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Abstract 
 
 

The nature and assessment of executive function are areas of active research. Many 

current assessments of executive function are complex, have limited reliability and validity, and 

suffer from task impurity, meaning other cognitive processes may indirectly influence task 

performance. Additionally, measures may be culture, language, or education bound limiting their 

use in certain populations (Miyake, Emerson, & Friedman, 2000; Miyake, Friedman, et al., 2000; 

Strauss, Sherman, & Spreen, 2006; Stuss, 2007). The purpose of this project was to develop a 

novel set of executive function measures to address issues with current clinical measures. The 

new measures 1) can be used in an ERP environment, 2) use the same stimulus set to address 

task impurity and 3) use simpler cognitive operations of inhibition, set-shifting, and updating, 

identified in previous research by Miyake et al., (2000). Twenty-nine undergraduate participants 

at the University of South Florida were administered currently used clinical measures of 

executive function theorized to engage in inhibition, set-shifting, and updating and the set of the 

novel tasks. ERP data was collected during the administration of the novel tasks. Behaviorally, 

conditions theorized to engage executive function resulted in slower response reaction time than 

control conditions. Additionally, behavioral results indicated that performance on novel tasks 

were differentially related to different clinical EF tasks. ERP differences were observed between 

both Go/No-Go conditions (inhibition) and among N-back conditions (updating). Results suggest 

the novel executive function tasks are tapping into different cognitive processes and may be a 

viable tool for studying executive function in the future. 
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Chapter One:  

Introduction 

“Executive functions” is an umbrella term used to describe higher order functioning. 

Though there is no standard definition of executive function, most individuals in the field 

generally agree that executive function involves mental operations needed in novel or in non-

routine situations, in which there is not an established stimulus-response association. Executive 

function involves goal directed behavior and top-down control (Gilbert & Burgess, 2008) and is 

necessary when the more dominate response would produce the incorrect behavior (Miller & 

Cohen, 2001). Different researchers have different ideas about what mental operations 

encompass executive function. According to Banich, executive functions involve inhibiting 

familiar behavior, creating attentional or mental sets of relevant information for a current goal, 

task switching, and rule learning (2009). Others have defined executive function as involving 

inhibition, planning, working memory, evaluating consequences, learning and using rules (Miller 

& Wallis, 2009). Still, others suggest that executive function encompasses reasoning, 

organization, planning and problem solving (Suchy, 2009).  

Neuroanatomy Associated with Executive Function 
 

Executive function and abstract thinking have been associated with the prefrontal cortex. 

Prefrontal damage is associated with impaired decisions at the level of abstraction (Badre, 

Hoffman, Cooney, & D'Esposito, 2009). The prefrontal cortex is important for the internal 

representation and achievement of goals. When there are multiple alternatives for a behavior, 
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environmental cues activate internal representations within the prefrontal cortex (PFC) and 

initiate a course of action (Miller & Cohen, 2001).  

Executive function is not solely associated with the prefrontal cortex; the frontal lobes are 

a site of information integration (Stuss, 2011). Executive function can be traced to other brain 

regions, such as the basal ganglia, that have a significant degree of connectivity and 

communication with the prefrontal region due to frontal-subcortical circuits (Leh, Petrides, & 

Strafella, 2009; Mega & Cummings, 1994).When disruptions occur along these circuits, 

neuropsychiatric syndromes may manifest, with symptoms of executive dysfunction, 

disinhibition and apathy (Masterman & Cummings, 1997; Mega & Cummings, 1994). Because 

executive functions are associated with many different brain regions, some authors discourage 

labeling executive function tasks with anatomical references (Strauss et al., 2006).  

Three Executive Components: Inhibition, Set-Shifting and Updating 

Teuber (1972) defined executive function as having both unity and diversity. Unity 

means that there is a common element that is the same for all executive components and 

diversity indicates that there is some uniqueness for each specific executive component (Miyake, 

Friedman, et al., 2000). Performance on executive function tasks are typically correlated with 

each other, suggesting an underlying ability common to all executive functions, but are also 

diverse because they are not correlated completely (Friedman et al., 2008; Miyake & Friedman, 

2012). Miyake and colleagues (2000) identified three lower level executive components of 

inhibition, mental set-shifting, and updating as a basis for executive function theory. Higher-

level executive functions, such as planning, were not identified. Miyake et al., (2000) have 

provided some evidence that inhibition, set-shifting, and updating are separable by using factor 

analytic and structural equation modeling approaches with currently used neuropsychological 
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measures. Several studies following Miyake and colleagues’ paper support the idea that 

inhibition, set-shifting and updating are distinct. Genetics influence each of the three separately, 

for example. In a monozygotic and dizygotic twin study, participants were given executive 

function tasks representing inhibition, set-shifting, and updating. The researchers found almost 

no environmental influence on executive function (except for set-shifting ability), suggesting that 

executive function is almost entirely inheritable. They also concluded that overall executive 

function ability and ability in each unique executive component appears to be heavily influenced 

by genetics (Friedman et al., 2008). Updating has been shown to have a strong relationship with 

intelligence, while inhibition and set-shifting do not (Friedman et al., 2006). Different prefrontal 

areas have been shown to be activated during inhibition tasks and switching of attention 

(Sylvester et al., 2003). Additional evidence from studies using factor analytic techniques 

supports separable components of executive function. A study examining executive functioning 

in older adults found a similar factor structure to Miyake et al. (2000) with the addition of a 

factor related to long term memory (Fisk & Sharp, 2004). In a study of executive function and 

scholastic achievement in 11 and 12 year old children, inhibition, set-shifting, and updating were 

measured. Tasks based on Miyake, Friedman, et al. (2000) were used for the study, but only 

separate factors for inhibition and updating were found. Perhaps shifting tasks involve some 

aspects of inhibition or updating, or the results may reflect a difference between children and 

adults developmentally (St Clair-Thompson & Gathercole, 2006). A study that examined 19 

neuropsychological tests of executive function with exploratory factor analysis found six 

independent factors associated with executive function: prospective working memory, set-

shifting and interference management, task analysis, response inhibition, strategy generation and 

regulation, and self-monitoring and set-maintenance. Measures were weakly correlated, 
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suggesting that executive functions are discrete, which supports the idea that executive function 

is diverse in nature (Testa, Bennett, & Ponsford, 2012).  

Inhibition (to Prepotent Response) 

Inhibition is the ability to purposefully hinder a dominant, automatic, or prepotent 

response (Miyake, Friedman, et al., 2000). Inhibition is an important executive component 

needed for adaptation to the environment (Chikazoe et al., 2009). Inhibition can be applied to 

physical responses (motor or behavioral inhibition), a distracter (selective attention), emotion, 

and memory. Active inhibition involves the suppression of a stimulus, memory or response 

(Aron, 2007). Response inhibition, a specific type of active inhibition, is an intentional process 

that involves stopping behavior that interferes with achieving a goal and selecting an alternate 

behavior (Mostofsky & Simmonds, 2008). There is some evidence that response inhibition can 

occur outside of consciousness (van Gaal, Ridderinkhof, van den Wildenberg, & Lamme, 2009) 

and can be influenced by automatic processing (Verbruggen & Logan, 2009). Unconscious 

inhibitory control has also been supported through ERP research, where Nogo N2 and P3 

amplitudes were larger following an incongruent prime and were reduced following a congruent 

prime (Hughes, Velmans, & De Fockert, 2009).  Cognitive control, or top-down processing, is 

particularly relevant to motor aspects of response inhibition, as there needs to be an active 

mechanism that stops an already initiated response (Aron, 2007). There is also evidence to 

suggest that context monitoring, not motoric stopping, is responsible for response inhibition 

(Chatham et al., 2012).  

Perhaps inhibition is a more basic executive function than updating and set-shifting. 

Recent work by Miyake and colleagues suggests that there may not be an inhibition specific 

executive component. Recent factor analytic studies suggest the inhibition factor correlates 
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completely with a common executive function factor, with all inhibition’s variance accounted for 

in the common executive function factor. This is not the case for set-shifting and updating, 

indicating that are updating-specific and set-shifting specific abilities (Friedman et al., 2008; 

Miyake & Friedman, 2012). This is also supported by studies that have shown low within 

construct correlations for inhibition tasks (Friedman & Miyake, 2004; Friedman et al., 2008). 

Inhibition may be related to active maintenance and management of current task goals whereas 

updating and set-shifting involve resistance to prepotent responses plus additional abilities 

(Friedman et al., 2008). Miyake et al. (2000) suggests updating may require the suppression of 

irrelevant information and set-shifting may require the deactivation of a previous set of rules or 

information, which makes these components more unique than inhibition.  

 Typical tasks that are used to evaluate inhibition are the Stroop task (Golden, 1978), 

Go/No-Go tasks, the antisaccade task and the stop-signal task (Aron, 2007; Miyake, Friedman, et 

al., 2000). All of these tasks involve the stopping of a prepotent or automatic response. For 

example, the Stroop involves an interference subtest where color words are written in different 

color ink than the word describes. Reading is a more automatic process than color naming, so 

examinees must inhibit reading to provide the correct response.  

 Anatomy and inhibition. Damage to the prefrontal cortex may result in stimulus-bound 

behaviors (Miller & Wallis, 2009). The right inferior frontal cortex (IFC) is associated with 

inhibition of initiated motor response, control of task sets, and attentional interference (Menon, 

Adleman, White, Glover, & Reiss, 2001; Mostofsky & Simmonds, 2008). Response inhibition is 

also associated with medial frontal premotor circuits, which are involved with motor response 

preparation. The anterior cingulate cortex’s role in inhibition is error monitoring. The rostral 

portion of the supplementary motor area (pre-SMA) is associated with response preparation, 
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selection, and execution. Early activation of the pre-SMA is associated with successful response 

selection (Mostofsky & Simmonds, 2008). Studies have shown that individuals with lesions to 

the pre-SMA have deficits in performance in response inhibition tasks (Floden & Stuss, 2006; 

Mostofsky & Simmonds, 2008; Picton et al., 2007). Additionally, when comparing go/no-go task 

performance between individuals with left inferior frontal gyrus (IFG) lesions, individuals with 

orbital frontal cortex lesions, and normal controls, participants with IFG damage made more 

errors on the task than the other two groups, suggesting the IFG is associated with inhibitory 

control (Swick, Ashley, & Turken, 2008).  

ERP literature and inhibition. The Nogo-N2 and Nogo-P3 are ERP components 

associated with inhibition. The Nogo-N2 and P3 make up a frontocentral negative-positive 

complex that is elicited by No-Go stimuli (Falkenstein, Hoormann, & Hohnsbein, 2002). The N2 

wave peaks around 200-400ms and the P3 wave peaks around 300-500ms after stimulus onset 

(Bekker, Kenemans, & Verbaten, 2005; Falkenstein, Hoormann, & Hohnsbein, 1999; 

Falkenstein et al., 2002). There is evidence to suggest that these components depend on the 

processes of prefrontal regions, specifically the ACC and are related to the dopamine system 

(Beste, Saft, Gold, & Falkenstein, 2008).   

The frontocentral N2 component is associated with cognitive control, response inhibition, 

response conflict, and error monitoring (Folstein & Van Petten, 2008). The N2 is elicited when a 

prepared motor response requires inhibition and amplitude is larger during successful inhibition 

trials (Eimer, 1993; Gruendler, Ullsperger, & Huster, 2011; Jodo & Kayama, 1992). N2 

amplitude and latency is affected by probability, with rare no-go stimuli eliciting a larger N2 

amplitude than common no-go stimuli and a longer latency than the Go-N2, but only when 

probabilities of the Go and Nogo trials are different. Thus, the classic interpretation of the N2 is 
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that it reflects frontal inhibition (Jodo & Kayama, 1992). One of the issues with this hypothesis, 

however, is that the N2 is only elicited during inhibition tasks using visual stimuli. Therefore, the 

N2 maybe modality specific (Falkenstein et al., 2002).  

There is debate whether the N2 component reflects inhibition. Some theorize that the N2 

actually reflects conflict monitoring. Inhibition inherently requires conflict monitoring, as tasks 

that require the inhibition of a prepotent response involve conflict between the automatic 

response and the correct response (Botvinick, Cohen, & Carter, 2004). One study tried to 

determine whether the N2 reflects response inhibition or conflict monitoring through the use of a 

go/no-go task. According to the inhibition hypothesis, the N2 should be more prominent in 

response to no-go stimuli than go stimuli. The conflict-monitoring hypothesis would be 

supported if similar amplitudes are elicited for both the go and no-go stimuli. The results 

supported the latter hypothesis. The authors explain the reason why others may have obtained 

results that support the inhibition hypothesis is because more conflict monitoring is required in 

conditions with low probabilities (Donkers & Van Boxtel, 2004). Several additional theories 

have been postulated about the cognitive processes associated with the elicitation of the N2. The 

N2 may reflect initiation of inhibition (van Gaal, Lamme, Fahrenfort, & Ridderinkhof, 2011) or 

the non-motor stage or recognition for the need to initiate inhibition (Smith, Johnstone, & Barry, 

2008). Another theory is that N2 may be related to selective attention and not overall executive 

function. In a study where healthy individuals performed the Flanker task along with other paper 

and pencil neuropsychological tests, the N2 produced was not correlated with the 

neuropsychological tests of executive function (Larson & Clayson, 2011).   

The Nogo P3 is elicited over frontocentral electrodes (Hughes et al., 2009) and most 

likely represents general inhibition and is a different subprocess than the Nogo N2.  A study of 



 8 

inhibition in a geriatric population found both P3 and N2 latency were delayed during trials of 

inhibition, but the N2 was delayed to a lesser extent and only after visual stimuli. Because there 

were greater effects for the P3, the results suggested that the N2 and P3 reflect different 

processes of inhibition (Falkenstein et al., 2002). In an experiment examining inhibition in 

Parkinson’s disease (PD), the Nogo P3 was associated with set-shifting and working memory 

performance, but Nogo-N2 was not (Bokura, Yamaguchi, & Kobayashi, 2005). Another study in 

Huntington’s disease (HD) patients using a go/no-go task found reduced Nogo P3 amplitude 

with preserved Nogo N2. The results suggest that the Nogo N2 might reflect pre-motor inhibition 

and conflict monitoring, while the Nogo P3 may be more related to the evaluation of inhibitory 

processes (Beste et al., 2008) with the P3 being involved with the post response phase of 

response inhibition for error detection and preparing for future trials (Roche, Garavan, Foxe, & 

O’Mara, 2005). Other research suggests that the Nogo P3 represent both cognitive and motor 

inhibition (Enriquez-Geppert, Konrad, Pantev, & Huster, 2010; Smith et al., 2008). 

Response inhibition is the ability to overcome prepotent responses. This executive 

component may be common to most tasks of executive function as recent factor analytic studies 

suggest that there are no inhibition specific abilities that are separate from the common executive 

function. The inferior frontal cortex and the Nogo N2 and P3 ERP components are consistently 

associated with inhibition. 

Mental Set-Shifting 

Set-shifting is an executive process that involves disengaging a set of rules for an 

irrelevant task and activating rules for an alternate task (Miyake, Friedman, et al., 2000). In a 

typical task-switching experiment, participants are given rules for two simple tasks to perform 

and are required to switch between the two rules based on either exogenous or endogenous cues. 
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Switching between a set of tasks can incur lower accuracies and slowed reaction times, referred 

collectively as switch cost effects (Jersild, 1927; Kieffaber & Hetrick, 2005; Monsell, 2003). 

