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Abstract 

 A sequential dependency occurs when the response on the current trial is correlated with 

responses made on prior trials. Sequential dependencies have been observed in a variety of both 

perception and memory tasks. Thus, sequential dependencies provide a platform for relating 

these two cognitive processes. However, there are many issues associated with measuring 

sequential dependencies and therefore it is necessary to develop measurement models that 

directly address them. Here, several measurement models of sequential dependencies for both 

binary and multi-interval response tasks are described. The efficacy of the models is verified by 

applying them to simulated data sets with known properties. Lastly, the models are then applied 

to real-world data sets which test the critical assumption that the underlying processes of 

sequential dependencies are modulated by attention. The models reveal increased vigilance 

during testing decreases the degree of sequential dependencies. 
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Chapter 1                                                                                                                                          

An Overview of Sequential Dependencies in Perception and Recognition 

Suppose you are the witness to a crime and the police subsequently ask you to identify 

the perpetrator in a photographic lineup. When you arrive at the police station, you are presented 

with pictures of non-suspects, called “fillers”, along with the actual suspect. Your task is to 

identify the suspect as the perpetrator and reject the fillers. There is an extensive body of 

research on how eyewitness lineups should be designed and performed. Steblay, Dysart, and 

Wells (2011) suggest that photographic lineups should be presented sequentially in contrast to 

being presented all at once. Imagine that you are given one of these sequential lineups and on the 

first trial you are presented with a filler person. You correctly reject the person as not being the 

perpetrator. On the next trial, the perpetrator’s mug-shot is presented, however, you mistakenly 

reject the person depicted in the photograph as not being the one who committed the crime. Why 

did you make this mistake? One plausible reason is that you simply did not recognize the person 

in the photograph as being the perpetrator. A less obvious reason is that your previous response 

influenced your current response; because you said “No” on the first trial, you were more likely 

to say “No” on the subsequent trial. This is an example of a sequential dependency.   

Sequential dependencies have been studied in a wide variety of perception including 

absolute identification (Stewart, Brown, & Chater 2005) categorization (Jones, Love, & Maddox, 

2006), and perceptual detection (Howarth & Bulmer, 1956). Several models of sequential 

dependencies have been proposed in the perception literature (e.g. Treisman & Williams, 1984; 

Stewart, Brown, & Chater, 2005; Petrov & Anderson, 2005; Brown, Marley, Donkin, & 
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Heathcote, 2008).  There has been considerable debate regarding the locus of sequential 

dependencies. For example, Treisman and Williams (1984) proposed sequential dependencies 

were the result of non-random changes in response bias across test trials. On the other hand, 

Annis and Malmberg (2013) proposed a model of sequential dependencies in recognition 

memory that assumes stimulus information from the previous trial carries over to next trial. 

Although these models may propose different mechanisms to produce sequential dependencies, a 

commonality of these models is that they all contain a memory component in which some type of 

information about the previous trials is stored. This is not too surprising if one considers the long 

historical relationship between models of memory and models of perception that can be traced 

back as far as Miller’s (1956) famous paper on capacity limitations. For example, Signal 

Detection Theory (Green & Swets, 1966) was originally designed to distinguish between 

changes in bias vs. changes in discriminability in perception tasks, but was later applied to 

recognition memory tasks. This relationship is not limited to decisional models like Signal 

Detection Theory (SDT). Indeed, at the process level, the Generalized Context Model (Nosofsky, 

1986) was developed in order to simultaneously account for perceptual categorization and 

recognition memory tasks.  

1.1. Sequential Dependencies in Perceptual Detection 

 One of the first perception tasks in which sequential dependencies were studied was in a 

perceptual detection task (Howarth & Bulmer, 1956). In this task, the participant is presented 

with tones or light that vary in intensity. The task of the participant is to respond “Yes” when 

they detect the signal and “No” otherwise. Howarth and Bulmer found the probability of a “No” 

response increases when the previous response was a “No” response vs. if the previous response 

was a “Yes” response (Figure 1.1). This positive correlation between the current response and 
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previous response is known as assimilation or a positive sequential dependency. Assimilation has 

also been observed in other perception tasks including absolute identification (Stewart, Brown, & 

Chater 2005) and categorization (Jones, Love, & Maddox, 2006). 

Previous Response

YYY YY Y N NN NNN

P
(N

)

0.0

0.5

1.0

 

Figure 1.1. Results of Howarth and Bulmer (1956). There is a positive correlation between the 

previous response and the current response.  

A task that is very similar to perceptual detection, but is a memory task, is a yes/no 

recognition memory task. In this task, the participant is usually presented with a list of to-be-

remembered words. Following the study list, a test list is presented that is composed of words 

that were studied and words that were unstudied. The task of the participant is to respond “Yes” 

to studied words, and “No” to unstudied words. These stimulus-response combinations are 

known as hits and misses, respectively. Studied words are sometimes referred to as targets, while 

unstudied words are referred to as foils. 

Thus, both perceptual detection and yes/no recognition tasks have the same decisional 

structure in that they are both binary choice tasks. That is, in both tasks, participants make one of 



4 

 

two responses on each trial, “Yes” or “No.” If we assume that tasks that share the same 

decisional structure also share the same decisional process, then any differences in the patterns of 

sequential dependencies that are observed between tasks of perception and tasks of memory are 

not due to differences in decisional process, but are due to differences in the cognitive processes 

of perception and memory. Figure 1.2 shows a schematic of this concept. The output of 

mnemonic and perceptual processes is mapped by a decisional process onto some response 

structure. If the response structures of the memory and perception tasks are the same, then this 

decisional process is assumed to also be the same for both tasks. Thus, any differences in the 

patterns observed between tasks cannot be due to differences in decisional process, but must be 

due to differences in the cognitive processes of memory and perception. 

 

Figure 1.2. Schematic depicting the mapping of the output of the cognitive processes of memory 

and perception onto a response structure.  

1.2. Sequential Dependencies in Yes/No Recognition 

 Although both perceptual detection and yes/no recognition are similar to the extent that 

they share the same response structure, there are key differences that must be considered. For 

example, in a perceptual detection task, every trial presented is a test trial. That is, on every trial, 

the participant must make a response to some event. On the other hand, in yes/no recognition, a 
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study list is presented in which participants do not make a response. The importance of this 

consideration becomes readily apparent when one considers the classic recognition priming 

literature of Ratcliff and McKoon (1978) in which they found that when the study order was 

equal to the test order, a recognition priming effect occurred, and responses were faster than 

when study and test orders were different. Schwartz et al. (2005) proposed that testing an item 

brings to mind items that occurred at nearby serial positions on the study list. Both of these 

accounts are types of the enhanced memory hypothesis of sequential dependencies. For example, 

consider Figure 1.3. Suppose items “Candle” and “Lamp” are studied at nearby serial positions 

and are then tested consecutively. If “Candle” is recognized and the participant responds “Yes” 

(this is also known as hit), according to Shwartz et al., this brings to mind items that were studied 

at nearby serial positions, namely “Ocean” and “Lamp”. Thus, on the next trial, the probability 

of a “Yes” response to “Lamp” increases given the previous item was recognized as being 

studied. In other words the probability of a hit increases when there was a hit on the previous 

trial. On the other hand, if “Candle” is not recognized, then those nearby items on the study list 

are not brought to mind and the subsequent item enjoys no benefit from the previous trial.  

 

Figure 1.3. According the Schwartz et al. (2005) recognizing an item brings to mind items that 

were studied at nearby serial positions.  
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However, we know that  in perceptual detection the probability of a “Yes” response is 

more likely following a “Yes” response than a “No” response. Thus, according to an assimilation 

hypothesis, study order should not matter. The probability of a hit should be greater when 

following a hit than when following a miss regardless of the study and test order sequence. Thus, 

there are two competing hypotheses of sequential dependencies in yes/no recognition: 

assimilation and enhanced memory access.  

In order to test these hypotheses, we presented participants with a study list of 80 pairs of 

words (Malmberg & Annis, 2012). Following the study list, each item from the pair was 

consecutively tested along with foils. We refer to this condition as the near pair condition. An 

abbreviated example of the study and test list is shown in Figure 1.4 below. According the 

enhanced memory hypothesis, sequential dependencies should be observed in this condition. 

Specifically, the probability of a hit following a hit should be greater than the probability of a hit 

following miss. The assimilation hypothesis makes the exact same prediction. 

 

Figure 1.4. The near pair condition in which each item from the studied pair is tested 

consecutively. 
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In another condition, participants were again presented with pairs of words, but unlike the 

near pair condition, there were at least six intervening items between each item from the pair 

during test (see Figure 1.5). This condition we refered to as the distant pair condition. For this 

condition, the enhanced memory hypothesis predicts no sequential dependencies should occur. 

Specifically, the probability of a hit should be roughly the same regardless of whether it followed 

a hit or a miss. However, the assimilation hypothesis makes the same prediction as in the near 

pair condition – the probability of a hit is greater when following a hit than when following a 

miss. 

 

Figure 1.5. The distant pair condition in which there were at least six intervening items between 

each item from a given studied pair. 

The results of the experiment are shown below in the left panel of Figure 1.6. In both the 

near pair and distant pair conditions, the probability of a hit following a hit was greater than the 

probability of a hit following a miss. Thus, this pattern of results is inconsistent with the 

enhanced memory hypothesis, but is consistent with the assimilation hypothesis. An even 

stronger test of the enhanced memory hypothesis is to look for sequential dependencies that exist 

between words that were not studied. If the word was not studied then a recollective process 

could not be involved in producing a sequential dependency. The right panel of Figure 1.6 shows 
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that a “yes” response to an unstudied item is more likely following a “yes” response than a “no” 

response. This pattern was found in the near and distant pair condition. These results were 

replicated with pictures, nonwords, and in single-item study. Thus, these data are inconsistent 

with the enhanced memory hypothesis.   
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Figure 1.6. Results of near pair and distant pair conditions. The results are inconsistent with the 

enhanced memory access explanation of sequential dependencies.  

The results are consistent with an assimilation hypothesis of sequential dependencies and 

inconsistent with the enhanced memory hypothesis; the probability of a “Yes” response was 

found to be greater when followed by “Yes” response than when followed by a “No” response 

regardless of the study-test-order mapping. Thus, the previous finding of Schwartz et al. may 

have been part of a broader pattern of assimilation. These positive sequential dependencies are 

similar to those found in perceptual detection.   
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1.3. Sequential Dependencies in Absolute Identification 

As previously noted, there are a wide range of perception tasks besides perceptual 

detection in which sequential dependencies have been observed. In this section, I will focus on a 

task known as absolute identification. The reason for this is three-fold. Firstly, the sequential 

dependencies found in absolute identification are robust. Secondly, sequential dependencies have 

been extensively studied in absolute identification. Finally, there is an historical relationship 

between absolute identification and memory that dates back to Miller’s (1956) paper on capacity 

limitations. 

In an absolute identification task, the participant is presented with stimuli that vary along 

a single dimension. For example, the stimuli might be lines that vary in length. Each stimulus has 

an associated corresponding response. For example, Figure 1.7 shows that the smallest line 

length corresponds to a response of “1.” The largest line length corresponds to a response of 

“10.” The participant is usually given a series of practice trials with feedback until a given level 

of accuracy is achieved.  

 

Figure 1.7. Example stimuli and their corresponding responses in an absolute identification task. 

Assimilation is a robust finding in absolute identification. For example, suppose that a 

large line corresponding to a response of “10” is shown on trial 1 and the participant correctly 

identifies the stimulus as such. On the subsequent trial, suppose that a much shorter line is shown 
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that corresponds to a response of “1.” When the previous response/stimulus is greater than the 

current stimulus, participants tend to overestimate the current stimulus value. That is, 

participants assimilate toward the previous stimulus/response. This is usually represented 

graphically by plotting the error on the current trial as a function of the previous stimulus and the 

current stimulus. The left panel of Figure 1.8 shows the results of Ward and Lockhead (1970) in 

which participants were presented with an absolute identification task. The stimuli were tones 

that varied in decibel level. Small stimuli are generally overestimated, indicated by positive 

error, and large stimuli are underestimated, indicated by negative error. More importantly, the 

left panel of Figure 1.8 also shows that as the previous stimulus increases participants 

increasingly overestimate the current stimulus value. Thus, participants assimilate toward the 

previous stimulus. 

Another type of sequential dependency that is found in absolute identification is known 

as contrast. Unlike assimilation, which is a positive correlation between the previous 

stimulus/response and the current response, contrast is a negative correlation. Contrast is usually 

found between trial n and n-j, where j is referred to as lag and is greater than 1. The right panel 

of Figure 1.8 again shows the results of Ward and Lockhead (1970). At lags of 1, assimilation is 

present, however, at lags of 2 and greater, this pattern reverses. This is contrast. Thus, 

participants respond towards the previous stimulus and away from the stimuli that occur more 

than 1 trial back. 

A task that is very similar to absolute identification, but is found in the recognition 

memory literature is known as a judgment of frequency task. In this task, participants are 

presented with a study list in which items are repeated a various number of times. 
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Figure 1.8. The left panel shows assimilation in an absolute identification task. The right panel 

shows contrast at lags greater than 1 in absolute identification. Points are estimated from the 

original figure found in Ward and Lockhead (1970). 

For example, 10 stimuli may be presented 1 time, 10 other stimuli may be repeated 2 

times, and so on. At test, the task of the participant is to determine the number of times each 

stimulus was presented. Thus, the response structure of absolute identification and judgments of 

frequency are the same. However, a different pattern of sequential dependencies arises from each 

task. Figure 1.9 shows the results of Malmberg and Annis (2012). In absolute identification (left 

panel), there is assimilation towards the previous stimulus and contrast at lags greater than 1, 

however, in judgments of frequency only assimilation is observed (right panel). Thus, if we 

assume that tasks that share the same decisional structure share the same decisional process, then 

the differences in the patterns of sequential dependencies that are observed between absolute 
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identification and judgments of frequency are due to differences in the perceptual and mnemonic 

processes.  
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Figure 1.9. The left panel shows the results of the absolute identification task. The right panel 

shows the results of judgment of frequency task. Assimilation is present in both data sets at lags 

of 1. Contrast is present in the absolute identification task, but not in the judgment of frequency 

task. 

1.4. A Process Model of Sequential Dependencies in Judgments of Frequency 

Annis & Malmberg (2013) developed a model that captures the patterns of sequential 

dependencies seen in recognition memory. We chose to do this within the Retrieving Effectively 

from Memory framework (REM; Shiffrin & Steyvers, 1997). REM assumes that memory traces 

are represented as vectors of w geometrically distributed, features values. The environmental 

base rate of feature values is determined by the geometric distribution parameter g. When an 

item is studied, its lexical/semantic trace is activated, and t attempts to store a feature to an 
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episodic trace are made. Figure 1.10 gives an example in which the word “DOG” is presented at 

study. This activates the semantic memory trace associated with “DOG” and is then copied to 

episodic memory.  

 

Figure 1.10. Studying an item activates the semantic memory trace which is then copied to 

episodic memory. 

However, this copying process is not perfect. Sometimes a failure to store a feature in the 

episodic trace will occur. This assumption is formalized in the model by assuming the 

probability that a feature will be stored is u*. In addition to storage failures, the model also 

assumes copy errors take place as well. This is formalized by assuming features are copied 

correctly from the lexical/semantic trace with probability c. If the feature is not copied correctly, 

then the stored value is drawn randomly from the geometric distribution. Thus, the episodic trace 

is usually a noisy and incomplete copy of the semantic trace. 

During single item recognition, the test item’s associated lexical/semantic trace serves as 

the retrieval cue. The retrieval cue is matched in parallel against episodic traces stored during 

study. This global matching process is graphically represented in Figure 1.11. For each episodic 

trace, the odds that the item was studied is computed. The odds represent the familiarity strength 

of the tested item. The odds are then compared to a criterion. If the odds are greater than the 

criterion value, an “Old” response is given, otherwise a “New” response is made. Multiple 

criteria values can be assumed for tasks involving multi-interval response sets. 
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Figure 1.11. The retrieval cue is globally matched to an activated episodic memory set. The 

result is the log odds that the item was studied. This is the familiarity strength of the test item. 

In order to model assimilation, Annis and Malmberg assumed that on each trial, there is a 

probability, 1-a, that a carryover process occurs in which features from the retrieval cue on the 

previous trial carry over to the retrieval cue on the current trial (cf. Huber, Shiffrin, Lyle, & 

Ruys, 2001). Therefore, as the a parameter increases, the number of trials in which carryover 

occurs decreases. Figure 1.12 shows an example of how the model works. Suppose on trial 1, the 

word DOG is presented. On trial 2 the word SHOE is presented, but features from the previous 

trial carry over. This is illustrated by the red arrows in Figure 1.12. Thus, the odds on trial 2 will 

be correlated with the odds on trial 1 resulting in response assimilation. On trial 3, with 

probability a, no carry over occurs. Thus, the response on trial 3 will be independent of previous 

responses. For readers interested in comprehensive fits of the model to judgment of frequency 

data, I refer them to our original manuscript (Annis & Malmberg, 2013). 
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Figure 1.12. A model of assimilation in the REM framework. On each trial, with probability 1-a, 

features from the previous retrieval cue carry over to the next trial.  No carryover occurs with 

probability, a. 
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Chapter 2                                                                                                                                   

A Bayesian Model of Sequential Dependencies in Yes/No Recognition 

Although sequential dependencies are robust and ubiquitous, and the model accounts for 

those found in recognition memory testing, there are inherent difficulties with measuring them 

within the frequentist architecture traditional to psychological research which I describe in 

section 2.3. The key problem that I identified is the ability of the models to separately measure 

sequential dependencies and shifts in response bias that occur between lists or individuals. The 

measurement issue is classically motivated insofar as researchers are often concerned with 

independently measuring bias and sensitivity. Here I will first describe this problem concretely 

and then I will provide several solutions within the frameworks of Bayesian Hierarchical models. 

I will show that these solutions provide independent measures of bias, sequential dependencies, 

and sensitivity. 

2.1. The Relationship between Bias and Sequential Dependencies 

List-wide bias may artificially inflate the amount sequential dependencies present in the 

data. To pick a trivial example, if the participant responds “Yes” on nearly every trial, then the 

probability of a “Yes” response following a “Yes” response will be close to 1.0. However, this 

does not reflect a sequential dependency, rather a bias to respond “Yes.” The key question is the 

extent to which the data reflect response bias or sequential dependencies.  

In a binary choice task, there are four different types of response dependencies. Let the 

probability of responding “Yes” following a “Yes” response be 𝑞𝑌𝑌, the probability of a “Yes” 
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response following a “No” response be 𝑞𝑁𝑌, the probability of a “No” response following a “No” 

response be 𝑞𝑁𝑁, and the probability of a “No” response following a “Yes” response be 𝑞𝑌𝑁. 

These probabilities can be represented in the following matrix which shows all the different 

types of current response and previous response combinations. 

 
Figure 2.1 Shows the probabilities associated with each current and previous response 

combination. 

An important property of this matrix is that each row sums to 1. Therefore, 𝑞𝑌𝑌 + 𝑞𝑌𝑁 = 1 and 

𝑞𝑁𝑌 + 𝑞𝑁𝑁 = 1. The relationship between sequential dependencies and bias can be described 

within this framework. The overall proportion of “Yes” responses is simply the average of the 

first column. 

Notice that as the probability of “Yes” responses increases, 𝑞𝑌𝑌 and 𝑞𝑁𝑌 also increase. Thus, if 

one were to compare the probability of repeating a “Yes” response across conditions of an 

experiment, there would be no way of knowing whether those differences were due to response 

bias, sequential dependencies, or both. However, if one were to develop a formal model one may 

interpret raw data within its framework. Therefore, the critical issue of this thesis is to develop 

and test a model that allows one to separately measure sequential dependencies and response bias 

 𝑃("Yes") =  
𝑞𝑌𝑌 + 𝑞𝑁𝑌

2
 . (2.1) 
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under a wide range of conditions and for several tasks in which bias and sequential dependencies 

may affect performance. 

One solution to the problem is similar to that of the classic problem of differentiating 

between response bias and sensitivity. In order to elucidate this similarity and perhaps glean an 

analogous solution to the problem, I will briefly outline the problem of differentiating between 

response bias and sensitivity. In a yes/no recognition test (see Chapter 1), there are two stimulus 

classes – studied items and unstudied items – to which there are two possible responses, “Yes” 

and “No”. A “Yes” response to a studied item is known as a hit. A “Yes” response to an 

unstudied item is a false alarm. A “No” response to a studied item is a miss, and a “No” response 

to an unstudied item is a correct rejection. The probabilities of the stimulus and response 

combinations can be represented with the following matrix. 

 

 

Figure 2.2. Stimulus-response matrix. 

The overall probability of a “Yes” response can be calculated by averaging the probability of a 

hit and false alarms. 

