
University of South Carolina
Scholar Commons

Theses and Dissertations

2016

Automated Tool Selection and Tool Path Planning
for Free-Form Surfaces in 3-Axis CNC Milling
using Highly Parallel Computing Architecture
Andrey Balabokhin
University of South Carolina

Follow this and additional works at: http://scholarcommons.sc.edu/etd

Part of the Mechanical Engineering Commons

This Open Access Dissertation is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.

Recommended Citation
Balabokhin, A.(2016). Automated Tool Selection and Tool Path Planning for Free-Form Surfaces in 3-Axis CNC Milling using Highly
Parallel Computing Architecture. (Doctoral dissertation). Retrieved from http://scholarcommons.sc.edu/etd/3883

http://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F3883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarcommons.sc.edu%2Fetd%2F3883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd/3883?utm_source=scholarcommons.sc.edu%2Fetd%2F3883&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:SCHOLARC@mailbox.sc.edu

Automated Tool Selection and Tool Path Planning for Free-Form
Surfaces in 3-Axis CNC Milling using Highly Parallel Computing

Architecture

by

Andrey Balabokhin

Bachelor of Science
Omsk State University, 2006

Master of Science
Omsk State University, 2008

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Mechanical Engineering

College Of Engineering and Computing

University of South Carolina

2016

Accepted by:

Joshua Tarbutton, Major Professor

Ramy Harik, Committee Member

Dmytro Konobrytskyi, Committee Member

Stephen McNeill, Committee Member

Cheryl L. Addy, Vice Provost and Dean of the Graduate School

c© Copyright by Andrey Balabokhin, 2016
All Rights Reserved.

ii

Acknowledgments

I would like to thank Dr. Tarbutton for believing in me for the last four years and for

helping me to do the proper things and to understand how to be a scientist. I would

also like to thank the staff and students at McNair who supported my work as well

as all my friends and family who did not hear from me as often as they should.

iii

Abstract

This research presents a methodology to automatically select cutters and generate tool

paths for all stages in 3-axis CNC Milling of free-form surfaces. Tools are selected and

tool paths are planned in order to minimize the total machining time. A generalized

cutter geometry model is used to define available cutters and an arbitrary milling

surface is initially defined by a triangular mesh.

The decisions made by process engineers in selecting cutting geometry and gener-

ating tool paths for milling dramatically influence the final result. Often, the resulting

tool path is non-optimal, because the engineers cannot consider all the available in-

formation. However, making these decisions can be delegated to a computing system

that can find a better result.

The developed methodology selects the cutters to use for milling from the set

of all available cutters, assigns milling zones to every selected cutter, based on its

performance, and builds iso-scallop and contour parallel tool paths for every cutter

and its milling zone. After generating all tool paths for both milling stages (rough

milling and finishing), the tool selection sequence is defined and all the tool paths for

one tool are connected into the single tool path. The tool paths should be connected in

the best possible manner in order to minimize the time of CNC non-cutting motions.

This is similar to the travelling salesman problem with constraints. A heuristics

solution is provided here. At the end, the total machining time for one tool set is

calculated. Finally, the set of cutters used is changed to minimize the total machining

time.

A digital, voxel-based model is used to represent a workpiece and the available

iv

tools. This model is selected so that the algorithms is simpler and they can be easily

paralleled for thousands of computing cores. The parallel processing framework is

implemented to work with multiple graphics processing units. Tool paths generated

from this framework are post-processed into G-code and the representative part is

machined.

v

Table of Contents
Acknowledgments . iii

Abstract . iv

List of Tables . ix

List of Figures . x

Chapter 1 Introduction . 1

Chapter 2 Background . 4

2.1 Tool Path Generation . 5

2.2 Tool Geometry Selection . 8

Chapter 3 Tool selection for finishing 10

3.1 Criteria in cutter selection . 10

3.2 Tools and part representation models 18

3.3 Accuracy analysis for the provided models 23

3.4 Implementation details . 24

3.5 Algorithms complexity and GPU acceleration 31

Chapter 4 Tool path planning for finishing 34

4.1 Main tool path planning algorithm 35

vi

4.2 Milling zone boundary pixels detection 39

4.3 The search of CL positions that “cover” the maximum number of
the provided boundary pixels . 41

4.4 Test if a line segment produce gouges 43

4.5 Milling time of the segment calculation 45

4.6 The calculation of the area, “covered” by a tool path segment 46

4.7 Removing “covered” pixels with a tool path segment 49

4.8 Search of the new boundary pixels to “cover” 50

4.9 Simulation result and discussion . 51

Chapter 5 Tool selection and path planning for roughing . . . 54

5.1 Milling layers . 54

5.2 Next milling layer generation . 56

5.3 Roughing depth of the cutter . 59

5.4 Performance criterion for rough milling 63

5.5 Algorithms adaptation for rough milling 65

Chapter 6 Tool set optimization to minimize the total ma-
chining time . 67

6.1 Total machining time calculation . 67

6.2 Defining the order of tool selection 68

6.3 Dependencies between tool paths building 71

6.4 Greedy approach to connect all tool paths for one tool 73

6.5 Connect two tool paths in one . 74

6.6 Greedy approach to tool set optimization problem 77

vii

Chapter 7 Experimental results . 85

7.1 Equipment . 86

7.2 Simulated and milled results of the representative part 86

7.3 Simulated results of other parts . 88

7.4 Discussion . 88

Chapter 8 Conclusion and Discussion 92

Bibliography . 94

viii

List of Tables

Table 3.1 List of cutters, used for simulation 30

Table 3.2 GPU performance for different map building operations 33

Table 6.1 Tool set optimization steps . 81

Table 7.1 List of cutters, used for milling 87

ix

List of Figures

Figure 1.1 Main steps to minimize the total machining time 2

Figure 3.1 Variable scallop heights for different tools and milling surfaces
configurations . 11

Figure 3.2 Part and tool surfaces as z(x) functions 13

Figure 3.3 The maximum depth of cutter and its “finished area” 15

Figure 3.4 Cutter locations set to cover a surface point 17

Figure 3.5 A mesh in a voxel grid . 20

Figure 3.6 The representative part (5cm x 5cm x 5cm) with its depth map . 20

Figure 3.7 Generalized cutter geometry . 21

Figure 3.8 A 10mm ball-end tool with its depth map 22

Figure 3.9 The maximum undercut distance in 2D 24

Figure 3.10 Defining the best cutter for surface points algorithm workflow . . 25

Figure 3.11 Discretized part surface and tolerance surface primitives 26

Figure 3.12 Maximum depth of cutter without gouging map 27

Figure 3.13 Finished area maps for different tools 28

Figure 3.14 Surface finishing performance maps for different tools 29

Figure 3.15 Best tool indices map . 31

Figure 4.1 Input data for tool path planning algorithm 36

Figure 4.2 Detected boundary of the milling zone 40

x

Figure 4.3 CL positions to “cover” provided boundary pixels set 43

Figure 4.4 Feed rate dependence on time in trapezoid motion interpolation
model . 46

Figure 4.5 Generated tool paths for the milling zone 52

Figure 5.1 Different milling layers . 55

Figure 5.2 Reconstructed rough surface . 56

Figure 5.3 Wrong rough surface reconstruction 58

Figure 5.4 Tool paths for all available tools 60

Figure 5.5 Finishing tolerance and reconstructed rough tolerance surfaces
depth maps . 61

Figure 5.6 Different cutter depth values . 62

Figure 5.7 Finishing and roughing depth of cutter maps 63

Figure 5.8 “Roughed volume” for a CL position 64

Figure 5.9 Roughing zones for cutters and tool paths 66

Figure 6.1 Tool paths on different milling layers and their dependencies . . . 72

Figure 6.2 Different ways to connect two CL points 76

Figure 6.3 Connected tool paths for the milling zone 77

Figure 6.4 Fragments of feasibility maps for different sets of tools 80

Figure 6.5 The same milling zones for the different tool sets 82

Figure 6.6 Milling zones and generated tool paths for the optimal tool set . . 83

Figure 7.1 The part mesh for milling . 85

Figure 7.2 HAAS VF-5/50 CNC Machine 86

xi

Figure 7.3 Simulation of the developed and the traditional tool paths for
the representative part . 87

Figure 7.4 Milling simulation of the developed and the traditional tool
paths for the representative part 88

Figure 7.5 Milled representative part with using the developed and the
traditional tool paths from different angles 89

Figure 7.6 Triangular meshes and milling simulation for parts “Yoda” and
“Tubes” . 90

xii

Chapter 1

Introduction

With the introduction of Computer Numerical Control (CNC) machines it is possible

to mill almost any free-form surface in all industries and fields. Process engineers rely

on years on manufacturing experience to select cutting parameters in order to machine

a part. These parameters include material piece selection, cutting conditions, tool

materials, tool geometry, tool sequence, cutting fluid selection, tool path, etc. The

selection of these parameters influences the machining cost, surface quality and the

machining time. Traditionally, CAM software transfers the task of selecting most of

these parameters to the operator.

In this work we propose a method to automatically select cutters and generate

tool paths for 3-axis CNC milling of free-form surfaces in order to minimize the total

machining time. The methodology includes assigning milling zones for the cutters,

based on their performance, and generating the contour parallel, iso-scallop tool paths

for every selected cutter and its milling zones for all stages of milling. Then, the

set of cutters is changed to minimize the total machining time. The machining is

comprised of milling time, rapid motion total time and the time to change cutters.

The methodology to select the order of the cutters to mill and to connect tool paths

on different milling layers for every used cutter is also provided.

The input for the method is composed of an arbitrary part geometry (defined

by a triangular mesh), a desired tolerance size, a set of available generalized cutters

with their milling parameters (feed rate and depth of cut) and CNC parameters

(acceleration/deceleration, the average time to change a cutter and the rapid feed

1

rate). The output is a G-code for the optimal tool path and the optimal set of

cutters to use. The discretized, voxel-based representation is used for the part and

the tools. The discretized model is used to make calculations of different surface

point characteristics (tool performance, maximum tool depth without gouging, etc.)

easier. Because of the complexity of some of the algorithms used in this work, several

graphics processing units (GPUs) are employed to accelerate calculations. The time-

consuming algorithms are designed in such a way, that they can be easily paralleled on

thousands of cores for several GPU devices, clusters or int the cloud. The main steps

for the whole approach to minimize the total machining time are shown in Fig. 1.1.

The main idea behind the algorithm is that different sets of available cutters lead

to different machining times. Thus, by changing the set of available cutters the

machining time can be minimized.

Figure 1.1: Main steps to minimize the total machining time

The main algorithms in the approach are:

• Assigning milling zones for the available cutters, based on their performance

• Building the shortest tool paths for every milling zone and its cutter on different

milling layers

• Connecting tool paths together and calculating the total machining time

2

Each of these algorithms are addressed in corresponding chapters. Chapter 2

provides the background for the tool path generating approaches, tool selection ap-

proaches and general-purpose computing on a GPU (GPGPU) used in CNC simu-

lation and related areas. Chapter 3 explains the methodology to select cutters for

finishing, assigning milling zones for the cutters based on their performance, the part

and tool representation models, and the result of the algorithm of building milling

zones for the representative tool set and the part. Chapter 4 describes the method

for generating tool paths for the finishing stage if milling. Chapter 5 shows the adap-

tation of the main proposed algorithms (assigning zones for milling and tool path

planning) for the rough milling stage. Chapter 6 describes the methodology to op-

timize the tool set in order to minimize the total machining time. Chapter 7 shows

the results of the milling and provides the comparison of the milled parts for the de-

veloped g-code and traditional CAM generated g-code. Finally, Chapter 8 discussed

the provided approach with its advantages and disadvantages and gives the potential

improvements for the approach.

3

Chapter 2

Background

Free-form surfaces have been widely used in aerospace, automobile and the die/mold

industry. A free-form surface is often defined as a composition of non-planar and

non-quadratic surfaces [5]. There are many ways to define a surface, e.g. CAM

package usually uses parametric surfaces. Another way to define a surface is to use a

triangular mesh. Having small enough polygons in the mesh, the milling surface can

have an arbitrary shape. In this work, the milling surface is defined with an arbitrary

triangular mesh.

Milling the exact geometric surface is impossible for non-trivial surfaces, so the

concept of surface tolerance is used to measure the required quality of the machined

surface. Traditionally, for a surface to be machined, the scallop height should not

exceed the maximum allowed tolerance. More broadly, the tolerance size can be

defined as a maximum distance between any point on the milled surface and the

closest point on the precise designed geometrical surface. As this definition is the

more general one, it is used in this research. The other requirement on the milled

surface is that it should be gouge free.

Stages to complete surface machining can be classified into rough, semi-finish,

finish and clean-up [26] or into rough, finish and clean-up [37]. For the rough milling

stage, bigger tools are used to remove as much material as possible. At the finishing

stage, the "rough" surface is milled with smaller tools to reach the desired shape. In

this work, milling stages are defined using a tolerance surface and it is enough to

distinguish two stages of milling: rough-milling and finishing.

4

Cutter location points, tool shape and size, spindle speed, the tool feed rate and

other parameters need to be considered to machine a free-form surface with a 3-axis

CNC machine. The issues of selecting all these parameters are related to each other.

However, it is difficult to solve the whole problem considering the optimality of all

relevant aspects, such as path pattern, tool geometry selection, feed rate scheduling as

well as the other objectives. As a result, many researches try to solve these problems

separately. The background for the two most important issues (tool path generation

and tool geometry selection) is shown in next sections.

Recently, the computational power of computers grew dramatically. Instead of

increasing the performance of one computer, the trend now is to use parallel comput-

ing, such as multi-core processors, clouds, mainframes, GPUs, etc. To use multiple

cores, new approaches from different research areas can be used in CNC milling. For

example, image processing techniques were used by Mario et al. [30] to find optimal

tools set for 2.5D milling. Tarbutton et al. [40] proposed a method of building tool

path using GPU computing for voxel model.

2.1 Tool Path Generation

Tool path planning is an important issue in machining surfaces since it directly in-

fluences machining time. Different stages of milling require different approaches to

achieve the optimal milling time and quality. For the finishing stage the usual goal is

to minimize the machining time while the maximum scallop height remains below the

predefined level. Smaller scallop height usually leads to longer tool paths, causing a

trade-off between the precision and the machining time.

Approaches to generate a tool path entirely depends on the geometry represen-

tation for milling surfaces. Traditionally, modern CAD/CAM systems use Bound-

ary Representation (b-rep) to represent the geometry. B-rep approach represents a

boundary between the part material and empty spaces. Surface elements is usually

5

defined by Non-uniform rational Basis splines (NURBS) surfaces or other analytical

surface representation. Traditionally, CAD/CAM systems converts B-rep represented

models into parametric surfaces in order to generate tool paths.

Tool path planning is composed of two aspects: path topology and path param-

eters. Path topology is defined by the pattern of moving the tool to produce the

surface, and the path parameters are modeled by the side step between successive

paths and the forward step in each tool path.

Two path topologies are most widely used for milling free-form surfaces: contour

parallel and direction parallel. In a direction parallel path topology, path segments

are parallel to a predefined line. This line could be parallel with or normal to the

surface boundary or parallel to the axis of the specified coordinate system. Proper

selection of the reference line directly affects the generated tool path length [39, 2].

The optimum path direction will result in longer individual paths and the minimum

non-cutting movements of the cutting tools. A specific type of direction parallel path,

zigzag path, is commonly used in CAM systems for roughing [29].

A contour parallel path is constructed by the boundary curves of the surface.

Traditionally, each next path is built by offsetting the boundary of the surface. It

can be built using the Voronoi diagram, pair-wise offsetting [19], or a pixel based

approach [21]. The paths in the pattern could be spirally connected after building.

Even though the optimal path topology depends on the surface and tool geometries,

after comparing the machining time for direction- and contour- parallel paths, con-

sidering acceleration and deceleration [31, 20], Kim and Choi [20] mentioned that

zigzag paths usually result in longer tools paths than contour parallel paths.

Traditionally, iso-parametric [15], iso-planar [3] and iso-scallop height [22] methods

are used for tool path generation. In the iso-parametric method, by keeping one of

the two parameters constant, contact points are generated along the other parameter

of a parametric surface S(u, v). The main drawback of the method is that while

6

mapping a line in the parametric domain into Euclidean space, a constant step in

the parametric domain can lead to unequal path intervals between adjacent paths in

Euclidean space. Even though this method works only for parametric surfaces, the

parametric surface can be reconstructed from a triangular mesh surface [46].

An iso-planar tool path is developed by intersecting the surface with parallel

planes. The distance between parallel planes is decided based on the maximum scallop

height constant. This method is very robust and can be used for parametric surfaces

and triangular meshes. However, proper selection of the intersecting planes affects

tool path length and the machining time. It is evident, that as in the iso-parametric

method, the iso-planar method leads to unequal scallop height for adjacent tool paths.

In iso-scallop tool paths, the next cutter contact point is calculated based on the

previous cutter contact point, so that the scallop height remains the same all over

the surface. The iso-scallop method is considered to generate the shortest overall

tool path for a given scallop height, however it is computationally expensive. Many

researchers [9, 6, 10, 41] addressed the problem of generating iso-scallop tool path for

paramertric surfaces. Usually, ball-end or flat-end cutters are used, however Chiou

at al. [9] studied the problem for a generalized cutter.

