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ABSTRACT 

 

In a Networked Control System (NCS), sensors, controller and actuator are connected 

to the communication network as nodes instead of hardwiring them with point-to-

point connection. This system setup has the advantages of low cost, flexibility, less 

wiring, and the system performance can be remotely controlled from a long distance. 

Besides a lot of a advantages, a NCS has also shortcomings, induced by the network 

components, like time delays and data packet loss. Network delays degrade the NCS 

control performance and destabilize the system. 

 
In this thesis, a new tracking control methodology for a special case of nonlinear 

control systems with time delays induced by inserting the communication network 

into the forward control loop is presented, which is generated from the use of gain 

scheduling technique. In this methodology, the design of  a gain scheduled tracking 

controller  is based on the use of output feedback control, which also includes 

designing an estimator for compensating the induced time delays.   

 

This methodology is applied to an application of nonlinear systems, that is magnetic 

ball levitation CE152 and the results showed that the designed controller achieved the 

desired performance as well as treating the effect of time delays induced by the 

network. 
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 :ملخص الدراسة

 

في نظام التحكم الشبكي، تكون عناصر نظام التحكم وهي المجسات والمتحكم والمشغل متصلة 

يمنح  .مع بعضها البعض من خلال شبكة اتصال عوضاً عن توصيلها مباشرة من خلال أسلاك

التحكم مزايا عديدة منها تقليل التكلفة والمرونة وتقليل أسلاك التوصيل بالإضافة هذا الشكل لنظام 

 .إلى أنه يضفي خاصية جديدة وهي إمكانية مراقبة أداء النظام والتحكم به عن بعد

 

على الرغم من هذه المزايا الجذابة، يعاني نظام التحكم الشبكي من أوجه قصور عديدة ناتجة عن 

علماَ .  مكونات الشبكة ، أهمها التأخر الزمني لوصول البيانات وفقدان العديد  من حزم البيانات

 .اربأن التأخر الزمني في الشبكة يضعف أداء النظام ويقوده أحيانا إلى حالة عدم الإستقر

 

تقنية الكسب المجدولة  استخدامهذه الأطروحة تعرض طريقة  تحكم جديدة تولدت من خلال 

والتي تتضمن تتبع حالة خاصة من أنظمة التحكم اللاخطية التي تعاني من تأخير زمني ناتج عن 

 .في حلقة التحكم الأمامية لنظام التحكم اتصالإدراج شبكة 

 

طريقة   استخدامتحكم التتبعي ذو الكسب المجدول تعتمد على في هذه الطريقة، عملية تصميم الم

التحكم بالتغذية الراجعة من مخرج النظام وتتضمن عملية التصميم أيضأ تصميم المقدر الذي 

 . يستخدم لتعويض التأخر الزمني في وصول البيانات

 

سي  وأظهرت طبقت هذه الطريقة على مثال من الأنظمة اللاخطية هو جهاز التعليق المغناطي

النتائج تحقيق المتحكم المصمم للأداء المطلوب مع معالجة تأثير التأخر الزمني الناتج عن 

 .الشبكة استخدام
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CHAPTER 1 

1. INTRODUCTION 

1.1 Introduction of Networked Control Systems 
The point-to-point architecture is the traditional communication architecture for 

control systems, that is, sensors and/or actuators are connected to controllers via 

wires. In recent years, due to the expansion of physical setups and functionality, a 

traditional point-to-point architecture is no longer able to meet new requirements, 

such as modularity, integrated diagnostics, quick and easy maintenance, and low cost. 

Such requirements are particularly demanding in the control of complex control 

systems and remote control systems [1].  
 
Meanwhile, data networking technologies provide several benefits on linking data 

points like computers. Networks enable remote data transfers and data exchanges 

among users, reduce the complexity in wiring connections and the costs of medias, 

and provide ease in maintenance[2].  

 

The new requirements can be satisfied by replacing the traditional point-to-point 

architecture with those based on common-bus network which is called a Networked 

Control System (NCS). 

 
In general, NCSs are a type of distributed control systems where sensors, actuators, 

and controllers are interconnected through a communication network as shown in 

fig(1.1). Sensors measure states of the plant and transmit these states over the 

communication network to controllers. The controllers receive these states, and 

calculate appropriate control actions and send them to actuators over the 

communication network. Actuators receive control actions and control the plant 

appropriately. On other meaning, in the NCSs, a feedback control loop is closed 

through a communication network which is the backbone of the NCS. 
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There are two general NCS structures can be configured as distributed control 

systems: Direct structure and hierarchical structure that will be described later.  
 

 

 

 

 

Figure   1.1: A Block Diagram of an NCS. 

 

In the past few years, the technologies on general computer networks have also 

progressed very rapidly. With, increasing speed, widespread usages, numerous 

software and applications, and well established infrastructure, these networks have 

been widely applied in the control of industrial and military applications. These 

applications include manufacturing plants, automobiles, and aircrafts. Connecting the 

control system components in these applications, such as sensors, controllers, and 

actuators, via a network can effectively reduce the complexity of the systems with 

nominal economical investments. Furthermore, the applications connected through a 

network can be remotely controlled from a long distance. Traditionally, the networks 

used in the aforementioned applications are specific industrial networks, such as CAN 

(Controller Area Networks), and LAN (Local Area Network). 

 

Despite the attractive benefits gained from using data networks in the control purpose, 

NCS suffers from many problems. One of the major problems of NCS is the delay of 

data transmission between the units of NCS.  

 

The continuous-time systems with time-delays are infinite dimensional systems. The 

infinite dimensional continuous-time system can be  reformulated to  finite 

dimensional discrete-time system by sampling the continuous-time process. 

 

It is clear that the infinite dimensional systems are much more difficult to deal with 

than  the finite  dimensional systems, thus , the discrete-time description of the NCS 

model is important in the analysis process of NCS, and can be derived by discretizing  

the continuous-time systems at sampling instants T. 

 

 

Reference 

Signal Controller  

Network 

Actuator Sensor Plant 
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The following Remarks should be taken into account when selecting the value of 

sampling time: 

• Make the sampling time T small enough to reproduce the open-loop time 

response enough precisely ( )10rT t=  and to avoid aliasing effects (Nyquist 

frequency Tπ  larger than closed-loop bandwidth). 

• Make the sampling time T small enough to react enough readily to 

disturbances affecting the system. 

• Make the sampling time large enough to avoid fast and expensive control 

hardware. 

As shown in fig.(1.2), network delays in the NCS can be categorized from the 

direction of data transfers as the sensor-to-controller delay ( )sc
kτ  and the controller-to-

actuator delay ( )ca
kτ  and both network delays can be longer or shorter than the 

sampling time T. Network delays are modeled and analyzed in various ways. They 

can be modeled as a constant delay, independent random delay and delay with known 

probability distribution governed by Markov chain model. 

Figure   1.2: The block diagram of network-induced delay 

 
Network delays degrade the NCS control performance and destabilize the system. 

Therefore, any control system constructed without considering these delays has a low 

performance and reliability, Thus a great emphasis are made on developing control 

methodologies to handle the network delay effect in NCS. 



4 
 

1.2 Background 

1.2.1 Network Types 

Many different network types have been developed for the use in control systems and 

the delay characteristics on NCS basically depend on the type of a network used. The 

networks can be divided into two groups:  real-time and non-real-time data. 

• Non-real-time: This network does not have stringent time limits on their delays 

during data exchange, and in these systems, the concern is over whether the data 

arrives without error and duplication. 

• Real-time:  This network has strict time limits and the data’s value is diminished 

as the system delay grows larger. 

 
There are two types of real networks according to different  medium accesses control 

(MAC)  protocols  which are used for control purpose and described as follows[1]: 

1- Cyclic Service (Periodic) Network 
 

In local area network protocols with cyclic service such as SAE token bus and time 

division multiple access protocol, data is transmitted in a cyclic order with 

deterministic behaviors. Thus, the delays are periodic and can be simply modeled as a 

periodic function. In practice, NCS may experience small variations on periodic 

delays due to several reasons, for examples, the discrepancies in clock generators on a 

controller and a remote system may result in delay variations. 
 
2- Random Access Network 
 
Carrier sense multiple access protocol is most often used in random access network 

whose application includes CAN, Ethernet , and Internet. The significant parts of 

random network delays are the waiting time delays due to queuing and frame collision 

on the networks. When an NCS operates across networks, several more factors can 

increase the randomness on network delays such as the queuing time delays at a 

switch or a router, and the propagation time delays from different network paths. In 

such network, sc
kτ  and ,ca

kτ  are stochastic processes where stochastic approaches are 

needed to model the behaviors of  both delay types. 
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1.2.2 NCS Configuration. 

In general, there are two major types of remote control systems that utilize 

communication networks listed as follows[3]: 
 

• Direct Structure: The NCS in the direct structure is composed of a controller 

and a remote system containing a physical plant, sensors and actuators. The 

controller and the plant are physically located at different locations and are 

directly linked by a data network in order to perform remote closed-loop 

control as shown  in fig.(1.3). 

• Hierarchical Structure: The basic hierarchical structure consists of a main 

controller and remote closed loop systems as depicted in fig.(1.4). 

Periodically, the main controller computes and sends the reference signal in a 

frame or a packet via a network to the remote systems. The remote system 

then processes the reference signal to perform local closed-loop control and 

returns to the sensor measurement to the main controller for networked closed-

loop control. 
 

The use of either the direct structure or the hierarchical structure is based on 

application requirements and designer’s preferences. For example, a robotic 

manipulator usually requires several motors at the joints of the robot to 

simultaneously and smoothly rotate together. It may be more convenient and more 

robust to use an existing robot controller and formulate the networked control 

problem in the hierarchical structure. On the other hand, a designer may require a 

networked DC motor speed control system to have a faster control response over the 

network. The direct structure may be preferred in this case[3]. 
 
 

 

 

 
Figure   1.3: Data transfers of direct structure 
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Figure   1.4: Data transfers of hierarchical structure,  

 

Where CM is the main controller, Si is the ith local sensor, Ci is the ith local controller 

, and Ai is the ith local actuator. 

1.2.3 Closed Loop Control System 

In a closed-loop control system, a sensor monitors the output and feeds the data to a 

computer, which continuously adjusts the control output (system input) as necessary 

to minimize the error. Feedback allows the controller to dynamically compensate the 

disturbances. An ideal feedback control system cancels out all errors, effectively 

mitigating the effects of any forces that might or might not arise during operation and 

producing a response in the system that perfectly matches the user's wishes. 

 

In reality, this cannot be achieved due to measurement of errors in the sensors, delays 

in the controller, and imperfections in the control input. The concept of the feedback 

loop: the sensed value is subtracted from the desired value to create the error signal, 

which is handled by the controller to produce the control signal, which can achieve 

the desired response [4]. 
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1.3 Fundamental Issues with Networked Control Systems 
The following two issues are the most challenging problems with NCSs that need to 

be properly addressed to ensure the stability and performance of the closed-loop 

systems[5]. 

 

1. The first issue is the network-induced delay, including sensor-to-controller 

delay and controller-to-actuator delay, that happens when data exchange 

happens among devices connected by the communication network, which will 

deteriorate the system performance as well as stability. This delay, depending 

on the network characteristics such as network load, topologies, routing 

schemes, etc., can be constant, time-varying, or even random. 

 

2. The second issue is the data packet dropouts. In the NCS, data is sent through 

the network in packets. Due to network characteristics, such as their 

topologies, the used protocol, etc. therefore, any continuous time signal from 

the plant is first sampled to be carried over the communication network. 

Chances are that those packets can be lost during transmission because of 

uncertainty and noise in communication channels. It may also occur at the 

destination when out of order delivery takes place. Although most network 

protocols are equipped with transmission- retry mechanisms, they can only 

retransmit for a limited time. After this time has expired, the packets are 

dropped 

1.4 Recent Works on Networked Control Systems 
 

Due to network delay concerns, several methodologies have been proposed to treat  

time delays systems. These methodologies have been formulated based on several 

types of network behaviors and configurations in conjunction with different ways to 

treat the delay problems. The basic concepts of some control techniques that  have 

been developed for the control of NCSs are presented here.  

 

1. HALEVI and RAY, proposed a methodology named as the augmented 

deterministic discrete time model methodology to control a linear plant over a 

periodic delay network. This methodology is based on discrete-time state 
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space models. The controller uses j past measurements z(k) = y(k - i), i = 

{1,…,j} to calculate the control signal at k. The network delays are handled by 

augmenting the delays into the full system state model, and the stability for 

periodic delays is proven based on the eigenvalues of the augmented system 

state transition matrix[6].  

 

2. LUCK and RAY, developed an queuing methodology which denoted as the 

deterministic predictor-based delay compensation methodology. This 

methodology uses an observer to estimate the plant states and a predictor to 

compute the predictive control based on past output measurements. The 

control and past output measurements are stored in FIFO queues and shift 

registers, and these are located before and after the controller in the control 

loop. the past measurements are used to estimate the plant state at – 1k θ + , 

where θ is the size of the shift register between the sensor and the observer. 

Next, using the previous estimate, the plant state is predicted at k + μ, where μ 

is the size of the register after the controller. The predictive control signal u(k 

+ μ) is then calculated and stored in the shift register. Since both the observer 

and the predictor are model-based, the performance of the system highly 

depends on model accuracy[7].  

 

3. NILSSON, developed an optimal stochastic control methodology for NCS. To 

control a system over a random delay network. The effects of network delays 

are treated as a Linear Quadratic Gaussian (LQG)problem. The controller and 

actuator used in this approach is event-driven while the sensor is time-driven. 

In this work the delay was assumed to be less than one sample time and the 

information of all the past delays are available. In this approach, two 

stochastic processes were incorporated into the system state-space equations 

and the goal is to minimize a cost function of the plant states and inputs. The 

stability of the network-based system for both independent delays and delays 

modeled by a Markov chain is discussed using stochastic stability analysis[8]. 
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4. WALSH, BELDIMAN, YE, and BUSHNELL, developed the perturbation 

methodology for NCS. This methodology considered the difference between 

the current plant output values and the most recently transmitted plant output 

values as a perturbation to the system and searches for limits to this error. The 

stability is proven using the Lyapunov approach on the dynamics of the error. 

Several assumptions are made, including error free communications, fast 

sampling and noiseless observations, but the plant and the controller may be 

nonlinear and time variant[9]. 

 
5. ALMUTAIRI ET AL, proposed the fuzzy logic modulation methodology for 

an NCS with a linear plant and a modulated PI controller to compensate the 

network delay effects. In this methodology, the PI controller gains are 

externally updated at the controller output with respect to the system output 

error caused by network delays. Thus, the PI controller needs not to be 

redesigned, modified, or interrupted for use on a network environment. The 

fuzzy logic modulation methodology can be implemented in a unit called the 

fuzzy logic modulator, which modifies the control ( )cu t  by

( ) ( ) ( ) ( )( )
0


t

c pi p i t
u t u t K e t K e dβ γ γ= + + ∫  

The multiplicative factor β is used to externally adjust the controller gains at the 

output without interrupting the original PI controller. The value of β  is selected from 

two fuzzy rules based on the network delay effects as follows: 

If ( )e t is SMALL, then 1β β= , 

If ( )e t is LARGE, then 2β β= , 

Where 1 20 1β β< < < [11]. 

 
6. HONG, developed the sampling time scheduling methodology to 

appropriately select a sampling period for an NCS. The fundamental concept 

of this approach is to appropriately select a long enough sampling period for a 

discrete-time network-based system such that communication delays do not 

affect the control performance, and the system remains stable. In this case, the 

control delay in a discrete-time control loop must be assumed to be less than 
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the sampling period T of the loop. The control loop consists of a time-driven 

sensor and controller, and an event driven actuator[12]. 

7. H. Elaydi and W. Sakallah, modeled the time delays using different 

approaches such as Pad’e approximation and Smith Predictor in continuous 

system and modified z-transform in discreet systems. The delays were 

assumed to be constant and known. The delays in the system were lumped in 

the plant model. They showed a design of stable and optimal controller for 

time-delay systems using algebraic Riccati equation solutions and PID 

control[13 ].  

1.5 Thesis Assumption 
In this thesis, the following assumptions are needed: 

1. The controlled process should be a  special case of  2nd  order nonlinear system. 
The linearization of the system about an equilibrium point takes the form: 

 
( )

1 1

2 2 1 2 2

1
1

2

0 1 0
 

      0

x x
u

x a a x b

x
y c

x

      
= +      − −      

 
=  

 





 ( 1.1) 

2. The actuator is time driven. 

The actuator implements zero-order hold (ZOH) reconstructing, which holds 

the last control signal until the next sample time arrived. 

3. The sensor is time-driven. 

The states of the plant are sampled periodically. 

4. The controller is time-driven. 

The controller calculates the new control signal at discrete time instants with a 

constant sampling time. 

5. The proposed type for the network that used for control purpose is cyclic service 

network. 

Data is transmitted in a cyclic order with deterministic behaviors. Thus, the 

delays are periodic and can be simply modeled as a periodic function. 

 

6. Network transmissions are error-free. 
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7. The communication network inserted into the forward control loop of the control 

system.   

 

8. The induced time delay ca
kτ in the forward control loop is random, but in the same 

time bounded ( )ca
k Tτ < .  

1.6 Statement Of The Problem 
A general block diagram of the networked control system proposed in this thesis is 

shown in fig.(1.5).The network distributed control system consists of a remote 

nonlinear plant, a controller designed for that nonlinear plant, and a communication 

network that connects between the controller and the plant. 

 

 

 

 

 

 

Figure   1.5: The block diagram of the networked control system 

The insertion of the communication network in the feedback control system that 

contains a nonlinear system, makes the design of the tracking controller complex. 

During the designing process  for the controller,  two major problems will be faced 

and need to be taken into account: Nonlinearity of the system and the time delays 

induced in the forward control loop by the network. 

 

The tracking controller for nonlinear system  without considering the time delays can 

be built by using some tools such as: gain scheduling technique, sliding mode, 

feedback linearization, back stepping and adaptive control.  In this thesis, the problem 

of nonlinearity will be solved by using gain scheduling technique.  