 𝑃("Yes") =  
𝑃(𝐻𝑖𝑡) + 𝑃(𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚)

2
 . (2.2) 
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Notice that increases in the probability of “Yes” responses are confounded with increases in the 

hit rate. If the hit rate changed across conditions of an experiment it would not be possible to 

know whether the change was due to a change in the participant’s ability to distinguish studied 

from unstudied items or whether the change was due to changes in response bias. One solution to 

this problem involves “correcting” the hit rate by subtracting the false alarm rate (Snodgrass & 

Corwin, 1988). When this difference is 0, this indicates that hit and false alarm rates are equal, 

and thus the subject was unable to differentiate between studied and unstudied items. When this 

measure is 1, the subject had perfect discriminability between studied and unstudied items. This 

logic might be similarly applied to distinguish bias from sequential dependencies. The 

probability of a “Yes” response following a “No” response will be subtracted from the 

probability of a “Yes” response following a “No” response. In terms of Figure 2.1, this quantity 

is equal to 𝑞𝑌𝑌 − 𝑞𝑁𝑌. While this may be a simple measure, this solution is known to be 

confounded with bias and I do not consider it further (Snodgrass & Corwin, 1988).  

Another solution to differentiating between bias and sensitivity comes from the 

application of signal detection theory to recognition memory (Green & Swets, 1966). Signal 

detection theory assumes that when an item is tested, a continuous, random variable representing 

the familiarity strength of the item is generated. This random variable is assumed to be drawn 

from a normal distribution that corresponds to one of the two stimulus classes. The unstudied 

distribution has mean, 𝜇𝑁 and the studied distribution has mean 𝜇𝑆. The standardized difference 

between these two distributions is known as d’. If the variances of the target and foil 

distributions are equal, d’ can be estimated by calculating the difference between standardized hit 

and false-alarm rates.  

 𝑑′ =
𝜇𝑆 − 𝜇𝑁

𝜎
= 𝑧(𝐻𝐼𝑇) − 𝑧(𝐹𝐴). (2.3) 
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This measure is known to be independent of bias, under some conditions (Snodgrass & Corwin, 

1988; Macmillan and Creelman, 1991). A measure of bias, referred to as c, can be estimated as 

the midpoint between standardized hit and false-alarm rates. This measure of bias is also 

independent of sensitivity, under some conditions (Snodgrass & Corwind, 1988). 

However, the conditions under which these measures are independent are not satisfied by 

the recognition memory paradigm, and therefore various work-arounds were developed (Green 

& Swets, 1966; Egan, 1958). In any case, the important point is that under certain assumptions, it 

is possible to obtain independent measures of theoretically important constructs that are not 

revealed by raw observations. 

An analogous remedy can be applied to the problem of distinguishing between bias and 

sequential dependencies. To generalize the results above, it is not necessary to assume the 

underlying distributions represent familiarity strength. On the other hand, the important 

properties of these measures being independent of one another will still apply. I define a new 

measure, given below, that represents a measure of sequential dependencies independent of bias. 

Alpha is the difference in the tendency to respond “Yes” following a “Yes” response on 

the prior trial and following a “No” response on the prior trial. It measures the effect on the 

tendency to response “Yes” of the prior response.  

The same logic can be applied to a measure of bias that is independent of sequential 

dependencies. Equation 2.6 shows a measure of bias can be obtained by averaging over the z-

transformed proportion of “Yes” responses following “Yes” response and the z-transformed 

proportion of “No” responses following “Yes” responses. 

 𝑐 =
𝑧(𝐻𝐼𝑇) + 𝑧(𝐹𝐴) 

2
. (2.4) 

 𝛼 = 𝑧(𝑞𝑌𝑌) − 𝑧(𝑞𝑁𝑌). (2.5) 
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This measures the average tendency to respond “Yes”, without regard to the prior response. This 

is analogous to the measure of bias, c, in Equation 2.4.  

The first model I develop will estimate α and determine the effect size of the sequential 

dependency. The second model I describe, will simultaneously estimate both bias and sequential 

dependencies, and provide effect sizes for both. Before describing these models I will first argue 

why I am going to use a Bayesian approach. Although these measures can be calculated in the 

frequentist framework as simple point estimates, there are a plethora of advantages to the 

Bayesian approach which I outline in the next section. 

2.2. The Bayesian Approach 

There are a vast number of works that already describe Bayesian inference in detail and 

its many advantages (e.g. Gelman, Carlin, Stern, & Rubin, 2004; Jaynes, 2003; Kruschke, 2011; 

Lee & Wagenmakers, 2013; Rouder & Lu, 2005; Wagenmakers, Lodewyckx, Kuriyal, & 

Grasman, 2010). Therefore, I will provide an outline of some these arguments and refer the 

reader to those works listed above for a more rigorous and thorough discussion.   

In recent years, cognitive psychology has seen something akin to a “Bayesian revolution” 

in data analysis (e.g. Dennis, Lee, & Kinnell, 2008; Krushke, 2011; Lee, 2008; Lee & Webb, 

2005; Morey, Pratte, & Rouder, 2008; Pitt, Myung, & Zhang, 2002; Rouder, Lu, Speckman, Sun, 

& Jiang, 2005) and cognitive modeling (e.g. Anderson, 1991; Griffiths, Sanborn, Canini, 

Navarro, & Tenenbaum, 2011; Lee, 2006; Navarro, & Griffiths, 2008). Given the number of 

advantages the Bayesian approach has, this is not surprising. A root cause for these advantages 

may come from representing parameter estimates as probability distributions. By representing 

parameters as probability distributions it is easy to embed knowledge about parameters, via 

 𝑏 =
𝑧(𝑞𝑌𝑌) + 𝑧(𝑞𝑁𝑌) 

2
. (2.6) 
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priors, in said probability distributions. It also provides a principled way, via Bayes Theorem, to 

update our knowledge about parameters in light of new evidence. Because parameter estimates 

are treated as probability distributions and not point estimates, the Bayesian approach provides 

us with a measure of uncertainty about the estimated parameter values.  

There are also advantages that are specific to the problem of measuring sequential 

dependencies. The number of observations per cell is not predefined by the experimenter when 

measuring sequential dependencies because the number of observations per cell is dependent on 

the responses of the subject during testing and not on the experimental design. For example, the 

number of target trials following hits is inversely related to the number of target trials following 

misses. Therefore, if we ensure that the number of target trials following hits is high, then the 

number of target trials following misses will be low.  

The frequentist approach to estimating the parameters of probabilistic models is to use 

maximum likelihood estimation (MLE; see Rice, 1995) which gives the parameter value that 

maximizes the likelihood of the data. A low number of observations leads to less reliable 

maximum likelihood estimates. For example, after observing a single coin flip produce heads, 

the maximum likelihood estimate for the rate at which the coin produces heads is equal to 1. This 

is a rather rash decision to make considering only a single coin flip was made. As more coin flips 

are made we can become more and more certain of the estimate, but this uncertainty is not 

explicitly conveyed by the maximum likelihood estimate. However, the Bayesian approach takes 

the number of observations into account when determining the uncertainty of the parameter 

estimate. For example, if the number of observations is 1 and we have uninformative prior 

knowledge about the parameter estimate, then a single observation is usually not very likely to 

drastically change our belief about the parameter estimate. As the number of coin flips increases, 
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the influence of our prior knowledge about the parameter decreases and the updated parameter 

estimate (the posterior) increasingly reflects the proportion in the data. For a detailed, 

mathematical discussion of this point see Kruschke (2011). 

 Another problematic issue for the frequentist arises when applying the z-transform to 

rates that are 1 or 0. If the rate is 1 or 0, then the z-transformed value is positive or negative 

infinity, respectively. In order to circumvent this issue, the researcher must use some type of 

edge correction such as adding .5 to the hit and false alarm rate count (Snodgrass & Corwin, 

1988). This is not a problem for the Bayesian. This is because Bayesian inference can be 

implemented via Gibbs sampling which allows for the direct sampling of the posterior 

probability distribution, and although theoretically possible, given the nature of recognition data, 

it is unlikely that a rate of 1 or 0 will be sampled from the posterior distribution. It is also easy to 

implement constraints on the interval from which samples are drawn in order to ensure that 

infinite values are not a problem. 

 Finally, the Bayesian approach is hierarchical and allows the researcher to represent 

knowledge about parameter estimates at both the individual and group level simultaneously 

(Rouder & Lu, 2005). Group level estimates inform and constrain the individual estimates and 

the individual estimates inform the group. Thus, the parameter estimates for individuals inform 

the estimates for other individuals. This makes Bayesian inference resistant to outliers and is 

known as shrinkage (Kruschke, 2011). Given these advantages, the Bayesian approach will be 

used to address the issue of independently measuring bias and sequential dependencies. 

2.3. A Model of Binary Decisions 

Figure 2.4 depicts the graphical model of a Bayesian t-test with binomially distributed 

data (Wagenmakers et al., 2010). Each node represents a variable, while the arrows represent the 
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conditional relationships between each variable. Shaded nodes represent observed variables (i.e. 

the data), while unshaded nodes represent unobserved random variables. Nodes containing 

concentric circles represent variables defined by a deterministic function. The square 

surrounding the nodes is called a “plate” and represents independent iterations of the model for 

i…N subjects. Nodes outside the plate are not iterated for each subject, but are constrained by the 

entire group of subjects. The model can be implemented using the JAGS software (Plummer, 

2003). The JAGS code for the model can be found in Appendix A. 

 
Figure 2.3. Shows a Bayesian graphical model of sequential dependencies in binary choice tasks.  

I will describe the model in terms of “Old” vs. “New” responses, but the model could just 

as easily be described in terms of any binary response-set such as “Yes” vs. “No”, “High” vs. 
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“Low”, etc. Starting at the bottom left of the graphical model, the node, 𝑁𝑖
0, represents the 

number of “New” responses for subject i. Further up the graph, the node, 𝜃𝑖
𝑎 , is the rate at which 

a “New” response is followed by an “Old” response. Thus, the number of “Old” responses 

following “New” responses, 𝐾𝑖
01, can be modeled via a binomial distribution with rate 

parameter, 𝜃𝑖
𝑎 , and number of trials, 𝑁𝑖

0. Formally,  

Since we are interested in comparing the rate of “Old” responses following “Old” 

responses and the rate of “Old” responses following “New” responses, the number of “Old” 

responses, 𝑁𝑖
1,  is entered into the model (see the bottom right corner of the graphical model). 

The number of “Old” responses following “Old” responses, 𝐾𝑖
11, is binomially distributed with 

rate parameter 𝜃𝑖
𝑏 and number of trials, 𝑁𝑖

1. 

The goal of the model is to develop a measure of sequential dependencies that is independent of 

response bias. As detailed in section 2.1, this can be done by determining whether the z-

transformed rate of responding “Old” differs as a function of the previous response. In terms of 

the current model, this is the difference, 𝛼𝑖, between the z-transform of the rates, 𝜃𝑖
𝑏 and 𝜃𝑖

𝑎 .  

Instead of modeling the rates and applying the z-transformation as in Eq. 2.5, I directly model 

the z-transformed rates, 𝑧(𝜃𝑖
𝑎 ) and 𝑧(𝜃𝑖

𝑏 ), as normally distributed random variables, 𝜙𝑖
𝑎 and 𝜙𝑖

𝑏, 

respectively. Thus,  

In order to get back to the rate scale, the probit transformation is applied. The probit 

transformation can map any real number to the rate scale. Figure 2.4 shows the probit 

transformation maps, for example, a value of 0 on the probit scale to a value of .5 on the rate 

 𝐾𝑖
01 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃𝑖

𝑎 , 𝑁𝑖
0). (2.7) 

 𝐾𝑖
11 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃𝑖

𝑏 , 𝑁𝑖
1). (2.8) 

 𝛼𝑖 =  𝜙𝑖
𝑏 − 𝜙𝑖

𝑎 (2.9) 
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scale. Rearranging Eq. 2.9 and applying the probit transform, the following reparameterization 

for 𝜃𝑖
𝑏  is obtained: 

This will later allow estimates of effect size to be made. I assume that the differences between 

the transformed rates for each participant are drawn from a group-level normal distribution with 

mean 𝜇𝛼 and standard deviation, 𝜎𝛼. 𝜙𝑖
𝑎 is modeled as a normally distributed variable with 

group-level mean 𝜇𝜙
  and standard deviation, 𝜎𝜙. 

 
Figure 2.4. The probit function relates the rate scale and the probit scale. 

The next step in defining the model is to define the group-level priors. The group-level 

mean for the effect of the previous response on the current response is 𝜇𝛼
 . Instead of modeling 

𝜇𝛼
  directly, it is determined by the product of the effect size 𝛿𝛼 and the standard deviation 𝜎𝛼.  

This allows priors to be placed on the effect size, 𝛿𝛼. The prior I choose to place on 𝛿𝛼 is a 

weakly informative prior known as the “unit information prior” (Wagenmakers et al. , 2010; 

Kass and Wasserman, 1995) and contains as much information as a single observation. The 

 𝜃𝑖
𝑏 =  Φ(𝜙𝑖

𝑏)  =  Φ(𝜙𝑖
𝑎 +  𝛼𝑖). (2.10) 

 𝜇𝛼
 =  𝛿𝛼 × 𝜎𝛼, (2.11) 
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motivation for this is to conduct a type of Bayesian hypothesis test which is described in the next 

section. Following Wagenmakers et al. (2010) the priors placed on the variances 𝜎𝜙  and 𝜎𝛼 were 

reasonably uninformative uniform distributions. 

Finally, I assumed the group-level mean of the z-transformed rates of responding “Old” given a 

“New” response, 𝜇𝜙
 , followed a standard normal distribution. 

2.3.2. Measuring Changes in List-wide Bias and SDs. Having described the model, I will 

now describe how the model can be used to estimate the rate of sequential dependencies and 

test whether, for example, the rate of observing a “Yes” response is greater following a 

“Yes” response than when following a “No” response. These two analyses can be classified 

as parameter estimation and Bayesian hypothesis testing, respectively. In Section 2.5, I will 

test whether this model is valid measure of bias and SDs. 

Parameter estimation is carried out by estimating the 95% Highest Density Interval (95% 

HDI; Kruschke, 2011). The 95% HDI contains 95% of area under the posterior probability curve 

and which follows the constraint that any density estimate inside the interval is greater than any 

density estimate outside the interval. In addition to parameter estimation, Kruschke (2011) 

suggests the HDI can also be used in the context of hypothesis testing. Following the decision 

rule proposed by Kruschke (2011), parameter values falling within the 95% HDI are defined as 

“credible” while those falling outside the HDI are defined as “not credible.”  

Another method of testing a hypothesis within a Bayesian framework is to calculate the 

Bayes Factor. 

 𝜎𝜙, 𝜎𝛼~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 10). (2.12) 

 𝜇𝜙
  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1). (2.13) 
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where the numerator is the likelihood of the data under the null hypothesis and the denominator 

is the likelihood of the data given the alternative hypothesis. Thus, if 𝐵𝐹01 > 1 then the null 

hypothesis is more likely than the alternative. If  𝐵𝐹01 < 1 then the alternative hypothesis is 

more likely than the null. It can be shown that the the ratio of the height of the posterior 

probability and prior probabilities is the Bayes Factor. This is known as the Savage-Dickey Ratio 

Test (Dickey, 1971; Wagenmakers et al., 2010). In the context of the model described above, I 

test the hypotheses that the effect size is equal to zero (i.e. 𝛿𝛼 = 0) vs. the hypothesis that the 

effect size is not equal to zero (i.e. 𝛿𝛼 ≠ 0).  

2.4. Simulating Binary Data with a Markov Chain 

It often useful to test a model’s ability to measure what it intends to measure with data 

having known properties. In order to generate the data set to test the model, I will employ the use 

of a Markov chain to create simulated data with known properties. For a comprehensive 

treatment of Markov chains I refer the reader to Kemeny and Snell (1976). A Markov chain is a 

series of discrete time steps each associated with a random variable, 𝑋𝑡, whose outcome only 

depends on the previous time step, t-1. Thus,  

where i = {1,…m}, and m is the total number of states. A state transition diagram is a graphical 

representation of a Markov chain. The diagram depicted below shows a Markov chain with two-

states, Y and N, and the associated state transitions.  

 

 𝐵𝐹01 =
𝑃(𝐷|𝐻0)

𝑃(𝐷|𝐻1)
, (2.14) 

 

𝑃(𝑋𝑡 = 𝑖0 |𝑋𝑡−1 = 𝑖1) 

 = 𝑞𝑖0,𝑖1
,                    

(2.15) 
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Figure 2.5. State transition diagram of a two-state Markov chain. 

The probability of transitioning from state Y, at time t -1, to state Y, at time t, is 𝑞𝑌𝑌. The 

probability of repeating state N is 𝑞𝑁𝑁. The probability of transitioning from state Y, at time t-1, 

to state N, at time t, is 𝑞𝑌𝑁, and the probability of transitioning from state N to state Y is 𝑞𝑁𝑌. All 

of these state transitions can be compactly represented in a matrix. This matrix is known as the 

transition matrix. The transition matrix, Q, for the state diagram above is 

where each row must sum to 1. The overall distribution of each state is given by a row vector, v, 

known as the state distribution vector, whose elements must also sum to 1. The state distribution 

vector represents the probabilities of the system being in each particular state. 

Multiplying the transition matrix by the state distribution vector results in the state 

distribution at t + 1. For example, suppose the transition matrix is 

and the state distribution vector at time t is 

If the transition matrix is multiplied by the state distribution vector, the state distribution at time, 

t + 1 is obtained. 

 𝑄 = [
𝑞𝑁𝑁 𝑞𝑁𝑌

𝑞𝑌𝑁 𝑞𝑌𝑌
], (2.16) 

 𝑣 = [𝑞𝑁 𝑞𝑌]. (2.17) 

 [
. 6 . 4
. 8 . 2

], (2.18) 

 [. 3 .7]. (2.19) 

 [. 3 .7] [
. 6 . 4
. 8 . 2

] = [. 74 .26]. (2.20) 
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We can repeat this process to find the state distribution at the next given time step by multiplying 

the new state distribution vector with the transition matrix. 

If one wanted to find the state distribution vector 100 steps into the future this process would be 

quite cumbersome. A much easier way to find the state distribution at some time step, n, is to 

raise the transition matrix by n and multiply it by the state transition vector. For example, if n 

were 20 then the state distribution vector at time step 20 is given by 

An important property of the Markov chains described here is that as the number of time 

steps increases, the state distribution stabilizes.  In order to give a concrete example, suppose we 

wish to find the state distribution at n = 100 using the given state distribution and transition 

matrix below.  

Notice the state distribution vector did not change (or changed insignificantly) between 20 and 

100 time steps. This state distribution vector is known as the steady state vector. It should be 

noted that with large enough time steps, this method will return the same steady state vector 

regardless of what the initial state distribution vector is.  

2.4.1. Simulation Details. In order to simulate a data set with no bias, but with sequential 

dependencies, I used the transition matrix Q described above and set 𝑞𝑁𝑌 =  .2 and 𝑞𝑌𝑌 = .8. 

 [. 74 .26] [
. 6 . 4
. 8 . 2

] = [. 652 .348]. (2.21) 

 [. 3 .7] [
. 6 . 4
. 8 . 2

]
20

= [. 67 .33]. (2.22) 

 [. 3 .7] [
. 6 . 4
. 8 . 2

]
100

= [.67 .33] (2.23) 

 𝑄 = [
. 8 . 2
. 2 . 8

], (2.24) 



31 

 

The steady state of the transition matrix can be found by applying the method above (see 

Kemeny and Snell for the analytic method). Again, the state distribution vector is arbitrary and 

will return the same steady state no matter what it is. 

Thus, the overall proportion of this Markov chain will have an equal proportion of Y states and 

N states. The transition matrix used to generate a data set with both bias and sequential 

dependencies had 𝑞𝑁𝑌 =  .6 and 𝑞𝑌𝑌 = .8. Thus, the transition matrix for this data set was 

The overall proportion of Y states was therefore .75. The transition matrix for the data set 

containing no bias and no sequential dependencies was  

Obviously, the proportion of Y states was also .5. Finally, the transition matrix for the data set 

containing bias, but no sequential dependencies was 

Thus, the probability of a Y state was .8. In order to generate the chain I implemented the 

Markov chain in R (see Appendix B for the R code) using a chain length of 500 for 20 subjects. 

The algorithm is as follows: 

1. Sample row i of the transition matrix according to a uniform distribution. The row 

number, i, corresponds to the state of the Markov chain at time t-1.  

2. Given the row vector sampled on the previous step, sample the state corresponding to 

column j. The column number, j, corresponds to the state of the Markov chain at time t. 

3. Sample row j of the transition matrix. 

 [.1 .9] [
. 8 . 2
. 2 . 8

]
500

= [. 5 .5] (2.25) 

 𝑄 = [
. 4 . 6
. 2 . 8

], (2.26) 

 𝑄 = [
. 5 . 5
. 5 . 5

], (2.27) 

 𝑄 = [
. 2 . 8
. 2 . 8

], (2.28) 
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4. Set t = t + 1 

5. Repeat steps 2 through 4. 

2.5. Tests of the Binary Model with Simulated Data 

In this section, I will take data generated from the Markov model described in Section 2.4 

to test the model described in Section 2.3. In all simulations, 20 chains, each 50 elements long 

were generated. The model was implement using the open-source JAGS software (Plummer, 

2003). To run this model, three chains, each consisting of 53,000 samples, were generated. The 

chains were visually checked for convergence and the first 3000 burn-in samples were discarded. 

