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Abstract

Polymer nanocomposites can enable the innovative design of multi-functional ma-

terials. Metallic fillers in polymer matrices can exhibit improved electronic properties

at low volume fractions while maintaining the low density, transparency, and easy pro-

cessing of polymers. Surprisingly, mechanical properties also show enhancement at

these uncharacteristically low volume fractions. Two mechanisms have been suggested

as contributing to this enhancement. The first is the formation of a percolated mi-

crostructure; the second is the significant influence of the interface region between the

matrix and filler. The majority of mathematical models describing this novel mechan-

ical behavior are based on percolation models, which only consider microstructural

connectivity. Changes in mechanical properties are likely to be affected by complex

microstructures, beyond the simply connected, as well as by micromechanical mech-

anisms associated with these microstructures. These more complex microstructures

and mechanisms may be challenging to identify and describe. In this work the un-

derlying mechanical mechanisms are investigated using a probabilistic and statistical

characterization of local strain fields. These continuous fields are more amenable to

statistical characterization than the spatial ternary (matrix, particle and interface)

fields that describe the microstructure. An apparent percolation threshold is identi-

fied based on statistical characterization of the elastic moduli, distributions of local

strains and spatial autocorrelation of local strain fields. The statistics of strain fields

associated with microstructures producing minimum and maximum moduli are also

compared.
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Chapter 1

Introduction

The mechanical properties of polymer nanocomposites do not increase with volume

fraction in the same way that traditional particulate reinforced composites do. Tra-

ditionally, first order predictions of the mechanical properties of composites involve

weighted averages based on the volume fraction of the phases. However, mechanical

properties of nanocomposites have been experimentally observed that are significantly

larger than those predicted by these mean field approximations at comparable volume

fractions. [1, 2, 3]

The underlying mechanism behind this behavior is believed to be linked to inter-

face region formed in composite materials.[4] An interface region forms in all com-

posite materials through interactions at the boundary between a compliant matrix

and a stiffer included phase. These interactions may include the quality of bonding

between the material phases, chemistry changes at the bonding site, confinement of

the matrix, and/or decreased mobility of polymer chains around the included phase.

These constraints on the matrix material may alter the materials stress/strain be-

havior, resulting in an effectively stiffer region of material around the particle phase.

This phenomenon appears to be exaggerated in nanocomposites because of the large

surface area to volume ratio at the nanoscale. In addition to contributing to the

overall effective stiffness of the composite, it has been hypothesized that these in-

terfacial regions contribute to the formation of connected microstructures either by

forming reinforcing structures between particles, a pseudo-percolation, or by perco-

lating themselves.[5]
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The sudden large jump in material properties behaves in a manner similar to those

seen in percolation models used to study electrical conductivity in nanocomposites.

Due to this similarity, there has been an attempt to model effective properties by

adapting the power laws used to model percolation in electrical conductivity.

σ = σ0(∨ − ∨c)s,∨ > ∨c (1.1)

∨c is the percolation threshold, which is the volume fraction where a connected mi-

crostructure is likely to form. The filler volume fraction is denoted by ∨ and the

percolation exponent s; σ0 is the electrical conductivity of the filler material, and σ

is the effective conductivity of the composite. An ideal percolation curve is shown in

figure: 1.1.

Figure 1.1 An ideal percolation curve

Monte Carlo simulations have been used in order to determine percolation thresholds

for various filler geometries and sizes. These models are not mechanics based, but

they can be used to predict percolation thresholds based on connectivity [6]. One
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model that attempts to predict elastic moduli, E∗, over the entire range of volume

fractions is:

E∗(ν) =


Em(∨c − ∨)−a if ∨ ≤ ∨c

Ep(∨ − ∨c)f if ∨c < ∨,
(1.2)

where Em and Ep are the moduli of the matrix and particle phases and ∨ is the

volume fraction of the filler.

Other models have been developed for the case of ∨ ≥ ∨c, such as the phenomeno-

logical series/parallel model for composite elastic modulus [7, 8], which takes a more

mechanics based approach.

E∗(∨) = (1− 2φ+ φ∨)EpEm + (1− ∨)φEm
2

(1− ∨)Ep + (∨ − φ)Em

(1.3)

In this case φ is the volume fraction of the particle phase which is actively reinforcing

the matrix, and ∨ is still the overall particle volume fraction. This value is defined

as:

∨ = ν

[
(ν − νc)
(1− νc)

]b

, νc ≤ ν ≤ 1 (1.4)

and b is a percolation exponent.

The generalized effective media model [9] also takes a more mechanics based ap-

proach.

(1− ∨) ∨(σl
1/t − σm

1/t)
σ11/t + [(1− ∨c)/∨c]σm

1/t
= 0 (1.5)

where ∨ is the volume fraction of the particle, and ∨c is the percolation threshold. In

this equation, σl and σh represent the stiffness of the matrix and the particle phases

respectively. σ∗ is the effective stiffness of the composite, and t is a percolation

exponent.

Both the series parallel and generalized effective media models are based on power

law predictions. Each requires prior knowledge of the theoretical percolation thresh-
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old. This is problematic in modeling nano-composites because the increase in mechan-

ical properties occurs at lower volume fractions than are predicted using percolation

theory. This results in these models being used empirically, and curves are fit to

experimental data.

The concetric cyllinder [10] model, and a model developed by Brinson et al [11]

take a more mechanics based approach to study the effect of an interface region on

material properties. Unlike some approaches, these models surround the particle with

an interface region, rather than simply assuming that an interface region is present.

However, these models do not predict the sharp rise in the elastic modulus at low

volume fractions, possibly due to the lack of a probabilistic component to account for

random particle distribution.

A combined approach was developed in [4] which embeded a micromechanics

model into a Monte Carlo framework. Random microstructures were analysed using

the generalized method of cells (GMC) micromechanics model in order to calculate

effective properties. This model has the capability to take into account random par-

ticle placement. It also has all microstructural effects embedded into the calculations

via the micromechanics model. This allowed the percolation effects to arise naturally

through the mechanics associated with the random microstructures without making

assumptions about a percolation threshold.

This work expands on the use of this method. The high fidelity generalized method

of cells (HFGMC), a 2-D micromechanics model is used to study localized mechanical

fields in random polymer nanocomposites. This work examines the use of two statis-

tical analysis methods: probability distribution functions and spatial autocorrelation

of strain fields.

