University of South Carolina
Scholar Commons

Theses and Dissertations

12-15-2014

Behavior of Piezoelectric Wafer Active Sensor in

Various Media

Tuncay Kamas
University of South Carolina - Columbia

Follow this and additional works at: http://scholarcommons.sc.edu/etd

Recommended Citation

Kamas, T.(2014). Behavior of Piezoelectric Wafer Active Sensor in Various Media. (Doctoral dissertation). Retrieved from
http://scholarcommons.sc.edu/etd /3041

This Open Access Dissertation is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and

Dissertations by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.


http://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F3041&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3041&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3041&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd/3041?utm_source=scholarcommons.sc.edu%2Fetd%2F3041&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:SCHOLARC@mailbox.sc.edu

BEHAVIOR OF PIEZOELECTRIC WAFER ACTIVE SENSOR IN
VARIOUS MEDIA

by
Tuncay Kamas

Bachelor of Science
Selcuk University, 2006

Master of Science
Clemson University, 2009

Submitted in Partial Fulfillment of the Requirements
For the Degree of Doctor of Philosophy in
Mechanical Engineering
College of Engineering and Computing
University of South Carolina
2014
Accepted by:

Victor Giurgiutiu, Major Professor
Lingyu Yu, Committee Member
Guiren Wang, Committee Member
Bin Lin, Committee Member
Paul Ziehl, Committee Member

Lacy Ford, Vice Provost and Dean of Graduate Studies



ACKNOWLEDGMENTS

I cannot express my gratefulness enough to God for guiding me and prompting
me to apply and work in this highly valued and respected research group in Laboratory
for Active Material and Smart Structures (LAMSS). | would like to express my sincere
gratitude to my academic advisor, Dr. Victor Giurgiutiu, for his strong support and
seasoned guidance. His passionate attitude toward science and enlightening instruction
has helped me overcome many difficulties, and will exist as life-time encouragement in
my future career. | would also like to thank Dr. Guiren Wang, Dr. Paul Ziehl, Dr. Lingyu
Yu and Dr. Bin Lin for being part of my Committee and for their invaluable guidance. |
want to thank my dear colleagues for their friendship and accompany during this arduous
journey, especially Dr. Jingjing Bao and Dr. Bin Lin for their help in my research,
Zhenhua Tian for his help in the experiments, and my dear friends Yanfeng Shen,
Banibrata Poddar, Catalin Roman, Abdelrahman Ayman, and Erik Frankforter. | would
like to thank my understanding and supportive family: my wife, Sevda Kamas for her
understanding and patience; my parents, Nazmi Kamas and Zehra Kamas for their
understanding and encouragement.

The following funding supports are thankfully acknowledged: National Science
Foundation Grant # CMS-0925466; Office of Naval Research # N00014-11-1-0271, Dr.

Ignacio Perez, Technical Representative; Air Force Office of Scientific Research



#FA9550-11-1-0133, Dr. David Stargel, Program Manager; Nuclear Energy

University Program Grant # DE-NE0000726, Kenny Osborne, Project Manager.



ABSTRACT

The dissertation addresses structural health monitoring (SHM) techniques using
ultrasonic waves generated by piezoelectric wafer active sensors (PWAS) with an
emphasis on the development of theoretical models of standing harmonic waves and
guided waves. The focal objective of the research is to extend the theoretical study of
electro-mechanical coupled PWAS as a resonator/transducer that interacts with standing
and traveling waves in various media through electro-mechanical impedance
spectroscopy (EMIS) method and guided wave propagation. The analytical models are
developed and the coupled field finite element analysis (CF-FEA) models are simulated
and verified with experiments. The dissertation is divided into two parts with respect to
the developments in EMIS methods and GWP methods.

In the first part, analytical and finite element models have been developed for the
simulation of PWAS-EMIS in in-plane (longitudinal) and out-of-plane (thickness) mode.
Temperature effects on free PWAS-EMIS are also discussed with respect to the in-plane
mode. Piezoelectric material degradation on certain electrical and mechanical properties
as the temperature increases is simulated by our analytical model for in-plane circular
PWAS-EMIS that agrees well with the sets of experiments.

Then the thickness mode PWAS-EMIS model was further developed for a PWAS
resonator bonded on a plate-like structure. The latter analytical model was to determine

the resonance frequencies for the normal mode expansion method through the global



matrix method by considering PWAS-substrate and proof mass-PWAS-substrate models.
The proof mass concept was adapted to shift the systems resonance frequencies in
thickness mode.

PWAS in contact with liquid medium on one of its surface has been analytically
modeled and simulated the electro-mechanical response of PWAS with various liquids
with different material properties such as the density and the viscosity.

The second part discusses the guided wave propagation in elastic structures. The feature
guided waves in thick structures and in high frequency range are discussed considering
weld guided quasi-Rayleigh waves. Furthermore, the weld guided quasi Rayleigh waves
and their interaction with damages in thick plates and thick walled pipes are examined by
the finite element models and experiments. The dissertation finishes with a summary of

contributions followed by conclusions, and suggestions for future work.
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CHAPTER 1

INTRODUCTION

This chapter presents an introduction to the overall dissertation manuscript by
addressing the motivation and importance of conducting the research, discussing research
goal, scope, and objectives will be discussed, and introducing the organization of the

dissertation.

1.1 MOTIVATION

©

Figure 1.1 (a) Pipelines for energy transportation; (b) pressure vessel for pressurized gas;
(c) ships and offshore structures.

Ultrasonic techniques are commonly used for validation of thick structures in
many in-situ monitoring applications such as in nuclear industry, in pressure vessel

industry, in pipelines, and in a range of naval applications.



Structural Health Monitoring (SHM) is a fast-growing multi-disciplinary field
which aims at lowering the fatal costs due to catastrophic failures by detection in early
stages of a structural damage and providing diagnosis/prognosis of structural health status
in a real-time or with as needed maintenance. Exploring and inventing new SHM
technologies enables the industry to reduce also the maintenance cost, shorten the
machine service down time, and improve the safety and reliability of engineering
structures. SHM methods have improved the management in both the health monitoring
of aging structures by predicting the remaining life of the structure and the development
of novel self-sensing smart structures by inclusion of sensors.

SHM also enables condition based maintenance (CBM) that is in place of
scheduled maintenance by placing SHM sensors along with the monitoring systems,
which is provisioned that this extends the life-cycle and likely to greatly lower the life-

cycle costs as well.
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Figure 1.2: Active and passive sensing methods for in-situ SHM through PWAS
generating propagating and standing Lamb waves in substrate structure to detect damage
(Giurgiutiu, 2008a).



The development of SHM sensors assists to dynamically interrogate the structural
variations in material of a medium where the sensors are embedded. Nonetheless, the data
acquired from the sensing system should be properly interpreted based on the theoretical
phenomena. Practical applications have imposed three main requirements on
development on which the sensor technology lays for prediction of structural dynamic
changes in the coupled sensor-medium system. The SHM sensors that are capable of
active interrogation are called piezo-ceramic wafer active sensors (PWAS). They are
widely employed as in-situ ultrasonic health monitoring transducers. They are used as
resonators that generate standing waves as well as transducers that produce traveling
waves in the embedding medium. Figure 1.2 shows a few examples for SHM active and
passive sensing in near-field and far-field interrogation through PWAS that generates
propagating and standing Lamb waves in substrate structure to detect damages e.g. crack

or corrosion interrogating the structure with certain tuned wave modes

Conventional transducer Piezoelectric wafer active sensors (PWAS)

Figure 1.3 Illustration of free PWAS transducers in different types and sizes (Giurgiutiu,
2008).

Piezoelectric wafer active sensors (PWAS) that are shown in Figure 1.3 are made
of piezo-ceramics (e.g. lead zirconate titanate, a.k.a. PZT) and can be utilized as both an

actuator and a sensor to monitor and deliver structural health information. Most of the



methods used in conventional NDE, such as pitch-catch, pulse-echo, and phased arrays,
have also been demonstrated experimentally with PWAS. These successful experiments
have positioned PWAS as an enabling technology for the development and
implementation of active SHM systems. Figure 1.4(a) shows an array of 7 mm square
PWAS mounted on an aircraft panel and Figure 1.4(b) shows principles of SHM
techniques such as pitch-catch technique placed on top and pulse-echo technique placed
on bottom. PWAS is light-weighted, inexpensive, minimally intrusive sensor requiring
low-power. PWAS is much lighter, smaller and more inexpensive in contrast a
conventional ultrasonic transducer as shown in Figure 1.3. PWAS transducers are used in
SHM applications and are able to detect structural damage using Lamb waves. They
achieve direct transduction between electric and elastic wave energies. PWAS
transducers are essential elements in Lamb-wave SHM with pitch-catch, pulse-echo,

phased array, and electro-mechanical impedance methods.
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Figure 1.4 Illustration of (a) PWAS sensors installed on an aircraft panel and of (b)
principles of active structural health monitoring with PWAS transducers near a crack.

Electro-mechanical impedance spectroscopy (EMIS) is one of the SHM
techniques that employ PWAS as a piezo-ceramic resonator. EMIS has been widely used

to determine the dynamic characteristics of a free PWAS and bonded PWAS for in-situ



ultrasonics (Zagrai & Giurgiutiu, 2001) such as for high frequency local modal sensing
EMIS method in the work presented by Liang et-al (1994).

PWAS itself requires a characteristic description prior its installation on a
structure  or embedment in a medium. The intrinsic electromechanical
impedance/admittance of PWAS is an important dynamic descriptor. The frequency
response of a sensor to the electrical excitation defines its dynamic properties.
Electromechanical impedance spectroscopy (EMIS) method applies standing waves
generated by piezoelectric wafer resonator as the resonator is embedded into a medium so
that E/M impedance indicates the response of the coupled medium-resonator in frequency
domain in terms of anti-resonance spectra. It is substantial to extend the theoretical
development to accurately and quantitatively predict the local dynamic characteristics of
PWAS in different environmental conditions and in various embedding media. The
development of analytical and numerical models under simplifying assumptions is
paramount importance to perform simulation of response of PWAS-EMIS and
constrained PWAS-EMIS in wide range of applications.

For selective actuation and receipt of ultrasonic wave modes, the sizes of PWAS
transducers, size of the structure and the excitation frequency of the input waveform
should be tuned. The proof-mass concept has received considerable attention recently.
Proof-masses shift the system resonance toward optimal frequency points. Therefore,
proof-mass concept is adopted to develop a new method for tuning ultrasonic wave
modes. The theoretical work on proof mass actuator is developed as a mass bonded to the
piezoelectric actuator. The model is used to build the basis for a proof-mass piezoelectric

wafer active sensor (PM-PWAS). Then, the PM-PWAS transducer model is studied by



PM analysis to investigate desired control objectives using the correlation between a PM-
PWAS and structural dynamic properties in the substrate structure. Analytical and
numerical models are implemented for the PM-PWAS transducer attached to an isotropic
elastic plate.

Piezoelectric transducer and liquid domain interaction has been commonly
investigated through theoretical analysis of resonance spectra in frequency domain using
certain types of standing wave modes; shear horizontal waves and thickness shear waves
by using different techniques. The electrical excitation of a PWAS can be converted into
the mechanical vibration as regards to the stress and the strain waves. This
piezoelectricity property of the material of PWAS has been used in literature to develop a
micro-acoustic sensor to measure chemical, physical, and biological properties of a liquid
medium located in the vicinity or possessing an interface with the sensor. The mechanical
properties of the liquid medium such as the viscosity and the density affect the energy
transduction of sensor as well as the electrical properties of the medium concerning the
sensitivity of the wave mode. The detection of changes in mechanical properties and
electrical conductivity of the biomedical implants by bio-PWAS enables to capture the
protein or solution concentration (pH) changes that influence the conductivity, the
ultrasonic wave modes and electro-mechanical impedance readings.

Rayleigh waves have been widely used in non-destructive testing (NDT), SHM
applications as well as in seismology. Rayleigh waves i.e. surface acoustic waves (SAW)
are a high frequency approximation of the first symmetric (S0) and anti-symmetric (AQ)
modes of Lamb waves as the frequency becomes relatively high. SO and A0 wave speeds

coalesce and both have the same value. This value is exactly Rayleigh wave speed. They



become non-dispersive wave, i.e. constant wave speed along the frequency. Rayleigh
wave can only travel along a flat surface of a semi-infinite medium, which is hardly
possible to generate in reality however for the plate thickness d >> A, the measurements
should be acceptable. The wave mode is then called quasi-Rayleigh wave having
Rayleigh wave speed. The weld guided and tuned quasi-Rayleigh wave mode is essential
for the applications in the in-situ inspection of relatively thick structures with butt weld
such as naval offshore structures (Figure 1.1)c and dry cask storage system for spent

nuclear fuel (Figure 1.5).
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Figure 1.5: A dry cask storage system for spent nuclear fuel.



1.2 RESEARCH GOAL, SCOPE, AND OBJECTIVES

The research goal of the PhD work presented in this dissertation is to develop
accurate and efficient theoretical models for standing and propagating waves and tuning
of certain wave modes. The scope of this research covers the analytical modeling, finite
element simulation, and experiments for the development of SHM concepts. The
modeling techniques were advanced in both near-field and far-field interrogation. The
objectives of the work presented in this dissertation are as follows:

e To construct a 1-D analytical framework which can describe standing
harmonic wave in thickness mode, including frequency response function,
electromechanical admittance and impedance and linear higher harmonic
overtones in relatively high frequency range of MHz.

e To extend the concept developed in the thickness mode free PWAS case to the
thickness mode constrained PWAS on its one surface and both surfaces i.e.
two-layers and three layers.

e To construct a proof-mass PWAS actuator to tune the standing wave mode by
shifting the resonance frequency of the system by adding a proof-mass and
changing the size or material of a proof-mass on the piezo-ceramic actuator.

e To develop an analytical model of the electromechanical response of PWAS
with various liquids with different material properties.

e To carry out an analytical simulation of 2-D circular PWAS-EMIS at elevated
temperature in order to study the piezoelectric material degradation and

compensation at high temperature environment.



e To carry out theoretical and experimental study on weld guided waves and the
weld guided wave interaction with damages in thick structures in high

frequency range.

1.3 ORGANIZATION OF THE DISSERTATION

To achieve the objectives set forth in the preceding section, the dissertation is
organized in eleven chapters. The focus and contents of each chapter is introduced in
Chapter 1.

In Chapter 2, literature is reviewed with respect to the ultrasonic waves in solid
medium and the ultrasonic waves in fluid medium. In addition, the piezoelectric
transducers is reviewed regarding the vibration modes, standing waves and wave
propagation methods that employs piezoelectric wafer active sensors (PWAS).

In Chapter 3, after the state of the art reviewed with respect to the
electromechanical impedance spectroscopy (EMIS) method, the analytical and numerical
work for free PWAS-EMIS models are derived in in-plane and thickness modes.

In Chapter 4, the analytical 1-D free PWAS-EMIS and 2-D circular PWAS-EMIS
simulations are presented to show the piezoelectric material degradation as the
temperature increases. In addition, sets of experiments are conducted and the results are
discussed in order to show thermal effects.

In Chapter 5, the global matrix method (GMM) is first reviewed for multi-layered
structures, and then the analytical model procedure is presented for the constrained
PWAS-EMIS from one-side and two-sides in in-plane mode using the GMM.

In Chapter 6, the similar procedure as in Chapter 5 is followed for thickness mode

PWAS-EMIS in solid medium as PWAS constrained on an isotropic elastic material is



presented considering two-layer and three-layer models through normal mode expansion
and global matrix methods.

In Chapter 7, based on the progressive theoretical development in the preceding
two chapters, proof-mass piezoelectric wafer active sensor (PM-PWAS) is introduced
along with the state of the art regarding the proof-mass concept. Analytical, numerical,
and experimental studies are conducted for PM-PWAS. In addition, some special case
studies are presented for different materials and geometries.

In Chapter 8, the electromechanical signature of PWAS behavior in contact with
liqguid medium is presented in terms of analytical E/M impedance and admittance
simulations as a basis of biomedical sensor development.

In Chapter 9, in general, the tuning of guided waves in thin and thick structures is
discussed with different sets of experiments.

In chapter 10, in particular, the weld guided quasi-Rayleigh wave in welded thick
structures is introduced and accordingly the experimental results and finite element
simulations are presented.

In Chapter 11, concluding remarks are presented along with the suggested future

work
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CHAPTER 2

LITERATURE REVIEW

This chapter first introduces fundamentals of the ultrasonic waves in solid
medium and in fluid medium reviewed by types, including Lamb waves, Rayleigh waves,
shear horizontal (SH) plate waves. Then piezoelectric transducers are introduced and the
vibration modes and standing wave modes that can be transduced by piezoelectric
transducers are discussed. The concept of standing waves is introduced, and the
correspondence between standing waves and structural vibration is established. Finally,
the wave propagation methods using ultrasonic waves based SHM concepts and

techniques are introduced.

2.1 ULTRASONIC WAVES IN SOLID MEDIUM

This section presents a review of ultrasonic elastic waves in elastic solid media.
SHM methods based on elastic waves propagation are very diverse, and a number of
approaches exist. The basic principles shall be held to understand basic principles that lay

at the foundation of wave generation and propagation in solid media.

21.1 GUIDED WAVES IN PLATES

Guided waves (e.g., Lamb waves in plates) are elastic perturbations that can
propagate for long distances in thin-wall structures with very little amplitude loss. In

Lamb-wave NDE, the number of sensors required to monitor a structure can be
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significantly reduced. The potential also exist of using phased array techniques that use
Lamb waves to scan large areas of the structure from a single location.

Rayleigh waves, a.k.a., surface acoustic waves (SAW) are found in solids that
contain a free surface. The Rayleigh waves travel close to the free surface with very little
penetration in the depth of the solid. For this reason, Rayleigh waves are also known as
surface-guided waves.

In flat plates, ultrasonic-guided waves travel as Lamb waves and as shear
horizontal (SH) waves. Lamb waves are vertically polarized, whereas SH waves are
horizontally polarized. A simple form of guided plate waves are the SH waves. The
particle motion of SH waves is polarized parallel to the plate surface and perpendicular to
the direction of wave propagation. The SH waves can be symmetric and anti-symmetric.
With the exception of the very fundamental mode, the SH wave modes are all dispersive.
Lamb waves are more complicated guided plate waves. Lamb waves are of two basic
varieties, symmetric Lamb-waves modes (SO, S1, S2,...) and anti-symmetric Lamb-
waves modes (A0, Al, A2,...). Both Lamb wave types are quite dispersive. At any given

value of the frequency-thickness product, fd, a multitude of symmetric and anti-
symmetric Lamb waves may exist. The higher the fd value, the larger the number of
Lamb-wave modes that can simultaneously exist. For relatively small values of the fd

product, only the basic symmetric and anti-symmetric Lamb-wave modes (SO and A0)

exist. As the fd product approaches zero, the SO and A0 modes degenerate in the basic
axial and flexural plate modes. At the other extreme, as fd — oo, the SO and A0 Lamb-

wave modes degenerate into Rayleigh waves confined to the plate surface.
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Lamb Waves

Lamb waves are a type of ultrasonic waves that are guided between two parallel
free surfaces, such as the upper and lower surfaces of a plate. Lamb waves can exist in
two basic types, symmetric and antisymmetric. Figure 2.19 shows the particle motion of
symmetric and antisymmetric Lamb waves. The Lamb wave motion has asymptotic
behavior at low frequency and high frequency. At low frequency, the symmetric mode
resembles axial waves, while the antisymmetric mode resembles flexural waves. At high
frequency, both symmetric and antisymmetric wave approaches Rayleigh waves, because
the particle motion is strong at the surfaces and decays rapidly across the thickness. The
axial wave and flexural wave, by their nature, are only low frequency approximations of
Lamb waves. The plate structure cannot really sustain pure axial and flexural motion at
large frequency-thickness product values.

The straight crested Lamb wave equations are derived under z-invariant
assumptions using pressure wave and shear vertical wave (P+SV) waves in a plate.
Through multiple reflections on the plate’s lower and upper surfaces, and through
constructive and destructive interference, the pressure waves and shear vertical waves
give rise to the Lamb-waves, which consist of a pattern of standing waves in the
thickness y—direction (Lamb-wave modes) behaving like traveling waves in the x—

direction. The derivation finally reaches the Rayleigh-Lamb equation:

+1

tan 775d _ ~417e15 §2 2.1)

tan 7, d (52 i’ )2
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where +1 exponent corresponds to symmetric Lamb wave modes and -1 exponent
corresponds to antisymmetric Lamb wave modes. d is the half plate thickness, and & is
the frequency dependent wavenumber. 7, and 7, are given in Eq. (2.2). 4 and u are

Lame’s constants of the material, and o is the material density.

®* ®* A+2
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Figure 2.1: (a) Wave speed dispersion curve; (b) wavenumber dispersion curve (Shen,
2014).

Figure 2.1 shows the dispersion curves of aluminum plates calculated from the
Rayleigh-Lamb equations. It can be noticed at least two wave modes (the fundamental
symmetric mode: SO; the fundamental antisymmetric mode: AQ) exist simultaneously.
Beyond the corresponding cut-off frequencies, higher Lamb modes will participate in the
propagation. At small frequency-thickness product values, the SO mode is less dispersive
than AO mode, and all the Lamb wave modes converge to non-dispersive Rayleigh waves

at large frequency-thickness product values. The dispersive and multi-mode nature of
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Lamb waves adds complexity in both Lamb wave propagation modeling and SHM

application.

Rayleigh Waves

Rayleigh waves, known as the surface wave, propagate close to the body surface,
with the motion amplitude decreasing rapidly with depth. The polarization of Rayleigh
wave lies in a plane perpendicular to the surface. The effective depth of penetration is
less than a wavelength.