The panels of Figure 2.6 show the results of four tests of the model in which combinations of 

bias and sequential dependencies were either present or absent in the simulated data. In the 

Bayesian t-test, the height of the posterior distribution over zero of the effect size, 𝛿, and the 

height of prior distribution over zero are computed. The prior distribution is normal with a mean 

of 0 and standard deviation of 1. This is known as the “unit information prior” and carries with it 

the amount of information provided by one observation (Kass and Wasserman, 1995).  The ratio 

of the height of the posterior density and prior density over zero gives the Bayes Factor, of the 

effect size, 𝛿, at zero. Bayes Factors greater than 1 indicates support for the hypothesis that the 

effect size, 𝛿, is equal to 0. Bayes Factors less than 1 indicate support for the hypothesis that the 

effect size is greater than or less than 0. 

The top left panel of Figure 2.6 is the result of a simulation of Markov chain which 

contained no bias, but did contain sequential dependencies. Specifically, the probability of an 

“Old” or a “New” response were both set to .5. The probability of an “Old” response given an 

“Old” response was set to .8, and the probability of an “Old” response given a “New” response 

was .2.  The top left panel shows the posterior and prior densities for 𝛿. The dots represent the 
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height of the posterior and prior densities at zero. The height of posterior density of 𝛿 at zero is 

lower than the height of the prior density at zero. This indicates that the data decreased the 

support for the hypothesis that the effect size, 𝛿 is equal to zero. Thus, the model correctly 

detected the sequential dependencies in the data.  

The top right panel was the result of an analysis of a data set that contained both bias and 

sequential dependencies. Specifically, the probability of an “Old” response was set to .75. The 

probability of repeating an “Old” response was set to .8 and the probability of an “Old” response 

given a “New” response was set to .6. The bottom left panel shows the posterior density of the 

effect size and the prior effect size. The model was again able to detect sequential dependencies 

in the data. 

The bottom left panel of Figure 2.6 shows the results of the analysis over data which 

contained neither bias nor sequential dependencies. The probability of an “Old” response 

following an “Old” response was equal to the probability of an “Old” response following a 

“New” response. The probability of an “Old” response was also equal to the probability of a 

“New” response. The posterior density of the effect size over zero increased from the prior 

density over zero. Thus, the data increased support for the effect size being equal to zero and the 

model correctly identified the absence of any sequential dependencies in the data. 

The bottom right panel of Figure 2.6 shows the critical analysis of data in which there 

was bias, but no sequential dependencies. This was implemented by setting the probability of an 

“Old” response following an “Old” response was set to .8, and the probability of an “Old” 

response following a “New” response to .8. The posterior density of the effect size over zero 

increased from the prior density over zero indicating that the data increased support for an effect 



34 

 

size equal to zero. Thus, the model was able to distinguish between bias and sequential 

dependencies. 

 

 

Figure 2.6. Analysis of simulated binary data containing combinations of bias and sequential 

dependencies.  

 

 



35 

 

2.6. Modeling Bias and Sequential Dependencies Simultaneously 

Although the previous model was able to distinguish between bias and sequential 

dependencies, it would be convenient to model both bias and sequential dependencies 

simultaneously. As we will see, by explicitly modeling both bias and sequential dependencies, 

the model becomes more efficient in detecting bias and sequential dependencies or a lack 

thereof. That is, the model requires less data to reach the same conclusion about bias and 

sequential dependencies as its counterpart described above. The model is depicted in Figure 2.7. 

The code can be found in Appendix C.  

We again begin by modeling the frequency of “Old” following “Old” responses, 𝐾𝑖
11 as a 

binomial distribution with rate parameter, 𝜃𝑖
𝑏 . The total number of “Old” response trials is 𝑁𝑖

1. 

On the bottom right side of Figure 2.7, the number of “Old” responses following “New” 

responses, 𝐾𝑖
11 is depicted and is assumed to be binomially distributed with rate parameter, 𝜃𝑖

𝑎 . 

The number of “New” response trials is 𝑁𝑖
0. In order to explicitly model bias, I define the bias 

parameter, 𝛽𝑖, as the midpoint between the z-transformed rates, 𝜃𝑖
𝑎 and 𝜃𝑖

𝑏 . 

Therefore, if 𝛽𝑖 is greater than 0, then this indicates that participant, i, is biased to 

respond “Old”. An explicit sequential dependency parameter, αi, can also be defined as the 

difference between the z-transformed rates, 𝜃𝑖
𝑏 and 𝜃𝑖

𝑎 . 

Thus, if 𝛼𝑖, is greater than 0, this indicates that the ith participant has exhibited a 

tendency to respond “Old” following “Old” more so than “Old” following “New.” Notice that 

this model is isomorphic to Signal Detection Theory (Green & Swets, 1966; Lee, 2008), the only 

 𝛽𝑖 =
𝑧(𝜃𝑖

𝑎 ) +  𝑧(𝜃𝑖
𝑏 )

2
. (2.29) 

 𝛼𝑖 =  𝑧(𝜃𝑖
𝑏 ) −  𝑧(𝜃𝑖

𝑎 ). (2.30) 
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difference being, I am modeling the rate at which participants respond “Old” following either 

“Old” or “New”, instead of modeling hits and false alarm rates. 

 

Figure 2.7. Simplified version of the binary choice sequential dependency model. 

Having explicitly defined the bias and sequential dependency parameters, the next step is 

to reparameterize the above equations in terms of 𝜃𝑖
𝑎  and 𝜃𝑖

𝑏 . This is a necessary step in order to 

explicitly model the bias and sequential dependency parameters in a Bayesian hierarchical 

framework (Lee, 2008). Rearranging the equation and applying the probit transform as discussed 

in section 2.4, the reparameterization is given by Eq. 2.31 and Eq. 2.32. 

 𝜃𝑖
𝑎 = Φ (𝑏𝑖 −

𝛼𝑖

2
  ). (2.31) 
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Having rearranged the equations in terms of 𝜃𝑖
𝑎 and 𝜃𝑖

𝑏 it is now possible to model the 

bias and sequential dependency parameters as normal distributions. The sequential dependency 

parameter for each subject, 𝛼𝑖, is drawn from the group-level normal distribution with mean, 𝜇𝛼, 

and standard deviation, 𝜎𝛼. The bias parameter, 𝛽𝑖, is drawn from a group-level normal 

distribution with mean, 𝜇𝑏 and standard deviation, 𝜎𝛼. 

The group-level mean for the effect of the previous response, 𝜇𝛼
 , is the product of the 

effect size 𝛿𝛼 and the standard deviation 𝜎𝛼. Likewise, the group-level mean for bias, 𝜇𝑏
 , is set to 

the product of the effect size 𝛿𝑏 and the variance 𝜎𝑏. This allows for a Savage-Dickey ratio test 

to be performed and the Bayes Factor over the effect size to be calculated. The priors for the 

effect size of sequential dependencies, 𝛿𝛼, and bias, 𝛿𝑏, are unit information priors (Jeffreys, 

1961). The priors for the group-level standard deviations of sequential dependencies and bias are 

reasonably uninformative (Wagenmakers et al., 2010). 

2.7. Tests of the Bias Model with Simulated Data 

All simulation details were exactly the same as those detailed in the previous section. The 

top panels of Figure 2.8 are the result of a simulation which contained no bias. Specifically, the 

probability of an “Old” or a “New” response were both set to .5. In addition, the data set 

contained sequential dependencies. The probability of an “Old” response given a “New” 

response was set to .8, and the probability of an “Old” response given a “New” response was .2.  

The top left panel shows the posterior and prior densities for the bias effect size, 𝛿𝛽. The black 

dots represent the height of the posterior and prior densities at zero. Note the prior density 

 𝜃𝑖
𝑏 = Φ (𝑏𝑖 +

𝛼𝑖

2
  ). (2.32) 

 𝜎𝛼, 𝜎𝑏~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 10). (2.33) 
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(dotted line) is not visible because the density of 𝛿𝛽 over zero is very large. This indicates that 

there was a large amount of support for the hypothesis that the effect size for bias, 𝛿𝛽, is equal to 

zero. This is correct, in that, the probability of an “old” or “new” response was equal in this data 

set. The top right panel shows the posterior and prior densities for 𝛿𝛼. The dots show the height 

of the densities at zero. The height of posterior density of 𝛿𝛼 at zero is lower than the height of 

the prior density at zero. This indicates that the data decreased the support for the hypothesis that 

the effect size, 𝛿𝛼, is equal to zero. Thus, the model correctly detected the sequential 

dependencies in the data. It is important to note the estimates of the effect sizes show much less 

variance than those obtained from the previous model. By explicitly taking into account bias, the 

model is able to estimate the effects more efficiently. This pattern of improved efficiency is true 

for all of the analyses that I conducted for this model.  

The bottom two panels were the result of an analysis of a data set that contained both bias 

and sequential dependencies. Specifically, the probability of repeating an “Old” response was set 

to .75. The probability of repeating an “Old” response was set to .8 and the probability of an 

“Old” response given a “New” response was set to .6. The bottom left panel shows the posterior 

density of the effect size for bias, 𝛿𝛽, and the prior effect size. It is clear the posterior density of 

𝛿𝛽 is sharply peaked about zero indicating the data decreased support for the hypothesis that the  

effect size, 𝛿𝛽, is equal to zero. Thus, the model successfully detected bias in the data. The 

bottom right panel shows the height of the posterior density of 𝛿𝛼 over zero is less than that of 

the height of the prior density over zero indicating the data decreased support for the hypothesis 

that the effect size for sequential dependencies, 𝛿𝛼, is equal to zero. 
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Figure 2.8. Analysis of simulated binary data using the bias model.  The top two panels are the 

result of data which contained no bias and sequential dependencies. The bottom two panels are 

the result of data which contained both bias and sequential dependencies. The left panels depicts 

the Savage-Dickey ratio test over the bias parameter, 𝛿𝛽, while the right panels shows the results 

of the sequential dependency parameter 𝛿𝛼.  

Figure 2.9 shows further tests of the model. The data, whose analysis is shown in the top 

two panels, were generated via a Markov chain (details described above) in which the probability 

of an “Old” response was set to .8. Thus, the data set contained a substantial bias to respond 
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“Old”. The probability of an “Old” response following an “Old” response was set to .8 and the 

probability of an “Old” response following a “New” response was also set to .8. Thus, the data 

set did not contain sequential dependencies.  

The top left panel shows the posterior and prior densities of the effect size of bias, 𝛿𝛽. 

The posterior density is sharply peaked over zero indicating decreased support for the hypothesis 

that 𝛿𝛽 is equal to zero. Thus, the model successfully detected the large amount of bias in the 

data. The top right panel shows the posterior and prior densities of the effect size for sequential 

dependencies, 𝛿𝛼. The height of the posterior density over zero is substantially larger than the 

prior density over zero indicating increased support for the null hypothesis, 𝛿𝛼 = 0. Thus, the 

model correctly identified the absence of sequential dependencies in the data. 

The bottom two panels of Figure 2.9 show the final analysis in which neither sequential 

dependencies nor bias were present in the data. In order to simulate this data set, the probability 

of an “Old” and “New” response were both set to .5. The probability of an “Old” response 

following an “Old” response was equal to the probability of an “Old” response following a 

“New” response. The bottom left panel shows the prior and posterior densities of the effect size 

for bias, 𝛿𝛽. The bottom right panel shows the densities of the effect size for sequential 

dependencies, 𝛿𝛽. In both cases, the height of the posterior density over zero is substantially 

larger than the height of the prior density over zero, correctly indicating that the data increased 

support for the null hypotheses that the effect size for bias, 𝛿𝛽, and the effect size for sequential 

dependencies, 𝛿𝛼, is equal to zero. All of the posterior probability estimates for 𝛿𝛼 in the fours 

simulations reported above appeared to converge on an estimate more quickly than the model 

that did not contain a bias parameter. In order to verify this, the 95% HDIs were calculated for 

both models. 
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Figure 2.9. Analysis of simulated binary data using the bias model. The top two panels are the 

result of data which contained bias and no sequential dependencies. The bottom two panels are 

the result of data which contained no bias and no sequential dependencies. The left panels 

depicts the Savage-Dickey ratio test over the bias parameter, 𝛿𝛽, while the right panels shows the 

results of the sequential dependency parameter 𝛿𝛼. Note that the dotted line indicating the prior 

distribution is not visible in some of the panels because of the large scale of the density. 
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Figure 2.9 shows the upper and lower bounds of the 95% HDI for 𝛿𝛼 under the model 

with no bias parameter and under the model with the bias parameter. In all simulations, the 

distance between the upper and lower bounds of the 95% HDI were smaller when the bias 

parameter was included. On average, this distance decreased by 92% when the bias parameter 

was considered. This provides good evidence that including the bias parameter increases the 

efficiency of the model. 

Table 2.1. Shows the upper and lower bounds of the 95% HDI of the sequential dependency 

parameter 𝛿𝛼 under models with and without a bias parameter. The interval distance is the 

absolute value of the difference between the upper and lower bounds. The distances are 

compared by computing the percentage decrease. 

 

2.8. Analyzing Multiple Conditions 

The models described above are useful for determining whether sequential dependencies 

exist in a single condition of an experiment. In this section, I will extend the model to account for 

changes in sequential dependencies across multiple conditions of an experiment. This is a 

desirable property insofar as the researcher is interested in how changes in certain factors (e.g. 

vigilance) might cause changes in the degree of sequential dependencies. Figure 2.10 shows the 

Bayesian graphical model of sequential dependencies for two conditions. The code can be found 

in Appendix D. 

Comparison

Simulation Type
Lower 

Bound

Upper 

Bound

Interval 

Distance

Lower 

Bound

Upper 

Bound

Interval 

Distance

Interval Distance 

%Decrease

No Bias, Seq. Dep. -4.41 -2.02 2.39 0.02 0.36 0.34 85.80

Bias, Seq. Dep. -2.51 -0.37 2.14 0.00 0.17 0.17 92.24

No Bias, No Seq. Dep. -1.73 1.28 3.01 -0.04 0.04 0.09 97.08

Bias, No Seq. Dep. -0.65 1.14 1.80 -0.10 0.04 0.14 92.08

95% HDI                                                                                            

No Bias Parameter

95% HDI                                                                                            

With Bias Parameter

𝛿𝛼 𝛿𝛼
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Figure 2.10. Bayesian graphical model of sequential dependencies for comparing two conditions. 

The graphical model is very similar to the previous model described above. The number 

of “Old” responses following “New” responses in condition 1, 𝐾𝑖,1
01 , is binomially distributed 

with rate parameter,𝜃𝑖,1
𝑎 . The total number of “New” responses in condition 1 is 𝑁𝑖,1

0 . Thus, 

The number of “Old” responses following “New” responses in condition 2 mirrors the structure 

for condition 1. 

 𝐾𝑖,1
01 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃𝑖,1

𝑎 , 𝑁𝑖,1
0 ). (2.34) 
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The number of “Old” responses following “Old” responses for conditions 1, and 2 are also 

modeled as a binomial distributions. 

The rate at which an “Old” response follows an “Old” response for conditions 1 and 2 are the 

probit transform of the bias parameter, 𝛽, and the sequential dependency parameter 𝛼 (see 

previous model for derivation). 

The rate at which an “Old” response follows a “New” response for conditions 1 and 2 follow the 

same logic. 

The bias parameter for condition 1, 𝛽𝑖,1, is distributed normally with mean, 𝜇𝛽,1 and standard 

deviation, 𝜎𝛽,1. 

The change in bias from condition 1 to condition 2,𝛾𝑖,2
𝛽

 , is assumed to be normally distributed 

mean, 𝜇𝛽,2 and standard deviation, 𝜎𝛽,2.  

Therefore, the bias parameter for condition 2 is deterministic. 

 𝐾𝑖,2
01 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃𝑖,2

𝑎 , 𝑁𝑖,2
0 ). (2.35) 

 𝐾𝑖,1
11 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃𝑖,1

𝑎 , 𝑁𝑖,1
1 ). (2.36) 

 𝐾𝑖,2
11 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃𝑖,2

𝑎 , 𝑁𝑖,2
1 ). (2.37) 

 𝜃𝑖,1
𝑎 = Φ (𝛽𝑖,1 −

𝛼𝑖,1

2
  ). (2.38) 

 𝜃𝑖,2
𝑎 = Φ (𝛽𝑖,2 −

𝛼𝑖,2

2
 ). (2.39) 

 𝜃𝑖,1
𝑏 = Φ (𝛽𝑖,1 −

𝛼𝑖,1

2
  ). (2.40) 

 𝜃𝑖,2
𝑏 = Φ (𝛽𝑖,2 −

𝛼𝑖,2

2
 ). (2.41) 

 𝛽𝑖,1 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛽,1, 𝜎𝛽,1). (2.42) 

 𝛾𝑖,2
𝛽

 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛽,2, 𝜎𝛽,2). (2.43) 

 𝛽𝑖,2 =  𝛽𝑖,1 + 𝛾𝑖,2
𝛽

 (2.44) 
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The sequential dependency parameter for condition 1,𝛼𝑖,1, is distributed normally with mean, 

𝜇𝛼,1, and standard deviation, 𝜎𝛼,1. 

The difference between 𝛼𝑖,1 and 𝛼𝑖,2is given by 𝛾𝑖,2
𝛼  which follows a normal distribution with 

mean, 𝜇𝛼,2 and standard deviation, 𝜎𝛼,2.  

The sequential dependency parameter for condition 2 is given by 

The effect size for bias and sequential dependencies are modeled by𝛿𝛽  and 𝛿𝛼, respectively. 

2.9. Tests of the Multiple Conditions Model 

Data were simulated according to the Markov chain technique described in section 2.4. 

Figure 2.11 shows the results of the analysis of a data set which contained neither differences in 

bias nor differences in sequential dependencies across the two conditions. In both conditions, the 

probability of an “Old” response following either an “Old” or “New” response was set to .8. In 

both conditions, the overall probability of an “Old” response was set to .8. The posterior density 

estimates over 0 for both 𝛿𝛼 and 𝛿𝛽 are greater than the prior indicating increased support for the 

null hypothesis that the effect size is equal to zero. Thus, the model successfully identified there 

were no differences in either bias or sequential dependencies between conditions. 

 𝛼𝑖,1 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼,1, 𝜎𝛼,1). (2.45) 

 𝛾𝑖,2
𝛼  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼,2, 𝜎𝛼,2). (2.46) 

 𝛼𝑖,2 =  𝛼𝑖,1 + 𝛾𝑖,2
𝛼  . (2.47) 

 𝛿𝛽 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) (2.48) 

 𝛿𝛼  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) (2.49) 
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Figure 2.11. Analysis of simulated binary data using the bias model. The top two panels are the 

result of data which contained neither differences in bias nor differences sequential dependencies 

across conditions. 

Figure 2.12 shows the results of an analysis in which the data did not contain differences 

in bias across conditions, but did contain differences in sequential dependencies. In the first 

condition, the probability of repeating an “Old” response was .8, while the probability of 

responding “Old” following a “New” response was .2.  In the second condition, the probability 

of responding “Old” following either an “Old” or “New” response was .5. In both conditions, the 

probability of responding “Old” was .5. The left panel shows the posterior density for 𝛿𝛽 over 

zero increased from the prior density indicating the data increased support for the null 

hypothesis. The right panel shows the opposite outcome for 𝛿𝑎 in which the data decreased the 

support for the null. The model, therefore, was able to successfully detect differences in 

sequential dependencies between conditions, while, at the same time, indicating no differences in 

bias between conditions. 
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Figure 2.12. Shows the result of the model analysis with data which contained no differences in 

bias across conditions, but did contain differences in sequential dependencies.  

 Figure 2.13 shows the results of a simulation in which there were changes in bias 

between two conditions, but there were no changes in the amount of sequential dependencies 

across conditions. The probability of an “Old” response was set to .75 in the first condition, and 

set to .5 in the second condition. The probability of an “Old” response following a “New” 

response was set to .6 in the first condition and .4 in the second condition. In both conditions, 

“Old” responses were 20% more likely following “Old” responses than “New” responses. The 

posterior density over zero decreased for 𝛿𝛽 indicating the data increased support for the 

alternative hypothesis that there was a difference in bias between conditions. The right panel 

shows the data increased support for the null hypothesis that there were no differences in 

sequential dependencies between conditions. Thus, the model was able to successfully detect the 

differences in bias across conditions. In addition, it was able to find evidence for the null 

hypothesis that there no differences in sequential dependencies across the two conditions. 
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Figure 2.13. Analysis of simulated binary data using the bias model. Shows the result of data 

which contained differences in bias, but no differences sequential dependencies across 

conditions. 