 

As stated previously, the control system constructed without considering the time 

delays have a low performance and reliability. Therefore, it is necessary to extend the 

designed controller for the nonlinear system to compensate the time delays over 

treating nonlinearity of the controlled system.   

+ - 

 r(t) 

 

Controller Nonlinear 
System 

y(t) 
Network 
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1.7 Thesis Objectives 
 

The main objective of this thesis is to propose and employ a new methodology to 

solve the tracking control problem for nonlinear control systems with  time delays 

induced by introducing a communication network in the forward control loop for the 

control system. The evaluated technique will be applied on an application of  a special 

2nd order nonlinear systems such as magnetic ball levitation CE152. 

 

1.8 Research Methodology 
 

In order to achieve these objectives, the following procedure will be carried out: 

1. Designing  a continuous output feedback gain scheduled controller for the 

special case of nonlinear system without time delay consideration. 

 

2. The continuous system is sampled, and a digital output feedback gain scheduled 

controller for the special nonlinear system with no time delay is also designed. 

 

3.  The communication network in the forward channel is taken into account, the 

discrete time model of the NCS is established, and the extended gain scheduled 

output feedback controllers is designed for the discrete-time networked control 

system. 

 

4. Simulating each type of an output feedback gain scheduling designed controller 

for an application such as magnetic ball levitation CE152 and checking the 

performance of each controller.  
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1.9 Contribution Of The Thesis 
 

This thesis presents a methodology for designing a gain scheduled  controller for a 

special case of nonlinear systems  to solve the tracking problem via a communication 

network introduced into the forward control loop of the control system, the tracking 

task  is achieved by designing an extended digital  output feedback gain scheduled  

controller which supports for compensating the induced time delays over treating 

nonlinearity of the system. The evaluated technique is applied on an application  

which is magnetic ball levitation CE152. 

1.10 Thesis Outline 
The contents of the thesis are as follows: 

  
Chapter 2 provides a basic idea of the linearization and the gain scheduling 

techniques that used for a nonlinear control system, and presents the design 

procedures of  an output feedback gain scheduled tracking controller for a special case 

of 2nd order nonlinear system. 

Chapter 3 shows how to replace the continuous time model of the plant by  a discrete 

time model, and also shows how to derive  the exact discrete time model for a special 

case of 2nd order system, this model is used to design a digital output feedback gain 

scheduled controller.  

Chapter 4 presents how to obtain a discrete time model for a plant with time delays at 

the input that induced by inserting the forward channel in the control loop of the 

control system,  and also provides strategies for compensating the induced time delay 

by the forward channel of the network. 

Chapter 5 shows how to obtain an approximated model for the magnetic ball 

levitation CE152 apparatus, and shows how to implement a simulation model of this 

apparatus on Matab/Simulink. 

Chapter 6 presents simulation results that performed by applying the different 

programmed controllers to a simulation model of the magnetic ball levitation CE152 

on Matalb/Simulink program using MATLAB, at the end of this chapter a discussion 

of these results is presented. 

. 
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CHAPTER 2 

2. NONLINEAR FEEDBACK CONTROL 

2.1 Introduction 

There are several practical tools available for nonlinear control design, including 

linearization, gain scheduling, feedback linearization, sliding mode control, Lyapunov 

redesign, backstepping, passivity-based control, and high gain observers. It is also 

unlikely that the whole design of a nonlinear feedback controller can be based on one 

particular tool. The engineer will need to employ the tool that is appropriate for the 

problem in hand. The applied application used in this thesis uses gain scheduling 

control to overcome the problem of nonlinearity because it is practical enough for the 

applied application. 

There are many control tasks that require the use of feedback. Depending on the 

design goals, there are several formulations of the control problem. The tasks of 

regulation, tracking, and disturbance rejection or attenuation lead to a number of 

control problems. In each problem, we may have a state feedback version where all 

state variables can be measured or an output feedback version where only an output 

vector, whose dimension is typically less than the dimension of the state, can be 

measured[13]. 

2.2 Regulation Of Nonlinear System 
We start by the regulation  problems for two reasons. First, many control problems are 

regulation problems. Second, the tracking problems and regulation problems are 

related, so, the tracking problem reduces to a regulation problem. The regulation 

problem is the problem of remaining the system close to the origin equilibrium point. 

 Consider the nonlinear system, 

 
 

 

,

,

x f x u

y h x u







 ( 2.1) 

The state feedback regulation problem for system (2.1) is the problem of designing a 

feedback control input  
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  u x  ( 2.2) 

Such that the origin x  0 is a uniformly asymptotically stable equilibrium point of 
the closed-loop system, 

   ,x f x x  ( 2.3) 

The output feedback regulation problem for the system (2.1) is the problem of 
designing a dynamic output feedback controller, 

 
 

 

,

,

u y z

z g y z




 ( 2.4) 

Such that the origin of the closed loop system ,x z 0 0 is a uniformly 

asymptotically stable equilibrium point. 
 

2.3 Tracking Of  A Nonlinear System 
 

The tracking problem is the problem of regulating the system to any of its equilibrium 

states, not just the zero state. In a tracking problem, a reference input is defined, and 

the output of the system is required to be equal (or close to) the value of reference 

input. 

Since, the regulation problem and tracking problem are related, then the later can be 

reduced to a regulation problem by shifting an arbitrary point ssx to the origin. At the 

same time, the feedforward value of the input ssu is needed  to maintain equilibrium at 

ssx . Since ssx is an equilibrium point, we have 

  , ,        t 0ss ssf x u  0  ( 2.5) 
To shift the desired equilibrium point to the origin , change of variables is  needed and 

can be written as follows: 

 
ss

ss

x x x

u u u

 

 





 ( 2.2) 

The new coordinates of the nonlinear state equations become, 
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 

 

,

,

x f x u

y h x u





   

   

 ( 2.7) 

Where  

 
   

   

, ,

, ,

ss ss

ss ss

x f x x u u f x u

y h x x u u h x u

   

   

     

     

 ( 2.8) 

At equilibrium point   ,ss ssx u , we have, 

 
ss

ss

x x x

u u u

  

  





0

0
 ( 2.9) 

Substituting from (2.9) into (2.7), we get:  

 
 

 

,    .

,    .

f for all t

h for all t

 

 





0 0 0 0

0 0 0 0
 ( 2.10) 

The tracking problem is reduced to solve the regulation problem for the system (2.7) 

at the desired operating point, where u is designed as a feedback control of x  or x̂  . 

The overall control ssu u u  where u  is a feedback component and ssu is a feed 

forward component. 

2.3.1 Integral Control 

The state feedback regulator for the combined integral action together with a system 
can then be designed  to obtain a tracking system with zero steady state error. The 
block diagram of the state feedback with integral control is shown in fig(2.1) below: 

The addition of integral control achieves asymptotic tracking under all parameter 
perturbation that do not destroy the stability of the closed loop system, but in the same 
time increases the system type, and thus, an additional state vector must be added to 
achevie zero steady state error as well as desired transient response  is achevied.   

 

 

 

 

 
Figure  2.1: Block diagram of integral control. 

Measure
d 

 

y u -σ r 

- 
+ 
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Consider the nonlinear system, 

 
 

 

  , ,

  ,

x f x u

y h x











 (2.11) 

Where   is a vector of the unknown constant parameters and disturbance. The 

tracking task here will be achieved by regulating the system at the desired equilibrium 

point  ,ss ssx u such that  at this point y r . 

At equilibrium,  the following equations must be satisfied  

 
 

 

, ,

,

ss ss

ss

f x u

r h x









0
 (2.12) 

The new state  generated from integrating the regulation error e y r  where: 

 e  (2.13) 
Then the augmented state space model can be written as : 

 
 

 

, ,

,

x f x u

h x r



 



 





 (2.14) 

The tracking task here is reduced to design a regulated feedback controller that 

regulates  the augmented state space model (2.14) at an equilibrium point  ,ss ssx 

where ss produces the desired ssu . 

 The nonlinear feedback controller that regulates the augmented model takes the form, 

  , ,u x e   ( 2.15) 

Such that at the equilibrium point  ,ss ssx  , the controlled output is tracking the 

reference signal with zero steady state error.  

2.4 Linearization Tool 

Linearization is a linear approximation of a nonlinear system that is valid in a small 

region around the operating point. The linearization tool is useful in model analysis 

and control design tasks, some of these tasks are regulation and tracking.  

2.4.1 State Feedback Regulation 

Consider the nonlinear system, 
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  ,x f x u  (2.16) 

By using Taylor series, the linearization of a system about  ,x u 0 0  can be 

written as: 

 x Ax Bu   (2.17) 
Where: 

 
, ,

( )     ,       ( )
x u x u

f fA x,u B x,u
x u   

 
 

 0 0 0 0

 (2.18) 

 

After applying the linear state feedback control u Kx to the nonlinear system 

(2.16), the closed loop system becomes: 

  ,x f x Kx   ( 2.19) 

The linearization of the closed loop system (2.19) about the origin  0x   is  given 

by: 

      , , .
x x

f f ux x Kx x Kx A BK x
x u x 

  
     

  0 0

  ( 2.20) 

  
The origin of the closed loop system is asymptotically stable equilibrium point if and 

only if the closed loop matrix  A BK is Hurwitz, thus, the state feedback 

regulation problem of the nonlinear system is reduced to a problem of designing a 

linear state feedback controller u Kx to yield the required closed loop poles 

values that depend on desired transient response. 

2.4.2 Output Feedback Regulation 

A problem in using state feedback controller comes about when it is difficult to 

measure all of  the state variables of the plant. Furthermore, it is too expensive to 

measure  all the states of  many applications and  send them to controller such as send 

them through a network . If the state variables are not available because of the system 

configuration or cost, it is possible to determine the estimated states of a system from 

available measurements and a model by using an observer. For an output feedback 

controller, a state feedback applied from estimated state, rather than actual states. 
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For the output feedback regulation problem of the nonlinear system (2.1), the 

linearization of the system about of the origin results in the standard linear form, 

 
x Ax Bu

y Cx

 





 ( 2.21) 

Where A and B are defined previously, and 

  
x

hC x
x 




 0

 (2.22) 

The output feedback regulation of a nonlinear system reduces to design a linear output 
feedback controller. This controller consists of designing state feedback controller and  
an observer to estimate the states of the plant that used for the purpose of state 
feedback. The linear output feedback controller called observer-based regulator and it 
can be written as: 

  ˆ ˆ ˆ

ˆ

x Ax bu H y y

u Kx

   





 
(2.23) 

To regulate the nonlinear system (2.1), the state feedback gains vector K is designed 

such that the closed loop matrix  A BK is Hurwitz, while the observer gains vector 

H is also designed separately such that the closed loop matrix A HC is Hurwitz. 

2.4.3 State Feedback  Tracking 

The linear form of the state feedback control input (2.15) is given by 

 x eu K x K K e    ( 2.24) 

When the linear control input (2.24) is applied to system (2.1), we get the closed loop 
system as, 

 
   

 

, , ,

,

x ex f x K x K K h x r

y h x

  



    





 (2.25) 

Linearization of system (2.25) about the equilibrium point  ,ss ssx   yields the linear 

augmented state space model by, 

         ( 2.26) 
Where: 
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   

     
, , ,

,    ,    ,    ,    

, , , = , , , , ,
ss ss ss ss ss ss

s s
x

ss

x x u u x x x u u x x x u u

x x A B
C K K

C

f f h
A x u B x u C x u

x u u       


    



  
 

  

                        
 

  

0
0

0 0
   

 (2.27) 

 

From (2.26), the tracking problem is reduced to design the state feedback gains vector 

 such that the closed loop matrix  A B  is Hurwitz. 

2.4.4 Output Feedback  Tracking 

The linear form of the output feedback  tracking controller  to be designed  is given 

by: 

 
 

ˆ

ˆ ˆ ˆ

ˆx

x Ax Bu HC x x

u K x K 

   

 
 ( 2.28) 

When the controller (2.28) is applied to the augmented model (2.14), the result of the 
closed loop system is: 

 
 

 

ˆ ˆ,

ˆ ˆ ˆ

xx f x K x K

x Ax Bu HC x x

  

   



 ( 2.29)
 

Let  ˆxe x x= − ,   

After linearizing  the closed loop system (2.29) about the equilibrium point, the result 
becomes in a linear form as, 

 

( )

0
 

0 1

     0

xx

x

r
eA HCe

y
e

ξξ

ξ

  −     
= +      − −     

 
=  

 





  



 ( 2.30) 

Because the closed loop matrix is an upper-triangular, the eigenvalues of the closed 

loop system are the eigenvalues of the diagonal blocks.  

      CLeig A eig A B eig A H       ( 2.31) 
Where: 

 CL

A B B
A

A HC
       0

 
  ( 2.32) 
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Eq(2.32) is called the separation principle, which refers to the fact that the designs of 

state feedback gains and observer gains can be performed separately.  

From (2.30), the tracking problem is reduced to design the state feedback gains vector 

 such that the closed loop matrix A B  is Hurwitz and also designing the 

observer gains vector H such that the matrix ( )A HC− is Hurwitz in which the 

estimated vector xe will decay to zero. 

2.5 Gain Scheduling 

In control theory, gain scheduling is an approach to control of non-linear systems that 

uses a family of linear controllers, each of which provides satisfactory control for a 

different operating point of the system[14]. The limitation of the design via 

linearization technique is that the linearized model is valid only for a limited range in 

a neighborhood of an operating point at which the linearization is carried out. To 

extend the approximate modeling by linearization over a wide range of operating 

points, gain scheduling technique should be used. For the gain scheduling technique, 

the nonlinear system is linearized  about a set of operating points that parameterized 

by one or more variables, which called scheduling variables. To achieve the 

performance requirements for the nonlinear system, we need to design a single linear 

controller whose parameters are functions of the scheduling variables, such a 

controller is called a gain scheduled controller.  

The procedure for designing gain scheduling controller of the nonlinear systems is 

developed  by the following steps[13]: 

1. Linearize the nonlinear system about the family of operating points, 

parameterized by the scheduling variables. 

2. Design a parameterized family of linear controllers to achieve the specified 

performance for the parameterized family of linear systems at each operating 

point. 

3. Construct a gain scheduled controller such that, at each constant operating 

point, the controller provides a constant control value yielding zero error, the 

linearization of the closed-loop nonlinear system at each operating point is the 

http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/Non-linear_system
http://en.wikipedia.org/wiki/Controller_(control_theory)
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same as the feedback connection of the parameterized linear system and the 

corresponding linear controller. 

4. Check the performance of the gain scheduled controller for the nonlinear 

model by simulation. 

Now we want to apply the last procedures for designing a gain scheduled tracking 

controller  for a special case of 2nd order nonlinear system which  describes many 

physical systems, especially systems in which the position and velocity are the 

state variables, for example, the magnetic ball levitation CE152 and the inverted 

pendulum. 

Consider the special case 2nd order nonlinear system described by: 

  

 

1 2

2 1 2

1

, ,

x x

x f x x u

y h x









  (2.33) 

For the tracking task, the system is regulated to a set of operating points 

parameterized by a scheduling variables. Define as a scheduling variable so that 

when r   constant value, the following equations are satisfied, 

 

 

    

  

, ,

SS

SS SS

SS

x

f x u

h x



 

 







2

1

1

0

0 0  (2.34) 

The linearization of the nonlinear system (2.33) about a family of parameterized 

operating points     ,ss ssx u  can be written as : 

 
     

  

x x
u

a a bx x

x
y c

x

  



                              

      

1 1

2 1 22 2

1
1

2

0 1 0

0





 (2.35) 

After adding the integrator, the parameterized augmented model can be expressed as:  
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( ) ( )
( )

u

y

ξ α ξ α

α ξ

= +

=

  


 (2.36) 

Where  

 

1

2

x
xξ
σ

 
 =  
 
 

, ( ) ( )
( )
2 1

1

0 1 0
0

0
0

0 0

A
a a

C
c

α α
α

 
  = − − =   
  

 

 , ( )2

0

0
0

B
b α
 

  = =      
 

      

( )( ) ( )1 0 0 0c Cα= =  
 

(2.37) 

The gain scheduled observer-based integral controller  is given by: 

 
       

   

ˆ ˆ ˆ

ˆ

z

z

x A x B u H C x x

u K x K

   

  

  

  
 ( 2.38) 

Where 

 ( ) ( )( )1 2z z zK K Kα α= and ( ) ( )( )1 2=
T

z z zH h hα α  ( 2.39) 

After Substituting from (3.38) for u in (3.36), the closed loop gain scheduling 

Observer-based integral controller becomes, 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )( )

 
0 0

     0

xx

x

r
A H C ee

y
e

α α α α α ξξ
α α α

ξ
α

−      
= +      −      

 
=  

 





     



 (2.40) 

Where  

 ( ) ( ) ( )( )1 2z zK K K σα α α= and ( )0 0 1T = −  ( 2.41) 
 

Because the closed loop matrix is in upper-triangular form, the separation principle 

can be applied  as stated previously, which means that the state feedback control with 

integral action and the observer can be designed separately.  

For designing the state feedback gain regulators for systems that are not represented 

in CCF, four steps can be used as follow: 
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1- Calculate the desired closed-loop denominator polynomial of the system ( )P s . 

 
2- Transform the system into controllable canonical form by using linear 
transformation. 
 
3- Calculate the feedback vector of gains xK for the transformed design model 

that assigns the poles of the closed-loop system at the roots of ( )P s . 

 
4- Finally, find the original state feedback vector of gains zK in terms of xK .  

