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ABSTRACT 

Primary objective of this work is to introduce the multi-scale computational model 

for the bio-inspired acousto-ultrasonic band pass sensor that are capable of mechanically 

sense and/or filter wide range user defined frequencies. Selecting a particular and/or a 

distinct band of frequencies is essential for many applications in science engineering and 

technologies. For example design of sensors in chemical, biomedical and biological 

applications; device application for acoustic modulation by breaking the acoustic 

reciprocity and the sensors used in precision manufacturing applications requires sensing 

and/or filtering of wide range of acousto-ultrasonic frequencies. Presently, electronic 

devices are widely employed in commercial applications for selecting the target 

frequencies. Concurrent to the electronics sensors mechanical sensors with smart materials 

are significantly contributing to the sensing technologies, especially where electronic 

sensors are not compatible. Mechanical sensors are traditionally made of cantilever beams 

and use the resonance phenomenon to select the target frequencies. Considering the 

required size of the sensors, the above physics limits the design of these sensors for only 

the high frequency (> ~3 KHz) applications. Hence, to employ such sensors, it is apparent 

that for the low (sonic) frequency operations humungous geometrical size will be required. 

Thus, in order to sublime the wide applicability of the mechanical sensors, in this work, a 

physics bases mechanical band pass frequency selection mechanism is proposed that is 
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universal can be adopted for selecting extremely wide range of frequencies with controlled 

geometric configurations. 

To model the envisioned band pass frequency sensors, in this work, principles and 

the mechanics of the human cochlea are studied. Human cochlea is the most advanced and 

sophisticated band pass frequency sensor in nature, where it selects the sonic frequency 

band (20 Hz – 20 KHz) and filters all the infrasonic and ultrasonic frequencies using a 

device length of only ~ 35 mm (sub-wave length scale device). Inside the cochlea, the 

Basilar Membrane (BM) is naturally designed based on the variable stiffness model, 

starting from the base to the apex of the cochlea. During selecting and filtering the desired 

frequencies, the BM performs four major operations; (a) it create local resonances; (b) it 

captures only the chosen frequencies and remain unresponsive to the other frequencies; (c) 

it senses the input frequencies with a sensory medium (called hair cells); and in turn (d) it 

spatially selects the frequencies. Inspired by the cochlear mechanics, mimicking the 

functionalities of the basilar membrane, in this PhD dissertation, a mechanical frequency 

selection mechanism is proposed exploring two diverse innovative designs (1) Acousto-

Elastic MetaMaterial (AEMM) model and the (2) Basilar Membrane (BM) model. 

Two approaches are adopted in designing the AEMM based mechanical sensor; (a) 

stop band technique, (SBT) and the (b) band pass technique, (BPT). The proposed AEMM 

consists of a heavy core mass encapsulated in a matrix inside a stiff frame. AEMM’s are 

recently proposed for stopping the acoustic frequencies and create the acoustic band gaps. 

Using SBT method, several AEMM models are studied to create very large stop band, such 

that, all unwanted frequencies in the environment can be filtered and user defined 
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frequencies can be passed through the device, automatically. However, it was found to be 

challenging. After several unsuccessful attempts using SBT, the new BPT method is 

adopted where local resonance is the key in selecting a specific frequency. Using BPT, by 

filtering the other possible frequencies, automatically, it is intended to develop a model 

which is only able to select the target frequency. Using BPT, it has been found that the 

proposed AEMM structure is able to mimic the functionalities of the basilar membrane and 

a distinct frequency can be selected by efficiently placing a smart material capable of 

electromechanical transduction (e.g. piezoelectric material) inside a unit cell AEMM. It 

has also been reported that a broadband frequency is possible to be sensed using a multi-

cell structure with a systematic selection of model parameters. Comprehensive studies with 

analytical, numerical and experimental approaches are performed to establish the 

hypothesis.  

AEMM model uses geometric configuration and the physics of local resonance by 

mimicking the functionalities of the basilar membrane. However, the mechanical 

frequency sensor based on exact BM model is not available. Hence, in this dissertation a 

real geometric configuration of the basilar membrane is adopted to serve the central 

objective. Using BM model, two designs are proposed; the plate model and the beam 

model. The plate model is preferred over the beam model, where a continuous frequency 

band is necessary to select without losing the intermediate frequencies. Alternatively, beam 

model is preferable for the precise selection of the discrete frequencies within a target 

frequency band. In the plate model, a trapezoidal membrane is designed, whereas, in the 

beam model, a series of beams supported at the ends with linearly varying lengths are 

proposed to fit the trapezoidal basilar geometry.  
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In recent years, notable attempts were made to fabricate the broadband frequency 

sensors. Although, few experimental studies have been reported to fabricate band pass 

sensors mimicking the mechanics of the basilar membrane, a true predictive model to 

design these sensors is missing. An ultra-fast and versatile model is necessary such that it 

could be used for the optimization of the model parameters. Non availability of such 

predictive model hinders the optimized design of the cochlea type sensors tailored to 

specific applications. Hence, in this research, two novel predictive models (plate type, 

beam type) for the band pass frequency sensors are proposed, mimicking the tapered 

geometry of the basilar membrane. It is aimed in this dissertation to develop the most 

flexible/versatile predictive models with all possible variable parameters that contribute to 

the frequency selection process. The models are developed in such a way that they can be 

employed for the optimized design of the sensors for wide varieties of scientific 

applications, respectively. Hence, the predictive models developed herein not only capable 

of handling the homogeneous model parameters but also capable of managing the 

functionally graded model parameters. This study reports that using the proposed 

predictive models, it is also possible to manipulate the attributes of the target frequency 

band using the functionally graded model parameters. The model flexibility based on the 

functionally graded parameters will allow the used to alter the geometric configuration of 

the envisioned sensor for a selected specific designed frequency band. Studies, using the 

finite element method (FEM) confirm the outcome of the proposed predictive models and 

prove that the innovative proposed model presented in this dissertation is even couple of 

orders (~ at least 3 times in a conventional personal computer) faster than its counter FEM 

model. 
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In addition to the introduction of bio-inspired mechanical band pass sensor, in this 

research, few novel applications of the proposed sensors are identified and envisioned, 

discussed herein. Two major applications in Mechanical and Biomedical engineering are 

identified, respectively. Mechanical application is in the realm of energy harvesting using 

the AEMM model and the biomedical application using the BM model is identified in the 

realm of pathogen identification where it is possible to sense and detect the presence of 

mycotoxins, a carcinogenic metabolite excreted by the fungal pathogens.  . In this work, 

very promising power densities were recorded using the AEMM energy scavengers. This 

motivates the harvesters to be employed for powering the low power electronic gadgets. 

On the other hand the characterization and the genus identification of the fungal pathogens 

can be achieved by classifying their secondary metabolites called mycotoxins. A BM based 

cantilever beam design is proposed to detect the presence of the type of the mycotoxins in 

the environment.   
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CHAPTER 1: INTRODUCTION 

 

1.1 Problem Statement 

In recent years the band pass sensors and the single frequency sensors are 

increasingly used in various applications of science engineering and technology. For 

example such sensors are used in the micro mechanical devices, manufacturing 

instrumentation, 3D printing, micro-electronics devices, photonics and phononic devices 

and overall in many chemical and biological applications. Frequency sensors are highly 

demanded in the above mentioned applications with the rapid advancement of the 

technologies that leads to the complex measurements / operations with the high level of 

accuracy. Our consumer driven market demands these sophisticated devices with the 

highest standards of quality but with uncompromised reliability.  

The in-process sensors plays significant role in assisting the industrial systems 

producing the near accurate outputs. In-process sensors are used to generate control signals 

to improve both the control and the productivity of the engineering systems. For example, 

acoustic emission (AE) sensors are used in many precision metal cutting processes to 

monitor the degree of tool wear, chip formation, surface features, etc., and in precision 

grinding,
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 acoustic emission sensors are used to detect both the near approach of the grinding 

wheel to the work surface, and the initial wheel contact with the work [1]. In particular, in-

process sensors are needed in engineering systems, because human oversight of the 

industrial process is inadequate to achieve the necessary level of performance.   

Traditionally, electronic and mechanical sensors are widely employed in industrial 

applications. Mechanical sensor covers a large area of the sensor technology due to its wide 

compatibility in many engineering domains. However, mechanical sensors are typically 

limited for high frequency applications due to its design constraints. Resonance 

phenomenon is the key in mechanical sensors to select a specific frequency. Because of its 

operating principle, large geometry is essential to employ the traditional mechanical 

sensors for low frequency applications. Hence, a novel but universal frequency selection 

process is necessary which can be adopted for sensing almost any wide range of 

frequencies with controlled geometric configurations.  

1.2 Background 

Frequency sensors can be classified into two categories; 1) Distinct single 

frequency sensor, where a unique frequency is the frequency of interest and the sensors are 

devised to sense only one peak of a frequency; 2) Band frequency sensor (also termed as 

Band Pass sensor), where a band of frequencies are sensed when the rest of the frequencies 

are filtered. Creating an ability of the band frequency sensing, using multiple distinct 

frequency sensors is a common practice. Cantilever beam (CB) model is the most popular 

approach in designing such sensors. Exploring the resonance frequencies, it is possible to 

select a unique frequency from a specific beam. These types of sensors monitor and detect 
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the resonance frequency shift in order to facilitate the analysis of the target parameters [2-

8].  

Battiston et al. [9, 10] presented a chemical sensor based on an array of eight silicon 

cantilever beams. All cantilevers are glazed on one side with a sensor coat that displays a 

distinct response to the target analyte molecules. Because of the change in surface stress or 

the beam mass the cantilevers mechanically respond to the bending of the beams, when the 

sensor layer is exposed to the analyte. Similar class of bio-chemical sensors are also 

presented by Moulin et al. [7] that can absorb bio-chemical species on the functionalized 

surface of a microfabricated cantilever and cause surface stress. Biosensors have attracted 

substantial attention in the last few years since the monitoring of a specific 

matter/molecules are crucial aspect in many applications ranging from the clinical analysis 

to the environmental control and to the monitoring of numerous industrial processes  [6, 

11-13]. Zhu et al. [14] proposed a piezoelectric microcantilever sensor for detection of 

humidity through resonance frequency shift due to the change in the young’s modulus of 

the cantilever beams. Hodnett et al. [15] describes a broadband acoustic sensor to evaluate 

the acoustic emissions from the cavitation produced by a typical commercial 20 kHz 

sonochemical horn processor.   

1.3 Objectives 

Cantilever beam based frequency sensors use the resonance phenomenon to select 

a target frequency. Operating principle of cantilever beam limits these sensors to only high 

frequency applications due to their humungous size to achieve the resonance behavior at 

the lower frequencies. Hence a universal approach is essential to select the low frequencies, 
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mechanically. In this work, we intend to introduce an innovative frequency selection 

mechanism that can be employed at the both low and high frequency applications. After 

rigorous study, it has been found that, in nature, the human cochlea performs similar 

operation where it senses only a specific range of frequency (20 Hz to 20 KHz) and filters 

all the other frequencies, mechanically. Basilar membrane is the key component in the 

cochlea in selecting and filtering acoustic frequencies using the varying stiffness of the 

membrane from base to apex end [16]. The basilar membrane is stiff and narrow (about 

100 μm) near the base, and flexible and wide (about 500 μm) near the apex, with a smooth 

logarithmic transition along its length. During operation as a  broadband / band pass sensor, 

human cochlea performs four major operations (a) it create local resonances; (b) it captures 

only the chosen frequencies and remain unresponsive to the other frequencies; (c) it senses 

the input frequencies with a sensory medium (called hair cells); and in turn (d) it spatially 

selects the frequencies. Note that, human cochlea uses the local resonance phenomenon, 

which allows the ~35 mm long cochlea to select very low frequencies (< ~3 KHz) which 

is impossible using the cantilever beam design. In this research, we aimed to propose a 

universal bio-inspired mechanical band pass sensing technique, mimicking the 

functionalities of the human cochlea that can be employed for selecting both the low and 

the high frequencies. 

1.4 Approaches 

In this dissertation, based on their respective capabilities to introduce local 

resonance in the structure, two innovative models are proposed, a) Acousto-Elastic 

MetaMaterial (AEMM) model and b) Basilar Membrane (BM) model. AEMM’s are 
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typically composed of multiple constituent with different material properties and are 

traditionally used for filtering acoustic waves by creating frequency band gaps. 

Considering the wave filtration capabilities of the acoustic metamaterial, several AEMM 

models are studied to create very large stop bands such that the remaining possible 

frequencies can be filtered other than the targeted frequency band.. This process is named 

‘stop band technique (SBT)’, where the targeted frequency band can be passed 

automatically and sensed with a sensory medium. Upon successful attempts using SBT, an 

alternate process, named ‘pass band technique (PBT)’ is adopted. In PBT, it is aimed to 

sense only the targeted frequencies, so that the remaining frequencies can be filtered 

automatically. Local resonance phenomenon is the key in PBT to select a specific 

frequency from a unit cell AEMM. At local resonance frequency wave energy is trapped 

inside the soft constituent of the AEMM as an oscillatory motion. It is hypothesized that 

using a smart material capable of electromechanical transduction, it could be possible to 

recover the trapped energy and select a specific frequency from the unit cell AEMM. 

Hence, a multi-cell AEMM with systematic selection of model parameters is expected to 

result selection of the band of frequencies.  

In BM approach, it is intended to mimic the geometric configuration of the basilar 

membrane to replicate its operating principals. In recent years, several studies are 

performed to develop the broadband mechanical frequency sensors mimicking the 

mechanics of basilar membrane. Although few experimental studies have been reported to 

design the band pass sensors, a universal predictive model to predictively design the 

sensors is missing. Although few attempts were made in the past to analytically model the 

cochlea [17-23], those studies are not easily transferable to fabricate artificial cochlea due 
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to their simplified assumptions. Hence, in this work, a comprehensive predictive model for 

the BM based mechanical sensor is proposed. Using the proposed BM model any frequency 

bands can be selected as the target parameter and the respective design parameters can be 

obtained, predictively for fabrication. It is intended to develop the most flexible predictive 

model that not only capable of handling the homogeneous model parameters but also 

capable of managing the functionally graded model parameters.. Two design methods for 

the BM sensors are proposed i) the plate model and ii) the beam model. The plate model is 

necessary if a continuous frequency band is required to be sensed without losing any 

intermediate frequencies, while the beam model can be useful where precise selection of 

some distinct frequencies are essential. Finite different (central) scheme is implemented to 

develop the proposed predictive models.  

1.5 Inspiration 

Nature is the best source of ultimate scientific references. Hence, to advance the 

existing state-of-the-art knowledge, scientists are not only digging hard in their associated 

areas, but also taking inspiration from the natural systems. In science and engineering these 

unique natural behaviors are possible to be considered or mimicked by the researchers with 

different backgrounds to achieve the desired design objectives. Hence in this study we 

adopted a unique bio-inspired behavior to introduce a novel mechanical band pass 

frequency sensing mechanism. It is known that the nature is the most important source of 

inspiration for engineering materials, processes, methods, structures, tools, devices, 

mechanisms, and systems to foster engineering creativity and innovations to its zenith. 

Structural and operational perfections of the biological systems are achieved through 
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evolution and since the primitive age of the mankind all the discoveries have been inspired 

by the nature. Thus it can be said that the nature has been an experimental platform for all 

the major scientific and technological discoveries. In recent years the idea of inspiration, 

mimicking and/or imitation of the natural systems in more orderly fashion, have  initiated 

the biomimetic and/or bioinspired research and design (BIRD) practice for the engineering 

designers. It is known that the creative and innovative products are emerged during the 

conceptual design phase of the engineering design process. Thus a bioinspired conceptual 

design process can be treated as the first step of the BIRD process and existing engineering 

design phases can be applied for the succeeding phases of the BIRD.   

1.6 Outline 

Primary objective of this work is to introduce the multi-scale computational model 

for the bio-inspired acousto-ultrasonic band pass sensor that are capable of mechanically 

sense and/or filter wide range user defined frequencies.  The proposed method not only 

overwhelms the inabilities of the respective state-of-the-art, but also suggests its few novel 

applications. This report is organized in such a way that it can deliver both the importance 

and the capabilities of the proposed band pass mechanism. The organization of the study 

is given below: 

Chapter 1: Describes the target and the necessities of this work. This chapter also 

describes the corresponding background and the state-of-the-art technologies.  

Chapter 2: Two models are proposed in this research to introduce mechanical band 

pass sensing mechanism, AEMM and BM models. In AEMM model, two approaches are 
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attempted, Stop Band Technique (SBT) and Band Pass Technique (BPT). In chapter 2, 

SBT is briefly described.   

Chapter 3: Upon unsuccessful attempt using SBT method, BPT is adopted. This 

chapter describes the development of the unique frequency selection approach using the 

AEMM model and referring to the bio-inspiration demonstrated in chapter 6. Analytical, 

numerical and experimental studies are presented to concrete the hypothesis as discussed 

in section 1.4.  

Chapter 4: Demonstrates the development of BM based mechanical broadband 

sensor. Under the umbrella of BM approach, two designs are proposed. Plate model and 

the Beam model. In chapter 4, development of the comprehensive predictive model for the 

plate design is demonstrated. 

Chapter 5: This chapter describes the development of the predictive model for the 

BM beam model. 

Chapter 6: Describes the bio-inspired background of the proposed hypothesis as 

referred in chapter 3. Human cochlea is considered as the reference structure. Summarizes 

the key features of the cochlea in designing the novel frequency selection mechanism.  

Chapter 7: In this research, in addition to the proposed mechanical models for novel 

frequency selection mechanism, few innovative applications of the proposed models are 

also presented. Chapter 7, covers the key limitations of the state-of-the-art technologies for 

low frequency energy scavenging in powering low power electronic devices, demonstrates 
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the development of energy harvester using the AEMM model and Power optimization 

approaches are suggested in this chapter.  

Chapter 8: Inspired from the energy harvester presented in chapter 7, three 

additional novel applications of the AEMM model are proposed (Highway noise barrier, 

Mobile energy harvester and the energy harvester for pacemakers).  

Chapter 9: Inspired from the BM beam model, mycotoxin classification sensor is 

proposed using cantilever beam model. Existing detection methods are covered. Guidelines 

to conceal the inabilities of the existing techniques are described using Infrared 

Photoacoustic Spectroscopy.  

Chapter 10: Beside primary objectives of this research, I was involved in couple of 

other projects (e.g. energy scavenging using patterned piezoelectric layer, phonon 

confinement using spirally oriented elastic resonators, precursor damage state 

quantification). Chapter 10 describes the energy scavenging procedure using patterned 

piezoelectric wafer.  

Chapter 11: Demonstrates phonon confinement process using elastic resonators, 

where resonators are oriented spirally.  

Chapter 12: Summarizes the contributions of this work and finally conclude the 

dissertation with future prospects and development of this research. 
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CHAPTER 2: AEMM MODEL (STOP BAND TECHNIQUE) 

 

In this study, the principal aim is to demonstrate the feasibility of designing a 

mechanical band pass frequency sensor that can predictively sense, pass, or actuate 

acoustic waves with desired specific frequencies or a band of frequencies, mechanically. 

Two approaches can be adopted to model the targeted mechanical sensor using the acousto-

elastic metamaterial (AEMM).  

1. Create a model that can introduce extremely wide frequency band gapsa by 

stopping all unwanted available frequencies and target frequencies can be 

passed/sensed automatically. This approach is termed as the stop band 

technique (SBT).  

2. Create a model that can sense only desired frequencies, and hence 

automatically filters the available remaining frequencies, called the band pass 

technique (BPT).   

aBand gap is defined as the band of frequency where the energy transmission 

coefficient is very low and almost no energy can pass through the structure. 

As of date, the SBT is widely used and probably the only method to filter the 

acoustic wave. Additionally, since the Band Pass Technique is not adopted earlier by any 
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researcher and doesn’t have any mathematical/physical background, we adopted the Stop 

Band Technique as our initial step to achieve our objectives.  

2.1 Literate Review 

Traditionally, researchers use stop band technique for filtering or stopping acoustic 

waves. It has been found that conventional materials do not possess the ability to provide 

such frequency stop bands. Hence, researchers proposed a system of material, called 

Metamaterialb, to perform the objective.  

bMetamaterials are artificial materials engineered to have properties that have not 

yet been found in nature. They are assemblies of multiple individual elements fashioned 

from conventional materials, such as metals or plastics, but the materials are usually 

constructed into repeating patterns. Metamaterials derive their properties not from the 

compositional properties of the base materials, but from their exactingly-designed 

structures. Their precise shape, geometry, size, orientation and arrangement can affect 

acoustic or electromagnetic waves in a manner not observed in natural materials. These 

metamaterials achieve desired effects by incorporating structural elements of sub-

wavelength sizes, i.e. features that are actually smaller than the wavelength of the waves 

they affect. 

Acoustic metamaterials are kinds of metamaterials designed to control, direct, and 

manipulate sound waves as these might arise in gases, liquids, and solids. The  

acoustic metamaterial follows the theory and outcome of negative index material [24]. 

Since the acoustic metamaterial is one of the branches of the metamaterials, the basic 
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principle of the acoustic metamaterials is similar to the principle of metamaterials. These 

metamaterials usually gain their properties from structure rather than composition, using 

the inclusion of small inhomogeneities to enact effective macroscopic behavior. A negative 

refractive index of acoustic materials can be attained by altering the bulk 

modulus and mass density [25]. The bulk modulus of a material reflects the substance's 

resistance to uniform compression, whereas mass density of a material is defined as mass 

per unit volume. For acoustic metamaterials, both bulk modulus and mass density are 

component parameters, which define its refractive index.  

In certain frequency bands, the effective mass density and bulk modulus may 

become negative. This results in a negative refractive index [24]. Neither negative mass 

density nor negative bulk modulus are found in naturally occurring materials; they are 

resulting from the resonant frequencies of an artificially fabricated metamaterial, and such 

negative responses are anomalous responses. Negative mass density or bulk modulus 

means that at certain frequencies the medium expands when 

experiencing compression (negative modulus), and accelerates to the left when being 

pushed to the right (negative density) [26].  

Resonating with the idea of acoustic metamaterial, numerous researchers have 

improved the concept of wave filtration capabilities by designing new and innovative 

materials [27-35]. El-Bahrawy [36, 37] and Banerjee et.al. [38, 39] studied wave 

propagation in periodic wave guides where surfaces of elastic media (wave guides) were 

proposed to be perturbed sinusoidally without creating any inclusions inside the material. 

Thus surface perturbations (surface etching) and volume perturbations (inclusions) are 
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completely different genres of metamaterials. Here the metamaterials with volume 

perturbation is discussed. On the other hand, photonic researchers are engaged in designing 

electromagnetic metamaterials [40-42] to explore photonic band gaps, a range of 

frequencies where electromagnetic waves cannot propagate [43]. Physical understanding 

of stress (elastic) wave propagation in phononic crystals and electromagnetic wave 

propagation in photonic crystals are similar [44-46]. Thus the concepts of designing new 

engineered materials are commutable between electrodynamics and elastodynamics. As a 

thumb rule, mass-in-mass systems are frequently proposed under a elastodynamic problem 

to predicatively manipulate the frequency band gaps in metamaterials with engineered 

volume inclusion. Application of such acoustic metamaterials have been envisioned for 

acoustic cloaking, vibration control, sound isolation, etc. [47, 48].  

It is well-established that in any acoustic metamaterial, frequency band gaps are the 

results of either local resonance or Bragg scattering [49, 50]. Low frequency sound can be 

controlled by introducing locally resonant components into a unit metamaterial (known as, 

sonic crystal) [30, 34, 35, 49, 51], whereas conventionally high frequency stop bands can 

be formed by multiple scattering (Bragg) of the periodic inclusion of the sonic crystals [29, 

31-33, 35, 50]. A acoustic metamaterial offers some exceptional properties (e.g. negative 

bulk modulus, negative effective mass density), which are not achievable using natural 

materials. Bragg scattering, formation of negative bulk modulus, negative effective mass 

density or both simultaneously, result in formation of band gaps and resonance bands with 

a high density of states (DOS)c in periodic structures [28, 52-55]. Negative effective mass 

density arises from the negative momentum of the unit cell with positive velocity field [56, 

57]. In a mass-in-mass unit cell, the effective mass of the cell becomes negative at 
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frequencies near the local resonance frequency of the resonators due to special decay of 

wave amplitude [27]. Usually, a locally resonant medium consists of a heavy core 

embedded into a soft matrix. Local resonance of stiff materials (like, heavy core) in the 

system leads to the formation of frequency band gaps and can be manipulated by altering 

the size of the corresponding stiff component [31]. However, local resonance in matrix 

material allows a weakly dispersive band with a high density of states. It has been 

established that in any metamaterial system, additional stop bands can be introduced by 

adding additional local resonators in the system [27, 28]. 

cDensity of states (DOS) is calculated from the obtained dispersion relation. DOS 

of the system is the number of states (modes) that exist at each frequency level. A high DOS 

at a specific frequency level means that there are multiple modes available for occupation. 

Maximum DOS can be obtained where the frequency band is almost straight in the 

dispersion curve, which means the group velocity is close to zero and the wave energy is 

trapped inside the structure.  A DOS of zero at any frequency means that no modes can be 

occupied at that frequency level and termed as stop band. For highly dispersive unimodal 

wave motion, the DOS is very small but not zero. The DOS is calculated from the dispersion 

relation by applying the following equation. In calculating the DOS, total wave number 

(∑ 𝑑𝑘) is computed for each frequency(𝑑𝜔 = 1 𝐻𝑧). 

𝐷𝑂𝑆(𝜔) =
1

𝜋

𝑑𝑘

𝑑𝜔
 

Band gap manipulation was found in tremendous interest in the recent past, due to 

its diversified application capabilities. In this study, sonic bands (0-10 kHz) are analyzed 
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to extensively improve the wave filtering ability by using the acoustic metamaterial. In 

2003, Hirsekorn et al. [51] performed a numerical simulation of acoustic wave propagation 

through sonic crystals consisting of local resonators using the local interaction simulation 

approach (LISA). They found three strong attenuation bands at frequencies between 0.3 

and 6.0 kHz, which do not depend on the periodicity of the crystal. An extremely low 

frequency band gap for the Lamb waves can be obtained by periodically depositing single-

layer or two-layer stubs on the surface of a thin homogeneous plate [30]. Caballero et al. 

[49] showed that absolute sonic band gaps produced by two-dimensional square and 

triangular lattices of rigid cylinders in air can be increased by reducing the structure 

symmetry. Based on the idea of localized resonant structures, Liu et al. [58] fabricated 

sonic crystals that exhibit spectral gaps with a lattice constant of two orders of magnitudes 

smaller than the relevant wavelength.  

In early works, researchers were able to filter small ranges of frequency bands 

either in low or high frequency regions though their proposed metamaterials. However, 

this study is focused on isolating a very wide range of frequencies, both in low and in high 

frequency regions. If by any means, higher numbers of closely spaced band gaps are 

obtained, they can be eventually manipulated to be merged. Such multiple band gaps could 

potentially form wider band gaps. Such possibilities were not demonstrated by any 

previous models. Thus in this study, several models are envisioned to achieve the objective. 

Since resonator size and shape plays an important role in forming frequency band gaps 

[31], at first we envisioned a novel split ring metamaterial model with different size and 

shaped resonators. The concept of split rings is inspired by the studies on electromagnetic 

waves in photonics. Guenneau et al. [59] proposed a double ‘C’ resonator for wave 
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focusing and confinement. Movchan et al. [60] used split-ring resonators to control 

electromagnetic bands in two-dimensional photonic structures. Many other photonic 

researchers found split ring useful in manipulating electromagnetic waves for a specific 

purpose. To the best of the author’s knowledge, split-ring resonators are introduced into an 

acoustic wave arena for the very first time in this study. Since Bragg scattering plays an 

important role in forming wider frequency band gaps, in the next model, the previously 

envisioned unit cell is placed in such a way that each unit cell is a mirror image of its 

neighboring cell.  

Huang et al. [27, 28] showed that the number of band gaps in a system increases 

with the increase of the number of resonators in the system. In past research, mostly one 

or two heavy core resonators were used to generate low frequency sonic band gaps. Hence 

in next model, the conventional heavy core is divided into small circular resonators. 

Initially the small resonators are placed in a random order by keeping the same volume 

fraction within a unit cell. However, it is hypothesized that resonator orientation may have 

a considerable impact on band gap formation. Hence, two new models are visualized where 

resonators oriented circularly and logarithmic spirally. The spiral orientation came to mind 

since significant research has been performed in the field of photonics, where guiding of 

the electromagnetic wave by using spiral resonators [61-68] was demonstrated. For most 

cases, Archimedean spiral orientation was adopted.  He et al. [69] proposed a three-

dimensional chiral metamaterial consisting of arrays of the multi-layered mutually twisted 

metallic spirals which can exhibit negative refractive index at terahertz frequencies. Isik et 

al. [70] determined the electromagnetic response of the particles arranged in Archimedean 

spiral by using point group symmetry and the methods of crystallography. In 2011, Elford 
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et al. [71] proposed a Bernoulli type spiral coil resonator to attenuate sound pressure level 

at a low frequency region. They found three attenuation areas within the frequency range 

0-2.2 kHz. A seashell resonator was also proposed, which is quite similar to a naturally 

obtained nautilus shell that can attenuate sound pressure levels at a wide range of 

frequencies. Since it is established that Bragg scattering depends on the periodicity of the 

unit cell and has significant impact on band gap formation, in the next model, the spiral 

resonating system is placed in a hexagonal unit cell to make the structure periodic from 

three directions.  

Since the spiral structure is not symmetric about the unit cell, it is plausible to 

enhance the directional sensitivity of the spiral and result alteration of a wide range of wave 

modes, simultaneously. It is hypothesized that by using spiral rotation, the existing band 

structures can be manipulated and/or possible to introduce new band gaps, keeping the 

direction of wave propagation constant.  

The envisioned models to extensively filter acoustic waves and introduce 

remarkably wide and continuous stop bands on both low and high frequency regions are 

listed below: 

1. Split ring metamaterial 

a) With continuous periodicity 

b) With mirror periodicity 

2. Multiple mass-in-mass system  
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a) With random resonator orientation 

b) With circular resonator orientation 

c) With spiral resonator orientation and square periodicity 

d) With spiral resonator orientation and hexagonal periodicity 

2.2  Numerical Implementation 

It is extremely challenging to perform a mathematical formulation of the proposed 

complicated material systems, and thus the analysis is performed using the Finite Element 

Method [72]. In order to calculate the dispersion relation, the complete structure is 

considered infinite in both x- and y- directions by arranging the unit cell periodically. The 

Bloch-Floquet periodic [73] boundary condition is applied at all boundaries of the unit cell. 

The Bloch-Floquet boundary conditions are based on the Floquet theory, which can be 

applied to the problem of small-amplitude vibrations of spatially periodic structures. The 

theory states that the solution can be sought in the form of a product of two functions. One 

follows the periodicity of the structure, while the other one follows the periodicity of the 

excitation. The problem can be solved on a unit cell of periodicity by applying the 

corresponding periodicity conditions to each of the two components in the product. The 

generalized wave equation in a composite material can be written as:  

𝐶𝑖𝑗𝑘𝑙(𝑥𝑚)[1/2(𝑢𝑘,𝑙𝑗(𝑥𝑚, 𝑡) + 𝑢𝑙,𝑘𝑗(𝑥𝑚, 𝑡))] + 1/2(𝑢𝑘,𝑙(𝑥𝑚, 𝑡) +

𝑢𝑙,𝑘(𝑥𝑚, 𝑡))𝐶𝑖𝑗𝑘𝑙(𝑥𝑚),𝑗  + 𝑓𝑖(𝑥𝑚) =

𝜌(𝑥𝑚)𝑢𝑖̈ (𝑥𝑚, 𝑡)                                                                         (2.1)  
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where, the constitutive matrix containing material properties and the density of the 

system are the functions of space (𝑥1, 𝑥2). 𝑖, 𝑗, 𝑘, 𝑙 & 𝑚 takes values 1, 2 & 3. Standard 

index notation is used throughout this manuscript. Let the body force 𝑓(𝑥𝑚)be constant.    

The unit cells are repeated in both directions and the solution can be assumed in 

terms of the Bloch-Floquet [74] solution, as discussed in the previous paragraph. Assuming 

there is no periodicity along 𝑥3 direction & decoupling the phase component, the 

displacement solution can be viz.  

𝑢𝑖(𝑥𝑚, 𝑡)

=  ∑ ∑ 𝐴𝑖
𝑛1𝑛2 exp(𝑖𝑘𝑚𝑥𝑚) . exp(𝑖𝐺𝑚𝑥𝑚). exp(𝑖𝑘3𝑥3) . exp (−𝑖𝜔𝑡)

𝑛1𝑛2

                 (2.2) 

where,𝑘𝑚 is wave number along 𝑚-th direction and 𝐺𝑚 is component of the 

reciprocal lattice vector along 𝑚-th direction. Here, 𝑚 takes values 1 & 2. 𝐺𝑚 can be 

expressed as 𝐺𝑚 = 2𝜋𝑛𝑚/𝐷𝑚, where, 𝐷𝑚 is the periodicity of the cells in 𝑚-th direction. 

The 𝐴𝑖
𝑛1𝑛2is amplitude of the wave modes for particle displacement along 𝑖 and 𝑛1& 𝑛2 

are the integer numbers between −∞ 𝑡𝑜 + ∞.  After substituting equation (2.2) in equation 

(2.1) the Bloch equation with the Bloch operator can be obtained as follows: 

[𝜔2𝜌(𝑥𝑚) ∑ ∑ 𝐴𝑛1𝑛2
𝑖

𝑛1
exp(𝑖(𝑘𝑚 + 𝐺𝑚)𝑥𝑚)

𝑛2
] + 

[
1

2
𝐶𝑖𝑗𝑘𝑙(𝑥𝑚)(𝑘𝑚 + 𝐺𝑚)2𝛿𝑚𝑗 −

𝑖

2
(𝑘𝑚 + 𝐺𝑚)

𝜕𝐶𝑖𝑗𝑘𝑙(𝑥𝑚)

𝜕𝑥𝑗
] ×                                             
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[∑ ∑ 𝐴𝑘
𝑛1𝑛2 exp(𝑖(𝑘𝑙 + 𝐺𝑙)𝑥𝑙) + ∑ ∑ 𝐴𝑙

𝑛1𝑛2 exp(𝑖(𝑘𝑘 + 𝐺𝑘)𝑥𝑘)
𝑛1𝑛1𝑛2𝑛1

]

= 0         (2.3) 

The above equation is a Bloch eigen value problem. The equation (2.3) is then 

multiplied with Bloch operator, with Bloch transformed weighting factor and integrated 

over the whole domain of the body and the equation was transformed to its weak form. 

Periodic boundary conditions are applied around the unit cell and the weak form of Bloch 

equation is solved only within the irreducible Brillouin Zone [74].  Further number of 

amplitude in the equation (2.3) is reduced for each wave number (k) point. Thus the 𝑛1& 𝑛2 

are reduced from infinity and the truncated set of Bloch mode expansions [73] were used 

in the solution method.  A suitable choice of reduced order basis was made based on the 

high symmetry points that characterize the periodic lattice. Next the Finite Element 

discretization was performed. Triangular isoparametric elements were used in the 

simulation. Element sizes were determined based on a series of convergence studies and 

the minimum wave length occurred in the material. The sizes of the elements were kept to 

a minimum of 1/10 of the corresponding minimum wave length occurred in any material 

type, respectively. The Bloch displacement amplitudes were discretized using the 

isoparametric shape function (𝑁𝑖(𝒙)) suitable for triangular elements for each combination 

of 𝑛1& 𝑛2 in their truncated series as follows:  

𝐀𝑛1𝑛2 = ∑ 𝑁𝑖(𝐱)Ʌ𝒊

𝟑

𝒊=𝟏

                   (2.4) 
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Applying the discretization equations and periodic boundary conditions, the weak 

form of Bloch equation reduces to an algebraic eigenvalue problem[𝐊(𝑘) − 𝜔2𝐌]�̃� = 𝟎, 

where �̃� is the discrete Bloch amplitude vector, which are periodic within the unit cell. The 

K(k) and M are the global stiffness and mass matrices, respectively obtained by integrating 

the element level matrices in proper order. Detail expressions for K and M can be found in 

reference [73]. The solution of the eigen value problem provided the dispersion curves for 

the proposed periodic media.   

2.3 Validation of Solution Methodology 

Since the investigation is conducted using FEM tool, validation of the solution 

methodology is essential. It is challenging to perform the mathematical formulation for the 

proposed models due to their increasing complexity. Hence, the simple mass-in-mass 

system (Ref. Figure 2.1) which is well established in literature is studied to validate the 

solution methodology.  

 

Figure 2.1: Single-resonator mass-in-mass system with square periodicity (dimensions 

are in mm). 
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The unit cell is composed of four components. A significantly stiff material, lead 

(component 1), is chosen as circular resonator [44, 58]. To avoid evanescent wave modes, 

the core resonator is coated with softer rubber like material (component 2). The rubber-

lead arrangement is then embedded into a relatively stiffer component (epoxy). The lead-

rubber-epoxy combination is synonymous to well-known mass-in-mass engineered 

material system proposed by the earlier researchers [28]. It is mathematically proven that, 

such engineered system provides frequency band gaps (stop bands) virtually creating 

negative bulk modulus and negative mass density in the structure. In engineered material 

system, the negative responses happen due to the mismatch of material properties between 

adjacent components. Hence, to allow extreme property mismatch, the mass-in-mass 

system is placed inside a square unit element and the gap is filled with a relatively softer 

material (polyethylene plastic).  

Table 2.1: Properties of the components enclosed in unit cell. 

 Lead Rubber Epoxy Polyethylene 

Young’s Modulus (Pa) 13e9 10e6 3.5e9 0.7e9 

Density (kg/m3) 11310 980 1250 1050 

Poisson’s Ratio 0.435 0.49 0.38 0.49 

The complete lead-rubber-epoxy-polyethylene setup is considered as the 

Representative Volume Element (RVE) in this section. The unit cell is a 105 mm square 

and diameters for lead, rubber and epoxy components are considered as 25.4 mm, 33.9 mm 

and 90 mm, respectively. Material property of the unit cell components are listed in Table 

2.1. 
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It is well known that, frequency band gap occurs due to negative mass density [75] 

and resonance of local microstructures in metamaterials [27, 28, 30, 31, 49, 51-53, 56, 58]. 

To validate the above statement and adopted FEM solution methodology, multi-layered 

mass-in-mass model (Ref. Figure 2.1) is considered. This study is carried out for a 

frequency range of 0 to10 KHz. For illustration purpose, the response is reported between 

0 to 4 KHz in Figure 2.2. Computed effective mass densities are normalized by the density 

of the stiffest component (lead) of the cell. The effective mass density of the unit cell is 

calculated by using the following formula under the long wavelength assumption.  

ραβ =
∫ σαβdΓ

∫ üαβdΓ
                    (2.5) 

where α, β = 1, 2 and σαβ and üαβ are the local stress and acceleration quantities. Γ 

denotes the external boundary of the unit cell.  

Dispersion curve for the single resonator metamaterial within the first Brillouin 

zone is shown in Figure 2.2a. Using the definition of mass density in equation 2.5, it has 

been found that the mass density of the system stays negative between the frequency range 

2.27 – 2.71 KHz (Ref. Figure 2.2b). Alternatively, a stop band is observed (Ref. Figure 

2.2a) at frequency range between 2.28 - 2.74 kHz (considering Γ-X directional waves). 

Same band gap exist for all ΓXMΓ directional waves as well. Since the mass density of the 

metamaterial stayed negative between the same frequency bands apparent from the stop 

bands indicated by the dispersion curves, the computational methodology is thus validated. 

This phenomenon is well reported in the literature [27, 28, 30, 31, 49, 51-53, 56, 58, 76, 

77]. 
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Figure 2.2: (a) Dispersion relation (b) Mass density plot for the single-resonator mass-in-

mass system. 

 

2.4  Split Ring Metamaterial 

Model Description 

A two dimensional structure (25.4 mm X 25.4 mm) with split ring resonators is 

proposed in this model. Figure 2.3 illustrates the schematic of the unit cell. The unit cell is 

composed of a steel core of diameter 3.6 mm embedded in a circular ring of outside 

diameter 7.18 mm. A softer material (Epoxy) is used to seal the space between the steel 

ball and the circular ring. Similar mass-in-mass system was also proposed by Huang et al. 

[27]. However, in this study, one additional set of semicircular rings are placed 

symmetrically about the core to increase the number of band gaps. To generate access to 
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new portal to manipulate further frequency bands, another pair of elliptical split rings are 

positioned symmetrically but orthogonally to the previously positioned semicircular rings. 

All rings are made of steel with thickness 0.94 mm and are included is a softer material. 

For simplicity, the steel cores, elastic coating and the split rings are considered embedded 

in an epoxy matrix. Material properties of the unit cell are listed in Table 2.2. 

 

Figure 2.3: Proposed unit split-ring metamaterial with first Brillouin zone representation. 

 

Table 2.2: Material properties of the components of the split-ring metamaterial 

 

 

Material Young’s Modulus (GPa) Density (kg/m3) Poisson’s Ratio 

Steel 205 7850 0.28 

Epoxy 2.35 1110 0.38 
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Dispersion Relation Analysis 

Split ring metamaterial with two types of periodicity (Continuous and Mirror) is 

discussed. A wider frequency range (0-50 KHz) is studied. Figure 2.4 describes the 

dispersion relation of the split ring metamaterial with continuous periodicity, where 

repetition of identical unit cell (Ref. Figure 2.3) in both (x- and y-) directions is considered 

as the continuous periodicity. The total band structure is computed for ΓXMΓ boundary 

(see Figure 2.3). Three band gaps are observed from 20.83 to 22.07 KHz, 27.22 to 29.94 

KHz and 36.72 to 37.47 KHz with band widths of 1.24 KHz, 2.72 KHz and 0.74 KHz, 

respectively. 

 

Figure 2.4: Dispersion relation for Split ring metamaterial with continuous. 
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To understand the explanation of band gap formation in gap frequencies, a 

frequency domain analysis is performed. A uniformly distributed compressive load of unit 

magnitude (P in Figure 2.5a) is applied on both opposite ends of the unit cell along x-

direction. According to load-deformation laws, it is expected to witness compressive 

deformation in the unit cell along x-direction upon such input loading. At an arbitrary 

frequency 28.5 KHz (a frequency within band gap 27.22 to 29.94 KHz) it is observed that 

the unit cell is tending to elongate even though a compressive load is applied (Ref. Figure 

2.5b). Such unusual phenomenon signifies the formation of negative bulk modulus at 

frequencies where band gap exists and hence verifies the established hypothesis on creation 

of frequency band gaps. 

 

Figure 2.5: (a) Loading setup in unit cell (b) Displacement mode at f = 28.5 kHz. 

The split ring metamaterial is found an improved model compared to previously 

studied metamaterials in considering number of stop bands within the studied frequency 

level. Inspired from the outcome, split ring model with mirror periodicity is studied to 

expand the width of the frequency band gaps and merge neighboring bands so that 
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extensive filtering of the acoustic frequencies can be possible. The proposed configuration 

is shown in Figure 2.6a. With the mirror periodicity, it is possible to widen the second band 

gap significantly (9 KHz, between 24 KHz and 33 KHz). In the contrary, the 1st and 3rd 

band gap disappeared with the modification in the periodicity (Figure 2.6b).  

 

Figure 2.6: (a) Split ring metamaterial with mirror periodicity (b) Corresponding 

dispersion relation. 

 

Subsection Summary  

Using split ring metamaterial with continuous periodicity, number of stop band is 

improved compared to previously studied models. The proposed models could be a good 

choice for wave isolation study where several stop bands are required with small band 

widths. However, the model is not a good argument for the targeted study since continuous 

stop band for a very wide range of frequency is required. With mirror image periodicity 
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fairly wider frequency stop band is obtained with a band width of 9 kHz (24 kHz to 33 

kHz) compared to previous model (maximum band width 2.7 kHz), however some of the 

previously obtained bands are disappeared. Though the second model is an improved 

version of model-1 compared to stop band width, but it is still not close enough to our 

required model which can stop very large range (maybe 100 KHz or more) of frequency. 

