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ABSTRACT 

The dissertation addresses structural health monitoring (SHM) techniques using 

ultrasonic waves generated by piezoelectric wafer active sensors (PWAS) with an 

emphasis on the development of theoretical models of standing harmonic waves and 

guided waves. The focal objective of the research is to extend the theoretical study of 

electro-mechanical coupled PWAS as a resonator/transducer that interacts with standing 

and traveling waves in various media through electro-mechanical impedance 

spectroscopy (EMIS) method and guided wave propagation. The analytical models are 

developed and the coupled field finite element analysis (CF-FEA) models are simulated 

and verified with experiments. The dissertation is divided into two parts with respect to 

the developments in EMIS methods and GWP methods.  

In the first part, analytical and finite element models have been developed for the 

simulation of PWAS-EMIS in in-plane (longitudinal) and out-of-plane (thickness) mode. 

Temperature effects on free PWAS-EMIS are also discussed with respect to the in-plane 

mode. Piezoelectric material degradation on certain electrical and mechanical properties 

as the temperature increases is simulated by our analytical model for in-plane circular 

PWAS-EMIS that agrees well with the sets of experiments. 

Then the thickness mode PWAS-EMIS model was further developed for a PWAS 

resonator bonded on a plate-like structure. The latter analytical model was to determine 

the resonance frequencies for the normal mode expansion method through the global 
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matrix method by considering PWAS-substrate and proof mass-PWAS-substrate models. 

The proof mass concept was adapted to shift the systems resonance frequencies in 

thickness mode.  

PWAS in contact with liquid medium on one of its surface has been analytically 

modeled and simulated the electro-mechanical response of PWAS with various liquids 

with different material properties such as the density and the viscosity. 

The second part discusses the guided wave propagation in elastic structures. The feature 

guided waves in thick structures and in high frequency range are discussed considering 

weld guided quasi-Rayleigh waves. Furthermore, the weld guided quasi Rayleigh waves 

and their interaction with damages in thick plates and thick walled pipes are examined by 

the finite element models and experiments. The dissertation finishes with a summary of 

contributions followed by conclusions, and suggestions for future work. 
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 CHAPTER 1

INTRODUCTION 

This chapter presents an introduction to the overall dissertation manuscript by 

addressing the motivation and importance of conducting the research, discussing research 

goal, scope, and objectives will be discussed, and introducing the organization of the 

dissertation.   

1.1 MOTIVATION 

 

Figure 1.1 (a) Pipelines for energy transportation; (b) pressure vessel for pressurized gas; 

(c) ships and offshore structures. 

Ultrasonic techniques are commonly used for validation of thick structures in 

many in-situ monitoring applications such as in nuclear industry, in pressure vessel 

industry, in pipelines, and in a range of naval applications. 
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Structural Health Monitoring (SHM) is a fast-growing multi-disciplinary field 

which aims at lowering the fatal costs due to catastrophic failures by detection in early 

stages of a structural damage and providing diagnosis/prognosis of structural health status 

in a real-time or with as needed maintenance. Exploring and inventing new SHM 

technologies enables the industry to reduce also the maintenance cost, shorten the 

machine service down time, and improve the safety and reliability of engineering 

structures. SHM methods have improved the management in both the health monitoring 

of aging structures by predicting the remaining life of the structure and the development 

of novel self-sensing smart structures by inclusion of sensors.  

SHM also enables condition based maintenance (CBM) that is in place of 

scheduled maintenance by placing SHM sensors along with the monitoring systems, 

which is provisioned that this extends the life-cycle and likely to greatly lower the life-

cycle costs as well.  

 

Figure 1.2: Active and passive sensing methods for in-situ SHM through PWAS 

generating propagating and standing Lamb waves in substrate structure to detect damage 

(Giurgiutiu, 2008a). 
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The development of SHM sensors assists to dynamically interrogate the structural 

variations in material of a medium where the sensors are embedded. Nonetheless, the data 

acquired from the sensing system should be properly interpreted based on the theoretical 

phenomena. Practical applications have imposed three main requirements on 

development on which the sensor technology lays for prediction of structural dynamic 

changes in the coupled sensor-medium system. The SHM sensors that are capable of 

active interrogation are called piezo-ceramic wafer active sensors (PWAS). They are 

widely employed as in-situ ultrasonic health monitoring transducers. They are used as 

resonators that generate standing waves as well as transducers that produce traveling 

waves in the embedding medium. Figure 1.2 shows a few examples for SHM active and 

passive sensing in near-field and far-field interrogation through PWAS that generates 

propagating and standing Lamb waves in substrate structure to detect damages e.g. crack 

or corrosion interrogating the structure with certain tuned wave modes 

 

Figure 1.3 Illustration of free PWAS transducers in different types and sizes (Giurgiutiu, 

2008). 

Piezoelectric wafer active sensors (PWAS) that are shown in Figure 1.3 are made 

of piezo-ceramics (e.g. lead zirconate titanate, a.k.a. PZT) and can be utilized as both an 

actuator and a sensor to monitor and deliver structural health information. Most of the 
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methods used in conventional NDE, such as pitch-catch, pulse-echo, and phased arrays, 

have also been demonstrated experimentally with PWAS. These successful experiments 

have positioned PWAS as an enabling technology for the development and 

implementation of active SHM systems. Figure 1.4(a) shows an array of 7 mm square 

PWAS mounted on an aircraft panel and Figure 1.4(b) shows principles of SHM 

techniques such as pitch-catch technique placed on top and pulse-echo technique placed 

on bottom. PWAS is light-weighted, inexpensive, minimally intrusive sensor requiring 

low-power. PWAS is much lighter, smaller and more inexpensive in contrast a 

conventional ultrasonic transducer as shown in Figure 1.3. PWAS transducers are used in 

SHM applications and are able to detect structural damage using Lamb waves. They 

achieve direct transduction between electric and elastic wave energies. PWAS 

transducers are essential elements in Lamb-wave SHM with pitch-catch, pulse-echo, 

phased array, and electro-mechanical impedance methods. 

 

Figure 1.4 Illustration of (a) PWAS sensors installed on an aircraft panel and of (b) 

principles of active structural health monitoring with PWAS transducers near a crack. 

Electro-mechanical impedance spectroscopy (EMIS) is one of the SHM 

techniques that employ PWAS as a piezo-ceramic resonator. EMIS has been widely used 

to determine the dynamic characteristics of a free PWAS and bonded PWAS for in-situ 
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ultrasonics (Zagrai & Giurgiutiu, 2001)
 
such as for high frequency local modal sensing 

EMIS method in the work presented by Liang et-al (1994). 

PWAS itself requires a characteristic description prior its installation on a 

structure or embedment in a medium. The intrinsic electromechanical 

impedance/admittance of PWAS is an important dynamic descriptor. The frequency 

response of a sensor to the electrical excitation defines its dynamic properties. 

Electromechanical impedance spectroscopy (EMIS) method applies standing waves 

generated by piezoelectric wafer resonator as the resonator is embedded into a medium so 

that E/M impedance indicates the response of the coupled medium-resonator in frequency 

domain in terms of anti-resonance spectra. It is substantial to extend the theoretical 

development to accurately and quantitatively predict the local dynamic characteristics of 

PWAS in different environmental conditions and in various embedding media. The 

development of analytical and numerical models under simplifying assumptions is 

paramount importance to perform simulation of response of PWAS-EMIS and 

constrained PWAS-EMIS in wide range of applications. 

For selective actuation and receipt of ultrasonic wave modes, the sizes of PWAS 

transducers, size of the structure and the excitation frequency of the input waveform 

should be tuned. The proof-mass concept has received considerable attention recently. 

Proof-masses shift the system resonance toward optimal frequency points. Therefore, 

proof-mass concept is adopted to develop a new method for tuning ultrasonic wave 

modes. The theoretical work on proof mass actuator is developed as a mass bonded to the 

piezoelectric actuator. The model is used to build the basis for a proof-mass piezoelectric 

wafer active sensor (PM-PWAS). Then, the PM-PWAS transducer model is studied by 
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PM analysis to investigate desired control objectives using the correlation between a PM-

PWAS and structural dynamic properties in the substrate structure. Analytical and 

numerical models are implemented for the PM-PWAS transducer attached to an isotropic 

elastic plate. 

Piezoelectric transducer and liquid domain interaction has been commonly 

investigated through theoretical analysis of resonance spectra in frequency domain using 

certain types of standing wave modes; shear horizontal waves and thickness shear waves 

by using different techniques. The electrical excitation of a PWAS can be converted into 

the mechanical vibration as regards to the stress and the strain waves. This 

piezoelectricity property of the material of PWAS has been used in literature to develop a 

micro-acoustic sensor to measure chemical, physical, and biological properties of a liquid 

medium located in the vicinity or possessing an interface with the sensor. The mechanical 

properties of the liquid medium such as the viscosity and the density affect the energy 

transduction of sensor as well as the electrical properties of the medium concerning the 

sensitivity of the wave mode. The detection of changes in mechanical properties and 

electrical conductivity of the biomedical implants by bio-PWAS enables to capture the 

protein or solution concentration (pH) changes that influence the conductivity, the 

ultrasonic wave modes and electro-mechanical impedance readings. 

Rayleigh waves have been widely used in non-destructive testing (NDT), SHM 

applications as well as in seismology. Rayleigh waves i.e. surface acoustic waves (SAW) 

are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) 

modes of Lamb waves as the frequency becomes relatively high. S0 and A0 wave speeds 

coalesce and both have the same value. This value is exactly Rayleigh wave speed. They 



 

7 

become non-dispersive wave, i.e. constant wave speed along the frequency. Rayleigh 

wave can only travel along a flat surface of a semi-infinite medium, which is hardly 

possible to generate in reality however for the plate thickness d >> λR , the measurements 

should be acceptable. The wave mode is then called quasi-Rayleigh wave having 

Rayleigh wave speed. The weld guided and tuned quasi-Rayleigh wave mode is essential 

for the applications in the in-situ inspection of relatively thick structures with butt weld 

such as naval offshore structures (Figure 1.1)c and dry cask storage system for spent 

nuclear fuel (Figure 1.5). 

 

Figure 1.5: A dry cask storage system for spent nuclear fuel. 
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1.2 RESEARCH GOAL, SCOPE, AND OBJECTIVES 

The research goal of the PhD work presented in this dissertation is to develop 

accurate and efficient theoretical models for standing and propagating waves and tuning 

of certain wave modes. The scope of this research covers the analytical modeling, finite 

element simulation, and experiments for the development of SHM concepts. The 

modeling techniques were advanced in both near-field and far-field interrogation. The 

objectives of the work presented in this dissertation are as follows: 

 To construct a 1-D analytical framework which can describe standing 

harmonic wave in thickness mode, including frequency response function, 

electromechanical admittance and impedance and linear higher harmonic 

overtones in relatively high frequency range of MHz. 

 To extend the concept developed in the thickness mode free PWAS case to the 

thickness mode constrained PWAS on its one surface and both surfaces i.e. 

two-layers and three layers. 

 To construct a proof-mass PWAS actuator to tune the standing wave mode by 

shifting the resonance frequency of the system by adding a proof-mass and 

changing the size or material of a proof-mass on the piezo-ceramic actuator.  

 To develop an analytical model of the electromechanical response of PWAS 

with various liquids with different material properties. 

 To carry out an analytical simulation of 2-D circular PWAS-EMIS at elevated 

temperature in order to study the piezoelectric material degradation and 

compensation at high temperature environment. 
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 To carry out theoretical and experimental study on weld guided waves and the 

weld guided wave interaction with damages in thick structures in high 

frequency range. 

1.3 ORGANIZATION OF THE DISSERTATION 

To achieve the objectives set forth in the preceding section, the dissertation is 

organized in eleven chapters. The focus and contents of each chapter is introduced in 

Chapter 1. 

In Chapter 2, literature is reviewed with respect to the ultrasonic waves in solid 

medium and the ultrasonic waves in fluid medium. In addition, the piezoelectric 

transducers is reviewed regarding the vibration modes, standing waves and wave 

propagation methods that employs piezoelectric wafer active sensors (PWAS). 

In Chapter 3, after the state of the art reviewed with respect to the 

electromechanical impedance spectroscopy (EMIS) method, the analytical and numerical 

work for free PWAS-EMIS models are derived in in-plane and thickness modes.  

In Chapter 4, the analytical 1-D free PWAS-EMIS and 2-D circular PWAS-EMIS 

simulations are presented to show the piezoelectric material degradation as the 

temperature increases. In addition, sets of experiments are conducted and the results are 

discussed in order to show thermal effects.  

In Chapter 5, the global matrix method (GMM) is first reviewed for multi-layered 

structures, and then the analytical model procedure is presented for the constrained 

PWAS-EMIS from one-side and two-sides in in-plane mode using the GMM. 

In Chapter 6, the similar procedure as in Chapter 5 is followed for thickness mode 

PWAS-EMIS in solid medium as PWAS constrained on an isotropic elastic material is 
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presented considering two-layer and three-layer models through normal mode expansion 

and global matrix methods. 

In Chapter 7, based on the progressive theoretical development in the preceding 

two chapters, proof-mass piezoelectric wafer active sensor (PM-PWAS) is introduced 

along with the state of the art regarding the proof-mass concept. Analytical, numerical, 

and experimental studies are conducted for PM-PWAS. In addition, some special case 

studies are presented for different materials and geometries.  

In Chapter 8, the electromechanical signature of PWAS behavior in contact with 

liquid medium is presented in terms of analytical E/M impedance and admittance 

simulations as a basis of biomedical sensor development.  

In Chapter 9, in general, the tuning of guided waves in thin and thick structures is 

discussed with different sets of experiments. 

In chapter 10, in particular, the weld guided quasi-Rayleigh wave in welded thick 

structures is introduced and accordingly the experimental results and finite element 

simulations are presented. 

In Chapter 11, concluding remarks are presented along with the suggested future 

work 
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 CHAPTER 2

LITERATURE REVIEW 

This chapter first introduces fundamentals of the ultrasonic waves in solid 

medium and in fluid medium reviewed by types, including Lamb waves, Rayleigh waves, 

shear horizontal (SH) plate waves. Then piezoelectric transducers are introduced and the 

vibration modes and standing wave modes that can be transduced by piezoelectric 

transducers are discussed. The concept of standing waves is introduced, and the 

correspondence between standing waves and structural vibration is established. Finally, 

the wave propagation methods using ultrasonic waves based SHM concepts and 

techniques are introduced. 

2.1 ULTRASONIC WAVES IN SOLID MEDIUM  

This section presents a review of ultrasonic elastic waves in elastic solid media. 

SHM methods based on elastic waves propagation are very diverse, and a number of 

approaches exist. The basic principles shall be held to understand basic principles that lay 

at the foundation of wave generation and propagation in solid media.  

 GUIDED WAVES IN PLATES 2.1.1 

Guided waves (e.g., Lamb waves in plates) are elastic perturbations that can 

propagate for long distances in thin-wall structures with very little amplitude loss. In 

Lamb-wave NDE, the number of sensors required to monitor a structure can be 
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significantly reduced. The potential also exist of using phased array techniques that use 

Lamb waves to scan large areas of the structure from a single location.  

Rayleigh waves, a.k.a., surface acoustic waves (SAW) are found in solids that 

contain a free surface. The Rayleigh waves travel close to the free surface with very little 

penetration in the depth of the solid. For this reason, Rayleigh waves are also known as 

surface-guided waves. 

In flat plates, ultrasonic-guided waves travel as Lamb waves and as shear 

horizontal (SH) waves. Lamb waves are vertically polarized, whereas SH waves are 

horizontally polarized. A simple form of guided plate waves are the SH waves. The 

particle motion of SH waves is polarized parallel to the plate surface and perpendicular to 

the direction of wave propagation. The SH waves can be symmetric and anti-symmetric. 

With the exception of the very fundamental mode, the SH wave modes are all dispersive. 

Lamb waves are more complicated guided plate waves. Lamb waves are of two basic 

varieties, symmetric Lamb-waves modes  (S0, S1, S2,…) and anti-symmetric Lamb-

waves modes (A0, A1, A2,…). Both Lamb wave types are quite dispersive. At any given 

value of the frequency–thickness product, fd , a multitude of symmetric and anti-

symmetric Lamb waves may exist. The higher the fd value, the larger the number of 

Lamb-wave modes that can simultaneously exist. For relatively small values of the fd  

product, only the basic symmetric and anti-symmetric Lamb-wave modes (S0 and A0) 

exist. As the fd  product approaches zero, the S0 and A0 modes degenerate in the basic 

axial and flexural plate modes. At the other extreme, as fd  , the S0 and A0 Lamb-

wave modes degenerate into Rayleigh waves confined to the plate surface. 
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 Lamb Waves 

Lamb waves are a type of ultrasonic waves that are guided between two parallel 

free surfaces, such as the upper and lower surfaces of a plate. Lamb waves can exist in 

two basic types, symmetric and antisymmetric. Figure 2.19 shows the particle motion of 

symmetric and antisymmetric Lamb waves. The Lamb wave motion has asymptotic 

behavior at low frequency and high frequency. At low frequency, the symmetric mode 

resembles axial waves, while the antisymmetric mode resembles flexural waves. At high 

frequency, both symmetric and antisymmetric wave approaches Rayleigh waves, because 

the particle motion is strong at the surfaces and decays rapidly across the thickness. The 

axial wave and flexural wave, by their nature, are only low frequency approximations of 

Lamb waves. The plate structure cannot really sustain pure axial and flexural motion at 

large frequency-thickness product values. 

The straight crested Lamb wave equations are derived under z-invariant 

assumptions using pressure wave and shear vertical wave (P+SV) waves in a plate. 

Through multiple reflections on the plate’s lower and upper surfaces, and through 

constructive and destructive interference, the pressure waves and shear vertical waves 

give rise to the Lamb–waves, which consist of a pattern of standing waves in the 

thickness y–direction (Lamb–wave modes) behaving like traveling waves in the x–

direction. The derivation finally reaches the Rayleigh-Lamb equation: 
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where +1 exponent corresponds to symmetric Lamb wave modes and -1 exponent 

corresponds to antisymmetric Lamb wave modes. d  is the half plate thickness, and   is 

the frequency dependent wavenumber. 
P  and 

S  are given in Eq. (2.2).   and   are 

Lame’s constants of the material, and   is the material density. 
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Figure 2.1: (a) Wave speed dispersion curve; (b) wavenumber dispersion curve (Shen, 

2014). 

Figure 2.1 shows the dispersion curves of aluminum plates calculated from the 

Rayleigh-Lamb equations. It can be noticed at least two wave modes (the fundamental 

symmetric mode: S0; the fundamental antisymmetric mode: A0) exist simultaneously. 

Beyond the corresponding cut-off frequencies, higher Lamb modes will participate in the 

propagation. At small frequency-thickness product values, the S0 mode is less dispersive 

than A0 mode, and all the Lamb wave modes converge to non-dispersive Rayleigh waves 

at large frequency-thickness product values. The dispersive and multi-mode nature of 
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Lamb waves adds complexity in both Lamb wave propagation modeling and SHM 

application. 

 Rayleigh Waves 

Rayleigh waves, known as the surface wave, propagate close to the body surface, 

with the motion amplitude decreasing rapidly with depth. The polarization of Rayleigh 

wave lies in a plane perpendicular to the surface. The effective depth of penetration is 

less than a wavelength. 

One benefit of using Rayleigh waves for structural health monitoring lies in that 

Rayleigh wave is not dispersive, i.e. the wave speed is constant. It is found that the 

Rayleigh wave speed, Rc , depends on the shear wave speed, Sc , and the Poisson ratio, 

. A common approximation of the wave speed of Rayleigh wave is given as 
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For common Poisson ratio values, the Rayleigh wave speed takes values close to and just 

below the shear wave speed (Giurgiutiu 2008). The particle motion or the mode shape of 

the Rayleigh waves across the thickness direction, y , is given by 
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where A  is the wave amplitude factor, Rc   is the wavenumber of Rayleigh surface 

waves,   and   are coefficients given in Eq. (2.5). Figure 2.2 shows the Rayleigh wave 

in a semi-infinite medium. 
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Figure 2.2: Simulation of Rayleigh wave propagation in a semi-infinite medium 

http://www.exploratorium.edu/faultline/activezone/slides/rlwaves-slide.html. 

 Shear Horizontal Plate Waves 

Shear horizontal (SH) plate waves have a shear-type particle motion contained in 

the horizontal plane. Figure 2.3 shows the coordinate definition and particle motion of SH 

plate waves. According to the coordinate defined, an SH wave has the particle motion 

along the z  axis, whereas the wave propagation takes place along the x  axis. The 

particle motion has only the zu  component. Unlike Rayleigh wave which is non-

dispersive, SH plate waves are dispersive and may travel with different modes. 

The phase velocity dispersion curve of the SH plate wave can be calculated as 
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where   is given in Eq. (2.7) and d  is the half plate thickness. 
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By substituting the appropriate eigenvalue, one gets an analytical expression for the 

wave-speed dispersion curve of each SH wave mode. For detailed expressions, the 

readers are referred to Giurgiutiu (2007). 

 

Figure 2.3: Coordinate definition and particle motion of SH  

plate waves (Giurgiutiu 2008). 

 

Figure 2.4: (a) SH plate wave-speed dispersion curves; (b) symmetric mode shapes; (c) 

antisymmetric mode shapes (Giurgiutiu 2008). 
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Figure 2.4 shows the wave-speed dispersion curve of SH plate waves and the 

mode shapes. It can be noticed that the fundamental symmetric mode (S0) wave is non-

dispersive and always exists starting from low frequency-thickness product values. This 

nice property makes it a good candidate as the interrogating waves in SHM systems. 

Recently, considerable research has been carried out on the transmission and reception of 

SH plate wave for SHM (Kamal et al. 2013; Zhou et al. 2014). Higher wave modes only 

appear beyond the corresponding cut-off frequencies, showing dispersive characteristics, 

i.e., their phase velocity changes with frequency. For dispersive waves, group velocity is 

usually used to evaluate the propagation of wave packets. The definition of group 

velocity is given in Eq. (2.8). 

 g

d
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d




  (2.8) 

 GUIDED WAVES IN RODS, PIPES, AND ARBITRARY CROSS-SECTION 2.1.2 

WAVEGUIDES 

The guided waves in rods, pipes, and arbitrary cross section waveguides (Figure 

2.5) also find great potential in nondestructive evaluation (NDE) and SHM for truss 

structures, pipelines, and rail tracks. Analytical solutions exist for simple geometry rods 

and pipes. However, for waveguides with arbitrary cross sections, the semi-analytical 

finite element (SAFE) method is usually adopted to obtain the numerical solutions of 

wave propagation problems. 
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Figure 2.5: Discretization of the cross sections in SAFE: (a) square rod; (b) circular pipe; 

(c) rail track (Hayashi et al. 2004). 

Several investigators have considered the propagation of waves in solid and 

hollow cylinders. Love in his fourth edition of the book published in 1944 studied wave 

propagation in an isotropic solid cylinder and showed that three types of solutions are 

possible: (1) longitudinal; (2) flexural; and (3) torsional. Comprehensive work on wave 

propagation in hollow circular cylinders was done by Gazis in 1959. At high frequencies, 

each of these solutions is multimodal and dispersive. Meitzler in 1961 showed that, under 

certain conditions, mode coupling could exist between various wave types propagating in 

solid cylinders such as wires. Extensive numerical simulation and experimental testing of 

these phenomena was done by Zemanek in 1972. A comprehensive analytical 

investigation was complemented by numerical studies. The nonlinear algebraic equations 

and the corresponding numerical solutions of the wave–speed dispersion curves were 

obtained. These results found important applications in the ultrasonic NDE of tubing and 

pipes. Silk & Bainton in 1979 found equivalences between the ultrasonic in hollow 

cylinders and the Lamb waves in flat plates and used them to detect cracks in heat 

exchanger tubing. Rose et-al in 1994 used guided pipe waves to find cracks in nuclear 
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steam generator tubing. Alleyne in 2000 used guided waves to detect cracks and 

corrosion in chemical plant pipe work. 

2.2  ULTRASONIC WAVES IN FLUID MEDIUM 

This section presents a review of ultrasonic elastic waves in fluid media. Some of 

the non-destructive testing (NDT) and SHM techniques are presented along with some 

theories developed in the literature regarding the fluid loaded beams and the interaction 

between the piezoelectric transducers and liquid media. The guided interface waves and 

acoustic waves generated by piezoelectric transducers are reviewed as well.  

 ULTRASONIC IMMERSION TECHNIQUE 2.2.1 

The propagating waves generated using a transducer can be used to test and object 

by coupling the sound waves with water. Two techniques exist for this testing: 1. Using 

water gun where the sound waves are guided through a jet of water or 2. Immersing the 

transducer and test object in a tank of water. In immersion testing, the transducer is 

placed in the water, above the test object, and a guided wave is projected.  

The graph of peaks using the immersion method is slightly different. Between the 

initial pulse and the back wall peaks there will be an additional peak caused by the sound 

wave going from the water to the test material. This additional peak is called the front 

wall peak. The ultrasonic tester can be adjusted to ignore the initial pulse peak, so the 

first peak it will show is the front wall peak. Some energy loss occurs when the waves 

collide with the test material, so the front wall peak is slightly lower than the peak of the 

initial pulse. 
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This ultrasonic test technique can be used to interrogate components and 

structures to detect internal and surface breaking defects, and measures wall thickness on 

hard (typically metallic or ceramic) components and structures. It operates on the 

principle of injecting a very short pulse of ultrasound (typically between 0.1 MHz and 

100 MHz) into a component or structure, and then receiving and analyzing any reflected 

sound pulses. 

Typical detection limits for fine grained steel structures or components (hand 

scanning) are single millimeter sized defects. Smaller defects can be detected by 

immersion testing and a programmed scan pattern with higher frequency ultrasound 

(slower testing). Detection limits are in the order of 0.1 to 0.2 mm, although smaller 

defects (typically 0.04mm diameter) can be detected under laboratory conditions. 

 FLUID LOADED BEAM  2.2.2 

Cheng & Wang (1998) and Zhang et-al (2003) considered a finite thick plate that 

has an interface with an acoustic medium on top and with vacuum on bottom side. The 

plate is excited by a harmonic point force as shown in  Figure 2.6 

 

Figure 2.6 Schematic of the fluid loaded beam excited by a harmonic point force. 
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where v  is the beam displacement, 
0F  is the amplitude of a harmonic point force, aP  is 

the fluid loading (acoustic) pressure on the beam, and   is the Dirac delta function. 
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where 0  is the acoustic wave number. On the interface, i.e. 3 0x  ; 

  2

0 1

3

aP
v X

X
 


 


 (2.11) 

Modal expansion method also implies 

 
1 1

1

( ,0) ( )a n n

n

P X P X




  (2.12) 

where nP  is the modal expansion coefficient of sound pressure and n  is the 

eigenfunctions of the beam. The sound pressure and beam displacement in wave number 

domain; 
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Imposing the boundary conditions in wave number,  , domain and applying inverse fast 

Fourier transform (IFFT), the sound pressure takes this form: 
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 GUIDED WAVES: INTERFACE WAVES 2.2.3 

 Bleustein-Gulyaev Waves 

First, Bleustein in 1968 explored the surface wave which was later to be named 

Bleustein-Gulyaev (BG) wave and developed the theory for the wave. Furthermore, 

(Zhang et-al. 2001; Guo et-al., 2006; Guo & Sun, 2008) also theoretically analyzed the 

BG waves for the model employing the hexagonal 6mm class of piezoelectric which 

occupied semi-infinite space and overlying half-space viscous and non-conductive liquid 

medium.  

Bleustein-Gulyaev (B-G) wave is a shear type surface acoustic wave (SH wave). 

B-G wave does not radiate energy into the adjacent liquid. It is sensitive to changes in 

both mechanical and electrical properties of the surrounding environment. B-G wave is a 

good candidate for liquid sensing applications (Guo & Sun, 2008). 

 

Figure 2.7: Schematic illustration of the BG wave problem 

and the coordinate system. 
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Navier-Stokes equation which is the governing equation for liquid was simplified 

neglecting the inertial term and the pressure gradient since the particle motion was 

induced only by wave propagation and only shear deformation occurs during the wave 

propagation so that the liquid particle velocity in transverse direction in plane was 

assumed to satisfy the following governing equation 
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where l  and l were defined to be the liquid mass density and the dynamic viscosity, 

respectively. Using the piezoelectric constitutive equations and Navier–Stokes equations, 

the dispersion relation for both the open circuit and metalized surface conditions were 

derived by an elaborate analytical procedure. 

 The Scholte Waves 

 

Figure 2.8 Scholte surface-wave velocity relative variations to the shear-wave velocity, 

VS2, as a function of frequency f and fluid layer thickness. The parameters VP1, VP2, VS1, 
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ρ1, and ρ2 [VP1 = 1.5 km/s, VP2 = 2.0 km/s, VS1 = 0 km/s, ρ1 = 1.0 g/cc, and ρ2 = 2.0 g/cc] 

are common to all the three curves. 

The general dispersion relation for the Scholte wave shows that for a fluid layer of 

finite thickness, the trapped wave is dispersive. Its velocity is always less than the shear-

wave velocity. Figure 2.8 shows an example of how the Scholte surface-wave velocity 

varies relative to the shear-wave velocity, VS2, as a function of frequency f and fluid layer 

thickness z1. 

The model we have looked at for the Scholte wave is a fluid layer above a solid 

half-space. The sea floor in most situations can be considered to represent a water-

sediment interface, with a P-wave sediment velocity somewhat higher than the velocity of 

sound in water. For soft marine sediments consisting of clay and silt, the S-wave velocity 

is much smaller than the water sound velocity but shows very large gradients close to the 

sea floor. The interface wave then becomes highly dispersive, although recognizably of 

the Scholte type. Recall that the source should be close to the sea floor to excite the 

Scholte interface wave.  

Scholte waves and quasi-scholte waves have been analyzed for liquid sensing 

applications subjected to various boundary conditions. Scholte waves are non-dispersive 

and propagates along a half space liquid-half space solid interface whereas quasi-Scholte 

waves are dispersive and propagates on a finite plate-liquid interface in similar fashion to 

the A0 mode in a free plate. The quasi-Scholte mode become asymptotic to Scholte wave 

at high frequencies being similar to the A0 and S0 modes becoming asymptotic to the 

Rayleigh wave solution (Cegla, Cawley, & Lowe, 2005). 
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Figure 2.9 Phase velocity dispersion of the quasi-Scholte mode on 

a steel plate surrounded by water. 

 The Leaky Lamb Waves 

Mindlin in 1960 determined the pressure (P), shear vertical (SV), and shear 

horizontal (SH) waves and vibrations at different angle of incidence in isotropic plates 

with variety of boundary conditions such as traction-free (unconstrained) and strain-free 

(constrained) conditions on the boundaries.  

For the wave propagation method, Lamb waves (Lamb, 1917) and leaky Lamb 

waves are of substantial and paramount importance in the group of guided elastic waves 

and have been widely used to develop liquid sensing technology. The propagation of 

Lamb waves in solid plate with traction free boundaries and leaky Lamb waves in solid-

liquid structures (Wu & Zhu, 1992) have been investigated by many researchers for 

inviscid (Chen et-al. 2006) or viscous liquids (Nayfeh & Nagy, 1997; Zhu & Wu, 1995) 

and dielectric or conductive liquids (Lee & Kuo, 2006). Lamb waves are considered to be 
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propagating in an elastic plate with a finite thickness otherwise when the waves propagate 

in an infinite half-space solid medium, they are considered to be Rayleigh waves. Leaky 

Lamb waves are variant of the Lamb waves which propagate on plate-liquid interface 

leaking part of the energy into adjacent liquid and therefore attenuate along its 

propagating direction. The similar feature of energy loss can be observed with the 

Rayleigh waves if a solid-liquid interface exist in the structure and in that instance, the 

Rayleigh wave can be also named leaky-Rayleigh waves due to the energy leakage into 

the liquid layer. 

 

Figure 2.10 Schematic illustration of different solid-liquid structure configurations and 

corresponding waves traveling along the interfaces. 

Guided waves are widely used as interrogating field for damage detection, 

because they can travel long distances without much energy loss, with the wave energy 

confined and guided within the structures. Besides, guides waves can travel inside curved 

walls, and across component joints. These aspects make them suitable for inspection of 

large areas of complicated structures. Ultrasonic guided waves are sensitive to changes in 

the propagating medium, such as plastic zone, fatigue zone, cracks, and delamination. 

This sensitivity exists for both surface damage and cross thickness/interior damage, 
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because guided waves have various mode shapes throughout the cross section of the 

waveguides.  

 PIEZOELECTRIC TRANSDUCERS GENERATED WAVES IN FLUID MEDIUM 2.2.4 

Piezoelectric transducer and liquid domain interaction has been commonly 

investigated through theoretical analysis of resonance spectra in frequency domain using 

certain types of standing wave modes; thickness shear waves and shear horizontal waves 

by using different techniques as discussed in the following sections.  

 Thickness Shear Waves 

Nwankwo & Durning in 1998 have investigated the mechanical and impedance 

response of thickness shear mode quartz crystal resonators to linear viscoelastic fluid 

media in thickness-shear mode. It was observed that the relaxation time of viscoelastic 

fluid (condensed polymeric liquids) results in a lower frequency than a viscous 

Newtonian fluid with identical density and viscosity due to reduced viscous dissipation 

and smaller inertial load on the crystal surface. The analysis of the momentum transfer 

from the crystal to the fluid reservoir was required to interpret the frequency shifts based 

on contact with fluids. The momentum transfer analysis resembled to that of Kanazawa & 

Gordon (1985) however the analysis in addition considered a complex amplitudes in 

mechanical response functions for both crystal and liquid parts of the problem as well as 

the fluid’s complex viscosity and its complex modulus which in turn concluded a 

correction term for the effect of a finite relaxation time in the fluid at the observed 

frequency shift. 
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Piezoelectric wafer active sensors (PWAS) (Giurgiutiu, 2008) have been widely 

employed as in-situ ultrasonic health monitoring transducers. PWAS transducers are 

capable of active interrogation of dynamic characteristics of an embedding material in 

which they may be bonded. Also PWAS transducers are small, light-weighted, 

inexpensive, unobtrusive, which enable them to be implanted into a biological tissue. 

Recently, in a joint effort between the University of South Carolina (USC) Department of 

Mechanical Engineering and School of Medicine, PWAS have been modified and 

investigated as biomedical sensors (bio-PWAS) (Giurgiutiu et al.; Xu, Giurgiutiu & 

Crachiolo, 2006). 

The electrical excitation of a bio-PWAS can be converted into the mechanical 

vibration as regards to the stress and the strain waves. This piezoelectricity property of 

the material of PWAS has been used in literature to develop a micro-acoustic sensor to 

measure chemical, physical, and biological properties of a medium located in the vicinity 

or possessing an interface with the sensor. The mechanical properties of medium such as 

the viscosity and the density affect the energy transduction of sensor as well as the 

electrical properties of the medium concerning the sensitivity of the wave mode. The 

detection of changes in mechanical properties and electrical conductivity of the 

biomedical implants by bio-PWAS enables to capture the protein or solution 

concentration (pH) changes that influence the conductivity, the ultrasonic wave modes 

and electro-mechanical impedance readings.  

Impedance analysis and ultrasonic guided wave propagation are mainly employed 

methods to investigate behavior of different piezoelectric acoustic resonators used in 

structural health monitoring in various types of media. The electro-mechanical impedance 
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spectroscopy (EMIS) of bio-PWAS implanted can transmit the status of implantation in 

frequency domain. EMIS method applies standing waves to a piezoelectric resonator and 

utilizes the resonator as both a transmitter and a receiver of the generated waves traveling 

in a surrounding medium. This technique can indicate the coupled response of the 

medium-bio-PWAS structure in terms of the electro-mechanical impedance spectrum in 

frequency domain. The impedance spectrum in frequency domain showed electro-

mechanical changes over time associated with the short term immune response (Bender et 

al., 2006). The response in high frequency range (up to 15 MHz) can be analyzed in 

varying modes such as the longitudinal (in-plane) mode (Zagrai & Giurgiutiu, 2001), the 

thickness (out-of-plane) mode (Tiersten, 1963), and thickness shear mode (TSM) 

(Bandey, Martin, Cernosek, & Hillman, 1999; Bund & Schwitzgebel, 1998; Schneider & 

Martin, 1995). 

 Shear Horizontal Surface Waves 

Kanazawa & Gordon in 1985 proposed an analytical definition of the resonance 

frequency shift by purely mechanical analysis which coupled the standing shear wave in 

the quartz to a damped propagating shear wave in Newtonian fluid i.e. 

3/2 /o L L q qf f        and verified by the experimental results in terms of the 

changes in resonance frequency of the quartz resonator whose one surface is in contact 

with water that owned varying concentration of glucose and ethanol. In the paper, the 

boundary layer was identified as the characteristic length of exponentially decaying 

viscous effects of the liquid on the resonance frequency because the displacement 

exponentially dies out in the liquid. The approach has been applied for quartz crystal 
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resonators with overlying viscous liquids, thin elastic films and viscoelastic layers (Josse 

& Shana, 1988; Nwankwo & Durning, 1998; Martin et al., 2000; Suh & Kim, 2010). 

However the theoretical method derived by Kanazawa & Gordon is only valid for 

overlying viscous fluid of infinite extent therefore the method analyzes bulk acoustic 

waves (BAW) which remains the sensor sensitivity low. The sensors utilizing surface 

acoustic waves (SAW) are superior to the conventional BAW devices in liquid sensor 

applications since SAW devices can operate at much higher frequencies and more mass 

sensitive since SAW possesses large attenuation and energy loss due to a mode 

conversion in the liquid and dissipates due to the viscous effects (Josse & Shana, 1988). 

Other alternative to the SAW presented was the shear horizontal (SH) surface wave as 

seen in Figure 2.6. 

 

Figure 2.11 Schematic of the propagation of a Shear horizontal (SH) wave along the 

interface between a piezoelectric substrate and a liquid layer. 

The propagation of surface shear waves on an interface (Figure 2.12) were 

theoretically defined by Feijter in 1979. The interface represented as a plane which has 

zero thickness and the mass was neglected. The surface shear wave equations in planar 

and circular surfaces were derived for surface of incompressible liquid which occupies 
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infinite space beginning from introducing the complex surface shear modulus and then 

imposing the continuity of the stress boundary condition relating the particle 

displacement, 
yu , with the liquid particle velocity, xv , the shear modulus, s , and the 

viscosity  ; shear force gradient with respect to y direction exerted on the interface 

equals to the shear force gradient with respect to the normal direction due to the presence 

of the viscous liquid attached to the surface i.e., 
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The stress-strain constitutive equation simply identifies the relation as 

 
yx sS   (2.17) 
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At this point, the complex shear modulus was introduced 

  cos sins s s s i          (2.19) 

This relation indicated that eventhough the shear waves propagated in x direction, the 

strain has a gradient in transverse direction and the displacement is no longer linear 

function of y. The Navier Stokes equation reduction occurred due to the consideration of 

only x component of the velocity which was defined as the time-gradient of the 

displacement.  
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where   is the density of the liquid, and xv  is the velocity component of the liquid in x  

direction and defined as the temporal gradient of the x  component of the displacement 
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Figure 2.12 Plane transverse wave traveling between the surface and the liquid with the 

wavelength of the surface shear wave and the wavelength of the bulk shear wave 

penetrating to liquid medium. 

The continuity equation for incompressible liquid is  

 Div 0v   (2.22) 

The z invariant condition ( 0zv

z





) and the constant velocity in y direction simplifies 

further the continuity equation to 

 0xv

x





 (2.23) 

and the stress boundary condition at the surface, Eq(2.18), can be rewritten as 
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 (2.24) 

The harmonic displacement function ( , , ) ( , ) i tu y z t f y z e   which defines the liquid 

particle motion and the surface particle motion can be introduced as a general solution to 

the bulk wave equation imposing the boundary conditions of no-slip and continuity of 

stress; therefore substituting the displacement function into equations (2.20) (N.S. 
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equations) and (2.24) (boundary conditions). The term, 2 2/xv y  , in the N.S. equation 

can be small as negligible when the surface shear modulus is sufficiently great, s  thus 

N.S. equation is simplified and further simplified by no-slip condition. 
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 (2.25) 

and the solution of the differential equation (2.25) was obtained as 

 
( 1) /2 ( 1)( , ) ( ) ( )
i z i azf y z g y e g y e

      (2.26) 

where ( )g y  was defined as an exponential function in terms of the wave dispersion ( sk ) 

 
0( ) sik y

g y A e


  (2.27) 

The wave dispersion equation that is the complex wave number was determined by the 

real wave number ( s ) and the damping coefficient ( s ) i.e. s s sk i   . The wave 

equation defining the surface shear motion was revised as a combination of a complex 

spatial and temporal exponential function including the dispersion equation terms.  

