) the initial frequency location reflection zeros and 

external quality factors are calculated. Finally the initial frequency location reflection 

zeros, initial coupling coefficient , return loss, external coupling factors and 

transmission zeros are entered as parameters of cost function equation (3.14) to be 

optimized using optimization algorithms. The results obtained from optimization 

processes are coupling coefficients and frequency locations of reflection zeros.  
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4.1.1. Example 1: Non-contiguous narrow band four channels multiplexer 

with n = 8, r = 1, x1 = 0.8, x2 = 0.9, x3 = 1.5, x4 = 1.6. 

 The multiplexer consists of four non contiguous channels as shown in figure 

(4.1), the simplest structure, and it has eight resonators in total with one resonator per 

arm. The specified return loss is 20 dB. The channels have an equal bandwidth and they 

are separated by unequal guard bands. The edges of channels 1, 2, 3 and 4 are {-1.6,-

1.5},{-0.9,-0.8},{0.8,0.9},{1.5,1.6}, respectively. The normalized external quality 

factors are numerically calculated using equation (3.16) as qe3 =qe4 =qe7=qe8=13.2960 

and  qe1= 3.3240. The locations of return zeros are calculated using equation (3.15) as

0.8200i, 0.8800i,  1.5200i and    1.5800i. These locations are the initial locations 

and they may need optimization as in some next examples.  

 

Figure (4.1): Structure of multiplexer one. 

Table (4.1): The general coupling matrix of the above structure. 

           

 

8 7 6 5 4 3 2 1 Resonators 

 

 

0 0 0 0 0 0 m12 0 1 

 

 

0 0 0 m25 m23 m23 0 m12 2 

 

 

0 0 0 0 0 m33 m23 0 3 

 

 

0 0 0 0 -m33 0 m23 0 4 

 

 

0 0 m56 0 0 0 m25 0 5 

 

 

m67 m67 0 m56 0 0 0 0 6 

 

 

0 m77 m67 0 0 0 0 0 7 

 

 

-m77 0 m67 0 0 0 0 0 8 

 

            The coupling coefficients between any adjacent resonators mij and frequency 

offsets mii are optimized using cost function in equation (3.14) to have final values m12 

= 1.2471,  m23 =  0.2198,  m25  =  0.6350, m33 = 0.8411, m56 = 1.0964, m67 = 0.2165, m77 

= 1.5005. For symmetry, some conditions were taken in account to simplify the 

optimization, these conditions are 2423 mm   , 6867 mm   , 4433 mm    and 8877 mm   . 

 The optimization started with ten initial values {0.1,0.2,.....,1} to get the best 

result to be optimized to get final values. This means that the initial values were put in 

loop to get the correct beginning. In this example only the second term in the cost 



41 

 

function in equation (3.14), the term related to return zeros, was used in optimization 

and the others were neglected. Table (4.1) is the general optimization matrix of the 

structure in figure (4.1). The numerical optimized coupling matrix is given in table (4.2) 

and the multiplexer prototype response is depicted in figure (4.2). Table (4.3) displays 

the realized values that are achieved by optimization versus the targets. 

Table (4.2): The optimized coupling matrix of multiplexer one. 

8 7 6 5 4 3 2 1  Resonators 

0 0 0 0 0 0 1.2471 0 1 

0 0 0 0.6350 0.2198 0.2198 0 1.2471 2 

0 0 0 0 0 0.8411 0.2198 0 3 

0 0 0 0 -0.8411 0 0.2198 0 4 

0 0 1.0964 0 0 0 0.6350 0 5 

0.2165 0.2165 0 1.0964 0 0 0 0 6 

0 1.5005 0.2165 0 0 0 0 0 7 

-1.5005 0 0.2165 0 0 0 0 0 8 

 

Table (4.3): The Realized values versus the targets.  

Percentage of error Realized values Target Item 

9.2% -21.84 -20 Return loss(LR) in db 

10.3% 0.718 0.8 x1 

b
o
u
n
d
ar

ie
s 

3.8% 0.934 0.9 x2 

4.7% 1.43 1.5 x3 

2.9% 1.646 1.6 x4 

 

 

Figure (4.2): The theoretical response of multiplexer one. 
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4.1.2. Example 2: Non-contiguous narrow band four channels multiplexer 

with n = 12, r = 2, x1 = 0.4,  x2 = 0.55,  x3 = 1.35,  x4 = 1.5. 

 The multiplexer consists of four non contiguous channels as shown in figure 

(4.3), and it has twelve resonators in total with two resonators per arm. The specified 

return loss is 20 dB. The channels have an equal bandwidth and they are separated by 

equal guard bands. The edges of channels 1,2,3 and 4 are {-1.5,-1.35}, {-0.55,-

0.4},{0.4,0.55},{1.35,1.5} respectively. The normalized external quality factors are 

numerically calculated using equation (3.16) as qe5 = qe6 = qe11 = qe12 = 11.3547 and  

qe1 = 2.8387. The locations of return zeros are calculated using equation (3.15) as 

0.4200i,  0.4750i,  0.5300i,  1.3700i,  1.4250i and    1.4800i. These locations 

are the  initial locations and they may need optimization as in some next examples.  

 

Figure (4.3): structure of multiplexer two. 