For specifying the desired locations of the closed loop system poles, the method that  

based on the classical control concept of the dominant second-order poles is used, so  

the desired polynomial for a second-order prototype system is written as follows: 

 ( ) 2 22 n nP S s sζω ω= + +   ( 2.3) 

The desired poles are :  2
1,2 1 .ns ζω ζ= − ± −  

Because the system becomes third order system due to adding  an integral action, we 

must  place the remaining pole so that their real parts are less than 4 nζω− [15].  The 

desired polynomial can be computed as: 

( ) ( )( )2 2
1 2n n nP s s s sβ ζω ζω ω= + + +  

 ( ) ( )3 2 2 2 3
1 1 12 1 2n n ns s sβ ζω β ζ ω β ζω= + + + + +   ( 2.43) 

Where 1 4β >  

Let : 

 

( )
( )

1 1

2
2 1

3
3 1

2

1 2

n

d

d

d

β

β ζ

β ζω

= +

= +

=

  ( 2.44) 

 

The desired polynomial becomes,  

 ( ) 3 2
1 2 3P S s d s d s d= + + +   ( 2.45) 

The controllability matrix is: 
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( ) ( ) ( ) ( ) ( ) ( )( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( )

( )

2

2 1 2

2
2 1 2 1 2 2

1 2

0

0 0

mzC B A B A B

b a b

b a b a a b

c b

α α α α α α

α α α

α α α α α α α

α α

= =

 −
 

− − 
  
 

 

 ( 2.4) 

 

From the controllability matrix (2.46), the system is controllable. The transfer 

function of the system (2.36) is: 

 ( ) ( ) ( )
( ) ( )( )

( ) ( )
( ) ( )

2 1 2 1
3 22

1 21 2

b c b c
T S

s a s a ss s a s a
α α α α

α αα α
= =

+ ++ +
  ( 2.47) 

 

The CCF can be derived from the transfer function above as : 

 

( ) ( )

( ) ( )( )

1 11 2

22

33

1

2 1 2

3

0 1
 1 0 0 0

0 1 0 0

      0 0

x xa a
x ux
xx

x
y b c x

x

α α

α α

  − −    
      = +      

         
 
 =  
 
 







  ( 2.5) 

The controllability matrix of the transformed model is: 

 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )
( )

2

2
1 1 2

1

1
                   0 1

0 0 1

mxC B A B A B

a a a
a

α α α α α α

α α α
α

= =

 − −
 

− 
 
 

 
 ( 2.6) 

Where  

 ( )
( ) ( )

( )
1 2 0 1
1 0 0  and  0
0 1 0 0

a a
A B

α α
α α

− −   
   = =   

     

  ( 2.7) 

 

The transformation matrix ( )cT α   between the two forms can be evaluated  as:  
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 ( ) ( ) ( )( )
( )

( )
( ) ( )

2
1

2

1 2

0 0
= 0 0   

0 0
c mz mx

b
T C C b

c b

α
α α α α

α α

−
 
 =  
 
 

  ( 2.51) 

The control signal of this form can be written as: 

 ( ) ( ) ( )1 1 2 2 3 3x x xu k x k x k xα α α= − − −   ( 2.52) 

Subsituting for u in (2.48), The closed loop system becomes, 

 

 

( ) ( )( ) ( ) ( )( ) ( )1 1 2 2 31 1

22

33

1 0 0
0 1 0

x x xa k a k kx x
xx
xx

α α α α α − + − + −       =     
         







  ( 2.53) 

The charactesrtic equation of the closed loop system (2.53 ) is: 

 
( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( ) ( )3 2
1 1 2 2 3

det

                       

x

x x x

sI A B k

s a k s a k s k

αα α

α α α α α

− − =

+ + + + +
  ( 2.54) 

 

Then, by matching the coefficients of (2.54) with the desired polynomial (2.43), 

yields: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

1 1 1 1 1 1

2 2 2 2 2 2

3 3

x x

x x

x

d a k k d a

d a k k d a

k d

α α α α

α α α α

α

= + → = −

= + → = −

=

  ( 2.55) 

 

Substituting for the values of d1, d2, and d3 from eq(2.44)  into eq(2.55), yield 

 

( ) ( )
( ) ( ) ( )
( )

1 1 1

2 2
2 1 2

3
3 1

( 2)

1 2

n

x n

x n

x

k a

k a

k

α β ζω α

α β ζ ω α

α β ζω

= + −

= + −

=

  ( 2.56) 

 

By using similtary transformation, the feedback gain vector  of the original model is: 

( ) ( ) ( )1
z x cK K Tα α α−=  



27 
 

 
( ) ( ) ( ) ( )( )

( )
( )

( ) ( )
( )
( )

( )
( )

( )
( ) ( )

1
2

1 3 22

1 2

2 1 3

2 2 2 1

0 0
0 0 =

0 0

                                  

z x xx

x x x

b
K k k k b

c b

k k k
b b b c

α

α
α α α α

α α

α α α
α α α α

−
 
 =  
 
 

 
  
 

  ( 2.8) 

Where                          

( ) ( ) ( ) ( )( )1 2z zzK k k k σα α α α=  

Subsituting for the values of kx1, kx2, and kx3 from eq(2.56)  into eq(2.57), the 

scheduled state feedback controller gains are: 

 

( ) ( ) ( )
( )

2 2
1 2

1
2

1 2 n
z

a
k

b
β ζ ω α

α
α

+ −
=  

( ) ( )
( )

1 1
2

2

( 2) n
z

a
k

b
β ζω α

α
α

+ −
=  

( ) ( ) ( )

3
1

2 1

nk
b cσ

β ζω
α

α α
=  

(2.58) 

 

 

 

For designing an observer for any second order system that is not represented in OCF 

four steps can be used as follows: 

1. Selecting the desired characteristic equation for an observer ( )oP s  . 

2. Transform the system into observable canonical form by using linear 
transformation. 

3. Calculate the observer gains vector xH for the transformed design model that 

assigns the poles of the observer at the roots of ( )oP s . 

4. Finally, Find the original observer vector of gains zH in terms of xH .  

The transient response of the observer is designed so that it is much quicker  than the 

transient response of the controlled closed loop system in order to yield rapidly state 

estimate of the system[16]. To make the transient response for the observer faster than 

for the closed loop system, the natural frequency for the observer is chosen to be 
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equal to the natural frequency for the controlled closed loop system multiplied by a 

factor 0β , The desired characteristic equation for the closed loop observer becomes, 

 ( ) 2 2 2
0 02o n nP S s sβ ζω β ω= + +   ( 2.59) 

Let 

 
1 0

2 2
2 0

2 n

n

d

d

β ζω

β ω

=

=
  ( 2.60) 

   

The desired observer characteristic equation becomes, 

 ( ) 2
1 2oP s s d s d= + +   ( 2.61) 

The  observability matrix for the special case of 2nd  order system described in (2.35) 
is: 

 ( ) ( )
( ) ( )

( )
( )

1

1

0
0mz

C c
O

C A c
α α

α
α α α

   
= =   
   

  ( 2.62) 

The system is said to be completely observable because the matrix ( )mzO α has a full 

rank. From the transfer function of the system (2.35), the observable canonical form 
can be written as: 

 

( )
( ) ( ) ( )

( )

1 11

2 12 22

1

2

01
 

0

      1 0

a xx
u

b ca xx

x
y

x

α
α αα

−     
= +     −       

 
=  

 





  ( 2.63) 

The observability matrix of the transformed model is: 

 ( ) ( )
( ) ( ) ( )1

1 0
1mx

C
O

aC A
α

α
αα α

   
= =   −  

  ( 2.64) 

The transformation matrix ( )oT α  can be evaluated by: 

( ) ( ) ( )1
o mz mxT O Oα α α−=  

 ( ) ( )
( ) ( )

( )
( ) ( ) ( )

1
1 1

11 1 1 1

1 00 1 0
10 1o

c c
T

ac a c c
α α

α
αα α α α

−
    

= =    − −    
  (2.65) 
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The observer scheduled gains for the system found in OCF is given by: 
( ) ( ) ( )( )1 2=T

x x xH h hα α α  

The closed loop matrix ( ) ( ) ( )( )xA H Cα α α−  is computed as : 

 ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

1 1

2 2

1

0
x

x
x

a h
A H C

a h

α α
α α α

α α

 − +
− =  

 − + 
  ( 2.66) 

Then, the characteristic equation  of the closed loop observer (2.66) is evaluated by : 

 
( ) ( ) ( )( )( )

( ) ( )( ) ( )( )( )2
1 1 2 2

det

                        

x

x x

sI A H C

s a h s a h

α α α

α α α α

− −

= + + + +
  ( 2.67) 

 

By matching the coefficients of the characteristic polynomial (2.67) to the desired 

observer polynomial (2.61) , we have : 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1

2 2 2 2 2 2

x x

x x

d a h h d a

d a h h d a

α α α α α α

α α α α α α

= + → = −

= + → = −
  ( 2.68) 

By Substituting the values of d1 and d2 from eq(2.60) into (2.68), we get: 

 
( ) ( )
( ) ( )

1 0 1

2 2
2 0 2

2x n

x n

h a

h a

α β ζω α

α β ω α

= −

= −
   ( 2.69) 

The observer gains vector of original system  is:  

 

( ) ( ) ( ) ( )( )
( )

( ) ( ) ( )
1

1

0 1
2 2 2
0 2 1 0

1

2
2

z o x

n

n n

H T H c

a
a a a

α α α α

β ζω α
β ω α α β ζω α

= =

− 
  − − + 

   ( 2.70) 

 

The  observer scheduled gains (2.70)  can be rewritten as :  

 

( ) ( )
( )

0 1
1

1

2 n
z

a
h

c
β ζω α

α
α
−

=  

( ) ( ) ( ) ( )
( )

1

2 2 2
0 2 1 0

2
1

2n n
z

a a a
h

c
β ω α α β ζω α

α
α

− − +
=  

( 2.71) 

The procedure for designing a gain scheduled observer-based integral controller  can 

be summarized as follows : 
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1- Attempt the values of damping ratioζ and the natural frequency nω of 

the desired pole locations for a prototype second order system, by 

choosing the values of settling time and overshoot for the transient 

response specification. 

2- Choose the value of factor 1β  which guarantees that the third pole is 

less than 4 nζω−  so that the third pole does not affect the behavior of the 

two dominant poles. 

3- Choose the value of factor 0β , so that the desired transient response of 

the observer is much faster than that of the plant.  

4- Calculate the gain scheduled state feedback controller gains 

( ) ( ) ( )( )1 2, ,Z Z Zk k k σα α α , as described in (2.58). 

5- Calculate the gain scheduled observer gains ( ) ( )( )1 2,Z Zh hα α as 

described in (2.71). 
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CHAPTER 3 

3. DIGITAL CONTROL 

3.1 Introduction 
A digital control system operates on discrete-time rather than continuous-time signals. 

A digital computer is used as the controller in such a system. Using computers or 

microcontrollers to implement digital controllers has substantial advantages. Many of 

the difficulties with analog implementation can be avoided. For example, there are no 

problems with accuracy or drift of the components. It is very easy to have 

sophisticated calculations in the control law, and it is easy to include logic and 

nonlinear functions. Tables can be used to store data in order to accumulate 

knowledge about the properties of the system. It is also possible have effective user 

interfaces[17]. 

 

The block diagram of digital control system is shown in fig.(3.1). The digital 

computer perform the controller function within the system by running an algorithm. 

The A/D converter converts the measured signal by a sensor, which is a continuous 

signal, into sampled data form so that it can be processed by the controller . At the 

controller output, the D/A converter converts the sampled data output of the controller 

into a form which can be used to drive the plant. 

 

 

 

 

 

Figure   3.1: Digital control system. 
 
 
 
 
 
 
 

A/D 
Digital 

Controller System D/A 
Input 

+ - 

Output 
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3.2    Sampling and Reconstruction Processes 
The operation that transforms continuous time signal into discrete time data is called 

sampling or discretization. The reverse operation, that transforms the discrete time 

data into continuous time signal, is called  data reconstruction[18].  

3.2.1 Sampling Process 

A sampling process replaces the continuous time signal by a sampled data signal 

which is  a sequence of values at discrete time points. A sampled data signal can be 

generated by using A/D converter which can be approximated by an ideal sampler in 

the sampled data form. As shown in fig.(3.2), an ideal sampler is basically a switch 

that closes instantaneously at every time interval T. When a continuous signal y(t) is 

sampled by an ideal sampler at periodic intervals T, the resulting sampled data signal 

is shown in fig.(3.3). 

 

 

 

 
Figure   3.2: Ideal sampler 

 

 

 

 

 

   

 
 

Figure   3.3: (a) Analog signal, (b) Sampled data signal 
 

3.2.2 Reconstruction Process 

Many control systems have controlled processes that contain analog devices. These 

devices are driven by an analog signal input. Thus, when the sampled data appear in a 

control system, they should be first converted into analog signal before being applied 

to the controlled process[19]. 

Continuous 
signal 

Sampler 
y(T) 

 

y(t) 

Sampled 
signal 

(b) 

y(T) 

0        T       2T      3T      4T      5T 
(a) 

y(t) 

0        T       2T      3T      4T      5T 
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The process of converting  sampled data signal  u kT to an analog signal  u t is 

called reconstruction. A device that performs this reconstruction process is called a 

digital to analog (A/D) converter. The most common form of reconstruction used in 

practice is zero order hold (ZOH) reconstruction which also called the actuators. As 

shown in fig.(3.4), a ZOH circuit reconstructs a continuous signal from a discrete 

signal by producing a constant output value that is proportional to a given input 

sample for a fixed amount of time. Then, the output changes to a new constant value 

that is proportional to the value of the next sample. 

 

 

 

 

 
 

 
Figure   3.4: Data reconstruction by using ZOH device. 

 

The transfer function of the ZOH device is given by[20]: 

 ( ) 1 Ts

ho
eG s
s

−−
=  

After approximating the A/D and D/A devices by an ideal sampler and ZOH device, 

the approximated hybrid data control system is shown in fig.(3.5). 

 

 

 

 

 
Figure   3.5: Approximated hybrid data control system. 

 

 

u(t) 

0        T       2T      3T      4T      5T 

u(kT) 

0        T       2T      3T      4T      5T 

Zero-Order 
Hold 

- + Sampler 
e(k) y(k) y(t) u(t) u(k)  r(k) G(s) ZOH C(z) 
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3.3   Discrete Time State Space Model 
The analysis and design of a digital control system is complicated by the fact that the 

plant is a continuous-time system while the compensator is a discrete time system. 

One way of dealing with this problem is to replace the plant with a discrete-time 

model that specifies the behavior at the sampling instants. In this way, the entire 

control system becomes discrete time, and the standard discrete time theory can be 

used to design the compensator[15]. 

3.3.1 ZOH Equivalent Model For An Analog System 

The discrete data model for an analog plant driven by a piecewise constant input is 

called the ZOH equivalent model, which is an exact model for the plant at sampling 

instants. The block diagram of digital control system in which the analog plant has 

been replaced by its ZOH equivalent is shown in fig.(3.6). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure   3.6: Digital control system with ZOH equivalent model for an analog plant. 
 

The resulted discrete state equation when an analog plant is replaced by a discrete 

data model (ZOH model) is described by the following equations[15]: 

 
         

   

1x k T x k T u k

y k Cx k

  


 ( 3.1) 

 

 

- + Sampler 
e(k) y(k) y(t) u(t) u(k)  r(k) G(s) ZOH C(z) 

- + 

e(k) y(k) u(k)  r(k) ZOH Equivalent 
Model For G(s) C(z) 
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Where:  

 ( ) ( )
0

,         =
T

AT AsT e T e dsBΦ = Γ ∫  ( 3.2) 

3.3.2 ZOH Equivalent Model For A Special Case 2nd Order System 

Consider a special case of 2nd order system is given by: 

 

( )

1 1

2 2 1 2 2

1
1

2

0 1 0
 

      0

x x
u

x a a x b

x
y c

x

      
= +      − −      

 
=  

 





 ( 3.3) 

The characteristic matrix ( )sI A− is computed as: 

 ( )
2 1

1s
sI A

a s a
− 

− =  + 
 ( 3.4) 

 

The transition matrix is evaluated as: 

 

( ) ( )( )

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

11

2

sin
cos sin

sin
cos sin





t
t

t
t

t L sI A

e h t
e h t h t

a e h t
e h t h t

λ
λ

λ
λ

ψ
ψ λ ψ ψ

ψ
ψ

ψ λ ψ ψ
ψ

−−

−
−

−
−

Φ = − =

 
+ 

 
 −
 − 
 

 ( 3.5) 

 

Where 

21
1 2

1, 4
2 2
a a aλ ψ= = −

 

The vector ( )tΓ  can be evaluated as: 

 

( )
( )

( ) ( ) ( )( )

( ) ( ) ( )( )

2

0 0

2

2

2

2

sin
  

cos sin

1 cosh sin
       

sin ( )

T TA

t

t

e h
b

t e B d d
b e h h

b e t h t
a

b e ch t

λγ

γ

λγ

λ

λ

ψγ
γ ψ γ

ψγ λ ψ ψγ

ψ λ ψ ψ

ψ
ψ

−

−

−

−

 
 

Γ = =  
 − 

  − +  
 =
 

    

∫ ∫

 ( 3.6) 
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For discretization, by setting t=kT, the discrete state space model can be written as: 

 

( )
( )

( )
( ) ( )

( ) ( ) ( )
( )

1 111 12 1

1 121 22 2

1
1

1

1
1

         0

x k x k
u k

x k x k

x k
y k c

x k

+   Φ Φ Γ   
= +      + Φ Φ Γ      

 
=  

 

 ( 3.7) 

Where  

 

( ) ( ) ( )( )
( )

( )

( ) ( ) ( )( )

11

12

2
21

22

cos sin

sin

sin

cos sin

T

T

T

T

e h T h T

e h T

a e h T

e h T h T

λ

λ

λ

λ

ψ λ ψ ψ

ψ
ψ

ψ
ψ

ψ λ ψ ψ

−

−

−

−

Φ = +

Φ =

−
Φ =

Φ = −

 ( 3.8) 

And  

 
( ) ( ) ( )( ) [ ]2 2

1 11
2 2

2
2 2 12

1 cosh sin 1

sin ( )

T

T

b be h
a a
b e ch T b

λ

λ

ψ λ ψ ψ

ψ
ψ

−

−

 Γ = − + = −Φ 

 Γ = = Φ 

 ( 3.9) 

 

The discrete transfer function can be calculated as: 

 

( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( )

1

2

1 2
2 2

2

                                          

1 cosh sin cosh sin

2 cos

T

T T

TF C zI

h z e hc b
a z e h T z e

λ

λ λ

ψ λ ψ ψ ψ λ ψ ψ

ψ

−

−

− −

= −Φ Γ =

 − − + − +   
  − + 

 

( 3.10) 

3.3.3 The ZOH Pole - Mapping Formula 

The performance specifications for the continuous time system are achieved by 

assigning  the closed loop poles at the desired values in the s-plane. When the plant is 

replaced by its ZOH equivalent, the design model becomes discrete time system, and 

the desired closed loop s-plane poles must be mapped into an equivalent set of the 

desired z-plane poles. Using ZOH mapping formula, the desired s-plane pole maps 

into the z-plane by the following equation. 

 is T
iz e=  ( 3.5) 

For  designing  the state feedback controller, the desired continuous polynomial (2.43) 

that derived in chapter 2 will be mapped into the discrete  equivalent by using 

eq(3.11) as: 
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( )( )( )
( )( )( )1

1 2 3

22

3 2
1 2 3

( )

2 cosn n nT T T
d

P z z z z z z z

z e T z e z e

z d z d z d

ζω ζω β ζωω− − −

= − − −

= − + −

= + + +

 ( 3.6) 

Where: 

 

( ) ( )( )
( ) ( )( )

( )

1
1

12
2

2
3

2cos

1 2 cos

nn

nn

n

m TT
d

m TT
d

m T

d e e T

d e e T

d e

ζωζω

ζωζω

ζω

ω

ω

− −−

− −−

− +

= − +

= +

= −

 ( 3.13) 

Also for designing an observer the continuous desired observer polynomial (2.59) will 

be mapped into discrete equivalent as: 

 ( ) 2
1 2P z z P z P= + +  ( 3.7) 

Where , 

 ( )0
1 02 cosnT

dP e Tβ ζω β ω−= −  and 02
2

nTP e β ζω−=  ( 3.15) 

3.4   Digital State Feedback Control 
The design of  discrete control system by state feedback  is similar in principle to that 

of continuous data control system. In chapter 2, we showed how to design a state 

feedback regulator for a controllable continuous system to keep the state variables of 

the system at zero values. And also we showed how the regulation problem was 

reduced to a problem of designing a vector K of feedback gains so that the poles of 

the closed loop system ( )A BK− are assigned at the desired locations in the left half 

s-plane. 