2.5 Multiple Mass-in-Mass (MMM) System 

Since formation of frequency band gap is strongly dependent on number of 

resonators used in a metamaterial system, several multiple mass-in-mass models are 

considered to extensively increase the wave filtering capability of the system.  

Envisioned Models 

To create the MMM models, the mass-in-mass system referred in Figure 2.1 is used 

but the central lead resonator with rubber coating is divided into thirty-two (arbitrarily 

chosen) small resonators such that the diameter of small resonators can be maintained as 

4.5 mm. To study the effect of multiple resonators in host matrix, first a random orientation 

(see Figure 2.7a) of the resonators in the unit cell is studied. The random configuration 

hasn’t shown noticeable improvement toward the desired goal and thus the small resonators 

are placed systematically in a circular orientation (see Figure 2.7b). Inspired from the 

outcome, the resonators are then placed in a logarithmic spiral pattern (Figure 2.8) to 

extensively manipulate the frequency bands in both low and high frequency region.  
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Figure 2.7: (a) Random and (b) Circular orientation of the resonators in unit cell 

(Dimensions are in mm.) 

Both square and hexagonal periodic cells are considered for the spiral 

configuration. The hexagonal unit cell is 105 mm wide with 60.62 mm long faces. 

Logarithmic spiral was chosen such a way that the small resonator (4.5 mm) could cover 

at least two full turn (i.e. 4π). Following a logarithmic equation in polar coordinate system- 

r(θ) = cebθ, where c and b are two arbitrary positive real constants, it was found that c = 

10/3 and b = 0.2 could fit the proposed geometry in order to keep the overall configuration 

and number of resonators consistent (Figure 2.7 and Figure 2.8). Effect on wave modes 

could possibly be altered by changing the parameters c and b and could result different 

outcomes.  
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Figure 2.8: Proposed spiral resonator with (a) Square (b) Hexagonal periodicity 

Since the spiral setup is not symmetric about the origin, incident wave on spiral can 

be altered by rotating the spiral orientation. Such rotation alters the amount of energy 

scattered through the material. In order to manipulate the existing band widths and 

introduce new band gaps, the spiral arrangement is rotated (Figure 2.9), systematically.   
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Figure 2.9: Rotation of spiral resonators about the direction of wave propagation (a) 00 

(b) 300. 

Section Result and Discussion 

Numerical analyses are performed using the same numerical approach discussed in 

section 2.2. The proposed complex configurations were analyzed by using the validated 

computational technique presented in section 2.3. All reported results in this section are 

obtained between frequency ranges of 0-10 KHz. Since the numbers of frequency bands 

depend on the numbers of degrees of freedom of the system, splitting the big resonator may 

allow more band gaps at same frequency range. It has been noticed that random orientation 

(Ref. Figure 2.7a) of the small resonators isn’t a good choice to improve the number of 

band gaps and only two band gaps are obtained, while five band gaps are listed when the 

resonators are systematically oriented in a circular orientation (Ref. Figure 2.7b). It is also 

visually apparent that at around 5 KHz the nondispersive zone (where frequency bands are 

straight) of the wave modes is broaden by employing the circular orientation where the 
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density of states are significantly increased. Dispersion curves for both random and circular 

orientations are shown in Figure 2.10.  

 

 

Figure 2.10: Dispersion curve for (a) Random orientation (b) Circular orientation 
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It is difficult to perceive the exact location and range of the stop bands from Figure 

2.10. Thus, the band gaps obtained from all configurations are listed in Table 2.3. The band 

gaps above 100 Hz are only reported in Table 2.3. Note that, for band gap comparison Γ-

X directional waves are considered. 

Table 2.3: List of stop bands in Γ-X direction for random orientation, circular orientation 

and spiral configuration 

Orientation Band Start (Hz) 

Band End 

(Hz) 

Band Gap (Hz) 

# of Band 

Gaps 

Random 

Orientation 

3866.691 4051.225 184.534 

02 

8673.753 8805.328 131.575 

Circular 

Orientation 

3482.235 3616.836 134.6014 

04 

5836.571 6176.112 339.5419 

7287.709 7415.066 127.3569 

8218.752 8437.614 218.8627 

Spiral 

Orientation 

(Sq. Cell) 

3454.667 3703.175 248.5084 

07 

4756.028 4910.274 154.2455 

5155.613 5288.248 132.6351 

7588.973 7753.167 164.1935 

9246.151 9367.912 121.7604 

9549.62 9663.73 114.1109 

9728.052 9837.955 109.9026 

Spiral 
4734.045 4510.483 223.562 

10 

7293.706 7175.432 118.2731 
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Orientation 

(Hx. Cell) 

7570.903 7434.122 136.7811 

7736.459 7604.774 131.6848 

7981.432 7819.903 161.5284 

8422.138 8275.442 146.6963 

8812.458 8541.347 271.1107 

8963.19 8827.699 135.4912 

9100.463 8999.008 101.4544 

9663.074 9535.885 127.1886 

 

Since systematic (circular) orientation of the resonators showed some 

improvement, next the resonators are placed in a logarithmic spiral orientation. Significant 

improvement was observed with seven band gaps (see Figure 2.11 and Table 2.3) by 

orienting the resonators in spiral pattern in a square periodic unit and keeping the spiral 

setup at 450 with the direction of wave propagation. Similarly, using spiral resonator in a 

hexagonal periodic unit and keeping the spiral setup at 450 with the direction of wave 

propagation, 10 stop bands are observed (Figure 2.12 and Table 2.3). Although the extent 

of the band gaps are smaller, many band gaps at close proximity provide flexibility to alter 

them by rotating the spiral.  
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Figure 2.11: Dispersion curve for spiral orientation in square cell by keeping the spiral 

450 with the horizontal. Associated density of states on right. 

 

Figure 2.12: Dispersion curve for spiral orientation in hexagonal cell and corresponding 

density of states. 
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From the proposed analysis and dispersion curves presented in Figure 2.11 and 

Figure 2.12, it is difficult to visualize the location and width of the band gaps. Thus, Figure 

2.13b and Figure 2.13d are introduced to demonstrate the band gaps corresponds to square 

and hexagonal cell, respectively. It has been noticed that, keeping the same volume fraction 

in the unit cell and positioning the resonators in a circular and logarithmic spiral 

orientation, larger number of band gaps can be obtained compared to the single resonator 

metamaterial and random orientation of the resonators.  

 

Figure 2.13: Dispersion relation and band gap representation for Square (a - b) and 

Hexagonal (c-d) cell, respectively, for Γ-X directional wave by keeping the spiral 00 with 

horizontal. 

Large numbers of band gaps were observed for both types of periodicity (square 

and hexagonal). At 7.8 - 9.7 Hz, no band gap is noticed in square unit cell, however 

significantly large stop bands are observed for hexagonal cell at that region. Usually low 

frequency band gaps are associated with the local resonance of the cell constituents, 
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whereas high frequency band gaps are results from Bragg-scattering in any periodic 

structure. The hexagonal cells are periodic in three directions, hence allows extended 

scattering of wave energy compared to the square cell periodicity, which leads to the 

formation of increased number of band gaps at high frequency regions (Figure 2.13d). 

 

Figure 2.14: Displacement/vibration patterns of the spiral resonators in 1st (a-b), 2nd (c-

d), 3rd (e-f), 4th (g-h), 7th (i-j) and 37th (k-l) modes. 

Vibration/Displacement patterns of unit cell at different frequency modes are 

described in Figure 2.14. First and second modes in Figure 2.13a are the two axial vibration 

modes of the complete spiral setup as shown in Figure 2.14(a-b) and Figure 2.14(c-d). 

Displacement patterns of these modes are presented at ka/π = 0.4 (dashed line in Figure 

2.13a). Rotation of the spiral is noticed in third mode (Figure 2.14(e-f)), whereas shear 

stretching of spiral took place in the fourth mode (Figure 2.14(g-h)). Next thirty-two (mode 

5th – 36th) frequency modes are strongly dominated by the softest component (Rubber) of 

the cell, where the energy is trapped inside and the frequency modes are almost straight 

(coined as Weakly Dispersive Modes (WDM)). Ripple in spiral orientation in different 

directions are observed in the modes from 37th mode and onward.  Such alteration of spiral 
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structure created the high frequency modes leaving some new band gaps at high frequency 

region. 

The WDM refer to the modes where distinct wave modes exists but dω along the 

wave number axis between 0 − ka/π are less than 20 Hz. The bands that are exhibiting the 

Weakly-Dispersive Zone (WDZ) are shown in Figure 2.13b & Figure 2.13d with marking. 

It is well understood that the WDZ are the response of vibration trapped inside the softest 

component of the cell. No geometric dependency of such modes was reported. It was found 

that using random, circular and spiral orientation these WDZ modes can be altered or 

broadened. Width of the WDZ is very narrow (~ 8 Hz) for random orientation and around 

25 Hz for circular orientation. But it can be extended up to 57.5 Hz & 73.5 Hz (Figure 

2.13) by using the spiral orientation in square and hexagonal unit cells, respectively. It is 

also noticed that the dense zone, where density of WDM is maximum, can be shifted by 

arranging the resonators in a systematic order. WDZ’s can be significantly advantageous 

in stopping low frequency acoustic waves composed of multivalued wavenumbers through 

a structure. Note that the numbers of resonators in the unit cell are exactly equal to the 

number of weakly dispersive wave modes found from the dispersion curves. Nearly zero 

group velocities (Cg = ∆ω/∆k) were observed for weakly-dispersive modes, which 

signifies roughly no energy dissipation on those modes and will result very low to zero 

transmission. As a result the density of states at any frequency is significantly high. A close 

up view of the density of states presented in Figure 2.11 and Figure 2.12 are presented in 

Figure 2.15 between the frequencies 4970 Hz – 5120 Hz. Figure 2.15 shows the envelop 

obtained from Hilbert transform of the data on density of states at certain frequency. There 

is an indication of enhanced weakly dispersive zone by employing spiral packing of local 
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resonators. Moreover the zone is enhanced by hexagonal periodicity of unit cell over 

rectangular unit cells.       

 

Figure 2.15: Envelop of density of states within the weakly dispersive zone for different 

resonator configurations 

At WDZ, frequency modes are trapped inside the softest component of the structure 

(Figure 2.16) [58]. Displacement patterns at 5086.12 Hz and 5086.13 Hz, selected 

arbitrarily, are presented for #14 and #17 weakly-dispersive modes in Figure 2.16a and 

Figure 2.16b, respectively, with group velocities of 0.10971 m/s and 0.02058 m/s. Since 

the displacements of the resonators were found very small but nonzero, negligible amount 

of energy is absorbed by the stiffest part of the structure at WDZ. Similar pattern is also 

observed for randomly distributed resonators of same volume fraction. Hence, in this 

context of weakly dispersive zone, a definite geometrical pattern is not imperative as long 

as the local resonators (stiff materials inside a soft matrix) are present in the wave paths.  
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Rotation of Spiral Resonator System 

As discussed earlier, band gaps above 100 Hz are only reported in this section, 

however, with spiral orientation, there exist a large number of band gaps which are very 

close to 100 Hz (e.g. 99 Hz, 98 Hz etc.), unlike random and circular orientation where the 

next band gap after 100 Hz is only 8.5 Hz. Since the spiral resonators are not symmetric 

about the unit cell, those frequency band gaps can be easily improved by rotating the spiral 

setup and it also might be possible to connect two adjacent band gap and form a wider stop 

band. However due to symmetricity circular resonator setup does not allow such 

improvements.  

As the spiral setup is not symmetric about the origin of the unit cell, orientation of 

the spiral opening (Ref. Figure 2.9a) or the long arm about the wave direction exhibit 

considerable impact on wave propagation. Since the waves along Γ-X direction are studied, 

the spiral opening is oriented parallel to the wave direction. Hence, to analyze the 

directional sensitivity, the spiral setup is rotated about the direction of wave propagation 

with 300 increments (Figure 2.9b). In addition, 450 and 1350 rotations are also considered 

as they are synonymous to M-Γ directions (Ref. Figure 2.6a) for the square unit cell. Since, 

1800≥θ≥3600 is a mirror representation of 00≤θ≤1800, hence shows expected similar 

response.  

In the following figures, maximum band widths of the frequency bands beyond 100 

Hz are reported. As expected and discussed earlier the weakly-dispersive zones (Figure 

2.16) are found to be uninfluenced by the spiral rotation, whereas frequency band gaps 

above weakly-dispersive zones can be manipulated significantly by altering the spiral 

orientation. It has been noticed that new band gaps are introduced for both square and 
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hexagonal unit cells and widths of the preexisting band gaps can be considerably altered 

(Figure 2.16). Six band gaps were noticed at 00 orientation for the square periodic cell with 

no band gaps in between 7.8 KHz and 9.5 KHz. But three narrow stop bands are introduced 

after rotating the spiral to 300.  

 

Figure 2.16: Band gap plot at different rotation of single spiral resonator with (a) Square 

(b) Hexagonal periodicity. 

Rotating the spiral may introduce more stop bands and as a consequence, ten band 

gaps are listed when the spiral is rotated to 450 - 600. For the hexagonal periodic cell, ten 

band gaps are observed at 00 orientation and a maximum of twelve band gaps can be 

achieved with the modification of spiral orientation. It is also found that width of a 

particular band can be extensively manipulated by rotating the spiral in the unit cell, 

however merging of adjacent stop bands hasn’t achieved using the proposed spiral rotation 

technique. 
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Subsection Summary 

Spiral structures show important characteristics in filtering sound waves. Though, 

Archimedean spiral resonators are familiar in photonics research community, however 

spiral resonators are novel in phononic research area. In this section, a set of circular 

resonators are placed in a logarithmic spiral orientation to filter and guide sonic acoustic 

waves. Two types of periodic cells (Square and Hexagonal) are considered. Significantly 

larger number of frequency band gaps can be achieved by placing the resonators in a 

logarithmic spiral orientation, rather than using single heavy resonator or placing the 

resonators in a random or circular pattern. Since high frequency band gaps are function of 

Bragg-scattering in any periodic structure, hexagonal unit cell provides additional band 

gaps compared to square cell due to its three directional periodicity. Coined weakly-

dispersive modes (WDM) are noticed for the first time in this section. In weakly-dispersive 

zone, the vibration modes are get entrapped into the softest material of the cell, while the 

resonating material kept vibrationless. Nearly zero group velocities are computed for the 

propagated wave which leads to negligible dissipation of wave energy. The concept of 

WDM can be very useful for later studies where energy trapping or nearly zero energy 

transmission is essential. It is also reported that, introduction of new band gaps and 

extensive alteration of band widths can be possible by rotating the spiral setup about the 

direction of propagating wave. Since number of stop band increased extensively by using 

the spiral resonator setup, it was expected that significantly large and continuous stop band 

can be created through widening and merging existing neighboring stop bands by rotating 

the spiral setup. Unfortunately, the expectation isn’t fully fulfilled with the spiral rotation. 

It can be conclude that proposed MMM models are capable to significant number of 

frequency band gaps, but unable to create very wide and continuous stop bands.  
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2.6 Chapter Summary 

Both Split ring metamaterials and Multiple Mass-in-Mass systems are significantly 

improved models for wave filtration studies in considering the capacity of forming 

frequency band gaps. Band width can also be improved by using the spiral resonating setup. 

However, both the models are quite off in achieving the objective of the study by generating 

very large stop bands. Weakly dispersive phenomenon is observed, which can be useful 

for future studies where energy trapping or nearly zero transmission is necessary. Since the 

Stop Band Technique hasn’t found a good enough choice for this study, it is essential to 

adopt the novel Band Pass Technique. 
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CHAPTER 3: AEMM MODEL (BAND PASS TECHNIQUE) 

 

Since the Stop Band Technique (SBT) found not good enough for the targeted 

objective, novel Band Pass Technique (BPT) is adopted. The Band Pass Technique is an 

opposite method compared to the Stop Band Technique. Principal objective in this chapter 

is to propose a mechanical model that is capable of passing/actuating only the desired 

frequencies and stopping/filtering all other available frequencies in the system. Following 

the objective, in SBT, we aimed to propose a model that can filter all unwanted system 

frequencies, hence allows to pass through the desired frequencies. On the contrary, in BPT, 

we intent to develop a model that is only capable of sensing/passing the required 

frequencies and remain unresponsive for other frequencies, hence filtered automatically.   

After rigorous study it has been found that, nature offers similar sort of operation 

through human hearing system. It is well known that, hearing range of a normal human is 

20 Hz to 20 KHz, known as sonic frequency. Human hearing organ can’t capture below 

and beyond the sonic frequency range. This means, human ear can only sense and pass 20 

Hz to 20 KHz and isolate all other frequencies exist in nature. In human ear, cochlea is the 

principal part in selecting sonic frequencies. Since we are inspired from the functionality 

of the cochlea in modeling our system, it is critical to clearly understand the working 

principle of human cochlea (Refer chapter 6 for more details). 
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Here we implemented the concept of hair cell mimicking the functionality using a 

smart material. As a first trial we first embedded the piezoelectric material inside the 

acoustoelastic metamaterial for selecting a specific frequency. 

To design a bio-inspired band pass sensor/filter it is critical to model a system that 

is able to perform the principal operations (Perform local resonance; Sense desired 

frequency and filter all other frequencies in environment; Sense input frequency with some 

kind of sensory medium and Select frequency spatially) of the basilar membrane (Refer 

chapter 6). Resonance in a system is a common mechanical phenomenon, however local 

resonance seems an unusual feature where only a part of the system exhibits resonance 

characteristic whereas remaining parts stay vibrationless. From our previous study for stop 

band technique, it has been found that acoustic metamaterial has the ability to introduce 

local resonance in structure. Hence in this section acoustic metamaterial is considered to 

investigate whether it can perform all principal operations of human cochlea and can 

develop a mechanical band pass sensor. 

3.1  AcoustoElastic MetaMaterial Model 

Acousto-elastic metamaterials (AEMM) are traditionally used for filtering acoustic 

wave using bragg scattering and local resonance. As mentioned earlier, AEMM are 

typically made as periodic structure where bragg scattering takes place due to the 

periodicity of the unit AEMM and local resonance it the result of mechanical property 

mismatch in unit structure. Since local resonance is the targeted phenomenon is this 

section, hence unit AEMM is studied in developing the band pass sensor. At local 

resonance frequencies, the frequency bands are almost straight in dispersion curve (Ref. 
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Figure 2.13), which was termed as weakly dispersive zone (WDZ). In process of filtering 

acoustic wave, AEMM’s are either guide the acoustic energy in other directions (called 

scattering) or traps the energy inside the structure as local resonance (see Figure 3.1).  

 

Figure 3.1: Wave filtering using AcoustoElastic MetaMaterial through energy trapping in 

addition with energy recovering scope using smart material. 

Since at local resonance frequencies, wave energy with specific frequency contents 

is trapped inside the structure as dynamic strain energy, it is hypothesized that using a smart 

material (converts mechanical vibration to electrical signal) the trapped frequencies can be 

recovered. However it is essential to have a proper design of the AEMM to place smart 

materials and recover the trapped frequencies. To illustrate the concept, a three-

dimensional unit-cell AEMM model is considered as shown in Figure 3.2. The unit cell is 

a rectangular ~36.5 mm X ~36.5 mm X ~14 mm prism consisting of a rectangular 

aluminum frame with a cylindrical matrix inside. A spherical heavy core made of lead (Pb) 

is encapsulated inside the matrix. Diameter of the core mass (Dm) and the matrix (DM) are 

~12.5 mm and ~25 mm, respectively. Material properties of the unit cell is listed in Table 

3.1. 
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Table 3.1: Properties of the components enclosed in the AEMM unit cell. 

 Lead Rubber Aluminum 

Young’s Modulus (Pa) 13.5e9 0.9942e6 68.9e9 

Density (kg/m3) 11340 1600 2700 

Poisson’s Ratio 0.435 0.47 0.33 

 

 

Figure 3.2: Unit cell AcoustoElastic Metamaterial (AEMM) 

It is hypothesized that, at local resonance frequencies wave energy will trap and 

stay as dynamic strain energy inside the soft constituent (Rubber) of the unit cell. Hence a 

piezoelectric material (PZT 5H) is placed in between the lead core and aluminum inside 

wall to convert trapped strain energy into electrical potential. Analytical, numerical and 

experimental studies are performed to validate the hypothesis. 



49 
 

3.2 Analytical Development 

 

Figure 3.3: Spring-mass representation of unit cell AEMM 

The unit cell AEMM (Ref. Figure 3.2) can be represented as spring-mass system as 

shown in Figure 3.3. For computational simplicity, the analytical model is developed for 

2-dimensional domain. Considering the outer frame (Aluminum) is rigid with a cylindrical 

void of diameter d. The void contains a spherical ball of mass m1 and radius r1. Another 

mass m2 (piezoelectric material) is placed in between the mass m1 and inner wall of the 

outer frame. Since it is assumed that the cylindrical void is filled with soft rubber, hence it 

can be represented as an elastic spring with spring constant K. A force F(t), where t is the 

time, is applied on the left side of the rigid frame.   
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Effective Dynamic Mass Calculation 

Let us consider a balance of linear momentum in the composite system. Assume 

that all quantities depend harmonically on time and that a one-dimensional approximation 

of the problem is adequate. The spring attached to the left wall of the cavity exerts a force 

f1(t) on the wall while the spring attached to the right wall exerts a force of f2(t) on the wall. 

Then the internal and external forces acting on the unit cell of the bar are given by 

F(t) = Re(F̂e−iωt) 

f1(t) = Re(f1̂e−iωt) 

f2(t) = Re(f2̂e−iωt) 

where the amplitudes F̂, f1̂ and f2̂ are generally complex. Let the time-dependent 

position of the left side of cavity is given by 

X(t) = X0 + U0(t) = X0 + Re(U0̂e−iωt) 

where X0 is the initial position and U0̂ is the complex valued displacement of the 

bar. Then the velocity of the rigid bar is 

V0(t) =
dX

dt
= Re(−iωU0̂e−iωt) = Re(V0̂e−iωt) 

where V0̂ = −iωU0̂. Assume that the rigid frame has mass M0. Therefore, the linear 

momentum of the rigid bar is 

Pframe = M0V0(t) = M0Re(V0̂e−iωt) 
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If U1(t) is the relative displacement of the ball, the position of the ball is given by 

x1(t) = X(t) +
d

2
+ U1(t) = X0 + U0(t) +

d

2
+ U1(t) 

x1(t) = X0 +
d

2
+ [U0(t) + U1(t)] = X0 +

d

2
+ u1(t) 

where u1(t) = U0(t) + U1(t). For harmonic motions, we can write  

x1(t) = X0 +
d

2
+ Re(u1̂e−iωt)                    (3.1) 

where u1̂ is the complex valued displacement of the core ball. Therefore, the 

velocity of the ball is 

v1(t) =
dx1

dt
= Re(−iωu1̂e−iωt) = Re(v1̂e−iωt) 

where v1̂ = −iωu1̂. The linear momentum of the ball is given by 

Pball(t) = m1v1(t) = m1Re(v1̂e−iωt) 

If U2(t) is the relative displacement of the piezoelectric material, the position of 

the piezoelectric material is given by 

x2(t) = X(t) +
d

4
+ U2(t) = X0 + U0(t) +

d

4
+ U2(t) 

x2(t) = X0 +
d

4
+ [U0(t) + U2(t)] = X0 +

d

2
+ u2(t) 
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where u2(t) = U0(t) + U2(t). For harmonic motions, we can write  

x2(t) = X0 +
d

4
+ Re(u2̂e−iωt)                     (3.2) 

where u2̂ is the complex valued displacement of the piezoelectric material. 

Therefore, the velocity of the piezoelectric material is 

v2(t) =
dx2

dt
= Re(−iωu2̂e−iωt) = Re(v2̂e−iωt) 

where v2̂ = −iωu2̂. The linear momentum of the piezoelectric material is given by 

PP(t) = m2v2(t) = m2Re(v2̂e−iωt) 

Then the total linear momentum of the system is 

P(t) = Pframe + Pball + PP 

P(t) = M0Re(V0̂e−iωt) + m1Re(v1̂e−iωt) + m2Re(v2̂e−iωt) 

P(t) = Re(P̂e−iωt) 

where P̂ = M0V0̂ + m1v1̂ + m2v2̂. From Newton’s second law, the applied force 

equals the rate of change of linear momentum,  

F(t) =
d

dt
[P(t)] 

Hence, considering harmonic forces, we have 
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Re(F̂e−iωt) =
d

dt
[Re(P̂e−iωt)] 

F̂ = −iω(M0V0̂ + m1v1̂ + m2v2̂) 

Let us now consider the free-body diagram of springs inside the cavity those are 

connected to the piezoelectric material as shown in Figure 3.4. 

 

Figure 3.4: Free-body diagram for the spring-mass system those are connected to the 

piezoelectric material 

Hooke’s law for each spring implies that 

−f1(t) = KU2(t) = fi1
(t)               (3.3) 

where K is the complex spring constant. Recall that the displacement of the spring 

is given by 

u2(t) = U0(t) + U2(t) 

U2(t) = u2(t) − U0(t) = Re(u2̂e−iωt) − Re(U0̂e−iωt)                        (3.4) 

Using equation (3.4) in (3.3) 
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−Re(f1̂e−iωt) = K[Re(u2̂e−iωt) − Re(U0̂e−iωt)] = Re(fi1
̂e−iωt) 

f1̂ = −fi1
̂ = K(U0̂ − u2̂)                    (3.5) 

Next considering the free-body diagram of the spring-mass system (see Figure 3.4 

and equation (3.2)), the balance of linear momentum for the spring-mass system implies 

that 

f1(t) − fi1
(t) = m2

d2x2

dt2
= m2Re(−ω2u2̂e−iωt) 

Re(f1̂e−iωt) − Re(fi1
̂e−iωt) = m2Re(−ω2u2̂e−iωt) 

f1̂ − fi1
̂ = −m2ω2u2̂                     (3.6) 

Using equation (3.5) and (3.6) 

−m2ω2u2̂ = 2K(U0̂ − u2̂) 

u2̂ =
2K

2K − m2ω2
U0̂                 (3.7) 

Now consider the free-body diagram of springs inside the cavity those are 

connected to the ball as shown in Figure 3.5. 
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Figure 3.5: Free-body diagram for the spring-mass system those are connected to the ball 

Using Hooke’s law, 

−fi2
(t) = KU1(t) = f2(t)               (3.8) 

Recalling the displacement of the spring as, 

u1(t) = U0(t) + U1(t) 

U1(t) = u1(t) − U0(t) = Re(u1̂e−iωt) − Re(U0̂e−iωt)                        (3.9) 

Using equation (3.9) in (3.8) 

fi2
̂ = −f2̂ = K(U0̂ − u1̂)                    (3.10) 

Now considering the free-body diagram of the spring-mass system (see Figure 3.5 

and equation (3.1)), the balance of linear momentum for the spring-mass system implies 

that 
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fi2
(t) − f2(t) = m1

d2x1

dt2
= m1Re(−ω2u1̂e−iωt) 

fi2
̂ − f2̂ = −m1ω2u1̂                     (3.11) 

Using equation (3.10) and (3.11) 

−m1ω2u1̂ = 2K(U0̂ − u1̂) 

u1̂ =
2K

2K − m1ω2
U0̂                 (3.12) 

Now, V0̂ = −iωU0̂, v1̂ = −iωu1̂ and v2̂ = −iωu2̂. Hence, 

v1̂ =
2K

2K − m1ω2
V0̂                  (3.13) 

v2̂ =
2K

2K − m2ω2
V0̂                  (3.14) 

Recalling the linear momentum amplitude of the system, 

P̂ = M0V0̂ + m1v1̂ + m2v2̂                  (3.15) 

Plugging equations (3.13) and (3.14) in (3.15) 

P̂ = M0V0̂ + m1

2K

2K − m1ω2
V0̂ + m2

2K

2K − m2ω2
V0̂ 

P̂ = [M0 +
2Km1

2K − m1ω2
+

2Km2

2K − m2ω2
] V0̂ = MeffV0̂ 
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where Meff is the effective dynamic mass of the system and given by 

𝐌𝐞𝐟𝐟(𝛚) = 𝐌𝟎 +
𝟐𝐊𝐦𝟏

𝟐𝐊 − 𝐦𝟏𝛚𝟐
+

𝟐𝐊𝐦𝟐

𝟐𝐊 − 𝐦𝟐𝛚𝟐
 

Voltage Output Calculation 

It is hypothesized that upon dynamic behavior of the constituents of the system, 

piezoelectric material will experience compressive force along its thickness direction. 

Referring Figure 3.4, total compressive force acting on piezoelectric material, 

f(t) = f1(t) + fi1
(t) = f1(t) + fi2

(t)              (since fi1
=  fi1

) 

Using equations (3.5) and (3.10) 

f(t) = K[U0(t) − u2(t)] + K[U0(t) − u1(t)] 

f(t) = K[2U0(t) − u1(t) − u2(t)] 

Considering harmonic motion 

f̂ = K[2U0̂ − u1̂ − u2̂]                   (3.16) 

Using (3.7) and (3.12) in (3.16) 

f̂ = K [2U0̂ −
2K

2K − m1ω2
U0̂ −

2K

2K − m2ω2
U0̂] 

f̂ = U0̂ [2K −
2K2

2K − m1ω2
−

2K2

2K − m2ω2
] 
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Stress on piezoelectric material, 

TP =
f̂

AP
=

f̂

πr2
2 =

U0̂

πr2
2 [2K −

2K2

2K − m1ω2
−

2K2

2K − m2ω2
] 

Assuming,  

Me = 2K −
2K2

2K − m1ω2
−

2K2

2K − m2ω2
 

TP =
U0̂Me

πr2
2                     (3.17) 

where AP and r2 are the cross-sectional area and radius of the piezoelectric material 

along thickness axis. 

Electric charge density displacement of the piezoelectric material is given as 

{D} = [d]{TP} + [εP]{E} 

where εP, d and E are defined as permittivity, piezoelectric charge constant and 

electric field strength. 

Assuming the piezoelectric material is only polarized in thickness direction and 

neglecting all other effects, piezoelectric charge is given as 

D3 = d33T3
P + ε33

P E3                    (3.18) 

Electric field strength in thickness mode, 
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E3 =
V(t)

h
                    (3.19) 

where h is the thickness and V(t) is defined as the electric potential generated across 

the piezoelectric material. 

Using equations (3.17) and (3.19) in (3.18) 

D3 = d33

U0(t)Me

πr2
2 + ε33

P
V(t)

h
 

Electric charge density, 

q(t) = ∫ 𝐃 ∙ 𝐧 dA 

q(t) = ∫ ∫ D3

2π

0

dr dθ
r2

0

 

q(t) = ∫ ∫ [d33

U0(t)Me

πr2
2 + ε33

P
V(t)

h
]

2π

0

dr dθ
r2

0

 

q(t) = −
2d33Me

r2
U0(t) +

2πr2ε33
P

h
V(t) 

q(t) = C1U0(t) + C2V(t) 

Assuming, C1 = −
2d33Me

r2
 and C2 =

2πr2ε33
P

h
 

Electric current generated through piezoelectric material is given by 
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I(t) =
dq(t)

dt
= C1

dU0(t)

dt
+ C2

dV(t)

dt
 

Voltage generated across the resistive load R0, 

V(t) = R0I(t) = R0C1

dU0(t)

dt
+ R0C2

dV(t)

dt
 

Considering harmonic excitation, 

V0 = iωR0C1U0 + iωR0C2V0 

𝐕𝟎(𝛚) =
𝐢𝛚𝐂𝟏𝐑𝟎𝐔𝟎

𝟏 − 𝐢𝛚𝐂𝟐𝐑𝟎
 

Higher acceleration is capable of harvesting higher electric potential [78], thus the 

output response is presented in terms of Frequency Response Function (FRF) to normalize 

such effect. 

𝐅𝐑𝐅 = |
𝐕𝟎(𝛚)

𝛚𝟐
| 

Analytical Dynamic Response  

In this study, piezoelectric material PZT 5H is considered as energy conversion 

medium. Lead and Aluminum 6061 material properties are counted for core mass and outer 

frame. Necessary material properties for the analytical computation are listed in Table 3.2. 

. 
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Table 3.2: Required material properties for analytical computation 

Parameter Value Unit 

K 0.9986e3 N/m 

m1 11.423 gm 

m2 0.183 gm 

M0 31.4 gm 

r2 3.4925 mm 

h 0.508 mm 

d33 593 pC/N 

ε33
P  3400*8.854 pF/m 

R0 10 KΩ 

U0 1 mm 

 

Dynamic effective mass against excitation frequency is plotted in Figure 3.6b. 

Dynamic effective mass of the system is found to be negative at ~0.42 KHz and ~3.3 KHz. 

It has been proven that, the effective mass becomes negative near the local resonance 

frequency of the internal masses[79]. This also implies[58] that wave energy is trapped 

inside the soft matrix and cannot be transmitted through the structure[27, 80]. 

Consequently, the embedded wafer is stressed and maximum FRF is obtained at the local 

resonance frequencies (Figure 3.6a). Two dominant peaks are observed, where the first 

peak results from the local resonance of the core mass and the second peak is due to the 

resonance of the wafer itself. 
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Figure 3.6: Analytically obtained dynamic (a) FRF and (b) Effective mass 

3.3 Numerical Implementation 

Analytical study suggests that using the unit cell AEMM with proposed material 

combinations and PZT placement, local resonance takes place at a distinct frequencies. 

Hence, unique frequencies has been sensed using the piezoelectric material with maximum 

electric potential at corresponding frequencies. Alternatively, other frequencies in the study 

remain unsensed (or filtered) with negligible electric potential. The above outcome 

strongly supports the operating principal of our targeted mechanical band pass sensor/filter. 

To understand and verify the dynamics behind the maximum voltage output at local 
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resonance frequencies, a numerical study is performed with identical unit cell AEMM. 

Note that, in analytical study, for computational simplicity 1-dimensional study was 

performed, however the numerical study is performed in 3-dimensional domain.  

 

Figure 3.7: (a) Sample meshing of the unit cell AEMM (b) Harmonic excitation 

configuration 

A frequency domain analysis is performed using computational tool COMSOL 

multiphysics. 4-noded tetrahedral elements are used with maximum element size is 

maintained 1/4 times of the wavelength of the respective constituent at the highest 

frequency level of the study. A sample meshing configuration of the unit AEMM is shown 

in Figure 3.7a. Unit displacement (1 mm) harmonic excitation is applied on two opposite 

sides of the unit cell (see Figure 3.7b) to find the dynamic response of the cell constituents 

at different frequencies.   

Numerical computation supports the analytical argument with maximum FRF at 

~0.43 KHz and ~3.31 KHz (see Figure 3.8). Despite the fact that the numerical analysis is 

performed using a 3-dimensional (3D) model and the analytical study is performed using 
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a 1-dimensional (1D) spring-mass model, resonance frequencies are in very close 

agreement. On both occasions (resonance of the core mass and the wafer) the piezoelectric 

material encounters high compressive stress and records maximum electric potential (see 

Figure 3.9).  

 

Figure 3.8: Numerical and Analytical FRF response comparison of the unit AEMM at 

different frequencies 

At 0.43 KHz, the lead resonator is exhibiting local resonance and moving towards 

the piezoelectric material, following its thickness axis, which results compressive stress on 

PZT material. At 3.31 KHz, core mass is stationary, while PZT material is trying to 

resonate. Resistance force encountered by the PZT from surrounding the rubber during its 

resonance movement causes the FRF pick at corresponding frequency.  On the contrary, 

two different cases of low FRF at off-resonance frequencies (e.g. ~0.98 KHz & ~1.47 KHz) 

are shown in Figure 3.9c & Figure 3.9d.  
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Figure 3.9: Displacement patterns in a unit cell at (a) ~ 0.43 KHz (b) ~ 3.31 KHz (c) ~ 

0.98 KHz and (d) ~ 1.47 KHz. 

At ~0.98 KHz, the core mass moved towards the wafer but the matrix flows along 

the frame. Hence, the matrix adjacent to the wafer has a tendency to stream toward fringe 

matrix and distance between two masses is decreased. Although there is a relative 

movement, the lead ball is unable to create considerable stress on the wafer and negligible 

power is harvested.  At ~1.47 KHz, wave energy stays trapped inside the matrix as dynamic 

oscillation, while the core and the wafer are stationary. This phenomenon also results 

negligible FRF response. 

An additional possibility of sensing frequency at ~1.94 KHz (Figure 3.8) was 

found, which is not intuitive and was also not observed from the 1-D analytical model. In 
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this study, it is commented that the consequence of matrix splashing, contained between 

the core mass and the wafer, the modal inflection between ~1.94 KHz and ~1.95 KHz 

causes the electric potential (Figure 3.10). Oscillation of the matrix between the wafer and 

the heavy mass which is stationary causes the wafer to deform and produces electric 

potential.  

 

Figure 3.10: Matrix splashing phenomenon in unit cell model at the transition between ~ 

1.94 KHz and ~ 1.95 KHz. Displacement plots at ~ 1.94 KHz (a) front view (b) side view 

with surface outlines. Displacement plots at ~ 1.95 KHz (c) front view (d) side view with 

In numerical study unit displacement is applied as excitation input to evaluate the 

dynamic response of AEMM, however in practical case acoustic wave typically act as 

pressure wave on AEMM structure. Displacement excitation technique is adopted for 

experimental validation simplicity, however it is essential to demonstrate whether the 

displacement mechanism is comparable to pressure wave mechanism or not.  
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Figure 3.11: Dynamic behavior of the unit AEMM upon acoustic wave incidence. (a) 

Study setup with acoustic pressure input. (b) Acoustic pressure in air medium at ~430 Hz 

(c) Displacement modes of the constituents of the AEMM at ~430 Hz. 

Hence a 3-dimensional numerical study (frequency domain) is performed applying 

unit pressure as the input load. To consider the input load as acoustic pressure a long air 

medium of length L is used in both input and receiving ends of the AEMM (see Figure 

3.11). L is defined as, twice of the wavelength of the minimum studied frequency in the 

medium (air). Figure 3.11c shows the dynamic response of the unit cell upon unit acoustic 

pressure. It has been found that upon acoustic pressure, the AEMM unit cell encounters 

similar vibration modes compared to the displacement excitation mechanism. The 

resonance mode upon displacement excitation is found at ~ 430 Hz, while same 

displacement mode is observed at exactly the same the frequency (~ 430 Hz) with the 
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acoustic pressure input. Hence it can be conclude that both displacement and pressure wave 

mechanism provides identical dynamic response. 

The study also confirms the acoustic wave filtration ability of the AEMM (Ref. 

Figure 3.11b). Upon any applied pressure as shown in Figure 3.11a, the AEMM structure 

supposed to move along the pressure of incidence, since the cell is considered free to move 

in all directions. However at local resonance frequency (~ 430 Hz), the structure seems 

almost unmoved due to the formation of negative mechanical properties at corresponding 

frequency (ref Figure 3.6). Such negative properties (e.g. effective mass) helped the 

structure to act differently than the established laws of motion and remain in position, 

which results very low pressure amplitude (~ 0.16 mP) in receiving end of the AEMM 

(Ref. Figure 3.11b). Pressure amplitude is measured at an arbitrary point ‘A’ in the 

receiving end. To further confirm the wave filtration ability of the AEMM, response at two 

off-resonance frequencies are investigated. At both ~340 Hz and ~480 Hz, the unit cell is 

exhibiting positive movement along the direction of loading (Ref. Figure 3.12(a-b)) and an 

acoustic pressure of ~9.57 mP and ~30.6 mP is recorded at point ‘A’ at corresponding 

frequencies, respectively (see Figure 3.12(c-d)). Note that, acoustic pressure amplitude at 

point ‘A’ at the off-resonance frequencies (~340 Hz and ~480 Hz) are ~60 and ~190, 

respectively, times higher than the amplitude recorded at the resonance frequency (~430 

Hz). Significantly higher acoustic pressure amplitude is recorded at ~480 Hz because of 

the higher structural displacement amplitude at the corresponding frequency.   
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Figure 3.12: (a-b) Acoustic pressure and (c-d) cell displacement response at two off-

resonance frequencies, 340 Hz and 480 Hz. 

 

3.4  Experimental Approach 

Fabrication of the Model 

Both analytical and numerical approaches are in very close agreement concerning 

the proposal of sensing specific frequencies using unit cell AEMM. However, since the 

work is targeted for industrial applications, it is essential to validate the hypothesis 

experimentally. Hence, identical (compared with analytical and numerical) unit cell 

AEMM is fabricated in iMAPS (Integrated Material Assessment and Predictive 

Simulation) and Materials laboratory at Department of Mechanical Engineering, USC.  
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Figure 3.13: Fabrication steps of unit cell metamaterial. (a) Fabrication setup (b) Liquid 

rubber placement (c) Fabricated final form with embedded piezoelectric sensors to 

capture the vibration in the rubber only. 

Machined Aluminum 6061 is considered as the frame structure with a cylindrical 

hole to place the rubber and lead components. Since lead ball’s diameter is slightly lower 

than the thickness of aluminum block and it is required to place the ball at the middle 

(concerning all three dimensions) of the aluminum cavity, a cylindrical support is designed 

and fabricated using 3D printing technology (see Figure 3.13). The cylindrical support 

consist of three parts (Insider, Base and Handle) where diameter of the Insider portion is 

exactly same as the diameter of the aluminum hole. A small arc indentation is considered 

at the middle of the Insider, such that it can hold the lead ball at the middle. The Insider 

goes inside of the aluminum cavity and its dimension is set to support the lead core at the 

middle of the structure with high precision. Diameter of the Base is slightly higher than the 

width of the aluminum block, so that it can carry the whole structure.  
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The fabrication process is divided into two steps. First, the lead core is placed inside 

the middle of the aluminum block with the help of cylindrical support. A liquid rubber 

(OOMOO 300, contains two parts, mixed strategically for homogeneous strength) is then 

used to fill the cavity in aluminum block. Since it is necessary to sense / transfer signal 

from rubber component, a piezoelectric disk (with soldered wire) is fully submerged into 

the liquid rubber in such a way that it matches the identical orientation compared to the 

numerical or analytical study.  

Usual rubber curing time is 6 hours. However, it is required to start the second step 

of fabrication at around 3-4 hours after the first step. During the initial steps, cylindrical 

support was used to hold the lead ball at the middle. Hence, an empty space has opened at 

the bottom of the structure after removing the cylindrical support. In the second step, the 

new empty space is filled with the rubber following the same procedure described above. 

Since it is required to have a good bonding between the rubbers, the second step is started 

before the full curing time of the rubber.  

Testing and Response from unit cell AEMM model 

A Vibration Exciter (type 4809, from B & K Instruments) is used in testing the 

harmonic response of the fabricated metamaterial. The exciter is capable of providing 

controlled vertical displacement excitation. It is controlled through a Sine-Random 

Generator (type 1024) and Power Amplifier (type 2706) from Bruel & Kjaer. An aluminum 

support is manufactured to hold the metamaterial system in the vibration exciter. Schematic 

and actual experimental setup of the AEMM model in shown in Figure 3.14. The test job 

is clamped in two opposite sides and a simple harmonic displacement excitation (identical 
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with simulation input) is applied using the Sine-Random Generator (SRG). A frequency 

sweep operation is not available in our used SRG, however, it is only capable of generating 

a single frequency excitation at a time and excitation frequency can be tuned using the SRG 

knob. Tuning range of SRG is limited to 20 Hz to 20 KHz. An Oscilloscope (TDS 2004C, 

Tektronix) is connected to the piezoelectric wafer to recover the trapped energy response 

from the rubber component. 

 

Figure 3.14: (a) Schematic diagram of test setup for unit cell (b) real test setup for multi-

cell specimen. 

