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Occurrence of Yersinia enterocolitica and Aeromonas 

hydrophila in Clinical, Food and Environmental Samples in 
Gaza Strip 

 
Abstract 

 
 
The interest on the occurrence of Yersinia enterocolitica and Aeromonas 

hydrophila, their pathogenicity and antimicrobial resistance is increasing 

worldwide because both were linked to acute and chronic gastroenteritis, 

septicemia and wound infections. Though reports on the occurrence of both 

pathogens among human that are available from certain areas, no published 

data are available from Gaza strip. Moreover, there are no routine methods 

for the detection of Yersinia and Aeromonas in clinical or environmental 

samples. Hence this study investigated the occurrence of both Y. 

enterocolitica and A.  hydrophila in clinical and environmental samples. Of 

the 473 clinical and environmental samples, 28 (5.9%) were positive for Y. 

enterocolitica and 179 (38.1%) for A. hydrophila. With high incidence of Y. 

enterocolitica and A. hydrophila in sewage (19.1%) and water (46.9%) 

respectively. The overall incidence of Y. enterocolitica and A. hydrophila in 

clinical samples was 4.7% and 34.3% respectively, with high frequency of 

both pathogens in AL-Dorrah and AL-Nasser hospitals. Virulence of isolates 

was assessed and their antimicrobial resistance to 20 antimicrobial agents 

was evaluated. Both clinical and environmental isolates possessed virulence 

factors with higher frequency in clinical samples. Antibiotic susceptibility 

testing revealed that most of Y. enterocolitica isolates were sensitive to most 

antibiotics; on the other hand, most of A. hydrophila isolates showed multiple 

antibiotic resistances. The most effective antimicrobials on A. hydrophila 

were azetreonam, ciprofloxacin and ofloxacin.  
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 تواجد  اليرسينيا انتيروآولتيكا و الايروموناس هيدروفيلا في عينات سريرية و غذائية و

  بيئية في قطاع غزة
 
 

 ملخص عربي
 
 

سببها و           لإا ي ت راض الت دروفيلا و الام اس هي ا و الايرومون ينيا انتيروآولتيك ن اليرس ل م ود آ ام بوج هتم
توى العالمي نظراً لارتباط آلا الكائنين بمجموعة من         على المس   مستمر مقاومتها للمضادات الحيوية في تزايد    

و بالرغم من وجود تقارير . خمج الدم و التهابات الجروح, الأمراض مثل الاتهابات المعوية الحادة و المزمنة 
شورة عن قطاع غزة         ات من الم لايوجد أي بيان  .عن وجود هذين الكائنين في البشر في اماآن معينة من الع

ة و        وجد طرق محددة للكشف عن اليرسينيا و الايرومون         ت  فضلا عن ذلك لا    سريرية والبيئي ات ال  اس في العين
لٍ        فقد بحثت    لهذا السبب  دروفيلا في                هذه الدراسة تواجد آ ا و الايروموناس هي   من اليرسينيا انتيروآولتيك
وي  البكتيريا  المعزولة اجري لها اختبار الفوعة و مقاومتها لعشرين مضا            . هذه العينات  سبة     . د حي و آانت ن

الي    ة آالت سريرية و البيئي ات ال ن العين ة م ا المعزول ا و  %) 5.9 (28: البكتيري ينيا انتيروآولتيك  179يرس
سبة %) 38.1( ى ن ت أعل دروفيلا و آان اس هي دايرومون ينيا تواج ا  لليرس اس   وانتيروآولتيك الايرومون

ي      .على التوالي ) %46.9 (عينات الماء و%) 19.1( في عينات المجاري       الهيدروفيلا  و آان المجموع الكل
سريرية           لكلٍ من    ات ال دروفيلا من العين  %)34.3( و %)3.7( هو  اليرسينيا انتيروآولتيكا و الايروموناس هي

والي   ى  آانت و  , على الت سبة     أعل لٍ  ن ائنين     من  لك شفى النصر          الك درة ومست شفى ال ل من     ا. في مست وت آ حت
سريرية    لهذه العوامل    عوامل الفوعة مع زيادة واضحة     العزلات البيئية و السريرية على     د  و, في العزلات ال  ق

ة  أظهرت نتائج حساسية المضادات بأن اليرسينيا انتيروآولتيكا حساسة لمعظم المضادات            المفحوصة    الحيوي
ددة      ة المتع ن المقاوم ة م سبة عالي دروفيلا ن اس هي زلات الايرومون رت ع ا أظه ام و  . بينم ان الازتريون و آ

 . الاآثر فعالية ضد الايروموناس هيدروفيلا الحيويةن و افلوآساسين من بين المضاداتيروفلوآساسسب
 
 
 
 
 
  

 

  قطاع غزة  ,عوامل الفوعة, ايروموناس هيدروفيلا, يرسينيا انتيروآولتيكا: الكلمات المفتاحية •
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CHAPTER 1 
 

INTRODUCTION 
 
1.1 Overview 
 
 
Yersinia enterocolitica and Aeromonas hydrophila are Gram-negative, 

facultative anaerobic bacteria that can be isolated from many sources, such 

as food, drinking water, sewage, environmental water and human clinical 

samples with a world-wide distribution. These bacteria can develop in 

refrigeration temperatures and are responsible for food and water-borne 

diseases, that can cause a range of human diseases that vary in severity 

from a self-limiting gastroenteritis to potentially fatal septicemia [1,2]. 
 

The genus Yersinia comprises an important group of bacterial pathogens, 

with Yersinia enterocolitica, Y. pseudotuberculosis, and Y. pestis 

representing the species of interest. Y. pestis is the etiologic agent of plague, 

whereas Y. enterocolitica and Y. pseudotuberculosis are enteropathogens 

which cause a variety of intestinal and extraintestinal clinical symptoms of 

varying severity ranging from mild gastroenterititis to mesenteric 

lymphadenitis, which mimics appendicitis and septicemia [3]. Y. 

enterocolitica is the most common agent of this genus that are pathogenic for 

both humans and animals and have a nearly worldwide distribution. Human 

clinical infections with this species ensue after ingestion of the 

microorganisms in contaminated food or water or by direct inoculation 

through blood transfusion [4]. 
 

Both pathogenic and nonpathogenic strains are frequently isolated from 

various animals (birds, mammals, and reptiles), foods (milk, meat, eggs, 

vegetables) contaminated with feces of infected animals or secondarily 

during the technologic process, as well as from the environment (water and 

soil). Rodents (mice and rats), hares, rabbits, and birds serve as reservoirs 

for Y. pseudotuberculosis [5], with swine serving as a major reservoir for 
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human pathogenic strains of Y. enterocolitica, and the highest isolation rates 

have been reported during the cold season in temperate climates [6]. 
 
Clinical illness is characterized by diarrhea and/or vomiting, fever and acute 

abdominal pain caused by mesenteric lymphadenitis, and it is often clinically 

indistinguishable from acute appendicitis. Sometimes post-infections, more 

specifically extra-intestinal sequelae, such as reactive arthritis, erythema 

nodosum, erythema multiforme, scarlatiniform exanthemata and septicemic 

types deserve particular clinical attention [7]. 
 

The major mechanism of virulence of Yersinia species, is invasiveness [8], 
which is mediated by genes inv, ail, and yadA, the first two of these are 

chromosomal and the last, plasmidial. These genes are responsible for the 

production of the proteins Inv (invasin), Ail (attachment invasion locus) and 

YadA (Yersinia adhesion) [9]. The virulence plasmid pYV (40-48 KDa) 

expresses different phenotypic characteristics such as autoagglutination at 

37oC, calcium dependence at 37oC, and Congo red uptake. A set of three 

tests has been proposed to separate pathogenic from non-pathogenic 

Yersinia strains; pyrazinamidase activity, esculin hydrolysis and salicin 

fermentation [10]. Studies on the behavior of two species of Yersinia have 

demonstrated that the microorganisms are susceptible to large number of 

antibiotics and chemotherapeutic agent [11].  
 

The Aeromonas genus has been placed in its own family, the 

Aeromonadaceae. The aeromonads share many biochemical characteristics 

with members of the Enterobacteriaceae, from which they are primarily 

differentiated by being oxidase-positive. The genus includes at least 13 

species, among which are the motile, mesophilic A. hydrophila, A. caviae, A. 

sobria, A. veronii, and A. schubertii, and the non-motile, psychrophilic A. 

salmonicida [12]. Seasonal variations in isolation of Aeromonas from stools 

have also been reported, with highest recovery during the warmer months. 

The mesophilic species have been associated with a wide range of infections 
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in humans, that have been isolated from freshwater, salt water, ground 

waters, drinking water (chlorinated and unchlorinated drinking water) [13], 
and have been frequently isolated from various food products such as fish 

and shellfish, raw meat, vegetables and raw milk, and from patients with 

diarrhea [14]. 
 

Among Aeromonas species, Aeromonas hydrophila is most commonly 

associated with human infections, leading to intestinal and non-intestinal 

diseases. Furthermore, increased resistance of this organism to antibiotics 

and chlorination in water presents a significant threat to public health. As a 

result, the Environmental Protection Agency (EPA) began the monitoring of 

United States water supplies for this organism in 2002 [15]. These pathogens 

have been associated with several categories of human infections, such as 

gastroenteritis (“summer diarrhea”), peritonitis, endocarditis, septicemia, 

septic arthritis, acute renal failure, and pneumonia [16]. Epidemiological 

studies implicated Aeromonas species in causing water and food-borne 

outbreaks and traveler's diarrhea [17].  
 

A. hydrophila produce an array of virulence factors, and the pathogenesis of 

Aeromonas infections is therefore complex and multifactorial. These factors 

include O antigens, capsules, the S layer, flagella, exotoxins such as 

hemolysins, and enterotoxin, and a repertoire of exoenzymes which digests 

cellular components. These virulence determinants are involved sequentially 

in enabling the bacteria to colonize, gain, entry, establish, replicate, and 

cause damage in host tissues and to evade the host defense system and 

spread, eventually killing the host [18]. Phenotypic characteristics of 

Aeromonas spp. have been used to differentiate between environmental 

strains and those strains causing gastroenteritis; including the lysine 

decarboxylase, Voges-Proskauer and autoagglutination positivity tests, 

congo red and crystal violet uptake and the production of a cell-free 

hemolysin and cytotoxin [19]. 
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Y. enterocolitica and A. hydrophila are important human pathogens that are 

increasingly recognized by researchers as a cause of various clinical 

syndromes [20,21]. The presence of Y. enterocolitica and A. hydrophila in 

food products is of a special concern since those organisms are capable of 

growth at refrigerator temperatures. The presence of these pathogens in 

clinical, food and environments represents possible hazard [5,14].  In several 

countries, Y. enterocolitica has eclipsed Shigella species and approaches 

Salmonella species and Campylobacter species as the cause of acute 

bacterial gastroenteritis [5]. 
 

There is no published or unpublished data concerning these pathogens in 

Gaza strip and there are no routine methods for the detection of these 

pathogens in any of the concerned authorities (Ministry of health, 

Environmental Quality Authority). 

 
 
1.2 Objectives 
 
The objectives of this wok are to investigate the presence of Y. enterocolitica 

and A. hydrophila in clinical, food and environmental samples; to examine the 

distribution of these isolates in the different areas in Gaza strip; and to 

evaluate the methods for the recovery of Y. enterocolitica and A. hydrophila 

from clinical, food and environmental samples. The specific aims are as 

follows: 

  

1- To determine the occurrence of Y. enterocolitica and A. hydrophila in 

clinical, food and environmental samples. 

2- To evaluate the methods used to detect Yersinia and Aeromonas 

pathogens in clinical, food and environmental samples. 

3- To compare the occurrence of both bacteria in different sample types and 

sources. 

4- To examine the virulence factors of the isolates. 

5- To examine antimicrobial resistance of the isolates 
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1.3 Significance 
 
Y. enterocolitica and A. hydrophila are considered as emerging water and 

food-borne pathogens because it was shown that Yersinia and some 

Aeromonas food isolates can produce different virulence factors, not only at 

optimal growth temperature, but also at refrigeration temperatures, increasing 

concern about water and food-borne transmission.  

 

These microorganisms are recognized as an important agent of diarrheal 

diseases associated with a wide spectrum of clinical and immunological 

manifestations. As a result of an episode of food poisoning in the United 

States caused by ingestion of Yersinia contaminated chocolate milk and the 

presence of A. hydrophila in fish and seafoods lead the U.S. Food and Drug 

Administration (FDA) to designate them as a “new” foodborne. At the 

beginning of the program it was known that the Yersinia and Aeromonas 

species associated with food poisoning were among the few enteric 

pathogens capable of growth at refrigeration temperature (4°C). Also 

resistance of Aeromonas spp. to water chlorination and to multiple antibiotics 

has resulted in listing the organism on the “Contaminant Candidate List” by 

the EPA. 

 

This research attempted to detect these pathogens in clinical, food and 

environmental samples in different areas of Gaza strip and determine 

sources of Y. enterocolitica and A. hydrophila. Data generated from this work 

would be the first to highlight these important pathogens in Gaza strip and it 

is expected that the results would provide essential background for policy 

makers and health providers. 
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CHAPTER 2 
 

LITERATURE REVIEW  
 

This chapter is divided into two major parts; the first part is concerned with Y. 

enterocolitica and the second part is dedicated to A. hydrophila. Each part is 

discussing and reviewing details of the organism (Historical background and 

taxonomy, ecology and host range, pathogenesis, factors affecting growth, 

isolation, identification, conformation of pathogenicity, prevalence, infection 

and epidemiology of the organism). 

 
2.1 Yersinia enterocolitica   
 

2.1.1 Historical background and taxonomy 
 

In 1944, Van Loghem proposed that a new genus, designated Yersinia, be 

separated from the genus Pasteurella. This proposition became effective in 

1974. The first species identified in this genus by Malassez and Vingal in 

1883 was Yersinia pseudotuberculosis. The second species, Yersinia 

enterocolitica, was identified in 1939 by Schleifstein and Coleman. This 

species was found to be heterogeneous and to contain several related 

species (‘’Y. enterocolitica-like’’) that were subsequently designated Y. 

intermedia, Y. frederiksenii, Y. kristensenii, Y. aldovae, and Y. rhodei. More 

recently, Y. mollareii and Y. bercovieri were also separated from Y. 

enterocolitica. Finally, the species Y. ruckeri was included in the genus 

Yersinia but its classification in this genus is controversial [22]. Wild-type Y. 

pestis and Y. pseudotuberculosis exhibit nearly identical chromosomal DNA 

relatedness [23]. 
 

The genus Yersinia presently consists of 11 species, three of which can 

cause disease in humans and animals; Y. enterocolitica, Y. 

pseudotuberculosis and Y. pestis [24]. They are invasive pathogenic 
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bacteria, which have a common capacity to resist non-specific immune 

response and are lymphotrophic. These three pathogenic species differ 

considerably in invasiveness; while Y. enterocolitica and Y. 

pseudotuberculosis can cross the gastro-intestinal mucosa to infect 

underlying tissue, Y. pestis is injected into the body by an insect bite, and 

thus, does not have to penetrate any body surface on its own [25]. 
 

Y. enterocolitica are included in the genus Yersinia, which are classified into 

the family Enterobacteriaceae, a group of gram-negative, oxidase-negative 

and facultatively anaerobic bacteria. All bacteria belonging to the genus 

Yersinia are catalase-positive, non-spore-forming rods or coccobacilli of 0.5-

0.8 x 1-3 µm in size. Strains belonging to Y. enterocolitica are urease-

positive and can be differentiated from Y. pseudotuberculosis with a positive 

result for fermentation of sucrose, and negative reactions for rhamnose and 

melibiose fermentation. Y. enterocolitica Y. pseudotuberculosis are more 

active biochemically at 25°C than at 37°C, giving, for example, a positive 

Voges-Proskauer test only at the lower temperature. Most of the strains are 

motile at 25°C but non-motile at 37°C [25].  
 

Y. enterocolitica and bacteria that resemble it are ubiquitous, being isolated 

frequently from soil, water, animals, and a variety of foods [5]. They comprise 

a biochemically heterogeneous group that can grow at refrigeration 

temperatures [26]. Based on their biochemical heterogeneity and DNA 

relatedness, members of this group were separated into four species: Y. 

enterocolitica, Y. intermedia, Y. frederiksenii, and Y. kristensenii. Y. 

enterocolitica strains and related species can be separated serologically into 

groups based on their heat-stable somatic antigens [27].  
 

Y. enterocolitica is divided into 18 serogroups. Presently, pathogenic strains 

belonging to serogroups O:1, 2a, 3; O:2a, 3; O:3; O:8; O:9; O:4,32; O:5,27; 

O:12,25; O:13a,13b; O:19; O:20; and O:21 have been identified. Therefore, 

pathogenic strains can belong to diverse serogroups. Serogroups that 
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predominate in human illness are O:3, O:8, O:9, and O:5,27 [27]. These 

bioserotypes have been shown to have different geographical distributions. 

Strains that are largely responsible for human yersiniosis in Europe, Japan, 

Canada and USA belong to bioserotype 4/O:3. Bioserotype 4/O:3 has been 

recovered in Japan and China, bioserotype 2/O:9 mostly in Europe, and 

bioserotype 2/O:5,27 is more widely distributed. Strains of bioserotype 

1B/O:8 are mostly limited to the USA, but have sporadically appeared in 

France, Italy and Japan as well [28]. Biotype 1A is considered to be non-

pathogenic; however, isolates of this biotype have constituted a sizeable 

fraction of isolates from patients with gastroenteritis [29]. 
 

2.1.2 Ecology and host range  
 

Y. enterocolitica is robust organisms capable of long-term survival in natural 

environments due, in part, to their minimal nutritional requirements and ability 

to remain metabolically active at extremes of temperature. This capacity to 

remain viable in nature for extended periods of time as a fecal contaminant 

is, of course, especially advantageous to these organisms, which are 

transmitted to hosts via the oral route [30]. Y. enterocolitica is widely 

distributed in nature in aquatic and animal reservoirs, with swine serving as a 

major reservoir for human pathogenic strains [6,31].   
 

2.1.3 Pathogenicity 
 
Human clinical infections with Y. enterocolitica ensue after ingestion of the 

microorganisms in contaminated food [32], or water [33] or by direct 

inoculation through blood transfusion [34]. In the gastrointestinal tract, Y. 

enterocolitica and Y. pseudotuberculosis can cause acute enteritis 

(especially in children), enterocolitis, mesenteric lymphadenitis, and terminal 

ileitis [30,35].  
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2.1.3.1 Plasmid-encoded virulence factors 
 
All fully virulent Y. enterocolitica strains carry an approximately 70-kb 

plasmid, termed pYV (plasmid for Yersinia virulence), which is required for 

full expression of virulence. Virulence plasmids of pathogenic Yersinia are 

closely related to each other, sharing functional similarities and a high degree 

of DNA homology. The presence of pYV enables Yersinia species to survive 

and multiply in lymphoid tissues of their host [36]. This pYV codes for an 

outer membrane protein YadA (Yersinia adhesin A), a set of secreted 

proteins called Yops (Yersinia outer membrane protein), and their secretion 

apparatus called Ysc (Yop secretion) [37].  
 

The YadA protein is multifunctional and promotes binding to epithelial cells. 

The gene yadA codes for the major outer membrane protein YadA, which 

forms a fibrillar matrix on the surface of Y. enterocolitica and is only 

expressed at 37°C. YadA plays a protective role in Y. enterocolitica, with 

several different functions such as, serum resistance, surface hydrophobicity 

autoagglutination, adhesion to epithelial cells, expression of fibrils on the 

surface, haemagglutination, binding to intestinal brush border membranes 

and resistance to killing by polymorphonuclear leukocytes [38]. One major 

role of YadA is to protect Y. enterocolitica against killing by 

polymorphonuclear leukocytes. Although the mechanism is unknown, YadA 

has been suggested to act by binding to eukaryotic cells, and in doing so, 

allow delivery of the Yops, thus preventing phagocytosis [39].  
 

The yop genes located on the pYV code for at least 14 Yops, which were 

originally described as Yersinia outer membrane proteins because they were 

detected in the outer membrane fraction of bacterial extracts. With the type III 

secretion system (Ysc), extracellularly located Yersinia that are in close 

contact with the eukaryotic cell deliver toxic bacterial proteins (Yops) into the 

cytosol of the target cell [40].  Some of the Yops form pores in the eukaryotic 

target cell membrane, while the other Yops are effector proteins that are 
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delivered through these pores into the cytosol of the target cell. At least six 

different Yop effectors are injected by the Ysc secretion translocation 

apparatus [41].  
 

Genes specifying the type III machinery (ysc) are also located on the pYV. 

The yop and ysc genes are temperature- and calcium-regulated, being 

expressed maximally at 37°C in response to the presence of a low calcium 

concentration [42]. All Yersinia strains carrying the virulence plasmid exhibit 

a phenotype known as low-calcium response because it manifests only when 

pYV-bearing strains are grown at 37°C in media containing a low 

concentration of Ca2+ [43].  

 
2.1.3.2 Chromosome-encoded virulence factors 
 
Chromosome-encoded factors are also needed for pathogenicity. Virulence 

functions have demonstrated to be transferable with the virulence plasmid 

only to the plasmid-cured strains derived from virulent parenteral strains [44]. 
Adherence to and invasion of epithelial layers require at least two 

chromosomal genes, inv (invasion) and ail (attachment invasion locus) [45].  
 

A. The invasion (inv) codes for Inv, an outer membrane protein found on the 

surface of Yersinia, which appears to play a vital role in promoting entry into 

epithelial cells of the ileum during the initial stage of infection, that is 

responsible for binding to β_1-integrins on the apical surface of M cells and 

initiating uptake of the organism [46]. Migration through these cells leads to 

the accumulation of bacteria in the underlying lymphoid tissue (Peyer’s 

patches) and spread to the mesenteric lymph nodes [47]. This gene is found 

in all Yersinia spp., however, non-pathogenic strains lack functional inv 

homologous sequences [48]. Expression of inv in Y. enterocolitica responds 

to both temperature and pH. inv expression is higher at 26°C than 37°C 

during in vitro growth, with maximal expression occurring during late 

logarithmic to early stationary phase; however, expression of inv at 37°C can 
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be restored to levels comparable to 26°C by adjusting the pH of the medium 

to 5.5 [49].  
 

B. The attachment invasion locus (ail)  codes for the surface protein Ail, 

which is produced at 37°C. In contrast to the inv, the ail was shown to be 

restricted to strains of serotypes associated with disease [50]. 
 

C. The heat-stable enterotoxin (Yst) of Y. enterocolitica is chromosomally 

mediated [51]. The role of enterotoxin in the pathogenesis of Y. enterocolitica 

infection is unclear. Non-pathogenic strains of Y. enterocolitica and strains of 

related species have been found to produce Yst using the infant mouse 

model, and the yst gene has been detected in strains of biotype 1A, Y. 

kristensenii and Y. intermedia [52]. Absence of enterotoxin production in vitro 

at temperatures exceeding 30°C suggests that this toxin is not produced in 

the intestinal lumen. However, it has been demonstrated with isogenic Yst+ 

and Yst- strains in young rabbits that, at least in this model, Yst was 

responsible for diarrhea [53,54]. 
 