 The coupling coefficients between any adjacent resonators mij and frequency 

offsets mii are optimized using cost function in equation (3.14) to have final values m12 

= 1.0773, m23 =    0.2774, m27 =    0.7728, m33 =    0.4603,  m35 =    0.0764,  m55 =    

0.4641,  m78 =    0.7058,  m89 =    0.3083, m99 =    1.3383, m911 =    0.0768, m1111 =    

1.4201. For symmetry, some conditions were taken in account to simplify the 

optimization, these conditions are 2423 mm  ,
 4635 mm  , 81089 mm  ,

 1012911 mm  ,
 

4433 mm  , 6655 mm   , 101099 mm   and 12121111 mm  .  

 The optimization started with ten initial values {0.1,0.2,.....,1} to get the best 

result to be optimized to get final values. This means that the initial values were put in 

loop to get the correct beginning. In this example only the second term in the cost 

function in equation (3.14), the term related to return zeros, was used in optimization 

and the others were neglected. The optimized coupling matrix is given in table (4.4)  

and the multiplexer prototype response is depicted in figure (4.4), where figure (4.4)(a) 

represents S11, S21, S31, S41, S51 while figure (4.4)(b) represents isolation between every  

two adjacent channels S23, S24, S35. Table (4.5) displays the realized values that are 

achieved by optimization versus the targets. 
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Figure (4.4):  The  theoretical response of multiplexer two: (a) Reflection loss and insertion loss, (b) The isolation between adjacent 

channels. 
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Table (4.4): The optimized coupling matrix of multiplexer two. 

 

 

 

 

 

 

 

 

 

Table (4.5): The Realized values versus the targets.  

Percentage of error Realized values Target Item 

10.1% -22.02 -20 Return loss(LR) in db 

12.3% 0.351 0.4 x1 

b
o
u
n
d
ar

ie
s 

3.1% 0.567 0.55 x2 

3.0% 1.31 1.35 x3 

1.9% 1.528 1.5 x4 

 

 

12 11 10 9 8 7 6 5 4 3 2 1  Resonators 

0 0 0 0 0 0 0 0 0 0 1.0773 0 1 

0 0 0 0 0 0.7728 0 0 0.2774 0.2774 0 1.0773 2 

0 0 0 0 0 0 0 0.0764 0 0.4603 0.2774 0 3 

0 0 0 0 0 0 0.0764 0 -0.4603 0 0.2774 0 4 

0 0 0 0 0 0 0 0.4641 0 0.0764 0 0 5 

0 0 0 0 0 0 -0.4641 0 0.0764 0 0 0 6 

0 0 0 0 0.7058 0 0 0 0 0 0.7728 0 7 

0 0 0.3083 0.3083 0 0.7058 0 0 0 0 0 0 8 

0 0.0768 0 1.3383 0.3083 0 0 0 0 0 0 0 9 

0.0768 0 -1.3383 0 0.3083 0 0 0 0 0 0 0 10 

0 1.4201 0 0.0768 0 0 0 0 0 0 0 0 11 

-1.4201 0 0.0768 0 0 0 0 0 0 0 0 0 12 
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4.1.3. Example 3: Non-contiguous band four channels multiplexer with      

n = 12, r = 2,  x1 = 0.4,  x2 = 0.75,  x3 = 1.55,  x4 = 1.9. 

 The multiplexer consists of four non contiguous channels as shown in figure 

(4.5), and it has twelve resonators in total with two resonators per arm. The specified 

return loss is 20 dB. The channels have an equal bandwidth with wider band width than 

previous examples and they are separated by equal guard bands. The edges of channels 

1,2,3 and 4 are {-1.9,-1.55},{-0.75,-0.4},{0.4,0.75},{1.55,1.9}  respectively. The 

normalized external quality factors are numerically calculated using equation (3.16) as 

qe5  = qe6  = qe11 = qe12 = 4.8663 and qe1 = 1.2166. The locations of return zeros are 

calculated using equation (3.15) as  1.8800i,   1.7250i,  1.5700i,  0.7300i, 

0.5750i and  0.4200i. These locations are the initial locations and they may need 

optimization as in some next examples.  

 

Figure (4.5): structure of multiplexer three. 

 The coupling coefficients between any adjacent resonators mij and frequency 

offsets mii are optimized using cost function in equation (3.14) to have final values m12 

= 1.3481, m23 = 0.5145, m27 = 0.8223, m33 = 0.5263, m35 =  0.1962, m55 = 0.5296, m78 

= 1.0836, m89 =  0.5746, m99  = 1.4159, m911 =  0.2131, m1111 = 1.6879. For symmetry, 

some conditions were taken in account to simplify the optimization, these conditions are 

2423 mm  , 4635 mm  , 81089 mm  , 1012911 mm   ,
 4433 mm   , 6655 mm   , 101099 mm   

and 12121111 mm  . 

 The optimization started with example two coupling coefficients as initial to get 

final values. In this example only the second term in the cost function in equation 

(3.14), the term related to return zeros, was used in optimization and the others were 

neglected. The optimized coupling matrix is given in table (4.6)  and the multiplexer 

prototype response is depicted in figure (4.6), where figure (4.6)(a) represents S11, S21, 

S31, S41, S51 while figure (4.6)(b) represents isolation between every  two adjacent 

channels S23, S24, S35. Table (4.7) displays the realized values that are achieved by 

optimization versus the targets. 
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Table (4.6): The optimized coupling matrix of multiplexer three. 