From numerical and analytical analysis it has been noticed that excitation at around 

~ 430 Hz and ~ 420 Hz, respectively, local resonance takes place in rubber-lead 

combination in the unit cell, which seems the best state to sense the signals from rubber 

through a piezoelectric sensor. The experimental approach reinforces (Figure 3.15) the 

analytical and numerical results with maximum potential at ~0.37 KHz and ~3.1 KHz. In 
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our experimental study, possible fabrication error and limitation of the instrumentation may 

have caused little shifts in the FRF peaks compared to the numerical and analytical 

solution. The FRF peak at ~1.94 KHz, suggested by the numerical computation is weakly 

observed in the experimental power output. Again such mismatch could be the result of 

imperfect alignment of the piezoelectric wafer.  

 

Figure 3.15: Analytical, Numerical and Experimental FRF response comparison for the 

proposed unit AEMM. 

The above analytical, numerical and experimental analysis confirms that using a 

unit AEMM it is possible to model a mechanical sensor which can sense specific desired 

frequencies and filter unwanted system frequencies. The proposed model satisfies the three 

principal operations of the most developed band pass sensor, human cochlea. It can 

introduce local resonance, filter/remain unsensed for unwanted frequencies and select the 

desired frequencies employing piezoelectric material. The proposed model lacks in 

selecting different frequencies spatially (another principal operation of human cochlea). 
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However, typically in industrial operations each sensor is designed to actuate only a unique 

frequency to the manufacturing tool. Hence, the proposed unit AEMM sensor is an 

acceptable choice for industrial manufacturing applications.  

3.5  Multi-cell AEMM Model 

In some engineering applications a band of frequency input/sensing could be 

essential or a multipurpose sensor may find valuable, which can provide multiple specific 

frequency input and can be used for multiple manufacturing operations. Keeping this in 

mind, using the established hypothesis, a multi-cell AEMM model is proposed. The 

proposed model consists of multiple (five) cells with linearly varying core mass in each 

cell (Figure 3.16). Mirror construction of the multi-cell wings is fabricated to avoid 

vibration instability during the dynamic operation. The proposed model is linearly tapered 

toward smaller cells and center-to-center spacing between cells are constant. Here a special 

measure is taken to keep the wafer inside the matrix in perfect alignment. 

 

Figure 3.16: Fabrication steps of a multi-cell AEMM structure. 
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Figure 3.17: (a) Multi-cell metamaterial model. Displacement patterns obtained through 

numerical simulation at (b) ~ 0.30 KHz (c) ~ 0.50 KHz (d) ~ 0.75 KHz (e) ~ 1.10 KHz (f) 

~ 1.30 KHz. (g) structural resonance at ~ 1.26 KHz. 

Numerical and experimental investigations suggests that wave energies at different 

frequencies are trapped (Figure 3.17 (b-f)) and can be sensed (Figure 3.18) using the 

proposed model. From cell 1 with heaviest core mass (11.43 gm, Dm=12.5 mm, DM=25 

mm), the peak potential is noticed at ~0.30 KHz. Similarly, other frequencies like ~0.50 

KHz, ~0.76 KHz, ~1.1 KHz, ~1.38 KHz can be selected from the cells 2-5, respectively. 

Mass and diameter (Dm) of the core masses are in cell 2: ~6.03 gm, ~10.2 mm, cell 3: ~2.86 

gm, ~7.9 mm, cell 4: ~0.97 gm, ~5.6 mm and cell 5: ~0.19 gm, ~3.3 mm, respectively and 

in all cells DM=2 Dm. In Figure 3.18 it can be seen that the FRF peaks between ~2.6 KHz - 

~3.1 KHz are consistent among all the cells because the mass of the piezoelectric wafers 
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are almost similar in all the cells. In Figure 3.18, the FRF peaks are normalized with respect 

to each respective cell at the local resonances.  

To illustrate further, the voltage output from multiple cells at ~0.30 KHz and ~1.10 

KHz are plotted in Figure 3.19, which confirms that ~0.30 KHz and ~1.1 KHz frequency 

inputs can be selected from the cells with core mass ~11.43 gm and ~0.97 gm, respectively. 

Figure 3.18 shows an additional FRF peaks at ~1.26 KHz, which is consistent among all 

the cells. The peak can be explained from the Figure 3.17g, which shows the effect of 

structural resonance.  

 

Figure 3.18: Normalized experimental response from multi-cell metamaterial model. 
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The above demonstration confirms that using a multi-cell AEMM with controlled 

parameters, multiple frequencies can be selected from different cells and can result a 

widely usable mechanical sensor. On the other hand, using the hypothesis and selecting the 

proper model parameters it is possible to introduce a broadband (or band pass) frequency 

sensor.  

 

Figure 3.19: Normalized voltage output at (a) ~ 0.3 KHz and (b) ~ 1.1 KHz with different 

core mass in each cell. 

 

3.6  Chapter Summary 

Upon unsuccessful attempt of developing a mechanical band pass sensor using stop 

band technique, band pass technique is adopted. Inspired from the most developed band 
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pass sensor in nature, human cochlea, acoustoelastic metamaterial is considered to perform 

the principal operations of the cochlea (basilar membrane). Upon analytical, numerical and 

experimental it has been established that, the unit cell AEMM models is capable of 

performing principal operations of the human cochlea, thus, able to sense specific 

frequencies and filter/remain unresponsive for all unwanted frequencies in the system. 

Following the hypothesis, a multi-cell AEMM model is proposed with varying geometric 

configurations in each cell. It has been found that, the multi-cell model is capable of 

selecting different frequencies from each cell, which can make the model widely usable in 

industrial applications. The multi-cell model also opens the opportunity to introduce 

broadband (or band pass) sensor with appropriate cell geometry and material properties.   
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CHAPTER 4: BASILAR MEMBRANE (PLATE MODEL) 

 

Principal aim of this dissertation is to propose a novel band pass frequency sensing 

mechanism. Two models are envisioned, Acousto-elastic metamaterial (AEMM) model 

and Basilar membrane (BM) model. Chapter 2 and 3 demonstrates the possibility to 

introduce mechanical frequency sensor using the acousto-elastic metamaterial. In this 

section, basilar membrane geometric configuration is considered to model the targeted 

frequency sensor. Under the umbrella of BM based sensor, two models are envisioned, 

plate model and beam model. This chapter describes the development of the plate type 

band pass frequency sensor. The concept of BM based frequency sensor is not fairly new. 

In recent years, a notable number attempts were made to develop the broadband frequency 

sensors adopting the mechanics of basilar membrane. However, a true ultra-fast predictive 

model is missing which can be used for the optimized design of these sensors. Hence, in 

this research, a predictive model for the band pass frequency sensor is proposed, mimicking 

the tapered geometry of the basilar membrane. Most flexible predictive model is developed 

with variable engineering parameters that contribute to the frequency selection. Hence, the 

predictive model developed herein can not only to handle homogeneous but also any 

functionally graded model parameters. With the proposed model, it is also possible to alter  
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the attributes of the selected length of the designed sensor for the same targeted frequency 

band using functionally graded parameters. A study, using finite element method (FEM) 

confirms the outcome of the proposed predictive model and proves that the developed 

model is almost 3 times faster than its counter FEM. 

4.1 Background 

To recover the hearing deficiency, cochlea implantation is essential if the inner ear 

is damaged. The key functions of cochlea are not only the conversion of acoustic wave into 

electric signals, but also the spatial selectivity of the frequencies [81]. Basilar membrane 

(BM), which is a biological diaphragm, plays the most important role in a human cochlea 

by selecting the sonic frequencies by naturally varying the mechanical properties and the 

boundary conditions of the biological membrane from the basal to the apical end (please 

refer chapter ). Basilar membrane selects the sonic frequencies spatially since the local 

resonance dominates at different places of the BM with inputs with different frequencies. 

Recently, mimicking the basilar membrane few attempts are reported to artificially realize 

the frequency selectivity. Chen et al. [82] proposed an artificial basilar membrane by 

deposing discrete Cu beams on a piezoelectric membrane or substrate. Tanaka et al. [83] 

fabricated a fishbone-like structure from a thin Si plate as an equivalent mechanical model 

of the cochlea. A micro cochlea model is presented by Wittbrodt et al. [84] using a thin 

polyimide plate as basilar membrane attached over a micromachined  fluid channel. Very 

recently Shintaku et al. [85] proposed a microbeam array with variable thickness and 

investigated its suitability for an acoustic sensor with wide-range of frequency selectivity. 

In 2013, Tanujaya et al. [86] presented an artificial basilar membrane prototype to catch 
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sinusoidal waves at various frequencies using Laser Doppler Vibrometer. White and Grosh 

[87] constructed a micro-engineered hydromechanical cochlea that has a micromachined 

membrane as well as a fluid-filled duct to mimic the cochlear chamber. However, the 

response frequencies detected by the acoustic input were above the audible frequency 

range. In a recent study, Kim et al. [88, 89] assessed the frequency selectivity of an artificial 

basilar membrane constructed using a piezoelectric beam array. Though a considerable 

number of studies are performed to model artificial mechanical cochlea, a predictive model 

is missing. A model is truly demanded that will guide and enhance the performance of the 

fabricated device or help design the sensors accurately/predictively with tailored target 

application in mind.  

Since it is established that the basilar membrane possess the ability to select a 

specific band of frequency, thus, in this study we intend to develop a band pass frequency 

sensor adopting the geometry of the basilar membrane. It is expected that using the 

proposed model it is not only possible to design the mechanical band pass sensor 

parameters (e.g. geometry, bandwidth) predictively, but also it will fulfill the long standing 

necessity of the predictive model for an artificial mechanical cochlea. Though few attempts 

were made in past to analytically model the cochlea [17-23], however, those studies are 

not easily transferable to fabricate artificial cochlea due to their simplified assumptions. In 

this study mimicking the actual basilar membrane in human cochlea a trapezoidal 

membrane is considered. In the process of developing the predictive model, we aimed to 

develop as flexible as possible (through allowing functionally graded model parameters 

and boundary conditions) such that the proposed model can be implemented in for large 

varieties of scientific applications. 



82 
 

4.2 Analytical Development 

Basilar membrane is a trapezoidal structure with narrower width at the base and 

wide at the apex. The membrane is attached to the boundary supports at the three ends 

except at the apex as shown in Figure 4.1. Following the configuration of the basilar 

membrane, a trapezoidal domain is considered in this study as the sensing device (Figure 

4.1). L is defined as the length of the continuous domain, where Bi and Bf are the base and 

apex widths, respectively. Significantly small thickness of the domain is measured to treat 

the domain as a thin membrane.  

 

Figure 4.1: Proposed geometric configuration of the band pass sensor 

To make the predictive model widely implementable or versatile, several 

flexibilities are incorporated in the model, for example, flexibilities in the (a) material 

properties (b) geometric configuration and (c) boundary conditions. A list of variable that 

can be handled with ease using the proposed predictive model is listed below. Apart from 

the listed conditions, other model parameters can be defined as a constant parameter. 

Flexibility of the boundary condition at the apex is not applicable as it is a free end 

mimicking the actual basilar membrane (e.g. right end in Figure 4.1).  

1. Stiffness [E(x, y)] (homogeneous / functionally graded) 
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2. Poissons Ratio [ν(x, y)] (homogeneous / functionally graded) 

3. Density [ρ(x, y)] (homogeneous / functionally graded) 

4. Thickness [h(x, y)] (uniform / functionally graded) 

5. Boundary condition (fixed / simply supported) 

Dynamic equation of the plate can be represented as shown is equation 4.1, where 

η and P are the deflection of the plate and downward uniform pressure on entire plate top 

surface, respectively. D = (Eh3)/(12(1 − ν2)) is defined as the bending stiffness of the 

membrane.  

∂4η

∂x4 + 2
∂4η

∂x2 ∂y2 +
∂4η

∂y4 =
P

D
−

ρh

D

∂2η

∂t2                  (4.1) 

Considering harmonic pressure (P = peiωt) excitation and corresponding 

harmonic response of the domain (η = ξeiωt), equation 4.1 can be modified to equation 

4.2, where, ξ = ξ(x, y) is the dynamic deflection of the plate and ω is the excitation 

frequency. 

∂4ξ

∂x4 + 2
∂4ξ

∂x2 ∂y2 +
∂4ξ

∂y4 − ω2 ρh

D
ξ =

p

D
                  (4.2) 

Equation 4.2 represents the deflection equation for a rectangular domain. Since in 

this study, the sensor domain is trapezoidal in shape, it is required to perform a coordinate 

transformation to make the deflection equation valid for all discretized points in a 

trapezoidal domain. A new coordinate system u-v is considered (see Figure 4.2) for the 

trapezoidal domain, while x-y is the usual Cartesian coordinate system representing the 

rectangular domain. New v-axis lies on y-axis, whereas u- makes an angle θ with the x-
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axis. Thus, x- and y- components can be expressed as (x = u cos θ) and (y = u sin θ + v). 

Transformation of derivative terms in equation 4.2 from x-y domain to u-v domain is 

expressed in equations (4.3-4.5). 

 

Figure 4.2: Coordinate transformation scheme for rectangular to trapezoidal domain 

𝛛𝟒𝛏

𝛛𝐱𝟒 =
1

cos4 θ

∂4ξ

∂u4 −
4 sin θ

cos4 θ

∂4ξ

∂u3 ∂v
+

6 sin2 θ

cos4 θ

∂4ξ

∂u2 ∂v2 −
4 sin3 θ

cos4 θ

∂4ξ

∂u ∂v3 +
sin4 θ

cos4 θ

∂4ξ

∂v4                (4.3) 

𝛛𝟒𝛏

𝛛𝐲𝟒 =
∂4ξ

∂v4              (4.4) 

𝛛𝟒𝛏

𝛛𝐱𝟐𝛛𝐲𝟐 =
1

cos2 θ

∂4ξ

∂u2 ∂v2 −
2 sin θ

cos2 θ

∂4ξ

∂u ∂v3 +
sin2 θ

cos2 θ

∂4ξ

∂v4               (4.5) 

Concise form of deflection equation in transformed u-v coordinate system is 

presented in equation (4.6), using equations (4.3-4.5) in (4.2). 

1

cos4 θ
(

∂4ξ

∂u4) −
4 sin θ

cos4 θ
(

∂4ξ

∂u3 ∂v
) +

4 sin2 θ+2

cos4 θ
(

∂4ξ

∂u2 ∂v2) −
4 sin θ

cos4 θ
(

∂4ξ

∂u ∂v3) +
1

cos4 θ
(

∂4ξ

∂v4) −

ω2 ρh

D
ξ =

p

D
              (4.6) 
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To find the deformation information of the trapezoidal domain upon dynamic 

loading, equation 4.6 is solved using elastodynamic finite (central) difference method. 

Traditionally, the finite difference (FD) scheme is widely used to solve the rectangular 

domains, while it is very rare to adopt FD method for solving trapezoidal structure. 

Coordinate transformation is a vital step to implement FD for tapered structure. Figurative 

finite difference discretization scheme of the domain is shown in Figure 4.3. 

Conventionally, uniform distance is measured between two node points (∆u or ∆v), 

however, in this work, ∆v is considered non uniform and increases along the length (base 

to apex) of the structure. Note that, ∆v is unchanged across a specific width of the domain.   

 

Figure 4.3: Finite difference discretization scheme 

Finite difference approximation of the derivative terms in equation (4.3-4.5) are 

presented in equations (4.7-4.11) 

𝛛𝟒𝛏

𝛛𝐮𝟒 =
1

∆u4 (ξi−2,j − 4ξi−1,j + 6ξi,j − 4ξi+1,j + ξi+2,j)                (4.7) 
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𝛛𝟒𝛏

𝛛𝐯𝟒 =
1

∆vi
4 (ξi,j−2 − 4ξi,j−1 + 6ξi,j − 4ξi,j+1 + ξi,j+2)               (4.8) 

𝛛𝟒𝛏

𝛛𝐮𝟐𝛛𝐯𝟐 =
1

∆u2∆vi−1
2 ξi−1,j−1 −

2

∆u2∆vi−1
2 ξi−1,j +

1

∆u2∆vi−1
2 ξi−1,j+1 −

2

∆u2∆vi
2 ξi,j−1 +

4

∆u2∆vi
2 ξi,j −

2

∆u2∆vi
2 ξi,j+1 +

1

∆u2∆vi+1
2 ξi+1,j−1 −

2

∆u2∆vi+1
2 ξi+1,j +

1

∆u2∆vi+1
2 ξi+1,j+1         (4.9)  

𝛛𝟒𝛏

𝛛𝐮𝟑𝛛𝐯
=

1

4∆u3∆v
ξi−2,j−1 −

1
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ξi−2,j+1 −

1

2∆u3∆vi−1
ξi−1,j−1 +

1
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1
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1
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1
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1
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ξi+2,j+1               (4.10)  

𝛛𝟒𝛏
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1
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1
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1
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1
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1

4∆u∆v3 ξi+1,j+2            (4.11)      

Generalized final form of the membrane deflection equation in trapezoidal domain 

is expressed in equation (4.12), using equations (4.7-4.11) in (4.6). 
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1
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1

4∆u∆v3 ξi+1,j+2) +
1

cos4 θ
(

1
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1

∆vi
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ξi,j =

p
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              (4.12) 

Since central difference scheme is adopted, it is required to count at least two node 

points on every side (top, bottom, left, right) of the node point where we intend to 

implement the equation 4.2 and calculate the deflection amplitude. Following the 

requirement, some fictitious node points are imagined outside every ends of the domain as 

shown in Figure 4.4.  

 

Figure 4.4: Fictitious node points (black) setting outside of the domain. 

It is necessary to express the deflection equation of the fictitious node points in 

terms of the nodes inside the plate. Boundary conditions are counted to find the finite 

difference deflection equation at fictitious node points. Single row/column imaginary 

nodes are considered at the supported boundaries of the domain while double column is 
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considered at the free end (see Figure 4.4). The boundary connections can either be fixed 

or simply supported. In fixed connection, it is assumed that the deflection amplitude at a 

fictitious point is same as the deflection at the nearest node point inside the domain with 

‘+ ve’, while same amplitude with ‘- ve’ is assumed for the simply supported connection. 

As an example, ξ1′ = ξ1 or ξ1′′ = ξ1 for fixed boundary and ξ1′ = −ξ1 or ξ1′′ = −ξ1 are for 

simply supported boundaries. To calculate the deflection equation for imaginary nodes at 

the free end, it has been assumed that bending moment and shear force at the free boundary 

are zero. Finite difference approximation of the bending moment and shear force at (i,j)-th 

node point is presented in equations (4.13) and (4.14), respectively.  

𝐌𝐮 = −D [
1

∆u2 ξi−1,j − (
2

∆u2 +
2ν

∆vi
2) ξi,j +

1
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ν

∆vi
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ν
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2 ξi,j+1]             (4.13)  
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2 ξi−1,j+1 +

1

2
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∆u∆vi
2 ξi+1,j+1]                (4.14) 

Using equation (4.13-4.14) and zero internal force at free boundary, calculated 

deflection equations for imaginary nodes in first (right after free end) and the second 

column are expressed in equations (4.15) and (4.16), respectively.  

𝛏𝐢,𝐣 = (2 + 2ναi−1)ξi−1,j − ναi−1ξi−1,j−1 − ναi−1ξi−1,j+1 − ξi−2,j               (4.15)  

𝛏𝐢,𝐣 = ξi−4,j − [4 + 2(2 − ν)αi−3 + 2(2 − ν)αi−1]ξi−3,j + [4 + 4(2 − ν)αi−1 + 4ναi−2 +

6ν(2 − ν)αi−2αi−1]ξi−2,j − [2ναi−2 + 4ν(2 − ν)αi−2αi−1 + 2(2 − ν)αi−1]ξi−2,j−1 −

[2ναi−2 + 4ν(2 − ν)αi−2αi−1 + 2(2 − ν)αi−1]ξi−2,j+1 + [(2 − ν)αi−3 + (2 −
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ν)αi−1]ξi−3,j−1 + [(2 − ν)αi−3 + (2 − ν)αi−1]ξi−3,j+1 + ν(2 − ν)αi−2αi−1ξi−2,j−2 +

ν(2 − ν)αi−2αi−1ξi−2,j+2               (4.16) 

Where, αi = ∆u2/∆vi
2
  

4.3 Result and Discussion 

The elastodynamic equation for the basilar membrane is solved using a customized 

computer code written in MATLAB. To test the functionality of the proposed predictive 

model, initially, a homogeneous system is solved where the material properties are 

considered with uniform plate thickness. Next to verify (to answer are we building it right?) 

the proposed model is compared with the Finite Element Model (FEM) simulated in the 

COMSOL Multiphysics environment. Further, upon verification, functionally graded 

model parameters are introduced in our model to note the perturbation in the attributes of 

the sensing parameters. Although the developed model can manage different types of 

boundary supports, in this article, sensing capabilities are reported only employing the 

fixed boundary connections. The model properties that are considered for the homogeneous 

structure is listed in the Table 4.1. While selecting the dimensions of the virtual model for 

solution in our study, the actual geometric configurations of the basilar membrane, inside 

the human cochlea is mimicked which is 35 mm long.  
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Table 4.1:  Parameters used for homogeneous model 

Beam Parameters Value Unit 

Stiffness (E) 8.963 MPa 

Density (ρ) 1130 Kg/m3 

Poisson’s Ratio (ν) 0.48  

Thickness (h) 0.1 mm 

Length (L) 35 mm 

Base Width (Bi) 1 mm 

Apex Width (Bf) 2 mm 

Harmonic unit pressure is considered over the top surface of the domain as 

excitation input. A frequency range of 100 Hz – 10 KHz is studied. Figure 4.5 presents the 

deflection patterns of the sensor at three different frequencies. It can be seen that at the 

lower frequencies, maximum localized deflection can be measured towards the apical end 

of the model. Maximum deflection location is shifted towards the base with increasing 

excitation frequency. This phenomenon is quite evident since the bending rigidity of the 

structure is lower at the apical end, compared to the base, and this is due to the increase in 

the width of the membrane, even though a constant E is defined for computation (ref. Table 

1). Apart from the maximum peak, other smaller peaks are evident at the apical end. In 

human cochlea, basilar membrane is submerged in a fluidic medium to achieve travelling 

wave phenomenon and membrane-fluid dynamic interaction is responsible for damping out 

these smaller fluctuations or the amplitude peaks. However, in this study, fluidic media is 

avoided. This is because we proposed the model to aid the design and fabrication process 
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simpler for the artificial basilar membrane sensors with their intended use in the air 

medium. However, how to damp these fluctuations or the smaller peaks using optimized 

design of the membrane property, but without using the fluid medium, is under rigorous 

study. 

 

Figure 4.5: Deflection patterns of the membrane at different frequencies (a) 3 .06 KHz (b) 

4.29 KHz and (c) 5.64 KHz 

Figure 4.5 shows the defection pattern and the peak shifts in the membrane in 

relation to the incremental change in the excitation frequencies. To validate the 

acceptability of the proposed predictive model, a numerical study is performed using 

computational tool COMSOL Multiphysics. Identical model parameters, as listed in Table 

1, and boundary conditions are considered compared to the predictive model. Figure 4.6 
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represents the numerically obtained deflection profile of the sensor at three different 

frequencies (~3.06 KHz, ~4.29 KHz and ~5.64 KHz), those are also counted to represent 

the deflection patterns in Figure 4.5.  

 

Figure 4.6: Numerically (using COMSOL multiphysics) obtained deflection profile of the 

sensor at (a) 3.06 KHz (b) 4.29 KHz and (c) 5.64 KHz 

Comparing the Figure 4.5 and Figure 4.6, it can be seen that the response from the 

predictive model and the FEM analysis are in very close agreement. Using the proposed 

model ~3.06 KHz, ~4.29 KHz and ~5.64 KHz frequencies can be selected at X = ~29.58 

mm, ~19.43 mm and ~12.25 mm, respectively, while using the FEM model same 

frequencies are possible to select approximately from the same location or at same X, 

where ‘X’ is the membrane length measured from the base. It has also been counted that, 

considering the computation time, our developed model (~ 825 sec) is almost three (3) 

times faster than the FEM method (~ 2436 sec). Note that, in both the approaches, the 

domain is discretized with the same dimension of elements. In the current technological 
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world, processing time plays a vital role in the selection of any technique, where our 

proposed model strongly overpowers the FEM technique.   

Since the device is connected at the two opposite sides width of the fixed 

boundaries (ref Figure 4.1), maximum deflection is measured at the central points of the 

membrane across the length of the sensor. Absolute deflection profiles along the center line 

(along the length of the membrane) at the arbitrary frequencies e.g. ~4.29 KHz, ~4.33 KHz 

and ~4.37 KHz and ~4.41 KHz are shown in Figure 4.7. It has been found that at any 

specific input frequency, maximum deflection amplitude can be recorded only from a very 

specific location in the structure.  

Figure 4.5 states that the peak deflection amplitude shifts from the apex to the base 

with the increasing input frequency. It has been noticed that with the incremental increase 

in the input frequencies, the peak deflection detected, doesn’t move all the way from the 

apex to the base end, which is a conventional understanding [90] but a new peak generates 

in front of the maximum peak (Ref. Figure 4.7). Then the new peak gains amplitude with 

the increase in the input frequency until it suppresses the previous maximum peak. 

Amplitude of the previous maximum peak drops quickly and become one of those smaller 

tailgating coda peaks, once the new higher peak gains the maximum amplitude of 

deflection. Note that, at any specific frequency, maximum deflection amplitude cannot be 

recorded from more than one location of the structure. Interestingly, when a peak reaches 

the maximum amplitude, instead of moving toward the base end it shifts toward the apical 

end as the frequency increases (Ref. Figure 4.7), which defies our conventional 

understanding. This phenomenon is quite interesting itself reported herein, since bending 
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stiffness is lower towards the apical end. Probably the reported mechanism above is the 

fundamental physics that generates the peak at a very specific location at specific frequency 

in the basilar membrane.   

 

Figure 4.7: Normalized deflection of the centerline of the membrane at different 

frequencies 

It has been reported in handful numbers of article that a band of frequency is 

required to be selected in many scientific disciplines (please refer Introduction section). 

Say for example, it may be required to design a sensor with a selected band of 4.5 KHz – 

5.5 KHz frequencies for a specific engineering or acoustic application. In such scenario, 

how the proposed model can be used to design the band pass frequency sensor with tight 

resolution in the incremental frequencies (e.g. at the order of ~0.01Hz), is the fundamental 

question we answer herein. Deflection profile of the centerline at the targeted frequency 

band is plotted in Figure 4.8. Now if a threshold limit of the deflection amplitude is set to 
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avoid all smaller perturbations in the deflection profile as shown in Figure 4.8, it can be 

possible to sense only the frequency band 4.5 KHz – 5.5 KHz from the length segment 

~13.3 mm to ~20.1 mm (measured from the base) of the device. Figure 4.8 confirms that 

it is possible to select a specific frequency band from a specific length segment of the 

proposed structure with only homogeneous model parameters. Further to fabricate such 

sensors, smart sensing mechanism proposed by the earlier researchers [85-89] can be 

employed to record the peak deflections of the membrane.  

 

Figure 4.8: Normalized deflection profile for a frequency band 4.5 KHz – 5.5 KHz 

Next, functionally graded model parameters are considered to validate the ability 

of the predictive model to control the band frequency sensing attributes by controlling other 

parameters if the designer has restrictions on some parameters, calculated earlier. 

Functionally graded stiffness, poissons ratio, density and membrane thickness are 
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considered here in this model to proceed to make the model truly versatile. Each time, only 

one parameter is defined as functionally graded while other parameters are constant. In this 

work simple linear functions are considered to define functionally graded parameters, 

however the predictive model is able to manage any type of complex functions (e.g. 

exponential, logarithmic, higher order functions or any digitized or discrete properties 

distributed over the entire domain). Stiffness, density and the thickness are defined such a 

way that at the basal end the magnitude of the specific parameter is same as it was 

considered for homogeneous model, however, the magnitude of the parameter increases 

along the model length and gained 1.5 times at the apex. Since in homogeneous model, 

poisson’s ratio was considered 0.48 and it is not possible to get poisson’s ratio above 0.5, 

thus poissons ratio is functionally graded in such a way that it decreases 1.5 times towards 

the apex end compared to the base end.  
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Figure 4.9: Deflection profile of the device with functionally graded (a) Stiffness (b) 

Density (c) Poissons ratio (d) Thickness. 

Figure 4.9 shows the deflection response of the structure with different functionally 

graded model parameters. The same frequency band (4.5 KHz – 5.5 KHz) is considered as 

our reference problem like we investigated with the homogeneous model parameters. 

Setting a threshold deflection amplitude, while using homogeneous model parameters the 

required frequency band can be selected from the length segment 13.3 mm to 20.1 mm (see 

Figure 4.8), whereas using functionally graded stiffness same frequency band can be 

selected from the length segment 15.6 mm to 24.2 mm (ref. Figure 4.9a and Figure 4.10). 

Likewise, using functionally graded density, poissons ratio and thickness it is possible to 

select the 4.5 KHz – 5.5 KHz band from the length segment 11.6 mm – 17.3 mm, 13.0 mm 

– 19.3 mm, 20.3 mm – 30.3 mm, respectively. Figure 4.10 explicitly shows the effect of 
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the parameters in the selection process. Figure 4.10 suggests that poissons ratio isn’t a 

significant parameter in manipulating the frequency band selection. However plate 

thickness and stiffness has substantial effect in the design parameters. Using the proposed 

functionally graded thickness and stiffness it is possible to select the targeted frequency 

band from the different section of the domain and require wider segment compared to the 

homogeneous model. Alternatively, narrower length section can be measured to sense the 

same frequency band with defined density function.  

 

Figure 4.10: Length segment of the device from where frequency band 4.5 KHz – 5.5 

KHz can be selected using homogeneous or functionally graded model parameters. 

 

4.4 Chapter Summary 

In summary, a cochlea-inspired predictive model for plate-type band-pass 

frequency sensor is developed. In many disciplines of science and technology, it is essential 
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to select a band of frequencies with highest resolution, named as band pass frequency 

sensor/filter. A considerable number of studies have been performed from last couple of 

decades to present mechanical broadband frequency sensors/filters. However, a 

comprehensive and comparatively fast predictive model is missing and utmost necessary 

in order to conduct an optimization study before any design proposal. In this work, a 

predictive model for band pass frequency sensor is developed so that the frequency band 

and the model parameters can be selected predictively. It is expected that the developed 

predictive model can boost the artificial cochlea technology since the human cochlea also 

performs as band pass frequency sensor, naturally. In this work, following the geometry of 

the basilar membrane, trapezoidal structure mimicking the basilar membrane is suggested 

for the sensor device. The predictive model is developed with utmost flexibility that not 

only can manage homogeneous but also any functionally graded model parameters. The 

model is flexible enough to adopt different types of boundary conditions. With 

homogeneous model parameters, it has been found that a specific band of frequency can 

be selected from a distinct segment of the model. It has been reported that it is possible to 

shift, wide or narrow the length segment using functionally graded structure towards 

selecting the same frequency band. The outcome confirms that using the predictive model 

it is possible to extensively manipulate the frequency selection attributes of the model, 

predictively. The predictive model in numerically validated using the simulation tool 

COMSOL Multiphysics and it has been found that our proposed model is almost 3 times 

faster than the FEM technique. Though, in this work, deflection amplitude is referred as 

sensing parameters, however the deflection amplitude can easily be converted to electrical 

signals through implementing smart materials, specifically piezoelectric material. The 
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predictive model can be linked to any optimization tool to get the user required optimized 

geometry for any target frequency band.  
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CHAPTER 5: BASILAR MEMBRANE (BEAM MODEL) 

 

Although in many past articles basilar membrane is considered as a continuous 

membrane to model the artificial cochlea, however it has been reported that, in reality, BM 

consists of a series of closely attached fixed beams. In this research, plate model is 

proposed where a specific frequency band is targeted to be sensed without losing any 

frequency information within the target band. A beam model is also proposed to design a 

broadband frequency sensor where selection of different specific frequencies is essential. 

As noted in chapter 4, several attempts were made in recent past to model BM based 

mechanical frequency selection devices, where majority of these attempts adopted the 

beam array structure. Though few experimental studies are performed, a comprehensive 

predictive model is missing to select the model parameters and target a frequency band, 

predictively. Hence in this research, along with the plate type, a predictive model is also 

developed for the BM based beam type sensor.   

5.1 Model Description 

In developing the beam model a series of thin beam are considered with linearly 

varying length. Beams are accommodated in a trapezoidal frame following the geometric 
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configuration of the real basilar membrane. A representative model of the proposed beam 

type sensor is shown in Figure 5.1.  

 

Figure 5.1: Envisioned basilar membrane beam model 

5.2 Analytical Formulation 

Likewise the BM plate model, in developing the predictive model for the beam 

geometry, it is intended to develop the most flexible model that can be used in manipulating 

the device geometry and target frequency band extensively. To achieve the objective, 

several flexibilities are incorporated in the proposed predictive model as listed below: 

6. Stiffness [E(x, y)] (homogeneous / functionally graded) 

7. Beam width [𝑏(x, y)] (homogeneous / functionally graded) 

8. Thickness [h(x, y)] (homogeneous / functionally graded) 

9. Length [L(x, y)] (homogeneous / functionally graded) 

10. Density [𝜌(x, y)] (uniform / functionally graded) 

11. Boundary condition (fixed / simply supported) 

Apart from the listed conditions, other model parameters are considered constant. 

Dynamic equation of a beam can be represented as shown is equation 5.1, where η and P 

are the deflection of the beam and downward uniform pressure on beam top surface, 
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respectively. It is assumed that each beam is distinct and doesn’t influence the deflection 

behavior of its neighboring beams. Also assumed that, each beam only deflects vertically. 

Twisting and lateral deflections are ignored. Hence, each beam can be considered as a line 

element. Since, each beam is independent, the dynamic equation 5.1 is applicable for each 

individual beam, only by adjusting the geometric configurations for each beam.  

𝜕2

𝜕𝑥2 (𝐸𝐼
𝜕2η

𝜕𝑥2) + 𝜌𝐴
𝜕2η

𝜕𝑡2 = 𝑃                 (5.1) 

𝐼 =
1

12
𝑏ℎ3                           (5.2) 

Where, A is the cross-section area of the beam. Letting 𝐷 = 𝐸𝐼, equation 5.1 can 

be represent as 

𝜕2

𝜕𝑥2 (𝐷
𝜕2𝜉

𝜕𝑥2) + 𝜌𝐴
𝜕2𝜉

𝜕𝑡2 = 𝑃                  (5.3) 

Considering harmonic pressure (P = peiωt) excitation and corresponding 

harmonic response of the beams (η = ξeiωt), equation 5.3 can be modified to equation 5.4, 

where, ξ = ξ(x, y) is the dynamic deflection of the beam and ω is the excitation frequency. 

𝜕2

𝜕𝑥2 (𝐷
𝜕2ξ

𝜕𝑥2) − 𝜌𝐴𝜔2ξ = 𝑝                  

𝜕2𝐷

𝜕𝑥2

𝜕2ξ

𝜕𝑥2 + 𝐷
𝜕4ξ

𝜕𝑥4 − 𝜌𝐴𝜔2ξ = 𝑝                   (5.4) 

Equation 5.4 is the final differential form of the beam deflection equation. Central 

difference method is adopted to solve the equation. Finite difference approximation of the 

derivative terms are shown in equation 5.5 and 5.6.  
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𝛛𝟒𝛏

𝛛𝐱𝟒 =
1

∆x4 (ξi−2,j − 4ξi−1,j + 6ξi,j − 4ξi+1,j + ξi+2,j)                  (5.5) 

𝝏𝟐𝝃

𝝏𝒙𝟐 =
1

∆𝑥2 (𝜉𝑖−1,𝑗 − 2𝜉𝑖,𝑗 + 𝜉𝑖+1,𝑗)                  (5.6) 

x- is defined as the longitudinal axis of the beam and using finite difference method 

each beam is discretized longitudinally. The whole sensor domain is discretized as a matrix, 

where each row represents an individual beam. Each beam is discretized with same number 

of nodes, hence ∆𝑥 may vary depending on length of the beam. ∆𝑦 is the distance between 

two beams and consistent throughout the model. Since central difference scheme is 

adopted, it is required to count at least two node points on every ends of the node point 

where we intend to implement the equation 5.4 and calculate the deflection amplitude. 

Similar to the plate model (ref. section 4), fictitious node points are imagined in both ends 

of each beam. Boundary conditions are considered to find the finite difference deflection 

equation at fictitious node points as described in chapter 4.  

5.3 Result and Discussion 

The final dynamic equation 5.4 of the basilar membrane beam model is computed 

using a customized computer code written in MATLAB. Initially, homogeneous model 

parameters are considered to test the functionality of the proposed predictive model. In the 

homogeneous model, all the model parameters are considered constant, except the length 

of each beam. In this study, length of the beams are set such that apex end beam length is 

1.5 times than the beam at the base end. The model properties that are considered for the 

homogeneous structure is listed in the Table 4.1. 
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Table 5.1:  Parameters used for homogeneous model 

Beam Parameters Value Unit 

Stiffness (E) 68.9 GPa 

Density (ρ) 2700 Kg/m3 

Beam width (b) 2 mm 

Beam thickness (h) 1 mm 

Base beam length (li) 20 mm 

Apex beam length (lf) 30 mm 

Total number of beams 20  

Beam distance (∆y) 4 mm 

Device length (L) 116 mm 

In this analysis, it is considered that beams are fixed connected in both ends with 

the supports. Unit harmonic downward pressure is applied on top surface of the beams. 

Only first mode of the beam vibration is considered for frequency selection purpose. Thus, 

maximum beam deflection is recorded at the middle of the beams. Figure 5.2 presents the 

normalize deflection amplitude of the beams measured at mid-point of the beams. Since 

base end beams are shorter compared to the apex end beams, higher frequencies can be 

sensed from the base end (ref. Figure 5.2).  Figure 5.3 reports that using the proposed model 

and homogeneous parameters listed in Table 4.1, it is possible to sense a frequency band 

5.95 KHz – 12.95 KHz.  
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Figure 5.2: Normalized deflection amplitude at middle point of the beams for a frequency 

range of 3 KHz – 15 KHz. Beam number counted from the base to apex end. 

 

Figure 5.3: Normalized deflection of the beam center point. 2-D representation of Figure 

5.2. 
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5.4 Numerical Investigation 

Next, to verify, the analytically developed proposed predictive model is compared 

with the Finite Element Model (FEM) simulated in the COMSOL Multiphysics 

environment. Frequency domain analysis is performed. Similar homogeneous model 

parameters are considered in the FEM model as listed in Table 4.1.  

 

Figure 5.4: Numerically (using COMSOL multiphysics) obtained deflection profile of the 

sensor at (a) 11.07 KHz (b) 9.23 KHz and (c) 7.81 KHz 

The analytically developed predictive model suggest that it is possible to select 11.2 

KHz, 9.4 KHz and 7.95 KHz from the 4th, 8th and 12th beams of the device, respectively 

(ref. Figure 5.2). FEM study verifies the predictive model strongly by selecting 11.07 KHz, 

9.23 KHz and 7.81 KHz from the 4th, 8th and 12th beams, respectively (see Figure 5.4). 
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While the predictive model reports that, 5.95 KHz – 12.95 KHz frequency band can be 

sensed using the proposed model, FEM study confirms the argument with 5.81 KHz – 

12.82 KHz frequency selectivity. It has also been counted that, considering the computation 

time, our developed model is almost five (~ 3) times faster than the FEM method. 

5.5 Frequency Band Manipulation 

The predictive model is developed such that it can handle not only homogeneous, 

but also functionally graded model parameters to allow extensive flexibility to manipulate 

frequency sensing ability of the proposed model. Functionally graded stiffness, density, 

beam thickness and beam width are considered here in this model to proceed to make the 

model truly flexible. Each time, only one parameter is defined as functionally graded while 

other parameters are constant. In this work simple linear functions are considered to define 

functionally graded parameters, however the predictive model is able to manage any type 

of complex functions (e.g. exponential, logarithmic, higher order functions or any digitized 

or discrete properties distributed over the entire domain). Parameters are defined such a 

way that at the basal end beam the magnitude of the specific parameter is same as it was 

considered for the homogeneous model, however, the magnitude of the parameter increases 

along the model length and gained 1.5 times at the apex end beam.  
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Figure 5.5: Normalized deflection amplitude of the center point of the device with 

functionally graded (a) Stiffness (b) Density (c) Thickness and (d) width. 
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Figure 5.5 shows the deflection response of the beams with different functionally 

graded model parameters. While using homogeneous model parameters it is possible to 

select a frequency band 5.95 KHz – 12.95 KHz using the envisioned beam model (ref. 

Figure 5.3), whereas using the proposed functionally graded stiffness the target frequency 

band can be narrowed down to 7.25 KHz – 12.95 KHz. Since in the base end beam stiffness 

stays same compared to homogeneous model, which results identical maximum limit of 

the target frequency band. Alternatively, minimum frequency limit shifts to higher 

frequency due to the increased of apex end beam stiffness using the functionally graded 

stiffness model. Likewise, using functionally graded density, beam thickness and width it 

is possible to select frequency band 4.9 KHz – 12.95 KHz, 8.8 KHz – 12.95 KHz and 5.95 

KHz – 12.95 KHz, respectively.  

 

Figure 5.6: Frequency band that can be selected using homogeneous or functionally 

graded model parameters specific to the example presented. 
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Figure 4.10 explicitly shows the effect of the parameters in the selection process. Figure 

4.10 suggests that beam width isn’t a significant parameter in manipulating the frequency 

band selection. However beam thickness, density and stiffness possess substantial impact 

in design parameters. 

5.6 Chapter Summary 

In summary, a BM-inspired predictive model for beam-type band-pass frequency 

sensor is developed. In this work, following the geometry of the basilar membrane, a series 

of beams in a trapezoidal structure with varying beam lengths is suggested for the sensor 

device. The predictive model is developed with utmost flexibility that not only can manage 

homogeneous but also any functionally graded model parameters. The model is also 

flexible enough to adopt different types of boundary conditions. With homogeneous model 

parameters, it has been found that a specific band of frequency can be selected using the 

proposed beam sensor. It has also been reported that it is possible to shift, wide or narrow 

the target frequency band using functionally graded structure. The outcome confirms that 

using the predictive model it is possible to extensively manipulate the frequency selection 

attributes of the model, predictively. The predictive model in numerically validated using 

the simulation tool COMSOL Multiphysics and it has been found that our proposed model 

is almost ~ 5 times faster than the FEM technique. Though, in this work, deflection 

amplitude is referred as sensing parameters, however the deflection amplitude can easily 

be converted to electrical signals through implementing smart materials, specifically 

piezoelectric material. The predictive model can be linked to any optimization tool to get 

the user required optimized geometry for any target frequency band.  
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CHAPTER 6: COCHLEA MECHANICS 

 

The cochlea is a highly developed and complex mechanical sensory system. Its 

function is to convert a single time-varying pressure signal into a time-varying pattern of 

excitation on the approximately 25,000 fibers of the eighth cranial nerve. In this chapter, 

the anatomy and basic function of the cochlea are described, and the landmark 

measurements that have shaped the modern understanding of cochlear operation are 

quoted. Finally, a simple abstract model that captures the essential features of cochlear 

operation is described. 

6.1 Anatomy 

The general description of the anatomy is based on the treatments of Dallos [91], 

Evans [92], Kessel and Kardon [93], Moller [94], and Shepherd [95]. Figure 6.1 shows the 

anatomy of the human auditory periphery. Sound waves travel down the canal or external 

auditory meatus, and vibrate the eardrum or tympanic membrane. On the other side of the 

eardrum is the internal auditory meatus, an air-filled cavity that leads to the nasopharynx 

via the Eustachian tube, which opens during swallowing to equalize pressure across the 

eardrum. Vibrations of the eardrum couple into the small bones or ossicles of the middle 

ear, called the hammer or malleus, anvil or incus, and stirrup or stapes. The footplate of the 

stapes presses on the oval window, an opening in the vestibule of the inner ear. Vibration 
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of the stapes causes waves to travel in the fluid inside the vestibule and the cochlea. The 

round window allows pressure relief for the incompressible cochlear fluid. 