For discrete time system, the design of digital controller based on state feedback will 

be reduced to a problem of calculating the feedback vector L so that the poles of the 

closed loop discrete system ( )LΦ−Γ are assigned at the desired location  in the 

interior of the unit circle in the z-plane.   

3.4.1 Digital State Feedback Tracking Controller 

As discussed in chapter 2, the tracking task for the continues time system is achieved 

with zero steady state error by introducing an integral action together with a state 

feedback controller. The same task will be achieved by zero steady state error for the 
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discrete data control system in which the controlled plant is replaced by its ZOH 

equivalent by introducing an additional dynamics system as a part of digital 

compensator. The cascaded combination of the additional dynamics and the plant is 

shown in fig.(3.7). 

 

 

 

Figure   3.7: Cascaded combination of the additional dynamics system and the plant 

The transfer function of the additional dynamics system which must be used to have a 

tracking system with zero steady state error can be defined as[15]:  

 ( )
mz
zδ

 ( 3.16) 

Where m represents  the number of roots of reference input  that are not eigenvalues of 
Φ and 

( ) ( )( ) ( )1 2 mz z z z z zδ = − −   

Where ( )1 2, , , mz z z are the poles of ( )d z that are not eigenvalues of Φ . 

The state space model of the additional dynamics is given by[15]: 

 
( ) ( ) ( )
( ) ( ) ( ) ( )

1

1 0 0
a a a a

a a

x k x k u k

y k x k u k

+ = Φ +Γ

= +

 ( 3.17) 

Where  

 

1 1

2 2

1 1

1 0 0
0 1 0

,      
0 0 1
0 0 0 0

a a

m m

m m

δ δ
δ δ

δ δ
δ δ

− −

− −   
   − −   
   Φ = Γ =
   
− −   
   − −   





     



 
And ( )ax k is the new state variable generated from introducing the additional 

dynamics system. Then, the augmented state variables becomes: 

 ( ) ( )
( )d

a

x k
x k

x k
 

=  
 

 ( 3.18) 

a a a(Φ , Γ , c )  

Additional Dynamics y[k] 
(Φ, Γ, c)
 

ZOH of Plant 

x[k] xa[k] 

ya[k] e[k] 
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And, the augmented state space model for the cascaded combination of the additional 

dynamics and the plant can be viewed as: 

 
( ) ( ) ( )
( ) ( )

1 + d d d d

d d

x k x k u k

y k C x k

+ = Φ Γ

=
 ( 3.19) 

Where:  

 

( )

0
,      

0

0

d d
a a

d

C

C C

Φ Γ   
Φ = Γ =   Γ Φ   

=

 ( 3.20) 

For example, the transfer function of the additional dynamics system which must be 

implemented to track a unit step or ramp input with zero steady state error can be 

derived from eq(3.16) as: 

 ( )
1

zR z
z

=
−

 (3.21) 

The state space matrices aΦ and aΓ for  dynamics system (3.17) can be found as: 

 1  and   1a aΦ = Γ =  ( 3.22) 

Substituting for aΦ  and aΓ  from eq(3.22) into eq(3.19), The state space 

representation for the augmented model becomes: 

 

( )
( )

( )
( ) ( )

( ) ( )
( )

1 0
1 1 0

0

a a

a

x k x k
u k

x k x kC

x k
y C

x k

+   Φ Γ   
= +      +       
 

=  
 

 ( 3.23) 

The tracking property for the system (3.7) will be satisfied by designing a state 

feedback regulator to the augmented model (3.23) as shown in fig.(3.8). The gains 

vector L  for the state feedback regulator has a dimension of ( )1n + and it can be 

partitioned into two elements as follows: 

 ( )z aL L L=  ( 3.24) 
Where:  

zL is the feedback gains vector  for the controlled plant and aL  is the feedback gain 

for the additional dynamics system. 
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Figure   3.8: State feedback tracking controller 

 

3.4.2 Designing A State Feedback Tracking Controller For A Special Case 

System 

The  a special case of 2nd order nonlinear system is given by: 

 

( )

1 1

2 2 1 2 2

1
1

2

0 1 0
 

      0

x x
u

x a a x b

x
y c

x

      
= +      − −      

 
=  

 





 ( 3.25) 

From eq(3.7), the ZOH equivalent model can be viewed as: 

 

( )
( )

( )
( ) ( )

( ) ( ) ( )
( )

1 111 12 1

1 121 22 2

1
1

1

1
1

         0

x k x k
u k

x k x k

x k
y k c

x k

+   Φ Φ Γ   
= +      + Φ Φ Γ      

 
=  

 

 ( 3.26) 

Where the values of  11Φ , 12Φ , 21Φ , 22Φ , 1Γ  and 2Γ  are described in eq(3.8). 

After introducing an additional dynamics to track a step or ramp input with zero 

steady state error, the augmented state space model for the system (3.26) can be 

derived from eq (3.23) as: 

x[k] 

 

y[k] 

1L
 

(Φ, Γ, c)
 

a a a(Φ , Γ , L )
 

Additional Dynamics 
u[k] 

- 

+ 

Plant with feedback 

- 

+ r[k] 
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( )
( )
( )

( )
( )
( )

( )
( )
( )
( )

1 11 12 1 1

2 21 22 2 2

1

1

1 2

1 0
1 0
1 0 1 0

0 0

a a

a

x k x k
x k x k u
x k c x k

x k
y c x k

x k

+ Φ Φ    Γ   
      + = Φ Φ + Γ      

     +      
 
 =  
 
 

 ( 3.27) 

The controllability matrix for the augmented model (3.27) is: 

 

( )
( ) ( )

( ) ( )
( )

2

2
1 11 1 12 2 11 12 21 1 12 11 22 2

2
2 21 1 22 2 21 11 22 1 22 12 21 2

1 1 1 11 1 1 12 20 1

mzC

c c c

= Γ ΦΓ Φ Γ

 Γ Φ Γ +Φ Γ Φ +Φ Φ Γ +Φ Φ +Φ Γ
 
 = Γ Φ Γ +Φ Γ Φ Φ +Φ Γ + Φ +Φ Φ Γ
 
 Γ +Φ Γ + Φ Γ
 

 ( 3.8) 

The transfer function for the augmented model can be computed as follows:

 

 
( ) ( )

1
11 12 1

1
1 21 22 2

1

2
2 3

3 2
1 2 3

0
0 0 0

0 1 0
d d

z
TF C zI c z

c z

cz c z c
z z z

−

−
−Φ −Φ Γ   

   = −Φ Γ = −Φ −Φ Γ   
   − −   

+ +
=

+Φ +Φ +Φ

 (3.9) 

Where  

 

( ) ( )( )
( )

( )

( )

1 11 22

2
2 11 22 11 22 12 21

2
3 11 22 12 21

1 1 1

1 2
2 1 12 3

2

1 2
3 3 22

2

1 2 cos 1

2 cos

1

T

T T

T

e h T

e h T e

e
c c

c bc a
a

c bc
a

λ

λ λ

λ

ψ

ψ

−

− −

−

Φ = − Φ +Φ + = − +

Φ = Φ Φ +Φ +Φ −Φ Φ = +

Φ = −Φ Φ +Φ Φ = −
= Γ

 
= Φ −Φ − 
 
 

= Φ +Φ 
 

 ( 3.30) 
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The system (3.27) can be rearranged in CCF as: 

 

( )
( )
( )

( )
( )
( )

( )

( )
( )
( )
( )

1 11 2 3

2 2

1

21 2 3

1 1
1 1 0 0 0

0 1 0 01a a

a

x k x k
x k x k u k
x k x k

x k
x ky c c c
x k

 +   −Φ −Φ −Φ   
      + = +      

     +      
 
 

=  
 
 

 ( 3.10) 

The controllability matrix  for  the augmented model that found in CCF is : 

 ( )
2

1 1 2
2

1

1
= 0 1

0 0 1
mxC

 −Φ Φ −Φ
 

= Γ ΦΓ Φ Γ −Φ 
 
 

 ( 3.11) 

The inverse of the matrix in the last equation can be derived as: 

 
1 2

1
1

1
0 1
0 0 1

mxC −

Φ Φ 
 = Φ 
 
 

 ( 3.12) 

Then, the transformation matrix between two forms can be calculated as follows: 

 

32
1

1 1

2 2 2

1 3

2
0

c

cc
c c

T
c c

 Γ 
 
 = Γ − Γ Γ
 − 
 
 

 ( 3.13) 

 

The inverse of the transformation matrix is obtained by: 

 ( )

( ) ( ) ( )
( )
( )

1 2 3 1 3 1 2 2 3 1

1 2 3 1 1 3 2 3 12
2 1 3 2 3 1

1 2 2 1 1 1 2 3 1

1

2
1

3c

c c c c c c c c
c c c c c c

c c c c c
c c c c c c

T −

Γ − + Γ −

Γ − Γ Γ −
Γ + −

Γ − Γ Γ −

 
 =  
 
 

 (3.35) 

Where: 

( )22
1 3 2 3 1

1

3cT c c c c c
c
Γ

= + −  

The corresponding state feedback controller for the augmented model defined by 

eq(3.31) takes the form: 
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 1 1 2 2xd d x a a x x a au L x L x L x L x L x L x= − = − − = − − −  ( 3.36) 

Substitute for u from the above equation into eq(3.31), the closed loop system for the 

augmented model which is found in CCF becomes: 

 

( )
( )
( )

( ) ( ) ( ) ( )
( )
( )

1 1 2 2 31 1

2 2

1
1 1 0 0

0 1 01

x x xa

a a

L L Lx k x k
x k x k

x k x k

 − Φ + − Φ + − Φ + +   
    

+ =     
     +    

 ( 3.37) 

The characteristic equation of the above model is: 

 ( ) ( ) ( )3 2
1 1 2 2 3x x xaz L z L z L+ Φ + + Φ + + Φ +  ( 3.38) 

By comparing eq (3.12) with the last equation, we obtain:  

 
1 1 1

2 2 2

3 3 3

x

x

x

L d
L d
L d

= −Φ

= −Φ

= −Φ  
The state feedback gains vector for the transformed model (3.31) can be expressed as:  

 ( ) ( )1 1 2 2 3 3xd x xaL L L d d d= = −Φ −Φ −Φ  ( 3.39) 

The gains vector for the original system described in eq(3.27) can be found as 
follows:  

 

( )

( )
( )

( ) ( ) ( )
( )
( )

1 1

1 2 3 1 3 1 2 2 3 1
1 1 2 2 3 3

1 2 3 1 1 3 2 3 12
2 1 3 2 3 1

1 2 2 1 1 1 2 3 1

2

3

zd xd c x xa cL L T L L T

c c c c c c c c
d d d

c c c c c c
c c c c c c c c c c c

− −= = =

Γ − + Γ − 
−Φ −Φ −Φ  Γ − Γ Γ − Γ + −  Γ − Γ Γ − 

 ( 3.40) 

Where  

( )1 2zd z z zaL L L L=  

3.5    Digital Output Feedback Controller 
In section (3.4) we discussed the design state feedback method  that utilizes the 

feedback of all state variables to form the required control input to achieve the desired 

performance specifications. As described in chapter 2, in practice, not all state 

variables are available for direct measurements, only a few states are measurable. The 

lack of measurements of some states can be compensated by including an observer or 

an estimator subsystem in the feedback controller.  
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3.5.1 Digital Observer 

The equation of the closed-loop observer for discrete time system is: 

 ( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆ1x k x k u k H y k y k+ = Φ +Γ + −  ( 3.41) 

The error vector can be defined as: 

 ( ) ( ) ( )ˆe k x k x k= −  ( 3.42) 

Then, the difference equation of ( )e k  can be evaluated as: 

 
( ) ( ) ( )

( ) ( )
ˆ1 1 1

              

e k x k x k

HC e k

+ = + − +

= Φ −
 (3.43) 

If the matrix H is designed such that the matrix ( )HCΦ− has eigenvalues inside the 

unit circle, then the estimated states will converge to the actual states of the plant and 

the error dynamics will be reduced to zero with sufficient speed. 

3.5.2 Designing Digital Observer For A Special Case Of 2nd  Order System 

The observabilty matrix of the system described in (3.7) 

 1

1 11 1 12

0
mz

cC
O

c cC
  

= =    Φ ΦΦ   
 ( 3.44) 

The system can be transformed into observable canonical form as: 

 
( ) ( ) ( )

( ) ( ) ( )

1 1

2 2

1
1    

0

= 1 0

x k x k u k

y k x k

   −Φ Γ
+ = +   −Φ Γ     ( 3.14) 

Where 

 

( )

( ) ( ) ( )( )

( ) ( ) ( )( )

1

2
2

1 2
1

2

21 2
2

2

2 cos

1 cosh sin

cosh sin

T

T

T

e h T

e

c b h
a

c b e h
a

λ

λ

λ

ψ

ψ λ ψ ψ

ψ λ ψ ψ

−

−

−

Φ = −

Φ =

 
Γ = − − 

 
 

Γ = − + 
 

 ( 3.15) 
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The observability matrix of the transformed model (3.45) can be calculated as: 

 
1

1 0
1

T
mx mxO C

 
= =  −Φ 

 ( 3.47) 

The transformation matrix between the two forms is obtained  by: 

 
1

1 121

1 11 1 12 1 221 12

0 1 0 01
1 1o mz mx

c
T O O

c c c

−

− Φ     
= = =     Φ Φ −Φ ΦΦ     

 ( 3.48) 

Define ( )1 2
T

x x xH h h=  

The closed loop observer ( )xH CΦ− for system (3.45) can be found as: 

 ( ) ( )
( )
( )

1 111

22 2 2

11
1 0

0 0
xx

x
x x

hh
H C

h h

 − Φ + −Φ  
 Φ − = − =     −Φ − Φ +    

 ( 3.49) 

Then, the characteristic equation of the closed loop observer (3.49) is: 

 ( ) ( )
( ) ( )1 1 2

1 1 2 2
2 2

1x
x x x

x

s h
sI H C s h s h

h s

 + Φ + −
 − Φ − = = + Φ + +Φ +
 Φ + 

 ( 3.50) 

Comparing the coefficients of the last characteristic equation to the coefficients of 

equal power of z in eq(3.14), we require that  

 1 1 1

2 2 2

x

x

P h
P h
= Φ +

= Φ +
 ( 3.51) 

From equation (3.51) we get: 

 1 1 1

2 2 2

x

x

h P
h P

= −Φ

= −Φ
 ( 3.52) 

Substituting from eq(3.15) for 1p  and 2p , and from eq(3.46) for 1Φ and 2Φ  into 

eq(3.52), we get:  

 
( ) ( )( )0

1

0
2

0

2 2

2 cos cosn

n

TT
x d

T T
x

h e h T e T
h e e

β ζωλ

β ζω λ

ψ β ω−−

− −

   −
=      −   

 ( 3.16) 

The observer gain matrix for the original system is obtained as follows: 
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 1

2 1

1
22

1
12

1     

z o x

x
T

mz mx x x x

H T H
H

O C H H H
c

−

=

 
 

= = +Φ 
 Φ 

 ( 3.17) 

 

3.5.3 Effects of The Addition of The Observer In A Closed-Loop System 

As described in chapter 2, for the output feedback control, the  estimated states were 

used rather than the actual states for the purpose of feedback.  

Consider the completely states controllable and completely observable system defined 

by the equation: 

      1x k x k u k    ( 3.18) 
The state feedback control based on the observed states can be written as: 

 ( ) ( )ˆu k Lx k= −  ( 3.19) 

By substituting of the control input u that found in eq(3.56) into eq(3.55), the closed 
loop system can be written as: 

      ˆ1x k x k Lx k    ( 3.20) 
From equation(3.42) ,we have: 

 ( ) ( ) ( )x̂ k x k e k= −  ( 3.21) 

Substituting for ( )x̂ k  in equation (3.57) , the state equation becomes: 

 ( ) ( ) ( ) ( )1  = xx k L x k Le k+ Φ −Γ +Γ  ( 3.22) 
The augmented state vector for the interconnected system is: 

 ( ) ( )
( )x

x k
z k

e k
 

=  
 

 

Note that the observer error difference equation was given by eq(3.43), repeated here: 

 ( ) ( ) ( )1  e k HC e k+ = Φ −  ( 3.60) 
Combining eq(3.59) and eq(3.60), the augmented state model due to introducing the 

observer in the feedback controller can be written as: 
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( )
( )

( )
( )

1
1 0x x

x k x kL L
e k e kHC

+   Φ −Γ Γ 
=    + Φ −    

 ( 3.23) 

Because the matrix is an upper-triangular, the closed loop poles of the observed-state 

feedback control consist of  the poles ( )LΦ−Γ plus the poles ( )HCΦ− . This means 

that the state feedback control design and the observer design are independent of each 

other. They can be designed separately and combined together to form an output 

feedback control.  