 Figure 2.14 shows the results of an analysis in which there were differences in both bias 

and sequential dependencies across conditions. The probability of responding “Old” in the first 

condition was .75, while the probability of responding “Old” in the second condition was .5. The 

probability an “Old” response following a “New” response was .6 in the first condition and .8 in 

the second condition. The probability of an “Old” response was 20% higher in the first condition 

than in the second condition. As depicted in Figure 2.14, the model was successful at detecting 

both differences in bias and sequential dependencies across conditions. 
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Figure 2.14. Analysis of simulated binary data using the bias model. Shows the result of data 

which contained both differences in bias and sequential dependencies across conditions.  
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Chapter 3                                                                                                                                  

Models of Sequential Dependencies in Multi-Interval Tasks 

The models outlined in the previous chapter were able to distinguish between list-wide 

response bias vs. sequential dependencies. Given the preliminary success of the Bayesian 

approach to modeling sequential dependencies in yes/no recognition, I seek to extend this model 

to multi-interval response tasks such as absolute identification and judgments of frequency. 

There are several issues associated with the standard frequentist approach that can be resolved by 

utilizing a Bayesian framework. 

Prior attempts to model assimilation and contrast have often involved the use of 

frequentist  regression models (e.g. Jones, Love, and Maddox, 2006; Jestedt, Luce, and Green, 

1988). All of these models assume that the effect of the previous stimulus/response must be 

factored into the current response, but this holds only within the frequentist framework. This 

limitation does not exist in a Bayesian approach. For example, the proportion of trials in which 

sequential dependencies occur could be modeled by a binomial distribution whose rate parameter 

could be estimated.  

Another general advantage of the hierarchical Bayesian approach is that it allows the 

simultaneous fitting of individual and group parameters. As far as the author knows, individual 

differences have not been studied with regard to sequential dependencies. A hierarchical 

Bayesian approach to measuring sequential dependencies would provide such information. 
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3.1. Measuring Sequential Dependencies in Multi-Interval Designs 

Models of cognition can be divided into two broad classes: measurement models and 

process models (Malmberg, 2008). Although both models map stimuli onto responses via some 

latent mechanism, process models make explicit assumptions about how stimuli are represented 

and processed while measurement models skip this step and model decisional processes given 

the processed stimulus. The model that I describe will attempt measure sequential dependencies 

and the related decisional components involved in a multi-interval response task. Therefore, the 

model that I am proposing will not attempt to explain the underlying processes that are 

responsible for generating sequential dependencies (cf. Annis & Malmberg, 2013; Petrov & 

Anderson, 2005). Rather, the proposed model will contain a minimal number of theoretical 

assumptions regarding the cognitive mechanisms involved in the generation of sequential 

dependencies.  

The utility of such a model should be readily apparent. For example, the model will be 

able to be generalized to a variety of different multi-interval tasks, and will increase our ability to 

accurately measure sequential dependencies. This is not to say that the model will bear no 

relationship to underlying process models. Indeed, the present model is tailored such that it can 

be related to specific assumptions found in process models such as the one described by Annis & 

Malmberg (2013). In this fashion, we are in a better position to relate measurement with 

underlying processes (Estes, 1975; Gillund & Shiffrin, 1984; Malmberg, 2008), an approach that 

is often overlooked. The current model will attempt to measure various decisional components in 

a multi-interval response task within a Bayesian hierarchical framework for the first time. The 

components that the model will attempt to describe are listed below. 
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List-wide bias may artificially inflate the amount sequential dependencies present in the 

data. Thus, the model will be able to distinguish between response bias and sequential 

dependencies.  

The model will contain parameters that will describe the strength of the stimulus-to-

response mapping. For example, participants often “bin” their responses on extreme ends of the 

response scale which results in increased accuracy for stimuli lying on extreme ends of the scale 

(Luce, Nosofsky, Green, & Smith, 1982). Thus, it becomes necessary to differentiate between 

this type of response bias and the actual sensitivity between adjacent stimulus values. 

The model will contain parameters that will identify the magnitude and the direction of 

the sequential dependency between the current response and stimuli occurring on trials n – j, 

where j > 0. For example, the sign of the parameter could indicate whether the sequential 

dependency is negative or positive. Thus, depending on the sign of the parameter, the researcher 

could readily identify whether assimilation or contrast is present in the data. The value of the 

parameter could indicate the magnitude of the sequential dependency. 

The model will contain one or more parameters that will indicate the magnitude and 

direction of the sequential dependency between the current response and the previous responses 

for lags greater than 1.  

The model will attempt to differentiate the effect of the prior responses from prior 

stimuli. For example, as accuracy increases, the correlation between the previous stimulus and 

the previous response also increases. One way to decorrelate the effect of the previous stimulus 

from the previous response is to hold the previous stimulus constant while varying the previous 

response. Aside from the analysis being rather awkward, data sparsity also becomes an issue 

when conducting this analysis. For example, there are very few “6” responses to stimuli that 
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correspond to a “1” response. This is a very large overestimation that participants are not 

inclined to make very often. Therefore, in order to carry this analysis, it is usually necessary to 

bin the responses.  

Unlike previously developed regression models (e.g. Jones, Love, & Maddox, 2005) the 

model that I will develop will not assume that the effect of prior stimuli/responses should always 

be factored into the current response. Rather, the model will attempt to identify the proportion of 

trials in which sequential dependencies occurred.  

The Bayesian hierarchical framework naturally lends itself to describing individual 

differences while simultaneously estimating group level parameters. Thus, all of the above 

phenomena will be measured at both the group and individual level.  

3.2. Multi-Interval Model R: A Model of Response Sequential Dependencies  

In some of the most theoretically useful experiments, decisions require the use of a multi-

interval scale (e.g., Likert Scale), and sequential dependencies are quite commonly reported. In 

this section, I will describe a model of sequential dependencies in multi-interval tasks that 

attempts to address the bulleted points discussed above. It is related to several generalized 

measurement models by Kruschke (2011) and Morey, Pratte, and Rouder (2008). The JAGS 

code can be found in Appendex E. The probability of participant i giving response k on the jth 

trial, is the standardized area of the normal distribution, 𝜃𝑖𝑗, between the criterion, 𝐶, associated 

with response k and k-1. 

The probability of making the highest response, K, is the area under the standardized normal 

above the highest criterion, 𝐶𝐾−1. 

 𝑝(𝑦𝑖𝑗 = 𝑘 | 𝜃𝑖𝑗) = Φ (
𝐶𝑘 − 𝜃𝑖𝑗

𝜎𝑆
) −  Φ (

𝐶𝑘−1 − 𝜃𝑖𝑗

𝜎𝑆
) . (3.1) 



54 

 

The probability of making the lowest response is the area under the curve below the lowest 

criterion value. 

The standard deviation associated with each stimulus value, S, follows an inverse gamma 

distribution with near uninformative priors. 

The criteria are assumed to be drawn from a normal distribution. The lowest criterion has a prior 

mean of 0. Each additional criterion’s prior mean is incremented by .5 as suggested by Kruschke 

(2011).  All criteria share the same prior standard deviation of 1. When there are only two 

response criteria, Morey et al. (2008) suggests fixing them at 0 and 1 for simplicity.   

An instance of this model, in which there are two criteria and thus three response types, is 

represented graphically in Figure 3.1. The solid curve represents the distribution of 𝜃𝑖𝑗 and the 

vertical dotted lines represent the criteria, 𝐶1 and 𝐶2. The area under the curve falling below 𝐶1 

representing the probability of making a “1” response is quite low. Therefore, participant i has a 

very low probability of responding “1” on trial j. The area falling above the highest criterion, 𝐶2, 

is also small which reflects a low probability of responding “3.” The area between 𝐶1 and 𝐶2 is 

much greater. Therefore, there is a much higher probability of the participant responding with a 

“2” than with a “1” or a “3.”  

The core of the model, 𝜃𝑖𝑗, is a linear combination of latent effects (Gelman et al., 2004; 

Morey et al., 2008). 

 𝑝(𝑦𝑖𝑗 = 𝐾 | 𝜃𝑖𝑗) = 1 − Φ (
𝐶𝐾−1 − 𝜃𝑖𝑗

𝜎𝑆
). (3.2) 

 𝑝(𝑦𝑖𝑗 = 1 | 𝜃𝑖𝑗) = Φ (
𝐶1 − 𝜃𝑖𝑗

𝜎𝑆
). (3.3) 

 𝜎𝑆~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎( .001, .001). (3.4) 

 𝜃𝑖𝑗 =  𝛽𝑆 +  𝛾𝑖,𝑆 +  𝑥𝑖,𝑗 (𝛿𝑖,𝑃 ), (3.5) 



55 

 

where 𝛽𝑆 is the overall latent strength associated with each stimulus value, S, and is normally 

distributed with a mean of 0 and standard deviation, 𝜎𝑆
(𝛽)

.  

 
Figure 3.1. Illustrates how the continuous variable, 𝜇𝑖𝑗, is mapped onto an ordered response set. 

The vertical dotted lines represent each criterion. In this example, the area under the curve below 

the first criterion, 𝐶1, (Eq. 3.2) represents the probability of making a “1” response. The area 

between the 𝐶1 and 𝐶2 (Eq. 3.1) represents the probability of making a “2” response. The area 

above the highest criterion 𝐶2 (Eq. 3.3) represents the probability of making a “3” response.  

 

I assume the effect of each stimulus, S, may vary depending on the participant and that this effect 

is additive. The effect, 𝛾𝑖,𝑆, is assumed to be drawn from a group-level normal distribution with 

mean, 𝜇𝑆 and standard deviation, 𝜎𝑆
(𝛾)

. 

The final latent effect entered into the model is the effect of the previous response, 𝛿𝑖,𝑃, where 

the subscript, P, represents the value of the previous response. This effect is drawn from a group-

level normal distribution with mean, 𝑟𝑃, and standard deviation, 𝜎𝑃
(𝛿)

.  

As discussed above, it is important to relate measurement models to underlying processes 

(Malmberg, 2008). Therefore, the model is tailored to the assumptions of the process model 

 𝛾𝑖,𝑆 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇𝑆, 𝜎𝑆
(𝛾)

). (3.6) 
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developed by Annis and Malmberg (2013). This process model of sequential dependencies was 

developed within the REM framework (described in Chapter 1) and assumes that information 

from the previous trial carries over to current trial. In order for the model to fit the data, we 

found it necessary to assume that information carryover does not occur on every trial, but only 

on a portion of trials. The probability of not carrying over information was referred to as the a 

parameter. In order to tailor the measurement model to the assumptions of the process model, I 

assume that information from the previous trial does not always influence the current response. 

In order to implement this assumption, the effect of the previous response, 𝛿𝑖,𝑃 is multiplied on 

each trial by 𝑥𝑖,𝑗 which follows a Bernoulli distribution with success probability 1-𝑎𝑖.  

Thus, when 𝑥𝑖,𝑗 takes on a value of 1, the effect of the previous response is factored into 

the current response. However, when 𝑥𝑖,𝑗 takes on a value of 0, the effect of the previous 

response does not influence the current response. The 𝑎𝑖 parameter represents the probability of 

𝑥𝑖,𝑗 taking on a value of 0, and therefore represents the probability of the previous response not 

influencing the current response. Thus, the 𝑎 parameter represents a similar construct as the 𝑎 

parameter in the model described by Annis and Malmberg.  

The priors for the model described above are listed below. I assume a flat prior for 𝑎𝑖.  

I place normal priors on the participant and previous response distributions with an 

uninformative variance suggested by Morey et al. (2008). 

I follow Spiegelhalter, Thomas, and Best (1996) and place uninformative inverse gamma priors, 

on the standard deviation components.  

 𝑥𝑖,𝑗 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝑎𝑖) (3.7) 

 𝑎𝑖~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) (3.8) 

 𝜇𝑆, 𝑟𝑃~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 100) (3.9) 
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3.3. Simulating Multi-Interval Response Data with a Markov Model 

The Markov Model easily generalizes to procedures in which there are more than 2 

stimulus classes. For example, in absolute identification tasks, the participant is shown m 

different types of stimuli and asked to classify these stimuli into m categories. Thus, there will be 

a total of m2 unique states corresponding to all the different stimulus-response combinations 

possible. A practical difficulty associated with this model is that it becomes difficult to specify 

all the different transition probabilities by hand as the number of stimulus-response combinations 

grow. For example, with only 3 stimuli and 3 responses, the transition matrix has 81 different 

transition probabilities that need to be specified. Obviously, specifying all these transition 

probabilities is cumbersome. One way this is made more tractable is to model each row of the 

transition matrix with probability distributions. Here, I model the transition matrix with a series 

of beta-binomial distributions – a discrete form of the beta distribution. This distribution was 

chosen because of the wide variety of forms it can take on. The beta-binomial distribution has 

rate parameter, 𝛼 and shape parameter, 𝛽, which were used to control the transition probabilities. 

As 𝛼 becomes greater than 𝛽 the probability of making a low response increases. When 𝛽 is 

greater than 𝛼 the probability of making a high response increases.  

Rows of Figure 3.2 show, for each previous stimulus value, the probability of making a 

“1”, “2”, or “3” response given a particular previous response. For example, the first row of 

Figure 3.2 shows, for each previous stimulus value, the probability of making a “1”, “2”, or “3” 

response given the previous response was “1.” Each column of Figure 3.2 shows, for each 

previous response value, the probability of making a “1”, “2”, or “3” response given a particular 

previous stimulus value. For example, the first column represents, for each previous response 

 𝜎𝑆, 𝜎𝑆
(𝛽)

, 𝜎𝑆
(𝛾)

, 𝜎𝑃
(𝛿)

~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎( .001, .001) (3.10) 
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value, the probability of making a particular response given the previous stimulus was 1. Thus, 

each panel of Figure 3.2 represents the response probabilities given a particular previous 

stimulus and response combination. For example, the top left panel of Figure 3.2 shows the 

probabilities of making a particular response given the previous stimulus was 1 and the previous 

response was also 1. The probability of responding with a “1” was around .3. The probability of 

responding with a “2” or a “3” was close to 0. These values were generated with a beta-binomial 

distribution with 𝛼 = 1 and 𝛽 = 20. The same parameters were used to generate the response 

probabilities for each distribution of the first row. Therefore, the probability of responding “1” 

was high when the previous response was “1” regardless of the previous stimulus value. 

Similarly, responding with a “3” was high when the previous response was also “3.” This is 

depicted by the bottom row of probability distributions. These distributions were generated by 

letting 𝛼 = 20 and 𝛽 = 1. Thus, this parameter set generates response assimilation in the data. As 

I will show in the next sections, this model can generate a wide variety of sequential dependency 

patterns by modifying the parameters of the probability distributions.  

 
Figure 3.2. Graphical representation of a transition matrix used to simulate a data set with 

response assimilation. 
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Each row was normalized in order to maintain the condition that each row of the 

transition matrix sum to 1. The Markov model described above was implemented in R (see 

Appendix B). For each simulation, 200 chains each consisting of 500 time steps were generated.  

3.4. Tests of Multi-Interval Model R with Simulated Data 

Figure 3.3 shows the results of a Markov chain simulation in which there is bias to 

respond high, but little to no sequential dependencies. The top left panel shows the parameter 

values used in order to simulate the data. The response probabilities were the same regardless of 

the previous stimulus-response combination. These probabilities were determined by a beta-

binomial distribution with rate parameter, 𝛼 = 1 and shape parameter, 𝛽 = 5. Under this 

distribution the probability of responding with a 3 is greater than the probability of responding 

with a 2, and the probability of responding with a 2 is greater than responding with a 1. Thus, 

there was a bias to respond with a high response and little to no sequential dependencies. 

The top right panel shows accuracy plotted as a function of the current stimulus value. 

Accuracy increases with increases in stimulus value because of bias. The middle-left panel 

shows error on the current trial as a function of the previous response and current stimulus value. 

The absence of any positive slope indicates there are no sequential dependencies in the data. This 

is also true for the bottom left panel showing the relationship between error and the previous 

stimulus. When error is plotted as a function of the response at a given lag (middle right) or the 

stimulus at a given lag (bottom right), there is some noise in the data causing the graph to behave 

erratically; however, this is not too surprising when one considers the very small scale that the 

graphs are placed on. 

Figure 3.4 shows the results of the model analysis using the multi-interval model described 

above. The top left panel plots 𝛽 as a function of the current stimulus value. The lowest criterion, 
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𝐶1, was set at 0 (Morey, Pratte, & Rouder, 2008) and the highest criterion, 𝐶2, was set at 1. The 

vertical dotted line in the top left panel of Figure 3.2 shows the highest criterion, 𝐶2. For all 

stimuli values, the posterior density of 𝛽 largely falls above the highest criterion, indicating a 

substantial amount of positive response bias. The top right panel shows the posterior mean of 𝑎 

for each simulated subject. This is the probability of the previous response not influencing the 

current response and roughly ranges from .72 to .87. This makes sense if we look closely at the 

response probabilities in the top left panel of Figure 3.2 There are sub-panels in which sequential 

dependencies are likely to occur. For example, there is a high probability of a “3” response when 

the previous response was 3 and the current stimulus value is 3. However, there is not an overall 

trend to assimilate towards the previous trial. This fact is illustrated in the bottom three panels 

which show the posterior densities of the overall effect of the previous response. The bottom left 

panel shows the posterior density for r1 and the associated 95% Highest Density Interval (HDI) 

which contains 95% of area under the posterior probability curve and which follows the 

constraint that any density estimate inside the interval is greater than any density estimate outside 

the interval. The 95% HDI for r1 is roughly centered at 0 and falls between -.69 and .60. Since 0 

falls within the HDI, it is a credible value of r1. Thus, a previous response of 1 did not have an 

effect on the current response. This is also true for previous responses of 2 and 3.  

Given these results, the model successfully distinguished between response bias and 

sequential dependencies. The model was also able to capture the increase in bias to respond on 

the high end of the response scale. In addition, the a parameter was shown to reflect small trial-

by-trial tendencies for the previous response to influence the current response. However, the 

model correctly identified the overall absence of sequential dependencies in the data as all r 

parameters were shown to have HDI’s that included 0. 



61 

 

Figure 3.5 shows the results of a simulation in which there was a substantial amount of 

response assimilation. The top left panel shows the transition probabilities of the Markov chain 

that generated the data. When the previous response was “1” there was a high probability of the 

current response being “1” also. This assimilative behavior was similar when the previous 

response was “3.” The right panel shows a bow shaped accuracy curve that is commonly 

observed in absolute identification tasks (Lacouture & Marley, 1995). The lowest and highest 

stimulus values had the highest accuracy, while the middle stimulus value had the lowest 

accuracy. Response assimilation is observed in the middle left panel; as the previous response 

increased so too did the error on the current trial. When the error on the current trial is plotted as 

a function of the response at a given lag, a decay in the magnitude of the error is observed with 

increases in lag. 

The top right panel shows accuracy plotted as a function of the current stimulus value. 

Accuracy increases with increases in stimulus value because of bias. The middle-left panel 

shows error on the current trial as a function of the previous response and current stimulus value. 

The absence of any positive slope indicates there are no sequential dependencies in the data. This 

is also true for the bottom left panel showing the relationship between error and the previous 

stimulus. When error is plotted as a function of the response at a given lag (middle right) or the 

stimulus at a given lag (bottom right), there is some noise in the data causing the graph to behave 

erratically; however, this is not too surprising when one considers the very small scale that the 

graphs are placed on. For example, there is a high probability of a “3” response when the 

previous response was 3 and the current stimulus value is 3. However, there is not an overall 

trend to assimilate towards the previous trial. 
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Figure 3.3. Simulated data with bias to respond high and very low sequential dependencies.  
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Figure 3.4. Parameters showing bias to respond high and no sequential dependencies.  

However, the Markov model that generated the data does not explicitly take into account 

responses that occurred more than 1 trial back. Why then is a decay in assimilation being 

observed with increases in lag? It is simply due to the data being autocorrelated. For example, if 

a response of “3” is given on trial n – 1, then there is a high probability that the response on the 

current trial, n, will also be “3”. Formally, this can be written as P(Rn = 3 | Rn-1 = 3). This 

probability will, on average, be lower than the probability of giving a “3” response on the current 

trial if a response of “3” is given on trial n – 2. This is due to the fact that there is a probability 

on trial n – 1 for a response other than “3” to be given. Thus, P(Rn = 3 | Rn-2 = 3) < P(Rn = 3 | Rn-1 

= 3).  

This finding may be relevant for future theoretical development. For example, many 

models of sequential dependencies make the assumption that the representation of the current 

stimulus value is contaminated by previous stimulus/response representations and that as these 
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previous representations become more distant they become less relevant (Triesman & Williams, 

1984; Stewart et al., 2005). This is said to lead to the pattern of decaying assimilation. The 

Markov model presented here demonstrates that it is possible to observe a pattern of decaying 

assimilation, while only taking into account the most recent trial.   

The bottom left panel shows the error on the current trial as a function of the previous 

and current stimulus value. Note that there is no assimilation seen in the plot. In addition, when 

the error on the current trial is plotted as a function of the stimulus value at a given lag, no 

discernable pattern of assimilation is observed.  

Figure 3.6 shows the results of the model analysis over the data presented in Figure 3.5.  

The top left panel shows the overall sensitivity associated with each stimulus value. The lowest 

criterion is indicated by the vertical dotted line at 0, while the highest criterion is located at 1. 

There is a tendency to respond with a low response, with most of the area centered between the 

two criteria. This may be due to the prior mean being set to 0. The top right panel shows the 

probability of the previous response not being factored into the current response, a. The mean 

probability of the previous response not being factored into the current response is near 0 for all 

simulated subjects.  