In spite of the fact that the vast majority of CAD/CAM systems use parametric

surface representation to build tool paths, tool path planning for triangular mesh

models (also called polyhedral, tessellated or faceted models) have also become pop-

ular in CAD/CAM systems. These models can be created from parametric surfaces,

cloud points or designed in dedicated software directly. Nearly all CAD/CAM pack-

ages have tessellation algorithms that produce tessellated surfaces with the desired

surface accuracy. The tessellation algorithms are robust and capable of combining

any number of surfaces into a single triangular mesh. Sometimes, machining of non-

parametric or non-implicit surfaces is inevitable, e.g. if the surface is reconstructed

from cloud points. Thus, the tool path algorithms should be adapted for polyhedral

7

models. All basic tool-path generation methods can be used with polyhedral models:

iso-parametric [46], iso-planar [34, 7] and iso-scallop [25, 27].

Recent research emphasis has shifted from 3-axis milling to 5-axis milling. Many

researchers addressed the problem of gouge-free tool path generation for triangular

meshes milling [4, 14] and for parametric surfaces [17, 47] for 5-axis milling. However,

the tools of simple shapes are usually used: ball-end, flat-end and radiused cutters.

2.2 Tool Geometry Selection

Tool geometry selection is a process that is usually performed by the operator. It plays

an important role among other milling parameters. If the tool is selected incorrectly,

it can lead to dimensional errors. However, the main objective for tool geometry

selection is to reduce machining cost. Machining cost primary depends on machining

time and tool cost.

Different approaches of tool geometry selection can be applied for different stages

of milling: roughing and finishing. The goal of rough milling is to remove the excess

material as fast as possible. The usual method for roughing free-form surfaces is a

layer-by-layer approach. The largest possible cutter is selected for every layer and the

optimal set of tools is selected for all the layers [42]. Flat-end tools are most widely

used for rough milling [24].

As for roughing, the main objective for finishing is to minimize machining time.

However, the goal in this case is to traverse the whole milling surface with the set

of available tools as fast as possible, so that the finished surface is gouge free and

within some tolerance limit. The traditional approach for finishing is to calculate

the minimum radius of surface curvature and match it with the largest possible tool.

For tools of the same shape (e.g. ball-end tools), the feasible regions for every tool

can be detected, and the optimal set of tools can be built [13, 44]. If the tools of

different shapes are employed for milling, the feasible regions are not enough to build

8

the optimum set of tools. To guarantee that the best tool for the different surface

zones is used, the performance of different tools in different cutter locations should be

assessed. This was partially done by Patel et al. [35]. They provided the metrics to

calculate the finishing area at a point for ball-end and radiused cutters in predefined

cutter location points. Tool performance in a cutter location point depends not only

the tool shape but also on milling direction. The issue of optimizing the tool path

based on milling direction in different cutter location points was also studied [23, 28].

In addition, the problem of tool selection and tool set optimization was addressed

for some special cases. The methodology to select cutters and optimize the tool

set was introduced for complex 2.5D parts [32] and for complex islands [48]. The

approach to select tools and build tool paths for impeller channels was also shown by

Han et. al. [18].

In this work, tools are assigned to different milling zones based on their perfor-

mance at different CLs. The performance criterion is defined based on the tool and the

part geometries for both milling stages (finishing and roughing). As a consequence,

the tool paths generated for different milling layers can be treated in a uniform man-

ner. This approach allows direct connection of all the tool paths simplifying the

global tool set optimization strategy to a single pass of connected paths.

9

Chapter 3

Tool selection for finishing1

Finish milling can take significant time, and the set of selected cutters dramatically

affects the milling time. Even more important is to use the most efficient cutters

to machine different zones on the milling surface. In this chapter, the problem of

assigning the milling zones for the provided cutters, based on their performances,

is addressed. First, the general criteria for cutter selection is shown. Then, data

structures for tools and part representation are provided. Note, that the same data

structures are used later in other chapters, e.g for tool path building algorithms. At

the end of the chapter, the result of the proposed method and a performance analysis

for the most time consuming algorithms are shown. In Chapter 5 we provide the

adaptations of the algorithms from this chapter to rough milling stage.

3.1 Criteria in cutter selection

The factors that influence cutter selection include the following: production cost,

geometric constraint, machining quality, cutting tool life, machining accuracy and

machine tool performance. In this work, we focus on production cost, geometric

constraint and machining quality parameters. The material left for the finishing

stage is assumed to be small enough that the CNC machine can support the given

feed rates for all the available tools. Therefore, the formulation of the optimization

1Andrey Balabokhin and Joshua Tarbutton. “Generalized Cutter Selection for Finishing of
Free-Form Surfaces in 3-Axis CNC Milling by “Surface Tolerance and Tool Performance Metrics””.
Submitted to International Journal of Advanced Manufacturing Technology, 04/03/2016.

10

problem is to achieve the required machining quality with the minimum production

cost while geometric constraints are satisfied.

Surface quality has a direct effect on machining time. Machining scallop height

is usually used to define the surface quality. The distance between two adjacent tool

paths is called the step over size (g); the unmachined material is called scallop, and

scallop height (h) is defined as the max height of the scallop. The scallop height

depends on the tool geometry, milling surface geometry and step over size. Because

the scallop height defines the milling surface quality, the step over size is calculated

using the known scallop height, tool geometry and milling surface geometry. Fig. 3.1

shows the different values of the scallop heights with constant step-over, but different

tool and part geometries.

gg

g

g

h1 h2

h4

h3

Figure 3.1: Variable scallop heights for different tools and milling
surfaces configurations

Due to the fact that the actual tool path is not built in this chapter, the tolerance

size is used as a criterion of surface quality instead of scallop height. The geometrical

meaning of tolerance size is the maximum distance between any point in the milled

surface and the closest point in the anticipated geometrical surface. Overall, tolerance

11

size is similar to scallop height, with the exception that no tool path is needed for

this metric.

The production cost of machining includes machining cost and tooling cost. The

cost of the cutting tool is usually a very small portion in the total machining cost,

so the machining cost is mostly determined by the production time. The cost of the

cutting tool is not covered in this work. Therefore, the key criterion in cutter selection

is to machine a workpiece with the minimum production time. The production time

comprises milling time for every used tool and the time of changing tools. Thus, the

first step is to define the optimal tool for every point of a milling surface from the

set of available tools with their feed rates. In this work the optimal tool for a surface

point is defined to be the tool that can mill the bigger surface area per unit of time

(including the surface point) than any other available tool. Using this formulation,

the total number of tool positions to mill the whole surface can be minimized which

reduces production time.

In this research various tools with different geometries are tested for the given

part geometry. For 3-axis milling the part and tool surface geometries can be repre-

sented as a function (z(x, y)), that defines z surface coordinate based on the x and y

coordinates. The part and the tool are considered to locate above z = 0 plane and

the tool direction is a negative z-axis direction. Fig. 3.2 shows such functions for a

part and a tool in 2D.

For instance, for a ball-end tool the surface equation is:

z(x, y) =

√
r2 − x2 − y2, x2 + y2 ≤ r2

∞, otherwise

Overall, the input parameters for the algorithm to assign milling zones for the

given tool set can be defined as follows:

• zp(x, y) - part surface geometry

12

z

x

z

xx
1

x
2

Part surface Tool 1 surface
zp(x)

x
1

x
2

zp(x1)
zp(x2)

z1(x)

z1(x1) z1(x2)

Figure 3.2: Part and tool surfaces as z(x) functions

• h - maximum tolerance size

• N - number of tools

• [zi(x, y)] - set of tool geometries

• [fi] - set of corresponding tool feed rates

• [ri] - set of corresponding tool radii

The output can be expressed in the form of a tool index function T (x, y) =

T (zp, h,N, [zi], [fi], [ri], x, y). This returns the optimal tool index for a surface point

(x, y) considering all the input parameters. To express T (x, y) function, some other

functions need to be introduced.

The first function describes the tolerance surface: zt(x, y). This surface bounds

the volume, and all the material outside this volume must be machined. This function

can be any function with the property:

∀x, y :

min
x̄,ȳ

[l(x− x̄, y − ȳ, zt(x, y)− zp(x̄, ȳ))] ≤ h

zp(x, y) ≤ zt(x, y)
(3.1)

where l(dx, dy, dz) =
√
dx2 + dy2 + dz2

In other words, the distance from any tolerance surface point (x, y, zt(x, y)) to

the closest point on the part surface should be less or equal than the tolerance value

13

(h), and the tolerance surface should be above the milling surface. More than one

function with this property can be built. The bigger the volume is bounded by the

tolerance surface the less volume need to be milled. For the ideal tolerance surface,

the minimum distance from every tolerance surface point to the milling surface equals

h. The easiest way to build the tolerance surface is to extend milling surface up on

h, so the equation for zt is:

zt(x, y) = zp(x, y) + h

However, it can be done more efficiently, by expanding zp in all the directions. The

exact way to build the tolerance function depends on the part surface representation.

For the surface representation in this work, way to build the tolerance function is

described later.

The second function is a tool maximum depth without gouging (di(x, y)) for a

cutter location (CL) point (x, y). It depends only on the tool and the surface geome-

tries as denoted in Equation 3.2. In other words, after going through all the surface

points under the tool in CL position (x, y), the deepest z position of the tool without

gouging is defined as the maximum of the difference between z values of the surface

point and the tool point above. The point that has this maximum value is the cutter

contact (CC) point. The maximum depth of cutter without gouging is shown below

in Fig. 3.3.

di(x, y) = max
xl∈[−ri,ri]
yl∈[−ri,ri]

zp(x+ xl, y + yl)− zi(xl, yl) (3.2)

Then, the “finished area” (Ai(x, y)) function needs to be calculated. “Finished

area” is the area of the surface that can be milled by the tool in the given CL positions

within the tolerance surface. It depends on both tool and part geometries and on

tolerance surface function as shown in Equation 3.3. This equation denotes that the

area of every surface point (x + xl, y + yl) that can be milled from the CL point

14

(x, y, di(x, y)) within the tolerance surface is added to the total “finished area” of the

CL point.

Ai(x, y) =
∫∫

(xl,yl)∈Si

dxldyl, h1 + h2 ≤ h3

0, otherwise

(3.3)

where

Si the circle with the center at the origin and the radius ri,

h1 = di(x, y), cutter depth in a cutter location point,

h2 = zi(xl, yl), the height of the tool surface point,

h3 = zt(x+ xl, y + yl), the height of the tolerance surface.

Fig. 3.3 shows the tolerance surface, the tool depth and the finished area in a cutter

location for a complex surface and the ball-end tool in 2D.

A(x, y)

Tool

Tolerance surface

Part surface

CL(x, y, d(x, y))

Figure 3.3: The maximum depth of cutter and its “finished area” for a
CL point(x, y) for the tolerance surface

Now, the tool performance as a function of “finished area” and the tool feed rate

can be considered. A finishing tool performance in a CL point can be calculated as

shown in Equation 3.4. The bigger the performance value in a cutter location point,

the better. Thus, the performance criterion for a cutter location states: if one tool

can traverse a bigger area from the given cutter location point than another tool per

15

unit of time, the first tool is better. The unit of the finishing performance is cubic

meters per second. In this work, different performance values are compared to each

other and are not used to produce other metrics.

Pi(x, y) = Ai(x, y) ∗ fi (3.4)

To perform finishing milling, the material in every surface point must be milled

within the tolerance surface (“covered” by a tool). So, with a given surface point

(x, y) the set of all cutter locations (Ω) can be found. This set depends only on tool

and part geometries and the tolerance surface function and can be calculated using

Equation 3.5. Such a set for a complex milling surface and a ball-end tool is shown

in Fig. 3.4.

Ωi(x, y) =
⋃

(xl,yl)∈Si

(x+ xl, y + yl), h1 + h2 ≤ h3

∅, otherwise

(3.5)

where

Si the circle with the center at the origin and the radius ri,

h1 = di(x+ xl, y + yl), cutter depth in a cutter location point,

h2 = zi(−xl,−yl), the height of the tool surface point,

h3 = zt(x, y), the height of the tolerance surface.

The function to find the best cutter T (x, y) for the surface point (x, y) can be

defined as in Equation 3.6. This function is used the set of CL positions (Ωi(x, y))

that can “cover” every surface point (x, y) and the finishing performance function

Pi(x̄, ȳ) for every CL position (x̄.ȳ). Thus, for a given surface point, among all cutter

locations of all the tools that can “cover” the point, the tool with the best performance

from any cutter location is selected for the point. This is because the performance

reflects the size of the milled area; the bigger the area, the more other surface points

16

Milling surface

Tolerance surface

(x, y)
(x1,y1)

(x2,y2)

Ω(x, y)

Figure 3.4: Cutter locations set to cover a surface point:
Ω(x, y) = (x1, y1) ∪ (x2, y2) ∪ ...

can be “covered” from the same cutter location and the less overall cutter location

points are needed to traverse the whole milling surface.

T (x, y) = arg max
i=1..N

max
(x̄,ȳ)∈Ωi(x,y)

Pi(x̄, ȳ) (3.6)

In reality, optimizing milling time is a more complicated problem than a “cover-

age” problem, described here. More parameters influences it, such as cutter swipe

direction and the exact selection of CL points. However, the given approach of

defining the best tool for every surface point is the fitting first step for further op-

timizations. The main hypothesis is that neighboring surface points have identical

best tool indices and the whole surface can be divided into milling zones. As shown

below, the whole surface can be zoned with a low frequency pattern.

In this section Ωi(x, y), Pi(x, y), di(x, y) and zt(x, y) functions have been defined,

but the exact implementation depends on the representation of the milling surface

and tools geometries. In the next section, the models that are used in this work are

discussed.

17

3.2 Tools and part representation models

As is stated in the previous section, four functions should be implemented in order

to perform the whole optimization process:

• zt(x, y) - defining the tolerance surface, such that all the material outside this

volume bounded by the surface should be machined.

• di(x, y) - defining the maximum depth for a tool in the cutter location point

(x, y) without gouging

• Ai(x, y) - defining the surface area that a tool can mill from the cutter location

(x, y) within the tolerance

• Ωi(x, y) - defining the set of all the cutter locations that can mill the material

from the surface point(x, y) within the tolerance.

Defining the maximum tool depth from the cutter location is a usual problem that has

to be solved to build any toolpath for 3-axis CNC milling. Despite the fact that it can

be done analytically for a generalized cutter and a free-form surface [45], computing

zt, Ai and Ωi functions analytically is a difficult problem. On the other hand, digital

models and the discrete approach avoid the complexity associated with the analytical

approaches. Values for every surface or CL point with some discretization step can

be calculated and located into a map that is done for this works. E.g. the tool and

the part geometries are represented as depth maps. A depth map is a regular grid,

stored as a 2D array, containing the information about the distances from the surface

of interest to a plane. It is assumed that the milling surface is defined by an arbitrary

polygon mesh and the milling axis is z-axis. To build a depth map, a discretization

step (s) should be selected. The mesh is located above the plane z = 0 and the

maximum distance from points (x ∗ s, y ∗ s, 0) to a mesh polygon along the positive

direction of the z-axis is measured and placed into the corresponding (x, y) element

of the depth map. The smaller s is, the higher the resolution of the depth map, and

18

the more accurate it represents the mesh. However with decreasing s the depth map

occupies more space in memory and takes more computation power to process. Thus,

it is a trade-off between precision and computation speed.

The important property of the depth map, used in this work, is that all the depth

distances are multiples of s. This allows integers to be stored in the array and all

the main computations are performed with integers. This dramatically increases the

computation speed in comparison to operations with floating point numbers. To build

such a depth map, the process of voxelization (converting a mesh into a voxel grid)

is used.

A voxel represents a value in a regular grid in three-dimensional space. The

position of a voxel is inferred based upon its position relative to other voxels. A

simple voxel grid can be represented as a 3D array with voxel values as elements. To

represent a polygon mesh, two voxel values are enough: one if there is a boundary

of the mesh in the voxel position, and another if there is no boundary. They are

called empty and boundary voxel respectively. Similar to depth map building, the

discretization step should be selected. For the purpose of this research, it is the same

as for the depth map (s). During the voxelization, for every (x, y), the highest z

position of the boundary voxel is written into the (x, y) depth map element.

The most common way to voxelize a polygon mesh is to rasterize all the mesh

polygons [12]. The rasterization can be performed quickly on modern GPUs, but

there might be small dimensional errors on rasterizing polygons’ edges or vertices. In

this work voxelization is done, using polygon-box overlap testing [1]. To convert a

polygon mesh into voxels, the virtual spacial grid is created in order to have the whole

mesh inside. One cell is a cube with a side of s and the center in (x∗s, y∗s, z∗s) point

and the overlapping of every mesh polygon and every cell is tested. If overlapping, the

maximum value of z coordinate is located in the (x, y) depth map element. Overall,

the part depth map representation can be considered as columns of the part material,

19

with the lengths of the values from the depth map. An arbitrary 2D mesh in a voxel

grid is shown in Fig. 3.5.

Figure 3.5: A mesh in a voxel grid. Black cells are boundary voxels and
white are empty ones. Depth map values are: H1 = 6, H2 = 9, H3 = 6.

Fig. 3.6 shows the representative mesh surface and the built depth map.

750 1250

1250

Figure 3.6: The representative part (5cm x 5cm x 5cm) with its depth
map. The discretization step (s) is 0.04mm. Note that the size of the
map is 1250x1250 (5cm/0.04mm) and the range of the depth is from
3cm (750*0.04mm) to 5cm (1250*0.04mm).