  0( , , ) coss yaz

su y z t A e e t az y
  

    (2.28) 

Josse & Shana theoretically analyzed shear horizontal wave propagation at the 

boundary of a piezoelectric substrate with viscous fluid to develop a liquid sensor. The 

attenuation was observed due to the liquid viscosity and density. The theoretical analysis 

that they developed is applicable to both Bluestein-Gulyaev (BG) wave and surface 

skimming bulk wave (SSBW) which were generated using piezoelectric crystal resonator 

performing in liquid environment. It was quantitatively found that BG wave attenuation 

due to the viscosity was significantly less in comparison to that of Rayleigh SAW. The 

hexagonal (6mm) crystal class which generates the BG waves and the SSBW was used 
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for the analysis. The referred paper adopted Christoffel equations (Auld, 1973) and 

solved the equations in three different medium; piezoelectric substrate, viscous fluid 

medium, and air satisfying the dispersion relations defined for each medium with the 

assumptions of x-invariant wave, incompressible dielectric viscous fluid, no-slip on the 

interface, and no-pressure, no gravity in the media. The model employed was a finite 

thick fluid layer overlying on the piezoelectric crystal of Cadmium Sulfide (CdS). The 

following boundary conditions were imposed. The electrical boundary conditions: 1-

Continuity of the electrical potential at y=0 and y=h, 2-continuity of the electrical 

displacement at y=h; the mechanical boundary conditions: 1-continuity of normal stress, 

2-continuity of the velocity particle displacement, 3-Traction-free at y=h.  

2.3 PIEZOELECTRIC TRANSDUCERS 

Piezo-electric material is a material that has a relation between a mechanical 

stress and an electrical voltage. As mechanical stress is applied, voltage can be generated 

and voltage can inversely be applied to morph the shape of material in small amount. 

These materials can be used as both actuators and sensors.  

In the literature, researchers have employed piezo-crystal resonators (Cassiède et-

al, 2011; Nwankwo & Durning, 1999) with different cut polarizations (IEEE Ultrasonics, 

1987) as well as piezo-ceramic resonators (Giurgiutiu, 2005) to carry out structural 

monitoring. IEEE Standard on Piezoelectricity explains the crystallography which applies 

to piezoelectric crystals categorizing in 32 classes of 7 crystal systems (triclinic, 

monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, and cubic) depending on their 

degrees of symmetry. The crystal plates are oriented in two rotations such as single 

rotation and double rotation to produce certain excitation modes. AT-cut (singly rotated) 
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and SC (stress compensated) cut (doubly rotated) crystal plates are the most commonly 

used ones as resonators. Properly oriented electrodes generate the required excitation 

modes. Both types of resonators are used to generate thickness shear mode excitations 

and generally named Thickness Shear Mode (TSM) crystal resonators. Thickness shear 

mode (out-of-plane) is one of two subdivisions of shear modes whereas the other is the 

shear horizontal (in-plane) mode. 

  

Figure 2.13: Illustration of differently rotated cuts such as singly and doubly rotated. 

(Basic Technology of Quartz Crystal Resonators, 2012). 

Piezoceramic sensors have also been widely employed in structural health 

monitoring (SHM) and non-destructive evaluations (NDT) society. Piezoceramics are 

typically made of simple perovskites (calcium titanium oxide minerals with the chemical 

formula CaTiO3) and solid solution perovskite alloys. Mechanical compression or tension 

on a poled piezoelectric ceramic element changes the dipole moment, creating a voltage. 

Compression along the direction of polarization or tension perpendicular to the direction 

of polarization generates voltage of the same polarity as the poling voltage. 

In recent years, piezoelectric wafers permanently attached to the structure have been used 

for the guided waves generation and detection. PWAS operated on the piezoelectric 

http://www.wordwebonline.com/en/CALCIUM
http://www.wordwebonline.com/en/TITANIUMOXIDE
http://www.wordwebonline.com/en/CHEMICALFORMULA
http://www.wordwebonline.com/en/CHEMICALFORMULA
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principle that couples the electrical and mechanical variables in the material (mechanical 

strain, 
ijS , mechanical stress, klT , electrical field, kE , and electrical displacement 

jD  in 

the form: 

 
E

ij ijkl kl kij kS s T d E   (2.29) 

 
T

j jkl kl jk kD d T E   (2.30) 

where 
E

ijkls  is the mechanical compliance of the material measured at zero electric field 

( 0E  ), 
T

jk  is the dielectric permittivity measured at zero mechanical stress ( 0T  ), and 

kijd  represents the piezoelectric coupling effect.  

 VIBRATION MODES OF PIEZO-WAFER RESONATORS:  2.3.1 

Piezoelectricity describes the phenomenon of generating an electric field when the 

material is subjected to a mechanical stress (direct effect), or, conversely, generating a 

mechanical strain in response to an applied electric field. The direct piezoelectric effect 

predicts how much electric field is generated by a given mechanical stress. This sensing 

effect is utilized in the development of piezoelectric sensors. The converse piezoelectric 

effect predicts how much mechanical strain is generated by a given electric field. This 

actuation effect is utilized in the development of piezoelectric induced-strain actuators. 

 In-plane mode, thickness mode, shear mode 

In practical applications, many of the piezoelectric coefficients, jid , have 

negligible values as the piezoelectric materials respond preferentially along certain 
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directions depending on their intrinsic spontaneous) polarization. For example, consider 

the situation of piezoelectric wafer as depicted in Figure 2.14a. To illustrate the 
33d  and 

31d  effects, assume that the applied electric field, 
3E , is parallel to the spontaneous 

polarization, 
sP , is aligned with the 

3x  axis, then such a situation can be achieved by 

creating a vertical electric field, 
3E , through the application of a voltage V  between the 

bottom and top electrodes illustrated by the shaded surfaces in Figure 2.14a. The 

application of such an electric field that is parallel to the direction of spontaneous 

polarization  3 sE P  results in a vertical (thickness-wise) expansion 
3 33 3d E   and 

lateral (in-plane) extensions and contractions 
1 31 3d E   and 

2 32 3d E   (the lateral 

strains are contracted as the coefficient 
31d  and 

32d  have opposite sign to 
33d ). So far, the 

strains experienced by the piezoelectric wafer have been direct strains. Such an 

arrangement can be used to produce thickness-wise and in-plane vibrations of the wafer.  

 

Figure 2.14 Basic induced-strain responses of piezoelectric materials: (a) direct strains; 

thickness 3 33 3d E   and in-plane 1 31 3d E  , 2 32 3d E   (b) shear strain 5 15 1d E   (c) shear 

strain 5 35 3d E   (Victor Giurgiutiu, 2008d).  
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However, if the electric field is applied perpendicular to the direction of 

spontaneous polarization, then the resulting strain will be shear. This can be obtained by 

depositing electrodes on the lateral faces of the piezoelectric wafer. The application of a 

voltage to the lateral electrodes shown in Figure 2.14b results in an in-plane electric field 

1E  that is perpendicular to the spontaneous polarization,  1 sE P . This produces an 

induced shear strain 
5 15 1d E  . Similarly, if the electrodes were applied to the front and 

back faces, the resulting electric field would be 
2E  and the resulting strain would be 

4 24 2d E  . The shear-strain arrangements discussed here can be used to induce shear 

vibrations in the piezoelectric wafer. The use of lateral electrodes may not be feasible in 

the case of a thin wafer. In this case, top and bottom electrodes can be used again, but the 

spontaneous polarization of the wafer must be aligned with an in-plane direction. This 

latter situation is depicted in Figure 2.14c, where the spontaneous polarization is shown 

in the 
1x  direction whereas the electric field is applied in the 3x  direction. The shear 

strain induced by this arrangement would be 
5 35 3d E  . For piezoelectric materials with 

transverse isotropy, 
32 31d d , 

24 15d d , 
22 11  .  

For both thickness extensional and thickness shear modes, there are relevant 

material constants; and elastic constant Ec , a piezoelectric constant e , a dielectric 

constant s . The E/M coupling factor   is given in terms of these constants by (IEEE 

Ultrasonics, 1987) 

 
2 2

21 s E

e

c



 



 (2.31) 

In piezo-ceramics such as lead zirconate-titanate (PZT), the shear coupling 

coefficient 
15  can be related to the following material constants 
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where 11

S  and 11

T  are the clamped and free dielectric permittivities perpendicular to the 

poling direction, respectively. 
15d  is the shear piezoelectric constant, 55

Ec  and 55

Dc  are shear 

elastic stiffness constants under constant electric field and constant electric displacement, 

respectively (Cao, Zhu, Jiang, & Introduction, 1998).  

 Shear horizontal (thickness shear, length shear) modes, shear vertical mode 

 

Figure 2.15 (a) Thickness-shear resonator. (b) Length-shear resonator.  

The shaded areas are the electrodes and the dashed arrows represent the  

direction of displacement at given points. The polarization direction is  

indicated by an arrow on the front face of the sample. 

In Figure 2.15, the polarization direction is shown with respect to the geometric 

orientation of the two resonators. The both intrinsic polarizations are in horizontal axis 

however the left one is along the longest edge and the right one is along the shortest edge. 
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Moreover, in both resonators, the intrinsic polarizations are perpendicular to the electric 

field polarizations and the electrodes are deposited on the surfaces across the thicknesses 

of both resonators. In the left resonator, the shear stress 
5T  applies on the surfaces lying 

on the yz plane and has the gradient in x axis so that this resonator is called thickness-

shear resonator and other one has the shear stress 
5T  applies on the surfaces lying on the 

xy plane and has the gradient in z axis so that is called length-shear resonator. The shear 

mode that a thickness shear resonator generates is called 
15d  mode and the shear mode 

that length generates is also called 
35d  mode eventhough both are actually shear 

horizontal modes whose electric field polarization directions only differ; one in 
1x  axis 

and other one is in 
3x , respectively as can also be seen in Figure 2.14.  

As the polarization direction is along thickness of a piezo-wafer so that electric 

field is polarized in thickness direction, 
3E  and since all stress components are zero 

except 
5T , the vibration mode is 

35d  mode that excites shear horizontal wave mode whose 

E/M coupling can be defined under constant electric field assumption as 
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and defined under constant electric displacement 
3D  assumption as 
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Figure 2.16 Solid lines represent non-deformed shape and dashed lines depict deformed 

shape (a) Shear horizontal (SH) deformation 
4 23T T , (b) Shear horizontal (SH) 

deformation 
5 13T T , (c) Shear vertical (SV) deformation 

6 12T T . 

 STANDING WAVES 2.3.2 

The concept of standing waves bridges the gap between wave analysis and 

vibration analysis. The particle motion can simply be considered self-similar along any 

line parallel to the y-axis. If plate vibration is seen as a system of standing waves in the 

plate, then this case can be considered as a system of standing straight-crested axial 

waves with the wave crest along the y-axis (Figure 2.17). 

 

Figure 2.17 Straight crested axial vibration in a plate. 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 
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To consider straight-crested flexural plate vibrations, plate vibration is seen as 

system of standing waves in the plate, and then this case can be considered a system of 

standing straight-crested flexural waves with the wave crest along the y-axis. Taking the 

y-axis along the wave crest yields a y-invariant problem that depends only on x 

 

Figure 2.18 Straight crested flexural vibration of a plate. 

 In-plane mode piezoelectric transducer constrained by elastic media 

For embedded NDE applications, PWAS resonators couple their in-plane  motion, 

excited by the applied oscillatory voltage through the piezoelectric effect, with the Lamb-

waves particle motion on the material surface. Lamb waves can be either quasi-axial (

0 1 2, , ...S S S ), or quasi-flexural ( 0 1 2, , ...A A A ). Figure 2.19 shows the interaction between 

surface mounted PWAS and 0S  and 0A  guided Lamb waves. 

 

Figure 2.19 PWAS interaction with Lamb waves in a plate; (a) S0 Lamb wave mode , (b) 

A0 Lamb wave mode. 
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Zagrai in 2002 worked on standing waves to determine an analytical expression 

for PWAS admittance on a 1-D structure undergoing axial and flexural vibrations. 

 
2

0 31

1
1 1

cot

I
Y i C

V r
 

 

  
     

  
 (2.35) 

where 1/ 2 L  , / PWASc  , and PWASc  is the sound speed in the PWAS material. 

The quantity   /str PWASr k k  is the stiffness ratio. The structural stiffness using 

conventional axial and flexural vibration modes of a 1-D beam was determined as 
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where n  and n  are the modal frequencies and damping ratios, while u and w signify 

axial and flexural displacements, respectively. 

Zagrai & Giurgiutiu in 2001 also performed 2D analysis of PWAS immittance 

(impedance/admittance) for circular-crested Lamb waves in cylindrical coordinates using 

the Bessel functions formulation. They also determined analytical expressions for the 

admittance and impedance of a PWAS mounted on a 2-D structure undergoing 

axisymmetric radial and flexural vibrations (Figure 3.1). 

 Thickness mode piezoelectric transducer constrained by elastic media 

Transducers usually interact with another medium attached over one or both 

surfaces and the boundary conditions change accordingly. The mechanical boundary 

conditions on the interfaces for the waves traveling in both directions are presented in 

Figure 2.20 
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Figure 2.20 Constrained thickness mode transducer. 

We can define the waves in each layer of the multilayered structure for the 

piezoelectric transducer, the general solution of in terms of the displacement and the 

force for the first elastic layer respectively are  

  (1) (1) (1)

3 1 2
ˆ ikz ikzu C e C e   (2.37) 

  (1) (1) (1)

3 1 1 2
ˆ ikz ikzF i Z C e C e     (2.38) 

and for the second elastic layer 

  (2) (2) (2)

3 1 2
ˆ ikz ikzu C e C e   (2.39) 

  (2) (2) (2)

3 2 1 2
ˆ ikz ikzF i Z C e C e     (2.40) 

The elastic structures are assumed to be semi-infinite half space media therefore 

the mechanical signal and the force exerted on the transducer by the medium 1 is 

represented by (1)

1C  (incident wave amplitude) in Eqs (2.37) and (2.38) whereas the 

reflected wave is represented by (1)

2C . The coefficients can be therefore determined by the 

nature of the applied signal whether harmonic, sine, or cosine input signal function. 
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Herein the velocities of the waves in the elastic media extending over large distances in 

the lateral directions can be calculated by using Lame constants,   and  , i.e. 

 2 /c      and if extending over small area using the elastic modulus, /c E 

when open circuit condition is applied, the total current flow becomes zero, i.e., 

 ˆˆ 0I i Q   (2.41) 

As an analogy, the mechanical force can be considered as the analog of the 

electrical potential and the particle velocity as the analog of the electrical current. The 

electro-mechanical impedance matrix establishes the relations between the mechanical 

forces and the particle velocities and the electrical voltage and the electrical current 

which present at the mechanical and electrical ports. The matrix can be functionally 

considered as a composition of three components such as the first 2x2 sub-matrix which 

includes the equations of a mechanical transmission line of thickness of the piezoelectric 

transducer, the characteristic acoustic impedance, and the wave speed; the piezoelectric 

constant, 33 33 33/ Sh e  , terms related to the electromechanical coupling factor (

2 2

33 33 33 33/ D Se c  ) by the reciprocal of the stiffened elastic coefficient or the compliance 

coefficient (
33 331/D Ds c );the last matrix element is the pure electrical impedance of the 

piezoelectric transducer capacitance. 

All the equivalent circuits can be represented by the 3x3 electromechanical 

transfer matrix. The transfer matrix of circuit theory with the parameters at the electrical 

and acoustic ports can be implemented to analyze the transducer performance whether a 

transmitter or a receiver under the short or open circuit conditions. 
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 (2.42) 

 

Figure 2.21 Two port illustration of a piezoelectric 

transducer system. The electrical and mechanical  

  parameters at the ports are correlated by the ABCD  

matrix. 

0F , tF ,  3 0
u , and  3 t

u are the forces and the particle velocities on the 

transducer surfaces. In the circuit, the secondary of the ideal transformer is connected to 

the external shield of the transmission line; however, the shield does not possess 

inductance therefore the transmission line model cannot be directly simulated on SPICE 

simulation software due to the necessity for a shield with no inductance.  

The analysis and the simulation of both acoustic and electrical piezoelectric 

transducer elements can be easily implemented through SPICE analysis programs for 

modeling one dimensional multilayered structure with a stack of piezoelectric and non-

piezoelectric layers and for analyzing the behavior with respect to the variations on the 

transducer elements by taking the acoustic losses into account (Puttmer et-al, 1997). In 

the active piezoelectric plates, the length and width to thickness ratios are sufficiently 

large so that one-dimensional models are good approximations to predict the properties of 

the transducer (Emeterio & Ramos, 2008).  
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 WAVE PROPAGATION METHODS 2.3.3 

A piezoelectric active sensor can fulfill both duties, actuating a structure and 

sensing the elastic waves, which it generates, being propagated into a structure and 

traveled back to the source (pulse-echo method). Another method can employ two 

piezoelectric active sensors such that one can be used as an actuator and the other as a 

sensor (pitch-catch method) to generate and sense the wave propagation into a structure, 

respectively. PWAS can be also used as a resonator generating standing waves into the 

structures to help identify the local dynamics of the structure via PWAS permanently 

mounted on the structure in order to determine occurrence and location of a defect (Yu, 

2006). 

 Pitch-catch Method 

One PWAS can be used as an actuator whereas another PWAS as a receiver and 

both are mounted on the same structure and then the generated wave propagates off the 

actuator and can be received by the other PZT active sensor and the received wave 

signals can be read (Figure 2.22). The wave signals recorded for the pristine form of the 

same sort of structure can be used as a baseline to determine whether any damage occurs 

in the structure. The wave signal analysis by comparing the phase and amplitude 

differences even provides the information about the size and the location of the defect in 

the material. After series of tests, the data sets can be evaluated by a statistical damage 

index (DI) method based on the root-mean square values.  



 

49 

 

   

 

2

0

0

1
2

0

0

 

N

i

j

N

j

s j s j

RMSD DI

s j







  





 (2.43) 

Lamb wave change as it travels through a damaged area. It can become more 

dispersed or even change speed. The pitch-catch method can detect delamination, cracks, 

disbond in joint or impact damage (Roman, 2012).  

 

Figure 2.22 Diagram of a pitch-catch setup being used to detect a damaged region 

(Giurgiutiu, 2008). 

 Pulse-echo Method 

A piezoelectric transducer can be used as both actuators and sensors since 

piezoelectric material has reversible material property. This material property is a relation 

between mechanical stress and electrical voltage. As mechanical stress is applied, voltage 

can be generated and inversely voltage can be applied to morph the shape of the material 

in small amount. These materials can be used as both actuators and sensors as seen in 

Figure 2.23. The piezoelectric transducer can fulfill both duties, actuating a structure and 

sensing the elastic wave that was generated by the transducer, being propagated into a 

structure and traveled back to the source.  
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Figure 2.23 Diagram of a pulse-echo setup being used to detect a damaged region 

(Giurgiutiu, 2008). 

When the propagating wave impinges on a defect, a part of the wave is reflected 

back from the defect and can be captured by the PWAS. The collected signals from 

damaged structure can be compared to the signal from pristine structure and the 

difference in the received signal in terms of phase or amplitude difference can help 

determine the existence, the type, and even the location of the damage. In order for the 

pulse-echo method to be successful, part of the incidence wave should be reflected from 

the damage, not be damped by the damaged zone or not be fully transmitted through the 

damaged zone. Different types of damage reflect the Lamb wave differently. Damage 

through the thickness will reflect the largest percentage of the transmitted wave. The 

pulse-echo method is successful at detecting cracks but not very successful to detect 

delamination (Roman, 2012). 
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 CHAPTER 3

FREE PWAS E/M IMPEDANCE SPECTROSCOPY 

This chapter presents the theory and an analytical framework for simulating in-

plane and out-of-plane (thickness) modes of E/M impedance spectroscopy (EMIS) of 1-D 

free PWAS. Two main electrical assumptions will be applied for both PWAS-EMIS 

modes. These assumptions are 1- constant electrical field assumption and 2- constant 

electrical displacement assumption. The analytical simulations under these two 

assumptions will be carried out and verified by corresponding finite element simulations 

as well as experimental measurements.  

3.1 STATE OF THE ART FOR ELECTROMECHANICAL IMPEDANCE 

SPECTROSCOPY  

The intrinsic EMIS of PWAS is an important dynamic descriptor for 

characterizing the sensor prior to its installation on a structure. The frequency response of 

a sensor to the electrical excitation defines its dynamic structural properties. EMIS 

method has been widely used to determine the dynamic characteristic of a free PWAS 

and bonded PWAS for in-situ ultrasonics. For example, Sun, Liang, & Rogers (1994) 

Kamas, Lin, & Giurgiutiu (2013) utilized the EMIS method for high frequency local 

modal sensing. The analytical in-plane PWAS-EMIS model under constant electrical 

field assumption was developed by Zagrai in 2002.  
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EMIS method applies standing waves to a piezoelectric resonator and utilizes the 

resonator as both a transmitter and a receiver of the generated waves traveling in a 

medium so that this technique can indicate the response of the coupled medium-resonator 

in terms of the E/M impedance spectrum in frequency domain. The response in frequency 

domain can be  in varying modes such as the longitudinal (in-plane) mode (Giurgiutiu, 

2005; Giurgiutiu & Zagrai, 2000; Zagrai & Giurgiutiu, 2001), the thickness (out-of-

plane) mode (Ballato, 1977; Chen et-al, 2008; Lee, Liu, & Ballato, 2004; Meeker, 1972; 

Sherrit, Leary, Dolgin, & Bar-Cohen, 1999; Tiersten, 1963; Yamada & Niizeki, 1970), 

thickness shear mode (TSM) (Bandey et-al, 1999; Bund & Schwitzgebel, 1998; 

Schneider & Martin, 1995). In order to theoretically analyze the thickness and thickness 

shear modes of the impedance spectra of the resonators in a media, two techniques have 

been used in resonator theory. One technique have employed the governing differential 

equations and constitutive equations imposing the relevant boundary conditions and the 

second technique has mostly used delay line transducer theory to derive an equivalent 

circuit model to describe the impedance and the transfer function of the transducer 

(Martin et al., 2000; Nwankwo & Durning, 1999; Sherrit et al., 1999). Two equivalent 

circuits widely used are Mason’s and KLM (Krimholtz et-al, 1970) circuits to 

approximate the analytical solutions for the impedance in thickness mode (Ballato, 2001).  

The analytical study for thickness mode of EMIS of piezoelectric ceramic 

resonator has not been fully performed yet. Therefore, the constant electric displacement 

assumption used in the literature was adopted and the piezoelectric constitutive equations 

are solved for the 1-D PWAS-EMIS in thickness mode. Coupled-field finite element 

method (CF-FEM) was used to model and simulate free PWAS-EMIS. In addition, a set 
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of experiments was conducted using free-rectangular PWAS. The results from the two 

analytical models with two different assumptions are validated by the corresponding 

numerical models and the experimental measurements. The comparison between 

theoretical prediction, simulation, and experimental data are illustrated and discussed. 

 IN-PLANE MODE E/M IMPEDANCE SPECTROSCOPY 3.1.1 

 

Figure 3.1 Piezoelectric wafer active sensor constrained by the structural stiffness 

(Zagrai, 2002). 

The analytical in-plane impedance for piezoelectric ceramic transducers such as 

PWAS has been developed by Zagrai & Giurgiutiu (2001). One and two dimensional in-

plane E/M impedance models for free PWAS and constrained PWAS (Figure 3.1) were 

derived to model the dynamics of PWAS and substrate structure in terms of EMIS. They 

assumed the constant electric field, 3E , to derive the in-plane EMIS. 
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Zagrai & Giurgiutiu (2001) assumed harmonic excitation  3 1 3
ˆ, i tE x t E e   and 

considering the 1-D equation of motion, the free PWAS impedance can be described as  
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0 31

1
1 1

cot

I
Y i C

V
 

 

  
     

  
 (3.1) 

where the electro mechanical coupling coefficient , 31 , defined as 2 2

31 31 11 33/ E Td s   and 

the capacitance of the material 
0 33/ SC bL t  and 1/ 2 L   (IEEE Ultrasonics, 1987). 

 THICKNESS MODE E/M IMPEDANCE SPECTROSCOPY MODELS 3.1.2 

 

Figure 3.2 Schematic of a piezoelectric wafer active sensor polarized in thickness 

direction. 

Many rigorous researches on the thickness (out-of-plane) mode (Figure 3.2) 

theory have been conducted for piezoelectric crystal and ceramic resonators. Tiersten 

(1963)
 
presented a pioneering work to develop the analytical solution for the thickness 

vibration of an anisotropic piezoelectric plate. He used the resonator theory with traction-

free 0T   boundary conditions at surfaces of a plate. Thickness vibration in an infinite 

piezoelectric plate was explored based on lossless ideal linear theory. He assumed a 

medium that is perfectly elastic and perfectly insulating to electric current so that the 
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coupling of mechanical field and electric field is omitted. Meeker (1972) adopted 

Tiersten’s basic equations to develop general impedance equations with arbitrary 

boundary conditions. He used a matrix method to analyze the parallel and perpendicular 

electrical field excitation of piezoelectric plates in thickness direction. The resonant and 

anti-resonant frequencies and the coupling factors were determined by solving 

transcendental equations. (Yamada & Niizeki, 1970; Yamada, 1970) extended the 

thickness mode solution for both thickness and lateral excitation. (Mason, 1948) further 

developed the equivalent electrical circuit theory to predict the impedance of the simple 

thickness mode piezoelectric transducer. These previous analytical solutions have been 

focused on piezoelectric crystal transducers. 

Mindlin (1951) obtained the frequency equation which prompts to define the 

frequency spectrum of resonances by thickness shear vibration of rectangular quartz plate 

fully electroded (Berlincourt et-al., 1958). The shear deformation was observed to be 

present in flexural motion so that the forcing shear deformation generated by a 

piezoelectric transducer excites the flexural resonance at the resonant frequencies of 

flexure therefore the resonances could be designated as thickness-shear modes in a 

bounded plate. He improved the classical plate theory in three dimension applying to high 

frequency flexural modes and the accompanying thickness-shear motion. He retained the 

shear and rotatory inertia terms which accommodated the higher thickness-shear 

overtones. He neglected the width of the plate assuming the independency of resonant 

frequencies of z-direction and derived the solution of two-dimensional anisotropic 

version of Timoshenko’s beam equation. Mindlin & Deresiewicz (1953) later on derived 

the governing equations in two dimensions for the coupled shear and flexural vibrations 
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of isotropic, elastic circular plates by using Bessel’s function and obtained the results in 

terms of the resonant frequencies, in thickness-shear mode, resembling to those excited in 

an AT-cut quartz circular disk.  

Thickness vibration in an infinite, piezoelectric plate was explored by Tiersten, 

1963 based on lossless ideal linear theory which assumed a medium to be perfectly 

elastic and perfectly insulating to electric current that result in omitting the coupling of 

mechanical field with electric field. He investigated the steady state thickness vibrations 

in an infinite -plate with infinite plated electrodes on both surfaces. Lawson’s solution 

(Lawson, 1942) was improved in the mean of satisfying the proper boundary conditions. 

The analysis was applied (satisfying high electromechanical coupling) to a ferroelectric 

ceramic in both thickness and in-plane direction also applied to Y-cut quartz plate. The 

boundary conditions are traction-free and harmonic electric potential lying on both 

surfaces. Since neither boundaries nor the applied voltage is dependent on the lateral 

directions, the solution was independent of x2 and x3. However, the solution proposed is 

only valid for resonators due to the traction free conditions and invalid for the delay line 

transducers. Researches have been conducted by manipulating the thickness mode theory 

for different configurations of piezoelectric crystal and ceramic resonators. 

The thickness mode theories that had been developed were synthesized by Meeker 

(1972) then Tiersten’s basic equations was adopted to develop the theory of the simple 

thickness mode to obtain general impedance equations for the piezoelectric transducer for 

arbitrary boundary conditions. The restrictions applied to the model was to avoid the 

lateral excitation modes, to remain in low frequency range, and to assume no energy 
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leakage to the surrounding media therefore considering the impedance as a pure reactance 

that depends on frequency, geometry and the material.  

Yamada & Niizeki, (1970) analyzed the parallel and perpendicular electrical field 

excitation of piezoelectric plates in thickness direction by means of a matrix method and 

obtained the admittance of the plate with electrodes coated. The resonant and anti-

resonant frequencies and the coupling factors for three vibration modes (one longitudinal 

and two transversal) were determined by solving transcendental equations derived and the 

results were verified by experiments with lithium tantalite single crystal.  

The electric field was considered as parallel field to the plate surfaces which 

results in the anti-resonant frequencies as solutions to a transcendental equation unlike 

the perpendicular field case from which one can come up with the resonant frequencies 

(reciprocal relation) because of the assumptions made although the obtained results were 

in close agreement. Yamada’s simple thickness mode analysis was adopted by Ballato, 

1977 for the admittance of doubly rotated thickness mode plate vibrators uncoated 

Eq(3.2) and coated with electrodes Eq(3.3).  
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where   was defined as the reduced mass loading of the metallic electrodes and 
( )mX  

was the product of wave number that depends on the frequency by the plate thickness, 

2

mk  was the electro-mechanical coupling coefficient that differs for each mode, and 0C  is 
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the static shunt capacitance. In the open circuit condition, the traction-free condition was 

assumed and each uncoupled frequencies were determined from the roots of 

( ) ( )tan 1m mX X   and not harmonically related however otherwise, i.e. metalized (short) 

circuit condition, the coupled resonance frequencies were determined from
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Ballato in 2000 extended Christoffel-Benchmann (C-B) method further to 

determine the solution for lateral field excitation moreover to simplify the solution of the 

thickness mode problem which was produced by Tiersten and extended by Yamada and 

Niizeki for both thickness and lateral excitation. Ballato obviated, by using C-B method, 

the unnecessary computation raised from the material properties tensors rotated from the 

crystallographic axes to the axes of the plate. The C-B method assisted to obtain the 

solution for an arbitrary direction of propagation, which had been fairly correct prior to 

the publications by Tiersten and Yamada and Niizeki nevertheless, the C-B procedure 

was computationally more efficient since no rotation of the material coefficients between 

crystallographic and crystal plate axes was taken into account.  

The thickness mode has been modeled by also facilitating the network theory in 

the means of the simplifying electro-mechanical analogy using electrical equivalent 

circuits associated with somewhat complicated analytical solutions for traction-free or 

different loading conditions. The pioneer equivalent circuit was developed by Mason in 

1948, Redwood in 1961 proposed the modified version of the Mason’s equivalent circuit 

model and the alternative equivalent circuit called KLM was proposed by Krimholtz et al. 

in 1970. The equivalent circuits which are composed of mechanical, electrical ports, 
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acoustic layer ports (if any exists), and the transmission line have been widely employed 

for the thickness mode transducer simulation, design, and optimization.  

Damping in an anisotropic or piezoelectric plate could be involved using 

viscoelastic models. One of the recent investigations (Lee et al., 2004) included the 

dissipation of energy concerning higher operating frequency and smaller sizes of the 

resonators in more realistic modeling as those used in micro-sensor applications 

considering both piezoelectric crystal and piezoelectric ceramic resonators. The most 

general three-dimensional investigation was performed for the plane harmonic wave 

propagation and for the forced thickness vibrations in an arbitrary direction of an infinite 

piezoelectric plate including losses due to the acoustic viscosity and electric conductivity. 

The frequency dependent admittance was determined and the resonance spectrum in 

thickness mode was depicted in frequency domain. The real and imaginary parts of the 

mode shapes and potentials across the thickness of the piezoelectric plate excited in 

thickness mode were demonstrated. The predicted viscosity term values were eventually 

listed for different piezoelectric plates. 

3.2 ANALYTICAL IN-PLANE MODE EMIS MODEL UNDER CONSTANT D3 

ASSUMPTION 

The following assumptions for PWAS were used for the in-plane EMIS model 

(Giurgiutiu, 2008). The PWAS of length l , width b , and thickness h , undergoing 

piezoelectric expansion induced by the thickness polarization electric field, 3E . The 

electric field is generated by harmonic voltage ˆ( ) i tV t Ve   between the top and bottom 

surface electrodes. 3E is assumed to be uniform over the piezoelectric wafer. Thus, its 
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derivative with respect to 3x  is zero i.e. 3 3/ 0E x   . The voltage excitation is harmonic 

so that the electric field 3 3
ˆ i tE E e  and the mechanical response in terms of particle 

displacement are also harmonic, i.e. ˆ( , ) ( ) i tu x t u x e  where ˆ( )u x  is the x  dependent 

complex amplitude that incorporates any phase difference between the excitation and 

response.  

Giurgiutiu & Zagrai (2000) obtained the following frequency dependent 

impedance equation that can be used to predict the frequency response of PWAS excited 

at anti-resonance frequencies. The electro-mechanical impedance follows the electrical 

impedance function, 01/ i C  where 0C  is the capacitance of the sensor. To this purpose, 

we note that the term   is a function of frequency and wave speed, i.e. 
1

/
2

l c   and 

the electro-mechanical coupling is denoted by 2

31  term. 
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Figure 3.3 Simulated frequency response of admittance and impedance of a PWAS 

(including internal damping effects of 0.01   ). 
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Frequency plots of admittance  1/Y Z  and impedance shows the graphical 

determination of the resonance and anti-resonance frequencies. Figure 3.3 presents the 

numerical simulation of admittance and impedance response for a piezoelectric active 

sensor ( 7mml  , 1.68mmb  , 0.2mmh  , APC-850 piezo-ceramic).  

The general constitutive equations expressing the linear relation between stress-

strain and stress-electric displacement in in-plane mode are 

 
1 11 1 31 3

3 31 1 33 3

a-) 

b-) 

D

S

T c S h D

E h S D

 

  
 (3.6) 

The relations of the four piezoelectric constants to each other are in in-plane mode as 

follows (Berlincourt et al., 1958): 

 

31 33 31 31 11

31 33 31 31 11

31 33 31 31 11

31 33 31 31 11

T E

T D

S E

S D

d g e s

g d h s

e h d c

h e g c









 

 

 

 

 (3.7) 

(IEEE Ultrasonics, 1987) standard on piezoelectricity provides other relations to 

alternate the forms of the constitutive equations. The relations adopted for the 31 mode 

are 
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 MECHANICAL RESPONSE IN IN-PLANE MODE 3.2.1 
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Under 1-D assumption, the in-plane mode wave equation can be expressed 
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1 31 1

2 2

1

Du c u

t x

 
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 (3.9) 

Introducing the wave speed in direction of 1x axis, 31

Dc
c


 , and the wave number in 31 

mode,
1c


  ; the particle displacement 1u is given by 

 1 1 1 1
ˆ( , ) ( ) i tu x t u x e   (3.10) 

where the general solution of the wave equation in terms of the in-plane displacement 

amplitude  

 1 1 1 1 2 1
ˆ ( ) sin cosu x C x C x    (3.11) 

The coefficients 1C  and 2C  are to be determined from the boundary conditions, i.e. 
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Note the strain-displacement relation, 
1

1 1

1

u
S u

x


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
, and substitute the general solution in 

Eq. (3.11) into the piezoelectric constitutive equation in Eq. (3.6)a to obtain  

  1 11 1 1 2 1 31 3cos sinDT c C x C x h D      (3.13) 

Impose the boundary conditions to obtain the following system of equations 
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Addition of Eq. (3.14) and Eq. (3.15) will result in 
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and 2 0C   since 
1

sin
2

L is assumed to be non-trivial term. Recall the particle 

displacement 1u  to get the solution in terms of the displacement amplitude 
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and the strain amplitude 
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 ELECTRICAL RESPONSE UNDER CONSTANT ELECTRIC DISPLACEMENT 3.2.2 

ASSUMPTION 

The electrical impedance can be expressed as division of the voltage by the 

current; 
V

Z
I

 and the voltage and the current are respectively  
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Recall the second constitutive equation and substitute Eq. (3.17) into the equation to get 

the expression for the electric field 
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From the relations provided in Eq. (3.7) and Eq. (3.8), one can come up with the 

expression, 
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, and plug it into Eq. (3.20) noting that 
31 311/D Dc s  and 

introduce the electro mechanical coupling coefficient , 31 , defined as 
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 (IEEE 

standard pg 39). Note that the superscripts of the parameters in the denominator of 31 are 

not the same as those superscripts of the parameters of 31h therefore they should be 

equated to replace 31h  term with 31 in Eq. (3.20). Thus taking the relations in Eq. (3.8),   
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Substitute the relations 
31 31 31/ De d s  and 

31 31 31/ Dh g s  into Eq. (3.21) and rearrange to 

obtain this form 
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Now replace 31h  term with 31 in Eq. (3.20) and rearrange to form the electric field 

expression 
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The numerical value of the term in the small parenthesis in Eq. (3.23) for APC-850 

piezoelectric material can be found as 1.396 and the value only changes with the material 

properties and does not depend on frequency. Upon substitution of Eq. (3.23) into Eq. 

(3.19)a, we can derive the voltage expression 
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Integrate Eq. (3.25) over 1x  direction again since it seems variable along direction 1. 
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After rearrangement, we obtain the final expression of the voltage 
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Recall the current-charge relation, /I Q Q t     and part b of Eq. (3.19) 

 3I i D bL  (3.29) 

Substituting Eq. (3.29) into the impedance, /Z V I , we can now derive the 

electromechanical impedance for in-plane mode under constant electric displacement 

assumption 
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


  

 
  

    
  

 

 (3.30) 

Introducing 
1

2
L   and substituting into Eq. (3.30) yields 

 233 11 31 31
31

11 31 31

1
1

cot

S D

D

t s g dV
Z

I i bL s g d




  

  
    

  

 (3.31) 

Recalling the capacitance of the material 0

33

S

bL
C

t
  and substituting into Eq. (3.31) also 

yields 

 2 11 31 31
31

0 11 31 31

1 1
1

cot

D

D

s g dV
Z

I i C s g d


  

  
    

  

 (3.32) 

 11 31 31

11 31 31

1
D

D

s g d

s g d

 
 

 
 (3.33) 

Since    3 12 15

31 31 12.4 10 . 175 10 2170 10 0g d x x x        for PWAS denoted as APC 

850. Then final form of the in-plane electromechanical impedance under constant electric 

displacement assumption can be expressed 

 2

31

0

1 1
1

cot

V
Z

I i C


  

 
   

 
 (3.34) 
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 EFFECT OF INTERNAL DAMPING 3.2.3 

Table 3.1 Properties of APC 850 piezoelectric ceramic (www.americanpiezo.com). 

 
Piezoelectric material constants are given in Table 3.1 for APC 850 type PWAS 

and the PWAS EMIS models are based on these constants. The internal damping can be 

modeled analytically by complex compliance and dielectric constant  

 

 11 11

33 33

33 33

1

(1 )

(1 )

s s i

i

i



  

  

 

 

 

 (3.35) 

The electromechanical resonance in in-plane, 31d , mode shows up at low 

frequency range. The internal damping is implied even in free PWAS case (whose 

boundaries are unbounded) of the in-plane mode in order to determine the impedance and 

admittance results assuming  and are smaller than5% . The admittance and impedance 

become complex expressions. 