The bottom row shows the estimates for the effect of the previous response. The bottom 

left panel shows the effect of the previous response on the current response when the previous 

response was “1.” The 95% HDI ranged from -1.7 to -1.12 and therefore did not include 0. Using 

Kruschke’s (2011) decision rule we can reject the null hypothesis that 𝑟1 = 0. Thus, when the 

previous response was “1” there was a tendency to shift the current response negatively. The 

bottom middle panel shows the density over 𝑟2whose 95% HDI includes 0. Thus, when the 

previous response was “2” the current response, over all current stimuli, was unaffected. Finally, 
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the bottom right panel shows the density over  𝑟3 whose 95% HDI ranges from 1.1 to 1.7. Since 

0 falls outside of the 95% HDI this indicates that when the previous response was “3” there was 

a tendency to shift the current response positively. Thus, the model successfully detected the 

direction and magnitude of response assimilation in the data. 

3.5. Multi-Interval Model SR: Stimulus/Response Sequential Dependencies  

The previous model successfully detected assimilation and bias. In addition, it produced 

measures of the proportion of trials in which the previous response influenced the current 

response. It is possible to easily extend this model to account for sequential dependencies based 

on the previous stimulus. While the previous model only took into account the prior response, it 

is often useful to model the effect of the prior stimulus as well, especially when feedback is 

presented (Ward and Lockhead, 1970; Stewart and Matthews, 2009). In order to extend the 

model, the core of model, 𝜃𝑖𝑗, is modified to include the effect of the previous stimulus, 𝜂𝑖,𝑄, 

where the index, Q, represents the value of the previous stimulus. The effect is assumed to 

additive. 

 The effect of the previous stimulus is drawn from a group-level normal distribution with mean, 

𝑠𝑄, and standard deviation, 𝜎𝑄
(𝜂)

.  

In addition, it is assumed that the prior stimulus only effects the current response on a 

proportion of trials. When the previous stimulus effects the current response, 𝑧𝑖,𝑗 = 1, otherwise 

𝑧𝑖,𝑗 = 0. It is assumed that 𝑧𝑖,𝑗 follows a Bernoulli distribution with success rate, 1-𝑎𝑖
(𝑠)

.  

Thus, 𝑎𝑖
(𝑠)

 is the probability of the previous stimulus affecting the current response. The prior is 

assumed to be uniform on the interval from 0 to 1. The JAGS code for the model can be found in 

Appendix F. 

 𝜃𝑖𝑗 =  𝛽𝑆 + 𝛾𝑖,𝑆 +  𝑥𝑖,𝑗 ( 𝛿𝑖,𝑃)  +  𝑧𝑖,𝑗(𝜂𝑖,𝑄) (3.11) 
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Figure 3.5. Simulated data with response assimilation.  
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Figure 3.6. Estimated parameter values from data with response assimilation.  

3.6. Tests of Multi-Interval Model SR with Simulated Data 

The top left panel of Figure 3.7 shows the transition probabilities for the Markov model 

used to generate the data. There was a high probability of responding with a “1” given the 

previous stimulus was also “1” compared to other previous stimulus values. There was a similar 

increase in the probability to respond “3” given the previous stimulus was “3.” The top right 

panel shows a typical bow shaped curve in which the lowest and highest stimulus values 

received the highest accuracy, while the middle stimulus value received the lowest accuracy. The 

middle left panel shows the error on the current trial plotted as a function of the current stimulus 

and the previous response. It is clear from the flat lines that there was no increase in the current 

error with increases in the previous response. The absence of response assimilation is also 

evident in the middle right panel. The graph appears noisy because of the very small scale. The 
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bottom left panel shows a clear pattern of stimulus assimilation; the error on the current trial 

increased with increases in the previous stimulus value. The bottom right panel shows the error 

on the current trial plotted as a function of the previous stimulus at a given lag. There is a clear 

pattern of assimilation at a lag of 1. That is, when the previous stimulus was 3, there was an 

overall tendency to overestimate the current stimulus value. When the previous stimulus was 1, 

the current stimulus was underestimated. The magnitude of this assimilative effect decays to 0 at 

lags greater than 1. The decay is much faster than the decay of response assimilation seen in the 

previous simulation (Figure 3.5). The reason for this is due to the fact that responses are no 

longer autocorrelated. Responses only depend on the previous stimulus and since each stimulus 

value has an equal probability of being presented on any given trial, correlations will only exist 

at lags of 1. For example, if a stimulus of 3 is presented on trial n – 1, there is a high probability 

of responding with a “3” on the next trial, n. However, if a stimulus of 3 is presented on trial n – 

2, there is an equal probability of responding with a “1”, “2”, or “3” on trial n because all 

stimulus values have an equal probability of being presented on trial n – 1. Therefore the error 

goes to 0.   

Figure 3.8 shows the analysis using the data generated above. The top left panel shows 

the sensitivity or mnemonic strength associated with each stimulus value. The top middle panel 

shows the probability of the previous response not influencing the current response for each 

subject and ranges from roughly .7 to .75. Given that there were 80 trials, the proportion of trials 

in which the previous response influenced the current response ranged from 20 to 24 trials. This 

is due to the fact that some previous responses were correlated with the current response. For 

example, Figure 3.5 shows the probability of responding with a “1” was high given the previous 

response was also “1.” On the other hand, there is an equal probability to respond with a “3” 
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given the previous response was a “1”. Therefore, the effect of the previous response should 

wash out when collapsing across all previous stimulus values. This prediction is verified in the 

middle row which depicts the estimated overall effect of the previous response. In all cases, 95% 

HDI included 0, and the distributions were generally centered at 0. Thus, the model successfully 

identified the absence of response assimilation in the data. 

The top right panel shows the mean probability of the previous response influencing the 

current response was close to 1 for each subject. The direction and magnitude of the effect of 

each stimulus value is estimated on the bottom row. The bottom left panel shows the effect when 

the previous stimulus value was 1, 𝑠1, ranged from -1.77 to -1.08. This indicates that previous 

stimulus values of 1 caused the current response to shift negatively over all current stimulus 

values. On the other hand, when the previous stimulus value was 3, there was a tendency for the 

current response to shift in a positive direction. Thus, the model successfully detected the 

presence of stimulus assimilation in the data. 

The top left panel of Figure 3.7 shows the transition probabilities for the Markov model 

used to generate the data. There was a high probability of responding with a “1” given the 

previous stimulus was also “1” compared to other previous stimulus values. There was a similar 

increase in the probability to respond “3” given the previous stimulus was “3.” The top right 

panel shows a typical bow shaped curve in which the lowest and highest stimulus values 

received the highest accuracy, while the middle stimulus value received the lowest accuracy. The 

middle left panel shows the error on the current trial plotted as a function of the current stimulus 

and the previous response. It is clear from the flat lines that there was no increase in the current 

error with increases in the previous response. The absence of response assimilation is also 

evident in the middle right panel. The graph appears noisy because of the very small scale. 
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Figure 3.7. Simulated data with stimulus assimilation.  
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Figure 3.8. Estimated parameter values from data with stimulus assimilation.  

3.7. Multi-Interval Model SRLAG: A Model for Lags ≥ 1 

The prior models successfully accounted for both stimulus and response sequential 

dependencies in addition to measuring bias and sensitivity. In this section, the multi-interval 

model is extended to account for sequential dependencies that might occur at lags greater than 1. 

The ability to account for these types of sequential dependencies becomes especially important 

in absolute identification tasks in which contrast at lags greater than 1 is observed, usually in the 

presence of feedback (e.g. Ward & Lockhead, 1970). In addition, there is some evidence that 

stimuli occurring at lags of up to four may have an influence on the EEG associated with the 

current trial (Squires, Wickens, Squires, Donchin, 1976). Therefore, the core of the model, 𝜃𝑖𝑗, is 

again modified by adding an effect component for responses at lags of n, 𝛿𝑖,𝑃𝑗−𝑛
, and stimuli at 

lags of n, 𝜂𝑖,𝑄𝑗−𝑛
, where 𝑛 = {1, . . . , ℓ} and ℓ is the maximum lag considered. 
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The effect of the prior response at lag n is drawn from a group-level normal distribution with 

mean, 𝑟𝑃𝑗−𝑛
, and standard deviation, 𝜎𝑃𝑗−𝑛

(𝛿)
. Likewise, the effect of the previous stimulus is drawn 

from a group-level normal distribution with mean, 𝑠𝑄𝑗−𝑛
, and standard deviation, 𝜎𝑄𝑗−𝑛

(𝜂)
. It is 

assumed prior responses do not always influence the current response. When 𝑥𝑖,𝑗
(𝑛)

 is 1, responses 

at lag n are taken into account, otherwise the response at lag n is ignored. 𝑥𝑖,𝑗
(𝑛)

is assumed to 

follow a Bernoulli distribution with success rate, 1 − 𝑎𝑖,𝑛
(𝑟)

. Similarly, the effect of the prior 

stimulus is not always taken into account on each trial. When 𝑧𝑖,𝑗
(𝑛)

= 1 the prior stimulus at lag 

n, is taken into account, otherwise the information is discounted. 𝑧𝑖,𝑗
(𝑛)

 follows a Bernoulli 

distribution and has success rate, 1 − 𝑎𝑖,𝑛
(𝑠)

. The priors for all variables just described are the same 

as in the previous models. The JAGS code for the model can be found in Appendix G. 

3.8. Tests of Multi-Interval Model SRLAG 

The top left panel of Figure 3.9 shows the probability of the current response equaling 

“3” was highest when the previous stimulus was 3 and the previous response was “1.” In 

addition, the probability of responding with a “1” was highest when the previous response was 

“3” and the previous stimulus was 1. This resulted in positive sequential dependencies between 

the current response and previous stimulus, and negative sequential dependencies between the 

current response and previous response. The negative dependency between the current response 

and previous response is graphically depicted in the middle left panel. The positive dependency 

between the current response and previous stimulus is shown in the bottom left panel. 

Interestingly, this pattern of responding resulted in contrast. The middle right panel shows the 

 𝜃𝑖𝑗 =  𝛽𝑆 +  𝛾𝑖,𝑆 + ∑ 𝑥𝑖,𝑗
(𝑛)

 ( 𝛿𝑖,𝑃𝑗−𝑛
)

ℓ

𝑛=1

 + ∑ 𝑧𝑖,𝑗
(𝑛)

(𝜂𝑖,𝑄𝑗−𝑛
)

ℓ

𝑛=1

.  (3.12) 
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negative dependency between the current response and previous response switches at lags of 2 

and becomes a positive dependency. The bottom right panel shows the positive dependency 

between the current response and previous stimulus also switches at lags of 2 and becomes a 

negative dependency. This is due to an oscillatory response pattern. Table 3.1 illustrates this 

pattern.  

Table 3.1. Positive dependencies at lags of 1. 

Trial n n-1 

Stimulus X 3 

Response 3 1 

Error  +  

 

Consider a stimulus of 3 appears on trial n - 1, and the model responds with a “1.” Given 

the previous response was a “1” and the previous stimulus was a 3, on the next trial, n, the most 

likely response according to the model is a “3.” Thus, a positive dependency is created at lags of 

1 between the current response and previous stimulus. Continuing with this example, Table 3.2 

illustrates how the sign of the dependency switches at lags of 2. Consider a response of “1” and a 

stimulus of 3 occurring on trial n - 2. 

Table 3.2.Negative dependencies at lags of 2. 

Trial n n-1 n-2 

Stimulus X 1 3 

Response 1 3 1 

Error -   

 

 Given the response on trial n - 2 was a “1” and the stimulus was a 3, according to the 

model, there is an increased probability to respond with a “3” on trial n – 1 when the stimulus on 

trial n – 1 is a 1. This in turn increases the probability of a “1” response on trial n. Thus, the 
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overall error on the current trial will be negative given the response on trial n – 2 was a “1” and 

the stimulus was a 3. This is exactly what is depicted in the middle-left and bottom-left panels of 

Figure 3.9. The middle left panel shows that the error on the current trial will be negative given 

the response at lag 2 was “1.” The bottom left panel shows the error will be negative given the 

stimulus on trial n – 2 was 3. Thus, the seemingly complex pattern of results depicted in Figure 

3.9 is reduced to two simple rules: 

1. If the previous response was “3” and previous stimulus was 1, respond with a “1.” 

2. If the previous response was “1” and the previous stimulus was 3, respond with a “3.” 

Therefore, it is not necessary to assume responses or stimuli more than 1 trial back influence the 

current response if contrast is present in the data. That is, dependencies at lags greater than 1 

may not always indicate a direct influence of the stimulus or response at that given lag. This is 

important for many models of sequential dependencies which explicitly take into account 

information at lags greater than 1 (e.g. Stewart, Brown, Chater, 2005; Brown, Marley, Donkin, & 

Heathcote, 2008).  

Figure 3.10 shows the results of the model analysis over the data depicted in Figure 3.9 in 

which there were positive sequential dependencies between the current response and previous 

stimulus and negative dependencies between the current response and previous response. The top 

left panel shows the posterior probability density for β which can be conceived of as a 

representation of the stimulus strength. The vertical dotted lines show the decision criteria. The 

middle panel in the top row shows the probability of the previous response not influencing the 

current response for each simulated subject. This probability was close to 0 for each subject. The 

right panel in the top row shows the probability of the response on trial n – 2, not influencing the 

current response. This probability ranged from approximately .35 to .75.  
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Figure 3.9. Result of simulation in which there was positive dependencies between the current 

response and previous stimulus, and negative dependencies between the current response and 

previous response. 
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The middle row shows the magnitude and direction of the effect for each previous 

response type. When the previous response was equal to 1, the overall effect on the current 

response was positive. When the previous response was equal to 3, the effect on the current 

response was negative. Thus, the model successfully detected the negative sequential 

dependencies between the current response and previous response. 

The bottom rows show the direction and magnitude of the effect of the response at lags of 

2. When the response on trial n – 2 was “1” there was a slight negative effect on the current 

response, however, 0 lies within the 95% HDI. For responses of “3” on trial n – 2, there was a 

slight positive effect, but again, 0 lies within the HDI.  

 

Figure 3.10. Posterior probability estimates over data in which the current response was 

negatively correlated with the previous response and positively correlated with the previous 

stimulus. 

Figure 3.11 shows the estimated effects of the previous stimulus. The top left panel is the 

same as in Figure 3.10 and is there for reference. The top middle panel shows the probability of 

the current response being influenced by the previous stimulus. This probability was high for all 

subjects. The probability of the stimuli at lags of 2 influencing the current response showed a 
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decreased effect. The middle row shows the effect of the previous stimulus on the current 

response. When the previous stimulus was 1, there was an overall negative effect on the current 

response. When the previous stimulus was 3, the model shows a positive effect on the current 

response. The bottom panels show the effect of the stimulus at lags greater than 1 was neutral. In 

summary, the model was able to correctly detect the negative dependency between the previous 

response and current response and the positive dependency between the previous stimulus and 

current response. Although the data were generated by considering only the most recent trial, the 

model indicated that there was approximately a 50% chance the response/stimulus on trials n – 2 

would influence the current response. This is due to low accuracy in the data. Because the 

response on the current trial is not influenced by the current stimulus value, the model is able to 

predict the current response based on the response on trial n - 2. To test the model under more 

real world conditions, the next simulation shown in Figure 3.12 took accuracy into account. 

 

Figure 3.11. Posterior probability estimates over data in which the current response was 

negatively correlated with the previous response and positively correlated with the previous 

stimulus. 
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The simulation details were very similar to the previous simulation in which there was a 

high probability to respond with a “3” given the previous response was “1” and the previous 

stimulus was 3. In addition, there was a high probability to respond “1” given the previous 

response was “3” and the previous stimulus was 1. In order to increase accuracy, a constant value 

was added to the appropriate cells in the transition matrix described in section 3.4. Thus, the data 

were generated from a Markov chain in which the previous response was negatively correlated 

with current response, while the previous stimulus was positively correlated with the current 

response. In addition, relatively high accuracy caused the previous stimulus and previous 

response to be correlated with one another. However, upon inspection of Figure 3.12 we find the 

standard pattern of results for absolute identification experiments in which feedback is provided 

(Malmberg & Annis, 2013; Ward & Lockhead, 1971); it appears as though there was a slight 

amount of response assimilation, a large amount of stimulus assimilation, and that the stimuli 

and responses at lags of 2 and greater were negatively correlated with the current response. Thus, 

these measurements, as they are commonly interpreted, grossly mischaracterize the underlying 

model used to generate the data.  

Figure 3.13 shows the results of the model analysis of the data depicted in Figure 3.12. 

The top left panel shows the posterior probability for β which can be conceptualized as the 

stimulus strength for each stimulus type. The dotted vertical lines show the decision criteria 

which clearly separate the posterior probability estimates associated with each stimulus type. 

Thus, accuracy was much higher in the current simulation relative to the previous simulations 

described above. The middle panel in the top row shows the probability of the previous response 

not influencing the current response and ranged from .25 to .75.  The right panel of the top row 

shows the probability of the response on trial n – 2 not influencing the current response for each 
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subject. This probability was close to 1 for all subjects. Thus, the model correctly identified the 

influence of the previous response and the absence of influence of the response on trial n – 2.  

The middle row of Figure 3.13 shows the magnitude and direction of the effect of the 

previous response. When the previous response was “1” there was a slight positive effect on the 

current response. When the previous response was “3” there was a negative effect on the current 

response. Thus, the model correctly identified the negative dependency between the current 

response and the previous response. This result is contrasted with the middle left panel of Figure 

3.10 in which a clear pattern of response assimilation is depicted. In addition, the bottom panel 

of Figure 3.13 shows no effect of the response on trial n – 2 on the current response, while the 

middle right panel of Figure 3.10 shows contrast at lags greater than 1. 

Figure 3.13 shows the results of the model analysis for the previous stimuli. The middle 

panel in the top row shows the probability that the previous stimulus will not influence the 

current response is close to 0 for all subjects. The left panel in the top row shows the probability 

that the stimulus on trial n – 2 will not influence the current response is close 1. Thus, the model 

successfully detected the influence of the previous stimulus on the current response, and 

correctly identified the absence of the effect of stimuli at lags greater than 1.  

The middle row shows the magnitude and direction of the effect of the previous stimulus. 

When the previous stimulus was 1, there was an overall positive effect on the current response. 

When the previous stimulus was 3, the effect of the previous stimulus on the current response 

was positive. The bottom row shows the effect of stimuli two trials back did not have an overall 

effect on the current response. Thus, the model correctly identified the direction of the effect of 

the previous stimulus and the absence of any effect of the stimuli at lags greater than 1.  
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In summary, the standard plots in Figure 3.12 proved to be insufficient for accurately 

describing the actual pattern of sequential dependencies present in the data, while the Bayesian 

model was able to correctly identify all of the sequential dependencies. The standard plots 

showed both response and stimulus assimilation when, in fact, there were negative sequential 

dependencies between the current response and previous response. The model, on the other hand, 

successfully detected this. In addition, the standard plots may lead to researcher to conclude the 

stimulus/response at lags greater than 1 may influence the current response, while the data may 

have been generated by a system that only takes into account the most recent trial.   
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Figure 3.12. Data generated by a Markov chain in there was tendency to respond towards the 

previous stimulus and away from the previous response. In addition, high accuracy caused the 

previous stimulus to be correlated with the previous response. 
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Figure 3.13. Analysis of data containing negative sequential dependencies with the previous 

response and positive dependencies towards the previous stimulus. 

 

Figure 3.14. Analysis of data containing positive sequential dependencies towards the previous 

stimulus and negative dependencies with the previous response. 
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Chapter 4                                                                                                                                   

A Bayesian Analysis of The Effect of Inter-trial Tasks on Sequential Dependencies in 

Yes/No Recognition 

Recognition memory models have traditionally assumed independence among responses 

during testing (e.g. Gillund & Shiffrin, 1984; Hintzman, 1988; Murdock, 1982; Shiffrin & 

Styevers, 1997; also see Chapter 1). This assumption is known as the independence assumption. 

When this assumption is violated, a sequential dependency is said to have occurred. For 

example, a positive correlation between the current response and previous response is known as 

assimilation. Assimilation has been observed in perception tasks including absolute 

identification (Stewart, Brown, & Chater 2005) categorization (Jones, Love, & Maddox, 2006), 

and perceptual detection (Howarth & Bulmer, 1956).  

Assimilation has recently been observed in a variety of recognition tasks including 

yes/no recognition, confidence ratings, and judgments of frequency (Malmberg & Annis, 2012; 

Annis & Malmberg, 2013). Specifically, Malmberg and Annis (2012) observed the probability of 

a false alarm is greater when following a false alarm than when following a correct rejection, the 

probability of a hit is greater when preceded by a hit than by a miss, and the probability of hit is 

greater when followed by high confidence responses than when followed by low confidence 

responses.  

Annis and Malmberg (2013) modeled assimilation in recognition within the Retrieving 

Effectively from Memory framework (REM; Shiffrin & Steyvers, 1997). (For an in-depth 
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explanation of the model see section 1.7.) REM represents memory traces as vectors of feature 

values that are assumed to be geometrically distributed. When an item is studied, REM assumes 

that a noisy and incomplete representation of the studied item is stored in episodic memory. 