12 11 10 9 8 7 6 5 4 3 2 1 Resonators 

0 0 0 0 0 0 0 0 0 0 1.3481 0 1 

0 0 0 0 0 0.8223 0 0 0.5145 0.5145 0 1.3481 2 

0 0 0 0 0 0 0 0.1962 0 0.5263 0.5145 0 3 

0 0 0 0 0 0 0.1962 0 -0.5263 0 0.5145 0 4 

0 0 0 0 0 0 0 0.5296 0 0.1962 0 0 5 

0 0 0 0 0 0 -0.5296 0 0.1962 0 0 0 6 

0 0 0 0 1.0836 0 0 0 0 0 0.8223 0 7 

0 0 0.5746 0.5746 0 1.0836 0 0 0 0 0 0 8 

0 0.2131 0 1.4159 0.5746 0 0 0 0 0 0 0 9 

0.2131 0 -1.4159 0 0.5746 0 0 0 0 0 0 0 10 

0 1.6879 0 0.2131 0 0 0 0 0 0 0 0 11 

-1.6879 0 0.2131 0 0 0 0 0 0 0 0 0 12 

 

 

Table (4.7): The Realized values versus the targets.  

Percentage of error Realized values Target Item 

12% -17.65 -20 Return loss(LR) in db 

40% 0.242 0.4 x1 

b
o
u
n
d
ar

ie
s 

4% 0.781 0.75 x2 

9% 1.418 1.55 x3 

4% 1.969 1.9 x4 
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Figure (4.6): The theoretical response of multiplexer three: (a) Reflection loss and insertion loss, (b) The isolation between adjacent 

channels. 
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4.1.4. Example 4: Non-contiguous band four channels multiplexer with 

Quasi-Elliptic responses n = 20,  r = 4,  x1 = 0.4,  x2 = 0.75,  x3 = 1.55,    

x4 = 1.9. 

 The multiplexer consists of four non contiguous channels as shown in figure 

(4.7), and it has twenty resonators in total with four resonators per arm. The specified 

return loss is 20 dB. The channels have an equal bandwidth and they are separated by 

equal guard bands. The edges of channels 1, 2, 3 and 4 are {-1.9,-1.55},{-0.75,-

0.4},{0.4,0.75},{1.55,1.9},  respectively. The eight transmission zeros locate at  0.3i, 

 0.85i,  1.45i and  2i. The normalized external quality factors are numerically 

calculated using equation (3.16) as qe9  = qe10  = qe91 = qe20 = 5.5509 and qe1 = 1.3877. 

The locations of return zeros are calculated using equation (3.15) as  1.8800i, 

1.8025i,  1.7250i,  1.6475i,  1.5700i,  0.7300i,  0.6525i,  0.5750i,  0.4975i 

and  0.4200i. These locations are the initial locations and they may need optimization 

as in some next examples. In figure (4.7), solid lines in the multiplexer represent direct 

coupling, and dashed lines represent cross coupling, and Quasi-Elliptic responses can be 

achieved. 

 The coupling coefficients between any adjacent resonators mij and frequency 

offsets mii are optimized using cost function in equation (3.14) to have final values  m12 

=1.3489, m23 = 0.4391, m33 = 0.5429, m35 =  0.1031, m39 =   -0.0371, m55 = 0.5602, m57 

= 0.1219, m77 = 0.5627, m79  = 0.1329, m99  =  0.5588,  m211 = 0.8746,  m1112 = 0.9734, 

m1213 = 0.5078, m1313 =    1.5098, m1315 =    0.1097, m1319 = -0.0271, m1515 =1.7157, 

m1517 = 0.1177, m1717 = 1.7213, m1719 = 0.1371, m1919 =1.7189.  For symmetry, some 

conditions were taken in account to simplify the optimization, these conditions are 

2423 mm  , 4635 mm  , 6857 mm  , 81079 mm  , 41039 mm  , 12141213 mm  , 14161315 mm  , 

16181517 mm  , 18201719 mm  , 14201319 mm  , 4433 mm  , 6655 mm  , 8877 mm   , 

101099 mm  , 14141313 mm  , 16161515 mm  , 18181717 mm   and 20201919 mm  .  

 In this example the whole cost function in equation (3.14) has been used except 

the third term that optimizes the return zeros' locations to enforce return loss level of 

20dB. The optimized coupling matrix is given in table (4.9)  and the multiplexer 

prototype response is depicted in figure (4.8), where figure (4.8) (a) represents S11, S21, 

S31, S41, S51 while figure (4.8) (b) represents isolation between every  two adjacent 

channels S23, S24, S35. Table (4.8) displays the realized values that are achieved by 

optimization versus the targets. 
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Table (4.8): The Realized values versus the targets.  

Percentage of error Realized values Target Item 

5% 0.381 0.4 x1 

boundaries 

1% 0.745 0.75 x2 

1% 1.534 1.55 x3 

0% 1.906 1.9 x4 

6% 0.317 0.3 t1 

Transmission zeros 

1% 0.841 0.85 t2 

1% 1.437 1.45 t3 

0% 2.001 2 t4 

 

 

Figure (4.7): structure of multiplexer four. 
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Figure (4.8): The theoretical response of multiplexer four: (a) Reflection loss and insertion loss, (b) The isolation between adjacent 

channels. 
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Table (4.9): The optimized coupling matrix of multiplexer four. 
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4.1.5. Example 5: Non-contiguous band four channels multiplexer consists 

of two channels with Quasi elliptic response and the other two channels 

with Chebyshev response and  n = 20,  r = 4,  x1 = 0.4,  x2 = 0.75,            

x3 = 1.55,  x4 = 1.9. 

