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ABSTRACT 

Fiber reinforced polymer matrix composite materials have many unique 

properties and their high performance makes them available to use in many advanced 

technologies i.e. aerospace, microelectronics, and energy storage. There is a correlation 

that exists between the long term behavior of those materials under combined 

mechanical, thermal, and electrical fields, and the functional properties and 

characteristics of the composite materials that requires a fundamental understanding of 

the material state changes caused by deformation and damage accumulation. This will 

ultimately lead, for example, to the design and synthesis of optimal multifunctional 

material systems. Composite materials are heterogeneous and the complex morphology 

of these material systems has been investigated for decades to achieve multi-functionality 

and reliable performance in extreme environments. These heterogeneous materials are 

inherently dielectric. Broadband Dielectric Spectroscopy (BbDS) is a robust tool for 

dielectric material characterization often used in polymer industries. In composite 

processing this method is employed to monitor the composite curing process. Dielectric 

spectra of heterogeneous materials are altered by many factors, e.g., electrical and 

structural interactions between particles, morphological heterogeneity, and shape and 

orientation of the constituent phases of the material system. During the service life of 

composites, damage occurs progressively and accumulates inside the materials. The 

process of microdefect interaction and accumulation to create a final fracture path is an 

active research area. 
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The present research is designed to investigate material state change using a new 

non-invasive interrogation method for establishing not only internal integrity but also the 

nature and distribution of internal material structure and defect morphology changes by 

using Broadband Dielectric Spectroscopy (BbDS) to detect and characterize permittivity 

changes during the history of loading. Interpretations of the results by analysis of discrete 

local details, and prognosis of performance will be discussed by the introduction of a new 

technique, called Generalized Compliance, which directly and quantitatively reflects 

material state changes. 

A two dimensional computational model was also developed using COMSOL
TM

. The 

effects of volume fraction and the distribution of the defects inside the material volume, 

and influence of the permittivities and ohmic conductivities of the host material and 

defects on the effective dielectric behavior of the resulting composite as a function of 

applied frequency spectra are discussed. Single frequency dielectric behavior with 

increasing defect development inside the composite is used to interpret the in-situ BbDS 

experimental results for the progressive damage of the material systems investigated. 
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CHAPTER 1 INTRODUCTION 

Composite materials are now widely used in advanced industries, i.e. aerospace, 

naval, sport, automotive, electronic packaging and energy storage, in which engineered 

heterogeneity has been designed and introduced to achieve specific engineering 

functions.  

Emerging technologies in the areas of electronics and energy storage require the 

design of next-generation dielectric-component materials with well-defined structure and 

properties with higher performance under applied voltage and temperature fields. 

Researchers from Imperial College London and their European partners, including Volvo 

Car Corporation, have developed a prototype strong and light weight multifunctional 

structural composite material composed of carbon fibers and a polymer resin which can 

store and discharge electrical energy and also be used as a car body structure [1-2].  

Aerospace industries are more inclined to use these multifunctional composites to 

reduce the weight to achieve fuel efficiency, and also for energy storage and structural 

stability. 

To design and synthesize an effective material system requires a fundamental 

understanding of the material state change caused by applied mechanical, thermal, and 

electrical fields. Under combined applied field conditions, materials degrade 

progressively. To evaluate such material state changes there are many tools and methods 

but most of them do not give a direct and quantitative assessment of the damage state. 
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 Composite materials by nature are heterogeneous dielectric material systems. 

When degradation happens in the material system, it develops a combination of material 

state and morphology changes. Broadband Dielectric Spectroscopy (BbDS) is a robust 

tool to extract the material-level information, including the morphology changes caused 

by micro-detect generation and the orientation of those defects. Composite materials 

should be designed in such a way that they can cope with their applied environments;  to 

achievethis,  it is necessary to engineer the material system from the nano- and micro- 

scale by controlling the shape, size, properties and interfaces of those systems. The local 

material states of high performance composite structures change during their service 

period. In order to achieve a prognosis of the composite durability, structural integrity, 

damage tolerance, and fracture toughness, we must take into consideration the 

appropriate balance equations, defect growth relationships, and constitutive equations 

with specified material property variations. Local changes in the material state also have 

significant effects on the prognosis of the composite system. 

 
 

Figure 1.1 Volvo car body panel serve as battery [2]. 
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1.1 Objectives  

The objective of the present work is application of a robust material 

characterization tool BbDS for the prognosis of composite material systems during the 

service life. Dielectric property measurements and analysis will follow the material state 

changes (i.e. formation of microcracks, interaction of the cracks, accumulations of the 

defects, fiber fracture and changes in the morphology of the material during the 

introduction of the progressive damage) from initial pristine condition to the final failure 

for various applied field conditions.  

Find out a approach based on the dielectric properties of the material system to 

identify the strongest and weakest before applying any load and which could be used to 

define mechanical properties such as strength, life, and durability of the material.  

Construct a basic computer simulation model and validate with the experimental 

results. 

1.2 Dissertation layout 

Chapter two represents a literature review of the progressive failure of the 

composite materials, state of the art detection techniques and a description of Broadband 

Dielectric Spectroscopy. 

In chapter three there is a short discussion about the major experimental facilities 

that were used during the dissertation work. 

Chapter four presents the results of the dielectric study of SOFC composite 

materials without any electrochemistry.  

In chapter five a new In-situ BbDS method is introduced to follow the progressive 

failure of the composite materials. 
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Chapter six discusses the ex-situ dielectric study and prognosis of the composite 

materials based on BbDS data.  

In chapter seven a basic computational model is presented and compared with the 

experimental results. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Progressive Failure in Composite Materials 

Damage in composite materials under static, creep and fatigue conditions have 

been studied and published in engineering journals since the late 1970s [1]. Degradation 

of composite materials is generally initiated and evolves by microdamage development 

events, mostly matrix microcracking and growth, delamination, fiber fracture, fiber-

matrix decoupling, and microbuckling.   

2.1.1 Microcracking 

Microcracking is the most general damage mode in composite materials which 

actually changes the material mechanical properties [3-20]. Microcracks can originate 

from the debonding of fiber/matrix interfaces or existing defects, voids or inclusions. 

Figure 2.1 is an example of fiber matrix debonding and initiation of matrix microcracks 

[8].These microcracks are usually distributed densely after the initial development, and 

grow through the ply thickness and width, generally parallel to the fiber direction in a 

given ply. Figure 2.2 illustrates their development  through the ply thickness for both 

continuous fiber and woven composite laminates [8]. They usually do not develop and 

grow independently; rather, their local stress fields typically interact. Usually, distributed 

amounts of microcracks have small or no effect on the strength of the fiber controlled 

composite laminate, but they can change the global stiffness considerably and cause local 

stress redistributions. From experimental data, changes in stiffness are not uniform 

throughout the life of a material element; initially and again just before  fracture,
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the change is large, and  at intermediate stages the rate of stiffness change is more 

moderate [4-9]. 

 
 

Figure 2.1 matrix crack initiation from fiber/matrix debonding. [8] 

 

 
 

Figure 2.2 Examples of matrix crack in (a) continuous fiber and (b) woven fiber 

polymeric composites. [8] 
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2.1.2 Delamination 

When local regions of composites deform differently (e.g., two neighboring plies) 

in response to the local loads, the resulting damage may lead to delamination. The 

delamination process, which is an important damage mode, is not independent of other 

damage. Most delamination is initiated by microcracking [10]. This delamination process 

can change the laminate strength, which doesn’t generally happen in the case of 

microcracking, and fracture can be the end result of stress redistribution associated with 

delamination [11].  But delamination is a damage event, not a failure event in composite 

materials. 

 
 

Figure 2.3 Interlaminar delamination crack formed due to joining of two adjacent matrix 

cracks in a fiber reinforced composite laminate [8] 
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2.1.3 Fiber Fracture: 

Another damage mode, and generally a failure mode in structural composites, is 

fiber fracture. Fiber fracture is difficult to detect and studied less completely than any of 

the other damage modes. Fiber fracture is highly coupled to damage in fiber and matrix 

materials [12-14]. In woven composites, the interaction between fiber and matrix is 

complicated because the weft and wrap fibers are braided together.  

 
 

Figure 2.4 Adjacent fiber fractures in interior of carbon-epoxy composite. 

 

Micro-buckling of fibers is another damage mode, but these effects are often 

neglected for woven composite materials.  

Progressive failure in composite materials can be considered to be the statistical 

accumulation, and subsequent interaction between microdefects. During dynamic tensile 

loading, acceleration of the damage accumulation is rate dependent, which actually alters 

the ultimate strength, strain to failure, and energy dissipation capabilities [16-24].   

The progressive failure nature of damage development under uniaxial loading of 

an off-axis woven structural composite specimen can be divided in four zones [25]. 
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Figure 2.5 Off-axis Response of Woven Composite (45 Degree Tension) [25] 

 

1. Zone 1: Elastic loading zone. 

2. Zone 2: Matrix micro-cracking begins, and as the load increases, micro 

cracking also increases and the stress-strain behavior becomes non-linear. 

3. Zone 3: Micro cracking reaches a saturation point, known as the 

'characteristic damage state' [4]. After that, non-linearity due to the micro- 

cracking slows and trellising starts, which is dominated by rotation of the fibers. 

Fibers reorient towards the loading direction.  

4. Zone 4: The final non-linearity is the likely result of statistically based 

fiber failure over a range of axial strain. 

For fatigue samples, Talreja [26] also divided the life into 5 parts; the 1
st
 part is 

dominated by matrix microcracking; the 2
nd

 section involves crack bridging and 

interfacial debonding; in the 3
rd

 phase delamination prevails; damage accumulation 
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accelerates in the 4
th

 region which is dominated by fiber breaking and finally fracture 

occurs.    

 

 

Figure 2.6: A plot of the typical growth of damage and reduction in stiffness and 

remaining strength throughout the life of the composite. 