D. Lipopolysaccharide (LPS) is a major surface component of the outer 

membrane of gram-negative bacteria. In Yersinia, the genes directing the 

biosynthesis of LPS are chromosomally located. LPS is a complex molecule 

composed of three main parts: lipid A, oligosaccharide core and O-side chain 

(O-antigen). The lipid A part is believed to be responsible for endotoxin 

activity and to play a central role in sepsis and septic shock due to gram-

negative bacteria [55]. LPS of Y. enterocolitica O:8 has a unique structure in 

which the outer core forms a branch. Serotypes of Y. enterocolitica are 

mainly determined by the variability of O-antigen. While the O-antigen is 

required for full virulence, its role has yet to be clarified, and absence of O-

antigen affects the expression of other virulence factors. A total absence of O 

antigen in Y. enterocolitica has been shown to reduce virulence in the 

infected mouse model [56]. 
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E. Urease is produced by all clinical isolates of Y. enterocolitica and is 

encoded by the urease gene complex (ure) on the chromosome. Bacterial 

survival depends on the ability to tolerate changes in the environment such 

as temperature, pH, osmolarity, and nutrient availability [57]. Bacteria are 

able to coordinate appropriate physiological responses to non-life-threatening 

or gradual environmental changes. Y. enterocolitica is a good example of 

how survival depends upon the ability of the bacteria to adapt to 

environmental changes.  While most environmental changes experienced by 

Y. enterocolitica going from the free-living environment to the host 

environment allow for a progressive coordinated bacterial response, some 

conditions, such as changes in pH, occur rapidly and are potentially lethal, 
requiring the bacteria to maintain presumptive mechanisms for survival [30].  

 
However, more recent studies have implicated urease as a factor that is 

necessary for survival and pathogenesis of some bacteria [58]. More 

recently, urease activity was shown to affect survival of Y. enterocolitica O:9 

under acidic conditions both in vitro and in vivo. For Y. enterocolitica O:8 and 

Morganella morganii, the authers describe how this enzyme contributes to 

survival. In addition, the contribution of urease to acid tolerance was 

determined for other gram-negative bacteria that survive both free-living and 

in a susceptible host. The decrease in virulence after intragastric inoculation 

of Y. enterocolitica O:3 urease-negative mutant indicates that the main role of 

urease is during the initial stage of the bacterial infection, when the bacteria 

reach the stomach [59]. 

 
F. Iron is an essential micronutrient for almost all bacteria, including Y. 

enterocolitica. A variety of alternative pathways have been elucidated for the 

uptake and utilization of iron by Yersinia. To capture iron, highly pathogenic 

strains of Y. enterocolitica biotype IB posses a genomic high-pathogenic 

islands (HPI) [60]. This 35 to 45-kb island carries a siderophore- mediated 

iron uptake system named the yersiniabactin (Ybt) locus, which is required 

for full virulence expression in Yersinia. The yersiniabactin biosynthesis and 
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transport genes are clustered within high-pathogenic islands. The less 

virulent strains of other bioserotypes of Y. enterocolitica, including 

bioserotype 4/O:3, are able to bind and internalize a number of exogenously 

produced siderophores such as ferrioxamine and ferrichrome [61]. Several 

studies reported Yersinia species in clinical states of iron overload, such as 

hemochromatosis, thalassemia and in children following accidental iron 

overdose [62]. 

 
2.1.4 Factors affecting growth 

 
Y. enterocolitica, as a psychrotrophic bacterium, has the ability to replicate at 

temperatures between 0 and 44°C [26]. The doubling time at the optimum 

growth temperature (approximately 28 to 30°C) is around 34 min. Although 

Y. enterocolitica can grow at temperatures as low as 0°C, the organism 

grows much more slowly as temperatures drop below 5°C [63]. Goverde et 

al., demonstrated that pYV positive strains grow slower than pYV-negative 

ones at 30-35°C and 1-10°C. Yersinia withstands freezing and can survive in 

frozen foods for extended periods even after repeated freezing and thawing, 

but it is susceptible to heat and is destroyed by pasteurization at 71.8°C for 

18 seconds [64]. 
 

Y. enterocolitica is able to grow over a pH range from approximately 4 to 10, 

with an optimum pH of around 7.6. Yersinia can survive alkaline conditions 

better than other gram-negative bacteria [65]. However, since few foods 

have an alkaline pH, this high pH tolerance is relatively unimportant. The 

bacterium’s tolerance of acidic conditions, on the other hand, is of great 

significance. Survival of the high acidity of some foods and the passage 

through the stomach suggests that Y. enterocolitica species are relatively 

acid-resistant. Although the mechanism of acid tolerance is unknown, it may 

be due to the activity of urease, which catabolizes urea to release ammonia, 

which in turn elevates the cytoplasmic pH [57].  
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Tolerance of Yersinia to acid depends on the acidulent used, the 

environmental temperature, the composition of the medium, and the growth 

phase of the bacteria. Acetic acid has been shown to be a more effective 

inhibitor than either lactic or citric acid [66].  

 
Y. enterocolitica is a facultatively anaerobic bacterium that can grow in 

anaerobic conditions. This bacterium can also grow well in modified 

atmospheres at 8°C, but with higher levels of CO2, the length of lag phase 

will increase and growth will be slower [67]. Y. enterocolitica has been shown 

to grow well on meat when packaged in vacuum or in modified atmosphere 

and stored at 5°C, even in the presence of high background flora [68].  

 
Several studies demonstrated that Y. enterocolitica can grow well on both 

decontaminated and untreated pork when packaged in vacuum and stored at 

10°C. However, the growth of serotype O:3 in raw minced meat has been 

found to be inhibited by natural microflora of the meat in some studies [69]. 

 
Y. enterocolitica can tolerate salt (NaCl) at concentrations of up to 5% [70]. 
The inhibition caused by NaCl is strongly dependent on storage temperature.  

Inactivation of Y. enterocolitica by chlorine (0.6 to 20 ppm) was investigated 

in distilled water and in Trypticase soy broth (TSB, 0.015%) at different 

temperatures (4, 20, and 40oC). In distilled water, chlorine inactivation of Y. 

enterocolitica was enhanced by increasing the temperature from 4 to 20oC. 

Y. enterocolitica can tolerate both sodium nitrate and nitrite of up to 20 mg/ml 

for 48 h in vitro. However, a nitrite concentration of only 80 mg/kg has been 

reported to inhibit the growth of Y. enterocolitica in fermented sausages [71]. 
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2.1.5 Isolation and identification of pathogenic Yersinia enterocolitica 

from clinical, foods and environmental samples 
 
2.1.5.1 Isolation and enumeration 

 
The source of Y. enterocolitica may markedly affect the methods of isolation. 

To find pathogenic isolates from food and environmental sources is generally 

more difficult than to find them from stools of infected individuals. During 

acute gastroenteritis or with organ abscesses, pathogenic Y. enterocolitica 

are often the dominant bacteria and can easily be isolated by direct plating 

on conventional enteric media [72]. Because of the high number of 

background flora and the low number of pathogenic strains of Yersinia in 

food and environmental samples, direct isolation even on selective media is 

seldom successful. To increase the number of Yersinia strains in these 

samples, enrichment in liquid media prior to isolation on solid media is 

required [73].  
 

Recovery of pathogenic Y. enterocolitica is contingent upon a number of 

factors including: the level of background flora on the product; the amount of 

background flora coming through enrichment and plating; the level of 

pathogenic Y. enterocolitica on the sample; the numbers of non-pathogenic 

Y. enterocolitica and non-pathogenic Yersinia spp. present on the product; 

and loss of virulence factors during enrichment and plating [74]. Furthermore, 

a recovery method which gives good recovery of one serotype of pathogenic 

Y. enterocolitica may not be suited to other serotypes. In order to recover any 

of the important pathogenic serotypes of Y. enterocolitica which might be 

present, multiple enrichment broths and plating media are usually 

recommended for the recovery of the organism from naturally-contaminated 

foods. Several different methods are available for isolation of Y. enterocolitica 

from clinical, food and environmental samples [5]. 
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2.1.5.1.1 Cold enrichment 

 
The psychrotrophic nature of Y. enterocolitica is unusual among enteric 

bacteria, and consequently, enrichment in different solutions at 4°C for 

prolonged periods has been used for isolation of Yersinia spp. [75]. Cold 

enrichment in phosphate buffered solution (PBS) or in phosphate buffered 

saline with sorbitol and bile salts (PSB) has been widely used for clinical, 

food, and environmental samples [76]. In addition, nutritionally richer media, 

such as TSB, have been reported to yield better results, particularly when 

food and environmental samples are studied [74]. One major disadvantage 

encountered with cold enrichment is the long incubation period, typically 21 

days, which is unacceptable for quality assurance of foods. Doyle and 
Hugdahl have shown that incubation in PBS for 1-3 days at 25°C is as 

efficient as enrichment at 4°C for some weeks [77]. Another problem with 

cold enrichment is the presence of other psychrotrophic bacteria in foods, 

which also multiply during the enrichment. By treating cold enrichments with 

potassium hydroxide (KOH), the background flora can be reduced, making 

selection of Yersinia colonies easier [78]. This alkali treatment was 

developed by Aulisio et al., after they observed that Yersinia spp. are more 

tolerant of alkali solutions than many other gram-negative bacteria [65]. 
 
2.5.1.1.2 Selective enrichment 
 
Several selective media for isolation of Y. enterocolitica at higher 

temperatures have been developed [79], with different antimicrobial agents 

being used as selective supplements in these media. Wauters formulated a 

modified Rappaport broth (MRB) containing magnesium chloride, malachite 

green and carbenicillin, in which the sample was incubated at 25°C for 2-4 

days [80]. Later, Wauters et al., developed an enrichment broth derived from 

the modified Rappaport base, supplemented with irgasan, ticarcillin and 

potassium chlorate (ITC) [81].  
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Schiemann developed a bile oxalate sorbose (BOS) medium for the isolation 

of Y. enterocolitica, particularly for strains belonging to bioserotype 1B/O:8 

[82,83]. Pre-enrichment in low-selectivity medium prior to selective 

enrichment in MRB or BOS has also been used for isolation of Y. 

enterocolitica from foods [75]. 
 
2.5.1.1.3 Selective agar plates 

 
Several different selective agar plating media have been used for isolation of 

Y. enterocolitica. Initially, plating media, such as MacConkey (MCA) agar, 

deoxycholate citrate (DC) agar and Salmonella-Shigella (SS) agar, 

developed for other enteropathogens were used. On these media, Y. 

enterocolitica and Y. pseudotuberculosis strains grow well but slowly and are 

easily overgrown by other enteric bacteria because of the low selectivity. Of 

the traditional enteric media, the most widely used is MCA agar [82,83].  
 

Both modifying existing enteric media and development of entirely new media 

have achieved improvements in selectivity. SS agar was made more 

selective for Y. enterocolitica by addition of sodium deoxycholate and CaCl2. 

Used in combination with ITC enrichment, recovery of strains of bioserotype 

4/O:3 is good. This agar is widely used because of its high selectivity and 

commercial availability (ISO1994). However, differentiation of Yersinia from 

competing organisms, such as Morganella, Proteus, Serratia and 

Aeromonas, can be difficult. Cefsulodin irgasan novobiocin (CIN) agar is one 

of the media developed for isolation of Y. enterocolitica and Y. 

pseudotuberculosis [84].  
 

In several comparative studies, CIN agar was found to be the most selective 

plating medium for Yersinia spp. [85]. Organisms capable of fermenting 

mannitol, like Yersinia, produce red “bull's eye” colonies on CIN agar. Only 

Citrobacter freundii, Enterobacter agglomerans and species of Aeromonas 

and Klebsiella produce similar colony morphology [86]. Other selective agar, 
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virulent Yersinia enterocolitica (VYE) [5], hase been developed for isolation 

of Y. enterocolitica strains, but CIN agar is the most generally accepted 

because of its high selectivity and the high confirmation rate of presumptive 

isolattion. Moreover, the commercial availability of this medium makes it 

convenient to use [84]. 
 
2.1.5.2 Identification 

 
Johnson determined the minimum number of biochemical tests required for 

identifying Yersinia amongst bacteria growing and presenting similar colony 

morphology on CIN agar; two tests, Kligler iron and Christensen’s urea tests, 

were sufficient. Y. enterocolitica can be identified with biochemical tests such 

as fermentation of sucrose, rhamnose and melibiose [74]. 
 

 Commercial rapid identification tests provide suitable alternatives to the 

conventional tube tests. The Analytical Profile Index (API 20E) system, 

widely used for identification of presumptive Yersinia isolates, has been 

shown to be accurate in identifying of Y. enterocolitica. This kit system has a 

positive identification rate of 93% for Y. enterocolitica incubated at 28°C 

instead of 37°C. In the study by Sharma et al., identification of Y. 

enterocolitica biotypes 3, 4 and 5 was excellent, with a positive predictive 

value of 99% when the strips were incubated at 28°C for 18-24 h [87].  
 
2.1.6 Confirmation of pathogenicity 

 
Y. enterocolitica is a ubiquitous microorganism and, although the majority of 

isolates recovered from non-human sources are non-pathogenic, thus having 

no clinical significance, it is important to assess the pathogenicity of isolates 

[24]. 
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2.1.6.1 Animal tests 

 
The pathogenicity of Y. enterocolitica can be studied by animal tests such as 

the guinea pig conjunctivitis model (Sereny test) [88], suckling mouse assay, 

mouse intraperitoneal challenge, and mouse diarrhea and splenic infection 

following oral challenge [89,90]. However, because animal testing tends to 

be costly and is subject to increasing public opposition, it has largely been 

replaced by in vitro tests. 

 
2.6.1.2 Phenotypic tests 

 
A number of phenotypic characteristics associated with the virulence plasmid 

have been described [91]. Calcium dependence, measured by growth 

restriction on magnesium oxalate agar [92], autoagglutination at 35-37°C 

[93], uptake of Congo red and crystal violet [94] are the most popular indirect 

markers for identifying pathogenic strains of Y. enterocolitica. The 

pyrazinamidase (PYZ) test and the tissue culture invasiveness assay are 

proven indicators of potentially pathogenic isolates [10]. However, both of 

these tests measures functions that are chromosomally mediated, and thus, 

cannot replace pathogenicity tests, since they are only correlated with the 

ability of the strain to harbor the plasmid, and not to the presence of the 

plasmid itself. No single phenotypic virulence-associated characteristic has 

been shown to be a reliable indicator of pathogenicity [95]. 
 
2.1.6.3 Genotypic tests 
 

Several colony hybridization, amplified fragment length polymorphism (AFLP) 

and polymerase chain reaction (PCR) assays have been designed to verify 

the pathogenicity of Y. enterocolitica isolates specifically and rapidly [96-98]. 
The methods are based on specific segments of the virulence plasmid or the 

chromosomal DNA that have known virulence functions.  
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2.1.7 Prevalence of Yersinia enterocolitica 
 

2.1.7.1 In animals 
 
Animals, especially domestic animals, have been suspected as transmitters 

of Y. enterocolitica to humans. Y. enterocolitica infection in animals is not 

notifiable, and reports on its prevalence are for the most part results from 

research projects obtained from institutions or authorities in the member 

countries. Various studies have investigated wild and farm animals for the 

presence of pathogenic strains of Y. enterocolitica, and only a few have been 

recovered [99]. Shayegani et al., examined fecal specimens from 1,426 

animals including mammals, birds, reptiles, fish and invertebrates throughout 

New York State. Eleven human pathogenic strains were isolated, including 

bioserotype 1B/O:8 , 4/O:3 and O:5,27 [100]. In various studies examining 

healthy domestic animals and animals with acute enteritis, including cattle, 

sheep, goats, deer, calves, broilers, hens, turkeys and ducks, only a few 

pathogenic isolates have been recovered, and they differed from those 

usually associated with human infections [101,102].  
 

Pet animals, such as cats and dogs, have been suspected of being 

reservoirs for human infections with Y. enterocolitica, because of their close 

contact with humans. Dogs and cats occasionally harbor Y. enterocolitica 

4/O:3 [103,104]. Fredriksson-Ahomaa, Korte and Korkeala showed that 

raw pork was an important source of yersiniosis in dogs and cats. The 

infected dogs showed no clinical signs of infection. The duration of fecal 

shedding by the dogs varied between 7 and 23 days. These findings suggest 

that dogs can act as a potential source of the infection to humans [6]. 
 

Pigs are healthy carriers of Y. enterocolitica 4/O:3 and are the only animal 

species from which the bacterium can be isolated frequently.  Based on 

results from several studies, it can be concluded that Y. enterocolitica 4/O:3 

is present in the pig population in many countries in the world. The 
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prevalence often varies herd-wise [6].  Korte et al., found that the 

prevalence in fattening pigs in Finland, investigated in five slaughterhouses, 

increased from 33% to 64% between 1995 and 1999 [105].  
 
2.1.7.2 In foods  
 

The primary route of human infection is most probably ingestion of food. 

Based on the information on domestic cases notified by clinicians for 2004 in 

Sweden, the Swedish Institute for Infectious Disease Control reported that 

75% of the yersiniosis cases were suspected to be food- or waterborne 

infections. However, pathogenic strains of Y. enterocolitica are difficult to be 

isolated from food. In several studies, high frequencies of nonpathogenic 

strains have been isolated from food, whereas pathogenic strains are only 

occasionally recovered [106]. In studies from different countries, various 

ready-to-eat products have been investigated including, fresh salad, whole 

and sliced vegetables, sandwiches, milk, dairy products, desserts and soft 

cheese [14]. Only a few pathogenic strains were isolated from these foods. 

 

Raw and pasteurized milk have been examined in several studies because 

outbreaks over a number of years in the United States were traced to milk. 

With the exception of a few isolates of O:5, 27, none of the strains isolated in 

these studies were identified as pathogenic [107]. Pork is likely to be an 

important vehicle of the infection to humans because pigs are the only 

animals consumed that frequently harbor the same bioserotype of Y. 

enterocolitica as is isolated from human yersiniosis cases. However, the 

problem is that only few pathogenic strains have been recovered from pork or 

pork products [5].  
 

From outbreaks and case-control studies, there are other indications that 

pork is involved in the transmission of the pathogen to humans. Two 

outbreaks have been traced to ingestion and/or handling of contaminated 

pork. In one outbreak, home prepared ‘pork cheese’ (a sausage variant) was 

identified as the source of the infection. Preparation of pork chitterlings (a 
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dish made from pig intestines) was the source of the infection in the other 

outbreak. Both outbreaks involved Y. enterocolitica 4/O:3 as the causative 

agent [108].  
 

2.1.7.3 In environment (including water) 
 

Y. enterocolitica and other Yersinia species are ubiquitous in the natural 

environment and can be isolated from soil, foliage, surface water, sewage 

water and sludge, have been non-pathogenic [109]. However, the vast 

majority of the isolates lacks the classical markers of bacterial virulence and 

is considered nonpathogenic. The possibility for the microorganism to survive 

in this type of environment has been investigated [109].  
 

In a study carried out in Australia, 251 water samples tested by nested PCR. 

Eleven samples from 4 separate locations tested positive. One of the PCR-

positive results was confirmed by culture. Some waterborne cases/outbreaks 

caused by the bacterium have been reported from North America. The 

isolated strains belonged to bioserotype 1B/O:8, a bioserotype not commonly 

isolated in the United States after the 1980. Bioserotype 4/O:3 was isolated 

from well water in a small family outbreak of gastroenteritis in Ontario, 

Canada [110].  
 

2.1.7.4 In human 
 
Y. enterocolitica was first recognized as a human pathogen in the 1930 [24]. 
Bioserotype 4/O:3 is the most common type of Y. enterocolitica recovered 

from humans with diarrhea. The highest incidence of enteritis caused by this 

type has been found in young children. However, Morris et al., have also 

isolated strains of bioserotype 4/O:3 at a high rate from asymptomatic 

children [111].  
 



 23

The infection rate is probably much higher since only the most serious cases 

are registered. Only a few isolates of O:9 and O:5,27 are reported annually. 

During the 1980, several countries in Europe reported a dramatic increase in 

the number of recovered human cases. In the beginning of the 1990, the 

diagnosed yersiniosis cases in Sweden reached numbers exceeding 1000 

and in 1996 it was classified a notifiable disease. In the United States, the 

Center for Disease Control and Prevention (CDC) estimates about 17,000 

annual cases, i.e. an incidence of 6 per 100,000 inhabitants [112]. 
 

2.1.8 Yersinia enterocolitica infections 

 

2.1.8.1 In animals 

 

Several reports have been presented on isolation of Y. enterocolitica strains 

from a variety of animals, but descriptions of observed clinical manifestations 

or patho-anatomical changes are sparse. Sporadic, small outbreaks of 

enteritis caused by Y. enterocolitica have been reported in chinchillas, hares, 

sheep and goats [101]. However, both biochemical and serological patterns 

deviated from those of human strains. 

 

Pigs have been experimentally infected with bioserotype 4/O:3 in several 

studies [113]. Strains of Y. enterocolitica 4/O:3 have been shown to cause 

gastroenteritis in new-born, colostrum-deprived piglets, whereas full-term 

colostrum-fed piglets seem to be quite resistant to infection. In colostrum-fed 

piglets, colonization was typically restricted to the throat and intestinal tract 

without development of serious illness. Fattening pigs have been shown to 

excrete high numbers of Y. enterocolitica 4/O:3 in faeces for several weeks 

after infection mostly without any symptoms. However, Thibodeau et al,. 

demonstrated that the fecal shedding stops soon after ingestion of bacteria 

and only tonsillar infection occurs [114]. 
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2.1.8.2 In humans 

 

Y. enterocolitica can cause gastro-intestinal symptoms ranging from mild 

self-limited diarrhea to acute mesenteric lymphadenitis evoking appendicitis. 

Sometimes focal disease, such as pharyngitis, cellulitis, abscess, pneumonia 

and meningitis, may occur without gastro-intestinal illness [30]. The 

incubation period of Y. enterocolitica enterocolitis ranges from 1 to 11 days. 

The minimal infective dose for humans has not been determined. Symptoms 

of enterocolitis typically persist for 5 to 14 days, but they may occasionally 

last for several months. The duration of the excretion of the organism in stool 

has been reported to range from 14 to 97 days. The clinical manifestations of 

infection depend on factors such as the age and physiological state of the 

host and the pathogenic properties of the particular strain [30].  
 

Most commonly, Y. enterocolitica infections occur in young children [25]. In 

patients under 5 years of age, yersiniosis presents as diarrhea, often with 

low-grade fever and sometimes with abdominal pain. The symptoms can 

even be so faint and short-lived that yersiniosis is not diagnosed, despite 

fecal carriage. In older children and young adults, acute yersiniosis can be 

present as a pseudo-appendicular syndrome, which is frequently confused 

with appendicitis [17].  
 

Sepsis is a rare complication of Y. enterocolitica infection, except in patients 

who have a predisposing underlying disease or are in an iron-overloaded 

state [115]. Sepsis can also occur during blood transfusion. One source of Y. 

enterocolitica -contaminated red blood cell concentrate has been reported to 

be a blood donor with asymptomatic bacteremia [116]. Normally, yersiniosis 

is a self-limited disease, but sometimes long-term sequelae, including 

reactive arthritis, erythema nodosum, glomerulonephritis and myocarditis, will 

occur. Post-infection complications usually develop within one week to one 

month of initial infection, and these may be the only obvious clinical 

manifestation of Yersinia infection [17].  
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2.1.9 Epidemiology and disease outbreaks  

 
The distribution of Y. enterocolitica appears to be temperate, involving the 

United States, Northern Europe, Canada, and Australia. There is also some 

speculation that the seasonal incidence of disease peaks in cooler months. 

These observations have been linked to the fact that the organism is cold-

adapted and can survive and grow at 4oC. In Europe the serotypes O:3 and 

O:9 predominate, whereas in the United States serotype O:8 is the most 

frequently isolated. Serious disease has been linked, however, to all three of 

these serotypes, regardless of geographic locale [28].  
 

Epidemic outbreaks are usually fled to particular serotypes, but it is likely that 

other serotypes are involved in the sporadic occurrence of enterocolitis [117]. 
Y. enterocolitica is primarily a zoonotic disease. Humans are incidental hosts. 

Illness is usually sporadic and outbreaks are rare [118]. 
 

2.1.9.1 Outbreak locations 

 

In Denmark, to examine the general frequency of household outbreaks, the 

authors performed a retrospective search among cases of the five most 

frequent gastrointestinal bacterial pathogens in Denmark, a country of 5.3 

million inhabitants. This was done for 57,667 cases registered from 1991 to 

2001 by finding all cases that shared addresses and became infected within 

3 weeks of one another. The percentage of cases that were part of 

household outbreaks was found to be 2.0% for Y. enterocolitica [119].  
 