A tool geometry is also represented as a depth map with the same discretization

step (s). The algorithm to build a depth map is different, because the tool is not

represented as a polygon mesh, but as a generalized cutter. In the generalized cutter

model, seven independent geometric parameters are used to define the tool geometry:

20

D,R,Rr, Rz, α, β, h [8]. Fig. 3.7 shows the generalized cutter with its parameters.

The periphery of the milling cutter is divided into three zones and the radius can be

defined as a function of z [16]:

Figure 3.7: Generalized cutter geometry

r(z) =

z
tanα , for zone OM√
R2 − (Rz − z)2 +Rr, for zone MN

D
2 (1− tanα tan β) + z tan β, for zone NS

In contrast to the part depth map, the tool depth map represents the distance to

the tool surface outside of the tool, so that the tool tip is always have the depth zero

for the generalized cutter with any parameters. This difference between part and tool

depth maps is clear from the Fig. 3.2. To build the tool depth map, two indices of

the tool depth map i and j should take values from −d r
s
e to d r

s
e, where r is a tool

radius. The tool depth map value for the element [i, j] is calculated as the minimum

k value among all the points (i ∗ s, j ∗ s, k ∗ s) inside the tool:

21

depth_map[i, j] = min
k=0..dh

s
e

k, C is true

d tool_length
s

e, otherwise

where C = [(i∗s)2 +(j∗s)2 ≤ (r(k∗s))2], the condition that the point (i∗s, j∗s, k∗s)

is inside the tool.

Fig. 3.8 shows the result of the built depth map for a simple ball-end tool.

250

0 125
Figure 3.8: A 10mm ball-end tool with its depth map. The
discretization step (s) is 0.04mm as before. Note that the size of the
map is 250x250 (10mm/0.04mm) and the range of the depth is from 0
to 5mm (125*0.04mm).

After building the depth maps for every tool and for the part, calculating z value

from functions zp(x, y) and zi(x, y) functions are as simple as taking values from

the corresponding depth map array. Depth maps for the part and all the tools are

denoted as depth_mapp[x̄, ȳ] and depth_mapi[x̄, ȳ] respectively. Coordinates x̄, ȳ

and depth_mapi[x̄, ȳ] are integers and are called “voxel coordinates”. The corre-

spondence between the real world coordinates (x, y, z(x, y)) and “voxel coordinates”

(x̄, ȳ, depth_map[x̄, ȳ]) are:

• x̄ = bx
s
c

• ȳ = by
s
c

22

• z(x, y) = s ∗ depth_map[bx
s
c, by

s
c]

However, for all the future computations in this work using only “voxel coordinates”

is enough. For simplicity, later in this paper depth_map[x̄, ȳ] is denoted as dm[x, y],

where x, y and dm[x, y] are integers starting from zero unless is stated otherwise.

3.3 Accuracy analysis for the provided models

The main source of the geometric error in the proposed models is the depth map used

for part and tool geometry representations. In order to estimate the geometric error

in using the depth maps the appropriate metric should be selected. In this work it is

the difference in the distance between precise geometrical surfaces and the distance

between depth maps. It can be seen that the depth maps for parts and tools are

built in a manner so as to prevent overcut. The depth maps are constructed to be

always outside of the precise geometrical surfaces. Therefore, if the distance between

the depth maps is zero (which can happen in a CC point) then the distance between

geometrical surfaces is greater or equal to zero.

Unfortunately, the undercut can easily happen and should be estimated. It is easy

to calculate the maximum undercut distance in a CC point in order to estimate the

maximum error. Recall that all the values in part and tool depths maps are multipliers

of the discretization step (s), so the maximum undercut distance can be calculated

as a function of s. Fig. 3.9 shows the maximum undercut distance between the part

and the tool geometrical surfaces with zero distance between their depth maps.

From the figure, it is clear that the maximum error (e) is the maximum distance

in the volume of two neighbour cubes with the side s. Thus, the maximum error can

be calculated, using the equation:

e =
√

6s ≈ 2.45s

23

Part surface

Tool surface
s

e

Figure 3.9: The maximum overcut distance (e)
between geometrical part and tool surfaces with the
zero distance between depth maps in 2D. Tool voxels
are red, the part voxels are blue and the maximum
error distance is green.

Thus, the smaller the discretization step (s) is, the smaller the maximum error

is. In this work, the discretization step is 0.40 microns and the tolerance size is

120 microns for the simulation. Recall that the tolerance represents the maximum

distance from the geometrical surface to the milling surface. Considering the error,

the tolerance distance of the milled surface is 217 (120 +
√

6 ∗ 40) microns.

3.4 Implementation details

The algorithm of defining the best cutter for surface points is linear as shown in

Fig. 3.10. However, this algorithm is repeated multiple times, for different tool sets,

as a part if the total machining time minimization process. To complete the algorithm,

the functions zt, di, Ai, Ωi and T should be expressed. Because part geometry function

(zp) and tool geometry functions (zi) are already represented as depth maps, with the

small discretization step s, all the other functions can also be represented as maps.

That means that the value for every integer pair (x, y) is calculated and placed in 2D

arrays, called maps. The first two steps of the algorithm are already discussed in the

24

previous section. This section discusses the methods to build other maps. The first

one is the tolerance map.

Figure 3.10: Defining the best cutter for surface points algorithm
workflow

Recall that any function that satisfies Equation 3.1 is a valid tolerance surface

function. The ideal tolerance surface can be built in such a way that the distance from

any tolerance surface point to the closest point on the milling surface equals h. By

building the sphere with the radius h around every surface point, the ideal tolerance

surface can be formed from the points on the spheres with the highest z values. As

was mentioned above, the part depth map can be represented as the columns of the

part material. Therefore, if such spheres are built around every part point in the

columns, the tolerance surface can be represented as the surface of a cylinder with

radius h with a sphere with the same radius on the top of the cylinder. By building

the intersected surfaces of this shape around every part column with coordinate (x, y)

and taking the maximum z value for every point on the built surfaces, the discrete

tolerance depth map can be built. Fig. 3.11 shows the discretized part surface and

the primitives to build the tolerance surface. Considering the above, the tolerance

25

surface depth map can be built using the equation:

dmt[x, y] = max
xl=d−h/se..dh/se
yl=d−h/se..dh/se

0, (h/s)2 ≤ x2

l + y2
l

m1 +m2, otherwise

where

m1 = dmp[x+ xl, y + yl], part surface depth,

m2 = b
√

(h/s)2 − x2
l − y2

l c, additional height from the tolerance surface sphere

primitive.

part surface

tolerance surface

primitives

h

h

h

Figure 3.11: Discretized part surface and
tolerance surface primitives. Note that the
part depth map columns are shown in blue
and tolerance surface primitives are shown in
red.

The next step is to build the depth of the cutter map (dmci) for every ith cutter

(i = 1..N). Recall, that this map shows the maximum tool depth (minimum z

coordinate) for the ith cutter located in coordinates (x, y) without gouging. Using

depth maps, the Equation 3.2 is slightly changed to the form:

dmci[x, y] = max
xl=−rvi..rvi
yl=−rvi..rvi

dmp[x+ xl, y + yl]− dmi[xl, yl] (3.7)

where rvi = d ri

s
e is ith tool radius in voxels. Fig. 3.12 shows the result of building

the depth of cutter map for the part depth map and a flat-end cutter.

26

750- 1250

(a)

(b)

(c)

Figure 3.12: Part depth map (a), 10mm flat-end tool depth map (b)
and the map of the maximum depth of cutter without gouging (c). Note
that part depth map size is as before 1250x1250 and depth of cutter
map is bigger than part depth map. The tool depth map size is
250x250. The range of depth is from less than 3cm (750*0.04mm) to
5cm (1250*0.04mm).

The discretized model reduces the integration in Equation 3.3 into summation.

So, the finished area map (ami) for ith tool can be expressed:

ami[x, y] =
rvi∑

xl=−rvi

rvi∑
yl=−rvi

1, m1 +m2 ≤ m3

0, otherwise

(3.8)

where

m1 = dmci[x, y], cutter depth in a cutter location point,

m2 = dmi[xl, yl], the depth of the tool surface point,

m3 = dmt[x+ xl, y + yl], the depth of the tolerance surface.

Finished area maps for the part depth map provided above are shown in Fig. 3.13

for 10mm flat-end and ball-end tools, respectively. As expected, the zones of hor-

izontal surfaces have bigger value for the flat-end tool, but free-form zones usually

have bigger values for ball-end tools. Finishing performance maps (pmi) can be eas-

ily calculated afterwards considering tool feed rates (fi) with the discrete form of

Equation 3.4:

27

pmi[x, y] = ami[x, y] ∗ fi (3.9)

0 5100+

(a) (b)

Figure 3.13: Finished area maps for 10mm flat-end tool (a) and for
10mm ball-end tool (b). Note that finished area is measured in voxel
squares with the area 0.0016mm2 (0.04mm*0.04mm) each. The area
range is from 0 to more than 8mm2 (5100*0.0016mm2).

To build the map of the best tool indices, a discrete Ω function should be de-

fined. However, in this work the Ω set is not calculated explicitly. The search of all

the cutter location points that can “cover” the surface point and calculation of the

maximum performance for the surface points are done simultaneously for one cutter.

The equation to build such a map (psmi) of surface finishing performance for the ith

cutter can be obtained from Equations 3.5 and 3.6. For the discretized model, the

equation is:

psmi[x, y] = max
xl=−rvi..rvi
yl=−rvi..rvi

p, m1 +m2 ≤ m3

0, otherwise

(3.10)

where

p = pmi[x+ xl, y + yl], finishing performance in a cutter location,

m1 = dcmi[x+ xl, y + yl], cutter depth in a cutter location point,

28

m2 = dmi[−xl,−yl], the depth of the tool surface point,

m3 = dmt[x, y], the depth of the tolerance surface.

Surface finishing performance maps for the same 10mm flat-end and 10mm ball-

end tools are shown in Fig. 3.14. The feed rates for both tools are considered the same

and equal to 1mm/sec, so it does not affect finishing performance. It can be seen that

such maps are close to feasibility maps with the exception that for the feasibility map

only two values for a surface point are appropriate (one value if the tool can reach

the surface point and another one if it cannot). For the surface finishing performance

map, the value in every surface point represents the tool efficiency for this surface

point.

0 5100+

(a) (b)

Figure 3.14: Surface finishing performance maps for 10mm flat-end tool
(a) and for 10mm ball-end tool (b). Note that the surface finishing
performance is measured in mm3/sec. The finishing performance range
is from 0 to more than 8mm3/sec.

Finally, the map of the best tool indices (tm) can be built. Having the maps of

surface finishing performance, the tool with the best performance in a surface point

is the best tool for this surface point. Thus, the equation is:

tm[x, y] = arg max
i=1..N

(psmi[x, y]) (3.11)

29

Five ball-end cutters and five flat-end cutters were used in the simulation to build

zones for the finishing stage of milling. Their shapes, sizes, depths of cut and feed

rates are shown in Table 3.1. These values are considered given in this work, but

they can be easily calculated for the known work piece material, tool shape and size.

Note, that the same cutters with their parameters were used for the simulation of the

whole algorithm to minimize the total machining time as stated in the next chapters.

After the tool set optimization, some of these cutters were also used for the actual

milling. The result of building a map of the best tool indices for the given part and

for ten available cutters is shown in Fig. 3.15.

Table 3.1: List of cutters, used for simulation

Tool number Diameter, mm Cutter Shape Depth of cut,
mm

Feed rate,
mm/min

T1 9.525 flat end 16.67 5376
T10 7.983 ball end 13.90 4163
T2 4.763 flat end 8.33 2080
T3 4.763 ball end 8.33 2080
T4 3.175 flat end 5.56 1440
T5 3.175 ball end 5.56 1200
T6 2.000 flat end 3.50 886
T7 1.984 ball end 3.18 818
T8 1.191 ball end 2.08 450
T9 1.000 flat end 1.75 378

The generated map seems intuitively correct. Most of the horizontal zones are

finished with the biggest possible flat-end (white) cutter. On the other hand, for

most of the non-horizontal zones, the biggest ball-end (red) cutter is selected. If

bigger tools cannot be used to reach some surface zones, smaller flat-end (green,

cyan, yellow, dark green) and ball-end (gray, blue, dark yellow, dark red) tools are

used for horizontal and non-horizontal surfaces respectively as shown in fragment

(b). Fragment(c) shows part of the surface that is flat enough to use a flat end cutter

instead of ball-end. The boundary of the zone for every cutter is noisy, because

the best tool index is defined independently for every surface point. That means the

30

(a)

Figure 3.15: Best tool indices map (a) with its fragments (b, c) for five
ball-end (d) and five flat-end (e) cutters

algorithm for tool path planning should be robust enough to build tool paths for such

milling zones. However, by increasing the resolution, the boundaries of the milling

zones can become less noisy.

Every available cutter was used in this map, that highlights the need of the tool

set optimization. Without optimization, the tool must be changed ten times in CNC

which inceases the total machining time dramatically. A robust algorithm to generate

tool paths for an arbitrary milling zone and the way to optimize the tool set are shown

in next chapters.

3.5 Algorithms complexity and GPU acceleration

The most time-consuming operations are building the depth of cutter maps, building

“finished area” maps and building surface finishing performance maps. From Equa-

tions 3.7, 3.8 and 3.10, it can be seen that the asymptotic complexity of all the three

algorithms is the same. The amount of work that needs to be done for every map

element is proportional to the tool radius squared. So, the total work to build one

map for a part with surface area (S) and a tool with radius (ri) is proportional to

S and r2
i . The part surface square and tool radius are measured in “voxel units”.

31

This means that by decreasing the discretization step (s) two times, the part surface

is increased four times and the tool radius is increased two times in “voxel units”.

Thus, the asymptotic complexity of building one map operation (f(S, s, ri)) can be

expressed:

f(S, s, ri) = O(1
s4 ∗ r

2
i ∗ S)

By having N tools with the maximum tool radius equal to rmax, the complexity

(g(S, s, rmax, N)) of these three algorithms to generate maps for all cutters is:

g(S, s, rmax, N) = O(1
s4 ∗ r

2
max ∗ S ∗N)

It can be seen that increasing the resolution (decreasing the discretization step) is

expensive. However, every element in a map can be calculated independently. This

means that all three time-consuming algorithms can be easily parallelized for thou-

sands of processors. Therefore, employing GPU computations seems a logical choice.

The GPU executes parallel code by running parallel functions called kernels. Any

function that can be run in parallel can therefore by run by thousands of threads

processing the same kernel in parallel. These kernels can be run with the OpenCL

framework. The OpenCL is a framework for writing programs that can be executed

on CPUs, GPUs or other processors or hardware accelerators. OpenCL provides a

standard interface for parallel computing.

The code in this work was developed in C++ and OpenCL. The code was run

on an Intel i7-4770 CPU and on two AMD Radeon RX 480 GPUs. For this work,

the OpenCL kernels are the code to update one map value. The performances for

building maps for the (5cm x 5cm) part surface and the biggest 9.525mm cutter, with

different discretization steps are shown in Table 3.2. One more algorithm with the

same complexity is shown in the table. This algorithm builds maps of rouging depth

of the cutter. The need for this algorithm is provided in Chapter 5.

It can be seen that the theoretical complexity is close to the experimental com-

plexity. By increasing the resolution two times, the map-building time is increased

32

Table 3.2: GPU performance for different map building operations

Time of building map, seconds
GPUs
number

Discretization
step, mm

Finishing
depth of
cutter

Roughing
depth of
cutter

Finished
area

Surface
finishing
performance

2
0.04 1.6 3.0 3.1 1.2
0.02 27.1 46.4 47.14 20.8
0.01 541.1 720.4 742.3 335.2

by 15 to 20 times (the theoretical value is 24 = 16). To apply this algorithm without

optimization for resolution less than 10 microns can be time-consuming. However,

because the algorithm can be run on parallel on any number of nodes with little over-

head, employing more GPU or FPGA devices can significantly reduce computation

time.

After these three maps for every cutter are generated, building the map of the

best tool indices as shown in Equation 3.11 is cheap. The complexity of this operation

is O(1
s2 ∗ S ∗ N). Therefore, with changing the set of used tools, new maps of the

best tool indices can be built fast. This means that the performance of the whole

optimization algorithm depends on two major factors:

• building four time-consuming maps for every cutter

• building the tool paths for the generated map of the best tool indices to calculate

milling time

These algorithms with the analysis if their performances is provided in next chapters.

33

Chapter 4

Tool path planning for finishing

It is important to have a robust algorithm that can build tool paths for an arbitrary

milling zone on a free-form surface and a generalized cutter. As was shown in Chap-

ter 3, milling zones can be build for cutters based on their performance. For the

algorithm to build tool paths, it is assumed that the cutter geometry and the milling

zone for this cutter are given.

Often, the milling zone for one cutter can be defined in a trivial manner. It might

be the whole milling surface or the surface for one feature, but it can be defined

algebraically [38]. In this work the milling zone is defined by an arbitrary boolean

map. Every cell of this map represents one surface point and contains “True” if

this surface point should be milled with the cutter and “False” otherwise. It is also

assumed that for every map cell containing “True”, the material from the surface

point can be milled with the given tool within the tolerance distance. Because of the

fact that such an arbitrary defined milling zone can be discontinued and its boundary

can be noisy, it is difficult to select an optimal milling direction in the direction-

parallel approach. Therefore, the contour-parallel approach to build tool paths was

selected in this research.