 The multiplexer consists of four non contiguous channels as shown in figure 

(4.9), and it has twenty resonators in total with four resonators per arm. The specified 

return loss is 20 dB. The channels have an equal bandwidth and they are separated by 

equal guard bands. The edges of channels 1,2,3 and 4 are {-1.9,-1.55},{-0.75,-

0.4},{0.4,0.75},{1.55,1.9}  respectively. The four transmission zeros locate at   1.45i 

and  2i. The normalized external quality factors are numerically calculated using 

equation (3.16) as qe9  = qe10  = qe91 = qe20 =5.5509  and qe1 = 1.3877. The locations of 

return zeros are calculated using equation (3.15) as  1.8800i,  1.8025i,  1.7250i, 

1.6475i,  1.5700i,  0.7300i,  0.6525i,  0.5750i,  0.4975i and  0.4200i. These 

locations are the initial locations and they need optimization as in example six. In figure 

(4.9) , solid lines represent direct coupling, and dashed lines represent cross coupling, 

and both Quasi-Elliptic and Chebyshev responses can be achieved. 

 The coupling coefficients between any adjacent resonators mij and frequency 

offsets mii are optimized using cost function in equation (3.14) to have final values  m12 

=1.3470, m23 = 0.4458, m211 = 0.8663, m33 = 0.5448, m35 =  0.1129, m55 = 0.5589,  m57 = 

0.1043, m77 = 0.5618, m79  = 0.1419, m99  =  0.5614,  m1112 = 0.9831, m1213 = 0.5032, 

m1313 =    1.5115, m1315  =    0.1100, m1319  =   -0.0271,     m1515  = 1.7149,  m1517  =  

0.1181, m1717 = 1.7202, m1719 = 0.1375, m1919 = 1.7174. For symmetry, some conditions 

were taken in account to simplify the optimization, these conditions are 2423 mm  , 

4635 mm  , 6857 mm  , 81079 mm  , 12141213 mm  , 14161315 mm  , 16181517 mm  , 18201719 mm  , 

14201319 mm  , 4433 mm  , 6655 mm  , 8877 mm  , 101099 mm  , 14141313 mm  ,

16161515 mm  , 18181717 mm   and 20201919 mm  . 

 In this example the whole cost function in equation (3.14) has been used except 

the third term that optimizes the return zeros' locations to enforce return loss level of 

20dB. Table (4.10) displays the realized values that are achieved by optimization versus 

the targets. The optimized coupling matrix is given in table (4.11)  and the multiplexer 

prototype response is depicted in figure (4.10). 

 

Table (4.10): The Realized values versus the targets.  

Percentage of error Realized values Target Item 

8.0% 0.368 0.4 x1 

boundaries 

1% 0.754 0.75 x2 

1.1% 1.533 1.55 x3 

0. 3% 1.905 1.9 x4 

1.0% 1.435 1.45 t3 

Transmission zeros 0% 2 2 t4 
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Figure (4.9): structure of multiplexer five. 
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Figure (4.10): The theoretical response of multiplexer five. 
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Table (4.11): The optimized coupling matrix of multiplexer five. 
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4.1.6. Example 6: Non-contiguous band four channels multiplexer consists 

of two channels with Quasi elliptic response and the other two channels 

with Chebyshev response and  n = 20,  r = 4,  x1 = 0.4,  x2 = 0.75,            

x3 = 1.55,  x4 = 1.9. 

 The multiplexer consists of four non contiguous channels as shown in figure 

(4.11), and it has twenty resonators in total with four resonators per arm. The specified 

return loss is 20 dB. The channels have an equal bandwidth and they are separated by 

equal guard bands. The edges of channels 1,2,3 and 4 are {-1.9,-1.55},{-0.75,-

0.4},{0.4,0.75},{1.55,1.9}  respectively. The four transmission zeros locate at  0.3i 

and  0.85i. The normalized external quality factors are numerically calculated using 

equation (3.16) as qe9  = qe10  = qe91 = qe20 =5.5509  and qe1 = 1.3877. The locations of 

return zeros are calculated using equation (3.15) as  1.8800i,  1.8025i,  1.7250i, 

1.6475i,  1.5700i,  0.7300i,  0.6525i,  0.5750i,  0.4975i and  0.4200i. These 

locations are the initial locations and they are optimized to get return zeros with return 

loss less than 20 dB. The final return zeros' locations are  1.8821i,  1.8240i, 

1.7255i,  1.6203i,  1.5510i, 0.7275i, 0.6826i,  0.5934i,  0.4821i,  0.4121i. In 

figure (4.11) , solid lines represent direct coupling, and dashed lines represent cross 

coupling, and both Quasi-Elliptic and Chebyshev responses can be achieved. 