In Chapter 2, HFGMC is used to investigate how the effective stiffness of polymer

nanocomposites is affected by the addition of a stiff particle phase surrounded by a

moderately stiff matrix. This section explains the experimental procedure, selection
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of material properties, and RUC size. It also provides a basic overview of HFGMC

and GMC. The change of volume fraction of each constituent material with respect

to an increase in particle volume fraction is also investigated.

In Chapter 3, a general overview of the traditional definition of theoretical percola-

tion thresholds is presented. The rest of this section presents a method of determining

an apparent percolation threshold for mechanical percolation.

In Chapter 4, the principal of maximum entropy is used to analyse local strain

fields in each of the composite phases. The theory behind using the principal of maxi-

mum entropy for engineering problems is discussed, and the formulation is presented.

Probability density functions of the local strain fields within individual constituent

materials are used to characterize microstructures that produced the least stiff, and

most stiff effective composite moduli. Probability density functions are also compared

throughout various volume fraction ranges in the range of the calculated apparent

percolation threshold determined in chapter 3.

Chapter 5 explores the use of spatial autocorrelation to analyze local strain fields

in selected random microstructures. This section discusses the xcorr2 function as it is

presented in Matlab. It reviews limitations and error associated with the xcorr2, and

a method for generating autocorrelation functions for doubly-periodic repeating unit

cells is presented. Finally, autocorrelation functions for the strain fields are presented

at volume fractions in the range of the calculated apparent percolation threshold in

maximum and minimum modulus microstructures.

Chapter 6 summarizes the work, and conclusions that were drawn from the results

are discussed.
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Chapter 2

Model Material System and Micromechanics

2.1 Model Material System

The model nano composite consists of gold nanocubes with an aspect ratio of 1. The

metallic nanoparticles are embedded into a polymer matrix. Niklaus and Shea have

investigated mechanical and electrical percolation using a similar material system[12].

Each constituent material was assigned isotropic material properties, and was

treated as a linear elastic material. The mechanical properties of the gold nanocubes

were assigned an elastic modulus of 7.8×1010 Pa, a Poisson’s ratio of 0.35, and a shear

modulus of 2.88×1010 Pa. The polymer matrix was assigned an elastic modulus of

7.8x104 Pa, a Poisson’s ratio of 0.45, and a shear modulus of 2.69x104 Pa. There are

no accurate measures of the mechanical properties or thickness of the interface region

of nanocomposites, but it can be assumed that the properties lie somewhere between

that of the particle and matrix that surrounds it. Based on this assumption, the

interface region was assigned a stiffness equal to the geometric mean of the particle

and matrix stiffnesses
√
EmEp, and a Poisson’s ratio of 0.45.

2.2 Micromechanics

Various micromechanics models have been used to study mechanical percolation in

polymer nanocomposites. Mechanical percolation has been previously studied using

the generalized method of cells (GMC), with a focus on percolation’s effect on effec-

tive mechanical properties as well as the presence of an interface region’s effect on
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percolation-like behavior [4]. This study showed that it was possible to capture the

percolation effect on effective mechanical properties by using a model that accounted

for probabalistic and mechanics based effects.

For studying the local mechanical effects involved in mechanical percolation, the

use of the high fidelity generalized method of cells (HFGMC) was required. The

HFGMC model is an extension of the generalized method of cells developed by Jacob

Aboudi [14]. Both HFGMC and GMC model the response of composite materials

using a periodic repeating unit cell (RUC), which consists of a number of subcells, as

shown in figure 2.1 [15]. Each subcell is assigned a constitutive material with distinct

material properties. These RUC’s are connected using periodic boundary conditions

in order to generate a representative volume element (RVE). This allows GMC and

HFGMC to model a heterogeneous composite material.

Various micromechanics models such as the generalized self-consistent scheme [16],

and the Mori-Tanaka method, [17], are very computationly efficient, and they can

predict effective properties of composites accurately. But these models only generate

mean fields for the strain in each constituent material. This is not an accurate enough

estimation of what occurs locally, because in reality, local fields can vary significantly

in the constituents [14]. An important aspect of HFGMC is that it has the ability

to calculate more accurate local stress and strain fields at the constituent level while

maintaining computational efficiency.

HFGMC main advantage over mean field models is that it can account for the

spatial distribution of particles in a randomly dispersed composite. HFGMC also

allows for more accurate estimates of local fields by subdividing each microstructure

into an arbitrary number of subcells, and strains vary within each subcell. The

HFGMC addresses the lack of shear coupling in the GMC, and it also allows elastic

stress and strain fields to vary linearly within the HFGMC subcells. This is done

using a second-order displacement field [14]. The HFGMC loses some of the GMC’s
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Figure 2.1 Doubly periodic GMC and HFGMC repeating unit cell. The RUC is
composed of subcells, each containing a constutuent material. The subcells are identified
by the indices β, γ.

computational efficiency by doing this, but it gains accuracy. The HFGMC has been

compared to finite element analysis in a wide variety of cases [14], and is able to

provide comparable localized fields.

Simulation and Results

Random microstructures were generated in Matlab (See Appendix A) with volume

fractions ranging between zero to one hundred percent. Each particle was placed

randomly within the microstructure using a Monte Carlo method. Three hundred

microstructures were generated at every volume fraction in steps of 5%. The RUC
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was a uniformly divided, 48×48, 2-D array, with each particle occupying four subcell

spaces (2×2 square).

Each particle was surrounded by an interface region, which was assumed to be

half as thick as one particle width. Particles were placed in the RUC in such a way

that only matrix and interface subcells could be replaced by a particle subcell. This

allows for a consistant particle volume fraction, but created fluctuations in the matrix

and interface volume fraction. HFGMC was then used to analyse each microstructure

for its effective material properties.

A total of 5,700 microstructures were analysed using HFGMC. Based on the sim-

ulation, the effect of volume fraction on the elastic modulus is illustrated in figure

2.2, where the minimum, average, and maximum elastic modulus are plotted versus

volume fraction. At ten percent volume fraction, large deviations between the lowest

and highest calculated effective elastic modulus are observed. As the particle volume

fraction is increased from ten to twenty-five percent, this distribution in properties

grows. Above twenty-five percent volume fraction, a narrowing occurs.

From thirty-five to fifty percent particle volume fraction, there is not much change

in the difference between minimum and maximum values. Above fifty percent, there

is another divergence of properties, which then begins to converge above seventy-five

percent. Figure 2.3 shows the changes in the three constituent volume fractions as

the particle volume fraction increases. Compared to figure 2.2, a few trends emerge.

