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ABSTRACT

In a Networked Control System (NCS), sensors, controller and actuator are connected
to the communication network as nodes instead of hardwiring them with point-to-
point connection. This system setup has the advantages of low cost, flexibility, less
wiring, and the system performance can be remotely controlled from a long distance.
Besides a lot of a advantages, a NCS has also shortcomings, induced by the network
components, like time delays and data packet loss. Network delays degrade the NCS

control performance and destabilize the system.

In this thesis, a new tracking control methodology for a special case of nonlinear
control systems with time delays induced by inserting the communication network
into the forward control loop is presented, which is generated from the use of gain
scheduling technique. In this methodology, the design of a gain scheduled tracking
controller is based on the use of output feedback control, which also includes
designing an estimator for compensating the induced time delays.

This methodology is applied to an application of nonlinear systems, that is magnetic
ball levitation CE152 and the results showed that the designed controller achieved the
desired performance as well as treating the effect of time delays induced by the

network.
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CHAPTER 1

1. INTRODUCTION

1.1 Introduction of Networked Control Systems

The point-to-point architecture is the traditional communication architecture for
control systems, that is, sensors and/or actuators are connected to controllers via
wires. In recent years, due to the expansion of physical setups and functionality, a
traditional point-to-point architecture is no longer able to meet new requirements,
such as modularity, integrated diagnostics, quick and easy maintenance, and low cost.
Such requirements are particularly demanding in the control of complex control

systems and remote control systems [1].

Meanwhile, data networking technologies provide several benefits on linking data
points like computers. Networks enable remote data transfers and data exchanges
among users, reduce the complexity in wiring connections and the costs of medias,

and provide ease in maintenance[2].

The new requirements can be satisfied by replacing the traditional point-to-point
architecture with those based on common-bus network which is called a Networked
Control System (NCS).

In general, NCSs are a type of distributed control systems where sensors, actuators,
and controllers are interconnected through a communication network as shown in
fig(1.1). Sensors measure states of the plant and transmit these states over the
communication network to controllers. The controllers receive these states, and
calculate appropriate control actions and send them to actuators over the
communication network. Actuators receive control actions and control the plant
appropriately. On other meaning, in the NCSs, a feedback control loop is closed

through a communication network which is the backbone of the NCS.



There are two general NCS structures can be configured as distributed control

systems: Direct structure and hierarchical structure that will be described later.

Reference | l
—>
Signal ~| Controller Actuator Plant Sensor

A 4

A 4

A

Network

<
<

Figure 1.1: A Block Diagram of an NCS.

In the past few years, the technologies on general computer networks have also
progressed very rapidly. With, increasing speed, widespread usages, numerous
software and applications, and well established infrastructure, these networks have
been widely applied in the control of industrial and military applications. These
applications include manufacturing plants, automobiles, and aircrafts. Connecting the
control system components in these applications, such as sensors, controllers, and
actuators, via a network can effectively reduce the complexity of the systems with
nominal economical investments. Furthermore, the applications connected through a
network can be remotely controlled from a long distance. Traditionally, the networks
used in the aforementioned applications are specific industrial networks, such as CAN
(Controller Area Networks), and LAN (Local Area Network).

Despite the attractive benefits gained from using data networks in the control purpose,
NCS suffers from many problems. One of the major problems of NCS is the delay of

data transmission between the units of NCS.

The continuous-time systems with time-delays are infinite dimensional systems. The
infinite dimensional continuous-time system can be reformulated to finite

dimensional discrete-time system by sampling the continuous-time process.

It is clear that the infinite dimensional systems are much more difficult to deal with
than the finite dimensional systems, thus , the discrete-time description of the NCS
model is important in the analysis process of NCS, and can be derived by discretizing

the continuous-time systems at sampling instants T.



The following Remarks should be taken into account when selecting the value of
sampling time:
e Make the sampling time T small enough to reproduce the open-loop time

response enough precisely (T :tr/10) and to avoid aliasing effects (Nyquist

frequency /T larger than closed-loop bandwidth).
e Make the sampling time T small enough to react enough readily to
disturbances affecting the system.
e Make the sampling time large enough to avoid fast and expensive control
hardware.
As shown in fig.(1.2), network delays in the NCS can be categorized from the

direction of data transfers as the sensor-to-controller delay (r§°) and the controller-to-

actuator delay (z;*) and both network delays can be longer or shorter than the

sampling time T. Network delays are modeled and analyzed in various ways. They
can be modeled as a constant delay, independent random delay and delay with known

probability distribution governed by Markov chain model.

peee > ZOH .| Continuous-Time Sampling (T) Lo |
! Actuator plant sensor \
1
' v
1 Physical placed together
Control Control

Network 72°

K

Network 717

i
I

Discrete-Time
------------------- Controller [~ m - mmmm e e o

Figure 1.2: The block diagram of network-induced delay

Network delays degrade the NCS control performance and destabilize the system.
Therefore, any control system constructed without considering these delays has a low
performance and reliability, Thus a great emphasis are made on developing control

methodologies to handle the network delay effect in NCS.



1.2 Background

1.2.1 Network Types

Many different network types have been developed for the use in control systems and
the delay characteristics on NCS basically depend on the type of a network used. The
networks can be divided into two groups: real-time and non-real-time data.

o Non-real-time: This network does not have stringent time limits on their delays
during data exchange, and in these systems, the concern is over whether the data
arrives without error and duplication.

o Real-time: This network has strict time limits and the data’s value is diminished

as the system delay grows larger.

There are two types of real networks according to different medium accesses control
(MAC) protocols which are used for control purpose and described as follows[1]:

1- Cyclic Service (Periodic) Network

In local area network protocols with cyclic service such as SAE token bus and time
division multiple access protocol, data is transmitted in a cyclic order with
deterministic behaviors. Thus, the delays are periodic and can be simply modeled as a
periodic function. In practice, NCS may experience small variations on periodic
delays due to several reasons, for examples, the discrepancies in clock generators on a

controller and a remote system may result in delay variations.

2- Random Access Network

Carrier sense multiple access protocol is most often used in random access network
whose application includes CAN, Ethernet , and Internet. The significant parts of
random network delays are the waiting time delays due to queuing and frame collision
on the networks. When an NCS operates across networks, several more factors can
increase the randomness on network delays such as the queuing time delays at a

switch or a router, and the propagation time delays from different network paths. In
such network, z;° and 7%, are stochastic processes where stochastic approaches are

needed to model the behaviors of both delay types.



1.2.2 NCS Configuration.

In general, there are two major types of remote control systems that utilize

communication networks listed as follows[3]:

Direct Structure: The NCS in the direct structure is composed of a controller
and a remote system containing a physical plant, sensors and actuators. The
controller and the plant are physically located at different locations and are
directly linked by a data network in order to perform remote closed-loop
control as shown in fig.(1.3).

Hierarchical Structure: The basic hierarchical structure consists of a main
controller and remote closed loop systems as depicted in fig.(1.4).
Periodically, the main controller computes and sends the reference signal in a
frame or a packet via a network to the remote systems. The remote system
then processes the reference signal to perform local closed-loop control and
returns to the sensor measurement to the main controller for networked closed-

loop control.

The use of either the direct structure or the hierarchical structure is based on

application requirements and designer’s preferences. For example, a robotic

manipulator usually requires several motors at the joints of the robot to

simultaneously and smoothly rotate together. It may be more convenient and more

robust to use an existing robot controller and formulate the networked control

problem in the hierarchical structure. On the other hand, a designer may require a

networked DC motor speed control system to have a faster control response over the

network. The direct structure may be preferred in this case[3].

Actuator
Control Signal R /

Controller Network

A

A

Sensor Measurement \
Sensor

Figure 1.3: Data transfers of direct structure
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\ 4
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Figure 1.4: Data transfers of hierarchical structure,

Where Cy, is the main controller, S; is the ith local sensor, C; is the ith local controller

, and A is the ith local actuator.

1.2.3 Closed Loop Control System

In a closed-loop control system, a sensor monitors the output and feeds the data to a
computer, which continuously adjusts the control output (system input) as necessary
to minimize the error. Feedback allows the controller to dynamically compensate the
disturbances. An ideal feedback control system cancels out all errors, effectively
mitigating the effects of any forces that might or might not arise during operation and

producing a response in the system that perfectly matches the user's wishes.

In reality, this cannot be achieved due to measurement of errors in the sensors, delays
in the controller, and imperfections in the control input. The concept of the feedback
loop: the sensed value is subtracted from the desired value to create the error signal,
which is handled by the controller to produce the control signal, which can achieve
the desired response [4].



1.3

Fundamental Issues with Networked Control Systems

The following two issues are the most challenging problems with NCSs that need to

be properly addressed to ensure the stability and performance of the closed-loop

systems|[5].

1.4

1. The first issue is the network-induced delay, including sensor-to-controller

delay and controller-to-actuator delay, that happens when data exchange
happens among devices connected by the communication network, which will
deteriorate the system performance as well as stability. This delay, depending
on the network characteristics such as network load, topologies, routing

schemes, etc., can be constant, time-varying, or even random.

The second issue is the data packet dropouts. In the NCS, data is sent through
the network in packets. Due to network characteristics, such as their
topologies, the used protocol, etc. therefore, any continuous time signal from
the plant is first sampled to be carried over the communication network.
Chances are that those packets can be lost during transmission because of
uncertainty and noise in communication channels. It may also occur at the
destination when out of order delivery takes place. Although most network
protocols are equipped with transmission- retry mechanisms, they can only
retransmit for a limited time. After this time has expired, the packets are

dropped

Recent Works on Networked Control Systems

Due to network delay concerns, several methodologies have been proposed to treat

time delays systems. These methodologies have been formulated based on several

types of network behaviors and configurations in conjunction with different ways to

treat the delay problems. The basic concepts of some control techniques that have

been developed for the control of NCSs are presented here.

1. HALEVI and RAY, proposed a methodology named as the augmented

deterministic discrete time model methodology to control a linear plant over a

periodic delay network. This methodology is based on discrete-time state

7



space models. The controller uses j past measurements z(k) = y(k - i), i =
{1,...,j} to calculate the control signal at k. The network delays are handled by
augmenting the delays into the full system state model, and the stability for
periodic delays is proven based on the eigenvalues of the augmented system

state transition matrix[6].

LUCK and RAY, developed an queuing methodology which denoted as the
deterministic predictor-based delay compensation methodology. This
methodology uses an observer to estimate the plant states and a predictor to
compute the predictive control based on past output measurements. The
control and past output measurements are stored in FIFO queues and shift
registers, and these are located before and after the controller in the control
loop. the past measurements are used to estimate the plant state at k —6+1,
where @is the size of the shift register between the sensor and the observer.
Next, using the previous estimate, the plant state is predicted at k + x4, where u
is the size of the register after the controller. The predictive control signal u(k
+ u) is then calculated and stored in the shift register. Since both the observer
and the predictor are model-based, the performance of the system highly

depends on model accuracy[7].

NILSSON, developed an optimal stochastic control methodology for NCS. To
control a system over a random delay network. The effects of network delays
are treated as a Linear Quadratic Gaussian (LQG)problem. The controller and
actuator used in this approach is event-driven while the sensor is time-driven.
In this work the delay was assumed to be less than one sample time and the
information of all the past delays are available. In this approach, two
stochastic processes were incorporated into the system state-space equations
and the goal is to minimize a cost function of the plant states and inputs. The
stability of the network-based system for both independent delays and delays

modeled by a Markov chain is discussed using stochastic stability analysis[8].



4. WALSH, BELDIMAN, YE, and BUSHNELL, developed the perturbation
methodology for NCS. This methodology considered the difference between
the current plant output values and the most recently transmitted plant output
values as a perturbation to the system and searches for limits to this error. The
stability is proven using the Lyapunov approach on the dynamics of the error.
Several assumptions are made, including error free communications, fast
sampling and noiseless observations, but the plant and the controller may be

nonlinear and time variant[9].

5. ALMUTAIRI ET AL, proposed the fuzzy logic modulation methodology for
an NCS with a linear plant and a modulated PI controller to compensate the
network delay effects. In this methodology, the Pl controller gains are
externally updated at the controller output with respect to the system output
error caused by network delays. Thus, the PI controller needs not to be
redesigned, modified, or interrupted for use on a network environment. The

fuzzy logic modulation methodology can be implemented in a unit called the

fuzzy logic modulator, which modifies the control u (t) by

(6= Bup (1) +K e (0) +K, [ e() d7 ]
The multiplicative factor gis used to externally adjust the controller gains at the
output without interrupting the original Pl controller. The value of £ is selected from
two fuzzy rules based on the network delay effects as follows:

If e (t)is SMALL, then = f3,,
If e (t ) is LARGE, then B =3,

Where0 < g, < 5, <1[11].

6. HONG, developed the sampling time scheduling methodology to
appropriately select a sampling period for an NCS. The fundamental concept
of this approach is to appropriately select a long enough sampling period for a
discrete-time network-based system such that communication delays do not
affect the control performance, and the system remains stable. In this case, the

control delay in a discrete-time control loop must be assumed to be less than



the sampling period T of the loop. The control loop consists of a time-driven
sensor and controller, and an event driven actuator[12].

7. H. Elaydi and W. Sakallah, modeled the time delays using different
approaches such as Pad’e approximation and Smith Predictor in continuous
system and modified z-transform in discreet systems. The delays were
assumed to be constant and known. The delays in the system were lumped in
the plant model. They showed a design of stable and optimal controller for
time-delay systems using algebraic Riccati equation solutions and PID
control[13 ].

1.5 Thesis Assumption

In this thesis, the following assumptions are needed:

1. The controlled process should be a special case of 2" order nonlinear system.
The linearization of the system about an equilibrium point takes the form:

e
o o)

The actuator implements zero-order hold (ZOH) reconstructing, which holds

TN
x. X
N =
~—
Il

(1.1)

<
Il

2. The actuator is time driven.

the last control signal until the next sample time arrived.
3. The sensor is time-driven.
The states of the plant are sampled periodically.

4. The controller is time-driven.
The controller calculates the new control signal at discrete time instants with a
constant sampling time.
5. The proposed type for the network that used for control purpose is cyclic service
network.
Data is transmitted in a cyclic order with deterministic behaviors. Thus, the

delays are periodic and can be simply modeled as a periodic function.

6. Network transmissions are error-free.

10



r(t)

7. The communication network inserted into the forward control loop of the control

system.

8. The induced time delay z,”in the forward control loop is random, but in the same

time bounded (7 <T ).

1.6  Statement Of The Problem

A general block diagram of the networked control system proposed in this thesis is
shown in fig.(1.5).The network distributed control system consists of a remote
nonlinear plant, a controller designed for that nonlinear plant, and a communication

network that connects between the controller and the plant.

Controller Nonlinear

y(®

- System

Figure 1.5: The block diagram of the networked control system

The insertion of the communication network in the feedback control system that
contains a nonlinear system, makes the design of the tracking controller complex.
During the designing process for the controller, two major problems will be faced
and need to be taken into account: Nonlinearity of the system and the time delays

induced in the forward control loop by the network.

The tracking controller for nonlinear system without considering the time delays can
be built by using some tools such as: gain scheduling technique, sliding mode,
feedback linearization, back stepping and adaptive control. In this thesis, the problem

of nonlinearity will be solved by using gain scheduling technique.