 

Figure 6.1: Anatomy of the human auditory periphery. 

The middle ear provides a mechanical advantage to allow the pressure fluctuations 

of the air to couple energy efficiently into movement of the fluid-and-membrane structure 

of the cochlea. However, the middle ear is not a simple air-to-water impedance matcher, 

as is commonly believed; to characterize it as such is to assume incorrectly that acoustic 

(compressional) waves are propagated in the cochlear fluid. Rather, waves are propagated 

by the combined movement of the incompressible cochlear fluid and the membranes inside 

the cochlea, so the middle ear is matching the impedances of the air and the stiffest part of 
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the membrane. A discussion of the historical confusion surrounding this subtle point is 

given by Schubert [96]. 

 

Figure 6.2: The unrolled cochlea, simplified to emphasize the bony shelf and widening of 

the basilar membrane [97]. 

The cochlea and vestibular apparatus are commonly believed to have evolved from 

the lateral line organ of fishes [95]. In humans, the cochlea is about 35 mm long and about 

2 mm in diameter. If the spiral cochlea structure could be unrolled, it would appear as a 

long fluid-filled tube, with the basilar membrane and Reissner's membrane running down 

its length, as shown schematically in Figure 6.2. The membranes and the bony shelf or 

spiral osseus lamina subdivide the cochlea into three major compartments or scalae namely, 

the scala vestibuli, scala media, and scala tympani running from the base of the cochlea to 

the apex. 
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Figure 6.3: Cross-section through the cochlea [93]. 

The basilar membrane and Reissner's membrane run nearly the length of the 

cochlea. The scala media terminates near the apex of the cochlea. At the apex of the 

cochlea, the basilar membrane terminates, and a small hole in the bony shelf, called the 

helicotrema, allows the scalae vestibuli and tympani to join. The helicotrema allows for 

equalization of pressure and ionic concentration of the fluid in the scalae vestibuli and 

tympani.  

The basilar membrane is not an isotropic stretched membrane; it consists of long, 

thin, beamlike fibers running across its width [98]. There is virtually no direct mechanical 

coupling from one fiber to the next. The basilar membrane is stiff and narrow (about 100 
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μm) near the base, and flexible and wide (about 500 μm) near the apex, with a smooth 

transition along its length. The stiffness of the basilar membrane decreases by at least a 

factor of 100 from base to apex, in an approximately exponential fashion [91]. Reissner's 

membrane is light, thin, and very flexible. It serves no mechanical purpose; its function is 

to provide ionic isolation between the scalae media and vestibuli. The fluid contained in 

the scalae vestibuli and tympani is called perilymph; it is high in sodium content and low 

in potassium content, similar to interstitial fluid. The scala media is filled with endolymph, 

a fluid that has a low sodium concentration but is rich in potassium. The difference in ionic 

concentration between the endolymph and perilymph is maintained by the dense capillary 

network called the stria vascularis, shown in Figure 6.3. 

 

Figure 6.4: The organ of Corti, with the tectorial membrane partially cut away [93] 
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The stria vascularis is the site of intense metabolic activity, which necessarily 

requires access to the bloodstream for nutrients and waste disposal. The purpose of this 

sophisticated arrangement is to maintain the electrical potential difference, called the 

endocochlear potential, between the perilymph and endolymph. The endocochlear 

potential acts as a quiet power supply for the hair cells in the organ of Corti [99]; these hair 

cells are sensitive to tiny movements, and must be isolated from the noise of the circulatory 

system. A small blood vessel, called the spiral vessel, also runs beneath the basilar 

membrane, as shown in Figure 6.4, but no capillaries are extended into the organ of Corti.  

 

Figure 6.5: Detail of the inner and outer hair cells, showing their relationship to the 

tectorial membrane and to the nerve fibers [100]. 
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When the hair cells of the organ of Corti draw power from the stria vascularis in 

response to an input sound, small fluctuations in the endocochlear potential can be 

measured. These fluctuations are called the cochlear microphonic, since the measured 

voltage waveform is an approximate replica of the sound itself. The tectorial membrane is 

a transparent, noncellular, flexible, gelatinous mass that is situated between the organ of 

Corti and Reissner's membrane. It is suspended above the organ of Corti from the spiral 

limbus, which is an enlargement of the cell lining of the cochlear interior. The fluid-filled 

space beneath the tectorial membrane and enclosed by the spiral limbus and organ of Corti 

is called the internal spiral tunnel or spiral sulcus. 

The organ of Corti is shown in Figure 6.4. It resides on top of the basilar membrane, 

and contains one row of inner hair cells, and three to five rows of outer hair cells, so named 

for their position with respect to center of the spiral. There are about 3000 inner hair cells 

and about 9000 outer hair cells, spaced about 10 μm apart. The hair cells are rigidly 

attached to the basilar membrane by the supporting Dieter's cells and the pillar cells. The 

Dieter's cells have processes that extend upward to hold the tops of the outer hair cells; the 

resulting rigid upper surface of the organ of Corti is called the reticular lamina. 

All the hair cells have stereocilia, or fine filaments, that extend upward into the 

tectorial gap from the reticular lamina. There are many important differences between the 

inner hair cells and the outer hair cells, as shown in Figure 6.5. The outer hair cells vary in 

length between about 30 μm at the base to about 70 μm at the apex. The length of the 

stereocilia of the outer hair cells is also graded, increasing from about 4 μm at the base to 

about 8 μm at the apex. The ends of the tallest stereocilia of the outer hair cells are 
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embedded firmly in the tectorial membrane, whereas the stereocilia of the inner hair cells 

are free to move in the fluid in the tectorial gap. 

The stereocilia are arranged in a V or W formation (Ref. Figure 6.6) for the outer 

hair cells, and in a shallow curve for the inner hair cells. The outer hair cells are tall, slim, 

and stiff, with fine tensile filaments that wrap around the cell body, to form a kind of 

skeleton structure [101]. In addition, the outer hair cell walls are known to contain actin, 

which is the contractile protein of muscle. The outer hair cells make contact with the 

supporting cells only at their tops and bottoms; most of the length of the outer hair cell is 

free to move. By contrast, the inner hair cells are short, round, and flexible, with no tensile 

skeleton structure. They have an approximately uniform size, regardless of their position 

along the length of the cochlea, and they are bound tightly by the supporting cells. 

 

Figure 6.6: SEM image of stereocilia arranged in V-formation [102] 
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The relationship between the hair cells and the nerve fibers is shown in Figure 6.5. 

Nerve fibers that carry signals to the brain are afferent fibers, whereas those carrying 

signals from the brain are efferent fibers. The majority of nerve fibers that make 

connections to the outer hair cells are efferent, whereas the majority of nerve fibers that 

make connections to the inner hair cells are afferent. Connections from the hair cells to the 

afferent fibers are made by excitatory chemical synapses; connections from the efferent 

fibers to the hair cells are made by inhibitory synapses [103]. Synaptic vesicles in the 

transmitting cell release neurotransmitter into the synaptic cleft between the two cells, 

causing an influx of current into the receiving cell. 

6.2 Function 

The functional input to the cochlea is the stapes movement, which is a high-fidelity 

replica of the sound pressure in the air outside the ear. We are now concerned with how 

the cochlea performs its encoding of the input signal into nerve impulses on the cochlear 

nerve. Sinusoidal movement of the stapes causes waves to propagate down the fluid and 

membrane structure of the cochlea, as shown in Figure 6.7. The wave is not carried solely 

by compression of the fluid, since the cochlear fluid is essentially incompressible at audio 

frequencies; rather, the wave is propagated by the combined movement of the fluid and the 

membrane. Since the fluid cannot be compressed, conservation of fluid mass dictates that 

the round window must move in opposition to the stapes, as measured experimentally by 

von Bekesy [104]. 
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Figure 6.7: Propagation of a wave down the cochlea, for a fixed input frequency, viewed 

at one moment. 

At the basal end of the cochlea, the basilar membrane is narrow and stiff, so the 

membrane-displacement waves propagate quickly with long wavelength. As the wave 

travels down the cochlea, the stiffness of the membrane decreases, so the waves slow down, 

become shorter, and increase in amplitude. At some point, called the best place for the 

given input frequency, the membrane will vibrate with maximum amplitude. Beyond the 

best place, the basilar membrane becomes too flexible and highly damped to support wave 

propagation at the given frequency, and the wave energy dissipates rapidly. 
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Figure 6.8: Detail of wave propagation, showing the membrane displacement and fluid 

pressure along a vertical slice through the lower chamber, for a sinusoidal stapes 

vibration. 

 

 

Figure 6.9: Approximate frequency map (in kHz) on the basilar membrane, inferred from 

noise-masking thresholds and other anatomical considerations [105]. 

The membrane displacement and fluid pressure in the lower chamber are shown 

schematically in Figure 6.8. The wave is said to be in the long-wave region when its 

wavelength is long with respect to the height of the duct. In this region, the fluid particle 

motion is constrained to be essentially horizontal, like a wall of fluid moving back and 

forth in a pipe. When the wavelength becomes short with respect to the height of the duct, 
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the wave is said to have entered the short-wave region. At this point, the wave propagates 

more like ripples on the surface of a deep pond, where the fluid particles trace out elliptical 

trajectories, with greater amplitude near the surface. Finally, the wave dies out in the highly 

damped cut-off region. 

The position of maximum displacement of the basilar membrane varies 

approximately logarithmically with the frequency of the input, for frequencies above about 

1 kHz [106]. Frequencies lower than 1 kHz are more compressed along the length of the 

cochlea, as shown in Figure 6.9. The coiling of the biological cochlea has no significant 

effect on the traveling wave [107, 108]. The primary purpose of the coiling appears to be 

to save space. The effect of basilar-membrane displacement on the stereocilia of the hair 

cells is shown in Figure 6.10. In this commonly accepted view, attributed to Ter Kuile [91], 

movement of the basilar membrane results in a shearing movement of the reticular lamina 

against the gelatinous tectorial membrane.  

 

Figure 6.10: Shearing movement of the basilar and tectorial membranes, when the basilar 

membrane is displaced [94]. 

For small displacements, the degree of shear and hence the bending of the outer-

hair-cell stereocilia, which are attached to the tectorial membrane is proportional to the 
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displacement of the membrane. Since the inner-hair-cell stereocilia are not attached to the 

tectorial membrane, they are bent by a force due to viscous drag as they move with respect 

to the fluid in the tectorial gap; this force is proportional to the velocity of basilar 

membrane. So, to a first order, outer-hair-cell stereocilia are stimulated in proportion to 

membrane displacement, whereas inner-hair-cell stereocilia are stimulated in proportion to 

membrane velocity. 

Stimulation of the inner-hair-cell stereocilia in one direction triggers the influx of 

ionic currents into the hair cell, which depolarizes the membrane and leads to a release of 

neuro transmitter. Stimulating the inner-hair-cell stereocilia in the other direction has no 

effect, so it is common to model the inner hair cell as responding to a half-wave-rectified 

version of membrane velocity. The presence of neurotransmitter leads to an increased 

probability of the firing of an action potential or spike by the spiral ganglion cell. The 

spiking communication mechanism for an individual nerve fiber has an estimated dynamic 

range of 25 to 30 dB; however, the dynamic range of human hearing is on the order of 120 

dB. Since as many as 10 or 20 spiral ganglion cells encode the output of a single inner hair 

cell, a significant part of the better performance at the system level may be due to the 

encoding of the output of a single inner hair cell by many spiral ganglion cells, which may 

have different sensitivities and spontaneous firing rates. 

The behavior of outer hair cells is still a subject of research in the auditory 

community. Some researchers have shown that movement of the stereocilia triggers an 

influx of ionic current [109]; others have shown that injection of current or change in 

voltage triggers a change in length in vitro [101, 110, 111]. Taken together, these findings 
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would suggest that movement of the stereocilia triggers a change in length, although to 

date this mechanical-to- mechanical relationship has not been shown conclusively. Other 

circumstantial evidence implicates the outer hair cells as the force-generating active 

elements of the cochlea. The firm attachment of the outer-hair-cell stereocilia to the 

tectorial membrane would facilitate the generation of forces that could act between the 

basilar and tectorial membranes. The outer hair cells are located centrally in the organ of 

Corti, where the basilar membrane undergoes its largest excursion, and hence are favorably 

positioned to exert forces on the basilar membrane. Under the right conditions, it is likely 

that the outer cells act so as to add energy to the traveling wave, to amplify sounds that 

would otherwise be too weak to be encoded effectively by the inner hair cells and spiral 

ganglion cells. 

Under some conditions, the active outer hair cells can become unstable, leading to 

oscillations. The resulting ringing in the ears is known as tinnitus. The oscillations can 

cause waves to travel both forward and backward along the cochlea. The backward-going 

waves can couple energy out through the bones of the middle ear to the eardrum, which 

then broadcasts sound out of the ear [112]. Other spectacular artifacts of the active 

processes include the Kemp echo, a reflected sound that follows stimulation by a click or 

tone burst [113]. 

Most active cochlear models assume that outer hair cells are capable of applying 

forces to the basilar membrane at frequencies that span essentially the entire range of 

hearing. The assumption of fast motility is being checked experimentally, and evidence is 

accumulating that the outer hair cells are capable of changing length at frequencies at least 
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up to 1 kHz [114], and possibly higher [115]. Note that the detailed mechanisms by which 

the inner hair cells are stimulated, and by which the outer hair cells may influence the wave 

propagation in vivo, are still unknown. This fascinating subject is known as cochlear 

micromechanics. Ter Kuile's shearing mechanism is one example of a micromechanical 

model; other interesting micromechanical models include models of viscous flow through 

the subtectorial gap from the spiral sulcus [116], and preferential bending of the basilar 

membrane in different regions [18, 117]. 

6.3 Abstraction  

In human cochlea, basilar membrane is the key component in sensing sonic 

frequencies and filtering all other frequencies in the environment, which makes the cochlea 

most developed band pass filter in nature. Though in most past studies, basilar membrane 

is considered as plate for computational simplicity, however in reality it is made of 

numerous compact beams, connected through lateral ends of the basilar membrane (see 

Figure 6.11).  

Each beam in the membrane shows flexural resonance response upon distinct sonic 

frequency input. Basilar membrane beams possess higher bending stiffness at its basal end, 

hence resonates at high sonic frequency (~ 20 KHz) excitation. Whereas beams at apical 

end resonates at lower frequencies due to its low bending stiffness. Hair cells in the cochlea 

employed to sense different frequencies with membrane resonance. As a nutshell, in 

developing a pass band sensor, basilar membrane performs four principal operations as 

listed below: 
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1. Perform local resonance 

2. Sense desired frequency and filter all other frequencies in environment   

3. Sense input frequency with some kind of sensory medium (e.g. hair cells) 

4. Select frequency spatially 

 

 

Figure 6.11: Schematic representation of the unrolled basilar membrane with fiber 

orientation 

Hence to model a pass band sensor/filter it is critical to model a system which can 

perform all the principal operations of the basilar membrane. Resonance in a system is a 

common mechanical phenomenon, however local resonance seems an unusual feature 

where only a part of the system exhibits resonance characteristic whereas remaining parts 

stay vibrationless. From our previous study for stop band technique, it has been found that 

acoustic metamaterial has the ability to introduce local resonance in structure. Hence in 
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this section acoustic metamaterial is considered to investigate whether it can perform all 

principal operations of human cochlea and can develop a mechanical band pass sensor. 

6.4 Effect of Spiral Coiling 

The conventional understanding about the mammalian cochlea is that it evolved 

essentially and perhaps solely to conserve space inside the skull [104]. Cochlear coiling is 

absent in reptiles, birds, and monotreme mammals [118]. Coiling allowed the cochlea to 

become longer, increasing the potential octave range, whereas uncoiled cochleae have been 

associated with relatively limited hearing ranges. In 1976, Hinchcliffe  [119] suggested that 

the evolution of coiling enhanced high-frequency hearing. Later on, studies on land 

mammal ear anatomy [120] found a strong correlation between the low frequency hearing 

limit of each species and the product of basilar membrane length and number of spiral 

turns. Steele et al. [108] also found that longitudinal curvature of the cochlear duct 

generates radial fluid pressure gradients; which enhances the radial movement of the hair 

cells [104, 121]. Recently, a new theory proposed that the cochlea’s graded curvature 

actually enhances low frequency hearing [122], similar to a whispering gallery in which 

sounds cling to the concave surface of the lateral wall [123]. The cochlear spiral shape 

redistributes wave energy toward the outer wall, particularly along its innermost, tightest, 

apical turn, and thereby enhances sensitivity to lower frequency sounds. Recently, 

Manoussaki et al. [124] confirmed the significant influence of cochlea curvature gradient 

on low frequency wave propagation in cochlear canal.



131 
 

CHAPTER 7: LOW FREQUENCY ENERGY SCAVENGER 

 

Chapter 3 described the development of the AEMM based mechanical frequency 

selection technique using the local resonance phenomenon. This chapter demonstrates a 

novel application of the AEMM model. Since voltage is the sensing parameter for 

designing the AEMM based frequency sensor, this chapter illustrates the possibility to 

harvest energy at low frequencies using the AEMM model. 

7.1 Background 

Recent advancements in low power electronic gadgets, micro electromechanical 

systems and wireless sensors have significantly increased the local power demand. To 

circumvent the energy demand, low power local energy harvesters are proposed for 

harvesting energy from different ambient energy sources. Energy harvesters utilize the 

ability of piezoelectric materials to generate electric potential in response to external 

mechanical deformation. Significant research activities on low power energy harvesters 

can be found in many literatures [125-128]. Key of these research activities are to introduce 

self-powered wireless electronics systems such that  the maintenance, replacement of the 

old batteries and the chemical waste from conventional batteries could be avoided [129].
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Microcantilever energy harvesters are the most common low power energy 

harvesters, where power outputs are in the range of micro Watts [130-135]. Recently, we 

have proposed plate type energy harvesters for high frequency applications[136, 137]. 

Most of the energy harvester uses the local resonance physics to localize and harvest 

dynamic energy. Acousto-elastic phononic crystal (AEPC) also has the ability to introduce 

local resonance in the structure, hence recently AEPC’s are brought into the field of energy 

harvesting because of its unique ability in wave manipulation in a wide range of frequency 

[134, 135, 138-142]. It is well established that phononic crystals are capable of creating 

frequency band gaps either through Bragg scattering or local resonance [31, 58, 143]. Local 

resonance frequency bands are commonly used in harvesting energy from the phononic 

crystal since the filtered wave energy localizes in the structure at those frequencies. Hence 

several researchers proposed AEPC’s for performing duel operations, filtering wave and 

harvesting filtered energy, simultaneously, which cannot be achieved using regular energy 

harvesters.  

Carrara et al. [144] proposed a metamaterial energy harvester using a parabolic 

acoustic mirror where a novel method of wave guiding through an acoustic funnel was 

proposed. Gonella et al. [135] proposed a 20X20 hexagonally oriented phononic crystal 

with three cantilever beams at each joint and coated the beams with piezoelectric material 

to harvest energy. Both models were proposed to harvest energy at high frequencies (>50 

KHz) level, however in this study we are focused on low frequency (<1 KHz) energy 

harvesting. Few attempts were made to model low frequency harvester in recent years. Wu 

et al. introduced a cavity in the phononic crystal to localize the acoustic energy at the 

resonance frequency and harvested the energy using a polyvinylidsenefluride (PVDF) film 
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[142, 145, 146]. Using the comparative methodology, Lv et al. and Yeh [140, 147] 

theoretically and experimentally studied an energy harvesting generator using point-defect 

phononic crystal coupled with piezoelectric crystals. Power output from such low 

frequency phononic crystal based energy harvesters (PCEH) are quite low (in the range of 

nano Watts (nW) or couple of micro Watts (µW)) against 10 KΩ load resistance (a 

reference resistance in this study to compare in a metric). However Chen et al.[134] 

reported a model that can harvest considerably higher electric potential using a one-

dimensional phononic piezoelectric cantilever beam. In their model they proposed to utilize 

the Bragg scattering physics for harvesting energy instead of using the local resonance 

phenomenon. Although the proposed model is an efficient energy harvester, however the 

model length is significantly higher (1 m long) considering it for powering low power 

electronic devices. Also note that the unit PCEH’s are limited to harvest energy only at a 

single frequency. 

Since acousto-elastic metamaterial (AEMM) possesses similar physics as AEPC 

(Ref. chapter 1) and capable of introducing local resonance modes, AEMM can be an ideal 

choice to overshoot the incapacities of PCEH.  Energy harvesting capabilities of AEMM 

hasn’t been explored extensively. Ideally, AEMM’s are represented as spring-mass 

combination in a mass-in-mass system. In this section, similar AEMM’s are studied as 

proposed in chapter-1 to develop low frequency energy harvester, which is referred as sonic 

crystal by Liu et al. [58]. Very few attempts were made to model the energy harvester based 

on acousoelastic metamaterials. The idea of simultaneous wave filtering and energy 

harvesting using AEMM is first noted by Gonella et al. [135] in 2009. However, they didn’t 

study the idea in detail to explore the power output capability of the AEMM. In 2013, 
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Mikoshiba et al. [141] introduced a 1-D spring-magnet-spring electromagnetic energy 

harvester model replicating the resonator lattice system proposed by Huang et al. [148]. 

Since the model was one dimensional, harvesting capability of the structure is limited to 

only at a single frequency and power output of the system is fairly low (~ 3.6 µW). Very 

recently, Zhang et al.[149] introduced a modified AEMM structural unit consists of a 

square mass connected to a square frame by four convolute folded beams. For unit input 

excitation, maximum 0.005 V (approx. power output in nW range against reference load 

resistance) can be harvested which is significantly low compared to the other harvesters. 

Additionally, the proposed model is quite complicated for fabrication and most 

importantly, the proposal lacks experimental validation. Hence, confidence on the 

proposed model is dubious.   

In this study we present an AEMM based energy scavenger that can harvest energy 

from low frequency ambient vibrations for driving the low power electronic devices. In 

modeling the harvester, we aim to include several features in the harvester, all those are 

not achievable with existing designs and makes the AEMM harvester unique and 

employable in a variety of engineering applications. 

1. Simultaneous wave filtering and energy harvesting, for offering dual 

operation at a time, allowing potential use of possible energy wastage, providing green 

energy and circumvent energy demand. Very rare feature. Only possible using AEPC. 

2. Operate at low frequency, <1 KHz, since ambient vibrations usually hold 

low frequency contents.  
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3. Maintain small (sub-wavelength) scale model (<50 mm), since the 

harvester is targeted for low power electronics those are quite smaller is size. Very 

challenging to have feature 2 and 3 together using existing models. 

4. Significantly higher and maximized power output. Maintaining feature 

1, maximum 3.6 µW power output is reported from unit cell in early studies. 

5. Allow energy harvesting at multiple frequencies using single cell, to 

alleviate the power output capacity of the model, keeping the sub-wavelength size. Single 

frequency harvesting was emphasized in past studies.  

6. Simplicity in design. Essential for cost management, implementation and 

experimental validation. 

7. Experimental validation. Most studies lacks experimental validation, may 

be for design complexity, hence unreliable for industrial implementation.  

Similar to phononic crystal, acousto-elastic sonic crystal’s (AEMM’s) are also 

conventionally used for stopping acoustic waves due to their low transmissibility at certain 

frequency ranges [58] and as a result low frequency stop band filters are designed using 

mass in mass systems [150]. In chapter-1, it has been shown that at the local resonance 

frequencies the filtered wave energy is trapped inside the soft constituent of the 

metamaterial as dynamic strain energy [149] and it is possible to sense the trapped 

frequencies using embedded piezoelectric wafers. Since electric potential is the selecting 

parameter in developing mechanical sensor, conversely, employing appropriate electric 

circuit, the sensed potential can be converted to electric power. Adopting the process, 

filtered wave energy using the AEMM can be recovered and converted to electric power 

to develop an energy scavenger. Hence, coupling two different physics in a single 
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phenomenon we can make the AEMM bimodal (wave filtering and energy harvesting) in 

applications. In AEMM, the soft material is used as a host matrix to house the heavy mass. 

The trapped wave oscillates inside the matrix differently at different modes. Maximum 

power can be harvested while the piezoelectric wafer is strained inside the matrix due to 

the local resonance of the embedded mass. In addition we also intend to attain the targeted 

objectives listed above using the envisioned AEMM based energy harvester.  

7.2 Modeling 

To illustrate the concept, same unit AEMM model (recalled in Figure 7.1) is 

adopted as it is demonstrated in chapter 3. Young’s modulus of aluminum, lead and matrix 

are ~68.9 GPa, ~13.5 GPa and ~0.98 MPa, respectively. Since local resonance 

phenomenon is the key in harvesting energy from unit AEMM, materials of the cell 

constituents are chosen in such a way that it can offer multiple low frequency local 

resonance modes.  

 

Figure 7.1: Unit cell AcoustoElastic MetaMaterial (AEMM) 
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7.3 Finding Local Resonance Modes 

To illustrate the low-frequency resonances and energy distribution in the structure, 

dispersion relation and eigenmodes are computed using the FEA tool, COMSOL 

multiphysics [30]. 4-noded tetrahedral elements are used with maximum element size is 

maintained 1/4 times of the wavelength of the respective constituent at the highest 

frequency level of the study. In order to calculate the dispersion relation, the complete 

structure is considered infinite in both x- and y- directions by arranging the unit cell 

periodically.   

 

Figure 7.2: Band structure of the unit AESC 
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The Bloch-Floquet periodic [31] boundary condition is applied at all boundaries of 

the unit cell. The Bloch-Floquet boundary conditions are based on the Floquet theory which 

can be applied to the problem of small-amplitude vibrations of spatially periodic structures. 

Calculated dispersion curve of the unit cell is shown in Figure 7.2. The band structure 

doesn’t show any dispersive mode, however it introduces a couple of flat bands within 1 

KHz frequency range. 

 

Figure 7.3: Density of States representation of the unit AESC 

To clearly distinguish local resonance frequencies, Density of States (DOS) is 

computed for each frequency within the studied range (0-1 KHz). DOS of the system are 

the numbers of states (modes) exist at each frequency level. A high DOS at a specific 

frequency level means that there are multiple modes available for occupation. Maximum 
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DOS can be obtained where the frequency band is almost straight in dispersion curve, 

which means the group velocity is close to zero and the wave energy is trapped inside the 

structure.  A DOS of zero at any frequency means that no modes can occupy at that 

frequency level (termed as stop band). For highly dispersive unimodal wave motion, the 

DOS is very small but not zero. DOS is calculated from the dispersion relation by applying 

the relation DOS (ω) = (1/π)(dk/dω). In calculating DOS, total wave number ∑dk is 

computed for each frequency (dω=1 Hz). 

 

Figure 7.4: Displacement plots of the cell constituents at (a-b) 238 Hz; (c-d) 415 Hz; (e-f) 

436 Hz and (g-h) 477 Hz 

Figure 7.3 represents the computed DOS for the frequency range 0-1 KHz. Four 

DOS picks are plotted within the studied frequency limit at 238 Hz, 415 Hz, 436 Hz and 

477 Hz. The DOS pick frequencies correspond to the flat bands in dispersion plot (Ref. 

Figure 7.2) and confirm the existence of local resonance (LR) at those frequencies. Figure 

7.4 represents the displacement plots of the unit cell at LR frequencies (mode P, Q, R, S in 

Figure 7.2) in order to understand the vibration pattern of the cell constituents. At 238 Hz 

(mode P), the center mass resonates along the z- direction (thickness) of the cell, whereas 
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at 415 Hz (mode Q), core mass resonates along the x- direction (longitudinal). At both 436 

Hz (mode R) and 477 Hz (mode S), the lead resonator is not moving sideways, however 

rotates counterclockwise about the y- and z- directions, respectively.  

7.4 Acquiring LR Modes with External Loading 

Figure 7.4 represents the eigen models of the unit cell, without confirmation of the 

excitement type or exact frequency that produce the local resonance modes within the 

structure. To identify this, a frequency domain analysis is performed. Different loading 

conditions are considered to actuate different LR modes. Inspired from the eigenmodes, 

similar boundary displacement excitations are considered (see Figure 7.5) to acquire 

corresponding LR models. Excitation along the Z- and X- axes result in the P and Q modes, 

respectively. Harmonic rotation about Y- and Z- axes result in the R and S modes, 

respectively.  This study considers different loading conditions, however further studies 

may propose a unique loading condition to actuate all four available local resonance modes.  

 

Figure 7.5: Harmonic excitation directions of the unit cell to introduce different local 

resonance modes (P, Q, R, S). 
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Figure 7.6 confirms that using specific loading condition it is possible to actuate 

specific local resonance modes. However, local resonance frequencies shifted slightly 

relative to the eigen frequency study.  

 

Figure 7.6: Displacement plots of the model at different loading conditions. 

7.5 Mode Selection and Strategic PZT Placement 

Each resonance mode traps dynamic wave energy inside of the matrix-resonator 

combination of the cell. Hence it is expected that appropriate placing of an energy 

conversion medium (say, piezoelectric material) with proper design inside the matrix 

component can provide significant electric potential at local resonance frequencies. Figure 

7.6 confirms that using AESC model, multi-frequency energy harvesting is possible from 
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a unit cell, however for demonstration purpose mode Q (at 415 Hz) is extensively studied 

in this work. In mode Q, since the center mass resonates along the longitudinal direction 

of the cell, we expect that placing a piezoelectric disc in between center mass and aluminum 

frame will be good enough to harvest electrical potential. Note that, the PZT disc needs to 

be placed so that its thickness axis lies concentric to the center line axis of the core mass.  

7.6 PZT placement optimization 

To convert the trapped strain energy into electrical potential at the selected mode 

Q, a piezoelectric wafer (ϕ~7 mm, thickness =~0.5 mm, mass =~0.16 gm) is embedded 

inside the matrix in between the lead core and the cavity wall (Figure 7.7b). In chapter-3, 

it has been reported that, distinct FRF pick can be obtained from the selected mode, Q, 

placing PZT at the middle of the core resonator and the cavity wall. For sensing application 

having a FRF pick is more important than the FRF amplitude. Whereas FRF amplitude is 

a key factor for an energy harvester. Hence, it is crucial to choose the exact distance of the 

PZT from the resonator (termed as ‘h’) to have the maximum voltage output. A numerical 

study is performed to select the best position for the PZT. Figure 7.7a suggests that the 

amplitude of the Frequency Response Function (FRF) follows a Gaussian function with 

respect to ‘h’ and FRF is maximum when h = 1.78 mm, which is 1/3.5 times of the distance 

between center mass and cavity wall (termed as ‘H’ = 6.23 mm). PZT position in the unit 

cell is finalized according to Figure 7.7a where maximum FRF response has been recorded.  
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Figure 7.7: (a) FRF output with respect to distance, ‘h’, between PZT and core mass. (b) 

Final position of the PZT for maximum electric potential. 

 

7.7 Result and Discussion 

Since in chapter-3, possibility of receiving electric potential using unit AEMM is 

validated analytically, numerically and experimentally, hence in this section analytical and 

numerical demonstrations are not repeated, however experimental study is performed to 

report the power output capacity of the proposed model. Likewise chapter-3, displacement 

excitation (U0 = 1 mm) mechanism is used and electric potential is measured against the 

reference load resistance (R0 = 10 KΩ). Power output (P0) of the system is defined as, 

P0(ω) =
[V0(ω)]2

R0
 

Resistive load affects the current and at certain load resistance, the circuit harvests 

maximum power [136, 151] due to resonance. In this study the fundamental possibility of 
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designing an AEMM based energy scavenger is presented and extensive analysis revealing 

the effect of ground acceleration and external load resistance are omitted.  

 

Figure 7.8: Experimentally obtained output power (µW) against 10 KΩ load resistance. 

The experimental result shows that within the studied frequency limit, using the 

proposed AEMM model and suggested PZT placement, maximum ~36 µW power can be 

generated at ~0.37 KHz (see Figure 7.8). The harvested power up to ~36 µW against ~10 

KΩ resistive load at low frequency region using unit cell AEMM with unit excitation and 

keeping the structure size in small (sub-wavelength) scale is significantly higher than the 

power generated by previously proposed models those can filter wave and harvest energy, 

simultaneously. Using the similar hypothesis and multi-cell model as suggested in chapter 

3 and Figure 3.18, it is possible to introduce a broadband energy scavenger. It has been 

found that using our previously introduced multi-cell model (Ref. Figure 3.17a), the peak 
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harvested power (against 10KΩ, ~5μW) can be obtained at ~0.32 KHz from cell-1 with 

heaviest core mass (11.43 gm). Additionally, it was found that the peak energy can also be 

harvested at other frequencies, e.g., ~0.50 KHz (~34μW), ~0.76 KHz (~35μW), ~1.1 KHz 

(~22μW) and ~1.38 KHz (~11μW) from the cells with decreased core masses. 

7.8 Possible Power Optimization Approaches 

In any energy harvester, one of the key targets is to maximize the power output. 

Though the harvested power using the proposed model is significantly higher than the 

existing models of same kind, additionally, two approaches are suggested to further 

maximize the power output using the unit AEMM model, 

1. Multi-frequency/multi-modal harvesting 

2. Geometric optimization 

Multi-frequency Harvesting 

In current state of the art, low frequency energy harvesting at multiple frequencies 

is very challenging using the unit cell design. Figure 7.4 confirms that using proposed 

AEMM model, four local resonance (energy trapping) mode can be introduced within 1 

KHz range. It has already been reported that, placing a piezoelectric material perpendicular 

to the loading direction in between the core resonator and the cavity wall is the appropriate 

orientation for harvesting energy from mode Q (Ref. Figure 7.7). It is hypothesized that, 

with proper placement of the piezoelectric material significant energy can be scavenged 

from the other modes (P, R and S) as well. To harvest energy at those modes, tentative 

orientation of the piezoelectric material is described in Table 7.1. 
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Table 7.1: Tentative orientation of the smart material to scavenge energy at different 

models of vibration 

Mode Vibration Pattern Tentative Piezoelectric Material Orientation 

P 

Core resonator is vibrating 

along thickness direction of 

the unit cell. 

In between resonator and free surface of the 

matrix material, keeping piezoelectric 

material and AEMM thickness axis aligned. 

R 

Core resonator is rotating 

about the width axis of the 

structure. 

In between resonator and cavity wall, keeping 

piezoelectric material and AEMM thickness 

axis parallel. 

S 

Core resonator is rotating 

about the thickness axis of 

the structure. 

In between resonator and cavity wall, keeping 

piezoelectric material thickness axis 

perpendicular to the AEMM thickness axis. 

In early studies, PZT 5H is employed as energy conversion medium in harvesting 

energy from mode Q. It has be observed without PZT placement in the structure, mode Q 

is found at ~ 415 Hz, however the mode shifts to ~ 430 Hz with the PZT addition. It has 

also been found that, PZT orientation and placement significantly manipulates the vibration 

modes in the AEMM.  Other vibration modes in the AEMM (P, R and S) are extinct after 

placing the PZT inside. We anticipate that, since the mass and stiffness of the piezoelectric 

material is considerable compared to the constituents of the unit cell, hence it plays 

significant role in vibration patterns of the constituents. By selecting the appropriate 

piezoelectric material, its shape and placement significant energy can be scavenged from 

the P, R and S modes without affecting the vibration modes due to the addition of the PZT 

material.  
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Figure 7.9: PZT rotation about the thickness axis of the unit cell (a) 300 (b) 600. 

Displacement plot at 500 Hz with PZT (c) 300 (d) 600 PZT orientation. 

To understand the PZT effect in vibration modes in little more detail, a numerical 

study is performed at various orientations of the PZT in the unit cell. Keeping all other 

parameters constant, the piezoelectric material is rotated about the thickness axis of the cell 

with an interval of 300. Figure 7.9 (a-b) shows two sample orientations (300 and 600) of the 

PZT. Figure 7.9 (c-d) confirms the mode manipulation feature of the AEMM through PZT 

orientation. Where with 00 PZT orientation only Q mode is exist, additional local resonance 

modes can be introduced with the rotated PZT orientation. Interestingly it has been 

observed that, in the proposed model, there are two local resonance modes always exists; 
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1) along the loading axis; and 2) along the PZT thickness axis. The loading direction is 

recalled in Figure 7.9a with double sided arrow. Since in mode Q, both loading and PZT 

thickness axis coincides, hence only one mode is exist with 00 PZT orientation. Note that, 

the second mode doesn’t exist only if the PZT thickness axis is perpendicular to the loading 

axis. Inspired from the outcome, additional studies (such as, using multiple PZT, using 

variable PZT, optimize orientation etc.) are envisioned to further introduce new local 

resonance modes and optimize the power output from a unit cell AEMM.  

Geometric Optimization 

Recalling the effective mass equation in chapter-3, effective mass (hence, local 

resonance) of the system is strongly depends on mechanical properties and geometric 

configuration of the cell constituents. It is hypothesized that, power output and local 

resonance frequency of the system can be altered significantly through the variation of cell 

geometry and material selection. 

7.9 Chapter Summary 

This chapter demonstrates the energy harvesting capabilities of an acousto-elastic 

metamaterial (AEMM) in the ground of simultaneous wave filtering and energy harvesting. 

In addition to wave filtering and energy harvesting the proposed model is also capable of 

obtaining several other objectives which are not available in previously introduced models. 

It is also confirmed that multi-frequency energy harvesting is possible using the proposed 

AEMM model, which is challenging to obtain using traditional phononic crystal based 

energy harvesters. It is shown that by setting a piezoelectric wafer inside the soft matrix of 

AEMM, significant electric potential can be recovered and the amount of power that can 
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be harvested from a unit cell with unit excitation, is significantly higher (~36μW against 

10KΩ) compared to the existing low frequency harvesters of same kind. A multi-cell model 

for broadband energy scavenging is proposed which is a heuristic design to demonstrate 

the concept, but any application specific structure can be manufactured at sub wave length 

scale by applying the similar physics. It is shown that the systematic selection of the core 

mass, placement of piezoelectric wafer and coupling local, structural and matrix resonance 

in a multi-cell system could result a broadband energy scavenging device. It has been found 

that PZT geometry and orientation plays important role in manipulating vibration modes 

and additional local resonance modes can be introduced through altering PZT orientation. 

Since power output is one of the key features of the energy scavengers, hence various 

optimization approaches are proposed to optimize the power output from the proposed 

AEMM model. We believe that the proposed harvester possess enough potential, flexibility 

and novelty to be employed in many engineering applications.  
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CHAPTER 8: APPLICATIONS OF AEMM HARVESTER 

 

The proposed AEMM model can be applicable in various novel applications due to 

its enormous features and flexibilities. One of the key feature of the AEMM model is that, 

it is capable of harvesting energy at very low acoustic frequencies and keeping the 

geometry unchanged the harvesting frequency can easily be shifted toward high frequency 

level only varying the material properties. Though it is expected that the proposed model 

can be employed in wide variety of engineering applications, however in this study three 

possible novel applications of the AEMM based energy harvester is presented.  

1. Highway traffic noise barrier 

2. Powering low power electronics  

3. Powering Pacemaker 

8.1 Highway Traffic Noise Barrier 

A sound occurs when an ear senses pressure variations or vibrations in the air. Noise 

is unwanted sound. The brain relates a subjective element to a sound, and an individual 

reaction is formed. Numerous studies have indicated that the most pervasive sources of 

noise in our environment today are those associated with transportation. Highway traffic   

noise tends to be a dominant noise source in our urban, as well as rural, environment. The 

control of noise in everyday life is very important. Unwanted noise can cause stress related 
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illness and severe noise can cause hearing damage. Hence noise barrier has found 

tremendous interest in recent years. 

What is Noise Barrier? 

 

Figure 8.1: Typical noise barriers for (a) highway (b) railway and (c) industrial noise 

control. 
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A noise barrier (also called a soundwall, sound berm, sound barrier, or acoustical 

barrier) is an exterior structure designed to protect inhabitants of sensitive land use areas 

from noise pollution. Noise barriers (see Figure 8.1) are the most effective method of 

mitigating roadway, railway, and industrial noise sources other than interruption of the 

source activity or use of source controls [152].  

Noise barriers are solid obstructions built between the highway and the homes 

along a highway. They do not completely block all noise they only reduce overall noise 

levels. Effective noise barriers typically reduce noise levels by 5 to 10 decibels (dB), 

cutting the loudness of traffic noise by as much as one half. For example, a barrier which 

achieves a 10-dB reduction can reduce the sound level of a typical tractor trailer pass-by to 

that of an automobile [153].  

How Noise Barrier Work? 

Noise barriers reduce the sound which enters a community from a busy highway 

by either absorbing the sound, transmitting it, reflecting it back across the highway, or 

forcing it to take a longer path over and around the barrier. A noise barrier must be tall 

enough and long enough to block the view of a highway from the area that is to be 

protected, the “receiver" (see Figure 8.2). Noise barriers provide very little benefit for 

homes on a hillside overlooking a highway or for buildings which rise above the barrier. A 

noise barrier can achieve a 5 dB noise level reduction, when it is tall enough to break the 

line-of-sight from the highway to the home or receiver. After it breaks the line-of-sight, it 

can achieve approximately 1.5dB of additional noise level reduction for each meter of 

barrier height [153].  
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Figure 8.2: Noise barrier sound attenuation capacity considering its height 

Typical Materials for Noise Barrier 

Noise barriers can be constructed from earth, concrete, masonry, wood, metal, and 

other materials. To effectively reduce sound transmission through the barrier, the material 

chosen must be rigid and sufficiently dense (at least 20 kilograms/square meter). All noise 

barrier material types are equally effective, acoustically, if they have this density. There 

are no federal requirements specifying the materials to be used in the construction of 

highway traffic noise barriers. Individual State departments of transportation select the 

materials when building these barriers. The selection is normally made based on factors, 

such as aesthetics, durability, maintenance, cost, and the desires of the public. 

Noise Barrier Using AEMM 

It has been reported that, conventional noise barrier transmits, absorbs or reflects 

the acoustic wave in noise filtering process. Also note that the current noise barriers are 

not capable of fully filter the acoustic noise, whereas it just attenuates the noise db. Hence 
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in this study we propose to consider the AEMM structure as the potential material for the 

noise barrier. We expect that using the AEMM model, acoustic noise can be attenuated 

much more efficiently compared to the existent barriers. In stopping the acoustic noise, the 

AEMM built barrier is expected to absorb the acoustic energy precisely, where using the 

energy harvesting technique studied earlier, the absorbed energy can easily be converted 

to electric potential (see Figure 8.3). Hence the proposed AEMM noise barrier will perform 

duel operations (noise control and energy harvesting), simultaneously. Since thickness of 

the proposed unit AEMM is considerably small compared to the traditional noise barriers, 

hence multiple AEMM layer can be used in fabricating the wall for multi-layer and highly 

effective filtration process. With noise controlling process, the AEMM built wall is 

expected to generate significantly large power output since millions of unit AEMM may 

accommodate in a 100 meter long barrier.  

 

Figure 8.3: Schematic of simultaneous noise control and energy harvesting using AEMM 
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In addition with roadside noise filtration; control of noise and vibration is also very 

essential in industrial environments (Ref. Figure 8.1c) for health, safety and quality. The 

proposed AEMM model can be very effective for such industrial applications as well.  

8.2 Powering Low Power Electronics 

The increased use of cell phones, ipods, tablets, iPads throughout the world resulted 

surprisingly large energy footprint and according to ‘International Energy Agency’ (IEA), 

household energy demand has increased by 3.4% [154] since 1990. It is calculated that in 

US, only the usage of smart phones demands 1269000 Million Watt-hour of energy per 

years [155]. Hence, if such power demands can be satisfied by local powering devices 

through harvesting the energy from the abundant ambient noises, we could alleviate the 

power demands significantly. To circumvent the energy demand, local energy harvesters 

using multiple micro-cantilevers are proposed to scavenge energy from different alternate 

sources. Key motivation of the previous research was to introduce the self-powered 

wireless electronics systems such that the maintenance, replacement of the old batteries 

and the chemical waste from conventional batteries could be avoided [129]. 