In figure 2.3, the volume fractions of the interface and matrix increase and decrease

rapidly due to the addition of a few particles. This continues from zero to twenty-five

percent volume fraction. This rapid change corresponds to the emergence of large

distributions in effective moduli seen in figure 2.2. As the rate of change for matrix

and interface volume fractions slows, the spread of mechanical properties begins to

taper off. Between thirty to fifty percent particle volume fraction, the interface volume

fraction approaches a maximum. This occurs simultaniously to the relatively constant
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Figure 2.2 The minimum, mean, and maximum effective stiffness plotted versus the
particle volume fraction. 300 simulations were analysed at each volume fraction.

distrubution of effective moduli seen in figure 2.2. Around fifty-five to sixty percent

particle volume fraction, the composite becomes roughly a two-phase composite on

average. This occurs simultaniously with another divergence in mechanical properties

in figure 2.2.
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Figure 2.3 The mean volume fractions of each constituent material are plotted versus
particle volume fractions.
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Chapter 3

Apparent Percolation Threshold

Traditionally, percolation thresholds are defined as the volume fraction where 50 %

of simulated microstructures have a connected phase that spans the microstructure.

This threshold value is then used in models to predict phenomenon that are dependent

on the formation of a connected microstructure. Percolation thresholds have been

used to model electrical conductivity in polymer nanocomposites, where the formation

of a connected phase allows current to flow through the material.

Generally, material properties which depend on some level of connectedness be-

have in a binary manner. Below the percolation threshold, the property is not exhib-

ited at all. Once a critical volume fraction is reached, the material begins to exhibit

some enhanced property. This is not the case when looking at the relationship be-

tween volume fraction and the effective elastic modulus of composite materials. The

effective modulus does not depend solely on the formation of a connected microstruc-

ture. The addition of any stiffer material to a compliant matrix will result in an

overall increase in effective stiffness.

The challenge to modelling nanocomposites is that a significant change in me-

chanical properties has been observed at very low volume fractions. This occurs well

below the volume fraction where classic percolation is predicted. Because the tradi-

tional theoretical percolation threshold does not coincide with the volume fraction

where there is a sharp increase in mechanical properties, the simulated percolation

thresholds are not useful for predictive models. Therefore, the power law models

used to capture this rise in mechanical properties must be curve fit to experimental
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data where this volume fraction is known, and they contribute little to understand-

ing the physical mechanisms causing this material behavior. However, the concept of

pinpointing where a percolation-like effect is likely to occur is still useful.

Towards that goal, an apparent percolation threshold was defined by analysing the

statistical skew of the elastic moduli at each volume fraction. Figure 3.1 shows a plot

of the average effective elastic modulus plotted versus volume fraction. Overlayed is

a graph of the statistical skew of elastic moduli at the same volume fraction.

The skewness, γ1 of a random variable X is the third standardized moment, and

it is defined as:
n

(n− 1)(n− 2)
∑(

xj − x̄
s

)3
(3.1)

where n is the total number of data points, xj is an element of the data set, x̄ is the

sample’s mean, and s is the standard deviation of the data set.

At very low volume fractions, very few microstructures have significantly enhanced

properties due to any microstructural reinforcement. The most significant effect is

likely the addition of a stiffer interface. However, with the addition of interface

subcells, microstructures that provide mechanical reinforcement may develope. The

presence of a small number stiffer microstructures will skew the data set towards

a higher mean stiffness. Figure 3.1 shows the skew of effective moduli plotted ver-

sus the particle volume fraction. Superimposed is the average effective moduli that

was shown in figure 2.2. Figure 3.1 suggests that as volume fraction increases, there

are differences due to microstructural effects that emerge at fifteen percent volume

fraction. Some microstructures provide better reinforcment than others, causing an

increase in mean stiffness that results in a right-skewed data set. As the volume

fraction continues to increase from 15-30%, the number of microstructures exhibiting

this reinforcing effect also grows. Eventually, it becomes equally likely that a mi-

crostructure either exhibits or does not exhibit this reinforcing effect, again resulting

in a symmetric, zero skew distribution of effective modulii.
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Here, it is assumed that as the microstructural effect on mechanical propeties

becomes a factor, the data will display skew as isolated microstructures provide bet-

ter reinforcement. Eventually, as the number of highly reinforced microstructures

increases, the data becomes more symmetric. An apparent percolation threshold is

then defined as the volume fraction where the skew of the effective moduli returns to

zero.

Figure 3.1 A plot of the effective properties and the skew of the data set versus particle
volume fraction. The scale on the right represents the skew

When the majority of the microstructures exhibit this percolation effect, a sym-

metric distribution would be expected to occur. The skew in fig. 3.1 suggests a few

interesting things. Between 0 and 15 %, the skew rises rapidly, indicating that there

are a few microstructures that are exhibiting significant increases in stiffness. The

overall number of reinforced microstructures is small relative to the total, but the

stiffness is almost an order of magnitude higher. A highly right-skewed data set indi-

cates the emergence of the mechanism causing above average reinforcement within the

14



Figure 3.2 The mean volume fractions of each constituent material are plotted versus
particle volume fractions.

composite microstructures. When compared to fig. 3.2, this volume fraction range

corresponds to the volume fraction where the particle volume fraction is roughly equal

to the matrix volume fraction, and the interface volume fraction reaches a maximum.

From 15 to 25 %, the skew begins to decrease. This indicates that significant

reinforcement is occuring at a higher frequency. As the particle volume fraction

increases, the number of microstructures exhibiting this behavior continues to grow.

Above 25 %, the skew begins to taper off gradually as it approaches a zero skew
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distribution. The elastic moduli first reach zero skew around 28 % volume fraction.

This is when figure 3.2 begins to show that the interface volume fraction is leveling

off. Both the skew and interface volume fraction remain relatively constant between

30 and 40 % volume fraction.
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Chapter 4

Probability Density Functions of Strain Fields

In addition to the effect of adding a third phase, the interface, into the mechanics of

the composite, it seems clear that the reinforcing effect of the phases contributes to the

stiffness. It also seems clear that the structure and arrangement of the phases affects

the reinforcement of the composite. However, it is difficult to associate variations in

elastic moduli with specific microstructural structures. The structures which might

be linked to these effects are difficult to visualize, and they are likely more complicated

than simple connectivity. So rather than looking at microstructures for patterns and

structures, this work proposes tracking the reinforcing effects of the microstructures

by statistically analyzing the resulting strain fields.