As stated previously, the control system constructed without considering the time
delays have a low performance and reliability. Therefore, it is necessary to extend the
designed controller for the nonlinear system to compensate the time delays over
treating nonlinearity of the controlled system.

11
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1.7  Thesis Objectives

The main objective of this thesis is to propose and employ a new methodology to
solve the tracking control problem for nonlinear control systems with time delays
induced by introducing a communication network in the forward control loop for the
control system. The evaluated technique will be applied on an application of a special

2" order nonlinear systems such as magnetic ball levitation CE152.

1.8 Research Methodology

In order to achieve these objectives, the following procedure will be carried out:

1. Designing a continuous output feedback gain scheduled controller for the
special case of nonlinear system without time delay consideration.

2. The continuous system is sampled, and a digital output feedback gain scheduled

controller for the special nonlinear system with no time delay is also designed.

3. The communication network in the forward channel is taken into account, the
discrete time model of the NCS is established, and the extended gain scheduled
output feedback controllers is designed for the discrete-time networked control
system.

4. Simulating each type of an output feedback gain scheduling designed controller

for an application such as magnetic ball levitation CE152 and checking the
performance of each controller.

12



1.9 Contribution Of The Thesis

This thesis presents a methodology for designing a gain scheduled controller for a
special case of nonlinear systems to solve the tracking problem via a communication
network introduced into the forward control loop of the control system, the tracking
task is achieved by designing an extended digital output feedback gain scheduled
controller which supports for compensating the induced time delays over treating
nonlinearity of the system. The evaluated technique is applied on an application

which is magnetic ball levitation CE152.

1.10 Thesis Outline

The contents of the thesis are as follows:

Chapter 2 provides a basic idea of the linearization and the gain scheduling
techniques that used for a nonlinear control system, and presents the design
procedures of an output feedback gain scheduled tracking controller for a special case
of 2" order nonlinear system.

Chapter 3 shows how to replace the continuous time model of the plant by a discrete
time model, and also shows how to derive the exact discrete time model for a special
case of 2" order system, this model is used to design a digital output feedback gain
scheduled controller.

Chapter 4 presents how to obtain a discrete time model for a plant with time delays at
the input that induced by inserting the forward channel in the control loop of the
control system, and also provides strategies for compensating the induced time delay
by the forward channel of the network.

Chapter 5 shows how to obtain an approximated model for the magnetic ball
levitation CE152 apparatus, and shows how to implement a simulation model of this
apparatus on Matab/Simulink.

Chapter 6 presents simulation results that performed by applying the different
programmed controllers to a simulation model of the magnetic ball levitation CE152
on Matalb/Simulink program using MATLAB, at the end of this chapter a discussion

of these results is presented.

13



CHAPTER 2

2. NONLINEAR FEEDBACK CONTROL

2.1 Introduction

There are several practical tools available for nonlinear control design, including
linearization, gain scheduling, feedback linearization, sliding mode control, Lyapunov
redesign, backstepping, passivity-based control, and high gain observers. It is also
unlikely that the whole design of a nonlinear feedback controller can be based on one
particular tool. The engineer will need to employ the tool that is appropriate for the
problem in hand. The applied application used in this thesis uses gain scheduling
control to overcome the problem of nonlinearity because it is practical enough for the

applied application.

There are many control tasks that require the use of feedback. Depending on the
design goals, there are several formulations of the control problem. The tasks of
regulation, tracking, and disturbance rejection or attenuation lead to a number of
control problems. In each problem, we may have a state feedback version where all
state variables can be measured or an output feedback version where only an output
vector, whose dimension is typically less than the dimension of the state, can be

measured[13].

2.2 Regulation Of Nonlinear System

We start by the regulation problems for two reasons. First, many control problems are
regulation problems. Second, the tracking problems and regulation problems are
related, so, the tracking problem reduces to a regulation problem. The regulation

problem is the problem of remaining the system close to the origin equilibrium point.
Consider the nonlinear system,

X =f (x,u)
y =h(x,u)

The state feedback regulation problem for system (2.1) is the problem of designing a

(2.1)

feedback control input

14



u=7y(x) (2.2)

Such that the origin x =01is a uniformly asymptotically stable equilibrium point of
the closed-loop system,

X =f (x,y(x)) (2.3)

The output feedback regulation problem for the system (2.1) is the problem of
designing a dynamic output feedback controller,

u=~(y,z)

, (2.4)
Z=9g(y.z)

Such that the origin of the closed loop system(x:O,z :O)is a uniformly

asymptotically stable equilibrium point.
2.3 Tracking Of A Nonlinear System

The tracking problem is the problem of regulating the system to any of its equilibrium
states, not just the zero state. In a tracking problem, a reference input is defined, and
the output of the system is required to be equal (or close to) the value of reference

input.

Since, the regulation problem and tracking problem are related, then the later can be

reduced to a regulation problem by shifting an arbitrary point X  to the origin. At the
same time, the feedforward value of the input u is needed to maintain equilibrium at

X . Since X is an equilibrium point, we have

0=f (XgUg), V>0 (2.5)
To shift the desired equilibrium point to the origin , change of variables is needed and
can be written as follows:

X=X =X

2.2
U, =U—Ug (2.2)

The new coordinates of the nonlinear state equations become,

15



(2.7)
Ys ::hé<xé’u5)
Where
Xs =" (Xss 1 XU +u6>:f6(xﬁ’uﬁ)
(2.8)
Ys = h <Xss 1 X5:Ug +u5>: hé <X5’u5>
At equilibrium point (x,u, ), we have,
X =Xq — X, =0
2.
u=ug, —u;=0 (29)
Substituting from (2.9) into (2.7), we get:
f,(0,0)=0 for all t >0.
(2.10)

h,(0,0)=0 for all t >0.
The tracking problem is reduced to solve the regulation problem for the system (2.7)

at the desired operating point, where u, is designed as a feedback control of x,orX,.
The overall control u =u, +u_ where u, is a feedback component and u is a feed

forward component.

2.3.1 Integral Control

The state feedback regulator for the combined integral action together with a system
can then be designed to obtain a tracking system with zero steady state error. The
block diagram of the state feedback with integral control is shown in fig(2.1) below:

The addition of integral control achieves asymptotic tracking under all parameter
perturbation that do not destroy the stability of the closed loop system, but in the same
time increases the system type, and thus, an additional state vector must be added to
achevie zero steady state error as well as desired transient response is achevied.

Plant y

. . Stabilizing
.[ Controller
- A A

\ 4
\ 4
\4
v

Measure
d

Figure 2.1: Block diagram of integral control.
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Consider the nonlinear system,

X =f (X,u,w)

2.11
y =h(x,w) 21

Where w is a vector of the unknown constant parameters and disturbance. The

tracking task here will be achieved by regulating the system at the desired equilibrium

point (X, ,u,, )such that at this point y =r .

At equilibrium, the following equations must be satisfied

0=Ff (X, Uy, w)

ss !

r=h(xg,w) (212)

The new state o generated from integrating the regulation error e =y —r where:

g=¢e (2.13)
Then the augmented state space model can be written as :

X =f (X,u,w)

6= (x,w)—r (@19

The tracking task here is reduced to design a regulated feedback controller that

regulates the augmented state space model (2.14) at an equilibrium point (xss,ass)

where o, produces the desired ug .
The nonlinear feedback controller that regulates the augmented model takes the form,

u=ry(x,o.e) (2.15)

Such that at the equilibrium point (x,o, ), the controlled output is tracking the

reference signal with zero steady state error.

2.4  Linearization Tool

Linearization is a linear approximation of a nonlinear system that is valid in a small
region around the operating point. The linearization tool is useful in model analysis

and control design tasks, some of these tasks are regulation and tracking.

2.4.1 State Feedback Regulation
Consider the nonlinear system,

17



X =f (x,u) (2.16)
By using Taylor series, the linearization of a system about (x =0,u =0) can be
written as:

X =Ax +Bu (2.17)
Where:

of of
A=—(Xu , B=—1(x,u
aX ( )X:O,U:O 8u ( )x:O,u:O (218)

After applying the linear state feedback control u =—Kx to the nonlinear system

(2.16), the closed loop system becomes:

X =f (x,—Kx) (2.19)
The linearization of the closed loop system (2.19) about the origin (x = 0) IS given
by:

o of of ou
X :a—x(x,—Kx)x:0+a—u(x,—Kx).a—XX:O:(A—BK)X (2.20)

The origin of the closed loop system is asymptotically stable equilibrium point if and

only if the closed loop matrix (A—BK)is Hurwitz, thus, the state feedback

regulation problem of the nonlinear system is reduced to a problem of designing a
linear state feedback controller u =—Kx to yield the required closed loop poles

values that depend on desired transient response.

2.4.2 Output Feedback Regulation

A problem in using state feedback controller comes about when it is difficult to
measure all of the state variables of the plant. Furthermore, it is too expensive to
measure all the states of many applications and send them to controller such as send
them through a network . If the state variables are not available because of the system
configuration or cost, it is possible to determine the estimated states of a system from
available measurements and a model by using an observer. For an output feedback

controller, a state feedback applied from estimated state, rather than actual states.

18



For the output feedback regulation problem of the nonlinear system (2.1), the

linearization of the system about of the origin results in the standard linear form,

X =AXx +Bu
y =Cx (2.21)
Where A and B are defined previously, and
oh
C=—0(x
o ) (222)

x=0

The output feedback regulation of a nonlinear system reduces to design a linear output
feedback controller. This controller consists of designing state feedback controller and
an observer to estimate the states of the plant that used for the purpose of state
feedback. The linear output feedback controller called observer-based regulator and it
can be written as:

U = —KX (2.23)
To regulate the nonlinear system (2.1), the state feedback gains vector K is designed
such that the closed loop matrix (A —BK )is Hurwitz, while the observer gains vector

H is also designed separately such that the closed loop matrix(A —HC ) is Hurwitz.

2.4.3 State Feedback Tracking
The linear form of the state feedback control input (2.15) is given by
u=—-Kx—-K oc—-K.e (2.24)

When the linear control input (2.24) is applied to system (2.1), we get the closed loop
system as,

(2.25)

Linearization of system (2.25) about the equilibrium point (xss v%) yields the linear
augmented state space model by,
5.5 = (-’4 - Blc)fa (2.26)
Where:
19



(2.27)

From (2.26), the tracking problem is reduced to design the state feedback gains vector

K such that the closed loop matrix (A —B A")is Hurwitz.

2.4.4 Output Feedback Tracking

The linear form of the output feedback tracking controller to be designed is given

by:

X = AX +Bu —HC (x —X)

2.28
u=-K.Xx—-K_o (2.28)
When the controller (2.28) is applied to the augmented model (2.14), the result of the

closed loop system is:

X

f (X ,—KXA)Z\—KUO'>
) (2.29)
X

AX +Bu —HC (x —X)
Let e, =X —X ,

After linearizing the closed loop system (2.29) about the equilibrium point, the result
becomes in a linear form as,

HE e
v - o)

Because the closed loop matrix is an upper-triangular, the eigenvalues of the closed

(2.30)

loop system are the eigenvalues of the diagonal blocks.

eig (A )=eig (A —B A )Ueig (A —H L) (2.31)

Where:
A _[A-BA BA >3
“ 1 0 A —HC (2:32)
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Eq(2.32) is called the separation principle, which refers to the fact that the designs of

state feedback gains and observer gains can be performed separately.

From (2.30), the tracking problem is reduced to design the state feedback gains vector

KCsuch that the closed loop matrix(A—B/C) is Hurwitz and also designing the
observer gains vector H such that the matrix (A —HC )is Hurwitz in which the

estimated vector e, will decay to zero.

2.5 Gain Scheduling

In control theory, gain scheduling is an approach to control of non-linear systems that
uses a family of linear controllers, each of which provides satisfactory control for a
different operating point of the system[14]. The limitation of the design via
linearization technique is that the linearized model is valid only for a limited range in
a neighborhood of an operating point at which the linearization is carried out. To
extend the approximate modeling by linearization over a wide range of operating
points, gain scheduling technique should be used. For the gain scheduling technique,
the nonlinear system is linearized about a set of operating points that parameterized
by one or more variables, which called scheduling variables. To achieve the
performance requirements for the nonlinear system, we need to design a single linear
controller whose parameters are functions of the scheduling variables, such a
controller is called a gain scheduled controller.

The procedure for designing gain scheduling controller of the nonlinear systems is

developed by the following steps[13]:

1. Linearize the nonlinear system about the family of operating points,

parameterized by the scheduling variables.

2. Design a parameterized family of linear controllers to achieve the specified
performance for the parameterized family of linear systems at each operating
point.

3. Construct a gain scheduled controller such that, at each constant operating
point, the controller provides a constant control value yielding zero error, the

linearization of the closed-loop nonlinear system at each operating point is the
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same as the feedback connection of the parameterized linear system and the

corresponding linear controller.

4. Check the performance of the gain scheduled controller for the nonlinear
model by simulation.

Now we want to apply the last procedures for designing a gain scheduled tracking
controller for a special case of 2" order nonlinear system which describes many
physical systems, especially systems in which the position and velocity are the
state variables, for example, the magnetic ball levitation CE152 and the inverted

pendulum.

Consider the special case 2" order nonlinear system described by:

Xy =X,
X, =T (X, X,U) (2.33)
y = h<X1)

For the tracking task, the system is regulated to a set of operating points
parameterized by a scheduling variables. Define «as a scheduling variable so that

when r = o = constant value, the following equations are satisfied,

0= X6 (@)
0=" (X5 (@), O, () (2.34)
a=h <X1ss (a)>

The linearization of the nonlinear system (2.33) about a family of parameterized

operating points (X . (c),uU,, (cv))can be written as :

(2.35)

After adding the integrator, the parameterized augmented model can be expressed as:
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2.36
Where
X, 0 1 0 A 0 B
E=|x, |, A=|-a,(a) —a(a) O =£C Oj' 5 =\b,(a) —( j
o Cl(a 0 0 0 (2.37)
C=(c,(a) 0 0)=(C 0)
The gain scheduled observer-based integral controller is given by:
X =A(a)X +B(a)u—H, (a)C (x —X)
u=-K, (a)X =K _(a)o (2.38)
Where
K, =(K, (@) K,,(a))and H,=(h, () h,,()) (2.39)

After Substituting from (3.38) for u in (3.36), the closed loop gain scheduling

Observer-based integral controller becomes,

R o
y = (¢(a) 0)@

Where
£=(K, (a) K,,(a) K, (a))and 2" =(0 0 -1 (2.41)

Because the closed loop matrix is in upper-triangular form, the separation principle
can be applied as stated previously, which means that the state feedback control with

integral action and the observer can be designed separately.

For designing the state feedback gain regulators for systems that are not represented

in CCF, four steps can be used as follow:
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1- Calculate the desired closed-loop denominator polynomial of the system P (s).

2- Transform the system into controllable canonical form by using linear
transformation.

3- Calculate the feedback vector of gains K, for the transformed design model

that assigns the poles of the closed-loop system at the roots of P (s).

4- Finally, find the original state feedback vector of gains K, in terms of K, .

For specifying the desired locations of the closed loop system poles, the method that

based on the classical control concept of the dominant second-order poles is used, so

the desired polynomial for a second-order prototype system is written as follows:

P(S)=s*+2{w,s + )} (2.3)
The desired poles are : s, , =—Cw, £4/1-¢7.