Among approaches to define tool path parameters, such as iso-parametric, iso-

planar and iso-scallop height, the iso-scallop method is known to generate the shortest

overall tool path. That is why, the iso-scallop approach was selected to be used in

this work. The traditional approach in building iso-scallop tool paths is to calculate

the CL point based on the previous CL point, the surface curvature, and the cutter

34

shape. However, for a free-form milling surface and a generalized cutter model, it is

a difficult problem. Another approach to find the next CL point by testing different

CL points and select the one with the maximum performance is shown in the present

research. This approach is more expensive, but, using a digital model, it avoids

the computational complexity associated with the analytical approaches. Because of

simpler and uniform calculations, GPUs can be employed to accelerate the most time

consuming operations.

The output of the algorithm from this chapter is generated tool paths. These

tool paths are built in order to mill the material from every surface point from the

milling zone within predefined tolerance size. After connecting all the generated tool

paths together, milling time can be calculated. This milling time is used to minimize

the total machining time as described in Chapter 6. The generated tool paths from

different milling layers are also used to build the final tool path, after defining the

optimal tool set.

4.1 Main tool path planning algorithm

The input data for the algorithm was partially mentioned above. Here is the complete

list of all the input parameters. All the maps represent some values in surface points

or CL points with a small discretization step (s):

dmi - tool surface depth map,

dmp - part surface depth map,

dmt - tolerance surface depth map,

dmci - maximum depth of cutter map,

mzm - boolean map of the milling zone,

Fmax - the maximum feed rate for the tool and the workpiece material,

s - discretization step,

a - CNC machine tool acceleration and deceleration.

35

The same part, 7.983 mm ball-end tool, and the milling zone, in which this tool

shows the best performance (red area from Fig. 3.15) are used as a representative

input for the tool path planning algorithm. Fig. 4.1 shows all the essential input data

together.

1250

1450
200

(c)

(a) (b)

(f)

(d) (e)

1250

625

100

0

Figure 4.1: Input data for tool path planning algorithm: 5mm
x 5mm part depth map (a), milling zone map (b), 7.983 mm
ball-end tool depth map (f), maximum depth of the cutter map
(c) and the legends for part depth map (d) and tool depth map
(e). Note, that part depth map and the milling zone map have
the same sizes and the depth range for part depth map and the
maximum depth of the cutter map is the same. The
discretization step (s) it the same for all the map and equals to
0.04mm.

The requirements for the algorithm of tool path building are derived from its

characteristics. Because the resultant tool path is contour-parallel, the tool path

must “follow” the milling zone boundary. “Following” the boundary means that

the cutter on the way to the next CL point should remove the material from the

36

boundary points of the milling area within the tolerance. Also, the tool paths must

be iso-scallop. Because the constant scallop height guarantees the maximum tool

“performance” while the cutter is moving from one CL point to the next one, the

“performance” of the tool path segment to the next CL point should be maximized.

Here, the “performance” of the tool path segment is the fraction of the “covered”

surface area and the milling time. Using these two requirements, the essential steps

of the algorithm for the provided discretized model are shown in Algorithm 4.1.

Algorithm 4.1 Build tool paths
Input: mzm is a boolean map of milling zone
1: TPs← {} . TPs is a set of resultant tool paths
2: while There are non-milled pixels in mzm do
3: . bpm is a map of boundary pixels of the milling zone in mzm
4: bpm← Find boundary pixels in mzm
5: while There are boundary pixels in bpm do
6: tp← {} . tp is a tool path to build
7: pcl← null . pcl is a previous CL position
8: p← Get any boundary pixel from bpm
9: BPs← {p} . BPs is a set of boundary pixels to “cover”
10: while There are elements in BPs do
11: . CLs is a next CL candidates set
12: CLs← Find CLs that “covers” max pixel number from BPs
13: . Ss is a line segments set of possible tool motions
14: Ss← Build line segment (pcl, cli), for ∀cli ∈ CLs
15: Remove segments that produce gouges from Ss
16: Ts← Calculate milling times for ∀si ∈ Ss
17: As← Calculate milled areas for ∀si ∈ Ss
18: . Ps is a performance set for tool swipes along segments
19: Ps← {ai

ti
}, for ∀ai ∈ As, ti ∈ Ts

20: . Find the CL from segment with the maximum performance
21: best_cl← CLs[arg maxpi∈Ps pi]
22: Add best_cl to tp
23: Remove “covered” pixels from mzm and bpm on (pcl, best_cl)
24: BPs← Find boundary pixels next to removed pixels
25: pcl← best_cl
26: end while
27: TPs.add TP
28: end while
29: end while
30: return TPs

37

The algorithm builds one tool path on a point-by-point basis, while it can find

the next appropriate CL point, given the previous one. If there are no appropriate

tool path points, the tool path is added to the set of tool paths and the algorithm

starts building the next tool path while there are non-milled pixels in the milling

zone. The next appropriate CL point is the one that can “cover” any pixels from the

set, made of the boundary pixels, located next to removed milling zone pixels from

the previous CL. If there are multiple CL points that meet this criterion, the ones

that cover the maximum number of boundary pixels from the set are selected. Then,

the CL points that produce gouges with tool path segments from the previous CL

point are removed. Finally, the CL with the maximum performance is considered the

next CL point. Selecting CL points that “cover” the maximum number of boundary

pixels allows to work efficiently with the noisy boundary of the milling area.

This approach might lead to non-optimal tool paths, because the global optimality

is not considered while locally optimal CL points are selected. Thus, the whole milling

direction can be badly chosen. This problem is similar to choosing the direction of the

milling in the direction-parallel approach to tool path building. Overall, the problem

of tool path building is similar to the maximum coverage problem that is NP-hard,

and using the greedy approach to select the next CL point seems reasonable.

Algorithm 4.1 has many sub-algorithms. While some of them are trivial, the others

needs to have the detailed explanation. Here is the short list of these algorithms with

the corresponding line number:

1. Detecting the existence of non-milled pixels in milling zone map (line 2).

2. Finding boundary pixels of the milling zone (line 4).

3. Detecting the existence of non-milled boundary pixels in the map of boundary

pixels (line 5).

4. Finding any boundary pixel in the map of boundary pixels (line 8).

38

5. Searching CL positions that can “cover” a max number of pixels from the pro-

vided list (line 12).

6. Detecting if a line segment produces gouges (line 15).

7. Calculating the milling time of line segment tool motion (line 16).

8. Calculating the milled area, produced by line segment tool motions (line 17).

9. Removing pixels, that are “covered” by a line segment tool motion from the

milling zone and boundary pixel maps (line 23).

10. Detecting the new set of boundary pixels, next to removed pixels in the milling

zone map (line 24).

Detecting the existence of non-milled pixels from boolean maps (items 1 and 2)

is as simple as searching the 2D binary array for the existence of “True” values. The

algorithm to find any boundary pixel in a boolean map (item 4) (the 2D coordinate

of the first “True” value needs to be returned) is also trivial. The other algorithms

detailed description is provided in the next sections.

4.2 Milling zone boundary pixels detection

This algorithm finds all the boundary pixels in the provided milling zone map. The

approach of the algorithm is similar to ones that are used for edge detection in image

processing [33]. Recall, that the milling zone map is a boolean map, with “True”

values for pixels that need to be milled and “False”, otherwise. The output is a

boolean map of the same size with “True” values for boundary pixels and “False”,

otherwise. The boundary pixel is a milling zone pixel that has at least one non-

milling zone pixel in its neighborhood. In other words, the pixels with “True” value

that have at least one neighboring “False” pixel need to be found. The size of the

neighborhood is 1, so for every pixel, eight adjacent pixels need to be checked. There

is one more criteria, how a pixel is considered a boundary one. If a distance in depth

between to adjacent milling zone pixels is more than some threshold value, they are

39

both considered a boundary pixels. It is done this way to distinguish milling zones

at different depths, even if they need to be milled with the same tool. Fig. 4.2 shows

the milling zone with its boundary and its fragment. The Algorithm 4.2 provides the

details of the implementation.

(a) (b)

Figure 4.2: Detected boundary if the milling zone (a) and its fragment
(b). The milling area is white, while boundary pixels are red. Note,
that the boundary in the fragment is very noisy.

Algorithm 4.2 Detect milling zone boundary
Input: mzm is a boolean map of milling zone with width W and height H
Input: t is a maximum depth threshold
Input: dmt is a tolerance surface depth map
1: . Create a map of boundary pixels with WxH size
2: bpm← [1..W, 1..H]
3: for y = 1..H, x = 1..W do
4: bpm[x, y] = False
5: for dy = −1..1, dx = −1..1 do
6: if mzm[x, y] and not mzm[x+ dx, y + dy] then
7: bpm[x, y] = True
8: end if
9: if mzm[x, y] and |dmt[x+ dx, y + dy]− dmt[x, y]| > t then
10: bpm[x, y] = True
11: end if
12: end for
13: end for
14: return bpm

40

4.3 The search of CL positions that “cover” the maximum number of

the provided boundary pixels

This algorithm searches the CL positions that “cover” the maximum number of pro-

vided points. Recall, that the tool “covers” a surface point from a CL location if it is

able to remove the material from the surface point within the tolerance surface. To

check that a CL can “cover” the given surface point, the difference in depths of CL

position and the corresponding point in tool depth map should be less or equal than

the corresponding depth in the tolerance surface map. A similar approach is used

in Equation 3.3 to calculate the finished area from one CL point. The algorithm is

cheap, because, the test on “coverage” is made only for the given boundary points

not for all of them.

The algorithm is straight forward. All the possible CL points need to be checked.

For every CL point the number of “covered” pixels from the provided list of bound-

ary pixels is counted. Then, the maximum number of “covered” boundary pixels is

defined. Finally, all the CL positions with the number of “covered” pixels less than

the maximum is removed from the list. The maximum boundary pixels need to be

covered to work with the noisy boundary of the milling zone. Otherwise, single pixels

from the milling zone might be missed and later they have to be addressed which

increases the number of tool paths. The output of the algorithm is a set of CL with

the maximum number of “covered” boundary points.

The result of this algorithm for two consecutive tool path generation steps is

shown in Fig. 4.3. Note, that while the boundary of the milling zone is noisy, the

algorithm is able to follow the boundary, while no single pixels of the milling zone

are left. The boundary of the milling zone left for the next stages is also noisy, but

it is not an issue since the algorithm can generate the tool path for the noisy milling

zone.

41

Algorithm 4.3 Find CL positions to “cover” the maximum number of boundary
pixels
Input: BPs is a set boundary pixels to “cover”
Input: dmi is a tool surface depth map
Input: dmt is a tolerance surface depth map
Input: dmci is a maximum depth of cutter map
Input: W and H are the maximum x and y coordinates of CL positions respectively
1: CLs← {} . The resultant set of CL positions
2: . Find all positions CL that can “cover” pixels from BPs
3: for cl.y = 1..H, cl.x = 1..W do
4: c← 0 . c is a counter of “covered” boundary pixels
5: z ← dmci[cl] . z is the depth of cutter in cl
6: for ∀bp ∈ BPs do . check all the boundary points
7: . Check if cl “covers” bp
8: if z + dmi[bp− cl] ≤ dmt[bp] then
9: c← c+ 1
10: end if
11: end for
12: if c > 0 then
13: . Save 3D coordinates of found cl point with the counter value
14: Add {cl.x, cl.y, z, c} to CLs
15: end if
16: end for
17: . Filter CLs values if not max number of pixels is “covered”
18: max_c← max

∀cl∈CLs
cl.c

19: for ∀cl ∈ CLs do
20: if cl.c < max_c then
21: Remove cl from CLs
22: end if
23: end for
24: return CLs

42

Figure 4.3: CL positions to “cover” the provided boundary pixels set.
White pixels represent milling area, red ones represent all the boundary
pixels, while the blue ones represent boundary pixels to “cover” with
the tool. Yellow pixels show all CL positions that can cover at least one
boundary point, and the green ones shows CL positions that cover the
maximum number of the provided boundary points (blue ones). The
purple pixel is the best CL position, defined by following
sub-algorithms.

4.4 Test if a line segment produce gouges

This algorithm checks if a straight line tool path segment produces gouges. The line

segment is defined by the coordinates of its ends. The one end is a previous CL

position and another end is a candidate for new CL positions. If a line segment fails

the test, it is removed from the list of candidates and it cannot be a new tool path

segment. Because of the fact that all the algorithms work in a discrete world, the

most obvious solution is to test every CL position on the segment for gouging. Thus,

the problem can be divided into two parts. The first one is to build every point on

the line segment. And another one is to test each point from the list for gouging, by

placing the cutter in this point.

Recall, from Chapter 3 that all the coordinates used in this work are integers.

They can be converted into real world coordinates by multiplying them by the di-

cretization step (s). However, for all the algorithms integer coordinates are enough,

so all CL positions are converted into real world coordinates at the very end, when

43

they are post-processed into G-code. For the purpose of this algorithm, it means that

the coordinates of both of the segment ends are integers and all coordinates of the

intermediate points are also should be integers. The algorithm to build intermediate

points can be stated as: find all the points in integer coordinates to have a close

approximation to a straight segment between two points.

This problem is exactly the line rasterization problem. Usually, rasterization

algorithms are used to show geometric primitives on the screen, i.e. rasterize them.

Despite the fact that most of them are designed to rasterize primitives in 2D, some can

be easily adapted for 3D rasterization. For the line segment rasterization, the simplest

algorithm is “Bresenham’s line algorithm” [43]. In the algorithm, first the slope of the

line is calculated, then, by moving the coordinate with the longest distance by one,

the other coordinates are calculated and rounded for every point. The output of the

algorithm the list of points with integer coordinates. Algorithm 4.4 shows the details.

Note, that x and y coordinates are rounded before adding a point into the resultant

list, while for z coordinate is rounded down. It is done to check z coordinates that

are lower than the actual coordinate on the segment. If it is rounded, it can lead to

small (less than discretization step (s)) over-cut. This can be avoided by rounding

down, so the lower z position is checked on gouging.

Algorithm 4.4 Rasterize 3D line segment
Input: p1, p2 are the ends of the segment with integer coordinates
1: result← {}
2: dv ← p2− p1 . Get the difference per coordinate
3: N ← max

∀dvi∈dv
dvi . Find the maximum coordinate distance

4: s← dv/N . Find the delta step per one longest distance pixel
5: for d = 0..N do
6: p← p1 + s ∗ d . p is a point to add in float coordinates
7: Add {[p.x], [p.y], bp.zc} to result . p is rounded before adding
8: end for
9: return result

In the second part of the algorithm every rasterized point should be checked for

44

gouging. It can be accomplished by using the maximum depth of the cutter the map

(dmci). Recall, that this map is showing the maximum depth of the cutter without

gouging in different CL points. Thus, if z coordinate of every rasterized point is more

or equal than the corresponding value from this map, the segment does not produce

gouges. It is shown in Algorithm 4.5.

Algorithm 4.5 Is tool path rasterized segment produces gouges
Input: ps the set of rasterized points
Input: dmci is a maximum depth of cutter map
1: for ∀p ∈ ps do
2: if p.z < dmci[p.x, p.y] then
3: return True
4: end if
5: end for
6: return False

4.5 Milling time of the segment calculation

After generating all the possible tool path segments and removing ones that produce

gouges, the one with the maximum performance should be selected. Recall, that

performance is calculated as a ratio of the “covered” area to the milling time. Thus,

both of these parameters for every segment should be calculated.

To calculate the milling time for the straight line segment motion the trapezoid

motion interpolation model is selected. Despite the liner interpolation, the trapezoid

model favors longer segments. It is considered that the cutter has zero feed rate at

the first and the last segment points. The tool is accelerated and decelerated with

a constant acceleration value. Fig. 4.4 shows two possible cases, if the maximum

feed rate can be reached and if it cannot be reached due to the segment length. In

both cases only milling time is a point of interest. Thus, the problem can be stated

as: with a given segment length, acceleration/deceleration value and the maximum

feed rate, what is the motion time with using trapezoid motion interpolation. The

45

maximum feed rate is defined based on cutter shape, size and workpiece material. For

the purpose of this research it is considered given. The feed rate values for all used

cutters are shown in Table 3.1. Acceleration and deceleration value is a characteristic

of the exact CNC machine and is also considered given. In this research the value

for acceleration/deceleration is 3000mm/sec2. Algorithm 4.6 shows the details of

the milling time calculation. Note, that the distance should be converted into real

distance units before time calculation.

(b)time

Feed rate

F_max

Zone1 Zone2 Zone3

time

Feed rate

F1

Zone1

Zone3

(a)

Figure 4.4: Feed rate dependence on time in trapezoid motion
interpolation model. If a maximum feed rate (F_max) can be reached
(a): there are three zones, acceleration zone (Zone1), constant feed rate
zone (Zone2) and deceleration zone (Zone3). If the maximum feed rate
cannot be reached (b), there are only two zones: acceleration zone
(Zone1) and deceleration zone (Zone3).