Jersild (1927) was one of the first to study mental set-shifting with the use of the plus-minus 

task. In the study, participants were given a list of math problems without an operational sign and 

had to switch between adding and subtracting in each trial. Another example of a set-shifting 

task is the Trails B portion of the Trail Making task. Part A is a timed search task that requires 

the tested individual to connect numbered circles in order as quickly as possible. Trails B 

introduces switch into the task, as individual must connect numbered and lettered circles in 

order, alternating between number and letter (Lezak, 2012).  

There are four basic characteristics that are present in set-shifting tasks. Response time is 

longer on a switch trial than a repetition trial. When participants are given a cue for switch and 

enough time to prepare, switch cost is typically reduced, though switch cost is usually not 

eliminated. There are also long-term and transient set-shifting costs, even though performance 

typically recovers after a switch (Monsell, 2003). Additionally, a larger shift cost occurs for tasks 

where the cue is endogenous, meaning individuals need to remember to shift without a cue, than 

when there an exogenous cue or stimulus is presented (Spector & Biederman, 1976). There is 

also a larger switch cost when switch and repeat trials are blocked rather than intermixed 

(Braver, Reynolds, & Donaldson, 2003; Lenartowicz, Escobedo-Quiroz, & Cohen, 2010; Rubin 

& Meiran, 2005).  

There are two prominent explanations for switch cost effects in set-shifting tasks: the 

interference and reconfiguration theories. According to the interference theory, switch cost 

reflects time to resolve interference. Task switch cost occurs because of the requirement to 

overcome activation of a previous task. This is due to a carryover effect of a competing stimulus-
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response (Kieffaber & Hetrick, 2005; Vandierendonck, Liefooghe, & Verbruggen, 2010). The 

reconfiguration theory infers that switch cost reflects the time needed to reconfigure a task set 

and switching requires the reconfiguration of mental resources (Monsell, 2003; Vandierendonck 

et al., 2010). This may be due to a failure in anticipatory process that controls the configuration 

of the mental set in advance of the new target stimuli. Support for reconfiguration comes from 

studies that have found a correlation with reduction in switch costs and longer preparatory 

intervals between switch trials. This theory is challenged, however, by the fact that residual 

switch cost is rarely eliminated, regardless of the amount of preparatory time given (Arbuthnott 

& Frank, 2000; Kieffaber & Hetrick, 2005; Monsell, 2003). 

Anterior cingulate cortex activation and set-shifting. The anterior cingulate cortex 

(ACC) is a brain region that has been associated with set-shifting. A MEG study showed activity 

in response to shifting cues in the inferior frontal gyrus (IFG), the frontomedial wall of the 

anterior cingulate cortex, and the supramarginal gyrus (SMG). Temporal course of activation 

was IFG and ACC and then the SMG and ACC (3HULiƼH]�HW�DO�������).  The ACC is known to be 

involved with conflict monitoring and executive attention (Botvinick, Braver, Barch, Carter, & 

Cohen, 2001). The ACC plays a conflict monitoring role during incongruent or switch trials. 

Dorsal and caudal regions of the ACC detect pre-response and response-level conflict. In a study 

using the global-local set-shifting task, pre-response conflict activated the dorsal ACC 

(Weissman, Giesbrecht, Song, Mangun, & Woldorff, 2003). The dorsal ACC appears to be 

involved in focusing attention to task-relevant stimuli, which helps resolve conflict from 

distractions (Weissman, Gopalakrishnan, Hazlett, & Woldorff, 2005). 

Set-shifting and inhibition. There is some evidence that there is some overlap with set-

shifting and inhibition. Arbuthnott and Frank (2000) suggested that inhibition is required to 
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disengage from a previous task set and may affect residual switch costs. Switch trials involve the 

inhibition of the current task set and response, and the inhibition of the memory of the task set 

(Aron, 2007).  This raises the question of whether switching could occur without inhibition. Task 

inhibition occurs when there is conflict during response selection (Koch, Gade, Schuch, & 

Philipp, 2010).  An fMRI study using the global-local task attempted to determine areas of 

activation that are both common and discrepant for inhibition and set-shifting. The two 

conditions were to either shift response to global or local levels or respond to only one level. 

Inhibition was induced by having incongruence between the global and local letters, while shift 

was induced by having the participant switch from local to global levels. There were activations 

related to both inhibition and set-shifting in bilateral prefrontal (which include the dorsolateral 

prefrontal cortex, ventral lateral prefrontal cortex, and ACC), parietal, and basal ganglia areas. 

Inhibition was associated with the dorsolateral and ventrolateral prefrontal cortex, the parietal 

lobes, and the temporal-parietal junction. No unique regions were activated shifting alone 

(Hedden & Gabrieli, 2010). Additionally, inferior frontal cortex (IFC) damage can predict switch 

costs. People with IFC damage incur greater switch costs. This suggests the IFC controls 

inhibition and additionally controlling resistance to interference during switching (Aron, 2007; 

Aron, Monsell, Sahakian, & Robbins, 2004). 

Set-shifting and the P3a. The P3a component is typically associated with the brain’s 

response to novelty (Friedman, Cycowicz, & Gaeta, 2001). It is a frontocentral positive wave 

peaking between 250-500ms (Polich, 2007). Several studies have supported an association 

between the frontally distributed P3a and attentional set-shifting (Barceló, 2003; Barceló, 

Periáñez, & Knight, 2002). In a study using the Wisconsin Card Sorting Task (WSCT), events 

that caused a shift in set to new rules elicited the P3a (Barceló et al., 2002). Another study used a 
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similar card sorting task (Madrid Card Sorting Test) and measured ERPs that were time-locked 

to shifts in set. Results suggested that the P3a is a reflection of a brain switching mechanism that 

is sensitive to task and stimulus novelty. Additionally, there was residual P3a activity after the 

first feedback stay cue, where participants were alerted to not switch sets. P3a activity was 

eliminated after a second stay cue. This may reflect the brain continuing to reorient to the new 

task after the first stay cue (Barceló, 2003). Though evidence does support the theory that the 

P3a is reflecting set-shift, there is also evidence to suggest that the P3a may reflect reallocation 

of attention (Friedman, Nessler, Johnson Jr, Ritter, & Bersick, 2007). 

Set-shifting and the P3b. Several studies have also demonstrated a relationship between 

set-shifting and the posterior P3b component. The P3b is a partial-central positive waveform 

peaking between 250-500ms (Polich, 2007). When performing the WCST, a large posterior P3b 

wave is elicited 300ms after choice card onset. The choice card was the card that needed to be 

classified and placed in one of four piles. Though the authors believed this may represent 

working memory demands needed for the task (Barceló, Sanz, Molina, & Rubia, 1997), more 

recent studies have shown that P3b activity is unaffected by number of task-sets in working 

memory nor the predictability of task sets (Barceló, 2003; Barceló, 0XƼR]-Céspedes, Pozo, & 

Rubia, 2000; Barceló et al., 2002). One of these more recent studies also used the WCST. 

Attenuation of the P3b was found during shift trials, followed by a P3b build up, meaning an 

increase in amplitude, during post-shift trials. P3b activity was not observed when the new rule 

was cued exogenously. Results suggest that the P3b may be influenced by an endogenous shift in 

rules for the task. They also found that the P3b reached its highest amplitude a few trials after 

learning the new rule. This may be due to a reconfiguration of working memory and updating of 

the attentional set.  During shift trials, a slight asymmetry was noted, with reduction of the P3b 
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over left temporal and temporal-occipital regions. A post-shift P3b build-up (i.e. increase over 

time) was also observed, extending over several non-shift trials, which may be the result of 

reconfiguration of the attentional set (Barceló et al., 2000; Kieffaber & Hetrick, 2005). This P3b 

activation is correlated with improvement in response speed and efficiency (Barceló, 2003).  

In a study observing ERPs in both younger and older adults, younger adults, switch trials 

elicit a fronto-central P3 component. In older adults, there is no difference in P3b amplitude 

between switch and non-switch trial types. This may be because older adults update task sets on 

all trial types (Friedman et al., 2007).  This is also supported by another study which found P3 

amplitude is weaker in older adults in task-switching trials (West & Moore, 2005). Another study 

found that cues associated with switch was related to the P3b. P3b is also found to be larger in 

non-shift trials than control trials. This may be because the P3b reflects additional neural 

resources that are needed to complete the task. Like several other studies, task switching was 

associated with significant response costs. They also found that changes in P2 and P3a amplitude 

was dependent on whether participants were switching from an easy task to a harder task and 

vice versa. When switching to a less complicated task, smaller P2 and P3a amplitudes were 

observed. Two P3b-like components were elicited; one was associated with a switch cue and the 

other associated with target presentation. The latter component is elicited anterior to the cue-

associated component.  These two different P3b components may reflect two types of 

processing: anticipatory and stimulus dependent. These results complement both the 

reconfiguration/ anticipatory and interference models of set-shifting (Kieffaber & Hetrick, 2005) 

and is supported by another study that found P3 activity during preparation for set shift (Lavric, 

Mizon, & Monsell, 2008). 
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 Set-shifting involves the ability to switch from one task set to another. Brain regions 

typically associated with set-shifting include the ACC, an area of the brain known to be involved 

in conflict monitoring, and the IFC, though this may be because of the inhibition aspect of set-

shifting tasks. The P3a and P3b ERP components are elicited during set-shifting tasks. 

Updating (and Monitoring of Working Memory Representations) 

Working memory is a limited capacity store that retains information that can be 

manipulated (Strauss et al., 2006).  Miyake and colleagues used the term “updating” to describe 

an executive component that involves the monitoring and coding of information and revising 

items held in short term memory by replacing old irrelevant information with relevant 

information (Miyake, Friedman, et al., 2000), as well as the deletion and addition of working 

memory contents (Miyake & Friedman, 2012).  

One of the most prominent theories of working memory is Baddley and Hitch’s model 

(1974). They originally proposed a three-component system consisting of the central executive 

and two storage systems: the visuospatial sketchpad and the phonological loop. The phonological 

loop maintains information by vocal and subvocal rehearsal, while the visuospatial sketchpad 

stores non-verbal information (Baddeley, 2012). The central executive was originally thought to 

involve attentional focus, storage, and decision-making and is responsible for retrieving 

information into conscious awareness and manipulating or modifying the information (Baddeley, 

2000). The executive control mechanism of working memory focuses attention to goal-relevant 

information while interfering information is present (Conway, Kane, & Engle, 2003; Lezak, 

2012).  

The N-back is a classic working memory paradigm that requires participants to update 

contents held in working memory as the task progresses. The task involves remembering the 
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identity of a stimulus and its ordinal position, which requires memory storage plus executive 

control. N-back performance has been shown to be related to reasoning ability. This relationship 

becomes stronger as the task increases memory load (Salthouse, 2005). 

Anatomy and updating. Several studies indicate that prefrontal activity is associated 

with updating tasks. During N-Back tasks, activity in lateral prefrontal cortex and parietal cortex 

increases with the value of N in a linear relationship (Braver et al., 1997).  Another common task 

that taps into updating abilities is the letter-number sequencing task of the WAIS (Crowe, 2000).  

In a PET study where individuals performed the letter-number sequencing task, activations 

occurred in areas associated with working memory: the orbital frontal lobe, dorsolateral 

prefrontal cortex, and the posterior parietal cortex (Haut, Kuwabara, Leach, & Arias, 2000).  

Functional imaging studies show left dorsolateral prefrontal activation for verbal working 

memory tasks and right dorsolateral prefrontal cortex activation for visuospatial tasks (Lezak, 

2012), though this distinction may occur when executive demand for the task is low (Wager & 

Smith, 2003). Tasks involving continuous updating and temporal ordering show more activation 

in the superior frontal cortex but not inferior frontal activation, while other tasks such as 

manipulating items in working memory (ex. performing arithmetic on items in working memory) 

or dual task designs are not associated with superior frontal cortex activation (Wager & Smith, 

2003). Continuous updating and temporal order memory (i.e., remembering order of items is part 

of the task) showed DLPFC and bilateral superior frontal sulcus (SFS) activation. Manipulation 

was associated with the ventral PFC and anterior PFC in the right hemisphere and the inferior 

frontal cortex, possibly because manipulation tasks involve inhibition and set-shifting in addition 

to working memory abilities (Wager & Smith, 2003). DLPFC activity is related to working 

memory load in an inverted U shape, with activity decreases as load gets very high (Callicott et 
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al., 1999). Selective attention has been suggested to limit the capacity of visual working memory 

because both attention and memory share neural resources (Linden, 2007).  

Inhibition and working memory. Inhibitory control has been theorized to be one of the 

primary contributors of working memory abilities. One theory argues that the decision of which 

alternative action to choose is dependent on an interaction of working memory and inhibitory 

processes. Working memory is necessary to overcome the prepotent response by actively 

maintaining self-instruction (Roberts Jr & Pennington, 1996). The Stroop, for instance, is a task 

not ordinarily associated with working memory, but working memory is necessary to perform the 

task because the instructions need to be applied to the current context for each stimulus 

presented. Both working memory and inhibition tasks are related to activation in the inferior 

frontal gyrus, though separate regions of activation do exist such as the anterior middle right 

frontal region for inhibition tasks and the posterior middle right frontal region for working 

memory tasks, suggesting that these two processes may still be separable (McNab et al., 2008). 

The relationship between working memory and inhibition has been further demonstrated by a 

study where working memory capacity (WMC), as measured by the operation span, symmetry 

span, and reading span tasks, was related to inhibitory abilities, as measured by the go/no-go task 

(Redick, Calvo, Gay, & Engle, 2011).  Individuals with lower working memory capacity as 

measured by the OSPAN test (where participants need to remember words while doing simple 

math problems), were less accurate and slower on an antisaccade task, while both groups 

performed equally on a prosaccade task (i.e., participants look in the direction of a cue) (Kane, 

Bleckley, Conway, & Engle, 2001). Additionally, individuals with higher WMC perform better 

on the Stroop (Kane & Engle, 2003).  
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ERP literature and updating (P3b). The P3b is an ERP component associated with 

working memory. The P3b does not reflect a specific process, as the P3b is elicited by a number 

of different tasks, suggesting it may an index of processing efficiency (Bledowski et al., 2006). 

The P3b component has been traditionally proposed to be related to context updating (Polich, 

1998). According to the context updating hypothesis, P3 amplitude reflects attentional and 

memory processes (Donchin & Coles, 1988; Polich, 1998), evaluation of a stimuli within a task 

and categorization of events or stimuli (Donchin, Kramer, & Wickens, 1986; Kok, 2001).  

The P3b role in working memory performance is that it represents the decision of 

whether or not a stimulus matches an internal representation. P3b activity may reflect the 

comparison of external stimuli with the internal representations of the visuospatial sketchpad and 

the phonological loop (Bledowski et al., 2006; Kok, 2001). Working memory representations 

require updating when new information is presented (Donchin, 1981; Morgan, Klein, Boehm, 

Shapiro, & Linden, 2008). A memory comparison process determines whether the stimulus is the 

same or different from a previous encountered stimulus. If the stimulus is determined to be 

different, updating occurs and the P3b is elicited (Polich, 2003).  