One benefit of using Rayleigh waves for structural health monitoring lies in that

Rayleigh wave is not dispersive, i.e. the wave speed is constant. It is found that the

Rayleigh wave speed, C,, depends on the shear wave speed, C,, and the Poisson ratio, v

. A common approximation of the wave speed of Rayleigh wave is given as

0.87 +1.12vj 2.3)

c =C
r(V)=Cs ( 1+v
For common Poisson ratio values, the Rayleigh wave speed takes values close to and just
below the shear wave speed (Giurgiutiu 2008). The particle motion or the mode shape of
the Rayleigh waves across the thickness direction, y, is given by
2, g2
Ox(y)=Ai(§e_“y——ﬂ 225 e‘ﬂy]

2 2
l]y(y) = A(—ae_“y +—'B 225 e_ﬂyJ

(2.4)

where A is the wave amplitude factor, & =w/c, is the wavenumber of Rayleigh surface
waves, o and g are coefficients given in Eq. (2.5). Figure 2.2 shows the Rayleigh wave

in a semi-infinite medium.
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Figure 2.2: Simulation of Rayleigh wave propagation in a semi-infinite medium
http://www.exploratorium.edu/faultline/activezone/slides/rlwaves-slide.html.

Shear Horizontal Plate Waves

Shear horizontal (SH) plate waves have a shear-type particle motion contained in
the horizontal plane. Figure 2.3 shows the coordinate definition and particle motion of SH
plate waves. According to the coordinate defined, an SH wave has the particle motion

along the z axis, whereas the wave propagation takes place along the x axis. The
particle motion has only the u, component. Unlike Rayleigh wave which is non-

dispersive, SH plate waves are dispersive and may travel with different modes.

The phase velocity dispersion curve of the SH plate wave can be calculated as

c
c(w) = S ; (2.6)
Jl—(nd)z(csj
wd
where 7 is given in Eq. (2.7) and d is the half plate thickness.

2 2

2 @ [0
=——-— 2.7
n Z 2.7)
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By substituting the appropriate eigenvalue, one gets an analytical expression for the
wave-speed dispersion curve of each SH wave mode. For detailed expressions, the

readers are referred to Giurgiutiu (2007).
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Figure 2.3: Coordinate definition and particle motion of SH
plate waves (Giurgiutiu 2008).
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Figure 2.4: (a) SH plate wave-speed dispersion curves; (b) symmetric mode shapes; (c)
antisymmetric mode shapes (Giurgiutiu 2008).
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Figure 2.4 shows the wave-speed dispersion curve of SH plate waves and the
mode shapes. It can be noticed that the fundamental symmetric mode (SO) wave is non-
dispersive and always exists starting from low frequency-thickness product values. This
nice property makes it a good candidate as the interrogating waves in SHM systems.
Recently, considerable research has been carried out on the transmission and reception of
SH plate wave for SHM (Kamal et al. 2013; Zhou et al. 2014). Higher wave modes only
appear beyond the corresponding cut-off frequencies, showing dispersive characteristics,
I.e., their phase velocity changes with frequency. For dispersive waves, group velocity is
usually used to evaluate the propagation of wave packets. The definition of group
velocity is given in Eq. (2.8).

_do

c.=—2 2.8
9= 4e (2.8)
2.1.2 GUIDED WAVES IN RoDS, PIPES, AND ARBITRARY CROSS-SECTION

WAVEGUIDES

The guided waves in rods, pipes, and arbitrary cross section waveguides (Figure
2.5) also find great potential in nondestructive evaluation (NDE) and SHM for truss
structures, pipelines, and rail tracks. Analytical solutions exist for simple geometry rods
and pipes. However, for waveguides with arbitrary cross sections, the semi-analytical
finite element (SAFE) method is usually adopted to obtain the numerical solutions of

wave propagation problems.
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12%12 elements ( a)

Figure 2.5: Discretization of the cross sections in SAFE: (a) square rod; (b) circular pipe;
(c) rail track (Hayashi et al. 2004).

Several investigators have considered the propagation of waves in solid and
hollow cylinders. Love in his fourth edition of the book published in 1944 studied wave
propagation in an isotropic solid cylinder and showed that three types of solutions are
possible: (1) longitudinal; (2) flexural; and (3) torsional. Comprehensive work on wave
propagation in hollow circular cylinders was done by Gazis in 1959. At high frequencies,
each of these solutions is multimodal and dispersive. Meitzler in 1961 showed that, under
certain conditions, mode coupling could exist between various wave types propagating in
solid cylinders such as wires. Extensive numerical simulation and experimental testing of
these phenomena was done by Zemanek in 1972. A comprehensive analytical
investigation was complemented by numerical studies. The nonlinear algebraic equations
and the corresponding numerical solutions of the wave—speed dispersion curves were
obtained. These results found important applications in the ultrasonic NDE of tubing and
pipes. Silk & Bainton in 1979 found equivalences between the ultrasonic in hollow
cylinders and the Lamb waves in flat plates and used them to detect cracks in heat

exchanger tubing. Rose et-al in 1994 used guided pipe waves to find cracks in nuclear
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steam generator tubing. Alleyne in 2000 used guided waves to detect cracks and

corrosion in chemical plant pipe work.

2.2 ULTRASONIC WAVES IN FLUID MEDIUM

This section presents a review of ultrasonic elastic waves in fluid media. Some of
the non-destructive testing (NDT) and SHM techniques are presented along with some
theories developed in the literature regarding the fluid loaded beams and the interaction
between the piezoelectric transducers and liquid media. The guided interface waves and

acoustic waves generated by piezoelectric transducers are reviewed as well.

2.2.1 ULTRASONIC IMMERSION TECHNIQUE

The propagating waves generated using a transducer can be used to test and object
by coupling the sound waves with water. Two techniques exist for this testing: 1. Using
water gun where the sound waves are guided through a jet of water or 2. Immersing the
transducer and test object in a tank of water. In immersion testing, the transducer is
placed in the water, above the test object, and a guided wave is projected.

The graph of peaks using the immersion method is slightly different. Between the
initial pulse and the back wall peaks there will be an additional peak caused by the sound
wave going from the water to the test material. This additional peak is called the front
wall peak. The ultrasonic tester can be adjusted to ignore the initial pulse peak, so the
first peak it will show is the front wall peak. Some energy loss occurs when the waves
collide with the test material, so the front wall peak is slightly lower than the peak of the

initial pulse.
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This ultrasonic test technique can be used to interrogate components and
structures to detect internal and surface breaking defects, and measures wall thickness on
hard (typically metallic or ceramic) components and structures. It operates on the
principle of injecting a very short pulse of ultrasound (typically between 0.1 MHz and
100 MHz) into a component or structure, and then receiving and analyzing any reflected
sound pulses.

Typical detection limits for fine grained steel structures or components (hand
scanning) are single millimeter sized defects. Smaller defects can be detected by
immersion testing and a programmed scan pattern with higher frequency ultrasound
(slower testing). Detection limits are in the order of 0.1 to 0.2 mm, although smaller

defects (typically 0.04mm diameter) can be detected under laboratory conditions.

2.2.2 FLuUID LOADED BEAM

Cheng & Wang (1998) and Zhang et-al (2003) considered a finite thick plate that
has an interface with an acoustic medium on top and with vacuum on bottom side. The

plate is excited by a harmonic point force as shown in Figure 2.6

X
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Figure 2.6 Schematic of the fluid loaded beam excited by a harmonic point force.
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where v is the beam displacement, F; is the amplitude of a harmonic point force, P, is
the fluid loading (acoustic) pressure on the beam, and ¢ is the Dirac delta function.

o°P. 0°P
ax;+axg+§ozpa=o (2.10)
1 3

where &, is the acoustic wave number. On the interface, i.e. X, =0;

oP, )
—2 = v(X 211
oX, Po®@ ( 1) ( )
Modal expansion method also implies
P.(X;,00 =2 P (X)) (212)
n=1

where P, is the modal expansion coefficient of sound pressure and ¢, is the

eigenfunctions of the beam. The sound pressure and beam displacement in wave number

domain;

Isa (5’ X3) = T Pa(xl’ X3)e_i§XdX
- (2.13)

o0

9(&) = [ v(x)e " dx

—0

Imposing the boundary conditions in wave number, &, domain and applying inverse fast

Fourier transform (IFFT), the sound pressure takes this form:

Pa(X1,0)=_i§j:)j e) _gengs (2.14)

N

22



2.2.3 GUIDED WAVES: INTERFACE WAVES

Bleustein-Gulyaev Waves

First, Bleustein in 1968 explored the surface wave which was later to be named
Bleustein-Gulyaev (BG) wave and developed the theory for the wave. Furthermore,
(Zhang et-al. 2001; Guo et-al., 2006; Guo & Sun, 2008) also theoretically analyzed the
BG waves for the model employing the hexagonal 6mm class of piezoelectric which
occupied semi-infinite space and overlying half-space viscous and non-conductive liquid
medium.

Bleustein-Gulyaev (B-G) wave is a shear type surface acoustic wave (SH wave).
B-G wave does not radiate energy into the adjacent liquid. It is sensitive to changes in
both mechanical and electrical properties of the surrounding environment. B-G wave is a

good candidate for liquid sensing applications (Guo & Sun, 2008).

Liquid (2, &)

Piezoelectric
materials( 2,,)

Figure 2.7: Schematic illustration of the BG wave problem
and the coordinate system.
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Navier-Stokes equation which is the governing equation for liquid was simplified
neglecting the inertial term and the pressure gradient since the particle motion was
induced only by wave propagation and only shear deformation occurs during the wave
propagation so that the liquid particle velocity in transverse direction in plane was

assumed to satisfy the following governing equation

Ny _ Ay, (2.15)
a  p

where p, and g, were defined to be the liquid mass density and the dynamic viscosity,

respectively. Using the piezoelectric constitutive equations and Navier—Stokes equations,
the dispersion relation for both the open circuit and metalized surface conditions were

derived by an elaborate analytical procedure.

The Scholte Waves
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0.94 Vg Scholte surface wave velocity
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Figure 2.8 Scholte surface-wave velocity relative variations to the shear-wave velocity,
Vs, as a function of frequency f and fluid layer thickness. The parameters Vpi1, Vp2, Vs,
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p1, and py [Vp1 = 1.5 km/s, Vp, = 2.0 km/s, Vg1 = 0 km/s, p; = 1.0 g/cc, and p, = 2.0 g/cc]
are common to all the three curves.

The general dispersion relation for the Scholte wave shows that for a fluid layer of
finite thickness, the trapped wave is dispersive. Its velocity is always less than the shear-
wave velocity. Figure 2.8 shows an example of how the Scholte surface-wave velocity
varies relative to the shear-wave velocity, Vs, as a function of frequency f and fluid layer
thickness z;.

The model we have looked at for the Scholte wave is a fluid layer above a solid
half-space. The sea floor in most situations can be considered to represent a water-
sediment interface, with a P-wave sediment velocity somewhat higher than the velocity of
sound in water. For soft marine sediments consisting of clay and silt, the S-wave velocity
is much smaller than the water sound velocity but shows very large gradients close to the
sea floor. The interface wave then becomes highly dispersive, although recognizably of
the Scholte type. Recall that the source should be close to the sea floor to excite the
Scholte interface wave.

Scholte waves and quasi-scholte waves have been analyzed for liquid sensing
applications subjected to various boundary conditions. Scholte waves are non-dispersive
and propagates along a half space liquid-half space solid interface whereas quasi-Scholte
waves are dispersive and propagates on a finite plate-liquid interface in similar fashion to
the A0 mode in a free plate. The quasi-Scholte mode become asymptotic to Scholte wave
at high frequencies being similar to the A0 and SO modes becoming asymptotic to the

Rayleigh wave solution (Cegla, Cawley, & Lowe, 2005).
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Figure 2.9 Phase velocity dispersion of the quasi-Scholte mode on
a steel plate surrounded by water.

The Leaky Lamb Waves

Mindlin in 1960 determined the pressure (P), shear vertical (SV), and shear
horizontal (SH) waves and vibrations at different angle of incidence in isotropic plates
with variety of boundary conditions such as traction-free (unconstrained) and strain-free
(constrained) conditions on the boundaries.

For the wave propagation method, Lamb waves (Lamb, 1917) and leaky Lamb
waves are of substantial and paramount importance in the group of guided elastic waves
and have been widely used to develop liquid sensing technology. The propagation of
Lamb waves in solid plate with traction free boundaries and leaky Lamb waves in solid-
liquid structures (Wu & Zhu, 1992) have been investigated by many researchers for
inviscid (Chen et-al. 2006) or viscous liquids (Nayfeh & Nagy, 1997; Zhu & Wu, 1995)

and dielectric or conductive liquids (Lee & Kuo, 2006). Lamb waves are considered to be
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propagating in an elastic plate with a finite thickness otherwise when the waves propagate
in an infinite half-space solid medium, they are considered to be Rayleigh waves. Leaky
Lamb waves are variant of the Lamb waves which propagate on plate-liquid interface
leaking part of the energy into adjacent liquid and therefore attenuate along its
propagating direction. The similar feature of energy loss can be observed with the
Rayleigh waves if a solid-liquid interface exist in the structure and in that instance, the
Rayleigh wave can be also named leaky-Rayleigh waves due to the energy leakage into

the liquid layer.

Rayleigh waves Leaky Lamb waves Lamb waves
; ; Half-space
Sl e Isotropic solid homogelx)leous — —-_——
isotropic solid o Finite thick liquid
Half-space !aver.
Isotropic solid plate Isotropic solid plate
homogeneous
Half-space liquid Halfspdce Finite thick liquid layer
homogeneous h P
S omogeneous
liquid v S
liguid

Figure 2.10 Schematic illustration of different solid-liquid structure configurations and
corresponding waves traveling along the interfaces.

Guided waves are widely used as interrogating field for damage detection,
because they can travel long distances without much energy loss, with the wave energy
confined and guided within the structures. Besides, guides waves can travel inside curved
walls, and across component joints. These aspects make them suitable for inspection of
large areas of complicated structures. Ultrasonic guided waves are sensitive to changes in
the propagating medium, such as plastic zone, fatigue zone, cracks, and delamination.

This sensitivity exists for both surface damage and cross thickness/interior damage,
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because guided waves have various mode shapes throughout the cross section of the

waveguides.

224 PIEZOELECTRIC TRANSDUCERS GENERATED WAVES IN FLUID MEDIUM

Piezoelectric transducer and liquid domain interaction has been commonly
investigated through theoretical analysis of resonance spectra in frequency domain using
certain types of standing wave modes; thickness shear waves and shear horizontal waves

by using different techniques as discussed in the following sections.

Thickness Shear Waves

Nwankwo & Durning in 1998 have investigated the mechanical and impedance
response of thickness shear mode quartz crystal resonators to linear viscoelastic fluid
media in thickness-shear mode. It was observed that the relaxation time of viscoelastic
fluid (condensed polymeric liquids) results in a lower frequency than a viscous
Newtonian fluid with identical density and viscosity due to reduced viscous dissipation
and smaller inertial load on the crystal surface. The analysis of the momentum transfer
from the crystal to the fluid reservoir was required to interpret the frequency shifts based
on contact with fluids. The momentum transfer analysis resembled to that of Kanazawa &
Gordon (1985) however the analysis in addition considered a complex amplitudes in
mechanical response functions for both crystal and liquid parts of the problem as well as
the fluid’s complex viscosity and its complex modulus which in turn concluded a
correction term for the effect of a finite relaxation time in the fluid at the observed

frequency shift.
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Piezoelectric wafer active sensors (PWAS) (Giurgiutiu, 2008) have been widely
employed as in-situ ultrasonic health monitoring transducers. PWAS transducers are
capable of active interrogation of dynamic characteristics of an embedding material in
which they may be bonded. Also PWAS transducers are small, light-weighted,
inexpensive, unobtrusive, which enable them to be implanted into a biological tissue.
Recently, in a joint effort between the University of South Carolina (USC) Department of
Mechanical Engineering and School of Medicine, PWAS have been modified and
investigated as biomedical sensors (bio-PWAS) (Giurgiutiu et al.; Xu, Giurgiutiu &
Crachiolo, 2006).

The electrical excitation of a bio-PWAS can be converted into the mechanical
vibration as regards to the stress and the strain waves. This piezoelectricity property of
the material of PWAS has been used in literature to develop a micro-acoustic sensor to
measure chemical, physical, and biological properties of a medium located in the vicinity
or possessing an interface with the sensor. The mechanical properties of medium such as
the viscosity and the density affect the energy transduction of sensor as well as the
electrical properties of the medium concerning the sensitivity of the wave mode. The
detection of changes in mechanical properties and electrical conductivity of the
biomedical implants by bio-PWAS enables to capture the protein or solution
concentration (pH) changes that influence the conductivity, the ultrasonic wave modes
and electro-mechanical impedance readings.

Impedance analysis and ultrasonic guided wave propagation are mainly employed
methods to investigate behavior of different piezoelectric acoustic resonators used in

structural health monitoring in various types of media. The electro-mechanical impedance

29



spectroscopy (EMIS) of bio-PWAS implanted can transmit the status of implantation in
frequency domain. EMIS method applies standing waves to a piezoelectric resonator and
utilizes the resonator as both a transmitter and a receiver of the generated waves traveling
in a surrounding medium. This technique can indicate the coupled response of the
medium-bio-PWAS structure in terms of the electro-mechanical impedance spectrum in
frequency domain. The impedance spectrum in frequency domain showed electro-
mechanical changes over time associated with the short term immune response (Bender et
al., 2006). The response in high frequency range (up to 15 MHz) can be analyzed in
varying modes such as the longitudinal (in-plane) mode (Zagrai & Giurgiutiu, 2001), the
thickness (out-of-plane) mode (Tiersten, 1963), and thickness shear mode (TSM)
(Bandey, Martin, Cernosek, & Hillman, 1999; Bund & Schwitzgebel, 1998; Schneider &

Martin, 1995).

Shear Horizontal Surface Waves

Kanazawa & Gordon in 1985 proposed an analytical definition of the resonance
frequency shift by purely mechanical analysis which coupled the standing shear wave in

the quartz to a damped propagating shear wave in Newtonian fluid i.e.

Af =—f03/2‘/77L/0L/ mu,p, and verified by the experimental results in terms of the

changes in resonance frequency of the quartz resonator whose one surface is in contact
with water that owned varying concentration of glucose and ethanol. In the paper, the
boundary layer was identified as the characteristic length of exponentially decaying
viscous effects of the liquid on the resonance frequency because the displacement

exponentially dies out in the liquid. The approach has been applied for quartz crystal
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resonators with overlying viscous liquids, thin elastic films and viscoelastic layers (Josse
& Shana, 1988; Nwankwo & Durning, 1998; Martin et al., 2000; Suh & Kim, 2010).
However the theoretical method derived by Kanazawa & Gordon is only valid for
overlying viscous fluid of infinite extent therefore the method analyzes bulk acoustic
waves (BAW) which remains the sensor sensitivity low. The sensors utilizing surface
acoustic waves (SAW) are superior to the conventional BAW devices in liquid sensor
applications since SAW devices can operate at much higher frequencies and more mass
sensitive since SAW possesses large attenuation and energy loss due to a mode
conversion in the liquid and dissipates due to the viscous effects (Josse & Shana, 1988).
Other alternative to the SAW presented was the shear horizontal (SH) surface wave as

seen in Figure 2.6.
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Figure 2.11 Schematic of the propagation of a Shear horizontal (SH) wave along the
interface between a piezoelectric substrate and a liquid layer.

The propagation of surface shear waves on an interface (Figure 2.12) were
theoretically defined by Feijter in 1979. The interface represented as a plane which has
zero thickness and the mass was neglected. The surface shear wave equations in planar

and circular surfaces were derived for surface of incompressible liquid which occupies
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infinite space beginning from introducing the complex surface shear modulus and then

imposing the continuity of the stress boundary condition relating the particle

displacement, u,, with the liquid particle velocity,v, , the shear modulus, x, and the

viscosity 77; shear force gradient with respect to y direction exerted on the interface

equals to the shear force gradient with respect to the normal direction due to the presence

of the viscous liquid attached to the surface i.e.,

oo ov
X ldxdy = X dxd 2.16

z

The stress-strain constitutive equation simply identifies the relation as

oy = 1S (217)

35S 5, | (5va (2.18)
Boloy) ey ) "oz ), '

At this point, the complex shear modulus was introduced

= L+ 1 = |11, (cos D +isin @) (2.19)

This relation indicated that eventhough the shear waves propagated in x direction, the
strain has a gradient in transverse direction and the displacement is no longer linear
function of y. The Navier Stokes equation reduction occurred due to the consideration of
only x component of the velocity which was defined as the time-gradient of the

displacement.

oV ov. 0
p( atxj:n[ 5 azZX] (2.20)

where p is the density of the liquid, and v, is the velocity component of the liquid in X

direction and defined as the temporal gradient of the X component of the displacement
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v, =—= (2.21)

Z=0

Figure 2.12 Plane transverse wave traveling between the surface and the liquid with the
wavelength of the surface shear wave and the wavelength of the bulk shear wave
penetrating to liquid medium.

The continuity equation for incompressible liquid is
Divv=0 (2.22)

a\/Z

The z invariant condition ( 5 =0) and the constant velocity in y direction simplifies
z

further the continuity equation to

N, =0 (2.23)
OX

and the stress boundary condition at the surface, Eq(2.18), can be rewritten as

(avxj S T [ 2.24
1>, Z:O—n P Zzo—ﬂs Y (2.24)

The harmonic displacement function u(y,z,t) = f(y,z)e"* which defines the liquid

particle motion and the surface particle motion can be introduced as a general solution to
the bulk wave equation imposing the boundary conditions of no-slip and continuity of

stress; therefore substituting the displacement function into equations (2.20) (N.S.
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equations) and (2.24) (boundary conditions). The term,&°v, /oy?, in the N.S. equation

can be small as negligible when the surface shear modulus is sufficiently great, z thus

N.S. equation is simplified and further simplified by no-slip condition.