4.6 The calculation of the area, “covered” by a tool path segment

The second component of the segment performance is the area, “covered” by a tool

path segment. The easiest way to find this area is to check the coverage of every

surface pixel by all CL position on the segment. The number of all “covered” pixels

can be easily converted into the “covered” surface area. For the purpose of comparing

different segment performances, however, the area is not converted into mm2. It is

enough just to know the number of “covered” pixels by a tool motion segment. By

having the rasterized segment of the tool motion, the problem can be stated as:

46

Algorithm 4.6 Calculate milling time of the tool path segment
Input: p1, p2 are the ends of the segment with integer coordinates
Input: Fmax is the maximum feed rate
Input: a is an acceleration
Input: s is a discretization step
1: . Calculate the length of the segment in mm
2: l← s ∗

√
(p1.x− p2.x)2 + (p1.y − p2.y)2 + (p1.y − p2.y)2

3: tacc ← Fmax/a . Calculate the time for acceleration to Fmax
4: lacc ← (a ∗ t2acc)/2 . Calculate length for acceleration
5: if 2 ∗ lacc < l then
6: return 2 ∗

√
l/a . It is a triangular case, no time to reach Fmax

7: else
8: return 2 ∗ tacc + (l − 2 ∗ lacc)/Fmax . It is a trapezoid case
9: end if

find the number of “covered” surface pixels by any of the CL from the list. Note

that this algorithm is close to the search of CL positions to cover boundary pixels.

Algorithm 4.7 shows the details.

Algorithm 4.7 Calculate the number of “covered” pixels by a tool path segment
Input: mzm is a boolean map of milling zone with width W and height H
Input: CLs is a set of rasterized CL point of the tool path segment
Input: dmi is a tool surface depth map
Input: dmt is a tolerance surface depth map
1: A← 0 . The resultant “covered” area
2: . Go through all the possible milling zone points
3: for y = 1..H, x = 1..W do
4: for ∀cl ∈ CLs do
5: . Check if cl “covers” (x, y) point
6: if mzm[x, y] and cl.z + dmi[x− cl.x, y − cl.y] ≤ dmt[x, y] then
7: A← A+ 1
8: end if
9: end for
10: end for
11: return A

After defining the milling time for every segment and the “covered” area, the

performance of every segment can be calculated and the segment with the best per-

formance can be selected for the next tool path segment. After that, the “covered”

pixels with this tool path segment should be removed from the milling zone map and

47

the boundary pixels map. The set of the next boundary pixels to “cover” should also

be defined as stated in the next section.

The algorithms to calculate the number of “covered” pixels and to calculate the

milling time should be run for every tool path segment candidate. While calculating

the milling time is a cheap operation (its asymptotic complexity is O(1)), calculating

“covered” area is very expensive. It is the most expensive one among other algorithms

from this chapter. It checks every surface point with every CL from every rasterized

segment. With increasing the resolution (decreasing s) two times, the number of

surface points to check is increased four times. The number of CL candidates is

also increased four times and the number of rasterized points in a segment increased

two times. Thus, the complexity of this algorithm is O(1/s5), which becomes very

expensive with increasing the resolution. However, the “covered” area is calculated

independently for every tool path segment candidate, and the contribution of every

surface point can also be calculated independently. Therefore, this algorithm can be

easily implemented by using OpenCL to work on GPU, as was done for this research.

The OpenCL kernel run for every surface point pixel and for every tool path segment

candidate as shown in Algorithm 4.8. This algorithm is highly parallelizable and can

be written to run on other platforms. However, the atomic increasing operation (Line

6 in the algorithm) needs to be supported by a platform and hardware to have full

advantage of its parallelizability. An atomic operation means that the same value

can be safely changed from different threads.

Despite the fact, that this algorithm is highly parallelizable, it still can be a

bottle neck for the whole algorithm to build the tool paths, so further optimizations

can be applied. If an adequate tool path segment is selected rather than the best

one, not all the tool path segment candidates have to be tested. Some predefined

number of random samples can be selected from the set of all tool path segment

candidates. Moreover, every Kth rasterized point in a rasterized segment candidate

48

Algorithm 4.8 Calculate the number of “covered” pixels by a tool path segment in
parallel
Input: Ss is an array with size N of all rasterized tool path segment candidates
Input: As is an array of “covered” areas by segments with size N filled with zeros
Input: mzm is a boolean map of milling zone with width W and height H
Input: dmi is a tool surface depth map
Input: dmt is a tolerance surface depth map
1: . Go through all the possible milling zone points and all the segments in parallel
2: for y = 1..H, x = 1..W, i = 1..N in parallel do
3: for ∀cl ∈ Ss[i] do
4: . Check if cl “covers” (x, y) point
5: if mzm[x, y] and cl.z + dmi[x− cl.x, y − cl.y] ≤ dmt[x, y] then
6: Increase As[i] by 1 atomically
7: end if
8: end for
9: end for

can be checked, rather than every one. Here, K is some predefined value that can

be increased with increasing the resolution, to compensate complexity. In the same

way, not every surface point has to be checked on “coverage”. All these optimizations

affect the precision of calculating “covered” areas, but can reduce the complexity of

the algorithm to O(1). If all of them are applied, the calculation of the “covered area”

for a constant number of tool path segment candidates need to be done. Also, the

test on “coverage” is done for the constant number of rasterized CL points for every

segment and for the constant number of surface pixels. In this work, none of this

optimization is done in order to build the best possible tool paths and the detailed

investigation of the different optimization influences on the tool path length is not

performed either.

4.7 Removing “covered” pixels with a tool path segment

After selecting the tool path segment with the maximum performance, the “covered”

pixels from the milling zone and the boundary pixel maps need to be removed, so

that the new CL points can be searched. The approach is similar to the approach

49

of calculating the milling area. Every surface pixel is checked on coverage from any

of the CL positions from the rasterized tool path segment. If a pixel is “covered”,

its value should be set in “False” in both maps. The implementation is provided in

Algorithm 4.9. Note, that this algorithm is close to Algorithm 4.7, with the different

action when the “covered” pixels are found (Lines 6, 7).

Algorithm 4.9 Remove pixels, “covered” by a tool path segment, from milling zone
and boundary pixels maps
Input: mzm is a boolean map of milling zone with width W and height H
Input: bpm is a boolean map of boundary pixels width W and height H
Input: CLs is a set of rasterized CL point of the tool path segment
Input: dmi is a tool surface depth map
Input: dmt is a tolerance surface depth map
1: . Go through all the possible milling zone points
2: for y = 1..H, x = 1..W do
3: for ∀cl ∈ CLs do
4: . Check if cl “covers” (x, y) point
5: if cl.z + dmi[x− cl.x, y − cl.y] ≤ dmt[x, y] then
6: mzm[x, y]← False
7: bpm[x, y]← False
8: end if
9: end for
10: end for

4.8 Search of the new boundary pixels to “cover”

The last step, before the search of the next CL points is to find the new boundary

pixels to “cover” with the next CL position. This step is essential if the resultant tool

path should follow the boundary. However, only the closest boundary pixels should

be considered for the next search. If many distant pixels are in the set of boundary

pixels to “cover”, the next CL point might miss some of the boundary pixels that

might lead to non-removed single milling zone pixels. In this case, such pixels have to

be addressed later, which might increase the resultant tool path length dramatically.

Selecting only close boundary pixels to “cover” does not guarantee the absence of

single pixels, but should decrease their number. Therefore, only non-removed pixels

50

from milling zone that are located next to removed pixels are addressed. Thus, the

algorithm to build a new set of boundary pixels to “cover” can be stated as: build a

set of boundary pixels, located next to removed pixels in the previous step. The main

issue here is to find the milling zone pixels that were removed in the previous step

(in Algorithm 4.7). The easiest way to do it is to save the milling zone map before

removing pixels and compare it with the map after. The pixels that have “True”

value in the old map and “False” value in the new map are the removed ones. The

rest is trivial, all the boundary pixels that are next to removed ones are need to be

added to the resultant set. The implementation is shown in Algorithm 4.10. Note,

that this algorithm uses Algorithm 4.9 in Line 3.

Algorithm 4.10 Find new boundary pixels to “cover”
Input: mzm is a boolean map of milling zone with width W and height H
Input: bpm is a boolean map of boundary pixels width W and height H
1: . Save the milling zone map before removing pixels
2: mzmold ← mzm
3: Remove pixels, “covered” by the last tool path segment, from mzm and bpm
4: BPs← {} . BPs is a resultant set of boundary pixels to “cover”
5: . Go through all the possible milling zone points
6: for y = 1..H, x = 1..W do
7: for dy = −1..1, dx = −1..1 do
8: . Find a new boundary pixel to “cover”
9: if not mzm[x, y] and mzmold[x, y] and bpm[x+ dx, y + dy] then
10: Add (x+ dx, y + dy) to BPs
11: end if
12: end for
13: end for
14: return BPs

4.9 Simulation result and discussion

In the previous sections, the implementation details of the Algorithms to build tool

paths to “cover” the provided milling zone are shown. The resultant tool paths are

shown and discussed in this section. First of all, the generated tool paths can be

seen in Fig. 4.5. The generated tool paths are not perfect, but they match two

51

main criteria: following the boundary and being iso-scallop. Fragment (d) shows

how tool path are built for almost circular boundary line of the milling zone. The

generated tool path are close to concentric circles. In fragment (c) it can be seen that

the step over distance between adjacent tool paths is different and depends on the

part geometry. Unfortunately, short tool paths are inevitable, because of the noisy

boundary and the arbitrary milling zone. Such short tool paths are high-lighted with

green circles in both Fragments (c) and (d).

(a)

(c)

(b) (d)

Figure 4.5: Generated tool paths (a) with its fragments (c, d) for
7.983mm ball-end tool (b). White pixels show the original milling zone,
red pixels represents the generated tool paths, and green circles shows
very short generated tool paths.

Using the same hardware (Intel i7-4770 CPU two AMD Radeon RX 480 GPUs)

for the simulation and performing the “covered” areas calculation on GPUs, the time

to build the shown tool paths for the provided milling zone is 312sec. About half

of this time (143sec) is for the “covered” areas calculations. Tool path generation

time can be improved by using optimization techniques from Section 4.6 and other

optimizations can be done for other parts of the algorithm. E.g. some of the other

operations can be implemented to run in parallel.

In this Chapter it was shown that using maps, as representative models, iso-

scallop, contour parallel tool paths for an arbitrary milling zone on the free-form

52

surface for a generalized cutter can be generated. The most time consuming algorithm

was implemented to run in parallel on GPUs to reduce the simulation time. Despite

the fact that generated tool paths are not perfect, they can be used for milling and

they can be used to calculate the milling time for different zones and different tools as

shown in the next chapters. This milling time calculation is an important operation

to perform the global optimization of the tool set.

53

Chapter 5

Tool selection and path planning for roughing

In Chapters 3 and 4 methods to select the best cutter for surface points and to build

tool paths for an arbitrary milling zone are provided. However, these methods can

be used for finishing milling only. If the attempt to minimize the total machining

time is made, it is essential to understand the criteria to select tool, assign zones and

build tool paths for the selected tools in rough milling.

We assume here, that we have the milling zone and the tool paths for every used

tool from the finishing stage. The set of used tools can be optimized as shown later

in Chapter 6; this set might contain all the available tools or even one tool to traverse

the whole milling surface. The provided tool paths do not need to be connected, but

it should be guaranteed that the tool paths for every tool “cover” every pixel in the

milling zone provided for the tool. In this work, the tool paths generated in Chapter 4

are used, but other tool paths can be used in the same manner. For simplicity, all

the available tools, their milling zones and their tool paths are used to illustrate the

approaches in this Chapter. However, in Chapter 6 we show how the methods from

this Chapter can be used in the total machining time minimization.

5.1 Milling layers

Usually, the rough milling tool paths are generated before finishing tool paths. In this

research the opposite approach is used. The rough milling tool paths and tool set can

be generated based on the information from the milling layer below. Thus, starting

from the finishing layer, the information for the first rough milling layer can be

54

generated, followed by the second one and for all outer milling layers, consecutively.

The definition of one milling layer is shown below by using the tolerance surface.

However, using different milling layers does not mean that all of these layers are

milled consecutively. That would be extremely inefficient, considering that every

milling layer might use several tools, so the same tool might have to be selected

several times for different milling layers. The intuition behind different milling layers

is rather the order of generating tool paths that can be efficiently connected after

all the tool paths for all the milling layers and for all the tools are generated. In

this approach the criterion to stop generating more milling layers should be stated.

This criterion is simple: if the next generated milling layer has the whole work piece

inside, there is no need for more milling layers and the generation should be stopped.

Fig. 5.1 shows this approach schematically.

Part surface Workpiece
0

0 0

1

4

3

2

3
3

4

2 2

1 1

Figure 5.1: Different milling layers in order of generation. The original
workpiece is shown with the red dash line, while the milling surface is
black. All the milling layers are blue and are numbered in order of
generation, starting with 0 for finishing and ending with 4 for the
outermost milling layer. Note, that if the previous milling layer is
outside of the workpiece even partially, the generation of outer milling
layers in this place is stopped.

55

5.2 Next milling layer generation

The main approach to generate the milling layers is stated. However, the definition

of the milling layer is not done yet. Recall that to build the zones of the best tools

indices for finishing we assumed that we have small enough material left to support

the given feed rates for all the tools. That means that the rough surface left for the

finishing stage must be less or equal to the tool depth of cut in every CL point for

every used tool. Therefore, after building finishing tool paths, the rough surface is

defined by all CL positions and depth of cut of the used tools. In the same way, the

rough surface, left by the outer rough milling layer, is defined by all CL positions of

the current milling layer and depth of cut of all the used tools. This rough surface

can be reconstructed by building the cylinders on every CL position, such that the

center of its bottom is located in CL position, the radius of the cylinder equals the

radius of the tool, the height equals the depth of cut and the axis is parallel to the

milling direction (z − axis). Then, z coordinate for every surface point (x, y) can be

defined as the maximum of z coordinate of all (x, y) points, placed on the top of all

the built cylinders. The example of the reconstructed rough surface in 2D is shown

in Fig. 5.2.

Part surface

Reconstructed rough surface

DoC_1

DoC_2

Figure 5.2: Reconstructed rough surface (blue) for two different tools
(red, green) with different depth of cutters (DoC_1, DoC_2)
respectively.

56

Such a rough surface can be easily built using the discretized model. For every

used tool, the rough surface can be built independently and then, the maximum value

for every surface point can be defined among the rough surfaces from every tool as

shown in Algorithm 5.1.

Algorithm 5.1 Build rough surface for all tools
Input: dmt is a tolerance surface depth map with width W and height H
Input: Tools is a list of tools with their tool paths
1: . rdm is a resultant rough surface depth map filled with 0s
2: rdm← [1..W, 1..H]{0}
3: . Go through all the tool with their tool paths
4: for ∀t ∈ Tools do
5: rdmi ← Generate new rough surface for tool t
6: . Go through all the surface points
7: for y = 1..H, x = 1..W do
8: rdm[x, y]← max(rdm[x, y], rdmi[x, y])
9: end for
10: end for

The actual algorithm to generate the rough surface for one tool is more compli-

cated than it was described above: z position should be calculated not for every point

on the top of the cylinder, but only for the points that were “covered” with the tool in

this position. Otherwise, the situations like the ones shown in Fig. 5.3 might happen

and the rough surface can be reconstructed the wrong way.

Algorithm 5.2 shows the implementation for the proper rough surface reconstruc-

tion for one given tool, its characteristics and tool paths. Note, that Algorithm 4.4

is used in Line 3 to rasterize the tool paths.

Recall that the meaning of the reconstructed rough surface is that the material

left for the finishing milling layer (or the previous rough milling layer) should not

exceed the volume bounded by this rough surface. Otherwise, for some of the CL

points on the tool path the depth of cut is bigger than required and the tool might

be damaged or broken or the milled part might have gouges.

It can be noted that the definition of the reconstructed rough surface is the exact

57

DoC_2

DoC

DoC

DoC_1

(a) (b)

Figure 5.3: The wrong (dashed blue line) and the proper (blue line)
reconstructed rough surfaces. In the first case (a) it can be
reconstructed the wrong way because of the different depth of the
milling surface. In the second case (b), if a big (red) tool cannot “cover”
surface points, the rough milling surface should be reconstructed based
on the tool that can “cover” surface points (green one). Note, that
different tools have different depths of cut (DoC).

definition of the tolerance surface that was done in Section 3.1. For both of them all

the material outside of the surface must be machined, gouges should not be produced

during milling and the material inside the surfaces can either be machined or not

machined. Therefore, the milling layer can be defined as the set of tool paths for

different tools to mill the material that is inside some tolerance surface. After building

the tool path, the new rough tolerance surface can be reconstructed to define the

new milling layer as shown above. When, the tolerance surface bounds the whole

initial workpiece, the generation of outer milling layers can be stopped. Fig. 5.4

shows the milling zones and the finishing tool paths, used for rough tolerance surface

reconstructing, while Fig. 5.5 shows the reconstructed rough tolerance surface and

the original finishing tolerance surface depth maps. The depth of cut values for the

tools, used for the simulation is provided in the Table 3.1

Despite the fact that the new tolerance surface can be reconstructed for the next

rough milling layer, the approaches from Chapters 3 and 4 cannot be used directly

to define milling zones for cutters and to build rough tool paths, respectively. The

modifications of the approaches, that need to be done to build the valid milling zones

58

Algorithm 5.2 Build rough surface for one tool
Input: dmt is the tolerance surface depth map with width W and height H
Input: DoCi is the depth of cut for the tool
Input: s is a discretization step
Input: dmi is the tool surface depth map with width Di and height Di

Input: TPs is the set of tool paths for the tool
1: . rdmi is a resultant rough surface depth map for the tool filled with 0s
2: rdmi ← [1..W, 1..H]{0}
3: . CLs is a list of rasterized CL positions
4: CLs← Rasterize all the tool paths from TPs
5: . Go through all the CL positions
6: for ∀cl ∈ CLs do
7: . Go through all the tool surface points
8: for dy = −bDi/2c..bDi/2c, dx = −bDi/2c..bDi/2c do
9: x← cl.x+ dx, y ← cl.y + dy
10: . Check if cl “covers” (x, y) point
11: if cl.z + dmi[dx, dy] ≤ dmt[x, y] then
12: rdmi[x, y]← max(rdmi[x, y]i, cl.z + bDoCi/sc)
13: end if
14: end for
15: end for
16: return rdmi

and the valid tool paths for rough milling are is provided in next sections.