 P3 elicited during the working memory task is different than the P3 elicited by the 

“oddball paradigm” as the P3 for working memory is divided into two peaks (an early peak, 

P366 and a late peak, P585). Early P3b is generated in the inferior temporal cortex, left temporo-

parietal junction and the posterior parietal cortex (PPC) and the late is elicited from the PPC and 

the ventrolateral prefrontal cortex. In one study, early activity was sustained in the PPC, 

suggesting that this region is important for working memory, with its function most likely 

associated with the memory search process and operations on the storage buffer to evaluate 

stimuli. The late P3b showed a reduction of amplitude with higher working memory load, also 
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supporting other studies demonstrating memory load effects (Bledowski et al., 2006). Bledowski 

and colleagues (2006) suggest that in the context of working memory, the early P3b represents 

stimulus evaluation while the late P3b component may be related to memory search. A study 

using an n-back task found an association with working memory and an early (300ms) and late 

P3 (360ms) component. Using source analysis, the early P3 component was associated with the 

DLPC, VLPC, the inferior parietal lobule, medial posterior parietal and visual cortex. P3 

amplitude decreased as working memory load increased (Nakao, Kodabashi, Yarita, Fujimoto, & 

Tamura, 2012). Decreased amplitude as the load increases has been found in other studies as 

well (Kok, 2001). One explanation of this is that more processing resources are used for memory 

maintenance so there are fewer processing resources available for stimulus evaluation (Morgan 

et al., 2008)  

 Updating is an executive component associated with the constant revision of working 

memory. Theories of working memory suggest an executive aspect in addition to simple storage 

buffers, allowing for the revision and manipulation of the contents in short term memory. The 

prefrontal cortex is associated with this executive component. Though there isn’t a specific ERP 

component that is associated with updating, the P3b component may be used to look at updating 

performance, as the P3b may be a product of processing efficiency. 

Problems With Current Clinical Executive Function Tasks 

There are several issues with the evaluation of executive function, partly because of the 

nature of executive function and lack of agreement of definition among those who study 

executive function.  Stuss (2007) argued that the term executive function is broad and there are 

differences among the interpretations of the term in the field. Problems with the interpretation of 

the term executive function carry over to tasks of executive function. For instance, some tasks 
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that are considered to be “frontal”, have poor evidence for a relationship with frontal lobe 

function (Stuss, 2007; Stuss et al., 2001). Executive functions manifest themselves in different 

situations and work upon different stimuli (Burgess et al., 2006). 

In a 2005 survey study of 747 neuropsychologists, the most commonly used tests of 

executive function were the Wisconsin Card Sorting Task (WCST), Rey-Osterrieth Complex 

Figure Test (ROCFT), Halstead Category Test, Trail Making Test, and the Controlled Oral Word 

Association Test (COWAT) (Rabin, Barr, & Burton, 2005).  Strauss et al. (2006) outlined a 

number of issues with using these tests. The task impurity problem plagues many executive 

function tasks, meaning that differences in non-executive processing requirements may mask 

commonalities among executive function tasks. For instance, an executive function task that is 

verbal in nature may have different performance outcomes than a visual-spatial task, despite both 

tasks tapping into the same executive function component. Most tasks lead participants to use 

different cognitive operations (e.g., verbal or visuospatial processing) that are not directly related 

to the executive function of interest or are non-executive in general (Burgess et al., 2006; 

Miyake, Friedman, et al., 2000; Strauss et al., 2006). For example, the WCST involves multiple 

cognitive processes such as visual processing, basic numerical ability, rule induction, feedback 

processing, working memory, set-shifting, and motivation. Therefore, poor performance on 

WCST may not necessarily reflect deficits in executive function (Strauss et al., 2006). 

Additionally, executive function tasks are becoming increasingly complex. This complexity may 

mask the executive component being tested. Several authors have suggested the use of simpler 

tasks that better isolate the executive function of interest (Miyake, Emerson, et al., 2000; Stuss, 

2007).  Additionally, because there is evidence to suggest that executive functions are diverse 

and separable, assessment using only one task of executive function may not provide the whole 
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picture of whether or not an individual has an executive function deficit. Suppose an individual 

has difficulties with set-shifting, but updating abilities are unimpaired. Performance on an 

updating task will not reveal an executive function deficit (Miyake, Emerson, et al., 2000; 

Miyake, Friedman, et al., 2000; Strauss et al., 2006).  

Validity arguments for tasks of executive function are sometimes weak. Miyake et al. 

pointed out that there is reliance on the WCST and The Tower of Hanoi task as classic measures 

of executive function, but construct validities have not been well established for these tasks. This 

problem partly arises because some choose to use tasks based on face validity rather than 

psychometric properties of the task (Strauss et al., 2006). In fact, many neuropsychological tasks 

used today were originally created for other purposes and task development was not construct 

driven (Burgess et al., 2006). Furthermore, there are low correlations among executive function 

tasks (Miyake, Friedman, et al., 2000). Low correlations among tasks may be due to the task 

impurity issue or because executive functions are separable in nature (Miyake et al. 2000). 

Inhibition, for example, has been shown to be a difficult construct to define and measure. 

Inhibition tasks have especially had the issue of low correlations among tasks, even with tasks 

designed to measure the same type of inhibition (Friedman & Miyake, 2004).  

In addition to validity issues, scores from tasks of executive function suffer from low 

internal and/or test-retest reliability, possibly because individuals may adopt different strategies 

when performing tasks on different occasions (Miyake, Friedman, et al., 2000).  Executive 

control is perhaps most important when tasks are novel, which may influence change in 

performance on subsequent testing trials (Miyake, Emerson, et al., 2000; Miyake, Friedman, et 

al., 2000). Low test-retest reliability limits test use for diagnostic purposes because determining 

change over time and pattern analysis can be problematic (Strauss et al., 2006).  
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To address some problems with executive function tasks, Stuss (2007) suggested that 

future research should be moving towards evaluating similarities and differences among 

executive functions. Miyake, Emerson, et al. (2000) indicated that it is important to specify the 

executive function that the test is measuring since not all executive functions are the same. To 

address the task impurity problem and attempt to isolate diverse executive components, several 

tasks evaluating the same executive function should be used and results should be integrated. 

Additionally, simpler tasks can also alleviate the issue of task impurity because mechanisms 

required to perform these tasks may be more easily understood and specific executive 

components can be more easily isolated.  

Rationale of the Study 

Because of several issues with currently validated executive function tasks, there is a 

need to develop neuropsychological measures of executive function that address these issues. 

Thus, a new set of executive function measures is in the process of being developed (See 

Appendices A & B for test development and piloting information). The new measures were 

created to access the fundamental executive processes of inhibition, set-shifting, and updating as 

outlined by Miyake and colleagues (2000) and to address several problems with current 

executive function tasks.  The benefit of assessing inhibition, set-shifting, and updating as 

opposed to higher order executive function is these three functions are highly specific and can 

therefore more easily be operationalized (Miyake, Emerson, et al., 2000). In addition to 

improving upon measures of executive function, the tasks were created to improve 

psychophysiological assessment as well, with the eventual goal of increasing sensitivity of 

psychophysiological assessment over behavior assessment alone. The tasks have also been 

created to work in conjunction with EEG to obtain ERPs. The tasks’ stimuli are stationary arrows 
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(to prevent extra eye movements) and tasks have specific stimulus and response events that can 

be time locked to ERP components. 

The task impurity issue described by Miyake et al. (2000) can be addressed by creating a 

set of executive function tasks that use the same stimulus set across each task because the same 

non-executive function processes will be used across tasks. Discrete executive functions become 

observable and isolated without the effect of perceptual differences among tasks. The new 

measures use colored arrows as stimuli, isolating the executive components and eliminating 

reliance on verbal processes, which benefits use in populations across varying cultures and 

education levels. The new set of measures will eliminate the interference of other processes 

during assessment, such as language processes, to get a more pure measure of executive function 

processes. 

The measures can be adjusted (e.g., making stimuli appear slower on the screen) for 

assessment in several patient populations where executive function is compromised (e.g. 

traumatic brain injury patients, attention deficit disorder, dementia, and schizophrenia). 

Adjustments can be made to eliminate floor effects for dementia patients for instance, or 

eliminate ceiling effects if being used in normal populations.  

Finally, performance is less susceptible to be faked or consciously manipulated because 

accuracy is quite high on average for the tasks (as demonstrated in piloting), so low accuracy 

performance may be a sign of poor effort or malingering. Additionally, ERP data may be 

difficult to manipulate.  
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Purpose of the Current Study 

The purpose of the study is to create and validate a new set of measures of executive 

function into simpler cognitive operation that have the same stimulus set. The study seeks to 

provide evidence of convergent and discriminant validity of the novel measures by examining 

relationships between the novel tasks and already established neuropsychological measures of 

executive function. Additionally, this study seeks to determine if the tasks are sensitive enough 

to elicit predicted ERP components.  Because the executive components of inhibition, set-

shifting, and updating are thought to be separable, performance on the novel tasks should 

correlate differently with the clinical EF measures theorized to measure different aspects of 

executive function and elicit different ERP components.  

Hypotheses 

1. The same ERP components known to be associated with set-shifting, updating, and inhibition 

will also be elicited and associated with performance on the novel set of executive function 

measures.  

a. The Nogo N2 (a frontocentral negative waveform with peak amplitude occurring 

around 200-400ms) and the Nogo P3 (a frontocentral positive waveform with peak 

amplitude occurring 250-500ms) will be elicited during tasks of inhibition. 

Additionally, during trials of inhibition (i.e., the Nogo trials of the Go/No-Go task 

and all trials of the Inhibit task) the Nogo N2 will have a larger negative amplitude 

than Go trials and Nogo P3 will have a larger positive amplitude than Go trials.  

b. The P3a (a frontocentral waveform peaking around 250-500ms) and P3b (a parietal-

central waveform peaking around 250-500ms) will be elicited during set-shift trials. 
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Both P3a and P3b will have a larger positive mean amplitude during shift trials than 

stay trials. 

c. The P3b (a parietal-central waveform peaking between 250-500ms) will have a larger 

positive amplitude during updating trials than the control trials. P3b amplitude will be 

associated with memory load in an inverted U-shape relationship. 

2. The novel executive function tasks will be correlated with currently used, valid measures of 

executive function (clinical EF measures) to demonstrate convergent validity of the 

measures.  

a. Performance on the tasks of inhibition (Inhibit and Go/No-Go) as measured by 

accuracy (ACC), reaction time (RT), and RT difference between control task and 

inhibit tasks will be correlated with Stroop Test performance (i.e., measured by 

Color-Word scores). Accuracy of the novel tasks will be positively correlated with 

the Stroop, while RT and RT difference will be negatively correlated with the Stroop.  

b. Performance on the updating task (N-back) as measured by ACC, RT, and RT 

difference will be correlated with WAIS-IV Letter-Number Sequencing (LNS) 

performance (i.e., measured by longest span remembered and total score). Accuracy 

of the novel task will be positively correlated with LNS indices, while RT and RT 

difference will be negatively correlated with LNS indices. 

c. Performance on the set-shifting task as measured by ACC, RT, and RT difference 

will be correlated with the Wisconsin Card Sorting Task (WSCT) performance (i.e., 

measured by number of categories completed, and number of preservative errors). 

ACC of the novel tasks will be positively correlated with WSCT scores, while RT 

and RT difference will be negatively correlated with WSCT scores. ACC will be 
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negatively correlated with Trail Making Part B (TMT-B) performance (i.e., time to 

complete) and RT and RT difference will be positively correlated with TMT-B 

performance.  
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Chapter Two:  

Methods 

Participants 

Thirty-three undergraduate students were recruited from the University of South Florida’s 

online subject pool (SONA) to participate in the study. Participants must have been between the 

ages of 18-30 to participate. Exclusion criteria included history of a neurologic disorder, current 

psychiatric illness, currently taking psychotropic medication, history of head injury, and history 

of extended loss of consciousness. Participants with hairstyles that may impede EEG sensornet to 

scalp contact were also excluded.  Four participants (12.5%) did not meet the inclusion/exclusion 

criteria and were excluded from the study. Two of these excluded participants were over the age 

of 30, one participant was being treated for a psychiatric illness and one participant had history 

of loss of consciousness and head injury. Twenty-nine participants met inclusion/exclusion 

criteria. For the final sample, there were twenty-one females and eight males, ages 18-26 

(M=21.66, SD=2.24), and years of education ranged from 13-19 (M=15.1, SD=1.5). Participants 

identified themselves as African American (20.7%), Asian (10.3%) Caucasian (55.2%), and 

Hispanic (13.8%).  

Experimenters 

Seven experimenters collected data for this study. Danielle Blinkoff administered the 

clinical EF measures to all 29 participants. The other six experimenters were undergraduate 

research assistants who work in either Dr. Cimino’s or Dr. Potts’s laboratory at the University of 

South Florida. The undergraduate RAs assisted in the EEG acquisition portion of the study. Two 
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experimenters collected EEG data as a pair. Each pair consisted of either two undergraduate 

research assistants or Danielle Blinkoff and a research assistant (with the exception of 3 

participants for whom Danielle Blinkoff collected the EEG data on her own). Kyle Curham 

collected data for 11 participants, Rachel West collected data for 11 participants, Natalie Britton 

collected data for 12 participants, Mark DeMessa collected data for 8 participants, Alexandra 

Davis collected data for 3 participants, and Ashley Walker collected data for 4 participants. 

Training of the RAs consisted of review of the experimental protocol, EEG net handling and 

application, and E-Prime Software use. Danielle Blinkoff oversaw the first run of each RA pair 

to ensure the protocol was followed correctly. 

Measures 

Neuropsychological Measures (Clinical EF Measures) 

Wisconsin Card Sorting Task. The purpose of this task is to assess the ability of 

abstract reasoning and set-shifting. Participants are given 60 cards with different symbols on 

each of them. Participants are required to sort the cards by using feedback given to them by the 

examiner (Berg, 1948; Grant & Berg, 1948). Miyake and colleagues found that performance on 

the WCST was predicted by shifting ability (Miyake, Emerson, et al., 2000; Miyake, Friedman, 

et al., 2000). Construct validity has been demonstrated for the WCST via concurrent and 

discriminant validities. Factor analysis studies indicate WCST taps into set-shifting, problem 

solving, and response maintenance (Greve, Stickle, Love, Bianchini, & Stanford, 2005; Strauss 

et al., 2006). WCST also has been shown to have predictive validity with impairment on the 

WCST being found in prodromal Parkinson’s disease and Bipolar disorder patients (Strauss et 

al., 2006). Interrater reliability has been reported as .83 (Axelrod, Goldman, & Woodard, 1992; 
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Greve, 1993; Strauss et al., 2006). Test-retest reliability ranges from .37 to .72 in children 

(Heaton et al., 1993).  

Letter-Number Sequencing. Letter-Number Sequencing (LNS) is a working memory 

subtest of the Wechsler Adult Intelligence Scale-IV (WAIS-IV) that assesses short-term auditory 

memory, auditory sequential processing, working memory, memory span, rote memory, and 

numerical ability. The examiner reads a list of numbers and letters and participants must 

mentally rearrange the list and state the numbers in order, following the letters in order 

(Lichtenberger & Kaufman, 2009; Sattler, Sattler, & Ryan, 2009). LNS is a reliable measure 

with internal consistency reliability ranging r=.85-.91 and test-retest reliability ranging from 

r=.7-.81 (Sattler et al., 2009; Strauss et al., 2006).  