 

2.2 State of Art Damage Monitoring Techniques 

There are many Non-destructive techniques used to detect the damage of 

composite materials, which is complicated in nature.   

2.2.1 Ultrasonic, Scanning Acoustic Microscope and Acoustic Emission  

Ultrasonic Testing (UT) and Acoustic Emission (AE) techniques are widely used 

NDT methods for composite defect detection [27-41]. In ultrasonic NDE, elastic waves 

propagate through the sample. Flaws/damage cause disturbances in the wave field which 

can be detected utilizing one the following measurements: time of flight (TOF; wave 
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transit or delay), path length, frequency, phase angle, amplitude, acoustic impedance, and 

angle of wave deflection (reflection and refraction) [42]. 

Though it has wide advantages and applicability, this method also has some 

limitations such as the requirement of point to point inspection, limited depth due to 

attenuation, limited interpretation due to a high variation of composite properties, low 

contrast due to high attenuation and scattering in composites, and slow methodology. 

And above all, it is an indirect method that cannot determine the type and orientation of 

the defects.  

 

Figure 2.7 Schematic of SAM technique  

 

Scanning Acoustic Microscopy (SAM) defect detection are high resolution 

ultrasonic imaging techniques that apply a range of frequencies from 30 MHZ to 3 GHz. 

Figure 2.7 is the schematic of the SAM technique most often used to detect the 

delamination of composite laminates [43-45].   
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Like ultrasonic NDT, SAM is limited by high attenuation and scattering of the 

signal. It cannot distinguish between delamination, interlaminar cracks, and initiation of 

cracks, matrix damage, or fiber fracture.  With this technique it is not possible to follow 

the material state change progressively through the service life.    

When a crack forms and grows, it releases energy which generates elastic waves 

that propagate outwards from the defect. AE is simply the detection and study of the 

transient elastic wave that originates from an energy release by the material defects. 

However, although Acoustic Emission (AE) is an old and well-established NDE method 

[27, 28, 30-32, 34, 41], it is not quantitative and cannot define the type of defects and 

location that cause the impulse. Due to the reflections, wave anisotropic propagation 

speeds depending on direction, and attenuation, the “triangulating” of damage in 

composite materials using AE signals is very complicated and difficult. 

2.2.3 Electrical Resistance Method 

Most NDE techniques require sensors on the surface of the composites or are non-

contact methods that must have a clear view of the sample surface. But in electrical 

methods, most of the time, the composite system itself is used as the sensor. Detecting 

damage using electrical resistivity based on percolation methods is a well-known practice 

for damage detection in composite research [46-83].  

Changes in capacitance and dissipation have also been observed [72] for CFRP 

through the thickness. 
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Figure 2.8:  Tensile test of a cross-ply laminate, showing the stress/strain curve and 

dependent capacitance and dielectric dissipation (at 1 MHz and 100 mV) of a CFRP 

specimen. 

 

Irving et al. [83] has studied electrical resistance changes for both static and 

fatigue testing of CFRP. 

 

 

 

Figure 2.9: Change in resistance for 90
◦
 samples [83]. 
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Although electrical methods have the potential to measure the damage state 

during the service life of the composite materials, they can’t give quantitative information 

about the defects, orientation of the flaws, crack density, and local connectivity, or 

information about the damage mode.   

2.3 Broadband dielectric spectroscopy (BbDS) 

Broadband dielectric spectroscopy is the interaction of electromagnetic waves 

with matter in the frequency range from a lower value of 10
-6

 Hz to a higher frequency of 

10
12

 Hz. This dynamic range contains information about the molecular and collective 

dipolar fluctuation; charge transport and polarization effects occur at inner and outer 

boundaries in the form of different dielectric properties of the material under study. 

Figure 2.10 shows the effect of different charge displacement mechanisms on dielectric 

response and their corresponding effective frequency range. 

 
 

Figure 2.10 Dielectric responses of material constituents at broad band frequency ranges. 

 

Hence broadband dielectric spectroscopy can be used as a useful tool to obtain a 

wealth of information on the dynamics of bound dipoles and mobile charge carriers 
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depending on the details of the molecular system and the microstructure in heterogeneous 

materials.  

2.3.1 Polarization in dielectrics 

Maxwell’s equations describe the interaction between electromagnetic fields and matter 

[84-85]. 

   ⃗⃗                                                                                                                                              

   ⃗⃗⃗     
  ⃗⃗ 

  
                                                                                                                              

   ⃗⃗  
  ⃗⃗ 

  
                                                                                                                                 

   ⃗⃗                                                                                                                                               

Here  ⃗⃗  is the dielectric displacement,   is the charge density,  ⃗⃗⃗  magnetic field,  ⃗⃗  electric 

field,  ⃗⃗  magnetic induction and     is the ohmic current density. In addition to Maxwell’s 

equations, the field must satisfy continuity equations based on the charge density     and 

current density    which can be expressed as follows 

     
  

  
                                                                                                                                      

The interrelation between the dielectric displacement  ⃗⃗  and electric field  ⃗⃗  can be 

expressed as 

 ⃗⃗     ⃗⃗   ⃗⃗                                                                                                                                    

for linear materials. And polarization can be related to the charge density when no 

external source is present by the following equation  

   ⃗⃗                                                                                                                                            

For a linear relationship between the dielectric displacement  ⃗⃗  and electric field  ⃗⃗  the 

proportionality constant   can be used to express 
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 ⃗⃗      ⃗⃗                                                                                                                                          

Here the constant   is called the permittivity of the material which describes the dielectric 

behavior. When the Polarization is  ⃗⃗  is taken into consideration using (2-6) and (2-8) we 

obtain 

 ⃗⃗      ⃗⃗          ⃗⃗                                                                                                              

Here   is the polarization coefficient known as the dielectric susceptibility.  

Several polarization mechanisms can arise in a material system, i.e. electronic, 

ionic (molecular), atomic, dipolar (orientational), interfacial polarizations and 

polarization caused by the hopping charge [86].  
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Figure 2.11 Basic Polarization mechanisms in the material.  

 

Electronic, atomic and ionic polarization happens very quickly and is called 

instantaneous polarization,   . It is not possible to store an infinite amount of electrical 

energy in a dielectric material, so longer- time polarization should be finite,          . 
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Figure 2.12 Time dependence of polarization, P, when a constant electric field is applied 

at      

 

Figure 2.12 shows polarization of a materials system for a constant-step electric 

field,      ̂, applied at    . The dielectric constant of the materials at time     is 

instantaneous permittivity    and at     is the static permittivity   . The time 

dependent polarization,     , is  

                    ∫             
 

  
                                                                

Here f(t) is intrinsic material property and called dielectric response function. For 

harmonic electric fields from equation (2-6) and (2-10) we can get the complex 

permittivity of the material. 

         ∫            
 

 

                                                                                                   

So the complex dielectric susceptibility is,  

              ∫            
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2.3.2 Dielectric relaxation: 

Maxwell’s equations describe the complex permittivity ɛ* as a time or frequency 

dependent property if time dependent processes take place within the sample. This time 

or frequency dependency can be attributed to several causes. 

Relaxation phenomena are typically related to the molecular fluctuation of dipoles 

due to their motion in a potential field. Moreover, the drift motion of mobile charge 

carriers (electrons, ions or charged defects) causes conductive contributions to the 

dielectric response. In general, time dependent processes within the materials create 

fluctuations in the applied electrical field E(t) and the resulting dielectric displacement 

D(t). 

The dependence of the complex dielectric function ɛ*(ω) on the angular 

frequency ω of the outer electric field and temperature can generally be attributed to the 

following  

1)  Microscopic fluctuations of molecular dipoles [87]. 

2) Propagation of mobile charge carriers by translational diffusion of electrons, 

holes or ions. 

3) The separation of charges at interfaces which gives rise to an additional 

polarization. The latter can take place at inner dielectric boundary layers 

(Maxwell/Wagner/Sillars-polarization) [88-89] on a mesoscopic scale and/or at the 

external electrodes contacting the sample (electrode polarization) on a macroscopic scale. 

The contribution to the loss for this type of polarization can be orders of magnitude larger 

than the contributions from molecular fluctuation.  
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Each of the above mentioned processes has specific features in the frequency and 

temperature dependence of the real and imaginary part of their complex dielectric 

function. It is the objective of the present work to analyze, to separate, and to quantify 

their different contributions to the dielectric spectra for our materials of interest. [90]  

With gradually increasing frequency, relaxation processes are characterized by 

some common features in the real and imaginary part of the complex dielectric function, 

which can be written as 

                                                                                                                             

For the real part ɛ’(ω) of the complex dielectric function there is a step like 

decrease  with increasing frequency and the imaginary part ɛ”(ω) is typically 

characterized by a peak. 

 
 

Figure 2.13:   Real permittivity ɛ’(ω) (solid line) and imaginary permittivity ɛ”(ω) 

of the complex dielectric function for relaxation process of an ohmic conductor. 
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By contrast, conduction phenomena show an increase of the imaginary part of the 

dielectric function with decreasing frequency. In Figure 2.13 the permittivity behavior of 

ohmic and ionic conductive material is shown for variable frequency. For purely ohmic 

conduction, the real part of ɛ is independent of frequency while for ionic conduction or 

polarization effects (at inner boundaries of external electrodes) the real part of epsilon 

increases with decreasing frequency. 

 
 

Figure: 2.14 Real permittivity ɛ’(ω) (solid line) and imaginary permittivity ɛ”(ω) 

of the complex dielectric function for relaxation process of an ionic conductive material. 

 

Other useful alternative representations of dielectric properties of the material are 

the complex conductivity    and complex electric modulus M*. They emphasize 

different aspects of polarization and charge transport for different frequency range. The 

dependence of real conductivity on frequency and temperature or charge carrier 

concentration has certain features that can be used to effect time temperature 
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superposition and to scale the normalized conductivity with respect to normalized 

frequency to identify the effects of different parameters on charge transport mechanisms. 