5.3 Roughing depth of the cutter

First, the depth of the cutter in CL (x, y) position needs to be revised. For the

finishing stage it was defined as the maximum cutter depth without gouging. This

approach cannot be used for rough milling. The cutter depth in CL point should be

moved up in some distance. Because the rough milling layer is defined by a rough

tolerance surface, as was stated before, this distance should be defined by a cutter

and part geometries and by a rough tolerance surface. The amount of work, done by

a cutter in a (x, y) CL position is defined by a volume outside of the tolerance surface,

removed by the cutter. It is limited with the depth of cut. In the used model, all

the volume inside the tolerance surface is milled during the finishing stage (or inner

rough milling stages), so removing too much volume inside the tolerance surface is a

59

(a) (b)

(c) (d)

Figure 5.4: Milling zones (a) and generated tool paths for these zones
(b) using five ball-end cutters (c) and five flat-end cutters (d).

waste of milling time. That means that z coordinate of the cutter should be as high

as possible. However, if its z coordinate is too high, the cutter can leave too much

material outside of the tolerance surface that can lead to a smaller step over distance

and increase the whole tool path length, because the goal of the rough milling layer is

the same: “cover” all the milling surface with the cutter. Such situations are shown

in Fig. 5.6.

All the cutter depth values between (a) and (b) are a waste of milling time for

rough milling. All the depth values higher than (d) do not “cover” any surface

points, because the tool is completely outside of the tolerance surface. However, all

the depth values between (b) and (d), do different amounts of work, by “covering”

different amount of surface points. The depth of the cutter can be selected, using

different strategies. For the purpose of this research, the highest tool position that

can “cover” all the surface points was selected. It is (b) position in Fig. 5.6. In other

words, z coordinate for an (x, y) CL point should be as high (as far from milling

surface) as possible without decreasing the “finished area”.

Recall that finishing depth is calculated only based on tool and part geometries.

60

(a) (b)

750- 1250+

(c)

Figure 5.5: Finishing tolerance (a) and reconstructed rough tolerance
(b) surfaces depth maps. Note, that the finishing tolerance surface is
very close to the part depth map, because the finishing tolerance
distance was selected to be 0.12mm that is three times bigger that the
discretization step (s = 0.04mm). For big cutters, which were used in
most of the areas, the reconstructed rough tolerance surface is much
higher than the finishing tolerance surface. For the narrow zones, where
smaller tools were used, the rough tolerance surface is not as high.
Some such zones are highlighted with green circles. The range of depth
(c) for both maps is from less than 3mm (750 * 0.04mm) to 5mm (1250
* 0.04mm).

The roughing depth has to be calculated using a rough tolerance surface. This is

done by calculating the difference between finishing depth and roughing depth for

every (x, y) CL point and then increase the finishing depth on this difference value.

Therefore, for every surface point that is “covered” with a tool, in its finishing depth

position, the value to lift the tool up, while keeping the surface point “covered”,

can be calculated. The minimum among that value for all “covered” points is the

resultant difference between finishing and rough milling depths. The continuous form

of the equations for the roughing depth of the cutter (dri) is:

dri(x, y) = h1 + min
xl∈[−ri,ri]
yl∈[−ri,ri]

h3 − (h1 + h2), h1 + h2 ≤ h3

∞, otherwise

(5.1)

where

61

Tool Tolerance surface

Part surface

(b)

(a)

(d)

(c)

Figure 5.6: Different cutter depth values: finishing cutter depth (a), the
maximum cutter depth to “cover” all the surface points under the
cutter (b), the minimum cutter depth to “cover” any surface points (d)
and the intermediate depth value, where the cutter “covers” some
surface points (c).

h1 = di(x, y), finishing cutter depth in a cutter location point,

h2 = zi(xl, yl), the depth of the tool surface point,

h3 = zt(x+ xl, y + yl), the depth of the tolerance surface

Note, that the same notation as in Chapter 3 is used. For the discretized model,

the corresponding map of roughing depth of the cutter (drmci) is:

drmci[x, y] = m1 + min
xl=−rvi..rvi
yl=−rvi..rvi

m3 − (m1 +m2), m1 +m2 ≤ m3

∞, otherwise

(5.2)

where

m1 = dmci[x, y], cutter depth in a cutter location point,

m2 = dmi[xl, yl], the depth of the tool surface point,

m3 = dmt[x+ xl, y + yl], the depth of the tolerance surface.

This algorithm of calculating the rough depth of cutter values has the same com-

plexity as the hardest algorithms from Chapter 3 as described in Section 3.5 and the

performance of it on the used hardware is shown in Table 3.2. Fig. 5.7 shows the

62

finishing and roughing depth of cutter maps for the biggest 9.525mm flat-end cutter.

The roughing depth of the cutter map is built for the tolerance surface shown in

Fig. 5.5.

(a) (b)
750- 1250+

(c)

Figure 5.7: Finishing (a) and roughing (b) depth of the cutter maps
with the legend (c) for 9.525mm flat-end cutter. The value for every CL
position in the roughing map is more or equal than the value for the
same CL position in the finishing map.

5.4 Performance criterion for rough milling

The goal for the rough milling is different from the finishing. For finishing, the goal is

to traverse the whole milling surface as fast as possible, but for the rough milling, the

goal is to remove as much material as possible. Therefore, the second thing to revise

is a tool performance in a CL position. Recall that for the finishing milling stage the

performance criteria was the “finished area”, i.e the area, milled within the tolerance

surface. Based on the goal of the rough milling, the performance criterion should be

defined with the milled volume. Because it is guaranteed that the volume inside the

tolerance surface is milled with other milling stages, only the volume outside of the

tolerance surface matters. In addition, such a volume should only be calculated for the

surface that is “covered” by the cutter in the CL position. Recall from the previous

63

section, that the “covered” surface for finishing tool depth and roughing tool depth is

the same, so the “covered” surface is not reduced by placing the cutter in the roughing

depth. For the volume, built on the “covered” surface outside of the tolerance map,

the term “roughed volume” is used. It can be calculated by summing the part of the

material columns volume, built on covered surface points. The considered part of

a material volume should be outside of the tolerance surface but inside the cutter’s

depth of cut. Such a “roughed volume” is schematically shown in Fig. 5.8.

Tool
Tolerance surface

Part surface

DoC

(b)

(a)

Figure 5.8: “Roughed volume” for a CL position. Two depths of the
cutter are shown: the finishing one (a) and the roughing one (b). The
volume, outside of the tolerance surface but within depth of cut is the
“roughed volume” (green).

The equation to calculate “roughed volume” (Vi) for the (x, y) CL position is:

Vi(x, y) =
∫∫

(xl,yl)∈Si

dxldyl ∗ (h1 + DoCi − h3), h1 + h2 ≤ h3

0, otherwise

(5.3)

where

Si , the circle with the center at the origin and the radius ri,

h1 = dri(x, y), roughing cutter depth in a cutter location point,

h2 = zi(xl, yl), the height of the tool surface point,

h3 = zt(x+ xl, y + yl), the height of the tolerance surface.

DoCi , the depth of cut for ith tool.

64

To build the map, the integration is reduced into summation and the finished

volume map (vmi) for ith tool can expressed:

vmi[x, y] =
rvi∑

xl=−rvi

rvi∑
yl=−rvi

m1 + bDoCi

s
c −m3, m1 +m2 ≤ m3

0, otherwise

(5.4)

where

m1 = dmci[x, y], the roughing cutter depth in a CL point,

m2 = dmi[xl, yl], the depth of the tool surface point,

m3 = dmt[x+ xl, y + yl], the depth of the tolerance surface.

5.5 Algorithms adaptation for rough milling

Having the methods to calculate roughing depth of the cutter and “roughed volume”,

two main algorithms can be adapted for rough milling. The first algorithm to modify

is building milling zones for the used tools. There are two modifications that need to

be done: the roughing depth of the cutter map needs to be built and the “roughed

volume” as a performance criterion needs to be used instead of the “finished area”. In

addition, one more condition needs to be checked: in building the surface performance

maps, if the workpiece depth in the surface point is already inside of the tolerance

surface, there is not need to mill any material from this point. The rest of the

algorithm to is the same as for finishing.

For the tool path building only one change needs to be made. Every time when

z coordinate for CL (x, y) positions is defined, the roughing depth of the cutter map

needs to be used. However, when checking if a CL line segment produces gouges, the

finishing depth of the cutter map needs to be used as before.

The result of the two main algorithms for the first rough milling layer can be

seen in Fig 5.9. Note that most of the milling surface is black, which means the

workpiece is located outside the tolerance surface in black points. The biggest flat-

65

end cutter (white) is used for the most rough milling zones. However, if it cannot

“cover” some surface points, smaller ball-ends and flat-end tools are used as can be

seen in fragments.

(a) (b)

(c)

(d)

(e)
(f)

Figure 5.9: Roughing zones for cutting (a) with its fragments (e), (f)
and built tool paths (b) for the available ball-end (c) and flat-end (d)
cutters.

In this Chapter, the approach to build outer milling layers, based on the informa-

tion from inner milling layers was shown. The adaptations for the main algorithms

from previous chapters were also described. Now the best tools for surface points can

be found and the tool paths can be built for all milling layers. The problem of the

total machining time minimization is considered in the next chapter.

66

Chapter 6

Tool set optimization to minimize the total

machining time

In the previous chapters, methods to assign milling zones for cutters and to build

tool paths for all stages of the milling were provided. However, it was assumed that

the set of cutters to use is given and equals to the set of all cutters for the previous

applications. Because the algorithm to assign zones for cutters calculates the best

cutter for every surface point independently, it is likely that all the cutters are used

in milling zones map. It can be seen from Fig. 3.15 that for the representative part,

all the available cutters are used.

Recall, that milling zones are built in such a way as to minimize the total milling

time for all the tools. However, using more tools is expensive. For every additional

tool used, the tool changing time is added to the total machining time. But if a tool

is removed from the list of tools, the milling time might be increased. The balance

needs to be found between the milling time and number of tools to use. The goal of

this chapter is to show the approach to find the optimal tool set to have the minimum

total machining time, with reasonable assumptions.

6.1 Total machining time calculation

First of all, the equation to calculate the total machining time should be defined.

The total machining time comprises the milling time for every used tool, the time of

rapid motions and the time to change the tool. Using N tools, the equation for the

67

total machining time is:

T =
N∑
i=1

Tmi +
N∑
i=1

Tri +NTc

where

T , total machining time,

Tmi , total milling time for ith tool,

Tri , rapid motions time for ith tool,

Tc , average tool changing time for CNC machine

Assuming that the tool path for one tool is composed of straight line segments, the

time for every segment can be calculated by using the trapezoid motion interpolation

model as explained in Section 4.5. The same model can be used for both milling

motions and rapid tool motions, using the different feed rate values: the milling feed

rate and the rapid CNC machine feed rate, respectively.

In Chapters 4 and 5 the methods to generate tool paths to “cover” the whole

milling zone for different milling layers were shown. To calculate the total machining

time for one cutter, tool paths from different milling layers should be effectively

connected together with either milling or rapid motions.

6.2 Defining the order of tool selection

Having generated tool paths for different tools and for different milling layers the

problem of connecting them should be addressed. It is known that all the tool paths

together do all the necessary milling work and the global goal is to minimize the total

milling time. Thus, the tool paths for one tool should be connected in such a way as

to minimize the time of motions between tool paths. It can be seen that this problem

is similar to the travelling salesman problem (TSP). The TSP asks the following

question: given the list of cities and the distances between each pair of cities, what

is the shortest possible route that visits each city exactly once and returns to the

68

original city [36]. There are many varieties of this problem. E.g. the requirement to

return to the original city may be omitted or additional constraints may be imposed

on the order of path between cities. However, most of the varieties do not affect

the complexity of the problem. The problem is NP-hard which means that it is

considered impossible to find the exact solution to the problem in polynomial time.

Many heuristic methods can be used to solve it, though.

The problem of connecting tool paths is also NP-hard, because it is at least as

hard as the TSP problem. Due to the fact that finding the optimal solution for a

NP-hard problem is not the goal of this research, only the formulation of the problem

and the simple greedy algorithm as a solution are provided. The provided algorithm

cannot find the optimal solution for all the cases. However, it can find a good solution

fast. Other heuristic algorithms can be used to archive better result.

Considering the above, the input data for the algorithm of connecting all the tool

paths are the tool paths for different tools on different milling layers. The output

is the tool order to mill and the single tool path for every tool made of straight

line segments. For every segment it is known if it is a milling segment or a rapid

motion segment. Such information can be easily post-processed into G-code for the

used CNC machine. Milling straight line segment motions are converted into “G1”

code, while rapid motions are converted into “G0” code. The code to change the tool

is also trivial to build. With the output data it is also easy to calculate the total

machining time as stated in Section 6.1. It is worth noting that this algorithm is

used during tool set optimization. If the machining time need to be calculated for

one milling layer, the special case of the algorithm is used: all the tool paths are

independent. In general case, different milling layers are considered, which means

that there are dependencies between tool paths. The algorithm of connecting tool

paths from different layers has two parts: tool order building and connecting tool

path segments for every tool in order.

69

First, the proper tool order should be built. It is assumed that every tool can

be used only once, i.e. after using one tool a CNC machine never switch to this

tool again. If the tool order is wrong, e.g. if smaller tools used before the bigger

ones, it can lead to tool or part damaging. In traditional approaches to tool path

planning, operators are responsible to select the tools in the right order, but in this

research, the tool order must be built automatically. The best approach to build the

proper tool order is to find all the dependencies between tool paths from different

tools on different layers and build the dependencies graph. Then, using this graph

it is possible to build the proper tool order, starting from the tool that does not

depend on any other tools and finishing with the one that depends on all the other

tools. It is assumed here, that it is always possible to build such an order, i.e. the

dependencies graph has no cycles. A dependence between two tool paths on different

milling layers means that without milling the one from the outer layer, the one from

the inner layer cannot be milled. All the tool paths on the same milling layer are

considered independent. In addition, only a tool path from the inner layer can depend

on the tool path from outer layer, not vice versa. Below, the exact algorithm for how

dependencies are detected is shown.

In this work, however, the dependencies graph for different tools is not built.

Recall, that tools to mill every layer are not random, for every layer, the optimal tool

set is created and the milling zones are defined based on tool performances. That

means that if a tool is already used for some point, on some layer, the same or bigger

tools will be used for outer layers. And the tool order can be simply built from the

bigger tools to smaller ones. The exact proof that the bigger tool must always be

used before the smaller one is not addressed in this work, but seems quite reasonable.

If there are any doubts, the proper tool dependencies graph should be built to define

the proper tool order. If two tools have the same size but different shape it is trickier

to select the one that should be used first. In this work, the tool with the highest

70

depth of cut is selected first. Thus, the algorithm to build the tool order can be

stated as: build the set of all the used tools by uniting tool sets from every milling

layer and sort the resultant tool set from the biggest depth of cut to smallest. The

order of tools in the sorted set is the order to change the tools in CNC Machine and

the order to build a single tool path for every used tool. The next step is to connect

all the tool paths from every milling layer for every used tool.

6.3 Dependencies between tool paths building

To connect all the tool paths for one tool, first the dependencies should be defined for

all the tool paths from every two consecutive milling layers as shown in Algorithm 6.1.

Algorithm 6.1 Build all dependencies for milling layers
Input: Ls is a milling layers with their tool paths set of size N for one tool
1: Ds← {} . The resultant set of tool paths dependencies
2: . Go through all the milling layers, except the first one
3: for i = N..2 do
4: . Go through all the tool paths on a milling layer and the next inner one
5: for ∀tp1 ∈ Ls[i],∀tp2 ∈ Ls[i− 1] do
6: if tp2 depends on tp1 then
7: Add the dependence (tp1, tp2) into Ds
8: end if
9: end for
10: end for

Note, that all the tool paths on the same milling layer are considered independent,

so only all the possible pairs of tool paths from two consecutive milling layers should

be addressed. In addition, the dependencies are not checked if the distance between

milling layers is more than one. It is considered that if the same tool is used on

several milling layers, the dependencies can be formed only from neighboring milling

layers.

The code in the algorithm is trivial except for the one sub-algorithm to define

the dependence between two tool paths on different layers on line 6. Recall, that

two tool paths are considered dependent if before milling one, another one must be

71

milled, i.e. one is blocking another one. The dependence can be easily checked if both

tool paths, drawn with the circular brush with the tool radius on the (x, y) plane,

have intersections. z coordinate can be ignored in drawing. Fig 6.1 shows a simple

example of dependent and independent tool paths.