 The coupling coefficients between any adjacent resonators mij and frequency 

offsets mii are optimized using cost function in equation (3.14) to have final values m12 

=1.3393, m23 = 0.4370, m211 =0.8821, m33 = 0.5400, m35 =  0.1079, m39 =   -0.0286,     

m55 = 0.5569,  m57 = 0.1213, m77 =0.5659, m79 =0.1424, m99 = 0.5669,     m1112 = 1.0066, 

m1213 = 0.5069, m1313 =    1.5014, m1315 =    0.1238, m1515 =1.7062, m1517 = 0.1115, m1717 

= 1.7126, m1719 = 0.1514, m1919 =1.7132. For symmetry, some conditions were taken in 

account to simplify the optimization, these conditions are 2423 mm  , 4635 mm  ,

41039 mm  , 6857 mm  , 81079 mm  , 12141213 mm  , 14161315 mm  , 16181517 mm  , 18201719 mm 

, 4433 mm  , 6655 mm  , 8877 mm  , 101099 mm  , 14141313 mm  , 16161515 mm  , 

18181717 mm    and 20201919 mm  .   

 In this example all terms in the cost function in equation (3.14) are entered into 

optimization process. Table (4.12) displays the realized values that are achieved by 

optimization versus the targets. The optimized coupling matrix is given in table (4.13) 

and the multiplexer prototype response is depicted in figure (4.12). 
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Table (4.12): The Realized values versus the targets.  

Percentage of error Realized values Target Item 

1.1% -20.22 -20 Return loss(LR) in db 

7.0% 0.372 0.4 x1 

boundaries 

0.4% 0.753 0.75 x2 

2.9% 1.505 1.55 x3 

0.9% 1.918 1.9 x4 

7.0% 0.279 0.3 t1 

Transmission zeros 0.7% 0.844 0.85 t2 

 

 

Figure (4.11): structure of multiplexer six.
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Figure (4.12): The theoretical response of multiplexer six. 
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Table (4.13): The optimized coupling matrix of multiplexer six. 

 

 

 

 

 

 



61 

 

4.1.7. Example 7: Non-contiguous narrow band six channels multiplexer 

with n = 12,  r = 1,  x1 = 0.3,  x2 = 0.4,  x3 = 1,  x4 = 1.1,  x5 = 1.7,  x6 = 1.8. 

 The multiplexer consists of six non contiguous channels as shown in figure 

(4.13), and it has twelve resonators in total with one resonator per arm. The specified 

return loss is 20 dB. The channels have an equal bandwidth and they are separated by 

equal guard bands. The edges of channels 1, 2, 3, 4, 5   and 6 are {-1.8,-1.7}, {-1.1,-1}, 

{-0.4,-0.3}, {0.3,0.4}, {1,1.1}, {1.8,1.7}  respectively. The normalized external quality 

factors are numerically calculated using equation (3.16) as qe3  = qe4  = qe7 = qe8 = qe11 

= qe12 = 13.2960 and  qe1 = 2.2160.  The locations of return zeros are calculated using 

equation (3.15) as  0.3200i,  0.3800i,  1.0200i,  1.0800i,  1.7200i and   

1.7800i.  

 
 

Figure (4.13): structure of multiplexer seven. 

 The coupling coefficients between any adjacent resonators mij and frequency 

offsets mii are optimized using cost function in equation (3.14) to have final values m12 

= 1.2153 ,  m23 =  0.2082,  m25  =  0.9936, m33 = 1.0437, m56 = 0.9328, m67 = 0.2013, 

m77 = 1.7119, m69 = 0.8311, m910 = 0.5839, m1011 = 0.122, m1111 = 0.3398 . For 

symmetry, some conditions were taken in account to simplify the optimization, these 

conditions are 2423 mm   , 6867 mm   , 10121011 mm  , 4433 mm  , 8877 mm   and 

12121111 mm   . 

 In this example only the second term in the cost function in equation (3.14), the 

term related to return zeros, was used in optimization and the others were neglected. 

The optimized coupling matrix is given in table (4.14) and the multiplexer prototype 

response is depicted in figure (4.14). Table (4.15) displays the realized values that are 

achieved by optimization versus the targets.  



61 

 

 

Figure (4.14): The theoretical response of multiplexer seven. 
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Table (4.14): The optimized coupling matrix of multiplexer seven. 

 

Table (4.15): The Realized values versus the targets.  

Percentage of error Realized values Target Item 

0.4% -22.07 -20 Return loss(LR) in db 

21.7% 0.235 0.3 x1 

boundaries 

15.0% 0.46 0.4 x2 

7.8% 0.922 1 x3 

3.6% 1.14 1.1 x4 

4.2% 1.629 1.7 x5 

2.7% 1.849 1.8 x6 
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4.1.8. Example 8: Non-contiguous narrow band four channels multiplexer 

with n = 8,  r = 1,  x1 = 0.5,  x2 = 0.6,  x3 = 1.6,  x4 = 1.7.  

 Isolation between channels can be improved by increasing the number of 

resonator per arm. This example presents a new way to improve the isolation between 

channels. The example is based on the structures in figure (4.15). Figure (4.16) shows 

the response of the structure with the normal distribution of channels and table (4.17) 

shows the optimized coupling matrix of this structure. Figure (4.17) shows the response 

of the structure with interchanging the positions of channels in the same structure shown 

in figure (4.15)  and table (4.18) shows the optimized coupling matrix of this structure.  