 2 11 31 31
31

0 11 31 31

1 1
1

cot

s g d
Z

i C s g d


  

  
   

  

 (3.36) 

where 
2 2

2 31 31 33 11 31 31
31

11 33 11 11 31 31

S D

E D D

d d s g d

s s s g d






 
   

 
is the complex coupling factor,

0 0(1 )C i C  , 

and 1 i    . As geometrical properties of the PWAS transducer, 7mm of length, 

7mm of width, and 0.2mm of thickness are considered and the material properties are 

given in Table 3.1.  
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3.3 ANALYTICAL THICKNESS MODE EMIS MODEL UNDER CONSTANT D3 

ASSUMPTION 

The general constitutive equations expressing the linear relation between stress-

strain and stress-electric displacement in thickness mode are 

 
3 33 3 33 3

3 33 3 33 3

(a)   

(b)   

D

S

T c S h D

E h S D

 

  
 (3.37) 

The relations of the four piezoelectric constants to each other are in thickness mode as 

follows (Berlincourt et-al): 

 

33 33 33 33 33

33 33 33 33 33

33 33 33 33 33

33 33 33 33 33

(a)   

(b)   

(c)   

(d)   

T E

T D

S E

S D

d g e s

g d h s

e h d c

h e g c









 

 

 

 

 (3.38) 

 MECHANICAL RESPONSE IN THICKNESS MODE 3.3.1 

Under 1-D assumption, the out-of-plane (thickness) mode wave equation can be 

expressed 

 
2 2

3 33 3

2 2

3

Du c u

t x

 


 
 (3.39) 

Introducing the wave speed in direction of 3x axis, 33
3

Dc
c


 , and the wave number in 

thickness mode,
3

t
c


   yields the particle displacement 3u that is given by 

 
3 3 3 3

ˆ( , ) ( ) i tu x t u x e   (3.40) 

where the general solution, i.e.  
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 3 3 1 3 2 3
ˆ ( ) sin cost tu x C x C x    (3.41) 

The coefficients 1C and 2C are to be determined from the boundary conditions to obtain 

the particular solution; the stress-free boundary conditions are  

 
3 3

3 3

a-) ( / 2) 0

b-) ( / 2) 0

T x t

T x t

 

  
 (3.42) 

Note that 
3

3 3

3

u
S u

x


 


 and substitute Eq. (3.11) into Eq. (3.6)a to get 

  3 33 1 3 2 3 33 3cos sinD

t t tT c C x C x h D      (3.43) 

Imposing the stress-free boundary conditions yields the following equation system 

 3 3 33 1 2 33 3

1 1
( ) cos sin 0

2 2 2

D

t t t

t
T x c C t C t h D  

 
     

 
 (3.44) 

 3 3 33 1 2 33 3

1 1
( ) cos sin 0

2 2 2

D

t t t

t
T x c C t C t h D  

 
      

 
 (3.45) 

Addition of Eq. (3.14) and Eq. (3.15) will result in 

 33 3
1

33

1
cos

2

D

t t

h D
C

c t 

  (3.46) 

and 2 0C   since 
1

sin
2

tt is assumed to be non-trivial term. Recall the particle 

displacement 3u  

 33 3
3 3 3

33

ˆ ( ) sin

cos
2

t
D

t t

h D
u x x

t
c



 

  (3.47) 

 33 3
3 3 3

33

ˆ cos

cos
2

t
D

t

h D
S u x

t
c





   (3.48) 
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 ELECTRICAL RESPONSE UNDER CONSTANT ELECTRIC DISPLACEMENT 3.3.2 

ASSUMPTION 

The electrical impedance can be expressed as division of the voltage by the 

current; 
V

Z
I

 and the voltage and the current are respectively  

 

3 3

0

3 3

a-) 

b-) 

t

A

V E dx

d
I D dA i D bl

dt




 





 (3.49) 

Recall the second constitutive equation and substitute Eq. (3.48) into Eq. (3.37)(b) to get 

the electric field expression 

 
2

33 3
3 3 33 3

33

cos

cos
2

s

t
D

t

h D
E x D

t
c

 



    (3.50) 

Recalling the piezoelectric constant relations in Eq. (3.38). One can derive these relations 

2
2 33

33 2

33

s

e
h


  using (3.7)(a); 33

33

1s

s



 using the combination of the part (d) and (c) of Eq. 

(3.38); and 
33

33

33

D

d
e

s
 using part (a). Finally one can come up with the expression, 

2

2 33 33
33

33

s

D

d
h

s

 
  
 

, and plug it into Eq. (3.20) noting that 
33 331/D Dc s  and introduce the 

electro-mechanical coupling coefficient , 33 , defined as 
2

2 33
33

33 33

D S

e

c



 (IEEE standard pg 

39). Rearrange the Eq. (3.50) to obtain 
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 2 3
3 33 3 33

cos
1

cos
2

S t

t

x
E D

t


 



 
 

  
 
 

 (3.51) 

Upon substitution of Eq. (3.51) into Eq. (3.49)(a), we derive the voltage expression 

 
2

33 33 3
33 3 3 3 3

0 0

cos

cos
2

t tS
S

t

t

D
V D dx x dx

t

 
 



    (3.52) 

  
2

/233
33 3 3 /2

1 sin

cos
2

tS

t t

t t

V D t x
t

t


 

 


 
 

  
 
 

 (3.53) 

After rearrangement, the voltage expression takes form 

 2

33 3 33

1
1

1
cot

2 2

S

t t

V D t
t

t

 

 

 
 

  
 
 

 (3.54) 

Recall the electric current charge relation /I Q Q t     and part (b) of Eq. (3.49) to 

have 

 3I i D bl  (3.55) 

Substituting Eq. (3.54) into the impedance /Z V I  yields 

 233
33

1
1

1
cot

2 2

S

t t

t
Z

ti bl t




  

 
 

  
 
 

 (3.56) 

Introduce 
1

2
tt  and substitute to get 

 233
33

1
1

cot

SV t
Z

I i bl




  

 
   

 
 (3.57) 
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Recall the capacitance of the material 0

33

S

bl
C

t
  to eventually obtain the thickness mode 

electromechanical impedance equation under constant electric displacement assumption 

 2

33

0

1 1
1

cot

V
Z

I i C


  

 
   

 
 (3.58) 

 

Figure 3.4 Flow chart of the 1-D analytical thickness mode EMIS for  

free PWAS. 

As seen in the flow-chart (Figure 3.4), the analytical model begins with the 

piezoelectric constitutive equations, then the mechanical response is derived in terms of 

the particle displacement in PWAS implying traction-free boundary conditions to solve 

the wave equations. In the second part, the electrical response is derived under constant 

electrical displacement assumption to solve the second piezoelectric constitutive equation 

for the electrical field. Finally, implying the electromechanical coupling coefficient the 

close form solution for the free PWAS thickness mode E/M impedance can be expressed 

as a function of frequency. The real part of the thickness mode impedance and the 
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admittance are presented in for 0.2mm thick and 7mm diameter PWAS are presented in 

Figure 3.5.  

 

Figure 3.5 Real part of the impedance and the admittance for 0.2mm thick and 7mm 

diameter PWAS in out of plane (thickness) mode. 

3.4 ANALYTICAL THICKNESS MODE EMIS MODEL UNDER CONSTANT E3 

ASSUMPTION 

In this section, the behavior of a free PWAS in thickness mode will be addressed. 

The PWAS induced by the thickness polarization electric field, 3E  which is generated by 

harmonic voltage ˆ( ) i tV t Ve   between the top and bottom surface electrodes. 3E  is 

assumed to be uniform over the piezoelectric wafer as schematically illustrated in Figure 

3.6. Thus, its derivative with respect to transversal axis is zero i.e. 3 3/ 0E x   . The 
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voltage excitation is harmonic so that the electric field 3 3
ˆ i tE E e   and the mechanical 

response in terms of particle displacement are also harmonic, i.e. 
3 3 3 3

ˆ( , ) ( ) i tu x t u x e 

where 3 3
ˆ ( )u x  is the complex amplitude that incorporates any phase difference between 

the excitation and response.  

 

Figure 3.6 Schematic of thickness mode of a piezoelectric wafer active sensor and 

infinitesimal axial element. 

The general constitutive equations expressing the linear relation between stress-

strain and stress-electric displacement in thickness mode are 

 3 33 3 33 3

ES s T d E   (3.59) 

 3 33 3 33 3

TD d T E   (3.60) 

where 3S  is the strain, 3T is the stress, 3D is the electrical displacement (charge per unit 

area), 
33

Es  is the mechanical compliance at zero electric field, 
33

T is the dielectric constant 

at zero stress, 33d is the induced strain coefficient (mechanical strain per unit electric 

field). Recalling Newton’s law of motion, one can derive the differential equation(3.63). 

 .F m a   (3.61) 

under 1-D assumption, use the transversal stresses on infinitesimal element of PWAS  

 

 

 PZT active sensor  

Length ,thickness ,width  

 

 

   

3T
 

3 3T dT
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 3 3 3 3 3 3( ) ( , )T dT T Adx Adx u x t    (3.62) 

 3 3( , )T u x t   (3.63) 

and recall the strain-displacement relation 

 3 3S u  (3.64) 

Differentiate the Eq. (3.59) with respect to 3x and since 3 3/ 0E x   , the strain rate 

becomes  

 
3 33 3

ES s T   (3.65) 

Substituting the Eq. (3.63) and Eq. (3.64) into Eq. (3.65) yields  

 3 33 3

Eu s u   (3.66) 

Introduce the transversal wave speed of the material  

 
2

3

33

1
E

c
s

  (3.67) 

and substitute into Eq. (3.66) thus, 1D wave equation can be written as 

 2

3 3 3u c u  (3.68) 

The general solution of the wave equation is in harmonic wave form 

 
3 3 3 3

ˆ( , ) ( ) i tu x t u x e   (3.69) 

where the general solution in terms of the displacement amplitude 

 3 3 1 3 2 3
ˆ ( ) sin cost tu x C x C x    (3.70) 

and the wave number is introduced as the ratio between the angular frequency and the 

wave speed in thickness direction.  

 
3

t
c


   (3.71) 



 

76 

 MECHANICAL RESPONSE IN THICKNESS MODE 3.4.1 

Starting from the constitutive equation under the 1-D assumption  

 
3 33 3 33 3

ES s T d E   (3.72) 

Electric field can be explicitly expressed for the thickness mode 

 3

3 3

1 1

2 2

V
E

t u t u t


    

      
    

 (3.73) 

where 3

1

2
u t
 
 
 

is displacement oriented in thickness mode on top and bottom surfaces 

of PWAS resonator. For the free-PWAS, the stress-free boundary conditions 

( 3

1
0

2
T t
 
  
 

) can apply to the strain equation. Substitution of Eq(3.73) into Eq(3.72) 

under stress-free boundary conditions yields 

 3 33

3 3

ˆ1ˆ
1 12

ˆ ˆ
2 2

V
S t d

t u t u t

 
  

     
      

    

 (3.74) 

The difference between the particle displacements on top and bottom surfaces is 

infinitesimally small the one can assume 

 3 3

1 1
0

2 2
u t u t
   

     
   

 (3.75) 

Then Eq. (3.74) takes form as 

 3 33

ˆ1ˆ
2

V
S t d

t

 
  
 

 (3.76) 

 3 3 1 2 33

ˆ1 1 1 1ˆ ˆ cos sin
2 2 2 2

t t t

V
S t u t C t C t d

t
  

     
          

     
 (3.77) 
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 3 3 1 2 33

ˆ1 1 1 1ˆ ˆ cos sin
2 2 2 2

t t t

V
S t u t C t C t d

t
  

     
        

     
 (3.78) 

Summation of the Eq. (3.77) and Eq. (3.78) yields 

 1 33

ˆ1
cos

2
t t

V
C t d

t
    (3.79) 

then 

 33
1

ˆ

1
cos

2
t

t

d V
C

t t 

  (3.80) 

 1

1
sin 0

2
t tC t    (3.81) 

assuming 
1

sin 0
2

t t  , we obtain 

 2 0C   (3.82) 

Substitution of Eq. (3.80) and Eq. (3.82) into Eq. (3.11) yields 

 33 3
3 3

ˆ sin
ˆ ( )

1
cos

2

t

t
t

d V x
u x

t t



 

  (3.83) 

or with substitution of the expression 3
ˆ ˆ /E V t   

 33 3 3
3 3

ˆ sin
ˆ ( )

1
cos

2

t

t
t

d E x
u x

t



 

  (3.84) 

Recalling stress-displacement relation in Eq(3.64), we obtain 

 3
3 3 3 3 33 3

cosˆ ˆˆ( ) ( )
1

cos
2

t

t

x
S x u x d E

t





   (3.85) 
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 ELECTRICAL RESPONSE UNDER CONSTANT ELECTRIC FIELD ASSUMPTION 3.4.2 

 
3 33 3 33 3

TD d T E   (3.86) 

Upon substitution of the strain-displacement relation of Eq. (3.64) into the first of the 

constitutive equations  

 
3 33 3 33 3

Eu s T d E    (3.87) 

and solving Eq. (3.87) for 3T  yields 

 
3 33 3

3

33 33

E E

u d E
T

s s


   (3.88) 

Substituting Eq. (3.88) into Eq. (3.86) yields the electric displacement expression, i.e. 

 
2

33 33 3
3 3 33 3

33 33

T

E E

d d E
D u E

s s
    (3.89) 

In another form 

 2 3 3
3 33 3 33

33 3

( )
1 1T u x

D E
d E

 
  

    
  

 (3.90) 

Recall Eq.(3.85) and substitute it into Eq.(3.90) to get 

 2 3
3 33 3 33

cos
1 1

cos / 2

T t

t

x
D E

t


 



  
    

  

 (3.91) 

where 
2

2 33
33

33 33

E T

d

s



  is the electromechanical coupling coefficient. Integration of Eq. (3.90) 

over the electrodes area A bl  yields the total charge 
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Figure 3.7 Electrical displacement change along the thickness of a square PWAS at 

frequency of 1 MHz. 

The electrical displacement change along the thickness of a square PWAS at 

frequency of 1 MHz is presented in Figure 3.7. The varying electric displacement is 

determined under constant electric field assumption. 

 

/2

2 3 3
3 3 1 2 3 1 2 33 3 33

33 3/2 0
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    (3.92) 

We introduce the equivalent charge expression by integrating the charge over thickness 

of the PWAS 

 

/2

3 3 3

/2

1ˆ ˆ( ) ( )

t

eq

t

Q x Q x dx
t


   (3.93) 

Substituting Eq. (3.92) into the equivalent charge equation yields 
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/2

2 3 3
3 33 3 33 3

33 3/2

ˆ1 ( )ˆ ˆ( ) 1 1
ˆ

t

T

eq

t

u x
Q x E bl dx

t d E
 



  
    

  
  (3.94) 

Upon integration over thickness, we get 

  
1

2

1

2

2 233 3
3 33 33 3 3

33 3

ˆ 1ˆ ˆ( ) 1 ( )
ˆ

t

t

T

eq

E bl
Q x t u x

t d E


 



 
   

 
 (3.95) 

 
3 3

2 2

3 33 3 33 33

33 3

1 1
ˆ ˆ( ) ( )

2 2ˆ ˆ( ) 1
ˆ

T
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Introduce the induced strain and induced displacement for the thickness mode 
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Upon substitution of Eq.(3.98) into Eq.(3.96), we obtain 
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where ISA denotes ‘induced strain actuation’ and the superscript ( )t  denotes ‘thickness 

mode’. Upon substitution of Eq.(3.84) into Eq.(3.99), we obtain 
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Recall the capacitance of the material 33
0

T A
C

t


 and 3

ˆ ˆ /E V t  then rearrange Eq.(3.100) 

Then Eq.(3.100) takes the following form 
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The electric current is obtained as the time derivative of the electric charge i.e. 

 I Q i Q   (3.102) 

Hence, 
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The admittance,Y , is defined as the fraction of current by voltage, i.e.   
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Rearrange the admittance equation (3.104) introducing 
1

2
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The impedance, Z , is reciprocal of the admittance, i.e., 
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and the real part of the thickness mode impedance and admittance of free PWAS in size 

of 7mmx7mmx0.2mm are plotted in Figure 3.8. 
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Figure 3.8 Real part of the impedance and the admittance for 0.2mm thick and 7mm 

diameter PWAS in out of plane (thickness) mode. 

3.5 CASE STUDIES FOR FREE PWAS EMIS 

This section includes the free PWAS experimental thickness mode impedance and 

admittance results and comparison with the analytical free PWAS thickness mode 

impedance results calculated under constant D3 assumption by using the piezoelectric 

material properties. The thickness of the PWAS was measured to be 0.215 mm. The 

admittance measurement result for free square PWAS is illustrated in Figure 3.10 and 

focused on the thickness mode resonance peak at around 11.5 MHz.  
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The theoretically unexplained large peak also appears at around 3 MHz in 

admittance plot. This peak disappears as plotting the experimental impedance results. For 

free PWAS impedance results are relatively easy to be predicted by the analytical free 

PWAS thickness mode model with constant electrical displacement assumption. 

Therefore, one can see the perfect agreement between the experimental and analytical 

free PWAS-EMIS thickness mode results in Figure 3.9  

 

Figure 3.9 Comparison between analytical and experimental thickness mode  

impedance results. 
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Figure 3.10 Illustration of schema and picture of square PWAS and admittance-

impedance results for the free square PWAS. 

Illustration of schema and picture of square PWAS and admittance/impedance 

measurements for the free square PWAS are presented in Figure 3.10. The trends which 

the admittance and impedance curves of free square PWAS follow are the same as those 

of circular PWAS. Admittance curve still has large mountain at around 2MHz and the 

thickness mode resonance frequency at around 11.5MHz. The thickness mode admittance 

is almost at the same frequency since the thickness of the square PWAS is almost same as 

that of circular PWAS.  
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 COMPARISON OF IN-PLANE MODE EMIS MODELS 3.5.1 

 

Figure 3.11 Analytical impedance and admittance simulation results for 7x7 mm
2
 square 

0.2 mm thick PWAS. 

The results obtained from the analytical model of 1-D in-plane PWAS-EMIS 

under constant electrical displacement assumption are shown in terms of resonance 

(admittance) and anti-resonance (impedance) spectra in Figure 3.11. 

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
0

Constant-D Analytical Model
R

e
(Z

) 
(O

h
m

s
)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
0

Frequency (kHz)

R
e

(Y
) 

(S
ie

m
e

n
s
)



 

86 

 

Figure 3.12 Impedance comparison for two 1-D analytical models regarding  

in-plane mode of PWAS resonator and 2-D finite element model for a 7 mm  

square 0.2 mm thick PWAS. 

The analytical result from the in-plane EMIS model with the constant D3 

assumption is also compared with the corresponding analytical result for the constant E3 

assumption as well as the in-plane FEA PWAS-EMIS simulation results in Figure 3.12. 

The 1-D analytical and 2-D FEA in-plane PWAS-EMIS models collide at the first E/M 

impedance peak however discrepancies at higher overtone impedance peaks are observed 

as frequency increases. In this comparison, the impedance peaks from the model with 

constant D assumption, as frequency increases, has better agreement with the FEA 

simulation as opposed to the constant E3 model in the frequency range of 2.5 MHz. 
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Figure 3.13 Impedance comparison for two models regarding in-plane mode  

of PWAS resonator and impedance measurement for a 7 mm square 0.2 mm  

thick PWAS under stress-free boundary condition. 

The both in-plane 1-D PWAS-EMIS analytical simulation results from the in-

plane EMIS model with the constant D3 assumption with the corresponding analytical 

result for the constant E3 assumption are validated by the experimental results in Figure 

3.13. The both EMIS models collide at the first E/M impedance peak however a 

frequency shifts can be observed at the other peaks. In this comparison, the impedance 

peaks from the model with constant E assumption, as frequency increases, appears to be 

closer to the experimental E/M impedance measurement as opposed to the constant D3 

model in the frequency range of 2.5 MHz.  

 COMPARISON OF THICKNESS MODE EMIS MODELS 3.5.2 

This section compares two impedance results for two thickness mode models for a 
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whereas the other model assumes 3D
 
the electrical displacement (charge per unit area) as 

a constant value. The both results are shown in Figure 3.14.  

 

Figure 3.14 The comparison of the real part of the impedance and admittance results for 

both thickness mode analytical models for a 0.2 thick and 7 mm round PWAS resonator. 

As seen some discrepancy occurs in impedance curves. The model which 

considers D constant has an anti-resonance peak at around 11 MHz while that of the other 

model is at a frequency lower than 10 MHz. From the experimental results for the 0.2 

thick and 7mm round PWAS, we can conclude that the thickness mode impedance result 
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for the constant D model has a better agreement with the experimental data than that for 

the other model as can be observed in Figure 3.15. 

 

Figure 3.15 Experimental results of the impedance for 0.2 thick APC-850 PWAS 

resonator. 

3.6 SUMMARY AND CONCLUSIONS 

1-D analytical, 2-D finite element analyses are carried out for free PWAS-EMIS 

and the results obtained from the theoretical development are verified by comparison 

with the results from the corresponding measurements. Two main electrical assumptions 

in the electrical analyses are adopted to develop the in-plane and thickness modes of E/M 

impedance spectra.  
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To conclude, the constant electrical field assumption gives better results in in-

plane EMIS prediction whereas the constant electrical displacement assumption brings 

better agreement in thickness mode with the experimental measurements.  
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 CHAPTER 4

BEHAVIOR OF FREE PWAS AT ELEVATED TEMPERATURE 

This chapter presents a literature survey to assess prior work the survivability of 

piezoelectric wafer active sensors (PWAS) at elevated temperature. Also, we could 

discover from the literature the extent of temperature dependence of the electric 

parameters, i.e. d31 and g31, and the elastic parameters, i.e. s11 and Young’s modulus (c11), 

of different piezoelectric materials. Some preliminary results from parametric studies 

regarding PWAS-EMIS affected by changes in the piezoelectric wafer material properties 

were obtained by an analytical 1-D PWAS and 2-D circular PWAS impedance 

simulation. Then, the results from the experimental cycling of PWAS at gradually 

increasing temperatures are discussed. Trends of the results in terms of static capacitance, 

C0 and electromechanical impedance spectroscopy (EMIS) are presented.  

4.1 STATE OF THE ART 

In Laboratory for Active Materials and Smart Structures (LAMSS), two 

researches regarding survivability of PWAS at extreme environments such as at 

cryogenic and high temperature had been conducted. Bottai & Giurgiutiu (2012) 

evaluated the structural health monitoring capability of PWAS on composite structures at 

cryogenic temperatures. They used EMIS method to qualify PWAS for cryogenic 

temperatures using PWAS instrumented composite specimens dipped in liquid nitrogen 

(Lin et-al., 2010). Then damage detection experiments were performed on laboratory-

scale composite specimens with impact damage and built-in Teflon patches simulating 
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delaminations. A comprehensive damage detection test was performed on a full-scale 

specimen subjected to pressure and cryogenic temperature cycles. 

 

Figure 4.1 X-cut GaPO4 PWAS wafers comprised of a single crystal disks  

of 7mm diameter and 0.2mm thickness single crystal discs. 

Another research aimed to develop and test a custom high-temperature PWAS 

(HT-PWAS) (Giurgiutiu, 2010). The HT-PWAS that they sought must have the Curie 

transition temperature well above the operating temperature; otherwise, Giurgiutiu 

reported that the piezoelectric material might depolarize under combined temperature and 

pressure conditions. The thermal energy causes large power dissipation and hysteretic 

behavior. Relatively high temperature variation produces pyroelectric charges, which 

interferes with the piezoelectric effect. In addition, many ferroelectrics become 

conductive at high temperatures, leading to the charge floats and partial loss of signal. 

The conductivity problem is aggravated during operation in atmosphere with low oxygen 

content, in which many oxygen-containing ferroelectrics may rapidly lose oxygen and 

become semi-conductive They chose Gallium orthophosphate (GaPO4) material as 

piezoelectric wafer that shows remarkable thermal stability up to temperatures above 

970ºC (1778F). Giurgiutiu noted that it displays no pyroelectric effect and no outgassing 

and also it has a high electric resistivity that guarantees high-precision piezoelectric 
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measurements. The PZT wafers were X-cut GaPO4 single crystal disks of 7mm diameter 

and 0.2mm thickness (Figure 4.1). They conducted EMIS, pitch-catch and material 

characterization tests (scanning electron microscopy, X-ray diffraction, energy dispersive 

spectrometry) (a) before and after exposure of HT-PWAS to high temperature (b) inside 

the oven. They reported that the GaPO4 HT-PWAS maintained their activity up to 1300F 

(705C). In comparison, conventional PZT sensors lose their activity at around 500 F 

(260C).  

Regarding temperature dependence of the electric parameters, in (Wolf, 2004), 

lead zirconate titanate (PZT) thin films was measured between -55ºC and 85ºC to obtain 

the effective piezoelectric coefficient for different material composition. Films tend to 

have smaller dielectric, ferroelectric, and piezoelectric properties in comparison with 

their ceramic counterparts. PZT films were tested with 2, 4, and 6 mm thickness and 

40/60, 52/48, and 60/40 Zr/Ti ratios. They reported that The effective transverse 

piezoelectric coefficient (
31, fe ) that is defined in Eq.(4.1) increases with temperature. 

Average increases were 46%, 32%, and 12% for films with PZT 60/40, 52/48, and 40/60 

compositions, respectively 

 31 13
31, 31 33

11 12 33

E

f E E E

d c
e e e

s s c
  


 (4.1) 

Poisson’s ratios of pure PZT ceramics across much of the solid solution system at 

constant temperature 12 11/s s   . 
31, fe  were consistent with the rapid rise in intrinsic d31 

as Tc is approached (Figure 4.3). 
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Figure 4.2 Low temperature elastic compliance coefficient (s
11

E 
) plotted as a function of 

temperature for several tetragonal and rhombohedral PZT compositions. 

Wolf (2004) also reported increasing piezoelectric elastic compliance upto 250 K 

for PZT 52/48 and PZT 50/50 and their compliance values start decreasing after 250 K 

however other PZT material with different Zr/Ti compositions have monotonic increase 

until 300 K as seen in Figure 4.2.  

 

Figure 4.3 –d31 of Pt/PZT/Pt stack plotted as a function of  

temperature for 2 µm Pt: Platinum electrode. 
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Raghavan & Cesnik in 2008 reported elastic and electric properties of a 

piezoelectric material, PZT-5A as a function of temperature raised up to 150 ºC as seen in 

Figure 4.4. The inverse of Young’s modulus, Y, is the elastic compliance, i.e.  

 21 Strain
 m /N, 1/Pa

Stress
s

Y
      (4.2) 

 

Figure 4.4 Variation of Young’s modulus and d31xg31. Average thermal expansion for 

PZT-5A α
PZT-5A

=2.5µm/m-ºC. 

Young’s moduli of PZT-5A monotonically decreases as temperature increases 

between room temperature and 160ºC. The product of d31xg31 fluctuates along the 

temperature. It first monotonically inclines until 60 ºC, and it declines after 110 ºC and it 

goes lower than its original value at room temperature. 

A NASA report by (Hooker, 1998) shows the temperature dependence of d31 and 

d33, the effective E/M coupling coefficient as well as the thermal expansion of three 

different piezoelectric materials. The effective E/M coupling coefficient is defined as a 

function of frequency  
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where 
mf  is the minimum impedance frequency and 

nf  is the maximum impedance 

frequency 

 

Figure 4.5 -d31 and d33 of three different PZT materials plotted as a function of 
temperature 

 

Figure 4.6 the effective E/M coupling coefficient and thermal expansion plotted as a 
function of temperature 

(Freitas, 2006) reports (x)BiFeO3-(1-x)PbTiO3 ceramics displaying piezoelectric, 

ferroelectric behaviors. A E4980 Agilent LCR bridge was used to determine resonance 

and anti-resonance frequencies that can be used for calculating piezoelectric coefficients. 
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With temperature increasing, the g
31

 and d
31

 coefficients present two distinct thermally 

stable regions. In temperatures ranging from 20 ºC to 100 ºC, and from 250 ºC to 300 ºC.. 

This thermal stability for piezoelectric coefficients at high temperatures attests the 

efficiency of 0.6BF-0.4PT ceramics for high temperature piezoelectric applications, as 

mechanical transducers and high power actuators. The piezoelectric voltage coefficient is 

defined by the relation and plotted in Figure 4.7.  

 
Strain developed Electric field developed

Applied charge density Applied mechanical stress
g    (4.4) 

 
ij

ij T

ii

d
g


  (4.5) 

 

Figure 4.7 The piezoelectric voltage constant, g31 and piezoelectric charge constant, d31 

with temperature increasing. 

We have conducted a preliminary parametric study to understand the effects of 

the material properties on the impedance (anti-resonance) and admittance (resonance) 
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spectra. We utilized the 1-D PWAS-EMIS model (Andrei Nikolaevitch Zagrai, 2002) for 

this analytical simulation. 
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 (4.6) 

where   is a function of frequency and wave speed, i.e. 
1

/
2

l c   and the electro-

mechanical coupling is denoted by 2

31  term. The material properties are given in Table 

3.1. 

4.2 1-D ANALYTICAL EMIS SIMULATIONS FOR PWAS AT ELEVATED 

TEMPERATURES 

Herein, we first simulated the effects of the temperature increase via the stiffness 

coefficient change on impedance and admittance results through 1-D analytical in-plane 

EMIS model for free PWAS. Then, the piezoelectric coefficient was also taken into 

account to more precisely capture the degradation of the PWAS material due to the 

elevating temperature.  

 EFFECTS OF STIFFNESS COEFFICIENT C11 CHANGE 4.2.1 

We have varied the piezoelectric stiffness and the piezoelectric charge constant by 

5% separately and together and plotted the admittance and impedance spectra as seen in 

Figure 4.8, Figure 4.9, and Figure 4.10.  
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Figure 4.8 The stiffness change influence on both anti-resonance (impedance) and 

resonance frequency (admittance) in-plane EMIS of 7mmx0.2mm PWAS. 

Apparently, the stiffness change has influence on both anti-resonance and 

resonance frequencies however not much influence on the amplitude of the impedance 

peaks whereas somewhat influence on the amplitude of the admittance.  
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 EFFECT OF PIEZOELECTRIC COEFFICIENT D31 CHANGE 4.2.2 

 

Figure 4.9 The piezoelectric charge constant d31 change influence on both anti-resonance 

(impedance) and resonance frequency (admittance) in-plane EMIS of 7mmx0.2mm 

PWAS. 

The piezoelectric charge constant change has influence on the first in-plane anti-

resonance frequency however not any influence on the in-plane resonance frequency 

whereas has influence on both the amplitudes of the impedance and the admittance.  

When we combined both the parameter changes and simulate the impedance and 

admittance of PWAS, we observe both the frequency and the amplitude shifts in both 
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plots. We have phenomenological agreement in trends of the impedance spectra with the 

experimental results. 

 EFFECTS OF STIFFNESS COEFFICIENT C11, PIEZOELECTRIC COEFFICIENT D31 4.2.3 

CHANGES 

 

Figure 4.10 The stiffness and the piezoelectric charge constant d31 change influence on 

both anti-resonance (impedance) and resonance frequency (admittance) in-plane EMIS of 

7mmx0.2mm PWAS. 

However, we still need to improve the agreement by using 2-D circular PWAS-

EMIS analytical model and by including more parameter changes to reflect the 

temperature effects on the piezoelectric material degredation. The parameter changes 
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need to be more linked to the temperature increase by using the experimental 

measurements in the literature. We also need to include in the model the capacitance 

change that is measured and found to be strongly dependent on the temperature increase. 

4.3 2-D ANALYTICAL EMIS SIMULATIONS FOR PWAS AT ELEVATED 

TEMPERATURES 

In this subsection, the temperature effects on free circular PWAS admittance and 

impedance are presented through the analytical model and the EMIS tests. The effects of 

the stiffness coefficient c11, the piezoelectric coefficient d31 , and the static capacitance C0 

on impedance/admittance are taken into account. 

 

Figure 4.11 Schema of circular PWAS in cylindrical coordinate system. 

Zagrai (2002) has developed 2-D EMIS for circular PWAS using the free circular 

PWAS model (Figure 4.11) and the derivation procedure shown in the flow-chart in 

Figure 4.12. In this section, we adopted herein his in-plane EMIS model to simulate the 

temperature effects on piezoelectric material degradation of free circular PWAS. The 

analytical simulation will be conducted by changing the stiffness coefficient, the 

piezoelectric coefficient, and the capacitance. The stiffness coefficient and the 

piezoelectric coefficient degradation have been discussed in the literature and plots for 
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the material properties versus temperature increase have been provided. The capacitance 

dependence over temperature has been defined during our experimental studies. 

Therefore, the proportions of the elastic and piezoelectric material property degradations 

are attained from the literature and the capacitance proportion was obtained from the 

capacitance measurements over increasing temperature. The admittance and impedance 

simulations are presented respectively and compared with the experimental results.  

 

Figure 4.12 Flow-chart of the analytical modeling of 2-D in-plane EMIS of circular 

PWAS. 

The EMIS tests are conducted for a PWAS in an oven at elevated temperature 

between 50˚C and 250˚C with the 50˚C step. During these tests, the piezoelectric material 

degradation has been observed. The affected material properties are defined via both the 

literature survey and the measurements. The degraded mechanical, electrical, and 

piezoelectric properties of PWAS were used to simulate the temperature effects on the 

first in-plane admittance and impedance peaks. For the analytical simulations, 2-D 

circular PWAS-EMIS model was utilized. The material properties used in this study are 
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the stiffness coefficient c11, the piezoelectric coefficient d31 , and the capacitance C0. The 

analytical and experimental results for admittance are shown in Figure 4.13 and the 

results for impedance are also shown in Figure 4.14.  

 

Figure 4.13 Stiffness coefficient c11, piezoelectric coefficient d31 , and capacitance C0 

influence on admittance. 



 

105 

 

Figure 4.14 Stiffness coefficient c11, piezoelectric coefficient d31 , and capacitance C0 

influence on impedance. 

4.4 EXPERIMENTAL WORK  

 

Figure 4.15 High temperature PWAS testing by (a) impedance analyzer, (b) PID 

temperature controller (c) oven. 



 

106 

The E/M impedance is used as a direct and convenient method to implement for 

PWAS impedance signature as a function of temperature up to relatively high 

temperature, the required equipment being an electrical impedance analyzer, such as HP 

4194A impedance analyzer, PID temperature controller, and oven. An example of 

performing PWAS E/M impedance spectroscopy is presented for PWAS located in a 

fixture in the oven in Figure 4.15. PWAS has to have stress-free i.e. unconstrained 

boundary conditions so that it was fixed by pogo-pins that only apply low spring forces 

point-wise on the PWAS surfaces in the fixture. The fixture has wires that can be 

connected with the probes of the EMIS analyzer instrument. The impedance analyzer 

reads the E/M impedance of PWAS itself in the oven. It is applied by scanning a 

predetermined frequency range (300kHz-400kHz) and recording the complex impedance 

spectrum. A LabView data acquisition program was used to control the impedance 

analyzer and sweep the frequency range in steps (of 100Hz) that was predefined and to 

attain the data in a format that assists to data analysis. During the visualization of the 

frequency sweep, the real part of the E/M impedance,   Re Z  , follows up and down 

variation as the structural impedance goes through the peaks and valleys of the structural 

resonances and anti-resonances. 
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Figure 4.16 a) Fixture in the oven (b) fixture, thermistor, and thermocouple (c) PWAS in 

the fixture. 

Our objective was to evaluate the extent of the temperature dependence of 

PWAS-capacitance and EMIS results and the degredation of PWAS material with respect 

to some electrical and elastical material properties. For the experimental study, we 

pursued the following protocol 

 Measure baseline room temperature PWAS capacitance and electromagnetic 

impedance (EMI) spectrum. 

 Elevate PWAS to 50 °C and hold it there for several minutes (e.g. 10-30 min) 

 Measure PWAS capacitance and EMIS at the elevated temperature 

 Drop PWAS temperature back to the room temperature 

 Measure PWAS capacitance and EMI spectrum at room temperature 

 Perform steps 2-5 for 100, 150, 200, and 250 °C 

We have measured 6 PWAS at different temperatures starting from the room 

temperature. The capacitance and EMIS measurements have been performed for 50, 100, 



 

108 

150, 200, and 240ºC and the temperature was dropped to the room temperature after each 

step and obtained 5 temperature cycles and 5 more capacitance and EMIS reading at the 

room temperatures.  

 CAPACITANCE RESULTS 4.4.1 

Figure 4.17 indicates the static capacitance results for only one of the PWAS at 

elevated temperatures as well as at the room temperatures in each temperature cycles 

whereas Figure 4.18 for all of the PWAS resonators at only elevated temperatures. Figure 

4.19 also shows the averaged capacitance values over the static capacitance values that 

are obtained from 6 PWAS resonators. One can observe the monotonic increase in the 

capacitance values by increasing the temperature. The trend is linear up to 200 ºC 

however it is interesting to see that the temperature gradient of the capacitance increases 

after this temperature. The capacitance values at room temperatures after each cycling 

also vary for the PWAS 1R.  
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Figure 4.17 Static capacitance results for PWAS 1R (7mmx0.2mm PWAS) at elevated 

temperatures and room temperatures in each temperature cycle. 

 

Figure 4.18 Static capacitance results for all of the circular PWAS resonators 

(7mmx0.2mm) at only elevated temperatures. 

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

20 70 120 170 220

CAPACITANCE VS TEMPERATURE 

1R

TEMPERATURE ºC 

C
0
, 
n

F
 

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

45 95 145 195

1R

2L

3R

4L

5R

6L

High Temperature PWAS-Capacitance 

Temperature, ºC 

C
a
p

a
ci

ta
n

ce
, 
n

F
 



 

110 

 

Figure 4.19 Averaged static capacitance results for all of the circular PWAS resonators 

(7mmx0.2mm) at room temperature and elevated temperatures. 

 EMIS RESULTS 4.4.2 

We have measured 6 PWAS resonators in the high temperature EMIS test. We 

denoted them by their sequence number and a letter R or L that denotes right or left. Then 

PWAS 1R is the first PWAS located on right side of the fixture and 2L is the second 

PWAS on the left and so on. Moreover, the first room temperature in the cycle is denoted 
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RT1 as the second room temperature after cooling down from 50ºC is denoted RT2 so 

that the impedance signature for the first PWAS on the right at the first room temperature 

is represented by 1R_RT1 and the second PWAS on the left at the third room temperature 

after cooling from 100ºC is represented by 2L_RT3 and so on.  

We will discuss the analyses of impedance results of each PWAS in sequential 

subsections. We will first plot all the impedance signatures at the first in-plane anti-

resonance frequency for one PWAS at all elevated temperature-room temperature cycles 

with a time series plot that shows each time and date when the particular measurement 

was performed so one can observe how long the overall measurement has taken and how 

long a PWAS has been kept at a certain temperature. Next, we will separate the EMIS 

test results as the impedance plots at room temperatures and at elevated temperatures to 

see the trends of the frequency and amplitude shifts of the first impedance curves in both 

cases. Then, we will plot the impedance amplitude vs temperature including those at 

room temperatures in the same graph and also plot the impedance frequency vs 

temperature in the same way. Finally, we will present the amplitude and the frequency 

shifts separately at elevated temperatures and those at room temperatures were plotted by 

the order number of the room temperature.  

 PWAS 1R 

PWAS impedance overlapped results during temperature cycle from room 

temperature up to 250ºC is illustrated in Figure 4.20. A time series plot also depicts the 

temperature against the time when a particular test was conducted. The overall tests has 

lasted 2 days because cooling down from high temperatures to the room temperature at 
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each cycle has taken somewhat long time. No forced convection method was implied to 

quicken the cooling process.  

 

Figure 4.20 Impedance signature of PWAS-1R (7mmx0.2mm PWAS) at elevated 

temperatures and room temperatures in each temperature cycle. 

The impedance peaks diminish in amplitude as the temperature increases and it 

keeps diminishing even PWAS is cooled down to the room temperature in each 

temperature cycle. Another phenomena is the frequency downshift as the temperature 

moves up however frequency upshift is also observed as PWAS cools down to the room 

temperature, the PWAS does not seem to recover completely and its impedance can not 

move up to its original anti-resonance frequency. One interesting phenomena is also the 

deformation on the impedance signature of PWAS-1R at RT6 after cooling it down from 

250ºC as the other impedance signatures are smooth curves before.  
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Overall the trend seems by investigating the plot however it can be more clearly 

observed those at room temperatures and the elevated temperatures in separate plots as 

depicted in Figure 4.21. We utilized color codes for this two plots. For instance, the 

impedance curve at the second room temperature (1R_RT2) has the same color as the one 

at the temperature of 50ºC since it is the room temperature after cooling down from that 

temperature. The color codes are implied in such order to the other impedance curves.  