3.5.4 Designing An Observer Based Integral Controller 

The block diagram of an observer-based integral controller  in the discrete control 

system can be described as shown in fig.(3.9) below: 

 

 

 

 

 

 

 

Figure   3.9: An observer based integral controller. 

As described previously, The configuration of such controller shown in fig.(3.9) has 

the advantage that the design of the state feedback regulation and the observer are 

separated. 
 
For the state feedback design, all the state variables are assumed to be measured and 

the same result of designing the tracking controller which is derived in eq(3.40) can 

be used. 

For the observer design, only the output  is assumed to be measured and also the same 

result of designing the observer gains vector which is derived in eq(3.54) can be used. 

3.6    Digital Gain Scheduled Controller For A  Special Case System 

Consider the special case 2nd order nonlinear system described by: 
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Digital 
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  

 

1 2

2 1 2

1

, ,

x x

x f x x u

y h x









  ( 3.24) 

From chapter 2, The linearization of the nonlinear system (3.62) about a family of 

parameterized operating points     ,ss ssx u  can be written as: 

 
     

      

x x
u

a a bx x

x
y c

x

  



                              

      





1 1

2 1 22 2

1
1

2

0 1 0

0

 ( 3.63) 

Using eq(3.7), the parameterized discrete time state space equation is: 

 

( )
( )

( ) ( )
( ) ( )

( )
( )

( )
( ) ( )

( ) ( )( ) ( )
( )

1 11 12 1 1

1 21 22 1 2

1
1

1

1
1

         0

x k x k
u k

x k x k

x k
y k c

x k

α α α
α α α

α

+ Φ Φ Γ      
= +      + Φ Φ Γ      

 
=  

 

 ( 3.25) 

For designing  a digital gain scheduled observer-based integral controller, we can use 

the same results of gains  that derived in eq(3.40) and eq(3.54) by setting their 

parameters as a function of the scheduling variables α . 

Then, the state feedback scheduled gains vector can be written as: 

 ( ) ( ) ( ) ( )( ) ( )1
1 1 2 2 3 3zd cL d d d Tα α α α α−= −Φ −Φ −Φ  ( 3.26) 

And  the scheduled gains vector for an observer can be expressed as:   

 ( ) ( )

( )
( ) ( ) ( )

( )

1

2 122
1

12

1
x

z x x

H

H H H
c

α

α α α α
α

α

 
 

= +Φ 
 Φ 

 ( 3.27) 
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CHAPTER 4 

4 TRACKING A NONLINEAR SYSTEM VIA NETWORK 

4.1    Introduction  

In modern manufacturing control systems, the common bus network architecture is 

becoming more dominant than point-to-point architecture due to developments in 

communication capabilities, improvements in network infrastructures, small 

reconfiguration cost, better resource utilization, and reduced maintenance cost[3]. The 

utilization of a wired or wireless communication network in control applications 

provides several benefits, but in the same time, faces many difficulties. The main 

difficulty with the design of such control loop is the presence of sensing and actuation 

delays introduced by the communication networks. Unlike conventional time delay 

systems, the type of delays introduced by the network are time-varying, since they 

depend on the traffic currently on the network. The main objective of this chapter is to 

present a methodology in order to design a dynamic output feedback gain scheduled 

controller to control a nonlinear system  via  NCS  that is characterized by time-

varying control and constant delays in the utilized of two transmission channels. 

4.2 Delays Analysis In The Control Loop 

Since the NCS operates over a network, data that transfers between the controller and 

the remote system will induce network delays in addition to the controller processing 

delay. Network delays in a NCS can be categorized from the direction of data 

transfers as the sensor-to-controller (forward channel) delay and the controller-to-

actuator (backward or feedback channel ) delay. These network delays can be longer 

or shorter than the sampling time T. There are several sources of delays in NCS. Not 

only the network dynamics affect the total delay, but also the signal processing and 

computational delays that depend on the scheduling policies should be taken into 

account. Network delays are modeled and analyzed in various ways depending on the 

network type and protocols. They can be modeled as a constant delay (timed buffer), 

independent random delay and delay with known probability distribution governed by 

Markov chain model.  Different types of time delay compensation schemes are used 
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to compensate the time delays caused by the network such as: PID controller, smith 

predictor, optimal controller, fuzzy controller, robust control, sliding mode controller, 

and adaptive controller. The typical construction of networked control systems 

(NCSs) in the discrete time model is described in fig(4.1), and the timing diagram of 

network delay propagation is also described in fig(4.2).  

 

 

 

 
 

Figure   4.1: General NCS configuration and network delays in discrete-time formulation 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure   4.2: Timing diagram of network delay propagation 
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4.3 Effects Of Delays In The Control Loop 

As described previously, the network induced delays are brought into the loop of the 

control system along with the inserted communication network, which not only 

degrade the control system performances, but may be bring the whole control system  

unstable. Thus, any control system  constructed without compensation for these 

delays have a low performance and reliability.  

4.4 Network Time Delay Compensation 

Networked Control System (NCS) is a type of closed loop control system with real 

time communication networks imported into the forward control channel and the 

feedback channel. Then, the network-induced delays have two parts: forward channel 

delay and feedback channel delay. 

 

For the sake of simplicity,  the scheme of compensation for network-induced time 

delay in the NCS under randomly varying delay in the forward channel and also 

deterministically delay in the feedback channel can be decomposed into two steps of 

delay compensation. These step are: Compensation for forward time delay caτ and 

compensation for feedback time delay scτ . 

 

In the case of forward delay compensation, we assume that the network is applied 

only between the controller output and the plant input as shown in fig.(4.3), and the 

main proposed idea to handle the network delays here is to augment the system model 

by including delayed variables as additional states and designing an observer to 

estimate the state variables of the plant and delay, so a closed-loop output feedback 

tracking controller for the augmented model can be built. 

 

After the forward delay is compensated, the network will be considered into the 

feedback channel as shown in fig(4.4), and the designed observer for the NCS must be 

modified to compensate  for the feedback channel time delay scτ by rebuilding the 

non-delayed plant estimates, which is more accurate for the controller to generate a 

control signal. This type of observers is also called Predictor Observer or States 

Predictor. 
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Figure   4.3: Network applied in the forward channel only 
 
 
 
 
 
 
 

Figure   4.4: Network with feedback channel is considered 

4.5 Forward Channel Time Delay Compensation 

The continuous state space model of the system with time delay induced by the 

forward network channel can be written as: 

 
( ) ( )
( )

cax Ax t Bu t

y Cx t

τ= + −

=



 ( 4.1) 

Where caτ is the forward channel time delay or controller-to-actuator delay. Assume 

that the value of the state vector is known at time 1t , then the control input ( )u t has to 

be known over the interval 1 1
cat t t τ≤ ≤ + .  

Since the control input contains a continuum of values over this interval, the state 

space representation of delayed system will need an infinite number of the state 

variables to summarize the information about the system at time 1.t  Thus, a 

continuous time systems with time delays are infinite dimensional. 

A finite dimensional description of a system can be obtained by sampling the 

continuous time system, such that, the infinite dimensional continuous-time system 

has been reformulated to the finite dimensional discrete-time system. 

4.5.1 ZOH Equivalent Model Of A System With Time Delay 

It is however easy to handle systems with time delays with ZOH reconstruction, 

because the control signal is constant between the sampling instants, which makes the 

sampled-data system finite dimensional. 
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In general, the time delay will equal some integer number (possibly zero) of sampling 

intervals plus a fractional part of a sampling interval. Thus, any time delay can be 

represented by the following form: 

 dt mT γ= +  ( 4.2) 

Where 0  and 0T mγ< ≤ ≥  

The updated formula for the state vector at sampling instants will be obtained by 

integrating the state equation over one sampling period as described in the following 

equation: 

 ( ) ( ) ( ) ( ) 
kT T A kT T tAT ca

kT
x kT T e x kT e B u t dtτ

+ + −+ = + −∫  ( 4.3) 

In order to perform the integration in eq(4.3), the value of ( )cau t τ− is needed to be 

known over the interval kT to .kT T+  

From the delay form described in eq(4.2), the delayed input signal will take two 

different values during the interval ( )kT to ( )kT T+ as shown in fig(4.5). Thus, to 

perform the integration in eq(4.3), the integral must be split in two parts, where the 

delayed input is constant over each part. 

 ( ) ( )( )
( )

1 ,   

,     

ca
ca

ca

u kT m T kT t kT
u t

u kT mT kT t kT

τ
τ

γ τ

 − + ≤ < +− = 
− + ≤ < +

 ( 4.4) 

 

Substituting the above expression for the delayed input, and splitting the integral in 

eq(4.3) into two parts, the integration of the state equation becomes: 

 
( ) ( ) ( ) ( )

( ) ( )                                        

ca

ca

kT A kT T tAT

kT
kT T A kT T t

kT

x kT T e x kT e Bu kT mT T dt

e Bu kT mT dt

τ

τ

+ + −

+ + −

+

+ = + − −

+ −

∫
∫

 ( 4.5) 
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Figure   4.5: The relationship among ( )u t , the delayed signal ( )cau t τ− , and the sampling 

instants. 
 

Let s kT T t= + −  

Substitution for s in eq(5.5) , yield 

 
( ) ( ) ( )

( )
0

                                             

ca

ca

TAT As

T

T As

x kT T e x kT e Bu kT mT T ds

e Bu kT mT ds

τ

τ

−

−

+ = + − −

+ −

∫

∫
 ( 4.6) 

 Eq(4.5) can be written in discrete notation as: 

 ( ) ( ) ( ) ( ) ( ) ( )0 1
ca ca

d dx kT T x kT u kT mT u kT mT Tτ τ+ = Φ +Γ − +Γ − −  ( 4.7) 

Where: 
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From thesis assumptions, It is assumed that the time delay that induced by the forward 

channel is less than one sampling period. When the time delay is less than or equal 
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Substituting for the value of m in eq(4.7), then the state space equation of the delayed 

system can be rewritten as: 

 ( ) ( ) ( ) ( ) ( ) ( )0 11   1ca ca
d dx k x k u k u kτ τ+ = Φ +Γ +Γ −  ( 4.8) 

From the above equation, a new state variable ( )1u k − is appeared, which represent 

the past value of the control signal. Thus, the complete state updated equation for a 

system with forward channel time delay can be obtained by augmenting the extra state 

variable ( )1u k −  into the full system state model and is given by: 

 
( )
( )

( ) ( )
( )

( ) ( )1 01
10 0 1

ca ca
d dx k x k

u k
u k u k

τ τ   + Φ Γ Γ   
= +         −      

 ( 4.9) 

 

4.5.2 ZOH Equivalent Model For Nonlinear System With Time Delay: 

From chapter 3, the ZOH equivalent model for the linearized system with no time 

delay and which is parameterized by the scheduling variable ( )α is  given by:  
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=  
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 ( 4.10) 

Where: 
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If the time delay in the forward channel is taken into account, the values of 

( )0 , ca
d kα τΓ and ( )1 , ca

d kα τΓ  for a special case of 2nd order system should be computed, 

then: 

 

( ) ( ) ( ) ( ) ( )
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, ,

,
 

,

1 ,
,

,
,

ca ca
k k

ca
k

T TA sca
d k
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∫ ∫
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( 4.11) 
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( 4.12) 

Let  
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 ( 4.13) 

 

Then, the complete ZOH model for a special case of 2nd order system including the 

forward channel time delay at any kth sampling period can be written as: 
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Based on the last equation, for every kth sampling period, the discrete state space 

equation of the augmented model is parameterized as a function of  two variables: α

and ca
kτ . Since the controller to actuator ca

kτ  is random, the system in this case is time 

varying.  

4.5.3 Additional Dynamics For Tracking 

As described in the previous chapter, to track a unit step or ramp input with zero 

steady state error, an additional dynamics must be included as a apart of the 

controller. The new updating of the augmented model that generated from the 

introduced additional dynamics becomes: 
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( )
( )

1 0
, 01 ,

0 0 0 1 1
0 01 0

0 0 1

ca ca
d k d k

a a

a

x k x k
u ku k u k

Cx k x k

x k
y C u k

x k

α α τ α τ

α

α

 Φ Γ +     Γ      
= +  −     
       +      

 
 

= − 
 
 

 ( 4.15) 

Then, the new augmented model for a special case of 2nd order system can be derived 

as: 

 

( )
( )
( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )

( )
( )

( )
( )

( )
( ) ( )

( )( )
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ca ca
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a

x k x k
x k x k

u k
u k u k

x k x kc

x k
x k

y c
u k
x k

α α α τ α τ

α α α τ α τ

α

α

   Φ Φ Φ Γ+          +  Φ Φ Φ Γ   = +      −            +      
 
 
 =  −
  
 

 

( 4.16) 

4.5.4 Making of NCS to be Time-Invariant: 

When the induced delay is varying in a random fashion, the system becomes time 

varying, and the theoretical results for analysis and design for time-invariant systems 

cannot be used directly. 
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One way to reshape the induced random delay by the forward channel to a constant 

delay is done by introducing the network delay compensator (NDC) at the input of 

actuator node as shown in fig(4.6), such that the augmented model becomes time-

invariant. The NDC acts as a clocked buffer by holding the arrived control signal 

within ,kτ∆ time-varying interval during the kth sampling period, where: 

,
ca

k d ktτ τ∆ = −  

And dt is a specified constant time delay in which it is less than or equal one sampling 

period.  
 
 
 
 
 

 
 

Figure   4.6: Making of NCS to be time invariant by introducing NDC at the actuator node input 
 
Since ca

kτ  is assumed to be less than one sampling period, and for ease of analysis, the 

best scenario for the deterministic time delay occurs when the time delay is equal to 

one sampling period. 

In this case, the proposed structure of the NDC  in a standard sampled data control 

system is shown in fig(4.7) below. 

 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure   4.7: Structure of Network Delay Compensator in discrete time model 
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Fig(4.7) shows that  due to including the NDC, the control signal  is applied to the 

plant  after a time delay equal to one sampling period is occurred.  

4.5.5 Augmented Model With Time Delay Equal To One Sampling Period 

As mentioned above, after introducing the NDC into the control system, the induced 

delay by the forward channel becomes constant and equal to one sampling period. 

When the time delay induced  by the network equal to one sample time in such a case, 

the independent random delay model is justified. For this case the best scenario for 

the deterministic time delay occurs because it will be simplified  the derivation of  the 

ZOH equivalent model for the system with time delay.  

After substituting  for ca
k Tτ =  into eq(4.11), and (4.12) the results are : 

 ( ) ( )0 10,   ca ca
d k d kT Tτ τΓ = = Γ = = Γ  ( 4.17) 

where Γ is the input vector for the ZOH model without time delay. 

Substituting For the above equation into eq(4.8), we get,  

 ( ) ( ) ( )1x kT T x kT u k+ = Φ +Γ −  ( 4.18) 

 

Substituting for eq(4.17) into the augmented model(4.9), the result is: 

 
( )
( )

( ) ( ) ( )
( ) ( )

1 0
1 10 0

x k x k
u k

u k u k
α α+   Φ Γ   

= +      −      
 ( 4.19) 

After introducing an additional dynamic as a part of controller, the complete time 

invariant augmented model becomes: 

 

( )
( )
( )

( ) ( )

( )

( )
( )
( )

( )

( )( )
( )

( )
( )

1 0 0
0 0 0 11

0 0 01

0 0 1

a a

a

x k x k
u ku k u k

Cx k x k

x k
y C u k

x k

α α

α

α

 +   Φ Γ   
      = +−      

     +      
 
 

= − 
 
 

 ( 4.20) 

In the case of one sampling period delay, we obtained the following results for a 

special case of 2nd order nonlinear system: 
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 ( ) ( ) ( )
( )

( )
( )

1 13
0 1

2 13

0
, ,   ,

0
ca ca

d k d kT T
α α

α τ α τ
α α

Γ Φ    
Γ = = Γ = = =     Γ Φ     

 ( 4.21) 

Substitute from eq(4.21) into eq(4.14), the time invariant discrete state space model of 

the augmented system can be derived as: 
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( ) ( ) ( )
( ) ( ) ( )
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( )
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( )
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y c x k
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α α α

α

 +   Φ Φ Γ   
      = Φ Φ Γ ++      

      −      
 
 =  
 − 

 ( 4.22) 

After introducing an additional dynamics as a part of controller, the complete time 

invariant discrete state space of the augmented model becomes: 
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α

+  Φ Φ Γ          + Φ Φ Γ      = +      −           +    
 
 
 =  −
  
 

 
( 4.23) 

4.5.6 Design Of An Observer For The Forward Channel  Time Delay 

Compensation 

The scheme of compensation for network induced delay by the forward channel is 

based on designing an observer to estimate the state variables of the augmented model 

that includes the state variables of the delayed control input. Since the observer is a 

part of the output feedback controller, the design process of the observer will be 

illustrated in the design of the dynamic output feedback controller lately. 

Two types of such controllers will be mentioned in the next section which are: Time 

invariant gain scheduled controller and time varying gain scheduled controller. 
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4.6 Output Feedback Gain Scheduled Controller 

From a control perspective, the control system with varying delays will no longer be 

time-invariant. As described in pervious section, the theoretical results for analysis 

and design for time-invariant systems cannot be used directly. It can be used after 

introduction of NDC at the input of the actuator node. 

Since the gain scheduling technique is widely used for controlling certain classes of 

nonlinear or linear time varying systems, this technique can be extended to be 

applicable  for time varying and/or nonlinear system whose linearized dynamics are 

approximated by an affine parameter dependent model (e.g) as described in eq(4.20).   