Microcantilever low power energy harvesters are designed to operate at higher frequencies 

(between 20 KHz – 3 MHz) such that small (4 – 10 mm) size harvesters could be designed 

[130-133]. However, the physics of micro-cantilevers cannot be translated to harvest 

energy from low frequency ambient vibration (between 10 Hz – 3 KHz) due to their 

humongous size. For example to power a i-Phone one would need a table size harvester 

and which is impossible.  
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In this study we have established that, proposed AEMM based energy harvester is 

capable of harvesting at very low frequency level and it possess enormous flexibility to 

alter its operating frequency level only changing the constituent’s material property or 

geometric configuration. Hence using the same hypothesis, here we argue that an AEMM 

energy harvester is possible to model for low power electronics (cell phone, i-pad etc.) that 

can scavenge electric potential from low frequency ambient vibrations (e.g. vibration 

during traveling in a car or jogging).  

Proposed Model 

In this proposal we envision to replace the back plate of the electronic item with 

the AEMM harvester, as shown in Figure 8.4. The modified AEMM unit cell consists of a 

relatively heavy core resonator, a very thin membrane and a flexible piezoelectric polymer. 

The flexible membrane is strongly attached to the mobile back plate and holds the core 

resonator and the piezoelectric polymer. Both resonator and piezoelectric polymers are 

firmly glued with the membrane. Dimension of the plate is considered as 120 mm X 60 

mm X 1 mm.  

 

Figure 8.4: Proposed mobile back plate with the ability to scavenge energy. 
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For demonstration purpose, in this study steel, silicon and polyvinylidene fluoride 

(PVDF) are considered as the materials for core resonator, thin membrane and piezoelectric 

polymer, respectively. It is expected that, similar to proposed AEMM structure in Figure 

7.1, the modified AEMM model is also capable of introducing low frequency local 

resonance modes. Though for demonstration purpose, only one cell is presented in Figure 

8.4, however it is highly recommended to use as many cells as it can be accommodated 

with maintaining the acceptable minimum stiffness of the back plate. Each unit cell should 

contain variable geometric configurations. Hence it is expected to harvest electric energy 

at a wide range of ambient vibrations and maximize the power output. Figure 8.5 shows a 

sample back plate keeping six (6) unit cell where diameters of the biggest to the smallest 

cells are considered as 28mm to 8mm with 4mm decrement. Diameter of the core resonator 

in each cell is considered as 1/3.5 times of the cell diameter. 

 

Figure 8.5: Envisioned multi-cell (6) electronic energy harvester 

A numerical study is performed to investigate the feasibility of the proposal. It has 

been found that extremely low frequency local resonance modes can be achieved using the 

envisioned design.  At local resonance modes, the thin membrane encounters oscillatory 
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motion due to the resonance behavior of the center mass. Such oscillation causes 

contraction and expansion in piezoelectric polymer and results electric potential. Energy 

can be harvested from ambient vibration of ~ 8 Hz from the biggest cell whereas other cells 

are offering energy scavenging capability at an increased frequency level with the decrease 

of cell geometry (see Figure 8.6). Table 8.1 lists the energy harvestable frequencies at 

different cells.  

Table 8.1: Local resonance frequency at different cells 

Cell # Diameter (mm) Energy harvestable frequency (Hz) 

1 28 ~ 8 

2 24 ~ 12 

3 20 ~ 20 

4 16 ~ 34 

5 12 ~ 82 

6 8 ~ 210 

  

The proposed model confirms the possibility of multi-frequency energy harvesting 

from ambient vibration. Using the hypothesis it is possible to design the harvester for a 

wide variety of ambient frequency. Though in this study replacing a mobile back plate with 

AEMM energy harvester is proposed, however using the hypothesis it is quite possible to 

develop a much smaller portable energy harvester that can be inserted into the electronic 

device like a memory card.  
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Figure 8.6: Local resonance at (a) 12 Hz (b) 82 Hz 

8.3 Powering Pacemaker 

Artificial cardiac pacemakers have made a noteworthy influence to control 

heartbeat using electrical impulses for contracting the heart muscles of people who suffer 

from sick sinus syndrome or heart block which causes abnormal heart rate, and may result 

in symptoms including syncope, angina, dizziness, and even heart failure or heart attack 

[156, 157]. However, due to the limited lifespan of the battery, replacement surgery for the 

artificial pacemaker implanted beneath chest skin should be made every 7 to 10 years (or 

even every 3 to 6 years for an implantable cardioverter defibrillator (ICD)) [158, 159]. This 
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poses a risk to elderly persons, particularly with regard to infection or bleeding during the 

surgical procedure [160]. Enhancing the battery lifetime is thus a critical issue to assure 

longer working time of the implanted pacemakers, and increase the replacement cycle. An 

attractive approach to address this challenge is to adopt self-powered systems, which 

potentially can provide low maintenance, independent operation, and sustainability for 

implantable biomedical devices [161, 162].  

One of the applications of energy harvesters is powering implantable biomedical 

devices. Energy harvesting systems based on irregular vibrational motion and mechanical 

deformation are promising candidates for self-powered biomedical electronics [163-167]. 

Romero et al. [168] performed a detailed survey on energy harvesting devices designed for 

this purpose. The majority of vibrational energy harvesters that extract energy from human 

motion are attached to the limbs. If the biomedical device is intended to be implanted in 

the torso, it is preferred to include the energy harvesting device in the same package. There 

are three configurations in the literature for in vivo energy harvesting devices that can be 

utilized inside the torso. The first general configuration is microbial fuel cells, which utilize 

oxidation of glucose for generating power [169]. The second method is by harvesting 

energy from expansions of artery by wrapping a piezoelectric film around them [170]. The 

third solution is by printing piezoelectric ribbons onto rubber [171] and utilizing the 

expansion of the lungs in respiration.  

In recent years battery free and self-powered pacemaker topic has found significant 

interest to the research community. Manipulating flexible piezoelectric energy harvesters 

(called nanogenerators (NGs)) inside the human body is of particularly medical interest, 
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because they can scavenge inexhaustible biomechanical energy such as cardiac motion, 

muscle contraction/relaxation, and blood circulation and convert it to electrical energy 

[172]. This could feasibly contribute to not only the operation of implantable heart rate 

monitoring and transmitting system, but also the development of a self-powered artificial 

pacemaker by directly recharging the battery or stimulating the heart [173]. Inspired from 

the capabilities of flexible piezoelectric materials, very recently Hwang et al. [174] and 

Dagdeviren et al. [175] proposed to place the piezoelectric membrane at the surface of the 

heart wall (see Figure 8.7) to harvest electric energy. However it is strongly suggested that, 

the energy harvester must not impede the heart beating action. Attachment of the energy 

harvester unit to the exterior of the heart, mass loads the heart and is therefore unacceptable. 

Moreover the proposed method requires open heart surgery to place the harvester. Since 

the process is really complicated, risky and expensive, placing energy harvesting unit at 

heart wall is extremely discouraged by the doctors.  

 

Figure 8.7: Placement of the piezoelectric membrane at the surface of the heart to harvest 

energy. 

Keeping that in mind, in 2012, Karami et al. [176] proposed an energy scavenger 

utilizing the vibrations inside the chest area to power pacemakers and ICD. The most 
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significant vibrations inside the chest area are those caused by heartbeats. They 

investigated the possibility of recharging power efficient pacemakers with heartbeat-

induced vibrations. Kanai et al. [177] performed the ultrasonic velocity measurements to 

estimate the vibrations in the vicinity of the heart due to the heartbeat (Figure 8.8). They 

measured the velocity of two points on the lower sides of the interventricular septum (the 

wall separating the left and right ventricles of the heart). Since the measurement points are 

close to the thoracic diaphragm, the velocity data are a safe estimate for the vibration of 

the part of the body close to heart area.  

 

Figure 8.8: Frequency content at the vicinity of the heart wall measured by Kanai et 

al.[177] 

The frequency spectrum of heart beat oscillations spread from fractions of a hertz 

to about 50 Hz. However the amplitude of the 39 Hz frequency component is relatively 

high and results better power production [176]. In designing the energy scavenger Karami 
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et al. [176] adopted the conventional cantilever beam based energy harvesting model. 

However the cantilever beam model was modified extensively and turned into zigzag beam 

model to capture low frequency contents of the heartbeat. The power requirement of 

pacemakers has been significantly reduced over the past years, and one microwatt is a 

reasonable upper estimate of the required power of modern pacemakers [178]. The size of 

a typical pacemaker is about 42mm X 51mm X 6mm (see Figure 8.9). Typically, the battery 

takes about 2/3 of the size of the pacemaker.  

 

Figure 8.9: Typical pacemaker 

Proposed Model 

Inspired from Karami’s work and outcome of our early studies, in this study we 

claim that it is possible to introduce an AEMM based energy harvester that can be placed 

inside the pacemaker that is capable of harvesting sufficient energy for powering 
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pacemaker. In our early studies it has been found that AEMM model is capable of 

harvesting energy at low frequency level. Harvesting frequency can be further decreased 

down to very low frequency simply changing the material properties or geometric 

configurations. In previous section (powering low power electronics), it has been 

confirmed that, energy can be scavenged at ~ 34 Hz using an AEMM cell of diameter 16 

mm (Ref. Table 8.1). Hence here we propose that using the idea and similar model, a 

pacemaker energy harvester can be introduced to scavenge energy at ~ 39 Hz. It is expected 

that using the AEMM harvester pacemaker size can be reduced significantly since the 

proposed energy harvester (even without optimization) might not take more than ~ 1/3 

portion of the regular pacemaker, whereas current pacemaker battery takes 2/3 portion of 

the system (Figure 8.10).  

 

Figure 8.10: Conceptual representation of AEMM in pacemaker 
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CHAPTER 9: MYCOTOXIN DETECTION SENSOR 

 

Each year millions of food items have been demolished due to mycotoxin 

contamination. Mycotoxin is a toxic secondary metabolite produced by organisms of 

the fungus. However every mycotoxin aren’t harmful for health (sometimes good for 

health), hence not essential to be discarded. To prevent needless dispose of the food items, 

a mycotoxin classification mechanism is crucial. In current state of the art, it requires 

expensive and time consuming laboratory operation to perform the test. However for a bulk 

or in-situ inspection a portable and cost effective test mechanism is required, which is a 

missing-link in the current state of the art. Such mycotoxins exhibit dynamic response upon 

infrared radiation and creates acoustic wave with specific frequency input. Frequency of 

the generated acoustic wave for each mycotoxin class is distinct. Hence in this work, we 

intend to propose a mechanical sensor that can classify mycotoxin type using the frequency 

content developed through photoacoustic wave.  

9.1 What is Mycotoxin? 

When certain types of fungus grow on food, they produce minute amounts of toxins 

called mycotoxins [179]. Mycotoxins are toxins produced by some species of mold (myco 

means 
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fungal) [180]. One mold species may produce many different mycotoxins, and the 

same mycotoxin may be produced by several species [181]. Most fungi-produced 

mycotoxins are harmless, and even helpful. For example, the antibiotic penicillin came 

from a fungus, and it is a mycotoxin [179]. Mycotoxins are secondary metabolites produced 

by microfungi that are capable of causing disease and death in humans and other 

animals. These metabolites constitute a toxigenically and chemically heterogeneous 

assemblage that are grouped together only because the members can cause disease and 

death in human beings and other vertebrates [182, 183].  Mycotoxins may be fatal or cause 

severe illness at very small concentrations, often measured in parts per million (ppm) or 

parts per billion (ppb). There may be thousands of mycotoxins on the planet earth, but only 

a small fraction of these toxic chemicals have the potential to cause plant and animal 

diseases. In nature, mycotoxins may act to disable host defense responses or to defend the 

fungus against other microorganisms [184].  

9.2 Mycotoxins in Agriculture and Health 

Mycotoxins are a big problem in agriculture. Over 25% of the world's agricultural 

production is contaminated by mycotoxins. Mycotoxins often grow on crops like corn, 

wheat and peanuts, for example. The mycotoxins can then end up in food. If crops like 

wheat are stored poorly after harvest, toxic molds can grow and contaminate the wheat 

with mycotoxins. There are limits set for the amount of mycotoxins in food. For example, 

the United States Food and Drug Administration limits the maximum amount of aflatoxin 

mycotoxins in food to 20 parts per billion. The limit set for milk is 0.5 parts per billion. To 

remove mycotoxins from food crops, binding agents are used [185]. 
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However, there have still been incidents of people dying from eating mycotoxin-

contaminated food. This occurs more often in third world countries. For example, 125 

people died in 2004 in Kenya, after they ate food contaminated with aflatoxin mycotoxins. 

Many animals have also died from ingesting mycotoxins. Farm animals have died from 

eating feed contaminated with mycotoxins. There has also been cases of pets dying after 

eating pet food which contained mycotoxins [185]. 

The economic consequences of mycotoxin contamination are profound. Crops with 

large amounts of mycotoxins often have to be destroyed. Alternatively, contaminated crops 

are sometimes diverted into animal feed. Giving contaminated feeds to susceptible animals 

can lead to reduced growth rates, illness, and death. Moreover, animals consuming 

mycotoxin-contaminated feeds can produce meat and milk that contain toxic residues and 

biotransformation products.  

National and international institutions and organisations, such as the European 

Commission (EC), the US Food and Drug Administration (FDA), the World Health 

Organisation (WHO) and the Food and Agriculture Organisation (FAO) of the United 

Nations, have recognized the potential health risks to animals and humans posed by food- 

and feed-borne mycotoxin intoxication and addressed this problem by adopting regulatory 

limits for major mycotoxin classes and selected individual mycotoxins. The FAO has 

compiled comprehensive worldwide regulations and directives regarding mycotoxins in 

food and feed as of December 2003. The Joint Expert Committee on Food Additives 

(JECFA), a scientific advisory body of FAO and WHO, provides mechanisms for assessing 

the toxicity of food additives, veterinary drug residues and contaminants, and has recently 
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evaluated the hazards related to several mycotoxins, including fumonisins B1, B2 and B3, 

ochratoxin A, deoxynivalenol, T-2 toxin, HT-2 toxin, and aflatoxin M1. The report 

explains the nature of each toxin, including its absorption and excretion, as well as 

toxicological studies, and it includes general considerations of analytical methods, 

sampling, associated intake issues and control mechanisms. 

The EC has set maximum levels for some mycotoxins, including several aflatoxins, 

Ochratoxin A, patulin, deoxynivalenol and zearalenone, in certain foodstuffs. Maximum 

levels for fumonisins B1 and B2 came into force in October 2007. Consideration of a 

review of the maximum levels for deoxynivalenol, zearalenone and fumonisins B1 and B2 

as well as the appropriateness of setting a maximum level for T-2 and HT-2 toxins in 

cereals and cereal products should be completed by July 2008. 

The requirement to apply these regulatory limits has prompted the development of 

a vast number of analytical methods for the identification and quantification of mycotoxins 

in various samples, such as food, feed, and other biological matrices. The chemical 

diversity of mycotoxins and their varying concentration ranges in a wide range of 

agricultural commodities, foods and biological samples poses a great challenge to 

analytical chemists. The different chemical and physicochemical properties of the 

mycotoxins require specific extraction, cleanup, separation and detection methods. 

Therefore, most methods target only individual mycotoxins or at best a group of closely 

related mycotoxins. These methods are usually based on labour-intensive sample 

preparation protocols followed by traditional chromatographic separation (mostly liquid 

chromatography, LC). Gas chromatography (GC) either with electron capture detection 
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(ECD) or mass spectrometric (MS) detection is used in mycotoxin analysis, e.g. for 

trichothecene or patulin determination, but less frequently than alternative methods. In 

some cases, fast and accurate screening methods based on enzyme-linked immunosorbent 

assay (ELISA) are applied instead of the more labourintensive LC methods. Thin-layer 

chromatography (TLC) provides a cheaper alternative to LC-based methods and has an 

important role, especially in developing countries, for surveillance purposes and control of 

regulatory limits (Gilbert and Anklam 2002). Modern sample clean-up techniques, such as 

immunoaffinity columns (IAC) or solid-phase extraction (SPE) methods, help to simplify 

protocols, improve selectivity and, thus, performance characteristics. 

To deal with the increasing number of sample matrices and mycotoxins of interest, 

fast and accurate analytical methods are needed. This demand has led to the development 

of rapid screening methods for single mycotoxins or whole mycotoxin classes based on 

immunochemical techniques (e.g. ELISA), biosensors (e.g. protein chips, 

antibody/protein-coated electrodes) and non-invasive optical techniques. On the other 

hand, highly sophisticated multi-mycotoxin methods based on LC coupled to multiple-

stage MS are being developed to allow accurate and precise determination and 

unambiguous identification of mycotoxins without the need for tedious sample preparation 

and clean-up procedures. 

9.3 Major Types of Mycotoxin 

There are over 200 known types of mycotoxins. However there are some major and 

important type mycotoxins.  
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 Aflatoxin  

 Ochratoxin 

 Citrinin 

 Ergot Alkaloids 

 Patulin 

 Fumonisins 

 Trichothecenes  

 Zearalenone  

Aflatoxin 

Aflatoxins are one of the most potent and dangerous groups of mycotoxins 

worldwide. Over four billion people in developing countries are repeatedly exposed to 

aflatoxins, contributing to greater than 40 percent of the disease burden in these countries. 

Aflatoxins are produced primarily by the fungi Aspergillus flavus and Aspergillus 

parasiticus. There are four main types of aflatoxins: B1, B2, G1, and G2. Aflatoxin B1 is 

the major toxin produced, and is regulated in the United States at 20 ppb in agricultural 

products that may be used in human food. The clinical effects of aflatoxins may include 

death, liver cancer, reproductive problems, anemia, immune system suppression, and 

jaundice. Nursing animals may be severely affected by a toxic derivative of aflatoxin 

(aflatoxin M1) that can be passed through milk [184]. 

Aflatoxin contamination is economically important in crops such as maize, peanuts, 

cottonseed, and tree nuts. Aspergillus flavus is commonly associated with a disease of 

maize known as Aspergillus ear rot (Figure 9.1a). Powdery, grey-green spores may develop 
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on the surface of maize ears, and aflatoxins may be produced by the fungus until the kernel 

moisture reaches about 15 percent. High temperatures, drought stress, and insect injury 

may contribute to increased aflatoxin contamination in maize. Aspergillus flavus and A. 

parasiticus may cause a disease of peanuts known as yellow mold (Figure 9.1b), and high 

levels of aflatoxin contamination may result following relatively high temperatures and 

moderate humidity. Cottonseed, an important food source for dairy cattle, may become 

contaminated with aflatoxins if the seed-bearing capsules (bolls) are damaged, followed by 

high humidity and warm temperatures before or after harvest. Tree nuts such as pistachios 

and almonds may become contaminated with aflatoxins during injury, such as the splitting 

of hulls [184]. 

      

Figure 9.1: Aflatoxin contaminated food items 

Ochratoxin 

Ochratoxin is a mycotoxin that comes in three secondary metabolite forms, A, B, 

and C. All are produced by Penicillium and Aspergillus species. The three forms differ in 

that Ochratoxin B (OTB) is a nonchlorinated form of Ochratoxin A (OTA) and that 

Ochratoxin C (OTC) is an ethyl ester form Ochratoxin A [186]. Aspergillus ochraceus is 
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found as a contaminant of a wide range of commodities including beverages such as beer 

and wine. Aspergillus carbonarius is the main species found on vine fruit, which releases 

its toxin during the juice making process [187]. OTA has been labeled as a carcinogen and 

a nephrotoxin, and has been linked to tumors in the human urinary tract, although research 

in humans is limited by confounding factors [186, 187]. 

Citrinin 

Citrinin is a toxin that was first isolated from Penicillium citrinum, but has been 

identified in over a dozen species of Penicillium and several species of Aspergillus. Some 

of these species are used to produce human foodstuffs such as cheese (Penicillium 

camemberti), sake, miso, and soy sauce (Aspergillus oryzae). Citrinin is associated with 

yellow rice disease in Japan and acts as a nephrotoxin in all animal species 

tested. Although it is associated with many human foods 

(wheat, rice, corn, barley, oats, rye, and food colored with Monascus pigment) its full 

significance for human health is unknown. Citrinin can also act synergistically with 

Ochratoxin A to depress RNA synthesis in murine kidneys [181]. 

Ergot Alkaloids 

Ergot Alkaloids are compounds produced as a toxic mixture of alkaloids in 

the sclerotia of species of Claviceps, which are common pathogens of various grass 

species. The ingestion of ergot sclerotia from infected cereals, commonly in the form of 

bread produced from contaminated flour, cause ergotism the human disease historically 

known as St. Anthony's Fire. There are two forms of ergotism: gangrenous, affecting blood 

supply to extremities, and convulsive, affecting the central nervous system. Modern 
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methods of grain cleaning have significantly reduced ergotism as a human disease, 

however it is still an important veterinary problem. Ergot alkaloids have been used 

pharmaceutically [181]. 

Patulin 

Patulin is a toxin produced by the P. expansum, Aspergillus, Penicillium, 

and Paecilomyces fungal species. P. expansum is especially associated with a range of 

moldy fruits and vegetables, in particular rotting apples and figs [188, 189]. It is destroyed 

by the fermentation process and so is not found in apple beverages, such as cider. Although 

patulin has not been shown to be carcinogenic, it has been reported to damage the immune 

system in animals [189]. In 2004, the European Community set limits to the concentrations 

of patulin in food products. They currently stand at 50 μg/kg in all fruit juice 

concentrations, at 25 μg/kg in solid apple products used for direct consumption, and at 10 

μg/kg for children's apple products, including apple juice [188, 189]. 

Fusarium 

Fusarium toxins are produced by over 50 species of Fusarium and have a history of 

infecting the grain of developing cereals such as wheat and maize [190, 191]. They include 

a range of mycotoxins, such as: the fumonisins, which affect the nervous systems of horses 

and may cause cancer in rodents; the trichothecenes, which are most strongly associated 

with chronic and fatal toxic effects in animals and humans; and zearalenone, which is not 

correlated to any fatal toxic effects in animals or humans. Some of the other major types 

of Fusarium toxins include: beauvercin and enniatins, butenolide, equisetin, and fusarins 

[192]. 
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Trichothecenes 

The trichothecenes are the largest group of mycotoxins known to date, consisting 

of more than 150 chemically-related toxic compounds. These mycotoxins are produced by 

several species of Fusarium, Stachybotrys, Trichoderma, and Trichothecium.  The most 

important trichothecene mycotoxin in the United States is deoxynivalenol (DON), a 

common contaminant of wheat, barley, and maize. DON is sometimes called vomitoxin 

because of its deleterious effects on the digestive system of monogastric animals. Humans 

consuming flour made from wheat contaminated with DON often demonstrate symptoms 

of nausea, fever, headaches, and vomiting [184]. 

Zearalenone 

Zearalenone is a mycotoxin that mimics the reproductive hormone estrogen. This 

mycotoxin is produced primarily by the fungus Fusarium graminearum, the same fungus 

that produces deoxynivalenol in maize and small grains. Swine are the most commonly 

affected domestic animals, but cattle and poultry may also be affected. The clinical effects 

of zearalenone may include an enlarged uterus, swelling of the vulva and vagina (known 

as vulvovaginitis), enlarged mammary glands, anestrus (periods of infertility), and 

abortion. Zearalenone may be passed to nursing piglets through the mother’s milk. A 

commercially available derivative of zearalenone (zeranol) has been used as a growth 

hormone to increase weight gain in beef cattle [184]. 
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9.4 Mycotoxin Detection Techniques 

Analytical Techniques 

Conventional Analytical Techniques  

The term ’’conventional method’’ usually refers to a chromatographic separation 

coupled to a suitable detection system. The currently used quantitative methods for the 

determination of regulated mycotoxins, such as the fumonisins, zearalenone, type-A (e.g. 

T2-toxin) and -B trichothecenes (e.g. deoxynivalenol), ochratoxin A and the aflatoxins, in 

food and feed mainly use immunoaffinity clean-up with high-performance liquid 

chromatography (HPLC) or gas chromatography (GC) in combination with a variety of 

detectors, such as fluorescence detection (FLD) with either a pre- or post-column 

derivatisation step, UV detection, flame ionisation detection (FID), electron capture 

detection (ECD) or mass spectrometry (MS). Reviews of these methods have been 

summarized and published elsewhere [193-195]. From the multitude of available 

procedures, CEN is trying to standardize methods for mycotoxin analysis. CEN establishes 

performance criteria for mycotoxin methods usually on the basis of collaborative studies. 

CEN methods are official reference methods and are used for official control and 

surveillance and in cases of dispute. CEN–approved methods exist for aflatoxins, 

ochratoxin A, fumonisins, patulin and deoxynivalenol, for example, in various foods. 

Further methods for various mycotoxins in feed will be issued in the near future [196]. 

Liquid Chromatography/Mass spectrometry (LC/MS) 

Within the last 10 years, liquid chromatography/mass spectrometry has become the 

universal approach for mycotoxin analysis, as more or less all potential analytes are 
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compatible with the conditions applied during separation and detection. Nevertheless, the 

breakthrough of this approach did not occur until the mid-1990s, when suitable interfaces, 

such as atmospheric pressure ionization, became accessible on a routine basis. Compared 

to conventional detection techniques, such as UV or fluorescence, mass spectrometry offers 

increased selectivity and sensitivity (although fluorescence detection might be more 

sensitive for certain mycotoxins, e.g. aflatoxins), unambiguous confirmation of the 

molecular identity of the analyte and the option to use isotopically labelled substances as 

internal standards. Furthermore, it is possible to investigate the molecular structure of 

metabolites and sugar conjugates (such as ‘‘masked mycotoxins’’; [197]) and to omit time 

consuming and error-prone derivatization and clean-up steps. However, it must be kept in 

mind that a reduction of the sample preparation inevitably emphasizes the Achille’s heel 

of LC/MS, i.e. relatively poor method accuracy and precision due to the irreproducible and 

unpredictable influence of co-eluting matrix components on the signal intensity of the 

analytes. 

Due to the large number of LC/MS-based methods for the quantitative 

determination of single mycotoxin classes, their exhaustive examination goes beyond the 

scope of this work and, therefore, the interested reader is referred to the reviews of Zöllner 

and Mayer-Helm [198] and Sforza et al. [199]. 

Multi-Mycotoxin Methods 

In the last few years, increased efforts have been made to develop analytical 

methods for the simultaneous determination of different classes of mycotoxins using LC–

MS/MS. This trend is a result of the discovery of co-occurrence of different toxins and 
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related synergistic toxic effects that raise concerns about the health hazard from 

contaminated food and feed [200, 201]. In addition, it would be desirable to cover the toxins 

addressed by Commission Regulation 1881/2006 (aflatoxin B1, B2, G1, G2 and M1, 

Ochratoxin A, patulin, deoxynivalenol, zearalenone, fumonisins B1 and B2, HT-2 and T-

2 toxin) with a single method as this increases sample throughput and decreases the costs 

per analysis. Although mass spectrometry offers sufficient selectivity (especially if 

tandem-mass spectrometry is applied) and multianalyte capabilities, its realization in the 

field of multi-mycotoxin analysis has been hampered mainly by the chemical diversity of 

the different toxin classes, which include acidic (fumonisins), basic (ergot alkaloids) as 

well as polar (moniliformin, nivalenol) and apolar (zearalenone, beauvericin) compounds. 

Therefore, compromises have to be made in the choice of extraction solvent and mobile 

phase, and the conditions may be far from optimal for certain analytes. 

The initial stimulus for LC/MS-based multi-mycotoxin methods came from the 

field of mycology, where mass spectrometry is used to identify mold species according to 

their metabolite profile [202]. Beside the development of databases dealing with qualitative 

LC/MS of mycotoxins [203], this has led to early quantitative methods for the simultaneous 

determination of Aspergillus and Penicillium mycotoxins in building materials [204] and 

in an artificial food matrix [205]. While the former method suffered from low recoveries 

of some analytes, excellent accuracy and precision were obtained in the latter case through 

use of a de-fatting step applied to the raw extract, and use of matrix matched calibration to 

compensate for matrix effects. Some years later, this method was applied for the 

simultaneous determination of aflatoxins, ochratoxin A, mycophenolic acid, penicillic acid 

and roquefortine C [206] after a slight modification of the extraction solvent. 
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After this initial phase, the focus of multi-mycotoxin analysis shifted to Fusarium 

mycotoxins. Royer et al. [207] developed a method for the quantitative analysis of 

deoxynivalenol, fumonisin B1 and zearalenone in maize, including accelerated solvent 

extraction, a two-step SPE procedure and internal standards for each analyte. The LODs 

were below the maximum concentration levels permitted in the EU, but the method 

suffered from a low recovery for zearalenone. The next generation of methods included 

several A- and B- trichothecenes as well as zearalenone, and used Mycosep columns for 

clean-up of the raw extracts. Zearalanone was used as internal standard for zearalenone in 

the method of Berthiller et al. [197], and Biselli and Hummert [208] applied matrix 

matched calibration for this analyte. Cavaliere et al. [209] added α-zearalenol and three 

fumonisins to the list of analytes and performed de-fatting and solid-phase extraction of 

the raw extracts of corn meal. While the efficiency of the extraction step was greater than 

84% for all analytes, matrix effects were still present and required matrix-matched 

calibration. 

A method for the simultaneous determination of Fusarium, Aspergillus and 

Penicillium toxins (ochratoxin A, zearalenone, α- and β-zearalenol, fumonisins B1 and B2, 

T2- and HT2-toxin, T2-triol, mono- and diacetoxyscirpenol, deoxynivalenol, 3- and 15-

acetyldeoxynivalenol, deepoxy-deoxynivalenol and aflatoxin M1) was reported by 

Sorensen and Elbaek [210]. Bovine milk samples were defatted and after adjustment of the 

pH, an SPE procedure was applied. Signal suppression/enhancement was minimized and 

recoveries 476% were obtained. However, the major drawback of this method was the 

necessity of using two chromatographic runs with different columns and eluents. The two 

most recent reports, which include a clean-up of the raw extract using MultiSep #226 
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cartridges, introduced instrumental improvements to multi-mycotoxin analysis in 

foodstuffs. A time-of-flight mass spectrometer was used by Tanaka et al. [211], while, in 

the method of Ren et al. [212], analysis time was significantly decreased through the 

application of ultra-performance liquid chromatography. In both methods, recoveries 

470% were obtained for all analytes and no significant matrix effects were reported. 

As all these methods rely on some sort of clean-up, certain toxin classes are 

excluded as they are not compatible with the clean-up and/or extraction conditions (for 

example, the fumonisins are not determined by the methods of Tanaka et al. [211] and Ren 

et al. [212]. In particular, neither ergot alkaloids, moniliformin, enniatins nor masked 

mycotoxins are included in any of these reports. To overcome these problems, some 

existing methods omit a clean-up of the sample and inject raw extracts into the LC/MS. 

This clearly increases the demands on the selectivity of the detector as well as on the 

investigation of matrix effects, especially if complicated food matrices are analysed. 

Spanjer et al. [213] determined 22 mycotoxins (including the ergot alkaloid ergotamine) in 

different food matrices. Samples were extracted with an acetonitrile/water mixture and 

were diluted with water prior to injection. Matrix effects were investigated for every 

analyte/matrix combination and validation data obtained that suggested that the analysis of 

diluted raw extracts is indeed feasible and at the same time sensitive enough for 

determining most mycotoxin levels set in the legislation. Our own contribution in this field 

was the quantitative determination of a set of 39 analytes (including moniliformin, 

beauvericin, enniatins and masked mycotoxins) in wheat and maize [214]. In both matrices, 

linear calibration curves were obtained (with the exception of moniliformin) after spiking 

blank matrices at multiple concentration levels, with coefficients of variance of the overall 
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process of <5.1 and <3.0%, respectively. Significant matrix effects were observed for 

maize, but these could be overcome by matrix-matched calibration. LODs ranged from 

0.03 to 220 µg kg-1 and the trueness of the method was confirmed for deoxynivalenol and 

zearalenone though the analysis of certified reference materials. Very recently, this method 

has been extended to the simultaneous determination of 87 mycotoxins and has 

successfully been applied to mouldy food samples [215]. 

In the near future, a strong trend towards multi-mycotoxin methods, which do not 

involve a clean-up of the sample, can be expected, as these methods can be relatively easily 

adapted to new analytes and matrices, and the obvious time- and cost-savings compensate 

for the expense of initial validation. Advances in the technology and in the instrumental 

design in mass spectrometry will further decrease the influence of matrix effects, which 

certainly constitute the main drawback of this approach at the moment. 

Fast Screening Methods 

Immunochemical Techniques 

Rapid methods based on immunochemical techniques often have the advantage of 

not requiring any clean-up or analyte enrichment steps. ELISAs have become routinely 

used tools for rapid monitoring of most mycotoxins, especially for the screening of raw 

materials [196, 216]. Although ELISA tests may show a high matrix dependence and 

possible overestimation of levels, the advantages of the microtitre-plate format are speed, 

ease of operation, sensitivity and high sample throughput. ELISA test kits are 

commercially available for most of the major mycotoxins.  
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Alternatives to ELISAs include a number of immunosensors as well as upcoming 

methods using immunochemical platforms, such as fluorescence polarization 

immunoassays (FPI) [217] or surface plasmon resonance (SPR) with mycotoxin–protein 

conjugates immobilized onto a sensor chip surface [218]. Immunosensors are emerging as 

a cost-effective alternative for screening and quantitative determination of mycotoxins 

[219]. Array biosensors have been developed using competitive-based immunoassays for 

the simultaneous detection of multiple mycotoxins, including ochratoxin A, fumonisins B, 

aflatoxin B1, and deoxynivalenol, on a single waveguide surface by imaging the 

fluorescent pattern onto a CCD (charge-coupled device) camera [220]. Other formats with 

fluorescence detection include automated flow-through immunosensors with enzyme-

labelled mycotoxin derivatives [221]. Electrochemical immunosensors with surface-

adsorbed antibodies on screen-printed carbon electrodes have been fabricated for the 

detection of aflatoxin M1 in milk [222] and, in an array configuration, for the detection of 

aflatoxin B1 [223]. Affinity-based surface plasmon resonance sensors (SPR) have the 

advantage of not requiring any labelling of the target mycotoxin [218] and may become an 

alternative method for rapid screening, which also enables the simultaneous detection of 

multiple mycotoxins using serial connected flow cells [224]. In a further label-free 

immunochemical approach for the detection of aflatoxin B1 and ochratoxin A, optical 

waveguide lightmode spectroscopy (OWLS) was used with integrated optical waveguide 

sensor chips measuring the resonance incoupling angle of polarized light, thus determining 

the surface coverage [225]. 

A complementary tool for the screening of cereal samples may be DNA microarray-

based chips using PCR followed by microarray colorimetric detection, which has been 
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developed for the fast detection and identification of 14 trichothecene- and moniliformin-

producing Fusarium species occurring on cereals [226]. 

In recent years, interest in rapid membrane-based immunoassay methods, such as 

flow-through immunoassays and lateral flow devices (LFDs), has strongly increased due 

to the need for rapid on-site (pre)-screening. A flow-through enzyme immunoassay was 

developed for the detection of ochratoxin A in roasted coffee [227]. Requiring no sample 

preparation other than an extraction step, LFDs allow qualitative or semi-quantitative 

determination of mycotoxins on one-step strip tests within a few minutes. Such LFDs have 

been developed for selected mycotoxins, such as aflatoxin B1 [228] and fumonisin B1 

[229]. The strong interest is furthermore reflected in the increasing number of 

commercially available test kits for field use, based mostly on direct competitive assays. 

Non-invasive Techniques 

Optical methods, such as Fourier Transform midinfrared spectroscopy with 

attenuated total reflection [230] or near-infrared transmittance spectroscopy [231], are 

promising techniques for the fast and non-destructive detection of mycotoxins in grains. 

The approaches allow sample preparation to be reduced to an absolute minimum and to be 

integrated into on-line monitoring systems. Nevertheless, since rapid data interpretation is 

based on the output of chemometric analysis, the high matrix dependence and the lack of 

appropriate calibration materials are still major restrictions. 

Similarly, electronic noses, featuring an array of electronic chemical sensors with 

pattern recognition systems, have also been developed [232]. In this approach, volatile 

organic compounds of low molecular weight, which are released by many fungi as products 
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of secondary metabolism, are adsorbed onto the sensor surface and measured with a variety 

of transduction systems based on electrical-, optical-, or mass-transduction, such as metal 

oxide sensors (MOS) and surface acoustic wave sensors (SAW), for example [233]. 

Photoacoustic Spectroscopy 

Photoacoustic spectroscopy (PAS) involves irradiating intermittent light onto a 

sample and then detecting the periodic temperature fluctuations in the sample as pressure 

fluctuations. Photoacoustic spectroscopy measurement is based on the photoacoustic 

effect. The photoacoustic effect was discovered by Alexander Graham Bell in 1880. This 

is the phenomenon whereby, when intermittent light is irradiated onto a substance, the 

substance emits acoustic waves of the same frequency as the light pulse frequency. With 

the development of highly-sensitive microphones and other advances in electronics, 

research progressed into the measurement of gas samples, in particular [234]. The 

photoacoustic spectroscopy uses Fourier transform infrared (FTIR) instruments in 

assessing the fungal contamination.  

With FTIR-PAS as intact specimen is placed inside a closed cell containing a 

sensitive microphone. Infrared light is admitted through a window to irradiate the 

specimen. When the specimen absorbed the light, it became heated and warmed the 

surrounding layer of air or gas. The warm gas expanded, resulting in increased pressure in 

the cell returned to its original level. Chopping or periodic modulation of the light produced 

alternating heating and cooling of the specimen at the modulation frequency, resulting in 

gas pressure waves, which are detected as sound by the microphone. If the specimen 

absorbs infrared radiation, some of the absorbed energy will be converted to heat and 



184 
 

committed as acoustic waves. Since the amplitude and frequency of the acoustic waves 

emitted depend on the amount and frequency of the infrared energy absorbed, the 

photoacoustic signal reflects the infrared spectrum of the specimen. The signals from the 

microphone are acoustic interference waves. Applying Fourier transformation to these 

signals produces a spectrum similar to an absorption spectrum [234]. Schematic of the 

operating principle of the photoacoustic spectroscopy is shown is Figure 9.2. Because of 

the inherently surface-profiling signal of FTIR-PAS it is potentially sensitive detector of 

fungal infection on the surfaces of commodities. Gordon et al. [235] applied the technique 

to corn kernels classified as either bright greenish-yellow fluorescence (BGYF)-positive or 

negative. The technology has promise as a presumptive test for aflatoxin contamination, 

however application of the method is limited because available photoacoustic detectors can 

only accommodate a single kernel at a time [236].  

 

Figure 9.2: Working principle of Photoacoustic Spectroscopy method 

The high demand for rapid screening methods for mycotoxin analysis reflects the 

need for fast and cost-effective on-site determination of the level of mycotoxin 

contamination in food and feed. Mycotoxin classification is essential to quantify its toxicity 

measure and harmfulness for the body. Current state of the art offers time consuming and 

expensive techniques. Hence, inspired from the outcome of our early studies and 
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capabilities of photoacoustic spectroscopy, in this study we propose a portable mechanical 

sensor for in-field characterization of mycotoxin in a fast and economic manner.  

9.5 Proposed Model 

The photoacoustic system is based on the excitation of molecules in a sample 

materials by infrared light. The excitation of molecules depends on the intensity and 

wavelength of the incoming light along with the absorption spectrum and the absorption 

area of the molecules. Molecules of different mycotoxin generates distinct frequencies 

upon infrared light. Hence a bio-inspired mechanical sensor is envisioned which can be 

used for characterizing multiple mycotoxins at a time. The proposed sensor avoid the 

requirement of any chemical testing and time-killing or expensive analysis.  

The envisioned sensor is composed of a series of cantilever beams with linearly 

varying length from its base to apex end as shown in Figure 9.3. The sensor model is 

inspired from the basilar membrane study in chapter 5. It has been noticed that introducing 

a beam model, following the geometric configuration of basilar membrane, it is possible to 

select distinct frequency from each beam of the structure. Instead of fixed beams (as in 

chapter 5), the proposed mycotoxin sensor is consists of cantilever beams. Such 

modification is made to reduce the flexural stiffness of the beam since the acoustic wave 

amplitude generated by mycotoxin molecules could be significantly low to excite stiffer 

beams. Moreover it is evident that cantilever beam exhibits more pronounced deformation 

behavior than a fixed beam, which can be helpful in capturing the frequency content 

accurately. Each adjacent cantilever beam of the sensor is attached at opposite ends of the 

structure to allow substantial space for electrical connections in both ends. The proposed 
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sensor is comprise of 140 beams with 2 mm spacing. Width and thickness of each beam is 

considered as 2 mm and 0.1 mm, respectively. The smallest and longest cantilever beams 

of the model is 1.9 mm and 3.9 mm long, respectively, with 0.014 mm of decrement from 

base to apex end.  

 

Figure 9.3: Proposed cantilever beam model for mycotoxin detection (dimensions are in 

mm) 

Typically Silicon (Si) has been always considered as the prime material for sensor 

design. However application of Si has shown limitations in sensing applications at harsh 

environmental conditions. Silicon cannot be used for high temperature applications as it 

loses the electrical and mechanical reliability at high temperatures. Since infrared laser in 

photoacoustic spectroscopy is expected to generate significant heat in the system, hence 

silicon might not be a good choice for the beam material in the sensor. Instead of silicon, 

Gallium Nitrate (GaN) is considered for the beam material for its proven reliability and 

performance at high temperature environment. Also note that, GaN possess high young’s 

modulus (181 GPa), which is essential to capture high frequency acoustic wave generated 
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by mycotoxin molecules. Material properties of the sensor constituents are listed in Error! 

Not a valid bookmark self-reference.. 

Table 9.1: Material Properties of the mycotoxin cantilever beam sensor 

 Material 

Stiffness 

(GPa) 

Density 

(kg/m3) 

Poisson’s Ratio 

Beam Gallium Nitrite 181 6150 0.352 

Support Aluminum 69 2700 0.33 

 

Figure 9.4: Local resonance of the cantilever beams at different frequencies. 
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A numerical study is performed to investigate the practicability of the proposed 

model. Eigenvalue analysis is performed using computational tool COMSOL multiphysics. 

Numerical computation confirms that, each cantilever beam resonates at a specific 

frequency with maximum frequency (23.16 KHz) at smallest beam to minimum frequency 

(6.07 KHz) at longest beam (see Figure 9.4). The proposed model in Figure 9.4 confirms 

the dynamic mechanical characteristic of the envisioned sensor with multi-frequency 

capturing capability. However the complete mycotoxin sensor requires a mycotoxin 

molecule bed and IR-PAS setup to excite the mycotoxin molecules, generate acoustic wave 

and resonate the selective sensor beam. The beam support at both ends of the sensor is 

suggested to extend, to use the extended portion as the test bed for the mycotoxin 

molecules. It is expected that, upon infrared ray, mycotoxin molecules will create acoustic 

wave which will propagate as surface wave to the cantilever beams. Highly sensitive 

piezoelectric strips are attached at the top surface of the GaN cantilever beam to capture 

the resonance response of the beam as electric potential.  