When an item is presented during a recognition test trial, the subject generates a representation of 

that test item called the retrieval cue.  The retrieval cue is then compared to an activated set of 

memory traces stored in episodic memory. The more similar the retrieval cue is to the contents 

stored in memory, the more likely the subject will endorse the test item as being studied.  

In order to model assimilation, Annis and Malmberg (2013) assumed that on each 

recognition test trial, there was a probability that features from the previous retrieval cue would 

carry over to current retrieval cue. The carryover model assumes on each trial there is a 

probability, a, that carryover will occur. This mechanism was hypothesized to be associated with 

vigilance during testing and the nature of the stimuli affected this parameter. For example, Annis 

and Malmberg (2013) found that when participants were presented with similar stimuli during a 

recognition test, the a parameter was higher than when the stimuli were only randomly similar 

(c.f. DeCarlo, 2002, 2007; Maddox & Estes, 1997; Howard, Bessette-Symons, Zhang, Hoyer, 

2006; Malmberg & Murnane, 2002). Thus, it might be possible to decrease sequential 

dependencies by manipulating attention at test. One way that this might be achieved is through a 

task switching procedure. There is some evidence that attentional demands increase when the 

participant must alternate between two tasks rather versus repeating the same task on each trial 

(for a review see Monsell, 2004). Thus, I carried out an experiment in which either a lexical 

decision task or a blank screen was inserted between recognition test trials. If the lexical decision 

task does indeed increase attentional vigilance, this should result in decreased sequential 
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dependencies compared to the condition in which there is no task inserted between recognition 

test trials.  

4.1. Experiment 1 

Annis & Malmberg’s model of sequential dependencies in recognition memory testing 

predicts that sequential dependencies should be reduced or eliminated when carryover is reduced 

or eliminated. According the model, reductions in vigilance may be related the tendency to 

carryover information from one trial to the next. In order to test the carryover model predictions, 

a yes/no recognition task was used in which the interpolated task was varied in two conditions. 

The assumption is that task switching involving tasks that rely on the use of different information 

should make carryover less likely. In the first condition, after each recognition test, participants 

were presented with a lexical decision task. In the second condition, a blank ISI was presented 

following each recognition test trial. Sequential dependencies should be higher in the condition 

in which no task was presented after each recognition test trial. 

4.1.1. Method 

4.1.1.1. Participants. Sixty-two undergraduate students from the University of South 

Florida participated in exchange for course credit. 

4.1.1.2. Design and Materials. Participants completed one study-test test cycle of each 

inter-trial task condition. The inter-trial condition involved either a lexical decision (LD) 

task interpolated between each test trial or a blank ISI following each test trial. Thus, the 

inter-trial task was manipulated within subjects and between lists. Each study list was 

composed of 80 words from the Kucera and Francis (1983) word pool with normative 

frequencies between 20 and 50 occurrences per million. The test list was composed of 80 

words from the study list and 80 foils. The LD trials contained 80 words, different from 
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those used in the test list, drawn from the Kucera and Francis (1983) word pool and 79 

non-words.  

4.1.1.3. Procedure. Immediately following the instructions of the experiment, 

participants were presented with a study list in which words were presented for .75 s each 

at the center of the screen. After each word, a .15 s blank ISI followed. After the study 

list was presented, a 30 s math task was performed. During the math task an integer 

ranging from 1 to 9 was presented on the center of the screen for 3 s. The task was to add 

each integer to the previous sum. Following the math task, the test list was presented.  

For each yes/no recognition trial, participants were presented with either a target or foil. 

The task was to indicate whether the word was studied by typing a “1” or not studied by typing a 

“0.” Following each yes/no recognition test trial, there was an inter-trial interval. For the lexical 

decision condition, a letter string was presented at the center of the screen during the inter-trial 

interval. The task of the participant was to respond “1” if the letter string was an English word 

and “0” if the letter string was a non-word. For the condition in which a blank ISI was presented, 

no task was specified. 

4.1.2. Results 

4.1.2.1. Accuracy. Hit rates were higher when lexical decision trials were interpolated at 

test (M = .65, SD = .16) than when a blank ISI followed each recognition test trial (M = 

.59, SD = .16), t(61) = 3.66, p < .01. False alarm rates were also higher in the lexical 

decision condition (M = .41, SD = .20) than in the blank ISI condition (M = .27, SD = 

.16), t(61) = 6.57, p < .01. Thus, subjects responded “old” more frequently in the lexical 

decision condition. Subject’s accuracy measured by d’ tended to be lower in lexical 

decision condition (M = 1.23, SD = .99) than the blank ISI condition, (M = 1.52, SD = 
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1.07), however, this difference was not reliable, t(61) = -1.82, p = .074. However, since 

bias and d’ are independent for recognition memory, it is quite possible that lower d’ in 

the lexical decision condition is due to the use a more lax decision criterion. 

4.1.2.2. Sequential Dependencies. A 2 (Task: lexical decision vs. blank ISI) x 2 (Previous 

Response: “Old” vs. “New”) repeated measure ANOVA revealed a significant main 

effect of Task, F(1,61) = 35.32, p < .01, on the probability to respond “Old”. This reflects 

an overall tendency to respond “old” in the lexical decision condition as described in the 

previous section. There was a significant main effect of Previous Response on the 

probability to respond “Old”, F(1,61) = 30.29, p < .01, such that the probability of an 

“Old” responds was greater when following a “Old” response than when following a 

“New” response. However, the main effect of the Previous Response is qualified by a 

significant Task x Previous Response interaction, F(1,61) = 15.12, p < .01. In the blank 

ISI condition, the probability of an “Old” response was greater when following a “Old” 

response (M = .49, SD = .13) than when following a “New” response (M = .38, SD = 

.13), t(61) = 6.87, p < .01. In the lexical decision condition, the probability of an “Old” 

response did not significantly differ when preceded by an “Old” response (M = .54, SD = 

.16) or a “New” response (M = .51, SD = .17), t(61) = 1.97, p = .053. These results 

suggest the effect of interpolating lexical decision trials between recognition trials is 

twofold; there is an increase in bias to respond “old” and the effect of the previous 

response is reduced. The later finding is consistent with the Annis & Malmberg model, 

but additional analyses based on the model that I have developed for independently 

measuring bias and sequential dependencies are obviously necessary to make any strong 

conclusions based on these data. 
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4.1.2.3. Bayesian Analyses. The model described in Section 2.8 was used to evaluate the 

differences in sequential dependencies across conditions. The model was implement 

using the open-source JAGS softeware (Plummer, 2003). To run this model, three chains, 

each consisting of 53,000 samples, were generated. The chains were visually checked for 

convergence and the first 3000 burn-in samples were discarded. Table 4.1 shows the 

results of the analysis.  

Table 4.1. Bayesian analysis of differences in sequential dependencies between conditions. BF10 

is the Bayes Factor for the effect size. Bayes Factors greater than 1 indicate support for the 

hypothesis that the effect size is greater than 1. Bayes Factors less than 1 indicate evidence in 

favor of the null hypothesis that the effect size is 0. The lower and upper bounds of the 95% HDI 

for the differences in sequential dependencies between conditions is also shown. 

 The 95% HDI for the differences in sequential dependencies between the Lexical 

Decision condition and the Blank ISI condition, µα, does not include 0. Following Kruschke 

(2011), we can reject the null hypothesis that there is no difference in sequential dependencies 

between conditions, on the grounds that 0 is not a credible value of µα. This result is in line with 

the frequentist analysis in which a significant Task x Previous Response interaction was found. 

The 95% HDI is lies on a negative interval, indicating that sequential dependencies were reduced 

in the Lexical Decision condition. In addition to computing the HDI for the difference between 

conditions, the Bayes Factor for the effect size was also computed. The height of the posterior 

distribution over zero of the effect size, 𝛿, and the height of prior distribution over zero are 

computed. The ratio of the height of the posterior density and prior density over zero gives the 

Bayes Factor, of the effect size, 𝛿, at zero.  The Bayes Factor for the effect size is small, 1.32. 

Comparison BF10 µα 95% HDI 

  Lower Bound Upper Bound 

Experiment 1    

Blank ISI - LD 1.32 -0.29 -0.08 

Experiment 2    

Blank ISI - LD 0.05 -0.21 -0.02 
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This indicates that the alternative hypothesis, 𝛿𝛼 ≠ 0, is only 1.32 times as likely as the null 

hypothesis. Taken together, these results indicate that interpolating lexical decision trials does 

indeed cause a reduction in sequential dependencies, but the effect of this phenomenon is small, 

which makes sense, in that the effect of sequential dependencies is already a small effect. 

Therefore, any reduction in the already small effect would in itself be small.  

I next analyzed the differences in bias between the Lexical Decision and Blank ISI 

conditions using the model described in Section 2.8 above. Table 4.2 shows the results. 

Table 4.2. Bayesian analysis of the differences in bias between conditions.  

 The 95% HDI for the differences in bias between conditions fell between .16 and .35. 

Zero was not found to be a credible value of 𝜇𝛽 indicating that there was an increase in the 

probability of responding “Old” in the Lexical Decision condition. This is in line with the 

ANOVA in which there was a significant effect of Task. The Bayes Factor for the effect size 

parameter, 𝛿𝛽, indicates that the alternative hypothesis,  𝛿𝛽 ≠ 0 is roughly 148 times as likely as 

the null. These results indicate interpolating lexical decision trials during recognition testing 

increases the probability of an “Old” response and given the Bayes Factor, the effect is 

“decisive” (Jeffreys, 1961).  

Having analyzed the differences in bias between conditions, the next analysis looks at 

sequential dependencies in each condition. Table 4.3 shows the results of the analysis using the 

model described in Section 2.7. The first row shows the results for the Blank ISI condition. Zero 

did not lie within the 95% HDI of µα and the Bayes Factor for the effect size indicated a 

Comparison BF10 µα 95% HDI 

  Lower Bound Upper Bound 

Experiment 1    

Blank ISI - LD 147.57 0.16 0.35 

Experiment 2    

Blank ISI - LD 2.02E+07 0.16 0.31 
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substantial effect of the previous response. This is contrasted with the Lexical Decision condition 

in which 0 lies only slightly outside of the 95% HDI. The null hypothesis that the effect size, 

𝛿𝛽 = 0, was 25 times more likely than the alternative hypothesis. These results suggest that there 

was a strong effect of the previous response in the Blank ISI condition, but little if any effect of 

the previous response in the Lexical Decision condition. 

Table 4.3. Bayesian analysis of sequential dependencies for each condition. 

Experiment BF10 µα 95% HDI 

  Lower Bound Upper Bound 

1    

Blank ISI 2804.73 0.22 0.39 

Lexical Decision 0.04 0.01 0.20 

2    

Blank ISI 20.27 0.22 0.38 

Lexical Decision 193.07 0.10 0.25 

 

              Table 4.4. Bayesian analysis of bias in each condition. 

 

 

Table 4.4 shows the results of the Bayesian analysis of bias for each separate condition. 

There was a bias to respond “New” in the Blank ISI condition indicated by the 95% HDI of µα 

not including 0. In addition, there was strong evidence for the effect size being greater than 0. In 

Experiment BF10 µα 95% HDI 

  Lower Bound Upper Bound 

1    

Blank ISI 28.91 -0.25 -0.08 

Lexical Decision 0.05 -0.02 0.23 

2    

Blank ISI 0.14 -0.05 9.22 

Lexical Decision 492212.20 0.25 0.49 
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the Lexical Decision condition, zero was a credible value of µα. The Bayes Factor for the effect 

size was in favor of the null hypothesis.   

4.1.2.4. Modifying the Multi-Interval Model. In addition to modeling the data with the 

binary model described in Chapter 2, these data can also be modeled using the multi-

interval model described in Section 3.2. The multi-interval model can be applied to tasks 

in which there are n responses by assuming n - 1 criterion locations, where n > 1. 

Therefore, for binary data the model would assume a single criterion. Following Morey et 

al. (2008) the criterion was fixed at zero.  

The results are shown in Figures 4.1 through 4.3. Figure 4.1 shows the group-level 

estimates for the proportion of trials in which the previous response did not influence the current 

response. This parameter is referred to as a in the model. The 95% HDI of the differences ranges 

from -.08 to .12. Given that zero is a credible value of the difference in the a parameter between 

conditions, this result suggests interpolating Lexical Decision trials between recognition test 

items did not decrease the proportion of trials in which carryover occurred. The right panel 

shows the individual-level estimates for the a parameter. The analysis revealed the proportion of 

trials in which the previous response influenced the current response was greater in the Blank ISI 

condition than in the Lexical Decision condition for 36 out of 52 participants. These results are 

surprising insofar as both the previous Bayesian and frequentist result suggested an overall 

decrease in the degree of sequential dependencies in the Lexical Decision condition. Given these 

prior results, one would expect to observe a decrease in the a parameter in the Lexical Decision 

condition. 

However, the driving force behind the decrease in sequential dependencies in the Lexical 

Decision condition observed in the prior analyses may be due to another parameter in the model. 
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The left panel of Figure 4.2 shows the estimated difference in the effect of the previous response 

between conditions is not credibly different from zero although zero lies just within the 95% 

HDI. The middle panel shows a clear positive effect of “Old” previous responses in the Blank 

ISI condition. 

 

Figure 4.1. The difference in the a parameter across conditions. 

The right panel shows the effect of the previous response in the Lexical Decision 

condition is not credibly different from zero. These results suggest an effect of the previous 

response in the Blank ISI condition, but not in the Lexical Decision condition, however, the 

analysis suggests that the difference in the effect of the previous stimulus between conditions is 

very small. While this is consistent with the previous Bayesian analysis in which a small effect 

size was found, this is slightly at odds with the significant Task x Previous Response interaction 

revealed by the ANOVA.  

Figure 4.3 shows the parameter estimates for each condition upon which the difference 

estimates in the Figures above were based. The top row of Figure 4.3 shows the posterior 

probability estimates for 𝛽 which represents the mnemonic strength associated with each 

stimulus type. The dotted vertical line represents the criterion upon which the recognition 
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decisions were based. There was a clear positive shift in the estimates for both old and new 

stimuli in the Lexical Decision condition compared with the Blank ISI condition. 

 

Figure 4.2. The left panel shows the difference in the effect of the previous response between 

conditions. The middle panel shows the effect of the previous response in the Blank ISI 

condition. The right panel shows the effect of the previous response in the Lexical Decision 

condition. 

This indicates an increased bias to respond “Old” in the Lexical Decision condition. This result is 

corroborated with the frequentist analysis that showed an increase in the hit and false alarm rates 

in the Lexical Decision condition.  

The second row from the top in Figure 4.3 shows the estimates for the proportion of trials 

in which the previous response influenced the current response for each condition. In the Blank 

ISI condition the 95% HDI for a ranged from .45 to .59 indicating 45% to 59% of responses 

were influenced by the previous response. This was similar to the Lexical Decision condition in 

which the percentage of responses that were influenced by the previous response ranged from 

47% to 61%. 

The third row shows zero is a credible value for the effect of previous “New” responses 

in both conditions. This suggests previous “New” responses did not have a systematic effect on 
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the current response. However, the bottom row shows zero is not a credible value for the 

estimated effect of “Old” previous responses in the Blank ISI condition. On the other hand, 

credible values for the effect of previous “Old” responses in the Lexical Decision condition 

ranged from -.22 to .67.  

 

Figure 4.3. Bayesian analysis of the binary data. The left column shows the application of the 

model to the Blank ISI condition, while the right side shows the analysis of the Lexical Decision 

condition. 
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4.2. Discussion 

The model described by Annis and Malmberg (2013) posits that vigilance may be related 

to the proportion of trials in which information is carried over from the previous trial. In order to 

test the carryover model predictions, a yes/no recognition task was used in which the interpolated 

task was varied in two conditions on the assumption that task switching increases vigilence. The 

inter-trial task was manipulated during recognition testing by either interpolating lexical decision 

trials or a blank ISI in which there was no task. The frequentist analysis revealed a significant 

increase in the tendency to respond “Old in the Lexical Decision condition. More importantly, a 

reduction in sequential dependencies in the Lexical Decision condition was observed, confirming 

the hypothesis.  

In addition to analyzing the data with the frequentist approach. Several Bayesian models 

were also applied. By analyzing the data with models containing different assumptions, a 

conclusion can be reached by triangulating the results from the different analyses. In this manner, 

I hope to avoid basing my conclusions on the idiosyncrasies of a particular model. The Bayesian 

models I developed to distinguish between bias and sequential dependencies, described in 

section 2.6 and 2.9, were applied to the data in order to more fully test the hypothesis and draw 

stronger conclusions.  

The Bayesian analysis revealed a difference in the amount of sequential dependencies 

between conditions, and an increase in the tendency to respond “Old”, consistent with the 

frequentist result. In addition, the Bayes Factor for the effect size was small indicating only 

slight support for the alternative hypothesis that the effect size was not 0.  

Next, the Bayesian model developed in section 3.2 was modified in order to analyze the 

binary data set. The development and application of this model is theoretically important insofar 
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as it makes assumptions that are linked to the assumptions of the process model developed by 

Annis and Malmberg (2013). For example, Annis and Malmberg assumed that the carryover of 

information from trial to trial may only occur on a proportion of trials. The parameter governing 

the probability of carryover occurring on a given trial was referred to as a. The Bayesian model, 

developed here, also makes a similar assumption. The model assumes a linear combination of 

normally distributed latent effects is mapped onto a decision via a set of criteria, where the latent 

effect of the previous response is assumed to contribute to the current decision on only some 

trials. For consistency, the parameter governing the proportion of trials in which this latent effect 

influences the current response is also referred to as a. Thus, the model allows for a very direct 

test of the hypothesis that interpolating inter-trial tasks will lead to a reduction in the amount of 

carryover. The analysis revealed, the a parameter did not differ between the Blank ISI and 

Lexical Decision conditions. However, a difference in the magnitude of the effect of the previous 

response was slightly larger in the Blank ISI condition than in the Lexical Decision condition.  

Within the framework of the Annis and Malmberg model, this might be explained by 

positing that the representation of the interpolated Lexical Decision trials may have interfered 

with the representation of the retrieval cue generated on the preceding trial, while the task-

switching demands placed on the subjects may not have been great enough to observe any 

difference in the a parameter between conditions. In order to test this hypothesis, the next 

experiment seeks to increase the dissimilarity between the recognition procedure and the 

interpolated task. 

4.3. Experiment 2 

The absence of any difference in the a parameter might be due to the difference in tasks 

not being great enough. For example, both the lexical decision and recognition tasks involve a 
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binary choice of either “1” or “0.” In order to increase the difference between the inter-trial task 

and the recognition decision, the next experiment uses a confidence ratings procedure instead of 

a yes/no task. By changing the recognition decision, this design has the added benefit of 

extending the results in the previous experiment to multiple recognition procedures in addition to 

increasing the dissimilarity of the inter-trial task. The ratings task will also provide a platform for 

a comprehensive test of the multi-interval model. Thus, Experiment 2 was identical to 

Experiment 1 except participants gave a ratings response instead of yes/no response.  

4.3.1. Method 

4.3.1.1. Participants. Sixty-four undergraduate students from the University of South 

Florida took part in the study in exchange for course credit. 

4.3.1.2. Design, Materials, and Procedure. Experiment 2 was identical to Experiment 1 

except participants gave a ratings response instead of yes/no response. Subjects 

responded with a “1” if they were “very confident the word was studied,” “2” if they 

were “less confident the word was studied,” “3” if they were “less confident the word 

was not studied,” and “4” if they were “very confident the word was not studied.”  

4.3.2. Results 

4.3.2.1. Accuracy. Ratings responses were analyzed in terms of hit and false alarm rates 

in which P(Response < 3 | Target) = HR, and P(Response < 3 | Foil) = FAR. There were 

higher hit rates in the LD condition (M = .75, SD = .14) than in the ISI condition (M = 

.69, SD = .02), t(63) = 4.38, p < .01. The false alarm rate was also higher in the LD 

condition (M = .53, SD = .21) than in the blank ISI condition (M = .40, SD = .21), t(63) = 

6.48, p < .01. Thus, the bias to respond “old” was greater in the LD condition than in the 

blank ISI condition. Accuracy measured by d’ in the LD condition (M = 1.13, SD = 1.02) 
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did not significantly differ from the blank ISI condition (M = 1.24, SD = 1.03), t(63) = 

.75,  p = .454.  

4.3.2.2. Sequential Dependencies. Ratings responses were analyzed in terms of “Old” and 

“New” responses in which P(Response < 3) = “Old”, and P(Response > 2) = “New.” 

There was a significant main effect of Task on the probability of responding “Old”, 

F(1,63) = 43.95, p < .01, reflecting an overall bias to respond “Old” in the condition in 

which a lexical decision task was interpolated between recognition test trials.  There was 

a significant main effect of the Previous Response such that the probability of an “Old” 

response was greater when preceded by an “Old” response than by a “New” response, 

F(1,63) = 58.95, p < .01. Most importantly, the Task x Previous Response interaction was 

significant, F(1,63) = 7.83, p < .01. In the Blank ISI condition, there was an increased 

probability to respond “Old” given the previous response was “Old” (M = .59, SD  = .16), 

rather than “New” (M = .49, SD = .16), t(63) = 7.28, p < .01. Sequential dependencies 

were also present in the Lexical Decision condition in which the probability of 

responding “Old” was greater following an “Old” response (M = .66, SD = .60) than 

when following a “New” response (M = .60, SD = .16), t(63) = 4.49, p < .01. Thus, 

according to the frequentist statistical analysis assimilation was observed in the blank 

interval condition and reduced in the lexical decision condition, but not eliminated. 