 

Figure 4.21 Impedance signature of PWAS-1R (7mmx0.2mm PWAS) at (a) elevated 

temperatures and (b) room temperatures in each temperature cycle. 

Eventhough the trend in the amplitude and frequency shift during the temperature 

cycle seems more clearly now, we can further analyze the frequency shifts and the 

amplitude shifts separately as depicted in Figure 4.22 and Figure 4.23, respectively. In 

Figure 4.22, one can see that the frequency shifted all the way from 345.2 kHz to 328.9 

kHz during the temperature cycle eventhough both anti-resonance frequencies were read 

at room temperatures. In the first cycle, from the room temperature to 50ºC and back to 

the room temperature, the impedance frequency first declines then inclines back to the 

close value although this does not occur in the next two cycles between the room 
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temperature and the 100ºC and the 150ºC tests. In the test results from the temperature 

cycle between the room temperature and 100ºC, the impedance frequency remains the 

same as the PWAS cooled down to the room temperature, which also occurs in the cycle 

between the room temperature and the 150ºC. More significantly, in the results from the 

next two temperature cycles, the impedance frequency declines even further as the PWAS 

cools down back to the room temperature. The PWAS behaves in different manner after it 

has been heated up to 200ºC due to the material degradation as the temperature 

approaches to the Curie temperature of the piezoelectric material and due to the 

depolarization that may occur. 

 

Figure 4.22 Impedance (anti-resonance) frequency of PWAS-1R (7mmx0.2mm PWAS) 

during temperature cycle. 
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In Figure 4.23, the amplitude also diminishes from ~8 kΩ down to ~1.8 kΩ. 

Eventhough, the PWAS impedance signature attempts to recover and move up in both 

frequency and amplitude at the room temperatures until the temperature of 200ºC, it no 

longer recovers after 200 ºC which is close enough to the Curie temperature for PWAS to 

possess distinct behavior.  

 

Figure 4.23 Impedance (anti-resonance) amplitude of PWAS-1R (7mmx0.2mm PWAS) 

during temperature cycle. 
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Figure 4.24 Averaged impedance (a) frequency and (b) ampllitde shift against elevated 

temperature. 

The impedance peak amplitude and frequency against increasing temperature are 

plotted not including the room temperatures in Figure 4.24 to analyze the trend of the 

amplitude and the frequency shifts over elevated temperatures. The impedance peak 

amplitude and frequency at room temperatures are plotted against the room temperature 

number in Figure 4.25 to analyze the trend of the amplitude and frequency shifts at the 

room temperatures during the temperature cycle. 
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Figure 4.25 Averaged impedance (a) frequency and (b) ampllitde shift of PWAS-1R 

(7mmx0.2mm PWAS) at room temperature. 

 PWAS 2L: 

We will seldom present the analyses of impedance amplitude and frequency shift 
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Figure 4.26 Impedance (anti-resonance) amplitude of PWAS-2L (7mmx0.2mm PWAS) 

during temperature cycle. 

 

Figure 4.27 Impedance (anti-resonance) frequency of PWAS-2L (7mmx0.2mm PWAS) 

during temperature cycle. 
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 ADMITTANCE SPECTRA AT ELEVATED TEMPERATURE 4.4.3 

In this subsection, we present admittance results from free circular PWAS 

resonators at elevated temperatures using the same experimental setup. In Figure 4.28, 3-

D plots of the admittance in frequency domain over time are illustrated for the 

measurements conducted at different temperatures. The temperature values for the each 

admittance measurement were kept constant by the closed loop temperature controller 

and monitored and recorded by the GUI software that was specifically designed and 

created by Jingjing (Jack) Bao and Bin Lin in LAMSS using LabVIEW for this 

admittance tests. 

 

Figure 4.28 3D contour plots for admittance spectra at elevated temperatures. 
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Admittance amplitudes from a PWAS have been measured during the temperature 

increases from the room temperature to the elevated temperatures and the results were 

plotted and presented in Figure 4.29. The admittance amplitude also pursued the same 

track as reported in the preceding subsection regarding the impedance amplitude. It 

inclines as the temperature increases with the similar trend from the room temperature 

toward the elevated temperatures. Eventhough the admittance amplitude recovers after 

the PWAS cools down to the room temperature from the 50ºC, it cannot recover and 

drops down in the amplitude after the PWAS cools down from the higher temperatures. 

Another interesting behavior that can be observed in this test results is that the amplitude 

keeps increasing although the temperature remains the same at the elevated temperatures. 

 

Figure 4.29 Admittance peak amplitude at the first in-plane resonance frequency of 

circular PWAS at elevated temperatures. 
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The first in-plane resonance frequency values of free PWAS in an oven as the 

temperature was increasing are plotted as shown in Figure 4.30. The similar phenomena 

can be observed in the frequency shifts as seen in the amplitude shifts. 

 

Figure 4.30 Admittance frequency at the first in-plane resonance frequency of circular 

PWAS at elevated temperatures. 

4.5 SUMMARY AND CONCLUSIONS 

Past researches were discussed to understand the survivability of piezoelectric 

wafer active sensors (PWAS) at extreme environments such as at very high temperature 

etc. Also, we could find out the extent of temperature dependence of the electric 

parameters, i.e. d31
 
and g31, and the elastic parameters, i.e. s11 and Young’s modulus (c11), 

of different piezoelectric materials. 

We have conducted a preliminary parametric study to understand the effects of 

the material properties on the impedance (anti-resonance) and admittance (resonance) 

spectra. We utilized the 1-D and 2-D PWAS-EMIS models for the analytical simulations. 
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We have varied the piezoelectric stiffness and the piezoelectric charge constant by 5%. 

When we combined both the parameter changes and simulate the impedance and 

admittance of PWAS, we observe both the frequency and the amplitude shifts in both 

plots. We have phenomenological agreement in trends of the impedance spectra with the 

experimental results. However, we still need to improve the agreement by using 2-D 

circular PWAS-EMIS analytical model and by including more parameter changes to 

reflect the temperature effects on the piezoelectric material degredation. The parameter 

changes need to be more linked to the temperature increase by using the experimental 

measurements in the literature. We also need to include in the model the capacitance 

change that is measured and found to be strongly dependent on the temperature increase. 

From the experimental point of view, we observed a linear trend up to 200ºC then 

the behavior changes. In the first anti-resonance frequency peak during temperature 

cycle, we also observed PWAS impedance signature attempting to recover and move up 

in both frequency and amplitude at the room temperatures until the temperature of 200ºC, 

it no longer recovers after 200 ºC which is close enough to the Curie temperature for 

PWAS to possess distinct behavior. The degradation of peak shape after 200 ºC is 

consistent with the change in capacitance behavior. Downward trend in frequency is 

common among PWAS-EMIS over elevated temperatures eventhough the shapes of trend 

are not consistent among samples.  
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 CHAPTER 5

IN PLANE EMIS OF CONSTRAINED PWAS USING GMM 

This chapter addresses E/M impedance spectroscopy (EMIS) of piezoelectric 

wafer active sensor (PWAS) constrained on one surface and on both surfaces by isotropic 

elastic materials through analytical models. Theoretical work for EMIS of constrained 

piezoelectric actuator was performed. 

In the first part of this study, analytical analyses begin with the piezoelectric 

wafer active sensor (PWAS) under constrained boundary conditions; a simplified two bar 

and three bar piezo-resonators are modeled using the resonator theory. Three bar 

resonator model includes a piezoelectric wafer active sensor (PWAS) in the center and 

two isotropic elastic bars bonded on both sides of the PWAS whereas in two-bar 

resonator model, PWAS is constrained on one side. The following assumptions are made 

for the models. First, the geometry and the cross-section area of all the bars are the same 

although they have different materials and different lengths. Second, the isotropic bars on 

the sides are assumed to be perfectly bonded to the PWAS at the interfaces. The two-bar 

and three-bar piezo-resonator models are used to obtain the resonance frequencies for the 

normal mode expansion method. Essentially, the models are used to build the basis for 

the proof-mass PWAS (PM-PWAS). 

Global matrix method (GMM) is employed to carry all the information from each 

layer regarding the material properties, geometric properties as well as the boundary 

conditions into the eigenvalue problem. GMM is also utilized to solve the eigenvalue 
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problem of the two and three-layered PM-PWAS models for the Eigen-vectors and the 

corresponding Eigen-frequencies.  

5.1 STATE OF THE ART FOR CONSTRAINED PWAS-EMIS 

The analytical in-plane impedance for piezoelectric ceramic transducers such as 

PWAS has been developed by Giurgiutiu and Zagrai (2000). One and two dimensional 

in-plane E/M impedance models for free PWAS and constrained PWAS were derived to 

model the dynamics of PWAS and substrate structure in terms of EMIS. They assumed 

the constant electric field to derive the in-plane EMIS. Another EMIS modeling of PZT 

actuator-driven active structures is carried out by Liang, Sun, and Rogers (1996) in low 

frequency range up to 650 Hz in in-plane mode. Park (2014) analytically investigated the 

EMIS of piezoelectric transducers bonded on a finite beam from the perspective of wave 

propagation. The analytic solutions of flexural waves are derived for coupled PWAS-

infinite beam. Then the concept is used for finite beam in relatively low frequency range. 

Annamdas & Radhika (2013) also derived E/M admittance model for PWAS bonded on 

metallic and non-metallic host structures in relatively frequency range up to 500 kHz. 

Park et-al. uses impedance based health monitoring to interrogate a bolt jointed pipeline 

system (Park et al. 2003) in range up to 100 kHz and they also monitored the curing 

process of concrete structures un range between 100kHz-140kHz. Many other researchers 

have recently applied in-plane EMIS method for dynamically monitoring the smart 

structures in different materials and forms (Annamdas et-al 2013; Brus 2013; Liang and 

Sun 1994; Cheng and Wang, 2001; Park et al. 2012; Pavelko 2014; Peairs et al. 2003; 

Rugina et al. 2014). For high frequency-band in range of MHz, the analytical study for 

thickness mode of PWAS-EMIS was performed by Kamas, Lin, and Giurgiutiu 2013). 
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They aimed to extend the EMIS model of a constrained PWAS at high frequencies (up to 

15MHz). The authors utilized the constant electric displacement assumption used in the 

literature (IEEE Ultrasonics 1987; Meeker 1972) and solved the piezoelectric constitutive 

equations for the thickness mode. 

 

5.2 GLOBAL MATRIX METHOD (GMM) IN MULTILAYERED STRUCTURES 

 

Figure 5.1 Schematic of a multi-layered structure for using Global Matrix Method 

(GMM) (Lowe, 1995). 

Knopoff in 1964 introduced a matrix method for multilayered media which is 

alternative to the Transfer Matrix Methods (TMM). GMM may be used to avoid the large 

frequency-half thickness product problem since it is more robust at high frequencies. The 

same matrix may be used for all categories of solution whether response or modal, 

vacuum or solid-half spaces, real or complex plate wavenumber (Lowe, 1995). The 
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drawback is largeness therefore the solution may be relatively slow. The system matrix 

consists of 4(n-1) equations where n is the total number of layers. 

 

Figure 5.2 Generation of dispersion curves showing Lamb wave modes for 1mm thick 

sheet of titanium (Lowe, 1995). 

The loci of roots of the characteristic function are the dispersion curves for the 

multilayer plate system. They are usually displayed as phase velocity against frequency 

but may also be plotted using the wavenumber. The roots are found by varying the phase 

velocity at fixed frequency or the frequency at fixed velocity (the “sweeps” in Figure 

5.2). Each of these roots is the starting point for the calculation of a dispersion curve. To 
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calculate a dispersion curve, the wavenumber is increased steadily (by fixed increments 

k ) and a new solution is found at each step by iteration of the frequency. Clearly the 

speed of convergence and the stability of the iterations are improved by seeding the root-

finding algorithm with a good initial guess of the frequency at each step. 

5.3 IN-PLANE MODE OF PWAS CONSTRAINED FROM ONE SIDE 

In this section, we analyze the in-plane mode two-bar resonator model including 

PWAS perfectly bonded from one side to an isotropic material as shown in Figure 5.3.  

 

Figure 5.3 Illustration of a two bar resonator model with perfectly  

bonded PWAS on side of a bar. 

 MECHANICAL ANALYSIS FOR PWAS CONSTRAINED FROM ONE SIDE 5.3.1 

The mechanical analysis is performed herein by using resonator theory to derive 

the resonance and anti-resonance frequencies as response to the electrical harmonic 

excitation in frequency domain. We obtain the wave equations for each division in the bar 

shown in Figure 5.3 from Newton’s equation of motion as follows;  
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The general wave equation solutions for each division can be also recalled as 
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The strain-displacement relation is determined by 
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Linear Hooke’s law applies to determine the stress-strain constitutive equation as follows 
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where 1 2 3 4
, , ,C C C C  denote the axial wave amplitudes as forward and backward 

directions respectively in x axis and ,a p  denote the wave numbers for each material of 

the divisions and related to the wave speed in each material; 
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Four boundary conditions should be implied to the general wave solutions to obtain the 

four unknown coefficients. The stresses and displacement boundary conditions to be 

imposed are as follows; 
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The first relation between two displacement amplitudes in the material on the left hand 

side is determined by the stress boundary condition on the left surface at 1
0x x    
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Hence, 
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The second relation is determined by the stress boundary condition on interface between 

the left and the middle bars.  
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Hence, 
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The displacement boundary condition at 
2

x x  determines the third relation 
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The stress boundary condition on the interface at 
3

x x  determines the fourth relation 

between the displacement amplitudes  
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The equations determined in (5.8), (5.13), (5.16), and (5.18) are combined in a 

matrix to provide a solution of the Eigen-frequencies and to eventually obtain the Eigen-
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vector (the displacement amplitudes). Therefore, this problem turns out to be an 

eigenvalue problem which requires a matrix that contains the material properties and 

wave-numbers as functions of frequency for all subsections in the bar and the matrix is to 

be multiplied by a tensor that contains the displacement amplitudes and the product of the 

two matrices will equal to zero as shown in Eq. (5.19). 

 

1 2

2 31 2

2 31 2

2 3

( )

1
( )( )

2

3( )( )

4( )

1 0 0

1
0

1 1

0 0 1

a

pa

pa

p

i x x

i x xi x x p p p p

a a a a

i x xi x x

i x x

e
C

E E
e e C

E E
C

e e
C

e









 

 









 
   
   
   
   
   
   
    
 
 



 


 



 (5.19) 

Substitute the wavenumbers in Eq. (5.5) into Eq.(5.19); we obtain the matrix in terms of 

frequency 

 

1 2

2 31 2

2 31 2

2 3

( )

( )( ) 1

2

( ) 3( )

4
( )

1 0 0

1
0

1 1

0 0 1

a

pa

pa

p

i x x
c

i x xi x x cp pc a a

a p a p

i x xi x x cc

i x x
c

e
CE Ec c

e e CE c E c
C

e e C

e

















 
 
   
   
   
   
   
   
    
 
 
 



 


 



 (5.20) 

The determinant of the material property matrix must equal to zero to have non-

trivial solution for the displacement amplitudes. However, the matrix is a singular matrix 

and requires to be converted to a non-singular or invertible matrix to obtain a solution of 

basis of the vector of unknown coefficients assuming one of them as 1. For example, let 

us assume 
4 1C   in this problem and omit of one of the linearly dependent equation to 

solve the other linearly independent equations. 
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 MODE SHAPES 5.3.2 

In this subsection, the in-plane mode shapes are derived and plotted by using the 

geometric sizes and the material properties of aluminum bar and PWAS that are indicated 

in Table 5.1. Then, the orthogonality of the mode shapes are verified and the normalized 

mode shapes are found and plotted.  

Table 5.1 Geometric sizes and material properties of two-bar resonator. 

Geometric sizes

La=30 [mm] Aluminum PWAS

Lp=40 [mm] Elastic Modulus [Gpa] 72.4 65.3

Height=0.2 [mm] Mass Density [kg/m3] 2780 7700

Wave Speed [m/s] 5103 2913

Compliance 1.53E-11

Permittivity 1.54E-08

Piezoelectric Constant -1.75E-10

Internal damping 0.05

Material Properties

 

Orthogonality of Mode Shapes 

Recall mass-weighted integral to verify the orthogonality of the mode shapes and 

to find the modal participation factor, im  of each mode to scale the mode shape 

amplitudes.  
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For two bar problem, it takes the following form with side surface area, A , is omitted 

since it is equal for each bar in this problem; 
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Table 5.2 shows the orthogonality matrix that validates the mode shape solution 

and that gives the modal participation factors. The values off the diagonal should be 

nearly zero and the values on the diagonal of the matrix should be taken into account as 

modal mass factor to scale the mode shape down the have the normalized mode shapes.  

Table 5.2 Orthogonality matrix that validates the mode shape solution and that gives the 

modal participation factors. 

 

Normalization of mode shapes: normal modes 

After we obtained the modal participation factors (modal mass) which are the 

values on the diagonal of the orthogonality matrix, we can use the values to normalize the 

mode shapes by the following relation; 

 
1new

i

U U
m

  (5.24) 

Then the mode shape amplitudes are scaled down to new mode shape amplitudes by the 

normalization. To analyze orthogonality with respect to stiffness, we consider the 

stiffness weighted integral for two bar resonator model. 
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We obtain the modal stiffness ik  and considering 
a p

j j jU U U  , we recall 

    
3 3

1 1

2 2 2        1,2,3,...

x x

j j j

x x

EU x dx U x dx j      (5.26) 

Using Eq. (5.26), we can come up with 

 
2            1,2,3,...j j jk m j   (5.27) 

We can now plot the normalized mode shapes  newU x  as seen in Table 5.3 at the 

resonant frequencies rf .  

Table 5.3 Normalized mode shapes and resonant frequencies. 
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 ELECTRO-MECHANICAL ANALYSIS UNDER CONSTANT ELECTRIC FIELD 5.3.3 

ASSUMPTION 

 

Figure 5.4 Schematic of two bar resonator excited by electrodes depo- 

sited on PWAS surfaces. 

In-plane electromechanical analysis is conducted in this subsection for the PWAS 

constrained on one side as seen in Figure 5.4 under constant electric field assumption. 

Assume voltage applied to the piezoelectric bar, 3 /E V t  , and corresponding induced 

strain  

 
31 3 31ISA

V
S d E d

t


   (5.28) 

The wave speed depending on the piezoelectric material properties can be defined as 

 2

11

1
E

c
s

  (5.29) 

The constitutive equation for the strain, stress and the electrical field induced by the 

electrodes on top and bottom of the piezoelectric material located between two non-

piezoelectric materials can be introduced as follows 

 1 11 1 31 3S s T d E   (5.30) 

And the constitutive equations for the non-piezo materials can be introduced similar to 

the piezo-material however without the electrical fields; 

 1 11 1

a a aS s T  (5.31) 

The boundary conditions change accordingly 
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In matrix form 
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The elastic modulus of the piezoelectric material is expressed in terms of the compliance 
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 (5.40) 

Upon substitution of Eq(5.39) and (5.40) into (5.38), we obtain 

     2 2 31 3a a p pE u x E u x d E    (5.41) 
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Upon rearrangement, Eq(5.42) takes the following form 
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In matrix form 
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    2 2 2@          a px x u x u x   (5.45) 
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Combine the system of the equations derived from the boundary conditions into one 

matrix form 
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where the normalized mode shape    ( ) 1new

j jU x U x
m

 . The frequency response 

function for the two bar resonator problem is 

Recall the piezoelectric material constitutive equations under the constant electric field 

assumption. 

 31
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11 11

1E
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d
S s T d E T S E

s s
      (5.53) 

 3 31 1 33 3D d T E   (5.54) 

Substitute Eq. (5.53) into Eq. (5.54) 
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Upon further rearrangement, the electrical displacement 
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where 2

31  is the electro-mechanical coupling in longitudinal mode and defined as 

2
2 31
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E
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 . The electrical charge is given by integral of the electrical displacement over 

electrode surface area 
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Recall the capacitance of the piezoelectric bar and the electrical potential 
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
  (5.58) 

 3V E h  (5.59) 

where h is the thickness of the piezoelectric bar. Upon substitution of Eq. (5.58) and Eq. 

(5.59) into Eq. (5.57), we have 
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Substitute Eq. (5.52) into Eq. (5.62) 
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d
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s
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Recall the electrical current as a derivative of the electrical charge with respect to time.  

 3I i Q  (5.65) 

and the electro-mechanical admittance is /Y I V  

    2 31
0 31

11

ˆ1
ˆE

d b
Y i C H x

s V
     (5.66) 

In our case the frequency response function  Ĥ x  is the difference of the displacements 

at two ends of the piezoelectric electrodes.  
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where  

    32( )

3 4

j x xj x xP
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Figure 5.5 Frequency response function of two-bar PWAS resonator. 

When we plot the frequency response function, we can see the displacement 

behavior at resonant frequencies. Now, we take a closer look at the first three resonant 

frequencies to explain the connection between the peak amplitudes and the mode shapes 

that were obtained from the mechanical analysis. It is presumed that the peak amplitude is 

larger when the difference of the amplitudes at two ends of the normalized mode shapes 

of the piezoelectric subsection 
 p

U  is larger. However, this does not apply to the 

relation between the first and second modes as applying to the relation between the 

2nd mode 

10 20 30 40 50 60 70 80 90

0

2

4

6

8

10

12

x 10
-5 Frequency Response Function

Freq, f [kHz]

R
e
(H

),
 [

m
]

1st mode 

1st mode 

2nd mode 

3rd mode 



 

140 

 

second and the third modes. As can be observed in the frequency response function plot 

in Figure 5.5 the third mode at 75.43 kHz can be barely seen since 
 
3

p
U  has small 

value. The results from the frequency response function for the two-bar resonator model 

is presented in Figure 5.6. 

 

Figure 5.6 Frequency response function for two-bar resonator. Height is 0.2 mm and 

length of aluminum 30 mm and length of PWAS is 40 mm. 

5.4 IN-PLANE MODE OF PWAS CONSTRAINED FROM BOTH SIDES 

In this section, we analyze the in-plane mode three-bar resonator model including 

PWAS perfectly bonded from two sides to two isotropic materials as shown in Figure 5.7.  

 

Figure 5.7 Illustration of a three bar resonator model with perfectly bonded PWAS on 

sides of two bars. 
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 MECHANICAL ANALYSIS FOR PWAS CONSTRAINED FROM BOTH SIDES 5.4.1 

The mechanical analysis is performed herein by using resonator theory to derive 

the resonance and anti-resonance frequencies as response to the electrical harmonic 

excitation in frequency domain. The 1-D wave equation is solved regarding harmonic 

standing waves. Then, the mode shapes at resonance frequencies are determined for in-

plane mode and orthogonality of the mode shapes are verified and the normalized mode 

shapes are also determined using the modal mass factors that are determined as a 

diagonal values in the orthogonality matrix. 

Harmonic Standing Waves 

We obtain the wave equations for each division in the bar shown in Figure 5.3 

from Newton’s equation of motion as follows; 

 

2

2

2
a a a

b b b

c u u
c u u

c u u
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 
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 (5.69) 

The general wave equation solutions for each division can be also recalled as 
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 (5.70) 

The strain-displacement relation is determined by 
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Linear Hooke’s law applies to determine the stress-strain constitutive equation as follows 
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 (5.72) 

where the capital coefficients denote the axial wave amplitudes as forward and backward 

directions respectively in x axis and , ,a b   denote the wave numbers for each material 

of the divisions and related to the wave speed in each material; 
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b

b

c

c
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














 (5.73) 

Six boundary conditions should be implied to the general wave solutions to obtain the six 

unknown coefficients. The stress and displacement boundary conditions to be imposed 

are as follows; 

 

       
   
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1 1 1 1 1

2 2 2

2 2

3 3 3

@                     =0       0 0

@                    

                                 

@                    

                                 

a a a a

a p

a p

p b

x x N x x x u x

x x N x N x

u x u x

x x N x N x

u

       

 



 

   
 

3 3
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x x N x
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

 (5.74) 

The first relation between two displacement amplitudes in the material on the left hand 

side is determined by the stress boundary condition on the left surface at 1x x   

 

 

   
    1 1 1 2

1

1 1

1 2
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0a a
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E i C e C e
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


  


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 (5.75) 

Hence, 
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 1 2

1 2 0ai x x
C C e

 
    (5.76) 

The second relation is determined by the stress boundary condition on interface between 

the left and the middle bars.  

 

   
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a a p p

a a p p
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E x E x

E u x E u x

 





 

 (5.77) 

          2 2 3 22 1 2 2

1 2 3 4
p pa a i x x i x xi x x i x x

a a p pE i C e C e E i C e C e
  

 
    

      (5.78) 

    2 32 1

1 2 3 4
pa i x xi x x

a a a a p p p pC E i e C E i C E i C E i e


   
 

      (5.79) 

Hence, 

    2 32 1

1 2 3 4 0pa i x xi x x

a a a a p p p pC E i e C E i C E i C E i e


   
 

      (5.80) 

The displacement boundary condition at 2x x  determines the third relation 

    2 2a pu x u x  (5.81) 

 
       2 2 2 32 1 2 2

1 2 3 4
p pa a i x x i x xi x x i x x

C e C e C e C e
       

    (5.82) 

 
   2 32 1

1 2 3 4 0pa i x xi x x
C e C C C e

  
     (5.83) 

The stress boundary condition on the interface at 3x x  determines the fourth relation 

between the displacement amplitudes  

          3 2 3 3 3 3 3 4

3 4 5 6
p p b bi x x i x x i x x i x x

p p b bE C e C e E C e C e
   

 
     

      (5.84) 
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3 4 5 6
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   
     

      (5.85) 

 
   3 2 3 4

3 4 5 6 0p bi x x i x x

p p p p b b b bC E e C E C E C E e
 

   
  

      (5.86) 

as well as the displacement boundary conditions on the same interface determines the 

fifth relation 
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       3 2 3 3 3 3 3 4

3 4 5 6
p p b bi x x i x x i x x i x x

C e C e C e C e
        

    (5.87) 

 
   3 2 3 4

3 4 5 6 0p bi x x i x x
C e C C C e

   
     (5.88) 

The stress-free boundary condition on the free-surface at 4x  determines the sixth relation 

 
    4 3 4 4

5 6 0b bi x x i x x

b b bE i C e i C e
 

 
  

    (5.89) 

 
 4 3

5 6 0bi x x
C e C

 
     (5.90) 

The linearly dependent equations determined in (5.76), (5.80), (5.83), (5.86), 

(5.88), and (5.90) by implying the stress and displacement boundary conditions and they 

are combined in a matrix form to provide a solution of the Eigen-frequencies and to 

eventually obtain the six Eigen-vectors (the displacement amplitudes). Therefore, this 

problem turns out to be an eigenvalue problem which requires a matrix that contains the 

material properties and wave-numbers as functions of frequency for all subsections in the 

bar and the matrix is to be multiplied by a tensor that contains the displacement 

amplitudes and the product of the two matrices will equal to zero as shown in Eq. (5.91)
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Each of the three divisions of the material property matrix represents each corresponding 

bar subsection. Upon rearrangement by substituting the wavenumbers in Eq. (5.5) into 

Eq.(5.91); we obtain the matrix in terms of frequency 
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 (5.93) 

The determinant of the material property matrix 
6 6xA  must equal to zero to have non-

trivial solution for the displacement amplitudes. 

 6 6 0xA   (5.94) 

The material property matrix is a singular matrix and it does not have a unique solution. 

Therefore, we can find the basis of the eigenvector by assuming one of the unknowns is 

one i.e.  

 
6 1C   (5.95) 

This assumption helps us obtain the following equation 
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Figure 5.8 Geometric sizes and material properties of proof-mass PWAS resonator. 

Normalization of mode shapes: normal modes 

After we obtained the modal participation factors (modal mass) which are the 

values on the diagonal of the orthogonality matrix, we can use the values to normalize the 

mode shapes by the following relation; 

 
1new

i

U U
m

  (5.97) 

Then the mode shape amplitudes are scaled down to new mode shape amplitudes by the 

normalization. To analyze orthogonality with respect to stiffness, we consider the 

stiffness weighted integral for three bar resonator model. 
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We obtain the modal stiffness ik  and considering 
a p b

j j j jU U U U   , we recall 

    
3 3

1 1

2 2 2        1,2,3,...

x x

j j j

x x

EU x dx U x dx j      (5.99) 

Using Eq. (5.26), we can come up with 

 
2            1,2,3,...j j jk m j   (5.100) 

We can now plot the normalized mode shapes  newU x  at the resonant frequency rf  for 

the three-bar resonator 
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Table 5.4 Mode numbers, normalized mode shapes, and resonant frequencies 

 
 

 ELECTRO-MECHANICAL ANALYSIS UNDER CONSTANT ELECTRIC FIELD 5.4.2 

ASSUMPTION 

 

Figure 5.9 Schematic of three-bar resonator with excited PWAS through a harmonic 

electrical field induced by the elecrodes deposited on PWAS 

In-plane electromechanical analysis is conducted in this subsection for the PWAS 

constrained on both sides as seen in Figure 5.9 under constant electric field assumption. 

The wave speed depending on the piezoelectric material properties can be defined as 
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1
E

c
s

  (5.101) 

The constitutive equation for the strain, stress and the electrical field induced by the 

electrodes on top and bottom of the piezoelectric material located between two non-

piezoelectric materials can be introduced as follows 

 
1 11 1 31 3S s T d E   (5.102) 

and the constitutive equations for the non-piezo materials can be introduced similar to the 

piezo-material however without the electrical fields; 
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
 (5.103) 

The boundary conditions change accordingly 
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 (5.104) 

    1 1 1 1@       0a

ax x S x u x    (5.105) 

  1 2( ) ( )

1 2
ˆa ai x x i x x i t i t

a au C e C e e u e
     
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      1 1 1 2
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a a au x i e C i e C
 

 
        (5.107) 

 
 1 2

1 2 0ai x x
C e C

 
    (5.108) 

In matrix form 
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The elastic modulus of the piezoelectric material is expressed in terms of the compliance 
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Upon substitution of Eq(5.39) and (5.40) into (5.38), we obtain 

     2 2 31 3a a p pE u x E u x d E    (5.113) 

Upon rearrangement, Eq(5.42) takes the following form 
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In matrix form 
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 (5.115) 

    2 2 2@          a px x u x u x   (5.116) 
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In matrix form 
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 (5.118) 

The stress boundary condition on the interface at 3x x  determines the fourth relation 
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    

     
     

 (5.121) 

Upon rearrangement 

 3 2 3 4
( ) ( )

3 4 5 6 31 3
p b

i x x i x xb b
p p b b

p p

E E
C i e C i C i C i e d E

E E

    
  

      (5.122) 

In a matrix form 

 3 2 3 4

1

2

( ) 3( )

31 3

4

5

6

0 0 p b
i x x i x xb b

p p b b

p p

C

C

CE E
i e i i i e d E

CE E

C

C

    
  

 
 
 

    
     

    
 
 
  

 (5.123) 

The displacement boundary condition on the interface at 3x x  determines the fifth 

relation 
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    3 3 3@          p bx x u x u x   (5.124) 

 
3 2 3 4( ) ( )

3 4 5 6 0p pi x x i x x
C e C C C e

   
     (5.125) 

In a matrix form 

 3 2 3 4

1

2

( ) ( ) 3

4

5

6

0 0 1 1 0p pi x x i x x

C

C

C
e e

C

C

C

   

 
 
 
       
 
 
 
  

 (5.126) 

The stress boundary condition on the free surface at 4x x  determines 

    4 1 4 4@       0b

bx x S x u x    (5.127) 

  3 4( ) ( )

5 6
ˆb bi x x i x x i t i t

b bu C e C e e u e
     

    (5.128) 

      4 3 4 4

4 5 6
ˆ 0b bi x x i x x

b b bu x i e C i e C
 

 
        (5.129) 

In matrix form 

  4 3

1

2

3

4

5

6

0 0 0 0 1 0bi x x

b

C

C

C
i e

C

C

C




 

 
 
 
      
 
 
 
  

 (5.130) 

Combine the system of the equations derived from the boundary conditions into one 

matrix form 
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 

   

   

 

1 2

2 32 1

2 32 1

3 2 3 4

3 2 3 4

4 3

( ) ( )

( ) ( )

1 0 0 0 0

0 0

1 1 0 0

0 0

0 0 1 1

0 0 0 0 1

a

pa
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p b

p p

b

i x x

i x xi x xa a
a a p p

p p

i x xi x x

i x x i x xb b
p p b b

p p

i x x i x x

i x x

b

e

E E
i e i i i e

E E

e e

E E
i e i i i e

E E

e e

i e







 

 



   

   





 

 

  

  

 

 
 
  
 
 
  
 
  



 


 

1

2 31 3

3

4 31 3

5

6

0

0

0

0

C

C d E

C

C d E

C

C

   
   
   
   

   
    
    
    

  



 (5.131) 

where the normalized mode shape    ( ) 1new

j jU x U x
m

 . The frequency response function for the three bar resonator problem 

is 

        3 2

1

, , p p i t

j j

j

H x t u x t U x U x e 




       (5.132) 

 

1
5
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Recall the piezoelectric material constitutive equations under the constant electric field 

assumption. 

 31
1 11 1 31 3 1 1 3

11 11

1E

E E

d
S s T d E T S E

s s
      (5.133) 

 3 31 1 33 3D d T E 
 (5.134) 

Substitute Eq. (5.53) into Eq. (5.54) 

 
2

31 31 31
3 31 1 3 33 3 1 33 3

11 11 11 11

1
E E E E

d d d
D d S E E S E

s s s s
 

   
         

   
 (5.135) 

Upon further rearrangement, the electrical displacement 

  231
3 1 33 31 3

11

1
E

d
D S E

s
     (5.136) 

where 2

31  is the electro-mechanical coupling in longitudinal mode and defined as 

2
2 31
31

11 33

E

d

s



 . The electrical charge is given by integral of the electrical displacement over 

electrode surface area 

  33 2 31
3 3 31 3 1

11

1

p p

p

E

A A

A d
Q D dA E h S dA

h s


      (5.137) 

Recall the capacitance of the piezoelectric bar and the electrical potential 

 
33

0

pA
C

h


  (5.138) 

 3V E h  (5.139) 

where h is the thickness of the piezoelectric bar. Upon substitution of Eq. (5.58) and Eq. 

(5.59) into Eq. (5.57), we have 
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  2 31
3 0 31

11

1

p

E

L

d
Q C V b u dx

s
      (5.140) 

   3

2

2 31
3 0 31

11

1
x

E x

d
Q C V bu

s
    (5.141) 

  2 31
3 0 31

11

1
E

d
Q C V b u

s
     (5.142) 

Substitute Eq. (5.132)into Eq. (5.62) 

      2 31
3 0 31 3 2

111 /

ˆ 1 p p

j jE
j E M

d
Q C V b U x U x

s






       (5.143) 

or  

    2 31
3 0 31

11

ˆ 1
E

d
Q C V bH x

s
    (5.144) 

Recall the electrical current as a derivative of the electrical charge with respect to time.  

 3I i Q  (5.145) 

and the electro-mechanical admittance is /Y I V  

    2 31
0 31

11

ˆ1
E

d
Y i C bH x

s
     (5.146) 

In our case the frequency response function  Ĥ x  is the difference of the displacements 

at two ends of the piezoelectric electrodes.  

      3 2

1

ˆ P P

j j

j

H x U x U x




   (5.147) 

where  

    32( )

3 4

j x xj x xP

jU x C e C e
  

   (5.148) 
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The frequency response function of a three three-bar resonator having the geometric and 

the material properties defined in Figure 5.8.  

 

Figure 5.10 Frequency response function for three-bar PWAS resonator 

When we plot the frequency response function, we can see the displacement 

behavior at resonant frequencies. Now, we take a closer look at the first three resonant 

frequencies to explain the connection between the frequency response function peak 

amplitudes and the mode shapes that were obtained from the mechanical analysis. It is 

presumed that the FRF peak amplitude and the difference of the amplitudes at two ends 

of the normalized mode shapes of the piezoelectric subsection 
 p

U  follow the same 

trend. 

Since the differences between the displacement amplitudes at two ends of the 

piezoelectric domain of the resonator are very close as can be seen in the normalized 
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mode shapes in Table 5.4, this property in the mode shapes also reflects in the frequency 

response function. The amplitudes of the first three modes are in the same order of 

magnitudes. 
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 CHAPTER 6

THICKNESS MODE EMIS OF CONSTRAINED PWAS 

This chapter addresses theoretical framework for the thickness mode 

electromechanical impedance spectroscopy (TM-EMIS) of constrained piezoelectric 

wafer active sensor (PWAS). The analytical analyses were conducted by applying the 

resonator theory to derive the EMIS of PWAS constrained on one and both surfaces by 

isotropic elastic materials. The normalized thickness mode (Eigen-mode) shapes were 

obtained for the normal mode expansion (NME) method to predict the thickness mode 

impedance values of constrained PWAS using the correlation between a proof-mass-

piezoelectric transducer and structural dynamic properties in the substrate structure. In 

another word, the normalized thickness mode shapes of the PM-PWAS-substrate 

structure at the resonance frequencies are obtained for the NME method. 

6.1 THICKNESS MODE OF CONSTRAINED PWAS 

The analytical model considers a PWAS of length al , thickness at , and width ab , 

undergoing thickness expansion, 
3u , induced by the thickness polarization electric field, 

3E . The electric field is produced by the application of a harmonic voltage   ˆ i tV t Ve   

between the top and bottom surface electrodes. The resulting electric field in the 

thickness mode, /E V t , is assumed non-uniform with respect to  3 3/ 0x E x    as 

opposed to the longitudinal mode; however, the electric displacement, D , is assumed 
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uniform with respect to  3 3/ 0x D x   .  The length, width, and thickness are assumed 

to have widely separated values  a a at b l  such that the length, width, and thickness 

motions are practically uncoupled.  

 

Figure 6.1 PWAS constrained by structural stiffness. 

In this analytical model, PWAS is assumed to be constrained by structural 

stiffness on top and bottom surfaces as seen in Figure 6.1. The analytical analysis starts 

with the general piezoelectric constitutive equations expressing the linear relation 

between stress-strain and stress-electric displacement in thickness mode are 

 
3 33 3 33 3

3 33 3 33 3

a-) 

b-) 

D

S

T c S h D

E h S D

 

  
 (6.1) 

The relations of the four piezoelectric constants to each other are in thickness 

mode (Berlincourt et al., 1958). IEEE Standard on Piezoelectricity (IEEE Ultrasonics, 

1987) provides other relations to alternate the forms of the constitutive equations. In our 

model, the overall stiffness applied to the PWAS has been split into two equal 

components applied to the PWAS surfaces 

 
1 1 1

 ;  
2 2

total str

total str str

k k
k k k

    (6.2) 

The boundary conditions applied at the PWAS ends balance the stress resultants, 3T bl  
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3 3 32

2 2
str

t t
T x bl k u
   

      
   

 (6.3) 

 MECHANICAL RESPONSE FOR PWAS CONSTRAINED IN THICKNESS MODE 6.1.1 

The resonance theory begins with the wave equation. Introducing the wave speed 

in direction of
3x axis, 3 33 /Dc c  , and the wave number in thickness mode, 3/t c  ; 

the particle displacement 
3u is given by 

 
3 3 1 3 2 3

ˆ ( ) sin cost tu x C x C x    (6.4) 

1C and
2C are to be determined from the boundary conditions. Note that 3 3 3 3/S u x u     

and substitute Eq(6.4) into Eq. (6.3). Impose the boundary conditions on the PWAS 

surfaces that balance the stress resultant with the spring reaction force 
32 strk u . 