Stroop Test. The Stroop test is test of inhibition, where participants are given color 

words that are printed in different color ink and are required to state the color of the ink in which 

the word is printed. The test takes advantage of the brain’s processing of words versus color 

identification (Golden & Freshwater, 1978). Test-retest reliability has been reported as .86 

(Word), .82 (color), and .73 (Word-Color). The Stroop task has shown to have convergent 

validity with tasks of inhibition and processing speed, and has shown to have predictive validity 

of functional status in follow-up of vascular dementia patients (Strauss et al., 2006).  

Trail Making A & B. This is a task involving scanning and visuomotor tracking, divided 

attention and cognitive flexibility. For Part A, participants draw lines to connect numbered 

circles in consecutive order as fast as possible. Part B requires participants to connect circles 

with numbers and letters by alternating between the two types of sets in consecutive order 

(Reitan & Wolfson, 1985). Test-retest reliability for part A has been shown to range from .46-.89 

and .44-.87 for part B. Interrater reliability has been reported to be .94 for part A and .90 for Part 
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B (Fals-Stewart, 1991; Fals-Stewart, 1992; Strauss et al., 2006). Trail making has demonstrated 

validity, with relations to several other executive function tasks, particularly tasks of attention 

and set-shifting for Part B (Strauss et al., 2006). The test has also been shown to be sensitive to 

individuals with brain damage (Reitan, 1958).  

The Novel Executive Function Tasks 

1. Control Task 

2. Set-shifting Task 

3. Inhibition Tasks 

a. Inhibition Task 1: Incongruent Arrow Task 

b. Inhibition Task 2: Go/No-Go 

4. Updating Tasks 

a. N-back 

See Appendix C for detailed descriptions of each task. 

Apparatus 

Brain electrophysiology was recorded using a 128-channel Electrical Geodesics system 

(EGI., Eugene, OR) sensor net in conjunction with NETSTATION 4.2 acquisition software 

powered by a Macintosh G4 computer. Electroencephalographic data was sampled at 250Hz, 

with .1-100 Hz analog filtering, referenced to the vertex. The novel executive function tasks 

were presented on a 19-inch, flat screen Dell Monitor. Screen resolution was 640 X 480. Tasks 

were programmed and presented on E-Prime Version 2.0 (PST Inc., Pittsburg). Responses were 

recorded on a number keypad [UP (8 key), DOWN (2 key), LEFT (4 key), and RIGHT (6 key)].  

Keys were covered with arrows pointing in the appropriate direction.  
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Procedure 

Prior to experimental procedures, informed, written consent was obtained and 

participants had the opportunity to ask questions. Participants were assigned a subject number to 

protect confidentiality. Demographic information was obtained, which included gender, 

handedness, date of birth, and ethnicity. Information about current medications, psychological 

and neurological information was also obtained. After demographics were obtained, participants 

were then administered the group of clinical EF measures and the group of novel tasks in a 

counter-balanced order. Clinical EF measures (Wisconsin Card Sorting Task, Letter-Number 

Sequencing, Trail Making A & B and the Stroop Test) were administered in a randomized order.  

EEG data was acquired while participants were administered the novel tasks. For the 

EEG acquisition portion of the study, an electrolyte solution consisting of 1 liter distilled H2O, 

1.5 teaspoons of NaCl and .75 teaspoons of baby shampoo was prepared. The participant’s head 

circumference was measured to find appropriate fitting EEG net. The net was submerged in the 

electrolyte solution. Head vertex was found and net was fitted. Net was adjusted until channel 

impedance was below 50k:.  EEG acquisition took place in an electromagnetically shielded 

room. The set of the novel executive function tasks were administered to participants in a 

randomized order with the addition of the control task, which was always administered first, with 

40 trials of each novel task condition given. The experimenter read the instructions for each task 

to the participant and provided the opportunity for the participant to ask questions. Once the 

session was complete, the EEG net was removed and sanitized. Participants were debriefed and 

given the opportunity to ask questions about the study.  
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ERP Extraction Procedure 

For each novel task the following steps were used to extract the ERP data: 1) Data was 

filtered offline at 20 Hz lowpass, 2) stimulus locked EEG data were segmented into 1000ms 

epochs, with 200ms pre- to 800ms post-stimulus onset (i.e., flash of the arrow), 3) Artifact 

detection and ocular artifact replacement was used to eliminate eye blinks, eye movement, bad 

channels and other non-cephalic artifacts, 4) data was sorted by condition and averaged to create 

the ERP, 5) baseline corrector was used over a 200ms baseline period to adjust the ERP to scale, 

6) subject averaged ERPs were then averaged to create a grand average waveform to examine 

mean, medians and possible differences between conditions, and 7) waveforms was visually 

inspected by looking at scalp field topography (i.e., map of all electrodes and waveforms 

observed by each electrode) to determine temporal latency and electrodes used to extract ERPs 

where there appears to be effects among the conditions of interest. 8) Difference waves were 

created by subtracting waveforms of conditions of interest to determine epochs where there may 

be effects among conditions.  
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Chapter Three:  

Results 

Data were analyzed using IBM SPSS 21.0 for Windows and SAS 9.3 for Windows. 

Behavioral Data (Novel Tasks Reaction Time) Diagnostics 

All data was inspected for missing data points. One participant had missing data for the 

Set-Shift and Inhibit tasks due to equipment failure. One participant had missing data for the N-

back task because the participant misunderstood the task. List-wise deletion was used to handle 

all missing data. For each novel executive function task, only trials with correct responses were 

examined and used in the final analysis of reaction time data (see Table 1 for percent correct for 

each novel task condition). 

Table 1 

Percent Accuracy For All Novel Tasks 

Task/Condition Percent Correct Across 
Participants 

Control 98.19% 
Inhibit 97.77% 
Go 98.7% 
No-Go 99.91% 
Stay (Congruent) 96.8% 
Stay (Incongruent) 97% 
Shift (Congruent) 95.2% 
Shift (Incongruent) 97.4% 
1-back 92.05% 
2-back 65.54% 
3-back 39.11% 
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Examination of Outliers: Individual Participants By Condition 

Reaction time data were examined for outliers for each individual participant within each 

novel task. Reaction time values that were above or below 2 standard deviations from that 

participant’s mean were deemed outliers and were removed. 

Examination of Normality and Outliers: Participants By Overall Mean of Condition 

After removal of outliers for each individual participant per condition, descriptive 

statistics and skewness and kurtosis were calculated for each condition. Guidelines by Field 

(2005) were used for significance tests of skewness and kurtosis for each novel task by 

transforming skew and kurtosis values to z-scores. Any z-score of an absolute value greater than 

1.96, was deemed as significantly deviating from a kurtosis and skewness of 0 (p<.05) because 

normal distributions have skewness and kurtosis values of 0, therefore, values deviating from 0  

indicate violations to normality (see Table 2). Mean reaction times for each participant per task 

condition were calculated to determine if any individual participant’s mean was an outlier 

compared to the overall group of participants for that specific condition. Data were visually 

inspected using box and whiskers plots. Additionally, mean reaction times were also converted 

to z-scores. Z-scores with absolute values greater than 1.96 (p<.05), or 2 SD below or above the 

grand mean were deemed to be outliers (see Table 3). Descriptive statistics and skewness and 

kurtosis were then recalculated with the outliers removed (see Table 4).  
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Table 2  

Descriptive Statistics of Novel Measures (Including Outliers) 

 N Mean SD Skewness Kurtosis 
Control Acc 29 39.27 0.96 -1.13* 0.85 
Control RT  450.50 97.89 0.44 -0.71 
Inhibit Acc 28 39.11 1.55 -2.71* 8.73* 
Inhibit RT  534.62 131.19 1.07* 2.26* 
Go Acc 29 39.48 0.91 -1.77* 2.26* 
Go RT  515.89 99.27 0.04 -0.36 
NoGo Acc  39.97 0.19 -5.39* 29 
1 Back Acc 28 36.82 3.28 -2.56* 8.153* 
1 Back RT  451.81 220.27 .578 -.849 
2 Back Acc 28 26.54 11.1 -0.78 -0.68 
2 Back RT  468.55 243.87 0.99* 0.05 
3 Back Acc 28 15.64 8.79 1.06* 0.34 
3 Back RT  526.75 268.8 0.88* 0.02 
Stay RT  28 623.33 127.77 0.49 -0.55 
Shift RT  643.21 128.69 0.31 -0.51 
Stay Congruent RT  600.73 123.29 0.46 -0.71 
Stay Incongruent RT  649.08 143.76 0.70 -0.23 
Shift Congruent RT  638.94 133.02 0.60 0.12 
Shift Incongruent RT  647.96 127.42 0.05 -0.93 
*Indicates a significant deviation from normal at p<.05 
 
Table 3 

Data Points Identified as Outliers at p<.05 for the Novel Tasks (RT) 

Variable  Participant Value Z-Score 
Control 102 656.8 2.11 
Inhibit 102 949.13 3.16 
Go 102 721.25 2.07 
1 Back 129 903.15 2.05 
2 Back 126 

129 
1048.86 
979.71 

2.38 
2.1 

3 Back 129 1150 2.53 
Stay 102 905.26 2.21 
Shift 102 930.69 2.23 
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Table 4  

Descriptive Statistics of RT of Novel Measures (with RT outliers removed) 

 N Mean SD Skewness Kurtosis 
Control RT 28 443.13 91.13 0.37 -0.87 
Inhibit RT 27 519.27 104.97 0.10+ -0.90+ 
Go RT 28 508.56 92.74 -0.13 -0.47 
1 Back RT 27 435.09 205.58 0.57 -0.87 
2 Back RT 26 426.57 196.16 0.87+ -0.13 
3 Back RT 27 484.23 224.49 0.84+ 0.34 
Stay RT  27 612.89 117.4 0.38 -0.75 
Shift RT  632.56 117.91 0.11 -0.86 
Stay Congruent RT  591.44 115.21 0.41 -0.72 
Stay Incongruent RT  637.14 131.60 0.64 -0.24 
Shift Congruent RT  626.33 117.25 0.24 0.76 
Shift Incongruent RT  639.10 120.74 -0.02 -1.00 
*Indicates significantly different from normal at p<.05 
+ Indicates no longer deviation from normality due to removal of outlier  

 

 Multivariate Normality and Outliers for RT Data 

Tests of multivariate normality were also conducted for the novel tasks. Tests of the 

multivariate normality assumption suggested there was a statistically deviation of multivariate 

skewness and kurtosis, B1p=30.31, Ȥ2 (120, N=27)=155.26, p=.017); B2P=81.89, zupper=.389 

zlower=-4.99, however multivariate repeated measures ANOVA is generally robust to violations 

of multivariate normality. The data was also examined for multivariate outliers. Upon analyzing 

the data, a multivariate outlier was found (p=.009), though the Mahalanobis distance of this 

record is not much larger than that the other records (D2 =15.7, participant 111). Analysis was 

conducted with and without univariate outliers for each task. Since there was no difference in 

outcome, results include all data points.  

The same data analysis completed during piloting (see appendix A) was conducted with 

the data collected for this current sample of participants to determine if there were reaction time 

differences among the novel tasks. Reaction time is one way of indexing task difficulty, with the 
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expectation that more difficult tasks will be associated with longer response times because the 

brain will take a longer time to process information (Sternberg, 1969). Because differences in 

reaction time is an indicator of a cognitive operation at work (Burgess et al., 2006), and there are 

certain expectations about difficulty differences between certain conditions, examining reaction 

time is one way to support validity of the tasks.  

Multivariate Analysis for RT Data 

A one-way multivariate-repeated measures ANOVA was used to examine differences in 

mean reaction time (dependent variable) across task conditions (independent variable): Control, 

Inhibit, Go, 1 Back, 2 Back, 3 Back, Stay and Shift. List-wise deletion was used to handle 

missing data. The difference in mean reaction time across conditions was statistically significant 

ȁ=.171, F(7,20)=13.889, p<.001., and the multivariate effect size was estimated to be      =.684.  

 Univariate follow-up tests (pair-wise t-tests) using a Bonferroni approach (p<.0125) to 

reduce family-wise error were conducted to examine differences between the executive function 

condition and control condition (list-wise deletion was used to handle missing data). Pairwise t-

tests revealed significant differences between the Control Task and Inhibit Task t(27)=-4.226, 

p<.001 (Figure 1), the Control and Go Conditions t(28)=-4.345, p<.001(Figure 2), and Stay and 

Shift Conditions t(27)=-2.989, p<.01 (Figure 3). The effect sizes were large for Go/No-Go 

(d=.81) and medium for the Inhibit (d=.799) and Set-shift (d=.56) task comparisons. To examine 

effect of memory load on reaction time, a multivariate repeated measures ANOVA revealed no 

significant differences between the Control Task, and 1, 2, and 3 Back conditions, ȁ=.911, 

F(3,25)=.814, p=.498 (figure 4). 
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* Error bars denote standard error of the mean 
Figure 1 
Mean RT for Inhibit Vs. Control Conditions 
 
 

 
*Error bars denote standard error of the mean 
Figure 2  
Mean RT for Go Vs. Control Conditions 
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* Error bars denote standard error of the mean 
Figure 3 
Mean RT for Shift vs. Stay Conditions 
 
 

 
* Error bars denote standard error of the mean 
Figure 4  
Mean RT For Memory Load 
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test with condition as the independent variable and reaction time as the dependent variable, 

incongruent trials (M = 632.83, SD = 124.79) were associated with a longer mean reaction time 

than congruent trials (M =610.94, SD =123.29), t(27) = 3.12, p < .01, d=.59 (figure 5). 

 
* Error bars denote standard error of the mean 
Figure 5 
Mean RT for Congruent vs. Incongruent Conditions 
 

N-Back Accuracy Analysis 

Because accuracy was not at ceiling for the N-back tasks and there were no differences in 

reaction time among conditions, further analysis of the effect of memory load on accuracy was 

conducted. Tests of multivariate normality were conducted on accuracy scores for memory load 

conditions. Tests of multivariate normality assumption suggests there was a statistically 

significant deviation of skewness, B1p=12.26, Ȥ2 (20, N=28)=66.07, p<.01); B2p=27.46, 

zupper=1.32 zlower=-.308. Multivariate repeated measures ANOVA is generally robust to violations 

of multivariate normality.  A multivariate outlier was found (p<.001, D2  = 17.12, participant 

116), but was left in the analysis. A multivariate repeated measures ANOVA revealed a 
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significant difference in accuracy, ȁ=.103, F(3,25)=72.23, p<.001, and the multivariate effect 

size was estimated to be       =.87.  

Univariate follow-up tests (pair-wise t-tests), using a Bonferroni correction (p<.017), 

were used to examine which control and experimental conditions differed in accuracy. The 

control task accuracy (M=39.29, SD=.98) was significantly higher than one back accuracy 

(M=36.82, SD=3.277), t(27)=4.12, p<.001, (effect size, d=.78), one back accuracy was 

significantly higher than two back accuracy (M=26.54, SD=11.1), t(27) 4.955, p<.001 (effect 

size, d=.94), and two back accuracy was significantly higher than three back accuracy (M=15.64, 

SD=8.78), t(27) 4.79, p<.001 (effect size, d=91) (see figure 6). 