Probability density functions of the strain fields were constructed using the Prin-

ciple of Maximum Entropy (PME) [18]. Volume fractions around the apparent perco-

lation threshold were chosen, and microstructures from these volume fractions were

selected that produced lowest and highest effective elastic modulus, respectively. Each

microstructure was subjected to a load of 1% strain, and the strain field data was

separated into strains from each constituent material.

4.1 Principle of Maximum Entropy

PME states that of all possible solutions, one should choose the one that maximizes

an entropy term and satisfies all a priori conditions. This results in a solution with

the maximum uncertainty, or the minimum embedded bias.

The principle of maximum entropy uses the information entropy functional, which

17



is given by: [19]

H[p(ε|J)] = −
∫ ∞
−∞

p(ε|J) ln(p(ε|J))dε. (4.1)

Where H[p(ε|J)] is the entropy of the data set. The term p(ε|J) is the probability

that the local strain, ε, will take a certain value at a specific material state, J .

This material state takes into account anything that could effect the local strains

within the material. This includes constituent volume fractions, constituent geometry,

constituent locations, etc.

The moduli are assumed to be bounded, with a minimum

ε− ≤ ε ≤ ε+ (4.2)

and the mean value, ε̄ is assumed to be known. This information is enough to define

a first-order PDF, which satisfies the conditions,

∫ ∞
−∞

p(ε|J)dε = 1 (4.3)

0th moment is normalization ∫ ∞
−∞

p(ε|J)εdε = ε̄ (4.4)

1st moment is the mean, ε̄

Higher order PDF’s must satisfy conditions based on higher order moment equations.

This problem can be solved using Lagrange multipliers, and the general form of the

N th order probability distribution function is:

P (ε|J) =


P (ε|J) = exp(λ0 +

N∑
n=1

λnε
n) for ε− ≤ ε ≤ ε+

p(ε|J) = 0, otherwise.,
(4.5)
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4.2 Results

This work focused on volume fractions near the theoretical, apparent percolation

threshold, ∨c, that was determined in the previous chapter. The strain fields for vari-

ous microstructures were obtained using HFGMC. Probability distribution functions

(PDF) of the strain fields in the interface and matrix phases for sample microstruc-

tures between volume fractions of 0.22 and 0.34 are shown in fig. 4.1-4.2. Strain

values in the particle subcells were distributed over a very small range of values. The

PDF’s for the particle strains were almost single values, so they have been omitted

from the plots.

Figure 4.1 shows the PDFs for the matrix and interface strains pulled from the

microstructures that resulted in the maximum effective moduli at particle volume

fractions 0.22, 0.25, 0.28, and 0.31. The strains in the interface region are distributed

over a much smaller range than the strains in the matrix phase in general. This

is consistent with the constraints expected to exist in the interface region due to

its attachment to a stiff particle phase. The average strain in the interface region

increases from below the global applied strain until it is almost equal to it. The

PDFs of the matrix phases show less consistent trends as the volume fraction is

increased. The widening distribution suggests a reinforcing effect by stiffer phases,

and the shift to higher strains may be the result of the lower matrix volume fraction.

Figure 4.2 shows a comparison of the PDFs in the interface and matrix phases

for microstructures that produced the minimum and maximum effective moduli at

particle volume fractions of 0.22, 0.25, 0.28, and 0.31. The interface strains for the

maximum microstructure are distributed over a larger range than in the minimum

microstructures, although at volume fractions above 0.28 the ranges are similar. The

mean strain value in the interface region is higher in the maximum microstructures

than the minimum microstructures. Mean values in the matrix material did not vary

much between the minimum and maximum microstructures.
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Figure 4.1 Probability distribution functions of the strains in each constitutive material
for various maximum modulus microstructures around the percolation threshold volume
fraction. 0.22, 0.25, 0.28, 0.31, and 0.34 represent the particle volume fraction of the
microstructure studied.
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Figure 4.2 Probability distribution function of the strains in the minimum and
maximum modulus for various volume fractions around the theoretical percolation
threshold.
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Chapter 5

Auto Correlation of Local Strain Fields

Autocorrelation is a statistical measure that represents the average covariance whose

coordinates differ by a distance vector (k, l)[21]. Spatial autocorrelation arises when

the elements of a population, or a data set, are not independent of one another’s

location in space.[22] Spatial autocorrelation can be used to test the assumption of

independence and randomness within a data set, which is critical for many statisti-

cal analyses [23]. This work investigates the use of spatial autocorrelation on local

mechanical strain fields as a method of identifying and distinguishing between mi-

crostructural reinforcing mechanisms in random nanocomposite microstructures. The

xcorr2 function in MATLAB © is modified and used to perform the autocorrelation.

Because of the complexity of the microstructures and the difficulty in visualizing the

resulting mechanical effects, in this preliminary work, a two dimensional microstruc-

ture is studied.

5.1 Autocorrelation in Matlab

MatLab’s function xcorr2 creates a 2-D cross-correlation field between an M by N

matrix ‘X’, and a P by Q matrix ‘H̄’. This is calculated by summing the product

of the value of the property at each location, (m,n), and the value of the property

located k units away horizontally, and l units away vertically. The formula is given

by:

C(k, l) =
M−1∑
m=0

N−1∑
n=0

X(m,n)H̄(m− k, n− l) (5.1)
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−(P − 1) ≤ k ≤M − 1.

−(Q− 1) ≤ l ≤ N − 1.

The output matrix, C(k, l), has negative and positive row and column indices. If these

values are normalized by dividing the matrix by its largest value, when k = 0, l = 0,

creating a correlogram, r that contains correlation coefficients at each separation

distance , (k, l) [21]:

r(k, l) = C(k, l)
C(0, 0) (5.2)

The values in r(k, l) can range from -1 to 1. If X = H̄, the corresponding output is

the autocorrelation function.

5.2 Boundary Conditions

The challenge to using this function is the presence of boundary error. As the sep-

aration distance increases, the analysis is limited because of a lack of data near the

boundary of the data set. This results in correlations that decreases radially from the

center, regardless of the strength of the correlation at larger distances. This effect

can be seen in figure 5.1, which shows an autocorrelation correlogram of a uniform

data set, i.e., all values are the same. The correlogram should have a uniform value

of one, but because of the boundary condition, it decreases to zero as separation

increases. This is easy to see with such a simple example, but the problem becomes

more difficult to handle as the complexity of the data set increases.