[87, 90 ] 

2.3.3 Dielectric Study of Composite Materials: 

Fiber reinforced composite materials are universally dielectric. They are poor and 

imperfect conductors that trap charge at interfaces and micro-boundaries, defects, and 

micro-cracks, and they typically conduct with several mechanisms. Heterogeneous 

material systems have many micro-nano interfaces and when they degrade, new “phases” 

are created. So materials of different electrical properties contact each other, and with 

degradation, the nature of the contact changes. In such a material system, polarization is 

typically an interfacial effect   that is due to the build-up of charge on the interfaces. The 

dielectric relaxation due to interfacial polarization provides information about the 

heterogeneous structure and the electrical properties of the constituent components. The 

number of dielectric relaxations expected in heterogeneous systems depends not only on 

the number of different interfaces but also on the shape of the inclusions and their 

orientation relative to the vector direction of the applied field. In practice, however, all 

relaxations predicted are not observed because of the limited frequency range and 

sensitivity  of measurements. 

Abry et al. examined the dielectric properties of [+45;-45]8s laminates and found 

non-linearity in the complex impedance response Figure 2.15 and Figure 2.16[91]. 
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Figure 2.15: Changes in stress and in Z’ as a function of strain during a quasi-

static loading 

 

 
 

Figure 2.16: Changes in stress and in Z” as a function of strain during a quasi-

static loading 

 

Fazzino, et al. studied polymer based composites and showed that they develop 

micro cracking due to mechanical loading, which changed their dielectric response 

dramatically and definitively [92, 93]. They used end-load bending for fatigue loading 
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which actually caused surface-initiated damage. The Samples were soaked in 5M NaCl 

solution and this ionic solution filled the micro cracks and penetrated through the surface 

to the interior of the sample. The response was very sensitive to the local morphology 

(including the topological connectivity) of the dielectric dispersed phase, e.g., the micro 

cracks in this case. 

 

 
 

Figure 2.17: As damage increases, the Bode plot will become more level at lower 

frequencies. The Nyquist plot shows a decrease in slope as damage grows. 

 

Dielectric responses gave some interesting outcomes for that special situation, but 

more investigation is needed to identify the damage and to predict the fracture events 

based on the dielectric properties of the material system.  
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CHAPTER 3 EXPERIMENTAL FACILITIES 

In-situ experimental measurements of dielectric properties were achieved by 

coincident use of a Novocontrol dielectric spectroscopy unit and an MTS servohydraulic 

test machine. The Novocontrol unit was employed to measure the dielectric properties of 

the material system both at room and high temperature thermal loading using a Probostat 

thermal assembly. An MTS Landmark™ system was used for both quasi-static and cyclic 

loading of the composite sample while coupled with the Novocontrol unit by a special 

set-up constructed in our laboratories. An Xradia MicroXCT-400 X-ray tomography unit 

was  used to visualize the internal details.  

3.1 Broadband Dielectric Measurement 

3.1.1 Novocontrol
TM

 System 

The dielectric impedance spectroscopy system consists of a Novotherm-HT high 

temperature control system with temperature ranges from ambient up to 1200˚C with 

0.1˚C resolution. The system consists of a Novotherm-HT temperature controller, a 

furnace and a ceramic sample cell with movable holder for the Probostat, and an Alpha 

analyzer for impedance analysis. The specifications of the Novocontrol
TM

 system are as 

follows: 

Frequency   : 3μHz-20MHz 

Phase accuracy  : 0.002˚ or tanδ accuracy 3X10
-5

 

Impedance range : 10
-3

Ω-10
15

Ω 

Novotherm- HT : Ambient to 1200˚C  
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Any sequence of time, temperature and DC-bias can be used. Figure 3.1 is the 

schematic diagram of the Novocontrol
TM

 setup.  

 

 
 

Figure 3.1 Novocontrol
TM

 system  
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3.1.2 Alpha analyzer: 

The alpha analyzer measures the complex dielectric, conductivity and impedance 

properties of test materials as a function of frequency of the applied electric field with 

high precision. It is especially optimized for dielectric materials with high impedance and 

low loss factors over a broad frequency range, but can accurately measure highly 

conductive materials with low impedance, as well. 

3.1.3 Principles of Dielectric Measurement in the NOVOCONTRL
TM

: 

The sample material is usually mounted in a sample cell between two electrodes 

forming a sample capacitor shown in figure 3.2. 

 
Figure 3.2 Principle of a dielectric or impedance measurement. 

 

A voltage    with a fixed frequency 
 

  
 is applied to the sample capacitor. 

   causes a current    at the same frequency in the sample. In addition, there will 
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generally be a phase shift between current and voltage described by the phase angle   

shown in figure 3.3. 

 
 

Figure 3.3 Amplitude and phase relations between voltage and current of a sample 

capacitor for electric measurements. 

 

The ratio between    and    and the phase angle   are determined by the sample 

material electric properties (permittivity and conductivity) and by the sample geometry. 

So the appropriate relations in complex notation can be expressed as  
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With 

                                                                                                                                                

and 

                                                                                                                                             

   √                                                                                                                                      

       
  

  
                                                                                                                                     

For a sample with linear electromagnetic response, the measured impedance of the 

sample capacitor  

          
  

  
                                                                                                                       

And the imaginary permittivity can be calculated by  

             
  

      
 

 

  
                                                                                                   

Here    is the capacity of the empty sample capacitor. 

The specific conductivity is related to the dielectric function by 

                     
                                                                                          

And Electric Modulus can be calculated by 

       
 

     
                                                                                                                             

3.1.4 ProboStat
TM

 Assembly 

The ProboStat™ is a test cell that enables measurements of electrical properties, 

transport parameters, and kinetics of materials, solid/gas interfaces and electrodes under 

controlled atmospheres at high temperatures up to 1600ºC. Figure 3.4 shows the sample 

station and the electrode and gas supply assembly of the Probostat. The sample under test 

rests on a 50 cm long support tube of alumina, inside a closed outer tube of alumina or 
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silica. The sample can be contacted with 2, 3 or 4 electrodes of platinum. A spring-loaded 

alumina assembly holds the sample and electrodes in place. Sixteen electrical feed-

throughs on the base shown in figure 3.5 allow use of 4 shielded electrode leads, surface 

guard, and up to three thermocouples. Electrical connections are made via coax cables 

suitable for standard impedance spectrometer connectors, and standard thermocouple 

compensation cables. Gases can be fed in single or dual chamber modes directly onto or 

from electrodes, allowing measurements under controlled atmospheres, transport number 

measurements with gradients, and testing of fuel cell, pump, and sensor components. Gas 

supply is via Swagelok quick-connects. 

 
Figure 3.4 Probostat

TM
 spring loads and regular 2-electrode 4-wire setup with dual gas 

supplies and thermocouple 
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Figure 3.5 Probostat
TM

 base unit with feedthroughs 

 

3.2 Mechanical Response Measurement 

MTS
TM

 is a leader of servo-hydraulic load frame technology. The MTS 

Landmark™ platform enables the repeatability and the flexibility one needs to perform a 

full spectrum of static and dynamic material testing. 
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Figure 3.6 MTS Landmark
TM

 and dielectric measurement set-up 
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3.3 Visual Inspection 

Microfocused X-ray Computed Tomography MicroXCT) was used  to investigate 

the material state change visually, and for this purpose an Xradia MicroXCT-400 

machine was utilized.  

 

 

Figure 3.7 Xradia MicroXCT-400 Machine 

 

 

 

Figure 3.8 Basic Principle of MicroXCT 
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X-ray energy is generated by an x-ray source and penetrates through the 

materials; the sample absorbs certain amounts and types of the x-ray energy depending 

on the sample density, atomic number, and thickness and attenuation number. X-ray 

energies which escape from the sample are captured by a detector for different sample 

rotations. Later projections which are captured by the detector are used to process a 3D 

image reconstruction of the sample region.   



 

35 
 

CHAPTER 4 DIELECTRIC STUDY OF SOFC COMPOSITE MATERIALS 

In the absence of electrochemistry, the effect of different porous microstructures 

(i.e., porosity, connectivity, distribution and geometry) of SOFC composite electrodes 

was studied to observe the electromagnetic response in the time and frequency domain at 

different operating temperatures [94-95]. The specimens were 20 mm diameter button 

cells (8%YSZ based cells manufactured by EnrG Inc.) with a bi-electrode supported 

structure or “BSC” (as pioneered by NASA) [96-97].  This study provided a model 

material for development of the test method and identification of internal defects. 

The key feature of the design concept is the symmetrical cell, which is made by 

supporting the thin electrolyte on both sides with a porous YSZ support structure [96-97]. 

The graded porosity provides the smallest pores at the electrode/electrolyte interface, 

creating the maximum amount of active interfacial area or triple-phase boundary once the 

active electrode materials are infiltrated. 

4.1 Effect of morphology difference in actual SOFC active and inactive zone 

As shown in Figure. 4.1, after operating the SOFC for 8 hrs., Broadband 

Dielectric Spectroscopy (BbDS) measurements were carried out on areas near and far 

away from the active region of a SOFC button cell. The impedance was measured in the 

absence of any electrochemical processes at room temperature. It was postulated that 

material deterioration contributed to the formation of new morphological variations 

inside the SOFC structure which caused the variations in impedance response. By 

implementing 3D X-ray tomography, the micro-structural differences were visualized. A 
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 representative virtual section of the electrolyte is also shown in the figure. There is 

visible material damage, i.e. a crack on the electrolyte near the electrolyte-electrode 

interface. 

 

Figure 4.1 Broadband dielectric spectroscopy response of active and away from active 

regions of an SOFC button cell after 8 hr of operation (measured at room temperature) 

  

4.2 Effect of porous morphology (% solid loading) difference in SOFC material 

response at high temperature: 

The porosity of the electrode material was varied by using different solid loading 

during processing of freeze-cast SOFC button cells to study its effect on the conductivity. 