Based on the above, two strategies  for designing a gain scheduled  controller can be 

used to track a nonlinear system via NCS, these strategies are: 

 

1- The first strategy is to make the system time invariant by converting the 

random fashion of the induced delay into deterministic fashion and designing 

time invariant gain scheduled controller, in which the scheduling parameters 

of such controller are the tracking trajectory parameters. 

2- The second strategy is to incorporate the current measurement of time delay 

into the scheduling parameters  and designing a time varying gain scheduled 

controller in which the scheduling parameters of such controller became the 

current measurement of time delay and the tracking trajectory parameters. In 

this strategy, the controller compares the time-stamp value with its local clock, 

and then it can compute the total time delay value easily.  

4.6.1 Time Invariant Output Feedback Gain Scheduled Controller 

As described in the previous chapters, for this type of controller, the separation  

principle can be applied, such that the designs of state feedback gains and observer 

gains can be performed separately. 

 

Before designing the controller, its assumed that the deterministic time delay which 

makes the system time invariant is equal to one sampling period. The augmented 

model that includes the state variables of the additional dynamics and delayed signal 

into the full system state model and described in eq(4.20), can be rewritten as: 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 + td td td td

td td

x k x k u k

y k C x k

α α

α

+ = Φ Γ

=
 ( 4.24) 

Where: 

 

( )
( ) ( )

( )
( )

( ) ( )( )
( )

( )
( )

0 0
0 0 0    ,   1

0 0 0

 C 0 0  ,     1

td td

td td

a

C

x k
C x u k

x k

α α
α α

α

α α

Φ Γ   
   Φ = Γ =   

     
 
 

= = − 
 
 

 ( 4.25) 

 

The time-invariant output feedback gain scheduled controller as a combination of an 

observer and a state feedback controller is described in fig(4.8) below: 

 

 

 

 

 

Figure   4.8: Output feedback gain scheduled tracking controller via network 

4.6.1.1 Time Invariant State Feedback Gain Scheduled Controller 

The tracking task here for a nonlinear system via a network will be satisfied  by 

designing  a time invariant state feedback gain scheduled regulator to the time 

invariant augmented model (4.24). The time invariant vector of designed gains 

( )ztdL α that assigns the poles of the closed loop system ( ) ( ) ( )( )td td ztdLα α αΦ −Γ  at 

the desired location inside the unit circle has a dimension of ( )2n + and it can be 

partitioned into three parts as follows: 
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Where ( )zL α is the time invariant feedback gains vector  for the  designed model of 

the nonlinear system which has a dimension of  n , dL is the time invariant feedback 

gain for the delayed state variable, and aL  is the time invariant feedback gain for the 

state of an additional dynamic system. 

4.6.1.2 Time Invariant Gain Scheduled Observer 

The equation of the time invariant observer  for the discrete time system described in 

eq(4.19) can be written as  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆ1t t t t zt t tx k x k u k H y k y kα α α+ = Φ +Γ + −  ( 4.26) 
Where  

( ) ( ) ( ) ( ) ( ) ( )
( )
ˆ0

ˆ,  ,   
ˆ 110 0t t t

x k
x k

u k
α α

α α
 Φ Γ   

Φ = Γ = =      −    
 

The error vector can be defined as: 

 ( ) ( ) ( )ˆt t te k x k x k= −  ( 4.27) 
Then , the difference equation of the ( )te k  can be evaluated as: 

 
( ) ( ) ( )

( ) ( ) ( )( ) ( )
ˆ1 1 1

              
t t t

t zt t t

e k x k x k

H C e kα α α

+ = + − +

= Φ −
 ( 4.28) 

If the scheduled matrix ( )ztH α designed such that the matrix 

( ) ( ) ( )( )t zt tH Cα α αΦ − has eigenvalues inside the unit circle, then the estimated 

states will converge to the actual states of the plant and the error dynamics will reduce 

to zero with sufficient speed. 

The time invariant observer gains ( )ztH α that assigns the poles of the closed loop 

observer ( ) ( ) ( )( )t zt tH Cα α αΦ −  at the desired location inside the unit circle has a 

dimension of ( )1n + and it can be partitioned into two parts as follows: 

( ) ( ) ( )zt z dH H Hα α α=     

Where ( )zH α is the observer  gains vector  for the design model and ( )dH α  is the 

observer gain for the delayed signal. 
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4.6.2 Time Varying Output Feedback Gain Scheduled Controller 

The time varying augmented model that includes the state variables of the additional 

dynamics and delayed signal into the full system state model and described in 

eq(4.15), can be rewritten as: 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 , + ,

      

ca ca
td td k td td k

td td

x k x k u k

y k C x k

α τ α τ

α

+ = Φ Γ

=
 ( 4.29) 

Where: 
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( ) ( )
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( )

( ) ( )( )
( )

( )
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1 0
, 0 ,

, 0 0 0    , ,   1
0 0 0

 C 0 0  ,     1

ca ca
d k d k

ca ca
td k td k

td td

a

C

x k
C x u k

x k

α α τ α τ
α τ α τ

α

α α

 Φ Γ  Γ   
Φ = Γ =   

       
 
 

= = − 
 
 

 ( 4.30) 

The tracking task for a nonlinear system can be achieved by designing  a time varying 

state feedback gain scheduled regulator to the time varying augmented model (4.29). 

The time varying vector of designed gains ( ), ca
ztd kL α τ that assigns the poles of the 

closed loop system ( ) ( ) ( )( ), , ,ca ca ca
td k td k ztd kLα τ α τ α τΦ −Γ  at the desired location 

inside the unit circle has two scheduling variables α , and ca
kτ , and also can be 

partitioned into three parts as follows: 

( ) ( ) ( ) ( ), , , ,ca ca ca ca
ztd k z k d k a kL L L Lα τ α τ α τ α τ =    

 To build a time varying observer, the time varying scheduled matrix ( ), ca
zt kH α τ

should be designed such that, the poles of the closed loop observer

( ) ( ) ( )( ), ,ca ca
t k tz k tH Cα τ α τ αΦ − are placed to desired locations inside the unit circle. 

4.7 Designing A Time-Invariant Controller With Forward time  

Delay 

The time invariant augmented model for a special case of 2nd order system which 

described in eq(4.23), can be expressed as: 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 + td td td td

td td

x k x k u k

y k C x k

α α
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+ = Φ Γ

=
 ( 4.31) 

Where: 
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α

Φ Φ Γ   
   Φ Φ Γ   Φ = Γ =   
       

 
 
 = =  −
  
 

 ( 4.32) 

For the sake of brevity, the subscriptα  from  the following matrices in this section 

will be omitted. 

4.7.1 Desired Closed-Loop Pole Locations 

The dominant poles for the prototype 2nd  order linear system are given by: 

 1,2 n ds jζω ω= − ±  ( 4.33) 

Where: 

21d nω ω ζ= −  

When the new two  state variables generated from inserting a network in the forward 

loop of the control system, and introducing an additional dynamic system, two extra 

desired poles should be included in the desired specifications which are: 

 3 1

4 2

n

n

s
s

β ζω
β ζω

= −
= −

 ( 4.34) 

Where: 

1 2& 4β β ≥  

By using the ZOH POLE-mapping formula, the desired discrete characteristic 

equation can be derived as : 

 ( ) 4 3 2
1 2 3 4d z z d z d z d z d= + + + +  ( 4.35) 

Where: 
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ω
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− + +

= − + +

= + + +

= − + −

=

 

The desired poles of the observer must be chosen so that the transient response of the 

observer is much quicker than the response of the 2nd order controlled system. 

The observer desired poles  for the 2nd order linear system in s domain are: 

 1,2 3 3n ds j jβ ζω β ω= − ±  ( 4.36) 

The extra desired pole which needs to be included in the desired specifications due to 

augmenting the delayed input into the full state space is: 

 3 4 ns β ζω= −  ( 4.37) 

Where: 

4 34β β≥  

The desired  polynomial in a discrete time model for the observer, can be derived as: 

 ( ) 3 2
1 2 3obsP z z P z P z P= + + +  ( 4.38) 

Where: 

( )( )
( ) ( )

( )

3 4

3 4 3

3 4

1 3

2
2 3

2
3

2 cos

2 cos
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n
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P e T e

P e

β ζω β ζω

β β ζω β ζω

β β ζω

β ω

β ω

− −

− + −

− +

= − +

= +

=  

4.7.2 Designing A Time-Invariant State Feedback Gain Scheduled Controller  

The controllability matrix for the original augmented model (4.31) can be derived as: 
 

 

( ) ( )
( ) ( )

( )

2
1 11 1 12 2 11 12 21 1 11 12 12 22 2

2
2 21 1 22 2 11 21 21 22 1 22 12 21 2

1 1 1 11 1 21 2 1

0

0

1 0 0 0
0 0

mzC

c c

 Γ Φ Γ +Φ Γ Φ +Φ Φ Γ + Φ Φ +Φ Φ Γ
 
 Γ Φ Γ +Φ Γ Φ Φ +Φ Φ Γ + Φ +Φ Φ Γ=  
 
 Γ Φ Γ +Φ Γ +Γ 

 ( 4.39) 

The transfer function  of that augmented model can be evaluated as: 
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( 4.40) 
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Then, the transfer function (4.40) can be rewritten as: 
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 ( 4.41) 

 
From this transfer function, the state space representation of the augmented model in 

the CCF can be obtained as: 
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 ( 4.42) 

The controllability matrix of the transformed model (4.42) can be derived as: 
 

 

( )2 2
1 1 2 1 2 1 1 2 3

2
1 1 2

1

1

0 1
0 0 1
0 0 0 1

mxC

 −Φ Φ −Φ Φ Φ −Φ Φ −Φ −Φ
 

−Φ Φ −Φ =  −Φ 
 
 

 ( 4.43) 
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Where: 
 

 

1 2 3

1 1 2

1

1
0 1
0 0 1
0 0 0 1

mxC −

 Φ Φ Φ 
 Φ Φ =
 Φ
 
 

 ( 4.44) 

 
Then, the transformation matrix between the two forms can be derived as: 

 ( )

32
1

1 1
1

2 2 2

1 2 3

1 3

0

0 2
1
0 0

c mz mx

cc
c c

T C C

c c

α −

 Γ − 
 
 Γ − Γ Γ= =
 Φ Φ Φ 
 
 

 ( 4.45) 

 
Also, the inverse of the transformation matrix can be calculated as: 
 

 

( )
( ) ( )( )

( )
( )( )

( ) ( )
( )

( ) ( ) ( )

( ) ( )

2 22
2 2 3 3 1 1 1 32 3 1 1 1 2 3 2

2 22 2 2
1 2 1 31 2 1 3 1 2 2 1 3

2 2 2

2 3 1 2 3 2

2 22 2 2
1 2 1 31 2 1 3 1 2 2 1 3

2 2

2 3 2 1 3 2

2 22 2
1 2 11 2 1 3 1 2 2 1 3

1

2
1

c b 22 2

2
0

c b 22 2

0
c b 22 2

c

a c c c ca c c a

c b c b

a c c a c a

c b c b

a c a c a

c b c b

T α−

− Φ + Φ + ΦΦ −Φ + Φ + Φ

+ Φ −Φ+ Φ −Φ Γ + Φ −Φ

− −

+ Φ −Φ+ Φ −Φ Γ + Φ −Φ

− Γ

+ Φ+ Φ −Φ Γ + Φ −Φ

=

( )

( ) ( ) ( )
1

3

2 22
22 1 2

2 22 2
1 2 1 31 2 1 3 2 2 1 3

0
c b 22 2

aa c a

c b b

− Φ

Γ−

+ Φ −Φ+ Φ −Φ Γ + Φ −Φ

 
 
 
 
 
 
 
 
 
 
 
 
 

 
( 4.46) 

 
The corresponding state feedback gain scheduled controller for the augmented model 

that defined in CCF takes the form: 

 1 1 2 2 3 3 4 4xtd td x x x xu L x L x L x L x L x= − = − − − −  ( 4.47) 

Where: 

( )1 2 3 4xtd x x x xL L L L L=  

Substituting  for u from above equation into eq(4.42), the closed loop system for the 

augmented model which is found in CCF becomes: 
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( )
( )
( )
( )

( ) ( ) ( ) ( )
( )
( )
( )

1 11 1 2 2 3 3 4

2 2

3 3

4 4

1

1 1 0 0 0
1 0 1 0 0

0 0 1 01

x x x x
x k x kL L L L
x k x k

x k x k

x k x k

+    − Φ + − Φ + − Φ + −
    +    =    +        +     

 ( 4.48) 

The characteristic equation of closed loop system (4.48) can be computed as: 

 ( ) ( ) ( )4 3 2
1 1 2 2 3 3 4x x x xz L z L z L z L+ Φ + + Φ + + Φ + +  ( 4.49) 

By comparing the eq (4.35) with the last equation, we obtain  

 

1 1 1

2 2 2

3 3 3

4 4

x

x

x

x

L d
L d
L d
L d

= −Φ

= −Φ

= −Φ
=  

The state feedback gains vector for the transformed model (4.42) can be expressed as:  

 ( ) ( )1 1 2 2 3 3 4xtdL d d d dα = −Φ −Φ −Φ  ( 4.50) 

Finally, the scheduled gains vector for the original system described in eq(4.31) can 

be evaluated  as follows: 

 ( ) ( ) ( )1
ztd xtd cL L Tα α α−=  ( 4.51) 

4.7.3 Designing A Time Invariant Gain Scheduled Observer  

 

The augmented model which needs to design an observer for compensating the 

forward time delay is :   

 

( )
( )
( )

( )
( )

( )
( )

1 111 12 1

21 22 2 22 2

1 0
01

0 0 0 11

x k x k
b u kx k x k

u k u k

 +   Φ Φ Γ   
      = Φ Φ Γ ++      

     −      

 ( 4.52) 

The observabilty matrix of the model described above, can be found as: 

 

( ) ( ) ( )

1

1 11 1 12 1 1
22

1 11 12 21 1 11 12 12 22 1 11 1 12 2

0 0

mz

C c
CO c c c

c c cC

Φ= = Φ Φ Γ

Φ +Φ Φ Φ Φ +Φ Φ Φ Γ +Φ ΓΦ

  
  
  

      

 ( 4.53) 



70 
 

System (4.52) can be transformed into observable canonical form as: 

 

( )
( )
( )

( )
( )
( )

( )

( ) ( )
( )
( )
( )

1 1 11

2 22 2

3 3 3

1

2

1 1 0
1 0 1    

0 0 01

= 1 0 0

a

x k x k
x k x k u k
x k x k

x k
x ky k
x k

 +     Γ −Φ 
      + = −Φ + Γ      
      + Γ      

 
 
 
 
 

 ( 4.54) 

The observabilty matrix of the transformed system (4.54) can be found as: 

 1
2 2

1 2 1

1 0 0
1 0

1

T
mx mx

C
O C C

C

   
   = = Φ = −Φ   

  Φ Φ −Φ −Φ  

 ( 4.55) 

Then, the transformation matrix oT between the two forms is obtained  by: 

 

( )
( )

( ) ( )

( )

1

1

2
12 12 2 22 1

2
2 2 22 1 2
1 2 12 2 22 1 1 2 2 22 1 1

2 2

2
1 12

1

3
12 12 2 22 1

0 0

0 0

o mz mx

c

b c b
c b c

a a

c

T O O

c

α −

Φ Φ Γ −Φ Γ

− Φ − Φ −Φ Φ + Γ Φ Φ −Φ − Γ

Φ

= =

 
 

  
  
  

 
 

Φ Φ Γ −Φ Γ

 ( 4.56) 

Define ( ) ( )1 2 3
T

xt x x xH h h hα =  

The closed loop observer ( )t xtH CΦ − for the system (4.54) can be found as: 

 ( ) ( )
( )
( )

1 111

22 2 2

2 3

1 01 0
0 1 1 0 0 0 1

0 0 0 0 0

xx

xt xd x

x x

hh
hH C h
h h

 − Φ + −Φ        Φ − = −Φ − = − Φ +    
     −    

 ( 4.57) 

Then, the characteristic equation of the closed loop observer (4.57) is: 

 ( ) ( ) ( )3 2
1 1 2 2 3t xd x x xsI H C z h z h z h− Φ − = + Φ + + Φ + +  ( 4.58) 

 
Comparing  the coefficients of the last characteristic equation with the coefficients of 

equal power of z in eq(4.38), we require: 
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1 1 1

2 2 2

3 3

x

x

x

P h
P h
P h

= Φ +

= Φ +
=

 ( 4.59) 

From equation  above, we get, 

 
1 1 1

2 2 2

2 3

x

x

x

h P
h P
h P

= −Φ

= −Φ
=

 ( 4.60) 

Finally, the observer gain matrix for the original system (4.51) is obtained as follows: 

 

( ) ( ) ( )
( )

( ) ( )

( )

1

1

2

12 12 2 22 1

1 12
2 2 22 1 2

1 2 12 2 22 1 1 2 2 22 1 1 2 2

2 2

32

1 12

3

12 12 2 22 1

0 0

0 0

z o x

c
P

b c b
c b c P

a a
P

c

c

H T Hα α α

Φ Φ Γ −Φ Γ
−Φ

− Φ − Φ −Φ Φ + Γ Φ Φ −Φ − Γ −Φ

Φ

Φ Φ Γ −Φ Γ
=

=

 
  

   
         

 

 ( 4.61) 

 

4.8 Designing A Time-Varying Output Feedback Gain Scheduled 

Tracking Controller  

4.8.1 Time Varying State Feedback Gain Scheduled Controller 

The time varying augmented model for a special case of 2nd order system described in 

eq(4.16), can be repeated here as: 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 , + ,ca ca
td td k td td k

td td

x k x k u k

y k C x k

α τ α τ

α

+ = Φ Γ

=
 ( 4.62) 

Where  
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( )

( ) ( ) ( )
( ) ( ) ( )

( )

( )

( )
( )

( ) ( )( )

( )
( )

( )
( )

0111 12 13

21 22 23 02

1

1

2
1

,, 0

, 0 ,, , ,
0 0 0 0 1

0 0 0 0

, C 0 0 0    ,   
1

caca
d kk

ca ca
ca cak d k

td k td k

d td

a

c

x k
x k

c x
u k
x k

α τα α α τ

α α α τ α τα τ α τ

α

α α

ΓΦ Φ Φ

Φ Φ Φ Γ
Φ = Γ =

= =
−

  
  
  
  
  

      
 
 
 
 
 
 

 ( 4.63) 

For the sake of brevity, the subscriptsα and ca
kτ from the following matrices will be 

omitted. 