 
* Error bars denote standard error of the mean 
Figure 6 
N-Back Mean Accuracy (Out of 40 Trials) and Percentage of Correct Trials  
 

Neuropsychological Task Diagnostics (Clinical EF Measures) 

Descriptive statistics and skewness and kurtosis were calculated for the raw scores from 
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missing Letter-Number Sequencing scores because the participant’s first language was not 

English. Two participants had missing WSCT data due to experimenter error in administering the 

task. The same procedures for outlier identification used for the reaction time data of the novel 

tasks were also used for clinical EF measures (see Table 6 for data points identified as outliers). 

Table 5 
Descriptive Statistics of the Clinical EF Measures (Outliers Included) 
      N Mean SD Skewness Kurtosis 
TMT-A (seconds) 29 22.91 9.97 2.11* 6.46* 
TMT-B (seconds) 29 55.26 27.32 2.66* 9.51* 
Stroop Color-Word 29 48.82 9.57 -0.16 -0.82 
LNS Total Score 28 20.71 2.42 0.02 -0.77 
LLNS 28 5.71 0.90 -0.04 -0.77 
WSCT Total 27 51.00 9.03 -1.87* 2.69* 
WSCT Categories 
Complete 

27 
 

4.11 1.22 -1.46* 1.45 

* Indicates significantly different from normal at p<.05 
 
Table 6  
Data Points Identified as Outliers at p<.05  
Variable  Participant Value Z-Score 
WSCT Total Score 
 
WSCT Categories Correct 

109 
126 
109 
126 

28  
25 
1 
1 

-2.55 
-2.88 
-2.55 
-2.55 

TMT-A 131 60.72 3.79 
TMT-B 116 167.16 4.10 

 
Descriptive statistics, skewness and kurtosis were recalculated for clinical EF measure 

scores with outliers removed (Table 7).  
 
Table 7 
Descriptive Statistics of the Neuropsychological Measures (Outliers Removed)1 

 N Mean SD Skewness Kurtosis 
TMT-A 28 21.56 6.96 0.71+ -0.01+ 
TMT-B 28 51.27 17.14 0.86+ -0.10+ 
WSCT Total 25 52.96 5.842 -1.87* 3.15* 
WSCT Categories 
Complete 

25 
 

4.36 0.86 -1.46* 0.86 

* Indicates significantly different from normal at p<.05 
+ Indicates change in normality due to removal of outlier 
1Only variables where outliers were removed are listed.  
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EEG Data Diagnostics 

Two participants did not have EEG data to analyze. One participant’s head circumference 

was larger than available nets, and therefore, the participant completed tasks without the EEG 

net. The other participant had thick hair that did not allow for proper net to scalp contact and 

impedance was unable to be brought below 50kȍ� Therefore twenty-seven participants’ data was 

available for analysis. For each condition of the novel tasks, participants’ data was included in 

the analysis if there were 20 clean trials. Trials were considered clean if there were no non-

cephalic artifacts such as eye blinks and the participant responded correctly during that trial. The 

3-Back condition was eliminated from analysis because only six participants had 20 clean trials. 

Fifteen participants were used in N-back analysis because participants needed 20 clean trials for 

both 1-back and 2-back tasks to be included in the analysis. See Table 8 for final number of 

participants included in the ERP analysis.  

 

Table 8 

Participants Included in ERP analysis 

Task/Condition Number of Participants Included 
in Final Analysis 

Control 27 

Inhibit 24 

1-Back 15 (23 clean) 

2-Back 15 (18 clean) 

Go/NoGo 24 

Set-Shift 22 
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RT Data for Participants Included in ERP Analysis 

Reaction time data were reanalyzed to determine if there were differences between 

conditions for participants that were included in the ERP analysis (Table 8). Results that were 

statistically significant for the larger group of participants remained significant and means were 

in the same direction for the participants included in the final ERP analysis (Control faster than 

Inhibit t(23)=3.74, p <.001; Control faster than Go t(22)=3.72, p<.001; Stay faster than Shift 

t(22)=2.73, p<.05).  N-back reaction time differences remained non-significant across the 

Control, 1-Back, 2-Back, and 3-Back conditions ȁ=.897 F(3,14)=.537, p=.66, and a significant 

difference in accuracy among the conditions remained ȁ=.125 F(314)=32.62, p<.001.  

ERP Analysis Procedures 

As this was an exploratory study, the grand average for each condition was visually 

inspected for each electrode. Groups of electrodes that showed waves as having similar forms 

were grouped together to form a montage of electrodes that was used for analysis. ERP waves 

were then created from the average of that group of electrodes. The ERP wave was then 

inspected to determine epochs that may have a significant difference from one another. 

Difference waves were also created for each condition of interest to determine points in the wave 

where the biggest effects lie. Mean Amplitude was used for comparisons of each condition of 

interest. Waveforms were analyzed by region of interest where all electrodes in a particular 

region were averaged. The advantage of this technique improves ease of interpretation as it 

provides a better fit to ANOVA and MANOVA models (Handy, 2004).   
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Hypothesis 1 Data Analysis 

The same ERP components known to be associated with inhibition, set-shifting, and 

updating, will be elicited and associated with performance on the novel set of executive function 

measures.  

For analysis of this hypothesis, the independent variable is task condition and the 

dependent variable is mean amplitude [(measured in microvolts “ȝ9”) within a specific 

epoch/time window (measured in milliseconds “ms”)]. 

Inhibition Hypothesis 

The Nogo N2 (a frontocentral negative wave form with peak amplitude occurring around 

200-400ms) and the Nogo P3 (a frontocentral positive wave form with peak amplitude occurring 

250-500ms) will be elicited during tasks of inhibition. Additionally, during trials of inhibition 

(i.e., the Nogo trials of the Go/No-Go task and all trials of the Inhibit task) the Nogo N2 will 

have a larger negative amplitude and Nogo P3 will have a larger positive amplitude than in the 

Go trials.  

Inhibit task results. The following electrode montage was used to examine frontal ERP 

activity for this task: 4, 5, 6, 10, 11, 12, 13, 15, 16, 18, 19, 21, 112. Several time points were 

identified by visually inspecting the waveforms and difference waveforms for possible 

significant effects (288-328ms, 300-530ms, 400-500ms, 544-716ms). There were no significant 

differences in ERP mean amplitude between the two conditions for any epoch examined (Figure 

7). Specifically, when looking at the time point which would correspond to the NoGo-P3 (300-

530ms epoch), there were no significant differences in mean amplitude between the inhibit (M=-

1.3, SD=2.69) and control condition (M=-1.46, SD=2.43), t(23)= -.310, p=.76. A more restrictive 
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epoch from 400-500ms was also analyzed, but results also revealed no significance between the 

control (M=-1.87, SD=2.63) and inhibit (M=-1.64, SD=2.89) conditions t(23)=-.431, p=.67).  

 

Figure 7  

Frontocentral Waveform for the Inhibit Task with Vertical Lines Indicating the 300-530ms 

Epoch. 

The following electrode montage was used to examine posterior ERP activity for this 

task: 60, 66, 67, 70, 71, 72, 75, 76, 77, 83, 84, 85. There were no significant differences between 

the two ERP mean amplitudes for any epoch analyzed (260-560ms, 276-356ms, 496-724ms). 

Specifically, when examining the epoch corresponding with the P3b (260-560ms), there were no 

significant differences in mean amplitude between the control (M=1.186, SD=2.84) and inhibit 

(M=1.299, SD=2.43) conditions t(23)=.187, p=.853 (figure 8).  
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Figure 8 

Posterior-Central Waveform for the Inhibit Task with Vertical Lines Indicating the 260-560ms 

Epoch. 

Go/ No-Go task results. The following electrode montage was used to examine frontal 

ERP activity for this task: 4, 5, 6, 10, 11, 12, 15, 16, 18, 19. Results revealed a significant effect 

for the 130-280ms epoch, t(23)=2.591, p<.05, indicating Go trials (M=1.05, SD=1.25) led to a 

significantly more positive wave form than No Go trials (M=.27, SD=1.17), . There was also a 

significant effect for the epoch corresponding to P3 amplitude (310-520ms) t(23)=4.162, p<.001, 

with NoGo trials (M=-.45, SD=2.63 leading to a significantly more positive waveform than Go 

trials (M=-2.41, SD=2.56) (See Figure 9).  
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Figure 9 

Frontocentral Waveform for the Go/No-Go Task with Vertical Lines Indicating the 130-280ms 

and 310-520ms Epochs. 

The following electrode montage was used to examine posterior ERP activity for this 

task: 60, 66, 67, 70, 71, 72, 75, 76, 77, 78, 83, 84, 85. Results revealed a significant difference in 

mean P3b amplitude (240-540ms epoch) t(23)=3.107, p<.01, indicating Go trials (M=1.54, 

SD=1.78) led to a significantly more positive wave form than No-Go trials (M=.34, SD=1.67) 

(Figure 10). This result is inconsistent with the hypothesis for this task.  

 

Figure 10. Posterior Waveform for the Go/No-Go Task 240-540ms Epoch. 
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Set-Shift Hypothesis 

The P3a (a frontocentral waveform peaking around 250-500ms) and P3b (a parietal-

central wave form peaking around 250-500ms) will be elicited during set-shift trials. Both P3a 

and P3b will have a greater positive mean amplitude during shift trials than stay trials. 

 Set-shift results. The following electrode montage was used to examine frontal ERP 

activity for this task: 5, 6, 10, 11, 15, 16, 18, 19, 20. The epochs corresponding to P3a amplitude 

(310-480ms) yielded non-significant results t(21)=1.648, p=.114, between shift (M=-2.41, 

SD=3.1) and stay (M=-1.89, SD=3.73) trials. There were no additional significant effects found 

for other epochs examined (480-608ms epoch: t(21)=1.01, p=.286) (figure 11). 

 

Figure 11 

Frontocentral Waveform for the Set-Shift task with Vertical Lines Indicating the 310-480ms 

Epoch. 

There was no significant effect between stay and shift trials for posterior electrodes 

(electrode montage: 60, 66, 67, 70, 71, 77, 79, 83, 84, 85, 86) for any epoch analyzed (172-
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204ms epoch: t(21)=1.71, p=.101 and 272-256ms epoch: t(21)=1.7, p=.105), which indicated no 

significant difference in P3b amplitude (Figure 12).   

 

Figure 12 

 Parietal-Central Waveform for the Set-shift Task with Vertical Lines Indicating the 115-140ms 

and 272-456ms Epochs.  

Because there were two different trial types in the set-shifting task (congruent vs. 

incongruent trials), exploratory analyses were conducted to examine differences between 

congruent and incongruent trial types. The same frontal and posterior electrode montages used 

for shift vs. stay trial analysis. There were no significant differences between congruent and 

incongruent trials for any epoch analyzed (176-228ms: t(21)=1.35, p=.19, 300-424ms: 

t(21)=.1.39, p=.18, and 496-560ms: t(21)=1.06, p=.3) (Figure 13).  
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Figure 13 

Frontal Waveform for the Set-shift Task Examining Congruent and Incongruent Trials with 

Vertical Lines Indicating the 176-288ms, 300-424ms, and 496-560ms Epochs. 

There were no significant differences between congruent and incongruent trials for any 

epoch (116-144ms: t(21)=1.3, p=.21, 292-320ms: t(21)=.21, p=.84, and 400-484ms: t(21)=.74, 

p=.47) analyzed for the parietal-central electrodes (figure 14). 

 

Figure 14  

Posterior Waveform for the Set-Shift Task Examining Congruent and Incongruent Trials with 

Vertical Lines Indicating the 116-144ms and 400-484ms Epochs. 
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Updating (N-Back)-Hypothesis 

The P3b (a parietal-central waveform peaking between 250-500ms) will have a larger 

positive amplitude during updating tasks than the control task. ERP elicitation will be associated 

with memory load in an inverted U-shape relationship. 

 Updating (N-Back) results. The following electrode montage was used to examine 

posterior ERP activity for this task: 60, 62, 66, 67, 71, 72, 76, 77, 83, 84, 85. A one-way 

multivariate repeated measures ANOVA was used with condition as the independent variable 

and mean amplitude as the dependent variable, as three different conditions were compared to 

test this hypothesis. Results revealed a significant effect for P3b mean amplitude (248-472ms 

epoch), ȁ=.461, F(2,13)= 5.57, p<.05 indicating a difference in P3b mean amplitude due to 

memory load. Univariate follow-up tests (pairwise t-tests) were conducted to determine which 

specific conditions differed from one another. Results revealed the 1 Back condition (M=1.31, 

SD=1.26) elicited a larger positive amplitude than the 2 Back condition (M=.55, SD=1.37), 

t(14)=2.62, p<.05. There a trending effect in which the Control condition (M=1.83, SD=2.82) 

elicited a larger positive amplitude than the a 2 Back (M=.55, SD=1.37) conditions t(14)=1.92, 

p=.076 (Figure 15). This suggests that P3b performance was related to memory in a linear 

relationship rather than U-shaped.  

  Exploratory analysis was also completed to determine if there were differences in 

amplitudes in frontal electrodes (montage used: 6, 11, 15, 16, 18, 19, 22, 23). Using a one-way 

multivariate repeated measures ANOVA with condition as the independent variable and mean 

amplitude as the dependent variable, results revealed a significant difference in mean ERP 

amplitude for the 168-208ms epoch, ȁ=.402, F(2,13)= 4.328, p<.05. Univariate follow-up tests 

(pairwise t-tests) revealed a significant difference in amplitude between the Control (M=1.42, 
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SD=1.78) and 2 Back (M=.25, SD=1.48) conditions, t(14)=2.945, p<.05, with the control 

condition eliciting a more positive mean ERP amplitude than the 2 Back condition. A significant 

difference was also revealed for the 252-468ms epoch, ȁ=.394, F(2,13)= 4.22, p<.05. Univariate 

follow-up tests (pairwise t-tests) revealed a trending effect between 1back (M=-2.2, SD=2.1) and 

2 back amplitude (M=-1.43, SD=1.58), t(14)=1.92, p=.076 (Figure 16). 

 

Figure 15 

Posterior Waveform for the N-back Task Indicating P3b Epoch (248-472ms) 

 

Figure 16 

Frontal Waveform for the N-back Task Indicating 168-208ms and 252-468ms Epochs. 
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Hypothesis 2 Data Analysis 

The new executive function tasks will be more correlated with currently used, valid 

measures of executive function theorized to measure that specific executive component than to 

other currently used executive tasks. The Control Task will be unrelated to any paper and pencil 

neuropsychological measure. This will serve to demonstrate convergent and discriminant 

validity of the new executive measures. Accuracy, Reaction Time, and Reaction Time difference 

between the control and challenge condition are indicators of performance for the novel tasks.  

Because accuracy was demonstrated to be unhelpful (i.e. scores were at ceiling) when 

measuring of performance for all tasks except the N-back (updating), accuracy was not used for 

data analysis of convergent and discriminant validity for any novel task expect for the N-back. 