Figure 4.2 shows two different porous morphologies (TTP1-B has 40% solid in freeze 

asting or 67% porosity compared to 50% solid loading in TTP1-C or 61% porosity) 

contributed to the different dielectric response, and change in impedance, at 800C. 
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Figure 4.2: BbDS response of two different morphology at 800C 

 

4.3 Effect of geometric variations (cellular to lamellar) in morphology of SOFC 

material: 

In this experiment, morphology of single layers (freeze-cast tape) of electrode 

material (YSZ) were  varied systematically. As shown in Figure 4.2, the geometry of 

porous microstructure was generally cellular except where it was slightly lamellar at the 

nucleation or electrolyte side in the TTP8A specimen, but  specimen TTP8B had a more 

uniform lamellar structure. On the other hand, TTP8C featureda lamellar structure which 

varied from a dense microstructure at the electrode side to large pores at the other side. 

The corresponding variation of conductivity at 800C has been plotted as a function of AC 
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frequency (Figure 4.3). This figure shows conductivity variation due to change in 

geometry of the electrode microstructure. 

 

Figure 4.3: Difference in impedance in different electrode geometries (cellular vs. 

lamellar) 
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4.4 Effect of Asymmetry in morphology of SOFC material: 

In this experiment we compared a fairly homogeneous cellular morphology 

(TTP8A) with an inhomogeneous morphology TTP9C (dense dendytric porous structure 

near electrolyte is very different from the other side with larger lamellar pores). Figure 

4.4 is a representative plot of impedance magnitude vs. frequency, and it shows a 

significant variation due to the stated micro-structural change. 

 

Figure 4.4 : Asymmetric variation of morphology from electrolyte side to the other 

 

4.5 Effect of temperature and thermal cycles on the BbDS response of SOFC 

material: 

In these experiments, SOFC button cells of two different porosities were heated to 

800C and cooled  to room temperature. BbDS characteristics were recorded in-situ. 

Figure 4.5 indicates that BbDS measurements capture the expected increase in 
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conductivity (decreasing impedance) with the increase in temperature. At the most 

fundamental level, this is very interesting because, in the absence of electrochemistry, the 

response from the material clearly demonstrates a polarization process associated with 

the material. The most interesting aspect of this study (Figure 4.5b) is that the impedance 

response changes differently after the first cycle of heating-cooling. Although between 

the 2nd and 3rd cycle, the difference in response is more narrow, the large drop in 

conductivity at the first thermal cycle is noteworthy. 

 

Figure 4.5: Change in specimen conductivity with increasing temperature and 

temperature cycling 
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4.6 Effect of electrolyte thickness on BbDS response of SOFC material: 

As shown in Figure 4.6, the impedance and capacitance response for two different 

electrolyte thicknesses can also be measured via the BbDS technique.   The larger 

electrolyte thickness yielded higher capacitance. This result is somewhat expected and 

confirmed by the BbDS measurement results. The importance of the result is that if there 

is an interface failure in the material structure, it will be captured via a change in 

capacitance.   

 

 

Figure 4.6: Room temperature BbDS response of SOFC button cell with different 

electrolyte thickness 
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4.7 Dielectric response of a damaged button cell 

In order to study the effect of defects on the dielectric performance of an SOFC 

cell, a small crack was created on the dense electrolyte surface. BbDS was conducted on 

the sample before and after the damage at  room temperature. Figure 4.7 is the electrical 

modulus representation of the sample’s dielectric properties before and after damage.  

 

Figure 4.7: Electric modulus variation (real vs. imaginary part) for an undamaged 

(bottom) and damaged (top) SOFC. 

 

In this case the well-known electric modulus representation was able to 

distinguish localized dielectric relaxation associated with a flaw [98]. As seen in Fig. 4.7 

the relaxation peak shifted due to the damage induced inside the material.  

4.8 Dielectric response of a Thermal Shock 

Broadband Dielectric Spectroscopy of a sample at room temperature was 

performed on samples subjected to thermal shock using a special thermal shock tester 

constructed in-house which has the capability to heat up a sample to 800
o
 C in 1 min 20 

sec and cool down to room temperature in 8 to 9 min. Figure 4.8 is the picture of the set-
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up used for the thermal shock. BbDS tests were conducted before and after the thermal 

shock furnace treatment with two different dimensioned electrodes, which allowed 

observation of the effect of electrode size on the dielectric data.  

The Nyquist plot and other dielectric representations are also shown below. 

Figure 4.9 and Figure 4.10, shows an increase in conductivity after the thermal shock. 

 

Figure 4.8: Visual set up of Thermal Shock Furnace (Build by Jon-Michael Adkins, 

Laboratory Technologist, Solid Oxide Fuel Cell Program) 
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Figure 4.9: Nyquist plot before and after one Thermal Shock 

 

 

Figure 4.10: Dielectric representations of before and after thermal shock 
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The electrical modulus representation shows two peaks which shifted after the 

shock, Figure 4.11. This change may arise due to the change in the material grain 

boundaries or other distributed damage due to the thermal shock. 

 

Figure 4.11: Electric modulus representation of thermal shock. 
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CHAPTER 5 IN-SITU DIELECTRIC STUDY OF COMPOSITE MATERIALS 

Dielectric properties of woven glass fiber reinforced composites were observed 

for quasi-static uniaxial loading different orientation angles of the main fiber direction to 

the loading axis. Cyclic loading was also studied to look at the changes of dielectric 

properties. Samples were soaked in 5% KI (Potassium Iodide) solution and the effects of 

the ionic solution on the dielectric properties was investigated during the changes in 

mechanical response.  

The composite material NP130 was chosen for these experiments, and was 

secured from Norplex-Micarta, a manufacturer of high performance thermoset composite 

laminates. The thin laminated composites used for tensile testing were made with a plain 

weave, E-glass fabric combined with a halogenated epoxy resin matrix. The 

manufacturers estimated 55% volume fraction of fiber in that material. The samples were 

composed of five plies, wherein each ply consisted of a single layer of fabric with two 

principle fiber directions of 0 degree and 90 degree, with the warp direction defined as 

the 0 degree orientation. The total thickness of the samples was nominally 1 mm. Table 

2.1 is the summary of the typical properties of NP130 as published by the manufacturer.  

The samples were cut off-axis, at different angels relative to the principal axis. Sample 

layout and dimension is shown in Figure 5.1. In-situ mechanical and dielectric testing 

was also performed on carbon fiber reinforced composites to verify that the results 

observed in glass fiber reinforced composites were of a general nature.  
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Table 5.1 NP130 material properties 

General Physical Properties Unit Values 

Specific Gravity 

 

- 1.8 

Rockwell Hardness (.0625") M Scale 100 

Moisture Absorption (.0625") % 0.1 

Flexural Strength  (.0625") 

LW
1
/CW 

MPa 551.6 

413.7 

Flexural Modulus (.0625") 

LW/CW 

GPa 18.6 

16.5 

Tensile Strength (.125") 

LW/CW 

MPa 344.7 

275.8 

Izod Impact Strength  (.5") (Condition E-48/50) 

LW /CW 

J/cm 8.01 

6.41 

Compressive Strength  (.500") 

Flatwise 

MPa 482.6 

Bonding Strength (.500") Kg 997.9 

Shear Strength (Perpendicular) (.0625") MPa 151.7 

 

Thermal & Electrical Properties Unit Values 

Temperature Index (electrical/mechanical) °C 130 / 140 

Coefficient of Thermal Expansion X-axis 

(.062") Y-axis 

"/"/°C 

x10
-6

 

10.0 / 12.0 

Flammability Rating U. L. 94 Class V-0 

Breakdown Voltage Condition A 

(.0625") D-48/50 

kV 65 

54 

Electric Strength Condition A 

(.062") D-48/50 

kV/cm 263.8 

255.9 

Permittivity (.062") Condition D-24/23 - 4.80 

Dissipation Factor (.062") Condition D-24/23 - 0.025 

Arc Resistance (.125") D-495 Sec 120 

Comparative Tracking Index (.125") D3638 - 150 

Tg (.500") °C 127 
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Figure 5.1 Sample layout and dimension 

 

5.1 In-situ Tensile Test Set-up 

To perform the tensile extension of coupon specimens of the woven glass fiber 

reinforced epoxy composites, strain was measured with an extensometer and a 

Novocontrol
TM

 unit was used to record dielectric data. Figure 5.2 shows the experimental 

setup used to measure the dielectric properties. Two types of dielectric data were 

collected, the first was with at a fixed frequency of 10 Hz during the test and the second 

was with a frequency sweep from 1 Hz to 10
6
 Hz. The latter was performed at different 
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strain levels to interpret data from the AC signal applied by specially designed plates 

fixed on opposing sides of the thickness of the specimens. 

 

Figure 5.2 Schematic of the experimental setup 

 

5.2 In-situ Tensile Testing Results 

Tensile tests of different fiber orientations with respect to the loading direction 

were performed. Dielectric property changes were measured during the damage 

accumulation phase until the samples underwent material failure.  Figure 5.3 shows the 

trend of the real part of the permittivity / electrical compliance at a single frequency (10 

Hz) which was recorded in-situ during the loading period. For all orientations at the end 

of the loading period, when fiber fractures lead to the final failure, a sharp decrease in the 

real part of the permittivity  was observed. 



 

50 
 

 

Figure 5.3 Normalized real part of the permittivity and Stress Vs Strain 

 

Changes in the imaginary part of the permittivity during the loading are shown in 

Figure 5.4. During the early stages loading had a significant effect on the imaginary part 

of the permittivity which showed  an overall increasing trend in these tests . For off axis 

samples abrupt changes occurred in the loading region where distributed matrix damage 

occurred.  
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Figure 5.4 Normalized Imaginary part of the permittivity and Stress Vs. Strain 
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Figure 5.5 Normalized Real Part of the Permittivity Vs Time 

 

 

Figure 5.6 Normalized Real Part of the Permittivity Vs Time 

 

In Figure 5.5 and Figure 5.6, the time history of the dielectric properties are  also 

shown. 
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5.3 Edge Replication: Observation of Damage Progression  

In order to recover damage information directly, especially crack initiation and 

growth, an edge replication method was utilized which is widely used in quantifying 

crack density [6, 7]. Edge replicas were acquired by pressing an acetone-softened acetate 

tape against the sample edge.  After hardening, the tape reveals permanent details of the 

sample edge. Images were taken with a Leica
TM

 optical Microscope. Figure 5.7 shows the 

initialization of damage and progressive accumulation of the damage until material 

failure.  