 The interchanging of the positions of channel 3 and channel 4 improves the 

isolation between the adjacent channels as appears in figure (4.17). Before 

interchanging the channels the isolation peaks is around -10 dB as shown in figure 

(4.16), but after interchanging the channels the isolation peaks is around -20 dB. This 

improvement in isolation occurs due to separating the channels by more frequency 

band. Table (4.16) displays the realized values that are achieved by optimization versus 

the targets. 

Table (4.16): The Realized values versus the targets. 

Percentage of error Realized values Target Item 

9.4% -21.88 -20 Return loss(LR) in db 

17.4% 0.413 0.5 x1 

B
o
u
n
d
ar

ie
s 

4.7% 0.628 0.6 x2 

4.4% 1.529 1.6 x3 

2.9% 1.75 1.7 x4 
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Figure (4.15): structure of multiplexer eight: 

 (a) before interchanging of channels. 

(b) after interchanging of channels.
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Figure (4.16): The theoretical response of multiplexer eight before interchanging of channels: (a) Reflection loss and insertion loss, (b) 

The isolation between adjacent channels. 
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Figure (4.17): The theoretical response of multiplexer eight after interchanging of channels: (a) Reflection loss and insertion loss, (b) The 

isolation between adjacent channels. 



67 

 

Table (4.17): The optimized coupling matrix of multiplexer eight before interchanging of channels. 

 

 

 

 

 

 

 

 

Table (4.18): The optimized coupling matrix of multiplexer eight after interchanging of channels.  

8 7 6 5 4 3 2 1  Resonators 

0 0 0 0 0 0 1.2279 0 1 

0 0 0 0.9119 0.3060 0.3060 0 1.2279 2 

0 0 0 0 0 0.5324 0.3060 0 3 

0 0 0 0 -0.5324 0 0.3060 0 4 

0 0 0.7809 0 0 0 0.9119 0 5 

0.3390 0.3390 0 0.7809 0 0 0 0 6 

0 -1.5639 0.3390 0 0 0 0 0 7 

1.5639 0 0.3390 0 0 0 0 0 8 

8 7 6 5 4 3 2 1  Resonators 

0 0 0 0 0 0 1.2279 0 1 

0 0 0 0.9119 0.3060 0.3060 0 1.2279 2 

0 0 0 0 0 0.5324 0.3060 0 3 

0 0 0 0 -0.5324 0 0.3060 0 4 

0 0 0.7809 0 0 0 0.9119 0 5 

0.3390 0.3390 0 0.7809 0 0 0 0 6 

0 1.5639 0.3390 0 0 0 0 0 7 

-1.5639 0 0.3390 0 0 0 0 0 8 
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4.1.9. Example 9: Non-contiguous band four channels multiplexer with     

n = 16,  r1 = 2,  r2 = 4,   x1 = 0.4,  x2 = 0.65,  x3 = 1.45,  x4 = 1.95, t1=1.35, 

t2=2.05.  

 This example is different from all previous examples because it has four 

channels and each two channels have different bandwidth, different response and 

different number of resonators per arm. This means that the general structure is able to 

synthesize multiplexers with massive scale of  properties and characteristics. As shown 

in figure (4.18) the total number of resonators in the whole structure is sixteen 

resonators and the number of resonators in both channels one and two is two resonators 

but the number of resonators in both channels three and four is four resonators. 

Channels one and two have Chebyshev response while the channels three and four have 

quasi elliptic response due to the existence of cross coupling m915.

 

Figure (4.18): structure of multiplexer nine. 
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 The optimization process in this example is different from the optimization 

processes in all previous examples because in the previous examples the optimization 

processes are done in one step where all coupling coefficients and reflection zeros' 

locations were entered into optimization process but in this example each diplexer (two 

arms) is optimized as an individual block then most of the results are taken as initial 

values in the optimization process for the whole multiplexer. 

 The first diplexer is optimized to get some of the coupling coefficients that are 

taken as initial values m33 =0.4963, m35 = 0.1293, m55 = 0.5180, and reflection zeros' 

locations as  0.4200i,  0.5250i,  0.6300i. The second diplexer is optimized to get 

some of the coupling coefficients that are taken as initial values m99 = 1.6751, m911 =  

0.1438, m915 = 0.0736, m1111 = 1.6986, m1113 = 0.2039, m1313 = 1.7015, m1315 = 0.2032,  

m1515 = 1.7007, and the optimized reflection zeros' locations   1.4533i,  1.5380i, 

1.7061i,  1.8697i,  1.9496i will be entered into whole optimization process. 

 Table (4.19) displays the realized values that are achieved by optimization 

versus the targets. The final values of coupling coefficients, as shown in table (4.20), 

are m12 = 1.4543, m23 = 0.4798, m27 = 0.7550, m33 = 0.4951, m35 = 0.1409, m55 = 

0.4942, m78 = 1.1151, m89 = 0.7059, m99 = 1.1479, m911 = 0.2044, m1111 = 1.6564, m1113 

= 0.2029, m1313 = 1.7056, m1315 = 0.2048, m1515 = 1.6787, m915 = 0.0905. The normalized 

external quality factors qe5  = qe6  = 6.8128,  qe15 =  qe16 = 3.8856 and qe1 = 1.2372. 

Table (4.19): The Realized values versus the targets.  