Reaction time was the primary measure of performance for all novel tasks (Control, Inhibit, Set-

shift, and N-back). Reaction time could not be measured for inhibit trials of the Go/No-Go task, 

as the correct response is “no response” and therefore could not be analyzed under this 

hypothesis. RT difference between the control and challenge conditions did not provide any 

additional information than analyzing RT alone, and therefore was also excluded from analysis.  

Control Task Results 

Control task RT was unrelated to any clinical EF measure (Table 9 & 10).  

Inhibition Task Results 

RT’s on the tasks of inhibition (Inhibit) will be more strongly correlated with Stroop Test 

performance as measured by Color-Word scores, than WCST, Trial Making B or LNS. The 

Inhibit Task RT should be negatively correlated with Stroop Color-Word scores.  

Mean RT of inhibit trials on the Inhibit Task was correlated with total Stroop Color-Word 

score (r(26)=-.431, p<.05). However, with the removal of an outlier, this relationship was no 
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longer significant, but was reduced to a trend (r(25)=-.343, p<.1) (Figure 17) .  Mean RT of 

inhibit trials was not correlated with any other neuropsychological measure (Table 9 &10).  

 

Figure 17 

Relationship between Inhibit Performance (RT) and Stroop Color-Word Raw Scores 

  Set-Shifting Task Results 

RTs on the shift trials of the set-shifting task as measured by RT will be more strongly 

correlated with the Wisconsin Card Sorting Task performance (i.e., measured by number of 

categories completed, and number of preservative errors) and Trail Making Part B (TMT-B) 

performance (i.e., time to complete) than stay trials of the set-shifting task.  Shift trial RT should 

be negatively correlated with WSCT scores and positively correlated with TMT-B. Additionally, 

shift trials should be more strongly correlated with WCST and TMT-B scores than Stroop Color-

Word and LNS scores.  
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There was no correlation between any condition in the set-shifting task (Shift, Stay, 

Congruent/Stay, Congruent/Shift, Incongruent/Stay, and Incongruent/Shift) and any performance 

index of the WSCT. There was a significant correlations with Trail Making Part B (TMT-B) and 

all set-shift conditions (p<.05) (See Table 9), however, these relationships appeared to be driven 

by a TMT-B outlier (outlier was 4 SD above the grand mean of that task), and all correlations 

were not significant once the outlier was removed from analysis (See Table 10 & Figure 18). All 

set-shift conditions were correlated to Stroop Color-Word scores (p<.05) (See Table 9). Upon 

removal of the outlier, the Shift/Incongruent condition remained significantly correlated with 

Stroop Color-Word scores (r(25)=-.398, p<.05), but all other conditions (Congruent/Stay, 

Congruent/Shift, Incongruent/Stay) were reduced to a trend (p<.1) (See Table 10). There were no 

significant relationships between LNS scores and any condition in the set-shift task. These 

results suggest inhibition is engaged during the task, though it is questionable whether or not set-

shifting is engaged as results became non-significant upon removal of the outlier.  

 

Figure 18 

Relationship between the Shift Condition of the Set-Shifting Task and TMT-B Time to Complete  
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N-Back Task (Updating) Results 

RT’s on the updating task (N-back) will be more strongly correlated with WAIS-IV 

Letter-Number Sequencing performance (i.e., measured by longest span remembered (LLNS) 

and total score (LNS)) than Stroop Color-Word, TMT-B, and WSCT score. N-Back RT should be 

negatively correlated with LNS performance. 

Total Letter Number Sequencing (LNS) score was associated with the 1-Back condition 

RT, r(25)=-.515, p<.05 (see Figure 19), 2-Back RT, r(25)=-.47, p<.05, and 3-Back RT, r(25)=-

.428, p<.05, (Table 9). With outliers removed, both the 2-Back and 3-Back RT relationship was 

reduced to trending (See Table 9 for results with outliers removed). Longest letter number 

sequence remembered (LLNS) was associated with the 1-Back RT, r(25)=-.421, p<.05, 2-Back 

RT, r(25)=-.541, p<.01, and was trending with 3-Back, r(25)=-.344, p<.1 (including outliers, 

Table 9).  N-back accuracy for 1, 2 and 3 back conditions were unrelated to performance on the 

letter-number sequencing task.  

Stroop Color-Word was correlated with 1-Back RT r(24)=-.503, p<.01, 2-Back RT 

r(24)=-393, p<.05, and 3-Back RT r(24)=-.44, p<.05) with outliers removed (Table 10). TMT-B 

time to complete was correlated with 1-Back, r(24)=.429, p<.05 and 3-Back, r(24)=.534, p<.01 

performance. The 1-back was most strongly correlated with the Stroop than any other Clinical 

EF measure and the 3-back was most strongly correlated with TMT-B. 2-Back was most strongly 

correlated with LLNS. N-Back RT and was unrelated to WSCT performance. These results 

suggest inhibition and set-shifting may also be engaged during the task.  
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Figure 19 
Relationship Between Total Letter Number Sequencing Score and 1-Back Reaction Time 
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Table 9 
Relationships Between RT on Novel Tasks and Performance on Clinical EF Measures (Outliers Not Removed) 
 
 Control Inhibit Go 1-Back 2-Back 3-Back Stay/Con Stay/Incon Shift/Con Shift/Incon 

TMT-B NS NS NS .48** .338+ .492** .408* .472* .398* .438* 

LNS NS NS NS -.515* -.47* -.418* NS NS NS NS 

LLNS NS NS NS -.421* -.541** -.344+ NS NS NS NS 

Stroop-
CW 

NS -.431* NS -.527** -.488** -.487** -.400* -.439* -.413* -.449* 

WSCT NS NS NS NS NS NS NS NS NS NS 

*denotes p<.05; **denotes p<.01;***denotes p<.001; +denotes p<.1; NS denotes Not Significant 
-TMT-A & B measured by time to complete; LNS=total correct; LLNS=highest span; Stroop CW= Number Correct; WSCT=All 
indices (none were correlated with any measure).  
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Table 10 
Relationships Between RT on Novel Tasks and Performance on Clinical EF Measures with Outliers Removed 
 
 Control Inhibit Go 1-Back 2-Back 3-Back Stay/Con Stay/Incon Shift/Con Shift/Incon 

TMT-B NS NS NS .429* NS .534** NS NS NS NS 

LNS NS NS NS -.476* -.363+ -.375+ NS NS NS NS 

LLNS NS NS NS -.397* -.417* -.374+ NS NS NS NS 

Stroop-
CW 

NS -.343+ NS -.503** -.393* -.44* -.328+ -.368+ -.330+ -.389* 

WSCT NS NS NS NS NS NS NS NS NS NS 

*denotes p<.05; **denotes p<.01;***denotes p<.001; +denotes p<.1; NS denotes Not Significant 
-TMT-A & B measured by time to complete; LNS=total correct; LLNS=highest span; Stroop CW= Number Correct; WSCT=All 
indices (none were correlated with any measure) 
 
 
 
 
 
 
 
 
 
 
 
 



 60 

 
 
 
 

Chapter Four:  

Discussion 

 
The purpose of this study was to develop a set of executive function measures that can be 

used in an ERP environment and that address known issues with current neuropsychological 

measures of executive function. The new measures use simple cognitive operations of inhibition, 

set-shifting, and updating and use the same stimulus set. This study addressed convergent and 

discriminate validity for these measures by examining relationships between the novel tasks and 

currently used neuropsychological measures of executive function (current clinical measures of 

EF), as well as ERPs theorized to be elicited during inhibition, shifting and updating tasks. The 

results of the study indicate that the novel executive function tasks may offer a new way of 

measuring the executive components of inhibition, set-shifting, and updating and provide 

preliminary evidence of convergent and discriminant validity of these novel tasks. Some of the 

results from the EEG portion of the study were unexpected. Some predicted differences might 

have been undetected in this study due to issues with power/ small sample size. Because there 

were some ERP effects, however, even if they were not in the direction as predicted by the 

hypotheses, there may be some indication that the differences in the tasks are causing differences 

in ERP activity. 

Control Task 

As expected, the Control task was unrelated to any currently used measure of executive 

function. Since the other novel tasks all had relationships with current clinical measures of 
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executive function, the results suggest the Control task is engaging executive processes less than 

the other tasks.  

P3b is theorized to be associated with novelty. One issue with the study’s procedure was 

that the Control task was always administered before any of the other tasks. The rationale behind 

this was to have participants become comfortable with the tasks and to practice using the 

response pad. The problem with this approach was that the Control task was novel to the 

participant at the time, which may have caused larger ERP amplitudes in response to the task, 

even if participants found it easy. The Control task ERP waveforms were used as a control 

condition for comparison for the N-back and Inhibit tasks, so the novelty of the Control task may 

have influenced results. In order to improve upon this, the Control task can be given as practice 

at the beginning of the procedure, and then given again randomly within the order of the other 

novel tasks. ERPs from the second administration of the Control task can be used for a control 

condition and to determine if novelty is a plausible reason for the effects found in the current 

study. If changing order does not have a change in effect on future results, the development of a 

more valid Control task may be warranted. 

Inhibition 

The Inhibit task was only associated with the Stroop Color-Word task, a 

neuropsychological task of inhibition. This supports the idea that Inhibit task is a task of 

inhibition and is not engaging updating or set-shifting executive components. Additionally, the 

Stroop Color-Word task was correlated with all novel task conditions presumed to be associated 

with executive function and was not associated with the control condition. This supports theories 

that suggest inhibition may be present in most tasks of executive function, and may not be a 

separate component like set-shifting or updating. These results are somewhat conflicting, 
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however, because one would then expect the novel inhibit task to be related to all clinical EF 

measures if inhibition is a common factor among executive components. Nonetheless, the study 

still provides some evidence that the Inhibit task may be selectively engaging inhibition 

processes. There was no difference in ERP waves elicited by the Control task and the Inhibit 

task. One explanation for the results is though there were no differences in ERP waves, there was 

a difference in reaction time, with longer reaction times occurring during the inhibit trials 

compared to control trials, indicating there may be some difference in the tasks, but ERP was not 

sensitive to these differences. Though the Inhibit task may have taken the brain longer to process 

the information (as indicated by the reaction time data), the Inhibit task may not have required 

inhibition of a prepotent response, and therefore did not elicit ERP components typically 

associated with inhibition. A second explanation is that the combination of the Control task 

being novel and the Inhibit task becoming less novel over time due to practice caused 

participants to be less dependent on the inhibition of the prepotent response, which may have 

contributed to the insignificant results. A third explanation is simply that there were more 

participants in the Reaction Time analysis than the ERP analysis, so differences between 

conditions in the ERP analysis may have gone undetected.  

The Go/No-Go task could not be evaluated for convergent validity with the clinical EF 

measures because the No-Go trial correct response is no response. Perhaps comparing the novel 

Go/No-Go task to a Go/No-Go task previously used in another study may be helpful in providing 

evidence of convergent validity for this task, as well as improving upon it. In regards to the ERP 

data, the results for the Go/No-Go task were unexpected because the Go trials had a larger ERP 

amplitude than the NoGo trials. There are a number of reasons why this may have occurred. In 

past research, the opposite effect is usually found because No-Go trials require the inhibition of a 
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prepotent response. Perhaps participants did not inhibit response during the NoGo trials for the 

novel task, possibly because the task was too easy (participants were 98.7% accurate for Go 

Trials and 99.91% accurate for No-Go trials). The Go/No-Go task may benefit from 

modifications such as changing the time interval between stimuli so that it is different throughout 

the task, which is similar to the Conner’s Continuous Performance Test (CPT), a computerized 

neuropsychological measure typically used to evaluate inhibition. Increasing the time between 

trials may also make the task more difficult. Another possibility is there were equal number of 

Go and No-Go trials. One study found that differences in P3 amplitude are eliminated when Go 

and No-Go trials appear with equal frequency, suggesting that the P3 effect typically found in 

Go/No-Go studies is novelty driven (Lavric, Pizzagalli, & Forstmeier, 2004). Other studies have 

shown a larger N2 amplitude when NoGo trials are less frequent than Go trials (Nieuwenhuis, 

Yeung, Van Den Wildenberg, & Ridderinkhof, 2003).  Reducing the proportion of No-Go trials 

may strengthen the proposed ERP effect. 

When visually inspecting the ERP waves for the Go/No-Go task, a waveform resembling 

the N2-P3 complex is observed, indicating that inhibition may be taking place. This pattern is not 

observed for the Go trials (the area where the P3 would be expected has a peak pointed in the 

negative direction, while the No-Go trials have a peak pointing in the positive direction). Perhaps 

inhibition was occurring for the No-Go condition, but an unexpected effect occurred for the Go 

trials. The fact there are four different response options may make this Go/No-Go task unique. In 

typical Go/No-Go task, or even in the CPT, individuals only need to respond to one button and 

inhibit response to that one button. In the novel task, there are four different responses that 

participants need to choose from for Go trials, but there is only one correct response (i.e. no 
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response) for the No-Go trials. This choice for Go trials requires decision making, and decision-

making is typically associated with executive function.  

There are also theories that suggest the N2 is not related to response inhibition but is 

related to conflict monitoring, and therefore may be an unhelpful indicator of inhibition for the 

novel tasks. Perhaps the Go condition in the novel task is eliciting stronger ERP amplitudes than 

the NoGo condition because of this decision making component of the task, which induces 

conflict monitoring (Donkers & Van Boxtel, 2004). The Go/No-Go task can also be modified by 

having individuals respond to just one or two arrows to make the decision making process easier 

during Go trials and to determine if this changes the relationship between the Go and NoGo 

conditions. This explanation can also be applied to the Inhibit task, as decision making was 

required for both Inhibit and Control trials, even if inhibit trials were more difficult, as indexed 

by slower reaction time on average in response to inhibit trials. 

Set-Shifting 

The novel set-shifting task was only associated with the Stroop Color-Word task, which 

was unexpected. Perhaps this task may be stronger as an inhibition type task. Surprisingly, when 

examining results from the WCST, a task presumed to engage set-shifting, performance was 

unrelated to any novel measure. Skewness and kurtosis deviated from normal, with most 

participants performing in the average range, leaving little variation in performance. Perhaps 

WSCT is less sensitive at picking up subtle differences in healthy populations, which may be a 

reason for non-significant results when examining this measure. Also, the WCST is inherently 

different from the novel tasks, as time is not factored into performance. Using a task, such as the 

global-local task as Miyake, Friedman, et al. (2000) described, as a comparison measure may be 
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more beneficial for examining convergent validity of the novel task because it uses reaction time 

as a primary means of measuring performance.  

Additionally, there was no difference in mean ERP amplitude between shift and stay 

trials in any epoch analyzed for both frontal and posterior electrodes. Although ERP results were 

unexpected, behaviorally, shift trials did, however, result in a longer reaction time than stay 

trials, indicating that there may be some cognitive process that is driving difference in 

performance between the two conditions. The task may be useful as a set-shift task, with some 

changes made to the design.  

There were several issues identified with this task. The conditions that participants were 

to switch between were not equally difficult, suggested by the fact participants responded with 

significantly slower reaction time for incongruent trials than congruent trials, which may have 

caused inhibition to be the predominant function engaged within the task. Additionally the effect 

may have been weakened because past research has shown that P3a amplitude is smaller when 

switching to a less complicated task (Kieffaber & Hetrick, 2005). Furthermore, participants were 

externally cued when to shift or stay in the novel task, but an internal cue to change sets is 

required for the WCST and TMT-B. Barceló and colleagues found that P3b activity is not 

observed when the new rule was cued exogenously (Barceló et al., 2000). Having to internally 

generate a cue to change sets rather than rely on an external cue may be more dependent on 

executive function. Also, in set-shift studies, switch costs are bigger when trials are blocked 

rather than intermixed (Braver et al., 2003; Lenartowicz et al., 2010; Rubin & Meiran, 2005). 