9.6 Chapter Summary 

When certain types of fungus grow on food, they produce minute amounts of toxins 

called mycotoxins. There are several types of mycotoxins in nature. Most of the 

mycotoxins are harmless for health, however few mycotoxins are really dangerous. Hence 

it is essential to detect the mycotoxin class to know its toxicity and importance to be 

destroyed. Each year millions of food items used to demolish due to fungal growth, but 

without knowing the toxicity level of the associated mycotoxins. Several mycotoxin 

detection techniques are available. However current methods are time consuming and 
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costly, hence not adequate for bulk or on-field application. Hence in this study we propose 

a mechanical mycotoxin detection sensor adopting the physics of basilar membrane and 

capabilities of Infrared Photoacoustic Spectroscopy. The proposed sensor is consists of a 

series of cantilever beams with varying length from its base to apex end. Gallium nitrite 

(GaN) beams are proposed instead of typically used silicon beams due to its (GaN) much 

reliable response at high temperature applications. The proposed model confirms its 

capability of exhibiting resonance response at a wide range of frequencies where each beam 

resonates at a distinct frequency. Using the IR-PAS along with the proposed model we 

expect that a cost effective portable mechanical sensor is possible to introduce which can 

be employed for in-filed bulk mycotoxin detection application. 
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CHAPTER 10: ENERGY SCAVENGING USING PETTERENED 

PIEZOELECTRIC LAYERS 

 

The piezoelectric transduction mechanism has significant applications in passive 

sensing, health monitoring and energy harvesting. Design of piezoelectric energy 

harvesters is typically restricted with cantilever beams or plates. Simply supported plate 

type energy harvesters are seldom used in printing machines, in cars to power localized 

MEMS sensors, but usually uncommon for energy harvesting purposes. Predominant 

reason for their limited use is that the amount of harvested energy is very small compared 

to cantilever beam harvesters. Although plate type harvesters are usually discouraged, with 

patterned electrodes and properly optimized shapes, they were found to be suitable for 

harvesting energy from wider band of frequencies. This is possible due to selective 

superposition of effective higher bending modes of the plates. This requires an effective 

mathematical model to understand their behavior. Consequently, these small harvesters can 

also be used as vibration sensors. In this study, a detained analytical model is presented to 

calculate the frequency response function (FRF) from a simply supported plate type energy 

harvester with patterned piezoelectric layers. A generalized mathematical form is presented 

for an arbitrary rectangular piezoelectric patch placed on a host plate. Strain rate damping 

mechanism is incorporated in the model for better and accurate results. First, a comparative 

study on the strain rate damping effect is presented by placing the piezoelectric layer on 
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the entire plate. It shows that without damping the estimation is quite inaccurate. Numerical 

simulation is also performed using Finite Element Method (FEM). Further a methodology 

through optimization is proposed to generate a required pattern of piezo layers for desired 

requirements or applications. With the proposed generalized model any particular shape 

and size of the layer can be obtained through optimization. The FRFs from two optimized 

electrode patterns are presented.  

10.1 Background 

Piezoelectric materials are increasingly used in vibration control, noise control and 

shape control of structures. In addition it has been found that piezoelectric materials are 

quite valuable for energy harvesting for low power devices. In this paper a predictive 

analytical model is proposed to harvest energy from a plate coated with designed 

piezoelectric layers with certain constrains. Predictive analytical model for piezoelectric 

sensors was first proposed in the field of structural health monitoring for sensing and 

actuation [237, 238]. In association with design and application of innovative piezoelectric 

devices, predictive model is equally or more important for better understanding of the 

physics and for adopting suitable design approaches. In the field of energy harvesting there 

has been significant advancement [78, 137, 239-246] in the design and application of 

energy harvesters. Recent advancements in low power electronics and piezoelectric 

materials have made vibration based energy harvesting more lucrative. On the other hand, 

a significant effort has been made to improve the circuit design for the energy storage [127, 

151, 247-251]. It is evident that sometimes researcher adopt over-simplified model for 

explaining the physics of the harvesters [243, 252]. A comprehensive study of existing 
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models related to the piezoelectric (PZT) harvesters can be found in [151]. The inaccuracy 

in using the static expressions in fundamentally dynamic problems has been discussed in 

greater detail by Erturk et.al. [78, 244] & Banerjee, S. [137].  

In this paper a simply-supported plate type harvester [137] with patterned 

piezoelectric layer is considered for energy harvesting. For the first time, a generalized 

predictive model is proposed to find the voltage output from a small rectangular patch of 

piezoelectric layer, analytically. The proposed predictive model could potentially be 

helpful to optimize the placement of such small segments of piezoelectric layers or 

electrodes in a required pattern as per design requirements (e.g. maximize the voltage 

output, maximize the resonance band, minimize the harvester weight or any coupled 

requirements). Such design approach would need an accurate mathematical model which 

can be used for predictive design of the customized harvesters. The proposed mathematical 

model is versatile enough to be formulated for different application e.g. sensors or 

actuators.  

There are many structural components subject to vibration. Hence, energy 

harvesting from ambient vibration of the host structure using plate type harvester can be 

considered as a suitable candidate. Thin plate, metal sheets, diaphragms are frequently used 

in mechanical systems and vibrates by virtue of their design during their operation. 

Researchers and engineers are designing micro air vehicles (MAV) by mimicking the 

biological creatures. The wings are designed for flapping. Army combat operations are 

focusing on insect flights where in addition to the flapping (bending excitation), 

simultaneous excitation of the torsional degree-of-freedom is required [253, 254]. This 
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activity will require segmented and innovative placement of piezoelectric coating on the 

wing such that more control can be achieved. On the other hand, in this paper it can be seen 

that the orientation of the piezoelectric layer on the plate type harvester could perform 

better as a wideband energy scavenger. Hence, the idea of placing segmented piezoelectric 

layers is mutually beneficial.  

In this paper, an effort has been made to model the energy output from a 

periodically deformable sandwich plate with distributed electrode or piezoelectric layer. 

First, the solution for the voltage output is calculated for arbitrary placement of electrode. 

Then the frequency response function (FRF) is superposed by varying the placement of the 

PZTs. The area under the curve (FRF) within a specific frequency band (wideband) is then 

maximized to get the PZT pattern on the plate. This study could be repeated for different 

load resistance because the current and the voltage output depend on the external load.   

Analytically obtained Frequency Response Function (FRF) will be immensely 

valuable for energy harvester by virtue of patterning the piezoelectric layer in optimized 

fashion subjected to certain constrains. The concept of optimized placement of 

piezoelectric layer on a plate or a beam is not new in general [255-259]. Vibration control 

of lightweight structures has been seriously studied by the previous researchers using 

optimized [256] piezoelectric pattern. Most importantly, in the realm of vibration control, 

a numerical scheme using level set method [260] was proposed by Zhang, J. [261], where 

vibrating system with piezoelectric patches was analyzed to minimize the vibration 

frequency subjected to constraint on the patch geometry. Numerical analysis of simply 

supported plate for active vibration control with piezoelectric sensors and actuators is 



194 
 

presented by Narwall et.al. [262]. Recently, the optimal vibration control of plate structures 

is proposed by Ansari et.al. [263] using previously derived level set [260] topology 

optimization method but by using constrained layer damping patches in passive mode. 

Vibration control using simultaneously passive (constrained layer damping patches) and 

active (piezoelectric patches) elements was proposed by Lam et.al [264]. Dynamic passive 

controller for thin plate vibration was presented by Alessandroni et.al. [265]. Process of 

minimizing structural sound radiation passively through shunted piezoelectric material is 

described by Ozer et.al. [266]. Structural vibration reduction in passive mode by means of 

shunted piezoelectric patches is discussed by Ducarne, et.al. [267]. In this study a simple 

cantilever beam is considered to evaluate the dedicated modal electro-mechanical coupling 

factor as a function of material and piezoelectric layer geometry. Then particular to an 

eigen mode of the structure piezoelectric patch geometries are estimated using optimization 

by maximizing the modal electromechanical coupling factor [264, 267]. Such models are 

predominantly for vibration control of plate type structures by mode suppression. However, 

no such accurate mathematical model exists for plate type energy harvesters, which is 

proposed in this paper to calculate the Frequency response Function (FRF) for a plate as a 

function of piezoelectric patch geometry. The mathematical models for vibration control 

of plates (where certain vibration modes need to be suppressed by the piezoelectric counter 

effect or closed loop feedback control) and plate type energy harvesters (where voltage 

output from the piezoelectric layer has to be maximized to store power) are very different 

due to their different target applications. Predominantly for vibration control bimorph 

(piezoelectric layer on either side) plates are proposed whereas in this article to maximize 

the harvested energy unimorph (piezoelectric layer on one side) plate is proposed. 
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Moreover the pattern of the piezoelectric layer obtained for vibration control cannot be 

directly used for energy harvester. Thus a dedicated mathematical model for plate type 

harvester is necessary. In this paper such mathematical model for plates is proposed using 

correct physics by incorporating damping. Although the underlying philosophy of 

optimizing the piezoelectric layer subjected to constrains is similar, genetic algorithm is 

used in this paper as oppose to traditional level set method used for optimizing the 

geometry of piezoelectric layer for vibration control applications. Primary focus of this 

paper is to provide a predictive analytical tool to calculate Frequency response Function 

(FRF) for a plate type harvester as a function of arbitrary shaped piezoelectric patch 

geometry at arbitrary location on the plate (assuming piezoelectric layer is very thin 

compared to the plate). Such tool can be used any state-of-the-art optimization tool. 

From our derivation two expressions for voltage frequency response function (FRF) 

is presented. One for the piezoelectric layer covering the entire plate and one for a small 

rectangular piezoelectric patch placed at any arbitrary location on the plate. It is shown that 

when the patch size is selected to cover the entire plate or any particular number of piezo 

patches that covers the entire plate, both expressions for FRF generated identical results. 

Hence, the second expression for FRF with a piezoelectric patch at any arbitrary location 

is absolutely generalized expression. The proposed closed form FRF expression can be 

easily used in any optimization program and which is a major contribution in this paper.  

10.2 Mathematical Formulation 

A generalized mathematical formulation is presented in the following paragraphs. 

A unimorph plate is considered with piezoelectric layer on the entire plate (see Fig. 1 (a)) 
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and next a small rectangular segment of piezoelectric layer (see Fig. 1 (b)) is considered 

on the plate at any arbitrary location.  The host structure can be divided in to several small 

rectangular segments. The piezoelectric coating is assumed to cover the rectangular 

segment only. In this derivation, we have assumed that the Love-Kirchhoff’s assumptions 

are valid. The strain along the thickness direction of the plate is zero as a result of Love-

Kirchhoff’s assumptions. Thus, Mindlin’s shear deformation theory [268-270] is ignored 

in this derivation. The electrode layer is assumed to be thin compared to the host structure. 

The mechanical damping is separated in two parts 1) internal strain rate damping (Kelvin–

Voigt damping) associated with the piezoceramic layer 2) external environment (air) 

damping. The electrodes on either side of the piezoceramic layers are assumed to be 

perfectly conductive. Unlike earlier publications [243] the Kelvin-Voigt damping matrix 

is assumed to be coupled (a fully populated matrix) between two orthogonal directions x 

and y [137]. A resistive load ( lR ) is considered in the energy harvesting circuit (see Fig. 

1) for developing the coupled governing equation. Hence, when piezoelectric patches are 

considered the total circuit resistance is assumed to be contributed through the parallel 

connection of effective resistance for individual patches. It is assumed that the electric field 

is bound to develop only along the z direction. Hence, the electric field strength developed 

along the x and y axes were zero. x, y, and z are analogous to 
1x , 

2x  and 3x , respectively. 

In Figure 10.1 (b) a small rectangular element between ix and 1ix along x and between 

iy and 1iy along y was considered in the forgoing derivation.   
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Figure 10.1: Schematics of plate type energy harvesters with discrete PZT patch a) 

covering the entire plate b) covering a small segment. 

The Governing differential equation of a plate with transverse loading under 

dynamic condition can be written as 
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Where, xM  is the moment per unit length about x axis and yM  is the moment per 

unit length about y axis, xyM is the moment resulted from the shear stress. L , m, w, sw are 

the transverse loading on the plate, mass density of the plate, relative transverse deflection 

and total external displacement of the plate, respectively. The moments ( xM , yM , xyM ) in 

equation (1) can be obtained by integrating the moment of the stress distribution over the 

cross-section of the plate. As an example, here the expression for the moment xM  is written 

below.  
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Where, superscript p was used for the piezoelectric layer and s was used to represent 

the substrate layer. sh & ph are thickness of the substrate and the piezoelectric layer, 

respectively. The constitutive relation for piezoelectric materials can be written as [24]. 

       ΕdTsS
TppEp                             (10.3)                        

Where, Sp is strain tensor, {T}b p is stress tensor, [d] is the matrix for direct 

piezoelectric effect consists of piezoelectric charge constants and [271] is the induced or 

generated electric filed strength. Using mathematical manipulation, expressions for the 

stress vector can be obtained as  

           ΕdCSDSCT
Tpppppp

                                             (10.4) 
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[C]p is the constitutive matrix composed of elastic constant of the piezoelectric 

material, [D]p is the coupled strain rate damping matrix, and thus the matrix is not diagonal, 

which is assumed to be diagonal in [78, 244]. 

First, let’s consider the plate with piezoelectric layer on the entire plate. After 

performing the integration and substituting the expressions for xM , yM  and xyM  in 

equation (1) (assuming 024 e ), viz. 
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And the governing differential equation for a rectangular piezoelectric patch at any 

arbitrary location between ix and 1ix along x and between iy and 1iy along y the 

equation (1), viz. 
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Where, axC  & ayC  are the viscous air damping coefficients, srxpsrx cC   & 

srypsry cC   are the strain-rate damping coefficients, ps 1 , 

 
cppss  22 , 

3
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 , sE  and pE  are Elastic Modulus of 

Substrate Structure and piezoelectric coating, respectively. s  and p  are Shear Modulus 

of Substrate Structure and piezoelectric coating, respectively. In the foregoing derivation 

two types of damping mechanisms are considered: viscous damping caused by air medium 

and the Kelvin–Voigt damping or strain rate damping, together they can be called as 

Rayleigh damping mechanism. Viscous air damping is a simple way of modeling the force 

acting on the plate due to the air particles displaced by the plate and strain-rate damping 

accounts for the structural damping due to the friction due to internal constitution of the 

plate [137, 151]. The equations (5) or (6) are dynamic equation for mechanical vibration 

with electrical coupling and hence, the electrical circuit equation with mechanical coupling 

must also be considered simultaneously in the proposed coupled problem. The electric 

charge density displacement of the PZT layer will be used in the following expressions. 

The electric charge density at the PZT layer can be represented by the Gauss Law           
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Where, A is the electrode area over the PZT layer and )(tq is electric charge 

developed between the PZT electrodes                                     
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Assuming  121131 CCdC   

Since the current expression given by the above equation includes the capacitance 

information of the PZT, in this model, it is convenient to connect the PZT directly to the 

resistive load as a current source without any external capacitive element as shown in 

Figure 10.1. Then, the differential equation for the voltage in the feed back loop becomes  
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Where, 
ph

ab33
 is the capacitance of the PZT layer and lR  is the external load 

resistance.  

10.3 Solution for the Dynamic Equation 

Let us assume for the moment that the external loading on the plate is uniform 

(uniform pressure). Let us also assume that the maximum amplitude of the loading is 0L . 

As discussed in section 2.0, we assumed that the plate is simply supported all around and 

hence the vertical displacement ( w ) and the moments ( yx MM , ) are zero at the boundary. 
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Considering the time dependent vibration of the base, ( )sw it is quite justifiable to assume 

Navier’s solution [268, 270] for relative vertical displacement of the plate as

)()()(),,(
1 1

tyYxXBtyxw rssr

r s

rs 








 which can also satisfy the boundary condition of the 

plate. We could assume any suitable eigen functions )()( yYxX sr satisfying the boundary 

conditions pertained to simply supported end, cantilever end or restrained end, 

respectively. Here in this paper we have assumed sinusoidal eigen functions satisfying the 

homogeneous boundary conditions. Substituting the expression for w in equation (6) and 

enforcing the orthogonality conditions of the eigen functions we get 
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Where,  
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Assuming pure vertical translation, the excitation force due to mass inertia can be 

written as  2
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 . Due to viscous damping, the effect on the external 

force will be 
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 . The time dependent external force due to varying 

pressure is 
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 . Let )(trs be the algebraic sum of these three forces.  

Similarly, substituting the assumed expression for w in equation (8) we get 
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Henceforth, the rsB coefficients are consumed in the expression )(trs . Using 

homogeneous solution and the particular integral, the solution for )(t  can be found from 

equation (11). After enforcing the initial condition 0)( t  at 0t  we can write the 

expression  

  dttttt )()exp().exp()(                                (10.12)                  
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10.4 Solution under Harmonic Condition and Random Vibration 

If it can be assumed, that the harmonic external vibration is provided to the energy 

harvester then )(tws can be assumed as
ti

beW 
, where  is any arbitrary excitation 

frequency and bW  is the amplitude of the transverse vibration. If )(tws  is the source of 

random vibration then )(tws  can be written as 




 ti

s eWtw )()( , where )(W is the 

random complex valued spectrum. Assuming the proposed electro-mechanical system 

linear, the voltage output from the harvester will be harmonic under harmonic loading 

condition. If the maximum voltage across the load resistance lR  is 0V  then, 
tieVt  0)(  . 

The equation (10) can be modified and can be written as  
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Where, pqc  includes both viscous and strain-rate damping terms; pqpqk  ; 

pq
pq 2
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Hence, the natural frequency of the system can be written as
m

k pq

pq   and the 

damped natural frequency is 2
1 pqpq

d

pq    where, 
pq

pq

pq
m

c




2
 . The forcing 

function in the dynamic equation (13) is   
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Where,  CoySixVSiyCoxVVCS ** 3231  , the steady state solution for )(tTpq can 

be obtained as 
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Substituting the feed-back-loop voltage expression in the equation (11) we get 
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Now the explicit expression for the current across the resistance can be written as  
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In equation (16), the maximum voltage output across the load resistance will also 

depend on the external mechanical loading )(tL . A harmonic loading with a phase lag can 

be considered. It is clear from the expression in equation (16) that the uniform loading 

without any time dependence has no effect on the voltage output. Assuming 

   tieqtL 0)(  where   is the phase difference between the vibration excitation and the 
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external vertical loading. Substituting the expression in equation (16), the maximum 

voltage output expression will become 
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Hence, the maximum power output is 
lR

V
P

2

0

0   

10.5 Calculation of Damping Coefficients 

In this study, two types of damping are considered, 1) strain rate damping and 2) 

viscous damping. The damping term rsc  in equation (10) has three damping coefficients.

srxC  and sryC  are the strain rate damping coefficients pertaining to bending of the plate 

about x axis and y axis, respectively. aC  is viscous damping coefficient. To derive the 

values of these coefficients, following steps are adopted. The damping coefficients for the 

first four vibration modes of the energy harvester (
11 ,

12 ,
21 and

22 ) are assumed to be 

0.015, 0.02, 0.02 and 0.025. Using these known values of the pq , unknown values of srxC

, sryC  and aC are calculated. Values of the strain rate damping and viscous damping 

coefficients are highly dependent on structural geometry of the energy harvester, such as 

the length, breath, the thickness of substrate and the thickness of the piezoelectric layer. In 

this paper, a geometric configuration is used and respective values of the damping 

coefficients are calculated and incorporated automatically in our MATLAB program.    
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10.6 Numerical Implementation 

A MATLAB code is developed based on the equations derived in the previous 

section. The resistance (load) was varied to calculate the power output variation at different 

frequencies. From this study, resonant frequencies were identified at different load 

resistances. With certain requirements in mind the Optimization tool box in MATLAB is 

used to obtain pattern of piezoelectric patch on the energy harvester.  Material properties 

for this analysis are assumed as follows, sE =98 GPa , s =0.335 , pE =66 GPa , p =0.30 , 

ms =7.20 gm/c.c , mp=7.5 gm/ c.c , 31d  =-274 pm/V or pC/N , 33p  =3400*8.854 pF/m. 

We have assumed 8 different external load resistances to calculate the voltage output. 

Figure 10.2 shows the comparison between two mathematical modeling approaches, 

employing the strain rate damping (SRD) mechanism and neglecting the strain rate 

damping mechanism or zero damping (ZRD) mechanism. It can be seen that having 200

  and 1000  load resistance in the harvesting circuit, the resonant frequencies around 

13 KHz & 16.5 KHz are not present when strain rate damping mechanism is considered. 

Also the magnitudes of FRF at 3.3 KHz and 8.2 KHz resonant frequencies are significantly 

different for SRD and ZRD. Hence, it can be stated that for accurate estimation of power 

output from plate type harvesters, SRD is quite necessary. In the forgoing discussions and 

charts the SRD mechanism is considered in the mathematical model.   
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Figure 10.2: Comparison of FRF by using SRD and ZRD in the mathematical model 

A parameter 2/V is formulated to presented which is designated as frequency 

response function (FRF). Two types of harvesters (square and rectangular plate) were 

investigated. First a 100 mm x 100 mm square harvester with 0.05 mm thick PZT on top 

of 1 mm thick substrate was considered. The plate is discretized in to 1000 x 1000 elements. 

For each individual placement of PZT patch the voltage expression from equation 18 was 

used to calculate the FRF. For this study we assumed that the entire plate is covered by 

piezoelectric layer. The FRF for entire piezoelectric layer was first obtained using the 

voltage expression presented in Reference [240]. Next the FRF function for the entire plate 

with element patches was obtained from each element of piezoelectric layer, using 

superposition theorem (considering load resistances connected in parallel). Identical results 

were obtained. It proves the accuracy of the mathematical expression in equation (18). 

Figure 10.3 shows the FRF function obtained by superposition. Total 8 load resistance 
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between 100  to 20,000  as shown in Figure 10.3 were considered. It can be seen that, 

higher resistances have slightly lower resonant frequencies.   

 

Figure 10.3: FRF function of a 100mm x 100mm square plate at different load resistance 

Next a plate with 200 mm length and 100 mm width is considered. As shown in 

Figure 10.4 the FRF function has five consecutive resonant frequencies within 10 KHz 

band, unlike 2 resonant frequencies obtained from a square plate. This shows that the 

rectangular plate has higher energy output (higher area under the FRF curve) but within a 

narrow band. Hence, if many rectangular plates are arranged in a certain pattern then they 

could potentially harvest energy from wider band of frequencies. It is known that the 

energy could only be harvested from the area of the plate, where the piezoelectric patches 

are placed on the plate. Thus, many rectangular patterns of piezoelectric layer on a square 
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plate could also serve similar functionality. Keep this concept in mind optimization process 

was introduced to obtain different piezoelectric pattern for desired goal.           

 

Figure 10.4: FRF function of a 200mm x 100mm square plate at different load resistance 

10.7 Optimization Problem to Obtain PZT Pattern 

The plate is assumed to be divided in to 1000x1000 elements. The placements of 

piezoelectric patch elements in certain pattern that can satisfy certain requirements of 

voltage output (e.g. maximize the voltage output at certain frequency, maximize the 

number of resonant frequency within a certain band of frequency etc.) can be obtained 

through multifunctional optimization, if the output voltage expression due to an element of 

piezoelectric patch is known. Hence, the explicit mathematical expression for voltage 

output has been obtained in the previous section (see equation (18)). Multifunction 
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optimization tool using Genetic Algorithm in MATLAB is used to calculate the design 

parameters. First the load resistance dependent (i.e. for fixed external load i.e. 400 ) FRF 

for each piezoelectric patch between ix and 1ix along x and between iy and 1iy along y

was obtained using the equation (18). The FRF was obtained for three different thicknesses 

of piezoelectric layer. Then each FRF function ( 2/V  as function of ) was treated as a 

chromosome in the forgoing genetic algorithm in MATLAB.  

In the optimization program, following design parameters were considered, A. 

Total number of patches, B. length, width and location of the patches ( ix and 1ix along 

x and between iy and 1iy along y ) on the energy harvester plate and C. thickness of 

each piezoelectric patch. The objective functions were specified in the code. To 

demonstrate the proposed process we have considered two optimization problems, 1) 

Maximize the area under the FRF function for broad band harvesting while covering only 

50% of the plate using piezoelectric layer, 2) Maximize the amplitude of FRF function at 

3KHz which is the first resonant frequency (refer Figure 10.3) while covering only 50% of 

the plate using piezoelectric layer. 3) Maximize the amplitude of FRF function at 3 KHz 

which is the first resonant frequency (refer Figure 10.3) while covering only 75% of the 

plate using piezoelectric layer. Hence, from two problems we received three patterns of 

piezoelectric layers. The patterns obtained from the optimization program are not exactly 

plausible or difficult to manufacture. Different thicknesses of the piezoelectric patches 

were reported at different locations of the plate from the optimization program, which is 

extremely difficult to fabricate. Hence, the closest geometrical patterns that are physically 

possible to manufacture were considered to obtain piezoelectric pattern on the harvester as 
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shown in Figure 10.5 a, b & c. We have enforced same thickness of the piezoelectric layer 

(i.e. 0.5 mm) for all the patches. All dimensions in the images are in mm. 

 

(a) 
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(b) 
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(c) 

Figure 10.5: Piezoelectric layer pattern on square plate energy harvester: a) swastika 

pattern b) unsymmetrical logarithmic chirp pattern c) symmetric logarithmic chirp pattern 

Finite Element Method (FEM) simulations with respective piezoelectric patterns 

were performed simultaneously with the analytical calculation to obtain the FRF. Figure 

10.6 shows a qualitative comparison between FRF function obtained using Analytical 

method and using the FEM. For analytical calculation we have used 20Hz interval, 

however, due to cost of computation the FRF in FEM was calculated at every 200 Hz. 

Hence, the detailed pattern of the FRF curve was not captured by the FEM. But overall 

qualitative understanding can be easily referred. It was found that FEM provides quite close 
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approximation of the FRF function with respect to the analytical model. This proves the 

accuracy of the analytical expression that is obtained in equation (18). The deformation 

pattern of the plate with specific piezoelectric pattern is shown in Figure 10.7. Next, a 

similar study was conducted using another piezoelectric pattern (logarithmic) which was 

obtained by maximizing the amplitude of FRF function at around 3 KHz covering 50% and 

75% of the plate. Figure 10.8 and Figure 10.10 shows the qualitative comparison of the 

FRF obtained from analytical and FEM model. For analytical calculation we have used 

20Hz interval, however, due to cost of computation the FRF in FEM was calculated at 

every 200 Hz. Hence, the detailed pattern of the FRF curve was not captured by the FEM. 

The deformation pattern of the plate with logarithmic piezoelectric pattern are shown in 

Figure 10.9 and Figure 10.11. Comparing Figure 10.7, Figure 10.9 & Figure 10.11 it can 

be seen that the deformation pattern is quite different due to different pattern of 

piezoelectric layers and thus the output FRF.   
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Figure 10.6: Qualitative comparison between analytical and simulation (FEM) results: 

FRF function of a 100mm x 100mm square plate with patterned patch 

 

Figure 10.7: Deformation of the plate at 3.2 KHz 
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Figure 10.8: Qualitative comparison between analytical and simulation (FEM) results: 

FRF function of a 100mm x 100mm square plate with patterned patch (unsymmetrical 

logarithmic) 

 

Figure 10.9: Deformation of the plate at 3.2 KHz 
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Figure 10.10: Qualitative comparison between analytical and simulation (FEM) results: 

FRF function of a 100mm x 100mm square plate with patterned patch (symmetrical 

logarithmic chirp) 

 

Figure 10.11: Deformation of the plate at 3.2 KHz 
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10.8 Chapter Summary 

In this research, a mathematical derivation of power output and exact output voltage 

expressions are presented for plate type energy harvesters that are suitable for harvesting 

energy. The frequency response function produces peak values at certain band of 

frequencies. However, using the patterned patch in the model a wide band of resonance is 

achieved, although the amplitude is much lower than the actual resonance at a particular 

frequency. It can be seen that the resonant band also depends on load resistance. Thus if 

the target power output and the load resistances are known, through optimization, an 

effective energy harvester can be designed with a wider band of resonance frequency.   
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CHAPTER 11: PHONON CONFINEMENT USING SPIRALLY 

DESIGNED ELASTIC RESONATORS IN DISCRETE CONTINUUM 

 

Periodic and chiral orientation of microstructures, here we call phononic crystals, 

have extraordinary capabilities to facilitate the innovative design of new generation 

metamaterials. Periodic arrangements of phononic crystals are capable of opening portals 

of non-passing, non-dispersive mechanical waves. Defying conventional design of regular 

periodicity, in this work spirally periodic but chiral orientation of resonators are 

envisioned. Dynamics of the spirally connected resonators and the acoustic wave 

propagation through the spirally connected multiple local resonators are studied using 

fundamental physics. In present study the spiral systems with local resonators are assumed 

to be discrete media immersed in fluid. In this work it is assumed that acoustic or ultrasonic 

waves in fluid are propagated along the plane of the spiral resonators and thus only the 

longitudinal wave mode exists due to nonexistence of shear stress in the fluid. Lagrangian 

formulation of the spiral systems were employed to obtain the governing Euler-Lagrange 

equation of the system. Discrete element method was employed to verify the equation 

assuming nearest neighboring effect.
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11.1 Background 

The aim of this work is to demonstrate the possibility of phonon confinements in a 

set of spirally connected phononic crystals. In last few years, phononic crystals either in 

discrete or embedded in the acoustic materials have received significant attention [272, 

273]. Band gap manipulation is increasingly important in periodic structures to diversify 

the applications of the novel materials and the phononic crystals. Tunabilitiy of frequency 

band structures in engineered materials are of significant interest due to their many 

practical applications [274]. Acoustic frequency filtration, vibration isolation, 

manufacturing of ultrasonic array transducers, improve clarity of acoustic imaging using 

photon-phonon coupling, micro to nano scale acoustic devices etc. are few applications 

where frequency manipulations are extremely valuable. Bragg scattering in periodic media 

is the most important phenomena that is used in both photonics and phononics for creating 

frequency band gaps. But in photonics there are some possibilities of non-Bragg type band 

gaps that are called polariton [275] band gaps originates from photon-phonon coupling. 

Similar phenomenon of phonon-photon coupling can also be found in superlattices. Also 

recently in phononics, additional frequency band gaps are reported by creating a local 

resonance effect [273]. In addition to the Bragg scattering, in the periodic structures made 

of embedded local resonators, negative bulk modulus and negative effective mass causes 

additional low frequency band gaps [276]. Mass-in-mass unit cells were proposed where 

the effective mass of the cell becomes negative at frequencies near the local resonance 

frequency of the resonators due to special decay of the wave amplitudes [277]. Low 

frequency can be controlled by introducing locally resonant components into the phononic 

crystals [278]. Based on the previous researches it is envisioned that there is a possibility 
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to open a new portals of low-frequency forbidden bands by arranging the local resonator 

(phononic crystal) in a certain geometric fashion. Band gaps can also be obtained by 

altering the geometry of the local resonator [279].  

In 2003, Hirsekorn et al. [278] performed a numerical simulation of acoustic wave 

propagation through sonic crystals consisting of local resonators using the local interaction 

simulation approach (LISA). It was found that there are three strong attenuation bands at 

frequencies between 0.3 and 6.0 kHz, which does not depend on the periodicity of the 

crystals. With the Lamb waves, extremely low frequency band gaps (BG) can be obtained 

by periodically depositing single-layer or two-layer stubs on the surface of a thin 

homogeneous plate [280]. Caballero et al. [280] showed that by placing two-dimensional 

square and triangular lattices (made of rigid cylinders) in the air,absolute sonic band gaps 

are created. Such band gapscan be further increased by reducing the structure symmetry or 

by introducing chirality in the geometry. Based on the idea of localized resonant structures, 

Liu et al. [281] fabricated sonic crystals that exhibit spectral gaps with a lattice constant 

two orders of magnitude smaller than the relevant wavelength. Even after such magnificent 

efforts sonic bands are mostly limited to fewer (one or two) bands gaps with smaller band 

widths. Superposing the ideas of Liu et al. and Caballero et al. here we envision that 

geometric configuration of local resonators and there mode of intra-connections could 

result wider band gaps that would be lucrative for phononic applications and are yet to be 

explored. Hence, instead of creating stop bands, here we propose spiral system of 

resonators that are capable of creating selective pass bands by confining the phonons within 

a desired frequency band. 

http://www.sciencedirect.com/science/article/pii/S0041624X04000216
http://publish.aps.org/search/field/author/D.%20Caballero
http://publish.aps.org/search/field/author/D.%20Caballero
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Naturally obtained spirals (e.g. Cochlea in human ear) shows great advantages in 

filtering desired frequency of sound waves. Significance of the physics of spiral is evident 

throughout our nature. Density waves in galaxies, geometrical configuration of the sensory 

system of the Cephalopodas, geometrical configuration in Cochlea of human ear and 

numerous botanical species demonstrate the spiral pattern [282]. Appearance of this spiral 

chirality is sufficiently diverse in nature (e.g. Archimedean, Logarithmic, Golden and 

Fermat’s spiral patterns etc.).Few research can be found in the field of photonics, where 

guiding of electromagnetic wave by using spiral resonators [283, 284] were demonstrated. 

For most cases Archimedean spiral orientations were used.  He et al. [285] proposed a 

three-dimensional chiral metamaterial consisting of arrays of the multi-layered mutually 

twisted metallic spirals which can exhibit negative refractive index at terahertz frequencies. 

Isik et al. [70] determined the electromagnetic response of the particles arranged in 

Archimedean spiral by using point group symmetry and the methods of crystallography. In 

2011, Elford et al. [286] proposed a Bernoulli type spiral coil resonator to attenuate sound 

pressure level at low frequency region. They found three attenuation (greater than two) 

areas within the frequency range 0-2.2 kHz. They also illustrated that attenuation area can 

be shifted slightly by changing the number turns in the coil. Then a seashell resonator was 

also proposed, which is quite similar to naturally obtained nautilus shell that can attenuate 

sound pressure level at wide range of frequencies. 

Inspired by nature, spirally arranged phononic crystals in fluid (air or liquid) is 

proposed in this study, where cylindrical local resonators are placed both in Archemedian 

and Logarithmic spiral orientation. To understand the fundamental physics a relatively 

simple physical model is proposed where all resonators are assumed to be discrete elastic 
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resonators connected via elastic springs (tangential springs). Also to keep the shape of the 

spiral configuration intact, it is assumed that all the resonators are connected with the 

central resonator placed at the center of the spiral configuration via another set of elastic 

springs (radial springs). Shadowing effect of spiral rings are ignored in this derivation, 

however, to be exact such consideration could be valuable and is under investigation. A 

parametric study was performed to understand the effect of the spring constants on wave 

dispersion phenomenon. Mass, radial spring constants and tangential spring constants were 

varied to see their effect on phonon confinement.  

11.2 Mathematical Formulation 

Euler-Lagrange Equation 

Figure 11.1 shows the proposed phononic crystal system with spirally connected 

local resonators. Based on previous studies the local resonators are designed with hard 

metal coated with soft deformable material e.g. rubber. The proposed system is modeled 

as a discrete spring mass system. Damping is ignored in the forging derivation. All 

individual resonators are assumed to be connected with the neighboring resonators on 

either side, via elastic springs, in series. Simultaneously each resonator is also assumed to 

be connected with the origin of the spiral configuration, via a different spring to prevent 

the shape of the spiral. The proposed spring-mass system is shown in Figure 11.2 (a) and 

three representative resonators in spiral are depicted in Figure 11.2 (b). As shown in Figure 

11.2 (b) each resonator (e.g. i-th resonator) is subjected to three forcesFi+1, Fi & Fti. 

Displacements of the center of the i-th resonator are divided in to two components xi&yi. 

Similarly the displacements of the neighboring resonators are xi+1, yi+1&xi−1, yi−1 for i +
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1-th and i − 1-th resonators, respectively. Mass of the i -th resonator is mi. Hence, the 

Lagrangian of the spiral system can be written in the general form. 

L =
1

2
∑ mi(xi̇

2 + yi̇
2)n

i=1 − ∑ U|xi − xi−1||yi − yi−1| + U|xi − xi+1||yi − yi+1| +n
i=1

U|xi − x0||yi − y0|                (11.1) 

Applying the principal of least action we achieve the Euler-Lagrange equation of 

motion as follows 

∂L

∂xi
−

d

dt
(

∂L

∂xi̇
) = 0 ;  

∂L

∂yi
−

d

dt
(

∂L

∂yi̇
) = 0             (11.2) 

 

Figure 11.1: A possible arrangement of phononic crystal in Logarithmic spiral form. 

Individual resonators are connected to each other through epoxy strings casted together. 

The system is submerged in fluid to neglect the shear mode or rotation degrees of 

freedom. 

The above equation has to satisfy at all the points in the trajectory of evolution 

during wave propagation. Let, Ki+1 be the spring constant connecting i-th and i + 1 –th 

resonator and Ki−1 be the spring constant connecting i − 1-th and i –th resonator.  Let, Kti 
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be the spring constant for the spring connecting i-th resonator to the center of the spiral. 

Let, ni
j
 be the direction cosine between i-th and j-th resonator.ni

j
= n1̂i

j
e1 + n2̂i

j
e2 + n3̂i

j
e3 

After performing the derivatives in the above two equations we get the following 

equations of motion for the spiral system. 

mixï = xiKxxi + yiKxyi + xi+1Kxxi+1 + xi−1Kxxi−1 + yi+1Kxyi+1 + yi−1Kxyi−1    (11.3) 

miyï = xiKyxi + yiKyyi + xi+1Kyxi+1 + xi−1Kyxi−1 + yi+1Kyyi+1 + yi−1Kyyi−1      (11.4) 

where,  

Kxxi = [−Ki+1(n1̂i
i+1)

2
− Ki−1(n1̂i

i−1)
2

− Kti(n1̂i
0)

2
] 

Kxyi = [−Ki+1(n1̂i
i+1)(n2̂i

i+1) − Ki−1(n1̂i
i−1)(n2̂i

i−1) − Kti(n1̂i
o)(n2̂i

o)]  

Kxxi+1 = [Ki+1(n1̂i+1
i )

2
] Kxxi−1 = [Ki−1(n1̂i−1

i )
2

]  

Kxxi+1 = [Ki+1(n1̂i+1
i )

2
] Kxxi-1 = [Ki-1(n1̂i-1

i )
2

] Kxyi+1 = [Ki+1(n1̂i+1
i )(n2̂i+1

i )], 

Kxyi−1 = [Ki−1(n1̂i−1
i )(n2̂i−1

i )]  

Kyxi = [−Ki+1(n1̂i
i+1)(n2̂i

i+1) − Ki−1(n1̂i
i−1)(n2̂i

i−1) − Kti(n1̂i
o)(n2̂i

o)]  

Kyyi = [−Ki+1(n2̂i
i+1)

2
− Ki−1(n2̂i

i−1)
2

− Kti(n2̂i
0)

2
]  

Kyxi+1 = [Ki+1(n1̂i+1
i )(n2̂i+1

i )] Kyxi−1 = [Ki−1(n1̂i−1
i )(n2̂i−1

i )], 
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Kyyi+1 = [Ki+1(n2̂i+1
i )

2
] , Kxyi−1 = [Ki−1(n2̂i−1

i )
2

]  

Considering n numbers of resonators (i runs between 1 to n) in the system, the 

governing equation of motion can be obtained by arranging the equation (11.3) and (11.4) 

in a matrix form. The generalized dynamic equation for n numbers of resonators in spiral 

pattern can be written as Mq̈ = Kq 

where, M the diagonal mass matrix, K the stiffness matrix and q =

{x1 … xn   y1 …    yn }𝐓 

 

Figure 11.2: a) Schematic diagram of spirally connected phononic crystals for 

metamaterials; b) Representative spiral mass spring model using discrete elements 

Eigen Value Solution: Natural Frequencies and Dispersion 

Dynamical behavior of the spiral resonators is studied first. Assuming xi =

Aie
−jωt&yi = Bie

−jωt, we obtain an eigen value problem from the equation (11.6) which 

can be written as[K − ω2M]λ = 0 
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Where, 𝛌 = {A1 … An B1 … Bn−1 Bn}Teigen vector representing the 

mode shapes of the spiral system. The fundamental eigen frequencies are obtained by 

writing a computer program. 

Next the displacement components of the resonators are assumed to have the wave 

number components in order to discover wave dispersion phenomenon through spirally 

connected resonators. Displacements xi = Aie
−jωt−j𝐤.𝐫𝐢 & yi = Bie

−jωt−j𝐤.𝐫𝐢 are assumed, 

where k = kxî + kyĵ is the wave number vector and ri = xiî + yiĵ is spatial vector 

measures distance of the i-th resonator from the origin. Substituting the expressions for the 

displacements in equations (11.1) & (11.2) and intentionally dropping the time harmonic 

term we get 

−ω2miAi = AiKxxi + yiKxyi + Ai+1e(j𝐤.𝐫𝐢+𝟏−j𝐤.𝐫𝐢)Kxxi+1 + Ai−1e(j𝐤.𝐫𝐢−𝟏−j𝐤.𝐫𝐢)Kxxi−1

+ Bi+1e(j𝐤.𝐫𝐢+𝟏−j𝐤.𝐫𝐢)Kxyi+1 + Bi−1e(j𝐤.𝐫𝐢−𝟏−j𝐤.𝐫𝐢)Kxyi−1 

−ω2miBi = AiKyxi + yiKyyi + Ai+1e(j𝐤.𝐫𝐢+𝟏−j𝐤.𝐫𝐢)Kyxi+1 + Ai−1e(j𝐤.𝐫𝐢−𝟏−j𝐤.𝐫𝐢)Kyxi−1

+ Bi+1e(j𝐤.𝐫𝐢+𝟏−j𝐤.𝐫𝐢)Kyyi+1 + Bi−1e(j𝐤.𝐫𝐢−𝟏−j𝐤.𝐫𝐢)Kyyi−1 

After arranging all the elements systematically the dispersion equation of the 

proposed system (spiral resonators) can be written as [K(kx, ky) − ω2M]φ = 0 

Where, φ = {A1 … An B1 … Bn−1 Bn}Tare the eigen vectors (mode 

shapes) of the spiral system. The dispersion equations written above can be solved for ω 

by assuming digital values of kx & ky. In this research 2 dimensional wave with wave 

number|k| is assumed to propagate along any arbitrary θ direction with respect to the x-
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axis. |k| is discretized between 0 to π with wave number interval π/100. Thus kx =

|k| cos(θ) and ky = |𝐤|sin (θ). A computer program was written to solve the dispersion 

equation and the spiral eigen modes were obtained. 

Problem Description  

Solution was obtained from two configurations of the resonators in Archimedean 

Spiral (r = 5 + 2θ and Logarithmic Spiral (r = 5e0.2θ), where dimensions are in mm. The 

angular distance between two consecutive resonators were 0.4π. The eigen value problem 

can be solved for any geometrical configuration of the spirals. Problem can be solved for 

different material properties of the resonators and materials in which the resonators are 

placed. For example, individual mass of the resonators, individual spring constants 

between neighboring resonators and individual spring constants for the springs connecting 

the resonators to the origin the spiral, can be varied or can be designed as per the 

requirements. In this work, the local resonators are assumed to be lead cylinders of mass 5 

gm (m0) and are connected to each other by hard polymer string (source of spring 

constantK0 = 10.5e6 N/m). These resonators are then spirally connected with the center 

of the spiral (source of spring constant Kt0 = 10.5e6 N/m). The complete system is 

assumed to be submerged in fluid (air or liquid). In this research, three different problems 

are solved for each type of spirals. Problem 1: Mass of the resonators are assumed to be 

constant and the stiffness of the springs that connects the neighboring resonators are equal 

(i.e. m1 = mi = mn =  m0, Ki−1 = Ki = Ki+1 =  K0, Kti−1 = Kti = Kti+1 = K0 = Kt0). 