Percentage of error Realized values Target Item 

9.0% -18.2 -20 Return loss(LR) in db 

27.8% 0.289 0.4 x1 

boundaries 

3.2% 0.671 0.65 x2 

3.7% 1.397 1.45 x3 

1.5% 1.98 1.95 x4 

2.7% 1.313 1.35 t1 

Transmission zeros 0% 2.049 2.05 t2 
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Figure (4.19): The theoretical response of multiplexer nine.  
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Table (4.20): The optimized coupling matrix of multiplexer nine. 
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 The validity of the last example is going to be checked. The band pass 

multiplexer starts from 2700 MHz to 3300 MHz. The smallest and the largest values in 

both range of values of normalized external quality factors and coupling coefficients 

have been chosen for implementation, so other values between them can be guaranteed 

to be realized. To achieve these values, the open loop resonators have been used and 

HFSS software has been used in simulation. The implementation is going to be done on 

RT/duroid 6006 substrate which has dielectric constant r  of 6.15 and thickness of 

1.27mm. The equations needed for designed are stated in chapter eight in [1]. 

 The normalized external coupling is calculated from equation (4.1) 

 
e

e
q

1
k 

 
          (4.1) 

where qe is the normalized external quality factor. The external coupling Ke and 

coupling coefficients Mij are calculated from equation (4.2)  
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where FBW is the fractional bandwidth which is calculated from equation (3.5), and xn 

is the maximum normalized frequency in low-pass. 

 21S  response for a resonator with a port with weak coupling should be found to 

extract the external coupling from physical structure, and 21S  response for two coupled 

resonators with two weak coupling ports should be found to extract the coupling 

coefficient for two coupled resonators. Equation (4.3) is used for calculations of 

external coupling where dB3  and 0 can be extracted from 21S  as shown in figure 

(4.20) and the coupling coefficient can be extracted for synchronous resonators by 

equation (4.4) where 2

2  and 2

1  are the frequency at peaks as shown in figure (4.21) 

[2]. 
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 Table (4.21) shows the specification of the band-pass frequencies and their 

transformations into low-pass using equations (3.1) and (3.5)  and table (4.22) shows 

the calculations of FBW and center frequency using equation (3.5). 
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 The minimum and maximum external coupling values have been calculated for 

example nine as shown in table (4.23) using equations (4.1) and (4.2). Figure (4.22) 

shows the physical structure used in achieving external coupling. Equation (4.3) is used 

to calculate the external coupling from physical structure as shown in table (4.24). 

Figures (4.23) and (4.24) represent response of |S21| for minimum and maximum 

normalized quality factor respectively. 

 The minimum and maximum coupling coefficient values have been calculated 

for example nine as shown in table (4.25) using (4.2). Figures (4.25) and (4.26) shows 

the physical structure for two coupled microstrip used in achieving minimum and 

maximum coupling coefficient respectively. Equation (4.4) is used to calculate the 

coupling coefficient for synchronous resonators from physical structure as shown in 

table (4.26). Figure (4.27) represent response of |S21| for maximum coupling coefficient. 

 It is noticed the FBW is relatively large which means that these values can be 

achievable for narrower multiplexers. 

 

Figure (4.20): Response of |S21| for loaded resonator. 

 

Figure (4.21): |S21| of two coupled resonators showing two frequency peaks. 
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Table (4.21): Normalization values of multiplexer's bands. 

Normalized Band-pass (MHz) 

-x1 -1.95032 2700 W1 

-x2 -1.451771 2770 W2 

-x3 -0.654554 2886 W3 

-x4 -0.400646 2924 W4 

x1 0.3989099 3047 W5 

x2 0.6520629 3087 W6 

x3 1.4536602 3217 W7 

x4 1.9498272 3300 W8 

 

Table (4.22): Calculation of FBW and center frequency. 

3.3 upper frequency 

2.7 lower frequency 

2.9849623 center frequency 

0.2010076 FBW 

 

Table (4.23): Calculations of external coupling. 

external 

coupling 

normalized external 

coupling normalized quality factor 

0.015130463 0.146782527 6.8128 qe5 max value 

0.083317831 0.808276754 1.2372 qe1 min value 

 

Table (4.24): The physical dimensions and calculations of  external coupling. 

Ke dB3  (GHz) 0  (GHz) g (mm) t (mm) w (mm) y (mm) x (mm) 

0.014571332 0.043 2.951 1.2 3.9 1.838256836 8 6 

0.086800819 0.2545 2.932 1.5 2.25 1.838256836 7.5 6.5 

0.123793221 0.3616 2.921 1.5 1.75 1.838256836 7.5 6.5 
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Figure (4.22): Externally coupled microstrip resonator . 

 

Figure (4.23): Response of |S21| for minimum quality factor. 

 

Figure (4.24): Response of |S21| for maximum quality factor. 
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Table (4.25): Calculations of coupling coefficients. 

coupling coefficient normalized quality factor 

0.149910437 1.4543 m12 max value 

0.014524088 0.1409 m46 min value 

 

Table (4.26): The physical dimensions and calculations of coupling coefficients. 

Mij f2(GHz) f1(GHz) s(mm) g(mm) w(mm) y(mm) x(mm) 

0.159771 3.225 2.745 0.1 0.2 1.838257 7 18 

0.012232 2.961 2.925 2.5 1.5 1.838257 8 6 

 

 

Figure (4.25): The physical structure of the minimum coupling coefficient in 

example nine. 