Perhaps the effect between shift and stay would have been stronger if trials were blocked.  
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Updating  

The results from this study suggest that the novel N-back task may be a promising 

updating task. The N-back, the task developed to measure updating (working memory), was the 

only task related to letter-number sequencing, an already validated working memory task 

demonstrating both convergent and discriminant validity for the novel task. The N-back task was 

also correlated with TMT-B and the Stroop task. It is not necessarily surprising that TMT-B was 

correlated with N-back performance. As discussed, currently used executive function tasks do 

not purely measure one executive function, and TMT-B is no exception. Research provides 

evidence that performance on TMT-B depends on working memory (Crowe, 1998; Lezak, 2012) 

in addition to switching. Similarly, inhibition may also underlie working memory tasks (Roberts 

Jr & Pennington, 1996).  For the N-back task, it was expected that P3b activity would be related 

to memory load with a U-shaped curve. In this study, P3b activity decreased as memory load 

increased. These results also correspond with the behavioral data, as accuracy decreased with 

increased memory load. This may be because the N-back task is really a divided attention task, 

which may in fact cause a decrease in P3 amplitude as the difficulty of the task increases. One 

has to remember stimuli presented earlier while paying attention to stimuli being shown on the 

screen. Watter, Geffen, and Geffen (2001) used an n-back paradigm in their study and also found 

P300 amplitude decreased as memory load increased. They suggested that n-back tasks could be 

conceptualized as a dual task, as two distinct tasks are required: a working memory updating 

subtask and a matching subtask. Results from another study examining differences between 

spatial and verbal N-back tests found a reduced P3 amplitude as well. They found that P300 

amplitude was only affected by memory load, not sensory modality, suggesting that the P300 is 

involved in higher order functioning (McEvoy, Pellouchoud, Smith, & Gevins, 2001).  When 
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working memory load increases, resource reallocation from response classification and decision 

making to memory maintenance may be responsible for decreased P300 amplitude (Kok, 2001; 

McEvoy et al., 2001; McEvoy, Smith, & Gevins, 1998).  

The exploratory analysis of the frontal electrodes revealed a positive waveform occurring 

around 168-208ms, where amplitude of this wave attenuated as memory load increased. There 

are theories that suggest working memory relies on a network of fronto-parietal connections 

(Löw et al., 1999; Sauseng, Klimesch, Schabus, & Doppelmayr, 2005). Additional theories 

suggest the process underlying P300 generation is related to a relay of information from the 

frontal lobes to temporal-parietal areas. Frontal areas of the brain maintain information in 

working memory, but when a new stimulus is presented that must be attended to, information 

about the new stimulus is passed to the temporal-parietal area to enhance memory (Polich, 2007). 

This is consistent with research suggests that the parietal lobe is involved with holding 

information in memory and the dorsal lateral prefrontal cortex is involved with the active 

maintenance of the stored information in the parietal lobe (Haut et al., 2000). Rypma and 

D’Esposito (1999) suggested that during high memory load tasks, the dorsal lateral prefrontal 

cortex is recruited for encoding and the ventral lateral prefrontal cortex is involved in the 

maintenance of information. Perhaps frontal and posterior ERP activity is decreasing as memory 

load is increasing for the novel N-back task because memory and attention rely on similar 

cognitive networks (Linden, 2007). Just as P3 amplitude may decrease because of resource 

reallocation, perhaps this early frontal activity is decreasing because resources are being 

reallocated from attending to or categorizing the current stimulus to the active maintenance or 

encoding of memory.  
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Reaction Time Data 

Another result that was helpful to understand task performance was reaction time 

differences across task conditions. It is expected that more difficult tasks require more time for 

the brain to process the information, indicating reaction time may be a useful indicator of 

performance of the tasks. The Inhibit, Go/No-Go, and Set-Shift tasks showed significant 

differences in reaction time between the executive function and control conditions, indicating 

that reaction time may be an informative indicator of performance on these tasks. The N-back 

task may have been more difficult than the other tasks, which may be a reason reaction time was 

not as informative among task conditions. The difficulty of the N-back influenced accuracy, and 

therefore, accuracy may be a better indicator of performance across conditions than reaction time 

for this particular task. N-back RT, however, was related to clinical EF measure performance, 

indicating that perhaps RT cannot distinguish between N-back conditions, but RT may still be an 

indicator of performance between high performing and low performing participants. The ability 

to use behavioral data (RT and accuracy) as indicators of performance is a strength of these tasks 

as the tasks may be useful to administer, even when EEG acquisition may be unavailable. 

Additionally, high accuracy among the Control, Inhibit, Go/No-Go and Set-Shift tasks may make 

the tasks useful as effort measures.   

Limitations 

This study had a number of limitations. This study had a small sample size (N=29) and 

some true effects may have been unobservable due to low power. Additionally, there were an 

even smaller number of participants included in the ERP data analysis because of the required 20 

clean trials to be included in analysis. This especially may have affected N-back results, since 

only 15 participants met the clean trial criteria for both 1 back and 2 back conditions. Another 
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limitation is that participants were college students and the age range was very small (18-26), so 

these results cannot be generalized to other populations. Additionally, family-wise error 

corrections were not made for all statistics in this study because of its exploratory nature, so 

some of the findings may have been due to Type I error (i.e., ERP waves were compared at 

several time points, which may have increased Type I error rate). The study will need to be 

conducted again to determine if the same results could be replicated. Furthermore, ERP effects 

may have been unobservable because the Control Task was always presented first, and the 

novelty of the task may have impacted ERP activity. Additionally, using paper and pencil 

neuropsychological tasks (clinical EF measures) may be problematic in themselves to use for a 

convergent validity study because of the problems with existing executive function tasks, such as 

task impurity (e.g. there are updating, set-shifting, and inhibition components of the TMT-B 

task). While the purpose of the novel measure was to engage in simpler components of executive 

function identified by Miyake and colleagues (2000), there are many areas of executive function 

that the novel measures do not engage (e.g., cognitive flexibility, generative abilities, planning). 

Perhaps these executive components can be considered in further development of the novel tasks.  

Conclusions and Future Directions 

The strength of this project is that it addresses some of the concerns of currently used 

neuropsychological measures by creating a novel set of measures designed to measure different 

aspects of executive function. The creation of the tasks was theory driven instead of basing task 

use on face validity or by adapting tests initially created for other purposes rather than as 

executive function tasks. The majority of the results, in particular the results of the behavioral 

data, supported the hypotheses. Some results from this study were not completely expected, 

mainly some ERP effects, which may be because the tasks are not engaging executive functions 
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in which they were theorized to engage or ERPs were not sensitive to differences among task 

conditions.  

Further changes based on the results of this study will be made to enhance these tasks. 

Reducing the number of arrows from four to two may enhance subtle differences between 

conditions. This is because decision-making processes are required when choosing among the 

four arrows, which may engage executive processes, even for the Control Task.  Additionally, 

changing proportion of conditions, blocking certain trial types, and varying inter-stimulus 

intervals between trials may enhance ERP results.  Another technique used in ERP research is to 

impose an accuracy restriction in order to adjust difficulty of the task for each individual. This is 

achieved by setting a certain percent accuracy (e.g. 80%) and adjusting the inter-stimulus 

interval to be slower or quicker depending on whether the participant is achieving below or 

above the designated level of accuracy. In regards to changes to specific tasks, to enhance the 

effect between shift and stay trials, an internal, rather than external cued set-shift task can be 

developed. Similar to the WSCT, participants would be required to deduce a rule (such as 

responding the opposite flashing arrow) in response to feedback given. Once the rule is learned 

after a number of trials, the rule will change. To strengthen inhibition results, perhaps a task 

similar to a Stop-Signal Task can be developed.  

  Future studies should be conducted with improvements to the tasks and repeating the 

study in a new, larger sample of participants. Furthermore, a larger sample of participants may 

allow for ERP comparisons between high and low performers across the tasks. Once the tasks are 

strengthened in a normal population, future studies should also examine the use of these tasks in 

different populations and to see if similar relationships are found across different populations and 

whether adjustments may be required for patient populations. Additionally, one can also use 
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techniques such a Structural Equation Modeling with a large sample size to examine 

relationships between the novel tasks and latent variables or the executive components they are 

theorized to engage.  
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Appendix A 

Test Development and Piloting 

 Tasks were created to engage in the executive components of set-shifting, updating, and 

inhibition proposed by Miyake and colleagues. Some tasks, such as the N-back and the Go/No-

Go tasks were based off of already existing executive function tasks that are used in ERP 

environments. Tasks were developed to all use the same stimulus set. Tasks were discussed and 

developed throughout in several lab meetings with Dr. Potts and Dr. Cimino. Eight tasks were 

conceptualized (one control task, three updating tasks (two versions of the N-back), two set-

shifting tasks, and two inhibition tasks). Once tasks were conceptualized, they were programmed 

using E-Prime 2.0.   

Round 1 

 Three participants (two female, ages 25-26) were given seven tasks (one control, two 

updating (one version of the N-back), two set-shifting, two inhibition) in a randomized order, 

with the control task always being the first task. They were given a questionnaire about the 

quality of the tasks (see Appendix B). For each task, participants were asked to rate the clarity of 

the directions and how could the directions be made clearer. They were asked to rate the 

difficulty of the tasks and if they thought a practice trial would be helpful. They also had to 

provide suggestions on how the tasks could be improved. After this round of piloting, trial time 

was increased, directions were clarified, arrow stimuli were changed from white to black, a 

countdown before the start of the task was added, and a practice trial was added. Additional 

changes were made to eliminate any discrepancies before piloting round 2. Data from this round 
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was not analyzed, as the purpose of this piloting session was to increase the quality of the tasks. 

The internal cue set-shifting task was eliminated as it seemed to be an impure measure of 

executive function as it required all three executive components (updating was required to 

remember what was done the trial before) and participants had trouble with the task. The 

memory buffer task was eliminated as well as more trials would have to be added, which would 

have greatly increased the time the study would take.  

Round 2 

Five participants (four female, ages 23-28) were given five tasks (two inhibition, one 

updating, one set-shifting, and control) in a randomized order, with the control task always being 

administered task. The first three participants were also given the same quality control 

questionnaire as the round 1 piloting participants. Total time to complete the tasks was recorded. 

Total completion of all 5 tasks takes between 30-40 minutes. Data was analyzed from this round 

of piloting. The following tables (11 & 12) report the accuracy frequencies and mean reaction 

time data for the tasks across all subjects. All conditions in all tasks consisted of 40 trials.  

Table 11 
Mean Reaction Time and Pooled Accuracy for All Subjects. 
 
Task Mean Reaction Time (ms) Pooled Accuracy 
Control 383.16 (94.81) 190/200 
Inhibit 519.71 (112.42) 195/200 
Go/No-Go:   
    Go Trials 509.18 (106.3) 200/200 
    No-Go Trials  N/A 200/200 
Set-Shifting:    
    Congruent Trials 613.64 (120.09) 190/200 
    Incongruent Trials 669.46 (161.87) 193/200 
N-Back:   
    1-Back 513.82 (371.87) 187/200 
    2-Back 493.78 (490.47) 103/200 
    3-Back 411.12 (381.98) 68/200 
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Table 12  
Accuracy and Mean Reaction Time (ms) for Each Participant. 
Subject Control Inhibit SS 

Cong 
SS 
Incon 

Go 1-back 2-back 3-back 

004  
ACC 
RT 
SD 

 
38/40 
371.13 
(72.27) 

 
39/40 
571.4 
(157.35) 

 
36/40 
654.95 
(102.65) 

 
40/40 
667.6 
(119.39) 

 
40/40 
543.23 
(130.65) 

 
40/40 
578.13 
(283.43) 

 
28/40 
694.5 
(476.25) 

 
10/40 
548.38 
(211.42) 

005 
ACC 
RT 
SD 

 
40/40 
421.35 
(134.61) 

 
37/40 
538.4 
(91.03) 

 
37/40 
557.47 
(137.31) 

 
38/40 
596.43 
(142.2) 

 
40/40 
491.98 
(69.86) 

 
40/40 
402.92 
(103.84) 

 
8/40 
378.1 
(501.71) 

 
8/40 
718.42 
(573.17) 

006 
ACC 
RT 
SD 

 
33/40 
363.48 
(89.39) 

 
40/40 
521.93 
(87.06) 

 
39/40 
630.68 
(81.12) 

 
39/40 
692.23 
(115.19) 

 
40/40 
477.35 
(70.1) 

 
40/40 
297.26 
(115.55) 

 
14/40 
439.65 
(405.02) 

 
24/40 
258.62 
(156.59) 

007 
ACC 
RT 
SD 

 
40/40 
373.18 
(79.53) 

 
40/40 
463.03 
(84.24) 

 
39/40 
579.9 
(105.87) 

 
39/40 
619.88 
(97.06) 

 
40/40 
521.75 
(126.43) 

 
39/40 
257.38 
(70.08) 

 
38/40 
225.35 
(80.03) 

 
16/40 
191.53 
(130.23) 

008 
ACC 
RT 
SD 

 
39/40 
386.65 
(77.81) 

 
39/40 
503.8 
(100.55) 

 
39/40 
644.38 
(137.61) 

 
37/40 
773.79 
(240.68) 

 
40/40 
511.58 
(110.06) 

 
28/40 
1182.03 
(317.87) 

 
15/40 
681.93 
(640.78) 

 
10/40 
352.41 
(379.32) 

 

Pilot Round 2 Results 

Reaction time is one way of indexing task difficulty, with the expectation that tasks that 

are more difficult will be associated with longer response times because the brain takes a longer 

time to process information (Sternberg, 1969). Because differences in reaction time is an 

indicator of a cognitive operation at work (Burgess et al., 2006), and there are certain 

expectations about difficulty differences between certain conditions, reaction time was used to 

determine if tasks were working as expected, with conditions engaging in executive function 

being associated with longer response time. Reaction time may be a more accurate measure to 

examine differences between conditions because accuracy is high across conditions. A 

multivariate repeated measures analysis was unable to be conducted because of the small sample 
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size and large number of dependent variables, but paired-sample t-tests were used to examine 

differences between conditions thought to be engaging executive function and control conditions. 

All analyses used task condition as the independent variable and reaction time in milliseconds as 

the dependent variable. Inhibition: There was a significant difference between the and Inhibit 

(M=508.34, SD=32.4) and Control trials (M=374.04, SD=24.93), t(4)= 8.49, p<0.01. There was a 

significant difference between the Control (M=374.04, SD=24.93) and Go trials of the Go/No-Go 

task (M=500.73, SD=27.12), t(4)=7.24, p<0.01. Set-Shifting: There was no significant 

difference between Shift (M=626.7 SD=44.66) and Non-Shift trials (M=612.86, SD=42.22), 

t(4)=.949, p=0.106. There was a significant difference between Congruent (M=603.04, 

SD=41.77) and Incongruent (M=646.3 SD=52.34) trials of the set-shift task t(4)=4.02, p<.05. 