Introducing the quasi-static PWAS stiffness, 
33 /D

PWASk Ac t  and the stiffness ratio 

/str PWASr k k . We can rearrange the equation using the ratio and it yields the following 

linear system in 
1C and 

2C by substitution of the general solution. Rearrange using 

0.5t t   

     33 3
1 2

33

cos sin sin cos
2

t t t t t t D

t h D
r C r C

c
         (6.5) 

Upon subtraction, we obtain 
2 0C  . Now add the two equations to obtain 

 
 

33 3
1

33

1

2 cos sinD

t t t

t h D
C

c r  



 (6.6) 

Recall the strain 3 3
ˆS u   



 

162 

 
 

33 3
3 3 3

33

ˆ cos
cos sin

t tD

t t t

h D
S u x

c r
 

  
 


 (6.7) 

 ELECTRICAL RESPONSE UNDER CONSTANT ELECTRIC DISPLACEMENT 6.1.2 

ASSUMPTION 

 

/2

3 3

/2

3 3

a-) 

b-) 

t

t

A

V E dx

d
I D dA i D bl

dt






 





 (6.8) 

Recall the second constitutive equation and substitute Eq. (6.7) into the equation 

 
 

2

33 3
3 3 33 3

33

cos
cos sin

s

t tD

t t t

h D
E x D

c r
  

  
  


 (6.9) 

Recalling the piezoelectric constant relations, one can derive these relations 

2 2 2

33 33 33/ sh e  ; 
33 331/s s  ; and 

33 33 33/ De d s ; finally one can come up with the 

expression,  
2

2

33 33 33 33/s Dh d s , and plug it into Eq(6.9) noting that 33 331/D Dc s  and 

introduce the electro-mechanical coupling coefficient ,
33 , defined as 2 2

33 33 33 33/ D Se c 

(IEEE Ultrasonics, 1987)  

 
2 3

3 33 3 33

cos
1

cos sin

S t t

t t t

x
E D

r

 
 

  

 
  

 
 (6.10) 

Upon substitution of Eq. (6.10) into Eq. (6.8)a, we obtain after rearrangement 

 
 

2

33 3 33

sin
1

cos sin

S t

t t t

V D t
r


 

  

 
  

 
 (6.11) 
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Recalling /I Q Q t     and Eq. (6.8)b, we obtain 
3I i D bl . Substitute Eq. (6.11) 

and electrical current equation into the impedance /Z V I  and recall the capacitance of 

the material 
0 33/ SC bl t  

 
2

33

0

1 1
1

cott t

V
Z

I i C r


  

 
   

 
 (6.12) 

6.2 THICKNESS MODE OF PWAS CONSTRAINED FROM ONE SIDE 

 

Figure 6.2 Illustration of a schema and picture of constrained PWAS. 

This section introduces a theoretical framework for a two-layer resonator model 

including a PWAS and one isotropic elastic bar. The following assumptions were made 

for the two-bar piezo-resonator model.  

First, the geometry and the cross-section area of the layers are the same although 

they have different materials and different thicknesses. Second, PWAS is assumed to be 

perfectly bonded to the isotropic elastic bar. The model shown in Figure 6.2can be used 

to develop an analytical solution to obtain the resonance frequencies essentially to build 

the basis for the PMPWAS actuator.  

A procedure shown in Figure 6.4 can be pursued for the PMPWAS-EMIS. The 

global matrix is depicted in Eq(6.14) which is defined for the two layer model. The 

matrix elements are currently functions of the wave-speed and the frequency. They can 
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be converted to the functions of the wave number by the wave number frequency 

relation, / ,  /a a p pc c     . An eigenvalue problem with respect to the new PM-

PWAS problem is solved in the similar manner regarding the Eigen-value problem of 

two-layered resonator in order to turn the singular matrix into a non-singular matrix. 

Therefore, the basis of the solution for the four eigenvectors can be found at each 

corresponding Eigen-modes.  

The wave equations for each layer of the two bar resonator can be obtained from 

Newton’s equation of motion; the general wave equation solution for the first layer can 

be determined as  

     1 2

1 2
ˆa ai y y i y y i t i t

a au C e C e e u e
     

    (6.13) 

where au  is the displacement for the isotropic elastic material on the left hand side, 

Similarly, the displacement, 
pu , for PWAS can be determined. The capital coefficients 

denote the axial wave amplitudes as forward and backward directions respectively in y 

axis and /a ac  denote the wave numbers for each material of the divisions and 

related to the wave speed in the material-a. Linear Hooke’s law applied to determine the 

stress-strain constitutive equations using the strain-displacement relation, /u x    , for 

each layer in 1-D two-bar resonator problem. The stress equations a , p  were 

determined in similar manner. Two unknown coefficients in each stress equation exist 

and four unknown coefficients in total therefore four boundary conditions should be 

implied to the general wave solutions to obtain the solutions of the wave equations in 

terms of the displacement mode shapes and the frequency responses at structural 

resonances for different modes.  



 

165 

 EIGENVALUE PROBLEM 6.2.1 

The stress and displacement boundary conditions to be imposed are; stress-free 

boundary condition at free ends, stress continuity condition and displacement continuity 

condition at the interface. The linearly dependent equation system was determined by 

implying the boundary conditions in a matrix form to provide a solution of the Eigen-

frequencies and to eventually obtain the four Eigen-vectors (the displacement 

amplitudes). Therefore, this problem turned out to be an eigenvalue problem which 

requires a matrix as functions of frequency and the matrix to be multiplied by a tensor 

that contains the displacement amplitudes and the product of the two matrices was equal 

to zero as shown in Eq.(6.14). 
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 
 

 
  

      
  

  
     

 
 

 

 (6.14) 

The determinant of the global matrix 
4 4xA  must equal to zero to have non-trivial 

solution for the displacement amplitudes. Then one can say that the global matrix is 

apparently a singular matrix and it dos not have a unique solution. Therefore, we can find 

the basis of the eigenvector by assuming one of the unknowns is one i.e. 4 1C  . This 

assumption helps us obtain 3 3xA  non-singular matrix simply excluding 4
th

 row that no 

longer represents an independent equation. The 4
th

 column of the global matrix is moved 
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to the right hand side of the equation to eventually obtain a non-trivial basis of the 

solution for the unknown constants.  

 MODAL EXPANSION THEOREM 6.2.2 

For the forced axial vibration of two bars, we assume two bars undergoing axial 

vibration under the excitation of an externally applied time-dependent axial force per unit 

length,  ,f x t  as shown in Figure 6.3. 

 

Figure 6.3 Constrained PWAS undergoing axial vibration  

under the excitation of an externally applied time-depen 

dent axial force per unit length. 

The equation of motion for forced axial vibration; 

    ( , ) , ,Au x t EAu x t f x t    (6.15) 

without loss of generality, we assume the external excitation to be harmonic in the form 

    ˆ, i tf x t f x e   (6.16) 

    
1

, i t

j j

j

u x t U x e 




  (6.17) 

where  jU x  are natural modes satisfying the free vibration equation of motion and the 

orthogonality conditions, whereas j  are the modal participation factors for the forced 

vibration modes. Substitution of Eq. (6.17) into Eq. (6.15) and division by i te   yields 

, , ,  , , , 
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      2

1 1

ˆ
i i i i

i i

A U x EA U x f x   
 

 

     (6.18) 

Multiplication of Eq.(6.18) by      a p

j j jU x U x U x   and integration over the total 

length of two bars 
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where elastic moduli, aE  and pE , and mass densities, a  and p , are constant along 

corresponding bar’s length therefore (6.19) is rearranged 
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The expressions in the brackets represent the mass-weighted integral and the stiffness-

weighted integral for orthogonality conditions.  

  2            1,2,3,...j j j jm k f j      (6.21) 

where jf  is the modal excitation given by 

    
3

1

ˆ           1,2,3,...

x

j j

x

f f x U x dx j   (6.22) 

If the mode shapes are orthonormal (orthogonal+normalized), then substituting the 

orthonormality conditions (5.27) into (6.21) 
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The modal participation factors can be expressed in the form 
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The modal participation factor for the forced vibration corresponds to the amplitude of 

undamped forced vibration of one degree of freedom (DOF) system.  
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In reality, system has some damping i . The modal participation factors for a damped 

system are given by 
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Substitution of Eq. (6.26) into Eq. (6.17) yields 
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Equation (6.27) represents a superposition of a number of terms, each term corresponding 

to a natural frequency and normal mode of vibration. It allows us to determine the 

response of the continuous structure to harmonic excitation of variable frequency. This 

leads to the frequency response function (FRF) concept.  

 NORMALIZED MODE SHAPES 6.2.3 

The next step was the verification of orthogonality of the mode shapes The mass-

weighted integral was used to verify the orthogonality of the mode shapes and to find the 

modal mass factor, 
im  of each mode to scale the mode shape amplitudes. For the two bar 

resonator problem, it takes the following form. The surface area, A , is omitted since it is 

equal for each layer in this problem; 
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Table 6.1 Orthogonality matrix that validates the mode shape solution and that gives the 

modal participation factors. 

Modal factor First mode Second mode Third mode Fourth mode Fifth mode 

First mode 908.344 + 

0.000334i 

0.013 - 0.06i 0.015 - 0.02i 0.02 - 0.0001i 0.02 + 0.0002i 

Second mode 0.013 - 0.06130i 992.529 - 

0.026i 

0.007+ 

0.0002i 

0.03 + 0.01i 0.0017+ 0.007i 

Third mode 0.015 - 0.02133i 0.0076 

+0.00028i 

795.59- 

0.058i 

-0.02 0.02+ 0.01i 

Fourth mode 0.02 - 0.00017i 0.031 + 0.012i -0.02 836.15 + 

0.0002i 

0.005 + 0.0009i 

Fifth mode 0.027 + 0.0002i 0.0017 + 0.007i 0.021 + 0.01i 0.005 + 

0.0009i 

1033.102+ 

0.00015i 

 

Then, the normalization of the mode shapes was carried out to find normal modes 

after the modal participation factors with respect to the modal mass values were obtained 

which are the values on the diagonal of the orthogonality matrix as given in Table 6.1. 

The values can be used to normalize the mode shapes by the following relation; 

/new

iU U m  

 CALCULATION OF FREQUENCY RESPONSE FUNCTION THROUGH NORMAL MODE 6.2.4 

EXPANSION METHOD (NME) 

The NME theorem combines the natural modes satisfying the free-vibration 

equation of motion and the orthogonality conditions with respect to mass and stiffness 

and factorizes the sum of the natural modes by the modal participation factors in terms of 

the modal mass or the modal stiffness factors.  
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The normalized mode shapes are substituted into the frequency response function 

(FRF) equation that was derived through the NME method to obtain the FRF to the single 

input single output excitation applied by the PWAS. The FRF of the damped axial 

vibration system in thickness mode is expressed as 
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The SISO FRF is the same as the dynamic structural compliance seen by the 

PWAS modal sensor placed on the structure. The dynamic structural stiffness is the 

reciprocal of the compliance 
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is defined to calculate the frequency dependent stiffness ratio, ( ) ( ) /str PWASr k k  where 

33 /D

PWASk Ac t  the quasi-static PWAS stiffness, dependent on the area of the surface 

whose normal is on y axis and the stiffness of PWAS in thickness direction and the 

thickness of the PWAS. 

The impedance model shown in Eq. (6.12) for constrained PWAS in thickness 

mode is derived in section 6.1 by using the resonator theory under constrained boundary 

conditions and constant electrical displacement, 3D , assumption. The coefficients defined 

in the procedure can be adjusted by the GMM that conveys the new boundary conditions 

into the FRF through NME method and then substituted into the thickness mode EMIS 

equation for constrained PWAS by the stiffness ratio. 
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Figure 6.4 Flow chart of the one dimensional analytical thickness mode  

EMIS for constrained PWAS. 

A procedure shown in Figure 6.4 can be pursued for the constrained PWAS 

EMIS. The global matrix is depicted in Eq.(6.31) which is defined for the two layer 

model. The matrix elements are currently functions of the wave-speed and the frequency. 

They can be converted to functions of wave number by the wave number frequency 

relation, / ,  / ,  /  a a p p b bc c c        . An eigenvalue problem with respect to the 

new constrained PWAS problem is solved in the similar manner described in the previous 

section regarding the Eigenvalue problem of two-bar resonator in order to turn the 
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singular matrix into non-singular matrix. Therefore, the basis of the solution for the four 

eigenvectors can be found at each corresponding Eigenmodes.  
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 NUMERICAL EXAMPLES 6.2.5 

In this subsection, the normalized mode shapes and the frequency response 

functions are determined and presented for the constrained PWAS in thickness mode as 

seen in the model presented in Figure 6.5. The geometric sizes and material properties of 

the PWAS and the substrate material are also presented. The solutions are determined for 

PWAS in different thicknesses. The resonance responses in terms of mode shapes and the 

frequency response functions for both PWAS in thickness of 0.5mm and of 0.2mm are 

presented as followings.  

For PWAS thickness of 0.5mm 

 

Figure 6.5 Schematic of PWAS bonded on bar and geometric and material properties. 
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When we plot the frequency response function in thickness mode for the system 

seen in Figure 6.5, we can see the displacement behavior at resonant frequencies. 

In this example, one can observe at the first two resonant frequencies in thickness 

mode to explain the connection between the peak amplitudes and the mode shapes that 

were obtained from the mechanical analysis. It is presumed that the peak amplitude is 

larger when the difference of the amplitudes at two ends of the normalized mode shapes 

of the piezoelectric subsection 
 p

U  is larger. The relation applies between the first and 

second modes. As one can observe in the frequency response function plot in Figure 6.6, 

the first mode at 1.34 MHz smaller amplitude than the second mode at 2.76 MHz since 

 
1

p
U  has smaller value than 

 
2

p
U .  

 

Figure 6.6 Frequency response function for two-bar resonator. Height of aluminum is 

1mm and height of PWAS is 0.5mm and length is 7mm. 

Table 6.2 shows the normalized mode shapes for the first two thickness modes 

PWAS in height of 0.5 mm and length of 7 mm. 
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Table 6.2 Normalized mode shapes for the first two modes PWAS at the height of 0.5 

mm and length of 7 mm. 

 
 

For PWAS thickness of 0.2mm 

The same relation between the peak amplitudes and the mode shapes 
 p

U also 

applies in this numerical example when we plot the frequency response function in 

thickness mode. Now let us look at the first two resonant frequencies in thickness mode 

in Table 6.3 to explain the connection. As can be observed in the frequency response 

function plot in Figure 6.7 the first mode at 1.76 MHz smaller amplitude than the second 

mode at 3.79 MHz since 
 
1

p
U  has smaller value than 

 
2

p
U . 
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Figure 6.7 Frequency response function for two-bar resonator. Height of aluminum is 1 

mm and height of PWAS is 0.2 mm and length is 7 mm. 

Table 6.3 Normalized mode shapes for the first two modes PWAS at the height of 0.2 

mm and length of 7 mm. 
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6.3 THICKNESS MODE OF PWAS CONSTRAINED FROM BOTH SIDES 

 

Figure 6.8 Illustration of a PM-PWAS transducer bonded on a substrate material and its 

mode shapes at fundamental and overtone resonant frequencies. 

A similar procedure as shown in the flow-chart (Figure 6.4) to the constrained 

PWAS-EMIS can be pursued for the constrained PM-PWAS EMIS. Only difference is 

the global matrix as seen in Eq. (6.32) that was defined for the three-bar resonator model 

additionally including proof-mass bonded on PWAS. The elements of the matrix 

discretized in each box correspond to one of the three layers. The elements in the left box 

are from the substrate material, in the middle box are from the PWAS layer, and in the 

right are from the proof-mass layer. The matrix elements are currently functions of the 

wave-number. They can be converted to functions of frequency by the wave number 

frequency relation, / ,  / ,  /  a a p p b bc c c        . An eigenvalue problem with 

respect to the new three-bar resonator problem is solved in the similar manner described 

in the previous Eigenvalue problem subsection in order to turn the singular matrix into 

non-singular matrix. Therefore, the basis of the solution for the six eigenvectors can be 

found at each corresponding Eigenmodes. Then, the modal participation factor is 

obtained through the verification of the orthogonality of the mode shapes by the mass 

weighted integral method. The normalized mode shapes are determined by the calculated 

participation factor for each modes.  
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 (6.32) 

The frequency response function (FRF)  Ĥ x  for the three bar resonator problem 

is the summation of the differences between displacements at two ends of the 

piezoelectric electrodes.  

            3 2

1

, ,
New Newp p i t

j j

j

H x t u x t U x U x e 




    
   (6.33) 

The frequency response function was plotted as illustrated in Figure 6.9. Both the 

PM and the host structure are aluminum in this study. The PM-PWAS was assumed to be 

perfectly bonded on a 2 mm thick plate-like structure in the same length as PM-PWAS. 

The displacement response in frequency domain reached the highest values at resonant 

frequencies in various modes where the system with PM-PWAS actuator resonated as 

well as the displacement mode shapes shown in Figure 6.8 were defined.  

 

Figure 6.9 Illustration of the real and imaginary parts of the Frequency Response 

Function (FRF). 
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Table 6.4 Three bar resonator mode shapes, resonant frequencies and amplitude 

differences at different modes. 

 
Table 6.4 depicts the PM-PWAS-substrate structure mode shape, resonant 

frequency and amplitude difference at different modes. The mode shapes represent the 

displacement amplitudes along the bars at resonant frequencies (Eigen-frequencies). The 

motion in the PM-PWAS and plate structure system occurred solely due to the electrical 

excitation generated in harmonic manner by the electrodes deposited on top and bottom 

of PWAS actuator. This is called the induced strain actuation (ISA) that was expressed as 

Mode 
Number 

Mode Shape 
Resonant 
Frequency 

[kHz] 
Amplitude Difference [mm] 

1 

 

717.1          1 1 3 1 2

p p p
U U x U x    0.184 

2 

 

1437.9          2 2 3 2 2

p p p
U U x U x    0.4352 

3 
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p p p
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p p p
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 31 3ISAS d E  (6.34) 

The displacement amplitude difference at two ends of the electrodes was 

substantial and was shown in each mode shape at resonant frequencies in the defined 

frequency range (up to 4 MHz).  

    3 2
ˆ p p p

j j jU U x U x    (6.35) 

As paying a closer attention to the first four resonant frequencies to explain the 

connection between peak amplitudes in the frequency response and the mode shapes that 

were obtained from the mechanical analysis. It is indicated that the FRF peak amplitude 

and the difference of the amplitudes at two ends of the normalized mode shapes of the 

piezoelectric subsection 
 p

iU  follow similar trend against the proof-mass size change at 

the first four modes in Figure 6.11.  

 

Figure 6.10 Illustration of the effect of Proof-Mass size change on mode shapes in 

relation with frequency response function amplitudes at resonance frequencies (Kamas, 

Giurgiutiu, & Lin, 2013). 
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The dashed-line curve represents the FRF amplitude at resonance frequencies and 

the dotted line curve represents the mode shape amplitude difference. The both curves in 

mode 1 inclines along the PM height. The second mode, FRF and 
( )P

jU  curves rise up 

to the PM height of 0.4-0.5 mm and lowers in both manner as the PM height more 

increases. The third and fourth modes have similar pattern by being mitigated at certain 

PM height and then they both climb up along the increasing height. The resonance 

frequency of the PM transducer system slightly shifts downward as the height of PM 

increases at each mode as expected. 

 

Figure 6.11 Effect of proof-mass height on resonance  

frequencies at multiple modes. 

The resonance frequency of the PM-PWAS slightly shifts downward as the height 

of PM increases at each mode as expected. 

To conclude this part of the PM-PWAS parametric study, the three bar piezo-

resonator model was used to obtain the resonance frequencies for the normal mode 

expansion method. The resonator theory is used to build the basis for the proof-mass 
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PWAS (PM-PWAS) transducer configured with a PWAS actuator and proof-mass on top. 

The study was followed by proof-mass analysis to investigate tuning of specific modes 

using the correlation between a proof-mass transducer and structural dynamic properties 

in the host plate-like structure. It was found that proof masses could shift system 

resonance towards optimal frequency point. A parametric study was conducted to 

indicate the mitigation of certain modes is possible by varying geometric size of proof 

mass. 
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 CHAPTER 7

PROOF-MASS PIEZOELECTRIC WAFER ACTIVE SENSOR 

This chapter presents theoretical and experimental work on thickness mode 

electromechanical impedance spectroscopy (EMIS) of proof-mass piezoelectric actuator 

for tuning the Lamb wave modes in high frequency-band. Proof masses shift system 

resonance towards optimal frequency point. A new type of PM transducer has been 

designed to generate the desired wave mode through the PM tuning method in a substrate 

plate-like structure. Analytical analysis begins with the piezoelectric wafer active sensor 

(PWAS) under constrained boundary conditions and it is carried out by using the 

resonator theory considering the simplified one-dimensional three layered and five 

layered models. In the first part of this study, a simplified proof-mass piezo-resonator 

with three layers was modeled using the resonator theory. The resonator model includes a 

piezoelectric wafer active sensor (PWAS) and the PWAS is bonded on one isotropic 

elastic bar by an adhesive bonding layer. The following assumption was made for the 

proof-mass PWAS resonator model; the geometry and the cross-section area of PWAS 

and the elastic bar were the same although they have different materials and different 

thicknesses. The model was used to obtain the resonance frequencies for the normal 

mode expansion method. Essentially, this model was to build the basis for the EMIS of 

the proof-mass PWAS (PM-PWAS). Next, the model was extended to a five layered 

model including a PWAS resonator in the middle and two isotropic elastic bars 

constraining the PWAS from both surfaces by two adhesive bonding layers. Global 
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matrix method (GMM) is employed to solve the eigenvalue problems of the PM-PWAS 

models for the Eigen-vectors and the corresponding Eigen-frequencies. Eigen-modes are 

determined for the normal mode expansion (NME) method to predict the thickness mode 

impedance values of PM-PWAS using the correlation between a proof-mass-piezoelectric 

transducer and structural dynamic properties in the substrate structure. The study was 

followed by proof-mass analysis to investigate desired control objectives (such as tuning 

of axial wave modes). PM-PWAS transducer can be used for better high frequency local 

modal sensing at a desired excitation frequency utilizing the proof masses affixed on 

PWAS in different sizes and materials to tune system resonance towards optimal 

frequency point. A parametric study is conducted to indicate effect of the proof-mass size 

change on mode shapes in relation with frequency response function amplitudes at 

resonance frequencies. The bonded PWAS and PM-PWAS models are also numerically 

generated in a commercial multi-physics finite element analysis (MP-FEA) software, 

ANSYS®. The thickness mode EMIS results from analytical, numerical, and 

experimental analyses are presented. The analytical PM-PWAS and constrained PM-

PWAS models are verified by MP-FEA computational results and experimental 

measurement results in terms of the thickness mode EMIS of PM-PWAS bonded on a 

plate-like host structures. 

7.1 STATE OF THE ART FOR PROOF-MASS PWAS 

Since the 1980’s, the proof-mass (PM) concept has received considerable 

attention especially regarding vibration suppression control by (Griffin et al. 2013; 

Zimmerman & Inman 1990). PM actuators have been provided for structural vibration 

control problems with respect to a broad range of applications. The PM actuator has been 
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modeled as a mass bonded to a structure with dynamic stiffness and internal damping. 

The effectiveness of the PM actuator depends strongly on how precisely it is tuned.  

However, in the literature, the PM actuators have been developed mostly for flexible 

structures vibrating in a relatively low frequency band at a magnitude of 100-1000 Hz 

whereas PWAS needs to work at high frequency range at magnitude of MHz. Kamas, 

Giurgiutiu, & Lin (2013) first adopted the proof-mass concept to develop the theoretical 

basis of proof-mass PWAS (PMPWAS) resonator. The authors derived the frequency 

response function of PMPWAS resonator and conducted an analytical parametric study 

for the effect of the proof-mass height on the frequency response function and the 

displacement amplitude prediction. The effect of the thickness variation in the proof-mass 

on the thickness mode resonance frequency was noticed. Further study was conducted to 

develop the thickness mode EMIS for PMPWAS and finite element/experimental 

validation in their work (Kamas, Lin, & Giurgiutiu, 2014). 

However, the analytical thickness mode EMIS of PMPWAS has not been yet 

developed by using normal mode expansion (NME) method. In the current study, the 

further development of analytical EMIS model for PMPWAS has been performed by 

using the NME method. The NME was utilized to derive the frequency response function 

and the dynamic structural stiffness ratio for the 1-D thickness mode EMIS model of 

PMPWAS. The analytical analyses began with PWAS under constrained boundary 

conditions; a simplified two layered and three layered piezo-resonators are modeled using 

the resonator theory. Three-layered resonator model included a PWAS in the center and 

two isotropic elastic bars bonded on both surfaces of the PWAS; whereas in two-layered 

resonator model, PWAS was only constrained on one surface. These two-layered and 
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three-layered piezo-resonator models are used to obtain the resonance frequencies for the 

NME method. Global matrix method (GMM) was employed to carry all the information 

from each layer regarding the material properties, geometric properties as well as the 

boundary conditions into the eigenvalue problem (Kamas, Giurgiutiu, & Lin, 2014). 

GMM was also utilized to solve the eigenvalue problem of the two and three-layered 

PMPWAS models for the Eigen-vectors and the corresponding Eigen-frequencies. Eigen-

modes were determined for the NME method to predict the thickness mode impedance 

values of PMPWAS using the correlation between a proof-mass-piezoelectric transducer 

and structural dynamic properties in the substrate structure. Essentially, the models were 

used to build the basis for the PMPWAS tuning concept.  

In order to explain the PM thickness change effects on the thickness mode 

impedance, the study is then followed by proof-mass analysis to investigate desired 

control objectives (such as tuning of wave modes) using the correlation between a 

PMPWAS transducer and structural dynamic properties in the substrate structure. Proof 

masses shift system resonance towards optimal frequency point. The coupled-field 

models for the PMPWAS and bonded PMPWAS on a substrate structure are also 

numerically generated in commercial multi-physics finite element analysis software, 

ANSYS®. The thickness mode EMIS results from analytical, numerical, and 

experimental analyses are presented. The analytical models are verified by the 

computational and experimental results.  
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7.2 ANALYTICAL EMIS ANALYSIS FOR PM-PWAS  

This section first presents PM-PWAS analytical model including the bonding 

layer. The mechanical analysis is conducted regarding the harmonic standing waves. 

Secondly, an analytical model for PM-PWAS constrained on a plate-like substrate 

including the two bonding layers is proceeded. Eventually, the comparisons of the 

analytical impedance results with the corresponding experimental measurements are 

presented for validation. 

 PM-PWAS INCLUDING BONDING LAYER 7.2.1 

This section presents a three layer analytical model including an adhesive layer 

between PWAS and an isotropic elastic material layer. The boundary conditions and 

accordingly the global matrix will be redefined however the global matrix element order 

will differ solely due to the material order and overall feature of the global matrix will 

remain the same as the global matrix of the three bar resonator. 

 

Figure 7.1 Illustration of constrained PWAS model including adhesive bonding layer. 
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 Mechanical Analysis: Harmonic Standing Waves 

We obtain the wave equations for each division in the model shown in Figure 7.1 

from Newton’s equation of motion as follows; 
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 (7.1) 

The subscripts s , g , and p  denote for  substrate layer, adhesive bonding (glue) layer, 

and piezoelectric layer respectively. The general wave equation solutions for substrate 

layer can be recalled as 

  1 2( ) ( )

1 2
ˆs si y y i y y i t i t

s su C e C e e u e
     

    (7.2) 

where su  is the displacement for the isotropic elastic material of the substrate layer, 

Similarly, the displacement, 
gu , for the adhesive bonding layer and, 

pu , for PWAS layer, 

can be determined. The capital coefficients denote the axial wave amplitudes as forward 

and backward directions respectively in x axis and / ,  / ,  /  p p a a b bc c c         

denote the wave numbers for each material of the divisions and related to the wave speed 

in each material. 

Linear Hooke’s law applies to determine the stress-strain constitutive equation 

using the strain-displacement relation, /u x    , for each subsection in 1-D three-bar 

resonator problem as follows; 
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The stress equations 
p  and b  were determined in similar manner. Two 

unknown coefficients in each stress equation exist and six unknown coefficients in total 
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therefore six boundary conditions should be implied to the general wave solutions to 

obtain the solutions of the wave equations in terms of the displacement mode shapes and 

the frequency responses at structural resonances for different modes. The stress and 

displacement boundary conditions to be imposed are; stress-free boundary condition at 

free ends, stress continuity condition and displacement continuity condition at two 

interfaces. 
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The first relation between two displacement amplitudes in the material on the left hand 

side is determined by the stress boundary condition on the left surface at 1y y   
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Hence, 
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The second relation is determined by the stress boundary condition on interface between 

the left and the middle bars.  
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Hence, 

 
   2 32 1

1 2 3 4 0gs i y yi y y

s s s s g g g gC E i e C E i C E i C E i e


   
 

      (7.9) 

The displacement boundary condition at 2y y  determines the third relation 
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The stress boundary condition on the interface at 3y y  determines the fourth relation 

between the displacement amplitudes  
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as well as the displacement boundary conditions on the same interface determines the 

fifth relation 
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The stress-free boundary condition on the free-surface at 4y  determines the sixth relation 
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The linearly dependent equations determined in (7.6), (7.9), (7.12), (7.15), (7.17), 

and (7.19) by implying the stress and displacement boundary conditions and they are 

combined in a matrix form to provide a solution of the Eigen-frequencies and to 

eventually obtain the six Eigen-vectors (the displacement amplitudes). Therefore, this 

problem turns out to be an eigenvalue problem which requires a matrix that contains the 

material properties and wave-numbers as functions of frequency for all subsections in the 

bar and the matrix is to be multiplied by a tensor that contains the displacement 

amplitudes and the product of the two matrices will equal to zero as shown in Eq. (7.20) 
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The determinant of the global matrix 6 6xA  must equal to zero to have non-trivial 

solution for the displacement amplitudes. Then one can say that the global matrix is 

apparently a singular matrix and it does not have a unique solution. Therefore, we can 

find the basis of the eigenvector by assuming one of the unknowns is one i.e. 6 1C  . This 

assumption helps us obtain 5 5xA  non-singular matrix simply excluding 6
th

 row that no 

longer represents an independent equation. The 6
th

 column of the global matrix is moved 

to the right hand side of the equation to eventually obtain a non-trivial basis of the 

solution for the unknown constants. The basis of the coefficient solutions i.e. 

eigenvectors are used to obtain the basis of the mode shape solutions at the resonance 
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frequencies i.e. eigenvalues or Eigen-frequencies. The modal participation factor (modal 

mass) is found by the mass weighted integral method and the modal mass that differs at 

each mode is used to normalize and scale down each mode shape amplitude. The normal 

mode shapes are utilized for the normal mode expansion method to obtain the frequency 

response function is plotted as illustrated in Figure 7.2a. The dynamic structural stiffness 

is found taking the inverse of the FRF and multiplying by the mass density and the 

surface area of PWAS and the stiffness ratio is found by the relation 

    /str PWASr k k  , where 
33 /D

PWASk Ac t  is the PWAS stiffness in thickness mode 

that contains; A  is the PWAS surface area, 
33

Dc  is the stiffness if the piezoelectric 

material in thickness direction under the constant electric displacement assumption, and t  

is the PWAS thickness. The stiffness ratio can then be plugged into the thickness mode 

impedance equation that can be adopted for the PWAS-glue-substrate model. The real 

part of the impedance prediction is plotted as illustrated in Figure 7.2b. More precise 

agreement is captured between the experimental and analytical results.  
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 Comparison of the analytical impedance results with the experimental 

results 

 

Figure 7.2 (a) Frequency response function whose amplitude is plotted in logarithmic 

scale; (b) experimental and analytical real part of the E/M impedance results for PWAS 

installed on 1mm thick aluminum 7mm x 7mm square plate-like aluminum substrate.  

The frequency response function whose amplitude is plotted in logarithmic scale 

and one-dimensional analytical E/M impedance model results are presented in Figure 7.2 

for square PWAS size is 7x7x0.2 mm
3
 , bonding layer is modeled in 80 µm thickness 

with 8GPa elastic modulus and 1500 kg/m
3
 mass density. Experimental and analytical 

real part of the E/M impedance results are compared by superimposing in the same plot 

herein for PWAS installed on 1mm thick aluminum square plate-like aluminum substrate.  

Internal damping of PWAS is assumed to be 5% whereas the structural damping is 1% 

and thickness mode electro-mechanical coupling coefficient k33 is 0.42.  
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 PM-PWAS ON SUBSTRATE INCLUDING THE BONDING LAYERS 7.2.2 

 

Figure 7.3 Illustration of constrained PM-PWAS model including two adhesive bonding 

layers. 

The resonator theory was also adopted as in three-layer structures  and the two-

layer for the similar procedure of the analytical modeling of EMIS of the five layer 

structure including proof-mass, one adhesive layer between proof-mass and PWAS, 

another adhesive layer between the PWAS and the substrate, one can come up with the 

10x10 global matrix [ ]A  in (7.21). The global matrix [ ]A  carries the material and 

geometrical aspects of all the five layers as a function of wave number.  The wave 

number-frequency relations as similarly defined in Eq.(5.5) for each layer are substituted 

into the matrix to obtain the frequency dependency. The eigenvalue problem can be set 

by using the matrix    0iA C   where C  vector includes the mode shape amplitudes i.e. 

coefficients with subscript of 1,2,3,...,10i   
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Once the eigenvalue problem is solved for the eigenvectors (mode-shape amplitudes) and eigen-frequencies (resonance 

frequencies), the mode shapes at each resonance frequency can be defined to use for normal model expansion (NME) method. 

Eventually, the FRF and dynamic structural stiffness can be obtained from NME method. The stiffness ratio is calculated and 

substituted into the constrained thickness mode PWAS-EMIS Eq.(6.12). After the internal damping effects are included, one can plot 

the EMIS calculation for the regarding constrained PM-PWAS model including two adhesive bonding layers. 

1
9
4
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The theoretical calculation of real part of impedance (ReZ) is compared with 

experimental measurement of ReZ in Figure 7.4. EMIS of PM-PWAS on aluminum 

substrate assuming perfect bonding without adhesive layers is illustrated on the left and 

EMIS of PM-PWAS on aluminum substrate including two adhesive bonding layers on 

the right. Both results are for PM height of 1.5mm and lateral sizes are in 27 7mm  for 

both aluminum PM and 1mm thick host-structure. 

 

Figure 7.4 Comparison of analytical and experimental (a) EMIS of PM-PWAS on 

aluminum substrate neglecting adhesive bonding layers (b) EMIS of PM-PWAS on 

aluminum substrate including two adhesive bonding layers 

7.3 COUPLED FIELD FINITE ELEMENT ANALYSIS OF PMPWAS EMIS 

In CF-FEA approach, the mechanical coupling between the structure and the 

sensor is implemented by specifying boundary conditions of the sensor, while the 

electromechanical coupling is modeled by multi-physics equations for the piezoelectric 

material. The first coupling allows the mechanical response sensed by the piezoelectric 

element to be reflected in its impedance signature. The aluminum beam was modeled as a 
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homogeneous isotropic material with assumed density 
32780 kg/m  and elastic 

modulus 72.4 GPaE  .  

 

Figure 7.5 Interaction between PWAS and structure 

The coupled field FEM matrix element can be expressed as follows 
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 (7.22) 

where  M ,  C , and  K  are the structural mass, damping, and stiffness matrices, 

respectively;  u  and  V  are the vectors of nodal displacement and electric potential, 

respectively, with dot above variables denoting time derivative;  F  is the force vector; 

 L is the vector of nodal, surface, and body charges;  ZK  is the piezoelectric coupling 

matrix; and  dK  is the dielectric conductivity.  

This CF-FEA method is very convenient for evaluating the impedance signatures 

as it is measured by the impedance analyzer. PWAS dimensions are 27 0.2 mm . For a 

plane strain analysis, only a longitudinal section of the specimen and PWAS were 

analyzed; hence 2-D meshed CF-FEA model was generated which reduced considerably 
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the computational time. The 2D plane element PLANE42 is used for the aluminum beam; 

this element has 4 nodes and 2 DOF at each node. The 2D plane element PLANE13 is 

used to model the PWAS using the coupled field formulation presented in Eq.(7.22). 

Then, the impedance spectrum up to 15 MHz was calculated. 

 CF-FEA VALIDATION OF PM-PWAS MODEL 7.3.1 

 

Figure 7.6 (a) three configurations of PM-PWAS in different thickness; (b) real part of 

the admittance spectra in regards with the corresponding configurations of PM-PWAS 

system 

The coupled field finite element analysis (CF-FEA) is conducted for PM-PWAS 

E/M admittance spectroscopy to visualize the resonance frequency shifting phenomena 

due to the thickness variation in the PM-PWAS-substrate structure in thickness mode. 

This message is obviously delivered in Figure 7.6(b). The admittance peaks that represent 

the thickness mode resonance frequencies shift further down as the thickness of the PM-

PWAS configuration increases. The first model thickness is 0.6mm in total whereas the 
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third model thickness is 1.2mm that is as twice thick as the first one so one should expect 

the same thickness mode resonance frequency of the first model in should be as twice as 

that of the third model. For example, the second admittance peak of the first PM-PWAS 

model in Figure 7.6(b) appears nearly at 11MHz where the second peak of the third PM-

PWAS model is at around 5.5MHz. The numerical resonance frequency results are also 

extracted from FEA and corresponding analytical prediction and shown in  

Table 7.1 where one can see the exact frequency shift in what mode due to the 

thickness change.  

Table 7.1 Analytical and finite element analysis results for the thickness mode resonance 

frequencies of three configuration of PM-PWAS system 

 
 

The information regarding the mode numbers can be more explicitly received in 

the tabular numerical presentation. The first PM-PWAS configurations seem to have four 

thickness modes whereas the second configuration has six and third one has eight 
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thickness modes however they are all not visible in the graphical presentation only three 

admittance peaks show up for each configuration.   

 CF-FEA models for PM-PWAS with different PM height 

One more example shall be presented in this case study regarding the resonance 

frequency shifting. In this example, only the thickness of the proof-mass is varied and 

CF-FEA is carried out for six different configurations and results for the real part of the 

E/M admittance spectra are illustrated in Figure 7.7. The first configuration is free PWAS 

in thickness of 0.2mm, second one is PWAS constrained on bottom surface by an 

aluminum substrate in thickness of 0.2mm.From third to sixth configuration aluminum 

proof-mass is attached on top surface of PWAS in gradually increasing thickness from 

0.2mm to 0.8mm so that the thickness mode admittance peaks can be clearly 

distinguished for each configuration in the frequency range of 100Hz-15MHz.  

 

 

Figure 7.7 Illustration of proof-mass effect on PWAS-EMIS results 
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A particular thickness mode resonance frequency shift is depicted in the 

admittance spectra. The admittance peak shifts further downward to lower frequency as 

the proof-mass thickness increases (Figure 7.7). Also a considerable shift appears 

between the admittance peak of the free PWAS and that of the PWAS bonded on 0.2mm 

thick aluminum substrate. All models have the same length of 7mm. 

Three different smaller PM length increment by 0.05 mm is analyzed by the 

analytical and numerical EMIS results. This study also verifies the analytical EMIS 

model by CF-FEA model depicting the same trends as well as very close agreement in 

Figure 7.8. The first anti-resonance frequency shifts all the way down to 5.175 MHz as 

the PM length increased up to 0.15mm in the analytical impedance plot whereas the 

frequency shifts downward to 6.135 MHz in the numerical model. The agreement 

between the analytical and the numerical models become closer at larger length of PM. 

The first anti-resonance frequency shifts down to 5.85 MHz as the PM length is 0.05mm 

in the analytical impedance plot whereas the frequency shifts downward to 7.7 MHz in 

the same length of PM-PWAS in the CF-FEA model. 
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Figure 7.8 Thickness mode PM-PWAS EMIS simulations by 1-D analytical and 2-D 

FEA-models. 

 

Figure 7.9 Four different configurations designed for CF-FEA to analyze the effect of 

proof-mass length on PWAS resonator 

To experimentally realize the model with 0.1mm thick aluminum substrate would 

be challenging therefore the analytical analyses for the model with 1mm thick substrate 

were carried out with the same step sizes of the proof-masses and the same PWAS height 

of 0.2mm. The downward shifts were also clearly seen at the first frequency as well as 

the overtone anti-frequencies in the Figure 7.10. 
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Table 7.2 E/M impedance frequencies as the proof-masses incline from no mass up to 

0.15mm PM height 

 
 

E/M impedance plots as the proof-masses incline from no mass up to 0.15mm PM 

height as can be seen in Table 7.2. Each overtone frequencies are analyzed one by one 

and each obviously confirmed the monotonic frequency shift. 