In New York, USA, In September and October, 1976, an outbreak of illness 

due to chocolate milk contaminated with Y. enterocolitica resulted in 

hospitalization of 36 children, 16 of whom had appendectomies [121]. An 

epidemiologic investigation demonstrated that illness was associated with 

drinking of chocolate milk purchased in school cafeterias, and Y. 

enterocolitica O:8 was subsequently isolated from the milk. The investigation 
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suggested that the bacterium was introduced at the dairy during the mixing 

by hand of chocolate syrup with previously pasteurized milk [121].  
 

Gastrointestinal disorders of varying severity were observed in 239 (53%) of 

455 campers and staff members at a coed summer camp in Sullivan County, 

New York, during July 1981. Five of seven hospitalized patients had 

appendectomies before the disease was recognized as yersiniosis. Yersinia 

enterocolitica serogroup O:8 (American strain) was isolated from 37 (54%) of 

69 persons examined, including the head cook and 3 others of the 11-person 

kitchen staff. Of 48 food, water, and environmental samples collected from 

the camp area, Y. enterocolitica isolates belonging to the same serogroup 

and biogroup as the human isolates were recovered from dissolved 

powdered milk, a milk dispenser, and turkey chow mein [120].  
 

This laboratory finding supported the epidemiological data indicating a 

correlation between consumption of these foods and illness. Y. enterocolitica 

isolates of the same biogroup as the O:8 isolates but belonging to serogroup 

O:34 were also isolated from six campers and two samples of dissolved 

powdered milk [120].  
 

In June and July 1982, a large interstate outbreak of Y. enterocolitica 

infections caused by an unusual serotype occurred in Tennessee, Arkansas, 

and Mississippi. In three separate case-control studies, drinking milk 

pasteurized by plant A was statistically associated with illness. In a survey of 

randomly chosen households, 8.3% of persons who recalled having drunk 

milk from plant A during the suspect period experienced a yersiniosis-like 

illness. Inspection of the plant and cultures of the available raw and 

pasteurized milk did not reveal the source or mechanism of contamination or 

a breach in normal pasteurizing technique [121].  
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Although outbreaks of enteric disease caused by pasteurized milk are rare in 

the United States, the ability of Y. enterocolitica to grow in milk at 

refrigeration temperatures makes pasteurized milk a possible vehicle for 

virulent Y. enterocolitica. The extent to which milk is responsible for sporadic 

cases of yersiniosis is unknown [121].  
 

Twelve cases of Yersinia infection in infants less than 1 year of age were 

identified in Tennessee with onset from November 15, 2001 to February 15, 

2002. All cases were identified by stool culture. Six cases occurred in 

December, and 10 were medically evaluated in the same city. All case-

patients were black. In comparison, 49% of the population of the urban 

county in which the outbreak was identified is black. In this case-control study 

of Y. enterocolitica infections among black infants, chitterling preparation was 

significantly associated with illness (p less than 0.001). Of 13 samples of 

chitterlings tested, 2 were positive for Yersinia intermedia [122]. 
 

In Japan. On 3 August 2004, a local public health bureau in Nara Prefecture 

received a report of a food poisoning case at a nursery school. Of 182 

nursery school children, 42 were infected; none of the 20 staff members were 

infected. From clinical symptoms and bacterial isolations, the patients were 

diagnosed as having been infected with Y. enterocolitica [123].  
 

Y. enterocolitica serotype O:8 was isolated from 16 of 32 patients, none of 

the 17 childcare workers, and none of the 3 cooking staff members from 

whom stool samples were taken. In addition, 5 strains were obtained from 

medical facilities. Y. enterocolitica serotype O:8 was also isolated from 

salads containing apples, cucumbers, ham, potatoes, carrots, and 

mayonnaise, which were served during lunch at the nursery school on 23 

July [123]. 
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2.1.9.2 Possible transmission routes of sporadic Yersinia enterocolitica 

infections 

 
Pigs are considered to be the main source of human Y. enterocolitica 4/O:3 

infections, even though a definite connection between isolates from pigs and 

human infections has still to be established. Elevated serum antibody 

concentrations have been found among people involved in swine breeding or 

pork production, suggesting a direct transmission of this bacterium from pigs 

to humans. In Finland, slaughterhouse workers and pig farmers were 

observed to have elevated antibody levels to Y. enterocolitica O:3 twice as 

frequently as grain- or berry farmers. Similar differences have also been 

discovered between people involved in swine slaughtering practices and 

office personnel in Norway [124]. 
 

Pet animals have also been suspected of being sources for human infections 

because of their close contact with humans. However, direct transmission 

from pets to humans has yet to be proven. The most common transmission 

route of pathogenic Y. enterocolitica is thought to be fecal-oral via 

contaminated food, although pathogenic isolates have seldom been 

recovered from food samples [125].  
 

Direct person-to-person contact has not been demonstrated, but Lee et al., 

reported Y. enterocolitica O:3 infections in infants who were probably 

exposed to infection by their caretakers [108]. Indirect person-to-person 

transmission has apparently occurred in several instances by transfusion of 

blood products [126]. In these cases, the most likely source of Yersinia has 

been blood donors with subclinical bacteremia. 
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2.2 Aeromonas hydrophila 
 
2.2.1 Historical background and taxonomy 
 
Species of Aeromonas are Gram-negative, non-spore-forming, rod-shaped, 

facultatively anaerobic bacteria that occur ubiquitously and autochthonously 

in aquatic environments. Some species are pathogenic for animals and 

humans.  Although historically the Aeromonas genus has been placed in the 

family Vibrionaceae, there have been proposals to place it in its own family, 

the Aeromonadaceae. The aeromonads share many biochemical 

characteristics with members of the Enterobacteriaceae, from which they are 

primarily differentiated by being oxidase-positive [16].  Earlier literature 

focused mainly on A. hydrophila but several later studies have shown that the 

majority of clinical isolates fall within three species [127]. 
 

The genus Aeromonas includes at least 13 genospecies, among which are 

the mesophilic A. hydrophila, A. caviae, A. sobria, A. veronii, and A. 

schubertii, and the non-motile, psychrophilic A. salmonicida. A. salmonicida 

is a fish pathogen and has not been associated with human infection. By 

contrast, the mesophilic species have been associated with a wide range of 

infections in humans [128]. Although members of the genus have classically 

been divided into three biochemically differentiated groups (typified by A. 

hydrophila, A. caviae, and A. sobria), these contain a number of 

genospecies, to which new species have been added [129].  
 

The current taxonomy of the genus Aeromonas is based upon DNA-DNA 

hybridization and 16S ribosomal DNA relatedness studies. The genera of the 

family Aeromonadaceae now include Aeromonas, Oceanimonas, 

Oceanisphaera, and Tolumonas (incertae sedis). The current 

genomospecies and phenospecies within the genus Aeromonas are A. 

hydrophila ssp. dhakensis (subsp. nov.), A. hydrophila ssp. ranae (subsp. 

nov.), A. culicicola (sp. nov.), A. simiae (sp. nov.), and A. molluscorum (sp. 
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nov.) have been proposed as new species and subspecies of Aeromonas, 

and more will undoubtedly be described [16].  
 

The A. hydrophila causing human diseases are associated with a variety of 

infections including septicemia, wound infections, meningitis, peritonitis, and 

hepatobiliary infections. Some strains of Aeromonas produce enterotoxins 

responsible for causing gastroenteritis in humans, since these bacteria are 

widely distributed throughout the environment in water and foods, especially 

during summer months [128].  
 

The genus Aeromonas consists of straight, coccobacillary to bacillary gram-

negative bacteria with rounded ends measuring 0.3-3.5 mm [16]. They occur 

singly, in pairs, and rarely as short chains. Motile strains produce a single 

polar flagellum, though peritrichous or lateral flagella may be formed on solid 

media by some species. Aeromonas spp. are facultatively anaerobic, 

catalase positive, oxidase positive, chemoorganotrophic bacteria that exhibit 

both oxidative and fermentative metabolism on carbohydrates [129].  
 

Serotyping is based upon somatic (O) antigen determinants as described by 

Sakazaki and Shimada [130]. Several typing schema have been proposed 

[131], but only one comparison study of two of these schema has been 

published [132]. The schema of Sakazaki and Shimada recognizes 44 

serogroups, with an additional 52 provisional serogroups proposed by Albert 
[130]. Aeromonas spp. are found to be serologically heterogeneous, with 

individual serogroups found in more than one species. Most type and 

reference strains were not serologically representative of a genomospecies. 

Three serotypes predominate in clinical samples, O:11 (24%), O:16 (14%), 

and O:34 (10%) [128].  
 

Korbsrisate characterized the distribution of A. hydrophila serogroups in 

clinical samples and developed polyclonal antibodies for rapid identification 

of clinical isolates by direct agglutination. Only 50% of strains fell into the 
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common serogroups O:11, O:16, O:18, O:34, or O:83. Rough strains (15.2%) 

and untypable strains (2.3%) reduced the effectiveness of serotyping for 

identification of clinical strains. A polyvalent antiserum was produced that 

resulted in positive agglutination of 102 or 105 strains, for a calculated 

sensitivity of 97.1% and specificity of 90.7%. This test could be useful in rapid 

identification of aeromonads to genus where they are isolated from samples 

that may also contain vibrios [133]. 
 

2.2.2 Ecology and host range 
  
A.  hydrophila are found worldwide in aquatic environments, including ground 

water, surface waters, estuarine and marine waters, drinking water, and 

wastewater [134].  A. hydrophila are found in foods, including fresh grocery 

produce, seafood, raw meats, packaged ready-to-eat meats, cheese, and 

milk [135].  While Aeromonas spp. are not considered fecal bacteria, they are 

present in the feces of healthy animals and humans, presumably as the 

result of ingestion of food and water containing these organisms [136]. 
 

They are present in high numbers in sewage before and after treatment, thus 

they have been proposed as an indicator of sewage-contaminated surface 

water. A. hydrophila may colonize drinking water distribution systems and 

produce biofilms that resist disinfection [137].  
 
2.2.3 Pathogenicity 
 
Although most of the active research on Aeromonas species concerns the 

identification of virulence factors or mechanisms potentially operative in 

human or animal infections, only one factor, the S layer of A. salmonicida, 

has been linked to the overt pathogenicity of this species in causing serious 

infections in fish. Most of the other reputed virulence factors produced by A. 

hydrophila have been linked to pathogenicity in humans by inference; that is 

similar molecules have been shown to play important roles [128].  
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Virulence factors are present in two forms, cell-associated structures, and 

extracellular products. Among the cell-associated structures are pili, flagella, 

outer membrane proteins, lipopolysaccharide, and capsules. The major 

extracellular products include cytotoxic, cytolytic, hemolytic, and enterotoxic 

proteins [128,138]. 
 
2.2.3.1 Cell-associated structures 
 
A. Pili. While early studies had indicated that a number of Aeromonas strains 

were piliated, a detailed analysis of such structures was not undertaken until 

recently. A. hydrophila produce an array of filamentous structures, including 

short rigid, and long wavy pili, and polar and lateral flagella. Removal of pili or 

neutralization of attachment sites by homologous antibody treatment limits or 

defeats adherence properties in cell culture systems. Polar flagella and 

lateral flagella were described by Rabaan et al., and Kirov et al., [139,140]. 
Polar flagellins function as adhesions, while lateral flagellins are thought to 

serve as colonization factors [141].  
 

B. Capsule production has been reported for A. hydrophila serogroups, but 

the function of capsule material is vague. It is presumed to resist complement 

activity and perhaps enhance adherence [142].  
 

C. S-layers (originally termed A-layer in A. salmonicida) are paracrystalline 

structures made up of identical protein subunits that are translocated across 

the cell membrane and assembled on the cell wall surface via an interaction 

with O-polysaccharide side chains of lipopolysaccharide. A. hydrophila stains 

producing S-layers are more pathogenic for fish, but the role of S-layer in 

human infection is not clear. Studies suggest that strains containing S-layers 

autoagglutinate [143].  
 

D. Outer membrane proteins (OMP) of A. hydrophila are rather 

heterogeneous, although most strains produce a 36 k Da protein. In addition, 
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iron-starved A. hydrophila cells synthesize new OMP of 68 – 93 k Da. Mittal 
et al., reported that a group of A. hydrophila, virulent fish pathogens, 
exhibited a number of unique phenotypic properties that were thought to be 

cell-surface associated, including autoaggregation during growth in static 

broth culture [144]. 
 

E. Lipopolysaccharide (LPS) endotoxin. The O-antigen structure of 

virulent strains of A. hydrophila has been shown to have many points of 

similarity with that of the O-antigen of A. salmonicida. LPS endotoxin is an 

important component of the outer membrane of A. hydrophila, which has 

been shown to enhance red-leg disease in frogs. However, the importance of 

this toxin in human infections has not yet been elucidated [145]. 
 
2.2.3.2 Extracellular products 
 
Most aeromonads elaborate a large number of extracellular enzymes that 

actively degrade a variety of complex protein, polysaccharide, muco-

polysaccharide, and lipid-containing molecules. Although these enzymes are, 

in many instances, useful in identification as in the case of DNase, their roles 

in the physiologic functions of the bacterium or in virulence are largely 

unknown. To date, with minor exceptions, most extracellular factors produced 

by Aeromonas species are thought to play a role in gastrointestinal disease; 

this association will remain unproved until suitable models are developed for 

their study. Another reason for the difficulty in understanding the role that 

various extracellular enzymes play in pathogenesis concerns their 

multifunctional nature. A prime example of this latter problem is the 

Aeromonas hemolysin(s), which appears to be not only cytolytic but also 

enterotoxigenic [128]. 
 

A. Hemolysins. Probably the most striking cultural feature displayed by 

many Aeromonas strains is their ability to hemolyze erythrocytes when grown 

on a suitable agar-based medium.  This characteristic is principally 
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associated with certain strains belonging to the phenospecies A. hydrophila 

and A. sobria and is linked to the elaboration of an extracellular hemolysin(s) 

[146]. Such a hemolysin, which typically belongs to a larger group of pore-

forming bacterial cytolysins, causes leakage of the cytoplasmic contents from 

target cells via disruption of the normal integrity of the cell membrane [147]. 
The end result is death, either by osmotic lysis or by a nonosmotic process. 

At least two major classes of hemolysins expressed by Aeromonas strains 

have been reported. One class, originally termed "aerolysins" by Bernheimer 
and Avigad [128], comprises typical beta-hemolysins that produce clear 

zones of hemolysis on blood agar.  

 

The aerolysin is synthesized in a precursor form, from which the signal 

sequence is removed prior to export across the bacterial outer membrane. A 

second class of hemolysins, termed alpha-hemolysins, has been primarily 

studied by a number of Swedish investigators. The alpha-hemolysin is 

elaborated during the stationary phase and is not expressed when 

temperatures exceed 30°C. When observed on blood agar, this hemolysin 

produces an opaque, incomplete type of hemolysis that is often seen as the 

inner hemolytic zone of a strain producing "double-zone" hemolysis. Both 

alpha- and beta-hemolysins have observable but different effects on cell 

culture lines, although the effect of the beta-hemolysin appears irreversible 

[128]. 
 

B. Proteases are enzymes that are capable of cleaving peptide bonds. A 

number of extracellular proteases produced by gram-negative bacteria are 

thought to play important roles in pathogenesis and virulence. Aeromonas 

isolates secrete at least four or five different proteases, as determined of pH 

optima and substrate specificities. Two major proteases produced by A. 

hydrophila. One enzyme is a heat-stable protease that is inactivated by 

EDTA and appears to belong to the general class of thermostable 

metalloproteases; the other protease is heat labile (56°C, 30 min) and 

belongs to the thermolabile serine protease family, the metallo- and serine 
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proteases are involved in toxin activation and have a protective role in 

inimical environments [128].   
 

C. Siderophores are low-molecular-weight compounds with high affinities 

(binding capacities) for various organic and inorganic forms of iron, 

particularly under iron-limiting conditions. These compounds are thought in 

many instances to play important roles in the establishment of infection, and 

the hydroxymate class of siderophores has been associated with gram-

negative bacteria. Almost all strains of A. salmonicida, A. hydrophila, A. 

sobria, and A. caviae studied elaborate one or more types of siderophores 

[148,149]. 
 
2.2.4 Factors affecting growth 
 
A. hydrophila have their natural habitat in water and grow over a wide 

temperature range. Because A. hydrophila grow between 0ºC and 45ºC, with 

a temperature optimum of 22ºC to 32ºC, there are few environmental habitats 

where they are not found. Both high and low [150] survival rates have been 

reported. Nutrient availability, temperature, and water activity most affected 

growth rates. Growth was optimal at 30ºC at pH 7 and a water activity of 

0.99. A. hydrophila have been shown to grow in foods held at refrigerator 

temperatures [151].  
 

Growth temperature is an important feature in differentiation of clinical and 

environmental strains. Approximately half of clinical isolates show some 

growth at 4-5 ºC, all food isolates grow at this temperature. While most 

clinical strains grow at 42 ºC, only a few isolates from vegetables stored at 

5ºC grew at elevated temperature. The growth temperature range for A. 

hydrophila is from 4 to 44ºC, but individual strains typically have a restricted 

growth range according to their ecological niche, and growth of a strain at 

both extremes of the range are rare [14]. A. hydrophila are considered heat 

sensitive with respect to other foodborne pathogens.  
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A. hydrophila tolerate high pH well and this feature has been exploited by 

using alkaline peptone water at pH 8.6 for sample enrichment. A. hydrophila 

grow at pH 5.8 or higher, and may survive at pH 4.6 or higher according to 

computer modeling using Food Micromodel [151]. Species-specific acid 

tolerance is know to occur, since Aeromonas spp. grown on glucose or other 

simple sugars produces sufficient acetic acid to auto-sterilize a broth culture 

within 48 hr. in weakly buffered systems. This metabolic activity has been 

called the suicide phenomenon [152].  
 

Modified atmospheres are increasingly being used in food packaging. Pin et 

al., studied the response of A. hydrophila to various combinations of pH, 

temperature, and CO2 and O2 concentrations. The results were used to 

develop and validate a predictive model for growth and death estimates 

under modified atmospheres at refrigerator temperature. Reduced oxygen 

levels do not exert a detrimental effect on survival and growth of 

aeromonads, and they may be isolated from vacuum packed foods [153].  
 
2.2.5 Isolation and identification of pathogenic Aeromonas hydrophila 

from clinical, foods and environmental samples 
 
2.2.5.1 Isolation and enumeration 
 

Isolation of A. hydrophila from food and environmental samples provides a 

challenge because of the presence of competing bacteria and the possibility 

of sample matrix interference with sample preparation and culture methods. 

The use of dilution schemes and enrichment media facilitate isolation of A. 

hydrophila from heavily contaminated samples such as sewage, sludge and 

sewage effluents. Palumbo et al., compared several culture media for 

isolation and enumeration of aeromonads from water samples and concluded 

that ampicillin dextrin agar (ADA) produced the best overall results [154].  
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Several culture enrichment and culture media have been evaluated for 

isolation of A. hydrophila from foods. Starch ampicillin agar (SAA) and bile 

salts inositol brilliant green agar (BIBG) with prior enrichment in tryptose 

broth containing ampicillin (TSB-30) (ampicillin 30 mg/L) [155] are 

recommended, together with commercially available media such as 

Aeromonas Medium (Ryan’s Medium) [156]. Starch glutamate ampicillin 

penicillin (SGAP-10) medium was used to isolate aeromonads from sewage 

sludge. This medium is highly selective, and it has been used to isolate A. 

hydrophila from foods and other challenging matrices. Samples are prepared 

in dilution, inoculated into culture media with or without enrichment, and 

incubated aerobically at 35ºC for 24-48 hr. Colonies are screened by 

performing a spot oxidase test and identified using biochemical methods or 

commercially-available bacterial identification kits [157]. 
 

Isolation of A. hydrophila from contaminated samples such as feces require 

the use of selective and differential plating media such as MacConkey agar, 

cefsulodin irgasan novobiocin (CIN) agar, or blood ampicillin agar (10 mg/L 

ampicillin) [158]. To facilitate recovery of A. hydrophila from heavily 

contaminated specimens such as feces, enrichment broths such as alkaline 

peptone water are incubated overnight and subcultured to blood ampicillin 

agar and CIN agar. Culture plates are incubated aerobically at 35ºC for 24-48 

hr. Aeromonas spp. produce characteristic colonies, with or without 

hemolysis on blood agar, and colonies may be quickly screened using the 

spot oxidase test. Oxidase positive colonies are further screened using tube 

biochemicals or by inoculation of a cell suspension into one of the 

commercially available bacterial identification kits [159].  
 
2.2.5.2 Identification 

 

Commercial systems for bacterial identification are notoriously inaccurate for 

identification of Aeromonas spp., since they do not incorporate the key 

substrates necessary for correct identification [160]. Vivas et al., compared 
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MicroScan Walk/Away in conjunction with the MicroScan Combo Negative 

type 1S panels with conventional biochemical methods for identification of 85 

environmental, clinical and reference strains of Aeromonas spp. Using the 

MicroScan Combo Negative type1S substrate panel, 67 of 88 (78.8%) of 

strains were correctly identified, 4 of 88 (4.7%) of strains were incorrectly 

identified, and 10 of 88 (11.8%) of strains represented rare biotypes that 

could not be identified [161].  
 

 Carnahan and Joseph found that colistin resistance could be used as an 

additional phenotypic marker for identification of aeromonads. A. hydrophila 

group is 85.8% resistant, while A. caviae group is 2.1% resistant. When 

colistin was included in a 14 panel test format, 96.2% of strains could be 

identified to phenospecies and 93.6% of strains could be identified to 

genomospecies [162].  
 

Canonica et al., used whole cell fatty acid analysis (FAME) by gas-liquid 

chromatography to correctly classify A. hydrophila, A. sobria, and A. caviae. 

While this method offers the advantages of an instrumental method with 

autosampling for unattended operation, the reliability of identifications does 

not compare to newer genomic methods [163].  
 
2.2.6 Confirmation of pathogenicity 

 

One of the major drawbacks in studying virulence determinants related to 

Aeromonas pathogenicity has been the inability to establish appropriate 

organ or animal models that faithfully reproduce the specified disease 

observed in vivo. This situation is particularly acute in the case of Aeromonas 

associated gastroenteritis. Establishing such models is critical for identifying 

strains of high- and low-virulence potential and for comparing extracellular 

and cell-associated factors associated with these strains which lead to the 

recognition of determinants and gene products involved in microbial 

pathogenicity [128]. Once virulence determinants are identified, phenotypic 
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markers that allow accurate and rapid identification of pathogenic strains and 

the epidemiology associated with such infections can be sought [128]. 
 

2.2.6.1 Animal tests 
 
Most investigations determining the relative pathogenicities of individual 

Aeromonas strains have used either mouse or fish models [149,164] for 

assessing relative virulence, although limited studies have also been 

performed with chicks and turkey poults [128]. Values obtained from such 

investigations indicate that between 10- and 1,000-fold fewer bacteria are 

required to produce mortality in susceptible fish than in susceptible mice.  

 
2.2.6.2 Phenotypic tests 
 
While inherent pathogenic differences do exist among aeromonads, few 

virulence phenotypic markers reported in the literature go beyond the 

definition of pathogenicity at the phenospecies level. One group of major 

interest, however, is Aeromonas serogroup O:11 strains, which are primarily 

associated with severe invasive disease in both humans and animals [165]. 
These strains are characterized by their autoagglutination or aggregation in 

broth, the presence of an unusual LPS side chain architecture, and the 

possession of a SAP (surface array protein) in the form of an S layer [166].  
Such strains, predominantly found in the A. hydrophila and A. sobria 

phenospecies, can be recognized in the clinical laboratory by phenotypic and 

serologic tests [165].  
 