The goal in this work was to analyze spatial relationships of strains over the entire

strain field based on a repeating unit cell. For this model, the data set is a 528 by 528

matrix. This corresponds to an RUC of 48× 48 subcells, and strains interpolated at

eleven points within each subcell. The error becomes significant when the separation

distance is greater than a few subcells in magnitude.

HFGMC imposes periodic boundary conditions, meaning that the strain field
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Figure 5.1 A demonstration of how the correlation coefficient diminishes as separation
distance increases.

actually represents a doubly periodic array of strains. If H̄ is expanded as,

H̄ =


[X] [X] [X]

[X] [X] [X]

[X] [X] [X]

 (5.3)

Additional data for the autocorrelation function is available. The error around the

boundary still exists, but the extra data shifts the error outside of the original strain

field. Figures 5.2-5.4 illustrates how this method affects the results on an actual strain

data set.

Figure 5.2 shows a plot of the correlogram of a sample strain field. The plot takes a

value of one at the center, which is expected in all normalized autocorrelations. The

X and Y axes, which run from 0 to 1152, are mapped to separation distances that

run from, −528 to 528. When the separation distance of zero (k = 0, l = 0) the

correlation coefficient takes a value of one at the center of each plot. An area the
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Figure 5.2 Correlogram of a sample strain data set analyzed without periodic boundary
conditions

size of one HFGMC subcell around the center shows a correlation coefficient between

0.3 and 0.9, indicating some spatial relationship of strains within one subcell. As the

separation distance increases, the correlation coefficient drops from 0 to 0.2, indicating

almost no spatial relationship. The low values towards the border of the plot are due

to the boundary error.

Figure 5.3 shows an autocorrelation plot, for the same sample strain field, when

periodic boundary conditions are applied in xcorr2. There are nine points of perfect
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Figure 5.3 The correlogram of the same strain data set analysed with periodic
boundary conditions

correlation, which corresponds to the separation distance that matches the periodic

boundary conditions exactly. This is expected due to the way the strain fields were

replicated. It is also apparent that there is still some error around the boundary of

the plot. However, the spatial relationships of the original field can be obtained by

extracting the center of this image. This is shown in fig. 5.4. This figure predicts

a correlation coefficient field of the same data set from fig. 5.2. By using periodic

boundary conditions, more detail is captured towards the edges of the field. The

correlation field in fig. 5.4 shows a higher degree of spatial autocorrelation than was

predicted in fig. 5.2.
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Figure 5.4 The correlogram of the same strain data set trimmed to the size of the
original strain field
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Results

Corellograms of spatial autocorrelation functions were created using the strain fields

from select microstructures. These corellograms can be extremely complex, because

the magnitude of each point in the plot, and the relative magnitude of each point to

another is important in establishing spatial relationships within a data field. In order

to establish some framework to analyse these plots, it is necessary to point out two

critical attributes of the corellogram: the baseline value, and local peak values.

Baseline values in this study refer to the average value of the corellogram. This

value indicates how homogenous the strain data field is. Low baseline values indicate

larger variations in the strain fields in general. A higher baseline value indicates

a tendancy for strains to be uniformly distributed throughout the microstructure.

A corellogram with a minimum value of 1 (i.e. all values are 1), would indicate a

single valued strain field. This is seen in ideal isotropic materials in tension. As

gradients appear in the strain field, the baseline value will begin to decrease. The

more randomly distributed the strain fields are, the lower the baseline value will be.

The frequency that the baseline value occurs in a plot is also important in analysing

the spatial relationships. The less frequent the baseline value appears, the more

homogeneous the data set will be.

Local peak values are measured relative to the baseline value. The presence of

a peak value indicates that a repeating exists in a data set. The strength of the

relationship appears to be dependent on the difference between the peak value and

the baseline value, rather than the magnitude of the peak on its own. This is due to

the fact that this is an averaged effect.

It is important to note that this is an autocorrelation function of the strain fields.

These corellograms do not provide a useful tool for analysing the spatial relationships

of the constituent materials themselves. While the distribution of strains is effected

by the microstructural geometry, other effects are also captured, so the generalization
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between strain distribution and material distribution cannot be made. The presence

of homogeneous strain fields does not indicate homogeneous distribution of the par-

ticles, matrix, or inteface. This holds true for clustering, or any spatial pattern seen

in the strains.

Corellograms were created for each volume fraction between 0.05 and 0.90 in in-

crements of 0.05. A few additional corellograms were created around the apparent

percolation threshold, at 0.22, 0.28, 0.31, and 0.34 volume fraction. These corel-

lograms contain the spatial autocorrelation function of the strain field for the maxi-

mum modulus microstructure at each of these volume fractions.

Figure 5.5 shows the corellograms for volume fractions 0.05, 0.10, 0.15, and 0.20.

The 0.05 volume fraction corellogram shows a high baseline value, and this value

occupies a very small portion of the plot. As the volume fraction increases up to a

volume fraction of 0.20, the baseline value decreases, and the lower correlation values

occupy a more significant proportion of the plot. This indicates that as the volume

fraction increases in this range, the strains become more randomly distributed within

the microstructure.

Figure 5.6 shows the corellograms for volume fractions 0.22, 0.25, 0.28, and 0.30.

At the volume fraction 0.22, there is a rise in the baseline value compared to 0.20 in

fig. 5.5. Between 0.22 and 0.30, there are large variations in the overall magnitude

of the corellograms, and the occurance of spatial patterning is inconsistent.

Figure 5.7 shows the corellograms for volume fractions 0.31, 0.34, 0.35, and 0.40.

Volume fraction 0.31 shows a rise in the baseline value compared to the plots seen in

fig. 5.6, and there is a high degree of patterning in volume fractions 0.31, and 0.34.

Above the volume fraction of 0.31, the baseline values begin to decrease again. This

continues in fig. 5.8 and fig. 5.9, until a volume fraction of 0.75 is reached. Above

0.75, there is an increase in the baseline values, and an increase in peak frequency.
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Figure 5.5 Corellelograms of strain fields in the maximum effective modulus
microstructures for particle volume fraction 0.05 to 0.20
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Figure 5.6 Corellelograms of strain fields in the maximum effective modulus
microstructures for particle volume fraction 0.22 to 0.30
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Figure 5.7 Corellelograms of strain fields in the maximum effective modulus
microstructures for particle volume fraction 0.31 to 0.40
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Figure 5.8 Corellelograms of strain fields in the maximum effective modulus
microstructures for particle volume fraction 0.45 to 0.60
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Figure 5.9 Corellelograms of strain fields in the maximum effective modulus
microstructures for particle volume fraction 0.65 to 0.80

Figure 5.10 Corellelograms of strain fields in the maximum effective modulus
microstructures for particle volume fraction 0.85 to 0.90
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Based on the apparent percolation threshold determined in Chapter 3, two mi-

crostructures were chosen from each of three volume fractions, 0.25, 0.28, and 0.31.