Similar EMIS results are obtained from CF-FEA to verify the analytical model in 

this example. The same four configurations are employed in the FEA model (Kamas, 

Giurgiutiu & Lin, 2014). We came up with the impedance peaks harmonically increasing 

as overtones and the overtones appearing at nearly the same anti-resonance frequencies. 

The shifting downward in both analytical and FEA results is depicted as the PM height 

increases for each overtone peak in Figure 7.10.  
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Figure 7.10 Resonance frequency changes as proof-mass height increases calculated by 

1-D analytical and 2-D FEA models  

 Plane strain assumption 

It is noticed that the aspect ratio H:7 where H is the height and at least 6 times 

smaller than the width in the FEA model i.e. the aspect ratio is at least 1:6. Therefore, 

CF-FEA processor should perform the multi-physics PM-PWAS analysis under the plane 

strain analysis. In the plane strain analysis, the constitutive relation between stress and 

strain includes the square of the Poisson ratio,  , as seen in Eq.(7.23).  
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 (7.23) 

Thus, we added the plane strain constitutive relation in x axis into our 1-D 

analytical EMIS model as a correction factor, i.e. we multiplied the elastic modulus by 

21/1  . We obtained the analytical EMIS results for PM-PWAS problem in better 

agreement with the CF-FEA EMIS results as can be seen in tabulated resonance 

frequencies at first four modes of PM-PWAS EMIS in Table 7.3, and in graphical 

illustration in Figure 7.11. We also plotted the tabulated resonance frequency values for 

different height of PM in Figure 7.12. One can observe the nearly 10% downshift of the 

analytical results after the Poisson ratio of 0.33 is involved as presumed since 

 
2 2

1.12
1 1 0.33 0.8911

E E E
E


  

 
 (7.24) 

Table 7.3 E/M impedance frequencies as the proof-masses incline from no mass up to 

0.15mm PM height 
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Figure 7.11 FEA and analytical PM-PWAS impedance spectra at first four thickness 

modes 
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Figure 7.12 Resonance frequency changes as proof-mass height increases calculated by 

1-D analytical and 2-D FEA models 

EMIS results are obtained from CF-FEA for 2-D PWAS perfectly bonded in the 

center of an aluminum plate with 100mm length and 1.0mm thickness to verify the 

corresponding analytical model in this example.  The same four configurations are 

employed in the FEA model as in the analytical models. We came up with the impedance 

peaks harmonically increasing as overtones and the overtones appearing at nearly the 

same anti-resonance frequencies. The downward shift phenomena were also clearly seen 

at the first frequency as well as the overtone anti-frequencies in the E/M impedance plots 

(Fig. 7) as the proof-masses incline from no mass up to 0.15mm PM height. Each 

overtone frequencies are analyzed one by one and each obviously confirmed frequency 

shift as shown for the first four thickness impedance modes in Figure 7.12. The stiffer the 



 

208 

material is the further down shift in resonance frequency occurs. Thus, the analytical first 

E/M impedance peak obviously shifts down as much. 

7.4 EXPERIMENTAL EMIS STUDY FOR PM-PWAS 

This section presents the experimental study that has been conducted regarding 

electro-mechanical impedance spectroscopy (EMIS) of the proof-mass piezoelectric 

wafer active sensor (PM-PWAS). Various geometries and materials were used as proof-

masses which were attached onto PWAS to validate the corresponding analytical multi-

layer structure harmonic analysis. For these EMIS measurements, five different sets of 

experiment have been designed. The results of these experiments shall be presented and 

discussed in the following sections. Eventually those experimental results that agree with 

the analytical PM-PWAS impedance and admittance results will be investigated by 

comparison in the corresponding geometric sizes and material properties. The 

experimental work will be presented in the following layout. 

1. EMIS results from washer PM-PWAS on AL plate 

2. Steel PM-PWAS on Steel substrate 

3. Steel PM-PWAS on AL plate 

4. Experimental and analytical EMIS results for aluminum PM-PWAS on AL 

plate 

5. Aluminum PM-PWAS on AL substrate 
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 EXPERIMENTAL SETUP 7.4.1 

The E/M impedance based SHM method is direct and convenient to implement, 

the only required equipment being an electrical impedance analyzer, such as HP 4194A 

impedance analyzer. A HP 4194A impedance analyzer was used for the experimental 

analysis. The impedance analyzer reads the E/M impedance of PWAS itself as well as the 

in-situ E/M impedance of PWAS attached to a specimen. It is applied by scanning a 

predetermined frequency range in high frequency band (up to 15MHz) and recording the 

complex impedance spectrum. A LabView data acquisition program was used to control 

the impedance analyzer and sweep the frequency range in steps that was predefined and 

to attain the data in a format that assists to data analysis. During the visualization of the 

frequency sweep, the real part of the E/M impedance,   Re Z  , follows up and down 

variation as the structural impedance goes through the peaks and valleys of the structural 

resonances and anti-resonances. 

 EXPERIMENTAL AND CF-FEA VALIDATION OF CONSTRAINED PWAS MODEL 7.4.2 

The two bar resonator model solution can be used to be a basis of the solution for 

the PWAS bonded on plate-like structure. The global matrix -that consists of the 

piezoelectric material properties can be oriented into thickness mode and corresponding 

eigenvalue problem can be solved for the mode shape at thickness mode resonance 

frequencies. Then the thickness mode shapes can be substituted into frequency response 

function and eventually the dynamic structural stiffness and the stiffness ratio, 

    /str PWASr k k  , can be found where 33 /D

PWASk Ac t  is the PWAS stiffness in 
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thickness mode that contains; A  is the PWAS surface area, 
33

Dc  is the stiffness if the 

piezoelectric material in thickness direction under the constant electric displacement 

assumption, and t  is the PWAS thickness. The stiffness ratio can then be plugged into the 

thickness mode impedance equation for one side constrained PWAS. 

In the one side constrained model, the following assumptions were made. First, 

the geometry and the cross-section area of the two layers were the same although they 

have different materials and different thicknesses. Second, the isotropic bar was assumed 

to be perfectly bonded to the PWAS on the interfaces. A bonding layer was not 

considered in this two layer model.  

 COMPARISON OF EXPERIMENTAL AND ANALYTICAL EMIS RESULTS 7.4.3 

The results obtained from the analytical prediction in terms of the frequency 

response function (FRF) and the E/M impedance is presented in Figure 7.13. The 

theoretical EMIS prediction is compared by the results from the corresponding 

experimental setup shown in Figure 7.14a for the PWAS bonded on a 1mm thick 

aluminum substrate.  
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Figure 7.13 (a) Frequency response function; (b) experimental and analytical real part of 

the E/M impedance results for PWAS installed on 1mm thick aluminum square plate-like 

aluminum substrate. 

On the comparison by superimposing the plots of the real parts of E/M impedance 

from both analytical calculation and experimental readings, one can see that the 

agreement is somewhat acceptable except for some discrepancy on the third and fourth 

impedance spectra. The main impedance spectra that rise from the PWAS domain that 

appears right below 12 MHz are in very good agreement in terms of the frequency. The 

first thickness mode impedance spectrum measurement is difficult to distinguish from the 

in-plane mode impedance spectra therefore it is hardly possible to compare the first 

thickness mode impedance spectrum prediction with the experimental reading. However, 

the second and fifth E/M impedance spectra predictions are in also in good agreement 

with the experimental EMIS measurements.  

To have less discrepancy and closer agreement, it turned out that more physical 

conditions that the experimental setup possesses need to be acquired in the theoretical 
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prediction. Hence, the adhesive bonding layer being neglected was decided to be added 

into the analytical model to have more precise approach to the EMIS measurements.  

A few square PWAS were installed on aluminum rectangular 5x7x1 mm
3
 

substrate and impedance and admittance measurements for the constrained PWAS 

specimens were conducted and the results were plotted. The admittance plot of one 

specimen can be seen in Figure 7.14. 

 

Figure 7.14 (a) Illustration of a schema and picture of constrained PWAS and (b) 

experimental admittance result of one of the constrained PWAS specimens 

The focal interest is in the thickness mode so the results were focused in the 

relatively high frequency range; between 4-14.5 MHz in this case to see the thickness 

resonance peaks that come from the substrate material at around 4.2 MHz, 7.2 MHz, and 

10.2 MHz beside the resonance peak that comes from the PWAS itself at around 11.8 

MHz. The experimental measurement from one of the constrained PWAS specimen was 
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also compared with the corresponding analytical thickness model in terms of impedance 

in Figure 7.15.  

 

Figure 7.15 Comparison between analytical and experimental a-) resonance frequency b-) 

impedance results of a constrained PWAS on an aluminum substrate in thickness of 1mm 

and in length of 7mm and in width of 5mm 

The number of the thickness mode resonance peaks was predicted correctly by the 

analytical thickness mode impedance model for the constrained PWAS. The resonance 

frequency values were also predicted in good agreement. Only the fifth thickness mode 

has nearly 0.5 MHz discrepancy in frequency. 

 

Figure 7.16 Schematic illustration of bonded PWAS on an aluminum substrate 
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Table 7.4 E/M impedance frequencies in the first four thickness modes as the proof-

masses incline from no mass up to 0.15mm PM height 

 

 

Figure 7.17 EMIS measurement result for a circular PWAS in diameter of 7mm and in 

thickness of 0.2mm is bonded on a circular aluminum plate in diameter of 100mm and in 

thickness of 0.8mm 
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Figure 7.18 EMIS results from a) 2-D CF-FEA b) 1-D analytical models for PWAS 

perfectly bonded in the center of an aluminum plate with 100mm length and 0.8mm 

thickness 

Spectra from anaytical, numerical simulation and experiment of the constrained-

PWAS are obtained for out-of-plane EMIS in high frequency range. Constrained PWAS-

EMIS measurement results is seen in Figure 7.17 for 0.2mm thick PWAS on 0.8mm 

aluminum plate. Globally good matching is observed as compared to verify the analytical 

constrained PWAS-EMIS model. Also 2-D CF-FEA model is used to validate the 

corresponding analytical model however some discrepancies between the analytical 

PWAS-EMIS and CF-FEA PWAS-EMIS are visible for the thickness mode peak as can 

be seen in Figure 7.18. Small differences at high frequencies are expected between the 

analytical and the numerical responses due to the simplifying assumptions made in the 

one-dimensional analytical analysis. The first impedance peak is predicted by using the 

thickness mode analytical and numerical models and found to be at 2.31 MHz that has 

good agreement with the predictions. 2-D CF-FEA model results seem to match better in 

comparison with the 1-D analytical two-bar resonator model results. It is also noticable 

that in higher thickness modes, the impedance results agree reasonably well in comparing 
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the analytical thickness mode EMIS model of PWAS with the corresponding CF-FEA 

and experimental results. 

 

Figure 7.19 Second experimental setup  

for constrained PWAS-EMIS measure- 

ment: large aluminum plate in thickness  

of 2.1mm and PWAS in 7x7mm
2
  

 

Figure 7.20 Constrained PWAS-EMIS measurement to indicate thickness mode 

impedance spectra. 

PWAS 
27 7mm
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Figure 7.21 1-D analytical constrained PWAS-EMIS prediction to indicate thickness 

mode impedance spectra. 

 

Figure 7.22 Schematic illustration of bonded PWAS on an aluminum substrate 

 

Figure 7.23 EMIS measurement result for a circular PWAS in diameter  

of 7mm and in thickness of 0.2mm is bonded on a circular aluminum  

plate in diameter of 100mm and in thickness of 1mm 
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Figure 7.24 EMIS results from a) 2-D CF-FEA b) 1-D analytical models for PWAS 

perfectly bonded in the center of an aluminum plate with 100mm length and 0.8mm 

thickness 

 

Figure 7.25 Schematic illustration of bonded two PWAS on two surfaces of aluminum 

substrate  

 

Figure 7.26 EMIS measurement result for a circular PWAS in diameter  

of 7mm and in thickness of 0.2mm is bonded on a circular aluminum  

plate in diameter of 100mm and in thickness of 1mm 
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Figure 7.27 EMIS results from a) 2-D CF-FEA b) 1-D analytical models for PWAS 

perfectly bonded in the center of an aluminum plate with 100mm length and 0.8mm 

thickness 

 Spectra from anaytical, numerical simulation and experiment of the constrained-

PWAS are obtained for out-of-plane EMIS in high frequency range. Constrained PWAS-

EMIS measurement results are seen in Figure 7.23 and Figure 7.26 for 0.2mm thick 

PWAS on 1mm aluminum plate. Globally good matching is observed as compared to 

verify the analytical constrained PWAS-EMIS model. Also 2-D CF-FEA model is used to 

validate the corresponding analytical model however some discrepancies between the 

analytical PWAS-EMIS and CF-FEA PWAS-EMIS are visible for the thickness mode 

peak as can be seen in Figure 7.24 and Figure 7.27. Small differences at high frequencies 

are expected between the analytical and the numerical responses due to the simplifying 

assumptions made in the one-dimensional analytical analysis. The first impedance peak is 

predicted by using the thickness mode analytical and numerical models and found to be at 

1.37 MHz that has good agreement with the predictions. 2-D CF-FEA model results seem 

to match better in comparison with the 1-D analytical two-bar resonator model results. It 

is also noticable that in higher thickness modes, the impedance results agree reasonably 
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well in comparing the analytical thickness mode EMIS model of PWAS with the 

corresponding CF-FEA and experimental results. 

 SPECIAL CASE STUDIES 7.4.4 

 EMIS results from washer PM-PWAS on aluminum plate 

For this set of experiment, three specimens were measured. The specimens were 

designed by using circular PWAS resonators in diameter of 25mm and in thickness of 

0.2mm, aluminum plates in diameter of 100mm and in thickness of 1mm. Also three 

washers were used for each specimen.  

First geometric sizes and capacitance of the free PWAS resonators were 

measured. Then EMIS readings of the free PWAS were conducted. 

 

Figure 7.28 Illustration of free circular PWAS in diameter of 25mm and in thickness of 

0.2mm and admittance and impedance plots 

The thickness mode resonance frequency was the focal interest therefore the 

impedance readings were converted into admittance by the relation, 1/Y Z  where Y  is 

admittance which represents the resonance frequency spectra and Z  is impedance which 

represents the anti-resonance frequency. To focus on the thickness resonance peak in the 
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admittance spectrum, we adjusted the range of frequency between 6MHz-13 MHz so that 

the resonance peak appears at around 12 MHz. The anti-resonance frequency in thickness 

mode of the free PWAS also shows up at around 12 MHz in the impedance spectrum. In-

plane mode peaks appear in large number in low frequency range since the lateral size of 

PWAS (diameter) is much larger than the transversal (thickness) size. Since the 

resonance of a system occurs harmonically as a harmonic function of the size of the 

system, the resonance frequency and its overtones repeat periodically depending on the 

largeness of the size. The resonance modes are classified in names of the sizes, i.e. 

longitudinal mode, width mode, thickness mode. The smaller the size of the structure is 

the larger frequency the resonance peak and its overtones in that mode show up at. 

 

Figure 7.29 Illustration of the schema and picture of  

the bonded PWAS on an aluminum plate 

In the second step of the experiment, the PWAS resonators were installed in the 

center of the circular aluminum plate as seen in Figure 7.29 by adhesive bond. The EMIS 



 

222 

measurement was taken and also converted to the admittance result and both were plotted 

as seen in Figure 7.30.  

 

Figure 7.30 Illustration of admittance and impedance results of the bonded PWAS in 

25mm diameter on Al plate in 100 mm diameter 

In admittance plot, the additional resonance peaks which are resulted from the 

substrate structure can be noticed at around 6.5MHz, 9.5MHz, and 12.5 MHz. The main 

thickness mode resonance peak that is resulted from PWAS is still seen little below 12 

MHz. The longitudinal mode anti-resonance peaks in the impedance plot of the bonded 

PWAS look more intense in comparison with the free PWAS longitudinal impedance 

results because of the additional peaks come from the substrate plate. 

 

Figure 7.31 Illustration of schema and picture of the washer proof-mass PWAS  
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In the third step of the experiment set, the washers were installed on the PWAS-

aluminum plate system one by one. The first washer was installed on bonded PWAS, the 

second washer was bonded onto the 1
st
 washer, and eventually the 3

rd
 washer was bonded 

onto the 2
nd

 washer Figure 7.31. The sizes of the three washers installed on the first 

specimen are presented in Table 7.5.  

Table 7.5 Geometrical sizes of the washers bonded on the 

first specimen 

PM-PWAS Thickness mm Outer 

diameter mm 

Inner 

diameter mm 

Washer 1 1.85 22.36 9.51 

Washer 2 2 22.27 9.63 

Washer 3 2.52 22.32 9.54 

 

The EMIS of the specimen with 1 washer, 2 washers, and 3 washers were 

measured by the impedance analyzer instrument. For the impedance readings, the probe 

was touched on the PWAS surface through the hole of the washers installed on the 

PWAS. The impedance and admittance results were plotted after installation of each 

washer. The impedance and admittance plots shown in Figure 7.32 are for PM-PWAS 

with three washers.  
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Figure 7.32 Admittance and impedance results for the PM-PWAS with three washers  

As can be noticed, the results do not have much difference than the PWAS 

bonded on aluminum plate without any washers (Figure 7.30). The addition of the proof-

masses might not have reflected due to the two reasons: improper acquisition of the data 

or improper installation of the washers. The first reason may be the probe should have 

been touched on the top washer, not on the PWAS, which do not reflect the change in the 

total structure. EMIS measurement can reflect only the local dynamic structural changes. 

The second reason may be the adhesive bonding thickness should have been thinner. The 

adhesive layer thickness might have been higher than necessary because of the surface 

roughness of the steel washer. The surface of the washer surface should have been finer 

for the adhesive to be thinner for the standing waves to go through the adhesive layer and 

sense the near field structural change.  

The admittance results are shown for the three specimens Figure 7.33. Each 

corresponding plot has at least three color coded curves with respect to the 1 washer, 2 

washers, and 3 washers installed. PM-PWAS1 curve shows PWAS with 1 washer, PM-



 

225 

PWAS2 shows PWAS with 2 washers, PM-PWAS3 shows PWAS with 3 washers, 

additionally Bonded PWAS curve shows thickness mode admittance peak at around 12 

MHz for the PWAS bonded aluminum that does not have any proof-mass (washer) 

installed.  

 

Figure 7.33 Experimental admittance peak illustration PM PWAS with no washer, one, 

two, and three washers installed 

 Steel PM-PWAS installed on steel substrate 

Twenty free circular PWAS in thickness of 2.00 0.03mm  in diameter of 

7.00mm  were chosen for this set of experiment. Static capacitance of each PWAS was 

also measured and the capacitances vary between 2.81-3.06 pF.  
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Figure 7.34 Illustration of schema and pictures of a-) free PWAS b-) constrained PWAS 

on steel substrate c-) steel proof-mass PWAS constrained on steel disc 

In this set of experiment, instead of bonding more than one proof-mass on a 

PWAS to obtain PM-PWAS with different height, we fabricated steel discs in different 

height with a certain step size to use them as proof-masses so that we could have seen 

effects of the change in the size of the proof-mass in resonance frequencies. Steel discs 

were manufactured in diameter of 7mm and in thicknesses between 1mm and 4mm with a 

step size of 0.5mm to use as proof-masses on PWAS. Also steel discs in diameter of 7mm 

in thickness of 2mm were manufactured to utilize as substrate structure. The free circular 

PWAS EMIS was measured as well as PM-PWAS EMIS with proof-masses in different 

height. The admittance results for free PWAS and the comparison of admittance of PM-

PWAS in different height can be seen in  
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Figure 7.35 Experimental admittance results for a-) free PWAS b-) constrained PWAS on 

steel discs with different height 

Figure 7.35 as well as impedance results in Figure 7.36. The results are all not 

consistent as seen in impedance and admittance plots. The only graphical result that looks 

reasonable from 2.5mm PM-PWAS was focused. The purple cut-line shows the thickness 

mode overtones from the proof-mass in the impedance plot as well as the right shift of the 

main thickness mode impedance peak that is from the PWAS with respect to the free 

PWAS thickness mode impedance peak. 

 

Figure 7.36 Experimental impedance results for constrained PWAS on steel discs with 

different height 
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The PM-PWAS with proof-mass in thickness of 3mm, 3.5mm, 4mm were 

installed on steel discs in thickness of 2mm and in diameter of 7mm. The capacitance and 

EMIS of each PM-PWAS-steel substrate system were measured and EMIS results were 

compared in one plot as seen in Figure 7.37.  

 

Figure 7.37 Experimental impedance results for  

constrained PM-PWAS 

On the PM-PWAS impedance results, one can see that the impedance curves do 

not seem to follow a consistent trend. The impedance curves for 3mm PM-PWAS and 

4mm PM-PWAS only capture the thickness mode impedance peak at around 13MHz and 

show the shift of the main peak to the right as the proof-mass height increases from 3mm 

to 4mm.  

 Steel PM-PWAS on aluminum plate 

In the experiment with the steel substrate, the results were not convenient due to 

the steel surface roughness, therefore as a substrate structure using aluminum plate that 

has finer surface finish seemed to change the results to better. The PWAS size and proof-
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mass size and material were kept the same and the previous measurements were repeated 

with only substrates changed in the specimens. 

 

Figure 7.38 Experimental admittance and impedance results for a-) free  

PWAS and b-) constrained PWAS on an aluminum plate in thickness of  

1mm and diameter of 100mm 

The corresponding results for free PWAS was basically the same; the EMIS of 

PWAS bonded on aluminum plate was measured. The results for free and bonded PWAS 

in terms of admittance and impedance are shown in Figure 7.38.  
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Figure 7.39 Illustration of schema and pictures of PM-PWAS resonators with different 

height which are constrained on aluminum plate 

We could consistently obtain the EMIS readings from PWAS bonded on Al plate 

for 6 specimens. However, after we installed the steel proof-masses in different height to 

each PWAS and measured capacitance and impedance, we could only obtain consistent 

and meaningful results from two of the specimens which have proof masses in height of 

1mm and 3mm. 
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Figure 7.40 Experimental admittance and impedance results for PM-PWAS with different 

PM height.  

 Aluminum PM-PWAS on aluminum plate 

To have closer geometrically to the analytical multilayer thickness mode 

impedance model, in this experiment, square PWAS was chosen as well as rectangular 

proof-mass. The static electric and dynamic electro-mechanical properties of the free 

PWAS such as capacitance and E/M impedance were measured. The geometry, sizes and 

the admittance and impedance results of the free square PWAS.  

The aluminum plate-like substrate was only circular and different than the size 

and the geometry of the substrate geometry in the analytical model however, the substrate 

geometry difference did not cause much change as compared with the admittance and 

impedance results of the latter experiment with aluminum 5x7 rectangular substrate. The 

measurements for impedance and admittance of the square PWAS bonded on aluminum 

plate were taken for four specimens. The admittance and impedance of one of the 

specimen are shown in Figure 7.41. The similar phenomenon of additional overtone 
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admittance and impedance peaks from the host structure also seems in the bonded PWAS 

results beside the main peak that is from PWAS itself.  

 

Figure 7.41 Illustration of the schema and picture of a constrained square PWAS and 

admittance/impedance results for the constrained PWAS 

The constrained PWAS impedance results are used to validate the analytical 

model for the constrained PWAS on an aluminum host structure as can be seen in Figure 

7.42. The experimental overtone impedance peaks can be almost captured by the 

analytical impedance results at close frequencies. The only issue in the results from the 

analytical model seems to be the main impedance peak that comes from the PWAS itself. 

The impedance peak that shows up at around 12MHz is always the highest amplitude 

peak eventhough this behavior of the 12MHz peak cannot be captured by the analytical 

model impedance result.  

 

1.0mm 
L

P
 

0.2mm 
 

Ø 100mm 

4 6 8 10 12 14

0

10

20
x 10

-3Experimental Bonded Square-PWAS Admittance

Frequency (MHz)

R
e
(Y

)

4 6 8 10 12 14

0

10

20

Experimental Bonded Square-PWAS Impedance

Frequency (MHz)

R
e
(Z

)



 

233 

 

Figure 7.42 Comparison between the analytical model and the  

experimental results for impedance of constrained PWAS  

In this part of the section, a comparison of experimental admittance and 

impedance results for PM-PWAS resonators -which have proof masses in height of 1mm 

and 2mm respectively- is presented. The experimental resonance frequencies of PM-

PWAS systems are extracted from the admittance results and tabulated in comparison 

with the corresponding analytical resonance frequencies.  

As can be noticed in Figure 7.43 as well as in Table 7.6 and in Table 7.7, increase 

in the number of the resonance (admittance) and anti-resonance (impedance) peaks and 

shifts of the resonance frequencies occur toward lower frequencies as the PM-PWAS 

height increases.  
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Figure 7.43 Schematic illustration of PM-PWAS constrained on an aluminum plate and 

experimental admittance and impedance results for PM-PWAS different steel proof-mass 

height 

In the same range of the frequency, PM-PWAS whose proof mass height is 1mm 

has 10 resonance frequencies in thickness mode whereas that with 2mm proof-mass 

height has 15 resonance frequencies. The experimental thickness mode resonance 

frequencies in relatively low frequency range could not be extracted due to the conflict 

with the in-plane resonance frequencies. Also at some thickness mode resonance 

frequencies, the experimental admittance peaks do not show up due to the mode shape.  
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Table 7.6 Anayltical and experimental resonance frequencies of steel PM-PWAS 

constrained on an aluminum plate with the proof-mass in height of 1mm 

 
 

Table 7.7 Anayltical and experimental resonance frequencies of steel PM-PWAS 

constrained on an aluminum plate with the proof-mass in height of 2mm 

 
The analytical electro-mechanical impedance model is validated by comparing 

with the experimental EMIS results. The comparison in terms of the real part of 

impedance of the PM-PWAS system with 1mm PM height can be seen in Figure 7.44. 

Eventhough the discrepancy between the analytical impedance peaks and experimental 

impedance peaks occurs and increases at high frequency range, the analytical results can 

reflect the structural local dynamic behavior well.  
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Figure 7.44 Illustration of the experimental setup and the impedance results for the 

geometric parameters; 0.95 , 0.2 , 0.95sub PWAS PMH mm H mm H mm    and for the 

material properties 360 ,  1800 /AL ALE GPa kg m   

The comparisons between analytical and experimental results were held with 

other PM-PWAS resonators with different PM height such as 2mm, 2.5mm, 3mm as they 

can be seen respectively in tabular and graphical forms in Figure 7.45.  
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Figure 7.45 a-) Comparison between experimental and analytical resonance frequencies 

and b-) impedance results 
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 Aluminum PM-PWAS on AL substrate 

The similar experimental protocol was followed as the previous sets of 

experiments with different geometry and size of PWAS, proof-masses and substrates. 

First the EMIS measurements were taken from the free PWAS; then the PWAS 

resonators were attached on 
37 5 1 mm   aluminum substrate and the EMIS 

measurements were taken for the bonded PWAS. Eventually, 3

PM7 5 H  mm  aluminum 

proof-masses were attached on each specimen of bonded PWAS with varying thickness, 

PMH , from 1.0 mm to 3.00 mm by 0.5 mm step size. Impedance and admittance results 

were analyzed by graphical illustration and comparison with the corresponding analytical 

results from the two-bar and three-bar resonator models as seen in Figure 7.46.  

 

Figure 7.46 Illustration of a-) free PWAS, b-) one-side constrained PWAS  c-)two-side 

constrained PWAS by proof-mass and substrate materials  
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Eventually, 3

PM7 5 H  mm  aluminum proof-masses were attached on each 

specimen of bonded PWAS with varying thickness, PMH , from 1.0 mm to 3.00 mm by 

0.5 mm step size. Impedance and admittance results of one specimen which has 1.5mm 

thick proof-mass was analyzed by tabular and graphical illustration and comparison with 

the corresponding analytical results from the three-bar resonator model as seen in Table 

7.8 and Figure 7.47 respectively.  

Table 7.8 Comparison between analytical and experimental resonance frequencies 

for aluminum square PM-PWAS with proof-mass height of 1.5mm 

 
The first two thickness mode impedance peaks could not be distinguished among 

the in-plane modes.  
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Figure 7.47 Comparison between analytical and experimental admittance and impedance 

results for aluminum square PM-PWAS with proof-mass height of 1.5mm 

Additionally, the analytical models with proof-mass height of 2mm, 2.5mm, and 

3mm were also validated by comparison with the corresponding experimental anti-

resonance results graphically and the resonance frequency results numerically in tables, 

which can be seen in Figure 7.48. 
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Figure 7.48 Comparison between analytical and experimental a-) resonance frequencies 

b-) impedance results for aluminum square PM-PWAS with proof-mass height of 2mm, 

2.5mm, and 3mm 
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 Comparison of chirp signal test to EMIS test for PWAS on aluminum plate 

The basic theory of the chirp signal is explained to have understanding of the 

experimental results. In a linear chirp, the instantaneous frequency  f t varies linearly 

with time: 

   0f t f kt   (1.25) 

where 0f  is the starting frequency (at time 0t  ), and k  is the rate of frequency increase 

or chirp rate. 

 1 0

1

f f
k

t


  (1.26) 

where 1f  is the final frequency and 0f  is the starting frequency. The corresponding time-

domain function for a sinusoidal linear chirp is the sine of the phase in radians: 

   2

0 0sin 2
2

k
x t f t t 

  
    

  
 (1.27) 

After the review of the chirp (sweep) signal theory, we could use the pitch-catch test 

configuration with two PWAS transducer bonded on 2.1 mm thick large aluminum plate. 

The modeling clays are applied on the edges of the plate to avoid the reflection signals 

from the edges. Two PWAS are employed as actuator and receiver; the actuator was 

excited by sweep signal with the start frequency, 0 500f kHz  and the stop frequency, 

1 1f MHz  and the receiver PWAS was monitored by the oscilloscope to observe the 

received signal. Thus, the sweep (chirp) signal is transmitted through 0.2mm thick 7x7 

mm
2 
square PWAS and received by PWAS in the same sizes as seen in Figure 7.49. 

http://en.wikipedia.org/wiki/Instantaneous_phase#Instantaneous_frequency
http://en.wikipedia.org/wiki/Chirp_rate
http://en.wikipedia.org/wiki/Sinusoidal
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Figure 7.49  Sweep (chirp) signal is transmitted through 0.2mm thick 7x7 mm
2 
square 

PWAS and received by PWAS in the same sizes on an 2.1mm thick aluminum plate. The 

start frequency, 0 500f kHz  and the stop frequency, 1 1f MHz .  

 

Figure 7.50 Illustration of the signal received by 0.2mm thick 7x7 mm
2 
square receiver 

PWAS and the signal transmitted as a chirp signal through 0.2mm thick 7x7 mm
2 
square 

PWAS in the same sizes on an 2.1mm thick aluminum plate. The start frequency

0 500f kHz  and the stop frequency, 1 1f MHz .  
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Figure 7.51 Illustration of the signal received by 0.2mm thick  

7x7 mm
2
 square receiver PWAS and the signal transmitted as a  

chirp signal through the same size PWAS in 10mm distance on  

2.1mm thick aluminum plate. The start frequency is 1MHz and  

the stop frequency is 3MHz 

The received signal in time domain is illustrated in Figure 7.50. As seen in the 

signal, a spike exists right in the middle that depicts the resonance at the location of the 

structure where the measurement was taken; in the same way that an EMIS measurement 

would show. Since the start frequency 0f  is 500kHz  and the stop frequency 1f  is 1MHz  

the spike at the received chirp signal appears at around 750kHz . We can see the 

impedance peak in frequency spectra (Figure 7.52) at the similar frequency 768kHz . 

Another received signal in time domain is illustrated in Figure 7.51. As seen in the signal, 

the first spike at 1.1 MHz at the location of the structure where the measurement was 

taken; in the same way that an EMIS measurement would show as a second impedance 

peak. Since the start frequency 0f  is 1MHz and the stop frequency 1f  is 3MHz, the first 

spike at the received chirp signal appears at around 1.1MHz. We can see the impedance 

peak in frequency spectra (Figure 7.52) at the similar frequency of 1.12MHz.  
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To conclude, the chirp (sweep) signal method employs a wave propagation 

technique and pitch-catch experimental setup however the wave is not excited at a 

constant center frequency; instead, it is excited as sweeping the frequency at certain range 

so that, this method can capture the local resonance frequency of the structure alike EMIS 

method.  

 

Figure 7.52 Measurement results of the real part of in-plane mode  

impedance for a 0.2mm thick 7x7 mm2 square PWAS on a 2.1 

mm thick aluminum plate 
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 CHAPTER 8

BEHAVIOR OF PWAS IN FLUID MEDIUM 

8.1 STATE OF THE ART FOR HEALTH MONITORING WITH BIOMEDICAL 

SENSOR  

SHM has been adopted so that pathologies associated with changes in mechanical 

behavior have been shown to be detectable i.e. the mechanical changes in a biological 

tissue due to a complication -such as fibrous encapsulation, inflammation, and tissue 

necrosis- can be detected employing SHM techniques to provide continuous in-situ 

detection via biomedical sensors (Bender et al., 2006).  

The objective is to develop a scientific and engineering basis for the analysis of 

PWAS performance on a fluid-loaded structure in SHM. From the applications point of 

view, this study can indicate that PWAS transducers can be used for viscosity 

measurement such that these transducers can be utilized for bio-sensing in an 

environment of varying viscosity and stiffness of a texture of an animal tissue. We aim at 

development of a new methodology to predict the behavior of biomedical-sensor 

embedded in various biological tissues. We developed an analytical model of 

piezoelectric wafer active sensor (PWAS) in contact with a soft medium to establish the 

theoretical basis that enables interrogation of dynamic characteristics of a biological 

component. The overall purpose of the research is to develop theoretical models under 
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simplifying assumptions to perform wide-parameter simulation of response of a bio-

PWAS implanted into a biological medium. 

The novel coupled field analytical models of bio-PWAS embedded into different 

bio-media enable a wide-parameter analysis having precise control over the model, 

enabling fast and accurate predictions under a variety of different scenarios and operating 

conditions. Thus, the complications associated with biomedical implants can be 

quantitatively studied due to the mechanical changes in the tissue that can be detected by 

bio-PWAS. The in-situ health monitoring of biomedical implants via bio-PWAS and 

SHM techniques has potential benefits over other medical imaging systems (e.g. 

magnetic resonance imaging that requires large and expensive MRI scanner) SHM 

techniques are continuous, easy to visualize and interpret the data, able to investigate  

months after sensor implantation, using of ultrasonic sound waves, and having long-life 

cycle 

 

Figure 8.1 X-ray of bio-PWAS implanted in  a rat and the impedance  

reading from bio-PWAS after implementation and 2 days later 
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The theoretical approaches of shear waves of bio-PWAS excited in different 

embedding biological soft media shall be developed analytically via EMIS method. 

GMM method has been used to calculate the dispersion (wave speed in frequency 

domain) curves of traveling ultrasonic surface waves in multi-layered 

structures(Demcenko & Mažeika, 2002). Bio-PWAS will be considered embedded into 

viscous liquid medium (blood). Groups of parametric studies will be carried out with the 

significant parameters such as viscosity and density.  

8.2 1-D ANALYSIS PIEZO-WAFER RESONATOR IN CONTACT WITH LIQUID 

LAYER 

In this section, the response of a piezo-resonator coupled with liquid layer is 

derived first in terms of resonance frequency. Then, the shear horizontal waves and the 

corresponding piezoelectric constitutive equations will be taken into account to derive the 

E/M impedance response of a PWAS resonator in contact with liquid layer.  

 

Figure 8.2 Schema of piezo-wafer resonator deformed in  

shear horizontal 
13d  mode by induced 

5 13T T  shear stress 
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 SHEAR STRESS IN SOLID PART 8.2.1 

 

Figure 8.3 Schema of infinitesimal chunk of solid in which the 

 shear stress is induced 

Shear stress in solid medium is defined as 

 
 1 3

5

3

,u x t
T

x






 (8.1) 

where   is the shear modulus of the solid material and 
1u  is the elastic displacement 

along 
1x  axis. From Newton’s law of motion, the net force acting across the thickness 

3dx  

equals to the acceleration of a particle for a region of area, dA  
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


  (8.2) 

Substituting the net shear force along 1x  axis 5 3/T x dAdy  , we obtain 

 
   

1

2
3 1 3

2

3

, ,xF x t u x t
dA

x t


 


 
 (8.3) 

where  is the density of the material. Now, recall shear stress-elastic displacement 

relation in Eq.(8.1).  

 
   2 2

1 3 1 3

2 2

3

, ,u x t u x t

x t





  
  

  
 (8.4) 

This is the Helmholtz wave equation having as a general steady-state solution 

      3 1 3 2

1 3 1 2,
i x y i x y i tu x t C e C e e
      

 
 (8.5) 
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where /    . This solution describes shear waves traveling in 3x  direction with 

the amplitude 1C  and 3x  direction with the amplitude 2C . The bottom surface  3 1x y  

is free-boundary or traction-free. 

  
 1 1

5 1

3

,
, 0

u y t
T y t

x



 


 (8.6) 

The free boundary conditions implies that 1 2 0C C C  , a real constant. The general 

solution for strain can be obtained by taking spatial derivative of the elastic displacement 

with respect to 3x   

      3 1 3 2

1 3 1 2,
i x y i x y i tu x t i C e i C e e
   

      
 

 (8.7) 

Since  1 1 3, / 0u y t x    and  1 2 3, / 0u y t x    for free PWAS case as one can conclude 

from Eq. (8.6) where free bottom and top surfaces of PWAS are at 3 1x y  and 3 2x y , 

respectively 

      1 1 1 2

1 1 1 2, 0
i y y i y y i tu y t i C e C e e
  

       
 

 (8.8) 

      2 1 2 2

1 2 1 2, 0
i y y i y y i tu y t i C e C e e
  

       
 

 (8.9) 

Rearrange to simplify 

 
1 2 0pi h

C C e


   (8.10) 

 
1 2 0pi h

C e C


   (8.11) 

Eq. (8.10) and Eq. (8.11) shows that 1 2 0C C C   to have non-trivial solution, the free 

PWAS resonator case has this requirement 
ph n  . For the fundamental resonance 

mode, 1n  , the resonance frequency equation resulted from free PWAS as followings 
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      ,    
2

p r r

p p

h f
h h

   
  

  
     (8.12) 

The general solution for the strain simplifies to  

      3 1 3 2

1 3 0,
i x y i x y i tu x t i C e e e
  

      
 

 (8.13) 

and the solution for the particle displacement becomes 

      3 1 3 2

1 3 0,
i x y i x y i tu x t C e e e
      

 
 (8.14) 

 SHEAR STRESS IN LIQUID MEDIUM 8.2.2 

The upper surface is not traction-free however rather is connected with a liquid 

layer. The stress relation for the liquid is  
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



 (8.15) 

where L  is the absolute viscosity and xv  the fluid particle velocity in the 1x  direction. 

Again from Newton’s law of motion, the net force gives rise to acceleration 
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x t
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 
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 (8.16) 

where L  is the fluid density. Combine (8.15) and (8.16) to get the diffusion equation 

which is identical to simplified steady state Navier Stokes’ equations.  
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 (8.17) 

The solution to the Eq. (8.17) is 

      3 2 3 3

3 3 4, L Li x y i x y i t

xv x t C e C e e
      

 
 (8.18) 
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where 
 / 2 1L L L i   

 

 BOUNDARY CONDITIONS: THE RADIATION CONDITION AND THE VELOCITY 8.2.3 

CONTINUITY 

Impose the radiation condition for  3,xv x t  to remain finite as liquid thickness 

goes to infinitive, then to bind the liquid particle velocity we assume 4 0C  . The 

solution further simplifies to 

    3 2

3 3, Li x y i t

xv x t C e e
  

  (8.19) 

Therefore the amplitude of liquid particle velocity must match the amplitude of the 

velocity of PWAS particles. At 3 2x y  interface, the liquid particle velocity amplitude 

becomes 

  2 3 0
ˆˆ

xv y C V   (8.20) 

At 3 2x y  interface, the PWAS particle velocity amplitude becomes 

    1 2 0
ˆ 1pi h
u y i C e





   (8.21) 

So that eventually we obtain from the velocity continuity 

  0 0
ˆ 1pi h

V i C e





   (8.22) 

Then, the solution for the liquid particle velocity becomes 

      3 2

3 0, 1p Li h i x y i t

xv x t i C e e e
  

   
 

 (8.23) 



 

253 

 The shear stress continuity 

The shear stress component on the liquid side of the interface must be equal and 

opposite to the shear stress on the PWAS side, as required by Newton’s law, using Eqs. 