2.2.6.3 Genotypic tests 
 

Molecular systems such as PCR, DNA hybridization, microarrays of DNA 

probes and fluorescent in situ hybridization (FISH) have been developed for 

detection of aeromonads in variety samples [18]. 
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2.2.7 Prevalence of Aeromonas hydrophila 

 

2.2.7.1 In animals 
 
Aeromonas spp. have been recognized as animal pathogens since they were 

first isolated from diseased frogs and fish. They are now recognized to cause 

disease in birds and domestic animals [167]. A. hydrophila and A. 

salmonicida cause hemorrhagic disease, ulcerative disease, furunculosis, red 

sore disease and septicemia in fish. A. hydrophila has been isolated from 

diseased turtles, alligators, snakes, and frogs [168]. Populations in animals 

probably reflect the presence of A. hydrophila in their feed and water.  In their 

study of Aeromonas spp. in the feces of domestic animals, Figura and Marri 
isolated A. hydrophila more frequently than A. caviae. Stern et al., isolated 

aeromonads from 1 of 32 cows and 3 of 21 turkeys, but none were isolated 

from 22 pigs or 24 sheep. Gray and Stickler reported finding predominantly 

A. hydrophila in cow feces and A. caviae in pig feces. Diet and water sources 

influenced recovery of A. hydrophila from feces of domestic animals. 

Aeromonas spp. have been isolated from feces, bedding, and drinking water 

of health cows and pigs. They survive in soil for months. Both healthy and 

diseased animals shed Aeromonas spp. in feces [169].  
 

Nayduch et al., proposed that houseflies could serve as vectors for 

transmission of Aeromonas spp. since the bacteria multiplied in the gut and 

persisted for several days. Fly to fly transmission was demonstrated and 

transmission of Aeromonas spp. from fly to food was observed [170]. The 

use of medicinal leeches (Hirudo medicinalis) to treat vascular infiltration in 

surgical wounds has been recognized as a risk factor for A. hydrophila 

infections since 1983, and there are numerous reports of cellulitis and 

septicemia resulting from leech therapy [171].  
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2.2.7.2 In foods  
 

A. hydrophila have been isolated from fish, shellfish, meats, dairy products, 

and fresh vegetables, few foodborne outbreaks have been reported [14]. A 

growing body of epidemiological evidence supports the possibility of 

aeromonads causing foodborne gastroenteritis. While a plethora of putative 

virulence factors has been postulated and demonstrated in food isolates, the 

exact role and mechanism of aeromonads in causing diarrheal illness has not 

been elucidated. Evidence suggests that a high infective dose is necessary 

to produce gastrointestinal disease in a susceptible host, and the fact that 

aeromonads may survive and grow at refrigerator temperatures provides a 

reservoir of bacteria that may achieve an infective dose when foods are 

mishandled [172].  
 

United States Food and Drug Administrator (USFDA) reported A. hydrophila 

in fresh and fresh cut produce, and aeromonds have been isolated from 

lamb, oysters, cheese and raw milk, and fish and seafood [173]. Szabo et 

al., isolated Aeromonas spp. from 70 of 120 samples of lettuce in Australia. 

Aeromonads are found in ready to eat foods, including seafoods [174]. 
Studies published before 1990 relied upon phenotypic identification, while 

several studies published after that time identified isolates to hybridization 

group. While hybridization groups containing virulence factors are found in 

environmental samples and foods, aeromonads only cause gastroenteritis 

when their presence exceeds an infective dose for a susceptible host [14].  
 
2.2.7.3 In environment (including water) 
 

There are few studies of A. hydrophila in soil apart from the contribution of 

water. World Health Organization (WHO) reported the presence of 

aeromonads in pasture soil, probably as a contribution from manure [150].  
A. hydrophila forms biofilms on surfaces and may pose a threat of 

contamination in food processing. Researchers found that heat and chlorine 
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were effective against biofilm on stainless steel surfaces, however older 

biofilm was more resistant to heat and less established biofilm. Eight-day old 

biofilm was destroyed by heating to 60ºC and by exposure to 75 mg/L 

chlorine for 1 min [175]. 
 

2.2.7.4 In human 
 
Humans carry A. hydrophila in their gastrointestinal tract both in the presence 

and absence of disease. The rates of fecal carriage in asymptomatic persons 

in developed countries range from 0% to 4.0%, while the isolation rate from 

persons with diarrheal illness ranges from 0.8 to 7.4% [176]. In Southeast 

Asia, asymptomatic carriage rates as high as 27.5% and recovery rates from 

patients with diarrhea as high as 34% have been reported. Among Western 

Peace Corp workers in Thailand, aeromonads were recovered from 8.5% of 

healthy persons and 30.8% of persons with diarrhea [177]. Recovery rates 

among children with diarrhea vary geographically: 0.62 to 4% in Malaysia, 

2.3% in Taiwan, and 4.8% in Switzerland, [178-180].  
 

Sinha et al., reported Aeromonas spp. in 6.5% of all patients in India [181], 
and Chan et al. reported Aeromonas spp. in 6.9% of adult patients with 

acute diarrhea in Hong Kong [182]. Seventeen of 2,565 stool samples 

(0.66%) were positive for Aeromonas spp. [183]. Agger et al., reported A. 

hydrophila in 1.1% of stools in Wisconsin [184], and Moyer reported a fecal 

isolation rate of 7.1% in Iowa. [185].  
 

 

The clinical significance of isolates in these surveys is not clear, even when 

all patients in the surveyed population had diarrhea. Enteropathogenicity is 

influenced by growth temperature, where strains of O:34 grown at 20ºC 

exhibit enhanced virulence over strains grown at 37ºC. Strains isolated at 35-

37ºC, the typical incubation temperature used in clinical laboratories may 

produce false negative tests for virulence factors, making the retrospective 

assessment of clinical significance impossible [186].  
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2.2.8 Aeromonas hydrophila infections 
 
 

2.2.8.1 In animals 
 

A. hydrophila infection of aquatic animals has been recognized for over 100 

years, but they are less commonly recognized in other vertebrates. While 

many animals shed aeromonads from their gastrointestinal tract, there is no 

evidence that they suffer from gastrointestinal disease. Aeromonas spp. 

cause outbreaks of disease and represent an economic threat to the 

aquaculture industry.  

 

A. hydrophila has been reported to cause septicemia in snakes, turtles, and 

frogs [187-189]. Forga-Martel et al., reported a case of infectious abortion 

caused by A. hydrophila in a mare. Contamination from an adjacent dairy 

farm was suspected as the source of infection for the mare and 

transplacental infection was thought to result in fetal sepsis and abortion 

[169].  Disease in aquatic animals is characterized by hemorrhagic lesions, 

ulcers, and septicemia in frogs and fish [189,190]. Paniagua et al., 

determined that doses of 7 log10 CFU of A. hydrophila (72% of strains) 

infected intramuscularly produced disease in trout [191].  
 
2.2.8.2 In human  
 

A. hydrophila has received particular attention because of its association with 

human diseases. It has been isolated form both polluted and unpolluted 

bodies of water through out the world [192]. A study showed that Aeromonas 

spp. was extremely common contaminants of human foodstuffs and that 

some of the strains appear to be virulent. In their study most of the toxigenic 

strains were isolated from seafood and they suggested that seafoods were 

potential sources of virulent aeromonads. Therefore, in cases of foodborne 

bacterial illnesses in which oysters are implicated, Aeromonas spp. should be 

included in the general screening for causative microorganisms [190].  
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A common source of A. hydrophila in outbreaks of gastroenteritis is from 

water supplies such as mineral springs, seawater environments, chlorinated 

and unchlorinated domestic supplies and watersheds polluted by sewage 

effluents. Sources other than water from which this organism can be readily 

isolated include seafood, foods of terrestrial animal origin such as meats, 

dairy products and poultry and vegetables. Asymptomatic and 

immunocompromised human carriers involved with handling of foods are 

another potential source. The presence of A. hydrophila in the food chain 

should not be ignored. Aeromonas species are regarded as controversial 

primary pathogen but several worldwide investigations clearly now indicate 

that at least some strains are clearly enteropathogens and few cases are 

linked to gastroenteritis [193].  
 

Although the incidence of Aeromonas in foods is high, they vary between 

countries and also among the type of strains. Two factors appear to be 

affecting the significance of A. hydrophila as a re-emerging pathogen. The 

first is the consumer driven demand for less processed and more natural 

foods containing fewer additives, there in growing emphasis on, refrigeration 

as the primary means for controlling microbial growth in food. The second 

point is that during the warm season there is an increase in water associated 

A. hydrophila strains also in some cases associated with an increase in 

gastroenteritic patients [193].  
 

Gastroenteritis caused by A. hydrophila has been documented, and the 

incidence of gastroenteritis tends to be higher in summer than other seasons 

[127]. A. hydrophila may be present in the gastrointestinal tract of humans, 

and most epidemiological studies show higher numbers in stools of patients 

with gastroenteritis than in asymptomatic individuals. Acute self-limiting 

diarrhea occurs in children, and chronic gastroenteritis or enterocolitis may 

occur in children and the elderly. The presentation of gastroenteritis caused 

by aeromonads includes various combinations of fever, vomiting, and 

increased fecal leucocytes or erythrocytes [128].  
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According to Kirov, the majority of aeromonads associated with 

gastroenteritis are A. veronii biovar sobria (HG-8/10), A. hydrophila (HG-1), 

and A. caviae (HG-4), though A. veronii biovar veronii (HG-8/10), A. trota 

(HG-13), and A. jandaei (HG-9) occur occasionally. Gastroenteritis attributed 

to A. hydrophila was characterized by acute watery diarrhea, vomiting 

abdominal pain, and fever. [194].  
 

Skin and soft tissue infection caused by Aeromonas spp. resulting in cellulitis 

and bacteremia. Skin and soft tissue infections may follow traumatic injury in 

environments where soil and water may contaminate the wound. A review of 

32 foot injuries revealed that at least one-third of cases resulted from 

introduction of aeromonads in soil-contaminated glass, nails, or sticks. 

Infections from severe trauma associated with automobile accidents or other 

accidents resulting in crushing injury, compound fractures, or severe burns 

may lead to osteomylitis, myonecrosis, or gangrene [195].  
 

Necrotizing fasciitis is a rapidly advancing form of cellulitis characterized by 

muscle necrosis. Tsai et al., reported necrotizing fasciitis caused by A. 

hydrophila in patients with suppressed immune systems, burns, and trauma 

in aquatic settings. The case of an 85-year old man with no history of trauma 

suggests that sepsis from an intestinal source resulted in soft tissue infection 

and subsequent necrotizing fasciitis [196]. Furusu et al., reported a fatal 

case of necrotizing fasciitis accompanied by gas production caused by A. 

hydrophila in a 66 year old man who underwent valve replacement surgery 

[197].  
 

Burn infections caused by aeromonads are rare events – only 29 cases have 

been reported in English language literature. These authors reported 5 cases 

of A. hydrophila or A. caviae infections from burns associated with explosions 

(4 of 5) and a campfire accident (1 of 5). In 4 of 5 cases, water was used to 

quench the fire or as a first aid treatment. Ko et al., reported A. hydrophila 

infection in 62-year old female suffered from a flame burn covered by 61% of 

her total body surface area [198].  
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Trauma is most closely associated with Aeromonas wound infections. While 

the typical presentation in persons with normal immune status is cellulitis, 

more serious infections and sepsis can occur. Patients developing 

myonecrosis have a mortality rate exceeding 90%. The significance of A. 

hydrophila as a cause of skin and soft-tissue infections was made abundantly 

clear as a result of the tsunami that devastate Southeast Asia in December 

2004. Among 777 patients hospitalized for injuries suffered as a result of the 

tsunami, 515 had skin and soft-tissue infections and 145 isolates for 305 

patients were A. hydrophila. Many of these infections developed because 

traumatic wounds were not cleaned properly or because of delay in obtaining 

medical care [199].  
 

Pneumonia and lung abscess in adults has been reported. Pneumonia may 

also occur in children, and Kao et al., reported a case of bacteremic 

pneumonia caused by A. hydrophila in a previously healthy 5-year old child. 

Predisposing conditions were present in 11 of 15 (73%) of cases. Reported 

predisposing conditions include alcohol abuse (20%), neurologic disease 

(20%), cardiovascular disease (27%), chronic renal failure (7%), chronic 

obstructive lung disease (20%), traffic accidents (7%), and malignancy (7%) 
[200]. Murata et al., reported fulminant pneumonia caused by A. hydrophila 

in a patient undergoing hemodialysis with chronic renal failure and cirrhosis. 

The source of infection was not determined [201].  
 

Respiratory infections occur in the immunocompetent persons who 

involuntarily aspirate surface water while swimming or as the result of an 

accident [202]. Miyake et al., reported Aeromonas pneumonia from near-

drowning experiences. Respiratory infections may also occur in persons with 

underlying diseases placing them at risk for Aeromonas bacteremia 

originating from an intestinal source. Isolation of A. hydrophila from 

respiratory specimens must be interpreted together with clinical findings, 
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since the upper respiratory and nasopharyngeal tracts may be transitorily 

colonized [203].  
 

Meningitis is a rare complication of extraintestinal infections with A. 

hydrophila [204].  Brouqui and Raoult reviewed endocarditis and found only 

two cases caused by A. hydrophila, both in patients with cirrhosis [205]. 
Osteomyelitis has been reported following compound fractures or crushing 

trauma where wounds were contaminated by soil or water [206]. Liver 

disease is a recognized predisposing factor leading to Aeromonas infection 

resulting from septicemia. Underlying hepatitis B infection and cirrhosis are 

predisposing factors for liver disease. Liver abscess, supperative cholangitis, 

and empyema may occur following septicemia in patients with underlying 

hepatobiliary disease. A. hydrophila was identified in all instances in which 

species identification was performed [207].  
 

Bacteremia resulting from A. hydrophila infection was reviewed by Tsai et 

al., A. hydrophila sepsis is associated with gastrointestinal disease, liver 

cirrhosis, diabetes, malignancy, pancreatitis, trauma, cardiac anomalies, and 

respiratory disease. Sepsis is accompanied by fever, hypotension, jaundice, 

and chills, and complications of Aeromonas infection may include 

intravascular coagulation, purpura fulminans, and ecthyma gangrenosum. 

Disseminated infection progresses rapidly and has a high fatality rate [208].  
 

Peritonitis sometimes occurs as a secondary infection following colonization 

of the intestinal tract, and is also associated with peritoneal dialysis or 

intestinal perforation. Most infections occur in patients with chronic liver 

disease, where the case-fatality rate approaches 60% [206]. Fang et al., 

reported a case of hemolytic uremic syndrome (HUS) caused by A. 

hydrophila in a 23-month old child that occurred six days following an 

episode of bloody diarrhea in a follow-up report [209].  
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The causal role of A. hydrophila in ocular disease must be evaluated in 

conjunction with clinical presentation, since A. hydrophila have been cultured 

from eye swabs of 73-year-old male with a history of myelodysplastic 

syndrome, suffered from periorbital swelling in the eye. Since A. hydrophila 

should be listed as an important pathogen in any soft tissue infection 

including eyelid infection [210]. Septic arthritis caused by A. hydrophila is 

relatively rare [211].  
 

2.2.9 Epidemiology and disease outbreaks 
 

2.2.9.1 Outbreaks locations 
 

A. hydrophila are frequently isolated from drinking water [212], and temporal 

and seasonal associations between presence of aeromonads in drinking 

water and their presence in the stools of patients with gastroenteritis have 

been reported [213]. While some investigators claim that drinking water is 

responsible for outbreaks of Aeromonas gastroenteritis, epidemiological 

evidence linking water ingestion to gastrointestinal illness has been limited to 

untreated drinking water supplies[183]. 
 

Molecular typing studies have shown that the strains most frequently found in 

feces belong to HG-1 and HG-4, while HG-2, HG-3 and HG-5A are more 

commonly found in drinking water and the environment, suggesting that 

environmental strains are fundamentally different from clinical strains. The 

high infectious dose, the differences in temperature optima, and the variation 

in expression of putative virulence factors between clinical and environmental 

strains suggest that outbreaks of gastrointestinal illness resulting from water 

ingestion are unlikely to occur [214].  
 

One report linked exposure to aquarium water to a case of gastroenteritis 

caused by A. sobria with fatal disseminated disease in a 6-month old child 

[215]. A. hydrophila have been reported as the cause of individual cases and 

point source outbreaks of foodborne disease.  Seafood products are among 

the ideal substrates for proliferation of Aeromonas [128].  
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In tropical countries like India, fishery products are contaminated by various 

food-borne pathogens. Pollution and cross contamination levels are very high 

in many developing tropical countries due to lack of infrastructure. It is 

important that fishery products should be maintained free from pathogens 

before consumption. Variations in the incidence level of A. hydrophila, the 

most common aeromonad in seafood can be attributed by secondary 

contaminations such as handling, usage of polluted/non-hygienic water, 

storage of seafood in inadequate facilities etc. Also, A. hydrophila may be 

introduced from water, animal faeces, or food-handlers. The ubiquity of this 

organism means it has the potential to be food-borne [216]. 
 

In United States, food poisoning is responsible for a major loss of economic 

resources, being second to the common cold in causing time lost from work. 

About 35-40% of the reported food-borne outbreaks, which occur in the US 

each year, are of unknown etiology [217]. In the last few years, motile A. 

hydrophila have been included in the list of bacterial species that are 

considered enteric pathogens [218]. Here have also been several reports of 

A. hydrophila contaminated meat, poultry and raw milk but there have been 

few systematic studies on the incidence of Aeromonas spp. in foods although 

one report suggested that these organisms were very common contaminants 

of food [14].  
 

The much higher incidence of Aeromonas spp. in foods purchased at retail 

outlets suggests that the source of contamination may not be faeces and 

there is an increasing evidence that some strains of Aeromonas spp. cause 

diarrhea in human beings and it is likely that uncooked or cross contaminated 

foods act as a source of infection [219]. This organism has been isolated 

from all over the world, and its source is wild fish, and pond cultured edible 

and ornamental fish [220]. A. hydrophila was first reported as associated 

bacteria exclusively with diseased fish. Another known reservoir is shellfish, 

particularly, oysters [221]. Vila et al., reported Aeromonas spp. as the cause 

of diarrhea in 2% of travelers to Africa, Latin America, and Asia [222].   



 50

2.2.9.2 Possible transmission routes of sporadic Aeromonas hydrophila 
 

A. hydrophila is ubiquitous in the environment and there are multiple 

opportunities for transmission to humans through food, water, animal contact, 

and direct human contact. Extra-intestinal infections are typically acquired 

following trauma in an aquatic environment, and intestinal infections are 

acquired by ingestion of contaminated food or water. Intestinal infections in 

immunocompromised patients may disseminate resulting in septicemia with 

multiple organ involvement. Inhalation of surface water in near drowning 

incidents has been reported to cause pneumonia.  
 

 

A. hydrophila have been recognized as potential foodborne pathogens since 

1984. Kirov reviewed the public health significance of Aeromonas spp. in 

foods, and Merino et al., reviewed aeromonads as emerging pathogens 

present in foods, and are common on foods, especially green vegetables, 

and they are found in raw milk, ice cream, meats, and seafood [150].  
 

Diarrheal disease was associated with drinking untreated well water [223]. 
Many researchers used ribotyping to demonstrate that shrimp ingestion 

resulted in gastroenteritis in the first report of foodborne illness attributed to 

Aeromonas spp. Subsequently, others have shown the same ribotype in well 

water and stools of patients with gastroenteritis. Ribotyping was used to 

demonstrate that a patient with chronic diarrhea carried the same strain for 

years [214], and ribotyping was used to demonstrate person-to-person 

transmission of Aeromonas between a foster child and a foster parent [185]. 
 

 Filler et al., reported a case of acute renal failure in a 6-month old infant 

caused by Aeromonas spp. acquired from aquarium water. Transmission 

among children in daycare centers, nursing homes, and patients in intensive 

care have been reported [150]. Animal-to-person transmission may occur 

through direct contact, or by ingestion of contaminated food products of 

animal origin. Extra-intestinal infections originate from environmental sources 

directly from soil or water contact, or indirectly by ingestion and bacteremic 

dissemination of A. hydrophila from the gastrointestinal tract [224].  
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CHAPTER 3 

MATERIAL AND METHODS  

 

3.1 Materials 

3.1.1 Equipment 
 

a. Autoclave (Tuttnaur 3870 ELV) 

b. Balance (sensitivity of ± 0.1 g) (Mettler tolado) 

c. Binuclear microscope (Olympus ch20BIMF200) 

d. Blinder (Memmolinix) 

e. Freezer (-70°C) (Heraeus) 

f. Fifteen ml plastic bottles 

g. Incubators capable of holding temperatures at 4 ± 1°C, 25 ± 1°C, 28 ± 

1°C, 30 ± 1°C, 32 ± 1°C, 35 ± 1°C and 37 ± 1°C ( Memert BE400, Selecta 

80067) 

h. Inoculating needles and loops 

i. Refrigerator (Kelvinator)  

j. Sewage collection tool (Home made) 

k. Sterile cellulose acetate membrane with a pore size of 0.45 (Millipore) 

l. Sterile scissors, forceps, knives, pipettes, hockey sticks, and other supplies 

m. Sterile tubes and cups 

n. Vortex mixer (Snijers) 

O. Water bath (Memert) 
 

3.1.2 Reagents 
 

a. Crystal violet (85 µg/ml aqueous solution) 

b. Crystal violet (0.5 mg/ml aqueous solution) 

c. Ferrous ammonium sulfate (1%) 

d. Gram stain kit (Himedia, India) 

e. HCl solution (1 N) 
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f. KOH  (0.25%) in 0.5% NaCl aqueous solution  

g. Kovacs' reagent 

h. Oxidase reagent or reagent-impregnated disc/strip (Himedia, India) 

i. Sterile mineral oil 

j. Sterile Saline (0.85% NaCl) 

k. Voges-Proskauer (VP) test reagents (KOH and Alpha naphthol) 

l. Wayson stain (prepared from basic ingredients) 

 

3.1.3 Media  and biochemical tests 
 
a.  API 20E system (Biomeroux, France) 

b. Brain heart infusion agar 

c. Brain heart infusion broth 

d. Blood agar 

e. Cefsulodin-irgasan-novobiocin (CIN) agar 

f. Christensen's urea agar slants 

g. DNase test agar 

h. Esculin agar 

i. Hektoen Enteric agar 

j. Kligler's Iron agar (KIA) slants 

k. MacConkey agar 

l. Salmonella Shigella (SS) agar 

m. Phosphate Buffered Saline (0.01 M) (PBS, pH 7.6) 

n. Simmon's Citrate agar slants  

o. Thioglycollate broth 

p. Trypticase Soy Broth (TSB) 

q. Xylose Lysine Deoxycholate agar (XLD) 

All media and antibiotics used were purchased from HiMedia (India). 
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3.2 Methods 
 

3.2.1 Sample collection 
 

A. Appendiceal samples: Twenty samples were collected from 

hospitalized patients after appendectomy from different hospitals in 

Gaza strip. Collection was performed by surgeons during 

appendectomy. 
 

B. Fecal samples: Three hundreds diarrheal stools were collected from 

different hospitals (Kamal oudwan, Al-Shifa, Al-Nasser, Al-Dora, Al-

Aqsa, Nasser, Gaza-European and Al-Najar) in sterile bottles. 
 

C. Sewage samples: Twenty-six sewage samples were collected from 

six sources (a) Bietlahia WWTP, (b) El-shifa hospital, (c) Gaza 

European hospital, (d) Al-Aqsa hospital, (e) Al-Nasser hospital and (f) 

Shiek Ejleen in sterile 50 ml plastic bottles.  

D.  Animal excreta samples: Twenty-six samples were collected from 

slaughterhouses and houses using sterile bottles. 
 

E. Food samples: Fifty samples from each the following materials; meat, 

turkey, chicken, sausage, ice-cream, cheese and milk samples were 

purchased from local supermarkets and houses. 
 

F. Water samples: Two-liter samples of different water types (tap and 

well water) were collected in sterile bottles. Natural mineral water was 

purchased from a local supermarket. Tap water was obtained from 

municipal distribution system in various localities all over Gaza Strip. 