Ity.2) (2.25)

iwpf(y,z)=n pe

and the solution of the differential equation (2.25) was obtained as
f(y,2) = g(y)e™ Ve = g (y)e ™ (2.26)

where g(y) was defined as an exponential function in terms of the wave dispersion (k)

g(y)=Ae™’ (2.27)
The wave dispersion equation that is the complex wave number was determined by the

real wave number (x,) and the damping coefficient (5,) i.e. k =x,—if,. The wave

equation defining the surface shear motion was revised as a combination of a complex

spatial and temporal exponential function including the dispersion equation terms.
u(y, z,t) = Ae®e ™ cos(at +az—«,y) (2.28)

Josse & Shana theoretically analyzed shear horizontal wave propagation at the
boundary of a piezoelectric substrate with viscous fluid to develop a liquid sensor. The
attenuation was observed due to the liquid viscosity and density. The theoretical analysis
that they developed is applicable to both Bluestein-Gulyaev (BG) wave and surface
skimming bulk wave (SSBW) which were generated using piezoelectric crystal resonator
performing in liquid environment. It was quantitatively found that BG wave attenuation
due to the viscosity was significantly less in comparison to that of Rayleigh SAW. The

hexagonal (6mm) crystal class which generates the BG waves and the SSBW was used
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for the analysis. The referred paper adopted Christoffel equations (Auld, 1973) and
solved the equations in three different medium; piezoelectric substrate, viscous fluid
medium, and air satisfying the dispersion relations defined for each medium with the
assumptions of x-invariant wave, incompressible dielectric viscous fluid, no-slip on the
interface, and no-pressure, no gravity in the media. The model employed was a finite
thick fluid layer overlying on the piezoelectric crystal of Cadmium Sulfide (CdS). The
following boundary conditions were imposed. The electrical boundary conditions: 1-
Continuity of the electrical potential at y=0 and y=h, 2-continuity of the electrical
displacement at y=h; the mechanical boundary conditions: 1-continuity of normal stress,

2-continuity of the velocity particle displacement, 3-Traction-free at y=h.

2.3 PIEZOELECTRIC TRANSDUCERS

Piezo-electric material is a material that has a relation between a mechanical
stress and an electrical voltage. As mechanical stress is applied, voltage can be generated
and voltage can inversely be applied to morph the shape of material in small amount.
These materials can be used as both actuators and sensors.

In the literature, researchers have employed piezo-crystal resonators (Cassiede et-
al, 2011; Nwankwo & Durning, 1999) with different cut polarizations (IEEE Ultrasonics,
1987) as well as piezo-ceramic resonators (Giurgiutiu, 2005) to carry out structural
monitoring. IEEE Standard on Piezoelectricity explains the crystallography which applies
to piezoelectric crystals categorizing in 32 classes of 7 crystal systems (triclinic,
monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, and cubic) depending on their
degrees of symmetry. The crystal plates are oriented in two rotations such as single

rotation and double rotation to produce certain excitation modes. AT-cut (singly rotated)
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and SC (stress compensated) cut (doubly rotated) crystal plates are the most commonly
used ones as resonators. Properly oriented electrodes generate the required excitation
modes. Both types of resonators are used to generate thickness shear mode excitations
and generally named Thickness Shear Mode (TSM) crystal resonators. Thickness shear
mode (out-of-plane) is one of two subdivisions of shear modes whereas the other is the

shear horizontal (in-plane) mode.

Figure 2.13: Illustration of differently rotated cuts such as singly and doubly rotated.
(Basic Technology of Quartz Crystal Resonators, 2012).

Piezoceramic sensors have also been widely employed in structural health
monitoring (SHM) and non-destructive evaluations (NDT) society. Piezoceramics are
typically made of simple perovskites (calcium titanium oxide minerals with the chemical
formula CaTiO3) and solid solution perovskite alloys. Mechanical compression or tension
on a poled piezoelectric ceramic element changes the dipole moment, creating a voltage.
Compression along the direction of polarization or tension perpendicular to the direction
of polarization generates voltage of the same polarity as the poling voltage.

In recent years, piezoelectric wafers permanently attached to the structure have been used

for the guided waves generation and detection. PWAS operated on the piezoelectric
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principle that couples the electrical and mechanical variables in the material (mechanical

strain, S;;, mechanical stress, T,, , electrical field, E,, and electrical displacement D; in
the form:
S = SijElekl +dE, (2.29)
D; =dyT, +5ka E, (2.30)

where SijEkl is the mechanical compliance of the material measured at zero electric field

(E=0), 8J-Tk is the dielectric permittivity measured at zero mechanical stress (T =0), and

d representsthe piezoelectric coupling effect.

2.3.1 VIBRATION MODES OF PIEZO-WAFER RESONATORS:

Piezoelectricity describes the phenomenon of generating an electric field when the
material is subjected to a mechanical stress (direct effect), or, conversely, generating a
mechanical strain in response to an applied electric field. The direct piezoelectric effect
predicts how much electric field is generated by a given mechanical stress. This sensing
effect is utilized in the development of piezoelectric sensors. The converse piezoelectric
effect predicts how much mechanical strain is generated by a given electric field. This

actuation effect is utilized in the development of piezoelectric induced-strain actuators.

In-plane mode, thickness mode, shear mode

In practical applications, many of the piezoelectric coefficients, d., have

i

negligible values as the piezoelectric materials respond preferentially along certain
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directions depending on their intrinsic spontaneous) polarization. For example, consider

the situation of piezoelectric wafer as depicted in Figure 2.14a. To illustrate the d,, and
d, effects, assume that the applied electric field, E,, is parallel to the spontaneous
polarization, P,, is aligned with the x, axis, then such a situation can be achieved by
creating a vertical electric field, E,, through the application of a voltage V between the

bottom and top electrodes illustrated by the shaded surfaces in Figure 2.14a. The

application of such an electric field that is parallel to the direction of spontaneous
polarization (E,|IP,) results in a vertical (thickness-wise) expansion &, =d,E, and
lateral (in-plane) extensions and contractions & =d, E, and &, =d,E, (the lateral
strains are contracted as the coefficient d,, and d,, have opposite sign to d,,). So far, the

strains experienced by the piezoelectric wafer have been direct strains. Such an

arrangement can be used to produce thickness-wise and in-plane vibrations of the wafer.

X
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Figure 2.14 Basic induced-strain responses of piezoelectric materials: (a) direct strains;
thickness &, =d,,E, and in-plane ¢, =d,,E,, ¢, =d,,E, (b) shear strain & =dE, (c) shear
strain ¢, =d,E, (Victor Giurgiutiu, 2008d).
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However, if the electric field is applied perpendicular to the direction of
spontaneous polarization, then the resulting strain will be shear. This can be obtained by
depositing electrodes on the lateral faces of the piezoelectric wafer. The application of a

voltage to the lateral electrodes shown in Figure 2.14b results in an in-plane electric field
E, that is perpendicular to the spontaneous polarization, (E1 1 PS). This produces an
induced shear strain ¢, =d,E,. Similarly, if the electrodes were applied to the front and
back faces, the resulting electric field would be E, and the resulting strain would be
g, =d,,E,. The shear-strain arrangements discussed here can be used to induce shear

vibrations in the piezoelectric wafer. The use of lateral electrodes may not be feasible in
the case of a thin wafer. In this case, top and bottom electrodes can be used again, but the
spontaneous polarization of the wafer must be aligned with an in-plane direction. This
latter situation is depicted in Figure 2.14c, where the spontaneous polarization is shown

in the x, direction whereas the electric field is applied in the x, direction. The shear
strain induced by this arrangement would be ¢, =d,E,. For piezoelectric materials with
transverse isotropy, d,, =d,,, d,, =d;5, &, =&;,-

For both thickness extensional and thickness shear modes, there are relevant
material constants; and elastic constant c®, a piezoelectric constant e, a dielectric

constant £°. The E/M coupling factor « is given in terms of these constants by (IEEE

Ultrasonics, 1987)

= (2.31)

In piezo-ceramics such as lead zirconate-titanate (PZT), the shear coupling

coefficient x,; can be related to the following material constants
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Ces = Caa (1— 1) (2.32)

where & and &/, are the clamped and free dielectric permittivities perpendicular to the

poling direction, respectively. d,. is the shear piezoelectric constant, 05E5 and C5D5 are shear

elastic stiffness constants under constant electric field and constant electric displacement,

respectively (Cao, Zhu, Jiang, & Introduction, 1998).

Shear horizontal (thickness shear, length shear) modes, shear vertical mode
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Figure 2.15 (a) Thickness-shear resonator. (b) Length-shear resonator.
The shaded areas are the electrodes and the dashed arrows represent the
direction of displacement at given points. The polarization direction is
indicated by an arrow on the front face of the sample.
In Figure 2.15, the polarization direction is shown with respect to the geometric
orientation of the two resonators. The both intrinsic polarizations are in horizontal axis

however the left one is along the longest edge and the right one is along the shortest edge.
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Moreover, in both resonators, the intrinsic polarizations are perpendicular to the electric
field polarizations and the electrodes are deposited on the surfaces across the thicknesses

of both resonators. In the left resonator, the shear stress T, applies on the surfaces lying

on the yz plane and has the gradient in x axis so that this resonator is called thickness-

shear resonator and other one has the shear stress T, applies on the surfaces lying on the

Xy plane and has the gradient in z axis so that is called length-shear resonator. The shear

mode that a thickness shear resonator generates is called d,, mode and the shear mode
that length generates is also called d,, mode eventhough both are actually shear
horizontal modes whose electric field polarization directions only differ; one in x, axis
and other one is in x,, respectively as can also be seen in Figure 2.14.

As the polarization direction is along thickness of a piezo-wafer so that electric

field is polarized in thickness direction, E, and since all stress components are zero
except T,, the vibration mode is d,, mode that excites shear horizontal wave mode whose

E/M coupling can be defined under constant electric field assumption as

Ky = st (2.33)
and defined under constant electric displacement D, assumption as
R (2.34)
» 5383052
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Figure 2.16 Solid lines represent non-deformed shape and dashed lines depict deformed
shape (a) Shear horizontal (SH) deformation T, =T,,, (b) Shear horizontal (SH)
deformation T, =T,,, (c) Shear vertical (SV) deformation T, =T,,.

2.3.2 STANDING WAVES
The concept of standing waves bridges the gap between wave analysis and

vibration analysis. The particle motion can simply be considered self-similar along any
line parallel to the y-axis. If plate vibration is seen as a system of standing waves in the

plate, then this case can be considered as a system of standing straight-crested axial

waves with the wave crest along the y-axis (Figure 2.17).

L]

i (x f)

Figure 2.17 Straight crested axial vibration in a plate
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To consider straight-crested flexural plate vibrations, plate vibration is seen as
system of standing waves in the plate, and then this case can be considered a system of
standing straight-crested flexural waves with the wave crest along the y-axis. Taking the

y-axis along the wave crest yields a y-invariant problem that depends only on x

Figure 2.18 Straight crested flexural vibration of a plate.

In-plane mode piezoelectric transducer constrained by elastic media

For embedded NDE applications, PWAS resonators couple their in-plane motion,
excited by the applied oscillatory voltage through the piezoelectric effect, with the Lamb-

waves particle motion on the material surface. Lamb waves can be either quasi-axial (

Sy, S,,S,...), or quasi-flexural (A), A, A,...). Figure 2.19 shows the interaction between

surface mounted PWAS and S, and A, guided Lamb waves.

Figure 2.19 PWAS interaction with Lamb waves in a plate; (a) SO Lamb wave mode , (b)
A0 Lamb wave mode.
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Zagrai in 2002 worked on standing waves to determine an analytical expression

for PWAS admittance on a 1-D structure undergoing axial and flexural vibrations.

Yziziwc{l_,{;(l_;ﬂ (2.35)
Vv pcotp+r

where ¢ =1/2yL, y =@/ Cyys, and Cpy,s is the sound speed in the PWAS material.

The quantity r=Kkg (@)/kyys is the stiffness ratio. The structural stiffness using

Str

conventional axial and flexural vibration modes of a 1-D beam was determined as

[Unu (Xa + |a)—Unu (Xa)]2 +(D)2 Z[Wn'w (Xa + Ia)_Wn,W (Xa)]z b (2.36)

2 H 2 2 H 2
@, +24 —w 2 @, “+28, —o

Ky (@) = PALD.

n

n,

u u

where @, and &, are the modal frequencies and damping ratios, while u and w signify

axial and flexural displacements, respectively.

Zagrai & Giurgiutiu in 2001 also performed 2D analysis of PWAS immittance
(impedance/admittance) for circular-crested Lamb waves in cylindrical coordinates using
the Bessel functions formulation. They also determined analytical expressions for the
admittance and impedance of a PWAS mounted on a 2-D structure undergoing

axisymmetric radial and flexural vibrations (Figure 3.1).

Thickness mode piezoelectric transducer constrained by elastic media

Transducers usually interact with another medium attached over one or both
surfaces and the boundary conditions change accordingly. The mechanical boundary
conditions on the interfaces for the waves traveling in both directions are presented in

Figure 2.20
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Figure 2.20 Constrained thickness mode transducer.

We can define the waves in each layer of the multilayered structure for the

piezoelectric transducer, the general solution of in terms of the displacement and the

force for the first elastic layer respectively are

and for the second elastic layer

A [~ Q) anike ) nikz
05 =(CPe™ +CPe™ )

FO =iwz, (-COe™ +Cle")

0§2) _ (Cl(Z)e—ikz " CéZ)eikz)

=(2) _; (2) 5—ikz (2) nikz
R =ioz,(-CPe™ +CPe*)

(2.37)

(2.38)

(2.39)

(2.40)

The elastic structures are assumed to be semi-infinite half space media therefore

the mechanical signal and the force exerted on the transducer by the medium 1 is

represented by C® (incident wave amplitude) in Egs (2.37) and (2.38) whereas the

reflected wave is represented by C{”. The coefficients can be therefore determined by the

nature of the applied signal whether harmonic, sine, or cosine input signal function.
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Herein the velocities of the waves in the elastic media extending over large distances in

the lateral directions can be calculated by using Lame constants, A and u, i.e.

c=, /(l+ 2,u)/p and if extending over small area using the elastic modulus, c=/E/ p

when open circuit condition is applied, the total current flow becomes zero, i.e.,
[ =iwQ=0 (2.41)
As an analogy, the mechanical force can be considered as the analog of the
electrical potential and the particle velocity as the analog of the electrical current. The
electro-mechanical impedance matrix establishes the relations between the mechanical
forces and the particle velocities and the electrical voltage and the electrical current
which present at the mechanical and electrical ports. The matrix can be functionally
considered as a composition of three components such as the first 2x2 sub-matrix which
includes the equations of a mechanical transmission line of thickness of the piezoelectric

transducer, the characteristic acoustic impedance, and the wave speed; the piezoelectric

constant, h,,=e, /&), terms related to the electromechanical coupling factor (
K%, =e2 1 ches,) by the reciprocal of the stiffened elastic coefficient or the compliance

coefficient (s =1/c2 );the last matrix element is the pure electrical impedance of the

piezoelectric transducer capacitance.

All the equivalent circuits can be represented by the 3x3 electromechanical
transfer matrix. The transfer matrix of circuit theory with the parameters at the electrical
and acoustic ports can be implemented to analyze the transducer performance whether a

transmitter or a receiver under the short or open circuit conditions.
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Figure 2.21 Two port illustration of a piezoelectric

transducer system. The electrical and mechanical

parameters at the ports are correlated by the ABCD
matrix.

Fo. F. (U3),, and (u,) are the forces and the particle velocities on the

transducer surfaces. In the circuit, the secondary of the ideal transformer is connected to
the external shield of the transmission line; however, the shield does not possess
inductance therefore the transmission line model cannot be directly simulated on SPICE
simulation software due to the necessity for a shield with no inductance.

The analysis and the simulation of both acoustic and electrical piezoelectric
transducer elements can be easily implemented through SPICE analysis programs for
modeling one dimensional multilayered structure with a stack of piezoelectric and non-
piezoelectric layers and for analyzing the behavior with respect to the variations on the
transducer elements by taking the acoustic losses into account (Puttmer et-al, 1997). In
the active piezoelectric plates, the length and width to thickness ratios are sufficiently
large so that one-dimensional models are good approximations to predict the properties of

the transducer (Emeterio & Ramos, 2008).
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2.3.3 WAVE PROPAGATION METHODS

A piezoelectric active sensor can fulfill both duties, actuating a structure and
sensing the elastic waves, which it generates, being propagated into a structure and
traveled back to the source (pulse-echo method). Another method can employ two
piezoelectric active sensors such that one can be used as an actuator and the other as a
sensor (pitch-catch method) to generate and sense the wave propagation into a structure,
respectively. PWAS can be also used as a resonator generating standing waves into the
structures to help identify the local dynamics of the structure via PWAS permanently
mounted on the structure in order to determine occurrence and location of a defect (Yu,

2006).

Pitch-catch Method

One PWAS can be used as an actuator whereas another PWAS as a receiver and
both are mounted on the same structure and then the generated wave propagates off the
actuator and can be received by the other PZT active sensor and the received wave
signals can be read (Figure 2.22). The wave signals recorded for the pristine form of the
same sort of structure can be used as a baseline to determine whether any damage occurs
in the structure. The wave signal analysis by comparing the phase and amplitude
differences even provides the information about the size and the location of the defect in
the material. After series of tests, the data sets can be evaluated by a statistical damage

index (DI) method based on the root-mean square values.
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Lamb wave change as it travels through a damaged area. It can become more
dispersed or even change speed. The pitch-catch method can detect delamination, cracks,

disbond in joint or impact damage (Roman, 2012).

In plane pitch-catch
I ransmatter Recever
{(Wave Exciter) (Wave Detector)
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— ———
Lamb waves VW N\ R SR W W W

Figure 2.22 Diagram of a pitch-catch setup being used to detect a damaged region
(Giurgiutiu, 2008).

Pulse-echo Method

A piezoelectric transducer can be used as both actuators and sensors since
piezoelectric material has reversible material property. This material property is a relation
between mechanical stress and electrical voltage. As mechanical stress is applied, voltage
can be generated and inversely voltage can be applied to morph the shape of the material
in small amount. These materials can be used as both actuators and sensors as seen in
Figure 2.23. The piezoelectric transducer can fulfill both duties, actuating a structure and
sensing the elastic wave that was generated by the transducer, being propagated into a

structure and traveled back to the source.
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Figure 2.23 Diagram of a pulse-echo setup being used to detect a damaged region
(Giurgiutiu, 2008).

When the propagating wave impinges on a defect, a part of the wave is reflected
back from the defect and can be captured by the PWAS. The collected signals from
damaged structure can be compared to the signal from pristine structure and the
difference in the received signal in terms of phase or amplitude difference can help
determine the existence, the type, and even the location of the damage. In order for the
pulse-echo method to be successful, part of the incidence wave should be reflected from
the damage, not be damped by the damaged zone or not be fully transmitted through the
damaged zone. Different types of damage reflect the Lamb wave differently. Damage
through the thickness will reflect the largest percentage of the transmitted wave. The
pulse-echo method is successful at detecting cracks but not very successful to detect

delamination (Roman, 2012).
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CHAPTER 3

FREE PWAS E/M IMPEDANCE SPECTROSCOPY

This chapter presents the theory and an analytical framework for simulating in-
plane and out-of-plane (thickness) modes of E/M impedance spectroscopy (EMIS) of 1-D
free PWAS. Two main electrical assumptions will be applied for both PWAS-EMIS
modes. These assumptions are 1- constant electrical field assumption and 2- constant
electrical displacement assumption. The analytical simulations under these two
assumptions will be carried out and verified by corresponding finite element simulations

as well as experimental measurements.

3.1 STATE OF THE ART FOR ELECTROMECHANICAL IMPEDANCE

SPECTROSCOPY

The intrinsic EMIS of PWAS is an important dynamic descriptor for
characterizing the sensor prior to its installation on a structure. The frequency response of
a sensor to the electrical excitation defines its dynamic structural properties. EMIS
method has been widely used to determine the dynamic characteristic of a free PWAS
and bonded PWAS for in-situ ultrasonics. For example, Sun, Liang, & Rogers (1994)
Kamas, Lin, & Giurgiutiu (2013) utilized the EMIS method for high frequency local
modal sensing. The analytical in-plane PWAS-EMIS model under constant electrical

field assumption was developed by Zagrai in 2002.
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EMIS method applies standing waves to a piezoelectric resonator and utilizes the
resonator as both a transmitter and a receiver of the generated waves traveling in a
medium so that this technique can indicate the response of the coupled medium-resonator
in terms of the E/M impedance spectrum in frequency domain. The response in frequency
domain can be in varying modes such as the longitudinal (in-plane) mode (Giurgiutiu,
2005; Giurgiutiu & Zagrai, 2000; Zagrai & Giurgiutiu, 2001), the thickness (out-of-
plane) mode (Ballato, 1977; Chen et-al, 2008; Lee, Liu, & Ballato, 2004; Meeker, 1972;
Sherrit, Leary, Dolgin, & Bar-Cohen, 1999; Tiersten, 1963; Yamada & Niizeki, 1970),
thickness shear mode (TSM) (Bandey et-al, 1999; Bund & Schwitzgebel, 1998;
Schneider & Martin, 1995). In order to theoretically analyze the thickness and thickness
shear modes of the impedance spectra of the resonators in a media, two techniques have
been used in resonator theory. One technique have employed the governing differential
equations and constitutive equations imposing the relevant boundary conditions and the
second technique has mostly used delay line transducer theory to derive an equivalent
circuit model to describe the impedance and the transfer function of the transducer
(Martin et al., 2000; Nwankwo & Durning, 1999; Sherrit et al., 1999). Two equivalent
circuits widely used are Mason’s and KLM (Krimholtz et-al, 1970) circuits to
approximate the analytical solutions for the impedance in thickness mode (Ballato, 2001).