1 2 34
5

6

(a)
x

y
1 2 34

5

6

(c)(b)

Figure 6.1: Tool paths on inner (blue) and outer (red) consecutive
milling layers (a), tool size (b) and drawn with a circular brush tool
paths. The inner tool paths are 1, 2 and 3, while the outer tool paths
are 4, 5 and 6. The full list of dependencies is: [{1→ [4]}, {2→ [5, 6]},
{3→ [5, 6]}]. Note, even if the tool paths 3 and 5 are not intersected,
they are dependent.

With the used discretized model, this algorithm to check two tool path depen-

dencies can be implemented with calculating the distances on (x, y) plane from every

surface point to all the CL positions from both tool paths. If both distances from a

surface point to any two CL positions belonging to different tool paths are less than

the tool radius, the tool paths are dependent and this surface point is the point of

tool paths intersection. All segments in both tool paths should be rasterized with

the Algorithm 4.4; z coordinate of every rasterized CL position is ignored. Pseudo

code for the algorithm is shown in Algorithm 6.2. This algorithm is also implemented

on GPU, because every surface point can be checked independently. Note, that the

distances in lines 5 and 6 are simple Euclidean distances.

After building all the dependencies for all the tool paths on different milling layers

for the given tool, everything is ready to build one single connected tool path out

of all tool paths for the tool. Recall, that the optimal solution is not provided here,

due to the NP-hardness of the problem. A simple greedy algorithm is provided, but

72

Algorithm 6.2 Check if two tool paths dependent
Input: CLs1 and CLs2 are two rasterized tool paths, respectively
Input: width W and height H is the size of milling zone
Input: r is a tool radius
1: . Go through all the surface points except the first one
2: for y = 1..H, x = 1..W in parallel do
3: . Go through all CL positions in both tool paths
4: for ∀cl1 ∈ CLs1, ∀cl2 ∈ CLs2 do
5: . Calculate distances from the surface point to both CL positions
6: d1← distance between (x, y) and (cl1.x, cl1.y)
7: d2← distance between (x, y) and (cl2.x, cl2.y)
8: if d1 ≤ r and d2 ≤ r then
9: return True
10: end if
11: end for
12: end for
13: return False

better heuristic algorithms can be used.

6.4 Greedy approach to connect all tool paths for one tool

The problem of connecting tool paths for one tool can be stated as: having N tool

paths with dependencies, find the fastest tool motions to connect all the tool paths

in one single tool path, having all the dependencies satisfied. For simplicity, in the

algorithm of connecting tool path, the Euclidean distance is considered an equivalent

of the time for tool motions in connecting tool paths. That means that if two points

are closer two each other, we consider that they can be connected with faster tool

motions. It is not always true, because tool motions should be gouge-free, but it is

a reasonable assumption to make. In better algorithms the time to connect two CL

positions with gouge-free tool motions should be considered instead of the distance

between these positions.

A greedy approach is good to solve hard problems like this, but it cannot guarantee

the optimal solution. The main idea of all greedy algorithms is to select the local

optimal case for the next iteration, without considering the global optimality. It

73

might not lead to the optimal final solution of the problem, but the solution can be

found extremely fast and it can be good for most cases.

For the current problem, the main steps of the greedy approach are described

here. First, any tool path without dependencies is selected as the final tool path.

Then the next best tool path to connect to the final tool path is sought. The best

tool path should not have dependencies and the distance from any of its ends should

be closer to the end of the final tool path than any other ends of other tool paths.

The procedure is repeated iteratively until all the tool paths are connected to the final

tool path. The tool path is considered to be without dependencies if all dependent

tool paths are already connected to the final tool path. The pseudo code is shown in

Algorithm 6.3.

The only non-trivial part of the algorithm is connecting two tool paths together

in line 31, because they should be connected with tool motions that do not produce

gouges. This sub-algorithm is addressed in the next Section. Note: the distances in

lines 16 and 17 are the Euclidean distances. If the single tool path is built out of

tool paths from one milling layer, the set of dependencies is empty, but the whole

approach is the same.

6.5 Connect two tool paths in one

Connecting two tool paths would be a trivial problem if not for a part geometry. The

connecting tool motions should be gouge-free and take the minimum time. Because

both ends of the tool paths to connect are known, the problem can be stated as the

connection of two CL points with the fastest gouge-free tool path. Recall, that no

milling work needs to be done here, so the motions can be either milling or rapid,

only the fastest total motions time is required. In this research, the best solution for

this problem is not provided. Three connection tool paths are tested instead. For

each one the motions time is calculated and the minimum motions time is selected.

74

Algorithm 6.3 Connect tool paths
Input: TPs is a set of tool paths
Input: Ds is a set of tool path dependencies
1: . Find a tool path without dependencies
2: for ∀tp ∈ TPs do
3: if tp /∈ Ds then
4: f ← tp . f is a resultant tool path
5: end if
6: end for
7: . Do until all the tool path from TPs connected to f
8: while ∃tp ∈ TPs, tp /∈ f do
9: dmin ←∞ . dmin is the shortest distance
10: tpbest ← {} . tpbest is the closest segment
11: . Find the next tool path to connect
12: for ∀tp ∈ TPs do
13: . ignore tp if it is already connected to f or has dependencies
14: if tp /∈ Ds, tp /∈ f then
15: . Calculate distances from the end if f to both ends of tp
16: d1← distance between end of f and the beginning of tp
17: d2← distance between end of f and the end of tp
18: . If the end of segment is closer than the beginning, reverse it
19: if d2 < d1 then
20: d1← d2
21: Reverse tp
22: end if
23: . if tp is closer than other ones checked, save it
24: if d1 < dmin then
25: dmin ← d1
26: tpbest ← tp
27: end if
28: end if
29: end for
30: . Connect the best tool path to the final tool path
31: Connect tpbest to the end of f
32: Remove tpbest from Ds
33: end while
34: return f

The first connection motion is the straight line segment milling motion. If this

motion does not produce gouges, the milling time is calculated and compared with

the times of other motions. The problem of checking if straight segment tool motions

produce gouges was addressed in Section 4.4.

75

The second connection motions are the rapid motion vertically up, so that the tool

is outside of the workpiece, then the rapid straight motions to the (x, y) coordinates

of the second CL positions and the milling motion vertically down to reach the z

coordinate of the second CL position. Such a motion can be accomplished in every

conditions and no gouge checking needs to be done.

The last connection motion is the straight motion in (x, y) plane, where the depth

for every tool position is calculated based on the maximum tool depth in the point

without gouges. The tool “follows” the maximum cutter depth map. Such a motion

is gouge-free by the definition and also can be accomplished in every conditions. All

three connection motions are shown in Fig. 6.2 in 2D,

(a)x

z

(c)(b)

Figure 6.2: Straight line segment milling connection (a), Outside of the
workpiece connection (b) and “following” the part connection (c). Note,
that tool part surface is shown in black, milling motions are shown in
blue and the rapid motions are shown in green.

After building all three connection motions, the time for every one is calculated

and the fastest connection motions are selected. The connection of all the tool paths,

generated for the specified milling zone and for 7.983mm ball-end tool, for the finishing

milling layer as described in Section 4.9 is shown in Fig 6.3. It can be seen, that

sometimes long connection tool paths are generated, as might happen with greedy

algorithms.

76

(a) (b)

Figure 6.3: Generated tool paths for the milling zone (a) and
connections between them with the greedy approach (b). White pixels
show the original milling zone, red pixels represents the generated tool
paths.

6.6 Greedy approach to tool set optimization problem

As was shown in previous chapters, the milling zones can be defined for every cutter

from the set of used cutters and tool paths can be built for different milling layers.

After this, the tool order can be defined and all the tool paths can be connected in a

single tool path for every tool. Finally, the total machining time can be calculated,

considering tool paths for every used cutter and the time of changing tools. With

the different set of cutters to use the whole process can be repeated and the new

total machining time can be calculated. Repeating this process for all the possible

tool sets, the minimum total machining time can be found. The main assumption

in the tool set optimization process is that the total machining time depends much

more on tool set than on tool path for every tool. It is very expensive to find the

truly optimal tool path for every tool and its milling zone, and it is considered that

the milling time of the generated tool path is a good evaluation of the truly optimal

(minimum) milling time.

The brute force approach of trying all possible tool set would work but it is very

expensive. It is known that for the set of size N the number of subsets is 2N , because

77

every element in the original set can be either included in a subset or not. That

means that if a set of all available tools contains N tools, the whole algorithm to

define milling zones for tools, build tool paths, connect them and calculate the total

machining time should be repeated 2N times to find the optimal tool set with the

minimum machining time. With increasing the number of available tools, the time

complexity increases exponentially which is unacceptable with the big number of

available tools. Better approaches can be used instead. There are no guarantees that

they can find the optimal solution in all the cases, but they can find a good solution

much faster.

The main idea of many optimization algorithms can be stated as: starting with

an arbitrary solution, search of other solutions and if a better solution is found,

repeat the process, starting with the better solution, until no further improvement is

possible. If only closer solutions are searched, this approach might get stuck in the

local optimum. To avoid this, different techniques to randomly change the solution

can be used.

In this research, only a limited set of solutions are searched in order to find the

better solution. The closer solution is a tool set that can be obtained by removing

one tool from the previous tool set. The starting solution is the set of all the available

tools. Thus, after checking all the tool sets without every tool from the starting set,

the one that generates less total machining time is selected as the new starting set.

If it is not possible to find better total machining time by removing one tool from the

starting set, the algorithm stops. Because of the fact that the best local improvement

of the tool set is selected for every iteration, this algorithm is also greedy. It has all

the same advantages and disadvantages as were discussed above, but it can find good

solutions quickly. Algorithm 6.4 shows the pseudo code for the tool set optimization

algorithm.

In other word, the less efficient tools are removed from the list of all tools iter-

78

Algorithm 6.4 Optimize tool set
Input: Tall is a set of all available tools
1: Mf ← Build feasibility map with Tall tool set
2: tmin ← Calculate total machining time with Tall tool set
3: Ts ← Tall . Put all tools into the starting tool set.
4: Tp ← {} . Tp is the starting tool set on the previous iteration
5: . Do until no better tool set is found
6: while Ts 6= Tp do
7: Tp ← Ts . Save the best tool set
8: . Try to remove every tool (c) from the Tp
9: for ∀c ∈ Tp do
10: Tc ← Tp \ {c} . Build the tool set candidate by removing c from Tp
11: Mfc ← Build feasibility map with Tc tool set
12: . Make sure that tools from Tc can mill the same surface as all tools
13: if Mcf == Mfc then
14: tc ← Calculate total machining time with Tc tool set
15: if tc < tmin then . Save better tool set and machining time
16: tmin ← tc
17: Ts ← Tc
18: end if
19: end if
20: end for
21: end while
22: return Ts . Return the best found tool set

atively, while it leads to decreasing the total machining time. The feasibility map

that is built in Lines 1 and 11 is the boolean map that shows which surface points

can be removed by the given tool set on the finishing stage of milling. It is essential

to compare the feasibility maps (Line 13) to make sure that the new tool set can

“cover” all the same surface points as all available tools. If it is not checked, all the

smallest tools are likely to be removed first, but it is important to have them in the

final tool set to reach the required precision. This feasibility map can be easily build

by combining all the surface performance maps together. If at least one tool does not

show zero performance in a surface point, the map value for this point is “True”, oth-

erwise it is “False”. Comparing two boolean maps is also a trivial operation. Fig. 6.4

shows the fragments from the original feasibility map for all the available tools and

from the feasibility map for all the tools except the smallest 1.75mm flat-end cutter.

79

Because the feasibility map for all the tools without the smallest flat-end cutter is

smaller than the one for all the tools, this cutter cannot be removed from the optimal

tool set.

(a)

(b)

(c)

(d)

Figure 6.4: The fragment of the feasibility map for the set of all the
tools (a), the fragment of the feasibility for all the tools except the
smallest 1.75mm flat-end cutter (dark green) (b) and all the ball-end
tools (c) and flat-end tools (d). Note, that feasibility map (b) does not
have the dark green color and some surface points (black) cannot be
“covered” with other cutters.

Note, that calculating the total machining time in Lines 2 and 14 is the whole cycle

of building milling zones for the tools, generating tool paths, connecting them and,

finally, calculating the machining time. The complexity of the whole optimization

algorithms is O(N2), where N is the number of all available tools, considering that

the time of calculating the total machining time for the given set of tools is constant.

It is much better than O(2N) as in the brute force approach, described above. The

intermediate steps and the result of the optimization algorithm using all the cutters

from Table 3.1 is shown in Table 6.1. Note that the value for the time to change the

tool in CNC is assumed to be 40 seconds.

80

Table 6.1: Tool set optimization steps

Step 1
Starting tool set T1, T2, T3, T4, T5, T6, T7, T8, T9, T10
Machining time, sec 588
Tool to remove T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Machining time, sec 563 555 542 552 548 554 550 N/A N/A 644

Step 2
Starting tool set T1, T2, T4, T5, T6, T7, T8, T9, T10
Machining time, sec 542
Tool to remove T1 T2 T4 T5 T6 T7 T8 T9 T10
Machining time, sec 516 505 501 501 510 499 N/A N/A 583

Step 3
Starting tool set T1, T2, T4, T5, T6, T8, T9, T10
Machining time, sec 499
Tool to remove T1 T2 T4 T5 T6 T8 T9 T10
Machining time, sec 475 460 455 478 458 N/A N/A 541

Step 4
Starting tool set T1, T2, T5, T6, T8, T9, T10
Machining time, sec 455
Tool to remove T1 T2 T5 T6 T8 T9 T10
Machining time, sec 439 424 424 415 N/A N/A 495

Step 5
Starting tool set T1, T2, T5, T8, T9, T10
Machining time, sec 415
Tool to remove T1 T2 T5 T8 T9 T10
Machining time, sec 396 378 382 N/A N/A 456

Step 6
Starting tool set T1, T5, T8, T9, T10
Machining time, sec 378
Tool to remove T1 T5 T8 T9 T10
Machining time, sec 459 353 N/A N/A 412

Step 7
Starting tool set T1, T8, T9, T10
Machining time, sec 353
Tool to remove T1 T8 T9 T10
Machining time, sec 508 N/A N/A 430

The table shows the starting tool set on every optimization step, and its total

machining time. Then, it shows the total machining time for all the sets, after

removing one tool. Finally, the tool set with the minimum total machining time

is selected as the new starting tool set. The optimization algorithm stops on step

81

7, because there are no tools in the tool set that can be removed to decrease the

machining time. Note, if a tool cannot be removed from the tool set, because of the

feasibility map difference, the total machining time is not calculated and is represented

as “N/A” in the Table. This happens for the smallest ball-end and flat-end tools (T8,

T9). The resultant set, after optimization, has the smallest flat-end (T9) and ball-end

(T8) cutters and the biggest flat-end (T1) and ball-end (T10) ones.

On the given hardware, the average time for calculating the total machining time

for one tool set is 7 minutes. For the whole optimization process the total machining

time was calculated 35 times, which takes about 4 hours for the whole optimization

process. It is slow, so, more optimizations can be done to accelerate the algorithm.

First, it should be noted that the building tool paths for the finishing milling layer

is the most time consuming operation. However, for many tool sets, the tool paths

should be built for the same tool and the same milling area as shown in Fig. 6.5.

(a) (b)

(c) (d)

Figure 6.5: All the tools (c), (d) and finishing milling zones for two
different tool sets (a), (b). All the tools except the tool T4 (cyan) and
all the tools except the tool T3 (gray) are used for milling zones (a) and
(b) respectively. The milling zones for the biggest tools T1 and T10 are
the same for both tool sets (a) and (b). So, the tool paths for them
need to be generated only once.

82

Therefore, the tool paths for different tools and different milling zones can be

cached and the cached values can be used on request if they are calculated before.

The second optimization that can be applied to the current algorithm is saving

bad tool sets. If removing one tool from the tool set leads to more machining time

than it was with this tool, such a tool set is considered a bad one. That means that

in the given tool set, the removed tool is very efficient, and for any subset of the

bad configuration tool set, trying to remove the same tool does not leads to shorter

machining time. From the Table 6.1 it can be seen that with every attempt to remove

tool T10 from the set of available tools, the total machining time increases. Therefore,

after the first try, tool T10 does not need to be checked again, it is very efficient and

it should be in the optimal tool set.

The milling zones and generated tool paths for the optimal tool set (T1, T10, T8,

T9) in the finishing milling layer is shown in Fig. 6.6.

(a) (b)

(c) (d)

Figure 6.6: Milling zones (a) and generated tool paths (b) for the
optimal tool set: T1 (white), T10 (red), T8 (dark red) and T9 (dark
green).

After defining the optimal set of cutters, building tool paths for every cutter from

the set, selecting the order of cutters to mill and connecting the tool paths for every

83

cutter in a single tool path, G-code can be generated to mill a part.

To generate G-code, all the tool motions should be postprocessed in G-code.

Also, the code for safe cutter changing should be generated for a used CNC machine.

Becuse this G-code is machine specific and is trivail to generate, after having all the

tool motions, the process of postprocessing is not shown here. In the next chapter,

the simulaton results and the milling results are shown.

84

Chapter 7

Experimental results

In the previous chapters, the methodology to optimize the tool set and build tool

paths for every tool from the set was introduced. This chapter presents experimental

results of the methodology that is used to machine the part model shown in Fig. 7.1.

The part is a representative free-form surface part to highlight the advantages and

disadvantages of the methodology.