Because the system becomes third order system due to adding an integral action, we

must place the remaining pole so that their real parts are less than—-4¢w, [15]. The

desired polynomial can be computed as:

P(s)=(s +BLw,)(s* +2w,s + o))

=5°+(B,+2)¢m,s" +(1+ 284 ) aols + By (2.43)
Where g, >4
Let:
d, =(8+2)
d,=(1+24¢7) (2.44)
d3 = ﬂ1§w:

The desired polynomial becomes,

P(S)=s+ds®+d,s +d, (2.45)

The controllability matrix is:
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0 b, (a) —a,(a)b,(a) (2.4)
(@)b,(a) - (a)b,(a) (a(e)-2,())b,(a)
0 0 ¢, (a)b,(a)

From the controllability matrix (2.46), the system is controllable. The transfer
function of the system (2.36) is:

b, ()¢, (@) b, ()¢, ()
T S — 2 1 — 2 1
5) s(s’+a,(a)s+a,(a)) s’+a(a)s®+a,(a)s (247)
The CCF can be derived from the transfer function above as :
X, -a(a) -a,(a) 0)(X) (1
X, |= 0 0| X, |+|0|u
X 1 0/l X, 0
Xs N (2.5)
Xl
y = (bz(a)cl(a) 0 O) X,
X_S
The controllability matrix of the transformed model is:
me(a):(g(a) A(a)B(a) Kz(a)g(a))z
1 -a(a) al(a)-a,(a) (2.6)
0 1 -3 ()
0 1
Where
-a(a) -a,(a) 0 1
Ala)=| 1 0 0|and B(a)=|0 (2.7)
1 0 0

The transformation matrix T (er) between the two forms can be evaluated as:
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T.(@)=C,, («)(Cpy (@) =|b,(a) O 0 (2.51)

The control signal of this form can be written as:

U=k, (@)% —k, ()X, -k, ()X, (2.52)
Subsituting for u in (2.48), The closed loop system becomes,

X, —(ai(a)+kxl(a)) —(az(a)+kxz(a)) K, 3(a) X,
X, |= 0 0 X, (2.53)
X, 1 0 X,
The charactesrtic equation of the closed loop system (2.53) is:
det(sl —(A(a)-B(a)k =
(1 ~(A(@)-B (@)k,,)) 050

s*+(a,(a)+k,,(a))s? +(a,(a)+k,,(a))s +k 4 (a)

Then, by matching the coefficients of (2.54) with the desired polynomial (2.43),

yields:
d,=a (a)+k,,(a)>k,(a)=d,-a(a)
d,=a,(a)+k,,(a) >k, (a)=d,-a,(a) (2.55)
kx3(0£)= 3

Substituting for the values of d1, d,, and d3 from eq(2.44) into eq(2.55), yield

K (a)=(B+2)¢w, —a ()
Ko (@) =(1+28¢%) 0} —a, () (2.56)
Kys () = po?

By using similtary transformation, the feedback gain vector of the original model is:

K, (a) =K, (a)Tcil(a)
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Where

Ky =(Kaa(@) kiz(@) k,(a))

Subsituting for the values of k. ki, and ks from eq(2.56) into eq(2.57), the

scheduled state feedback controller gains are:

(1+28¢%) o} -2, ()

kzl a)= b2 (a)
k.o ()= (ﬁﬁzifc(g;)_ai(a) (2.58)
Bée]

k()= )6 (@)

For designing an observer for any second order system that is not represented in OCF

four steps can be used as follows:

1. Selecting the desired characteristic equation for an observer P, (s) .

2. Transform the system into observable canonical form by using linear
transformation.
3. Calculate the observer gains vector H, for the transformed design model that

assigns the poles of the observer at the roots of P, (s )

4. Finally, Find the original observer vector of gains H, in terms of H, .

The transient response of the observer is designed so that it is much quicker than the
transient response of the controlled closed loop system in order to yield rapidly state
estimate of the system[16]. To make the transient response for the observer faster than

for the closed loop system, the natural frequency for the observer is chosen to be
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equal to the natural frequency for the controlled closed loop system multiplied by a

factor f,, The desired characteristic equation for the closed loop observer becomes,

P,(S)=s*+2B,lw,s + i} (2.59)
Let
dl = Zﬂoé,wn
(2.60)
d,= oza)rf

The desired observer characteristic equation becomes,

P,(s)=s’+d;s +d, (2.61)

0

The observability matrix for the special case of 2" order system described in (2.35)
is:

C(a) c,(a) 0
@) = =
@[ apeten) 16 ol (262
The system is said to be completely observable because the matrix O, (a) has a full

rank. From the transfer function of the system (2.35), the observable canonical form
can be written as:

_ (2.63)
X
- (1 !
Y ( 0)()(_2]
The observability matrix of the transformed model is:
C(a) [ 10 J
O, (@)= = 2.64
(o) {C(a)A(a)] “a(a) 1 (264)

The transformation matrix T, («) can be evaluated by:

T (“)o:(gl(z)(a(;jl[—aj(a()) J:(—al](/;l)(/z)(a) 1/010(0!)} e
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The observer scheduled gains for the system found in OCF is given by:

HT (a)=(hx1(a) h,, (a))

The closed loop matrix (A (a)-H, (a)C (a)) is computed as :

(2.66)

(A(a)-H, (a)C (“)):[:((:: 81:((2)))) ;}

Then, the characteristic equation of the closed loop observer (2.66) is evaluated by :

det(sl ~(A(a)-H, (05)6(“)))

(2.67)
=s?+(a (a)+h,(a))s +(a,+h,(a)(a))

By matching the coefficients of the characteristic polynomial (2.67) to the desired

observer polynomial (2.61) , we have :

d,(a)=a(a)+h,(a)>h,(a)=d,(a)-a(x)

(2.68)
d,(a)=a,(a)+h,,(a)>h, (a)=d,(a)-a,(a)
By Substituting the values of d; and d, from eq(2.60) into (2.68), we get:
h.,(a)=2pc0m, -8 (a
() =2p¢0, —a(a) (269)

h,. (“) = ﬂoza)rf -4, (Ol)
The observer gains vector of original system is:

HZ(a)zTo (a)HX(a)z(]/Cl(a))

2,50, ~ () ] (2.70)
Bio)—a,(a)-2a (a)plw, + af ()

The observer scheduled gains (2.70) can be rewritten as :

. (a)= 2&42“(;;1(06)
_ feon —2 (@) =28 () Aoge, +2 (@)
c,()

The procedure for designing a gain scheduled observer-based integral controller can

(2.71)

h,, (@)

be summarized as follows :
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1- Attempt the values of damping ratio £ and the natural frequency w, of
the desired pole locations for a prototype second order system, by
choosing the values of settling time and overshoot for the transient
response specification.

2- Choose the value of factor S which guarantees that the third pole is

less than—4Zw, so that the third pole does not affect the behavior of the

two dominant poles.

3- Choose the value of factor £, so that the desired transient response of

the observer is much faster than that of the plant.

4- Calculate the gain scheduled state feedback controller gains

(kzy(@).k,,(a).k,, (), as described in (2.58).

5- Calculate the gain scheduled observer gains (hu(a),hzz(a))as

described in (2.71).
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CHAPTER 3

3. DIGITAL CONTROL

3.1 Introduction

A digital control system operates on discrete-time rather than continuous-time signals.
A digital computer is used as the controller in such a system. Using computers or
microcontrollers to implement digital controllers has substantial advantages. Many of
the difficulties with analog implementation can be avoided. For example, there are no
problems with accuracy or drift of the components. It is very easy to have
sophisticated calculations in the control law, and it is easy to include logic and
nonlinear functions. Tables can be used to store data in order to accumulate
knowledge about the properties of the system. It is also possible have effective user
interfaces[17].

The block diagram of digital control system is shown in fig.(3.1). The digital
computer perform the controller function within the system by running an algorithm.
The A/D converter converts the measured signal by a sensor, which is a continuous
signal, into sampled data form so that it can be processed by the controller . At the
controller output, the D/A converter converts the sampled data output of the controller

into a form which can be used to drive the plant.

Input Digital Output
- A/D Controller DIA System >

v

A 4
\ 4

Figure 3.1: Digital control system.
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3.2 Sampling and Reconstruction Processes
The operation that transforms continuous time signal into discrete time data is called
sampling or discretization. The reverse operation, that transforms the discrete time

data into continuous time signal, is called data reconstruction[18].

3.2.1 Sampling Process

A sampling process replaces the continuous time signal by a sampled data signal
which is a sequence of values at discrete time points. A sampled data signal can be
generated by using A/D converter which can be approximated by an ideal sampler in
the sampled data form. As shown in fig.(3.2), an ideal sampler is basically a switch
that closes instantaneously at every time interval T. When a continuous signal y(t) is
sampled by an ideal sampler at periodic intervals T, the resulting sampled data signal

is shown in fig.(3.3).

Sampler
UL v y(T)
Continuous Sampled
signal signal

Figure 3.2: Ideal sampler

y(t) y(T)

A A

L

v

v

0 T 2T 3T 41 5T 0 T 2T 3T 4T 5T
(@) (b)
Figure 3.3: (a) Analog signal, (b) Sampled data signal

3.2.2 Reconstruction Process

Many control systems have controlled processes that contain analog devices. These
devices are driven by an analog signal input. Thus, when the sampled data appear in a
control system, they should be first converted into analog signal before being applied

to the controlled process[19].
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The process of converting sampled data signal u (kT )to an analog signal u (t)is

called reconstruction. A device that performs this reconstruction process is called a
digital to analog (A/D) converter. The most common form of reconstruction used in
practice is zero order hold (ZOH) reconstruction which also called the actuators. As
shown in fig.(3.4), a ZOH circuit reconstructs a continuous signal from a discrete
signal by producing a constant output value that is proportional to a given input
sample for a fixed amount of time. Then, the output changes to a new constant value

that is proportional to the value of the next sample.

u(kT) u(t)

A A

.. .

Zero-Order
I
I

Hold

l l | l > l l l | l
»

0 T 2T 3T 4T 5T 0 T 2T 3T 4T 5T
Figure 3.4: Data reconstruction by using ZOH device.

The transfer function of the ZOH device is given by[20]:

l_e—TS

Gy (s)=

After approximating the A/D and D/A devices by an ideal sampler and ZOH device,
the approximated hybrid data control system is shown in fig.(3.5).

0,0~ e® o 140 [Fon 190 [ 120 _ Q)
+ ampler

Figure 3.5: Approximated hybrid data control system.
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3.3 Discrete Time State Space Model

The analysis and design of a digital control system is complicated by the fact that the
plant is a continuous-time system while the compensator is a discrete time system.
One way of dealing with this problem is to replace the plant with a discrete-time
model that specifies the behavior at the sampling instants. In this way, the entire
control system becomes discrete time, and the standard discrete time theory can be

used to design the compensator[15].

3.3.1 ZOH Equivalent Model For An Analog System

The discrete data model for an analog plant driven by a piecewise constant input is
called the ZOH equivalent model, which is an exact model for the plant at sampling
instants. The block diagram of digital control system in which the analog plant has

been replaced by its ZOH equivalent is shown in fig.(3.6).

00,y o0 o U0 [Fon 140 g 10O y()
+ - Sampler
r(k) e(k) u(k) ZOH Equivalent y(k)
+ ] C@@) Model For G(s)

Figure 3.6: Digital control system with ZOH equivalent model for an analog plant.

The resulted discrete state equation when an analog plant is replaced by a discrete
data model (ZOH model) is described by the following equations[15]:

X (k +1)=@(T )x (k)+I(T Ju (k)

y (k)=Cx (k) B.1)
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Where:
.
O(T )=e"T, F(T):jeAsdsB
0

3.3.2 ZOH Equivalent Model For A Special Case 2" Order System

Consider a special case of 2" order system is given by:
X, —a, -4 /)\X; bz
X
= (c, 0) *
g ( ' ){XZJ

The characteristic matrix (sl —A)is computed as:

S -1
| —A)=
-5 o)
The transition matrix is evaluated as:
o(t)=L"((s -A)")=

e “sinh(yt)

o (s ) 3y o o) z

—a,e “sinh(yt)
7%

Where

The vector I'(t) can be evaluated as:

v dy
b,e™ (cosh (yy) - (4/w)sinh (y7))

61_2[1_e“t (cosh(gut)+(/1/l//)5i” h(yt ))]

r(t)=[ e*B dy=[ ’

0

o

D2 1o sinch (pt
V/[e sinch(yt) ]
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For discretization, by setting t=kT, the discrete state space model can be written as:

oo ol W RIR RO

3.7)
(K
) = o)
Where
®,, =e™ (cosh (yT )+(A/y)sinh (yT))
o, e sinh(yT)
74
o, - —a,e " sinh (yT) (3:8)
7
®,, =e ™ (cosh (yT )—(4/w)sinh (yT))
And
I, = 2—2[1—e"” (cosh(y)+(A/w)sinh (y/))] = 2—2[1—(1311]
b2 ? (3.9)
r,= —Z[e“T sinch (T )} =h,®,,
%

The discrete transfer function can be calculated as:
TF =C (zI -®) 'T'=

[Clbzj[(l—cosh(l//)—(i/y/)sinh(l//))z +(e?" —COSh(l//)Jr(i/W)Sinh(‘//))} (3.10)
a, 2227 cosh (yT )z +e 7

3.3.3 The ZOH Pole - Mapping Formula

The performance specifications for the continuous time system are achieved by
assigning the closed loop poles at the desired values in the s-plane. When the plant is
replaced by its ZOH equivalent, the design model becomes discrete time system, and
the desired closed loop s-plane poles must be mapped into an equivalent set of the
desired z-plane poles. Using ZOH mapping formula, the desired s-plane pole maps

into the z-plane by the following equation.

Z; =e" (3.5)
For designing the state feedback controller, the desired continuous polynomial (2.43)
that derived in chapter 2 will be mapped into the discrete equivalent by using
eq(3.11) as:
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P(z)=(z-2,)(z-2,)(z -1,)
=(z% -2 cos(e,T )z +e 727 )(z —e /™" ) (3.6)
=z°+d,;z°+d,z +d,
Where:
d,=-e T (e " +2c05(e,T )
d, =e %" (1+ 26 "V cos (@, T )) (3.13)

d __ef(m+2)§wnT
3=

Also for designing an observer the continuous desired observer polynomial (2.59) will

be mapped into discrete equivalent as:

P(z)=2?+Pz +P, (3.7)
Where ,

P, = —2¢ " cos(f,e,T ) and P, =e 24T (3.15)

3.4 Digital State Feedback Control

The design of discrete control system by state feedback is similar in principle to that
of continuous data control system. In chapter 2, we showed how to design a state
feedback regulator for a controllable continuous system to keep the state variables of
the system at zero values. And also we showed how the regulation problem was

reduced to a problem of designing a vector K of feedback gains so that the poles of

the closed loop system (A -BK )are assigned at the desired locations in the left half

s-plane.

For discrete time system, the design of digital controller based on state feedback will

be reduced to a problem of calculating the feedback vector L so that the poles of the

closed loop discrete system (CD—FL)are assigned at the desired location in the

interior of the unit circle in the z-plane.

3.4.1 Digital State Feedback Tracking Controller

As discussed in chapter 2, the tracking task for the continues time system is achieved
with zero steady state error by introducing an integral action together with a state
feedback controller. The same task will be achieved by zero steady state error for the
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discrete data control system in which the controlled plant is replaced by its ZOH
equivalent by introducing an additional dynamics system as a part of digital
compensator. The cascaded combination of the additional dynamics and the plant is

shown in fig.(3.7).