The analytical study for thickness mode of EMIS of piezoelectric ceramic
resonator has not been fully performed yet. Therefore, the constant electric displacement
assumption used in the literature was adopted and the piezoelectric constitutive equations
are solved for the 1-D PWAS-EMIS in thickness mode. Coupled-field finite element

method (CF-FEM) was used to model and simulate free PWAS-EMIS. In addition, a set
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of experiments was conducted using free-rectangular PWAS. The results from the two
analytical models with two different assumptions are validated by the corresponding
numerical models and the experimental measurements. The comparison between

theoretical prediction, simulation, and experimental data are illustrated and discussed.

311 IN-PLANE MODE E/M IMPEDANCE SPECTROSCOPY

PZT sensor
radius ra; thickness {;

Figure 3.1 Piezoelectric wafer active sensor constrained by the structural stiffness
(Zagrai, 2002).

The analytical in-plane impedance for piezoelectric ceramic transducers such as
PWAS has been developed by Zagrai & Giurgiutiu (2001). One and two dimensional in-
plane E/M impedance models for free PWAS and constrained PWAS (Figure 3.1) were

derived to model the dynamics of PWAS and substrate structure in terms of EMIS. They

assumed the constant electric field, E;, to derive the in-plane EMIS.
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Zagrai & Giurgiutiu (2001) assumed harmonic excitation E,(x,t)=E," and

considering the 1-D equation of motion, the free PWAS impedance can be described as

. 1
Y=—=iwC, |1-x%|1- 3.1
Y 0[ ’(31[ (pCOt(pH (3.1)

where the electro mechanical coupling coefficient , x,,, defined as 2, =dZ /s e}, and

the capacitance of the material C, =bL /t/3}, and ¢ =1/2yL (IEEE Ultrasonics, 1987).

3.1.2 THICKNESS MODE E/M IMPEDANCE SPECTROSCOPY MODELS
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Figure 3.2 Schematic of a piezoelectric wafer active sensor polarized in thickness
direction.

Many rigorous researches on the thickness (out-of-plane) mode (Figure 3.2)
theory have been conducted for piezoelectric crystal and ceramic resonators. Tiersten
(1963) presented a pioneering work to develop the analytical solution for the thickness
vibration of an anisotropic piezoelectric plate. He used the resonator theory with traction-
free T =0 boundary conditions at surfaces of a plate. Thickness vibration in an infinite
piezoelectric plate was explored based on lossless ideal linear theory. He assumed a

medium that is perfectly elastic and perfectly insulating to electric current so that the
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coupling of mechanical field and electric field is omitted. Meeker (1972) adopted
Tiersten’s basic equations to develop general impedance equations with arbitrary
boundary conditions. He used a matrix method to analyze the parallel and perpendicular
electrical field excitation of piezoelectric plates in thickness direction. The resonant and
anti-resonant frequencies and the coupling factors were determined by solving
transcendental equations. (Yamada & Niizeki, 1970; Yamada, 1970) extended the
thickness mode solution for both thickness and lateral excitation. (Mason, 1948) further
developed the equivalent electrical circuit theory to predict the impedance of the simple
thickness mode piezoelectric transducer. These previous analytical solutions have been
focused on piezoelectric crystal transducers.

Mindlin (1951) obtained the frequency equation which prompts to define the
frequency spectrum of resonances by thickness shear vibration of rectangular quartz plate
fully electroded (Berlincourt et-al., 1958). The shear deformation was observed to be
present in flexural motion so that the forcing shear deformation generated by a
piezoelectric transducer excites the flexural resonance at the resonant frequencies of
flexure therefore the resonances could be designated as thickness-shear modes in a
bounded plate. He improved the classical plate theory in three dimension applying to high
frequency flexural modes and the accompanying thickness-shear motion. He retained the
shear and rotatory inertia terms which accommodated the higher thickness-shear
overtones. He neglected the width of the plate assuming the independency of resonant
frequencies of z-direction and derived the solution of two-dimensional anisotropic
version of Timoshenko’s beam equation. Mindlin & Deresiewicz (1953) later on derived

the governing equations in two dimensions for the coupled shear and flexural vibrations
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of isotropic, elastic circular plates by using Bessel’s function and obtained the results in
terms of the resonant frequencies, in thickness-shear mode, resembling to those excited in
an AT-cut quartz circular disk.

Thickness vibration in an infinite, piezoelectric plate was explored by Tiersten,
1963 based on lossless ideal linear theory which assumed a medium to be perfectly
elastic and perfectly insulating to electric current that result in omitting the coupling of
mechanical field with electric field. He investigated the steady state thickness vibrations
in an infinite -plate with infinite plated electrodes on both surfaces. Lawson’s solution
(Lawson, 1942) was improved in the mean of satisfying the proper boundary conditions.
The analysis was applied (satisfying high electromechanical coupling) to a ferroelectric
ceramic in both thickness and in-plane direction also applied to Y-cut quartz plate. The
boundary conditions are traction-free and harmonic electric potential lying on both
surfaces. Since neither boundaries nor the applied voltage is dependent on the lateral
directions, the solution was independent of x, and x3 However, the solution proposed is
only valid for resonators due to the traction free conditions and invalid for the delay line
transducers. Researches have been conducted by manipulating the thickness mode theory
for different configurations of piezoelectric crystal and ceramic resonators.

The thickness mode theories that had been developed were synthesized by Meeker
(1972) then Tiersten’s basic equations was adopted to develop the theory of the simple
thickness mode to obtain general impedance equations for the piezoelectric transducer for
arbitrary boundary conditions. The restrictions applied to the model was to avoid the

lateral excitation modes, to remain in low frequency range, and to assume no energy

56



leakage to the surrounding media therefore considering the impedance as a pure reactance
that depends on frequency, geometry and the material.

Yamada & Niizeki, (1970) analyzed the parallel and perpendicular electrical field
excitation of piezoelectric plates in thickness direction by means of a matrix method and
obtained the admittance of the plate with electrodes coated. The resonant and anti-
resonant frequencies and the coupling factors for three vibration modes (one longitudinal
and two transversal) were determined by solving transcendental equations derived and the
results were verified by experiments with lithium tantalite single crystal.

The electric field was considered as parallel field to the plate surfaces which
results in the anti-resonant frequencies as solutions to a transcendental equation unlike
the perpendicular field case from which one can come up with the resonant frequencies
(reciprocal relation) because of the assumptions made although the obtained results were
in close agreement. Yamada’s simple thickness mode analysis was adopted by Ballato,
1977 for the admittance of doubly rotated thickness mode plate vibrators uncoated

Eq(3.2) and coated with electrodes Eq(3.3).

Y =iaC, 1tan D (3.2)
2
1—;km S
Y =iaC ! (3.3)
S k? tan X (™ '

1_ m
Zm:l—/,lx ™tan X ™ X™

where x4 was defined as the reduced mass loading of the metallic electrodes and X ™
was the product of wave number that depends on the frequency by the plate thickness,

k2 was the electro-mechanical coupling coefficient that differs for each mode, and C, is
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the static shunt capacitance. In the open circuit condition, the traction-free condition was

assumed and each uncoupled frequencies were determined from the roots of

1X™ tan X ™ =1 and not harmonically related however otherwise, i.e. metalized (short)

circuit condition, the coupled resonance frequencies were determined from

k2 tan X ™
Z (m)m (m) (m =1 (3.4)
m1— XV tan X X

Ballato in 2000 extended Christoffel-Benchmann (C-B) method further to
determine the solution for lateral field excitation moreover to simplify the solution of the
thickness mode problem which was produced by Tiersten and extended by Yamada and
Niizeki for both thickness and lateral excitation. Ballato obviated, by using C-B method,
the unnecessary computation raised from the material properties tensors rotated from the
crystallographic axes to the axes of the plate. The C-B method assisted to obtain the
solution for an arbitrary direction of propagation, which had been fairly correct prior to
the publications by Tiersten and Yamada and Niizeki nevertheless, the C-B procedure
was computationally more efficient since no rotation of the material coefficients between
crystallographic and crystal plate axes was taken into account.

The thickness mode has been modeled by also facilitating the network theory in
the means of the simplifying electro-mechanical analogy using electrical equivalent
circuits associated with somewhat complicated analytical solutions for traction-free or
different loading conditions. The pioneer equivalent circuit was developed by Mason in
1948, Redwood in 1961 proposed the modified version of the Mason’s equivalent circuit
model and the alternative equivalent circuit called KLM was proposed by Krimholtz et al.

in 1970. The equivalent circuits which are composed of mechanical, electrical ports,
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acoustic layer ports (if any exists), and the transmission line have been widely employed
for the thickness mode transducer simulation, design, and optimization.

Damping in an anisotropic or piezoelectric plate could be involved using
viscoelastic models. One of the recent investigations (Lee et al., 2004) included the
dissipation of energy concerning higher operating frequency and smaller sizes of the
resonators in more realistic modeling as those used in micro-sensor applications
considering both piezoelectric crystal and piezoelectric ceramic resonators. The most
general three-dimensional investigation was performed for the plane harmonic wave
propagation and for the forced thickness vibrations in an arbitrary direction of an infinite
piezoelectric plate including losses due to the acoustic viscosity and electric conductivity.
The frequency dependent admittance was determined and the resonance spectrum in
thickness mode was depicted in frequency domain. The real and imaginary parts of the
mode shapes and potentials across the thickness of the piezoelectric plate excited in
thickness mode were demonstrated. The predicted viscosity term values were eventually

listed for different piezoelectric plates.

3.2  ANALYTICAL IN-PLANE MODE EMIS MODEL UNDER CONSTANT Ds;
ASSUMPTION
The following assumptions for PWAS were used for the in-plane EMIS model
(Giurgiutiu, 2008). The PWAS of lengthl, widthb, and thicknessh, undergoing
piezoelectric expansion induced by the thickness polarization electric field, E,. The
electric field is generated by harmonic voltage V (t) =Ve'* between the top and bottom

surface electrodes. E,is assumed to be uniform over the piezoelectric wafer. Thus, its
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derivative with respect to X, is zero i.e. 0E,/0x, =0. The voltage excitation is harmonic

so that the electric field E3:I§3ei‘"t and the mechanical response in terms of particle

ot

displacement are also harmonic, i.e. u(x,t)=u0(x)e"" where G(x) is the x dependent
complex amplitude that incorporates any phase difference between the excitation and
response.

Giurgiutiu & Zagrai (2000) obtained the following frequency dependent
impedance equation that can be used to predict the frequency response of PWAS excited

at anti-resonance frequencies. The electro-mechanical impedance follows the electrical

impedance function, 1/iwC, where C, is the capacitance of the sensor. To this purpose,
we note that the term ¢ is a function of frequency and wave speed, i.e. ¢ = %wl /c and

the electro-mechanical coupling is denoted by «Z, term.

-1
1 1
Z= 1-xl | 1- (3.5)
1oC, pcotp
7 z
n
E 100 s 10 .
3 o
3
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Figure 3.3 Simulated frequency response of admittance and impedance of a PWAS
(including internal damping effects of 6 =7 =0.01).
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Frequency plots of admittance (Y =1/Z) and impedance shows the graphical

determination of the resonance and anti-resonance frequencies. Figure 3.3 presents the
numerical simulation of admittance and impedance response for a piezoelectric active
sensor (I =7mm, b=1.68mm, h=0.2mm, APC-850 piezo-ceramic).

The general constitutive equations expressing the linear relation between stress-

strain and stress-electric displacement in in-plane mode are

a‘) T1 = ClDlSl - h31 D3

(3.6)
b') Es = _h3181 + ﬂ3ss D3

The relations of the four piezoelectric constants to each other are in in-plane mode as
follows (Berlincourt et al., 1958):
dy 533931 931811

31 = 1833 31~ h31311
s _ E
€y = &gy = d31C11

ﬁSS 31 931 ll

(3.7)

(IEEE Ultrasonics, 1987) standard on piezoelectricity provides other relations to

alternate the forms of the constitutive equations. The relations adopted for the 31 mode

are
EE D.D
CiiSi = 511 Ci1Sy; = 511
Ptz = Pastss =
Cll = C11 + e31h:~31 S11 = S11 - d31931 (3 8)
T s '
£33 = g3+ Dyi€y :333 ﬁsa Oy
E
5 = 05C5 dy, = 533931
T D
31 ﬂ33d31 h31 =030
3.21 MECHANICAL RESPONSE IN IN-PLANE MODE
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Under 1-D assumption, the in-plane mode wave equation can be expressed

o, ¢y 0y,

= 3.9
or p ox? (39

D
Introducing the wave speed in direction of x, axis, ¢ =, [+, and the wave number in 31
P

mode, y = C—; the particle displacement u, is given by
1

u, (x,,t) = G,(x,)e" (3.10)
where the general solution of the wave equation in terms of the in-plane displacement
amplitude

G,(x) =C;sinyx, +C,cosyx, (3.11)
The coefficients C, and C, are to be determined from the boundary conditions, i.e.

a-) T,(x,=L/2)=0
) Ti(x =L12) 312)
b-) T,(x, =—L/2)=0
L . ou, i .
Note the strain-displacement relation, S, = & = U, and substitute the general solution in

Eq. (3.11) into the piezoelectric constitutive equation in Eg. (3.6)a to obtain
T, =cqy(C,cosyx, —C,sinyx ) —hyD, (3.13)

Impose the boundary conditions to obtain the following system of equations

1 .1
T.(x = g) =cly (Cl cosEyL -C, smE;/L) -h,D,=0 (3.14)

L 1 .1
T.(x, = _E) =Cy (Cl cosEyL +C, smzij -h,D, =0 (3.15)

Addition of Eq. (3.14) and Eq. (3.15) will result in
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h31 D3

C = (3.16)

re, cos; yL

. 1 . .
and C,=0 since SlnEJ/LIS assumed to be non-trivial term. Recall the particle
displacement u, to get the solution in terms of the displacement amplitude

. h,,D :
0,(x,) = 31—3Lsm 2.4 (3.17)
7€ C0sy o

and the strain amplitude

A h,,.D
S, =0 = —2=cosyx, (3.18)
C,Co8y —
3.2.2 ELECTRICAL RESPONSE UNDER CONSTANT ELECTRIC  DISPLACEMENT

ASSUMPTION

The electrical impedance can be expressed as division of the voltage by the

Vv .
current; Z = T and the voltage and the current are respectively

t
a-)V = _[ E,dx,
g (3.19)
b-) I =— [ D,dA=iwD,bL
dt

Recall the second constitutive equation and substitute Eq. (3.17) into the equation to get

the expression for the electric field
2

E,= —hsl—D3Lcos y¥ + 3D, (3.20)
C,, cos 75
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From the relations provided in Eq. (3.7) and Eq. (3.8), one can come up with the

S 2
expression, h,? :(ﬁLng , and plug it into Eqg. (3.20) noting that c =1/s; and
s

11

2

: : . - , d
introduce the electro mechanical coupling coefficient , «,,, defined as 3, = —2 (IEEE

11633

standard pg 39). Note that the superscripts of the parameters in the denominator of ., are
not the same as those superscripts of the parameters of h,, therefore they should be

equated to replace h,, term with «,, in Eq. (3.20). Thus taking the relations in Eq. (3.8),

2 _ 4 difs(1-ggey (3.21)
31 b (1+dyh,

E T
S$11€33 St

Substitute the relations e, =d,, /s5, and h, =g, /s, into Eq. (3.21) and rearrange to

obtain this form

2 2 S D
KZ _ d31 _ d311833 Sy — 931d31 (3 22)
317 E.T — D D d '
S11€33 Sii St 0505

Now replace h,, term withx, in Eq. (3.20) and rearrange to form the electric field

expression

D
E,= /5D, 1—K§1[51D1 i 931d31J S (3.23)
S;p gSldSl CoSy —
2
The numerical value of the term in the small parenthesis in Eq. (3.23) for APC-850
piezoelectric material can be found as 1.396 and the value only changes with the material
properties and does not depend on frequency. Upon substitution of Eq. (3.23) into Eq.

(3.19)a, we can derive the voltage expression

64



t D 2 »S t
V = Iﬂ;stdXs _ [ SlDl + 931d31] K311633|Es ICOS XX, (3.24)
0 Su— 931d31

COSy— ©
72
s SlDl + 03,0, K§1
V =Dt 1-| L - (cos(7x,)) (3.25)
S11_931d31 COS(Y)
2

Integrate Eq. (3.25) over x, direction again since it seems variable along direction 1.

D 2 L2
V =ﬂ353D3t 1_(315 + 931d31J K3 I (COS(}/Xl)) (3.26)
S~ 931d31 COS(}/LJ -L/2
V=Dt 1| SntOaln | K (sin x| ) (3.27)
o S1D1_931dsl L Pz .

Lcosy —
v v 5
After rearrangement, we obtain the final expression of the voltage

. L
Dy a.d Siny —
V = Dyt 1—K§1(Sl.§ = d“ C 2 3 (3.28)
117 93105 y—COSy —
2 2

Recall the current-charge relation, 1 =Q =8Q/ét and part b of Eq. (3.19)
| =iwD,bL (3.29)
Substituting Eq. (3.29) into the impedance, Z=V /Il we can now derive the

electromechanical impedance for in-plane mode under constant electric displacement

assumption
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7 ﬂgsgt 1_,(32 (lel + 931d31J 1 (3 30)

- 1 '
iwbL Sﬁ - g31d31 7/Ecot 7£

2 2

1
Introducing @ = EyL and substituting into Eq. (3.30) yields

S D
7 \T/ _ ,ngt {1_’{;1(51; + g3ld31j 1 :| (3.31)
lwbL S]_]_ - gsldSl ¢C0t¢

bL
Recalling the capacitance of the material C, = 5 and substituting into Eq. (3.31) also
33

yields
D
2=V by ety ) 1 (3.32)
[0 o S —9ady ) pcote
D
(Slé + g?,ld31j ~1 (333)
S;p— 931d31

Since g,,d;, =(-12.4x10°°).(-175x10*) = 2170x10*° ~ 0 for PWAS denoted as APC

850. Then final form of the in-plane electromechanical impedance under constant electric

displacement assumption can be expressed

22— {1_,(;#} (3.34)
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3.2.3 EFFECT OF INTERNAL DAMPING

Table 3.1 Properties of APC 850 piezoelectric ceramic (www.americanpiezo.com).

T

I F3 T
dy &3 & 53 S |6/& K, | Ky | Ky |V

P dy

ks’)| mV) | @V) |[(VmN)| (VmN) | @N) | @mN)
APC 850| 7700 |400x102 |-175x1012| 26x10°|-12.4x103(17.3 x10315.3 x102 1750 | 0.63 | 0.72 | 036 |035

Property

Piezoelectric material constants are given in Table 3.1 for APC 850 type PWAS
and the PWAS EMIS models are based on these constants. The internal damping can be

modeled analytically by complex compliance and dielectric constant

Sy =Sy (1_ i77)
8y = E53(1—10) (3.35)

Bss = B (1-16)
The electromechanical resonance in in-plane, d,, mode shows up at low

frequency range. The internal damping is implied even in free PWAS case (whose
boundaries are unbounded) of the in-plane mode in order to determine the impedance and

admittance results assuming 77 and ¢ are smaller than 5% . The admittance and impedance

become complex expressions.