Figure 7.1: The part mesh for milling

The tool paths generated by the methodology are post-processed to translate the

Euclidean CL positions to the G-code. Also the code was generated to start milling,

change a tool and stop milling. In addition, the traditional tool path was generated

using CAM software for the same part. Both G-codes were simulated, using open

85

source software for 3-axis CNC milling simulating CAMotics [11].

7.1 Equipment

A HAAS VF-5/50 5-axis vertical machining center was used to machine the part

shown in Figure 7.1, it is shown in Figure 7.2. After optimizing the tool set, four

cutters (T1, T10, T8 and T9) were used for the simulation and for the milling process,

while cutter T11 was used for the traditional tool path milling. All the cutters are

shown in the Table 7.1. The material used to machine the parts is made of dense

polyurethane foam called tooling board. It takes very little force to cut and yet

retains surface accuracy. It is commonly used as a prototype material.

Figure 7.2: HAAS VF-5/50 CNC Machine

7.2 Simulated and milled results of the representative part

The simulated tool paths for the developed algorithm from this research and the

traditional CAM approach are shown in Fig. 7.3. The traditional tool path was

obtained using Inventor HSM 2016 software. The finishing tool path was build using

86

Table 7.1: List of cutters, used for milling

Tool number Diameter, mm Cutter Shape Depth of cut,
mm

Feed rate,
mm/min

T1 9.525 flat end 16.67 5376
T10 7.983 ball end 13.90 4163
T8 1.191 ball end 2.08 450
T9 1.000 flat end 1.75 378
T11 6.35 flat end 11.36 2838

3D parallel strategy with the step over equals to 159 microns. In this strategy, the

tool paths are parallel to x-axis and the depth is defined as the maximum depth

without gouging.

(a) (b)

Figure 7.3: Simulation of the developed (a) and the traditional (b) tool
paths for the representative part.

It can be seen that the traditional tool path is longer than the developed one,

mainly because the same tool is used the whole milling surface. However, the surface

quality is better for the traditional tool path, so the tool paths cannot be compared

directly. The advantages and disadvantages of the developed method are discussed

below. The simulated milled part for both approaches is shown in Fig. 7.4 and the

milled parts for both tool paths are shown in Fig. 7.5. The discussion of the milled

parts is provided in the next section.

87

(a) (b)

Figure 7.4: Milling simulation of the developed (a) and the traditional
(b) tool paths for the representative part.

7.3 Simulated results of other parts

To show that the developed algorithms is robust and can be used with any parts,

more parts were simulated. One of them is a sculptured part “Yoda” with some

geometric errors in its polygon model, so traditional CAM/CAD software might have

troubles to build tool paths for it. Another one “Tubes” does not have any free form

surfaces, only horizontal ones. Even though CAM/CAD systems can easily build a

tool path for this part, the developed approach has an advantage in using cutters of

different size. The triangular meshes, and the simulated milled surfaces for these two

parts are shown in Fig. 7.6.

The discretization step and the tolerance distance are considered the same for

these parts as for the representative part and equal 40 microns and 120 microns

respectively.

7.4 Discussion

First of all it can be seen, that the generated tool path can mill the given part, so the

methodology from this research can be used to mill real parts. The total machining

88

(a) (b)

(c) (d)

Figure 7.5: Milled representative part with using the developed (a, c)
and the traditional (b, d) tool paths from different angle. The
interesting features are highlighted with blue circles.

time for the developed tool path is 353 sec (6 min), with 193 sec of milling time and

160 sec to change four tools. The total machining time of the traditional tool path is

about 18 min which is much slower. The traditional tool path is also longer.

It can be seen that the surface for the traditional tool path is smoother, than for

the developed tool path. The main reason for that, it that the goal of the developed

method is to maintain the same tolerance for all the milled surface. Based on the

tolerance surface, different tools are selected for different milling zones on the milling

surface. For the given part, it is guaranteed that the tolerance of the milled surface is

maximum 217 microns, considering error. For the traditional approach the maximum

tolerance is 1.315mm that is much higher. It can be seen in the highlighted regions

in Fig. 7.5. The main reason of the bigger maximum tolerance for the traditional

89

(a) (b)

(c) (d)

Figure 7.6: Triangular meshes(a, c) and milling simulation (b, d) for parts “Yoda” and
“Tubes” respectively.

tool path is that the selected tool was too big to maintain smaller tolerance in the

selected regions. If the smaller tool is selected, the milling time for the traditional

approach will be even bigger. It is the usual trade-off between the surface quality and

the machining time. The developed approach allows avoiding this trade-off, it selects

the best tools to machine the selected part with the given tolerance for the minimum

90

machining time.

Unfortunately, the developed approach also has some disadvantages, which are

discussed in the next chapter.

91

Chapter 8

Conclusion and Discussion

In this research, the methodology to automatically select tools, generate milling zones

and build tool paths for them in order to minimize the total machining time in free-

form 3-axis CNC milling is presented. It was also shown that the total machining time

for the generated tool path is less than the total machining time for the traditional

tool path, generated with a CAM package with better maximum tolerance of the

milled surface.

However, there are disadvantages of the developed method which needs to be

discussed. The main disadvantage is that the proposed algorithm is resolution de-

pendent. The smaller the discretization step (the bigger resolution) is, the less error

in milling. However, the discretization step significantly affects the performance. To

deal with this issue, several GPUs were used to accelerate the calculations. Some

algorithms can be easily parallelized on more computation kernels from more GPUs,

clusters, etc, but some cannot. The most time consuming algorithm is the genera-

tion of tool paths, which is done consecutively. To have a significant boost for this

algorithm, tool path CL positions should be generated in parallel, so this algorithm

needs to be revised. One way to do this is to generate CL positions independently,

using other performance criteria.

Other algorithms can also be improved as was described in dedicated chapters,

but the main bottle neck is the one of generating tool paths. The other bottle neck

is the tool set optimization process, however, it can be accelerated by using more

CPUs in calculating the machining time for different tool sets or caching some tool

92

path building results. The third disadvantage of the developed approach is that the

resolution can be limited with the maximum memory available on the computation

device, such as GPU, for big parts and/or small resolutions.

The are also possible improvements and the future work that can be done. First, in

the tool performance calculation process, the direction of the swipe can be considered

to better estimate the tool performance in CL points. It is expensive, but because

the performance for every CL position is calculated independently, it can be done in

parallel.

The second possible improvement is that the machining time can be decreased

even more by using feed rate scheduling, based on cutting forces. Fortunately, the

models from this research can be easily used for cutting force calculation.

Finally, the same approach can be used for 5-axis milling. Efficient data structures

should be found to store an arbitrary 3D surface in the memory instead of maps.

Efficient algorithms should be used as well to reproduce the work from this research

for 5-axis milling. The complexity is also increased significantly, because of having

more degrees of freedom in tool motions. However, all the approaches from this

research should work with the new surfaces. The tolerance surface can be built,

all the cutter locations and rotations can be checked to find the best cutters for

tolerance surface points and the milling zones and tool paths can also be built for

the new tolerance surface for both roughing and finishing. The tool set optimization

approach can also be performed to find the best tool set.

93

Bibliography

[1] Tomas Akenine-Möller. “Fast 3D triangle-box overlap testing”. In: ACM SIG-
GRAPH 2005 Courses. ACM. 2005, p. 8.

[2] Esther M Arkin, Martin Held, and Christopher L Smith. “Optimization prob-
lems related to zigzag pocket machining”. In: Algorithmica 26.2 (2000), pp. 197–
236.

[3] James E Bobrow. “NC machine tool path generation from CSG part represen-
tations”. In: Computer-aided design 17.2 (1985), pp. 69–76.

[4] Gerardo Salas Bolaños, Sanjeev Bedi, and Stephen Mann. “A topological-free
method for three-axis tool path planning for generalized radiused end milled
cutting of a triangular mesh surface”. In: The International Journal of Advanced
Manufacturing Technology 70.9-12 (2014), pp. 1813–1825.

[5] Richard J Campbell and Patrick J Flynn. “A survey of free-form object repre-
sentation and recognition techniques”. In: Computer Vision and Image Under-
standing 81.2 (2001), pp. 166–210.

[6] Ahmet Can and Ali Ünüvar. “A novel iso-scallop tool-path generation for effi-
cient five-axis machining of free-form surfaces”. In: The International Journal
of Advanced Manufacturing Technology 51.9-12 (2010), pp. 1083–1098.

[7] Tao Chen and Zhiliang Shi. “A tool path generation strategy for three-axis ball-
end milling of free-form surfaces”. In: journal of materials processing technology
208.1 (2008), pp. 259–263.

[8] James J Childs. Numerical control part programming. Industrial Press, Inc.,
1973.

[9] Chuang-Jang Chiou and Yuan-Shin Lee. “A machining potential field approach
to tool path generation for multi-axis sculptured surface machining”. In: Computer-
Aided Design 34.5 (2002), pp. 357–371.

94

[10] Young-Keun Choi and A Banerjee. “Tool path generation and tolerance anal-
ysis for free-form surfaces”. In: International Journal of machine Tools and
manufacture 47.3 (2007), pp. 689–696.

[11] Joseph Coffland. CAMotics is an Open-Source software which simulates 3-axis
CNC milling or engraving. [Online; accessed 3-October-2016]. 2016. url: http:
//camotics.org.

[12] Cyril Crassin and Simon Green. “Octree-based sparse voxelization using the
GPU hardware rasterizer”. In: OpenGL Insights (2012), pp. 303–318.

[13] XM Ding et al. “Optimal cutter selection for complex three-axis NC mould ma-
chining”. In: International journal of production research 42.22 (2004), pp. 4785–
4801.

[14] Ravinder Kumar Duvedi et al. “A multipoint method for 5-axis machining of
triangulated surface models”. In: Computer-Aided Design 52 (2014), pp. 17–26.

[15] Gershon Elber and Elaine Cohen. “Tool path generation for freeform surface
models”. In: Proceedings on the second ACM symposium on Solid modeling and
applications. ACM. 1993, pp. 419–428.

[16] S Engin and Y Altintas. “Mechanics and dynamics of general milling cutters.:
Part I: helical end mills”. In: International Journal of Machine Tools and Man-
ufacture 41.15 (2001), pp. 2195–2212.

[17] Wen-Feng Gan et al. “Five-axis tool path generation in CNC machining of
T-spline surfaces”. In: Computer-Aided Design 52 (2014), pp. 51–63.

[18] FY Han et al. “Optimal CNC plunge cutter selection and tool path generation
for multi-axis roughing free-form surface impeller channel”. In: The Interna-
tional Journal of Advanced Manufacturing Technology 71.9-12 (2014), pp. 1801–
1810.

[19] Martin Held, Gábor Lukács, and László Andor. “Pocket machining based on
contour-parallel tool paths generated by means of proximity maps”. In: Computer-
Aided Design 26.3 (1994), pp. 189–203.

[20] Bo H Kim and Byoung K Choi. “Machining efficiency comparison direction-
parallel tool path with contour-parallel tool path”. In: Computer-Aided Design
34.2 (2002), pp. 89–95.

[21] Hyun-Chul Kim, Sung-Gun Lee, and Min-Yang Yang. “An optimized contour
parallel tool path for 2D milling with flat endmill”. In: The International Jour-
nal of Advanced Manufacturing Technology 31.5-6 (2006), pp. 567–573.

95

[22] Su-Jin Kim and Min-Yang Yang. “A CL surface deformation approach for con-
stant scallop height tool path generation from triangular mesh”. In: The Inter-
national Journal of Advanced Manufacturing Technology 28.3-4 (2006), pp. 314–
320.

[23] Guillermo H Kumazawa, Hsi-Yung Feng, and M Javad Barakchi Fard. “Pre-
ferred feed direction field: A new tool path generation method for efficient
sculptured surface machining”. In: Computer-Aided Design 67 (2015), pp. 1–
12.

[24] Kunwoo Lee, Tae Ju Kim, and Sung Eui Hong. “Generation of toolpath with
selection of proper tools for rough cutting process”. In: Computer-Aided Design
26.11 (1994), pp. 822–831.

[25] Sung-Gun Lee, Hyun-Chul Kim, and Min-Yang Yang. “Mesh-based tool path
generation for constant scallop-height machining”. In: The International Jour-
nal of Advanced Manufacturing Technology 37.1-2 (2008), pp. 15–22.

[26] Yuan-Shin Lee, BK Choi, and TC Chang. “Cut distribution and cutter se-
lection for sculptured surface cavity machining”. In: THE INTERNATIONAL
JOURNAL OF PRODUCTION RESEARCH 30.6 (1992), pp. 1447–1470.

[27] Wei Liu, Lai-shui Zhou, and Lu-ling An. “Constant scallop-height tool path
generation for three-axis discrete data points machining”. In: The International
Journal of Advanced Manufacturing Technology 63.1-4 (2012), pp. 137–146.

[28] Xu Liu et al. “A tool path generation method for freeform surface machining by
introducing the tensor property of machining strip width”. In: Computer-Aided
Design 66 (2015), pp. 1–13.

[29] S Marshall and John G Griffiths. “A new cutter-path topology for milling ma-
chines”. In: Computer-Aided Design 26.3 (1994), pp. 204–214.

[30] Mario Mejia-Ugalde et al. “Directional morphological approaches from image
processing applied to automatic tool selection in computer numerical control
milling machine”. In: Proceedings of the Institution of Mechanical Engineers,
Part B: Journal of Engineering Manufacture (2013), p. 0954405413491402.

[31] Tawfik T El-Midany, Ahmed Elkeran, and Hamdy Tawfik. “Toolpath pattern
comparison: Contour-parallel with direction-parallel”. In: Geometric Modeling
and Imaging–New Trends, 2006. IEEE. 1993, pp. 77–82.

[32] TE Mwinuka and MI Mgwatu. “Tool selection for rough and finish CNC milling
operations based on tool-path generation and machining optimisation”. In: Ad-
vances in Production Engineering & Management 10.1 (2015), p. 18.

96

[33] Giuseppe Papari and Nicolai Petkov. “Edge and line oriented contour detection:
State of the art”. In: Image and Vision Computing 29.2 (2011), pp. 79–103.

[34] Sang C Park. “Sculptured surface machining using triangular mesh slicing”. In:
Computer-Aided Design 36.3 (2004), pp. 279–288.

[35] Kandarp Patel et al. “Optimal tool shape selection based on surface geome-
try for three-axis CNC machining”. In: The International Journal of Advanced
Manufacturing Technology 57.5-8 (2011), pp. 655–670.

[36] Gerhard Reinelt. The traveling salesman: computational solutions for TSP ap-
plications. Springer-Verlag, 1994.

[37] Yongfu Ren, Hong Tzong Yau, and Yuan-Shin Lee. “Clean-up tool path gener-
ation by contraction tool method for machining complex polyhedral models”.
In: Computers in Industry 54.1 (2004), pp. 17–33.

[38] Subhajit Sarkar and Partha Pratim Dey. “Tool path generation for algebraically
parameterized surface”. In: Journal of Intelligent Manufacturing 26.2 (2015),
pp. 415–421.

[39] Sanjay E Sarma. “The crossing function and its application to zig-zag tool
paths”. In: Computer-Aided Design 31.14 (1999), pp. 881–890.

[40] Joshua Tarbutton et al. “Gouge-free voxel-based machining for parallel pro-
cessors”. In: The International Journal of Advanced Manufacturing Technology
69.9-12 (2013), pp. 1941–1953.

[41] Christophe Tournier and Emmanuel Duc. “Iso-scallop tool path generation in
5-axis milling”. In: The International Journal of Advanced Manufacturing Tech-
nology 25.9-10 (2005), pp. 867–875.

[42] YuWang et al. “A computer aided tool selection system for 3D die/mould-cavity
NC machining using both a heuristic and analytical approach”. In: International
Journal of Computer Integrated Manufacturing 18.8 (2005), pp. 686–701.

[43] William E Wright. “Parallelization of Bresenham’s line and circle algorithms”.
In: IEEE Computer Graphics and Applications 10.5 (1990), pp. 60–67.

[44] Daniel CH Yang and Zhonglin Han. “Interference detection and optimal tool
selection in 3-axis NC machining of free-form surfaces”. In: Computer-Aided
Design 31.5 (1999), pp. 303–315.

[45] H-T Yau, C-M Chuang, and Y-S Lee. “Numerical control machining of trian-
gulated sculptured surfaces in a stereo lithography format with a generalized

97

cutter”. In: International journal of production research 42.13 (2004), pp. 2573–
2598.

[46] Sun Yuwen, Guo Dongming, Wang Haixia, et al. “Iso-parametric tool path
generation from triangular meshes for free-form surface machining”. In: The
International Journal of Advanced Manufacturing Technology 28.7-8 (2006),
pp. 721–726.

[47] Bo Zhou, Jibin Zhao, and Lun Li. “CNC double spiral tool-path generation
based on parametric surface mapping”. In: Computer-Aided Design 67 (2015),
pp. 87–106.

[48] Min Zhou, Guolei Zheng, and Zezhong Chevy Chen. “An automated CNC pro-
gramming approach to machining pocket with complex islands and boundaries
by using multiple cutters in hybrid tool path patterns”. In: The International
Journal of Advanced Manufacturing Technology 83.1-4 (2016), pp. 407–420.

98

	University of South Carolina
	Scholar Commons
	2016

	Automated Tool Selection and Tool Path Planning for Free-Form Surfaces in 3-Axis CNC Milling using Highly Parallel Computing Architecture
	Andrey Balabokhin
	Recommended Citation

	tmp.1500409806.pdf.MPqKc