Seawater was taken at a depth of 1·5–2 m near the sewage discharge 

point of Gaza wastewater treatment Plant (GWWTP).  
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3.2.2 Sample transport 
 

Clinical samples were collected and transported according to the 

recommended clinical laboratory practice [5]. Environmental samples were 

collected and handled according to the protocol outlined in Standard Methods 

for Examination of Water and Wastewater (APHA) [224]. Food samples were 

collected and handled in accordance with the procedures of the FDA 

Bacteriological Analytical Manual [225]. All samples were collected in sterile 

bottles and transported in an ice box until analyzed (No more than 3 hours 

were allowed between sample collection and processing). 

3.2.3 Sample processing 

 

3.2.3.1 Preparation of sample homogenate 
 
Some of the clinical samples and environmental samples processing required 

preparation of serial dilutions, these were  cultured directly, diluted, or by 

membrane filtration, followed by incubation of the filter membrane on culture 

media [226]. 
  
A. Appendiceal samples 
Appendix samples were grinded for 2 minutes in a sterile blinder and 

transferred into 10-fold volume of TSB and incubated for 48 h at 25 °C. In 

addition, 3 ml of culture was transferred to 15 ml of thioglycollate medium. 

Homogenate were allowed to stand undisturbed at room temperature for 10 

min to allow settling of large appendix particles [227]. 
 

B. Fecal samples 
About one gram of fecal sample was placed into 10-fold volume of PBS 

[5,157]. 
 

C. Animal excreta samples  

Five-gram samples of animal excretion were homogenized with 20 ml of PBS 

[5,157]. 
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 C. Sewage samples 

Twenty five to thirty ml of the sample was inoculated into 10-fold volume of 

PBS [33,157]. 
 

D. Water samples 
Non-turbid water samples were processed using the membrane filtration 

(MF) method, 200 ml of the samples were filtered through sterile cellulose 

acetate membrane with a pore size of 0.45 (Millipore). One filter was 

aseptically placed onto the surface of selective media (CIN) agar in a 50-mm 

Petri plate which was incubated at 32°C for 48 h. The second membrane was 

aseptically placed into a bottle containing 10 ml of TSB enrichment broth and 

incubated at 25°C for 24 h. TSB enrichments were inoculated onto CIN agar 

which was incubated at 32°C for 24 h. Membrane filtration method (MF) has 

been validated for detection and enumeration of Y. enterocolitica and A. 

hydrophila from different type water [33,150]. 
 

E. Food samples 

Twenty five grams of each sample were added to 100 ml of 0.01 M PBS: pH 

7.6 and homogenized for 2 minutes in a sterile blinder. Homogenates were 

allowed to stand undisturbed at room temperature for 10 min to allow settling 

of large meat particles [77,225]. 
 

3.2.4 Isolation procedure 
 

3.2.4.1 Enrichment and plating procedures 
               

A. PBS: 0.1 ml of PBS homogenate was spread onto SS agar and incubated 

at 30°C for 24 h. 0.1 ml was spread onto CIN agar and incubated at 32°C for 

18 h. 0.1 ml was spread on MCA agar and incubated at 25oC. 0.1 ml volumes 

were spread onto Hektoen Enteric (HE) agar, and Xylose Lysine 

Deoxycholate (XLD) agar, and incubated at 32°C for 18 h. In addition, 0.5 ml 

of the PBS enrichment was removed, treated with 4.5 ml KOH, and then 

streaked onto CIN agar only [77,150].  
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B. TSB: 5 ml of PBS homogenate supernatant was transferred into 20 ml 

TSB. Incubated at 25°C for 24 h. 0.1 ml was spread onto SS agar and 

incubated at 30°C for 24 h. 0.1 ml was spread onto CIN agar, and incubated 

at 32°C for 18 h. 0.1 ml was spread on MacConkey agar and incubated the 

plates at 25oC. 0.1 ml volumes were spread onto HE, and XLD agar, and 

incubated at 32°C for 18 h. Also, 0.5 ml of the TSB enrichment was removed, 

treated with 4.5 ml KOH, and then streaked onto CIN. The TSB enrichment 

culture was re-incubated at 25°C for 2 additional days, and then was plated 

as previously described [77,150]. 
 

C. Remainder of PBS: The remainder of the PBS homogenate was 

refrigerated at 4°C and subcultured after 1,4,7 and 14 days. 0.1 ml was 

spread onto CIN agar and the plates were incubated at 32°C for 18 h. Also, 

0.5 ml of the PBS enrichment was removed, treated with KOH, and then 

streaked onto CIN. [230,231]. 
 

D. KOH treatment: 0.5 ml of enrichment culture was added to 4.5 ml 

KOH/NaCl. Vortexed briefly (3-4 sec) and immediately a loop-full of the KOH-

treated broth was streaked onto CIN agar [81]. 

 

 

3.2.4.2 Selection of colonies from plating media 
 

Due to the fact that SS, HE, XLD, MacConkey, and CIN agars are not 

completely inhibitory to non-Yersinia or Aeromonas, a variety of non-desired 

organisms may be recovered from these agars. Some of these organisms 

(e.g. strains of Morganella, Citrobacter and Enterobacter) have a colonial 

morphology similar to that of Yersinia and Aeromonas species. Care was 

exercised in the selection of suspect colonies from SS, HE, XLD, MacConkey 

and CIN agars in order to minimize picking non-Yersinia or Aeromonas.  
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A. SS: On SS, Y. enterocolitica and A. hydrophila colonies are typically round 

and opaque or colorless.  

B. HE: On HE, Y. enterocolitica and A. hydrophila colonies have a salmon 

color.  

C. XLD: On XLD, Y. enterocolitica and A. hydrophila colonies have a yellow 

color.  

D. MacConkey: On MacConkey agar the colonies were invariably smaller 

than those on the CIN agar, non lactose fermenter, flat and without entire 

margins [24,232]. 
 

E. CIN: On CIN, typical Y. enterocolitica and A. hydrophila colonies have a 

red bulls-eye which is usually very dark and sharply delineated. The bulls-eye 

is surrounded by a transparent zone with varying radii, with the edge of the 

colony either entire or irregular; colony diameter of Y. enterocolitica is 1-2 

mm but the colony of A. hydrophila is larger than Yersinia species [226,229].  

 

3.2.4.3 Identification and confirmation procedures 
 

3.2.4.3.1 Identification of Yersinia and Aeromonas 
 

A colony on CIN, HE, XLD, or SS having morphology typical of Y. 

enterocolitica or A. hydrophila was selected and streaked on blood agar 

plates for pure culture, and a colony from blood agar plates was emulsified in 

about 1 ml of sterile saline (0.85%). This was used to first inoculate a slant of 

Simmon's citrate agar, then Kligler's iron agar, and a tube of urea agar. This 

procedure was repeated with 5 colonies having morphology typical of Y. 

enterocolitica and A. hydrophila selected from each plate of selective agar 

[77,150].  
 

a. Simmon's Citrate: The slant of a tube of Simmon's citrate agar was only 

streak-inoculated, and was incubated at 28°C for 24 h. Presumptive Y. 

enterocolitica and A. hydrophila are citrate negative. 
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b. Kligler's Iron Agar: The butt was stabbed and the slant  streaked and 

was incubated at 28°C for 18-24 h. Presumptive Y. enterocolitica and A. 

hydrophila present an alkaline (red) slant and acid (yellow) butt (K/A), without 

gas or H2S in KIA. 
 

c. Christensen's urea agar:  The slant of freshly prepared urea agar slant 

was heavily streaked with the test organism and was incubated at 28°C for 

24-72 h. Presumptive Y. enterocolitica is (+) for urease and will turn the agar 

to an intense red-pink color while A. hydrophila is (-). 

 

3.2.4.3.2 Confirmation of Yersinia enterocolitica and Aeromonas 
hydrophila 
 

One well-isolated colony from each culture was used to inoculate 5 ml of 

0.85% NaCl medium, pH 5.5 to 7.0. A humid atmosphere was provided, and, 

to identify the organisms, commercially available bacterial identification kit, 

API 20E test, a kit (Biomerieux, France) was used according to the 

instructions of the manufacturer. After 18 to 24 h, all reactions were analyzed 

according to the interpretation chart included in the package insert. Reagents 

were added to the TDA, Voges-Proskauer, and IND tubes, and the reactions 

were recorded. Inoculum for further testing was obtained from the KIA slant 

[77,150].  
 

For additional speciation of Yersinia and Aeromonas, the following tests were 

performed: 
 

A. Oxidase test: A colony growing on KIA slant of any presumptive Y. 

enterocolitica and A. hydrophila isolates was tested for oxidase by the 

commercially available reagent-impregnated test discs. Yersinia is oxidase 

negative (-) while A. hydrophila is oxidase (+) [77,150]. 
 

B. Deoxyribonuclease (DNase) test: Yersinia and Aeromonas strains were 

inoculated onto a plate of DNase test agar by streaking the medium in a band 

( about 1.9 cm length streak). Plates were incubated at 28°C for 18-24 h. 
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Following incubation, plates were examined as follows: Plate was flooded 

with 1 N HCl. A zone of clearing around a colony indicates a positive test. 

Yersinia and Aeromonas strains are DNase (+) [77,150]. 
 

3.2.4.4 Testing for pathogenicity markers 
 

A. Pyrazinamidase test: Isolates were inoculated over entire slant of 

pyrazinamide agar and incubated at 25°C for 48 h. Slant surface were 

flooded with 1 ml of freshly prepared 1% (w/v) aqueous solution of Ferric 

ammonium sulfate. Test results were read after 15 min; a pink to brown color 

indicates PYZ positive (+), (presence of pyrazinoic acid) while no color 

development is observed with PYR negative (-) strains. Pathogenic strains of 

Yersinia are PYZ negative and A. hydrophila are PYZ positive [10,129,191]. 
 

B. Esculin hydrolysis: A plate of esculin agar was inoculated with the test 

strain. The plate was incubated at 25°C for 10 days, reading after 1,2,3,7 and 

10 days. Blackening indicates esculin hydrolysis. Pathogenic Y. enterocolitica 

is negative for this test while A. hydrophila is esculin positive [10,129,233]. 
 

C. Auto-agglutination in MR-VP and BHI broth: Individual isolates were 

evaluated for the ability to autoagglutinate in MR-VP broth for Y. 

enterocolitica and brain heart infusion broth (BHIB) for A. hydrophila as 

follows. For Y. enterocolitica; 2 tubes of MR-VP broth were inoculated; one 

was incubated at 25°C for 24 h, and the other at 35°C for 24 h. After 18 to 24 

h incubation, the tubes were observed for agglutination, with care taken not 

to shake or disturb the sediment at the bottom and along the sides of the 

tube. The tube incubated at the lower temperature should exhibit turbidity 

from cell growth. The tube which had been incubated at 35°C should show 

agglutination (clumping) of bacteria along the walls and/or bottom of tube and 

clear supernatant fluid. Virulence plasmid agglutinates at 35°C but not 25°C. 

Isolates that lack the virulence plasmid do not agglutinate at either 

temperature [10].  
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The autoagglutination test for selfpelleting (SP+) and precipitation after 

boiling (PAB+) phenotype characterization was carried out as described by 

Janda et al.,. Each A. hydrophila isolate  was grown in 6 ml of BHIB for 18 h 

at 28°C. At the end of the incubation period, cultures were observed for 

evidence of self-pelleting, which was manifested as a large aggregate of cells 

at the bottom of the tube and the absence of turbidity in the medium. A 3-ml 

fraction was heated for 1 h at 100°C in a water bath and then cooled for 10 

min and compared with the samples kept at room temperature for a control. 

Reduction in turbidity was considered positive for precipitation after boiling 

[164,233]. Both pathogenic Y. enterocolitica and A. hydrophila are positive 

for this test. 
 

D. Crystal violet binding test: This rapid screening test differentiates 

potentially virulent Y. enterocolitica and A. hydrophila cultures. Suspected 

cultures were grown for 18 h at 22-26°C in BHI broth with shaking. Each 

culture was diluted in physiological saline. 0.1 ml of each culture was spread 

to each of two BHI agar plates. The plates were incubated at 25°C or 37°C 

for 30 h. Each plate was gently flooded with 8 ml of 85 µg/ml of crystal violet 

(CV) solution for Y. enterocolitica and 0.5 mg/ml for A. hydrophila for 2 min 

and the crystal violet uptake was qualitatively determined. Colonies were 

observed for their CV binding.  The binding of CV to positive colonies was 

observed by their dark violet appearance, while negative colonies failed to 

bind the dye and remained white.  Photographs of colonies were made for 

permanent records [10,234]. 
 

E. Beta haemolysin production of A. hydrophila: Haemolytic activity of the 

organisms studied was detected on blood agar plates containing 5% human 

blood. All tests were incubated in air at 37°C for 18-24 h. Isolates exhibiting 

hemolytic zones in excess of 2 mm from the streak inoculum were 

considered positive [137]. 
 

Yersinia and Aeromonas isolates were stored in TSB with 20% (v ⁄ v) glycerol 

at -80oC until further testing. 
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3.2.4.5 Antimicrobial susceptibility testing 

All Y. enterocolitica and A. hydrophila isolates were tested for antimicrobial 

susceptibility using disk diffusion method using Mueller Hinton agar and 

antibiotic disks procured from Hi-Media laboratories, India, according to 

National Committee for Clinical Laboratory Standard (NCCLS). 3-5 colonies 

of each isolate were introduced into a tube containing BHIB. These tubes 

were incubated for 4-6 h and the broth culture turbidity was adjusted to that 

of 0.5 McFarland standard. Muller Hinton plates were dried for a bout 30 min 

before inoculation and were used within one day of preparation. The 

standardized bacterial broth suspension was streaked on the surface of the 

medium with a cotton swab. After the inoculum had dried (3-5 min) the disks 

were placed on the agar with flamed forceps and gently pressed down to 

ensure contact [235].  

The plates were incubated for 24 h at 37oC and the diameter of zone of 

inhibition of each antimicrobial agent was compared with the chart supplied 

by the manufacturer and interpreted as sensitive, intermediate or resistant. 

The following table includes the list of antimicrobials and their potencies used 

for the antimicrobial testing. 

Table (3.1): Antimicrobial disks used in the susceptibility testing of Y. 

enterocolitica and A. hydrophila  

Antimicrobial agents Abbreviation Disk potency 
Amikacin Ak 30 µg 
Ampicillin A 10 µg 
Amoxycillin-Clavulanate AC 30 µg 
Aztreonam Ao 30 µg 
Cephalexin Cp 30 µg 
Cefazolin Cz 30 µg 
Cefotaxime Ce 30 µg 
Ceftazidim Ca 30 µg 
Ceftriaxone Ci 30 µg 
Cefuroxime Cu 30 µg 
Ciprofloxacin Cf 5 µg 
Chloramphenicol C 30 µg 
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Doxocycline Do 30 µg 
Erythromycin E 10 µg 
Gentamicin G 10 µg 
Meropenem MEM 10 µg 
Nalidixic acid Na 30 µg 
Ofloxacin Ofx 5 µg 
Co-trimethoprim Co 25 µg 
Tetracycline Te 30 µg 
 
3.3 Permission and Ethics 
 

Permission was taken from Helsinki Committee, Hospitals General 

Administration, patients or patients guardians and workers in GWWTP and 

Bit-lahia Wastewater Treatment Plant. 
 
3.4 Questionnaire 
 

 The questionnaire used in this study included open and closed questions 

and data collected by interviewing  patients or patients guardians to record 

address, age, sex, date of onset of illness and duration of illness. A checklist 

inquired about symptoms, including the presence of diarrhea, number of 

stools per day, consistency of stools, presence of blood or mucous, 

occurrence of abdominal pain or cramping, presence of  vomiting, and fever. 

Epidemiological questions explored exposure to animals. Respondents were 

asked to specify the use of an untreated private or treated public drinking 

water supply. A cover letter accompanied each questionnaire explaining the 

purpose of the study. Questionnaires were tabulated to determine age and 

sex correlation with gastrointestinal disease, characteristic symptoms, and 

possible exposures and predisposing factors necessary to establish infection.  
 
 [[[[ 

3.5 Data analysis 
 
Data obtained from microbiological investigation and from the questionnaire   

survey  were uploaded   to (SPSS version 15) software and analyzed using 

cross tabulating and chi square test. 
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CHAPTER 4 
RESULTS  

 

This study was conducted on 300 patients to investigate the presence of Y. 

enterocolitica and A. hydrophila in clinical samples. 95 food samples and 84 

environmental samples were also tested. All suspected Y. enterocolitica and A. 

hydrophila were identified using conventional microbiological techniques. 

 

4.1 Identification of Yersinia enterocolitica and Aeromonas hydrophila 

 

All suspected Y. enterocolitica and A. hydrophila were presumptively identified 

using colonial morphology and by the use of (urea agar, Simmon's citrate agar 

and Kligler's iron agar). All cultures of Y. enterocolitica were positive for urease 

while A. hydrophila were negative and all of Y. enterocolitica and A. hydrophila 

were negative for citrate utilization. On Kligler's iron agar after both pathogens 

produced K/A reaction without H2S and gas. Figure (4.1).  

 

 
  

Figure (4.1): Presumptive identification of (A) Yersinia and (B) Aeromonas 

 

 

A B
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Table 4.1 indicates the biochemical reaction of Y. enterocolitica and A. 

hydrophila isolated from clinical, food and environmental samples.  

 

Table (4.1): Biochemical profiles and other properties of Y. enterocolitica and A. 

hydrophila isolated from different sources 

 
 

Test Y.  
enterocolitica 

A.  
hydrophila  

Ortho nitrophenyl-β-galactosidase 
(ONPG) 

+ + 

Arginine dihydrolase (ADH) - + 

Lysine decarboxylase (LDC) - - 

Ornithine decarboxylase (ODC) + - 
Citrate utilization - - 
H2S production - - 
Urease production + - 

Tryptophane deaminase (TDA) - - 
Indole production + + 
Voges- Proskauer + + 
Gelatinase production - + 
D-Glucose + + 

D-Mannitol + - 
Inositol +/- - 
D-Sorbitol +/- - 

L-Rhamnose - - 
D-Sucrose +/- + 
D-Melibiose -/+ - 
amygdalin + + 
L-Arabinose + + 
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Presumptive Yersinia and Aeromonas were identified biochemically by API 20E 

system (Figure 4.2). 

 

   

 
 

 

Figure (4.2): API 20E reactions for (A) Y. enterocolitica and (B) A. hydrophila 

 

All cultures of Y. enterocolitica and A. hydrophila grown on CIN agar plates were 

gram and wayson stained and showed negative reaction with rod to coccobacilli 

morphology with bipolar staining: All cultures of Y. enterocolitica were negative 

for oxidase, gelatin hydrolysis, lysine decarboxylase, arginine dihydrolase 

(ADH), and phenylalanine deaminase. On the other hand, all cultures of A. 

hydrophila were positive for oxidase and ADH. The results of the remaining tests 

are shown in Table (4.1). 

A

B 
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4.2 Distribution of Yersinia and Aeromonas isolates 
 

Yersinia species were isolated from all sampled sources. The highest incidence 

was from sewage (19.1%) followed by animal excreta (11.5%), while, clinical 

samples showed the lowest percentage (4.7%). With regard to A. hydrophila, 

meat and water showed the highest incidence (48.9% and 46.9% respectively). 

The overall frequency of Yersinia and Aeromonas isolates was 6.3% and 38.1% 

respectively (Table 4.2). 

 
Table (4.2): Distribution of Yersinia and Aeromonas isolates according to 

sample type. 
 

Yersinia Aeromonas 
Sample type No. 

No. % No. % 

Clinical samples 300 14 4.7 103 34.3 

Animal excreta 26 3 11.5 10 38.5 

Meat 45 3 6.7 22 48.9 

Milk 50 3 6 18 36 

Sewage 26 5 19.1 11 42.3 

Water 32 2 6.25 15 46.9 

Total 473 30 6.3 179 38.1 
 

 
4.3 Recovery of Yersinia enterocolitica and Aeromonas hydrophila from 
clinical samples 

 

Cultures of Y. enterocolitica and A. hydrophila were performed on 300 diarrheic 

stool samples and 20 appendiceal samples after appendectomy. The median 

age of the patient population was 3.6 years (range 40 days to 47 years), and 

55% were males (Table 4.3 and Figure 4.3). 
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Table (4.3): Age distribution of the study sample 

 

Age group Frequency Percent 

Below 2 years 126 42  

2 - less than 6 years 132 44 

6 - less than 15 years 28 9.3 

Over 15 14 4.7 

Total 300 100 

Male
55%

Female
45%

 
Figure (4.3): Sex distribution of the study population 

 

One hundred fifty eight stool samples were collected from patients below the 

age of 6 and only 14 samples from patients older than 15 years. From table 4.4, 

it could be observed that both Yersinia and Aeromonas were isolated with a 

higher frequency from patients belonging to the age group 2 to less than 6 years 

(2.3% and 20.3% respectively). There was a decline in incidence of both 

pathogens with increasing age. A significant association was found among Y. 

enterocolitica and A. hydrophila isolation and age groups less than 6 years (p < 

0.05). 
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Table (4.4): Yersinia and Aeromonas isolates distributed according to age 

(N=300) 
 

Yersinia Aeromonas 
Age range 

No. % No. % 

Below 2 years 5 1.7 31 10.3 

2- less than 6 years 7 2.3 61 20.3 

6- less than 15 years 1 0.3 8 2.7 

Over 15 1 0.3 3 1.0 

Total 14 4.7 103 34.3 

P: 0.001  
 

A total of 14 (4.7%) Y. enterocolitica and 103 (34.3 %) A. hydrophila isolates 

were recovered from 300 patients with acute diarrhea, whereas no isolates were 

recovered from appendiceal samples. Other bacterial enteropathogens were 

isolated from 300 patients with diarrhea; 3 isolates (1.0%) of Salmonella spp. 

and 3 isolates (1.0%) of Shigella spp. (Figure 4.4). 

 

Negative
59%

Y. 
enterocolitica

5%
A. hydrophila

34%

Salmonella 
1%

Shigella
1%

 
Figure (4.4): Frequency and distribution of Y. enterocolitica and A. hydrophila 

and other enteropathogens in clinical samples 
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4.3.1 Detection of Yersinia enterocolitica and Aeromonas hydrophila from 
different hospitals 
 
Clinical samples were collected from eight hospitals located in various parts of 

Gaza strip. Y. enterocolitica was detected in 5 hospitals with high incidence at 

Al-Dorrah hospital. On the other hand, A. hydrophila was detected in all 

hospitals with the highest frequency from Al-Nasser hospital (Table 4.5). A 

significant association was found between the number of isolates and source of 

clinical samples (P<0.05). 

 
Table (4.5): Distribution of Yersinia and Aeromonas according to hospital 

 

Yersinia Aeromonas 
Hospital Location No. % 

No % No % 

AL-Aqsa Deir-Albalah 101 33.7 4 4.0 41 40.6 

Al-Nasser Gaza 47 15.7 3 6.4 21 44.6 

Al-Shifa Gaza 32 10.7 0 0.0 4 12.5 

Al-Najar Rafah 30 10.0 2 6.7 8 26.6 

Gaza-European Rafah 23 7.7 0 0.0 5 21.7 

Kamal-odwan Bit-lahia 15 5.0 0 0.0 4 26.7 

Nasser Khan-Younes 36 12.0 2 5.6 13 36.1 

Al-Dorrah Gaza 16 5.3 3 21.4 7 43.8 

Total 300  100.0 14 4.7 103 34.3

P = 0.001 

 
4.3.2 Associated clinical features  

 

All patients with Y. enterocolitica had watery diarrhea ranged from 3 to 7 days in 

duration. The frequency of defecations ranged from 3 to 7 daily.  Most (92.2%) 

of the patients had vomiting, mucus and fever >39 oC. Other symptoms included 



 70

blood in stool (64.3%) and abdominal pain (28.6%). All patients with A. 

hydrophila had watery diarrhea of 3 to 7 days in duration. The maximum 

frequency of defecation was over 7 daily (95.1%).  66 % of the patients had 

vomiting and 77.7 % of the patients had fever > 39oC. Additional symptoms 

included, blood in the stool (43.7%), mucus (67%), and abdominal pain (26.2%), 

with significant association for both pathogens between the isolates and 

frequency of defecation (p< 0.05) (Table 4.6). 