4.3.2.3. Bayesian Analysis with the Binary Model . The Bayesian analysis shown in Table 

4.2 revealed a difference in sequential dependencies between conditions in which 

sequential dependencies were reduced in the lexical decision condition. This is indicated 

by zero not lying in the 95% HDI. However, this effect is quite small as indicated by the 

Bayes Factor of .05 for the effect size.  Table 4.3 shows that there were sequential 
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dependencies in each condition. However, the magnitude of the dependencies was 

somewhat lower in the Lexical Decision 95% HDI[.10, .25] condition than in the Blank 

ISI condition 95% HDI[.22, .38]. Table 4.4 shows a very large bias effect in the Lexical 

Decision condition compared to the Blank ISI condition. 

4.3.2.4. Bayesian Analysis with the Multi-Interval Model. In this section, I apply the 

Multi-Interval model, outlined in section 3.3, to the current data set. Figure 4.4 through 

4.7 shows the results of the model analysis. Figure 4.4 shows the posterior probability 

estimates for the mnemonic strength associated with each stimulus type. The dotted 

vertical lines shows the decision criteria. An overall positive shift was observed for 

strengths associated with new stimuli. 
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Figure 4.4. Posterior probability estimates for the mneumonic strengths associated with each 

stimulus type and the criteria upon which the confidence ratings were based. 

The top left panel of Figure 4.5 shows the posterior probability estimate for the group-

level difference in the a parameter between the Blank ISI and Lexical Decision conditions. The 

difference ranged from .03 to .10. Given that zero is outside the 95% HDI, this suggests that 

interpolating lexical decision trials during a ratings task decreases sequential dependencies. The 

right panel of Figure 4.5 shows forty-three out of sixty-two of the subjects showed some positive 

increase in the a parameter when moving from the Blank ISI condition to the Lexical Decision 

condition.  

  

Figure 4.5. The left panel shows the posterior probability estimate for group-level difference in 

the a parameter between the Blank ISI and Lexical Decision conditions. The right panel plots 

these differences at the individual level. 

The top row of Figure 4.6 shows the group-level posterior probability estimate for the a 

parameter in the Blank ISI condition. The 95% HDI ranged from .68 to .73. In other words, the 

previous response influenced the current response on 27% to 32% of trials. This probability 

increased in the Lexical Decision condition in which the 95% HDI of the a parameter ranged 
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from .73 to .80. Therefore, the previous response influenced the current response on 20% to 27% 

of trials in the Lexical Decision condition. These estimates are highly consistent with the 

estimates obtained from our process model of assimilation in judgments of frequency described 

above (Annis & Malmberg, 2013). We estimated the percentage of trials in which carryover 

occurs to be between 20% and 30%.  The bottom row in Figure 4.6 shows the average estimate 

of the a parameter for each subject. The range of estimates is highly similar. 

 

 

Figure 4.6. The top panels show the group-level posterior probability estimates for the a 

parameter in the Blank ISI and Lexical Decision conditions. The bottom panels show these 

estimates at the individual level. 
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The left panel of Figure 4.7 shows the difference in the effect of the previous response 

between conditions was not credibly different from zero. This result is consistent with the 

previous Bayesian analysis found in section 4.2.2.3, however, it is inconsistent with the 

frequentist analysis which revealed a significant Task by Previous Response interaction. The 

middle panel shows the difference between the effect of the lowest and highest previous response 

trended positively, but was not credibly different from zero. The far right panel panels shows the 

difference between the effect of the lowest and highest previous response was also not credibly 

different from zero in the Lexical Decision condition. 

 

Figure 4.7. The left panel shows the difference in the effect of the previous response between 

conditions. The middle panel shows the effect of the previous response in the Blank ISI 

condition. The right panel shows the effect of the previous response in the Lexical Decision 

condition. 

The left column of Figure 4.8 shows the posterior probability estimates of the effect of 

each previous response type on the current response in the Blank ISI condition. As the previous 

response increases the associated effect also tends to increase. For example, the 95% HDI of 𝑟1 

ranges from -.69 to .24. This range slightly increases for 𝑟2, 95% HDI[-.30, .55], and 𝑟3, 95% 

HDI[-.34, .48]. Another increase in the associated effect can be seen for the highest previous 
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response, 𝑟4, 95% HDI[-.22, 1.01]. In the Lexical Decision condition, the posterior probability 

estimates for the effect of the previous response are relatively similar for all previous response 

types. 

 

Figure 4.8. Posterior probability estimates of the effect of the previous response. 

4.4. Discussion 

I hypothesized that the failure to observe a difference in the proportion of trials in which 

carryover occurs in Experiment 1 was due to the dissimilarity between the recognition task and 

the interpolated trials not being great enough. For example, both tasks were binary choice tasks. 

Therefore, the dissimilarity between the inter-trial and the recognition test procedure was 
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increased in Experiment 2 by changing the yes/no recognition task to a ratings task. This had the 

added benefit of generalizing the results to other recognition procedures and providing a full test 

of the multi-interval model developed in section 3.2.  

The frequentist analysis revealed a reduction in sequential dependencies and an increased 

bias to respond “Old” in the Lexical Decision condition. The Bayesian analysis using the model 

developed in section 2.9 also revealed similar trends, however, the Bayes Factor for the effect 

size suggests the reduction in sequential dependencies was very small.  

The multi-interval model developed in section 3.2 was also fit to the data and revealed 

the effect of the previous response was slightly diminished in the Lexical Decision condition. 

This is similar to the result found in Experiment 1 and suggests that the representation of the  

interpolated task may interfere with the information carried over from trial to trial. 

The multi-interval model also provides a more direct test of the hypothesis that 

reductions in vigilance are related the tendency to carry over information from one trial to the 

next by explicitly assuming that the current response can be modeled by a linear combination of 

latent effects, where the effect of the previous response is considered on only a proportion of 

trials. The proportion of trials in which this carryover effect occurs is governed by the a 

parameter. Increases in the a parameter result in decreases in the number of trials influenced by 

the previous response. In Experiment 2, the a parameter was shown to increase in the Lexical 

Decision condition, thus supporting the hypothesis that increases in vigilance are related to 

decreases in the carryover of information.  
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Chapter 5                                                                                                                                    

General Discussion                                                                                                                 

In this paper, I described and tested several Bayesian models of sequential dependencies 

in binary and multi-interval tasks. There were several challenges associated with measuring 

sequential dependencies that these models were shown to overcome. The main challenges for 

these models included separately measuring bias and sequential dependencies, measuring the 

magnitude and direction of assimilation and contrast, measuring sequential dependencies at lags 

greater than 1, measuring the proportion of trials on which sequential dependencies occur, and 

decorrelating the previous response from the previous stimulus. In order to test the validity of the 

measurement models I simulated data with known properties and determined whether the model 

was able to successfully detect those properties. 

5.1. Binary Models 

The first issue that was identified was the problem of distinguishing between bias and 

sequential dependencies. In Chapter 1, I showed the formal relationship between sequential 

dependencies and bias. Holding all else constant, the relationship shows that as bias to respond 

“Old” increases, so too will the probability of repeating an “Old” response. Therefore, I argued 

that it is necessary to develop models of sequential dependencies that explicitly take into account 

both bias and sequential dependencies. The ability to distinguish between bias and sequential 

dependencies is also classically motivated by models such as Signal Detection Theory which was 

developed in order to distinguish between bias and sensitivity.  
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The first model that was tested was a Bayesian version of a t-test developed by 

Wagenmakers et al. (2010). While this model was shown to be able to distinguish between bias 

and sequential dependencies, it did not explicitly take bias into account. Because of this, the 

model was inefficient in that it took a large number of observations to reach a Bayes Factor that 

would decisively indicate whether sequential dependencies were absent or present in the data. 

The reason for this is that some of the variance in the rate of responding “Old” following “Old” 

and “Old” following “New” is due to bias as well as sequential dependencies. When bias is taken 

into account this variance is better accounted for. By including a separate parameter that 

modeled bias, the model showed a drastic improvement in its ability to decisively identify the 

presence or absence of sequential dependencies and bias.  

A limitation of the model was that it only took into account sequential dependencies 

between the current response and previous response, but not between the current response and 

the previous stimulus. For example, in yes/no recognition the data are usually analyzed in terms 

of hits, false alarms, misses, and correct rejections. Thus, there are 16 different sequential 

dependencies that can arise such as hits following hits, hits following misses, false alarms 

following correct rejections, misses following false alarms and so forth. In order to develop a 

complete theory of sequential dependencies it will be necessary to know whether there are 

differences that exist between these different dependencies. Therefore, a generalized version of 

the model that takes into account all 16 different stimulus-response combinations that exist in a 

yes/no recognition task needs to be developed. A Bayesian model is almost essential in such a 

situation as data sparsity will almost certainly be an issue (see Chapter 1). 

Another limitation of the model was that it could only be used to analyze data from a 

single condition in an experiment. However, the researcher might be interested in how sequential 
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dependencies might differ across conditions of an experiment. For example, in Chapter 4 I tested 

the hypothesis that task switching would decrease the amount of sequential dependencies during 

recognition testing. I extended the model by duplicating the model for each condition and then 

modeled the differences in bias and sequential dependency between conditions. If there are many 

different conditions of the experiment, this model could be applied to each condition pair. On the 

other hand, if the researcher is interested in the overall effect of some manipulation, then a 

Bayesian ANOVA might be more appropriate (see Kruschke, 2011). 

5.2. Multi-Interval Models 

The models outlined above, are only capable of analyzing sequential dependencies in 

binary data. Some of the most interesting and complex patterns of sequential dependencies come 

from perception tasks like absolute identification and memory tasks like judgments of frequency, 

both of which are multi-interval response tasks. For example, in absolute identification, positive 

sequential dependencies are observed between the current response and previous stimuli, but in 

the presence of feedback, this pattern reverses at lags greater than 1 and negative sequential 

dependencies are observed (Ward & Lockhead, 1970). In a judgment of frequency task, negative 

sequential dependencies are associated with previous stimulus, but positive sequential 

dependencies are associated with the previous response (Annis & Malmberg, 2013). Given the 

complexity of the phenomenon it should not come as a surprise that there were many different 

challenges to measuring sequential dependencies in multi-interval tasks. In the following 

sections I will briefly review these challenges and how the model handled each one. 

5.2.1. Response Bias and Sensitivity 

The first challenge was to independently measure response bias and sensitivity (Luce, 

Nosofsky, Green, & Smith, 1982). Often times, participants will bin their responses on extreme 
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ends of the response scale. Because of this bias, the accuracy for the stimuli associated with such 

responses will increase. The multi-interval model handled this issue by assuming criterion and 

sensitivity parameters related to Signal Detection Theory (Morey, Pratte, & Rouder, 2008). To 

test the model, I simulated a data set containing a bias to respond at high ends of the response 

scale. The model was able to correctly distinguish between bias and sensitivity. In addition, the 

model did not misclassify this bias as a sequential dependency. 

5.2.2. Decorrelating the Previous Stimulus and Previous Response  

Another challenge was to decorrelate the effect of the previous stimulus from the 

previous response. In order to test the model, I simulated a data set that contained negative 

sequential dependencies between the current response and previous response and positive 

sequential dependencies between the current response and previous stimulus. In addition, I 

correlated the previous response with previous stimulus by increasing the overall accuracy. 

While the standard method of plotting the error on the current trial as a function of the previous 

response showed positive sequential dependencies (caused by the correlation of the previous 

response with the previous stimulus), the model correctly identified the dependency as negative. 

The model also correctly identified the positive sequential dependency between the current 

response and previous stimulus.  

5.2.3. Relating Measurement and Process  

Modeling sequential dependencies at both the process level and the measurement level is 

critical for future model development (Malmberg, 2008; Estes, 1975). This dissertation 

represents some of the first steps towards such a goal. 

Annis and Malmberg (2013) developed a process model of sequential dependencies in the 

REM framework (Shiffrin & Steyvers, 1997) by assuming that feature values from the previous 
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retrieval cue carries over to the current retrieval cue. The model further assumes that carryover 

may not occur on every trial. In order to test the model, we conducted a judgment of frequency 

task and estimated, via REM simulations, the number of trials in which carryover occurs to be 

between 20% and 30% of trials. This estimate turned out to be very similar the measurement 

model estimate obtained from the ratings task described in Chapter 4. Thus, the first tentative 

link between a process model and measurement model of sequential dependencies in recognition 

memory has been made.  

The consistency is surprising considering that the estimates came from different models 

that were applied to different recognition memory tasks with different stimuli and different 

subjects. In order to bolster the link between the process model and the measurement model, 

REM should be applied to the current data set and the a parameter estimated. Future work should 

also include a rigorous study of the relationship between the a parameter in our process model 

and the a parameter in the current measurement model with simulated data.  This could be 

achieved through simulating data sets with known parameter values via processes outlined in this 

manuscript.   

5.3. Insights Gained By Simulating Data 

The Markov model proved to be incredibly powerful tool that was capable of generating 

a wide array of sequential dependency patterns and yet, at its core, is very simple. For instance, 

the Markov model only took into account the most recent trial. Given the very limited memory 

of the model, I did not expect it to generate some of the results that it did. For example, it was 

able to generate the decaying pattern of assimilation observed at lags greater than 1. The most 

surprising result was that it was capable of generating positive sequential dependencies at lags of 

1 and then reversing this pattern to create negative sequential dependencies at lags of 2 and 
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greater. This was unexpected given the model only considered the most recent trial to generate 

its current response. The reason behind such a baffling result was due to an oscillatory response 

pattern of which I present the details in Chapter 3. This result is theoretically relevant as many 

models of sequential dependencies posit the representation of the current stimulus is 

contaminated by representations occurring more than 1 trial back. However, these simulations 

show this assumption may be sufficient, but not necessary in order to generate contrast.  

Although the Markov model was used to simulate sequential dependences, it would be 

straight forward to estimate the transition probabilities from the data. Thus, the Markov model in 

itself can be used as a measurement model of sequential dependencies. Given its flexibility and 

its lack of theoretical assumptions, it could be used to relate a wide range of tasks across memory 

and perception. There were many serendipitous insights that were gleaned from this model and it 

may hold many more. 

5.4. Insights Gained By Applying the Model to Real-World Data 

In Chapter 4, the models described above were applied to real-world data from two 

experiments in which the inter-trial task was manipulated during recognition testing. The first 

experiment was a simple yes/no recognition experiment in which either a blank ISI or a lexical 

decision task was interpolated between recognition test trials. Both the Bayesian and frequentist 

analysis suggested sequential dependencies decreased in the Lexical Decision condition. When 

analyzing the simple effects, the frequentist approach revealed the probability of an “Old”  

following an “Old” response did not significantly differ from the probability of an “Old” 

response following a “New” response. Often times, non-significant results are misinterpreted as 

evidence in favor of the null hypothesis. On the other hand, the Bayesian analysis does not suffer 
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from such limitations. The Bayes Factor revealed an effect size of zero was 25 times more likely 

than an effect size not equaling zero.  

Experiment 2 was the same as Experiment 1 with the exception that subjects made 

confidence ratings instead of yes/no responses. Both the frequentist and Bayesian analysis 

indicated sequential dependencies decreased in the Lexical Decision condition. In addition, the 

multi-interval model found the proportion of trials that the previous response influenced the 

current response was lower in the Lexical Decision condition by 3% - 10%.  

It should be noted, that obtaining such a result would not be possible with standard 

regression models as they would assume the effect of the previous response is factored into every 

current response (Jones, Love, & Maddox, 2006; Jesteadt, Luce, & Green, 1977; Lockhead & 

King, 1983; Mathews & Stewart, 2009). This measurement assumption is rather inflexible and is 

not compatible with our process model described in Chapter 1. 

In addition to modeling the group parameter values, the multi-interval model showed 

there were large variations in individual differences in how often the previous response 

influenced the current response. This model could be used in future investigations into why these 

individual differences exist and what cognitive factors might be correlated with sequential 

dependencies.  

5.4.1. Limitations of the Measurement Model. Although the multi-interval model showed 

to be very helpful in increasing our theoretical understanding of sequential dependencies, 

there are several issues the present analysis did not address. In this section I will describe 

these issues.  

Output interference in recognition occurs when accuracy decreases over the course of 

testing and is thought to be the result of interference from the storage of item information at test 
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(Criss, Malmberg, & Shiffrin, 2011; Malmberg, Criss, Gangwani, Shiffrin, 2012; Annis, 

Malmberg, Criss, & Shiffrin, 2013). In a similar experiment to the one presented here, Annis et 

al. (2013) varied the inter-trial task during recognition testing and found the interpolation of 

lexical decision trials does not result in increased output interference compared to a blank ISI. 

Annis et al. hypothesized that traces associated with lexical decision trials do not produce 

additional interference because the task context of the lexical decision trials is considerably 

different from the task context associated with recognition trials.  

Given the strong role of task context during recognition testing, could task context also 

be used to explain the present set of results? For example, given a recognition test on trial n, task 

context features might carryover from the lexical decision task on trial n-1. Given that task 

context differs between tasks, the task context from the interpolated lexical decision trial might 

decorrelate the retrieval cues associated with the adjacent recognition test trials and a decrease in 

sequential dependencies would result.  

Another type of context that might be used to explain the present results is known as 

temporal context which is assumed to gradually change over the course of recognition testing 

(e.g. Annis et al., 2013). Thus, the “drifting” of temporal context could be used as a surrogate for 

the carryover of item information. For example, the retrieval cue on the current recognition test 

trial might be correlated with the previous retrieval cue due to the similarity of the temporal 

contexts associated with each trial rather than the carryover of item information. This 

explanation might be sufficient to explain the presence of sequential dependencies during the 

blank ISI condition, but it would be difficult to explain why sequential dependencies decreased 

in the Lexical Decision condition. Context and item representations are defined at the process 
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level, and therefore the multi-interval measurement model would not be able to differentiate 

between the two. 

Although the measurement model cannot offer explanations for sequential dependencies 

at the process level, it has the advantage of including assumptions closely tied to those at the 

process level. Measurement models that are not linked to process models often times suffer from 

circularity. For example, Treisman & Williams (1984) proposed a model of sequential 

dependencies within the Signal Detection Theory (SDT; Green & Swets, 1966) framework in 

which sequential dependencies were the result of the criterion shifting as a function of the 

response on the current trial. An “old” response would cause the criterion to shift negatively. 

Thus, on the following trial it would be more likely that an “old” response would be repeated. In 

addition, a decay function caused the shifted criterion to gradually move back to a stationary 

point on the axis during the interstimulus interval. Therefore, the results can be explained within 

the Treisman and Williams framework either by hypothesizing that the decay function differs 

between conditions or that the magnitude of criterion shifting differs between conditions. 

However, the model does not explain why these differences between conditions would exist. 

Therefore, explaining the present results within this framework would be circular. Because the 

multi-interval measurement model is theoretically linked to a process model of sequential 

dependencies, it is far less likely to suffer from such motivational issues. There is a clear 

theoretical explanation as to why the a parameter changes between conditions. 

5.5. Future Directions 

An overarching goal of the research presented herein is to develop a measurement model 

of sequential dependencies that can be related to neural models of sequential dependencies. 

Recently, the technical aspects of this goal have been greatly elucidated by Turner et al. (2013) 
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who developed a Bayesian framework for simultaneously fitting cognitive models to behavioral 

data and neural models to neural data such that each model constrains the other’s fits. This 

represents a significant methodological step forward in the quest to relate brain to behavior and 

has immediate implications for the measurement models of sequential dependencies I described 

Chapter 2 and 3.  

For example, Kondo and Watanabe (2012) presented stimuli varying in brightness and 

asked participants to provide a brightness judgment. They found increases in activation in the 

left-occipto-temporal region with increases in the brightness of the preceding stimulus. This is 

consistent with the model described by Annis and Malmberg (2013) in which increases in the 

familiarity strength of the preceding stimulus cause increases in the overestimation of the current 

stimulus. Given the measurement model described in Chapter 3, would this increased activation 

be related to the parameter associated with the effect of the previous stimulus?  

Squire, et al. (1976) were interested in how variations in the sequence of stimuli affect 

the amplitude of the P300, an event related potential (ERP) known to be elicited upon the 

presentation of low probability target items in the oddball paradigm. To investigate this, Squire 

et al. presented various sequences of high and low pitched tone bursts. They found that the 

amplitude of the P300 in response to a high pitched tone increases as the number of low pitched 

tones preceding it increases. In addition, they observed that stimuli as far as four trials back had 

influence on the P300 associated with the current trial, and this influence decayed as lag 

increased. This is consistent with the Annis and Malmberg model as well as many models of 

absolute identification which assume stimuli further back usually have less influence on the 

representation of the current stimulus than immediately preceding stimuli. Further, it might be 
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possible to relate the decaying influence of the previous stimulus to parameters associated with 

stimuli at varying lags.  