 

Figure 5.7 Edge replica at different Load 
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5.4 Rate Dependency of Dielectric Properties: 

Xing et. al. [8] has demonstrated strain rate effects on the mechanical response of 

composite materials under similar conditions to those used for the present work. Figure 

5.8 illustrates that the dielectric properties are rate dependent in our situation. With 

higher strain rates, initial damage occurs rapidly and is indicated by the higher 

permittivity change at higher strain rates.  

 

Figure 5.8 Rate dependency of the dielectric property 

 

5.5 Effect of Cyclic Loading on Dielectric Properties: 

Several cyclic loading tests were also performed at a frequency of 10Hz when the 

maximum load and minimum load was 2.5kN and 0.25kN respectively.  Figure 5.9, 

shows that with increasing cycle time, the initial damage had a large impact on the 

dielectric properties after which the capacitance decreased. 
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Figure 5.9 Change in capacitance with increasing cycle. 

 

5.6 Effect of Electrode Shape on Dielectric Properties: 

Different shapes and sizes of electrodes were used to perform the in-situ dielectric 

measurements. 10 mm diameter round electrodes yielded the same dielectric property 

variations during the loading period (300 N/min) as the 50 mm X 10 mm rectangular 

electrodes. Figure 5.10 represents those results. 

The rectangular electrode arrangement had a larger surface area so it was able to 

capture more material level information than the round electrode arrangement. 
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Figure 5.10 Comparison of the dielectric properties for different electrode arrangement. 

 

5.6 Broadband Dielectric Spectroscopy at Different Load and Strain Levels: 

At different loads, single- frequency dielectric measurements were taken for 1 

min. during which the load was held constant. From Figure 5.11 and Figure 5.12 it is 

clear that in the non-linear part of the quasi-static stress-strain curve the permittivity 

increases somewhat at fixed load. In the nonlinear region, the strain increases while the 

load is constant, causing material state change. 
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Figure 5.11 Change in Permittivity while load is fixed 
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Figure 5.12 Real part of Permittivity Vs Time in different Load 
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5.7 Effect of Ionic Solution on the Dielectric Properties: 

In-situ dielectric properties of a sample that was soaked in 5% KI (Potassium 

Iodide) solution for three months showed a somewhat different trend compared to the 

samples stored in room ambient conditions. The conductive solution diffused inside the 

material through the fiber-matrix interface and made the interfaces more conductive; this 

is thought to be the reason for the conductive nature of the damaged stage. Figures 5.13- 

5.15 show the difference in the nature of this in-situ test.     

 

Figure 5.13 In-situ capacitance change of a sample that stored in room condition 
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Figure 5.14 In-situ capacitance change of a sample that stored in KI solution 

 

 

Figure 5.15 In-situ impedance change of a sample that stored in KI solution 
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5.8 Carbon Fiber Reinforced Composite: 

Woven carbon fiber reinforced epoxy composites from Norplex-Micarta were 

tested to investigate their changes of dielectric properties during a tensile test. These 

composites had 5 plies. Two types of testing were performed. In one arrangement the 

electrodes were covered with electrical tape in order to provide an insulating material 

between the conducting composite and electrodes, and as a control, one test was 

performed without   tape on the electrodes.  

Figures 5.16 and 5.17 show the variations of permittivity during the quasi-static 

loading periods. These   are also the same trends as seen for the glass fiber reinforced 

composites. 

 

Figure 5.16 Normalized Real Part of the Permittivity Vs Time without tape 
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Figure 5.17 Real Part of the Permittivity Vs Time with tape 
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CHAPTER 6 EX-SITU DIELECTRIC STUDY AND PROGNOSIS BASED ON 

INITIAL DIELECTRIC PROPERTIES  

In the previous chapter we studied the dielectric property changes of the material 

with mechanical loading, in-situ. At different frequencies, dielectric properties have 

different significance, and that is the reason Broadband Dielectric Spectroscopy (BbDS) 

is a strong tool to investigate the material state changes. The complex dielectric function 

      depends on the angular frequency,        (here f is the frequency of the outer 

electric field), and temperature. Ex-situ dielectric measurements were done in the 

frequency range of 0.1 Hz to 1 MHz and in this frequency range interfacial polarization 

and dipole polarization mechanisms were prevailing.  

For different polarization mechanisms there are relaxations which are 

characterized by a peak in the imaginary part of the permittivity,     , and step like 

decreases of real part of the permittivity ,   , with increasing frequency. Because of the 

conduction phenomena or polarization effects (at inner boundaries) there is an increase of 

the imaginary part of the permittivity,     , or dielectric loss with decreasing frequency.  

This phenomenon is used to investigate the material system in ex-situ dielectric studies.  

6.1 Experimental Set up 

To measure the dielectric properties sample cell setup was placed inside of a 

Faraday cage to avoid electromagnetic noise. Samples were place in between two copper  
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plates which were attached to a Teflon block,  held by a spring loaded leveler   that 

applied a uniform load, Figure 6.1. 

 

Figure 6.1 Ex-situ Experimental Setup 

 

 



 

65 
 

6.2. Variation of electrode diameter 

For the present measurements, both round and rectangular copper electrodes were 

used. Electrodes were cut from copper plate and polished by very fine grit sandpapers 

before use. During polishing, the edge of the electrodes were rounded somewhat,  so 

there is a variation of the resulting diameter from the initial measured diameter. The 

dimension of the rectangular set of electrodes were 12.7 mm (half inch) by 50.4 mm (two 

inch) and the effective diameter  was 28.547mm;  the round electrode set’s diameter was 

12.7 mm.  Figure 6.2 shows the variation of the real part of the permittivity (normalized 

by the real part of the permittivity obtained by using the measured electrode diameter) 

with the diameter of the electrode.  

 

Figure 6.2 Real part of the permittivity variation with the diameter of electrode 
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6.3 Effect of electrode pressure on the dielectric property measurement 

Dielectric properties were measured with different electrode pressure. On the top 

of the spring load extra dead weight was placed to increase the load pressure on the 

electrode. There was a measurable increase in dielectric properties measured by the 

assembly with the increase of the pressure, Figure 6.3.  

 

Figure 6.3 Variation of dielectric properties with electrode pressure 

 

6.4 Repeatability of the measurement 

To test the repeatability of the measurement, one specimen was tested several 

times. Each time after the dielectric measurement, the specimen was taken out and kept 

outside the faraday cage for ten minutes, and then it was placed in between the electrodes 

and the measurement was taken again. When the properties were plotted against the 
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frequency, there was a  close agreement between all of the measurements which ensured 

the repeatability of the test system,  as shown in  Figure 6.4.  

 

Figure 6.4 Repeatability test 

 

6.5 Dielectric measurement after loading unloading 

To observe the change in dielectric properties after certain applied loads,  21 

samples (45 degree off axis glass fiber reinforced epoxy composites) were tested with the 

same dimensions (0.7 inch width, 0.04 inch thickness and 6 inch long, sample layout is 

shown in figure 5.1). One sample was tested to determine the breaking load/stress and 

breaking strain of that sample set with a loading rate of 600 N/min;  the sample broke 

after 15.29% strain and 3.39 kN load. Figure 6.5 shows the  load-strain curve of the 

sample.  
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Figure 6.5 Load-strain curve 

 

Among other 20 samples; 5 groups of samples with 4 in each group waere loaded  

to 1.5 kN (1.2% strain), 2 kN (2.5% strain), 2.5 kN (5.1% Strain), 3 kN (9.6% Strain) and 

3.2 kN (12% strain) and then unloaded to 0 N.  

Dielectric relaxation strength (DRS),    , is the difference of the static 

permittivity and limiting high frequency dielectric permittivity, as given in equation 6-1. 

                                                                                                                                            

where,    is the static permittivity and    is the limiting high frequency dielectric 

constant. To calculate DRS here, the difference between the low frequency real part of 

the permittivity and high frequency real part of the permittivity were considered. In the 

frequency range from 0.1 Hz to 1 MHz, interfacial and dipole polarization mechanisms 

are dominant. During the mechanical degradation process distributed cracks formed 
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inside the material system. These cracks gave  rise to interfacial polarization which leads 

to the observed increase in DRS.  

For every set of samples, the average initial and damage DRS were calculated. 

Figure 6.6 shows the relationship between the difference of average damage state and 

initial DRS with damage state of the material system. The initial slope of the curve of 

Figure 6.6 is higher; it suggests that the rate of increasing polarization is higher, or in 

other words, the rate of creating new interfaces in the material is higher.   