7 - 1_ {1_’?321(?11 + g31d31J 1 } (3.36)

i(OCO Sy~ gsldsl @ cotp

_, di  diB (50 -g,d
where 5 = =% = 3B Sy~ 0y
11633 Si \ S +05ds,

jis the complex coupling factor,C, = (1-i5)C,,

and ¢ = gowfl—iry . As geometrical properties of the PWAS transducer, 7mm of length,

7mm of width, and 0.2mm of thickness are considered and the material properties are

given in Table 3.1.
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3.3  ANALYTICAL THICKNESS MODE EMIS MODEL UNDER CONSTANT D3
ASSUMPTION
The general constitutive equations expressing the linear relation between stress-

strain and stress-electric displacement in thickness mode are

(a) T3 = 03283 - h33 D3

s (3.37)
(b) Es = _hssss + ﬂssDa

The relations of the four piezoelectric constants to each other are in thickness mode as

follows (Berlincourt et-al):

(@) dy=65305 = €55
(b) 9y = ﬁsT?sdaa = h3333D3
(C) 5= ahy; = Uyl
(d) g =B = 9ua

(3.38)

3.3.1 MECHANICAL RESPONSE IN THICKNESS MODE

Under 1-D assumption, the out-of-plane (thickness) mode wave equation can be

expressed

o°u, ¢l o4
-l (3.39)
ot L OXg

. o . ch .
Introducing the wave speed in direction of x, axis,c, =, [-2 , and the wave number in
Yo,

thickness mode, 7, :cﬂ yields the particle displacement u, that is given by
3

Uy (X5, 1) = Gy (%,)e' (3.40)

where the general solution, i.e.
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G,(X;) = C,siny,x; +C, COS ¥, X, (3.41)
The coefficients C,andC, are to be determined from the boundary conditions to obtain

the particular solution; the stress-free boundary conditions are

a-) T,(x,=t/2)=0

(3.42)
b-) T,(X, =—-t/2)=0
ou, . .
Note that S, = x = U, and substitute Eq. (3.11) into Eqg. (3.6)a to get
3
T, = C7, (C, €087, X, — C, sin y,X; ) — hy;,D, (3.43)

Imposing the stress-free boundary conditions yields the following equation system

t 1 .1
To(%, = E) =Coy, (Cl cosE;/tt —-C,sin Eyttj -h,D, =0 (3.44)

t 1 .1
T, (X, = _E) =Col, (Cl coszytt +C,sin Eyttj -h,D, =0 (3.45)

Addition of Eqg. (3.14) and Eq. (3.15) will result in

h33 D3

C, = (3.46)

1
%005 7

_ .1 o :
and C,=0 since SInE}/tt is assumed to be non-trivial term. Recall the particle

displacement u,

. h,,D .
Uy (X,) = %Sln}/t& (3.47)
VG35 COS Y, =
~ h,,D
S,=U; = %COS 7 Xs (3.48)
Co COSY, —
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3.3.2 ELECTRICAL RESPONSE UNDER CONSTANT ELECTRIC DISPLACEMENT

ASSUMPTION

The electrical impedance can be expressed as division of the voltage by the

\Y .
current; Z = T and the voltage and the current are respectively

t
a-) V= I E.dx,
0 (3.49)
by =4 [ DA =iwDpl
dt

Recall the second constitutive equation and substitute Eq. (3.48) into Eq. (3.37)(b) to get

the electric field expression

hZ,D :
E,= —%cos VX3 + F3D5 (3.50)
C330087,

Recalling the piezoelectric constant relations in Eq. (3.38). One can derive these relations

2 1
h,> = e3s32 using (3.7)(a); Bs; =—using the combination of the part (d) and (c) of Eqg.
3 33

d .
(3.38); and 933zs—§using part (a). Finally one can come up with the expression,
33

2
h,,> :(’B?'S?’—g“j , and plug it into Eq. (3.20) noting that c2 =1/s:, and introduce the

33

2
e33

D .S
33%33

electro-mechanical coupling coefficient , x,,, defined as xZ, =

(IEEE standard pg

39). Rearrange the Eqg. (3.50) to obtain
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s 2 COSY, X
E; = fuDs| 1- k3

(3.51)
cosy,

Upon substitution of Eq. (3.51) into Eq. (3.49)(a), we derive the voltage expression

t 2 S t
V= j B,Ddx, — %33[33 I COS y, X,0X, (3.52)
0 Cos7,, 0
2
K. f 12
V = BiD| 1-—=2—(sinyx['r,) (3.53)
ytcosy, >

After rearrangement, the voltage expression takes form

1
V = Dyt 1_K3231— (3.54)

t
E%tCOt?/tE

Recall the electric current charge relation 1 =Q=0Q/ét and part (b) of Eq. (3.49) to
have
| =iwD,bl (3.55)
Substituting Eq. (3.54) into the impedance Z =V /| yields
S
Z= Pudt 1-x2 1 (3.56)

iwbl ®1 t
@ E%tCOtJ/tE

Introduce ¢ = % y,t and substitute to get

S
z :\i:_’BLSt 1- x5 1 (3.57)
| iwbl @Cotg
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. : bl . :
Recall the capacitance of the material C, = —< to eventually obtain the thickness mode
33

electromechanical impedance equation under constant electric displacement assumption

Z=\i=_ 1 1—K§3L (3.58)
I 1) O @pcote

Pzt constitutive Egs.

I .

Mech. Response Electrical Response under
Wave Egs. constant D5 asumption
al=£3l Electric field, E;
el g ox )
Boundary Conds. Ele::tr_ﬂmechanlcal
coupling coeff.,
Determination of Eigen- . e,
vectors and Eigen-freqs K3 = D5
Particle displacement Free PWAS Thickness Mode

fi5(x3) EMIS

V 1 3 1
Z=E=m{1“‘%w¢;}

Figure 3.4 Flow chart of the 1-D analytical thickness mode EMIS for
free PWAS.

As seen in the flow-chart (Figure 3.4), the analytical model begins with the
piezoelectric constitutive equations, then the mechanical response is derived in terms of
the particle displacement in PWAS implying traction-free boundary conditions to solve
the wave equations. In the second part, the electrical response is derived under constant
electrical displacement assumption to solve the second piezoelectric constitutive equation
for the electrical field. Finally, implying the electromechanical coupling coefficient the
close form solution for the free PWAS thickness mode E/M impedance can be expressed

as a function of frequency. The real part of the thickness mode impedance and the
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admittance are presented in for 0.2mm thick and 7mm diameter PWAS are presented in

Figure 3.5.

R

' x',l o, "
\

1

Figure 3.5 Real part of the impedance and the admittance for 0.2mm thick and 7mm
diameter PWAS in out of plane (thickness) mode.

3.4  ANALYTICAL THICKNESS MODE EMIS MODEL UNDER CONSTANT E;
ASSUMPTION

In this section, the behavior of a free PWAS in thickness mode will be addressed.

The PWAS induced by the thickness polarization electric field, E, which is generated by

harmonic voltage V (t) =Ve'* between the top and bottom surface electrodes. E, is

assumed to be uniform over the piezoelectric wafer as schematically illustrated in Figure

3.6. Thus, its derivative with respect to transversal axis is zero i.e. 0E,/0x,=0. The
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voltage excitation is harmonic so that the electric field E,=E.e and the mechanical
response in terms of particle displacement are also harmonic, i.e. u,(x,,t) = G,(x,)e"

where U,(x;) is the complex amplitude that incorporates any phase difference between

the excitation and response.

X3, U,

—— E3
T 5 A PZT active sensor
113 i - i ) ’
: Length / ,thickness 7 ,width b —>
l T

3

—

—

Figure 3.6 Schematic of thickness mode of a piezoelectric wafer active sensor and
infinitesimal axial element.

The general constitutive equations expressing the linear relation between stress-

strain and stress-electric displacement in thickness mode are
S, =s5T, +d,E, (3.59)
D, =d,,T, + eLE, (3.60)
where S, is the strain, T, is the stress, D,is the electrical displacement (charge per unit
area), s, is the mechanical compliance at zero electric field, &, is the dielectric constant
at zero stress, d.,is the induced strain coefficient (mechanical strain per unit electric

field). Recalling Newton’s law of motion, one can derive the differential equation(3.63).
YF=ma (3.61)

under 1-D assumption, use the transversal stresses on infinitesimal element of PWAS
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(T, +dT, = T,) Adx, = pAdx,li(X,, t) (3.62)
T; = pli(X;, 1) (3.63)
and recall the strain-displacement relation
S, =, (3.64)
Differentiate the Eq. (3.59) with respect to X;and since JE,/0x, =0, the strain rate
becomes
Sy =55y (3.65)
Substituting the Eqg. (3.63) and Eq. (3.64) into Eq. (3.65) yields
us = sg,pl, (3.66)
Introduce the transversal wave speed of the material

1
’ PssEs (367

and substitute into Eg. (3.66) thus, 1D wave equation can be written as
U, = c,°ul (3.68)
The general solution of the wave equation is in harmonic wave form
Uy (X5, 1) = Uy (x,)e' (3.69)
where the general solution in terms of the displacement amplitude
G,(X;) =C,siny,x; +C, CoSy, X, (3.70)
and the wave number is introduced as the ratio between the angular frequency and the

wave speed in thickness direction.

V= (3.71)

£
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34.1 MECHANICAL RESPONSE IN THICKNESS MODE

Starting from the constitutive equation under the 1-D assumption
S, =s5T, +dE, (3.72)

Electric field can be explicitly expressed for the thickness mode

E, = (3.73)

1
where u{iitjis displacement oriented in thickness mode on top and bottom surfaces
of PWAS resonator. For the free-PWAS, the stress-free boundary conditions
1 . . . :
(T, iEt =0) can apply to the strain equation. Substitution of Eq(3.73) into Eq(3.72)

under stress-free boundary conditions yields

2

A 1 \Y
S, (——tj =dg, (3.74)
SR IOREY)

The difference between the particle displacements on top and bottom surfaces is

infinitesimally small the one can assume

1 1
US(EtJ_US(_EtJ ~0 (3.75)

Then Eq. (3.74) takes form as
(1 v
83 (_Etj:dBST (376)

és(_%tj = OQ(—%tj =7, (Cl CoS Y, %t +C,siny, %tj = dgs\% (3.77)

76



2 (1 (1 1 .1
S, (Etj = U, (Et) =7, (Cl COSy, Et —-C,siny, Et) =d,,

Summation of the Eq. (3.77) and Eq. (3.78) yields

1 Y,
7.C, cosy, Et = dss?

then

¢tV

7T cos 1t
7t2

7,C,siny, %t =0

T | :
assuming SIn 7t5t #0, we obtain

C,=0
Substitution of Eq. (3.80) and Eq. (3.82) into Eq. (3.11) yields

. d.V sinyx
0,(x,) = sst i 13
% cosy,

A

or with substitution of the expression E, =V /t

- d,.E, sinyx
1, (x,) = —2=3 Vi%s

% cos;/t;t

Recalling stress-displacement relation in Eq(3.64), we obtain

COS Y, X,

SAs(xs) = lj3!()(3) = dssés
Cosy, Et
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(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)
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3.4.2 ELECTRICAL RESPONSE UNDER CONSTANT ELECTRIC FIELD ASSUMPTION

D, =d,T, +&LE, (3.86)

Upon substitution of the strain-displacement relation of Eq. (3.64) into the first of the
constitutive equations

u; =sgT, +d,,E, (3.87)

and solving Eq. (3.87) for T, yields

T3 _ u_é_ d33E3

3.88
S s =%
Substituting Eq. (3.88) into Eq. (3.86) yields the electric displacement expression, i.e.

d d..’E
_ 733 ¢ 33 3 T
D, =—F U ——— + &3k,

(3.89)
833 S33
In another form

D, = £LE, {1— K2 [1— MH (3.90)

d33E3

Recall Eq.(3.85) and substitute it into Eq.(3.90) to get
COS ¥/, X
D, = eLE, {1—;(323 (1—%}} (3.91)

2
where xZ, = % is the electromechanical coupling coefficient. Integration of Eq. (3.90)
S33633

over the electrodes area A= Dbl yields the total charge
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Figure 3.7 Electrical displacement change along the thickness of a square PWAS at
frequency of 1 MHz.

The electrical displacement change along the thickness of a square PWAS at
frequency of 1 MHz is presented in Figure 3.7. The varying electric displacement is

determined under constant electric field assumption.

112 b ~y
A A u,(X
Q(x,) = |, Dydxdx, = | [ D,dx,dx, =sLE bl {1—@{1— d3( EB)H (3.92)

-1/2 0 333

We introduce the equivalent charge expression by integrating the charge over thickness

of the PWAS

Qqqy (X5) =% [ Q0x)dx, (3.93)

—t/2

Substituting Eq. (3.92) into the equivalent charge equation yields
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A 17 Gl (x
Qeq(XS) :E J. 833E b||: Ky (1_% dx, (3.94)
-t/2 33

Upon integration over thickness, we get

£ E bl
Qeq( X;) = —5—=— |:(1 )t+K33 = U;(%,) } (3.95)
t d33 3 3
~ 1 ., 1
. . . ug(gt)—u3(—§t)
Qeq(X5) = EE bl | 1—rc3; + i (3.96)

d,,E.t

Introduce the induced strain and induced displacement for the thickness mode
Sl(g\ = d33E3 (3.97)
Uigh = Sl = A Eet (3.98)
Upon substitution of Eq.(3.98) into Eq.(3.96), we obtain

Aol Ao 1
Uy () —Uy(——t
NEDRTNCED

)
Uisa

Qeq(x3) & EA 1-x5|1- (3.99)

Where ISA denotes ‘induced strain actuation’ and the superscript(t) denotes ‘thickness

mode’. Upon substitution of Eq.(3.84) into Eq.(3.99), we obtain

.1
R ) Slnaytt
T 2
Qeq(x3) = 5B Al 1-x5 | 1- 1 1 (3.100)

T

Recall the capacitance of the material C, = e and E3 =V /t then rearrange Eq.(3.100)

Then EQ.(3.100) takes the following form
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A n 1
Qeq(X5) = GV, 1-xg +K§31— (3.101)

1

The electric current is obtained as the time derivative of the electric charge i.e.

| =0 =iwQ (3.102)
Hence,
fa - 2 2 2 l
[ =iy, | 1=K 1y T — (3.103)

The admittance,Y , is defined as the fraction of current by voltage, i.e.

Y :\llzia;co 1—K§3+K‘§31; (3.104)

1

1
Rearrange the admittance equation (3.104) introducing @ = E;/tt

Y:ia)C{l—K?f{l— L ﬂ (3.105)
@coty

The impedance, Z , is reciprocal of the admittance, i.e.,

-1
Z=- L {1—@{1— L ﬂ (3.106)
1aC, @pcote

and the real part of the thickness mode impedance and admittance of free PWAS in size

of 7mmx7mmx0.2mm are plotted in Figure 3.8.
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Figure 3.8 Real part of the impedance and the admittance for 0.2mm thick and 7mm
diameter PWAS in out of plane (thickness) mode.

3.5 CASE STUDIES FOR FREE PWAS EMIS

This section includes the free PWAS experimental thickness mode impedance and
admittance results and comparison with the analytical free PWAS thickness mode
impedance results calculated under constant Ds assumption by using the piezoelectric
material properties. The thickness of the PWAS was measured to be 0.215 mm. The
admittance measurement result for free square PWAS is illustrated in Figure 3.10 and

focused on the thickness mode resonance peak at around 11.5 MHz.
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The theoretically unexplained large peak also appears at around 3 MHz in
admittance plot. This peak disappears as plotting the experimental impedance results. For
free PWAS impedance results are relatively easy to be predicted by the analytical free
PWAS thickness mode model with constant electrical displacement assumption.
Therefore, one can see the perfect agreement between the experimental and analytical

free PWAS-EMIS thickness mode results in Figure 3.9

Real part of Impedance, ReZ

Analytical PWAS-EMIS
50 Experimental PWAS-EMIS
~ 40~
2}
£
e
O 30-
N—r
~
N
[l
I 20
10
Pl i,
0 ? r r r r
4 6 8 10 12 14

Frequency (MHz)

Figure 3.9 Comparison between analytical and experimental thickness mode
impedance results.
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Figure 3.10 Illustration of schema and picture of square PWAS and admittance-
impedance results for the free square PWAS.

Illustration of schema and picture of square PWAS and admittance/impedance
measurements for the free square PWAS are presented in Figure 3.10. The trends which
the admittance and impedance curves of free square PWAS follow are the same as those
of circular PWAS. Admittance curve still has large mountain at around 2MHz and the
thickness mode resonance frequency at around 11.5MHz. The thickness mode admittance
is almost at the same frequency since the thickness of the square PWAS is almost same as

that of circular PWAS.
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351 COMPARISON OF IN-PLANE MODE EMIS MODELS

Constant-D Analytical Model
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Figure 3.11 Analytical impedance and admittance simulation results for 7x7 mm? square
0.2 mm thick PWAS.

The results obtained from the analytical model of 1-D in-plane PWAS-EMIS
under constant electrical displacement assumption are shown in terms of resonance

(admittance) and anti-resonance (impedance) spectra in Figure 3.11.
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Figure 3.12 Impedance comparison for two 1-D analytical models regarding
in-plane mode of PWAS resonator and 2-D finite element model for a 7 mm
square 0.2 mm thick PWAS.

The analytical result from the in-plane EMIS model with the constant Dj
assumption is also compared with the corresponding analytical result for the constant Ej
assumption as well as the in-plane FEA PWAS-EMIS simulation results in Figure 3.12.
The 1-D analytical and 2-D FEA in-plane PWAS-EMIS models collide at the first E/M
impedance peak however discrepancies at higher overtone impedance peaks are observed
as frequency increases. In this comparison, the impedance peaks from the model with

constant D assumption, as frequency increases, has better agreement with the FEA

simulation as opposed to the constant E; model in the frequency range of 2.5 MHz.
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Figure 3.13 Impedance comparison for two models regarding in-plane mode
of PWAS resonator and impedance measurement for a 7 mm square 0.2 mm
thick PWAS under stress-free boundary condition.

The both in-plane 1-D PWAS-EMIS analytical simulation results from the in-
plane EMIS model with the constant D; assumption with the corresponding analytical
result for the constant E; assumption are validated by the experimental results in Figure
3.13. The both EMIS models collide at the first E/M impedance peak however a
frequency shifts can be observed at the other peaks. In this comparison, the impedance
peaks from the model with constant E assumption, as frequency increases, appears to be
closer to the experimental E/M impedance measurement as opposed to the constant D3

model in the frequency range of 2.5 MHz.

3.5.2 COMPARISON OF THICKNESS MODE EMIS MODELS
This section compares two impedance results for two thickness mode models for a

PWAS resonator. One model assumes that E, is uniform over the piezoelectric wafer
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whereas the other model assumes D, the electrical displacement (charge per unit area) as
a constant value. The both results are shown in Figure 3.14.

Thickness Mode Impedance

T T T T T T T I I
Conslnt E model

~ Constent D model
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ﬁ
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Conzlnt E model
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Re(¥)

[ ] ] ] ] ] ] ] [
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Figure 3.14 The comparison of the real part of the impedance and admittance results for
both thickness mode analytical models for a 0.2 thick and 7 mm round PWAS resonator.

As seen some discrepancy occurs in impedance curves. The model which
considers D constant has an anti-resonance peak at around 11 MHz while that of the other
model is at a frequency lower than 10 MHz. From the experimental results for the 0.2

thick and 7mm round PWAS, we can conclude that the thickness mode impedance result

88



for the constant D model has a better agreement with the experimental data than that for

the other model as can be observed in Figure 3.15.
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Figure 3.15 Experimental results of the impedance for 0.2 thick APC-850 PWAS
resonator.

3.6 SUMMARY AND CONCLUSIONS

1-D analytical, 2-D finite element analyses are carried out for free PWAS-EMIS
and the results obtained from the theoretical development are verified by comparison
with the results from the corresponding measurements. Two main electrical assumptions
in the electrical analyses are adopted to develop the in-plane and thickness modes of E/M

impedance spectra.
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To conclude, the constant electrical field assumption gives better results in in-
plane EMIS prediction whereas the constant electrical displacement assumption brings

better agreement in thickness mode with the experimental measurements.
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CHAPTER 4

BEHAVIOR OF FREE PWAS AT ELEVATED TEMPERATURE

This chapter presents a literature survey to assess prior work the survivability of
piezoelectric wafer active sensors (PWAS) at elevated temperature. Also, we could
discover from the literature the extent of temperature dependence of the electric
parameters, i.e. d3; and gs1, and the elastic parameters, i.e. s;1 and Young’s modulus (C11),
of different piezoelectric materials. Some preliminary results from parametric studies
regarding PWAS-EMIS affected by changes in the piezoelectric wafer material properties
were obtained by an analytical 1-D PWAS and 2-D circular PWAS impedance
simulation. Then, the results from the experimental cycling of PWAS at gradually
increasing temperatures are discussed. Trends of the results in terms of static capacitance,

Co and electromechanical impedance spectroscopy (EMIS) are presented.

4.1 STATE OF THE ART

In Laboratory for Active Materials and Smart Structures (LAMSS), two
researches regarding survivability of PWAS at extreme environments such as at
cryogenic and high temperature had been conducted. Bottai & Giurgiutiu (2012)
evaluated the structural health monitoring capability of PWAS on composite structures at
cryogenic temperatures. They used EMIS method to qualify PWAS for cryogenic
temperatures using PWAS instrumented composite specimens dipped in liquid nitrogen
(Lin et-al., 2010). Then damage detection experiments were performed on laboratory-

scale composite specimens with impact damage and built-in Teflon patches simulating
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delaminations. A comprehensive damage detection test was performed on a full-scale

specimen subjected to pressure and cryogenic temperature cycles.

Platinum wire

GaPO, / High-temperature
Platinum adhesive

electrode /

Structure

Figure 4.1 X-cut GaPO4 PWAS wafers comprised of a single crystal disks
of 7mm diameter and 0.2mm thickness single crystal discs.

Another research aimed to develop and test a custom high-temperature PWAS
(HT-PWAS) (Giurgiutiu, 2010). The HT-PWAS that they sought must have the Curie
transition temperature well above the operating temperature; otherwise, Giurgiutiu
reported that the piezoelectric material might depolarize under combined temperature and
pressure conditions. The thermal energy causes large power dissipation and hysteretic
behavior. Relatively high temperature variation produces pyroelectric charges, which
interferes with the piezoelectric effect. In addition, many ferroelectrics become
conductive at high temperatures, leading to the charge floats and partial loss of signal.
The conductivity problem is aggravated during operation in atmosphere with low oxygen
content, in which many oxygen-containing ferroelectrics may rapidly lose oxygen and
become semi-conductive They chose Gallium orthophosphate (GaPO,) material as
piezoelectric wafer that shows remarkable thermal stability up to temperatures above
970°C (1778F). Giurgiutiu noted that it displays no pyroelectric effect and no outgassing

and also it has a high electric resistivity that guarantees high-precision piezoelectric
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measurements. The PZT wafers were X-cut GaPO, single crystal disks of 7mm diameter
and 0.2mm thickness (Figure 4.1). They conducted EMIS, pitch-catch and material
characterization tests (scanning electron microscopy, X-ray diffraction, energy dispersive
spectrometry) (a) before and after exposure of HT-PWAS to high temperature (b) inside
the oven. They reported that the GaPO4 HT-PWAS maintained their activity up to 1300F
(705C). In comparison, conventional PZT sensors lose their activity at around 500 F
(260C).

Regarding temperature dependence of the electric parameters, in (Wolf, 2004),
lead zirconate titanate (PZT) thin films was measured between -55°C and 85°C to obtain
the effective piezoelectric coefficient for different material composition. Films tend to
have smaller dielectric, ferroelectric, and piezoelectric properties in comparison with
their ceramic counterparts. PZT films were tested with 2, 4, and 6 mm thickness and
40/60, 52/48, and 60/40 Zr/Ti ratios. They reported that The effective transverse

piezoelectric coefficient (e, ;) that is defined in Eq.(4.1) increases with temperature.