 

  Table (4.6): Clinical features of 14 patients with Y. enterocolitica and 103 

with A. hydrophila diarrhea 

 
  

No. of positive isolates (%) 
Clinical features 

Y. enterocolitica   A. hydrophila 
 

3-7 daily 14 (100)  5 (4.9) Frequency of 
defecation >7 daily 0 (0.0)  98 (95.1) 

<39oC 1 (7.1)  23 (22.5) Fever 
>39oC 13 (92.2)  80(77.7) 
Yes 13 (92.2)  68(66.0) Vomiting 
No 1 (7.1)  35 (34.0) 
Yes 13 (92.2)  69 (67.0) Mucus 
No 1 (7.1)  34 (33.0) 

Duration  3-7 days 14 (100)  103(100) 
Yes 9 (64.3)  45 (43.7) Bloody stool 
No 5 (35.7)  58(56.3) 
Yes 4 (28.6)  27 (26.2) Abdominal pain 
No  10 (71.4)  76(73.8) 
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4.4 Recovery of Yersinia enterocolitica and Aeromonas hydrophila from 
food samples 

 
4.4.1 Milk and milk product samples 

 

Fifty dairy product samples were collected from different places in Gaza strip. Of 

the 50 different milk samples analyzed, 3 displayed the presence of Y. 

enterocolitica, (6.0%) and 18 showed A. hydrophila growth (36%) (Figure 4.5). 

 

Negative
54%

A. hydrophila
36%

Y. enterocolitica
6%

Shigella
4%

 
Figure (4.5): Frequency and distribution of Y. enterocolitica and A. hydrophila in 

milk and milk product samples 

 
  

Y. enterocolitica was isolated only from cow milk (3 isolates, 16.7%), and the 

occurrence of A. hydrophila was slightly higher in cheese (75%) than in goat 

milk (66.7) and cow milk (22.2%). There was a significant relationship between 

number of isolates and type of dairy product (P< 0.05) (Table 4.7). 
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Table (4.7): Isolation of Y. enterocolitica and A. hydrophila from milk and milk 

product 
 

Isolates  
Frequency 

Milk and 
milk 
products 

 
No. % 

 

Yersinia Aeromonas Shigella Negative 
NO. 3 4 2 9 

Cow milk 18 36.0 
%  16.7 22.2 11.1 49.9 
NO. 0 4 0 2 

Goat milk 6 12.0 
%  0.0 66.7 0.0 33.3 
NO. 0 0 0 5 Pasteurized 

milk 5 10.0 
%  0.0 0.0 0.0 100 
NO. 0 0 0 2 Powdered 

milk 2 4.0 
%  0.0 0.0 0.0 100 
NO. 0 7 0 8 Ice cream 15 30.0 
%  0.0 46.7 0.0 53.3 
NO. 0 3 0 1 

Cheese 4 8.0 
%  0.0 75.0 0.0 25.0 
NO. 3 18 2 27 Total 

 50 100 
%  6.0 36.0 4.0 54.0 

P = 0.002 
 

 

4.4.2 Meat samples 
 
 

A total of 3 (6.7%) Y. enterocolitica isolates from different food samples were 

obtained from 45 food samples. One Y. enterocolitica was isolated from 20 cow 

samples (33.3%) and 2 isolates from 7 turkey samples, with no additional 

isolates from sausage, hamburger, chicken and packed meat samples. On the 

other hand, 22 A. hydrophila  isolates were recovered from the same food 

samples.  One A. hydrophila was isolated from 6 chicken samples, 7 from 20 

cow samples, 5 from 5 hamburger samples, 2 from 2 packed samples, 2 from 7 

turkey samples and 5 from 5 sausage samples. We were able to isolate two 

Salmonella species from these samples. These rates of isolation of pathogenic 

isolates were significantly different (P < 0.05) (Figure 4.6 and Table 4.8).                               
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Figure (4.6): Frequency and distribution of tested food samples  

 
Table (4.8): Number and percent of Y. enterocolitica and A. hydrophila 

recovered from various meat samples 

 

Isolates  Meat type 
  

 
No. 

 
%  Yersinia Aeromonas Salmonella Negative

NO. 0 1 0 5 Chicken  6 13.3 
% 0.0 16. 7 0.0 83.3 

NO. 1 7 0 12 Cow   20 44.4 
% 5.0 35 0.0 60.0 

NO. 0 5 0 0 Hamburger 5 11.1 
% 0.0 100 0.0 0.0 

NO. 0 2 0 0 Packed  2 4.4 
% 0.0 100 0.0 0.0 

NO. 2 2 2 1 Turkey 7 15.6 
% 28.6 28.6 28.6 14.3 

NO. 0 5 0 0 Sausage 5 11.1 
% 0.0 100 0.0 0.0 

NO. 3 22 2 18 Total 45 100 
% 6. 7 48. 9 4.4 40.0 

P = 0.001 
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4.5 Recovery of Yersinia enterocolitica and Aeromonas hydrophila from 
environmental samples  
 
4.5.1 Water samples 

 
Figure 4.7 shows the distribution of Y. enterocolitica and A. hydrophila in 

different types of tested water. A total of 2 isolates of Y. enterocolitica were 

recovered from a total of 32 water samples, one from tap water and the other 

from well water with no isolate from sea water. On the other hand, 15 isolates of 

A. hydrophila were recovered from different types of water, 2 isolates from sea 

water, 6 isolates from tap water and 7 isolates from well water were obtained;  

with higher incidence of both organisms in tap and well water. There was a 

significant relationship between number of isolates and type of water P < 0.05 

(Table 4.9). 
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Figure (4.7): Frequency of Y. enterocolitica and A. hydrophila from water 

samples 
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Table (4.9): Number and percentage of Y. enterocolitica and A. hydrophila 

isolated from water 

  

Water type 
Isolates 

 No. %   Yersinia Aeromonas Negative 
NO. 0 2 3 Sea water 

  
5 15.6 

% 0.0 40 60.0 
NO. 1 6 6 Tap water 13 40.6 
% 7.7 46.2 46.2 

NO. 1 7 6 
Wells water 14 43.8 

% 7.1 50.0 42.9 

NO. 
2 15 15 Total 32 100 

%  6.25 46.9 46.9 
P = 0.004 
  

4.5.2 Sewage samples 
 

Five Yersinia spp. were recovered from 26 sewage samples. Y. enterocolitica 

was the most frequently isolated Yersinia spp. It was found in 3 (11.5%) of 26 

samples. The other two isolates were identified as Yersinia kristensenii (7.7%). 

Eleven A. hydrophila (42.3%) were recovered from the same samples (Figure 

4.8). 
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Figure (4.8): Y. enterocolitica and A. hydrophila isolated from sewage samples    
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4.5.2.1 Regional distribution of Yersinia enterocolitica and Aeromonas 
hydrophila isolated from sewage samples 

 

A total of 26 sewage samples were collected from 6 different sampling points.  

From the 26 sewage samples, 11 (42.3%) A. hydrophila, 3 (11.5%) Y. 

enterocolitica and two environmental Yersinia kristensenii were isolated.  The 

high incidence of Y. enterocolitica and A. hydrophila were from Al-Nasser 

hospital, 33.3% and 66.7% respectively, with no significant relationship between  

the number of isolates and source of sewage samples (p >0.05) (Table 4.10).                           

 
Table (4.10): Number and percentage of Yersinia and Aeromonas isolated from 

each sampling points 
  

 Sewage Isolates  

 No. %   
Y. 

enterocolitica 
A. 

hydrophila 
Y. 

kristensenii Neg. 
NO. 0 2 1 1 Bit-lahia 

WWTP 4  
15.4 %  0.0 50.0 25.0 25.0 

NO. 0 2 0 0 European 
Hospital 4 15.4 %  0.0 50.0 0.0 0.0 

NO. 1 2 0 2 Al-Nasser 
Hospital 3 11.5 %  33.3 66.7 0.0 66.7 

NO. 0 1 0 2 El-shifa 
Hospital 3 11.5 

%  0.0 33.3 0.0 66.7 
NO. 1 2 1 4 Al-aqsa 

Hospital 8 30.8 
%  12.5 25.0 12.5 50.0 
NO. 1 2 0 1 Shiek Ejleen 

WWTP 4 15.4 
%  25.0 50.0 0.0 25.0 
NO. 3 11 2 10 Total 26 100 
%  11.5 42.3 7.7 38.5 

 
4.5.3. Animal excreta samples 
 

Fecal specimens were collected from different animals of Gaza strip. A total of 3 

(11.5%) Y. enterocolitica and 10 (38.5%) A. hydrophila were isolated from 26 

animal excreta samples (Figure 4.9). Other enteropathogens; Salmonella 

arizona was recovered from 2 (7.7%) of the total samples. 
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Figure (4.9): Frequency of Y. enterocolitica and A. hydrophila isolated from 

animal excreta samples  
 

Twenty-six animal excreta samples were collected from different sources, 4 

(15.4%) from chickens, 7 (26.9%) from cows, 8 (30.8%) from goats, and 7 

(26.9%) from turkeys. The maximum number of Y. enterocolitica was recovered 

from cow's excreta (28.6%) and A. hydrophila from goat's excreta (62.5%) 

(Table 4.11). There is no statistically significant differences between occurrence 

of both pathogens and type of animal excreta (P > 0.05). 
 

Table (4.11): The number and percentage of Y. enterocolitica and A. hydrophila 

isolated from animal excreta samples. 

 

Animal excreta Isolates 
 
 No. %  Y. 

enterocolitica 
A. 

hydrophila 
S. 

arizona Negative 

NO. 0 0 0 4 Chicken 4 15.4 
% 0.0 0.0 0.0 100 

NO. 2 3 1 1 Cow 7 26.9 
% 28.6 42.9 14.3 14.3 

NO. 0 5 0 3 Goat 8 30.8 
% 0.0 62.5 0.0 37.5 

NO. 1 2 1 3 Turkey 7 26.9 
% 14.3 28.6 14.3 42.9 

NO. 3 10 2 11 Total 
 26 100 

% 11.5 38.5 7.7 42.3 
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4.6 Isolation of Yersinia enterocolitica and Aeromonas hydrophila using 
different enteric agar media 

 

In this study, SS, HE, XLD, MCA and CIN agars were used to isolate Y. 

enterocolitica and A. hydrophila. The ability of enteric media to selectively 

support the growth of Y. enterocolitica and A. hydrophila was evaluated using 

clinical and food samples. Figures 4.10 (A,B,C,D) show the colony morphology 

of Y. enterocolitica and A. hydrophila on SS, HE, XLD and CIN agars 

respectively after incubation at 32°C for 24 h.  

 

A: On SS agar: Both Y. enterocolitica and A. hydrophila appeared colorless. 
 

 

 
Figure (4.10.A): Appearance of Y. enterocolitica (A) and A. hydrophila (B) on 

SS agar after 24 h of incubation at 32°C 

 

 

BA
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B: On HE agar: Both Y. enterocolitica and A. hydrophila showed salmon color 

on HE agar as normal coliform in the stool.  
 
 

 

Figure (4.10.B): Appearance of Y. enterocolitica (A) and A. hydrophila (B) on 

HE agar after 24 h of incubation at 32°C. 

 
C: On XLD agar: Y. enterocolitica and A. hydrophila appeared yellow color.  
 

 

Figure (4.10.C): Appearance of Y. enterocolitica (A) and A. hydrophila (B) on 

XLD agar after 24 h of incubation at 32°C 

A B

A B
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 D: On CIN agar: Y. enterocolitica and A. hydrophila appeared deep red center 

with a transparent margin, or "bull's-eye" 

  

 

 
Figure (4.10.D): Appearance of Y. enterocolitica (A) and A. hydrophila (B) on 

CIN agars after 24 h of incubation at 32°C 

A

B 
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4.6.1 Evaluation of the efficacy of selective media for the recovery of 
Yersinia enterocolitica and Aeromonas hydrophila from clinical and food 
samples 
 

For the sake of comparison, CIN agar was considered as the golden standard 

for the isolation of both Y. enterocolitica and A. hydrophila. The results in table 

4.12 clearly show different recovery efficacy for SS, HE, XLD and CIN agars in 

isolating Y. enterocolitica and A. hydrophila. However all three selective media 

showed inferior recovery when compared to CIN. They were even more inferior 

than CIN when dealing with food and environmental samples.  
 

Table (4.12): Number and percentage of Y. enterocolitica and A. hydrophila 

using different culture method 

 

aSS, Salmonella Shigella agar, bHE, Hektoen enteric agar 
cXLD, Xylose Lysine Dextrose agar, dCIN, Cefsulodin-Irgasan-Novobiocin agar 

P value= 0.000 

  Clinical Isolates Meat isolates 
Media 

  Yersinia 
N= (14 ) 

Aeromonas 
N= (103 ) 

Yersinia 
(3) 

Aeromonas 
N= (22) 

NO. 1 4 0 0 Growth
% 7.1 3.9 0.0 0.0 
NO. 13 99 3 22 

SSa 

No growth 
% 92.9 96.1 100 100 
NO. 1 3 0 0 Growth
% 7.1 2.9 0.0 0.0 
NO. 13 100 3 22 

HEb

No growth
% 92.9 88.5 100 100 
NO. 1 3 0 0 Growth
% 7.1 2.9 0.0 0.0 
NO. 13 100 3 22 

XLDc

No growth
% 92.9 88.5 100 100 
NO. 14 103 3 22 Growth
% 100 100 100 100 
NO. 0 0 0 0 

CINd 
No growth

% 0.0 0.0 0.0 0.0 
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4.6.2 Efficacy of KOH treatment 
 
Three methods were used to detect Y. enterocolitica and A. hydrophila from 

clinical, food and environmental samples. The three methods were; direct plating  

on CIN agar after KOH treatment, cold enrichment in PBS followed by plating on 

CIN agar and overnight enrichment in TSB followed by plating on CIN agar. 

Yersinia and Aeromonas organisms are more tolerant to alkali conditions than 

are most other bacteria, and enrichment cultures may be exposed to KOH to 

selectively reduce the level of competing microorganisms. All Yersinia and 

Aeromonas isolates in clinical and food samples were detected in large numbers 

on CIN agar on primary isolation, after treatment with KOH. No additional 

isolates were detected following cold enrichment in PBS and following overnight 

enrichment in TSB.  

 

The percent recovery of Yersinia and Aeromonas using the KOH method was 

100% as compared with 78.6%, 66.7% recovery for Y. enterocolitica and 76.7%, 

77.3% for A. hydrophila  after 14 days of incubation in PBS at 4oC from clinical 

and food samples respectively. On the other hand, 100%, 66.7% recovery for Y. 

enterocolitica and 94.2%, 86.4% for A. hydrophila by TSB after 48 hr incubation 

from clinical and food samples respectively (Table 4.13). Direct plating on CIN 

agar after treatment with KOH was significantly (p <0.000) more sensitive than 

cold enrichment in PBS and overnight enrichment in TSB.  

 

Figure 4.11 illustrates a CIN agar plate after 24 h of incubation at 25oC. One-half 

of the plate was streaked with alkali-treated inoculum, the other half with saline-

treated inoculum. Many small, distinct, bulls eyes red colonies characteristic of 

Yersinia and Aeromonas were seen on the alkali treated inoculum; numerous 

large, pigmented, mucous colonies characteristic of non-Yersinia and 

Aeromonas colonies were seen on the saline-treated inoculum. 
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Table (4.13): Number and percentage of Yersinia and Aeromonas isolates from  

patient stools according to isolation technique 

aKOH, Direct plating on CIN agar with Potassium hydroxide, bPBS 

 Cold enrichment in phosphate buffered saline for 2 weeks 

 cTSB, Overnight enrichment in TSB 

P value of KOH= 0.000 

 

 
  

Figure (4.11): CIN agar plate after 24h of incubation at 26°C, streaked with Y. 

enterocolitica treated with saline (top section) and alkali (bottom section) 

    Clinical Isolates  Meat isolates Enrichment 
techniques  Yersinia  

N= (14 ) 
Aeromonas

N= (103) 
Yersinia 
N= (3) 

Aeromonas
N= (22) 

NO. 14 103 3 22 Growth 
% 100 100 100 100 

NO. 0 0 0 0 

KOHa 

No 
growth % 0.0 0.0 0.0 0.0 

NO. 11 79 2 17 Growth 
% 78.6 76.7 66.7 77.3 

NO. 3 24 1 5 

Cold 
Enrichmentb 

 No 
growth % 21.4 23.3 33.3 22.7 

NO. 14 97 2 19 Growth 
% 100 94.2 66.7 86.4 

NO. 0 6 1 3 

TSBc

No 
growth % 0.0 5.8 33.3 13.6 



 84

4.7 Virulence factors of Yersinia enterocolitica and Aeromonas hydrophila  
 

Pyrazinamidase production, esculin hydrolysis, autoagglutination and crystal 

violet binding assay were tested in 28 Y. enterocolitica and 180 A. hydrophila 

isolates from various origins. Beta hemolysin production was tested on A. 

hydrophila isolates only. Pathogenic isolates of Y. enterocolitica are 

pyrazinamidase and esculin hydrolysis negative but positive for 

autoagglutination and crystal violet binding assay, while pathogenic A. 

hydrophila are positive for all virulence factors including beta hemolysin 

production. According to the results of this virulence factors, the highest 

percentage for the pathogenic strains of Y. enterocolitica (64.3%) and A. 

hydrophila (92.2%) was recovered from clinical samples, while environmental 

isolates showed virulence characteristics in some of these tests. Using the Chi 

square test, differences were significant for all tests in clinical samples (P < 

0.05) whereas the difference was not significant (P > 0.05) with the 

environmental samples isolates. 

 

In sewage samples, the two Y. kristensenii isolates were positive for 

Pyrazinamidase activity and esculin hydrolysis but negative for autoagglutination 

and crystal violet binding. Tables (4.14-4.17) present the virulence 

characteristics for Y. enterocolitica and A. hydrophila. 

 
A.  Pyrazinamidase production: Pyrazinamidase activity in Y. enterocolitica 

and A. hydrophila from clinical and environmental samples were reported in 

Table 4.14. Of the 14 clinical Y. enterocolitica isolates tested, 5 isolates (64.3%), 

2 meat isolates (33.3%), 2 milk isolates (33.3%), 1  water isolates (50%), 2 

sewage isolates (33.3%) and 2 animal excreta isolates (33.3%) were negative. 

On the other hand of A. hydrophila, 95 Aeromonas clinical isolates (92.2%), 4 

meat isolates (18.8%), 6 milk isolates (33.3%), 5 water isolates (33.3%), 4 

sewage isolates (36.4%) and 4 animal excreta isolates (40%) were positive.  
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Table (4.14): Pyrazinamidase production in relation to the source of Y. 

enterocolitica and A. hydrophila 

 

 Y. enterocolitica A. hydrophila 

Negative Positive 

 
Samples

N N 
N % 

N 
N % 

Clinical samples 300 14 5 64.3 103 95 92.2
Meat samples 45 3 2 33.3 22 4 18.8
Milk samples 50 3 2 33.3 18 6 33.3
Water samples 32 2 1 50 15 5 33.3
Sewage samples 26 3 2 33.3 11 4 36.4
Animal excreta samples 26 3 2 33.3 10 4 40 
 
 

B.  Esculin hydrolysis: With esculin hydrolysis, 5 of 14  Yersinia clinical 

isolates (64.3%), 2 of 3 meat isolates (33.3%), 2 of 3 milk isolates (33.3%), 1 of 

2 water isolates (50%), 2 of 3 sewage isolates (33.3%) and 2 of 3 animal excreta 

isolates (33.3%) were negative. On the other hand,  95 of 103  Aeromonas 

clinical isolates (92.2%), 14 of 22 meat isolates (66.7%), 10 of 18 milk isolates 

(55.6%), 8 of 15 water isolates (53.3%), 8 of 11 sewage isolates (72.7%) and 6 

of 10 animal excreta isolates (60%) were positive (Table 4.15, Figure 4.12).  

 

Table (4.15): Esculin hydrolysis in relation to the source of Y. enterocolitica and 

A. hydrophila 
 

 Y. enterocolitica A. hydrophila 
Negative Positive 

 
Samples  

N 
N 

N % 
N 

N % 
Clinical samples 300 14 5 64.3 103 95 92.2
Meat samples 45 3 2 33.3 22 14 66.7
Milk samples 50 3 2 33.3 18 10 55.6
Water samples 32 2 1 50 15 8 53.3
Sewage samples 26 3 2 33.3 11 8 72.7
Animal excreta samples 26 3 2 33.3 10 6 60 
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Figure (4.12): Esculin hydrolysis by Y. enterocolitica and A. hydrophila 

 
 

C.  Autoagglutination: Table 4.16 and Figure 4.13 show the pattern of 

autoagglutination for clinical and environmental isolates. Of Yersinia isolates, 9 

(64.3%) of clinical isolates, 1 (33.3%) of meat isolates, 1 (33.3%) of milk 

isolates, 1 (50%) of water isolates, 1 (33.3%) of sewage isolates and 1 (33.3%) 

of animal excreta isolates were positive for autoagglutination. On the other hand, 

95 (92.2%) of Aeromonas clinical isolates, 9 (40.9%) of meat isolates, 6 (33.3%) 

of milk isolates, 5 (33.3%) of water isolates, 4 (36.4%) of sewage isolates and 4 

(40%) of animal excreta isolates were positive. 

 
Table (4.16): Autoagglutination in relation to the source of Y. enterocolitica and 

A. hydrophila 

 Y. enterocolitica A. hydrophila 
Positive Positive Samples  

N N 
N % 

N 
N % 

Clinical samples 300 14 9 64.3 103 95 92.2 
Meat samples 45 3 1 33.3 22 9 40.9 
Milk samples 50 3 1 33.3 18 6 33.3 
Water samples 32 2 1 50 15 5 33.3 
Sewage samples 26 5 1 33.3 11 4 36.4 
Animal excreta samples 26 3 1 33.3 10 4 40 

  

Positive reaction  Negative reaction  

A B
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Figure (4.13): Appearance of autoagglutination phenomenon after 18 h of 

growth in MR-VR broth at 35°C. Positive test (left) and negative test (right). 
 

D. Crystal violet binding: With crystal violet binding, of Y. enterocolitica 

isolates tested, 9 (64.3%) of clinical isolates, 1 (33.3%) of meat isolates, 1 

(33.3%) of milk isolates, 1 (50%) of water isolates, 1 (33.3%) of sewage isolates 

and 1 (33.3%) of animal excreta isolates were positive for crystal violet binding. 

On the other hand, , 95 (92.2%) of A. hydrophila clinical isolates, 9 (40.9%) of 

meat isolates, 6 (33.3%) of milk isolates, 5 (33.3%) of water isolates, 4 (36.4%) 

of sewage isolates and 4 (40%) of animal excreta isolates were positive (Table 

4.17, Figure 4.14). 
 

Table (4.17): Crystal violet binding in relation to the source of Y. enterocolitica  

and A. hydrophila 
 
 

 Y. enterocolitica A. hydrophila 
Positive Positive 

 
Samples  

N N 
N % 

N 
N % 

Clinical samples 300 14 9 64.3 103 95 92.2 
Meat samples 45 3 1 33.3 22 9 40.9 
Milk samples 50 3 1 33.3 18 6 33.3 
Water samples 32 2 1 50 15 5 33.3 
Sewage samples 26 5 1 33.3 11 4 36.4 
Animal excreta samples 26 3 1 33.3 10 4 40 

L  R 
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In this investigation, both environmental and clinical isolates were capable of 

producing virulence factors to various degrees. Y. enterocolitica and A. 

hydrophila isolates from the clinical samples proved the most virulent as judged 

by possession of all four virulence-associated factors. 