 
 

Figure 6.6 Average differences of undamaged and damaged state DRS with strain 

 

For every sample dielectric properties were measured, (i) initially (in undamaged 

condition) (iii) just after unloading and (iii) after 2 weeks. After unloading, 2 samples 

from every set were kept at room conditions, and another 2 were kept in 5M NaCl 

solution; then after two weeks the dielectric properties were measured again.  Figures 6.7 

to 6.16 show the effect of mechanical degradation and environmental effects on the 

dielectric properties.  
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Figure 6.7 Mechanical and dielectric properties of the sample 45s101 
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Figure 6.8 Mechanical and dielectric properties of the sample 45s103 
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Figure 6.9 Mechanical and dielectric properties of the sample 45s105 



 

 

7
3
 

 
Figure 6.10 Mechanical and dielectric properties of the sample 45s107 
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Figure 6.11 Mechanical and dielectric properties of the sample 45s109 



 

 

7
5
 

 
Figure 6.12 Mechanical and dielectric properties of the sample 45s111 
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Figure 6.13 Mechanical and dielectric properties of the sample 45s113 
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Figure 6.14 Mechanical and dielectric properties of the sample 45s115 
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Figure 6.15 Mechanical and dielectric properties of the sample 45s118 
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Figure 6.16 Mechanical and dielectric properties of the sample 45s119 
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Figure 6.17 SEM images (a) undamaged, (b) 2 kN, (c) 2.5 kN, (d) 3 kN, (e) 3.2 kN (f) 

failed. 
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From above figures following things are observable; 

 At low strain/load, just after unloading we saw subtle increases in the 

real part of the permittivity and at the high frequency end there is an increase in 

dielectric loss, as in Figure 6.7 to Figure 6.10. In chapter 5 we saw in edge 

replication images (which is an in-situ technique to capture cracks at the edge of 

the material sample) at low loads there were many distributed micro-cracks in the 

composite, and we also observe such cracks from the SEM images , Figure 6.17 

(b), although the density is less  in the SEM images  since after unloading the 

material has had time to relax which leads to the closing of some of the 

microcracks created in the loading process. We believe that moisture that enters 

the material via microcrack fissures is adsorbed onto the epoxy surface of the 

microcracks, which increases the interfacial polarization  that leads to increases of 

the real part of the permittivity.  The increase in the dielectric loss at high 

frequency is also related to the dipole polarization of water/moisture inside the 

material.  At low loads, the total surface fraction of the cracks  dominats, rather 

than the volume fraction of the total cracks. Samples 45s101 and 45s105 were 

loaded to 1.5 kN and 2 kN respectively and then kept in ambient environment for  

two weeks so that the material had enough time to relax and close down the 

microdamage; that is why we observed a drop in the real part of the permittivity 

and imaginary part of the permittivity at low frequencies compared to the values  

we observed just after unloading, Figure 6.7 and Figure 6.9. Samples 45s103 and 

45s107 were also loaded to  1.5 kN and 2 kN respectively, but just after unloading 

they were kept in a 5M NaCl solution. Then we can see a rise in both the real part 
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of the permittivity and the low frequency dielectric loss. This happens because 

more conductive salt solution diffused into the materials and that leads to more 

interfacial polarization. And a small rise in imaginary part of the permittivity at 

the high frequency also observed this is because of the dipole polarization of the 

water molecules of the solution.  

 Samples 45s109 and 45s111 were loaded to 2.5 kN; after unloading,  

one was kept at room conditions and the second one was kept in a 5M NaCl 

solution.  

 SEM images of a sample that was loaded to 2.5 kN shows bridging of 

microcracks, Figure 6.17 (c) which means that the volume fraction of the cracks 

begins to dominate, rather than the surface fraction of the cracks. For both 

samples we see just after unloading there is an increase in both the real and 

imaginary part of the permittivity which is prominent in the lower frequency part 

of the dielectric spectra which is an indication of higher interfacial polarization. 

Samples which were kept in room environments show a drop in both part of the 

permittivity, but other samples which were kept in 5M NaCl solution show 

opposite trends because of the increase of the conductive solution on the surface 

of the microcracks.   

 SEM images of the sample which were loaded to  higher load show that 

the  delaminations and volume fraction of cracks increases a significant amount, 

Figure 6.17 (d) and (e).  Though the real part of the permittivity drops because of 

the dominance of the volume fraction of the cracks compared to the surface 

fraction of the cracks, at low frequency the slope of the real part of the 
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permittivity measured just after unloading is higher than that measured initially. 

On the other hand, the low frequency dielectric loss increased a significant 

amount. Samples that were kept in room environments showed the  usual drop in 

both real part of the permittivity but not much decrease in  the dielectric loss at 

low frequency.  Samples that were kept in a 5M NaCl solution showed very high 

increases of both real and imaginary parts of the permittivity,  because of the 

conductive solution that was able to enter the material.    

6.6 Dielectric measurements after heat treatment 

Two sets of samples were used for this experiment and every set had 5 samples. 

Two types of thermal treatment were done, (i) One set of samples was placed in the 

furnace at 130 deg C for 5 min.; then those samples were placed in room temperature 

water and this was done 5 times. (ii) another set of samples was cycled 10 times from 

temperature 130 deg C to 40 deg C.  

 
 

Figure 6.18 Dielectric properties after heat treatment 
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Woven glass/epoxy composite samples were used for the heat treatment 

experiment; because of the thermal mismatch between glass fibers and epoxy there is a 

possibility that there will be interfacial degradation between fiber and matrix which may 

lead to a dielectric loss increase in the lower frequency range of BbDS, Figure 6.18. 

 
 

Figure 6.19 Dielectric properties after thermal cycle 

 

Because of the thermal cycling, the percentage of water content inside the 

material decreased; that is why at the high frequency end of BbDS there is drop in 

dielectric loss which is related to dipole polarization of the water molecules, figure 6.19.  

6.7 Prognosis 

6.7.1 Relationship of Dielectric State to Material State 

In composite material systems, there are many initial interfaces, and as material 

damage develops, many new interfaces and surfaces develop. We have shown that each 
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of these surfaces and interfaces is a location of charge accumulation (and possible 

motion), and that there is a corresponding change in the local electric field as one passes 

from one phase to another[99-100]. Moreover, Reifsnider et al.,[101] have shown that the 

amount of local charge and local field can be calculated from first principles if the 

properties and morphology of the local phases are known. Hence, the measured 

permittivity or susceptibility of a given composite material is a state variable that is 

determined by how the composite is designed and manufactured, initially, and by what 

changes that material state as defects develop – uniquely according to the history of a 

given specific physical sample. 

In previous chapters and the previous sections of the chapter we have defined a 

number of parameters that are used to measure and represent the dielectric properties of a 

material or material system.  Those parameters typically include the complex values of 

dielectric constant or susceptibility, conductivity, capacitance, and various combinations 

and ratios of those quantities such as the “electric modulus,”  “dielectric relaxation 

strength,” etc. But how does that help us? Are the dielectric properties related, directly 

and uniquely, to the mechanical properties of a sample, e.g., are they ‘predictors’ of 

strength, life, and durability?   

Since dielectric properties should be state variables of a material (unique 

observables for a given material state), if we can show that one or more of our parameters 

is directly related to mechanical state variables of interest (e.g., strength, life, stiffness), 

then it may be possible to directly estimate mechanical properties and behavior from 

dielectric measurements, for specific specimens, i.e., to sort ‘good’ specimens from 

‘bad,’ to rank the order of strength and life of a given random sample of specimens, etc., 
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before the specimens (or airplanes, etc.) are broken.  It would be very valuable, for 

example, to know “which airplane is going to fail next” in a fleet based on nondestructive 

dielectric measurements of the as-manufactured material state in each airplane, perhaps 

as a basis for condition based maintenance, etc.  There are many other ways such 

information can be of great value. 

We will consider only the mechanical behavior of plain weave, glass reinforced 

epoxy coupon specimens, generally five plies thick, 18 mm wide, and 75 mm long in the 

gage section. Our first evidence considered comes from a series of 50 tests in which 

many dielectric properties were measured on the as-manufactured specimens, and then 

compared, for each specimen individually, to the break stress or break strain of those 

specimens. An example of the results of those experiments is shown in Figure 6.20 

 
 

Figure 6.20 Strain to break and corresponding values of initial dielectric permittivity (real 

part), as vertical pairs, and trend lines showing that there is an inverse relationship 

between those quantities, with very high significance. 

 

For the example data shown in Fig. 6.20, 39 of the 50 individual pairs of data 

support the hypothesis that there is an inverse relationship between break strain and the 
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initial value of the real part of the material permittivity, with very high significance (the 

two tailed Chi squared P value is less than 0.0001). Other dielectric factors also show 

good correlation, but this one seems to be best of those tested. It tells us that, with very 

high reliability, when the dielectric permittivity of a specimen is high, indicating high 

values of internal polarization, the resulting strain to break is low for that specimen. 

A second series of tests was conducted in which sets of 20 specimens were 

characterized initially by their dielectric properties, and then tested to failure in quasi-

static uniaxial loading. The average value of the mechanical strength and strain to break 

of all specimens tested was compared to the measured value for each individual 

specimen, and those data were ranked according to their fraction of that average. The 

average value of the dielectric property of that sample set was then compared to each 

individual specimen value and those fractions were ranked. Then those respective ranks 

were compared; an example of those results is shown in Figure 6.21. The maximum error 

in the predictions of individual specimen strain to break values shown is about seven 

percent. 

These measurements were made as a function of frequency to help us to identify 

the mechanisms of charge polarization contributing to the interpretation, and thereby, the 

mechanisms of damage and defects controlling the subsequent physical behavior. Figure 

6.22 shows a sequence of three such frequencies of testing for comparison. For the low 

frequencies discussed here, the correlations are not strongly dependent on frequency of 

the input electric field. However, our experience has been that low frequency response is 

more closely tied to the physical damage mechanisms. 
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Figure 6.21 Observed and predicted values of strain to break for 20 individual specimens 

based on initial values of the imaginary part of the permittivity measured through the 

thickness of those individual specimens before load application 

 
 

Figure 6.22 Observed and predicted values of strain to break for 20 individual specimens 

based on initial values of the imaginary part of the permittivity measured through the 

thickness of those individual specimens before load application for different input 

frequencies. 

 

6.7.2 Identify a weak area based on the dielectric data 

Ten samples were used to identify the weakest part of the sample based on initial 

dielectric data. Every sample was painted with silver paste in three locations and after 

curing the paint initial dielectric measurement was taken with a round electrode then all 

the samples were pulled till failure.  
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Out of 10 samples 4 samples broke where dielectric relaxation strength is higher. 

One sample failed between two higher dielectric relaxation strengths but far from the 

lowest dielectric strength. Three samples failed near the area where dielectric relaxation 

strength is in between the maximum and minimum dielectric relaxation strength and two 

samples failed near the area where dielectric relaxation strength is lowest. 