One microstructure produced the maximum modulus, and the second produced the

minimum modulus at that volume fraction. A comparison of the autocorrelation plots

for these volume fraction’s minimum and maximum volume fractions are shown in

fig. 5.11.

Figure 5.11 Autocorrelations of strain fields of interest. Top row: based on minimum
modulus microstructures. Bottom row: based on maximum modulus microstructures.

High correlations close to the center of the plot may indicate some level of clustering

of strain values. High correlations separated by regions of low correlation, such as

that shown in the maximum vf=0.31, may indicate regularly spaced patterning in the

strain field. Both sets display patterning in the correlation values which suggest that

the strain fields are not random. Higher correlation coefficients are seen distributed

throughout the strain fields for the maximum modulus microstructures than for those

from the minimum modulus microstructures. This suggests that the strains are more

homogenously in the maximum microstructures than in the minimum.
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Chapter 6

Conclusions

Enhanced mechanical properties have been experimentally observed in polymer nano-

composites at uncharacteristically low volume fractions. Mathematical models based

on percolation theory provide little insight into the underlying micromechanics. In

particular they include neither the effects of the formation of an interface region

between the matrix and included phase, which are significant at the nanoscale, nor

the influence of complex microstructures on the mechanics response of the composite.

In this work the effective composite properties of a population of simulated two-

dimensional random microstructures were calculated. The random microstructures

modeled a polymer nanocomposite with three phases, particle, interface and matrix;

the interface region surrounds each particle. Statistically, the effective properties of

the simulated microstructures predicted percolation-like effects at low volume frac-

tions. In contrast to traditional models, this modeling approach predicts percolation

based on the underlying micromechanics rather than a previously defined percolation

threshold. Of particular interest were the distributions of properties that developed

in the simulations at volume fractions in the region of the percolation-like effects.

The volume fractions were, in general, too low for particle phase percolation and

very few of the microstructures exhibited connectivity of the combined particle and

interface phases. Therefore, in most cases, the increase in stiffness was not due to the

formation of a simply connected microstructure.

The goal of this work was to develop methods of identifying and characterizing

changes in complex microstructures that could be associated with the distribution
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of properties in the simulated microstructures and linked to micromechanical effects.

Local strain fields in each phase, and global strain fields of the microstructures were

used a a measure of changes and trends in mechanical activity. Two modeling ap-

proaches were used. First probability density functions of the strains were constructed

using the Principle of Maximum Entropy, and second, spatial autocorrelation fields

were calculated for the strain fields of selected microstructures.

The statistical analysis of the strain fields suggests several different types of me-

chanical mechanisms.

1. At low volume fractions it is likely that a significant portion of the increase

in stiffness is due to the addition of a third phase with greater stiffness than

the matrix. Regions of interface are concentrated around the particles, and

interface-particle connections keep interface strains small. Areas of matrix can

be near or far from interface regions; therefore the matrix is less consistently

constrained in deformation.

At the lowest volume fraction presented here, 0.22, the autocorrelation plot

shows a wide range of local correlation. This may be due to good distribution

of a low volume fraction of particles coupled with large, roughly equal, volume

fractions of interface and matrix.

2. At a particle volume fraction of about 0.28, the distribution of elastic mod-

uli moves toward symmetric and the range of matrix strains narrows. This

suggests that fewer regions of the matrix are isolated from regions of interface

or particles and so they are more uniformly reinforced by the stiffer phases.

This suggests that microstructure plays a more significant role in addition to

the contribution of the stiffer interface. This volume fraction might serve as a
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threshold for the apparent percolation effects - effects due to the formation of

particular microstructures.

3. Above particle volume fractions of 0.28, the volume fraction of interface levels

off and eventually begins to decrease. At this stage, additional particle subcells

are as likely to replace interface subcells as they are to replace matrix subcells.

The volume fraction of particles and interface are approaching equal values.

Microstructure continues to play a role as regions of matrix are now widely

dispersed and are reinforced by the stiffer phases.

4. Autocorrelation fields show similar trends. At low particle volume fractions,

particles are widely dispersed and there are large regions of matrix. Each large

region of pure matrix, would generate higher correlations over a wider range

even in the minimum modulus microstructures.

5. The correlation fields for the maximum modulus microstructures show higher

spatial correlation than the minimum modulus microstructures. They also have

discontinuous regions of correlation which can be more directly linked to spa-

tially patterned microstructures. The more continuous correlation fields in the

minimum microstructures suggest more local similarity.

The mechanisms that produce percolation-like effects at low volume fractions in

nanocomposites are more complex than just the formation of connected microstruc-

tures. Understanding these mechanisms requires the development of predictive mi-

cromechanical models and analysis techniques. These models need to include param-

eters linked to specific mechanics-based mechanisms, for example, the properties and

geometry of interfacial regions, and provide a method for analysis that can capture
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the underlying mechanisms, i.e., within a probabilistic framework. This work has

demonstrated a modeling framework that can be used to predict low volume fraction

percolation effects. Analysis of the model outputs was done using a novel approach

that tracks probabilistic changes in local strain fields, rather than local microstruc-

tures. This analysis suggests that the effective properties of the composite are likely

the result of a sequence of overlapping mechanisms; the influence on the composite

of a significant volume fractions of a stiff interface, the contribution of the interface

to the formation of a reinforcing/supporting microstructure, and the replacement of

matrix by interface, (conversion of all matrix material into interface).
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Appendix A

Matlab RUC Generation Code

% This code generates randomized microstructures that are compatable ...
with HFGMC.

% It has a section that sends the input files to a cloud to decrease ...
computational cost.