The characteristic equation of the augmented model (4.62) can be evaluated as: 
 

 

( ) ( ) ( )4 3 2
11 22 11 22 11 22 12 21 11 22 12 21

11 12 13

21 22 23

1

1

0
0

0 0 0
0 0 1

td

z z z z

z
z

zI
z

c z

− Φ +Φ + + Φ +Φ +Φ Φ −Φ Φ − Φ +Φ −Φ Φ

−Φ −Φ −Φ 
 −Φ −Φ −Φ −Φ =
 
 

− − 

 ( 4.64) 

 

After performing some simplifications for the above characteristic equation, the result 

becomes: 

 4 3 2
1 2 3tdzI z z z z−Φ = +Φ +Φ +Φ  ( 4.65) 

In which:  

( )

( )

1 11 22

2 11 22 11 22 12 21

3 11 22 12 21

1Φ = − Φ +Φ +

Φ = Φ Φ +Φ +Φ −Φ Φ

Φ = − Φ +Φ −Φ Φ

 

From the resulted characteristic equation (4.65), it can be seen that the characteristic 

equations for both time varying and time invariant augmented models are similar. So, 

when we want to transform the time varying model into a controllable conical form, 

we arrive to the same result that derived for the time invariant model described 

in(4.50). Thus, we can use the designed state feedback scheduled gains that derived in 

eq(4.50) to get the state feedback scheduled gains for the original time varying model 

described in eq(4.62). 
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Therefore, the  design of  a time varying  state feedback gain scheduled controller for 

the time varying  model needs only an evaluation of  the time varying transformation 

matrix ( ), ca
c kT α τ  that transforms the gains of the augmented model that found in 

CCF  to a time varying scheduled gains of  the original augmented model. 

The time varying transformation matrix can be derived as: 

( ) ( ) ( )

( ) ( )
( ) ( )

( )

1

01 12 02 13 01 22 22 01 12 02 22 13 12 23 22 13 12 23

02 21 01 23 02 11 21 01 11 02 11 23 21 13 11 23 21 13

1 2 3

1 01 1 22 01 12 02 13

, ,

1 1
1 1

1
0

ca ca
c k mz k mx

d d d d d

d d d d d

d d d

T C C

c c

α τ α τ α−= =

Γ Φ Γ + Φ − Γ Φ + Φ Γ − Φ Γ − + Φ Φ + Φ Φ Φ Φ −Φ Φ

Γ Φ Γ + Φ − Γ Φ + −Φ Γ + Φ Γ − + Φ Φ + Φ Φ Φ Φ −Φ Φ

Φ Φ Φ

Γ −Φ Γ + Φ Γ + Φ ( )1 12 23 22 13c Φ Φ −Φ Φ

 
 
 
 
 
 

 

Then, the time varying scheduled gains can be evaluated as: 

 ( ) ( ) ( )1, ,ca ca
ztd k xtd c kL L Tα τ α α τ−=  ( 4.66) 

Where  

( )xtdL α is the time invariant scheduled gains vector for the model that found in CCF. 

 

The goal of  ensuring that  the system (4.62) is stable can be achieved by using this 

type of compensation scheme, because at every sampling instant, the closed loop 

system has the same transfer function, which means that the poles of the closed loop 

system will be placed at every sampling instant to the same desired locations inside 

the unit circle. 

4.8.2 Designing A Time Varying Gain Scheduled Observer  

 

The time varying augmented model which needs to design time varying observer for 

compensating the forward time delay is :   

 

( )
( )
( )

( )
( )

( )
( )

1 111 12 13 1

21 22 23 2 22 2

1

1
0 0 0 11

d

d

x k x k
b u kx k x k

u k u k

 +   Φ Φ Φ Γ   
      = Φ Φ Φ + Γ+      

      −      

 ( 4.67) 
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The observability matrix of the original model  can be derived as: 

 ( )
( ) ( ) ( )

1

1 11 1 12 1 13
2

1 11 12 21 1 11 12 12 22 1 11 13 12 23

0 0
, ca

mz k

c
O c c c

c c c
α τ = Φ Φ Φ

Φ +Φ Φ Φ Φ +Φ Φ Φ Φ +Φ Φ

 
 
 
 
 

 ( 4.68) 

 

The augmented model (4.67) has the same representation in OCF to that of time 

invariant model described in eq(4.52), so there is only a need to evaluate the time 

varying transformation matrix  , ca
o kT α τ  that transforms the designed observer gains 

for the time invariant augmented model  that found in OCF to the time varying 

observer scheduled gains for the original model(4.67).    

  

The transformation matrix between two forms can be derived as:  

 

( ) ( ) ( )

( )
( ) ( )

1

1

1 11 1 12 1 13

2

1 11 12 21 1 11 12 12 22 1 11 13 12 23

1

2

1 2 1

1

2 12 2 2 2 22 1 1 2 22 2 1

1 21 12 2 22 1 1 21 12 2 22 1 1 12 12 23

1

0 0 1 0 0

1 0

1

1
0 0

o mz mx

c

c c c

c c c

c

a b

c c c

T O O
−

−

Φ Φ Φ

Φ + Φ Φ Φ Φ + Φ Φ Φ Φ + Φ Φ

−Φ

Φ −Φ −Φ

Φ Γ + Φ −Φ Φ + Γ Φ Φ −Φ −Γ

Φ Φ Γ −Φ Γ Φ Φ Γ −Φ Γ Φ Φ Φ

= =

   
   
        

 
 
 

( )

( )

22 13

1 12 23 22 13

1
0 0

c

− Φ Φ

Φ Φ −Φ Φ

 
 
 
 
 
 
 
 
 

 ( 4.69) 
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CHAPTER 5 

5 MAGNETIC BALL LEVITATION CE152 

5.1 Introduction To Magnetic Levitation System 

The Magnetic levitation system is an example of nonlinear, open loop unstable system 

with fast dynamics. For these properties of the Magnetic levitation system, modeling 

and mainly control design is very difficult. However, Magnetic levitation system has 

wide application in various industries than high-speed trains, frictionless bearing, etc 

and therefore this field of research is devoted significant effort in recent years[21]. 

Magnetic levitation system has the advantages of being contact-free, can eliminate the 

mechanical components, reduce the mechanical alignment and satisfies the 

environmental demands[22].  Magnetic levitation system has been also used for 

educational purpose in teaching students on the concept of feedback control. Thus a 

lot of studies have been conducted for the control of magnetic levitation systems[23]. 

5.2 Magnetic Levitation Model CE 152 

The CE 152 Magnetic Levitation Model is one of the range of educational scale 

models offered by Humusoft for teaching system dynamics and control engineering 

principles. The Magnetic Levitation Model and the associated manual are teaching aid 

for control engineering students at all levels and the experiments cover wide range of 

problems which appear in the industry. The CE 152 Magnetic Levitation Model is one 

of a unique range of products designed for the theoretical study and practical 

investigation of basic and advanced control engineering principles. This includes 

system dynamics modeling, identification, analysis and various controllers design by 

classical and modern methods[24], the CE 152 Magnetic Levitation apparatus is 

shown in fig(5.1). 
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Figure   5.1: CE152 magnetic ball levitation. 

The objective of this chapter is to derive the nonlinear model of the Magnetic Ball 

Levitation CE 152 and using the linearization technique to analyze  the nonlinear 

model of the device , fig(5.2) shows the principal scheme of the magnetic levitation 

model[24]. 

Figure   5.2: Principal scheme of the magnetic levitation model. 

The CE152 model, shown in Fig. (5.2) consists of the following blocks[24]: 

• D/A converter. 

• Power amplifier. 

• Ball & coil subsystem. 

• Position sensor. 

• A/D converter. 
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5.2.1 Power Amplifier Equation   

As described above, the power amplifier is one of the five parts of the magnetic ball 

levitation model which can be considered  as a source of constant current. The 

simplified equation of this part that needed for modeling the Maglev apparatus is[24]: 

 ii = k *u  ( 5.1) 

5.3 State Space Representation 

There is no general analysis techniques are applicable to all nonlinear systems, so, the 

linearization tool is used to derive the linear state space model for the nonlinear 

differential equation of the magnetic levitation CE152 to simplify the design process 

of the controller. 

From[4], the nonlinear motion equation is given by,  

 
2

2
0

-  
( )

c
fv

i kmx k x mg
x x

+ =
−

   ( 5.2) 

Assume the state variables x1 and x2 are defined by the equations 

 1( )x t x=  ( 5.3) 
 2 ( )x t x=   ( 5.4) 

Substituting from eq(5.3) and (5.4) into eq(5.2), then the nonlinear state equations of 

the system are expressed as, 

 ( )1
2 1 1 2

( ) ( ) , .dx t x t f x x u
dt

= =  ( 5.5) 

 ( )
( )

2
c fv2

2 2 1 22
1 0

i k k( ) , .dx t x g f x x u
dt mm x x

= − − =
−

 ( 5.6) 

Where the functions f1 and f2 are defined by these equations. The general vector form 

of these equations can be expressed as: 

 ( )= ,x f x u  ( 5.7) 
Where  

f ( )1 2
Tf f=  
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Let p=(xss,uss) is an operating point of the nonlinear system (5.5)-(5.6) where 

xss=(x1ss,x2ss). If the Taylor series is valid about the operating point (xss,uss), the 

equations (5.5) and (5.6) can  be linearized and the linearized equations  can be 

written in the standard vector matrix format, 

 = +x Ax Bu  ( 5.8) 
Where  

 
,

= ∂
∂

ss ssx u

fA
x

1 2

1 1

1 2

2 2

1 2 , ,ss ss ssx x u

f f
x x
f f
x x

∂ ∂ 
 ∂ ∂ =
 ∂ ∂
 ∂ ∂ 

 ( 5.9) 

 
,

= ∂
∂

ss ssx u

fB
u

1 2

1

2

, ,ss ss ssx x u

f
u
f
u

∂ 
 ∂=  
∂  ∂ 

 ( 5.10) 

Where the matrices (5.2) and (5.10) are called the Jacobian matrices. 

By setting the equations (5.5) and (5.6) to be zero , we get  

 ssx 2 0  ( 5.11) 

    
DA DA

ss ss ss
f f

mg mgu x x x x
k k k k

   
2

1 0 0 12 2  ( 5.12) 

After applying the linearization about the equilibrium point that found in eq(5.11) and 

(5.12), we have: 

 
0 1

0 1
2

( )
fv

L ss k

A kg
x x m

 
 =  − − 

 ( 5.13) 

 

0 1

0

2
( )
DA F

k L ss

B k k g
m x x

 
 

=  
 − 

 ( 5.14) 

From [4], the system output can be written as:  

 1x ADy k k x=  ( 5.15) 
Then, the linear state space model for the magnetic ball levitation  can be written as : 
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     = +      −      − −   

 
=  

 





 ( 5.16) 

Using the values of parameters in table (5.1) of the magnetic levitation CE152, the 
linearized model becomes: 

 

( )

1 1

2 2
1 1

1

2

0 1 0
19.62 .532062.381

.00826 (.00826 )

 159.49206 0

MU

ss ss
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x x
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x x
x x

x
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   
      = +      −      − −   

 
=  

 





 ( 5.17) 

The linear state space model for the magnetic ball levitation  described in (5.17) is 

similar to a special case of the second order system that considered in the thesis 

assumption as: 
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1 1

2 2 1 2 2

1
1

2

0 1 0
 

      0

x x
u

x a a x b

x
y c

x

      
= +      − −      

 
=  

 





 ( 5.18) 

Where  2
1

19.62
.00826 ss

a
x

−
=

−
 ,   1 2.381a =  ,   2

1

.53206
(.00826 )ss

b
x

=
−

 ,  1 159.49206c =  

From system model (5.18), we conclude that all approaches introduced in this thesis  

for designing controllers to several configurations of the control system  such as : 

continuous, discrete and networked control system models is valid to be applied for 

the magnetic ball levitation CE152. 

5.4 Simulation 

The final interconnected blocks of the magnetic levitation model CE 152 are built on 

MATLAB SIMULINK as shown in fig.(5.3), 
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Figure   5.3: The interconnected blocks of magnetic levitation CE152 

 

The simplify the use of magnetic ball levitation plant in the simulation process, we 

built a simulation model to the  called maglev CE152 that includes all interconnected 

blocks as shown in fig(5.4)  

 
Figure   5.4: The block diagram of magnetic levitation CE152 

The closed loop system without controller is built on MATLAB SIMULINK tool as 

shown in fig(5.5). it’s step response is also shown in fig(5.6). 

Figure   5.5: The closed loop of the magnetic ball levitation. 
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Figure   5.6: Step response of the closed loop transfer function of the magnetic ball levitation. 

 

From the step response in the figure above, we note that it is necessary to design a 

controller to obtain the desired characteristic that a closed loop control system should 

have. 

Table   5.1: Parameters of magnetic ball levitation CE 152 

Parameter Symbol Value 

ball diameter Dk 12.7x10-3 m 

ball mass mk 0.0084 kg 

distance from the ground and the edge of the magnetic coil Td 0.019 m 

distance of limits= 0.019 - Dk L 0.0063 m 

gravity acceleration constant g 9.81 m.s^-2 

maximum DA converter output voltage U_DAm 5 V 

coil resistance Rc 3.5 Ω 

coil inductance Lc 30 x10-3  H 

current sensor resistance Rs 0.25 Ω 

current sensor gain Ks 13.33 

power amplifier gain K_am 100 

maximum power amplifier output current I_am 1.2 A 

amplifier time constant= Lc/((Rc+Rs)+Rs*Ks*K_am) Ta 1.8694 x10-5  s 
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amplifier gain= K_am / ((Rc+Rs)+Rs*Ks*K_am) k_i 0.2967 

viscose friction KFv 0.02 N.s/m 

converter gain k_DA 10 

Digital to Analog converter offset u_0 0 V 

Analog to Digital converter gain k_AD 0.2 

Analog to Digital converter offset y_MU0 0 V 

position sensor constant k_x 797.4603 

coil bias x_0 8.26 x10-3  m 

Aggregated coil constant  k_f 0.606 x10-6  N/V 

coil constant =k_f/(k_i)^2 k_c 6.8823 x10-6  N/V 
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CHAPTER 6 

6 SIMULATION AND RESULTS 

6.1   Introduction 

In this chapter, the proposed methodology for tracking a nonlinear system via a 

network has been tested on a simulation model for the magnetic ball levitation CE152. 

The simulation work has been performed on four cases of the control system using 

MATLAB/SIMULINK tool. These cases are: 

1- Continuous output feedback control system. 

2- Digital output feedback control system. 

3- Digital output feedback control system without time delay compensation. 

4- Digital output feedback control system with time delay compensation. 

6.2 Continuous  Output Feedback Gain Scheduled Control System 

Now we want to apply the procedures for designing a continuous output feedback 

gain scheduled tracking controller that derived in chapter 2 for a special case of 2nd 

order nonlinear system to the magnetic ball levitation CE152 apparatus.  

From the previous chapter, the linearized  state space model that derived for the 

magnetic ball levitationCE152  is described by: 

      

 

1 1

2 2
1 1

1

2

0 1 0
19.62 0.532062.381

0.00826 0.00826

159.49206 0

= +

  y  =

ss ss

x x
x xx x

x
x

u
                                    

     





α α  ( 6.1) 

When r α= = constant value, the controlled output y  follows the reference input and 
in this case, we have 

 ( )1
1 1 159.49206ss

yx
c c

α αα = = =  (6.2) 

Substituting for ( )1SSx α from (6.2) into eq(6.1), the parameterized state space model 

becomes, 
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 

1 1

2 2
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0 1 0
3129.234217 84.862.381
(1.3174 ) (1.3174 )

159.49206 0

= +

  y  =

x x
x x
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x

u
                                     

     





α α  (6.3) 

And the scheduled steady state input ( )ssu α is expressed by : 

       ss 1 0 1
F

u ( ) 368.755 0.00826
k ss L ss
mg x x xα α α     (6.4) 

The linearized state space model for a special case of 2nd order nonlinear system is 

described by eq(2.35) in chapter 2, repeated here: 

( ) ( ) ( )

( )( )
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2 1 22 2
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      0

x x
u

a a bx x

x
y c

x

α α α

α

      
= +      − −      

 
=  

 





 (6.5) 

When equating system (6.3)with(6.5), we get 
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(6.6) 

The augmented state space model of the magnetic ball levitation CE152 due to 

introducing an integral control to the forward path of the control system, becomes: 

( )

1 1

2 2

1

2

0 1 0 0
3129.234217 84.862.381 0
(1.3174 ) (1.3174 )
159.49206 0 0 0

      159.49206 0 0

x x
x x u

x
y x

α α
σ σ

σ

   
      
      = − +      − −         

   
 
 =  
 
 







 (6.7) 
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6.2.1 Desired Performance Specifications 

The performance specifications for the magnetic ball levitation CE 152 are assumed 

to be: 

1- Maximum overshoot OS 5 percent. 

2- Settling time 0.1st  sec. 

From these selected specifications, we can evaluate the values of the natural 

frequency nω and the damping ratioζ that are needed in the calculations of gains 

vectors for both state feedback controller and observer. 

 

 
( )
( )

0
0

22 0
0

ln
0.6901

ln

4 57.862n
s

OS

OS

t

ζ
π

ω
ζ

−
= =

+

= =

 (6.8) 

 

From chapter 2, the desired characteristic equations for the closed loop system and the 

observer are given by: 

 ( ) ( ) ( )3 2 2 2 3
1 1 12 1 2n n nP s s s sβ ζω β ζ ω β ζω= + + + + +  (6.9) 

 ( ) 2 2 2
0 02o n nP S S Sβ ζω β ω= + +  (6.10) 

We have selected the factor 1 10β = , which means that the third pole is located at ten 

times where the real part of the roots of a prototype 2nd order polynomial are located, 

and to ensure that the desired transient response of the observer is much faster than 

that of the plant, we selected the factor 0 10β = . 