Updating: There was no significant difference of condition on reaction time among any of the 

conditions of 1 back (M=534.53, SD=379.1), 2 back (M=705.86, SD=363.46), and 3 back 

(M=474.63, SD=474.63). With the removal of an outlier (subject 008), differences between 0-3 

back were not significant.  Because accuracy was not at ceiling for the N-back task, accuracy 

may be a more accurate measure of effect of memory load on test performance than reaction 

time. A repeated measures ANOVA comparing the accuracy of the 3 N-back conditions and the 

control task was computed to assess if memory load affected accuracy. The assumption of 

sphericity was met (p=.849). There was a significant difference of effect of condition on 

accuracy in the N-Back task F(2, 12)=14.114, p<0.001. Post-hoc analysis using paired sample t-

tests revealed a significant difference between the 1 back and 2 back t(4)=3.06, p<.05, 1 back 

and 3 back t(4)= 7.51, p<0.01, and the Control task and 3 back t(4)=6.01, p<.01.  
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Round 3 

 Three participants (2 female, ages 27-29) were given the set-shift task to determine if 

there was an effect between shift and non-shift trials after changing the task to have equal 

number of shift and non-shift trials. The difference between shift (M=802.83, SD=126.16) and 

non-shift (M=729.72, SD=115.21) was approaching significance t(2)=3.96, p=.058.  
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Appendix B 
 

Piloting Questionnaire 

Participants had to answer the following questions about each task: 

1. How clear where the directions? 

Could not understand 
them at all                       

Understandable but could have used more 
clarification 

 

Clear 

1 2 3 4 
   
2. What could have been written or said to make the directions clearer?  

 
3. Do you think a practice trial was needed? 

Yes (1)   No (2) 
4. Do you think feedback (the computer telling you whether your response is right or 

wrong) would improve this task? 

Yes (1)  No (2) 
a. If yes, Why? 

 
5. How difficult did you find the task? 

Very Difficult                       Somewhat Difficult Somewhat Easy Very Easy 
1 2 3 4 
 
6. Any other suggestions on how this task can be improved? 
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Appendix C 
 

Novel Task Descriptions 
 

*Note: Inter-trial interval (ITI) is set to 1750ms for each task. All tasks begin with a practice 

trial that the experimenter observes in order to ensure the participant understands the task. 

The experimenter reads the instructions to the participant. Additionally, each task begins with 

a countdown once the participant presses the spacebar to begin the task.  

Control Task (Figure 20): Participants are shown four arrows on the screen. One of the arrows 

flash randomly and participant must press the corresponding response button.  Instructions: In 

this experiment, you will see an image of four arrows on the screen. The directions of the arrows 

are up, down, left and right. When an arrow flashes, press the corresponding arrow on the 

number keypad. The 8 key is up, the 2 key is down, the 4 key is left, and the 6 key is right. 

Respond as quickly and accurately as possible. Any Questions? 

 

Figure 20. Control Task  



 93 

Inhibition 

Inhibition Task 1 (Inhibit) (Figure 21): Participants must press the arrow in the opposite 

direction of where the highlighted arrow is pointing (correct response is incongruent arrow). 

Instructions: In this experiment, you will see an image of four arrows on the screen. The 

directions of the arrows are up, down, left and right. For every trial, press the opposite arrow on 

the number keypad than the arrow that flashes. The 8 key is up, the 2 key is down, the 4 key is 

left, and the 6 key is right. Respond as quickly and accurately as possible. Any Questions? 

 

Figure 21. Inhibit Task 

Inhibition Task 2 (Go/No-Go) (Figure 22)  

This inhibition task is a modified go/no-go task Participants must respond to one stimulus and 

must inhibit response for the other. Arrows will randomly change either green or red for each 

trial. When the arrow is green, participants will have to respond to the corresponding arrow 

(correct response is the corresponding arrow that was flashed during the trial). When the arrow is 

red, participants will have to inhibit response (correct response on these trials will be ‘no 

response’).   
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Instructions: In this experiment, you will see an image of four arrows on the screen. The 

directions of the arrows are up, down, left and right. Arrows will flash either green or red. When 

an arrow flashes, green, press the corresponding arrow on the number keypad. When an arrow 

flashes red, do not respond (do not press a button).  The 8 key is up, the 2 key is down, the 4 key 

is left, and the 6 key is right. Respond as quickly and accurately as possible. Any Questions? 

 

Figure 22. Go/No-Go Task 

Set-Shifting (Figure 23): This task encompasses switching and inhibition with an external cue 

to shift sets. Participants are shown the same stimuli as the control condition. On each trial, one 

of the four arrows randomly flashes either green or red. When the stimulus is green, participants 

are to respond with the corresponding response button (correct response for congruent trials). 

When the stimulus is red, participants are to respond with the opposite response button (correct 

response for incongruent trials) (switch + inhibit). Instructions: In this experiment, you will see 

an image of four arrows on the screen. The directions of the arrows are up, down, left and right. 

Arrows will flash either green or red. When an arrow flashes green, press the corresponding 

arrow on the keypad. When an arrow flashes, red, press the opposite arrow on the keypad. The 8 
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key is up, the 2 key is down, the 4 key is left, and the 6 key is right. Opposite Keys: Left & 

Right; Up & Down. Respond as quickly and accurately as possible. Any Questions? 

 

Figure 23. Set-Shift Task 

Updating (N-Back) (Figure 24): This task was created as modified N-back tasks. Arrows 

randomly flash and participants have to keep arrows in mind. There will be a response each trial. 

Trials will be 0-back, 1-back, 2-back and 3-back. For example, during 1-back trials, participants 

will respond to trial before. Instructions: In this task, you will need to remember a previous 

arrow stimulus that was shown on the screen. Arrows will randomly flash on the screen. Keep 

the direction of these arrows in mind. Press the response key for the same arrow that occurred 

one (two/three) before the arrow that is currently shown on the screen. A response is required 

for every trial except for the first (N) trials when you are keeping track. Please respond as 

quickly and accurately as possible. 
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Figure 24. N-Back Task 

 

Eliminated Tasks: 

Set-Shifting (Internal) and Inhibit Task: Participants will be shown the same stimuli as the 

control experiment. They will press the button that either corresponds with the direction of the 

stimulus, or the opposite direction (this would allow for participant to internally switch, instead 

of being given an external cue to switch). Every odd number trial will be a congruent trial and 

every even number trial will be an incongruent trial. Reaction time will be recorded. 

Instructions: In this experiment, you will see an image of four arrows on the screen. The 

directions of the arrows are up, down, left and right. 

When an arrow flashes, press the corresponding arrow on the number keypad for every odd trial 

and press the OPPOSITE arrow for every even trial.  

Trials will proceed like this: same arrow, opposite arrow, same arrow, opposite arrow etc.  
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The 8 key is up, the 2 key is down, the 4 key is left, and the 6 key is right. 

Opposite Keys: Left & Right; Up & Down 

If you get lost, try to start with a congruent trial and then alternate back and forth.  

Respond as quickly and accurately as possible. 

Any Questions? 

 

Memory Buffer Task (Updating): The set of four arrows will appear on the screen. Arrows will 

flicker randomly on the screen. Version 1: Participants are to respond to every nth instance of a 

flash of any arrow. For instance, if n=3, participants will have to respond every third time any 

arrow flashes. Instructions: In this task, you will need to remember previous arrows that were 

shown on the screen. Respond every Nth (3?) time any arrow flashes. Respond as quickly and 

accurately as possible. 

Version 2: This version is the same as version 1, except trials will differ regarding how many 

arrows need to be paid attention to. 

Memory buffer 1:  Participants respond to every 4th / nth instance of an arrow that has been 

randomly selected at the start of the experiment. Participants are only to be counting how many 

times that one arrow is flashed.  

Memory buffer 2: Participants respond to every 4th instance of 2 arrows that have been randomly 

selected at the start of the experiment. They are only to be counting how many time the two 

arrows are flashed. 

Memory buffer 3: Participants respond to every 4th instance of 3 arrows that have been randomly 

selected at the start of the experiment. They are only to be counting how many time the three 

arrows are flashed. 
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Memory buffer 4: Participants respond to every 4th instance all 4 arrows.  

Instructions: Buffer 1: In this task, you will need to remember previous arrows that were shown 

on the screen. Keep track of each time you see a <<INSERT RANDOM ARROW>>. When 

<<RANDOM ARROW>> flashes 4 times, press the <<RANDOM ARROW>> response button. 

Respond as quickly and accurately as possible.  

Buffer 2: In this task, you will need to remember previous arrows that were shown on the screen. 

Keep track of each time you see a <<INSERT RANDOM ARROW1>> and <<RANDOM 

ARROW 2>>. When either <<RANDOM ARROW1 >> or <<RANDOM ARROW 2>> and 

flashes 4 times, press the <<RANDOM ARROW>> response button. You should be keeping 

track of each type of arrow separately. Respond as quickly and accurately as possible.  

Buffer 3: In this task, you will need to remember previous arrows that were shown on the screen. 

Keep track of each time you see a <<INSERT RANDOM ARROW1>>, <<RANDOM ARROW 

2>>, and <<RANDOM ARROW 3>>. When <<RANDOM ARROW1 >>, <<RANDOM 

ARROW 2>>, or <<RANDOM ARROW 3>> and flashes 4 times, press the <<RANDOM 

ARROW>> response button. You should be keeping track of each type of arrow separately. 

Respond as quickly and accurately as possible. 

Buffer 4: In this task, you will need to remember previous arrows that were shown on the screen. 

Respond every 4th time any arrow flashes. You should be keeping track of each type of arrow 

separately. Respond as quickly and accurately as possible.  

 

N-Back Cued Version: Arrows randomly flash in green and participants have to keep arrows in 

mind. When a red arrow flashes on the screen, the participant must recall the arrow that was 

flashed N-back. Trials will include 0-back, 1-back, 2-back and 3-back. 
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Instructions 

0-back: In this experiment, you will see an image of four arrows on the screen. The directions of 

the arrows are up, down, left and right. 

When an arrow flashes, press the corresponding arrow on the number keypad. 

The 8 key is up, the 2 key is down, the 4 key is left, and the 6 key is right. 

Respond as quickly and accurately as possible. 

Any Questions? 

1-3 back: In this task, you will need to remember a previous arrow stimulus that was shown on 

the screen. Arrows will randomly flash green. Keep the direction of these arrows in mind. When 

a red arrow flashes, press the response key for the same arrow that occurred one before the red 

arrow. Only respond after you see a red arrow flash. You do not need to remember the direction 

of the red arrow. Respond as quickly and accurately as possible. 
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Appendix D 
 

Institutional Review Board Approval Letters 
 

 

 
 
February 5, 2013 

 
Danielle Blinkoff, B.A. 
Psychology 
4202 E. Fowler Avenue 
Tampa, FL 33620 

 
 
 
RE:   Expedited Approval for Initial Review 

IRB#: Pro00009941 
Title:  Examining a Set of Novel Executive Function Measures Using Event Related 

Potentials 
 
Dear Ms. Blinkoff: 

 
On 2/4/2013 the Institutional Review Board (IRB) reviewed and APPROVED the above 
referenced protocol. Please note that your approval for this study will expire on 2/4/2014. 

 
Approved Items: 
Protocol Document: 
Protocol 

 
Consent Document: 
Consent Form.pdf 
Please use only the official, IRB- stamped consent document(s) found under the 
"Attachment Tab" in the recruitment of participants.  Please note that these documents are 
only valid during the approval period indicated on the stamped document. 

 
It was the determination of the IRB that your study qualified for expedited review which includes 
activities that (1) present no more than minimal risk to human subjects, and (2) involve only 
procedures listed in one or more of the categories outlined below. The IRB may review research 
through the expedited review procedure authorized by 45CFR46.110 and 21 CFR 



 
 

101 

56.110. The research proposed in this study is categorized under the following expedited review 
categories: 

 
(4) Collection of data through noninvasive procedures (not involving general anesthesia or 
sedation) routinely employed in clinical practice, excluding procedures involving x-rays or 
microwaves. Where medical devices are employed, they must be cleared/approved for 
marketing. 
 
(6) Collection of data from voice, video, digital, or image recordings made for research purposes. 

 
(7) Research on individual or group characteristics or behavior (including, but not limited to, 
research on perception, cognition, motivation, identity, language, communication, cultural beliefs 
or practices, and social behavior) or research employing survey, interview, oral history, focus 
group, program evaluation, human factors evaluation, or quality assurance methodologies. 

 
As the principal investigator of this study, it is your responsibility to conduct this study in 
accordance with IRB policies and procedures and as approved by the IRB. Any changes to the 
approved research must be submitted to the IRB for review and approval by an amendment. 

 
We appreciate your dedication to the ethical conduct of human subject research at the University of 
South Florida and your continued commitment to human research protections.  If you have 
any questions regarding this matter, please call 813-974-5638. 

 
Sincerely, 

 
 
 
 
John A. Schinka, Ph.D., Chairperson 
USF Institutional Review Board 
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1/13/2014 
 
 
Danielle Blinkoff, B.A. 
Department of Psychology 
4202 E. Fowler Avenue 
Tampa, FL 33620 
 
 
RE: Expedited Approval for Continuing Review 
IRB#: CR1_Pro00009941 
Title: Examining a Set of Novel Executive Function Measures Using Event Related Potentials 

 
Study Approval Period: 2/4/2014 to 2/4/2015 
 
Dear Ms. Blinkoff: 
 
On 1/13/2014, the Institutional Review Board (IRB) reviewed and APPROVED the above 
application and all documents outlined below. 
 
 
Accepted Items: 
Last two executed consent forms 
 
Approved Item(s): 
Protocol Document(s): 
Protocol 
 
 
Consent/Assent Document(s)*: 
Consent Form 5/12/13 version 2 .pdf 
 

 
*Please use only the official IRB stamped informed consent/assent document(s) found under the 
"Attachments" tab on the main study's workspace. Please note, these consent/assent document(s) 
are only valid during the approval period indicated at the top of the form(s) and replace the 
previously approved versions. 
The IRB determined that your study qualified for expedited review based on federal expedited 
category number(s): 

 
(4) Collection of data through noninvasive procedures (not involving general anesthesia or 
sedation) routinely employed in clinical practice, excluding procedures involving x-rays or 
microwaves. Where medical devices are employed, they must be cleared/approved for 
marketing. 
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(6) Collection of data from voice, video, digital, or image recordings made for research purposes.  

(7) Research on individual or group characteristics or behavior (including, but not limited to, 
research on perception, cognition, motivation, identity, language, communication, cultural beliefs 
or practices, and social behavior) or research employing survey, interview, oral history, focus 
group, program evaluation, human factors evaluation, or quality assurance methodologies. 

 
As the principal investigator of this study, it is your responsibility to conduct this study in 
accordance with IRB policies and procedures and as approved by the IRB. Any changes to the 
approved research must be submitted to the IRB for review and approval by an amendment. 

 
We appreciate your dedication to the ethical conduct of human subject research at the University of 
South Florida and your continued commitment to human research protections.  If you have 
any questions regarding this matter, please call 813-974-5638. 

Sincerely, 

 
 
 
John Schinka, Ph.D., Chairperson 
USF Institutional Review Board
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