%It will also pull out relevant results from the output files.

printlevel=1; % Printlevels. 0=limited debug info, 1=more, −1 ...
totally off

inputfile='HFGMC_initial.mac';
casestr='HFGMC Initial Attempt';
interface=0; %interface subcell thickness, will be 0 for ...

initial tests
BB=1; GG=1; %dimensions of particle
b=24; g=24; %dimensions of RUC, dimensions must be square for 2x ...

periodic HFGMC
runs=10;

clear E11S N12S E22S N23S E33S G23S G13S G12S NUM inputfilelist
count=0;

VOLFRACS=[0:0.05:1];
% VOLFRACS=[VOLFRACS .525 .5725];
volfracs=length(VOLFRACS);

%% INPUT FILE CONSTRUCTION
% This section reads the template file, creates an input file based
% on current properties with random microstructure.
% inputrandom0.mac has the first volume fraction value, inputrandom1.mac
% has the second volume fraction value, etc. until the max vf is reached
% to complete one run. Then it starts over at the lowest vf and begins
% the iterations through each vf again to make run two. And ...

continues...

for ii=1:runs %

for i=1:volfracs;
if (printlevel>=0)

disp(' ');
disp(['ITERATION NUMBER: ' num2str(i) ' of run ' ...
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num2str(ii) ' of ' ...
num2str(runs) ' runs, ' num2str(count+1) ' of ' ...

num2str(runs*volfracs)]);
disp(' ');

end

newinputfile=[ 'inputrandom' num2str(count) '.mac']; % Make ...
file name based on variable i value

inputfilelist{count+1}=newinputfile;
count=count+1;

perc=VOLFRACS(i)
num=floor(perc*(b*g)/(BB*GG)); % exact number of particles
P(i,1)=num*(BB*GG)/(b*g); % New percentage
NUM(i,1)=num;
M=makematrix_HFGMC(num,b,g,BB,GG,interface);
MM{i}=M;

if (printlevel>=0)
disp(['Expected number of particles: ' ...

num2str(b*g*perc/(BB*GG),'%5f') ])
%disp(['Expected number of particles: ' ...

num2str(N*N*N*perc/(C*C*C),'%5f') ])
disp(['Actual number of particles: ' ...

num2str(sum(sum(sum(M==1)))/(BB*GG),'%5f') ])
%disp(['Actual number of particles: ' ...

num2str(sum(sum(sum(M==1)))/(C*C*C),'%5f') ])
end

fid1=fopen(inputfile,'r');
fid2=fopen(newinputfile,'w+');
j=0;
while 1 && (j<14)

j=j+1;
tline = fgetl(fid1); % Get a line
if ~ischar(tline), break, end
%disp(tline);
fprintf(fid2,tline); % Write a line to new input file
fprintf(fid2,'\r\n');

end
fprintf(fid2,[' NB=' num2str(b) ' NG=' num2str(g)]);
%fprintf(fid2,[' NB=' num2str(N) ' NG='
%num2str(N)]); %this is for square particles
fprintf(fid2,'\r\n');

% str=['1'];
%for cc=2:a
% str=[str ',1'];

%end
%fprintf(fid2,[' D=' str]);
%fprintf(fid2,'\r\n');

str=['1'];
for cc=2:b
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str=[str ',1'];
end
fprintf(fid2,[' H=' str]);
fprintf(fid2,'\r\n');

str=['1'];
for cc=2:g

str=[str ',1'];
end
fprintf(fid2,[' L=' str]);
fprintf(fid2,'\r\n');

for k3=1:g %this is for rods
%for k1=1:N this is for square particles

%for k1=1:a
tline=' SM=';
for k2=1:b

if M(k2,k3)==1
tline=[tline '1' ','];

elseif M(k2,k3)==2
tline=[tline '2' ','];

elseif M(k2,k3)==3
tline=[tline '3' ','];

else
disp('num2str hardcoded, odd integer used in M')
return;

end
end
tline(end)=' ';
fprintf(fid2,tline); % Write a line to new input file
fprintf(fid2,'\r\n');

%end

% if k3<a %this is for rods
% tline=['# gamma = ' num2str(k3+1) ];
% fprintf(fid2,tline); % Write a line to new input file
% end

% fprintf(fid2,tline); % Write a line to new input file
%fprintf(fid2,'\r\n');

end
tline='*MECH'; fprintf(fid2,tline); fprintf(fid2,'\r\n');
tline='LOP=2'; fprintf(fid2,tline); fprintf(fid2,'\r\n');
tline='NPT=2 TI=0.,200. MAG=0.,0.02 MODE=1'; ...

fprintf(fid2,tline); fprintf(fid2,'\r\n');
%tline='*THERM'; fprintf(fid2.tline); fprintf(fid2,'\r\n');
%tline='NPT=2 TI=0.,200. TEMP=650.,650.'; ...

fprintf(fid2.tline); fprintf(fid2,'\r\n');
tline='*SOLVER'; fprintf(fid2,tline); fprintf(fid2,'\r\n');
tline='METHOD=1 NPT=2 TI=0.,200. STP=1.'; ...

fprintf(fid2,tline); fprintf(fid2,'\r\n');
tline='NLEG=5 NINTEG=11'; fprintf(fid2,tline); ...

fprintf(fid2,'\r\n');
tline='*PRINT'; fprintf(fid2,tline); fprintf(fid2,'\r\n');
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tline='NPL=6'; fprintf(fid2,tline); fprintf(fid2,'\n\n');
tline='*END'; fprintf(fid2,tline); fprintf(fid2,'\r\n');

fclose(fid1); % Close template file
fclose(fid2); % close new input file

end
end

%% Run code section
% This section creates and then submits the inputrandom*.mac files to
% condor to be executed.

% First, write condor submit file
fid3=fopen('macsubmitfile','w+');
fprintf(fid3,'universe = vanilla\n');
fprintf(fid3,'requirements = (Arch == "X86_64") \n');
%fprintf(fid3,'environment = path=c:\\winnt\\system32 \n');
fprintf(fid3,'executable = mac4.exe \n');
fprintf(fid3,'input = inputrandom$(Process).mac\n');
fprintf(fid3,'arguments = inputrandom$(Process)\n');
fprintf(fid3,'output = inputrandstdout$(Process).out\n');
fprintf(fid3,'error = inputrandom$(Process).err\n');
fprintf(fid3,'log = inputrandom$(Process).log\n');
fprintf(fid3,['queue ' num2str(runs*volfracs) ' \n']);
fclose(fid3); % close new input file

str=['C:\HPC\condor\bin\condor_submit.exe macsubmitfile '];
system(['erase inputrandom*.out']); % erase out file before condor ...

starts
if (printlevel>=0)

disp(' ');
disp(' Running condor, command is:')
disp([ ' ' str])

end
tic

[status,result]=system(str);
result

% check to see if the output files are all done. Could just check
% inputrandom.out and see if it is complete...

d=dir('inputrandom*.out');

running=1;
while running

pause(1);
disp([' Checking to see if CONDOR is done...' num2str(length(d)) ...