After substituting for the values 0 1, ,β β ζ , and nω into eq(6.9) and eq(6.10), then the 

desired characteristic equation for the closed loop system and observer become, 

 
 

3 2( ) 480 35360 1343865.854P s s s s     
 

(6.11) 

 
 

2( ) 800 335970oP s s s    
 

(6.12) 
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6.2.2 Continuous State Feedback Gain Scheduled Controller 

The designed state feedback scheduled gains for a special case of 2nd order system 

that derived  in chapter 2 are repeated here: 

 ( ) ( ) ( )
( )

2 2
1 2

1
2

1 2 n
z

a
k

b
β ζ ω α

α
α

+ −
=   (6.13) 

  
( )

( )
1 1

2
2

( 2) n
z

a
k

b
β ζω α

α
+ −

=   (6.14) 

 ( )

3
1

1 2

nk
c bσ

β ζω
α

=   (6.15) 

After substituting the value of 1β  and the values from (6.6), and (6.8) into (6.13), 

(6.14), and (6.15), the scheduled gains for the state feedback controller are evaluated 

as: 

 

   

   
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kα α

kα α

kα α

 

 

 

 (6.16) 

6.2.3 Gain Scheduled Observer 

The designed scheduled gains of the observer that derived in chapter 2 are repeated 
here: 

( ) 0 1
1

1

2 n
z

ah
c

β ζωα −
=   

(6.17) 

( ) ( )
1

2 2 2
0 2 1 0

2
1

2n n
z

a a a
h

c
β ω α β ζω

α
− − +

=   
(6.18) 

After substituting the value of 0β and the values from (6.6), and (6.8) into (6.17), and 

(6.18), the observer scheduled gains are computed as: 

   5.0010zh α1  (6.19) 

  
 2

19.622094.6
1.3174zh  


α

α
 (6.20) 
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6.2.4 MATLAB Simulation For The Continuous Output Feedback Control 

System 

The gain scheduled output feedback control has been implemented on MATLAB 

SIMULINK Program for the magnetic ball levitation CE152 simulation model as 

shown in fig.(6.1). Different types of reference signals can be applied to the 

implemented closed loop system, the responses of some signals are described below : 

Figure   6.1: Block diagram of  output feedback gain scheduled control for maglev CE152 

 

 

Figure   6.2: Output response to a sequence of step changes in the reference signal for Maglev CE 
152 

Fig.(6.2) shows how the controlled output tracks the sequence of step changes in the 

reference signal to reach the maximum value of position. 

An alternative method to change the reference set point to move slowly from one 

point to another is that using a slow ramp signal as an input, Fig.(6.3) shows the 
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response of the closed loop system under slowly varying scheduling variable with 

slope =0.1. 

 
Figure   6.3: The slow ramp input and the output response of  output feedback gain scheduled 

control for Maglev CE 152 

Fig.(6.4), shows that how the output response signal can follow the square wave 

reference input. 

Figure   6.4: The square wave input (solid) and output (dashed) of gain scheduled output feedback 
control for Maglev CE 152 
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6.3 Digital Output Feedback Gain Scheduled Control System 

To illustrate the effectiveness and usefulness of the work presented for designing  a 

digital output feedback controller for a special case of 2nd order  system. The 

procedure of designing  such controller is applied on a simulation model for the 

magnetic ball levitation CE152 apparatus, and the results are shown subsequently. 

6.3.1 ZOH Equivalent Model For The Magnetic Ball Levitation CE152 

From chapter 3, the parameterized discrete state space model  for a special case of 2nd 

order system is given by: 

 

( )
( )

( ) ( )
( ) ( )

( )
( )

( )
( ) ( )

( ) ( )( ) ( )
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x k
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α α α
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+ Φ Φ Γ      
= +      + Φ Φ Γ      
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=  

 

 (6.21) 

Where: 
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Φ =

Φ = −

 
−Φ Γ    Γ = =   Γ   Φ 

 
(6.22) 

And  

 21
1 2

1, 4
2 2
a a aλ ψ= = −  (6.23) 

Substituting from eq(6.6) for  1a  and  2a   into eq(6.23), the result is: 

 ( ) 3131.10 1.417291.1905   and   
(1.3174 )

αλ ψ α
α

−
= =

−
 (6.24) 

 

After substituting for the above result into eq(6.22), we have: 
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Γ = − +            
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Γ =   −  

 (6.25) 

From [25], the value ofα  is varied within the interval [ ]0,1 . The transfer function of 

this model at any value of α  can be computed by using the following matlab code: 

a=.2;% scheduling parameter 

Ts=.01;                       % sampling time 

A=[0 1;3129.2342172/(1.3174044156-a) -2.381]; 

B=[0;84.86/(1.3174044156-a)]; 

C=[159.49206 0] 

a2=-A(2,1); 

a1=-A(2,2); 

c1=C(1); 

b2=B(2); 

r=a1/2; 

u=(sqrt((a1^2)-4*a2))/2; 

PH11=exp(-r*Ts)*(cosh(u*Ts)+((r/u)*sinh(u*Ts))); 

PH12=exp(-r*Ts)*sinh(u*Ts)/u; 

PH21=-a2*exp(-r*Ts)*sinh(u*Ts)/u; 

PH22=exp(-r*Ts)*(cosh(u*Ts)-((r/u)*sinh(u*Ts))); 

PH=[PH11 PH12;PH21 PH22]; 

TH=[(b2/a2)*(1-PH11);B(2)*PH12 ]; 

[NdDd]=SS2TF(PH,TH,C,0); 

Sys_discrete =Tf(Nd,Dd,Ts) 

The result from matlab when 0.2α =  is: 
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0.615 z + 0.6102 
--------------------- 

z^2 - 2.26 z + 0.9765 
(6.26) 

For model validating, we  find the discrete transfer function form the continuous 

version at 0.2α =  by using the following matlab workspace commands: 

a=0.2; 

Ts=.01; 

A=[0 1;3129.2342172/(1.3174044156-a) -2.381]; 

B=[0;84.86/(1.3174044156-a)]; 

C=[159.49206 0] 

[num den]=SS2TF(A,B,C,0); 

Sc=tf(num,den); 

Sd=C2D(Sc,Ts,'zoh') 

The result from matlab is the transfer function: 

 

0.615 z + 0.6102 
--------------------- 

z^2 - 2.26 z + 0.9765 
 

(6.27) 

It can be seen easily that the two resulted transfer functions (6.26), and (6.27) are the 

same, which means that the derived ZOH model for a special case of 2nd order system 

that derived in this thesis is an accurate model. 

When introducing the additional dynamics system that described in eq(3.27) as a part 

of the compensator to achieve zero steady state error, the augmented discrete state 

space model for the magnetic ball levitation can be written as: 
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x k x k u k
x k x k

x k
y x k

x k

α α α
α α α

+ Φ Φ Γ      
      + = Φ Φ + Γ      
      +      

 
 =  
 
 

 (6.28) 

Where the values ( )11 αΦ , ( )12 αΦ , ( )21 αΦ and ( )22 αΦ  are found in eq(6.25) 

From eq(3.31) in chapter 3, the CCF  representation for the augmented model is 

derived as: 
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( )
( )
( )

( )
( )
( )

( )

( )
( )
( )
( )

1 11 2 3
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0 1 0 01a a

a
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x ky c c c
x k

 +   −Φ −Φ −Φ   
      + = +      

     +      
 
 

=  
 
 

 (6.29) 

Where:  

 

( ) ( )( )
( )

( )

( )

1 11 22

2
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2
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2

1 2
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2
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1

T

T T

T

e h T

e h T e

e
c c

c bc a
a

c bc
a

λ

λ λ

λ

ψ

ψ

−

− −

−

Φ = − Φ +Φ + = − +

Φ = Φ Φ +Φ +Φ −Φ Φ = +

Φ = −Φ Φ +Φ Φ = −
= Γ

 
= Φ −Φ − 
 
 

= Φ +Φ 
 

 (6.30) 

After substitution, the CCF parameters for the magnetic ball levitation can be derived 

as: 

 

( )

( )

1

2

3

 1.97633cos 1
100

 1.97633cos 0.9764712
100

0.9764712

h

h

ψ α

ψ α

  
Φ = −     

 
Φ = + 

 
Φ = −

 
(6.31) 

And  

 

( ) ( )( ) ( )

( )( )
( )
( ) ( )( ) ( )

1

2

3

4.3063 1 0.988166 cos 1.1905 sin
100 100

sin 100
10.1781 0.10176538

4.274 cos 1.1905 sin  4.2234
100 100

c h h

h
c

c h h

ψ α ψ α
ψ α

ψ α
ψ α

ψ α ψ α
ψ α

     
= − +            

 
= −  

 
    

= − −         

 (6.32) 
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6.3.2 Digital State Feedback Gain Scheduled Controller Design 

The designed state feedback gains vector for the transformed model (6.29) is given 
by:  

 ( ) ( )1 1 2 2 3 3xd x xaL L L d d d= = −Φ −Φ −Φ  (6.33) 

By using the ZOH-mapping formula and selecting a sampling period of T 0.01= , the 

desired characteristic equation (6.11) becomes, 

 ( ) 3 21.2427  0.4718 0.0082P z z z z= − + −  (6.34) 

Then, we have: 

 
1

2

3

1.2427
 0.4718
0.0082

d
d
d

= −
=
= −

 (6.35) 

After substituting for  1d , 2d , 3d , 1Φ , 2Φ  and 3Φ  from eq(6.35) and eq(6.31) into eq 

(6.33), the state feedback scheduled gains vector for the original model for the 

magnetic ball levitation CE152 can be derived as: 

 ( )

( )

( ) ( )1

1.2427  1.97633cos 1
100

1.97633cos 0.5047
100

0.9682

T

zd c

h

L h T

ψ α

ψ α
α α−

   
− + +       
 

  = − −    
 
  
 

 (6.36) 

Where  ( )1 α−
cT  is the transformation matrix between the two forms. 

6.3.3 Digital Gain Scheduled Observer Design 

The desired characteristic equation of the closed loop observer that found in eq(6.12) 

maps into the z-domain as: 

 ( ) 2 +0.0181  0.0003P z z z= +  (6.37) 
Then, we get:  

 1

2

0.0181
  0.0003

P
P
=
=

 (6.38) 
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From eq(3.52) in chapter 3, the scheduled observer gains  vector for the system in 

OCF is given by: 

 1 1 1

2 2 2

x

x

h P
h P

= −Φ

= −Φ
 (6.39) 

After substituting for  1P , 2P , 1Φ , 2Φ from eq(6.31) and eq(6.35) into eq (6.39), the 

observer scheduled gains vector  for the system that represented in OCF can be 

derived as: 

 
( )
( )

( )
1

2

 1.9763*cos 0.0181
100

  
   -0.9761

x

x

hh

h

ψ α
α

α

   
+         =    

   
 
 

 (6.40) 

The transformation matrix between the two forms can be calculated as: 

 ( ) ( ) ( ) ( )22 12 12

1 0
 0.0063*

/ 1/oT α
α α α

 
=  Φ Φ Φ 

 (6.41) 

The scheduled observer gains vector for the original model can be derived as: 

 ( ) ( )
( ) ( )

( ) 4

22

12 12

1 0  0.0124*cos 1.1363x10
100

 1
  
   -0.9761

z

h
H

ψ α

α α
α α

−
   

+         = Φ  
  Φ Φ  

 

 (6.42) 

Where : 

( )22 αΦ  and ( )12 αΦ are defined in eq(6.25). 

6.3.4 Matlab Simulation  Of  The Digital Output Feedback Control 

The digital gain scheduled output feedback control has been built on Matlab/Simulink 

tool as shown in fig.(6.5) below. 
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Figure   6.5: Digital gain scheduled output feedback control built on Matlab/Simulink 

 

The response of the closed loop system to a sequence of step changes in a reference 

signal is shown in fig.(6.6). 

 

Figure   6.6: Response to a sequence of step changes in the digital output feedback control 

 

Figure (6.6) shows the  output performance with comparison to the desired signal,  

which converges to the desired signal quickly and meets the performance 

specifications. 

Zero -Order
Hold

Signal Builder

Step

ramp

Scope
Manual Switch

Magnetic Levitation Plant

In Voltage Out 

Gain _Scheduled
Controller

ie

X1

X2

uAddtional
dynamic

z

z-1

gain
Scheduled 

observer

y u

Ex
1

Ex
2

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

time

po
si

tio
n

Tracking of a sequance of step jummping

 

 

Reference signal

Tracking signal



96 
 

 

The response of the closed loop  system to a slow ramp input that takes the set point 

from zero to one over a period of 10 seconds is shown in fig.(6.7). 

 

Figure   6.7: Response to a slow ramp with slope 0.1 in the digital output feedback control 

 

6.4 Digital Output Feedback Control System Without Time Delay 

Compensation. 

The digital gain scheduled output feedback control system without time delay 

compensation has been built on Matlab/Simulink tool as shown in fig.(6.8) below. 

Figure   6.8: Digital output feedback control system with no time delay compensation built on 
Matlab/Simulink 
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The step response of the closed loop system without taking the time delay into 

consideration in the design of an output feedback controller is shown in fig.(6.9). 

 

Figure   6.9: Output response of the uncompensated control system for the magnetic ball 
levitation CE152 

 

From fig(6.9) , we can clearly note that the magnetic ball levitation CE152 system 

becomes  unstable due to the effect of network delay. 

6.5 Digital Output Feedback Control System With Time Delay 

Compensation 

The time-invariant and time varying gain scheduled output feedback control system 

with time delay compensation have been built on Matlab/Simulink tool as shown in 

the following figure: 
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Figure   6.10: Time invariant digital output feedback control system with time delay 
compensation built on Matlab/Simulink 

 

Figure   6.11: Time varying  digital output feedback control system with time delay compensation 
built on Matlab/Simulink 

 

The two types of gain scheduled controllers are achieved similar levels of 

performance for the magnetic ball levitation CE152. 

The response of the closed loop system for both types of controllers for a sequence of 

step changes in a reference signal is shown in figure(6.12). 
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Figure   6.12: Response to a sequence of step changes in the digital output feedback control with 
time delay compensation 

 

Also, the response of the closed loop  system to a slow ramp  with slop 0.1 is shown 

in fig.(6.13). 

 

Figure   6.13: Response to a slow ramp with slope 0.1 in the digital output feedback control with 
time delay compensation 
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Comparisons between the responses of the compensated system signal with the 

system with no time delay signal are shown in figures (6.14) and (6.15) below:  

Figure   6.14: Comparison of the responses to a sequence of step changes for the system with no 
time delay with the compensated time delay system 

 

 

Figure   6.15: Comparison of the responses to a slow ramp input for the system with no time delay 
with the compensated time delay system. 
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6.6 Discussion Of The Results 

1- From figures (6.14) and (6.15) it can be seen that the extension of the control 

system to compensate the network induced delay lead to system responses 

close to the responses of the digital control system with no time delay. The 

improved responses occurred due to the controller structure capability in 

compensating the induced time delay . 

2- The two types of gain scheduled control system achieved similar levels of 

performance due to the existence of equivalent transfer functions ate every kth 

sampling period. Then, the time varying gain scheduled controller is more 

efficient than the time invariant gain scheduled controller since there is no 

need to introduce any hardware components at the actuator node input. 

3- Fig.(6.9) showed that the system became unstable when the forward channel 

induced delay is not taken into account during the design of such controller. 

4- To reach the maximum position of the magnetic ball levitation CE152, we 

selected the reference signal to be  ramp signal or a sequence of step changes 

in the reference signal, because the stability reasons of gain scheduled 

technique that require slowly varying reference trajectory with respect to the 

system dynamics[26]. 

5- In [25], an advanced fuzzy gain scheduling methodology was developed for 

the same special case of  2nd order nonlinear systems that assumed in this 

thesis with no time delay. Table 6.1 shows a comparison between the results 

of this thesis with the work proposed in [25].  

Table   6.1: Parameters of magnetic ball levitation CE 152 

Controller 
Presence of 

time delay 
Overshoot Settling Time 

Fuzzy Gain Scheduling Controller[25] No 0% 0.09 

Output Feedback Gain Scheduling Controller Yes 0% 0.11 

 

Although in this thesis the time delay was taken into account, table 6.1 shows that our 

results are close to the results of the advanced methodology proposed in [25], this 

indicates that the developed Output Feedback Gain Scheduling Controller has 

achieved a good performance with compensating the effect of time delay.
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CHAPTER 7 

7 CONCLUSION AND FOR FUTURE WORK 

 

A networked control architecture has many advantages compared to the traditional point-

to-point design, but there are some problems due to the presence of a communication 

network. The communication network introduces time delays in the control loop and 

these delays have effects on system stability and performance. 

 

In continuous-time systems, the delay is expressed as infinite dimension term which 

prevents applying different traditional design methods directly. In discreet system, though 

the delay can be expressed as a finite-dimension term, it increases the dimension and 

hence the complexity of the system significantly.  

 

The insertion of the communication network into the forward channel of  a control 

system increases the complexity of the  analysis and design for NCS. For the sake of 

simplicity, three steps for designing a tracking controller via a communication network 

was considered. In the first step, a continuous output feedback controller for the system  

with no time delay was designed using a gain scheduling technique. In the second step, 

the continuous system was sampled, and a discrete output feedback gain scheduled 

controller for the system with no time delay was also designed. In the last step, the 

communication network in the forward channel was taken into account, and two types of  

extended gain scheduled output feedback controllers were designed for the discrete 

model of  NCS: Time invariant and Time varying controllers.  

 

All the designed controllers in this thesis were implemented on MATLAB SIMULINK 

and were applied to the magnetic ball levitation CE152 simulation model. From the 

simulation results, it has demonstrated that the proposed methodology has achieved the 

desired performance as well as treating the effect of time delays induced by the network. 
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A general recommendation for future work is to extend the proposed methodology  to 

compensate for the feedback channel induced delays, also we can handle the effect of 

data packet losses during communication in NCSs. Cyclic service network type was 

assumed in the thesis, other types of networks such as random access network can be 

considered for future work. 
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