These assumptions are made for both Archimedean and Logarithmic spirals. Problem 2: 

Masses of the resonators are increased by the ratio of their radial distance (mi = m0(r(θ))) 

from the center, keeping spring constants constant. Problem 3: The spring Kt that connects 
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the resonators with the center of the spiral (radial springs), are increased by the ratio of the 

distance of the resonators (Kti = Kt0(r(θ))) from the center, keeping the mass of the 

resonators constant. Problem 4: The Kt spring that connects the resonators with the center 

of the spiral, are decreased by the ratio of the distance of the resonators (Kti =

Kt0(1/r(θ))) from the center, keeping the mass of the resonators constant. Problem 5: 

Keeping equal mass and equal radial spring constants, Ki is increased by the ratio of their 

distance from the center (Ki = K0(r(θ))). Problem 6: Keeping equal mass and equal radial 

spring constants of the resonators,  Ki are decreased by the ratio of the distance of the 

resonators (Ki = K0(1/r(θ))) from the center. Problem 7: Keeping the mass of the 

resonators constants spring constant for Ki are considered 1/10 of the spring constant Kti 

(i.e. Ki = Kti/10). This assumption is valid, especially when the resonators are coated with 

softer materials.  

11.3 Results and Discussions 

Natural frequencies of the Archimedean and Logarithmic spiral systems are shown 

is Figure 11.3 (a), obtained from Problem 1 and Problem 2. Figure 11.3 (b) shows the 

deformed or new position of the resonators oriented in Logarithmic spiral obtained from 

two consecutive vibration modes (26th and 27th eigen vectors) where sudden jump in natural 

frequencies from 28 KHz to 60 KHz is apparent (from Figure 11.3 (a)). Although sudden 

jumps are evident from Figure 11.3 (a), such jumps are apparent, if the natural frequencies 

are plotted keeping track of correlation between the numbed of degrees of freedom and the 

identities of the resonators in spiral order. Factually no frequency jump in eigen modes 

were observed from Problem 1 and Problem 2. Maximum natural frequency of the spiral 
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system was found to be around 90 KHz. It is observed that a and b parameters in spiral 

equation (r = a + bθ) or (r = aebθ) play a key role in obtaining certain natural frequencies 

(not shown) in their vibrational modes. Similar study was performed in Problem 3 and 

Problem 4. Radial spring constants were increased (Problem 3) and then decreased 

(Problem 4) by the ratio of their radial distance and the natural frequencies obtained are 

plotted in Figure 11.4 (a). Figure 11.4 (b) shows the natural frequencies of the system when 

Problem 5 and Problem 6 are solved. From Figure 11.4 (a) it can be seen that there are no 

obvious gap in the natural frequencies of the system similar to Figure 11.3 (a), however, a 

narrow band gap in natural frequencies were observed in both Archimedean and 

Logarithmic spiral systems between 15 KHz – 85 KHz when the spring constants for the 

springs connecting the resonators to each other are increased or decreased, radially. 
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Figure 11.3: a) Natural vibrational frequencies in Discrete Archemedian and Logarithmic 

spiral system with constant and radially increasing mass; b) Displaced position of the 

centers of the resonators in Logarithmic spiral system for 26th and 27th vibrational mode 

where a sudden jump is in natural frequency is found. 

Next the wave propagation through the proposed spiral system is studied. Here, 

ei(𝐤.𝐱−ωt) plane wave incident was assumed and the dispersion equation was solved by 

discretizing the wave numbers to obtain the eigen frequencies. Figure 11.5 shows the 

frequency eigen modes within a band 0 − π of the wave numbers obtained from 

Logarithmic spiral system.  In Figure 11.5 (a) marking along the x axis (0-1, 1-2 & 2-3) 

represents the wave number between 0 − π for the propagation of wave along 00, 450& 

900,  respectively. It is apparent that all the possible eigen modes are confined within a 

specific band of the frequencies. The system is modeled as a discrete system and thus 

discrete numbers of eigen modes were obtained. All eigen modes were found to be confined 

within 20 KHz – 100 KHz when the mass of the resonators are kept constant (Problem 1).  
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Figure 11.4: a) Natural vibrational frequencies in Discrete Archemedian and Logarithmic 

spiral system with constant mass, constant tangential spring constants but radially 

increasing / decreasing radial spring constants ; b) Natural vibrational frequencies in 

Discrete Archemedian and Logarithmic spiral system with constant mass, constant radial 

spring constants but radially increasing/decreasing tangential spring constants. 

Similar confined band was obtained but shifted between 3 KHz - 25 KHz when the 
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mass of the resonators were increased gradually (Problem 2). Hence, by manipulating the 

resonator’s mass, it is possible to change the governing pass band of the spiral resonator 

system. Further a closer investigation was carried out. The variation of eigen frequencies, 

with respect to the wave numbers between −π to π for the first two modes (wave 

propagation along 900) are shown in the Figure 11.5 (b). It can be seen that there are many 

crossover zones between two modes. A closer view of the section marked in blue is shown 

in Figure 11.5 (c). 

The radial spring constants are the design parameter of the spiral system and hence 

a study was conducted to understand their impact on eigen frequencies. Problem 2 and 

Problem 3 was solved and very complicated mode patterns were observed. Highly 

dispersive, weakly dispersive and nondispersive wave modes were generated 

simultaneously. In Figure 11.6 (a) marking along the x axis (0-1, 1-2 & 2-3) represents the 

wave number between 0 − π for the propagation of wave along 00, 450&900,  

respectively. Completely new finding compared to Problem 1 and 2 was obtained when the 

radial spring constants are increased radially by the ratio of their radial distance. A definite 

pass band of frequencies between 35 KHz – 95 KHz was observed along with the 

nondispersive wave modes between 290 KHz – 355 KHz. However, all such modes were 

found to be dispersive within the wave number band 0 - 0.1. Jump between two consecutive 

wave modes were increasing with the increase in radial spring constant. Between 

frequencies 0 - 35 KHz no wave modes were found. Indication of modal crossovers (cross-

talk) at higher frequencies were found (e.g. marked in red circle in Figure 11.6 (a)) when 

the wave propagated along the 450 & 900. Similar crossovers were apparent at lower 

frequencies (between 100 KHz – 120 KHz) when the wave propagated along the x axis 



235 
 

(propagation angle 00). These crossovers appeared periodically along the wave number 

axis and that periodicity was varied with varying frequency. A closer view of the wave 

modes within in the black box (marked in Figure 11.6 (a)) is shown in Figure 11.6 (b). A 

mode was found to be symmetric about the wave number 0.5585, which is essentially the 

mode associated with x displacement of the 18th resonator at approximately 300 angle with 

the x axis at a distance of 19.481 mm. Dividing the x component of the radial distance by 

the wave number 0.5585, it can be seen that approximately 30 full wave form can fit within 

the radial distance of the 18th resonator. Similar phenomena are evident in many places in 

the dispersion curves. After solving Problem 4 (the radial spring constants were decreased 

radially) it was found that the stop band was reduced to 0-8 KHz keeping the upper limit 

of the mode confinements within 95 KHz. 
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Figure 11.5: Evidence of phonon confinement (all possible real modes) in discrete 

Logarithmic spiral system with constant and radially increasing mass; middle) Real 

modes 1st and 2nd modes between wave number −2π to 2π in discrete Logarithmic spiral 

system with constant and radially increasingmass ; bottom) Zoomed view within the blue 

box : Real modes 1st and 2nd modes between wave number −2π to 2π in discrete 

Logarithmic spiral system with constant and radially increasing mass 
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Figure 11.6: a) Evidence of phonon confinement (all possible real modes – nondispersive 

wave modes were found that results zero group velocity) in discrete Logarithmic spiral 

system with radially increasing/decreasing radial spring constant; b) Zoomed view within 

the black box in Figure 6(a) 
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Figure 11.7: Evidence of phonon confinement (all possible real modes) in discrete 

Logarithmic spiral system with radially increasing/decreasing tangential spring constant; 

b) Zoomed view within the black box in Figure 11.6 (a) 

Problem 6 and 7 were studied where the spring constants of the springs connecting 

two consecutive resonators are increased and decreased, respectively. Figure 11.7 (a) shows 

the dispersion phenomenon demonstrated by the Problem 6 and Problem 7. When the 

spring constants (Ki) are increased as per the problem description in Problem 6 the wave 

confinement were found to be within 20 KHz to 700 KHz. Hence, below 20 KHz no wave 

modes were found. Similarly, when the spring constants are decreased by the ratio of the 

radial distance of the resonators, wave confinement were separated in to two zones, zone 

1, is wider band between 5 KHz – 25 KHz and zone 2, a narrow band between 45 KHz – 

47 KHz. Multiple modal crossover points between these two zones were identified similar 

to the points shown in Figure 11.6 (a). Hence between 25 KHz – 45 KHz, no modes were 

found along the wave number axis except at the point of crossovers. 
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Figure 11.8: a) Natural vibrational frequencies in Discrete Archemedian and Logarithmic 

spiral system when tangential spring constants are 10 times less than the radial spring 

constants. b) Wave dispersion through the system showing existence of two pass bands 

between a stop band c) zoomed view of the modes within the red window in Figure 

11.8(b) 
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Another interesting phenomenon that was observed, after solving the Problem 7, is 

shown in Figure 11.8. Figure 11.8 (a) shows the natural frequencies of the spiral system 

obtained when the tangential springs constants are ten time less than the radial spring 

constants. Such parametric variation created a band of frequencies which are not possible 

to be the natural frequency of the spiral system and then almost half of the wave modes 

found to be nondispersive. Next, wave propagation through the Logarithmic spiral system 

was studied (wave propagating along x direction (see Figure 11.8 (b) & Figure 11.8 (c))). 

A clear band gap at lower frequencies (similar to the above examples) was observed and 

another band gap between 30 KHz – 45 KHz was found. Just above this band gap another 

narrow pass band between 46 KHz – 46.6 KHz was observed. The band gap between 30 

KHz – 45 KHz were found to be dependent on the ratio of tangential and radial spring 

constants. Hence, softer springs between resonators along the tangential direction are 

capable of creating larger band gaps at lower frequencies. Modal crossover points every 

2π interval were evident as discussed before. These modal crossovers act as bridge between 

two pass bands at certain wave number zone. Hence, there are significant possibilities of 

manipulating these behaviors for practical use in frequency filtration. 

11.4 Chapter Summary 

From the above study the following comments can be made. Spiral modal behavior 

is geometry dependent. Archimedean and Logarithmic Spirals have similar phenomena but 

different frequency responses. In the vibration analysis of the Logarithmic spirals, the 

nonexistence of the natural frequencies is correlated with the frequency band gaps that are 

obtained when the wave propagation through the spiral system was studied.  Increasing 
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spring constants increased the frequencies of the passing band of the wave modes, whereas 

increased mass (mi) decreased the frequency bands of the wave modes.  Different spring 

constants for radial springs (Kti) and tangential springs (Ki) could potentially result in 

separation of band structures with multiple pass bands. However, it is affirmative from the 

results that low frequency non passing zone can be created and all the possible wave modes 

can be confined within certain band of frequencies. Suitable selection of material for the 

resonators and materials for the springs will provide extreme design flexibility for 

frequency control and wave guiding.  
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CHAPTER 12: CONCLUSION 

 

In present state-of-the-art technologies, electronic and mechanical sensors are 

widely employed in industrial applications for selecting user defined frequencies. 

Cantilever beam models are the most popular designs for the mechanical sensors. However, 

cantilever beam models are typically designed for high frequency (usually > 10 KHz) 

applications since resonance phenomenon is the driving mechanism in selecting target 

frequencies using such sensors. Resonance frequency of the structural resonance primarily 

depends on structural geometry, stiffness and mass of the system. Thus dimension of the 

structure is the governing factor. Hence in this research, we proposed an alternative but 

novel mechanical frequency selection method that can be employed in a wide variety of 

frequencies maintaining the required smaller geometric configurations.  

After rigorous study, it found that, the human cochlea is the most developed band 

pass sensor in nature, where it selects only the sonic frequency band (20 Hz – 20 KHz) and 

filters all the infrasonic and ultrasonic frequencies using only a ~35 mm effective structure 

length. The Basilar Membrane (BM) in the cochlea is naturally designed but based on the 

variable stiffness model, starting from the base to the apex of the cochlea. While cantilever 

beam uses the structural resonance phenomenon to select the target frequencies, basilar 

membrane performs bases on local resonance phenomena to do the same. 



243 
 

Two models have been proposed in this research considering the ability to introduce 

local resonance feature, a) the Acousto-Elastic MetaMaterial (AEMM) model and b) the 

Basilar Membrane (BM) model. AEMM’s are traditionally employed for filtering acoustic 

waves. However, in this research, for the very first time AEMM’s are proposed for the 

purpose of the frequency selection. Initially, stop band technique (SBT) is considered to 

model the AEMM based mechanical sensor. Upon unsuccessful attempts using SBT, band 

pass technique (PBT) is adopted. It has been found that, using the PBT, AEMM can 

perform as the targeted mechanical sensor. A specific frequency can be selected precisely 

from a unit cell AEMM, while remaining frequencies of this system can be filtered. Since 

each unit cell is capable of selecting a distinct frequency, multi-cell AEMM model, with 

systemic selection of material properties in each cell, is further proposed to sense a band 

of frequencies. It has been reported that, since in the AEMM model, local resonance 

frequency is a function of material properties instead of model geometry, it is possible to 

manipulate the target frequency keeping the model geometry unchanged. Such flexibility 

allows the AEMM model to be designed for a wide range of frequencies.  

In Basilar Membrane model, geometric configuration of the real basilar membrane 

is mimicked to replicate its functionalities. A considerable number of studies have been 

performed in recent years to present mechanical frequency sensors/filters mimicking the 

basilar membrane. However, a comprehensive and comparatively fast predictive model is 

missing. Such model is the utmost necessity to conduct optimization study before any 

design proposal. Hence, in this research, a predictive model for the band pass frequency 

sensor is developed so that the frequency band and the model parameters can be selected 

predictively. It is expected that the developed predictive model can boost the artificial 
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cochlea technology since the human cochlea also performs as band pass frequency sensor, 

naturally. Following the geometry of the basilar membrane, trapezoidal structure is 

suggested for the sensor device. The predictive model is developed with utmost flexibility 

that not only can manage homogeneous but also the functionally graded model parameters. 

The model is flexible enough to adopt different types of boundary conditions.  

Two designs of the BM based mechanical sensor are proposed, i) the plate model 

and ii) the beam model. The plate model is designed where a band of frequencies is 

necessary without missing any frequency within the band. Using the plate model and 

homogeneous model parameters, it has been found that a specific band of frequency can 

be selected from a distinct segment of the model. It is possible to shift, wide or narrow the 

length segment using functionally graded structure towards selecting the same frequency 

band. The beam model is proposed where distinct frequencies are require to be selected 

within a frequency band. The beam model suggests that a band of frequency can be sensed 

using the proposed model and it is possible to manipulate the frequency selection capacity 

of the model altering the material properties. Both the predictive models are numerically 

validated using the simulation tool COMSOL Multiphysics and it has been found that the 

proposed models are couple of order faster than its counter FEM technique. Though, in this 

work, deflection amplitude is referred as sensing parameters, the deflection amplitude can 

easily be converted to electrical signals through implementing smart materials, specifically 

piezoelectric material. The predictive models can be linked to any optimization tool to get 

the user required optimized geometry for any target frequency band.  

In addition to the introduction of mechanical frequency selection method, in this 

research we envisioned few novel applications of the proposed models. Since the proposed 
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AEMM sensor uses electric potential as the sensing parameter, we further recommend 

AEMM model for energy harvesting application. We report that, the proposed unit AEMM 

structure with sub-wavelength geometry (< 5 cm) is capable to generate ~ 36 μW power at 

low frequency level (<1 KHz), which is significantly higher compared to the existing 

harvesters of same kind. We further suggest three novel applications (please refer chapter 

7) of the AEMM based harvester. In this research, we also propose BM cantilever beam 

model as the mycotoxin detection sensor.  

In spite of the key objectives of this dissertation, couple of supporting researches 

have also been performed, such as, energy scavenging using patterned piezoelectric layer, 

phonon confinement using spirally oriented elastic resonators (please see chapter 10 and 

11). 

12.1 Major contributions  

1. A universal mechanical band pass frequency sensing mechanism is developed 

using the local resonance phenomena. The proposed frequency selection 

method provides the flexibility to be employed for both the low and the high 

frequencies with controlled geometric configuration.  

2. Two designs (AEMM and BM) are proposed to model the targeted frequency 

sensors mimicking the operation of the human cochlea.  

3. For the very first time AEMM is presented to read the trapped frequencies 

inside the metamaterial in oppose to the filtration of acoustic wave using band 

gap phenomena. It has been confirmed that the proposed design of AEMM is 
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capable of performing as the targeted frequency sensor. Each unit cell selects 

a unique frequency.  

4. Comprehensive predictive model for the BM based frequency sensor is 

developed. Two predictive models are developed corresponding to the 

envisioned plate type and beam type BM sensors. The predictive models are 

significantly faster (~3 times) than its counter FEM approach.  

5. AEMM based energy scavenging procedure is presented. Significantly higher 

power output is recorded compared to the existing harvesters of the similar 

type.  

6. Additional novel applications of the AEMM and BM models are proposed.    

12.2 Future Recommendations 

1. Using the developed predictive models, scaling down of the AEMM and BM 

sensors to micro and nano scale for a specific target frequency are possible. 

Development of a low frequency sensor with micro/nano scale geometry is 

challenging but could be a future direction of research.  

2. Optimize the precise frequency selection ability of the proposed models. 

3. The BM predictive model could boost the development of the artificial 

mechanical cochlea.  

4. Development of the ultrasonic cochlea for robots can be envisioned using the 

BM model.  

5. Further study is necessary to avoid the tail peaks in the BM plate model.  
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6. Perform necessary study to implement the AEMM and BM models in 

respective novel applications those are proposed in this dissertation.  
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APPENDIX A: MATLAB CODE FOR BM PLATE MODEL 

   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% Predictive model for Basilar Membrane Plate Model%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%% This code possess the flexibility to alter model parameters, such as  

%%% (model parameters can be defined as constant value or functional form) 

%%% 

%%% (1) Length [constant] 

%%% (2) Width (Base width, Apex width) [constant]  

%%% (3) Thicknessconstant/functional] 

%%% (4) Stiffness [constant/functional] 

%%% (5) Poissons Ratio [constant/functional] 

%%% (6) Density [constant/functional] 

%%% (7) Boundary condition [fixed/simply supported].  

%%% 

%%% Among four (4) boundaries of the model, 'Right' boundary always  

%%% considered free, whereas other three (3) boundaries can be either  

%%% 'Fixed' or 'Simply supported'. To change the boundary condition,  

%%% uncommand equation for target bounday condition and command another.
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clc 

clear all 

  

syms x; 

syms y; 

  

%% Defining Model Parameters 

  

% E=8.963e6*(1+14.28571429*x);        % Functional stiffness              

E=8.963e6;               % Fixed stiffness 

  

% nu=0.48*(1-9.52380952380952*x);                % Functional poissons ratio 

nu=0.48;                      % Fixed poissons ratio 

  

% rho=1130*(1+14.28571429*x);          % Density of the model 

rho=1130;                    % Density of the model 

  

t=0.1e-3*(1+14.28571429*x);                 % Functional thickness 

% t=0.1e-3;                       % Fixed thickness 

  

D=(E*t^3)/(12*(1-nu^2)); 

F=1e3;                       % Total vertical load 
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f=4500:10:5500;      % Frequency band 

% f=1800;                   % Frequency 

omg=2*pi*f; 

length=35e-3;                  % Length of the model 

wb=1e-3;                        % Base width of plate 

wa=2e-3;                        % Apex width of plate 

  

seg_x=200;                     % Finite difference segment along length (always even)  

seg_y=10;                     % Finite difference segment along width (always even) 

  

RowNum=seg_y-1;              % Node number along width 

ColNum=seg_x;                % Node number along length 

m=RowNum*ColNum;             % Total number of nodes 

%% Calculation of distance between node points.  

% "del_x" is constant, however "del_y" is varying over the length 

for i=1:ColNum+3 

    DyDecrement=(wb-wa)/ColNum; 

    width(i)=wb-(i-1)*DyDecrement; 

    dy(i)=width(i)/seg_y; 

end 

  

for i=1:RowNum 

    for j=1:ColNum 
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        del_y((i-1)*ColNum+j)=dy(j+1); 

    end 

end 

  

del_y_L1=dy(ColNum+2);  % del_y at fictitious line 1 on right boundary of the model 

del_y_L2=dy(ColNum+3);  % del_y at fictitious line 2 on right boundary of the model 

  

del_x=length/seg_x; 

  

%% Pressure per unit area of the plate 

for i=1:m 

    p(i)=F/(del_x*del_y(i));     % pressure/area 

end 

  

%% Finding node cordinates 

  

for i=1:ColNum+1 

    xx(i)=(i-1)*del_x; 

    for j=1:RowNum+2 

        x_cord(j,i)=xx(i);    % x-coordinates of node points 

    end    

end 
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WidthDec=((wb/2)-(wa/2))/seg_x;   % Linear width decrement along length of the model 

  

for i=1:seg_x+1 

    y2(i)=-WidthDec*(i-1); 

    for j=1:seg_y+1 

        y1(j,i)=y2(i)-dy(i)*(j-1); 

         

    end     

end 

  

for i=1:seg_x+1 

    for j=1:seg_y+1 

        y_cord(j,i)=y1(j,i)-y1((seg_y/2)+1,i);  % y-coordinates of the node points 

    end 

end 

  

for i=1:RowNum 

    for j=1:ColNum 

        x_v(j+(i-1)*ColNum,1)=x_cord(i+1,j+1);  % x-coordinates in vector 

        y_v(j+(i-1)*ColNum,1)=y_cord(i+1,j+1);  % y-coordinates in vector 

    end 

end 
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for i=1:m 

    for j=1:m 

        x_vec(i,j)=x_v(i); 

        y_vec(i,j)=y_v(i); 

         

    end 

end 

  

%% Angle calculation 

  

for i=1:RowNum      

    theta1(i)=atand((y_cord(i+1,ColNum)-y_cord(i+1,1))/(x_cord(i+1,ColNum)-

x_cord(i+1,1)));   

    for j=1:ColNum 

        theta(i,j)=theta1(i); 

    end 

end 

  

for i=1:RowNum 

    for j=1:ColNum 

        CosT(i,j)=cosd(theta(i,j));              % Cos Theta  

        SinT(i,j)=sind(theta(i,j));                % Sin Theta  

    end 

end 
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CoT=reshape(CosT',m,1); 

SiT=reshape(SinT',m,1); 

  

for j=1:m 

    for i=1:m 

        CT(i,j)=CoT(j); 

        ST(i,j)=SiT(j); 

    end 

end 

  

%% Calculating derivative terms related to model parameters 

D_dx=diff(D,x); 

D_dx2=diff(D_dx,x); 

  

D_dy=diff(D,y); 

D_dy2=diff(D_dy,y); 

  

D_dxdy=diff(D_dx,y); 

  

nu_dx=diff(nu,x); 

nu_dx2=diff(nu_dx,x); 
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nu_dy=diff(nu,y); 

nu_dy2=diff(nu_dy,y); 

  

nu_dxdy=diff(nu_dx,y); 

  

%%%%%% subs 

t_1=double(subs(t,{x,y},{x_v,y_v})); 

rho_1=double(subs(rho,{x,y},{x_v,y_v})); 

  

D_1=double(subs(D,{x,y},{x_v,y_v})); 

D_dx_1=double(subs(D_dx,{x,y},{x_v,y_v})); 

D_dx2_1=double(subs(D_dx2,{x,y},{x_v,y_v})); 

D_dy_1=double(subs(D_dy,{x,y},{x_v,y_v})); 

D_dy2_1=double(subs(D_dy2,{x,y},{x_v,y_v})); 

D_dxdy_1=double(subs(D_dxdy,{x,y},{x_v,y_v})); 

  

nu_1=double(subs(nu,{x,y},{x_v,y_v})); 

nu_dx_1=double(subs(nu_dx,{x,y},{x_v,y_v})); 

nu_dx2_1=double(subs(nu_dx2,{x,y},{x_v,y_v})); 

nu_dy_1=double(subs(nu_dy,{x,y},{x_v,y_v})); 

nu_dy2_1=double(subs(nu_dy2,{x,y},{x_v,y_v})); 

nu_dxdy_1=double(subs(nu_dxdy,{x,y},{x_v,y_v})); 
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for i=1:m 

    for j=1:m 

        t_2(i,j)=t_1(i); 

        rho_2(i,j)=rho_1(i); 

         

        D_2(i,j)=D_1(i); 

        D_dx_2(i,j)=D_dx_1(i); 

        D_dx2_2(i,j)=D_dx2_1(i); 

        D_dy_2(i,j)=D_dy_1(i); 

        D_dy2_2(i,j)=D_dy2_1(i); 

        D_dxdy_2(i,j)=D_dxdy_1(i); 

         

        nu_2(i,j)=nu_1(i); 

        nu_dx_2(i,j)=nu_dx_1(i); 

        nu_dx2_2(i,j)=nu_dx2_1(i); 

        nu_dy_2(i,j)=nu_dy_1(i); 

        nu_dy2_2(i,j)=nu_dy2_1(i); 

        nu_dxdy_2(i,j)=nu_dxdy_1(i); 

    end 

end 

  

%% Calculating coefficients for fictitious node points on free end  
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for i=1:ColNum+1 

    alpha(i)=(del_x^2)/(dy(i+1).^2); 

end 

  

%%%%%% Line 1 dummy node coefficients 

  

L1_C1=zeros(RowNum,m);    % 1st Coefficient of Line 1 

L1_C2=zeros(RowNum,m);    % 2nd Coefficient of Line 1 

L1_C3=zeros(RowNum,m);    % 3rd Coefficient of Line 1 

L1_C4=zeros(RowNum,m);    % 4th Coefficient of Line 1 

  

for i=1:RowNum; 

    if i==1 

        L1_C1(i,ColNum*i)=2+2*nu_2(ColNum,1)*alpha(ColNum); 

        L1_C2(i,ColNum*i-1)=-1; 

        L1_C4(i,ColNum*(i+1))=-nu_2(ColNum,1)*alpha(ColNum); 

    elseif i==RowNum 

        L1_C1(i,ColNum*i)=2+2*nu_2(ColNum,1)*alpha(ColNum); 

        L1_C2(i,ColNum*i-1)=-1; 

        L1_C3(i,ColNum*(i-1))=-nu_2(ColNum,1)*alpha(ColNum); 

    else     

        L1_C1(i,ColNum*i)=2+2*nu_2(ColNum,1)*alpha(ColNum); 

        L1_C2(i,ColNum*i-1)=-1; 
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        L1_C3(i,ColNum*(i-1))=-nu_2(ColNum,1)*alpha(ColNum); 

        L1_C4(i,ColNum*(i+1))=-nu_2(ColNum,1)*alpha(ColNum); 

    end     

end 

L1=L1_C1+L1_C2+L1_C3+L1_C4;   % Line 1 coefficient matrix. Each row represents 

coefficients for a particular node 

  

%%%%%% Calculating coefficients for additional Line 1 dummy nodes 

L1_top=zeros(1,m); 

L1_bottom=zeros(1,m); 

L2_top=zeros(1,m); 

L2_bottom=zeros(1,m); 

  

% L1_top(:,ColNum)=0;                              %%% for simply supported top boundary 

L1_top(:,ColNum)=-2*nu_2(ColNum,1)*alpha(ColNum);  %%% for fixed supported top 

boundary 

  

% L1_bottom(:,m)=0;                                %%% for simply supported bottom boundary 

L1_bottom(:,m)=-2*nu_2(ColNum,1)*alpha(ColNum);    %%% for fixed supported 

bottom boundary 

  

% L2_top(:,ColNum)=0;                              %%% for simply supported top boundary 

L2_top(:,ColNum)=-(4*nu_2(ColNum,1)*alpha(ColNum)... 

    +8*nu_2(ColNum,1)*(2-nu_2(ColNum,1))*alpha(ColNum+1)*alpha(ColNum)... 



297 
 

    +4*(2-nu_2(ColNum,1))*alpha(ColNum+1));        %%% for fixed supported top 

boundary 

L2_top(:,ColNum-1)=2*(2-nu_2(ColNum,1))*alpha(ColNum-1)... 

    +2*(2-nu_2(ColNum,1))*alpha(ColNum+1);         %%% for fixed supported top 

boundary 

L2_top(:,ColNum+ColNum)=2*nu_2(ColNum,1)*(2-nu_2(ColNum,1))... 

    *alpha(ColNum+1)*alpha(ColNum);                %%% for fixed supported top boundary 

  

% L2_bottom(:,m)=0;                                %%% for simply supported bottom boundary 

L2_bottom(:,m)=-(4*nu_2(ColNum,1)*alpha(ColNum)... 

    +8*nu_2(ColNum,1)*(2-nu_2(ColNum,1))*alpha(ColNum+1)*alpha(ColNum)... 

    +4*(2-nu_2(ColNum,1))*alpha(ColNum+1));        %%% for fixed supported top 

boundary 

L2_bottom(:,m-1)=2*(2-nu_2(ColNum,1))*alpha(ColNum-1)... 

    +2*(2-nu_2(ColNum,1))*alpha(ColNum+1);         %%% for fixed supported top 

boundary 

L2_bottom(:,m-ColNum)=2*nu_2(ColNum,1)*(2-nu_2(ColNum,1))... 

    *alpha(ColNum+1)*alpha(ColNum);                %%% for fixed supported top boundary 

  

%%%%%% Line 2 dummy node coefficients 

  

L2_C1=zeros(RowNum,m);    % 1st Coefficient of Line 2 

L2_C2=zeros(RowNum,m);    % 2nd Coefficient of Line 2 

L2_C3=zeros(RowNum,m);    % 3rd Coefficient of Line 2 

L2_C4=zeros(RowNum,m);    % 4th Coefficient of Line 2 
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L2_C5=zeros(RowNum,m);    % 5th Coefficient of Line 2 

L2_C6=zeros(RowNum,m);    % 6th Coefficient of Line 2 

L2_C7=zeros(RowNum,m);    % 7th Coefficient of Line 2 

L2_C8=zeros(RowNum,m);    % 8th Coefficient of Line 2 

L2_C9=zeros(RowNum,m);    % 9th Coefficient of Line 2 

  

for i=1:RowNum; 

    if i==1 

%         L2_C1(i,ColNum*i)=4+4*(2-

nu_2(ColNum,1))*alpha(ColNum+1)+4*nu_2(ColNum,1)*alpha(ColNum)... 

%             +3*nu_2(ColNum,1)*(2-nu_2(ColNum,1))*alpha(ColNum)*alpha(ColNum+1);   

%%% for simply supported top boundary         

        L2_C1(i,ColNum*i)=4+4*(2-

nu_2(ColNum,1))*alpha(ColNum+1)+4*nu_2(ColNum,1)*alpha(ColNum)... 

            +7*nu_2(ColNum,1)*(2-nu_2(ColNum,1))*alpha(ColNum)*alpha(ColNum+1);   

%%% for fixed supported top boundary 

        L2_C2(i,ColNum*i-1)=-(4+2*(2-nu_2(ColNum,1))*alpha(ColNum-1)... 

            +2*(2-nu_2(ColNum,1))*alpha(ColNum+1)); 

        L2_C3(i,ColNum*i-2)=1; 

        L2_C6(i,ColNum*(i+1))=-

(2*nu_2(ColNum,1)*alpha(ColNum)+4*nu_2(ColNum,1)*(2-nu_2(ColNum,1))... 

            *alpha(ColNum)*alpha(ColNum+1)+2*(2-nu_2(ColNum,1))*alpha(ColNum+1)); 

        L2_C7(i,ColNum*(i+1)-1)=(2-nu_2(ColNum,1))*alpha(ColNum-1)+(2-

nu_2(ColNum,1))*alpha(ColNum+1); 

        L2_C9(i,ColNum*(i+2))=nu_2(ColNum,1)*(2-

nu_2(ColNum,1))*alpha(ColNum)*alpha(ColNum+1); 

    elseif i==2 && RowNum>=4 
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        L2_C1(i,ColNum*i)=4+4*(2-

nu_2(ColNum,1))*alpha(ColNum+1)+4*nu_2(ColNum,1)*alpha(ColNum)... 

            +6*nu_2(ColNum,1)*(2-nu_2(ColNum,1))*alpha(ColNum)*alpha(ColNum+1); 

        L2_C2(i,ColNum*i-1)=-(4+2*(2-nu_2(ColNum,1))*alpha(ColNum-1)... 

            +2*(2-nu_2(ColNum,1))*alpha(ColNum+1)); 

        L2_C3(i,ColNum*i-2)=1; 

        L2_C4(i,ColNum*(i-1))=-

(2*nu_2(ColNum,1)*alpha(ColNum)+4*nu_2(ColNum,1)*(2-nu_2(ColNum,1))... 

            *alpha(ColNum)*alpha(ColNum+1)+2*(2-nu_2(ColNum,1))*alpha(ColNum+1)); 

        L2_C5(i,ColNum*(i-1)-1)=(2-nu_2(ColNum,1))*alpha(ColNum-1)+(2-

nu_2(ColNum,1))*alpha(ColNum+1); 

        L2_C6(i,ColNum*(i+1))=-

(2*nu_2(ColNum,1)*alpha(ColNum)+4*nu_2(ColNum,1)*(2-nu_2(ColNum,1))... 

            *alpha(ColNum)*alpha(ColNum+1)+2*(2-nu_2(ColNum,1))*alpha(ColNum+1)); 

        L2_C7(i,ColNum*(i+1)-1)=(2-nu_2(ColNum,1))*alpha(ColNum-1)+(2-

nu_2(ColNum,1))*alpha(ColNum+1); 

        L2_C9(i,ColNum*(i+2))=nu_2(ColNum,1)*(2-

nu_2(ColNum,1))*alpha(ColNum)*alpha(ColNum+1); 

    elseif i==2 && RowNum<4 

        L2_C1(i,ColNum*i)=4+4*(2-

nu_2(ColNum,1))*alpha(ColNum+1)+4*nu_2(ColNum,1)*alpha(ColNum)... 

            +6*nu_2(ColNum,1)*(2-nu_2(ColNum,1))*alpha(ColNum)*alpha(ColNum+1); 

        L2_C2(i,ColNum*i-1)=-(4+2*(2-nu_2(ColNum,1))*alpha(ColNum-1)... 

            +2*(2-nu_2(ColNum,1))*alpha(ColNum+1)); 

        L2_C3(i,ColNum*i-2)=1; 

        L2_C4(i,ColNum*(i-1))=-

(2*nu_2(ColNum,1)*alpha(ColNum)+4*nu_2(ColNum,1)*(2-nu_2(ColNum,1))... 
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            *alpha(ColNum)*alpha(ColNum+1)+2*(2-nu_2(ColNum,1))*alpha(ColNum+1)); 

        L2_C5(i,ColNum*(i-1)-1)=(2-nu_2(ColNum,1))*alpha(ColNum-1)+(2-

nu_2(ColNum,1))*alpha(ColNum+1); 

        L2_C6(i,ColNum*(i+1))=-

(2*nu_2(ColNum,1)*alpha(ColNum)+4*nu_2(ColNum,1)*(2-nu_2(ColNum,1))... 

            *alpha(ColNum)*alpha(ColNum+1)+2*(2-nu_2(ColNum,1))*alpha(ColNum+1)); 

        L2_C7(i,ColNum*(i+1)-1)=(2-nu_2(ColNum,1))*alpha(ColNum-1)+(2-

nu_2(ColNum,1))*alpha(ColNum+1); 

    elseif i==RowNum 

%         L2_C1(i,ColNum*i)=4+4*(2-

nu_2(ColNum,1))*alpha(ColNum+1)+4*nu_2(ColNum,1)*alpha(ColNum)... 

%             +3*nu_2(ColNum,1)*(2-nu_2(ColNum,1))*alpha(ColNum)*alpha(ColNum+1);      

%%% for simply supported bottom boundary 

        L2_C1(i,ColNum*i)=4+4*(2-

nu_2(ColNum,1))*alpha(ColNum+1)+4*nu_2(ColNum,1)*alpha(ColNum)... 

            +7*nu_2(ColNum,1)*(2-nu_2(ColNum,1))*alpha(ColNum)*alpha(ColNum+1);      

%%% for fixed supported bottom boundary 

        L2_C2(i,ColNum*i-1)=-(4+2*(2-nu_2(ColNum,1))*alpha(ColNum-1)... 

            +2*(2-nu_2(ColNum,1))*alpha(ColNum+1)); 

        L2_C3(i,ColNum*i-2)=1; 

        L2_C4(i,ColNum*(i-1))=-

(2*nu_2(ColNum,1)*alpha(ColNum)+4*nu_2(ColNum,1)*(2-nu_2(ColNum,1))... 

            *alpha(ColNum)*alpha(ColNum+1)+2*(2-nu_2(ColNum,1))*alpha(ColNum+1)); 

        L2_C5(i,ColNum*(i-1)-1)=(2-nu_2(ColNum,1))*alpha(ColNum-1)+(2-

nu_2(ColNum,1))*alpha(ColNum+1); 

        L2_C8(i,ColNum*(i-2))=nu_2(ColNum,1)*(2-

nu_2(ColNum,1))*alpha(ColNum)*alpha(ColNum+1); 

    elseif i==RowNum-1 
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        L2_C1(i,ColNum*i)=4+4*(2-

nu_2(ColNum,1))*alpha(ColNum+1)+4*nu_2(ColNum,1)*alpha(ColNum)... 

            +6*nu_2(ColNum,1)*(2-nu_2(ColNum,1))*alpha(ColNum)*alpha(ColNum+1); 

        L2_C2(i,ColNum*i-1)=-(4+2*(2-nu_2(ColNum,1))*alpha(ColNum-1)... 

            +2*(2-nu_2(ColNum,1))*alpha(ColNum+1)); 

        L2_C3(i,ColNum*i-2)=1; 

        L2_C4(i,ColNum*(i-1))=-

(2*nu_2(ColNum,1)*alpha(ColNum)+4*nu_2(ColNum,1)*(2-nu_2(ColNum,1))... 

            *alpha(ColNum)*alpha(ColNum+1)+2*(2-nu_2(ColNum,1))*alpha(ColNum+1)); 

        L2_C5(i,ColNum*(i-1)-1)=(2-nu_2(ColNum,1))*alpha(ColNum-1)+(2-

nu_2(ColNum,1))*alpha(ColNum+1); 

        L2_C6(i,ColNum*(i+1))=-

(2*nu_2(ColNum,1)*alpha(ColNum)+4*nu_2(ColNum,1)*(2-nu_2(ColNum,1))... 

            *alpha(ColNum)*alpha(ColNum+1)+2*(2-nu_2(ColNum,1))*alpha(ColNum+1)); 

        L2_C7(i,ColNum*(i+1)-1)=(2-nu_2(ColNum,1))*alpha(ColNum-1)+(2-

nu_2(ColNum,1))*alpha(ColNum+1); 

        L2_C8(i,ColNum*(i-2))=nu_2(ColNum,1)*(2-

nu_2(ColNum,1))*alpha(ColNum)*alpha(ColNum+1); 

    else     

        L2_C1(i,ColNum*i)=4+4*(2-

nu_2(ColNum,1))*alpha(ColNum+1)+4*nu_2(ColNum,1)*alpha(ColNum)... 

            +6*nu_2(ColNum,1)*(2-nu_2(ColNum,1))*alpha(ColNum)*alpha(ColNum+1); 

        L2_C2(i,ColNum*i-1)=-(4+2*(2-nu_2(ColNum,1))*alpha(ColNum-1)... 

            +2*(2-nu_2(ColNum,1))*alpha(ColNum+1)); 

        L2_C3(i,ColNum*i-2)=1; 

        L2_C4(i,ColNum*(i-1))=-

(2*nu_2(ColNum,1)*alpha(ColNum)+4*nu_2(ColNum,1)*(2-nu_2(ColNum,1))... 
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            *alpha(ColNum)*alpha(ColNum+1)+2*(2-nu_2(ColNum,1))*alpha(ColNum+1)); 

        L2_C5(i,ColNum*(i-1)-1)=(2-nu_2(ColNum,1))*alpha(ColNum-1)+(2-

nu_2(ColNum,1))*alpha(ColNum+1); 

        L2_C6(i,ColNum*(i+1))=-

(2*nu_2(ColNum,1)*alpha(ColNum)+4*nu_2(ColNum,1)*(2-nu_2(ColNum,1))... 