Additional Dynamics ZOH of Plant
e[k] YalK] vk
EEE— ((Daa raa Ca) ((D, F: C) 1
Xa[K] X[K]

Figure 3.7: Cascaded combination of the additional dynamics system and the plant

The transfer function of the additional dynamics system which must be used to have a

tracking system with zero steady state error can be defined as[15]:

m

52(2 ) (3.16)

Where m represents the number of roots of reference input that are not eigenvalues of
®and

6(z2)=(z-2.)(z =2;)(2n)
Where (z,,,,...,z,, ) are the poles of d (z ) that are not eigenvalues of @.

The state space model of the additional dynamics is given by[15]:

(+1) = 0, (k) + T (K)

X
V. (K)=(L 0 - 0)x,(k)+u(k) (3.17)
Where
-5 1 0 -5,
-5, 1 0 -5,
o, = i i o i|, T,=|
-5, 00 .1 -5,
-5, 00 0 0 -5,

And x,(k)is the new state variable generated from introducing the additional

dynamics system. Then, the augmented state variables becomes:

Xy (k)= ():((i))] (3.18)



And, the augmented state space model for the cascaded combination of the additional

dynamics and the plant can be viewed as:

Xg (K +1)=Dyx  (k)+Tyu (k)

y(k):CdXd (k) (5.19)
Where:
e o) o
@, = , T, =
rc o, 0 (3.20)

C,=(C 0)
For example, the transfer function of the additional dynamics system which must be
implemented to track a unit step or ramp input with zero steady state error can be
derived from eq(3.16) as:
z

The state space matrices @, and I', for dynamics system (3.17) can be found as:

d,=1and I, =1 (3.22)
Substituting for @, and I', from eq(3.22) into eq(3.19), The state space

a

representation for the augmented model becomes:

(xxa(<kk 1?>]=(? ij(xxaikk))}@“(k)
= o[ )

The tracking property for the system (3.7) will be satisfied by designing a state

(3.23)

feedback regulator to the augmented model (3.23) as shown in fig.(3.8). The gains

vector L for the state feedback regulator has a dimension of (n +1) and it can be

partitioned into two elements as follows:

L=(L, L,) (3.24)
Where:

L, is the feedback gains vector for the controlled plant and L, is the feedback gain

for the additional dynamics system.
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Plant with feedback

Additional Dynamics

JLI o UKl LIk
4’O_> (q)a:raaLa) i =m > ((D, F, C) ! >
A b i
| T XK |
i L, i
Figure 3.8: State feedback tracking controller
3.4.2 Designing A State Feedback Tracking Controller For A Special Case
System
The a special case of 2" order nonlinear system is given by:
X, -4, -4 )\X, bz
(3.25)

r - ol

From eq(3.7), the ZOH equivalent model can be viewed as:
L (K +1)J:(CDM (Dlzj[xl(k )]+[r1ju ()
(k+1)) (@, @, )(x,(k)) \I,

(3.26)
X, (k )J
Where the values of ©,,, ©,,, ©,,,,,,I'; and I', are described in eq(3.8).

xX X

1) =6 o)

After introducing an additional dynamics to track a step or ramp input with zero
steady state error, the augmented state space model for the system (3.26) can be

derived from eq (3.23) as:
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X, (k+1)) (@, @, 0)(x,(k)) (T,
X,(k+1) [=| @, ®,, 0| x,(k)|+|T, |u
X, (k +1) ¢, 0 1)ix,(k) 0
(3.27)
X, (k)
y =(C1 0 0) Xz(k)
X, (k)
The controllability matrix for the augmented model (3.27) is:
C, =(I or @)
1—‘l (Dllrl + (I)12F2 ((Dlzl + (DlZ(DZl)Fl + chZ (chl + (DZZ )FZ (3 8)
= FZ (Derl + CDZZFZ CDZl (CDll + CD22 )rl + (CD§2 + (DlZCDZl)FZ .
0 ¢l ¢, (1+ @), +¢,®,,T,
The transfer function for the augmented model can be computed as follows:
z-®, -0, 0 ) (T,
TF=C (2l -®,) T, =(c, 0 0)| -, z-®, 0 | [T,
—, 0 z -1 0 (3.9)
_ C2P+C,z +C,
2°+ @2+ D,z + D,
Where
O, =— (P, +P,, +1)= —(Ze’lT cosh (yT )+1)
D, =0, 0, + D, +D,, — 0,0, =22 cosh (yT )+e*"
(T)s =00, +P,P,, = -
Co=clI, (3.30)
_ [chp —
2 :( - 2](aﬂ)n o, 1)
a2
_ (cbh, )=
3 :[ - ZJ(CD3+(D22)
a2
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The system (3.27) can be rearranged in CCF as:

X_l(k+1) _(T)l 2 _q_)s X_l(k) 1

-
Gk+1) =l 1 0 0 |[F(k)|+ 0fu(k)
gk+)) L0 1 0 Jx (k) (0
_ (3.10)
% (k)
y=(C_1 C, C_) X_z(k)
X (k)
The controllability matrix for the augmented model that found in CCF is :
1 -3, -0,
C,=(C @ @T)={0 1 - (3.11)
0 O 1
The inverse of the matrix in the last equation can be derived as:
1 &, o,
Cm=/0 1 @ (3.12)
0O 0 1

Then, the transformation matrix between two forms can be calculated as follows:

n & &
Cl Cl
T.=|T, -2I', T, (3.13)
0 ¢ G
The inverse of the transformation matrix is obtained by:
1 r(2,-5) &(E+G) ILE-)
T '= c,I.C. —< I, T,(c-¢
1" 272 1" 171 2

Where:

r, . __ _
IT,|=—2(3cc, +E,6, ¢
Cl
The corresponding state feedback controller for the augmented model defined by
eq(3.31) takes the form:
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u =_|—ded :_LxX__LaX_a :_Lxlx_l_LXZX_Z_L X (3.36)

Substitute for u from the above equation into eq(3.31), the closed loop system for the

augmented model which is found in CCF becomes:

X_l(k +1) _(&)1+Lx1) _((T)z'}'l—xz) _(&)3+an) X_l(k)
%, (k +1) | = 1 0 0 k)| @337)
%, (k +1) 0 1 0 Jix(k)

The characteristic equation of the above model is:

224 (D,+L,, )22 +(D,+L,,)7 +(Dy+L,,) (3.38)

By comparing eq (3.12) with the last equation, we obtain:
L,,=d,—®,
L ,=d,-0,
Ly =d;- (53

The state feedback gains vector for the transformed model (3.31) can be expressed as:

X an):(dl_a)l dz_cT)z d3_a)3) (3.39)

The gains vector for the original system described in eq(3.27) can be found as
follows:

L,=L,T. "= (LX L,. )Tc‘1 =

e, (26,-6) 6(6+¢;) I,(5-¢,)
Clrzc_s _Clrlc_?, r‘2 (C_a _CTl)
Clrzc_z _Clrlc_l Fz (_3 _C_l)

(3.40)

de =(Lzl LzZ Lza)

3.5 Digital Output Feedback Controller

In section (3.4) we discussed the design state feedback method that utilizes the
feedback of all state variables to form the required control input to achieve the desired
performance specifications. As described in chapter 2, in practice, not all state
variables are available for direct measurements, only a few states are measurable. The
lack of measurements of some states can be compensated by including an observer or

an estimator subsystem in the feedback controller.
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3.5.1 Digital Observer

The equation of the closed-loop observer for discrete time system is:

X (k +1)=®X (k)+Tu(k)+H (y (k)-y(k)) (3.41)
The error vector can be defined as:
e(k)=x(k)-x(k) (342)
Then, the difference equation of e (k ) can be evaluated as:

e(k+1)=x(k +1) X (k +1)
= (®-HC)e(k)

If the matrix H is designed such that the matrix (CD— HC ) has eigenvalues inside the

(3.43)

unit circle, then the estimated states will converge to the actual states of the plant and

the error dynamics will be reduced to zero with sufficient speed.

3.5.2 Designing Digital Observer For A Special Case Of 2nd Order System

The observabilty matrix of the system described in (3.7)

o0 - C\)\ (¢ 0
mz — C(D - Clq)ll Clq)lz (344)

The system can be transformed into observable canonical form as:

x (k +1):(:§z ;Jr(k)+(5Ju(k)

I, (3.14)
y (k)=(1 0)x(k)
Where
@, =—2¢ " cosh (yT )
CT)Z 2T
T, [ jl cosh () —(A/y)sinh (y)) (3.15)

[

j o2 COSh( ) (ﬂ/(//)sinh(l//))
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The observability matrix of the transformed model (3.45) can be calculated as:

O, =Crx = l_ 0
mx mx _q)l 1

The transformation matrix between the two forms is obtained by:

c 0 Y(1 o0 ®, 0
To=0n2i0mx=( : j ( _ j= = ( . j (3.48)
Clq)ll Cl(Dlz _ch 1 C1q)12 q)zz 1

Define H, =(h,, h,)

(3.47)

The closed loop observer (cT) -H XC_) for system (3.45) can be found as:

_ . (-®, 1 h —(®,+h,) 1
((D_ch): _1 _(1 O) x1 — (_1 1)
~®, 0 h.) |=(®,+h,,) O
Then, the characteristic equation of the closed loop observer (3.49) is:

s+(®,+h,,) -1
[ (®,+h,,) s J (3:50)
Comparing the coefficients of the last characteristic equation to the coefficients of
equal power of z in eq(3.14), we require that

(3.49)

sl —(®-H,C) =

2 — —

=S +(CI)1+hX1)s +®,+h,,

P=®,+h,
P,=®,+h,, (3:51)
From equation (3.51) we get:
hy, =P - cT)l
h,, =P, Cf)z (8:52)

Substituting from eq(3.15) for p, and p,, and from eq(3.46) for ®,and®, into
eq(3.52), we get:

o 2hiaT _ g2/ (3' 16)

(hm J ) LZ(M Cosh(uT )—e ™™ cos( T ))J
h,, B

The observer gain matrix for the original system is obtained as follows:
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HZ :TOHX

HX
1 1
=0'CT H, == H, +®,H, (3.17)
| e 2
q)lZ

3.5.3 Effects of The Addition of The Observer In A Closed-Loop System

As described in chapter 2, for the output feedback control, the estimated states were

used rather than the actual states for the purpose of feedback.

Consider the completely states controllable and completely observable system defined

by the equation:

X (k +1)=@x (k )+Tu (k) (3.18)
The state feedback control based on the observed states can be written as:
u(k)=-Lx(k) (3.19)

By substituting of the control input u that found in eq(3.56) into eq(3.55), the closed
loop system can be written as:

X (k +1)=x (k )—T'LX (k) (3.20)
From equation(3.42) ,we have:

X (k)=x(k)-e(k) (3.21)

Substituting for X (k ) in equation (3.57) , the state equation becomes:

x(k+1) =(®-TL)x (k )+I'Le, (k) (3.22)

The augmented state vector for the interconnected system is:

Note that the observer error difference equation was given by eq(3.43), repeated here:

e(k+1)= (®-HC)e(k) (3.60)
Combining eq(3.59) and eq(3.60), the augmented state model due to introducing the
observer in the feedback controller can be written as:
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x(k+1)) (®-IrL TIL x (k)
e,(k+1)) | 0  @-HC (e, (k) (3:23)
Because the matrix is an upper-triangular, the closed loop poles of the observed-state

feedback control consist of the poles (®—T'L )plus the poles (®—HC ). This means

that the state feedback control design and the observer design are independent of each
other. They can be designed separately and combined together to form an output

feedback control.
3.5.4 Designing An Observer Based Integral Controller

The block diagram of an observer-based integral controller in the discrete control

system can be described as shown in fig.(3.9) below:

______________________________________________

Additional Dynamics
rik] 4

\ 4

—()— (@,.T,.L,)

A

(D, T, ¢)

L | XK1 | Digital |«
! Observer |

Figure 3.9: An observer based integral controller.

As described previously, The configuration of such controller shown in fig.(3.9) has
the advantage that the design of the state feedback regulation and the observer are

separated.

For the state feedback design, all the state variables are assumed to be measured and
the same result of designing the tracking controller which is derived in eq(3.40) can
be used.

For the observer design, only the output is assumed to be measured and also the same

result of designing the observer gains vector which is derived in eq(3.54) can be used.
3.6 Digital Gain Scheduled Controller For A Special Case System

Consider the special case 2™ order nonlinear system described by:
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X, =X,
X, =1 (X1, X,,u) (3.24)
y =h(x,)

From chapter 2, The linearization of the nonlinear system (3.62) about a family of

parameterized operating points(xSS (a),u (a)) can be written as:

1™ss

. (3.63)
y =(c,(a) 0)[)(2
Using eq(3.7), the parameterized discrete time state space equation is:
[xl(k +1)J=(q>n(a) CDlz(a)][xl(k )]{rl(a)}u (k)
X, (k+1)) (Dy(a) @,(a))\x,(k)) \[(a) 529

For designing a digital gain scheduled observer-based integral controller, we can use
the same results of gains that derived in eq(3.40) and eq(3.54) by setting their

parameters as a function of the scheduling variables « .

Then, the state feedback scheduled gains vector can be written as:

L g (a) = (dl _61(0‘) d,-®, (0‘) dy - @, (a))Tc_l(a) (3.26)
And the scheduled gains vector for an observer can be expressed as:
H, (a)
1
H. (@)= H,, (¢)+ @y (a)H, (a) (3.27)
c,(a)
D, ()
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CHAPTER 4

4 TRACKING A NONLINEAR SYSTEM VIA NETWORK

4.1 Introduction

In modern manufacturing control systems, the common bus network architecture is
becoming more dominant than point-to-point architecture due to developments in
communication capabilities, improvements in network infrastructures, small
reconfiguration cost, better resource utilization, and reduced maintenance cost[3]. The
utilization of a wired or wireless communication network in control applications
provides several benefits, but in the same time, faces many difficulties. The main
difficulty with the design of such control loop is the presence of sensing and actuation
delays introduced by the communication networks. Unlike conventional time delay
systems, the type of delays introduced by the network are time-varying, since they
depend on the traffic currently on the network. The main objective of this chapter is to
present a methodology in order to design a dynamic output feedback gain scheduled
controller to control a nonlinear system via NCS that is characterized by time-

varying control and constant delays in the utilized of two transmission channels.

4.2  Delays Analysis In The Control Loop

Since the NCS operates over a network, data that transfers between the controller and
the remote system will induce network delays in addition to the controller processing
delay. Network delays in a NCS can be categorized from the direction of data
transfers as the sensor-to-controller (forward channel) delay and the controller-to-
actuator (backward or feedback channel ) delay. These network delays can be longer
or shorter than the sampling time T. There are several sources of delays in NCS. Not
only the network dynamics affect the total delay, but also the signal processing and
computational delays that depend on the scheduling policies should be taken into
account. Network delays are modeled and analyzed in various ways depending on the
network type and protocols. They can be modeled as a constant delay (timed buffer),
independent random delay and delay with known probability distribution governed by

Markov chain model. Different types of time delay compensation schemes are used
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r(kT)

to compensate the time delays caused by the network such as: PID controller, smith
predictor, optimal controller, fuzzy controller, robust control, sliding mode controller,
and adaptive controller. The typical construction of networked control systems
(NCSs) in the discrete time model is described in fig(4.1), and the timing diagram of

network delay propagation is also described in fig(4.2).

y(t)

: (KT
Controller u(kT) ;: @ = ( )4 ZOH —»| Remote Plant
i Network i
ykT-2) L7 yKT) ?z
| T Il

Figure 4.1: General NCS configuration and network delays in discrete-time formulation
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Figure 4.2: Timing diagram of network delay propagation
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4.3  Effects Of Delays In The Control Loop

As described previously, the network induced delays are brought into the loop of the
control system along with the inserted communication network, which not only
degrade the control system performances, but may be bring the whole control system
unstable. Thus, any control system constructed without compensation for these

delays have a low performance and reliability.