Average increases were 46%, 32%, and 12% for films with PZT 60/40, 52/48, and 40/60

compositions, respectively

d ct
_ 31 13

esl,f = E =€ — E €33 (4-1)
Sll + S12 C33

Poisson’s ratios of pure PZT ceramics across much of the solid solution system at

constant temperature v =-s,, /s,,. e, were consistent with the rapid rise in intrinsic ds;

as T is approached (Figure 4.3).
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Figure 4.2 Low temperature elastic compliance coefficient (s , ) plotted as a function of
temperature for several tetragonal and rhombohedral PZT compositions.

Wolf (2004) also reported increasing piezoelectric elastic compliance upto 250 K
for PZT 52/48 and PZT 50/50 and their compliance values start decreasing after 250 K
however other PZT material with different Zr/Ti compositions have monotonic increase

until 300 K as seen in Figure 4.2.
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Figure 4.3 —d3; of Pt/PZT/Pt stack plotted as a function of
temperature for 2 um Pt: Platinum electrode.
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Raghavan & Cesnik in 2008 reported elastic and electric properties of a
piezoelectric material, PZT-5A as a function of temperature raised up to 150 °C as seen in

Figure 4.4. The inverse of Young’s modulus, Y, is the elastic compliance, i.e.

1 Strain
s=—= [ m*/N, 1/Pa | (4.2)
Y  Stress
70 1680 -
_ 1660 -
g 68
g 5 1640
o 66 Bz
3 . . = g 1620
B 64 TE
E N - $> 1600+
L, K -Q
o 62 .y N7 1580
Z -+ Al static
> 609 -+-A dynamic x 1560 1
-+PZT-5A
58 ‘ - - ‘ ‘ . 1540 : : : . ‘ ; .
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Temperature (°C) Temperature (°C)

Figure 4.4 Variation of Young’s modulus and ds;xgs;. Average thermal expansion for
PZT-5A a =2.5um/m-°C.

PZT-5A

Young’s moduli of PZT-5A monotonically decreases as temperature increases
between room temperature and 160°C. The product of d31xg31 fluctuates along the
temperature. It first monotonically inclines until 60 °C, and it declines after 110 °C and it
goes lower than its original value at room temperature.

A NASA report by (Hooker, 1998) shows the temperature dependence of ds; and
ds3, the effective E/M coupling coefficient as well as the thermal expansion of three
different piezoelectric materials. The effective E/M coupling coefficient is defined as a

function of frequency

keff = . = (43)
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where f_ is the minimum impedance frequency and f is the maximum impedance

frequency
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Figure 4.5 -d3; and ds3 of three different PZT materials plotted as a function of
temperature
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Figure 4.6 the effective E/M coupling coefficient and thermal expansion plotted as a
function of temperature

(Freitas, 2006) reports (x)BiFeO3-(1-x)PbTiO3 ceramics displaying piezoelectric,
ferroelectric behaviors. A E4980 Agilent LCR bridge was used to determine resonance

and anti-resonance frequencies that can be used for calculating piezoelectric coefficients.
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With temperature increasing, the 9,, and d31 coefficients present two distinct thermally

stable regions. In temperatures ranging from 20 °C to 100 °C, and from 250 °C to 300 °C..
This thermal stability for piezoelectric coefficients at high temperatures attests the
efficiency of 0.6BF-0.4PT ceramics for high temperature piezoelectric applications, as
mechanical transducers and high power actuators. The piezoelectric voltage coefficient is

defined by the relation and plotted in Figure 4.7.

g= Strain developed ~ Electric field developed 4.0)
Applied charge density  Applied mechanical stress '
d;
g = E (4.5)
100 16
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Figure 4.7 The piezoelectric voltage constant, gs; and piezoelectric charge constant, ds;
with temperature increasing.

We have conducted a preliminary parametric study to understand the effects of

the material properties on the impedance (anti-resonance) and admittance (resonance)
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spectra. We utilized the 1-D PWAS-EMIS model (Andrei Nikolaevitch Zagrai, 2002) for

this analytical simulation.

-1
Z =- L {1—/(321[1— L ﬂ (4.6)
1oC, pcoty

where ¢ is a function of frequency and wave speed, i.e. go=%col /c and the electro-

mechanical coupling is denoted by «Z, term. The material properties are given in Table

3.1.

4.2 1-D ANALYTICAL EMIS SIMULATIONS FOR PWAS AT ELEVATED
TEMPERATURES
Herein, we first simulated the effects of the temperature increase via the stiffness
coefficient change on impedance and admittance results through 1-D analytical in-plane
EMIS model for free PWAS. Then, the piezoelectric coefficient was also taken into
account to more precisely capture the degradation of the PWAS material due to the

elevating temperature.

42.1 EFFECTS OF STIFFNESS COEFFICIENT C1; CHANGE
We have varied the piezoelectric stiffness and the piezoelectric charge constant by
5% separately and together and plotted the admittance and impedance spectra as seen in

Figure 4.8, Figure 4.9, and Figure 4.10.
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Figure 4.8 The stiffness change influence on both anti-resonance (impedance) and
resonance frequency (admittance) in-plane EMIS of 7mmx0.2mm PWAS.

Apparently, the stiffness change has influence on both anti-resonance and
resonance frequencies however not much influence on the amplitude of the impedance

peaks whereas somewhat influence on the amplitude of the admittance.
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4.2.2 EFFECT OF PIEZOELECTRIC COEFFICIENT D3; CHANGE
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Figure 4.9 The piezoelectric charge constant ds; change influence on both anti-resonance
(impedance) and resonance frequency (admittance) in-plane EMIS of 7mmx0.2mm
PWAS.

The piezoelectric charge constant change has influence on the first in-plane anti-
resonance frequency however not any influence on the in-plane resonance frequency
whereas has influence on both the amplitudes of the impedance and the admittance.

When we combined both the parameter changes and simulate the impedance and

admittance of PWAS, we observe both the frequency and the amplitude shifts in both
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plots. We have phenomenological agreement in trends of the impedance spectra with the

experimental results.

4.2.3 EFFECTS OF STIFFNESS COEFFICIENT Ci1, PIEZOELECTRIC COEFFICIENT Dag
CHANGES
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Figure 4.10 The stiffness and the piezoelectric charge constant ds; change influence on
both anti-resonance (impedance) and resonance frequency (admittance) in-plane EMIS of
7mmx0.2mm PWAS.

However, we still need to improve the agreement by using 2-D circular PWAS-
EMIS analytical model and by including more parameter changes to reflect the

temperature effects on the piezoelectric material degredation. The parameter changes
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need to be more linked to the temperature increase by using the experimental
measurements in the literature. We also need to include in the model the capacitance

change that is measured and found to be strongly dependent on the temperature increase.

4.3 2-D ANALYTICAL EMIS SIMULATIONS FOR PWAS AT ELEVATED
TEMPERATURES
In this subsection, the temperature effects on free circular PWAS admittance and
impedance are presented through the analytical model and the EMIS tests. The effects of
the stiffness coefficient c;1, the piezoelectric coefficient ds; , and the static capacitance Co
on impedance/admittance are taken into account.

L 3
Poling direction

a E-un’acm\ 2
-
! < L /

Figure 4.11 Schema of circular PWAS in cylindrical coordinate system.

Zagrai (2002) has developed 2-D EMIS for circular PWAS using the free circular
PWAS model (Figure 4.11) and the derivation procedure shown in the flow-chart in
Figure 4.12. In this section, we adopted herein his in-plane EMIS model to simulate the
temperature effects on piezoelectric material degradation of free circular PWAS. The
analytical simulation will be conducted by changing the stiffness coefficient, the
piezoelectric coefficient, and the capacitance. The stiffness coefficient and the

piezoelectric coefficient degradation have been discussed in the literature and plots for

102



the material properties versus temperature increase have been provided. The capacitance
dependence over temperature has been defined during our experimental studies.
Therefore, the proportions of the elastic and piezoelectric material property degradations
are attained from the literature and the capacitance proportion was obtained from the
capacitance measurements over increasing temperature. The admittance and impedance

simulations are presented respectively and compared with the experimental results.
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Figure 4.12 Flow-chart of the analytical modeling of 2-D in-plane EMIS of circular
PWAS.

The EMIS tests are conducted for a PWAS in an oven at elevated temperature
between 50°C and 250°C with the 50°C step. During these tests, the piezoelectric material
degradation has been observed. The affected material properties are defined via both the
literature survey and the measurements. The degraded mechanical, electrical, and
piezoelectric properties of PWAS were used to simulate the temperature effects on the
first in-plane admittance and impedance peaks. For the analytical simulations, 2-D

circular PWAS-EMIS model was utilized. The material properties used in this study are
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the stiffness coefficient ci1, the piezoelectric coefficient ds;, and the capacitance Coy. The
analytical and experimental results for admittance are shown in Figure 4.13 and the

results for impedance are also shown in Figure 4.14.
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Figure 4.13 Stiffness coefficient c;1, piezoelectric coefficient ds; , and capacitance Co
influence on admittance.
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Free PWAS n-Plane Mode Impedance
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Figure 4.14 Stiffness coefficient c;1, piezoelectric coefficient ds; , and capacitance Co
influence on impedance.

44  EXPERIMENTAL WORK

Wires from the
fixture are
commected to the
impedance
analyzer

Thermocouple

Thermistor

Figure 4.15 High temperature PWAS testing by (a) impedance analyzer, (b) PID
temperature controller (c) oven.
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The E/M impedance is used as a direct and convenient method to implement for
PWAS impedance signature as a function of temperature up to relatively high
temperature, the required equipment being an electrical impedance analyzer, such as HP
4194A impedance analyzer, PID temperature controller, and oven. An example of
performing PWAS E/M impedance spectroscopy is presented for PWAS located in a
fixture in the oven in Figure 4.15. PWAS has to have stress-free i.e. unconstrained
boundary conditions so that it was fixed by pogo-pins that only apply low spring forces
point-wise on the PWAS surfaces in the fixture. The fixture has wires that can be
connected with the probes of the EMIS analyzer instrument. The impedance analyzer
reads the E/M impedance of PWAS itself in the oven. It is applied by scanning a
predetermined frequency range (300kHz-400kHz) and recording the complex impedance
spectrum. A LabView data acquisition program was used to control the impedance
analyzer and sweep the frequency range in steps (of 100Hz) that was predefined and to
attain the data in a format that assists to data analysis. During the visualization of the

frequency sweep, the real part of the E/M impedance, Re(Z(a))), follows up and down

variation as the structural impedance goes through the peaks and valleys of the structural

resonances and anti-resonances.
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(©

Figure 4.16 a) Fixture in the oven (b) fixture, thermistor, and thermocouple (c) PWAS in
the fixture.

Our objective was to evaluate the extent of the temperature dependence of
PWAS-capacitance and EMIS results and the degredation of PWAS material with respect
to some electrical and elastical material properties. For the experimental study, we
pursued the following protocol
o Measure baseline room temperature PWAS capacitance and electromagnetic

impedance (EMI) spectrum.

o Elevate PWAS to 50 °C and hold it there for several minutes (e.g. 10-30 min)

o Measure PWAS capacitance and EMIS at the elevated temperature
o Drop PWAS temperature back to the room temperature
o Measure PWAS capacitance and EMI spectrum at room temperature

o Perform steps 2-5 for 100, 150, 200, and 250 °C

We have measured 6 PWAS at different temperatures starting from the room

temperature. The capacitance and EMIS measurements have been performed for 50, 100,
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150, 200, and 240°C and the temperature was dropped to the room temperature after each
step and obtained 5 temperature cycles and 5 more capacitance and EMIS reading at the

room temperatures.

441 CAPACITANCE RESULTS

Figure 4.17 indicates the static capacitance results for only one of the PWAS at
elevated temperatures as well as at the room temperatures in each temperature cycles
whereas Figure 4.18 for all of the PWAS resonators at only elevated temperatures. Figure
4.19 also shows the averaged capacitance values over the static capacitance values that
are obtained from 6 PWAS resonators. One can observe the monotonic increase in the
capacitance values by increasing the temperature. The trend is linear up to 200 °C
however it is interesting to see that the temperature gradient of the capacitance increases
after this temperature. The capacitance values at room temperatures after each cycling

also vary for the PWAS 1R.
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CAPACITANCE VS TEMPERATURE
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Figure 4.17 Static capacitance results for PWAS 1R (7mmx0.2mm PWAS) at elevated

temperatures and room temperatures in each temperature cycle.
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Figure 4.18 Static capacitance results for all of the circular PWAS resonators
(7mmx0.2mm) at only elevated temperatures.
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Figure 4.19 Averaged static capacitance results for all of the circular PWAS resonators
(7mmx0.2mm) at room temperature and elevated temperatures.

4.4.2 EMIS RESULTS

We have measured 6 PWAS resonators in the high temperature EMIS test. We
denoted them by their sequence number and a letter R or L that denotes right or left. Then
PWAS 1R is the first PWAS located on right side of the fixture and 2L is the second

PWAS on the left and so on. Moreover, the first room temperature in the cycle is denoted
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RT1 as the second room temperature after cooling down from 50°C is denoted RT2 so
that the impedance signature for the first PWAS on the right at the first room temperature
is represented by 1R_RT1 and the second PWAS on the left at the third room temperature
after cooling from 100°C is represented by 2L._RT3 and so on.

We will discuss the analyses of impedance results of each PWAS in sequential
subsections. We will first plot all the impedance signatures at the first in-plane anti-
resonance frequency for one PWAS at all elevated temperature-room temperature cycles
with a time series plot that shows each time and date when the particular measurement
was performed so one can observe how long the overall measurement has taken and how
long a PWAS has been kept at a certain temperature. Next, we will separate the EMIS
test results as the impedance plots at room temperatures and at elevated temperatures to
see the trends of the frequency and amplitude shifts of the first impedance curves in both
cases. Then, we will plot the impedance amplitude vs temperature including those at
room temperatures in the same graph and also plot the impedance frequency vs
temperature in the same way. Finally, we will present the amplitude and the frequency
shifts separately at elevated temperatures and those at room temperatures were plotted by

the order number of the room temperature.

PWAS 1R

PWAS impedance overlapped results during temperature cycle from room
temperature up to 250°C is illustrated in Figure 4.20. A time series plot also depicts the
temperature against the time when a particular test was conducted. The overall tests has

lasted 2 days because cooling down from high temperatures to the room temperature at
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each cycle has taken somewhat long time. No forced convection method was implied to

quicken the cooling process.

PWAS impedance during temperature cycle

1R_RT1
sl 1R_50.1C
G 1R_RT2
o 1R_100C
E _
7 1R_RT3
@ 1R_150C
‘g T
£ L
0 = = e
320 325 330 335 340 345 350 355 360
frequency, KHz
Time Series Plot: Oven temp..C
300 ; . . .
(] B
g 200 | x -
— L
b
100 F x i
o}
H,
U ” * 1 1 " * 1 1 *
May/i4-10:31 May/14-20:07 May/15-05:43 May/15-15:19 May/16-00:55 May/16-10:31

Time

Figure 4.20 Impedance signature of PWAS-1R (7mmx0.2mm PWAS) at elevated
temperatures and room temperatures in each temperature cycle.

The impedance peaks diminish in amplitude as the temperature increases and it
keeps diminishing even PWAS is cooled down to the room temperature in each
temperature cycle. Another phenomena is the frequency downshift as the temperature
moves up however frequency upshift is also observed as PWAS cools down to the room
temperature, the PWAS does not seem to recover completely and its impedance can not
move up to its original anti-resonance frequency. One interesting phenomena is also the
deformation on the impedance signature of PWAS-1R at RT6 after cooling it down from

250°C as the other impedance signatures are smooth curves before.
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Overall the trend seems by investigating the plot however it can be more clearly
observed those at room temperatures and the elevated temperatures in separate plots as
depicted in Figure 4.21. We utilized color codes for this two plots. For instance, the
impedance curve at the second room temperature (1R_RT2) has the same color as the one
at the temperature of 50°C since it is the room temperature after cooling down from that

temperature. The color codes are implied in such order to the other impedance curves.
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Figure 4.21 Impedance signature of PWAS-1R (7mmx0.2mm PWAS) at (a) elevated
temperatures and (b) room temperatures in each temperature cycle.

Eventhough the trend in the amplitude and frequency shift during the temperature
cycle seems more clearly now, we can further analyze the frequency shifts and the
amplitude shifts separately as depicted in Figure 4.22 and Figure 4.23, respectively. In
Figure 4.22, one can see that the frequency shifted all the way from 345.2 kHz to 328.9
kHz during the temperature cycle eventhough both anti-resonance frequencies were read
at room temperatures. In the first cycle, from the room temperature to 50°C and back to
the room temperature, the impedance frequency first declines then inclines back to the

close value although this does not occur in the next two cycles between the room

113



temperature and the 100°C and the 150°C tests. In the test results from the temperature
cycle between the room temperature and 100°C, the impedance frequency remains the
same as the PWAS cooled down to the room temperature, which also occurs in the cycle
between the room temperature and the 150°C. More significantly, in the results from the
next two temperature cycles, the impedance frequency declines even further as the PWAS
cools down back to the room temperature. The PWAS behaves in different manner after it
has been heated up to 200°C due to the material degradation as the temperature
approaches to the Curie temperature of the piezoelectric material and due to the

depolarization that may occur.
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Figure 4.22 Impedance (anti-resonance) frequency of PWAS-1R (7mmx0.2mm PWAS)
during temperature cycle.
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In Figure 4.23, the amplitude also diminishes from ~8 kQ down to ~1.8 kQ.
Eventhough, the PWAS impedance signature attempts to recover and move up in both
frequency and amplitude at the room temperatures until the temperature of 200°C, it no
longer recovers after 200 °C which is close enough to the Curie temperature for PWAS to

possess distinct behavior.
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Figure 4.23 Impedance (anti-resonance) amplitude of PWAS-1R (7mmx0.2mm PWAS)
during temperature cycle.
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Frequency Shift by Increasing Temperature

~~
&

Iy
wv
)

R?=0.8378

w

5

o
1

Frequency, kHz
w w
& &

w
N
(0, ]

0 50 100 150 200 250
Temperature, °C

—~~
(=)}
~

Peak Amplitude Shift by Increasing Temperature

[N
o N
1 J

o]
1

R?=0.9401

Frequency, kHz
[e)}

O T T T T 1
0 50 100 150 200 250

Temperature, °C

Figure 4.24 Averaged impedance (a) frequency and (b) ampllitde shift against elevated
temperature.

The impedance peak amplitude and frequency against increasing temperature are
plotted not including the room temperatures in Figure 4.24 to analyze the trend of the
amplitude and the frequency shifts over elevated temperatures. The impedance peak
amplitude and frequency at room temperatures are plotted against the room temperature
number in Figure 4.25 to analyze the trend of the amplitude and frequency shifts at the

room temperatures during the temperature cycle.
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Figure 4.25 Averaged impedance (a) frequency and (b) ampllitde shift of PWAS-1R
(7mmx0.2mm PWAS) at room temperature.

PWAS 2L.:

We will seldom present the analyses of impedance amplitude and frequency shift
during temperature cycle by depicting the representative plot since these two phenomena
are dominating in the experimental study. Also, the trend can be observed clearly by

analyzing the corresponding plots for the amplitude and the frequency shifts.
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Figure 4.26 Impedance (anti-resonance) amplitude of PWAS-2L (7mmx0.2mm PWAS)

during temperature cycle.
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Figure 4.27 Impedance (anti-resonance) frequency of PWAS-2L (7mmx0.2mm PWAS)

during temperature cycle.
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443

ADMITTANCE SPECTRA AT ELEVATED TEMPERATURE

In this subsection, we present admittance results from free circular PWAS

resonators at elevated temperatures using the same experimental setup. In Figure 4.28, 3-

D plots of the admittance in frequency domain over time are illustrated for the

measurements conducted at different temperatures. The temperature values for the each

admittance measurement were kept constant by the closed loop temperature controller

and monitored and recorded by the GUI software that was specifically designed and

created by Jingjing (Jack) Bao and Bin Lin in LAMSS using LabVIEW for this

admittance tests.
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Figure 4.28 3D contour plots for admittance spectra at elevated temperatures.
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Admittance amplitudes from a PWAS have been measured during the temperature
increases from the room temperature to the elevated temperatures and the results were
plotted and presented in Figure 4.29. The admittance amplitude also pursued the same
track as reported in the preceding subsection regarding the impedance amplitude. It
inclines as the temperature increases with the similar trend from the room temperature
toward the elevated temperatures. Eventhough the admittance amplitude recovers after
the PWAS cools down to the room temperature from the 50°C, it cannot recover and
drops down in the amplitude after the PWAS cools down from the higher temperatures.
Another interesting behavior that can be observed in this test results is that the amplitude

keeps increasing although the temperature remains the same at the elevated temperatures.
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Figure 4.29 Admittance peak amplitude at the first in-plane resonance frequency of
circular PWAS at elevated temperatures.
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The first in-plane resonance frequency values of free PWAS in an oven as the
temperature was increasing are plotted as shown in Figure 4.30. The similar phenomena

can be observed in the frequency shifts as seen in the amplitude shifts.
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Figure 4.30 Admittance frequency at the first in-plane resonance frequency of circular
PWAS at elevated temperatures.

4.5 SUMMARY AND CONCLUSIONS

Past researches were discussed to understand the survivability of piezoelectric
wafer active sensors (PWAS) at extreme environments such as at very high temperature
etc. Also, we could find out the extent of temperature dependence of the electric
parameters, i.e. ds; and gz, and the elastic parameters, i.e. si1 and Young’s modulus (C11),
of different piezoelectric materials.