(8.1) and (8.15), we obtain the resonance condition, 

    ( ) ( )

5 2 5 2, ,Pzt LT y t T y t   (8.24) 
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 (8.25) 

Recall the solution for PWAS shear strain  5 1 3 3, /S u x t x    in Eq. (8.13),  
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 (8.26) 
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 (8.27) 

 The particle velocity continuity 

Now, recall the solution for the liquid particle velocity in Eq. (8.23) and take its 

spatial derivative with respect to 3x  to obtain 
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 (8.28) 

at 3 2x y , Eq.(8.28) becomes 
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 (8.29) 

Substitute Eqs. (8.27) and (8.29) into (8.25) to get 

    1 1p pi h i h

L Li e e
 

  
 

      (8.30) 
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Recall wave numbers for PWAS and liquid, respectively 

 /     (8.31) 

  / 2 1L L L i     (8.32) 

and substitute them into Eq. (8.30) 
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 (8.33) 

      / /3/ 2 1 1 / 1 0p pi h i h

L L L i e e
     

    
 

       (8.34) 

Solve Eq. (8.34) for the resonance frequency    

 

8.3 MECHANICAL RESPONSE: 

 

Figure 8.4 Schema of piezo-wafer resonator in contact with a liquid layer and both 

PWAS and liquid layer deformed in shear horizontal 
13d  mode by induced 

5 13T T  shear 

stress 

Piezoelectric constitutive equations 

 
E

ij ijkl kl kij k
T

j jkl kl jk k

S s T d E

D d T E

 

 
 (8.35) 

 

 

 

PWAS  

Liquid layer  

 

 
 

 

 

 

PWAS 
 

 

 V

V
V 



 

255 

Simplify the piezoelectric constitutive equations under constant electric field assumption 

for shear horizontal stress and strain in 35d  mode 

  5 1 3 55 5 35 32 , ES u x t s T d E    (8.36) 

 3 35 5 33 3D d T E   (8.37) 

 SHEAR STRESS IN PWAS 8.3.1 

In general, the relation between the shear stress and the particle displacement is 

defined by 

 31
5

3 1

uu
T

x x

 

  
  

 (8.38) 

However, we assume that the particle displacement in 1x  direction is constant so that the 

gradient of the displacement with respect to 1x  is zero then Eq. (8.38) becomes 

 1
5

3

u
T

x






 (8.39) 

where 551/ Es   is the shear modulus of piezoelectric material and 5 13T T  is the shear 

stress in 3x  direction and normal to 1x  plane. Recall the Helmholtz wave equation having 

derived as in Eq. (8.4) in prior section 

 
   2 2

1 3 1 3

2 2

3

, ,u x t u x t

x t





  
  

  
 (8.40) 

and its general steady-state solution 

      3 1 3 2

1 3 1 2,
i x y i x y i tu x t C e C e e
      

 
 (8.41) 
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where 
55

1
  ;     and  2  rad/secs E

s

c f
c s

 
  

 
     

 BOUNDARY CONDITIONS 8.3.2 

Stress-free boundary condition at lower surface of PWAS as well as the shear 

stress continuity and particle velocity continuity at the interface between PWAS and 

liquid are defined as 

 

 

   

 
 
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5 3 1

( ) ( )

5 3 2 5 3 2

1 3 2
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ˆ ,
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u x y t
v x y

t

 

   

 
 



 (8.42) 

Recall the actuation constitutive equation (8.36) and impose the stress-free boundary 

condition at lower PWAS surface 1y  

  1 1 35 3,u y t d E   (8.43) 

Recall the solution for displacement in Eq. (8.7)  

 
     3 1 3 21 1

1 2
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, i x y i x y i t
u y t

i C e C e e
x

  
  

   
 

 (8.44) 

Substitute Eq. (8.44) into (8.43) to get the amplitude of the PWAS particle displacement 

 35 3
1 2

ˆ
pi h d E

C C e
i






   (8.45) 

Therefore, the solution for PWAS particle displacement in Eq. (8.14) takes this form 

         3 1 3 2 3 135 3
1 3 2

ˆ
, pi x y h i x y i x y i td E

u x t C e e e e
i

   



      
   
 

 (8.46) 
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and the PWAS strain is defined by using the strain-displacement constitutive relation 

 5 1 3 3, /S u x t x    

         3 1 3 2 3 1

5 3 2 35 3
ˆ, pi x y h i x y i x y i tS x t i C e e d E e e

   
         

  
 (8.47) 

where 
3 3

ˆ i tE E e   is the harmonic steady electric field polarized in thickness direction 

Recall the shear stress equation for PWAS side substituting the general solution for 

PWAS particle displacement into the equation. Eq. (8.36) yields the stress as function of 

strain and electric field, i.e. 

  ( )

5 1 35 3

55

1P

E
T u d E

s
   (8.48) 

          3 1 3 2 3 1( )

5 3 2 35 3 35 3

55

1 ˆ ˆ, pi x y h i x y i x yP i t

E
T x t i C e e d E e d E e

s

   
          

  
 (8.49) 

Recall the shear stress equation for liquid layer side substituting Eq. (8.28) which is 

spatial derivative of the liquid particle velocity  

  
 3( )

5 3

3

,
,

xL

L

v x t
T x t

x






 (8.50) 

Recall liquid particle velocity 

    3 2

3 3, Li x y i t

Lv x t C e e
 

  (8.51) 

From non-slip boundary condition, one can assume that the amplitude of the liquid 

particle velocity is equal to the amplitude of the PWAS particle velocity at the interface 

2y  

    2 35 3
3 0 1 2 2

ˆ
ˆ ˆ 1p pi h i hd E

C V u y C i e i e
i

 
 



 
      (8.52) 

Substitute Eq. (8.52) into (8.51) 
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      3 2
2 35 3

3 2

ˆ
, 1p p L

i h i h i x y i t

x

d E
v x t C i e e e e

    


   
   
 

 (8.53) 

Thus Eq. (8.50) takes this form 

      3 2
2( ) 35 3

5 3 2

ˆ
, 1p p L
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 (8.54) 

From the shear stress continuity at interface 2y  

    ( ) ( )

5 2 5 2, ,P LT y t T y t   (8.55) 
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 (8.56) 

Recall Eq. (8.45)  
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 (8.57) 

Recall Eq. (8.52) 
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 (8.58) 

and the liquid particle velocity can be defined by recalling Eq. (8.51) substituting Eq. 

(8.58) into it 
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PWAS particle displacement is 
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 (8.60) 

 

Figure 8.5 Particle velocity of PWAS along its thickness  

in contact with water, the particle velocity at the interface  

is 1315 µm/sec at electric field amplitude of 20 kV/m  

PWAS sizes 15mmx15mmx1mm.  

The particle velocity of PWAS along its thickness in contact with water can be 

seen in Figure 8.5, the particle velocity at the interface is 1315 µm/sec at electric field 

amplitude of 20 kV/m PWAS sizes 15mmx15mmx1mm. The particle velocity of PWAS 

along its thickness in contact with honey can be seen in Figure 8.6, the particle velocity at 

the interface is 1672 µm/sec at electric field amplitude of 20 kV/m PWAS sizes 

15mmx15mmx1mm. 
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Figure 8.6 Particle velocity of PWAS along  

its thickness in contact with honey, PWAS  

sizes 15mmx15mmx1mm 

 

Figure 8.7 Liquid particle velocity change in the vicinity of PWAS-liquid interface at the 

first resonance frequency of 850.4kHz (a) for water with the density of 1000kg/m  and 

the dynamic viscosity of 0.001 Pa.s (b) for honey with the density of 1350kg/m  and the 

dynamic viscosity of 10 Pa.s. PWAS sizes 15mmx15mmx1mm 

Liquid particle velocity change in the vicinity of PWAS-liquid interface at the 

first resonance frequency of 850.4kHz is illustrated in Figure 8.7(a) for water with the 

density of 1000kg/m  and the dynamic viscosity of 0.001 Pa.s and in Figure 8.7 (b) for 

honey with the density of 1350kg/m  and the dynamic viscosity of 10 Pa.s. PWAS sizes 

are 15mmx15mmx1mm. PWAS strain is  
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 (8.61) 
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8.4 ELECTRICAL RESPONSE: 

Consider PWAS in contact with liquid under harmonic electric excitation as 

shown in Figure 8.4. Recall Eq. (8.37) representing electrical displacement 

 3 35 5 33 3D d T E   (8.62) 

Eq. (8.36) yields the stress as function of strain and electric field, i.e. 

  5 5 35 3

55

1
2

E
T S d E

s
   (8.63) 

Hence, the electric displacement can be expressed as 

  35
3 5 35 3 33 3

55

2
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d
D S d E E
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    (8.64) 

   35
3 1 3 35 3 33 3
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,
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d
D u x t d E E
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    (8.65) 

Introduce the E/M coupling coefficient 
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  (8.66) 

and substitute into the electric displacement equation and rearrange 
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 (8.67) 

Upon substitution of Eq. (8.61) into Eq.(8.67), we get 
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 (8.68) 

Integration of Eq. (8.67) over the area of the piezoelectric wafer yields the total charge 
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Assuming harmonic time dependence 3 3
ˆ( , ) ( ) i tQ x t Q x e   

 

/2

2 1 3
3 3 1 2 3 1 2 33 3 35

/2 0 35 3

ˆ ( )ˆ ˆ( ) 1 1
ˆ

l b

T

A
l

u x
Q x D dx dx D dx dx E bl

d E
 



  
      

   
    (8.70) 

 

2

1

3 3 3

1ˆ ˆ( ) ( )

y

eq

y

Q x Q x dx
t

   (8.71) 

 

2

1

2 1 3
3 33 3 35 3

35 3

ˆ ( )1ˆ ˆ( ) 1 1
ˆ

y

T

eq

y

u x
Q x E bl dx

t d E
 

  
    

   
  (8.72) 

   2

1

2 233 3
3 35 35 1 3

35 3

ˆ 1ˆ ˆ( ) 1 ( )
ˆ

T
y

eq p y

p

E bl
Q x h u x

h d E


 

 
   

 
 (8.73) 

 
2 2 1 2 1 1

3 33 3 35 35

35 3

ˆ ˆ( ) ( )ˆ ˆ( ) 1
ˆ

T

eq

p

u y u y
Q x E bl

d E h
  

  
     

    

 (8.74) 

Introduce the induced strain and induced displacement for the thickness mode 
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Upon substitution of Eq. (8.76) into Eq. (8.74), we obtain 
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where ISA denotes ‘induced strain actuation’ and the superscript ( )SH  denotes ‘shear 

horizontal mode’. 
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Recall the capacitance of the material 33
0

T A
C

t


 and

3
ˆ ˆ /E V t  then rearrange Eq. (8.77) 
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 (8.78) 

The electric current is obtained as the time derivative of the electric charge i.e. 

 I Q i Q   (8.79) 

Hence, 
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The admittance,Y , is defined as the fraction of current by voltage, i.e.   
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Recall Eq. (8.60) 
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At 3 1x y , the amplitude of the displacement is  
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At 3 2x y , the amplitude of the displacement is  
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Introduce the notation 
SH pi h   
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 (8.86) 

Upon substitution of Eqs. (8.85)and (8.86) into Eq. (8.81), one can obtain the admittance 

for PWAS in contact with liquid in 35d  shear horizontal mode 
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 (8.87) 

As geometrical properties of the PWAS transducer, 7mm of length, 7mm of 

width, and 0.2mm of thickness are considered and the material properties are given in 

Table 1. The liquid side is water whose density is 1000 kg/m
3
 and dynamic viscosity is 

1.002x10
-3

 Pa.sec at temperature of 20˚C. The admittance of PWAS resonator is shown in 

Figure 8.8 for PWAS in 7mm of length, 7mm of width, and 0.2mm of thickness in 

contact with water in density is 1000 kg/m3 and dynamic viscosity is 1.002x10-3 Pa.sec 

at temperature of 20˚C. The impedance of PWAS resonator is shown in Figure 8.9 for 

PWAS in 7mm of length, 7mm of width, and 0.2mm of thickness in contact with water in 

density is 1000 kg/m
3
 and dynamic viscosity is 1.002x10

-3
 Pa.sec at temperature of 20˚C 
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Figure 8.8 Admittance of PWAS resonator in 7mm of length, 7mm of width, 

 and 0.2mm of thickness in contact with water in density is 1000 kg/m3 and  

dynamic viscosity is 1.002x10-3 Pa.sec at temperature of 20˚C 

 

Figure 8.9 Impedance of PWAS resonator in 7mm of length, 7mm of width,  

and 0.2mm of thickness in contact with water in density is 1000 kg/m
3
 and  

dynamic viscosity is 1.002x10
-3

 Pa.sec at temperature of 20˚C 

Frequency, MHz 

Frequency, MHz 

Frequency, MHz 

Frequency, MHz 
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Figure 8.10 shows the admittance of PWAS resonator in 7mm of length, 7mm of 

width, and 0.2mm of thickness in free condition; in contact with water in density of 1000 

kg/m
3
 and dynamic viscosity of 1.002x10

-3
 Pa.sec; and in contact with honey in density 

of 1000 kg/m
3
 and dynamic viscosity is 10x10

-3
 Pa.sec at temperature of 20˚C. Figure 

8.11 depicts the impedance of PWAS resonator in 7mm of length, 7mm of width, and 

0.2mm of thickness in free condition; in contact with water in density of 1000 kg/m
3
 and 

dynamic viscosity of 1.002x10
-3

 Pa.sec; and in contact with another liquid in density of 

1000 kg/m
3
 and dynamic viscosity is 10x10

-3
 Pa.sec. 

 

Figure 8.10 Admittance of PWAS resonator in 7mm of length, 7mm of width, and 0.2mm 

of thickness in free condition; in contact with water in density of 1000 kg/m
3
 and 

dynamic viscosity of 1.002x10
-3

 Pa.sec; and in contact with honey in density of 1000 

kg/m
3
 and dynamic viscosity is 10x10

-3
 Pa.sec at temperature of 20˚C 

Frequency, MHz 

Frequency, MHz 
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Figure 8.11 Impedance of PWAS resonator in 7mm of length, 7mm of width, and 0.2mm 

of thickness in free condition; in contact with water in density of 1000 kg/m
3
 and 

dynamic viscosity of 1.002x10
-3

 Pa.sec; and in contact with another liquid in density of 

1000 kg/m
3
 and dynamic viscosity is 10x10

-3
 Pa.sec  

The first admittance peak of PWAS resonator is depicted in Figure 8.12 for 

PWAS in 7mm of length, 7mm of width, and 0.2mm of thickness in free condition and in 

contact with liquids in different density and same dynamic viscosity is 1.0 Pa.sec. The 

first impedance peak of PWAS resonator is shown in Figure 8.13 for PWAS in 7mm of 

length, 7mm of width, and 0.2mm of thickness in free condition and in contact with 

liquids in different density and same dynamic viscosity is 1.0 Pa.sec. 

Frequency, MHz 

Frequency, MHz 
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Figure 8.12 First admittance peak of PWAS resonator in 7mm of length, 7mm of width, 

and 0.2mm of thickness in free condition and in contact with liquids in different density 

and same dynamic viscosity is 1.0 Pa.sec 

 

Figure 8.13 First impedance peak of PWAS resonator in 7mm of length, 7mm of width, 

and 0.2mm of thickness in free condition and in contact with liquids in different density 

and same dynamic viscosity is 1.0 Pa.sec 

Frequency, MHz 

Frequency, MHz 

Frequency, MHz 

Frequency, MHz 
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In order to show the effect of the different viscosity, the first admittance peaks of 

PWAS resonator are plotted in Figure 8.14 for PWAS in 7mm of length, 7mm of width, 

and 0.2mm of thickness in free condition; in contact with water in density of 1000 kg/m
3
 

and dynamic viscosity of 1.002x10
-3

 Pa.sec; and in contact with another liquid in density 

of 1000 kg/m
3
 and dynamic viscosity is 10x10

-3
 Pa.sec. Also, the first impedance peaks 

of PWAS resonator is shown in Figure 8.15 for PWAS in 7mm of length, 7mm of width, 

and 0.2mm of thickness in free condition; in contact with water in density of 1000 kg/m
3
 

and dynamic viscosity of 1.002x10
-3

 Pa.sec; and in contact with another liquid in density 

of 1000 kg/m
3
 and dynamic viscosity is 10x10

-3
 Pa.sec. 

 

Figure 8.14 First admittance of the admittance spectra of PWAS resonator in 7mm of 

length, 7mm of width, and 0.2mm of thickness in free condition; in contact with water in 

density of 1000 kg/m
3
 and dynamic viscosity of 1.002x10

-3
 Pa.sec; and in contact with 

another liquid in density of 1000 kg/m
3
 and dynamic viscosity is 10x10

-3
 Pa.sec  

Frequency, MHz 

Frequency, MHz 
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Figure 8.15 First impedance peak of the impedance spectra of PWAS resonator in 7mm 

of length, 7mm of width, and 0.2mm of thickness in free condition; in contact with water 

in density of 1000 kg/m
3
 and dynamic viscosity of 1.002x10

-3
 Pa.sec; and in contact with 

another liquid in density of 1000 kg/m
3
 and dynamic viscosity is 10x10

-3
 Pa.sec  

As geometrical properties of the PWAS transducer, 15mm of length, 15mm of 

width, and 1mm of thickness are considered. In order to show the effect of the different 

density of the liquid media, the real part of admittance spectra of PWAS resonator is 

shown in Figure 8.16 for PWAS in 15mm of length, 15mm of width, and 1mm of 

thickness in free condition and in contact with liquids in different density and same 

dynamic viscosity is 1.0 Pa.sec. Also, the real part of impedance spectra of PWAS 

resonator is also indicated in Figure 8.17 for PWAS in 15mm of length, 15mm of width, 

Frequency, MHz 

Frequency, MHz 
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and 1mm of thickness in free condition and in contact with liquids in different density 

and same dynamic viscosity is 1.0 Pa.sec. 

 

Figure 8.16 Real part of admittance spectra of PWAS resonator in 15mm of length, 

15mm of width, and 1mm of thickness in free condition and in contact with liquids in 

different density and same dynamic viscosity is 1.0 Pa.sec 

 

Figure 8.17 Real part of impedance spectra of PWAS resonator in 15mm of length, 

15mm of width, and 1mm of thickness in free condition and in contact with liquids in 

different density and same dynamic viscosity is 1.0 Pa.sec 
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Figure 8.18 First admittance peak of admittance spectra for PWAS resonator in 15mm of 

length, 15mm of width, and 1mm of thickness in free condition and in contact with liquid 

with different dynamic viscosities and both densities are assumed to be 1000 kg/m
3
  

 

Figure 8.19 First impedance peak of impedance spectra for PWAS resonator in 15mm of 

length, 15mm of width, and 1mm of thickness in free condition and in contact with liquid 

with different dynamic viscosities and both densities are assumed to be 1000 kg/m
3 
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In order to show the effect of the different viscosity of the liquid media, Figure 

8.18 shows the first peak of admittance for PWAS resonator in 15mm of length, 15mm of 

width, and 1mm of thickness in free condition and in contact with liquid with different 

dynamic viscosities and both densities are assumed to be 1000 kg/m
3
 whereas Figure 8.19 

shows the first peak of impedance for PWAS resonator in 15mm of length, 15mm of 

width, and 1mm of thickness in free condition and in contact with liquid with different 

dynamic viscosities and both densities are assumed to be 1000 kg/m
3
. 

In order to understand the effect of the different density of the liquid media, 

Figure 8.20 depicts the first peak of admittance for PWAS resonator in 15mm of length, 

15mm of width, and 1mm of thickness in free condition and in contact with liquid with 

different densities and both liquid viscosities are assumed to be 1.0 Pa.s. Also, Figure 

8.21 shows the first peak of impedance for PWAS resonator in 15mm of length, 15mm of 

width, and 1mm of thickness in free condition and in contact with liquid with different 

densities and both liquid viscosities are assumed to be 1.0 Pa.s.  

 

 

Figure 8.20 First peak of admittance for PWAS resonator in 15mm of length, 15mm of 

width, and 1mm of thickness in free condition and in contact with liquid with different 

densities and both liquid viscosities are assumed to be 1.0 Pa.s  
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Figure 8.21 First peak of impedance for PWAS resonator in 15mm of length, 15mm of 

width, and 1mm of thickness in free condition and in contact with liquid with different 

densities and both liquid viscosities are assumed to be 1.0 Pa.s  

8.5 EXPERIMENTAL ANALYSIS OF A PWAS INTERACTING WITH VISCOUS 

LIQUID 

Electro-mechanical impedance measurements have been conducted for free 

PWAS and PWAS in different liquid media such as silicone oil and honey as seen in 

Figure 8.22. The real and imaginary E/M impedance and admittance results were 

compared based on amplitude and frequency shifts in in-plane and out-of-plane 

(thickness) modes. The objective is to relate the immitance results to the material 

property change of the liquid media to utilize EMIS to capture any change that occurs in 

liquid media such as density, conductivity or viscosity change. 
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Figure 8.22 Free PWAS, PWAS with silicone oil and PWAS with honey 

 

Figure 8.23 Real and imaginary impedance measurements for free PWAS; PWAS with 

silicone; and PWAS with honey 

Nevertheless, developing the new method for sensing liquid domain requires more 

insightful investigation by conducting more experiments as well as analytical and 

numerical analyses to capture the trend in EMIS plots. The plots that are shown in Figure 

8.23 and Figure 8.24 indicate some preliminary results.  
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Figure 8.24 Real and imaginary admittance measurements for free PWAS; PWAS with 

silicone; and PWAS with honey 

Presumably, the thickness mode of the EMIS results is more significant for the 

current PWAS-liquid configuration than the in-plane mode. Figure 8.25 illustrates 

significant shifts in frequency as well as amplitude as compared for PWAS in vacuum 

and PWAS in silicone oil and honey.  
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Figure 8.25 Thickness mode E/M impedance/admittance measurements 
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 CHAPTER 9

PWAS GENERATED ULTRASONIC WAVES IN SOLID MEDIA 

9.1 INTRODUCTION 

Exploring and inventing new structural health monitoring (SHM) technologies 

enables the industry to reduce the maintenance cost, shorten the service down time, and 

improve the safety and reliability of engineering structures. SHM methods have improved 

the management in both the health monitoring of aging structures by predicting the 

remaining life of the structure and the development of novel self-sensing smart structures 

by inclusion of sensors. Ultrasonic techniques are commonly used for validation of 

welded structures in many in-situ monitoring applications: in nuclear industry, in pressure 

vessel industry, in pipelines, and in a range of naval applications. The tuned quasi-

Rayleigh wave mode is essential for the applications in the in-situ inspection of relatively 

thick structures with butt weld such as naval offshore structures.  

The SHM sensors that are capable of active interrogation are called piezo-ceramic 

wafer active sensors (PWAS). They are widely employed as in-situ ultrasonic health 

monitoring active sensors in wide frequency band. They can also be used as transmitters 

that produce traveling waves in a structure so that SHM active and passive sensing can be 

conducted for interrogation of the structure through wide-band PWAS that generates 

propagating guided ultrasonic waves in substrate structure to detect damages e.g. crack or 
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corrosion by interrogating the structure with certain tuned wave modes (Giurgiutiu, 

2008). 

This chapter deals with a basic aspect of the interaction between PWAS and 

structure during the active SHM process, i.e., the tuning between the PWAS and the 

Lamb waves traveling in the structure. The PWAS devices are strain-coupled transducers 

that are small, lightweight, and relatively low-cost. Upon electric excitation, the PWAS 

transducers can generate Lamb waves in the structural material by converting the 

electrical energy into the acoustic energy of ultrasonic wave propagation (Yu et-al, 2008). 

In the same time, the PWAS transducers are able to convert acoustic energy of the 

ultrasonic waves back into an electric signal. Under electric excitation, the PWAS 

undergo oscillatory contractions and expansions, which are transferred to the structure 

through the bonding layer to excite Lamb waves into the structure. In this process, several 

factors influence the behavior of the excited wave: PWAS length, excitation frequency, 

wavelength of the guided wave, etc. We will show that tuning opportunities exist through 

matching between the characteristic direction of PWAS expansion and contraction (Lin 

et-al., 2012). The tuning is especially beneficial when dealing with multimode waves, 

such as the Lamb waves. 

Lamb waves are a type of ultrasonic waves that are guided between two parallel 

free surfaces, such as the upper and lower surfaces of a plate. Lamb waves can exist in 

two basic types, symmetric and antisymmetric (Lin & Giurgiutiu, 2011). The Lamb wave 

motion has asymptotic behavior at low frequency and high frequency. At low frequency, 

the symmetric mode resembles axial waves, while the antisymmetric mode resembles 

flexural waves. At high frequency, both symmetric and antisymmetric wave approaches 
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Rayleigh waves, because the particle motion is strong at the surfaces and decays rapidly 

across the thickness. The axial wave and flexural wave, by their nature, are only low 

frequency approximations of Lamb waves. The plate structure cannot really sustain pure 

axial and flexural motion at large frequency-thickness product values. 

Rayleigh wave that resembles to axial wave mode is an elastic wave that 

propagates close to free surface with as low penetration into the medium as of the order 

of its wavelength. Rayleigh wave in an isotropic elastic medium are in many cases an 

appropriate tool for ultrasonic inspection by utilizing the useful property of Rayleigh 

waves, the propagation speed is independent of frequency (12). Rayleigh wave, the high 

frequency guided wave mode in isotropic plates,  was interpreted as the convergence of 

the first anti-symmetric A0 and symmetric S0 Lamb wave modes by Chew & Fromme 

(2014). It can be seen in dispersion curves of Lamb wave modes that for large frequency-

thickness products, the wave speeds of A0 and S0 Lamb wave modes coalesce at the wave 

speed of a Rayleigh wave. In the literature, the Rayleigh wave a.k.a surface acoustic 

wave or surface guided wave has been utilized for in-situ monitoring of many types of 

defects in a medium. Chew & Fromme, 2014; Fromme, 2013; Masserey & Fromme, 2014 

used Rayleigh waves for detection of fatigue crack growth and corrosion through wall 

thickness with theoretical predictions for the thickness loss.  

Experimental study of PWAS Lamb-wave tuning concept is presented. PWAS 

transducers in different sizes are investigated. A sweet spot for the excitation of S0 Lamb 

wave mode, which is preferred for certain SHM applications, is illustrated.  
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9.2 TUNING CURVES FOR LAMB WAVE MODES IN THIN PLATE 

PWAS pitch-catch setup in 1-D model is shown in Figure 9.1. PWAS transmitter 

A with length  lA locates at location  xA , PWAS receiver B with length lB locates at 

location xB. For pitch-catch setup, we have two forces at PWAS A and B. For the 

comparison, each PWAS need to be used as an actuator and a receiver.  

 

Figure 9.1 Schematic of a PWAS pitch-catch setup on a bar. 

The consistence of PWAS bond is essential to the correct damage detection. We 

first checked the capacitance of each sensor on the aluminum plate and compared with 

theoretical free capacitance. 

Table 9.1 Free Capacitance for 7mm round PWAS with 0.2mm and 0.5mm thickness  

 
We also monitored the receiver voltage output. It is clear that S0 and A0 wave are 

separated. S0 is not dispersive and A0 is dispersive. The wave propagation is best 

illustrated through the study of the propagation of single frequency wave packets (tone 
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bursts). A tone burst consists of a single-frequency carrier wave of frequency, whose 

amplitude is modulated such as to generate a burst-like behavior. The excitation signal 

used in this application is 3-count 10V amplitude 50 kHz Hanning windowed tone burst. 

The excitation voltage signal is shown in Figure 9.2-a. The receiver output voltage is 

shown in Figure 9.2-b. The first wave pack is axial wave that is not dispersive. The 

second wave pack is flexural wave that shows the dispersive nature. The third wave pack 

is the axial wave reflected from the boundary and received by the receiver. 

Table 9.2 Material properties of SM 412 piezo- 

electric wafer active sensor 

PROPERTY UNIT SYMBOL SM412 

EQUIVALENCE PZT-

5A 

Navy 

Type II 

Electromechanical 

Coupling 

Coefficient 

  K
p
 0.63 

K
t
 0.42 

K
31

 0.35 

Frequency 

Constant 

Hz.m N
p
 2080 

Nt 2080 

N
31

 1560 

Piezoelectric 

Constant 
x10

-12
m/V d

33
 450 

d
31

 -190 

x10
-

3
Vm/N 

g
33

 25.6 

g
31

 -12.6 

Elastic Constant x10
10

N/m
2
 Y

33
 5.6 

Y
11

 7.6 

Mechanical 

Quality Factor 

------- Q
m

 100 

Dielectric 

Constant 

@1KHz ε
T33

/ ε
0
 1850 

Dissipation Factor %@1KHz tanδ 1.2 

Curie 

Temperature 

0
C T

c
 320 

Density g/cm
3
 ρ 7.8 
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Figure 9.2 a-) Transmitter non-harmonic excitation signal b-) Receiver voltage response 

under a 3-count 100 kHz tone-burst excitation. 

In 3-D model, the PZT polarization is along the z-axis. The free-free aluminum 

alloy 2024 beam dimension is 1220 mm long, 1220 mm wide, and 1 mm thick. The 

diameters of the PZT active sensors are 7 mm and thickness dimensions are 0.2 mm and 

0.5 mm respectively. The distances between PWAS locations are as shown in Figure 9.3. 

An experimental setup is shown in Figure 9.4.  

 

Figure 9.3 Schematic of the panel specimen and PWAS configuration 

a-) b-) 

250 mm 

3
5

0
 m

m
 

APC-850_1 

SM-412_2 

SM-412_1 APC-850_2 
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Figure 9.4 Experimental setup for assessing the difference between new (thicker) PWAS 

and conventional PWAS 

 

Figure 9.5 The wave propagation experiment instruments a-) Function  

generator (Hewlett Packard 33120 A 15 MHz function/ arbitrary wave- 

form generator) b-) Digital oscilloscope (Tektronix TDS5034B Digital  

Phosphor Oscilloscope 350 MHz 5GS/s) 

Lamb waves signals received by PZT active sensor which was employed as a 

receiver were recorded by using Autotuning Graphical User Interface (GUI) developed 

by Patrick Pollock in LAMSS (Laboratory for Active Materials and Smart Structures) 

 

Tektronix Digital 

Osciloscope 

Probes 

Panel 

Specimen 

PC with 

Autotuning GUI 

Function 

Generator 
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utilizing National Instruments LABVIEW software. The received data were composed in 

tdms format by the Autotuning GUI. 

  

Figure 9.6 Tuning curves obtained by using pitch-catch method generating and sensing 

Lamb wave propagation with a-) a transmitter and a receiver both having the same 

diameter of 8.7mm and thickness of 0.5mm b-) a transmitter and a receiver whose 

diameter 7mm and thickness 0.2mm 

 

Figure 9.7 Tuning curves obtained by using pitch-catch method generating and sensing 

Lamb wave propagation with a-) a transmitter having the diameter of 8.7mm and 

thickness of 0.5mm a receiver having the diameter of 7mm and thickness of 0.2mm b-) a 

transmitter having the diameter of 7mm and thickness of 0.2mm a receiver having the 

diameter of 8.7mm and thickness of 0.5m 

The data has been manually imported into Microsoft Excel files. A MATLAB 

program was also developed to postprocess the data listed on the Excel files and the 
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MATLAB program has generated the plots indicating tuning curves and anti-symmetry 

and symmetry modes as shown in Figure 9.6 and Figure 9.7. The data taken using the 

experimental setup shown in Figure 9.4 are corresponding to four different cases. In the 

first case, both transmitter and receiver are PWAS having thickness of 0.5 mm which 

were denoted as APC-850_1 and APC-850_2 respectively. In the second case, both 

PWAS are conventional ones having thickness of 0.2 mm and being referred as APC-

850_1  and APC-850_2. In the third case, the SM-412_1 was assigned to be a transmitter 

and APC-850_2 a receiver. For the fourth case, APC-850_1 was connected to the probe – 

which was also connected to the function generator - as a transmitter, and SM-412_2 was 

connected to the other probe as a receiver. 

In the first case, as expected, the thicker PWAS generated somewhat higher 

response in amplitude for both anti-symmetry and symmetry mode in comparison to 

those in the other PWAS configurations. A0 wave pack shows up at lower frequency and 

reaches the peak amplitude at around 100 kHz in all four transmitter-receiver 

configurations. S0 wave pack amplitude appears to be increasing up to 300 kHz for three 

configurations whereas only for the APC-850_1-APC-850_2 configuration, the amplitude 

of S0 mode increases up to 400 kHz. The tuning curves for A0 and S0 wave packages 

intersects at 145 kHz in all PWAS configurations, which means that A0 and S0 

amplitudes become equal at that frequency. And the other significant outcome from the 

comparison is the fact that the peak amplitude value of A0 tuning curve (13.5 mV) is very 

close to the peak amplitude value of S0 tuning curve (15.5 mV) while the peak amplitude 

of A0 mode is much lower than that of S0 wave package where the thicker PWAS was 

used either as a transmitter or as a receiver or as both (in the first config.).  
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9.3 TUNING CURVES FOR QUASI-RAYLEIGH WAVE IN THICK 

STRUCTURES 

Rayleigh waves i.e. surface acoustic waves (SAW) are a high frequency 

approximation of the fundamental symmetric (S0) and anti-symmetric (A0) Lamb wave 

modes as the frequency becomes relatively high as seen in Figure 9.8. S0 and A0 wave 

speeds converges into the same value and become constant i.e. non-dispersive which is 

exactly the Rayleigh wave speed. Eventhough the condition for Rayleigh wave is that it 

can only travel along a flat surface of a semi-infinite medium, which is hardly possible to 

generate in reality, when the plate thickness is larger than the Rayleigh wavelength at that 

frequency, d>>λR, the measurements should be acceptable. The wave mode is then called 

quasi-Rayleigh wave having Rayleigh wave speed. 

 QUASI-RAYLEIGH WAVE TUNING THEORY 9.3.1 

Rayleigh wave speed depends on the shear wave speed and the Poisson ratio. A 

common approximation of the wave speed of the Rayleigh wave is given in the form  
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 (9.1) 

For more detailed derivation, the readers are suggested to read through chapter 6 of the 

reference by Giurgiutiu (2014). 
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Figure 9.8. Phase velocity dispersion curves of Lamb  

wave modes in a steel plate where cs=3062.9 m/s indi- 

cating the quasi-Rayleigh wave approximation of fun- 

damental Lamb wave modes in high f.d product 

The dispersion curves, the displacement vectors, and the mode shapes through 

thickness are calculated using a MATLAB® graphical user interface (GUI) named 

‘Modeshape_v2e’(Bao & Giurgiutiu, 2003) generated in Laboratory for Active Materials 

and Smart Structures (LAMSS). In Figure 9.9, the displacement vectors for S0 mode on 

the left and the S0 mode shape on the right are given as well as in Figure 9.10, the 

displacement vectors for A0 mode on the left and the A0 mode shape on the right are 

given. In mode shape across thickness plots shows both the in-plane and out-of-plane 

displacement changes, the continuous lines depict the in-plane displacement xu  and the 

dotted lines depict the out-of-plane displacement
yu (Bao, 2003).  
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Figure 9.9. (a) Displacement vectors in 14 mm thick steel plate at central frequency of 

450 kHz in the form of the first symmetric Lamb wave mode and (b) the mode shape 

through thickness 

At 3150fd  kHz.mm, the xu displacement is almost zero over the inner 80% part 

of the thickness, while most of the activity happens in the upper and lower 20% parts; the 

yu  displacement on the surface is almost twice as large as that on the mid-surface Figure 

9.10(b).  

 

Figure 9.10. (a) Displacement vectors in 14 mm thick steel plate at central frequency of 

450 kHz in the form of the first antisymmetric Lamb wave mode and (b) the mode shape 

through thickness  
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The tuning curve of quasi-Rayleigh strain wave (Figure 9.11) is calculated using 

the strain function which depends on the distance between the transmitter and the receiver 

PWAS and the expression is shown in Eq(9.2).  

      0

0sin
i x t

ax i a e
 

  


  (9.2) 

where 2 2

0 / Rc   is the wavenumber of Rayleigh waves in the 1-D medium 31 3a d E   

is the induced strain and assumed to be uniform over the PWAS length(Victor Giurgiutiu, 

2008d). The distance between PWAS transducers is measured to be 460 mm. The elastic 

modulus of steel is assigned to be 190 GPa, the density is 7850 kg/m
3
, the Poisson ratio is 

0.29. The electrical parameter such as the induced voltage is 80V and the piezoelectric 

parameter 31d  is -175x10
-12 

m/V. The analytical tuning curve agrees well with the 

experimental tuning curves plots in Figure 10.12. 

 

Figure 9.11. Analytical tuning curve of Rayleigh wave in steel plate  
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 Mode-Shape Analysis 

The mode shape analysis is conducted in order to depict the resemblance between 

mode shapes obtained from the standing wave analysis and the mode shapes acquired 

from the propagating guided Lamb wave analysis. The mode shapes begin to have this 

similarity as approaching to the QRW region shown in the phase velocity dispersion 

curve. 

In both standing and guided wave mode shape analyses, the material properties 

used for PWAS are shown in Table 3.1. The density of aluminium substrate is assumed to 

be 2780 kg/m
3
 and the elastic modulus is 72 GPa. The plate thickness is 2.1 mm and the 

PWAS thickness is 0.2mm. The mode shapes from both analyses are presented at the 

same resonance frequencies in this study. The thickness mode resonance frequencies are 

respectively 1.19 MHz, 2.49 MHz, and 3.85 MHz.  

 Standing wave mode shape analysis 

The standing wave analysis uses the axial wave approximation across the 

thickness of PWAS and the aluminium plate-like structure that hosts the PWAS. The 

mode shapes at certain thickness mode resonance frequencies are shown in Figure 9.12.  
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Figure 9.12 (a) Schema of PWAS transducer ideally bonded on aluminum plate and (b) 

high frequency modal analysis results considering the standing waves in thickness mode 

for PWAS bonded on aluminum plate: plate thickness=2.1 mm, PWAS 

thickness=0.2mm. 

 Guided wave mode shape analysis 

The guided wave analysis uses the Lamb wave (superposition of axial and 

flexural wave approximation) propagating in a plate. The mode shapes across the 

thickness of the aluminium plate structure are simulated. The mode shapes at certain 

thickness mode resonance frequencies are shown in Figure 9.14 

 

Figure 9.13 Schema of PWAS transducer ideally bonded on aluminum plate 
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Figure 9.14 High frequency modal analysis results considering the guided waves in 

thickness mode for PWAS bonded on aluminum plate: plate thickness = 2.1 mm, PWAS-

thickness=0.2mm. 

As considering the mode shapes from both standing and guided wave analysis, the 

similarity between the first standing axial wave mode shape and the S0 mode shape is 

obvious because the S0 mode is non-dispersive alike axial wave at 1.19 MHz. However, 

the similarity occurs between the second thickness mode shape and the A0 mode at 2.49 

MHz. since A0 mode is predominant having much higher displacement amplitude than 

that of S0 mode. A0 mode also becomes non-dispersive as the structure is excited at the 

second resonance frequency. At the third thickness mode, since A0 is predominant and 

non-dispersive, the resemblance still occurs between the third thickness mode shape and 

the A0 mode shape. The structure is actually excited in the QRW region as the excitation 

frequencies are at the second and third thickness mode resonance frequencies.  
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 EXPERIMENTAL STUDY FOR QUASI-RAYLEIGH WAVE TUNING 9.3.2 

In this experimental setup, PWAS transducers serve as high-bandwidth strain 

sensors for active sensing of far-field. Transmitter PWAS bonded on a substrate structure 

excites the structure by induced voltage in tone-burst sine wave form with three-counts 

through the function generator. Then, receiver PWAS senses the wave signals traveling in 

certain modes along the structure and the received signals as output voltage are read by 

the oscilloscope in time domain and recorded for post-processing the data. 