            *alpha(ColNum)*alpha(ColNum+1)+2*(2-nu_2(ColNum,1))*alpha(ColNum+1)); 

        L2_C7(i,ColNum*(i+1)-1)=(2-nu_2(ColNum,1))*alpha(ColNum-1)+(2-

nu_2(ColNum,1))*alpha(ColNum+1); 

        L2_C8(i,ColNum*(i-2))=nu_2(ColNum,1)*(2-

nu_2(ColNum,1))*alpha(ColNum)*alpha(ColNum+1); 

        L2_C9(i,ColNum*(i+2))=nu_2(ColNum,1)*(2-

nu_2(ColNum,1))*alpha(ColNum)*alpha(ColNum+1); 

    end 

end 

L2=L2_C1+L2_C2+L2_C3+L2_C4+L2_C5+L2_C6+L2_C7+L2_C8+L2_C9; 

 

%% Calculating coefficients matrix for derivative terms 

  

%%%%%%%% Calculating DX2 coefficients %%%%%%%% 

%% DX2_C1 (i-1,j) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

            DX2_C1(i,j)=0; 

        else 

            DX2_C1(i,i-1)=1*(1/del_x^2); 
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        end         

    end 

end 

%% DX2_C2 (i,j) 

for i=1:m 

    DX2_C2(i,i)=-2*(1/del_x^2); 

end 

%% DX2_C3 (i+1,j) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0  

            DX2_C3(i,j)=1*L1(i/ColNum,j)*(1/del_x^2); 

        else 

            DX2_C3(i,i+1)=1*(1/del_x^2); 

        end      

    end 

end 

  

DX2=DX2_C1+DX2_C2+DX2_C3; 

  

%%%%%%%% Calculating DX3 coefficients %%%%%%%% 

%% DX3_C1 (i-2,j) 

for i=1:m 
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    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

%             DX3_C1(i,i)=-1*(-1/2)*(1/del_x^3);       %%% for simply supported left boundary 

            DX3_C1(i,i)=1*(-1/2)*(1/del_x^3);          %%% for fixed left boundary 

        elseif rem((i-2)/ColNum,1)==0 

            DX3_C1(i,j)=0; 

        else 

            DX3_C1(i,i-2)=1*(-1/2)*(1/del_x^3); 

        end 

    end 

end 

%% DX3_C2 (i-1,j) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

            DX3_C2(i,j)=0; 

        else 

            DX3_C2(i,i-1)=1*(1/del_x^3); 

        end       

    end 

end 

%% DX3_C3 (i+1,j) 

for i=1:m 
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    for j=1:m 

        if rem(i/ColNum,1)==0  

            DX3_C3(i,j)=-1*L1(i/ColNum,j)*(1/del_x^3); 

        else 

            DX3_C3(i,i+1)=-1*(1/del_x^3); 

        end 

         

    end 

end 

%% DX3_C4 (i+2,j) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0  

            DX3_C4(i,j)=L2(i/ColNum,j)*(1/2)*(1/del_x^3); 

        elseif rem((i+1)/ColNum,1)==0  

            DX3_C4(i,j)=L1((i+1)/ColNum,j)*(1/2)*(1/del_x^3); 

        else 

            DX3_C4(i,i+2)=1*(1/2)*(1/del_x^3); 

        end         

    end 

end 

  

DX3=DX3_C1+DX3_C2+DX3_C3+DX3_C4; 
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%%%%%%%% Calculating DX4 coefficients %%%%%%%% 

%% DX4_C1 (i-2,j) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

%             DX4_C1(i,i)=-1*(1/del_x^4);       %%% for simply supported left boundary 

            DX4_C1(i,i)=1*(1/del_x^4);          %%% for fixed left boundary 

        elseif rem((i-2)/ColNum,1)==0 

            DX4_C1(i,j)=0; 

        else 

            DX4_C1(i,i-2)=1*(1/del_x^4); 

        end      

    end 

end 

%% DX4_C2 (i-1,j) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

            DX4_C2(i,j)=0; 

        else 

            DX4_C2(i,i-1)=-4*(1/del_x^4); 

        end        
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    end 

end 

%% DX4_C3 (i,j) 

for i=1:m 

    DX4_C3(i,i)=6*(1/del_x^4); 

end 

%% DX4_C4 (i+1,j) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0  

            DX4_C4(i,j)=-4*L1(i/ColNum,j)*(1/del_x^4); 

        else 

            DX4_C4(i,i+1)=-4*(1/del_x^4); 

        end         

    end 

end 

%% DX4_C5 (i+2,j) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0  

            DX4_C5(i,j)=L2(i/ColNum,j)*(1/del_x^4); 

        elseif rem((i+1)/ColNum,1)==0  

            DX4_C5(i,j)=L1((i+1)/ColNum,j)*(1/del_x^4); 
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        else 

            DX4_C5(i,i+2)=1*(1/del_x^4); 

        end         

    end 

end 

  

DX4=DX4_C1+DX4_C2+DX4_C3+DX4_C4+DX4_C5; 

  

%%%%%%%% Calculating DY2 coefficients %%%%%%%% 

%% DY2_C1 (i,j+1) 

for i=1:m 

    for j=1:m 

        if (i/ColNum)<= 1  

            DY2_C1(i,j)=0;  

        else 

            DY2_C1(i,i-ColNum)=1*(1/del_y(i)^2); 

        end         

    end 

end 

%% DY2_C2 (i,j) 

for i=1:m 

    DY2_C2(i,i)=-2*(1/del_y(i)^2); 

end 
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%% DY2_C3 (i,j-1) 

for i=1:m 

    for j=1:m 

        if i>(m-ColNum)  

            DY2_C3(i,j)=0;  

        else 

            DY2_C3(i,i+ColNum)=1*(1/del_y(i)^2); 

        end         

    end 

end 

  

DY2=DY2_C1+DY2_C2+DY2_C3; 

  

%%%%%%%% Calculating DY3 coefficients %%%%%%%% 

%% DY3_C1 (i,j+2) 

for i=1:m 

    for j=1:m 

        if (i/ColNum)<= 1  

%            DY3_C1(i,i)=-1*(1/2)*(1/del_y(i)^3);       %%% for simply supported top 

boundary                  

            DY3_C1(i,i)=1*(1/2)*(1/del_y(i)^3);          %%% for fixed top boundary 

        elseif (i/ColNum)> 1 && (i/ColNum)<= 2  

            DY3_C1(i,j)=0; 

        else 
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            DY3_C1(i,i-2*ColNum)=1*(1/2)*(1/del_y(i)^3); 

        end         

    end 

end 

%% DY3_C2 (i,j+1) 

for i=1:m 

    for j=1:m 

        if (i/ColNum)<= 1  

            DY3_C2(i,j)=0;  

        else 

            DY3_C2(i,i-ColNum)=-1*(1/del_y(i)^3); 

        end         

    end 

end 

%% DY3_C3 (i,j-1) 

for i=1:m 

    for j=1:m 

        if i>(m-ColNum)  

            DY3_C3(i,j)=0;  

        else 

            DY3_C3(i,i+ColNum)=1*(1/del_y(i)^3); 

        end         

    end 
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end 

%% DY3_C4 (i,j-2) 

for i=1:m 

    for j=1:m 

        if i>(m-ColNum)  

%       DY3_C4(i,i)=-1*(-1/2)*(1/del_y(i)^3);    %%% for simply supported bottom 

boundary 

            DY3_C4(i,i)=1*(-1/2)*(1/del_y(i)^3);       %%% for fixed bottom boundary 

        elseif i<=(m-ColNum) && i>(m-2*ColNum)  

            DY3_C4(i,j)=0; 

        else 

            DY3_C4(i,i+2*ColNum)=1*(-1/2)*(1/del_y(i)^3); 

        end         

    end 

end 

  

DY3=DY3_C1+DY3_C2+DY3_C3+DY3_C4; 

 

%%%%%%%% Calculating DY4 coefficients %%%%%%%% 

%% DY4_C1 (i,j+2) 

for i=1:m 

    for j=1:m 

        if (i/ColNum)<= 1  

%             DY4_C1(i,i)=-1*(1/del_y(i)^4);         %%% for simply supported top boundary 
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            DY4_C1(i,i)=1*(1/del_y(i)^4);            %%% for fixed top boundary 

        elseif (i/ColNum)> 1 && (i/ColNum)<= 2  

            DY4_C1(i,j)=0; 

        else 

            DY4_C1(i,i-2*ColNum)=1*(1/del_y(i)^4); 

        end         

    end 

end 

%% DY4_C2 (i,j+1) 

for i=1:m 

    for j=1:m 

        if (i/ColNum)<= 1  

            DY4_C2(i,j)=0;  

        else 

            DY4_C2(i,i-ColNum)=-4*(1/del_y(i)^4); 

        end         

    end 

end 

%% DY4_C3 (i,j) 

for i=1:m 

    DY4_C3(i,i)=6*(1/del_y(i)^4); 

end 

%% DY4_C4 (i,j-1) 
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for i=1:m 

    for j=1:m 

        if i>(m-ColNum)  

            DY4_C4(i,j)=0;  

        else 

            DY4_C4(i,i+ColNum)=-4*(1/del_y(i)^4); 

        end         

    end 

end 

%% DY4_C5 (i,j-2) 

for i=1:m 

    for j=1:m 

        if i>(m-ColNum)  

%             DY4_C5(i,i)=-1*(1/del_y(i)^4);        %%% for simply supported bottom boundary 

            DY4_C5(i,i)=1*(1/del_y(i)^4);           %%% for fixed bottom boundary 

        elseif i<=(m-ColNum) && i>(m-2*ColNum)  

            DY4_C5(i,j)=0; 

        else 

            DY4_C5(i,i+2*ColNum)=1*(1/del_y(i)^4); 

        end         

    end 

end 
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DY4=DY4_C1+DY4_C2+DY4_C3+DY4_C4+DY4_C5; 

  

%%%%%%%% Calculating DXDY coefficients %%%%%%%% 

%% DXDY_C1 (i-1,j-1) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

            DXDY_C1(i,j)=0; 

        elseif i>(m-ColNum)  

            DXDY_C1(i,j)=0; 

        else 

            DXDY_C1(i,i+ColNum-1)=1*(1/(4*del_x*del_y(i-1))); 

        end         

    end 

end 

%% DXDY_C2 (i-1,j+1) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

            DXDY_C2(i,j)=0; 

        elseif (i/ColNum)<= 1  

            DXDY_C2(i,j)=0; 

        else 
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            DXDY_C2(i,i-ColNum-1)=-1*(1/(4*del_x*del_y(i-1))); 

        end         

    end 

end 

%% DXDY_C3 (i+1,j-1) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0 && i~= m 

            DXDY_C3(i,j)=-1*L1(i/ColNum+1,j)*(1/(4*del_x*del_y_L1)); 

        elseif i>(m-ColNum) && i~= m 

            DXDY_C3(i,j)=0; 

        elseif i == m  

            DXDY_C3(i,j)=-1*L1_bottom(1,j)*(1/(4*del_x*del_y_L1)); 

        else 

            DXDY_C3(i,i+ColNum+1)=-1*(1/(4*del_x*del_y(i+1))); 

        end        

    end 

end 

%% DXDY_C4 (i+1,j+1) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0 && i~= ColNum 

            DXDY_C4(i,j)=L1(i/ColNum-1,j)*(1/(4*del_x*del_y_L1)); 
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        elseif (i/ColNum)<= 1 && i~= ColNum 

            DXDY_C4(i,j)=0; 

        elseif i == ColNum  

            DXDY_C4(i,j)=L1_top(1,j)*(1/(4*del_x*del_y_L1)); 

        else 

            DXDY_C4(i,i-ColNum+1)=1*(1/(4*del_x*del_y(i+1))); 

        end        

    end 

end 

  

DXDY=DXDY_C1+DXDY_C2+DXDY_C3+DXDY_C4; 

  

%%%%%%%% Calculating DX2DY coefficients %%%%%%%% 

%% DX2DY_C1 (i-1,j-1) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

            DX2DY_C1(i,j)=0; 

        elseif i>(m-ColNum)  

            DX2DY_C1(i,j)=0; 

        else 

            DX2DY_C1(i,i+ColNum-1)=-1*(1/(2*(del_x^2)*del_y(i-1))); 

        end        
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    end 

end 

%% DX2DY_C2 (i-1,j+1) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

            DX2DY_C2(i,j)=0; 

        elseif (i/ColNum)<= 1  

            DX2DY_C2(i,j)=0; 

        else 

            DX2DY_C2(i,i-ColNum-1)=1*(1/(2*(del_x^2)*del_y(i-1))); 

        end       

    end 

end 

%% DX2DY_C3 (i,j-1) 

for i=1:m 

    for j=1:m 

        if i>(m-ColNum)  

            DX2DY_C3(i,j)=0; 

        else 

            DX2DY_C3(i,i+ColNum)=1*(1/((del_x^2)*del_y(i))); 

        end 

    end 
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end 

%% DX2DY_C4 (i,j+1) 

for i=1:m 

    for j=1:m 

        if (i/ColNum)<= 1  

            DX2DY_C4(i,j)=0; 

        else 

            DX2DY_C4(i,i-ColNum)=-1*(1/((del_x^2)*del_y(i))); 

        end        

    end 

end 

%% DX2DY_C5 (i+1,j-1) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0 && i~= m 

            DX2DY_C5(i,j)=-1*L1(i/ColNum+1,j)*(1/(2*(del_x^2)*del_y_L1)); 

        elseif i>(m-ColNum) && i~= m 

            DX2DY_C5(i,j)=0; 

        elseif i == m  

            DX2DY_C5(i,j)=-1*L1_bottom(1,j)*(1/(2*(del_x^2)*del_y_L1)); 

        else 

            DX2DY_C5(i,i+ColNum+1)=-1*(1/(2*(del_x^2)*del_y(i+1))); 

        end        
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    end 

end 

%% DX2DY_C6 (i+1,j+1) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0 && i~= ColNum 

            DX2DY_C6(i,j)=L1(i/ColNum-1,j)*(1/(2*del_x^2*del_y_L1)); 

        elseif (i/ColNum)<= 1 && i~= ColNum 

            DX2DY_C6(i,j)=0; 

        elseif i == ColNum  

            DX2DY_C6(i,j)=L1_top(1,j)*(1/(2*del_x^2*del_y_L1)); 

        else 

            DX2DY_C6(i,i-ColNum+1)=1*(1/(2*del_x^2*del_y(i+1))); 

        end        

    end 

end 

  

DX2DY=DX2DY_C1+DX2DY_C2+DX2DY_C3+DX2DY_C4+DX2DY_C5+DX2DY_

C6; 

  

%%%%%%%% Calculating DXDY2 coefficients %%%%%%%% 

%% DXDY2_C1 (i-1,j-1) 

for i=1:m 

    for j=1:m 
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        if rem((i-1)/ColNum,1)==0  

            DXDY2_C1(i,j)=0; 

        elseif i>(m-ColNum)  

            DXDY2_C1(i,j)=0; 

        else 

            DXDY2_C1(i,i+ColNum-1)=-1*(1/(2*del_x*(del_y(i-1))^2)); 

        end      

    end 

end 

%% DXDY2_C2 (i-1,j) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

            DXDY2_C2(i,j)=0; 

        else 

            DXDY2_C2(i,i-1)=1*(1/(del_x*(del_y(i-1))^2)); 

        end 

    end 

end 

%% DXDY2_C3 (i-1,j+1) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  
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            DXDY2_C3(i,j)=0; 

        elseif (i/ColNum)<= 1  

            DXDY2_C3(i,j)=0; 

        else 

            DXDY2_C3(i,i-ColNum-1)=-1*(1/(2*del_x*(del_y(i-1))^2)); 

        end 

         

    end 

end 

%% DXDY2_C4 (i+1,j-1) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0 && i~= m 

            DXDY2_C4(i,j)=L1(i/ColNum+1,j)*(1/(2*del_x*(del_y_L1)^2)); 

        elseif i>(m-ColNum) && i~= m 

            DXDY2_C4(i,j)=0; 

        elseif i == m  

            DXDY2_C4(i,j)=L1_bottom(1,j)*(1/(2*del_x*(del_y_L1)^2)); 

        else 

            DXDY2_C4(i,i+ColNum+1)=1*(1/(2*del_x*(del_y(i+1))^2)); 

        end        

    end 

end 
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%% DXDY2_C5 (i+1,j) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0  

            DXDY2_C5(i,j)=-1*L1(i/ColNum,j)*(1/(del_x*(del_y_L1)^2)); 

        else 

            DXDY2_C5(i,i+1)=-1*(1/(del_x*(del_y(i+1))^2)); 

        end        

    end 

end 

%% DXDY2_C6 (i+1,j+1) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0 && i~= ColNum 

            DXDY2_C6(i,j)=L1(i/ColNum-1,j)*(1/(2*del_x*(del_y_L1)^2)); 

        elseif (i/ColNum)<= 1 && i~= ColNum 

            DXDY2_C6(i,j)=0; 

        elseif i == ColNum  

            DXDY2_C6(i,j)=L1_top(1,j)*(1/(2*del_x*(del_y_L1)^2)); 

        else 

            DXDY2_C6(i,i-ColNum+1)=1*(1/(2*del_x*(del_y(i+1))^2)); 

        end        

    end 
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end 

  

DXDY2=DXDY2_C1+DXDY2_C2+DXDY2_C3+DXDY2_C4+DXDY2_C5+DXDY2_

C6; 

  

%%%%%%%% Calculating DX2DY2 coefficients %%%%%%%% 

%% DX2DY2_C1 (i-1,j-1) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

            DX2DY2_C1(i,j)=0; 

        elseif i>(m-ColNum)  

            DX2DY2_C1(i,j)=0; 

        else 

            DX2DY2_C1(i,i+ColNum-1)=1*(1/((del_x^2)*(del_y(i-1))^2)); 

        end         

    end 

end 

%% DX2DY2_C2 (i-1,j) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

            DX2DY2_C2(i,j)=0; 

        else 
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            DX2DY2_C2(i,i-1)=-2*(1/((del_x^2)*(del_y(i-1))^2)); 

        end         

    end 

end 

%% DX2DY2_C3 (i-1,j+1) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

            DX2DY2_C3(i,j)=0; 

        elseif (i/ColNum)<= 1  

            DX2DY2_C3(i,j)=0; 

        else 

            DX2DY2_C3(i,i-ColNum-1)=1*(1/((del_x^2)*(del_y(i-1))^2)); 

        end        

    end 

end 

%% DX2DY2_C4 (i,j-1) 

for i=1:m 

    for j=1:m 

        if i>(m-ColNum)  

            DX2DY2_C4(i,j)=0; 

        else 

            DX2DY2_C4(i,i+ColNum)=-2*(1/((del_x^2)*(del_y(i))^2)); 
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        end         

    end 

end 

%% DX2DY2_C5 (i,j) 

for i=1:m 

    DX2DY2_C5(i,i)=4*(1/((del_x^2)*(del_y(i))^2)); 

end 

%% DX2DY2_C6 (i,j+1) 

for i=1:m 

    for j=1:m 

        if (i/ColNum)<= 1  

            DX2DY2_C6(i,j)=0; 

        else 

            DX2DY2_C6(i,i-ColNum)=-2*(1/((del_x^2)*(del_y(i))^2)); 

        end         

    end 

end 

%% DX2DY2_C7 (i+1,j-1) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0 && i~= m 

            DX2DY2_C7(i,j)=L1(i/ColNum+1,j)*(1/((del_x^2)*(del_y_L1)^2)); 

        elseif i>(m-ColNum) && i~= m 
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            DX2DY2_C7(i,j)=0; 

        elseif i == m  

            DX2DY2_C7(i,j)=L1_bottom(1,j)*(1/((del_x^2)*(del_y_L1)^2)); 

        else 

            DX2DY2_C7(i,i+ColNum+1)=1*(1/((del_x^2)*(del_y(i+1))^2)); 

        end        

    end 

end 

%% DX2DY2_C8 (i+1,j) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0  

            DX2DY2_C8(i,j)=-2*L1(i/ColNum,j)*(1/((del_x^2)*(del_y_L1)^2)); 

        else 

            DX2DY2_C8(i,i+1)=-2*(1/((del_x^2)*(del_y(i+1))^2)); 

        end        

    end 

end 

%% DX2DY2_C9 (i+1,j+1) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0 && i~= ColNum 

            DX2DY2_C9(i,j)=L1(i/ColNum-1,j)*(1/((del_x^2)*(del_y_L1)^2)); 
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        elseif (i/ColNum)<= 1 && i~= ColNum 

            DX2DY2_C9(i,j)=0; 

        elseif i == ColNum  

            DX2DY2_C9(i,j)=L1_top(1,j)*(1/((del_x^2)*(del_y_L1)^2)); 

        else 

            DX2DY2_C9(i,i-ColNum+1)=1*(1/((del_x^2)*(del_y(i+1))^2)); 

        end        

    end 

end 

  

DX2DY2=DX2DY2_C1+DX2DY2_C2+DX2DY2_C3+DX2DY2_C4+DX2DY2_C5+D

X2DY2_C6... 

    +DX2DY2_C7+DX2DY2_C8+DX2DY2_C9; 

  

%%%%%%%% Calculating DX3DY coefficients %%%%%%%% 

%% DX3DY_C1 (i-2,j-1) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0 && i<=(m-ColNum) 

%             DX3DY_C1(i,i+ColNum)=-1*(1/4)*(1/(del_x^3*del_y(i)));       %%% for simply 

supported left boundary 

            DX3DY_C1(i,i+ColNum)=1*(1/4)*(1/(del_x^3*del_y(i)));          %%% for fixed 

left boundary 

        elseif i>(m-ColNum)  

            DX3DY_C1(i,j)=0; 
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        elseif rem((i-2)/ColNum,1)==0 

            DX3DY_C1(i,j)=0; 

        else 

            DX3DY_C1(i,i+ColNum-2)=1*(1/4)*(1/(del_x^3*del_y(i-2))); 

        end     

    end 

end 

%% DX3DY_C2 (i-2,j+1) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0 && (i/ColNum)> 1 

%             DX3DY_C2(i,i-ColNum)=-1*(-1/4)*(1/(del_x^3*del_y(i)));       %%% for simply 

supported left boundary 

            DX3DY_C2(i,i-ColNum)=1*(-1/4)*(1/(del_x^3*del_y(i)));          %%% for fixed 

left boundary 

        elseif (i/ColNum)<= 1  

            DX3DY_C2(i,j)=0; 

        elseif rem((i-2)/ColNum,1)==0 

            DX3DY_C2(i,j)=0; 

        else 

            DX3DY_C2(i,i-ColNum-2)=1*(-1/4)*(1/(del_x^3*del_y(i-2))); 

        end       

    end 

end 
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%% DX3DY_C3 (i-1,j-1) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

            DX3DY_C3(i,j)=0; 

        elseif i>(m-ColNum)  

            DX3DY_C3(i,j)=0; 

        else 

            DX3DY_C3(i,i+ColNum-1)=1*(-1/2)*(1/(del_x^3*del_y(i-1))); 

        end         

    end 

end 

%% DX3DY_C4 (i-1,j+1) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

            DX3DY_C4(i,j)=0; 

        elseif (i/ColNum)<= 1  

            DX3DY_C4(i,j)=0; 

        else 

            DX3DY_C4(i,i-ColNum-1)=1*(1/2)*(1/(del_x^3*del_y(i-1))); 

        end         

    end 
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end 

%% DX3DY_C5 (i+1,j-1) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0 && i~= m 

            DX3DY_C5(i,j)=1*L1(i/ColNum+1,j)*(1/(2*del_x^3*del_y_L1)); 

        elseif i>(m-ColNum) && i~= m 

            DX3DY_C5(i,j)=0; 

        elseif i == m  

            DX3DY_C5(i,j)=1*L1_bottom(1,j)*(1/(2*del_x^3*del_y_L1)); 

        else 

            DX3DY_C5(i,i+ColNum+1)=1*(1/(2*del_x^3*del_y(i+1))); 

        end        

    end 

end 

%% DX3DY_C6 (i+1,j+1) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0 && i~= ColNum 

            DX3DY_C6(i,j)=-1*L1(i/ColNum-1,j)*(1/(2*del_x^3*del_y_L1)); 

        elseif (i/ColNum)<= 1 && i~= ColNum 

            DX3DY_C6(i,j)=0; 

        elseif i == ColNum  
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            DX3DY_C6(i,j)=-1*L1_top(1,j)*(1/(2*del_x^3*del_y_L1)); 

        else 

            DX3DY_C6(i,i-ColNum+1)=-1*(1/(2*del_x^3*del_y(i+1))); 

        end        

    end 

end 

%% DX3DY_C7 (i+2,j-1) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0 && i<=(m-ColNum) 

            DX3DY_C7(i,j)=L2(i/ColNum+1,j)*(-1/(4*del_x^3*del_y_L2)); 

        elseif rem((i+1)/ColNum,1)==0 && (i+1)<=(m-ColNum) 

            DX3DY_C7(i,j)=L1((i+1)/ColNum+1,j)*(-1/(4*del_x^3*del_y_L1)); 

        elseif i>(m-ColNum) && i<=m-2 

            DX3DY_C7(i,j)=0; 

        elseif i==m-1 

            DX3DY_C7(i,j)=L1_bottom(1,j)*(-1/(4*del_x^3*del_y_L1)); 

        elseif i==m 

            DX3DY_C7(i,j)=L2_bottom(1,j)*(-1/(4*del_x^3*del_y_L2)); 

        else 

            DX3DY_C7(i,i+ColNum+2)=(-1/(4*del_x^3*del_y(i+2))); 

        end         

    end 
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end 

%% DX3DY_C8 (i+2,j+1) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0 && (i/ColNum)> 1 

            DX3DY_C8(i,j)=L2(i/ColNum-1,j)*(1/(4*del_x^3*del_y_L2)); 

        elseif rem((i+1)/ColNum,1)==0 && ((i+1)/ColNum)> 1 

            DX3DY_C8(i,j)=L1((i+1)/ColNum-1,j)*(1/(4*del_x^3*del_y_L1)); 

        elseif i<=ColNum-2 

            DX3DY_C8(i,j)=0; 

        elseif i==ColNum-1 

            DX3DY_C8(i,j)=L1_top(1,j)*(1/(4*del_x^3*del_y_L1)); 

        elseif i==ColNum 

            DX3DY_C8(i,j)=L2_top(1,j)*(1/(4*del_x^3*del_y_L2)); 

        else 

            DX3DY_C8(i,i-ColNum+2)=(1/(4*del_x^3*del_y(i+2))); 

        end         

    end 

end 

  

DX3DY=DX3DY_C1+DX3DY_C2+DX3DY_C3+DX3DY_C4+DX3DY_C5+DX3DY_

C6...    +DX3DY_C7+DX3DY_C8; 

%%%%%%%% Calculating DXDY3 coefficients %%%%%%%% 

%% DXDY3_C1 (i-1,j-2) 
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for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

            DXDY3_C1(i,j)=0; 

        elseif i>(m-ColNum+1) 

%             DXDY3_C1(i,i-1)=-1*(1/(4*del_x*del_y(i)^3));   %%% for simply supported 

bottom boundary 

            DXDY3_C1(i,i-1)=1*(1/(4*del_x*del_y(i)^3));   %%% for fixed bottom boundary 

        elseif i<=(m-ColNum) && i>(m-2*ColNum)  

            DXDY3_C1(i,j)=0; 

        else 

            DXDY3_C1(i,i+2*ColNum-1)=(1/(4*del_x*del_y(i)^3)); 

        end        

    end 

end 

%% DXDY3_C2 (i+1,j-2) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0 && i<=(m-2*ColNum)  

            DXDY3_C2(i,j)=L1((i/ColNum)+2,j)*(-1/(4*del_x*del_y_L1^3)); 

        elseif i==(m-ColNum) 

            DXDY3_C2(i,j)=L1_bottom(1,j)*(-1/(4*del_x*del_y_L1^3)); 

        elseif i==m 
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%             DXDY3_C2(i,j)=-1*L1((i/ColNum),j)*(-1/(4*del_x*del_y_L1^3));   %%% for 

simply supported bottom boundary 

            DXDY3_C2(i,j)=1*L1((i/ColNum),j)*(-1/(4*del_x*del_y_L1^3));   %%% for 

fixed bottom boundary 

        elseif i>(m-ColNum) && i~=m 

%             DXDY3_C2(i,i+1)=-1*(-1/(4*del_x*del_y(i)^3));  %%% for simply supported 

bottom boundary 

            DXDY3_C2(i,i+1)=1*(-1/(4*del_x*del_y(i)^3));  %%% for fixed bottom 

boundary 

        elseif i>(m-2*ColNum) && i<(m-ColNum) 

            DXDY3_C2(i,j)=0; 

        else 

            DXDY3_C2(i,i+2*ColNum+1)=(-1/(4*del_x*del_y(i)^3)); 

        end         

    end 

end 

%% DXDY3_C3 (i-1,j-1) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

            DXDY3_C3(i,j)=0; 

        elseif i>(m-ColNum)  

            DXDY3_C3(i,j)=0; 

        else 

            DXDY3_C3(i,i+ColNum-1)=(-1/(2*del_x*del_y(i)^3)); 
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        end         

    end 

end 

%% DXDY3_C4 (i-1,j+1) 

for i=1:m 

    for j=1:m 

        if rem((i-1)/ColNum,1)==0  

            DXDY3_C4(i,j)=0; 

        elseif (i/ColNum)<= 1  

            DXDY3_C4(i,j)=0; 

        else 

            DXDY3_C4(i,i-ColNum-1)=(1/(2*del_x*del_y(i)^3)); 

        end         

    end 

end 

%% DXDY3_C5 (i+1,j-1) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0 && i~= m 

            DXDY3_C5(i,j)=L1(i/ColNum+1,j)*(1/(2*del_x*del_y_L1^3)); 

        elseif i>(m-ColNum) && i~= m 

            DXDY3_C5(i,j)=0; 

        elseif i == m  
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            DXDY3_C5(i,j)=L1_bottom(1,j)*(1/(2*del_x*del_y_L1^3)); 

        else 

            DXDY3_C5(i,i+ColNum+1)=(1/(2*del_x*del_y(i+1)^3)); 

        end        

    end 

end 

%% DXDY3_C6 (i+1,j+1) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0 && i~= ColNum 

            DXDY3_C6(i,j)=L1(i/ColNum-1,j)*(-1/(2*del_x*del_y_L1^3)); 

        elseif (i/ColNum)<= 1 && i~= ColNum 

            DXDY3_C6(i,j)=0; 

        elseif i == ColNum  

            DXDY3_C6(i,j)=L1_top(1,j)*(-1/(2*del_x*del_y_L1^3)); 

        else 

            DXDY3_C6(i,i-ColNum+1)=(-1/(2*del_x*del_y(i+1)^3)); 

        end        

    end 

end 

%% DXDY3_C7 (i-1,j+2) 

for i=1:m 

    for j=1:m 
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        if rem((i-1)/ColNum,1)==0  

            DXDY3_C7(i,j)=0; 

        elseif (i/ColNum)<= 1 && i~=1 

%             DXDY3_C7(i,i-1)=-1*(-1/(4*del_x*del_y(i)^3));   %%% for simply supported 

top boundary 

            DXDY3_C7(i,i-1)=1*(-1/(4*del_x*del_y(i)^3));   %%% for fixed top boundary 

        elseif i>ColNum+1 && i<= 2*ColNum     

            DXDY3_C7(i,j)=0; 

        else 

            DXDY3_C7(i,i-2*ColNum-1)=(-1/(4*del_x*del_y(i)^3));         

        end 

    end 

end 

%% DXDY3_C8 (i+1,j+2) 

for i=1:m 

    for j=1:m 

        if rem(i/ColNum,1)==0 && i> 2*ColNum   

            DXDY3_C8(i,j)=L1((i/ColNum)-2,j)*(1/(4*del_x*(del_y_L1)^3)); 

        elseif i== 2*ColNum 

            DXDY3_C8(i,j)=L1_top(1,j)*(1/(4*del_x*(del_y_L1)^3)); 

        elseif i==ColNum 

%             DXDY3_C8(i,j)=-1*L1((i/ColNum),j)*(1/(4*del_x*(del_y_L1)^3));   %%% for 

simply supported top boundary 

            DXDY3_C8(i,j)=1*L1((i/ColNum),j)*(1/(4*del_x*(del_y_L1)^3));   %%% for 

fixed top boundary 
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        elseif i<=ColNum-1 

%             DXDY3_C8(i,i+1)=-1*(1/(4*del_x*(del_y_L1)^3));  %%% for simply supported 

top boundary 

            DXDY3_C8(i,i+1)=1*(1/(4*del_x*(del_y_L1)^3));  %%% for fixed top boundary 

        elseif i>ColNum && i<2*ColNum 

            DXDY3_C8(i,j)=0; 

        else 

            DXDY3_C8(i,i-2*ColNum+1)=(1/(4*del_x*(del_y_L1)^3));                  

        end        

    end 

end 

  

DXDY3=DXDY3_C1+DXDY3_C2+DXDY3_C3+DXDY3_C4+DXDY3_C5+DXDY3_

C6...    +DXDY3_C7+DXDY3_C8; 

%% Transformation to U-V (rotated) domain 

for i=1:m 

    for j=1:m            

        DU2(i,j)=((1/(CT(i,j)^2))*DX2(i,j))-(((2*ST(i,j))/(CT(i,j)^2))... 

            *DXDY(i,j))+(((ST(i,j)^2)/(CT(i,j)^2))*DY2(i,j)); 

        DU3(i,j)=((1/(CT(i,j)^3))*DX3(i,j))-(((3*ST(i,j))/(CT(i,j)^3))... 

            *DX2DY(i,j))+(((3*ST(i,j)^2)/(CT(i,j)^3))*DXDY2(i,j))-... 

            (((ST(i,j)^3)/(CT(i,j)^3))*DY3(i,j)); 

        DU4(i,j)=((1/(CT(i,j)^4))*DX4(i,j))-(((4*ST(i,j))/(CT(i,j)^4))... 

            *DX3DY(i,j))+(((6*ST(i,j)^2)/(CT(i,j)^4))*DX2DY2(i,j))-... 
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            (((4*ST(i,j)^3)/(CT(i,j)^4))*DXDY3(i,j))+(((ST(i,j)^4)/... 

            (CT(i,j)^4))*DY4(i,j)); 

         

        DV2(i,j)=DY2(i,j); 

        DV3(i,j)=DY3(i,j); 

        DV4(i,j)=DY4(i,j); 

         

        DUDV(i,j)=((1/CT(i,j))*DXDY(i,j))-((ST(i,j)/CT(i,j))*DY2(i,j)); 

        DU2DV(i,j)=((1/(CT(i,j)^2))*DX2DY(i,j))-(((2*ST(i,j))/(CT(i,j)^2))... 

            *DXDY2(i,j))+(((ST(i,j)^2)/(CT(i,j)^2))*DY3(i,j)); 

        DUDV2(i,j)=((1/CT(i,j))*DXDY2(i,j))-((ST(i,j)/CT(i,j))*DY3(i,j)); 

        DU2DV2(i,j)=((1/(CT(i,j)^2))*DX2DY2(i,j))-(((2*ST(i,j))/(CT(i,j)^2))... 

            *DXDY3(i,j))+(((ST(i,j)^2)/(CT(i,j)^2))*DY4(i,j)); 

    end 

end 

  

%% Computing each term of the final plate deflection equation 

  

%%%%% Derivative terms 

T1=D_2.*DU4; 

T2=2*D_2.*DU2DV2; 

T3=D_2.*DV4; 

T4=2*DU3.*D_dx_2; 
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T5=2*DV3.*D_dy_2; 

T6=DU2.*D_dx2_2; 

T7=DV2.*D_dy2_2; 

T8=nu_2.*D_dx2_2.*DV2; 

T9=nu_2.*D_dy2_2.*DU2; 

T10=D_2.*nu_dx2_2.*DV2; 

T11=D_2.*nu_dy2_2.*DU2; 

T12=2*D_dx_2.*DUDV2; 

T13=2*D_dy_2.*DU2DV; 

T14=2*D_dx_2.*nu_dx_2.*DV2; 

T15=2*D_dy_2.*nu_dy_2.*DU2; 

T16=-2*nu_dx_2.*D_dy_2.*DUDV; 

T17=-2*nu_dy_2.*D_dx_2.*DUDV; 

T18=2*D_dxdy_2.*DUDV; 

T19=-2*nu_2.*D_dxdy_2.*DUDV; 

T20=-2*D_2.*nu_dxdy_2.*DUDV; 

  

%%%%% Non derivative term 

for j=1:numel(omg) 

    for i=1:m 

        T21(i,i,j)=-1*(omg(j).^2*(rho_2(i)*t_2(i))); 

    end 

end 
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%%%%% Forcing function 

  

% b=ones(m,1); 

  

for i=1:m 

    b(i)=p(i);            % Pressure is applied on whole plate. Define pressure according to the 

requirement 

end 

  

%% Calculating final coefficient matrix and node deflections 

for j=1:numel(omg) 

    

A(:,:,j)=T1+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16+T17... 

        +T18+T19+T20+T21(:,:,j);     % Final coefficient matrix 

    w(:,j)=inv(A(:,:,j))*b;          % Node deflection at different frequencies 

end 

  

for k=1:numel(omg) 

    for i=1:RowNum 

        for j=1:ColNum 

            Zeta(i,j,k)=w(j+(i-1)*ColNum,k); 

        end 

    end 
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end 

  

for k=1:numel(omg) 

    for i=2:RowNum+1 

        for j=2:ColNum+1 

            Zm(i,j,k)=Zeta(i-1,j-1,k);  % Node deflection representation in 

                                        % actual node discretization format  

        end 

    end 

    Zm(RowNum+2,:,k)=0; 

end 

  

for k=1:numel(omg) 

    for j=1:seg_x+1 

        CenZm(k,j)=Zm((seg_y+2)/2,j,k); % Deflection of center line at different frequencies 

        dB(k,j)=10*log10(CenZm(k,j)); 

    end 

end 

  

figure (1) 

surf(x_cord,y_cord,Zm(:,:,1))   % plotting deflection pattern of the plate at discrete 

frequencies 

  

% figure (2) 
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% plot(omg,abs(CenZm(:,1)))   % plotting deflection of 1st node of centerline at a band of 

frequencie 

  

% figure (3) 

% plot(abs(CenZm(1,:)))    % plotting deflection of centerline at discrete frequencies 

against node points 

  

% figure (4) 

% plot(x_cord(1,:),abs(CenZm(1,:)))  % plotting deflection of centerline at discrete 

frequencies against plate length
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APPENDIX B: MATLAB CODE FOR BM BEAM MODEL 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

%%%%%%%%% Predictive model for Basilar Membrane Beam 

Model%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

  

%%% This code possess the flexibility to alter model parameters, such as  

%%% (model parameters can be defined as constant value or functional form) 

%%% 

%%% (1) Stiffness [constant/functional] 

%%% (2) Beam width [constant/functional]  

%%% (3) Beam thickness [constant/functional] 

%%% (4) Beam length [constant/functional] 

%%% (5) Density [constant/functional] 

%%% (6) Beam number [constant] 

%%% (7) Boundary condition [fixed/simply supported].  

%%% 

%%%To change the boundary condition,  

%%% uncommand equation for target bounday condition and command another.
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clc 

clear 

  

syms x 

syms y 

  

%% Defining Model Parameters 

b=2e-3;      % Beam width 

% b=2e-3*(1+4.16666666666667*x); 

  

h=1e-3;            % Beam Thickness 

% h=1e-3*(1+4.16666666666667*x); 

  

l=20e-3*(1+4.16666666666667*x);   % beam length function 

  

E=68.9e9;         % beam stiffness 

% E=68.9e9*(1+4.16666666666667*x); 

  

rho=2700;               % beam density 

% rho=2700*(1+4.16666666666667*x); 

  

BeamNum=20;    % Number of beams in the structure  

NodeNum=51;    % Number of nodes in a beam (must be odd) 



346 
 

BeamDist=6e-3;  % Uniform distance between beams  

  

TotalLength=(BeamNum-1)*BeamDist;   % Total length of the structure 

  

f=100:50:8000;    % input frequency 

omg=2*pi*f; 

%% 

  

I=(1/12)*b*h^3; 

D=E*I; 

A=b*h;      % cross-section area of beam 

  

D_dx=diff(D,x); 

D_dx2=diff(D_dx,x); 

  

y_cord=0:BeamDist:TotalLength;    % defining y- coordinate 

  

for i=1:length(y_cord) 

    BeamLength(i)=double(subs(l,y_cord(i))); 

    del_x(i)=BeamLength(i)/(NodeNum-1);      

end 

  

for i=1:length(y_cord) 
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    for j=1:NodeNum 

        x_cord(i,j)=(j-1)*del_x(i);         

    end 

end 

     

for i=1:length(y_cord) 

    for j=1:NodeNum-2 

        D1(i,j)=subs(D,y,y_cord(i)); 

        A1(i,j)=subs(A,y,y_cord(i)); 

        rho1(i,j)=subs(rho,y,y_cord(i)); 

        D_dx2_1(i,j)=subs(D_dx2,y,y_cord(i)); 

                

        D2(i,j)=double(subs(D1(i,j),x,x_cord(i,j+1))); 

        A2(i,j)=double(subs(A1(i,j),x,x_cord(i,j+1))); 

        rho2(i,j)=double(subs(rho1(i,j),x,x_cord(i,j+1))); 

        D_dx2_2(i,j)=double(subs(D_dx2_1(i,j),x,x_cord(i,j+1)));         

    end 

end 

  

m=length(y_cord)*(NodeNum-2); 

n=NodeNum-2; 

  

D3=reshape(D2',m,1); 
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A3=reshape(A2',m,1); 

rho3=reshape(rho2',m,1); 

D_dx2_3=reshape(D_dx2_2',m,1); 

  

for i=1:m 

    for j=1:n 

        D4(i,j)=D3(i); 

        A4(i,j)=A3(i); 

        rho4(i,j)=rho3(i); 

        D_dx2_4(i,j)=D_dx2_3(i); 

         

    end 

end 

  

for i=1:length(y_cord) 

    for j=1:(NodeNum-2) 

        dx((i-1)*n+j)=del_x(i);        

    end     

end 

  

%%%%%%%% Calculating DX2 coefficients %%%%%%%% 

%% DX2_C1 (i-1,j) 

for i=1:m 
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    for j=1:n 

        if rem(i-1,n)==0  

            DX2_C1(i,j)=0; 

        elseif rem(i,n)==0 

            DX2_C1(i,rem(i,n)+n-1)=1*(1/dx(i)^2); 

        else 

            DX2_C1(i,rem(i,n)-1)=1*(1/dx(i)^2); 

        end         

    end 

end 

%% DX2_C2 (i,j) 

for i=1:m 

    if rem(i,n)==0 

        DX2_C2(i,rem(i,n)+n)=-2*(1/dx(i)^2); 

    else 

        DX2_C2(i,rem(i,n))=-2*(1/dx(i)^2); 

    end 

end 

%% DX2_C3 (i+1,j) 

for i=1:m 

    for j=1:n 

        if rem(i,n)==0  

            DX2_C3(i,j)=0; 
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        else 

            DX2_C3(i,rem(i,n)+1)=1*(1/dx(i)^2); 

        end         

    end 

end 

  

DX2=DX2_C1+DX2_C2+DX2_C3; 

  

%%%%%%%% Calculating DX4 coefficients %%%%%%%% 

%% DX4_C1 (i-2,j) 

for i=1:m 

    for j=1:n 

        if rem(i-1,n)==0  

%             DX4_C1(i,rem(i,n))=-1*(1/dx(i)^4);  %%% for simply supported bottom 

boundary 

            DX4_C1(i,rem(i,n))=1*(1/dx(i)^4);  %%% for fixed supported bottom boundary 

        elseif rem(i-2,n)==0 

            DX4_C1(i,j)=0; 

        elseif rem(i,n)==0 

            DX4_C1(i,rem(i,n)+n-2)=1*(1/dx(i)^4);     

        else 

            DX4_C1(i,rem(i,n)-2)=1*(1/dx(i)^4); 

        end         

    end 
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end 

%% DX4_C2 (i-1,j) 

for i=1:m 

    for j=1:n 

        if rem(i-1,n)==0  

            DX4_C2(i,j)=0; 

        elseif rem(i,n)==0 

            DX4_C2(i,rem(i,n)+n-1)=-4*(1/dx(i)^4); 

        else 

            DX4_C2(i,rem(i,n)-1)=-4*(1/dx(i)^4); 

        end        

    end 

end 

%% DX4_C3 (i,j) 

for i=1:m 

    if rem(i,n)==0 

        DX4_C3(i,rem(i,n)+n)=6*(1/dx(i)^4); 

    else 

        DX4_C3(i,rem(i,n))=6*(1/dx(i)^4); 

    end 

end 

%% DX4_C4 (i+1,j) 

for i=1:m 
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    for j=1:n 

        if rem(i,n)==0  

            DX4_C4(i,j)=0; 

        else 

            DX4_C4(i,rem(i,n)+1)=-4*(1/dx(i)^4); 

        end         

    end 

end 

%% DX4_C5 (i+2,j) 

for i=1:m 

    for j=1:n 

        if rem(i,n)==0 

%             DX4_C5(i,rem(i,n)+n)=-1*(1/dx(i)^4);  %%% for simply supported top boundary 

            DX4_C5(i,rem(i,n)+n)=1*(1/dx(i)^4);  %%% for fixed top boundary 

        elseif rem(i+1,n)==0 

            DX4_C5(i,j)=0; 

        else 

            DX4_C5(i,rem(i,n)+2)=1*(1/dx(i)^4); 

        end         

    end 

end 

  

DX4=DX4_C1+DX4_C2+DX4_C3+DX4_C4+DX4_C5; 
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for i=1:m 

    for j=1:n 

        for k=1:numel(omg) 

            if rem(i,n)==0 

                omg1(i,rem(i,n)+n,k)=omg(k); 

            else 

                omg1(i,rem(i,n),k)=omg(k); 

            end 

        end 

    end 

end 

  

T1=D_dx2_4.*DX2; 

T2=D4.*DX4; 

  

for k=1:numel(omg) 

    T3(:,:,k)=-rho4.*A4.*omg1(:,:,k).^2;     

end 

  

for k=1:numel(omg) 

    Z(:,:,k)=T1+T2+T3(:,:,k); 

end 
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%%%%% Forcing function 

b=zeros(m,1); 

  

for i=1:m 

    b(i)=1;            % Uniform pressure on beam 

end 

  

for i=1:length(y_cord) 

    for k=1:numel(omg) 

        w(i,:,k)=inv(Z(((i-1)*n+1):(n*i),:,k))*b(((i-1)*n+1):(n*i));      

    end 

end 

  

Zm=zeros(length(y_cord),NodeNum,numel(omg)); 

  

for i=2:NodeNum-1 

    Zm(:,i,:)=w(:,i-1,:); 

end 

  

for i=1:BeamNum 

    ZmMax(i)=max(abs(Zm(i,(NodeNum+1)/2,:))); 

    for k=1:numel(omg) 
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        ZmNorm(i,k)=abs(Zm(i,(NodeNum+1)/2,k))/ZmMax(i); 

    end 

end 

  

BeamCount=1:1:BeamNum; 

  

for i=1:BeamNum 

    for k=1:numel(omg) 

        beam_cord(i,k)=BeamCount(i);         

    end 

end 

  

for i=1:BeamNum 

    for k=1:numel(omg) 

        freq_cord(i,k)=f(k);         

    end 

end 

  

col=1:numel(omg); 

  

for i=1:BeamNum 

    for j=1:numel(omg) 

    c(i,j)=col(j); 
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    end 

end 

     

plot3(beam_cord',freq_cord',ZmNorm','LineWidth',2) 

  

% plot(f,squeeze(abs(Zm(4,(NodeNum+1)/2,:)))), hold on 
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