 
 

Figure 6.23 Samples tested to identify weak area. 

 

It is not definite but here is a trend that material failed around the area where 

dielectric relaxation strength is higher. Higher DRS means more interfacial polarization. 

DRS is expected to be same for all part of the same material. If some parts have 

microdects and void than the other parts then there is possibility to rise in DRS and 

microdefects and voids part is the vulnerable part of the material system.      

6.8 Summary   

In this chapter we saw how the dielectric spectra changes with the material 

degradation under mechanical, thermal and environmental conditions. From this chapter 
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it is also evident that the dielectric properties of a composite material provide state 

variables (observables specific to the material state of specific samples of material) that 

uniquely define mechanical properties such as strength, life, and durability. 
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CHAPTER 7 NUMERICAL ANALYSIS 

Composite materials are by nature heterogeneous material and consist of 

chemically different constituents whose morphologies have greater impact on the electric, 

thermal and mechanical properties. When composite materials go through degradation 

processes, the morphology of the constituents is changed by introducing new phases in 

the material system and also by changing the interfaces of the materials constituents. 

Dielectric properties of the composite materials depend on the space distribution of the 

phases including voids and cracks inside the materials system. Because of the 

heterogeneity of the composite materials in the relaxation of the Broadband Dielectric 

Spectroscopy interfacial polarization, which is known as Maxwell-Wagner-Sillar 

polarization, is the prominent mechanism which happens in the low frequency range due 

to the charge accumulation at the interphases of the material system. 

There are many examples of using a finite element method (FEM) to model the 

effective dielectric properties of periodic and random composites containing inclusions of 

various shapes [102-103]. Tuncer et al. used FEM for 2D binary composite to model 

dielectric relaxation [86].  

In the present work, a computer FEM simulation is performed by using the 

COMSOL Multiphysics
TM

 to observe the dielectric property changes with the increase 

and distribution of the inclusion, which here considered as crack in composite, in the 

frequency domain. To reduce the complicacy in this model, the permittivity and 

conductivity of the inclusions and material are considered to be frequency independent 
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and the dielectric loss is considered as purely ohmic, i.e., it is considered that the only 

polarization mechanism that is present is interfacial polarization.   

7.1 Basic Theory 

In dielectrics relation between the applied electric field E and the dielectric displacement 

D is linear and can be expressed as, 

                                                                                                                                                

Where,    is the permittivity of the free space and    is the relative permittivity of the 

dielectrics.  

If   is the charge density, from Maxwell equations we know that dielectric displacement 

follows the following relation 

                                                                                                                                               

For current density   we can get the following from the continuity equation 

     
  

  
                                                                                                                                        

From also Ohm’s law we know  

                                                                                                                                                     

Here   is the conductivity of the material.  

So from equation 7-2 and 7-3 we get  

  (  
  

  
)                                                                                                                                    

Now using 7-1, 7-4 and 7-5 we can have the following  

  (   
        

  
)                                                                                                                       

In case of sinusoidal electric field   of angular frequency   
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We know  

                                                                                                                                               

From equation 7-7 and 7-8 we get  

                                                                                                                                

From equation 7-9, we can tell that in a heterogeneous material the product of the 

physical properties (some form of the conductivity and permittivity) and the slope of the 

potential must be a constant as we cross material boundaries. For the quasi-static case 

with harmonic inputs fields, the gradient of that product vanishes. The interacting field is 

a result of the charge difference at the interface, and unless the conductivity and 

permittivity of adjacent material phases are identical, there is a disruption of charge 

transfer at the material boundary which results in internal polarization.  

 

 
 

Figure 7.1 Schematic of the calculation of effective dielectric properties of composites. 
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To solve equation 7-9 potential on the top electrode is, 

       
                                                                                                                             

And on the bottom electrode, 

                                                                                                                                                   

Boundary conditions on the interfaces are, 

                                                                                                                                                

   ̂        ̂                                                                                                                       

Where  ̂ is the unit vector normal to the interface surface. To eliminate fringe effect on 

the side plane, 

 ̂                                                                                                                                             

Here  ̂ is the unit vector normal to the side plane. 

7.2 Results and Discussions 

7.2.1 Two Phase Model 

For this model undamaged composite material is considered as a homogeneous 

materials and the cracks (here as circular inclusions) are considered as the second phase 

inside the homogeneous material system. Permittivity and ohmic conductivity of the host 

material were taken to be      and          S/m and for the inclusion permittivity 

and ohmic conductivity,      and          S/m, were chosen close to the ambient 

air permittivity and conductivity. Because of the difference in the permittivities and 

conductivities of the phases, the accumulation of charge at the interphase boundaries 

causes an undulation of the space distribution of the potential which is shown in the 

figure 7.2 and Figure 7.3. In the figure 7.2 shows the potential distribution around the 

inclusion and figure 7.3 shows the potential distribution along the line and it is visible 
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that around the boundary of the phases there is a potential nonlinearity (in the picture 

nonlinearity is shown inside two ellipse) which is caused by the charge accumulation at 

the interface on host material and inclusion. Figure 7.4 shows that the space charge 

accumulation is higher, which is caused by the dissimilarity of the material properties 

around the inclusion boundary in the presence of the applied electyric field.  

 
 

Figure 7.2 Potential distributions around the inclusion 
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Figure 7.3 Potential distributions along the line.  

 

 
 

Figure 7.4 Space charge densities along the line. 
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Computer simulation was performed for different volume fraction of the 

inclusion. Figure 7.5 shows space charge density increases with the increase of the 

inclusion volume fraction. In the frequency range above 1 Hz the space charge density is 

constant but below 1 Hz a  nonlinear increase is observed in the space charge density 

around the inclusion interface as shown in figure 7.6.  

 
 

Figure 7.5 Space charge densities around the inclusion interface of different volume 

fraction in different frequency. 
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Figure 7.6 Space charge density change of 3.14% volume fraction of inclusion with 

frequency. 

 

Figure 7.7 shows the change of real and imaginary part of permittivities with the 

increase of volume fraction of the inclusion with frequency. At a high frequency the 

period of potential oscillations is not sufficient for charge accumulation but at low 

frequency charge has enough time to accumulate around the interface which leads to 

interfacial polarization (Maxwell-Wagner-Sillar polarization) and that is why there is an 

increase in real part of the permittivity (shown in figure 7.8) and dielectric loss in the 

lower frequency.  
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Figure 7.7 Real and Imaginary part of the permittivity with different volume fraction of 

the inclusion. 
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Figure 7.8 Real part of the permittivity of the material with 3.14% volume fraction of 

inclusion. 

 

For different volume fractions of inclusion, the real part of the permittivity was 

calculated from the computer simulation for the frequency of 10 Hz. Figure 7.9 is the 

comparison of real part of the permittivity change with increasing volume fraction of the 

inclusion. The relation between the real part of the permittivity and volume fraction is 

almost linear, but when the real part of the permittivity is plotted with surface area 

fraction (surface area fraction is the ration of inclusion surface to the material surface) of 

the inclusion there is clear nonlinear relationship observed. For low volume fraction the 

effect of surface area fraction of the inclusion is more dominate than the volume fraction 

but in the higher volume fraction it is opposite.   
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Figure 7.9 Eps’ comparison with volume fraction and surface area fraction of the 

inclusion. 

 
 

Figure 7.10 Comparison of Comsol
TM

 simulation result and experimental results. 

 

Figure 7.10 illustrates the comparison between computer simulation results with 

increasing inclusion volume/surface-area fraction and experimental results. 7.10 (a) and 
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(b) show slight increases in real part of the impedance in low volume/ surface-area 

fraction. 7.10 (c) shows the experimental results of real part of the impedance change 

with the strain. The real part of the impedance increases below the low strain (below 5%) 

for the off axis sample where matrix microcracking is dominant and distributed 

throughout the material system.  

7.2.2 Three Phase Model 

Composite materials are filled with filler material to achieve the desire 

mechanical, thermal and electrical properties. Typical filler materials used for the 

modeling is carbon  or glass fiber. The use of these fibers as filler material introduces a 

water sensitive component into the polymer composites. Glass fibers are well known for 

their water affinity on the surface. Currently,  epoxies are widely used matrix materials in 

composite industries which has the potential of being exposed to moist conditions or a 

humid environments. Soles and Yee [104] found that a network of nanopores that is 

inherent in the epoxy structure helps water traverses the epoxy and the average size of 

nanopores diameter to vary from 5 to 6.1 Å and account for 3–7% of the total value of the 

epoxy material. The approximate diameter of a kinetic water molecule is just 3.0 Å, so 

via the nanopores network moisture can easily traverse into the epoxy. They also found 

that the volume fraction of nanopores does not affect the diffusion coefficient of water 

and argued that polar groups coincident with the nanopores are the rate-limiting factor in 

the diffusion process, which could explain why the diffusion coefficient is essentially 

independent of the nanopore content. In the Figure 7.11 they explain how the water 

transport happens in epoxy networks.  
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Figure 7.11 A plausible picture of moisture diffusion through the nanopores of an amine-

containing epoxy [104] 

 

There are many theories about the state of water molecules in polymers. Adamson 

[105] suggested that moisture can transfer in epoxy resins in the form of either liquid or 

vapor. It is proposed by Tencer [106] that it is also possible that vapor water molecules 

undergo a phase transformation and condense to the liquid phase. This condensed 

moisture was stated to be either in the form of discrete droplets on the surface or in the 

form of uniform monolayer [107].  

Water has a higher dielectric permittivity and conductivity than the glass fiber and 

matrix, so it has strong effects on the dielectric properties, i.e. relative permittivity and 

dielectric loss, of the material system. In literature it is well established that water 
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absorption increase the dielectric constant of the dielectric material [108-112]. This 

dielectric loss observed in low frequency range and water diffused through the interface 

and weakens the interfacial strength of filler and matrix.  