4.4  Network Time Delay Compensation

Networked Control System (NCS) is a type of closed loop control system with real
time communication networks imported into the forward control channel and the
feedback channel. Then, the network-induced delays have two parts: forward channel

delay and feedback channel delay.

For the sake of simplicity, the scheme of compensation for network-induced time
delay in the NCS under randomly varying delay in the forward channel and also

deterministically delay in the feedback channel can be decomposed into two steps of
delay compensation. These step are: Compensation for forward time delay ™ and

compensation for feedback time delay z*°.

In the case of forward delay compensation, we assume that the network is applied
only between the controller output and the plant input as shown in fig.(4.3), and the
main proposed idea to handle the network delays here is to augment the system model
by including delayed variables as additional states and designing an observer to
estimate the state variables of the plant and delay, so a closed-loop output feedback
tracking controller for the augmented model can be built.

After the forward delay is compensated, the network will be considered into the
feedback channel as shown in fig(4.4), and the designed observer for the NCS must be
modified to compensate for the feedback channel time delay z* by rebuilding the
non-delayed plant estimates, which is more accurate for the controller to generate a
control signal. This type of observers is also called Predictor Observer or States

Predictor.
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Reference

Signal ~| Controller »  Network » Actuator Plant Sensor
g | |
Figure 4.3: Network applied in the forward channel only
Reference | l
Signal ~| Controller > » Actuator Plant Sensor
Network ‘ |
Figure 4.4: Network with feedback channel is considered
4.5 Forward Channel Time Delay Compensation

The continuous state space model of the system with time delay induced by the
forward network channel can be written as:
X =AX (t)+Bu(t—r°a)

y =Cx (t) @1

Where %is the forward channel time delay or controller-to-actuator delay. Assume

that the value of the state vector is known at time t,, then the control input u (t ) has to

be known over the interval t, <t <t, +z*.

Since the control input contains a continuum of values over this interval, the state
space representation of delayed system will need an infinite number of the state
variables to summarize the information about the system at time t,. Thus, a
continuous time systems with time delays are infinite dimensional.

A finite dimensional description of a system can be obtained by sampling the
continuous time system, such that, the infinite dimensional continuous-time system

has been reformulated to the finite dimensional discrete-time system.

45.1 ZOH Equivalent Model Of A System With Time Delay

It is however easy to handle systems with time delays with ZOH reconstruction,
because the control signal is constant between the sampling instants, which makes the

sampled-data system finite dimensional.
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In general, the time delay will equal some integer number (possibly zero) of sampling
intervals plus a fractional part of a sampling interval. Thus, any time delay can be

represented by the following form:

t,=mT +y 4.2)
WhereO<y <T andm >0

The updated formula for the state vector at sampling instants will be obtained by
integrating the state equation over one sampling period as described in the following

equation:

KT +T A(

X (KT +T )=e*"x (kT )+J.k_|_ e TR u(t —z)dt (4.3)

In order to perform the integration in eq(4.3), the value of u (t —r“‘) is needed to be

known over the interval kT to kT +T.

From the delay form described in eq(4.2), the delayed input signal will take two
different values during the interval (KT )to (kT +T )as shown in fig(4.5). Thus, to

perform the integration in eq(4.3), the integral must be split in two parts, where the

delayed input is constant over each part.

u(t _Tca):{U(kT —(m +1)T ) KT <t <kT +7% o

u(kT —mT ), kT +y<t<kT +7%

Substituting the above expression for the delayed input, and splitting the integral in

eq(4.3) into two parts, the integration of the state equation becomes:

x (KT +T )=e"x (kT )+ [ 7

kT

+Ikm e T T UBY (KT —mT )dt

KT +7%

e T TUBY (KT —mT T )dt
(4.5)
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Figure 4.5: The relationship among U (t ) , the delayed signal u (t —r°a) , and the sampling
instants.

Let s =kT +T —t

Substitution for s in eq(5.5) , yield

X (KT +T )=e""x (kT )+J'TT_TcaeAsBu(kT -mT —T )ds

T —7%2 As (46)
+[ " e*Bu(kT —mT )ds

Eq(4.5) can be written in discrete notation as:
X (KT +T )= ®x (KT )+ Ty (2 )u (KT =mT )+ Ty, (¢ )u (KT =mT -T) (4.7)

Where:

Ci

a7 ):ﬂﬁae“Bds

Ty ()= I:_rcae’“ Bds e 7Tca).'.0,ca e**Bds

AT
ca

O =e
r

From thesis assumptions, It is assumed that the time delay that induced by the forward
channel is less than one sampling period. When the time delay is less than or equal

one sampling period ,we have:



Substituting for the value of m in eq(4.7), then the state space equation of the delayed
system can be rewritten as:

x (k +1) = dx (k )+Fd0(r°a) u(k )+Fdl(r°a) u(k -1) (4.8)
From the above equation, a new state variable u (k —1)is appeared, which represent

the past value of the control signal. Thus, the complete state updated equation for a

system with forward channel time delay can be obtained by augmenting the extra state

variable u (k —1) into the full system state model and is given by:
x(k+1)) (@ Ty(e*))( x (k) ) (Tyo(c™)
[ Mo o ](u(k oty e

45.2 ZOH Equivalent Model For Nonlinear System With Time Delay:

From chapter 3, the ZOH equivalent model for the linearized system with no time

delay and which is parameterized by the scheduling variable (a) is given by:

e R b i) A X

(4.10)

Where:

And
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If the time delay in the forward channel is taken into account, the values of

Tyo (.7 )and Ty, (o, 7¢") for a special case of 2™ order system should be computed,

then:

N A O O P it A

(4.11)
1-@, (a7 ) o)
@) a [F( )]
Dy, (a,T —77)
Ty (a7 _L B RO AT rk) = Al B (or)ds
A J :
Pa (@7 - (4.12)
((Dll(aT ~7) aT)) o (c01)
=b, (a) a, :{Fdlz(a,rﬁa)J

Let
Oyu(an’)) [Tonlanl
(a7 i (a7 .
chs(a’TEa) Ly (aﬁlfa)

Then, the complete ZOH model for a special case of 2" order system including the

forward channel time delay at any kth sampling period can be written as:

X, (k +1) Dy(a) Pp(a) @ (a Tﬁa) Xy (k) de(a Tka)
Xy (k +1) |=| @y(@) @pp(ar) Pp(@r?) || X, (k) |+| Ty (@,z2) [0 (k)
U(k 0 0 0 U(k 1) 1 (414)
X, (k)
y =(c(a) 0 0)| x,(k)
u(k -1)
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Based on the last equation, for every kth sampling period, the discrete state space

equation of the augmented model is parameterized as a function of two variables: «

and 7;”. Since the controller to actuator z;* is random, the system in this case is time

varying.
4.5.3 Additional Dynamics For Tracking

As described in the previous chapter, to track a unit step or ramp input with zero
steady state error, an additional dynamics must be included as a apart of the
controller. The new updating of the augmented model that generated from the

introduced additional dynamics becomes:

x(k+1)) [@(a) Ty(art) 0} x(k) Fyo(a )
u(k) |=| 0 0 0fu(k-1)+ 1 u(k)

x,(k +1)) (C(«) 0 0l x,(k) 0 @.15)

as:
Xl(k +l) (I)ll(a) (I)lz(a) q)ls(a!rlsa) 0 Xl(k) rdOl(a’TEa)
X,(k+1) | O, () @y(a) @23(a,rﬁa) 01 x,(k) N Fdoz(a,rﬁa) u
u(k) 0 0 0 ofulk-1) 1 (k)
X(k+1)) ¢ (@) 0 0o o)lx(k) 0
() (419
y =(ci(¢) 0 0 0 UX(T((Q)
Xo (k)

4.5.4 Making of NCS to be Time-Invariant:

When the induced delay is varying in a random fashion, the system becomes time
varying, and the theoretical results for analysis and design for time-invariant systems

cannot be used directly.
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One way to reshape the induced random delay by the forward channel to a constant
delay is done by introducing the network delay compensator (NDC) at the input of
actuator node as shown in fig(4.6), such that the augmented model becomes time-
invariant. The NDC acts as a clocked buffer by holding the arrived control signal

within A_, time-varying interval during the kth sampling period, where:

_ ca
A =ty -1

And t, is a specified constant time delay in which it is less than or equal one sampling

period.
Reference
Signal : Controller »  Network » NDC »  ZOH » Plant

<
<

Figure 4.6: Making of NCS to be time invariant by introducing NDC at the actuator node input

Since z;* is assumed to be less than one sampling period, and for ease of analysis, the

best scenario for the deterministic time delay occurs when the time delay is equal to
one sampling period.
In this case, the proposed structure of the NDC in a standard sampled data control

system is shown in fig(4.7) below.

u(kT-72 -

( ) » Hold X » ZOH &» System
Delayed

Signal

'—\
————
v

0 T 2T 3T

NDC

Figure 4.7: Structure of Network Delay Compensator in discrete time model
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Fig(4.7) shows that due to including the NDC, the control signal is applied to the

plant after a time delay equal to one sampling period is occurred.

45.5 Augmented Model With Time Delay Equal To One Sampling Period

As mentioned above, after introducing the NDC into the control system, the induced

delay by the forward channel becomes constant and equal to one sampling period.

When the time delay induced by the network equal to one sample time in such a case,
the independent random delay model is justified. For this case the best scenario for
the deterministic time delay occurs because it will be simplified the derivation of the

ZOH equivalent model for the system with time delay.
After substituting forz;* =T into eq(4.11), and (4.12) the results are :

Tyo(z =T )=0, Ty, (i =T )=T (4.17)

where T is the input vector for the ZOH model without time delay.

Substituting For the above equation into eq(4.8), we get,

X (KT +T )=@x (kT )+Tu(k -1) (4.18)

Substituting for eq(4.17) into the augmented model(4.9), the result is:

Y L

After introducing an additional dynamic as a part of controller, the complete time

invariant augmented model becomes:

x (k +1) ®(a) T(a) 0 x (k) 0
u(k) |=| O 0 Offu(k-1)|+|1|u(k)

(+y) (@ 0 o) x0)) Lo 0

In the case of one sampling period delay, we obtained the following results for a

special case of 2" order nonlinear system:
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Tyo (7 =T )= @ Ty (a7 =T )= (E EZQ = (Zz EZQ (4.22)

Substitute from eq(4.21) into eq(4.14), the time invariant discrete state space model of

the augmented system can be derived as:

Xl(k +l) q)n(a) q)lz(a) 1Hl(a) Xl(k) 0
X,(k+1) |=| @y (a) D@y(a) Ty(a)|| x,(k) [+|0]u(k)
u(k) 0 0 0 u(k-1)) \1

(4.22)

u(k -1)
After introducing an additional dynamics as a part of controller, the complete time
invariant discrete state space of the augmented model becomes:

X((k+1)) (@,(a) ®,(a) T(a) 0) x(k)) (0
X, (k +1) _[®u(a) @y(a) Ty(a) Of x,(k) . ou(k)
u (k) 0 0 0 Oflu(k-1)| |1
x,(k+1)) \ c(a) » 0 0 x.(k) ) (0 (4.23)
y=(c(e) 0 0 0) UX(ZK(Q)
Xa (k)

4.5.6 Design Of An Observer For The Forward Channel Time Delay
Compensation

The scheme of compensation for network induced delay by the forward channel is
based on designing an observer to estimate the state variables of the augmented model
that includes the state variables of the delayed control input. Since the observer is a
part of the output feedback controller, the design process of the observer will be
illustrated in the design of the dynamic output feedback controller lately.

Two types of such controllers will be mentioned in the next section which are: Time

invariant gain scheduled controller and time varying gain scheduled controller.
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4.6  Output Feedback Gain Scheduled Controller

From a control perspective, the control system with varying delays will no longer be
time-invariant. As described in pervious section, the theoretical results for analysis
and design for time-invariant systems cannot be used directly. It can be used after
introduction of NDC at the input of the actuator node.

Since the gain scheduling technique is widely used for controlling certain classes of
nonlinear or linear time varying systems, this technique can be extended to be
applicable for time varying and/or nonlinear system whose linearized dynamics are
approximated by an affine parameter dependent model (e.g) as described in eq(4.20).
Based on the above, two strategies for designing a gain scheduled controller can be

used to track a nonlinear system via NCS, these strategies are:

1- The first strategy is to make the system time invariant by converting the
random fashion of the induced delay into deterministic fashion and designing
time invariant gain scheduled controller, in which the scheduling parameters
of such controller are the tracking trajectory parameters.

2- The second strategy is to incorporate the current measurement of time delay
into the scheduling parameters and designing a time varying gain scheduled
controller in which the scheduling parameters of such controller became the
current measurement of time delay and the tracking trajectory parameters. In
this strategy, the controller compares the time-stamp value with its local clock,

and then it can compute the total time delay value easily.

4.6.1 Time Invariant Output Feedback Gain Scheduled Controller

As described in the previous chapters, for this type of controller, the separation
principle can be applied, such that the designs of state feedback gains and observer

gains can be performed separately.

Before designing the controller, its assumed that the deterministic time delay which
makes the system time invariant is equal to one sampling period. The augmented
model that includes the state variables of the additional dynamics and delayed signal
into the full system state model and described in eq(4.20), can be rewritten as:
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Additional + ulk] LT
C) > Dynamics | Network |—>| NDC |—>| ZOH l#;

A y = h(x)

(4.24)

Where:
®(a) I'(a) O 0
O, (a)=| 0 0 0| ,Iy(a)=|1
C (a) 0 0 0

0
&
I

< (k) (4.25)
(C(a) 0 0), x4=|u(k 1)}
xa (k)

The time-invariant output feedback gain scheduled controller as a combination of an

observer and a state feedback controller is described in fig(4.8) below:

x=f(x,u)

y(t)

Non-linear System

A A

L [« Observer

yIK]

Figure 4.8: Output feedback gain scheduled tracking controller via network

4.6.1.1 Time Invariant State Feedback Gain Scheduled Controller

The tracking task here for a nonlinear system via a network will be satisfied by
designing a time invariant state feedback gain scheduled regulator to the time
invariant augmented model (4.24). The time invariant vector of designed gains

L4 (@) that assigns the poles of the closed loop system (@, ()T, ()L, (e)) at

the desired location inside the unit circle has a dimension of (n +2)and it can be

partitioned into three parts as follows:

L (@) =[L. (@) Li(a@) Li(a)]
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Where L, («)is the time invariant feedback gains vector for the designed model of
the nonlinear system which has a dimension of n, L, is the time invariant feedback

gain for the delayed state variable, and L, is the time invariant feedback gain for the

state of an additional dynamic system.