We have conducted a preliminary parametric study to understand the effects of
the material properties on the impedance (anti-resonance) and admittance (resonance)

spectra. We utilized the 1-D and 2-D PWAS-EMIS models for the analytical simulations.
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We have varied the piezoelectric stiffness and the piezoelectric charge constant by 5%.
When we combined both the parameter changes and simulate the impedance and
admittance of PWAS, we observe both the frequency and the amplitude shifts in both
plots. We have phenomenological agreement in trends of the impedance spectra with the
experimental results. However, we still need to improve the agreement by using 2-D
circular PWAS-EMIS analytical model and by including more parameter changes to
reflect the temperature effects on the piezoelectric material degredation. The parameter
changes need to be more linked to the temperature increase by using the experimental
measurements in the literature. We also need to include in the model the capacitance
change that is measured and found to be strongly dependent on the temperature increase.
From the experimental point of view, we observed a linear trend up to 200°C then
the behavior changes. In the first anti-resonance frequency peak during temperature
cycle, we also observed PWAS impedance signature attempting to recover and move up
in both frequency and amplitude at the room temperatures until the temperature of 200°C,
it no longer recovers after 200 °C which is close enough to the Curie temperature for
PWAS to possess distinct behavior. The degradation of peak shape after 200 °C is
consistent with the change in capacitance behavior. Downward trend in frequency is
common among PWAS-EMIS over elevated temperatures eventhough the shapes of trend

are not consistent among samples.
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CHAPTER 5

IN PLANE EMIS OF CONSTRAINED PWAS USING GMM

This chapter addresses E/M impedance spectroscopy (EMIS) of piezoelectric
wafer active sensor (PWAS) constrained on one surface and on both surfaces by isotropic
elastic materials through analytical models. Theoretical work for EMIS of constrained
piezoelectric actuator was performed.

In the first part of this study, analytical analyses begin with the piezoelectric
wafer active sensor (PWAS) under constrained boundary conditions; a simplified two bar
and three bar piezo-resonators are modeled using the resonator theory. Three bar
resonator model includes a piezoelectric wafer active sensor (PWAS) in the center and
two isotropic elastic bars bonded on both sides of the PWAS whereas in two-bar
resonator model, PWAS is constrained on one side. The following assumptions are made
for the models. First, the geometry and the cross-section area of all the bars are the same
although they have different materials and different lengths. Second, the isotropic bars on
the sides are assumed to be perfectly bonded to the PWAS at the interfaces. The two-bar
and three-bar piezo-resonator models are used to obtain the resonance frequencies for the
normal mode expansion method. Essentially, the models are used to build the basis for
the proof-mass PWAS (PM-PWAS).

Global matrix method (GMM) is employed to carry all the information from each
layer regarding the material properties, geometric properties as well as the boundary

conditions into the eigenvalue problem. GMM is also utilized to solve the eigenvalue
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problem of the two and three-layered PM-PWAS models for the Eigen-vectors and the

corresponding Eigen-frequencies.

5.1 STATE OF THE ART FOR CONSTRAINED PWAS-EMIS

The analytical in-plane impedance for piezoelectric ceramic transducers such as
PWAS has been developed by Giurgiutiu and Zagrai (2000). One and two dimensional
in-plane E/M impedance models for free PWAS and constrained PWAS were derived to
model the dynamics of PWAS and substrate structure in terms of EMIS. They assumed
the constant electric field to derive the in-plane EMIS. Another EMIS modeling of PZT
actuator-driven active structures is carried out by Liang, Sun, and Rogers (1996) in low
frequency range up to 650 Hz in in-plane mode. Park (2014) analytically investigated the
EMIS of piezoelectric transducers bonded on a finite beam from the perspective of wave
propagation. The analytic solutions of flexural waves are derived for coupled PWAS-
infinite beam. Then the concept is used for finite beam in relatively low frequency range.
Annamdas & Radhika (2013) also derived E/M admittance model for PWAS bonded on
metallic and non-metallic host structures in relatively frequency range up to 500 kHz.
Park et-al. uses impedance based health monitoring to interrogate a bolt jointed pipeline
system (Park et al. 2003) in range up to 100 kHz and they also monitored the curing
process of concrete structures un range between 100kHz-140kHz. Many other researchers
have recently applied in-plane EMIS method for dynamically monitoring the smart
structures in different materials and forms (Annamdas et-al 2013; Brus 2013; Liang and
Sun 1994; Cheng and Wang, 2001; Park et al. 2012; Pavelko 2014; Peairs et al. 2003,
Rugina et al. 2014). For high frequency-band in range of MHz, the analytical study for

thickness mode of PWAS-EMIS was performed by Kamas, Lin, and Giurgiutiu 2013).
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They aimed to extend the EMIS model of a constrained PWAS at high frequencies (up to
15MHz). The authors utilized the constant electric displacement assumption used in the
literature (IEEE Ultrasonics 1987; Meeker 1972) and solved the piezoelectric constitutive

equations for the thickness mode.

52  GLOBAL MATRIX METHOD (GMM) IN MULTILAYERED STRUCTURES

‘. s\k: L.

Semi-infinite half-space

Example, using three-layer plate with semi-infinite half-spaces.

Figure 5.1 Schematic of a multi-layered structure for using Global Matrix Method
(GMM) (Lowe, 1995).

Knopoff in 1964 introduced a matrix method for multilayered media which is
alternative to the Transfer Matrix Methods (TMM). GMM may be used to avoid the large
frequency-half thickness product problem since it is more robust at high frequencies. The
same matrix may be used for all categories of solution whether response or modal,

vacuum or solid-half spaces, real or complex plate wavenumber (Lowe, 1995). The
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drawback is largeness therefore the solution may be relatively slow. The system matrix

consists of 4(n-1) equations where n is the total number of layers.

15
Frequency sweep
at fixed velocity
Roots of
characteristic
~ function
%«
=
2
<
- P R T
Roots of
characteristic
function ...
« Velocity sweep at
fixed frequency
0
0 Frequency (MHz) 6

Figure 5.2 Generation of dispersion curves showing Lamb wave modes for 1mm thick
sheet of titanium (Lowe, 1995).

The loci of roots of the characteristic function are the dispersion curves for the
multilayer plate system. They are usually displayed as phase velocity against frequency
but may also be plotted using the wavenumber. The roots are found by varying the phase
velocity at fixed frequency or the frequency at fixed velocity (the “sweeps” in Figure

5.2). Each of these roots is the starting point for the calculation of a dispersion curve. To
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calculate a dispersion curve, the wavenumber is increased steadily (by fixed increments
Ak ) and a new solution is found at each step by iteration of the frequency. Clearly the
speed of convergence and the stability of the iterations are improved by seeding the root-

finding algorithm with a good initial guess of the frequency at each step.

5.3 IN-PLANE MODE OF PWAS CONSTRAINED FROM ONE SIDE
In this section, we analyze the in-plane mode two-bar resonator model including

PWAS perfectly bonded from one side to an isotropic material as shown in Figure 5.3.

E(l. p[} . uff. C(J

.xl la X, l x3

Figure 5.3 Illustration of a two bar resonator model with perfectly
bonded PWAS on side of a bar.

5.3.1 MECHANICAL ANALYSIS FOR PWAS CONSTRAINED FROM ONE SIDE

The mechanical analysis is performed herein by using resonator theory to derive
the resonance and anti-resonance frequencies as response to the electrical harmonic
excitation in frequency domain. We obtain the wave equations for each division in the bar

shown in Figure 5.3 from Newton’s equation of motion as follows;
cu'=u
200 _ pr (51)
The general wave equation solutions for each division can be also recalled as

_ —i7a(X=x) i7,(X=%p) \ it _ A Alot
U, =(Cpg ™ +-C e ) e = (e

up — (C3e_i7p(x_xz) +C4ei7p(X—X3))eiwt — lfjpei(ut (52)

The strain-displacement relation is determined by
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— U/a (_Cle—i}/a(x—xl) + Czeiya(x—xz) )ei(z)’[

—iyy (X=X iy, (X=X i 53
=i7p (—Cge ;/p( z)+C4e}’p( 3))elwt ( )

Linear Hooke’s law applies to determine the stress-strain constitutive equation as follows

0, =E.g, = B0, =iE,7, (-Ce 07 +.C 0% .
o, =E,e, =E 0, =IEy, (—Csef%()HZ) +C4e'7”(xfx3)) '
where C,,C,,C;,C, denote the axial wave amplitudes as forward and backward

directions respectively in x axis and y,, 7, denote the wave numbers for each material of

the divisions and related to the wave speed in each material;
(5.5)

Four boundary conditions should be implied to the general wave solutions to obtain the
four unknown coefficients. The stresses and displacement boundary conditions to be

imposed are as follows;

@x=x N,(%)=0 — o,(x)=0-¢,(x)=u,(x)=0
@x=Xx, N, (%,)=N,(x,)

ua(XZ)zup(Xz)
@x=x, N, (%)=0

(5.6)
The first relation between two displacement amplitudes in the material on the left hand

side is determined by the stress boundary condition on the left surface at x=x, =0

Na(xl)zo

i —iya (g~ i (o — (5.7)
EaEa(X1)=Eau;(x1)=|ana(_Cle raly Xl)‘*‘Czelya(Xl xz))=0
Hence,

~C,+C g7 =0 (5.8)
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The second relation is determined by the stress boundary condition on interface between

the left and the middle bars.

o€ (xz) (5.9

iEy7, (_Cle_i}’a(xz_xi) + Czei}’a(xz—xz) ) — iEp}/p (_Cge*%(xrxz) 4 C4ei7p(X27X3)) (5.10)

iE,7a (~Cie 7027 +.C, |—iEy7y (~C+Cie"e 0% ) =0 (5.11)
iE,, (~Cie 7200 +C, | ~iE,yy (Cy+Cier 0o ) -0 (5.12)

Hence,
~CiE,y,6 772%™ + C,iE,y, +C,iE, 7, —C,iE,y,e"? ™ =0 (5.13)

The displacement boundary condition at x = x, determines the third relation

Ua(Xz):Up(Xz) (5.14)
C e—iVa(Xz—Xi) +C ei}’a(xz_xz) =C e_i}’P(Xz_xz) +C eiyp(XZ_xfi) 5.15
Cleii}/a(xzfxl) +C, -G, _C4ei7p(xz_x3) =0 (5.16)

The stress boundary condition on the interface at x=x, determines the fourth relation

between the displacement amplitudes

iEpy, (—Cse‘iy P057) 1 C e P(XS‘XS)Jz 0 (5.17)

—Ce ) 4 C, =0 (5.18)

The equations determined in (5.8), (5.13), (5.16), and (5.18) are combined in a

matrix to provide a solution of the Eigen-frequencies and to eventually obtain the Eigen-
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vector (the displacement amplitudes). Therefore, this problem turns out to be an

eigenvalue problem which requires a matrix that contains the material properties and

wave-numbers as functions of frequency for all subsections in the bar and the matrix is to

be multiplied by a tensor that contains the displacement amplitudes and the product of the

two matrices will equal to zero as shown in Eq. (5.19).

-1
UACES)
ACE®
0

ai7a04%)

1

0

Ep 70 irnt6x)

Ea 7a
_ei7’ p(—X3)

1

O

21=0 (5.19)

O 00
w

N

Substitute the wavenumbers in Eq. (5.5) into Eq.(5.19); we obtain the matrix in terms of

frequency

-1
g&oen

ei%(xl—xz)

0

L&)
1

1
0

0

Epca
Ea Cp

-1

1205-%)

0
E C i%(xz—x3)
= 0

ei%(xzf@)

|$

o

O

21=0

(5.20)

O 00
w

N

The determinant of the material property matrix must equal to zero to have non-

trivial solution for the displacement amplitudes. However, the matrix is a singular matrix

and requires to be converted to a non-singular or invertible matrix to obtain a solution of

basis of the vector of unknown coefficients assuming one of them as 1. For example, let

us assume C, =1 in this problem and omit of one of the linearly dependent equation to

solve the other linearly independent equations.
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-1

5.3.2

TS

m

MODE SHAPES

c 0
1 E,c i2(x-%)
C,|=|-Plae% K (5.21)
3 12 (x,-%3)
. cp 2 XS

In this subsection, the in-plane mode shapes are derived and plotted by using the

geometric sizes and the material properties of aluminum bar and PWAS that are indicated

in Table 5.1. Then, the orthogonality of the mode shapes are verified and the normalized

mode shapes are found and plotted.

Table 5.1 Geometric sizes and material properties of two-bar resonator.

Geometric sizes Material Properties

La=30 [mm] PWAS

Lp=40 [mm] Elastic Modulus [Gpal 72.4 65.3

Height=0.2 [mm] Mass Density [kg/m3] 2780 7700
Wave Speed [m/s] 5103 2913
Compliance 1.53E-11
Permittivity 1.54E-08
Piezoelectric Constant -1.75E-10
Internal damping 0.05

Orthogonality of Mode Shapes

Recall mass-weighted integral to verify the orthogonality of the mode shapes and

to find the modal participation factor, m; of each mode to scale the mode shape

amplitudes.

pruiujdx={
0

0, if i;tj} 622

m i i=]
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For two bar problem, it takes the following form with side surface area, A, is omitted

since it is equal for each bar in this problem;

(5.23)

% % 0,if ij
aja PP —
,oaxjuiujdxmb;[uiujolx_{mi i i:j}

Table 5.2 shows the orthogonality matrix that validates the mode shape solution
and that gives the modal participation factors. The values off the diagonal should be
nearly zero and the values on the diagonal of the matrix should be taken into account as

modal mass factor to scale the mode shape down the have the normalized mode shapes.

Table 5.2 Orthogonality matrix that validates the mode shape solution and that gives the
modal participation factors.

908.344 + 0.000334i |0.013 - 0.06i 0.015-0.02i |0.02 - 0.0001i 0.02 +0.0002i
0.013 - 0.06130i 992.529 - 0.026i |0.007+ 0.0002i |0.03 + 0.01i 0.0017+ 0.007i
0.015-0.02133i 0.0076 +0.00028i (795.59- 0.058i |-0.02 0.02+ 0.01i

0.02 - 0.00017i 0.031 +0.012i -0.02 836.15 + 0.0002i |0.005 +0.0009i
0.027 + 0.0002i 0.0017 +0.007i 0.021 +0.01i (0.005+ 0.0009i |1033.102+ 0.00015i

Normalization of mode shapes: normal modes

After we obtained the modal participation factors (modal mass) which are the
values on the diagonal of the orthogonality matrix, we can use the values to normalize the

mode shapes by the following relation;

um =Ly (5.24)

ym
Then the mode shape amplitudes are scaled down to new mode shape amplitudes by the

normalization. To analyze orthogonality with respect to stiffness, we consider the

stiffness weighted integral for two bar resonator model.
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EAXfUa”uadx+E ATU”"U"dx— 0.1fi=] (5.25)
aXli j pxzi j _—ki,ifi=j '

We obtain the modal stiffness k; and considering U; =U +U, we recall

fEu;Z(x)dx:wffpuf(x)dx i=123,.. (5.26)

Using Eq. (5.26), we can come up with
— )2 -
k; =oim, 1=12,3,.. (5.27)
We can now plot the normalized mode shapes U™ (x) as seen in Table 5.3 at the

resonant frequencies f, .

Table 5.3 Normalized mode shapes and resonant frequencies.

Mode# Normalized Mode Shape Resonant Frequency
[kHz]

1 o - 27.28

49, 83

3 . : : , : : : 75.43
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5.3.3 ELECTRO-MECHANICAL ANALYSIS UNDER CONSTANT ELECTRIC FIELD

ASSUMPTION

Y2 Pa X2 Fu o

X l X, l Xy

a 4

Figure 5.4 Schematic of two bar resonator excited by electrodes depo-
sited on PWAS surfaces.

In-plane electromechanical analysis is conducted in this subsection for the PWAS
constrained on one side as seen in Figure 5.4 under constant electric field assumption.

Assume voltage applied to the piezoelectric bar, E; =-V /t, and corresponding induced

strain

V

SISA = d31E3 = d31 _T (5-28)

The wave speed depending on the piezoelectric material properties can be defined as

R (5.29)

E
PSi

The constitutive equation for the strain, stress and the electrical field induced by the
electrodes on top and bottom of the piezoelectric material located between two non-
piezoelectric materials can be introduced as follows
S, =s,T, +d,,E, (5.30)
And the constitutive equations for the non-piezo materials can be introduced similar to
the piezo-material however without the electrical fields;
S} =siT," (5.31)

The boundary conditions change accordingly
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@x=x N,(x)=0 — T7(x)=0->S7(x)=0 ) :
@X=X2 Na(XZ):Np(XZ) N Tla(xz)lep(Xz)—)Sls(XZ)—Sl (Xzzp d31E3
11 11
u, (%) =u,(x,)
@ x =X, N,(%)=0 — TP(X)—>S/(x;)-dsE; =0
(5.32)
@x=% S}(x)=u,(x)=0 (5.33)
U, =(Cye 70 4 C g0 Jelt = (5.34)
G (X1) _ _iyae_i}/a(xl_xl)cl 4 ij/aei}/a(xl_xz)cz =0 (5.35)
—C, +e"Ic, =0 (5.36)
In matrix form
C,
1 aalux) C,l_
[ 1 e 0 o] c: (=0 (5.37)
C,
S2 SP —d..E
@X: XZ 1 (aXZ) — 1 (XZ)p 3173 (538)
Sll Sll

The elastic modulus of the piezoelectric material is expressed in terms of the compliance

E,=— (5.39)
Sll

S’ =u,

S i (5.40)

Upon substitution of Eq(5.39) and (5.40) into (5.38), we obtain

Eau;(xz): Ep (u;(xz)_dles) (5.41)
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IE, 7, (~Cie 700 +Ce ) ) =iy, (-Coe 7+ C e ) E 4y,

(5.42)

Upon rearrangement, Eq(5.42) takes the following form

—C,iE,y,e "™ + C,iE,y, + C,iE,y, —C,E,y,e"" ™ =—E d,,E,

In matrix form

@x =X, U, (%) =u,(x,)
—i7, (X—%) i7p(X—%3) _
Ce " +C,-C,-Ce™™ * =0

In matrix form

i

|:e—i7a(X2_X1) 1 -1 _ei;/p(xz_xl):|

w

0,000
I
o

4
@x=x, S (%)—dyE, =0
—iy,Cie P +iy C, = dyE,
In matrix form

Cl
(00 —ipe ™™™ iy, ]G =0y,
c

4

w

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

Combine the system of the equations derived from the boundary conditions into one

matrix form
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i -1 e%(xl—xz) 0 0 ]
. E Ziv (%o —X . E - - iy, (X=X
_I_aj/e 73(2 1) I_a}/ I}/ _Iy eyp(z 3) Cl 0
E "° E °° P P Cz = _d31E3

p p c (=10 (5.51)

—i7a(X =X, iy, (%% 3

g ebe) 1 -1 —etenl | C, | |dyE,

H ~iy(xg=x;) H
i 0 0 —iy e’ i7, |
(new) 1

where the normalized mode shape U,

(x)=fuj(x). The frequency response
m

function for the two bar resonator problem is

Recall the piezoelectric material constitutive equations under the constant electric field

assumption.
Sl =SllT1+d31E3 :Tl =—E51——E E3 (553)
11 Sll
D, =d, T, +&,E; (5.54)
Substitute Eq. (5.53) into Eq. (5.54)
1 d d d?
D3:d31[—E81—% E3j+g33E3:%Sl+[—%+gs3jE3 (5.55)
1 11 1 Sll
Upon further rearrangement, the electrical displacement
d31 2
D, =—2S, +£,(1-x5 ) E, (5.56)

11

where x, is the electro-mechanical coupling in longitudinal mode and defined as

2

d : . . . .
k3 =—=—. The electrical charge is given by integral of the electrical displacement over

Si€s3

electrode surface area

Q = [ DdA= ‘933hAp (1—K321)E3h+% [ s,dA (5.57)

Ay 11 A
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Recall the capacitance of the piezoelectric bar and the electrical potential

EA
C, :—33h ’ (5.58)
V=Eh (5.59)

where h is the thickness of the piezoelectric bar. Upon substitution of Eq. (5.58) and Eq.

(5.59) into Eq. (5.57), we have

dy\ (0
Q =GtV b v (560)
Q,=C,(1- K‘31)V+(i bul? (5.61)
11
Q =G, (1 Kgl)v#: b (5.62)

11

Substitute Eq. (5.52) into Eq. (5.62)

Q, =G, (1- rcal)V+ bZ[U (%)] (5.63)

E/M

or

%1 i (x () (5.64)

Q, =CyV (1_K31) E
S 11
Recall the electrical current as a derivative of the electrical charge with respect to time.

| =iaQ, (5.65)

and the electro-mechanical admittanceis Y =1/V

. d, b 1
Y =iaC, (l—K§1)+;3Ell\7H (x) (5.66)

In our case the frequency response function H (x) is the difference of the displacements

at two ends of the piezoelectric electrodes.
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H(x)=2_UF (x%)-U7 (x,) (5.67)

where
U jP (x)= C,e 7t 4 C4eJ7(X—X3) (5.68)
x10° Frequency Response Function
12 / 1% mode i
10| |
2" mode

E
T
T
x

r r r r r r r r r

10 20 30 40 50 60 70 80 90
Freq, f [kHz]

Figure 5.5 Frequency response function of two-bar PWAS resonator.

When we plot the frequency response function, we can see the displacement
behavior at resonant frequencies. Now, we take a closer look at the first three resonant
frequencies to explain the connection between the peak amplitudes and the mode shapes
that were obtained from the mechanical analysis. It is presumed that the peak amplitude is
larger when the difference of the amplitudes at two ends of the normalized mode shapes

®) s larger. However, this does not apply to the

of the piezoelectric subsection AU
relation between the first and second modes as applying to the relation between the
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second and the third modes. As can be observed in the frequency response function plot

in Figure 5.5 the third mode at 75.43 kHz can be barely seen since Au§p> has small

value. The results from the frequency response function for the two-bar resonator model

Is presented in Figure 5.6.

x10° Frequency Response Function x10° Frequency Response Function
T T T T T T T T T T T T T T T T T T
12r
4+
10+
2 -
—_ 8 —_ 0
E 3
T 6t T
g’ £
41 4r
2 J q i
8
0 £ r r r r r r r i r N i r r i r r i r r
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Freq, f [kHz] Freq, f[kHz]

Figure 5.6 Frequency response function for two-bar resonator. Height is 0.2 mm and
length of aluminum 30 mm and length of PWAS is 40 mm.