When composite materials go through degradation processes, microcracks 

typically form and these microcracks can be filled with moist air, and condensed or 

adsorbed water layers can form on the surface of the defects. In our two phase model we 

saw an interfacial polarization (Maxwell-Wagner-Sillars polarization) that is present in 

the low frequency region of the frequency spectra. If a water layer is present on the 

surface of the defect it will become electrically conductive. Since the host material and 

defect have electrical conductivity and permittivity is not significantly high, this will give 

rise to interfacial polarization.  

 
Figure 7.12 Tri-layer model 
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Above figure, Figure 7.12, illustrates the tri-layer computational model used for 

the study where yellow, gray and blue part represent respectively the host material, defect 

and a conductive layer. Permittivity and ohmic conductivity of the host material were 

taken to be      and          S/m and for the inclusion permittivity and ohmic 

conductivity,      and          S/m. For the conductive layer different permittivity 

   and conductivity    (higher than host and defect properties) was used to see the effect 

on the effective dielectric properties of the material system.  

 
 

Figure 7.13 Potential distributions around the inclusion with a conductive layer 
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Above figure, Figure 7.13, shows the potential distributions around the inclusion 

of the tri-layer model which is different than the potential difference shown in Figure 7.1 

for two phase inclusion model. Because of the conductive layer around the inclusion 

there is a large undulation of the space distribution of the electric potential.    

 
 

Figure 7.14 Variation of real part of the permittivity with increasing volume fraction 
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For the tri-layer model, total volume fraction is the sum of the volume fraction of 

defect and the volume fraction of the conductive layer. For all the cases of tri-layer 

modelling conductive layer thickness was kept 0.5 micro meter. We saw that for two 

phase model real part of the permittivity was almost linear but in Figure 7.14 we can see 

that there is a increase in real part of the permittivity for lower volume fraction and then a 

decreasing trend. As there is a conductive layer in between the defect and the host matrix 

interfacial polarization plays a vital role for this type of behavior. Decrease of the real 

part of the permittivity for higher volume fraction is because of the dominance of the 

volume of the defect is higher than the interfacial polarization contributing by the 

conductive layer.   

 
 

Figure 7.15 Frequency dependency of the real part of permittivity for different volume 

fraction 
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This is clear from Figure 7.15 that for same conductivity and permittivity of the 

conductive layer for low frequency, real part of the permittivity of the material system is 

higher than higher frequency.  

 
 

Figure 7.16 Dielectric properties dependence on the conductivity 

 

Figure 7.16 shows the dependence of dielectric constant on the conductivity of the 

conductive layer. Real part of the permittivity at different volume fraction for same 

permittivity and frequency behave differently.  
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Figure 7.17 Real and Imaginary Part of the Permittivity Vs Frequency for 3.14 % total 

volume fraction of the inclusion 

 

For same volume fraction of the inclusion there is a step like increase of the real 

part of the permittivity and dielectric loss also has the peak in that part, this is where the 

Maxell-Wagner-Sillars polarization happen. 
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Figure 7.18 Real part of the permittivity in frequency spectra of all volume fractions 

 

Figure 7.18 shows the relation of real part of the permittivity with the frequency 

for all volume fractions of the inclusion. Simulation was also done for the just matrix 

(this is host material, as we consider it homogeneous) material, as there is no other phase 

there was no chance of for charge to accumulate so there is no change of the dielectric 

constant for matrix. We can see for higher volume fraction dielectric relaxation strength 

(difference between the real parts of the permittivity at low frequency and high 
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frequency) also increase. At higher frequency real part of the permittivity drops for 

volume fraction because charge accumulation doesn’t happen at the interface.    

 
 

Figure 7.19 Imaginary part of the permittivity in frequency spectra of all volume fractions 

 

Dielectric loss (imaginary part of the permittivity) also varies with volume 

fraction and it illustrates in Figure 7.19. For high volume fraction dielectric loss shifted 

and the peak of the loss also increase.  
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Figure 7.20 Cole-Cole plot of different volume fraction 

 

Cole-Cole plot, Figure 7.20, also shows the shift in relaxation for different 

volume fraction.   

7.2.3 Distributed Damage 

A distributed damage model was created to see the effect of the distribution of the 

damage. Dielectric study was performed a certain volume fraction of inclusion and that 

inclusion was divided in 10 inclusion but keeping the volume fraction same.  
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Figure 7.21 Dielectric Properties without conductive layer for same volume fraction but 

different number of inclusion 

 

 

 
 

Figure 7.22 Real Part of the permittivity for different number of inclusion but same 

volume fraction 
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Figure 7.23 Dielectric losses at different frequency for different number of inclusion but 

same volume fraction without any conductive layer. 
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Figure 7.24 Cole-Cole plot of different number of inclusion without conductive layer 

 

From Figure 21-24 show the change of dielectric properties of a single damage 

and distributed damage with same amount of volume fraction without any conductive 

layer around defect. Dielectric loss increased for the distributed damage because of more 

interfacial polarization.    
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Figure 7.25 Real part of the Permittivity of different number inclusion but same volume 

fraction with conductive layer 

 

 
 

Figure 7.26 Imaginary part of the Permittivity of different number inclusion but same 

volume fraction with conductive layer 
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Figure 7.27 Cole-Cole plot of different number of inclusion with conductive layer 

 

From Figure 25-27 show the change of dielectric properties of a single damage 

and distributed damage with same amount of volume fraction with a conductive layer 

around the defect. Dielectric loss increased for the distributed damage because of more 

interfacial polarization and it is more evident because of the conductive layer around the 

defect leads to interfacial polarization.  
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CHAPTER 8 CONCLUSION 

In this research work we utilized Broadband Dielectric Spectroscopy (BbDS) of 

different heterogeneous material systems to understand the relationship between the 

internal microstructural mechanisms in the material and  the dielectric properties.  

We studied SOFC composite materials without the presence of any 

electrochemistry to understand the damage state during thermal loading and also how the 

local features significantly influence the performance of the SOFC. Consequently, in this 

study, we explored  i) how different morphology of electrodes in an SOFC changes 

BbDS characteristics at different temperatures ii) how can we predict such response 

utilizing the local morphology iii) and how actual material state changes may be 

visualized and characterized non-destructively to study degradation mechanisms. The 

present work demonstrated that broadband dielectric spectroscopy techniques can be used 

to extract direct material level information that forms the elementary foundation for 

designing the morphology of electrode materials and subsequent durability analysis. 

The major objectives of the research were to understand the changes of dielectric 

properties of composite materials during progressive degradation and failure induced by 

applied mechanical loading. To enable this research, we have introduced a newly 

developed in-situ, in-operando dielectric measurement method to measure dielectric 

property changes with increasing micro-crack density and other damage induced by 

mechanical loading. It is determined that the size, shape and orientation of microdamage 

as well as the dielectric character of the defect volume and the interfaces created are all
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 individually distinguished by the method. Observed changes were not monotonic with 

loading history, and were specific to the dominant damage mode as a function of load 

level. 

In our ex-situ study of fiber reinforced composite materials we showed that the 

damage state can be detected and characterized by BbDS, and we  introduced a dielectric 

parameter, Dielectric Relaxation Strength (DRS), to correlate the damage state of the 

materials system caused by uniaxial quasi-static tensile loading to the strength of 

individual specimens. We also showed how the environment affects the dielectric 

properties of the damaged composite materials.  

To assist in the interpretation and understanding of our results, we introduced a 

proper conformal computational model and established some agreements between the 

results of this model with our experimental observations. For example, we showed how 

the dielectric properties (i.e., conductivity, permittivity) and distribution of the inclusions 

inside materials affects the interfacial polarizations and how the global dielectric 

relaxation related to this polarization mechanism shifted with increasing volume fraction 

of the inclusions.  

In general, the dielectric properties of heterogeneous systems are influenced by 

various physical factors: electrical and structural interactions between particles, 

heterogeneity of morphological and electrical properties of the constituent phases, 

frequency dependence of electrical phase parameters, intra-particle structure, particle 

shape, size, orientation and morphology. This dependence complicates the determination 

of the electrical parameters of heterogeneous materials from the observed dielectric 

relaxation spectra, but also presents us with an opportunity to recover important 
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information not only about the electrical and structural properties of constituents but also 

about the interactions between constituents, including parent material and damage phases. 

From the results presented it can be concluded that the analysis of the dielectric 

data gives us information about the type of material state change throughout the 

mechanical life of the composite material. It should be emphasized that these changes in 

the dielectric properties are distinct and measurable changes in material state, and that 

they are caused by a non-conservative, non-equilibrium material response to the applied 

fields. 

     Dielectric data also can be used to predict mechanical properties such as 

strength, life, and durability, and these dielectric characteristics can be predicted by 

multiphysics analysis as a foundation for interpretation of their changes in terms of 

micro-damage, and as a basis for design for durability. As such, the work provides a new 

foundation for assessing the durability and prognosis of future performance of 

heterogeneous material systems in general, and structural composite materials in 

particular, i.e., it shows promise as a tool for knowledge based design for durability of 

composite material systems. 

8.1 Further Research recommendation 

A realistic conformal computer simulation can be done by acquiring 3D 

information by X-ray tomography of the real structural composites and rendering that 

data cloud as a foundation for multiphysics analysis.  Such an analysis should consider 

not only the fibers and matrix of the host material in the finite element simulation, but 

also must consider the interphase properties.  
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A more thorough study of the effect of anisotropy on resulting properties should 

also be pursued.  For example, the present results can likely be generalized to many 

principle fiber orientations by constructing a master curve for the dielectric properties of 

the composite material  by using information  from measurements of predictions of the 

dielectric properties of  composite plies of different directions. 

     Finally, further investigation should be made of dielectric properties as a 

foundation for prediction of composite strength and life.  Success of this effort would 

provide a much needed replacement in composite materials for the present lack of a 

degradation parameter (like crack length in homogeneous materials) that can be directly 

related to strength and life as a predictive observable.  This could be a foundation for the 

“current state analysis” that is vigorously sought by vehicle and aircraft manufacturers.   
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