Finally, attention appears to be a critical component involved in modulating information 

carryover. In Chapter 4 I showed that increases in task vigilance are related to decreases in the 

tendency to carryover information from one trial to the next. Additional evidence for this 

hypothesis comes from cognitive neuroscience. Recently, Payne et al. (2013) showed that brain 

oscillations related to attention, referred to as alpha-band oscillations, are related to the 

interference of previous stimuli. They found that as alpha power increased, the ability to filter 

task-irrelevant information also increased. Thus, the relationship between the a parameter in the 

measurement model and alpha power might provide the basis for future investigations of the 

underlying mechanisms of sequential dependencies. 
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Appendix A Binary Decision Model JAGS Code 

model 

{ 

    for(i in 1:NSUBJ){  

        #counts of yes given yes responses 

        #are binomially distributed 

        #Eq. 2.7 

        YY[i] ~ dbin(theta1[i],Y_[i]) 

        #counts of yes given no responses 

        #are binomially distributed 

        NY[i] ~ dbin(theta2[i],N_[i]) 

        #transformation to rate scale 

        theta1[i] <- phi(phi1[i]) 

        theta2[i] <- phi(phi2[i]) 

        phi1[i] ~ dnorm(muphi,tauphi) 

        phi2[i] <- phi1[i]+alpha[i] 

        #alpha is the difference between  

        #the rate of responding yes following yes 

        #and the rate of responding yes following no 

        #for each individual 

        alpha[i] ~ dnorm(mualpha,taualpha) 

        } 

        # Group-Level Priors: 

        muphi ~ dnorm(0,1) 

        #uninformative group level standard deviation 

        sigmaphi ~ dunif(0,10) 

        #transformation to precision 

        tauphi <- pow(sigmaphi,-2) 

        #the group level mean of alpha 

        mualpha <- delta * sigmaalpha 

        #uninformative prior  

        sigmaalpha ~ dunif(0,10) 

        #transformation to precision 

        taualpha <- pow(sigmaalpha,-2) 

        #unit information prior on the effect size 

        delta ~ dnorm(0,1) 

    } 
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Appendix B Markov Chain R Code 

 

sim.data.markov <- function(trans.mat,chain.length){ 

#Generates a markov chain with transition matrix, trans.mat,  

#trans.mat: transition matrix 

#chain.length: length of the chain 

#Author:Jeffrey Annis 

#Date:3.29.14   

 

  num.states = length(trans.mat[,1]) 

  init.probs = rep(1,num.states)/num.states #all states have eq. prob at t=1 

  state = NULL 

  state <- sample(1:num.states,1,prob=init.probs) #get initial state 

   

  for(i in 1:(chain.length-1)){ 

    trans.probs <- trans.mat[state[i],] #get the transition probabilities 

    state[i+1] <- sample(1:num.states,1,prob=trans.probs) #sample next state  

  } 

 

  return(state) 

   

} 

 

 

 

 

 

 

 

 

 

 



125 

 

 

 

 

Appendix C Bias Model JAGS Code 

model{ 

 

    for(i in 1:NSUBJ){ 

        #counts of yes given yes responses 

        #are binomially distributed 

        YY[i] ~ dbinom(theta.b.phi[i], Y_[i])  

        #counts of yes given no responses 

        #are binomially distributed 

        NY[i] ~ dbinom(theta.a.phi[i], N_[i])  

        #transform theta.a to rate scale 

        theta.b.phi[i] <- phi(theta.b[i]) 

        #transform theta.b to rate scale         

        theta.a.phi[i] <- phi(theta.a[i])  

        #reparameterization of rates 

        theta.a[i] <- bias[i] - (alpha[i]/2) 

        theta.b[i] <- bias[i] + (alpha[i]/2) 

        #sequential dependency parameter 

        alpha[i] ~ dnorm(mu.alpha, sigma.alpha) 

        #bias parameter 

        bias[i] ~ dnorm(mu.bias,sigma.bias) 

    } 

 

    #bias 

    mu.bias <- delta.bias * sigma.bias 

    sigma.bias <- pow(sigma.bias.prec,-2) 

    sigma.bias.prec ~ dunif(0,10) 

     

    #hyperpriors on alpha 

    mu.alpha <- delta.alpha * sigma.alpha 

    sigma.alpha <- pow(sigma.alpha.prec,-2) 

    sigma.alpha.prec ~ dunif(0,10) 

     

    #effect size of alpha 

    delta.alpha ~ dnorm(0,1) 

    delta.bias ~ dnorm(0,1) 

     

    #hyperpriors on theta.a 

    sigma.phi <- pow(sigma.phi.prec,-2) 

    sigma.phi.prec ~ dunif(0,10) 

} 
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Appendix D Multiple Conditions JAGS Code 

model{ 

 

    for(i in 1:NSUBJ){ 

         

        for(j in 1:2){ 

            YY[i,j] ~ dbinom(theta.b.phi[i,j], Y_[i,j])  

            NY[i,j] ~ dbinom(theta.a.phi[i,j], N_[i,j])  

             

            theta.b.phi[i,j] <- phi(theta.b[i,j])  

            theta.a.phi[i,j] <- phi(theta.a[i,j])  

            theta.a[i,j] <- bias[i,j] - (alpha[i,j]/2) 

            theta.b[i,j] <- bias[i,j] + (alpha[i,j]/2) 

        } 

     

    alpha[i,1] ~ dnorm(mu.alpha, sigma.alpha) 

    alpha[i,2] <- alpha[i,1] + gamma.alpha[i] 

    gamma.alpha[i] ~ dnorm(mu.gamma.alpha,sigma.gamma.alpha) 

    bias[i,1] ~ dnorm(mu.bias,sigma.bias) 

    bias[i,2] <- bias[i,1] + gamma.bias[i] 

    gamma.bias[i] ~ dnorm(mu.gamma.bias,sigma.gamma.alpha) 

     

    } 

     

    #hyperpriors on bias 

    mu.bias <- delta.bias * sigma.bias 

    sigma.bias <- pow(sigma.bias.prec,-2) 

    sigma.bias.prec ~ dunif(0,10) 

     

    #hyperpriors on alpha 

    mu.alpha <- delta.alpha * sigma.alpha 

    sigma.alpha <- pow(sigma.alpha.prec,-2) 

    sigma.alpha.prec ~ dunif(0,10) 

    #hyperpriors on gamma.alpha 

    mu.gamma.alpha <- delta.gamma.alpha * sigma.gamma.alpha 

    sigma.gamma.alpha <- pow(sigma.gamma.alpha.prec,-2) 

    sigma.gamma.alpha.prec ~ dunif(0,10) 

    #hyperpriors on gamma.bias 

    mu.gamma.bias <- delta.gamma.bias * sigma.gamma.bias 

    sigma.gamma.bias <- pow(sigma.gamma.bias.prec,-2) 

    sigma.gamma.bias.prec ~ dunif(0,10) 

    #delta priors 

    delta.alpha ~ dnorm(0,1) 

    delta.bias ~ dnorm(0,1) 

    delta.gamma.bias ~ dnorm(0,1) 

    delta.gamma.alpha ~ dnorm(0,1) 

 

} 
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Appendix E Multi-Interval Model R, JAGS Code 

model{ 

 

for(i in 1:NSUBJ){ #NSUBJ: number of subjects   

    #the first LAG trials are not influenced by the previous trials 

    for(j in 1:LAG){ #LAG is the number of previous trials considered 

        #the data are categorical 

        R[i,j] ~ dcat(theta[i,j,1:NRESP]) #NRESP: highest possible response 

        #probability of subject i making a response between  

        #criterion k and k-1, given mu[i,j] 

        for(k in 2:(NRESP-1)){ 

            theta[i,j,k] <- max( 0 , phi((C[k]-mu[i,j])/sigma[S[i,j]])  

            - phi((C[k-1]-mu[i,j])/sigma[S[i,j]]) ) 

        } 

        #probability of subject i making the lowest response 

        #given mu[i,j]  

        theta[i,j,1] <- phi((C[1]-mu[i,j])/sigma[S[i,j]]) 

        #probability of subject i making the highest response 

        #given mu[i,j]  

        theta[i,j,NRESP] <- 1 - phi((C[NRESP-1]-mu[i,j])/sigma[S[i,j]]) 

        #b0 is the overall latent strength associated with  

        #each stimulus value. gamma is subject x stimulus interaction 

        mu[i,j] <- b0[S[i,j]] + gamma[i,S[i,j]] 

    } 

    #this section of code is the same as the last section 

    #except this section takes into account the effect of the previous 

    #stimulus up LAG trials back 

    for(j in (LAG+1):NTRIALS){ #NTRIALS: total number of trials 

        R[i,j] ~ dcat(theta[i,j,1:NRESP]) 

        for(k in 2:(NRESP-1)){ 

            theta[i,j,k] <- max( 0 , phi((C[k]-mu[i,j])/sigma[S[i,j]])  

            - phi((C[k-1]-mu[i,j])/sigma[S[i,j]])   ) 

        }    

        theta[i,j,1] <- phi((C[1]-mu[i,j])/sigma[S[i,j]]) 

        theta[i,j,NRESP] <- 1 - phi((C[NRESP-1]-mu[i,j])/sigma[S[i,j]]) 

        #if x[i,j] = 1 then the previous resposne is taken into account 

        #if x[i,j] = 0 then the effect is 0 

        #r[i,R[i,j-1]] is the effect of the previous response for each  

        #subject i 

        mu[i,j] <- b0[S[i,j]] + gamma[i,S[i,j]] + x[i,j]*r[i,R[i,j-1]] 

        #the proportion of trials in which carryover occurs follows  

        #a Bernoulli distribution with success parameter 1-a[i] 

        x[i,j] ~ dbern(1-a[i]) 

    } 

     

    for(m in 1:NSTIM){#NSTIM is the number of stimuli 

        #the subject x stimulus interaction 

        #has group level mean mu.gamma and 
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        #group level precision sigma.gamma 

        gamma[i,m] ~ dnorm(mu.gamma[m],sigma.gamma[m]) 

        #the subject x previous response interaction 

        #has group level mean mu.r and precision sigma.r 

        r[i,m] ~ dnorm(mu.r[m],sigma.r[m])   

    } 

     

    #uniform prior for the proportion of trials  

    #in which carryover occurs 

    a[i] ~ dbeta(1,1)  

 

}   #uninformative group level priors 

    for(m in 1:NSTIM){ 

        b0[m] ~ dnorm(0,sigma.b0[m]) 

        mu.gamma[m] ~ dnorm(0,10) 

        mu.r[m] ~ dnorm(0,10) 

        sigma.gamma[m] ~ dgamma(.001,.001) 

        sigma.b0[m] ~ dgamma(.001,.001) 

        sigma.r[m] ~ dgamma(.001,.001) 

        sigma.s[m] ~ dgamma(.001,.001) 

        sigma[m] ~ dgamma(.001,.001) 

    } 

 

} 
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Appendix F Multi-Interval Model SR, JAGS Code 

model{ 

 

for(i in 1:NSUBJ){   

    #the first LAG trials are not influenced by the previous trials 

    for(j in 1:LAG){#LAG is the number of previous trials considered 

        #the data are categorical 

        R[i,j] ~ dcat(theta[i,j,1:NRESP]) 

        #probability of subject i making a response between  

        #criterion k and k-1, given mu[i,j] 

        for(k in 2:(NRESP-1)){ 

            theta[i,j,k] <- max( 0 , phi((C[k]-mu[i,j])/sigma[S[i,j]])  

            - phi((C[k-1]-mu[i,j])/sigma[S[i,j]]) ) 

        } 

        #probability of subject i making the lowest response 

        #given mu[i,j]       

        theta[i,j,1] <- phi((C[1]-mu[i,j])/sigma[S[i,j]]) 

        #probability of subject i making the highest response 

        #given mu[i,j]  

        theta[i,j,NRESP] <- 1 - phi((C[NRESP-1]-mu[i,j])/sigma[S[i,j]]) 

        #b0 is the overall latent strength associated with  

        #each stimulus value. gamma is subject x stimulus interaction 

        mu[i,j] <- b0[S[i,j]] + gamma[i,S[i,j]]  

    } 

    #this section of code is the same as the last section 

    #except this section takes into account the effect of the previous 

    #stimulus up LAG trials back 

    for(j in (LAG+1):NTRIALS){ 

        R[i,j] ~ dcat(theta[i,j,1:NRESP]) 

        for(k in 2:(NRESP-1)){ 

            theta[i,j,k] <- max( 0 , phi((C[k]-mu[i,j])/sigma[S[i,j]])  

            - phi((C[k-1]-mu[i,j])/sigma[S[i,j]])   ) 

        }    

        theta[i,j,1] <- phi((C[1]-mu[i,j])/sigma[S[i,j]]) 

        theta[i,j,NRESP] <- 1 - phi((C[NRESP-1]-mu[i,j])/sigma[S[i,j]]) 

        #if x.r[i,j] = 1 then the previous resposne is taken into account 

        #if x.r[i,j] = 0 then the effect is 0 

        #this same rule is applied to the effect of the previous stimulus 

        #for x.s[i,j] 

        #r[i,R[i,j-1]] is the effect of the previous response for each  

        #subject i 

        #s[i,S[i,j-1]] is the effect of the previous stimulus for each  

        #subject i 

        mu[i,j] <- b0[S[i,j]] + gamma[i,S[i,j]] + x.r[i,j]*r[i,R[i,j-1]]  

        + x.s[i,j]*s[i,S[i,j-1]] 

        #the proportion of trials in which carryover occurs follows  

        #a Bernoulli distribution with success parameter 1-a[i] 

        x.r[i,j] ~ dbern(1-a.r[i]) 
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        x.s[i,j] ~ dbern(1-a.s[i]) 

    } 

     

    #priors at the individual level for each stimulus 

    for(m in 1:NSTIM){#NSTIM is the number of stimuli 

        #the subject x stimulus interaction 

        #has group level mean mu.gamma and 

        #group level precision sigma.gamma 

        gamma[i,m] ~ dnorm(mu.gamma[m],sigma.gamma[m]) 

        #the subject x previous response interaction 

        #has group level mean mu.r and precision sigma.r 

        r[i,m] ~ dnorm(mu.r[m],sigma.r[m]) 

        #the subject x previous stimulus interaction 

        #has group level mean mu.r and precision sigma.r 

        s[i,m] ~ dnorm(mu.s[m],sigma.s[m])   

    } 

     

    #uniform prior for the proportion of trials in which carryover occurs 

    a.r[i] ~ dbeta(1,1)  

    a.s[i] ~ dbeta(1,1)  

 

}   #uninformative group level priors 

    for(m in 1:NSTIM){ 

        b0[m] ~ dnorm(0,sigma.b0[m]) 

        mu.gamma[m] ~ dnorm(0,10) 

        mu.r[m] ~ dnorm(0,10) 

        mu.s[m] ~ dnorm(0,10) 

        sigma.gamma[m] ~ dgamma(.001,.001) 

        sigma.b0[m] ~ dgamma(.001,.001) 

        sigma.r[m] ~ dgamma(.001,.001) 

        sigma.s[m] ~ dgamma(.001,.001) 

        sigma[m] ~ dgamma(.001,.001) 

    } 

 

} 
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Appendix G Multi-Interval SRLAG, JAGS Code 

model{ 

for(i in 1:NSUBJ){   

    #the first LAG trials are not influenced by the previous trials 

    for(j in 1:LAG){#LAG is the number of previous trials considered 

        #the data are categorical 

        R[i,j] ~ dcat(theta[i,j,1:NRESP]) 

        #probability of subject i making a response between  

        #criterion k and k-1, given mu[i,j] 

        for(k in 2:(NRESP-1)){ 

            theta[i,j,k] <- max( 0 , phi((C[k]-mu[i,j])/sigma[S[i,j]])  

            - phi((C[k-1]-mu[i,j])/sigma[S[i,j]]) ) 

        }    

        #probability of subject i making the lowest response 

        #given mu[i,j]  

        theta[i,j,1] <- phi((C[1]-mu[i,j])/sigma[S[i,j]]) 

        #probability of subject i making the highest response 

        #given mu[i,j]  

        theta[i,j,NRESP] <- 1 - phi((C[NRESP-1]-mu[i,j])/sigma[S[i,j]]) 

        #b0 is the overall latent strength associated with  

        #each stimulus value. gamma is subject x stimulus interaction 

        mu[i,j] <- b0[S[i,j]] + gamma[i,S[i,j]]  

    } 

    #this section of code is the same as the last section 

    #except this section takes into account the effect of the previous 

    #stimulus up LAG trials back 

    for(j in (LAG+1):NTRIALS){ 

        R[i,j] ~ dcat(theta[i,j,1:NRESP]) 

        for(k in 2:(NRESP-1)){ 

            theta[i,j,k] <- max( 0 , phi((C[k]-mu[i,j])/sigma[S[i,j]])  

            - phi((C[k-1]-mu[i,j])/sigma[S[i,j]])   ) 

        }    

        theta[i,j,1] <- phi((C[1]-mu[i,j])/sigma[S[i,j]]) 

        theta[i,j,NRESP] <- 1 - phi((C[NRESP-1]-mu[i,j])/sigma[S[i,j]]) 

        #if x.r1[i,j] = 1 then the previous resposne is taken into account 

        #if x.r1[i,j] = 0 then the effect is 0 

        #this same rule is applied to the effect of the previous stimulus 

        #for x.s1[i,j] 

        #r1[i,R[i,j-1]] is the effect of the previous response for each  

        #subject i 

        #s1[i,S[i,j-1]] is the effect of the previous stimulus for each  

        #subject i 

        mu[i,j] <- b0[S[i,j]] + gamma[i,S[i,j]]  

        + x.r1[i,j]*r1[i,R[i,j-1]] + x.s1[i,j]*s1[i,S[i,j-1]]  

        #if x.r2[i,j] = 1 then the resposne at lag, 2, is taken into account 

        #if x.r2[i,j] = 0 then the effect of the lag 2 response is 0 

        #this same rule is applied to the effect of the previous stimulus 

        #for x.s2[i,j] 
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        #r2[i,R[i,j-1]] is the effect of the response at lag 2 for each  

        #subject i 

        #s2[i,S[i,j-1]] is the effect of the stimulus at lag 2 for each  

        #subject i 

        + x.r2[i,j]*r2[i,R[i,j-2]] + x.s2[i,j]*s2[i,S[i,j-2]] 

        #the proportion of trials in which carryover occurs follows  

        #a Bernoulli distribution with success parameter 1-a[i] 

        x.r1[i,j] ~ dbern(1-a.r1[i]) 

        x.s1[i,j] ~ dbern(1-a.s1[i]) 

        x.r2[i,j] ~ dbern(1-a.r2[i]) 

        x.s2[i,j] ~ dbern(1-a.s2[i]) 

    } 

    #priors at the individual level for each stimulus 

    for(m in 1:NSTIM){ 

        #the subject x stimulus interaction 

        #has group level mean mu.gamma and 

        #group level precision sigma.gamma 

        gamma[i,m] ~ dnorm(mu.gamma[m],sigma.gamma[m]) 

        #the subject x previous response interaction 

        #has group level mean mu.r1 and precision sigma.r1 

        r1[i,m] ~ dnorm(mu.r1[m],sigma.r1[m]) 

        #the subject x previous stimulus interaction 

        #has group level mean mu.r1 and precision sigma.r1 

        s1[i,m] ~ dnorm(mu.s1[m],sigma.s1[m])    

        #the subject x lag 2 response interaction 

        #has group level mean mu.r2 and precision sigma.r2 

        r2[i,m] ~ dnorm(mu.r2[m],sigma.r2[m]) 

        #the subject x lag 2 stimulus interaction 

        #has group level mean mu.r1 and precision sigma.r1 

        s2[i,m] ~ dnorm(mu.s2[m],sigma.s2[m])    

    } 

     

    #uniform prior for the proportion of trials  

    #in which carryover occurs 

    a.r1[i] ~ dbeta(1,1)  

    a.s1[i] ~ dbeta(1,1)  

    a.r2[i] ~ dbeta(1,1)  

    a.s2[i] ~ dbeta(1,1)  

 

}   #uninformative group level priors 

    for(m in 1:NSTIM){ 

        b0[m] ~ dnorm(0,sigma.b0[m]) 

        mu.gamma[m] ~ dnorm(0,10) 

        mu.r1[m] ~ dnorm(0,10) 

        mu.s1[m] ~ dnorm(0,10) 

        mu.r2[m] ~ dnorm(0,10) 

        mu.s2[m] ~ dnorm(0,10) 

        sigma.gamma[m] ~ dgamma(.001,.001) 

        sigma.b0[m] ~ dgamma(.001,.001) 

        sigma.r1[m] ~ dgamma(.001,.001) 

        sigma.s1[m] ~ dgamma(.001,.001) 

        sigma.r2[m] ~ dgamma(.001,.001) 

        sigma.s2[m] ~ dgamma(.001,.001) 

        sigma[m] ~ dgamma(.001,.001) 

    } 

     

} 
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