 

Figure 9.15 Schema of pitch-catch sensing method (Giurgiutiu, 2008) 

In the both EMIS and GWP experimental setup, pristine aluminum and steel 

specimens are used. PWAS transducers are bonded on the short edges and clay is applied 

on both long edges to avoid reflections and obtain more clear signals. 

 

Figure 9.16 (a) ¼” thick, 4” width, 3’ length high strength 2024 aluminum plate (b) A 

pristine steel rail I-beam ½” thick 
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A steel rail beam which is adequate wave guidance is also used for GWP test as 

another specimen. 7mm x 7mm x 0.2mm PWAS transducers are bonded on both 

specimens. 

 

Figure 9.17 Autotuning2011 Graphical user interface (GUI),La- 

boratory for Active Materials and Smart Structures (LAMSS) 

Autotuning GUI (Figure 9.17) -developed in LAMSS using LabView software- is 

utilized to control the function generator and automatically sweep the predefined 

frequency band and record the data for each frequency step in an excel file then 

eventually post-process the data to generate the tuning curve for certain wave packets in 

the received signals. 
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A square PWAS in 7mm x 0.2mm dimensions is modeled as a layer on a 

homogeneous isotropic material (aluminum) substrate layer. The density of the aluminum 

substrate is 2780 kg/m
3
 and the elastic modulus is 72.4 GPa. Electromechanical material 

properties of the piezoelectric transducer are defined in Table 9.2.  

Two SM412 PWAS are bonded by the two ends of the aluminum specimen 

(Figure 9.16) in distance of 910mm to each other. GWP test has been conducted on the 

specimen using the PWAS transducers as transmitter in this task. Tone-burst sine wave 

with 3 counts is generated through the function generator to excite the transmitter PWAS 

and generate a strain wave into the host aluminum plate. The guided wave information 

travels in the material in different modes and at various wave speeds depending on the 

excitation frequency-thickness product. In this particular study, we are interested in 

Rayleigh wave mode, therefore we selected relatively high excitation frequency band to 

receive the signal dominated by Rayleigh wave modes as can be seen in a few examples 

of received Rayleigh wave signals (Figure 9.18) that travels at constant wave speed i.e. 

independent from frequency change. The all received wave signals show that Rayleigh 

wave packet appears distinguishably dominating among other wave packets at the same 

time window eventhough the frequency increases in the range between 300 kHz and 600 

kHz. The Rayleigh wave packets appear at even as low frequency as 180 kHz up to 

1.8MHz however the amplitude dramatically decreases after 1MHz as realized by 

studying the tuning curve compiled from the experimental data. The tuning curve in the 

frequency band between 150-600 kHz is illustrated in Figure 9.19. The upper plot shows 

the analytical calculation of Rayleigh wave tuning curve whereas the lower plot shows 

the experimental reading of the tuning curve. The trend the analytical and experimental 
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tuning curves agree somewhat closely. They possess the valleys and hills appear in the 

same frequency bands.  

The smooth trends that Rayleigh wave packet draws over frequency and 

distinguishability of dominating wave packet are promising features that eases 

predictability and signal processing. As the thicker specimens are analyzed, it’s realized 

that the frequency band where Rayleigh wave packets appear becomes higher. Therefore, 

it gives the advantage of having the Rayleigh wave mode in also local thickness mode 

modal sensing because thickness mode EMIS is also for relatively high frequency range 

in order of MHz. Since Rayleigh wave resembles to the axial wave which has constant 

wave speed with respect to frequency as seen in the dispersion plot, prediction of the E/M 

impedance signature of the local structure in thickness mode becomes easier. One can use 

the proof-mass concept by increasing the thickness or density of the substrate analyzed to 

attain Rayleigh wave mode and downshift the local resonance frequency of PWAS-

substrate structure so that the thickness mode constrained PWAS-EMIS signature 

becomes easily predictable by using the standing Rayleigh waves in local structural 

dynamic sensing  
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Figure 9.18 Received signals from 7x7 mm2 PWAS on  

¼” thick aluminum plate at different frequencies 

In Figure 9.20, Rayleigh wave phase velocity and time of flight are measured and 

compared with the calculation. The distance between the trasmitter-PWAS and the 

receiver-PWAS is 910mm. The material of the specimen is Aluminum 2024 with the 
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elastic modulus of 72.4GPa, the density of 2780kg/m
3
 and the Poisson’s ratio of 0.33. 

The QRW tuning curve was predicted using these information regarding the material 

properties and pitch-catch configuration. The decent agreement between the analytical 

and the experimental tuning curves can be seen in Figure 9.19.  

 

Figure 9.19 Analytical and experimental Rayleigh wave tuning curves for 

7mm 7mm 0.2mm   SM412 PWAS on 6.35 mm thick Aluminum-2024 plate 

with the elastic modulus of 72.4GPa, the density of 2780kg/m
3
 and the Pois- 

son’s ratio of 0.33 
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Figure 9.20 Rayleigh wave phase velocity and time of flight analytical and experimental 

results for the distance of 910mm between T-PWAS and R-PWAS on ¼” thick aluminum 

plate 

 

Figure 9.21 Received signals from 7x7 mm
2
 PWAS on 1/2” thick steel rail I-beam at 

different frequencies 
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Another GWP test is presented on the rail I-beam using the PWAS transducers as 

transmitter and receiver in distance of 360mm. Tone-burst sine wave with 3 counts is 

generated for this test also to excite the transmitter PWAS and generate a strain wave into 

the host steel rail-beam. Rayleigh wave modes can be seen in a few examples of received 

Rayleigh wave signals (Figure 9.21) that travels at constant wave speed. The all received 

wave signals show that Rayleigh wave packet appears distinguishably dominating among 

other wave packets at the same time window eventhough the frequency increases in the 

range between 60 kHz and 400 kHz. The tuning curve in the frequency band between 

150-600 kHz is illustrated in Figure 9.22. The upper plot shows the analytical calculation 

of the tuning curve whereas the lower plot shows the experimental reading of the tuning 

curve. The trends of the analytical and experimental tuning curves agree somewhat 

closely. They possess the valleys and hills appear in the same frequency bands.  

 

Figure 9.22 Analytical and experimental Rayleigh  

wave tuning curves for 7mm 7mm 0.2mm   SM412  

PWAS on 12.7 mm thick steel rail I-beam with the  

elastic modulus of 200GPa, the density of 7850kg/m
3
  

and the Poisson’s ratio of 0.29 
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In Figure 9.23, Rayleigh wave phase velocity and time of flight are measured and 

compared with the calculation  by using Eqs. (9.1) and  respectively. The distance 

between the trasmitter-PWAS and the receiver-PWAS is 360mm. The material of the 

specimen is Steel-AISI-4340-400F with the elastic modulus of 190GPa, the density of 

7850kg/m
3
 and the Poisson’s ratio of 0.29.  

 

Figure 9.23 Rayleigh wave phase velocity and time of flight analytical and experimental 

results for the distance of 910mm between T-PWAS and R-PWAS on 12.7 mm thick 

steel rail I-beam 

The steel specimen is 13.75 mm thick high temperature steel that has V-groove 

butt weld bead lying along the centre of the plate. The weld bead is around 1mm thicker 

than the steel plate. The welded thick steel plate specimen is produced using metal inert 

gas (MIG) welding and donated by Savannah River Nuclear Plant. In this particular 

study, we were interested in QRW mode, therefore we selected relatively high excitation 

frequency band to receive the signal dominated by QRW modes. 
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Figure 9.24 A pristine steel 13.75mm thick 

The QRW tuning curve is predicted (Figure 9.25) by using the model defined in 

subsection-9.3.1  for the distance of 460 mm between the transmitter-PWAS and 

receiver-PWAS installed on a steel plate in thickness of 13.75 mm.  

 

Figure 9.25 Quasi-Rayleigh wave tuning curve prediction for pro- 

pagating wave in a distance of 460 mm in a thick steel plate in  

thickness of 13.75 mm 
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Figure 9.26 Quasi-Rayleigh wave tuning curve from pitch-catch test ac- 

ross the weld bead on a thick steel plate in thickness of 13.75 mm 

The guided quasi-Rayleigh wave packets are determined in the received signals in 

time domain by using the time of flight information from the analytical quasi-Rayleigh 

wave speed prediction. Since QRW mode is non-dispersive i.e. constant speed at high 

excitation frequency-band, the location of the wave packet in time domain, time of flight, 

is also constant. Therefore, the time where the QRW packets are located was easily 

defined. Thus, the maximum amplitude of the non-dispersive wave QRW packets are 

captured as sweeping through the high excitation frequency-band between 150 kHz and 

600 kHz where the QRW shows up in the thick steel plate. The maximum amplitudes of 

the wave packet in terms of the ratio between input voltage and output voltage are used to 

obtain the experimental tuning curve of the QRW mode that can be excited at relatively 

high frequency band and in thick structures. The two experimental QRW tuning curves 

are shown in Figure 9.26 and Figure 9.27. The first tuning curve (Figure 9.26) was 

obtained from the pitch-catch test conducted using two square PWAS situated on the 

edge of the steel plate that lie across the weld bead whereas the second tuning curve 
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(Figure 9.27) was from the pitch-catch test instrumented by PWAS transducers bonded 

on the plate edge along the weld bead as demonstrated in Figure 9.24. 

 

Figure 9.27 Quasi-Rayleigh wave tuning curve from pitch-catch test in direction  

of the weld bead on a thick steel plate in thickness of 13.75 mm 

The agreement between the analytical tuning curve and the first experimental 

tuning curve is better in comparison with that of the second experimental tuning curve. 

This evidence depicts the effect of the weld bead on the tuning of the QRW mode. The 

higher amplitude of the second tuning curve that was obtained from the pitch-catch test 

along the weld bead was noticed as compared to that of the first tuning curve at 

corresponding excitation frequencies.  
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 CHAPTER 10

WELD GUIDED WAVES IN THICK STRUCTURES 

10.1 INTRODUCTION 

Rayleigh waves are widely used in non-destructive testing (NDT) and SHM 

applications as well as in seismology. Rayleigh waves i.e. surface acoustic waves (SAW) 

are a high frequency approximation of the S0 and A0 Lamb waves as the frequency 

becomes relatively high, S0 and the A0 wave speeds coalesce and both have the same 

value. This value is exactly Rayleigh wave speed. They become non-dispersive wave, i.e. 

constant wave-speed along the frequency. Rayleigh wave can only travel along a flat 

surface of a semi-infinite medium, which is hardly possible to generate in reality however 

for the plate thickness d>>λR, the measurements should be acceptable(Brook, 2012). The 

wave mode is then called quasi-Rayleigh wave having Rayleigh wave speed. (Tuncay 

Kamas, Giurgiutiu, et al., 2014) discussed the tuning effect of the thickness change and 

geometry of the substrate material on standing wave modes in local sensing and guided 

wave modes regarding especially tuned and guided quasi-Rayleigh wave mode 

propagating in the structure in various geometry and thickness.  

In literature regarding weld guided waves, the weld guided compression (S0) 

mode was first experimentally investigated by (Sargent, 2006) in butt welded steel plate 

in 6 mm thickness for corrosion detection. (Juluri, Lowe, & Cawley, 2007) also studied 

the weld guided S0 and SH0 wave modes using semi-analytical finite element (SAFE) 

method. They simply simulated the butt-weld bead with thicker region in thickness of 
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18mm and in the width of 16mm lying between two steel plate in thickness of 6 mm. The 

compression mode leaks the SH0 wave in the plates when the velocity of the guided 

mode in the weld bead is higher than that of SH0 wave in the plate. (Fan & Lowe, 2009) 

carried out an elaborate study and discussed in general the feature guided waves in 

relatively low frequency range and the physical phenomena of feature guided wave 

modes. 

 

Figure 10.1. Schematic of feature-guided wave propagation on a welded plate 

The main objective of this research is to show whether quasi-Rayleigh waves are 

trapped along a butt weld bead that joints two thick steel plates through the tuning curves 

from pitch-catch method to investigate the strength of the wave mode in weld. The quasi-

Rayleigh wave is expected to be received by a receiver sensor that is bonded on lower 

surface. The quasi-Rayleigh wave-damage interaction is also investigated through finite 
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element models. One eventually can use this SAW method to examine quasi-Rayleigh 

wave interaction with damages at inaccessible locations in a welded thick plate-like 

structure.  

10.2 WELD GUIDED QUASI-RAYLEIGH WAVES (QRW)  

This section discusses theoretical and experimental analyses of weld guided 

surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. 

The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors 

(PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld 

bead is ground flush. Ultrasonic techniques are commonly used for validation of welded 

structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear 

and pressure vessel industries and in a range of naval applications. PWAS is recently 

employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-

Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate 

having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high 

frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave 

modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and 

both have the same value. This value is exactly the Rayleigh wave speed and becomes 

constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface 

acoustic waves. The study is followed with weld-GWP tests through the pitch-catch 

method along the butt weld line. The tuning curves of quasi-Rayleigh wave are 

determined to show the tuning and trapping effect of the weld bead that has higher 

thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. 

The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is 
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essentially discussed for the applications in the in-situ inspection of relatively thick 

structures with butt weld such as naval offshore structures.  

10.3 FINITE ELEMENT MODEL OF BUTT-WELDED THICK STEEL PLATE 

 

Figure 10.2. Finite element model of butt-welded plate  

including non-reflecting boundaries on two sides of the  

steel plate 

A square steel plate is modeled in sizes of 400mm x 400mm x 14mm meshed with 

MESH200 3-D quadrilateral with 8 nodes and SOLID185 3-D 8-node structural solid 

element. The plate is excited by a pin-point force (FZ) for full-transient analysis on 

commercial finite element software, ANSYS®. 400mm x 12mm x 16mm idealized 

rectangular butt-weld bead lay out between the adjacent side plates and is meshed with 

the same solid elements. The material of the weld is assumed to be the same as the plate 

materials. In addition, non-reflected boundaries (COMBIN14 spring-damper element) 

were defined with 100 mm length on two sides as seen in Figure 10.2. The reader is 

recommended to read through related chapters of the PhD dissertation by Shen in 2014 to 

obtain more detailed information about the non-reflected boundaries. 
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Figure 10.3. Group velocity dispersion curves of (a) Lamb wave modes and (b) shear 

horizontal (SH) wave modes in steel plate 

In Figure 10.3, the group velocities for symmetric and anti-symmetric modes of 

Lamb waves on the left and of shear horizontal (SH) waves on the right are shown to 

have track on the weld guided wave modes simulated by the finite element model. Also, 

the snapshots of animation of the weld guided wave propagation at 67.6 µsec are 

illustrated for the pristine and damaged welded plates in Figure 10.4.  

 

Figure 10.4. Snapshots of weld guided wave simulations on (a) pristine and  

(b) damaged thick plates. The pin-point force is excited at 300 kHz  
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It is observed from the Lamb wave group velocity dispersion curves that S1 mode 

is almost one and half time faster than the Rayleigh wave mode in steel plate so that the 

S1 mode is the leading mode with small amplitude as depicted in the snapshot. The weld 

guided quasi Rayleigh wave mode follows the S1 mode and leads the leaky SH modes 

propagating in the wake of the weld guided surface acoustic wave mode toward into the 

adjacent steel plates. The weld guided wave modes pursue almost the same template in 

the pristine and damaged plates where the damage is simulated as a hole across the 

thickness that is introduced in the center of the weld bead. The simulated weld guided 

wave forms at 300 kHz are demonstrated in Figure 10.5 for the plain (not welded) case as 

seen on the left and the welded plate case on the right. The results obtained from pristine 

and damaged plate models are overlapped to understand the response from the weld 

guided wave-damage interaction on welded thick plate. The same analysis is conducted 

for the plain plate case so that one can compare the effect of the existence of the weld 

bead.  

 

Figure 10.5. Overlapped plots of the received signals from pristine and damaged (a) plain 

plate and (b) welded plate 

As one can clearly observe from the results seen in the plots (Figure 10.5), both 

weld guided waves and the guided waves in plate reduced in amplitude after they 
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interacted with the damage. However the speed of the waves in weld did not reduce 

whereas those in the plate reduced. 

10.4 EXPERIMENTAL ANALYSIS FOR TUNING OF WELD GUIDED QRW 

 

Figure 10.6 Schematic illustration of the experimental setup for the pitch-catch tests. 

In this experimental setup (Figure 10.6), transmitter PWAS bonded on a substrate 

structure excites the structure by induced voltage in tone-burst sine wave form with three-

counts through the function generator. Then, receiver PWAS senses the wave signals 

traveling in certain modes along the structure and the received signals as output voltage 

are read by the oscilloscope in time domain and recorded for post-processing the data. 

In the experiments, 7mm x 7mm x 0.2mm PWAS transducers are bonded on the 

specimens. PWAS transducers served as high-bandwidth strain sensors for active sensing 

of local and far-field in the substrate structures. EMIS and GWP tests have been 

conducted on thick isotropic elastic specimens such as aluminum and steel plates by 

using SM412 PWAS transducers on each substrate material. In order to discuss the tuning 

effect of the thickness of the thick plate-like structures in relatively high frequency 

region, and the tuning effect of a feature on the structures, the EMIS tests and the 

experimental tuning curve measurements have been conducted. The results from the 

analytical models and the tests are compared to discuss the tuning of QRW mode that can 
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be excited in thick structures and at high frequencies. Clear and smooth trend observed in 

the spectra in frequency domain as the QRW is locally excited and distinguishability of 

the dominating the QRW packet in time domain. These features of the QRW are 

promising features that ease the predictability and the signal post-processing.  

In the EMIS experimental setup, two pristine aluminum specimens shown in 

Figure 10.7 and Figure 10.8 are used. PWAS transducers are bonded on the short edges 

and clays are applied on long edges of the both aluminum specimens to avoid reflections 

and obtain more clear signals. PWAS is bonded at center location of 2.1 mm thick plate 

whereas other two PWAS transducers are bonded on the two ends of the 6.35 mm (1/4 

in.) thick plate in order to avoid the possible reflections from the non-clayed edges. The 

two PWAS transducers are employed as resonators for EMIS measurements; and 

transmitter PWAS (T-PWAS) and receiver PWAS (R-PWAS) for pitch-catch tests later 

on. 

 

Figure 10.7 Square PWAS in 0.2mm thickness  

bonded on a pristine aluminum plate in 2.1mm  

thickness.  
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Figure 10.8 Two square PWAS transducers in 0.2mm thickness are bonded on a pristine 

aluminum plate in ¼” thickness. 

The steel specimen is 13.75 mm thick high temperature steel that has V-groove 

butt weld bead lying along the center of the plate as seen in Figure 10.9(c). The weld 

bead is around 1mm thicker than the steel plate. The welded thick steel plate specimen is 

produced using metal inert gas (MIG) welding and donated by Savannah River Nuclear 

Plant. In this particular study, we were interested in QRW mode, therefore we selected 

relatively high excitation frequency band to receive the signal dominated by QRW 

modes. 

Auto-tuning graphical user interface (GUI) -developed in LAMSS using LabView 

program- is utilized to control the function generator and automatically sweep the 

predefined frequency band and record the data for each frequency step in an excel file 

then eventually post-process the data to generate the tuning curve for certain wave 

packets in the received signals. 

 

T-PWAS R-PWAS 
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Figure 10.9. (a) Multi-channel Acoustic Measurement System (MAS) (b) a LabVIEW 

graphical user interface, CANWare (c) stainless steel plates in thickness of 14mm jointed 

with butt weld instrumented by 7mm x 7mm x 0.2mm PWAS 

Figure 10.9(c) indicates the specimen employed for the experimental setup. The 

steel plates were jointed with butt weld and were instrumented by 7mm x 7mm x 0.2mm 

PWAS on and off the weld bead on two ends as the layout can also be seen in Figure 

10.10. The excitation signal is selected to be Hanning windowed tone-burst with 5 counts 

in amplitude of 80V. For exciting the waves in the substrate structure at transducer 

terminal and receive the propagating wave signals at the reception terminal, a compact 

size instrument as seen in Figure 10.9(a) is utilized. The ultrasonic instrument called 

multi-channel Acoustic Measurement System (MAS) is composed of function generator 

oscilloscope and preamplifier and designed by Fraunhofer IKTS-MD, Germany. Also a 

LabVIEW graphical user interface, CANWare as shown in Figure 10.9(b), provided 

general sensor signal acquisition and basic signal processing for the MAS device.  
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The layout for the first experimental setup is illustrated in Figure 10.10. We 

conducted pitch-catch wave propagation technique to acquire the data. The welded steel 

plate is instrumented by 7mm square PWAS transducers on two ends. The first pitch-

catch measurement is carried out on the butt-weld and the second one on one of the 

adjacent steel plates. The path where the wave is generated and received on the weld is 

called Path-1 and the other is called Path-2.  

 

Figure 10.10. Experimental setup layout as stainless steel plates in thickness of 14mm 

jointed with butt weld instrumented by 7mm x 7mm x 0.2mm PWAS on and off the weld 

bead on two ends 

The data are acquired for various excitation frequencies in the range between 150 

kHz and 450 kHz from both Path. The waveforms for certain frequencies are illustrated in 
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Figure 10.11 to understand when the non-dispersive Rayleigh wave packets (depicted in 

red boxes) are captured and how large their amplitudes are. Therefore, one can observe 

and compare the difference of the quasi-Rayleigh wave amplitude acquired from Path-1 

and Path-2. 

 

Figure 10.11. Experimental received wave signals at different central frequency from (a) 

path 1 on weld and (b) path 2 on plate 

The amplitude difference is also clearly seen in the experimental tuning curves 

shown in Figure 10.12. The amplitude of the received quasi-Rayleigh wave packet 

reaches at its maximum value at around 300kHz central frequency as predicted by the 

analytical calculation of the Rayleigh wave tuning curve (Figure 9.11) .As seen in 

experimental tuning curves, the quasi-Rayleigh wave amplitude reaches up to 3800 mV at 

the excitation frequency of 270 kHz on Path-1 (on-weld) whereas it is only 2500 mV at 

the same frequency on Path-2 (off-weld). Hence, the results show that the quasi-Rayleigh 

(a) 
(b) 
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wave packet is trapped and guided across the butt-weld bead. Then the quasi-Rayleigh 

wave mode can be used as weld-guided wave mode for future applications. 

 

Figure 10.12. Experimental tuning curves of quasi-Rayleigh waves obtained from (a) path 

1 on weld and from (b) path2 on plate 

The layout for the second set of experiment is illustrated in Figure 10.13. The 

same butt-welded thick sectioned steel plate is utilized for this experimental setup. As 

seen, the difference is that the receiver PWAS is attached on the lower surface of the 

welded thick steel plate whereas the transmitter PWAS is bonded on the upper surface. 

This GWP pitch-catch technique is conducted to understand how the weld guides the 

quasi-Rayleigh wave mode. As expected, the wave mode is received with the high 

amplitude as strong as it was received on the same surface. The mode shape analysis in 

the previous section (Figure 9.9 and Figure 9.10) also showed the similar perturbation on 

the lower surface of a plate as the same activity occurs on upper surface at high 

frequency-thickness product. Thus, this technique can be used to detect a damage that 

may occur at inaccessible locations on thick plate-like structures. 
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Figure 10.13. Outline of the transmitter and receiver PWAS on the butt-welded stainless 

steel plate specimen 

 

Figure 10.14. (a) Experimental received wave signals at different central frequency (b) 

Experimental tuning curves of quasi-Rayleigh waves obtained 

10.5 SUMMARY AND CONCLUSIONS  

Experimental and theoretical studies were conducted for in situ structural 

inspection of a thick steel plate with butt weld. Both experimental and FEA results 

verified our hypothesis which is the fact that the quasi-Rayleigh wave is guided and tuned 

by butt-weld having higher amplitude compared to that in the thick plain-plate. We 

investigated the quasi-Rayleigh wave behavior in pristine structure as well as damaged 

structure. Experimental and analytical tuning curves agreed. The wave signals and tuning 

curves showed that quasi-Rayleigh wave traveling in weld can also be received from the 
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opposite surface of a thick plate structure. We theoretically investigated quasi-Rayleigh 

wave damage interaction by simulated damage modeled as 4mm x 4mm square hole. 

Both weld guided waves and waves in plate reduced in amplitude after they interacted 

with the damage. However the speed of the wave in weld did not reduce whereas that in 

the plate reduced.  

As suggested future work, one can repeat the experiments on thick walled welded 

pipes to understand how the quasi-Rayleigh wave is captured by R-PWAS installed both 

on outer and inner surfaces. Eventually, one can investigate the quasi-Rayleigh wave 

interaction with damages at inaccessible locations in a pipe. 
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 CHAPTER 11

SUMMARY AND CONCLUSIONS  

The chapter presents summary and conclusions to the overall dissertation 

manuscript by addressing the development and contribution of conducting the research, 

discussing each research topic of the dissertation. 

This dissertation has presented the developments in impedance based and 

propagating wave based structural health monitoring (SHM) using ultrasonic guided 

waves, with a focus on the development of accurate, efficient, and versatile modeling for 

guided wave based active sensing procedures. 

The dissertation started with an introduction to SHM concepts, guided waves, and 

piezoelectric wafer active sensors (PWAS). Accurate and efficient theoretical models for 

standing and propagating waves and tuning of certain wave modes have been developed 

and presented in the dissertation. The research covered some work on the analytical 

modeling, finite element simulation, and experiments for the development of SHM 

concepts. The modeling techniques were advanced in both near-field and far-field 

interrogation. A 1-D analytical framework which can describe standing harmonic wave in 

thickness mode has been constructed including the frequency response function, the 

electromechanical admittance and impedance and linear higher harmonic overtones in 

relatively high frequency range of MHz. The concept developed in the thickness mode 

free PWAS case was extended to the thickness mode constrained PWAS from its one 

surface and both surfaces. A proof-mass PWAS actuator was designed to tune the 
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standing wave mode by shifting the resonance frequency of the system by adding a proof-

mass and changing the size or material of a proof-mass on the piezo-ceramic actuator. An 

analytical model of the electromechanical response of PWAS with various liquids with 

different material properties was developed. An analytical simulation of 2-D circular 

PWAS-EMIS at elevated temperature was carried out in order to study the piezoelectric 

material degradation and compensation at high temperature environment. Theoretical and 

experimental study on tuning guided waves in thin and thick structures was performed. A 

concept of weld guided waves was adopted to develop and SHM technique using the 

weld guided waves in welded thick structures and to study their interaction with damages 

in thick structures in high frequency range. The PWAS pitch-catch method were 

conducted and compared with FEM simulations. A review of the main results of this 

research is given next. 

PWAS itself demands an understanding of its electromechanical characteristic 

before its interaction with a medium. The intrinsic electromechanical 

impedance/admittance of PWAS is a significant indicator in frequency spectra. The 

frequency response of a sensor to the electrical excitation defines its dynamic properties. 

Free PWAS-EMIS can be defined using resonator theory in various vibration modes such 

as in longitudinal (in-plane), in thickness (out-of-plane), and in shear horizontal 

(thickness shear, length shear) modes etc. 

As the PWAS resonator is embedded into a medium, the electromechanical 

impedance spectroscopy (EMIS) method applies standing waves generated by 

piezoelectric wafer resonator so that E/M impedance/admittance spectra indicates the 

local resonance response of the coupled medium-resonator in frequency domain at anti-
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resonance and resonance frequencies that are slightly different. It is substantial to extend 

the theoretical development to accurately and quantitatively predict the local dynamic 

characteristics of PWAS in different environmental conditions and in various embedding 

media. The development of analytical and numerical models under simplifying 

assumptions is paramount importance to perform simulation of response of PWAS-EMIS 

and constrained PWAS-EMIS in wide range of applications. 

For selection of desired ultrasonic wave modes to avoid complexity in post 

processing of the received and recorded signals and for the sake of easiness of the 

interpretation, the sizes of PWAS transducers, size of the structure and the excitation 

frequency of the input waveform should be tuned. The proof-mass concept has received 

considerable attention recently. Proof-masses shift the system resonance toward optimal 

frequency points. Therefore, proof-mass concept has been adopted to develop a new 

method for tuning ultrasonic wave modes. The theoretical framework on proof mass 

actuator has been developed as a mass bonded to the piezoelectric actuator. The model is 

used to build the basis for a proof-mass piezoelectric wafer active sensor (PM-PWAS). 

Then, the sets of parametric studies with the PM-PWAS transducer model has been 

carried out by PM analysis to investigate desired control objectives using the correlation 

between a PM-PWAS and structural dynamic properties in the substrate structure. 

Analytical and numerical models have been implemented for the PM-PWAS transducer 

attached to an isotropic elastic plate. The models have been verified and validated by the 

serious of experiments. 

Piezoelectric transducer and liquid domain interaction has been commonly 

investigated through theoretical analysis of resonance spectra in frequency domain using 
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certain types of standing wave modes; shear horizontal waves and thickness shear waves 

by using different techniques. The fact that the electrical excitation of a PWAS could be 

converted into the mechanical vibration as regards to the stress and the strain waves have 

been utilized to develop a micro-acoustic sensor to measure chemical, physical, and 

biological properties of a liquid medium located in the vicinity or possessing an interface 

with the sensor. An analytical EMIS model has been developed to predict the mechanical 

properties of the liquid medium such as the viscosity and the density which affect  the 

energy transduction of sensor as well as the electrical properties of the medium 

concerning the sensitivity of the wave mode. Thus, the detection of changes in 

mechanical properties and electrical conductivity of the biomedical implants by bio-

PWAS enables to capture the protein or solution concentration (pH) changes that 

influence the conductivity, the ultrasonic wave modes and electro-mechanical impedance 

readings. 

In second part of the dissertation, the tuning of the propagating waves by using 

different techniques was presented. First, the study regarding the tuning effect of the 

PWAS was performed using PWAS transducers in different sizes on thin plate. Tuning of 

the fundamental Lamb wave modes was discussed. Then, tuning effect of the size of the 

substrate structure was experimentally studied using relatively thick structures and the 

quasi-Rayleigh waves i.e surface acoustic waves (SAW) were captured in high frequency 

range. Rayleigh waves have been widely used in non-destructive testing (NDT), SHM 

applications as well as in seismology. Rayleigh waves are a high frequency 

approximation of the first symmetric (S0) and anti-symmetric (A0) modes of Lamb 

waves as the frequency-thickness product becomes relatively high. They become non-
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dispersive wave, i.e. constant wave speed along the frequency. Rayleigh wave can only 

travel along a flat surface of a semi-infinite medium, which is hardly possible to generate 

in reality however for the plate thickness d >> λR , the measurements should be 

acceptable. The wave mode is then called quasi-Rayleigh wave having Rayleigh wave 

speed. We tuned the quasi-Rayleigh wave modes by using the structure thickness and 

high excitation frequency in order to take advantage of quasi-Rayleigh wave’s promising 

features on ultrasonic inspections. Finally, we adopted the weld guided wave techniques 

for the thick welded structures and tuned weld guided quasi-Rayleigh wave mode, which  

is essential for the applications in the in-situ inspection of relatively thick structures with 

butt weld such as naval offshore structures or pipelines.  

11.1 RESEARCH CONCLUSIONS 

 FREE AND CONSTRAINED PWAS-EMIS 11.1.1 

An analytical framework has been developed for prediction of in-plane and out-

of-plane (thickness) modes of E/M impedance spectroscopy (EMIS) of free PWAS. Two 

main electrical assumptions were applied for both PWAS-EMIS modes. These 

assumptions are 1- constant electrical field assumption and 2- constant electrical 

displacement assumption. The analytical simulations under these two assumptions were 

carried out and verified by corresponding finite element simulations as well as 

experimental measurements. To conclude, the constant electrical field assumption gives 

better results in in-plane EMIS prediction whereas the constant electrical displacement 
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assumption brings better agreement in thickness mode with the experimental 

measurements.  

We have conducted a preliminary parametric study to understand the effects of 

the material properties on the impedance (anti-resonance) and admittance (resonance) 

spectra. We utilized the 1-D and 2-D PWAS-EMIS models for the analytical simulations. 

We have varied the piezoelectric stiffness, the piezoelectric charge constant and the static 

capacitance of free PWAS. We had phenomenological agreement in trends of the 

impedance spectra with the experimental results reflecting the temperature effects on the 

piezoelectric material degradation.  

The theoretical frameworks for the in-plane mode and thickness mode 

electromechanical impedance spectroscopy (TM-EMIS) of constrained piezoelectric 

wafer active sensor (PWAS) have been developed. The analytical analyses were 

conducted by applying the resonator theory to derive the EMIS of PWAS constrained on 

one and both surfaces by isotropic elastic materials. The normalized thickness mode 

(Eigen-mode) shapes were obtained for the normal mode expansion (NME) method to 

predict the thickness mode impedance values of constrained PWAS using the correlation 

between a proof-mass-piezoelectric transducer and structural dynamic properties in the 

substrate structure. In another word, the normalized thickness mode shapes of the PM-

PWAS-substrate structure at the resonance frequencies are obtained for the NME method. 

GMM was utilized to solve the eigenvalue problem of the constrained PWAS models for 

the Eigen-vectors and the corresponding Eigen-frequencies.  
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 DEVELOPMENT OF PM-PWAS TRANSDUCER FOR TUNING OF ULTRASONIC 11.1.2 

WAVES 

The constrained PWAS-EMIS models having been developed in the preceding  

chapters were used to build the basis for the EMIS of the proof-mass PWAS (PM-

PWAS). The model was extended to a five layered model including a PWAS resonator in 

the middle and two isotropic elastic bars constraining the PWAS from both surfaces by 

two adhesive bonding layers. Global matrix method (GMM) was employed to solve the 

eigenvalue problems of the PM-PWAS models for the Eigen-vectors and the 

corresponding Eigen-frequencies. Eigen-modes are determined for the normal mode 

expansion (NME) method to predict the thickness mode impedance values of PM-PWAS 

using the correlation between a proof-mass-piezoelectric transducer and structural 

dynamic properties in the substrate structure. The study was followed by proof-mass 

analysis to investigate desired control objectives (such as tuning of axial wave modes). 

PM-PWAS transducer can be used for better high frequency local modal sensing at a 

desired excitation frequency utilizing the proof masses affixed on PWAS in different 

sizes and materials to tune system resonance towards optimal frequency point. A 

parametric study is conducted to indicate effect of the proof-mass size change on mode 

shapes in relation with frequency response function amplitudes at resonance frequencies. 

The bonded PWAS and PM-PWAS models are also numerically generated in a 

commercial multi-physics finite element analysis (MP-FEA) software, ANSYS®. The 

thickness mode EMIS results from analytical, numerical, and experimental analyses are 

presented. The analytical PM-PWAS and constrained PM-PWAS models are verified by 
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MP-FEA computational results and experimental measurement results in terms of the 

thickness mode EMIS of PM-PWAS bonded on a plate-like host structures. 

 EMIS OF PWAS IN CONTACT WITH LIQUID MEDIA 11.1.3 

The overall purpose of the research was to develop theoretical models under 

simplifying assumptions to perform wide-parameter simulation of response of a bio-

PWAS implanted into a biological medium. A scientific and engineering basis for the 

analysis of PWAS performance in contact with fluid for health monitoring has been 

developed. From the applications point of view, this study can indicate that PWAS 

transducers can be used for viscosity measurement such that these transducers can be 

utilized for bio-sensing in an environment of varying viscosity and stiffness of a texture 

of a soft tissue. We developed an analytical model for shear horizontal mode EMIS of 

piezoelectric wafer active sensor (PWAS) in contact with a liquid medium to establish the 

theoretical basis that enables interrogation of dynamic characteristics of a biological 

component.  

 GUIDED LAMB WAVE TUNING 11.1.4 

We aimed at analyzing the different features of coupled PWAS-substrate for 

tuning the guided ultrasonic waves. In tuning process, several factors influence the 

behavior of the excited wave: PWAS length, excitation frequency, wavelength of the 

guided wave, etc. We have shown that tuning opportunities exist through change in size 

of PWAS, in size of substrate structure especially thickness, and the features on the 
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structure such as weld bead. The tuning is especially beneficial when dealing with 

multimode waves, such as the Lamb waves. 

 WELD GUIDED QUASI-RAYLEIGH WAVE TUNING 11.1.5 

Finite element and experimental analyses were conducted for in situ structural 

inspection of a thick steel plate with butt weld. Both experimental and FEA results 

verified our hypothesis which was the fact that the quasi-Rayleigh wave is guided and 

tuned by butt-weld having higher amplitude compared to that in the thick plain-plate. We 

investigated the quasi-Rayleigh wave behavior in pristine structure as well as damaged 

structure (Kamas, Giurgiutiu & Lin, 2014). Experimental and analytical tuning curves 

agreed. The wave signals and tuning curves showed that quasi-Rayleigh wave traveling in 

weld can also be received from the opposite surface of a thick plate structure. We 

theoretically investigated quasi-Rayleigh wave damage interaction by simulated damage 

modeled as 4mm x 4mm square hole. Both weld guided waves and waves in plate 

reduced in amplitude after they interacted with the damage. However the speed of the 

wave in weld did not reduce whereas that in the plate reduced.  

11.2 MAJOR CONTRIBUTIONS 

This dissertation has contributed to the SHM community in a variety of ways. The 

major contributions of this dissertation to the state of the art are listed below: 

 We constructed analytical framework which can describe standing harmonic 

wave in thickness mode that are generated by PWAS resonators, The 
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electromechanical admittance and impedance spectra are modeled along with 

linear higher harmonic overtones in relatively high frequency range of MHz. 

 We carried out an analytical simulation of circular PWAS-EMIS at elevated 

temperature in order to study the piezoelectric material degradation and 

compensation at high temperature environment. 

 We extended the concept developed in the thickness mode free PWAS case to 

the thickness mode constrained PWAS on its one surface and both surfaces 

i.e. two-layers and three layers. 

 A novel methodology was proposed by constructing a proof-mass PWAS 

actuator to tune the wave modes by shifting the resonance frequency of the 

system by adding a proof-mass and changing the size or material of a proof-

mass on the piezo-ceramic actuator. Some case studies with experimental 

analyses have been conducted for depicting the effects of the proof-mass size 

change especially in thickness.  

 We developed an analytical model of the shear horizontal mode EMIS of 

PWAS with various liquids with different material properties. 

 We performed theoretical and experimental study on weld guided waves and 

the weld guided wave interaction with damages in thick structures in high 

frequency range and found out and used the promising features of the quasi-

Rayleigh wave mode in welded thick structures such as plates and pipes. 
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11.3 RECOMMENDATION FOR FUTURE WORK 

This dissertation has presented various analytical and FEA models for the 

simulation of EMIS through standing waves and pitch-catch through guided wave 

propagation. This work has laid the foundation for future investigations to extend the 

methodologies to more complicated structures. The suggestions for future work are listed 

below: 

1. The analytical model of the thickness mode EMIS of free PWAS should be 

extended to two-dimensional for more accurate prediction of circular PWAS 

impedance signature at high frequency range of MHz. 

2. EMIS model of PM-PWAS should include the flexural wave approximation to 

predict the tuning effects of the proof-masses on the non-dispersive Lamb 

wave modes. 

3. The inclusion of the bonding layers in the multi-layer analytical model may 

involve the shear lag approach as considered in the literature for the effective 

impedance prediction.  

4. The free PWAS-EMIS simulations at increasing temperature should be 

reconsidered by using the piezoelectric constitutive equations including 

thermal term for both 1-D and 2-D PWAS-EMIS analytical modeling. 

5. The shear horizontal EMIS model of PWAS in contact to liquid layer can be 

extended to different scenario such as PWAS in contact with semi-infinite 

liquid medium, PWAS fully embedded into liquid medium etc. by considering 

for both 1-D and 2-D circular PWAS models. 
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6. The weld guided quasi-Rayleigh wave experiments should be conducted on 

pipes. Interaction of the weld guided waves with various defects in welded 

thick structures should be inspected through FEA models and experiments 
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