 
E. Beta hemolytic activity of Aeromonas hydrophila as a virulence factor 
Most of the isolates were beta-hemolytic when assayed on blood agar plates 

(Figure 4.15, 4.16) 

 

Negative
7%

positive
93%

 
Figure (4.15): Frequency of β- hemolytic activity of A. hydrophila 

 

 
Figure (4.14): Positive (A) and negative (B) crystal violet binding of Y. 

enterocolitica and A. hydrophila 

A B
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Figure (4.16): β- hemolytic activity of A. hydrophila on blood agar plate 

 
4.8 Susceptibility of Yersinia enterocolitica and Aeromonas hydrophila to 
various antimicrobial agents 
 

In this test, all clinical Yersinia (14) isolates were resistant to 

amoxycillin/clavulanate, cefazolin and erythromycin.   In contrast, all of the 

isolates were susceptible to co-trimoxazole, amikacin, gentamicin and 

cefotaxime. In addition, 90% or more of the isolates examined in this study were 

susceptible to aztreonam, ciprofloxacin, ofloxacin, ceftriaxone, and meropenem. 

Environmental Y. enterocolitica (14) isolates during the same periods displayed 

susceptibility patterns similar to those of the human isolates (Table 4.18). All of 

these isolates were not susceptible to cefazolin and erythromycin. With regard to 

the other antimicrobials agents (ampicillin cephalexin, ceftriaxone, ciprofloxacin, 

ofloxacin, and aztreonam), the susceptibility results were variable (Figure 4.17 

and Table 4.18). 
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Figure (4.17): Antibiotic Susceptibility of Y. enterocolitica  

 

All 103 clinical A. hydrophila isolates were resistant to ampicillin,  

amoxycillin/clavulanate, cefazolin, cephalexine, co-trimethoprim and 

erythromycin. In contrast, Most of the isolates were susceptible to the third 

generation of cephalosporins, Cefotaxime. Also, most of the isolates were 

susceptible to amikacin, aztreonam, ciprofloxacin and ofloxacin. The 

environmental isolates (84) included in this study showed the same or slightly or 

the same resistance compared to clinical isolates. All environmental isolates 

were resistant to ampicillin, amoxycillin/clavulanate, cephalexine, cefazolin, co-

trimethoprim and erythromycin. Ciprofloxacin, Ofloxacin,   azetronam, 

cefotaxime, meropenem, gentamycin and ceftriaxone were the most active 

antimicrobial agents tested (Figure 4.17 and table 4.18). 

 
                                                           

Figure (4.18): Antibiotic Susceptibility of A. hydrophila 
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Table (4.18): Susceptibility of Y. enterocolitica and A. hydrophila to various 

antimicrobial agents 
 

Clinical Isolates Environmental isolates 

Yersinia 
N= (14 ) 

Aeromonas 
N= (103 ) 

Yersinia 
N= (14) 

Aeromonas 
N= (76) 

Antimicrobial 
agents 

S R % R S R % R S R % R S R % R 

Amikacin 14 0 0.0 87 16 15.5 13 1 7.1 60 16 21.1 

Ampicillin 5 9 64.3 0 103 100 10 4 28.5 0 76 100 

Amox/clav 0 14 100 0 103 100 1 13 92.9 0 76 100 

Aztreonam 13 1 7.1 95 8 7.8 13 1 7.1 64 12 15.8 

Cefazolin 0 14 100 0 103 100 0 14 100 0 76 100 

Cephalexine 4 10 71.4 0 103 100 4 10 71.4 0 76 100 

Cefotaxime 14 0 0.0 84 19 18.5 14 0 0.0 64 12 15.8 

Cefruxime 11 3 21.4 49 54 52.4 13 1 7.1 33 43 56.6 

Ceftazidime 12 2 14.3 53 50 48.5 9 5 35.7 37 39 51.3 

Ceftriaxone 13 1 7.1 65 38 36.9 13 1 7.1 54 22 28.9 

Ciprofloxacin 13 1 7.1 93 10 9.7 13 1 7.1 66 10 13.2 

Co-trimethoprim 14 0 0.0 0 103 100 8 6 42.8 0 76 100 

Chloramphenicol 10 4 28.6 25 78 75.7 11 3 21.4 23 53 69.7 

Doxycycline 8 6 42.9 22 81 78.6 8 6 42.8 30 46 60.5 

Erythromycin 0 14 100 0 103 100 0 14 100 0 76 100 

Gentamicin 14 0 0.0 86 17 16.5 13 1 7.1 56 20 26.3 

Meropenem 13 1 7.1 75 28 27.2 13 1 7.1 57 19 25 

Nalidixic acid 9 5 35.7 41 62 60.2 12 2 14.3 31 45 59.2 

Ofloxacin 13 1 7.1 92 11 10.7 13 1 7.1 65 11 14.5 

Tetracycline 8 6 42.9 22 81 78.6 7 7 50 29 47 61.8 
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CHAPTER 5  
 

DISCUSSION  
 
The primary goals of the present study are to investigate the occurrence of Y. 

enterocolitica and A. hydrophila in clinical, food and environmental samples 

in Gaza strip, to recommend a simple and reliable procedure for the detection 

of pathogenic Y. enterocolitica and A. hydrophila and to use the procedure as 

a diagnostic tool for the rapid identification of Yersinia and Aeromonas 

cultures. In the present study; Y. enterocolitica was isolated from all types of 

samples except seawater while A. hydrophila was isolated from all sampling 

sources. 

 
5.1 Distribution of Yersinia enterocolitica and Aeromonas hydrophila 

 

Y. enterocolitica and A. hydrophila are detected in a wide range of samples 

such as fresh waters [13,33,109], vegetables [5,14], meats and milk products 

[32,121,138], fish [14], shellfish, seawater [5,168] and clinical [84,133]. In 

this study, a high percentage of Y. enterocolitica was recovered from sewage 

(19.1%) followed by animal excreta (11.5%) and higher percentage (48.9 and 

46.9%) of A. hydrophila isolates were identified in meat and water 

respectively.  

 
5.2 Recovery of Yersinia enterocolitica and Aeromonas hydrophila from 
clinical samples 
 
Of the 300 diarrheal stool samples tested, 14 (4.7%) were positive for Y. 

enterocolitica and 103 (34.3%) were positive for A. hydrophila. Y. 

enterocolitica and A. hydrophila were isolated either from stool samples from 

children or from older persons with diarrheal infections, with high incidence 

from patients below 6 years. Y. enterocolitica has been isolated from humans 

on all continents [24]. We found a frequency of 4.7% for this organism, which 

is lower than some parts of the world especially northern European countries 
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with a frequency up to 13% [5]. This might be partly due to the warmer 

climate in our country, wherein this study was carried out during summer. We 

would expect a higher frequency during autumn and winter, based on the fact 

that this organism increases greatly in comparison with other species in cold 

seasons [5]. 
 

In a comparable study in Montreal, Canada, specimens from children with 

gastroenteritis were tested during a 15-month period for pathogenic enteric 

bacteria. Y. enterocolitica was isolated from 2.8% of the human fecal 

specimens and 2.1% from the Oneida County outbreak [236]. 1.04% were 

isolated from 7,290 black Atlanta children during the Thanksgiving-Christmas 

holidays in 1988 [237].  
 

The differences between the findings of various authors and those of this 

study might be due to several factors such as; isolation methods, number of 

analyzed samples, sources of samples, season, and geographical location. 

These factors may cause an increase or decrease in the incidence of the 

Yersinia spp. For instance, the present study was carried out in Gaza strip, 

where the weather is generally warm and humidity is high. It is known that 

the isolation ratio of Y. enterocolitica is higher in colder climates. 

 

In case of A. hydrophila, our results were higher than the findings of 4.7 % 

incidence in Chennai, India, 2.8% in Los Angeles, California, hospital, 1.28 

%, and 1.4 % of A. hydrophila from Mumbai, India. Alavandi and Anandhan 

reported Aeromonas associated diarrhea in 1 to 13 % of samples in Chennai, 

while Kuijper et al., and Ogunsanya et al., reported 3.7 % in Netherlands 

and 1.4 % in Lagos, Nigeria respectively. However, higher prevalence of 17.7 

and 28.1 % were recorded during 2000 and 2001 in Kolkata, India. It is 

believed that gasteroenteritis caused by A. hydrophila occurs more 

commonly in children with acute diarrhea and adults with traveler's diarrhea 

[238]. 
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Among 1,821 patients with diarrhea visiting a clinic in La Crosse, Wisconsin, 

during an 18-month period, Agger et al., identified 20 (1.1%) positive for A. 

hydrophila. Moyer examined 3,334 diarrheic stool specimens submitted by 

physicians over a 2-year period to an Iowa public health laboratory and found 

238 (7.1%) positive for A. caviae, A. hydrophila, or A. sobria. Isolation in the 

latter study included an alkaline peptone water enrichment step, which may 

explain the higher prevalence rate. Pazzaglia et al., reported that 23.1% of 

newborns in Peru demonstrated transitory gastrointestinal colonization with 

Aeromonas spp. during the first days of life [177]. 
 

Worldwide, the isolation rate of Aeromonas from diarrheic stool has been 

reported as high as 10.8% and as low as 0%. A study conducted in 

Southeast Asia, 34% A. hydrophila have been recovered from patients with 

diarrhea [177]. Another study among Western Peace Corp workers in 

Thailand, showed that  Aeromonas were recovered from 30.8% of persons 

with diarrhea which is similar to our results (34.3%) [177].  
 

This wide variation in the prevalence of Aeromonas among similar studies 

conducted on children with diarrhea may be attributed to the variation in fecal 

samples number and also to different methods used for isolation of 

Aeromonas as well as environmental condition, patient populations, food 

habits, and level of sanitation. 

 

5.3 Recovery of Yersinia enterocolitica and Aeromonas hydrophila from 
food samples 

 

In recent years, the number of studies on the prevalence of Y. enterocolitica 

and A. hydrophila in food products from various geographical regions has 

increased significantly [14,121].  In studies from different countries, Y. 

enterocolitica were isolated from various ready-to-eat products including, 

fresh salad, whole and sliced vegetables, sandwiches, milk, dairy products, 

desserts and soft cheese. In a study carried out in Finland, Fredriksson-
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Ahomaa et al.,  tested 200 samples of raw fish, 43 samples of raw chicken 

and 101 samples of lettuce by nested PCR targeting the yadA gene [6]. 
Three PCR-positive results were obtained, all recovered from the lettuce 

samples. Logue et al., investigated Irish meat and meat products and 

isolated pathogenic serotypes of Y. enterocolitica from 10% of samples of 

cooked ham (n=20), corned beef (n=40) and pork sausage (n=20). Wang, 
Cao and Cerniglia examined seafood and found that none of the samples 

tested positive for pathogenic Y. enterocolitica by PCR [125]. In an Australian 

study, Szabo, Scurrah and Burrows examined 120 samples of minimally 

processed lettuce collected over an 8-month period and isolated 71 Y. 

enterocolitica strains, all belonging to nonpathogenic serotypes [174].  
 

Raw and pasteurised milk have been examined in several studies because 

outbreaks over a number of years in the United States were traced to milk. 

Schiemann and Toma examined 131 raw milk samples for the presence of 

Y. enterocolitica. Forty-two isolations were obtained from 19 pooled- (31.1% 

positive) and 10 individual-producer samples (14.3% positive) [239]. The 

other study by Schiemann reported a high incidence of Y. enterocolitica in 

raw milk (18.2%), 9.2% in cheese curd samples and 0.4% in pasteurized fluid 

dairy products from southern Ontario [239]. 
 

Several studies have been conducted to isolate Yersinia spp. in ground beef 

and the isolation rate was reported to be 9-99.2%. Among these studies, 

some generated higher isolation rates than the results of this study. In the 

present study, Y. enterocolitica was isolated from 6.7% of meat samples. 

Inoue and Kurose and Leistner et al., found that Yersinia spp. were 

recovered from 24 and 16% of samples, respectively. Hanna et al., 

examined whole-sale cuts of vacuum-packaged fresh beef and reported that 

10 out of 107 beef samples (9.3%) were positive for Y. enterocolitica. 

Similarly, Ibrahim and MacRae examined 50 beef samples for Yersinia spp. 
and the isolation rate was 20%. 9 (18%) were Y. enterocolitica. Karib et al., 

also reported that 4 out of 30 beef meat (13.3%) and 3 out of 20 ground beef 
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samples (15%) were examined for Yersinia and Y. enterocolitica isolation 

rates were 13.3 and 15%, respectively. In another study by Falcao, 40 

cultures of isolated ground beef, 9 (22.5%) were Y. enterocolitica [106].  
 

Although the results of this study showed higher isolation ratio, the 

examination of a limited number of samples might have caused 

misinterpretation. It might also have been related to the efficiency of the 

detection method.  

 

In one study conducted in Norway, 47 samples of sausage meat and 99 

samples of pork chop collected from five slaughterhouses and one retail 

outlet were analyzed [125].The presence of pathogenic Y. enterocolitica was 

detected by PCR in 15% and 26% of these samples, respectively. In another 

study, Nesbakken et al., examined 12 samples of pork cuts and 33 samples 

of sausage meat and obtained 5 and 23 positives, respectively [88]. 
 

Ibrahim and MacRae  reported that Aeromonas was present in 60, 58, 74 

and 26% of investigated beef, lamb, pork and milk samples, respectively, 

whereas Krovacek et al., found aeromonads in 42% of the food samples 

originating from a random selection of retail outlets in Sweden. Aeromonas 

were also found in fish and fresh salads, freshly dressed lamb carcasses, 

oysters, cheese and raw cow's milk [14]. In the present study, Y. 

enterocolitica and A. hydrophila were isolated from 6%, 36% of the milk 

samples and 6.7%, 48.9% of meat samples respectively. Because of the 

obvious differences in sampling period, geographical location, the origin of 

the samples and methodology for analysis, it is difficult to compare the level 

of Y. enterocolitica and A. hydrophila incidence published by different 

authors. However, the present data clearly confirm the widespread 

distribution of Y. enterocolitica and A. hydrophila in retail foods.  
 

The recovery of pathogenic Y. enterocolitica and A. hydrophila is contingent 

upon a number of factors including the level of background flora on the 

sample, the amount of background flora coming from enrichment and plating, 
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the level of pathogenic Y. enterocolitica and A. hydrophila present in the 

sample, the numbers of non-pathogenic Y. enterocolitica and non-pathogenic 

Yersinia spp. present in the sample, and the loss of virulence factors during 

enrichment and plating. Furthermore, a difference in virulence factors may be 

to the different serotypes. Recovery method that gives good recovery of one 

particular serotype of pathogenic Y. enterocolitica may not suit another 

serotype. 

 

5.3  Recovery of Yersinia enterocolitica and Aeromonas hydrophila from 
environmental samples  

 

5.3.1 Water Samples 
 
Y. enterocolitica and A. hydrophila isolates recovered from different water 

samples, including chlorinated and non chlorinated, fresh water, well water, 

seawater, wastewater and natural mineral water. Most of these 

microorganisms were found to be nonpathogenic [5,13,33].  
 

The possibility for these microorganisms to survive in this type of 

environment has been investigated. Chao, Ding and Chen showed that Y. 

enterocolitica could survive in soil and water systems, especially at low 

environmental temperatures [125]. Karapinar and Gonul found that a mixed 

culture of nonpathogenic and pathogenic strains held at 4ºC was recovered 

after 56 weeks incubation in sterile spring water. In our study, water isolates 

represented two (6.3%) of a total of 32 water samples which is lower than 

those reported in other parts of the world. Shayegani et al., isolated 147 Y. 

enterocolitica and related species from 622 water samples; 23 (15.6%) were 

Y. enterocolitica. Some researchers reported that even lower isolation ratios 

were detected compared to the results of this study [236]. In a study carried 

out in Australia, Sandery, Stinear and Kaucner tested 251 water samples 

by nested PCR. Eleven samples (4.4%) from 4 separate locations tested 

positive [125].  
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In this study, A. hydrophila was isolated (46.9%) from different water 

samples. A. hydrophila is also associated with the aquatic environment and 

has been isolated from tap water, well water, seawater and wastewater; 

sometimes at quite high levels [134,151]. Knochel and Jeppesen examined 

drinking-water in Denmark and found that only 28% of samples were positive; 

A. hydrophila made up 97% of isolates. In contrast, Ghanem, Mussa and 

Eraki reported that 90% of domestic water supplies in areas of Cairo 

contained Aeromonas, while from a survey of three distribution systems in 

Sweden, Krovacek et al., reported that 85% of samples were positive for 

presumptive Aeromonas; A. hydrophila accounted for 67% of the strains 

isolated. Stelzer et al., recorded a maximum count of 240 Aeromonas/100 ml 

in a drinking-water supply in Germany, with an isolation frequency for A. 

hydrophila of 37%. The highest counts were obtained from points furthest 

(>10km) from the treatment works. Havelaar, Versteegh and During 
reported regrowth of aeromonads in 16 of 20 distribution systems examined 

in the Netherlands [150].  
 
Legnani et al., reported occurrence of Aeromonas spp. in drinking water 

supplies in a mountain area in northeast Italy (the Dolomites). Out of 7395 

water samples analyzed over a 3 years period, 1623 (21.9%) were found to 

be positive for Aeromonas; 72.4% of the strains were identified as A. 

hydrophila [240]. Ghenghesh et al., isolated Aeromonas in 48.7% of 1,000 

water samples obtained from wells and other miscellaneous sources. A. 

hydrophila were detected in 59% of samples tested [222]. Ormen et al., 

investigated the occurrence of Aeromonas spp.  in Norwegian natural water 

sources. 42% of the total isolates were identified A. hydrophila [241]. 
 
5.3.2 Sewage samples 
 
In our study 5 Yersinia spp. were recovered from 26 sewage samples. Y. 

enterocolitica was found in 3(12%) whereas Y. kristensenii in 2 (8%). On the 

other hand; 11 A. hydrophila (42%) were recovered from the same samples. 
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Most of the Y. enterocolitica isolates recovered from environmental samples, 

including fodder, soil, foliage, surface water, sewage water and sludge, have 

been non-pathogenic. Singh et al., reported isolation of Y. enterocolitica 

from sewage effluents collected from several sewage treatment plant in Delhi 

city (India), 9 (12.3%) from wastewater, 5 (2.8%) from groundwater and 4 

(9%) from river Yamuna [242], similar to the result of this study. In another 

study Yersinia spp. were detected in 90.6% out of 32 raw wastewater 

samples obtained within one year from two municipal sewage treatment 

plants. Moreover, Yersinia was isolated from 50% of 6 effluent samples. The 

remaining isolates were identified as Y. frederiksenii (24 isolates), Y. 

intermedia (22 isolates) and Y. kristensenii (3 isolates) [243].  
 
Aeromonas are widespread in wastewater treatment processes. Burke et al., 

isolated 34% of Aeromonas spp. from the unchlorinated domestic water 

supply of a country center in Western Australia [244] yielding lower result 

than our study. The persistence and transmission of Aeromonas in a 

duckweed aquaculture-based hospital sewage water treatment plant in 

Bangladesh was studied. A total of 670 samples from different sites of the 

hospital sewage water treatment plant, from feces of hospitalized children 

suffering from diarrhea, from environmental control ponds, and from feces of 

healthy humans were collected over a period of three years. All samples (n = 

86) from the sewage water treatment plant but only 27 out of the 68 (40%) 

samples from the control ponds were positive for Aeromonas similar to this 

study. The highest mean number of Aeromonas bacteria was found in 

untreated sewage samples [245]. 
 
5.3.3 Animal excreta samples 

 
Animals, especially domestic animals, have been suspected as transmitters 

of Y. enterocolitica and A. hydrophila to humans [5,188,189]. Published 

studies are contradictory in this regard. The Member States of the Europeans 

report annually to the EU-Commission on the Zoonoses situation in their 

country. However, Y. enterocolitica infection in animals is not notifiable, and 
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reports on its prevalence are for the most part results from research projects 

obtained from institutions or authorities in the member countries. Various 

studies have investigated wild and farm animals for the presence of 

pathogenic strains of Y. enterocolitica. Shayegani et al., examined fecal 

specimens from 1,426 animals including mammals, birds, reptiles, fish and 

invertebrates throughout New York State. Strains of Y. enterocolitica and 

related species were isolated from 92 (11.3%) of 812 mammals, 36 (6.3%) of 

573 birds and 5 (17.8%) of 28 reptiles and fish [236]. 
 

In various studies examining healthy domestic animals and animals with 

acute enteritis, including cattle, sheep, goats, deer, calves, broilers, hens, 

turkeys and ducks, only a few pathogenic isolates have been recovered, and 

they differed from those usually associated with human infections. Virulent Y. 

enterocolitica was isolated from one or more sheep in 78 (17%) of 449 flocks 

[101].  These results are in agreement with our results, where we found that 

11.5% of our studied animal excreta were positive to Y. enterocolitica. 

 

In a German study, Gurtler et al., found that the prevalence of Y. 

enterocolitica ranged between 0 and 65% in fattening pig herds and was 

present in 39% of pig tonsils at the abattoir. In Denmark and Norway, the 

frequency of Y. enterocolitica O:3 at herd level has been found to be 64% 

and 70% respectively. Korte et al., found that the prevalence in fattening 

pigs in Finland, investigated in five slaughterhouses, increased from 33% to 

64% between 1995 and 1999. In a study performed in Sweden between 1997 

and 1998, the frequency at herd level was 67% [125]. These results are 

higher than our results and may be due to the fact that raw pork was main 

reservoir of Y. enterocolitica and transmitted to the other animals. 
 

On the other hand, Aeromonas spp. have been recognized as animal 

pathogens since they were first isolated from diseased frogs and fish. They 

are now recognized to cause disease in birds and domestic animals [189]. 
Gray isolated A. hydrophila from feces of normal horses (7 of 110, 6.4%), 

pigs (11 of 115, 9.6%), sheep (10 of 111, 9.0%), and cows (26 of 123, 
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21.1%). The total fecal carriage rate in animals is slightly higher than the 

fecal carriage rate of normal humans, which is < 1 to 7% for most studies, 

although some studies report higher rates [245]. Populations in animals 

probably reflect the presence of aeromonads in their feed and water.  
 
In the present study Y. enterocolitica was isolated from 11.5% of the total 

animal excreta samples. (14.3% of turkeys, and 28.6% of cows) and A. 

hydrophila was recovered from 38.5% of the total samples (28.6% of turkeys, 

42.9% of cows and 62.5% of goats) but none were isolated from chicken in 

this study. Other studies reported that even lower isolation rates were 

detected compared to the results of this study. Stern et al., isolated 

aeromonads from 1 (3.1%) of 32 cows and 3 (14.2%) of 21 turkeys, but none 

were isolated from 22 pigs or 24 sheep [150].  
 

In our study, isolates of Y. enterocolitica and A. hydrophila were found in 

human, animal and environmental sources. This suggests the possibility of 

transmission from environment or animals to humans. 

 

5.6 Isolation of Yersinia enterocolitica and Aeromonas hydrophila using 
different enteric agar media 
 

SS, HE, XLD, MCAand CIN were used to selectively isolate Y. enterocolitica 

and A. hydrophila. 

 

5.6.1 Evaluation of the efficacy of selective media for the recovery of 
Yersinia enterocolitica and Aeromonas hydrophila from clinical and 
food samples 
 
The number of proven bacterial gastroenteritis agents has increased over the 

past several years and now includes such diverse groups as certain 

serotypes of Yersinia enterocolitica, Campylobacter spp., invasive 

Escherichia coli (O:157, H:7), Plesiomonas shigelloides, new halophilic Vibrio 

spp., and Aeromonas spp. Because the development of enteric agars, 
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essentially designed for the primary isolation of Salmonella and Shigella spp., 

predated the discovery of these bacteria, either new selective agars are 

required to isolate these microorganisms (as in the case of Campylobacter 

spp.) or laboratory workers must make use of existing selective and 

differential agars [232].  
 