4.6.1.2 Time Invariant Gain Scheduled Observer

The equation of the time invariant observer for the discrete time system described in

eq(4.19) can be written as

X, (k +1) =@, (o)X,

oa-(" ) 1,07 )(At(k):[lj)ék(k_)l)J

The error vector can be defined as:

e (k)=x,(k)-%X, (k) (4.27)
Then , the difference equation of the e, (k ) can be evaluated as:

>
—_
-
N—
+
)1
—_
N—
—_
=
A —
+
I
—_
Q
N—
—_
<
—
-
A —
|
<5
—_
-
N
N—
—~
~
N
(o)
N

Where

e (k +1)=x, (k +1) (k +1)

(th («)C, (a))et (k)

If the scheduled  matrix Zt( )deS|gned such that the  matrix

(4.28)

(@, ()—H, («)C, ())has eigenvalues inside the unit circle, then the estimated

states will converge to the actual states of the plant and the error dynamics will reduce

to zero with sufficient speed.

The time invariant observer gains H, («)that assigns the poles of the closed loop
observer (@, (a)—H, («)C, («)) at the desired location inside the unit circle has a

dimension of (n +1) and it can be partitioned into two parts as follows:

=[H, (@) Hy(a)]
Where H, («)is the observer gains vector for the design model and H, («) is the

observer gain for the delayed signal.
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4.6.2 Time Varying Output Feedback Gain Scheduled Controller

The time varying augmented model that includes the state variables of the additional
dynamics and delayed signal into the full system state model and described in

eq(4.15), can be rewritten as:

Xg (K+1) =Dy (oz,rk“")xId (k)+ Ty (a,rlfa)u(k)

(4.29)
y(k) =Cy(a)xq(k)
Where:
(D(a) Fdl(a’rlia) 0 Fdo(a,z'ﬁa)
D, (a,rﬁa)= 0 0 0| ,Ty (a,rﬁa)= 1
C () 0 0 0
(4.30)

The tracking task for a nonlinear system can be achieved by designing a time varying

state feedback gain scheduled regulator to the time varying augmented model (4.29).

The time varying vector of designed gains L, (c,7;*)that assigns the poles of the
closed loop system (thd (a.77)-Ty (a7 )Ly (a,rﬁa)) at the desired location

inside the unit circle has two scheduling variables «, and z,*, and also can be

partitioned into three parts as follows:
L, (a,rﬁa):[Lz (a,qfa) L, (a,rﬁa) L, (a,rﬁa )]

To build a time varying observer, the time varying scheduled matrix H,, (a,rﬁa)

should be designed such that, the poles of the closed loop observer
(@ (.7%)~H,, (.7%)C, (e))are placed to desired locations inside the unit circle.
4.7 Designing A Time-Invariant Controller With Forward time
Delay

The time invariant augmented model for a special case of 2" order system which

described in eq(4.23), can be expressed as:
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Xg (K+1) =0 (@)X (k)+ Ty (a)u(k)
y (k)=Cyq (a)x,q (k) (4.31)
Where:
chl(a) D, (0() Fl(a) 0 0
O = D, (a) @p(a) T,(a) 0 0
td O O O O 1
1 0 0 0 0
" (4.32)
Xl
X

k)

(k)
u(k -1)
)

X, (k

For the sake of brevity, the subscriptee from the following matrices in this section

will be omitted.

4.7.1 Desired Closed-Loop Pole Locations
The dominant poles for the prototype 2™ order linear system are given by:

S, =—Co, £ jay (4.33)
Where:

o, =0, \1-¢?

When the new two state variables generated from inserting a network in the forward
loop of the control system, and introducing an additional dynamic system, two extra

desired poles should be included in the desired specifications which are:

S3; = —P6w,
s :_ﬁif; (4.34)
Where:
B&p, 24

By using the ZOH POLE-mapping formula, the desired discrete characteristic

equation can be derived as :
d(z)=z"+d;z°+d,z*+d,z +d, (4.35)
Where:
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d, = _(Ze s cos (T, ) +e AT g fostnts )
(e (ﬂﬁﬂz)f“’n s +e 2§wn s +2( ﬂlJrl)éan s +e ( 2+1)§an s )Cos(a}de ))

d,=— (e ~(Br2)onTs | o ~(Br2)onT ) _ 2 (Arh+l)inTs oo (a)de )

(BB +2) T
d,=e 2

o
IN)
Il

The desired poles of the observer must be chosen so that the transient response of the

observer is much quicker than the response of the 2" order controlled system.

The observer desired poles for the 2" order linear system in s domain are:

1, =—Blo, £ ]Bjw, (4.36)
The extra desired pole which needs to be included in the desired specifications due to
augmenting the delayed input into the full state space is:

S, =—f,¢m, (4.37)
Where:
By 2 4p;
The desired polynomial in a discrete time model for the observer, can be derived as:
Py (2)=2°+Pz*+P,z +P, (4.38)
Where:

— ﬁgn 7ﬂ§nT
=—(2e " cos( BT )+e M)

=2 (Bs+Pa)seonT Cos(ﬂgwd )+e*2ﬂ3§wnT

(2ﬂ3+ﬂ4)§wn

-9 .0

4.7.2 Designing A Time-Invariant State Feedback Gain Scheduled Controller

The controllability matrix for the original augmented model (4.31) can be derived as:

0 1—‘1 (Dllrl + CDIZFZ (q)fl + (DlZCDZl)Fl + (q)ll(DIZ + CDlZCDZZ ) FZ
0 FZ ®21Fl+q)22r2 (q)llq)Zl +q)21q)22)r +(q)§2 +q)12q)21)r2

C. - ' (4.39)
1 0 0 0
0 0 c,I, C, (T, +®@, T, +T,)

The transfer function of that augmented model can be evaluated as:
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1

TF =C, (21 -®, )" T,

2 Cle _d — % 0,
{cll“lz —[[az](aiq)lz @, 1)jz +( a, J(®3+CD22):| (4.40)

z*—(2e" cosh (yT )+1)z°+(2e " cosh (yT )+e " )z°—e 7z

Let
D, —(2e”[r cosh (T )+1)
®, =27 cosh (yT )+e 7
(T) _e722T
And
C,=C I,
_ cb —
sz_(gJ(alq)lZ q)s 1)
a‘2
_ [(cb, ), =
[ : zj@gmzz)
a2

(4.41)

From this transfer function, the state space representation of the augmented model in
the CCF can be obtained as:

X, (k +1) ~®, -B, -, 0 <, (k)) (1
_2(k +1) B 1 0 0 0 X_Z(k) 0
k)| | 0 1 0 o|xk)| |0 u (k) (4.42)

(4.43)
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Where:

1 & O, D,
0 1 @ @
Cox = - (4.44)
0 0 1 o
0O 0 0 1
Then, the transformation matrix between the two forms can be derived as:
C. C.
or, = -=
Cl Cl
T.(a)=C,C=/0 I, -2r, T, (4.45)
1 © @, @
0 O C, C,
Also, the inverse of the transformation matrix can be calculated as:
T, (a)=
2 ((0,-0)g (20 +0)7) @ ((OFE)E L) 2
ch(2+@, -®,) ¢, (2+0, -,) ch,(2+, —@,)
-8 (25,-5)) e . 2
ch(2+@, -®,) ¢, (2+0, -,) cb,(2+@, -@,) (4.46)
_azzc_s a:rlf,‘: 0 a2
ch(2+@, -®,) chT,(2+®, -@) cb,(2+®, -0,)
_azzq aj]"‘z 0 a,
C1b22(2+®1_¢)3)2 b;r2(2+®1_®3)2 clb2(2+<1)1—cl)3)

The corresponding state feedback gain scheduled controller for the augmented model
that defined in CCF takes the form:

u :_thdx_td :_Lxlx_l_LXZX_Z _Lx3X3_Lx4X4 (4.47)
Where:

thd =(Lx1 Lx2 Lx3 Lx4)

Substituting for u from above equation into eq(4.42), the closed loop system for the

augmented model which is found in CCF becomes:
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KD ) ((By+L,,) ~(D,+L,,) —~(By+Lys) L) F2(k)

X, (k +1 X, (K
_2( )| _ 1 0 0 0 _2( ) (4.48)

2(k +1) 0 1 0 0 | %u(k)

X, (k +1) 0 1 0 X, (k)

The characteristic equation of closed loop system (4.48) can be computed as:
24+ (D, +L,, )2+ (D, +L,,) 727 +(Dy+L,5)Z +L, (4.49)

By comparing the eq (4.35) with the last equation, we obtain

The state feedback gains vector for the transformed model (4.42) can be expressed as:

Ly (@)=(d,-®, d,-®, d,-®, d,) (4.50)
Finally, the scheduled gains vector for the original system described in eq(4.31) can

be evaluated as follows:

L, (@)=L (a)Tc"l(a) (4.51)

4.7.3 Designing A Time Invariant Gain Scheduled Observer

The augmented model which needs to design an observer for compensating the

forward time delay is :

X, (k +1) o, ®, T, X, (k) 0
X,(k +1) [=| @, @, T, | x,(k) [+b,] 0 |u(k) (4.52)
u(k) 0 0 0 J{u(k-1) 1

The observabilty matrix of the model described above, can be found as:

C c, 0 0
O =|Co |= c,® c,® c,I', (4.53)

mz 171 1712

co’) \c,(0h+0,0,) ¢ (0,0,+D,0,) c (O.,+0,T,)

12721 11712 12 ™ 22 171
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System (4.52) can be transformed into observable canonical form as:

X, (k +1) -0, 1 0)\(x(k)) (T,
Gk +1) [=| D, 0 1| X, (k)[+|T, u(k)
X, (k +1 0 0 0Jix,(k r
o(k+1) ’ ’ (4.54)
< (k)
y(k)=(1 0 0) x—2
X,
The observabilty matrix of the transformed system (4.54) can be found as:
C 1 0 0
0,,=ClL =|C® |=| -, 1 0 (4.55)
Co) |d2-0, -3, 1
Then, the transformation matrix T between the two forms is obtained by:
To (a)=on;:zLomx =
C’D, (O, -D,T,) 0 0
b, =~ — — ch, ~ ,
bzq)lz ((1)2—(1)22)(1)1+F1CI)2 ((1)2—(1)22) _Clrl (456)
aZ a'2
0 0 c D,
qu)lz (q)lZFZ _q)zzrl)
Define H,, (a)=(h,, h,, hx3)T
The closed loop observer ((T)t -H XtC_) for the system (4.54) can be found as:
—D, " —(d_)l+ Xl) 10
(®,-H,C)=[-®, 0 1|-(1 0 0)|h,|=|-(D,+h,) O 1| (457
0 X2 -h,, 0 0
Then, the characteristic equation of the closed loop observer (4.57) is:
|s| —(CT)t—deC_)|=zg+(CT>l+h )22 +(®,+h,,)z +h,, (4.58)

Comparing the coefficients of the last characteristic equation with the coefficients of

equal power of z in eq(4.38), we require:
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P,=®,+h,, (4.59)
P, = hx3

From equation above, we get,
hxl =P _&)1
h,=P,~®, (4.60)
h, =P

Finally, the observer gain matrix for the original system (4.51) is obtained as follows:

H, (0{) =T, (a) H, ((Z)
C]zq)u ((I)lzrz _cbzzrl) 0 0

P _
b, — _ ) ch, - .
Clz (_bzq)fz _j(Qz _q)zz)q)i +r1q)zj f(q)z _q)zz) _C12r1 Pz _(Dz (461)

2 2

el

0 0 cio

1 12

qu)lz (q)urz - CI)zzl—‘1)

4.8 Designing A Time-Varying Output Feedback Gain Scheduled

Tracking Controller

4.8.1 Time Varying State Feedback Gain Scheduled Controller

The time varying augmented model for a special case of 2" order system described in
eq(4.16), can be repeated here as:

Xq (K +1) =0y (a,rﬁa)xtd (k)+ Iy (a,rﬁa)u (k)

y (k)=Cy (@)X (k) (4.62)

Where
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CDM(O!) q)lz (0{) 13 (a'lea) 0 1—‘(101 (a'flia)
ca (DZl (a) q)ZZ (a) ®23 (a’Tl((:a) O ca FdOZ (a’TEa)
O (a,z )= Tyl )=
o) 0 0 0 0 (o) 1
Cl(a) 0 0 0 0 (4.63)
X, (k)
k
’ Cd (0{) —(01(0!) 0 0 0) ! Xtd UX(Zk(_:])_)
X, (k)

For the sake of brevity, the subscripts « and z,” from the following matrices will be

omitted.

The characteristic equation of the augmented model (4.62) can be evaluated as:

Z-—- q)u _ch2 _(D13 0
-d YA ()] -0 0
|Z| _thd|: 21 22 23
0 0 z 0 (4.64)

—, 0 z-1

0
z ) _(CDM +q)22 +1)Z ? +(CD11 +CD22 +CD11(D22 _CDIZ(I)ZI)Z ’ _(ch +CD22 _q)lchZZl)Z

After performing some simplifications for the above characteristic equation, the result

becomes:
2l -y =2+ D2+ D,z + Dz (4.65)

In which:

D, =— (D, +D,, +1)

O,=0,,D,+d,+D,,-D,D,,

D, = —((I)ll +®,, — (Dlz(I)Zl)
From the resulted characteristic equation (4.65), it can be seen that the characteristic
equations for both time varying and time invariant augmented models are similar. So,
when we want to transform the time varying model into a controllable conical form,
we arrive to the same result that derived for the time invariant model described
in(4.50). Thus, we can use the designed state feedback scheduled gains that derived in
eq(4.50) to get the state feedback scheduled gains for the original time varying model
described in eq(4.62).
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Therefore, the design of a time varying state feedback gain scheduled controller for

the time varying model needs only an evaluation of the time varying transformation

matrix T, (a,rﬁa) that transforms the gains of the augmented model that found in

CCF to atime varying scheduled gains of the original augmented model.

The time varying transformation matrix can be derived as:

T, (a,rﬁa) =C,_, (a,rlfa)C o) =

r
r

do1l

d 02

1
0

mx

CDlZFdOZ +CD13 _Fdol(cbzz +l) cDzzrdm _CDlZFdOZ _(1+®22)®13 +CD12®23 chchn _CD12
cDerd out (D23 - 1—‘d 02 ((Dn +1) _q)erd ot q)an 02 (1+ cDu ) (I)za + CI)21(1)13 (Dn 23 ®
ch ch CI)3
Clrd 01 C, (_(I)erd ot q)lzrd T (D13) C, (q)lzq)za -0
Then, the time varying scheduled gains can be evaluated as:
Loy (78 ) = Ly ()T (@0 7) (4.66)

Where

L,q (¢ )is the time invariant scheduled gains vector for the model that found in CCF.

The goal of ensuring that the system (4.62) is stable can be achieved by using this
type of compensation scheme, because at every sampling instant, the closed loop
system has the same transfer function, which means that the poles of the closed loop
system will be placed at every sampling instant to the same desired locations inside

the unit circle.