54 IN-PLANE MODE OF PWAS CONSTRAINED FROM BOTH SIDES
In this section, we analyze the in-plane mode three-bar resonator model including

PWAS perfectly bonded from two sides to two isotropic materials as shown in Figure 5.7.

Ep_pp.u c Eb7pb’ublcb

VVH

R X
X L X, L » X, L \ 4

Figure 5.7 Illustration of a three bar resonator model with perfectly bonded PWAS on
sides of two bars.
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541 MECHANICAL ANALYSIS FOR PWAS CONSTRAINED FROM BOTH SIDES

The mechanical analysis is performed herein by using resonator theory to derive
the resonance and anti-resonance frequencies as response to the electrical harmonic
excitation in frequency domain. The 1-D wave equation is solved regarding harmonic
standing waves. Then, the mode shapes at resonance frequencies are determined for in-
plane mode and orthogonality of the mode shapes are verified and the normalized mode
shapes are also determined using the modal mass factors that are determined as a

diagonal values in the orthogonality matrix.

Harmonic Standing Waves

We obtain the wave equations for each division in the bar shown in Figure 5.3

from Newton’s equation of motion as follows;

2..m

cu'=u
c2u! =, (5.69)
thut’; = Ub

The general wave equation solutions for each division can be also recalled as

u, —(C e a0 L C el X”)e'“’t =(,e

=(C,e “rp(xe) +C, 7o) ) giot _ g giot (5.70)
P
(C e—%(x X3) +C e')’b (x= XA)) — e'

The strain-displacement relation is determined by

_ i}/a (_Cle—iya(x—xl) n Czeiya(x—xz) )eia)t
Uy =iy, (~Cie 707 +C g7 ) e (5.72)
ut!) _ be (_Cse—i}/b(x‘xz) + Ceeiﬂ’b(x_xﬂ )eifUt
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Linear Hooke’s law applies to determine the stress-strain constitutive equation as follows

0, = B8, =EU, =iE,y, (-Ce "0 4 C el e
0, =E,e, = Bl =iE 7, (-Coe 0 4. ot (5.72)

o, =E.& =EU =iE 7, (—Cse’%(x’&) +C36ei7“(x‘x“))ei“’t

where the capital coefficients denote the axial wave amplitudes as forward and backward

directions respectively in x axis and y,y,, », denote the wave numbers for each material

of the divisions and related to the wave speed in each material;

w
YVa=—
Ca
w
Yp="— (5.73)
Cp
@
Vb .

Six boundary conditions should be implied to the general wave solutions to obtain the six
unknown coefficients. The stress and displacement boundary conditions to be imposed

are as follows;

@x=x N,(%)=0 — o,(x%)=0-¢(x)=u,(x)=0

L

@x=x, N (%) = Ny (%) (5.74)
Ug (%) =y (X;)

@x=Xx, N, (x,)=0

The first relation between two displacement amplitudes in the material on the left hand
side is determined by the stress boundary condition on the left surface at x=x,
N, (x,)=0
E.e.(%)=Eu.,(x)=0 (5.75)
Eai}/a (_Cle—iJ’a(X1—X1) + CzeiVa(Xer)) =0
Hence,
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—C,+C g7 =0 (5.76)
The second relation is determined by the stress boundary condition on interface between

the left and the middle bars.

X,)=E &,(X,) (5.77)
E

Eai}/a (_Cle,iya(xzfxl) + Czeiya(X27X2)) — Epi]/p (_C3e—i7’p(X2—X2) + C4ei7’p(X3—X2)> (578)

~C,E,iy,e "™ 4 C,E,iy, =—C,E, iy, +C,E iy e (5.79)
Hence,
~C,E,iy,e "™ +C,E,iy, +C,E,iy, ~C,E, iy e ™ =0 (5.80)

The displacement boundary condition at x=x, determines the third relation

U, (%) =, (X,) (5.81)
Cie o) 1. C gnle) - C g nle) 4 ¢ gl (5.82)
Cle—i;/a(xz—xl) + Cz _ C3 _ C4ei7p(><2—x3) — 0 (583)

The stress boundary condition on the interface at X = X, determines the fourth relation
between the displacement amplitudes

Ep7/p (_CSG—ti(Xsfxz) + C4ei7p(><3*><3)) — Eb}/b (_Csefi}’b(xafﬁ) + CGGi}/b(x3—x4)) (584)
~C,E, 7,6 "7 1 CE,y,7" ™ = —C.E e ) + CE, e (5.85)

~C,E 7,6 """ + C,E, y, +C.Ey, — CoEr,e” ™ =0 (5.86)

as well as the displacement boundary conditions on the same interface determines the

fifth relation
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C3e*i}’p(>‘3*x2) + C4ei7p(x3*X3) — C5e—i7n(X3—X3) + CeeiVb(Xs—XA) (587)
Ce ™) 1C, ~Cy—Ce” e = 0 (5.88)
The stress-free boundary condition on the free-surface at x, determines the sixth relation

E, (-inCoe 04 +ip C e ) =0 (5.89)

—Ce ) 1 C =0 (5.90)

The linearly dependent equations determined in (5.76), (5.80), (5.83), (5.86),
(5.88), and (5.90) by implying the stress and displacement boundary conditions and they
are combined in a matrix form to provide a solution of the Eigen-frequencies and to
eventually obtain the six Eigen-vectors (the displacement amplitudes). Therefore, this
problem turns out to be an eigenvalue problem which requires a matrix that contains the
material properties and wave-numbers as functions of frequency for all subsections in the
bar and the matrix is to be multiplied by a tensor that contains the displacement

amplitudes and the product of the two matrices will equal to zero as shown in Eq. (5.91)
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14"

1 —g7alu) 0 0 0 0 c
. . 1
~Ey e Ey, E,p “Eze” 0 0 C,
e*iya(x27xl) 1 -1 _ei7p(X2_X3) 0 0 C3 ~
0 0 e‘iyp(xs—xz) 1 -1 _g7o(Xs7x) C, (5.91)
—iy,(X3—%y i7p(X3—X, C
0 0 —E,ye "t E.7, By,  —Egne7 ||
—iyp(Xs—X3) CG
0 0 0 0 g 1
R T I I T T AR
i 1 e : : 0 0 i : 0 0 i Cl
_j | —iy L
i—anae 7k By, | i E 7, —E ye " i 0 0 'C,
. | . | |
| gk 1 - e 110 0 ]G
: B y SRR TON
0 0 i} e” 1 0 -l —e C, (5.92)
I || i | | C
i 0 0 i_Epype . Eyvy | i B, —Ene %Lb: C5
L0 0 il 0 0 l-en 1)



Each of the three divisions of the material property matrix represents each corresponding
bar subsection. Upon rearrangement by substituting the wavenumbers in Eq. (5.5) into

Eq.(5.91); we obtain the matrix in terms of frequency

—iﬂLa
1 g & 0 0 0 0
-2, Ec Ec -i—b
—e Ca 1 pa —_Pa % 0 0 C
E.C, E.C, 1
. CZ
—-i—L, Sl
e 1 -1 - 0 0 C, 0 (5.93)
—iﬂLp _i® C4 B
0 0 e ™ 1 -1 e %
o C5
0 0 3 Epcb flcp Ly EpCb L _eila C6
E.C, E.C,
0 0 0 0 e 1

The determinant of the material property matrix A, , must equal to zero to have non-

trivial solution for the displacement amplitudes.

| Asx| =0 (5.94)
The material property matrix is a singular matrix and it does not have a unique solution.

Therefore, we can find the basis of the eigenvector by assuming one of the unknowns is

onei.e.
C, =1 (5.95)

This assumption helps us obtain the following equation
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—lC—La
1 e - 0 0 0
il E C E C 7'*LP 0
a a c
—e Ca 1 Ep _ Ep e 0 Cl
C C 0
a”’p a~’p
C, .
Tt et C,r= 5.96
a _ _ Cp 3( . ( ' )
e 1 1 e 0 N
. C,
—-i—L
cp " ,iﬂLb
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Figure 5.8 Geometric sizes and material properties of proof-mass PWAS resonator.

Normalization of mode shapes: normal modes

After we obtained the modal participation factors (modal mass) which are the
values on the diagonal of the orthogonality matrix, we can use the values to normalize the
mode shapes by the following relation;

new 1
u™=—=U (5.97)
i
Then the mode shape amplitudes are scaled down to new mode shape amplitudes by the
normalization. To analyze orthogonality with respect to stiffness, we consider the

stiffness weighted integral for three bar resonator model.
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0,ifi]

E.AJU U dx+ E,A[UPU Pdx+ E,A[U"U dx = {_k

Xy

if i = j} (5.98)

We obtain the modal stiffness k; and considering U; =U} +U +UE’, we recall

[EUP () dx=ef [ pUT (x)dx  j=123,. (5.99)

Using Eq. (5.26), we can come up with

k, =o', j=123,.. (5.100)

We can now plot the normalized mode shapes U”EW(X) at the resonant frequency f, for

the three-bar resonator
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Table 5.4 Mode numbers, normalized mode shapes, and resonant frequencies

Mode # Mode Shape Resonant Frequency [kHz]

1 . . . 1.1718

2 . . . 21358
azf-------- E. ______________________

3 as - - . 3.2321
-] NSRRI JERIRIDIRIIT, R

5.4.2 ELECTRO-MECHANICAL ANALYSIS UNDER CONSTANT ELECTRIC FIELD
ASSUMPTION
- El ,u’pp
E, I, x; u, x v ’; P, P, U, u,
' ' e Sy 4y &5 ' S >
0 Lz ')"1 L xE Ll x?

Figure 5.9 Schematic of three-bar resonator with excited PWAS through a harmonic
electrical field induced by the elecrodes deposited on PWAS

In-plane electromechanical analysis is conducted in this subsection for the PWAS
constrained on both sides as seen in Figure 5.9 under constant electric field assumption.

The wave speed depending on the piezoelectric material properties can be defined as
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=1t (5.101)

E
PS;

The constitutive equation for the strain, stress and the electrical field induced by the
electrodes on top and bottom of the piezoelectric material located between two non-
piezoelectric materials can be introduced as follows

S, =s,T, +d,E, (5.102)
and the constitutive equations for the non-piezo materials can be introduced similar to the
piezo-material however without the electrical fields;

a a a
Sl = 511T1

Slb _ Slblle (5.103)
The boundary conditions change accordingly
@Xx =X N,(%)=0 — T7(x)=0->S}(x)=0 () s ;
a S7(x,) SP(x E
@x=x, N,(%)=N (%) = T2 (%)=T"(x) > === 22’) A3
11 11
U, (%) =, (x,) .
SP(x,)—d, E, S/ (x
@x=x, N,(%)=N, (%) = TP (x)=T"(x) > = ( Sgp 378 1s(b 5)
11 11
Uy (%) =y (X;)
@x=Xx, N,(x,)=0 — T?(x,)=0->57(x,)=0
(5.104)
@x=x  S(x)=u;(x)=0 (5.105)
U, =(Cg 0 - C,e" 07 et = e (5.106)
0; (x,) = —iy,e "*57C, +iy, e 7IC, =0 (5.107)
—C, +e”)e, =0 (5.108)

In matrix form
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Cl
CZ
1 e o9 0 0 0 Cs -0
e c (5.109)
4
CS
C6
S2(x SP(x,)-d..E
@x=X, ls(aZ): il 231" S (5.110)
11 1

The elastic modulus of the piezoelectric material is expressed in terms of the compliance

E_1
n (5.111)

E =—

P sP

11

S =u;
Sh_u, (5.112)

Upon substitution of Eq(5.39) and (5.40) into (5.38), we obtain
Eau;(xz): Ep (u,p(XZ)_d31E3) (5.113)
Upon rearrangement, Eq(5.42) takes the following form

~C,iE,y,e"*%™) 1+ C,iE,y, +C,iE, 7, —C,E, 7,6 "™ =—E d,E, (5.114)

In matrix form

Cl

C,

. E iy (e .E i (xo C
SimryeTele) jZa, gy Ly ee) g o[l TPlod B (5.115
Epya Ep}/a 7p 7p C4 3173 ( )

CS

C6
@X=X, U, (%)=, (x,) (5.116)



Ce ™ +C,-C,-C,e"" ™ =0 (5.117)

In matrix form

iy

N

[e-iyam-xl) 1 -1 —enltex g o} -0 (5.118)

N

(&2

000000

(2}

The stress boundary condition on the interface at x = x, determines the fourth relation

@x=x, _ =20 (5.119)

E, (u) (%) -dyE, ) = Bty (X;) (5.120)
iEp7p (_C3e*i}’p(x3fxz) +C4ei}'p(x3fx3) ) _ Epd31E3 — iEbyb (_Cse—i}’h(xs—xs) _i_Cﬁei}’h(Xs—M))

(5.121)

Upon rearrangement

_C3i7pe_i7p(X3_X2) + C4i]/p + C5| % i Ce' % J/beiyb(X3_X4) — d31E3 (5122)

p p
In a matrix form

Cl

C,

- —i Xa—X- - - E - E i — C3

0 0 —iye 7o) iy, i=ty, -yt =d,E, (5.123)

E, E, C,

CS

CG

The displacement boundary condition on the interface at X=X, determines the fifth

relation
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@x=x, U, (%)=, (%) (5.124)

Ce """ 1+C,—C—Ce ™ =0 (5.125)
In a matrix form
Cl
C,
—iy, (X3—Xp) i7p (%—%g) C3
[OOep“ 1 -1 —epﬂ} =0 (5.126)
C,
C5
Ce
The stress boundary condition on the free surface at x =x, determines
@x=x, S)(x,)=u;(x,)=0 (5.127)
Uy = (Cye 0 £ Ce™ ) et = e (5.128)
G (%, ) = —ize P IC, +ipe e, =0 (5.129)
In matrix form
Cl
CZ
. —i7p(X4—X3) C3
(00 0 0 —ipe™ = 1]; <t=0 (5.130)
CA
Cs
Ce

Combine the system of the equations derived from the boundary conditions into one

matrix form
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121

| -1 gal) 0 0 0 0 |
—i %7ae_i7a(xz_xl) i %ya i}/p _iype%(xz—xs) 0 0 Cl 0
P p CZ d3lE3
~i7a(%~%) 1 1 _ai7p(xe—%s) C 0
e e EO _ 0 i (5.131)
i —iyp (X3=Xz) H H H 175 (X3=X4)
0 0 —iy e’ i7, |E—Zyb —i E—Zybe 7 C: 3(1) 3
0 0 e*i}/p(xfxz) 1 -1 _ei}’p(X3*X4) C6 0
I 0 0 0 0 —iy,e ) 1 |
. 1 :
where the normalized mode shape Uf”ew) (x) =—=U; (x) . The frequency response function for the three bar resonator problem
m

H (x,t)=Au(x,t)= 2[u P(%)-UP (x)]e" (5.132)



Recall the piezoelectric material constitutive equations under the constant electric field

assumption.
E 1 d31
S, =s;l+d,E;, =T =—S —-—+E, (5.133)
Sll Sll

D, =d,,T, +&5,E,

(5.134)
Substitute Eq. (5.53) into Eq. (5.54)
1 d d dZ
D, =d,, (—Esl -= E3j+(«933E3 =28, +£—%+333j E, (5.135)
1 11 1 11
Upon further rearrangement, the electrical displacement
d31 2
D, ==, +&,(1-x} ) E, (5.136)

11
where xZ, is the electro-mechanical coupling in longitudinal mode and defined as

d2
K321 = 531 . The electrical charge is given by integral of the electrical displacement over

11633

electrode surface area

A
Q,= j D,dA= g”h P (1—K§l)E3h+% j S,dA (5.137)

Ay 11 A,

Recall the capacitance of the piezoelectric bar and the electrical potential

A
C, = 833h

P (5.138)

V =E;h (5.139)
where his the thickness of the piezoelectric bar. Upon substitution of Eg. (5.58) and Eg.

(5.59) into Eq. (5.57), we have
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Q =C,(1-x3 )V +%b [ urdx (5.140)

Q, =C,y(1-x5 )V +%bu|2 (5.141)

11

Q,=C,(1- Kgl)erOI bAu (5.142)
Sk

11

Substitute Eq. (5.132)into Eq. (5.62)

Q =Cy(1- Kgl)V+ bZ[ UP(x,)] (5.143)

E/M

or

Q,=CV (l—K321)+%bH () (5.144)

11

Recall the electrical current as a derivative of the electrical charge with respect to time.
| =i0Q, (5.145)

and the electro-mechanical admittanceis Y =1/V

dy,
Y =iaC,(1-x5 )+ =2 G LphH (x) (5.146)

11
In our case the frequency response function H (X) is the difference of the displacements

at two ends of the piezoelectric electrodes.
H(x)= ZU —U?(x,) (5.147)
where

uP (X) — Cse—J'y(X—Xz) n C4ej7(><*><3) (5.148)

]
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The frequency response function of a three three-bar resonator having the geometric and

the material properties defined in Figure 5.8.

X 10-10 Frequency Response Function
T T t t t

nd rd
2 mode 3 mode y

Re(H), [m]
o
T

r r r r r r r

-5 C
0 500 1000 1500 2000 2500 3000 3500 4000
Freq, f [kHz]

Figure 5.10 Frequency response function for three-bar PWAS resonator

When we plot the frequency response function, we can see the displacement
behavior at resonant frequencies. Now, we take a closer look at the first three resonant
frequencies to explain the connection between the frequency response function peak
amplitudes and the mode shapes that were obtained from the mechanical analysis. It is

presumed that the FRF peak amplitude and the difference of the amplitudes at two ends
of the normalized mode shapes of the piezoelectric subsection AU follow the same

trend.
Since the differences between the displacement amplitudes at two ends of the

piezoelectric domain of the resonator are very close as can be seen in the normalized
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mode shapes in Table 5.4, this property in the mode shapes also reflects in the frequency
response function. The amplitudes of the first three modes are in the same order of

magnitudes.
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CHAPTER 6

THICKNESS MODE EMIS OF CONSTRAINED PWAS

This chapter addresses theoretical framework for the thickness mode
electromechanical impedance spectroscopy (TM-EMIS) of constrained piezoelectric
wafer active sensor (PWAS). The analytical analyses were conducted by applying the
resonator theory to derive the EMIS of PWAS constrained on one and both surfaces by
isotropic elastic materials. The normalized thickness mode (Eigen-mode) shapes were
obtained for the normal mode expansion (NME) method to predict the thickness mode
impedance values of constrained PWAS using the correlation between a proof-mass-
piezoelectric transducer and structural dynamic properties in the substrate structure. In
another word, the normalized thickness mode shapes of the PM-PWAS-substrate

structure at the resonance frequencies are obtained for the NME method.

6.1 THICKNESS MODE OF CONSTRAINED PWAS

The analytical model considers a PWAS of length 1, thickness t,, and width b, ,
undergoing thickness expansion, u,, induced by the thickness polarization electric field,
E, . The electric field is produced by the application of a harmonic voltage V (t) =Ve'
between the top and bottom surface electrodes. The resulting electric field in the
thickness mode, E =V /t, is assumed non-uniform with respect toX,(JE /0x, #0) as

opposed to the longitudinal mode; however, the electric displacement, D, is assumed
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uniform with respect to X, (6D /6x, =0). The length, width, and thickness are assumed

to have widely separated values (t, <b, <I,) such that the length, width, and thickness

motions are practically uncoupled.

>

EaI IR T}

Length /. thi 55 1, width b
2Ky

Figure 6.1 PWAS constrained by structural stiffness.

In this analytical model, PWAS is assumed to be constrained by structural
stiffness on top and bottom surfaces as seen in Figure 6.1. The analytical analysis starts
with the general piezoelectric constitutive equations expressing the linear relation

between stress-strain and stress-electric displacement in thickness mode are

a-) T, =cS,—h,D, (6.1)
b-) E, = -h,,S, + 35D,

The relations of the four piezoelectric constants to each other are in thickness
mode (Berlincourt et al., 1958). IEEE Standard on Piezoelectricity (IEEE Ultrasonics,
1987) provides other relations to alternate the forms of the constitutive equations. In our
model, the overall stiffness applied to the PWAS has been split into two equal

components applied to the PWAS surfaces

1 1 1
= + ; k
2k, 2k

k

(6.2)

total — Festr

k

total str str

The boundary conditions applied at the PWAS ends balance the stress resultants, T,Dl
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T, (xg - i%)bl _ 12k u, (i j (6.3)

N |~

6.1.1 MECHANICAL RESPONSE FOR PWAS CONSTRAINED IN THICKNESS MODE

The resonance theory begins with the wave equation. Introducing the wave speed
in direction of x,axis, ¢, = W and the wave number in thickness mode, y, =w/c;;
the particle displacement u, is given by

U,(X%;) =C, siny,X; + C, COS y, X, (6.4)
C,andC, are to be determined from the boundary conditions. Note that S, =du, /ox, =u;

and substitute Eq(6.4) into Eq. (6.3). Impose the boundary conditions on the PWAS

surfaces that balance the stress resultant with the spring reaction force 2k u,.
Introducing the quasi-static PWAS stiffness, ko, = Acn/t and the stiffness ratio

r =K /Koyas - We can rearrange the equation using the ratio and it yields the following

linear system in C,and C,by substitution of the general solution. Rearrange using

é = 0.5t
. P t h,;,D,
(qﬁtcos¢t+rS|n¢t)C1+(¢tsm¢t—rcosqﬁt)Cz=§ -5 (6.5)
33
Upon subtraction, we obtain C, =0. Now add the two equations to obtain
t h,,D 1
C —_ s 6.6
"2 ¢y (¢cosg+rsing) (6.6)

Recall the strain S