 

Figure (4.26): The physical structure of the maximum coupling coefficient in 

example nine. 
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Figure (4.27): Response of |S21| for the maximum coupling coefficient. 

 

4.2 Conclusion 

 In chapter three, the synthesis procedure of coupled resonator multiplexers  is 

presented. The procedure has been applied to the proposed novel structure in nine 

examples in chapter four and the reality of results have been checked in last example. 

Each example is mentioned to advance an advantage of the structure and to prove the 

ability of structure to meet the interesting characteristics in multiplexers. A remarkable 

advantage of this novel structure is the ability of dividing the multiplexer into smaller 

blocks (diplexers) and optimizing each diplexer individually. This decreases the 

complexity of optimization process and save the time consumed in optimization. The 

main disadvantage in the novel structure is the degradation of isolation between channel 

compared with conventional multiplexer. Increasing the number of resonators per 

channel and interchanging the channels positions improves the isolation as shown in 

examples. 
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chapter 5 

 

Conclusion and Future Work 

 

5.1 Conclusion 

 This thesis talks about synthesis multiplexers based on coupled resonators 

circuits theory using optimization of coupling matrix. The multiplexers are N-port 

networks, so analysis of those networks has been introduced for both electrical and 

magnetic coupling. In magnetic coupling, each resonator in the network is represented 

by a series R-L-C circuit. Using Kirchoff's voltage law, the equations of network are 

written and the system or network is represented by impedance matrix. In electric 

coupling, each resonator in the network is represented by a parallel R-L-C circuit. Using 

Kirchoff's current law, the equations of network are written and the system or network 

is represented by admittance matrix. The general formula is derived to use for both 

types of coupling because the normalized impedance matrix is identical to that 

normalized admittance matrix, which means unified formulation is derived for an n-

coupled resonators regardless of whether the couplings are magnetic or electric or even 

the combination of both. A General matrix [A] has been formulated in terms of the 

coupling matrix [M], and a cost function has been derived to be used in optimization. 

 The procedures of synthesis starts from determining the operation's bands to 

transform them from band pass to low pass. Then using derived equations, the external 

quality factors can be numerically calculated to reduce the parameters that need 

optimization. After that initial reflection zeros' frequency locations can be calculated. 

These locations have equal spaces between them. These initial locations, transmission 

zero, return loss and initial coupling coefficient are entered to the optimization 

algorithm to minimize the cost function to get the optimal values of reflection zeros' 

frequency location and the optimal coupling coefficients. Finally scattering parameters 

can be plotted using scattering parameters equations to view the response. 

 A generalized novel coupled resonator multiplexer is proposed in this thesis. It is 

based on coupled resonators circuit and the synthesis is based on optimization of 

coupling matrix. There is neither power distribution network nor extra resonating 

junction so the number of reflection zeros is equal to the number of total resonators, 

thus the novel structure can be miniaturized in comparison to the conventional 

multiplexers since it consists of only resonators without the need to use manifolds or 

circulators or an extra junction resonator.. The synthesis of the new structure is simple 

and it has less complexity in comparison to others, but is noted that the isolation 

between some channels degrades depending on the number of resonators between the 

ports of each corresponding channels. This thesis talks about two ways to improve the 

isolation. This first approach talks about increasing the number of resonators per 

channel. This will increase the isolation with low complexity but it will also increase the 
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size that is reduced by removing the external junctions. The other way talks about 

interchanging the positions of channels which can improve the isolation between 

overlapping channels. 

 The optimization processes are done by a MATLAB function "fminsearch" to 

return the minimum value of unconstrained multivariable function using derivative-free 

method. "fminsearch" uses the simplex search method of Lagarias et al where it is a 

direct search method that does not use numerical or analytic gradients. This function 

needs initial values and these initial values play a very important role in getting optimal 

solution in faster time. The initial values are given in different ways, sometime they are 

given equally and another time they are taken from previous design. This way is 

important when you need to update or improve the design. 

 The proposed structure can achieve Chebyshev response , Quasi elliptic 

response and both so direct coupling and cross coupling are existing in this structure. 

These responses and different characteristics have been achieved in this thesis. 

 

5.2 Future Work 

 In the Chebyshev examples in the inner channels, a transmission zero appears 

without existing any cross coupling, and in the examples with Quasi elliptic response in 

the inner channel, an extra transmission zero appears in addition to the two transmission 

zeros coming from cross coupling to be three transmission zeros per inner channel. 

These extra transmission zeros need to be investigated to understand why they appear. 

Another future work can be done by implementation of the proposed structure or by 

designing and implementation more complex multiplexers by adding more channels and 

more cross coupling to improve selectivity. Further work can also be conducted by 

introducing new methods to improve the isolation between the multiplexer channels, as 

it has been shown that the isolation performance of the proposed coupled resonator 

multiplexers degrades in comparison with the conventional multiplexers. 

 The initial values of coupling coefficients and the locations of the reflection 

zeros play an important role in optimization processes. Future work can be conducted 

by finding equations that calculate the exact coupling coefficients and locations of the 

reflection zeros and hence the parameters in optimization process can be reduced and 

the optimization becomes faster.  

 

 

 

 

 

 