4.8.2 Designing A Time Varying Gain Scheduled Observer

The time varying augmented model which needs to design time varying observer for

compensating the forward time delay is :

Xl(k +1) O, D, Dy Xl(k) Ly
X, (K+1) [=| Dy D@y Dy Xz(k) +b,| Ty, u(k) (4.67)
ak) J Lo 0 0 luk-n) (1
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The observability matrix of the original model can be derived as:

c, 0 0
0,, (0!, lea) = ¢,P, ¢,®, ¢,d, (4.68)
Cl(q)fl +CD12CD21) Cl(q) o +(D12(D22) Cl(q) \ +(D12(D23)

1712 11713

The augmented model (4.67) has the same representation in OCF to that of time
invariant model described in eq(4.52), so there is only a need to evaluate the time

varying transformation matrix T, (a,r‘;a) that transforms the designed observer gains

for the time invariant augmented model that found in OCF to the time varying

observer scheduled gains for the original model(4.67).

The transformation matrix between two forms can be derived as:

-1

TO :Omzomx =
c, 0 0 N 0 0
Clq)ll Clq)12 C1®13 _6 1 O

Cl (®121 + ®12®21) Cl (q)11®12 + q)12®22 ) Cl (®

O +d D))\ D -D D 1

1 13 12 23 1 2 1

. (4.69)
— 0 0
c,
azq)urz +b2 ((Dz _(Dzz)(bl +r1(D2 (Dzz _62 _Fl
C1(Dz1 ((Durz - q)ZZFI) C1q)21 (q)lzrz - q)22r1) C1q)12 ((Duq)zz - (1)22(1313)
1
0 0

C, (q)lzq)23 - q)zzq)m)
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CHAPTER 5

5 MAGNETIC BALL LEVITATION CE152

5.1 Introduction To Magnetic Levitation System

The Magnetic levitation system is an example of nonlinear, open loop unstable system
with fast dynamics. For these properties of the Magnetic levitation system, modeling
and mainly control design is very difficult. However, Magnetic levitation system has
wide application in various industries than high-speed trains, frictionless bearing, etc
and therefore this field of research is devoted significant effort in recent years[21].
Magnetic levitation system has the advantages of being contact-free, can eliminate the
mechanical components, reduce the mechanical alignment and satisfies the
environmental demands[22]. Magnetic levitation system has been also used for
educational purpose in teaching students on the concept of feedback control. Thus a

lot of studies have been conducted for the control of magnetic levitation systems[23].

5.2 Magnetic Levitation Model CE 152

The CE 152 Magnetic Levitation Model is one of the range of educational scale
models offered by Humusoft for teaching system dynamics and control engineering
principles. The Magnetic Levitation Model and the associated manual are teaching aid
for control engineering students at all levels and the experiments cover wide range of
problems which appear in the industry. The CE 152 Magnetic Levitation Model is one
of a unique range of products designed for the theoretical study and practical
investigation of basic and advanced control engineering principles. This includes
system dynamics modeling, identification, analysis and various controllers design by
classical and modern methods[24], the CE 152 Magnetic Levitation apparatus is
shown in fig(5.1).
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Figure 5.1: CE152 magnetic ball levitation.

The objective of this chapter is to derive the nonlinear model of the Magnetic Ball
Levitation CE 152 and using the linearization technique to analyze the nonlinear
model of the device , fig(5.2) shows the principal scheme of the magnetic levitation
model[24].

o 7 kp.4
I EON

Figure 5.2: Principal scheme of the magnetic levitation model.

The CE152 model, shown in Fig. (5.2) consists of the following blocks[24]:

e D/A converter.

e Power amplifier.

e Ball & coil subsystem.
e Position sensor.

e A/D converter.
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5.2.1 Power Amplifier Equation

As described above, the power amplifier is one of the five parts of the magnetic ball
levitation model which can be considered as a source of constant current. The

simplified equation of this part that needed for modeling the Maglev apparatus is[24]:

i= ki*U (51)
5.3 State Space Representation

There is no general analysis techniques are applicable to all nonlinear systems, so, the
linearization tool is used to derive the linear state space model for the nonlinear
differential equation of the magnetic levitation CE152 to simplify the design process

of the controller.

From[4], the nonlinear motion equation is given by,

R 9
mx + va —m'mg (52)

Assume the state variables x; and x; are defined by the equations

Xl(t) =X (53)

X,(t) =X (5.4)
Substituting from eq(5.3) and (5.4) into eq(5.2), then the nonlinear state equations of
the system are expressed as,

%:xz(t):fl(xl,xz.u) (5.5)

d,t) ik K,
_ e Kuy _g=f,(x,x,1
dt m(Xl—Xo)z m X2 g Z(Xl qu) (5.6)

Where the functions f; and f, are defined by these equations. The general vector form

of these equations can be expressed as:

X=f(x,u) (.7)
Where
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Let p=(Xs,Uss) iS an operating point of the nonlinear system (5.5)-(5.6) where
Xss=(X1ss,X2ss). If the Taylor series is valid about the operating point (Xss,Uss), the
equations (5.5) and (5.6) can be linearized and the linearized equations can be

written in the standard vector matrix format,

X =AX +Bu (5.8)
Where
o, o,
_of B oX, OX,
K, [, O (59)
oX, OX, ‘e g 0
o,
_of _| ou
aul, | of, (5.10)
au XlSS ’XZSS 'USS

Where the matrices (5.2) and (5.10) are called the Jacobian matrices.

By setting the equations (5.5) and (5.6) to be zero , we get

Xy =0 (5.11)

mg 2 Mg
uss:\/m(xlss_XO) :ksz (XO_X155> (5.12)

After applying the linearization about the equilibrium point that found in eq(5.11) and
(5.12), we have:

0
A= 29 Kk, (5.13)
(Xio—Xis) My
0
B=| 2kpavKeQ (5.14)

\/mk (XLO —Xigs

From [4], the system output can be written as:

y :kxkADxl (5,15)

Then, the linear state space model for the magnetic ball levitation can be written as :
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0 1 0

X X
(x‘ljz 2 L [le+ e I
’ (X Lo —X1s) m, ’ My (X o= Xig) (5.16)
X
Yo =(KiKap 0)[)(1}
2

Using the values of parameters in table (5.1) of the magnetic levitation CE152, the
linearized model becomes:

0 1 0

X2 19.62 ), 53206 U
X, | | ———2 2381l x B

2/ |.00826 X, 2/ | (.00826-x,.,) (5.17)

Y wu =(159.49206 0)()(1)

2
The linear state space model for the magnetic ball levitation described in (5.17) is
similar to a special case of the second order system that considered in the thesis

assumption as:

y (5.18)
y = (Cl O)(Xj
Where aFﬂ, a=2381, b, 53206 ¢, =159.49206

~(00826-x) |

From system model (5.18), we conclude that all approaches introduced in this thesis
for designing controllers to several configurations of the control system such as :
continuous, discrete and networked control system models is valid to be applied for

the magnetic ball levitation CE152.

5.4 Simulation

The final interconnected blocks of the magnetic levitation model CE 152 are built on
MATLAB SIMULINK as shown in fig.(5.3),
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power amplifier

D/A P 2967

D/A conwerter

6.8823 e-006 / (u - 0.00826 "2
\\> variable gap
X +
. 1 » | > AID
motion >+ 1/0.0084 s s I
y
force iti
- U elocity position AD conwerter
m

and
position sensor

Fc

-0.0084 *9.8100

gravity K-
force

ball damping

Figure 5.3: The interconnected blocks of magnetic levitation CE152

The simplify the use of magnetic ball levitation plant in the simulation process, we
built a simulation model to the called maglev CE152 that includes all interconnected

blocks as shown in fig(5.4)

Out P

> In Voltage Out Position P

\4

Out Velocity

Magnetic Levitation Plant

Figure 5.4: The block diagram of magnetic levitation CE152
The closed loop system without controller is built on MATLAB SIMULINK tool as

shown in fig(5.5). it’s step response is also shown in fig(5.6).

’— out 1
i+ P10 Voltage Out Position 1

Sien Out Velicity Soape

Magnetic Levitation Plant

Figure 5.5: The closed loop of the magnetic ball levitation.
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Position

0 1 2 3 4 5 6 7 8 9 10
Time

Figure 5.6: Step response of the closed loop transfer function of the magnetic ball levitation.

From the step response in the figure above, we note that it is necessary to design a

controller to obtain the desired characteristic that a closed loop control system should

have.
Table 5.1: Parameters of magnetic ball levitation CE 152

Parameter Symbol Value
ball diameter Dk 12.7x10-3 m
ball mass mk 0.0084 kg
distance from the ground and the edge of the magnetic coil Td 0.019m
distance of limits= 0.019 - Dk L 0.0063 m
gravity acceleration constant g 9.81 m.s"-2
maximum DA converter output voltage U _DAmM 5V
coil resistance Rc 3.5Q
coil inductance Lc 30 x10° H
current sensor resistance Rs 0.25Q
current sensor gain Ks 13.33
power amplifier gain K_am 100
maximum power amplifier output current I_am 12A
amplifier time constant= Lc/((Rc+Rs)+Rs*Ks*K_am) Ta 1.8694 x10° s
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amplifier gain= K_am / ((Rc+Rs)+Rs*Ks*K_am) ki 0.2967

viscose friction KFv 0.02 N.s/m
converter gain k DA 10

Digital to Analog converter offset u_0 ov

Analog to Digital converter gain k_AD 0.2

Analog to Digital converter offset y_MUO ov

position sensor constant k x 797.4603

coil bias X_o 8.26 x10° m
Aggregated coil constant k_f 0.606 x10° N/V
coil constant =k_f/(k_i)"2 k c 6.8823 x10° N/V
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CHAPTER 6

6 SIMULATION AND RESULTS

6.1 Introduction

In this chapter, the proposed methodology for tracking a nonlinear system via a
network has been tested on a simulation model for the magnetic ball levitation CE152.
The simulation work has been performed on four cases of the control system using
MATLAB/SIMULINK tool. These cases are:

1- Continuous output feedback control system.

2- Digital output feedback control system.

3- Digital output feedback control system without time delay compensation.
4- Digital output feedback control system with time delay compensation.

6.2 Continuous Output Feedback Gain Scheduled Control System

Now we want to apply the procedures for designing a continuous output feedback
gain scheduled tracking controller that derived in chapter 2 for a special case of 2™

order nonlinear system to the magnetic ball levitation CE152 apparatus.

From the previous chapter, the linearized state space model that derived for the

magnetic ball levitationCE152 is described by:

| 0 1 0
[’fl]z 10.62 S 053206  |u
*2) (0.00826—x,, («)) *2) | (0.00826 —x,, ()

—2.381
(6.1)

Xl
y =(159.49206 o)[x ]

When r = o =constant value, the controlled output y follows the reference input and
in this case, we have

g (@) =T =T =

¢, c, 159.49206 (6.2)

Substituting for x5 () from (6.2) into eq(6.1), the parameterized state space model
becomes,
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. 0 1 0
Xl Xl
' 1=[3129.234217 +| 8486 U
T 38l||x,) |

(1.3174—q) (1.3174—q) 6.3)

Xl
y =(159.49206 o)[ ]

X2

And the scheduled steady state input u (a) is expressed by :

—X, ) =368.755(x,, () —0.00826) (6.4)

The linearized state spaél model for a special case of 2" order nonlinear system is
described by eq(2.35) in chapter 2, repeated here:

' - (6@ o)(jj

When equating system (6.3)with(6.5), we get

(6.5)

a (a)=2.381

2, () = —3129.234217
? (1.3174— )

(o) =280 (6.6)
? (1.3174— )

¢, (&) =159.49206

The augmented state space model of the magnetic ball levitation CE152 due to

introducing an integral control to the forward path of the control system, becomes:

0 1 0 0

1) | 3129.234217 & 84.86

X, |[=[ 2222520 2381 O X, [+ ————— u

, (1.3174—a) (1.3174—-a)

O O

159.49206 0 0 0 (6.7)

Xl

y = (159.49206 0 0)|x,
O
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6.2.1 Desired Performance Specifications

The performance specifications for the magnetic ball levitation CE 152 are assumed
to be:

1- Maximum overshoot OS <5 percent.

2- Settling time t, <0.1sec.

From these selected specifications, we can evaluate the values of the natural

frequency w, and the damping ratio( that are needed in the calculations of gains

vectors for both state feedback controller and observer.

__O©S%) _ 6001
J7* +In(0S %)’ (6.8)

o =2 _57.862
g

n
S

From chapter 2, the desired characteristic equations for the closed loop system and the

observer are given by:

P(s)=s’+(B+2)lo,s* +(1+2B<7 ) afs + B} 6.9)

P, (S)=S"+25(e,S + Sy oo, (6.10)
We have selected the factor £, =10, which means that the third pole is located at ten

times where the real part of the roots of a prototype 2" order polynomial are located,
and to ensure that the desired transient response of the observer is much faster than

that of the plant, we selected the factor g, =10.

After substituting for the values £, f,,¢ , andw, into eq(6.9) and eq(6.10), then the

desired characteristic equation for the closed loop system and observer become,

P(s)=s>+480s” +35360s +1343865.854 (6.11)

P, (s)=s*+800s + 335970 (6.12)
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6.2.2 Continuous State Feedback Gain Scheduled Controller

The designed state feedback scheduled gains for a special case of 2" order system

that derived in chapter 2 are repeated here:

(1+28¢% )0} -2, ()

K, ()= (@) (6.13)
_(B+2)¢w, —a(a)
k22 - b2 (O() (614)
et
k. = b, (@) (6.15)

After substituting the value of 4 and the values from (6.6), and (6.8) into (6.13),

(6.14), and (6.15), the scheduled gains for the state feedback controller are evaluated

as:

kg,( )=416.6856(1.405%— )
kg,( )=5.62836(1.3174— ) (6.16)
kg, ( )=99.2927(1.3174— )

6.2.3 Gain Scheduled Observer

The designed scheduled gains of the observer that derived in chapter 2 are repeated
here:

2 _
th(a): ﬂoé/gin 21 617

_ ﬂoza)rf —a, (a)_2a1ﬂo§a’n +a12
C, (6.18)

hzz(a)

After substituting the value of £, and the values from (6.6), and (6.8) into (6.17), and

(6.18), the observer scheduled gains are computed as:

h,, () =5.0010 (6.19)
19.62
h =209464+———
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6.24 MATLAB Simulation For The Continuous Output Feedback Control

System

The gain scheduled output feedback control has been implemented on MATLAB

SIMULINK Program for the magnetic ball levitation CE152 simulation model as

shown in fig.(6.1). Different types of reference signals can be applied to the

implemented closed loop system, the responses of some signals are described below :

% Step ——p—= . 1
- - s e
ramp 4»4/& s
Signal Builder Manual Switch Integrator »ix1
x2

»
u P In Voltage Out P

Scope

State feed back
Gain Scheduled
Controller

Magnetic Levitation Plant

Estimate_x2

Estimate_x1

U

y &

Gain Scheduled
Observer

Figure 6.1: Block diagram of output feedback gain scheduled control for maglev CE152

Response to a sequance of step changes

1 o Reference Trajectory

Output Response

0.8

Position

0.6

0.4

0.2

Figure 6.2: Output response to a sequence of step changes in the reference signal for Maglev CE

152

Fig.(6.2) shows how the controlled output tracks the sequence of step changes in the

reference signal to reach the maximum value of position.

An alternative method to change the reference set point to move slowly from one

point to another is that using a slow ramp signal as an input, Fig.(6.3) shows the
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response of the closed loop system under slowly varying scheduling variable with

slope =0.1.