From this study, it is apparent that routine media used in our laboratory are 

unsatisfactory for the recovery of Y. enterocolitica and A. hydrophila, owing to 

the poor plating efficiency and  recovery of these organism from stool 

specimens are difficult because not only are Y. enterocolitica and A. 

hydrophila indistinguishable from many other enteric organisms which do not 

ferment lactose on MCA or SS agar, but it may also be easily overgrown by 

most intestinal bacterial flora since the former grows relatively slowly. 

Additionally, Y. enterocolitica and A. hydrophila are capable of growth on 

XLD or H-E agar and ferment the sucrose and xylose in the former medium 

and salicin and sucrose in the latter, thereby rendering colonies 

indistinguishable from "coliforms".  

 

The CIN agar used in this study provided the most effective medium for the 

recovery of Y. enterocolitica and A. hydrophila. The confirmation rate of 

identification of presumptive Y. enterocolitica and A. hydrophila from CIN was 

100% but the isolation rate of Y. enterocolitica and A. hydrophila was 7.1% 

and 2.9% on HE and XLD agar and 8.1% and 3.9% on SS agar respectively. 

The greatest advantage of CIN agar is that Y. enterocolitica and A. 

hydrophila with red colonies on CIN agar are easily differentiated from most 

other gram-negative bacteria, which showed pink or dark-red colonies or 

transparent colonies with a peripheral dark zone as the result of mannitol 

fermentation and CIN agar dramatically inhibits normal flora organisms. 
 

Head et al., conducted comparative studies of several selective media 

including MacConkey agar for the recovery of Y. enterocolitica. They found 

that CIN agar was the most effective, yielding 100% recovery of Y. 
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enterocolitica in a test suspension containing 10 CFU/ml. Using a 

combination of CIN agar and cold enrichment during a 42-month period, 

these investigators isolated 80 Y. enterocolitica and 52 Y. enterocolitica-like 

strains (42 Y. frederiksenii, 8 Y. intermedia, and 2 Y. kristensenii) from 215 

fecal specimens from 171 patients [24].  
 

Many investigators [85,226,229] reported that CIN agar was a more effective 

agar medium than SS and MCA agars for the isolation of Y. enterocolitica 

and A. hydrophila from various specimens. Schiemann reported that a color 

reaction resulting from the fermentation of mannitol presents a characteristic 

colony appearance which can serve to differentiate Y. enterocolitica and A. 

hydrophila from most other gram negative bacteria able to grow on CIN agar 

with added mannitol and differentiate Y. enterocolitica from A. hydrophila by 

oxidase test [78]. These findings suggest that CIN agar is a useful medium 

not only for isolation of Y. enterocolitica but also A. hydrophila.  

 

5.6.2 Efficacy of KOH treatment 
 
In our study the highest isolation rates of Y. enterocolitica and A. hydrophila 

were obtained after KOH treatment. All Yersinia and Aeromonas isolates 

were detected in large numbers on CIN agar on primary isolation, after 

treated with KOH. No additional isolates were detected following cold 

enrichment and following overnight enrichment in TSB. The percent recovery 

of Yersinia and Aeromonas by the KOH method was 100% as compared with 

78.6% recovery for Y. enterocolitica and 76.7% for A. hydrophila after 14 

days of incubation at 4oC. We obtained a 100% recovery for Y. enterocolitica 

and a 94.2% for A. hydrophila by Trypticase soy broth after 48 h incubation. 
 

Recovery of Yersinia and Aeromonas from environmental samples are 

complicated by a technical difficulty rather than by a nutritional requirement of 

Yersinia and Aeromonas. Because Yersinia and Aeromonas grows more 

slowly than non- Yersinia and Aeromonas organisms, their population is 

quickly overgrown and easily masked when streaked on a weakly selective 
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isolatory agar. By treating the inoculum with 0.5% KOH in 0.5% NaCl, the 

difficulty is largely overcome. The alkali treatment killed or inhibited a larger 

number of contaminating non- Yersinia and Aeromonas and thus facilitated 

the isolation of Yersinia and Aeromonas [78,79].  
 

The alkali method provides a simple, sensitive, and rapid technique for the 

recovery of Y. enterocolitica and A. hydrophila from mixed cultures, 

especially from food samples. A report has appeared describing the benefit 

of alkali treatment for recovery of Y. enterocolitica and A. hydrophila from 

feces [78]. These finding determined the usefulness of dilute alkali (KOH) 

treatment of meat samples for direct isolation of Y. enterocolitica and A. 

hydrophila without enrichment shortened the incubation period and 

appreciably decreased the growth of non-Yersinia and Aeromonas isolates 

from clinical and food samples. 
 

5.7 Virulence factors of Yersinia enterocolitica and Aeromonas 

hydrophila  
 

Virulence factors were compared for 14 Y. enterocolitica and 103 A. 

hydrophila isolated from clinical samples with 16 Yersinia spp. and 76 A. 

hydrophila isolated from environmental samples in the same area during the 

same period. Yersinia and Aeromonas spp. isolated from clinical samples 

showed differences in virulence characteristics when compared with strains 

isolated from environmental samples in the same environment [95,127]. 
 

Isolates of Y. enterocolitica and A. hydrophila had several properties shown 

to be virulence-associated by other workers. Pathogenic Y. enterocolitica 

isolates autoagglutinated at 35°C, positive for crystal violet binding and 

negative for esculin hydrolysis and pyrazinamidase activity. On the other 

hand, pathogenic A. hydrophila isolates were positive for autoagglutination, 

esculin hydrolysis, pyrazinamidase activity and crystal violet binding. 
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A.  Pyrazinamidase test 
 
 The pyrizinamidase test was easy to perform. The pyrazinamidase test 

correctly identified 94% Yersinia isolates [10]. Our results showed that both 

clinical and environmental isolates were positive for virulence test markers, 

with high percent in clinical isolates. 64.3% of clinical isolates were negative 

compared to only 33.3% of environmental isolates. This was in disagreement 

with the results of several authors. 

 

 Kandolo and Wau-ters investigated pyrazinamidase in 381 strains of Y. 

enterocolitica isolated from human, animal and environment sources from 

different geographical areas. They showed that pyrazinamidase test was 

negative (PYZ-) in all bioserogroups of Y. enterocolitica, in which is usually 

harbored the virulence plasmid, and was involved in human or animal 

diseases. The more ubiquitous bioserogroups of Y. enterocolitica, without 

naturally occurring virulence plasmid, and related species were all Pyz+. 

They found 100% accuracy in differentiating pathogenic and nonpathogenic 

serotypes. All Y. kristensenii isolates were positive for Pyrazinamidase 

activity similar to the results of the present study [246].  Siriken reported that 

none of the Y. enterocolitica isolates recovered from ground beef was 

positive for virulence assays [106]. 
 

Our results were disagreement with other studies; 33.3% of Y. enterocolitica 

were virulent. Vishnubhatla et al., reported that Y. enterocolitica was virulent 

in 30 (60%) of 50 ground beef samples [106]. Riley and Toma noted that 5 

of their 21 strains of Y. enterocolitica serotype O:1,2,3 were pyrazinamidase 

positive, indicating a nonpathogenic serotype; lower than our results [92].  
 

Carnahan et al., investigated pyrazinamidase activity of Aeromonas spp.  Of 

the 37 A. hydrophila isolates tested, 35 (95%) were positive, which is similar 

to our result where we found that 92.2% of clinical isolates were positive for 

pyrazinamidase and 30.2% of environmental isolates were negative [191]. 
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B.  Esculin hydrolysis 
 
In our study a total of 35.7%, 92.2% of clinical Y. enterocolitica and A. 

hydrophila isolates were positive for bile esculin hydrolysis respectively. 

While, 64.3%, 60.5% of environmental Y. enterocolitica and A. hydrophila 

isolates were positive respectively. Farmer et al., reported esculin hydrolysis 

of Y. enterocolitica. A negative reaction of esculin hydrolysis correctly 

identified all 63 strains of the pathogenic serotypes (100% sensitivity), and a 

positive results correctly identified 34 of 37 strains of nonpathogenic 

serotypes (92% specificity). Thus, esculin hydrolysis correctly identified 97% 

of the isolates [10].  
 

Carnahan et al., investigated esculin hydrolysis of Aeromonas spp. Of the 

167 clinical Aeromonas spp., isolates tested, 114 (68%) were positive. Most 

of A. hydrophila isolates were positive agreement with our result, (92.2%) 

Aeromonas clinical isolates were positive [129]. It can be concluded that 

esculin hydrolysis agar, available in most clinical laboratories for the 

identification of Enterococcus spp., can be used for differentiation of 

pathogenic from pathogenic aeromonads.  

 
C. Autoagglutination 
 
Farmer et al., reported that only 8 (12.7%) of 63 Yersinia strains were 

positive for autoagglutination in MR-VP broth [10]. Laird and Cavanaugh 
pointed out that 25 (13.8%) of 180 Y. enterocolitica strains were found to be 

agglutinated [247]. These results disagree with our findings where 64.3% of 

clinical isolates were positive and only 35.7% of environmental isolates were 

positive. Janda et al., described a group of Aeromonas strains; of 79 

mesophilic aeromonads (13 environmental and 66 clinical isolates) evaluated 

for the ability to autoagglutinate in BHIB before (AA+) or after boiling (PAB+), 

24 (30%) were positive (AA+). Among A. hydrophila, 6 (55%) of 11 from 

invasive disease were AA+, and 8 (28%) of 29 from noninvasive disease 
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were AA+ [164]. These results are lower than our result, 92.2%, 36.8% were 

positive for clinical and environmental isolates respectively. 

 

D. Crystal violet binding 
 

CV binding was also tested by Farmer et al., with mixed cultures of the 

Plasmid-bearing virulent strains of Y. enterocolitica (P+) and avirulent 

plasmidless derivatives (P-) strains. Average percent binding was 94% [10]. 
Our results showed that 64.3%, 92.2% of clinical Yersinia and Aeromonas 

isolates were able to bind crystal violet dye and 35.7%, 36.8% of 

environmental Yersinia and Aeromonas isolates were positive respectively. 

Paniagua et al. reported that 44 (49.5%) from 74 A. hydrophila isolated from 

rainbow trout fish were able to bind crystal violet dye [234]. 
 

Differences in virulence marker activities, possibly due to differences 

observed between strains isolated from different geographic locations and 

between different species and the loss of virulence factors during enrichment 

and plating. 

 

E. β- hemolysin production 
 

The results of this study showed that 93% of A. hydrophila were hemolysin 

producer and this is in agreement with previous reports. Subashkumar et 

al., reported that from 21 isolates of A. hydrophila tested 20 (95.2%) of them 

were hemolysin producers. The isolates varied in their ability to lyse the red 

blood cells of human origin. Overall 90.47, 4.76 and 4.76% isolates were 

beta, alpha and gamma hemolytic, respectively. Attention has been given on 

the hemolysin of motile A. hydrophila because the production of hemolytic 

toxin has been regarded as indication of pathogenic potential, though 

nonhemolytic aeromonads have also been implicated as human pathogens 

[238].  
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As defined by Wong et al., all A. hydrophila isolates with haemolysin positive 

genotype were virulent in the suckling mouse assay model. Burke et al., 

reported 97% correlation between hemolysin and enterotoxin production 

determined by suckling mouse test. It was found that all enterotoxigenic A. 

hydrophila isolates produced hemolysins [238].  
 

Sixty-eight (91.89%) A. hydrophila strains were hemolytic, as shown on blood 

agar reported by Paniagua et al., [234]. Mateos et al., showed that A. 

hydrophila isolates from the environment were avirulent for mice, whereas 

human isolates caused lesions and death in these laboratory animals [149]. 
 

5.8 Susceptibility of Yersinia enterocolitica and Aeromonas hydrophila 
to various antimicrobial agents 
 
Yersinia enterocolitica and Aeromonas hydrophila have emerged as an 

enteropathogen associated with several types of human infections that often 

require antimicrobial therapy, but little is known about the antimicrobial 

susceptibilities of these pathogenes in Gaza strip. 

 

In this study, total of 117 clinical isolates of Y. enterocolitica (14) and A. 

hydrophila (103) and a total of 90 environmental isolates (14 of Y. 

enterocolitica  and 76 A. hydrophila) were tested for their susceptibility to 

antibiotics. All isolates were tested by a standard disk diffusion method for 20 

antibiotics. The present study demonstrated a high susceptibility of clinical 

strains of Y. enterocolitica to most of the tested antibiotics. No major 

difference in susceptibility was observed between any of the isolates of 

human or environmental isolates included in this study. 

 

These results are in agreement with those of previous investigations; 

Rastawicki et al., demonstrated that almost all strains tested were resistant 

to ampicillin and cefazolin and susceptible to amoxycillin/clavulanate, 

cefaclor, cefamandole, cefuroxime, cefotaxime, ceftriaxone, aztreonam, 
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imipenem, gentamicin, amikacin, netilmicin, tetracycline, doxycycline, 

chloramphenicol, ciprofloxacin, sulphamethoxazole, trimethoprim, co-

trimoxazole and furazolidone. The only disagreement was with 

amoxicillin/clavulanate [ 248].  
 
Preton et al., showed that all strains tested were susceptible to ciprofloxacin 

and piperacillin, and 98% of the strains were susceptible to trimethoprim, 

sulfamethoxazole, cotrimoxazole, tetracycline, chloramphenicol, 

cefamandole, cefotaxime, aztreonam, and four aminoglycosides. In contrast, 

all strains were nonsusceptible to erythromycin, furazolidone, and 

clindamycin and 90% of the strains were non-susceptible to ampicillin, 

carbenicillin, ticarcillin, and cephalothin [249]. In agreement with our findings, 

Kwaga and Iversen reported that Yersinia isolated from slaughtered pigs 

and pork products in Canada in 1990 displayed little or no resistance to the 

aminoglycosides, cephalosporins (cefotaxime, ceftazidime, and ceftriaxone), 

imipenem, ticarcillin-clavulanic acid, aztreonam, ciprofloxacin, norfloxacin, 

trimethoprim-sulfamethoxazole, chloramphenicol, tetracycline, and co-

trimoxazole [249]. 
 
Our data showed that pathogenic Y. enterocolitica isolates were susceptible 

to co-trimoxazole, amikacin, gentamycin, ciprofloxacin and meropenem, they 

also indicate that the agents used traditionally to treat human infections, 

including co-trimoxazole, tetracycline, chloramphenicol, and the third 

generation cephalosporins, retained their high levels of in vitro activities. 

However, our results do not rule out the potential for this species, like other 

members of the family Enterobacteriaceae, to acquire decreased 

susceptibility to multiple antimicrobial agents and emphasize the need for 

continued surveillance of the susceptibility patterns of Y. enterocolitica and A. 

hydrophila from both human and animal sources.  

 

The spread of drug resistance among Aeromonas spp., is of concern 

because recent surveys indicate the emergence of these organisms as 

primary human pathogens. The presence of antibiotic resistant A. hydrophila 
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in natural habitats can pose a public health risk. Occurrence of multiple 

antibiotic resistant A. hydrophila in shoreline sediments, marine waters and 

shellfishes has been recognized as an important public health hazard. The 

prevalence of such multiple antibiotic resistant organisms in food and water is 

of considerable significance in relation to public health. Multiple antibiotic 

resistance of A. hydrophila strains from organs of infected catfish, Clarius 

batrachus has been reported [127,218 ].  
 

In this study, the frequency of resistance to some antimicrobial agents was 

much greater than previously reported. In other studies, frequency of 

resistance was exhibited against ampicillin followed by streptomycin, 

chloromphenicol and nalidixic acid. But all isolates exhibited susceptibility to 

tetracycline. Strains of Aeromonas spp. also showed high frequency of 

resistance to vancomycin, novobiocin, rifampicin and methicillin. Son Radu 
et al., have reported resistance towards chloromphenicol, erythromycin, 

kanamycin, nalidixic acid, streptomycin, sulphamethoxazole - trimethoprim 

and tetracycline among A. hydrophila isolates from cultured fish. Pettibone 
et al., reported the susceptibility of Aeromonas spp. to chloromphenicol, 

erythromycin, kanamycin, polymyxin-B, streptomycin and trimethoprim. 

These antibiotics are generally active agents against strains of Aeromonas 

[250].  
 

Jones and Wilcox showed that aztreonam and the carbapenems, imipenem 

and meropenem remain highly active. Although resistance to the first and 

second generation cephalosporins is variable, more than 90% of Aeromonas 

spp. are susceptible to the third generation agents. While most strains are 

susceptible to chloramphenicol, ciprofloxacin, co-trimoxazole and the 

aminoglycosides, the activity of amoxycillin/clavulanate and the 

acylureidopenicillins is inconsistent [218].  
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Imipenem and meropenem are also extremely active against all Aeromonas 

spp. Meropenem is generally more active than imipenem. More than 90% of 

Aeromonas spp. are susceptible to the third generation cephalosporins, such 

as cefotaxime, cefoperazone, cefpirome and ceftazidime. The activity of the 

first and second generation cephalosporins differs more widely between the 

three clinically important species of Aeromonas [218]. 
 

Subashkumar et al., reported that A. hydrophila isolates from children with 

acute diarrhea exhibited resistance to bacitracin (95.2%), novobiocin 

(95.2%), vancomycin (90.5%), methicillin (85.7%), cefazoline (85.7%), 

kanamycin (81%), rifampicin (76.2%), erythromycin and tetracycline (71.4% 

each) and nalidixic acid (62%). All the isolates were resistant to ampicillin as 

has been reported earlier [251]. The isolates exhibited susceptibility to 

polymyxin B (95.3%), chloramphenicol (90.5%) and gentamicin (76.2%). 

Earlier studies revealed the incidence of chloramphenicol resistance strains 

[238].  
 

Most of the isolates were from the high risk source contamination like fecal-

oral contamination. Due to indiscriminate use of antibiotics; the 

microorganisms might have developed resistance towards several antibiotics. 

Differences in resistance patterns were observed between strains isolated 

from different geographic locations and between different species. 

 

Antibiotic resistance in Aeromonas spp. poses a potential problem in the 

antimicrobial therapy of infections caused by these organisms. From our 

results, it is wise to avoid the use of broad-spectrum ampicillins, 

amoxycillin/clavulanate, co-trimethoprim, first and second generation of 

cephalosporins as first choice agents, particularly for invasive infections. 

Fluoroquinolones such as ciprofloxacin and Intravenous cefotaxime and 

meropenem are recommended for the treatment of serious Aeromonas 

infections. Ciprofloxacin and ofloxacin are good choices for oral therapy. 
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CHAPTER 6 
 

CONCLUSIONS AND RECOMMENDATIONS 
 

 
6.1 Conclusions 
 

To our knowledge, this is the first study that investigated the occurrence of Y. 

enterocolitica and A. hydrophila in clinical, food and environmental samples 

in Palestine. 

 

 

1. The results of this study confirmed the presence of pathogenic Y. 

enterocolitica and A. hydrophila in clinical, food and environmental samples. 

 

2. Conventional microbiological techniques used in the present study were 

shown to be an efficient tool for isolating and identifying both Y. enterocolitica 

and A. hydrophila isolates. 

 

3. The percentages of Y. enterocolitica and A. hydrophila in clinical samples 

(diarrheal stool) were 4.7% and 34.3% respectively with no isolates from 

appendiceal samples collected from 8 hospitals located in various parts of 

Gaza strip and examined with enrichment and selective culture procedures. 

Other enteropathogenes, Salmonella (1%) and Shigella (1%) were recovered 

from the same samples. 

 

4. The age group 2-6 years was shown to have the highest incidence rates of 

Y. enterocolitica and A. hydrophila infection.  
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5. Al-Dorrah hospital showed the highest incidence rate of Y. enterocolitica 

(21.4%) while Al-Nasser hospital showed the highest incidence of A. 

hydrophila (44.6%). 

 

6. The results showed the presence of Y. enterocolitica and A. hydrophila in 

milk samples with high level of Y. enterocolitica (16.7%) in cow's milk, and 

66.7% of A. hydrophila in goat's milk. 

 

7. From meat samples we obtained an average of 6.7% of Y. enterocolitica 

and 48.9% of A. hydrophila with high incidence of Yersinia in turkey's and 

cow's meat samples and high incidence of Aeromonas in most meat 

samples. 

 

8. Y. enterocolitica and A. hydrophila were isolated from 32 various water 

samples. The isolation rate was 6.25% for Y. enterocolitica and 46.9% for A. 

hydrophila with the highest incidence in tap and well water. 

 

9. Y. enterocolitica and A. hydrophila were also found in sewage samples 

with isolation rate 12% of Y. enterocolitica and 42% of A. hydrophila. The 

high isolation rate was in Al-Nasser hospital. Other two environmental 

Yersinia species, Yersinia kristensenii (7.7%) were recovered from the same 

samples. 

 

10. Y. enterocolitica (11.5%) and A. hydrophila (38.5%) were also detected in 

animal excreta samples from different animals in Gaza strip. The highest 

occurrence of Y. enterocolitica was in cow's excreta, while goat's excreta 

showed the highest incidence of A. hydrophila. 
 

11. The CIN agar used in this study provided the most effective medium for 

the recovery of Y. enterocolitica and A. hydrophila from clinical and food 

samples. The confirmation rate of identification of presumptive Y. 

enterocolitica and A. hydrophila from CIN was 100%.  
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12. This study showed that direct plating on CIN agar after treatment with 

KOH treatment was more efficient than the widely accepted method of cold 

enrichment in PBS and overnight enrichment in TSB for the detection of Y. 

enterocolitica and A. hydrophila from clinical and food samples. 

 

13. KOH method has the following advantages: (i) it uses a single enrichment 

medium, (ii) it eliminates 1 day of enrichment and another for the 

presumptive isolation, and (iii) it uses a single medium (CIN) for direct 

detection and isolation. This procedure is a practical alternative to many 

other recovery methods (PBS, TSB) which require significantly more time for 

completion, reducing the time required for detection up to 72 h by TSB and 

up to three weeks by PBS. 

 

14. Virulence factors were detected among clinical isolates as well as among 

isolates from other sources with higher frequency in clinical isolates. 

 

15. Y. enterocolitica retained its susceptibility to antimicrobials traditionally 

used treat human infections, including cotrimoxazole, tetracycline, 

chloramphenicol, and the aminoglycosides (amikacin, gentamicin). 

 

16. High incidence of multiple drug resistant and β- hemolysin producing A. 

hydrophila was noticed. 
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6.2 Recommendations 
 
In light of the result of this study and the above listed conclusions, the 

following actions are recommended. 

 

• Further epidemiological studies are necessary to elucidate the public health 

significance of infections caused by Y. enterocolitica and A. hydrophila. 

 

• The results of the present investigation suggest that further epidemiological 

studies are necessary to elucidate the public health significance of Yersinia 

and Aeromonas in food and water samples. 

 

• Further studies are also needed to determine contamination routes and 

transmission pathways of Yersinia and Aeromonas.  

 

• Further studies are needed to assess the clinical significance of the 

virulence factors in both food and water isolates. 

 

• More studies should be performed to indicate the relative importance of Y. 

enterocolitica and A. hydrophila in acute diarrhea in Gaza strip in both 

humans and animals. 

 

• Further careful epidemiologic studies are needed to determine the impact 

of restriction of antimicrobial use in limiting the spread of multi-drug 

resistance Aeromonas. 

 

• Y. enterocolitica and A. hydrophila isolation and identification services 

should be offered by the Ministry of Health Laboratories (Both medical and 

food microbiology laboratories). 
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• We thus recommend the direct plating on CIN agar after KOH treatment 

method for routine Yersinia and Aeromonas screening and propose that this 

method could be used to detect the occurrence of Yersinia and Aeromonas in 

clinical and environmental samples.  

 

• This study indicates that the rate of Y. enterocolitica and A. hydrophila is 

high in cow's meat and cow's excreta. This may suggests that the Monitoring 

Authorities to take serious procedures in order to protect consumers from the 

presence of Y. enterocolitica and A. hydrophila. 

 

The author would like to recommend the establishment of a local culture 

collection for the preservation of local isolates. 
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