...
' output files finished of ' num2str((runs*volfracs)) ]);

d=dir('inputrandom*.out');
if (length(d)==(runs*volfracs))

running=0;
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end
if (length(d)>0)

for ddd=1:length(d)
if d(ddd).bytes<1000

running=1;
end

end
end

end

if (printlevel>=0)
disp([' Finished running executable, time: ' num2str(toc) ' ...

seconds'])
disp(' ');

end

%% Read output section
% This section reads throught the output file and looks for a specific
% string. When that is found, it reads the numeric value and puts the
% value into an array.

count=0;
for ii=1:runs

for i=1:volfracs;
if (printlevel>=0)

disp(' ');
disp(['ITERATION NUMBER: ' num2str(i) ' of run ' ...

num2str(ii) ' of ' ...
num2str(runs) ' runs, ' num2str(count+1) ' of ' ...

num2str(runs*volfracs)]);
disp(' ');

end

newinputfile=[ 'inputrandom' num2str(count) '.out']
outfile=[newinputfile(1:end−4) '.out'];
count=count+1;

if length(dir(outfile))>0
%start case where output file is there
fid3=fopen(outfile,'r');
tic;
while fid3<0

disp('Attempting to open output file again!')
fid3=fopen(outfile,'r');
pause(1)
if toc>40

return
end

end %end try to open file

frewind(fid3);
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if (printlevel>=0) disp('Searching output file for ...
strings');end

while 1
tline = fgetl(fid3); % Get a line
if ~ischar(tline), disp('BREAK'); break, end

if length(tline)>10
if strcmp(' E11S=',tline(1:10))

if (printlevel>=1)
disp('Found output string:');
disp(tline);

end
E11S(i,ii)=str2num(tline(11:end)); % Store ...

desired value in array
end
if strcmp(' N12S=',tline(1:10))

if (printlevel>=1)
disp('Found output string:');
disp(tline);

end
N12S(i,ii)=str2num(tline(11:end)); % Store ...

desired value in array
end
if strcmp(' E22S=',tline(1:10))

if (printlevel>=1)
disp('Found output string:');
disp(tline);

end
E22S(i,ii)=str2num(tline(11:end)); % Store ...

desired value in array
end
if strcmp(' N23S=',tline(1:10))

if (printlevel>=1)
disp('Found output string:');
disp(tline);

end
N23S(i,ii)=str2num(tline(11:end)); % Store ...

desired value in array
end
if strcmp(' E33S=',tline(1:10))

if (printlevel>=1)
disp('Found output string:');
disp(tline);

end
E33S(i,ii)=str2num(tline(11:end)); % Store ...

desired value in array
end
if strcmp(' G23S=',tline(1:10))

if (printlevel>=1)
disp('Found output string:');
disp(tline);

end
G23S(i,ii)=str2num(tline(11:end)); % Store ...

desired value in array
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end
if strcmp(' G13S=',tline(1:10))

if (printlevel>=1)
disp('Found output string:');
disp(tline);

end
G13S(i,ii)=str2num(tline(11:end)); % Store ...

desired value in array
end
if strcmp(' G12S=',tline(1:10))

if (printlevel>=1)
disp('Found output string:');
disp(tline);

end
G12S(i,ii)=str2num(tline(11:end)); % Store ...

desired value in array
end

end %end tline>10

if length(tline)>43
if strcmp(' MATERIAL NO.= 1 VOLUME ...

RATIO=',tline(1:43))
if (printlevel>=1)

disp('Found output string:');
disp(tline);

end
M1VF(i,ii)=str2num(tline(44:end)); % Store ...

desired value in array
end

if strcmp(' MATERIAL NO.= 2 VOLUME ...
RATIO=',tline(1:43))
if (printlevel>=1)

disp('Found output string:');
disp(tline);

end
M2VF(i,ii)=str2num(tline(44:end)); % Store ...

desired value in array
end

if strcmp(' MATERIAL NO.= 3 VOLUME ...
RATIO=',tline(1:43))
if (printlevel>=1)

disp('Found output string:');
disp(tline);

end
M3VF(i,ii)=str2num(tline(44:end)); % Store ...

desired value in array
end
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end %end tline>43

end %end while loop
fclose(fid3);

else %if output file is not there
vars={'E11S' 'N12S' 'E22S' 'N23S' 'E33S' 'G23S' 'G13S' ...

'G12S' 'M1VF' 'M2VF' 'M3VF'};
E11S(i,ii)=−1;
N12S(i,ii)=−1;
E22S(i,ii)=−1;
N23S(i,ii)=−1;
E33S(i,ii)=−1;
G23S(i,ii)=−1;
G13S(i,ii)=−1;
G12S(i,ii)=−1;
M1VF(i,ii)=−1;
M2VF(i,ii)=−1;
M3VF(i,ii)=−1;

end %end checking if file is there
end

end

%the following deletes the extra files created by condor. not ...
necessary to

%keep
system(['erase inputrandom*.log']);
system(['erase inputrandom*.err']);
system(['erase inputrandstd*']);
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Appendix B

Example HFGMC Input Code

MAC/GMC 4.0 G: 2−D HIGH FIDELITY GMC

*CONSTITUENTS
NMATS=3

# −− Gold nanorod units are Pascals −
M=1 CMOD=6 MATID=U MATDB=1 &
EL=78.E9,78.E9,0.35,0.35,28.8E9,−0.68E−6,9.74E−6

# −− Polymer Matrix
M=2 CMOD=6 MATID=U MATDB=1 &
EL=78.E3,78.E3,0.45,0.45,26.9E3,−0.68E−6,9.74E−6

# −− Interface Layer with geometric mean properties
M=3 CMOD=6 MATID=U MATDB=1 &
EL=78E6,78E6,0.45,0.45,26.9E6,−0.68E−6,9.74E−6

*RUC
MOD=22 ARCHID=99
NB=4 NG=4
H=1,1,1,1
L=1,1,1,1
SM=3,2,2,2
SM=3,2,2,2
SM=3,2,2,3

*MECH
LOP=2
NPT=2 TI=0.,200. MAG=0.,.0100 MODE=1

*SOLVER
METHOD=1 NPT=2 TI=0.,200. STP=1.
NLEG=5 NINTEG=11

*PRINT
NPL=6
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