Response to a slow ramp input

0.7 Ramp Input

Output Response

Position

Time

Figure 6.3: The slow ramp input and the output response of output feedback gain scheduled
control for Maglev CE 152

Fig.(6.4), shows that how the output response signal can follow the square wave

reference input.

07 T T T T T T T T T

0.5 b

0.4

square wave

03 -

0.2F -

0 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
time

Figure 6.4: The square wave input (solid) and output (dashed) of gain scheduled output feedback
control for Maglev CE 152
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6.3 Digital Output Feedback Gain Scheduled Control System

To illustrate the effectiveness and usefulness of the work presented for designing a

digital output feedback controller for a special case of 2" order

system. The

procedure of designing such controller is applied on a simulation model for the

magnetic ball levitation CE152 apparatus, and the results are shown subsequently.

6.3.1 ZOH Equivalent Model For The Magnetic Ball Levitation CE152

From chapter 3, the parameterized discrete state space model for a special case of 2"

order system is given by:

Where:

And

3131.10-1.41729¢«
(1.3174—q)

A=1.1905 and w(a):\/

After substituting for the above result into eq(6.22), we have:
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(6.21)

(6.22)

(6.23)

(6.24)



(o) = 098816558(cosh£‘//g0)J (1.1905/!//(a))sinh£w(a)j]

1 100
®1z(a)=0.98816558{ v ((a))/lOO)J

() = 2092.201558 [Sin h (l//(a)/loo)J
2\ 13174 a) v(a)
®,,(a)= 0.98816558[cosh (V’lg‘;‘)] (1.1905/y («))sinh [ D

Iy (a)= 0027{1 0988166[cosh[ o J (1.1905/y (« )smh[wloo)j]]
r (a):83.85573147(5mh( (a))/ ]

(1.3174-q)

From [25], the value of & is varied within the interval [0,1]. The transfer function of

this model at any value of a can be computed by using the following matlab code:

a=.2;% scheduling parameter

Ts=.01; % sampling time
A=[0 1;3129.2342172/(1.3174044156-a) -2.381];
B=[0;84.86/(1.3174044156-a)];

C=[159.49206 0]

a2=-A(2,1);

al=-A(2,2);

cl=C(1);

b2=B(2);

r=al/2;

u=(sgrt((ain2)-4*a2))/2;
PH11=exp(-r*Ts)*(cosh(u*Ts)+((r/u)*sinh(u*Ts)));
PH12=exp(-r*Ts)*sinh(u*Ts)/u;
PH21=-a2*exp(-r*Ts)*sinh(u*Ts)/u;
PH22=exp(-r*Ts)*(cosh(u*Ts)-((r/u)*sinh(u*Ts)));
PH=[PH11 PH12;PH21 PH22];
TH=[(b2/a2)*(1-PH11);B(2)*PH12 ];
[NdDd]=SS2TF(PH,TH,C,0);

Sys _discrete =TF(Nd,Dd,Ts)

The result from matlab when « =0.2 is:
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0.615 z + 0.6102

..................... (6.26)
2 - 2.26 7 + 0.9765

For model validating, we find the discrete transfer function form the continuous

version at « =0.2 by using the following matlab workspace commands:

a=0.2;

Ts=.01;

A=[0 1;3129.2342172/(1.3174044156-a) -2.381];
B=[0;84.86/(1-3174044156-a)];

C=[159.49206 0]

[num den]=SS2TF(A,B,C,0);

Sc=tf(num,den);

Sd=C2D(Sc,Ts, "zoh")

The result from matlab is the transfer function:
0.615z + 0.6102

282 - 2.26 7 + 0.9765 (6.27)

It can be seen easily that the two resulted transfer functions (6.26), and (6.27) are the
same, which means that the derived ZOH model for a special case of 2" order system

that derived in this thesis is an accurate model.

When introducing the additional dynamics system that described in eq(3.27) as a part
of the compensator to achieve zero steady state error, the augmented discrete state

space model for the magnetic ball levitation can be written as:

X, (k +1) O, (a) Dy(a) 0Yx,(k)) (T(a)
X,(k+1) [=| @y(a) @,(a) 0| x,(k)|+| T,(a)u(k)
X, (k +1)) (159.49206 0 1) x, (k) 0
(k) (6.28)
y  =(159.49206 0 0)x, (k)
X, (k)
Where the values @, (), ®,(a), @, (a)and ®,,(«) are found in eq(6.25)

From eq(3.31) in chapter 3, the CCF representation for the augmented model is

derived as:
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)
$,(k+1) |=| 1 0 0 || %,(k)|+|[0]u(k)
k) Lo 1 0 )lx k) (o
() o
y=(C ¢ &) %(k)
X, (k)
Where:
D, =— (P, +P,, +1)= —(Ze”lT cosh (yT )+1)
D, =D, 0, + D, + D, — D, 0, =2 cosh (yT )+e "
(T) =0, 0, +D,®, = -~
c,=cI,
) (6.30)
_ (c —
C, :( - zj(alq)u - D, _1)
a‘2
_ [chb,
Csz( a, j(CD q)zz)
After substitution, the CCF parameters for the magnetic ball levitation can be derived
as:
3, [ 1. 97633cosh( (“)]—1J
100
®, = 1.97633cosh (V’(“)]+o.9764712 (6:31)
100
<f>3 =-0.9764712
And
C, = 4.3063{1— 0.988166(003 h +(1.1905/y (@))sinh (‘/’lgz )m
sinh
¢, =10.1781 v («)/109)) 4 1017653 (6.32)
v(a)
¢, - 4.274| cosh [ £1%) ~(1.1905/y (a))sinh CACIN I RPPPey
100 100
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6.3.2 Digital State Feedback Gain Scheduled Controller Design

The designed state feedback gains vector for the transformed model (6.29) is given
by:
La =(Lx an)z(dl_a)l d, - @, d3—(T)3) (6.33)

By using the ZOH-mapping formula and selecting a sampling period of T =0.01, the

desired characteristic equation (6.11) becomes,

P(z)=2°-1.24272%+ 0.4718z —0.0082 (6.34)
Then, we have:
d, =—1.2427
d,= 0.4718 (6.35)
d, =-0.0082

After substituting for d,, d,, d,,®,, ®, and @, from eq(6.35) and eq(6.31) into eq

(6.33), the state feedback scheduled gains vector for the original model for the

magnetic ball levitation CE152 can be derived as:

_1.2427+| 1.97633c0sh [ YD) ] 11
100

Lq ()= —1.97633c05h[%)—0.5047 T, () (6.36)

0.9682

Where T, («) is the transformation matrix between the two forms.

6.3.3 Digital Gain Scheduled Observer Design

The desired characteristic equation of the closed loop observer that found in eq(6.12)
maps into the z-domain as:

P(z)=2%+0.0181z + 0.0003 (6.37)
Then, we get:
P, =0.0181
P, = 0.0003 (6:39)
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From eq(3.52) in chapter 3, the scheduled observer gains vector for the system in

OCEF is given by:

hxl =P _q_)l
hx =P, _q_)z
After substituting for P,, P,,®,, ®,from eq(6.31) and eq(6.35) into eq (6.39), the

(6.39)

observer scheduled gains vector for the system that represented in OCF can be

derived as:

[: EZ;J: ( 1'9763*C05h(%j+0'0181j (6.40)

-0.9761

The transformation matrix between the two forms can be calculated as:

T, ()= 0.0063* : °
o(a)= 0. ®,, ()l @y (e) 10, () (6.41)

The scheduled observer gains vector for the original model can be derived as:

1 0 [ 0.0124*cos h (%}1.136&10‘4}
(6.42)

-0.9761
Where :

®,, () and @, () are defined in eq(6.25).

6.3.4 Matlab Simulation Of The Digital Output Feedback Control

The digital gain scheduled output feedback control has been built on Matlab/Simulink

tool as shown in fig.(6.5) below.
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Step
B oo ) ;
ramp A z-1
»| » >
Signal Builder Manual Switch Addtional X ! J_LL in voltage o St
" cope
dynamic X2 Zero -Order ’
Gain _Scheduled Hold Magnetic Levitation Plant
Controller
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w w
gain
Scheduled
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> >
1

Figure 6.5: Digital gain scheduled output feedback control built on Matlab/Simulink

The response of the closed loop system to a sequence of step changes in a reference
signal is shown in fig.(6.6).

Tracking of a sequance of step jummping

Reference signal

" Tracking signal

0.8

0.6

position

0.4

0.2

time

Figure 6.6: Response to a sequence of step changes in the digital output feedback control

Figure (6.6) shows the output performance with comparison to the desired signal,
which converges to the desired signal quickly and meets the performance

specifications.
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The response of the closed loop system to a slow ramp input that takes the set point

from zero to one over a period of 10 seconds is shown in fig.(6.7).

Tracking for ramp input

0.8

0.6

Ramp signal

Tracking signal

position

0.4

0.2

-0.2
0

time

Figure 6.7: Response to a slow ramp with slope 0.1 in the digital output feedback control

6.4 Digital Output Feedback Control System Without Time Delay

Compensation.

The digital gain scheduled output feedback control system without time delay

compensation has been built on Matlab/Simulink tool as shown in fig.(6.8) below.

% Step —bf\”k

ramp ——p—&
Signal Builder Manual Switch

z
o
z-1

. Scope
dynamics X2 Network Zero -Order

Gain _Scheduled Delay Hold Magnetic Levitation Plant
Controller

Ex1
Ex2

gain
Scheduled
observer

Figure 6.8: Digital output feedback control system with no time delay compensation built on

Matlab/Simulink
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The step response of the closed loop system without taking the time delay into

consideration in the design of an output feedback controller is shown in fig.(6.9).

System Response Without Time Delay Compansation
1000

-1000 \

\
-2000
\

c
S
= 3000
(=]
o

-4000

\
-5000
-6000 \

-7000
0 1 2 3 4 5 6 7 8 9 10

Time

Figure 6.9: Output response of the uncompensated control system for the magnetic ball
levitation CE152

From fig(6.9) , we can clearly note that the magnetic ball levitation CE152 system

becomes unstable due to the effect of network delay.
6.5 Digital Output Feedback Control System With Time Delay

Compensation

The time-invariant and time varying gain scheduled output feedback control system
with time delay compensation have been built on Matlab/Simulink tool as shown in

the following figure:
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Zero -Order
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Time Invariant
Controller

Magnetic Levitation Plant

Time Invariant Number

obsener

Figure 6.10: Time invariant digital output feedback control system with time delay
compensation built on Matlab/Simulink

Step n z
% ? NS o1
ramp : X 21

Signal Builder  Manual Switch Addtional
Dynamic

.
XL
e 4 J_LL In Voltage Output q |

Scope

Time varying ﬂ A Variable Zero -Order
Time Delay " "
Controller 4 Hold Magnetic Levitation Plant

Random
Number

Time varying
observer

Figure 6.11: Time varying digital output feedback control system with time delay compensation
built on Matlab/Simulink

The two types of gain scheduled controllers are achieved similar levels of

performance for the magnetic ball levitation CE152.

The response of the closed loop system for both types of controllers for a sequence of

step changes in a reference signal is shown in figure(6.12).
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Figure 6.12: Response to a sequence of step changes in the digital output feedback control with
time delay compensation

Also, the response of the closed loop system to a slow ramp with slop 0.1 is shown
in fig.(6.13).

Response to a slow ramp input with time delay compensation

0.9

0.8

0.7

Ramp Input

0.6

Output Response

0.5

Position

0.4

0.3

0.2

0.1

Time

Figure 6.13: Response to a slow ramp with slope 0.1 in the digital output feedback control with
time delay compensation
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Comparisons between the responses of the compensated system signal with the

system with no time delay signal are shown in figures (6.14) and (6.15) below:

Responses to a sequance of step changes comparison

System with no time delay signal

Compesated system signal (

[
:

04 (

T

0 1 2 3 4 5 6 7 8 9 10
Time

Position

Figure 6.14: Comparison of the responses to a sequence of step changes for the system with no
time delay with the compensated time delay system

Responses to a slow ramp input comparison

0.9

0.8

0.7

Signal with no time delay signal
0.6

Compensated system signal

0.5

Position

0.4

0.3

Time

Figure 6.15: Comparison of the responses to a slow ramp input for the system with no time delay
with the compensated time delay system.
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6.6

Discussion Of The Results

From figures (6.14) and (6.15) it can be seen that the extension of the control
system to compensate the network induced delay lead to system responses
close to the responses of the digital control system with no time delay. The
improved responses occurred due to the controller structure capability in
compensating the induced time delay .

The two types of gain scheduled control system achieved similar levels of
performance due to the existence of equivalent transfer functions ate every kth
sampling period. Then, the time varying gain scheduled controller is more
efficient than the time invariant gain scheduled controller since there is no
need to introduce any hardware components at the actuator node input.
Fig.(6.9) showed that the system became unstable when the forward channel
induced delay is not taken into account during the design of such controller.
To reach the maximum position of the magnetic ball levitation CE152, we
selected the reference signal to be ramp signal or a sequence of step changes
in the reference signal, because the stability reasons of gain scheduled
technique that require slowly varying reference trajectory with respect to the
system dynamics[26].

In [25], an advanced fuzzy gain scheduling methodology was developed for
the same special case of 2" order nonlinear systems that assumed in this
thesis with no time delay. Table 6.1 shows a comparison between the results

of this thesis with the work proposed in [25].

Table 6.1: Parameters of magnetic ball levitation CE 152

Presence of . .
Controller . Overshoot | Settling Time
time delay

Fuzzy Gain Scheduling Controller[25] No 0% 0.09

Output Feedback Gain Scheduling Controller Yes 0% 0.11

Although in this thesis the time delay was taken into account, table 6.1 shows that our

results are close to the results of the advanced methodology proposed in [25], this

indicates that the developed Output Feedback Gain Scheduling Controller has

achieved a good performance with compensating the effect of time delay.
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CHAPTER 7

7 CONCLUSION AND FOR FUTURE WORK

A networked control architecture has many advantages compared to the traditional point-
to-point design, but there are some problems due to the presence of a communication
network. The communication network introduces time delays in the control loop and

these delays have effects on system stability and performance.

In continuous-time systems, the delay is expressed as infinite dimension term which
prevents applying different traditional design methods directly. In discreet system, though
the delay can be expressed as a finite-dimension term, it increases the dimension and
hence the complexity of the system significantly.

The insertion of the communication network into the forward channel of a control
system increases the complexity of the analysis and design for NCS. For the sake of
simplicity, three steps for designing a tracking controller via a communication network
was considered. In the first step, a continuous output feedback controller for the system
with no time delay was designed using a gain scheduling technique. In the second step,
the continuous system was sampled, and a discrete output feedback gain scheduled
controller for the system with no time delay was also designed. In the last step, the
communication network in the forward channel was taken into account, and two types of
extended gain scheduled output feedback controllers were designed for the discrete

model of NCS: Time invariant and Time varying controllers.

All the designed controllers in this thesis were implemented on MATLAB SIMULINK
and were applied to the magnetic ball levitation CE152 simulation model. From the
simulation results, it has demonstrated that the proposed methodology has achieved the

desired performance as well as treating the effect of time delays induced by the network.
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A general recommendation for future work is to extend the proposed methodology to
compensate for the feedback channel induced delays, also we can handle the effect of
data packet losses during communication in NCSs. Cyclic service network type was
assumed in the thesis, other types of networks such as random access network can be

considered for future work.
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