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ABSTRACT

 The intermediate gearbox (IGB) on the AH-64D was chosen as the subject for this 

study based on the persistent grease leaks that require grounding aircraft.  The aircraft is 

not currently equipped with a method of detecting grease loss during flight, so techniques 

for analyzing the usefulness of old metrics and possible new techniques can be tested.  

The main objective of this study is to use the aircraft’s on-board sensors to develop a 

method of determining the lubrication level of the IGB.  Currently, the most reliable 

method for detecting a fault on the aircraft is through the use of vibration-based condition 

indicators (CIs).  The results of this research show a negative correlation between 

vibration and grease service levels when analyzing specific CIs for the IGB on the AH-

64, which can be basis for automated leak detection. 

Another objective of this study is to quantify the standard operational grease level 

for IGBs in the AH-64 fleet.  This standard would be created by measuring the amount of 

grease left in each gearbox after burping. This grease level would then be used to insure 

that if lubricant was leaking out of the component, it is due to a fault instead of an 

overfilled article.  If the level is the same for each gearbox then a new standard can be 

implemented to prevent burping.  By being able to use an installed on-board sensor to 

indicate the level of grease in the gearbox this would relieve the burden of the maintainer 

from having to check the level every 25 flight hours.  The soldier would then be able to 

spend his time in another area that is more critical than a routine maintenance item. 
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For this analysis three gearboxes of similar condition were used.  Each one was 

run for two hours at five different grease service levels of 0%, 25%, 50%, 75%, and 

100%, based on the Army Depot standard amount of 964 grams. These gearboxes were 

tested on the USC tail rotor drivetrain (TRDT) test stand according to a test plan defining 

operational conditions. The test plan specifies torque and speed values that are similar to 

those experienced by the component during flight. The existing on-board modernized 

signal processing unit (MSPU) CIs, the raw time-domain data, and temperature data were 

collected and analyzed to try and identify a CI to indicate grease level. 

By using statistical analysis tools and some know fault cases.  CIs can give the 

user a different view into the operation of the gearbox as opposed to standard vibration 

analysis.  This happens to hold true for this experiment, in which investigation of the two 

CIs, output bearing energy and input bearing energy, revealed an inverse correlation 

between grease level and vibration magnitude.  Out of the two algorithms mentioned, the 

input bearing energy had the strongest correlation, making it the best candidate for 

monitoring grease level through vibration in the field.  The raw vibration data collected, 

unlike the conditioned MSPU, data was too noisy and did not yield any valuable results.  

It was also noted that gearbox temperature increased as the grease service level increased; 

this was unexpected because it was believed that the greater the service level of the 

component, the lower the operating temperature would be.  This trend was more stable 

and consistent from gearbox to gearbox than the one seen using the vibration data.  These 

results prove that it is possible to monitor the quantity of grease in the gearbox through 

on-board sensors, and also serve as a testament to the usefulness of putting condition-

based maintenance techniques into practice in the field. 
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CHAPTER 1:  INTRODUCTION

1.1 Background 

Historically, it has been observed that some of the most common maintenance 

faults for the attack helicopter (AH)-64D gearboxes are related to leaking or ejected 

grease.  Some of these issues present only an inconvenience to maintenance crews, while 

others require extensive maintenance procedures or part removals [1].  Though the 

maintenance actions are relatively minor, the frequency of the fault causes the cost to add 

up over time.  The intermediate gearbox (IGB), which changes the angle of the drive train 

and has been chosen as the subject of this study due its propensity to leak grease 

Condition monitoring technologies that determine the health of a machine are 

crucial for implementing novel maintenance practices; this set of ideas is called 

Condition-Based Maintenance (CBM).  Industry standards for CBM focus mainly on 

vibration analysis, with some input from temperature signatures [4].  Vibration has 

proven itself to be a better indicator of failure because it displays a slow trend over time 

whereas temperature change is much more sudden and tends to occur near the very end of 

a component’s life.  Therefore vibration is considered a more promising candidate for 

advancing CBM techniques. 
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1.2 Literature Review 

In the past, researchers have mostly focused their efforts on mechanical faults of 

machine components with sensors through condition-based maintenance, but seldom look 

at how to determine lubrication level in bearings and gearboxes.  A few engineers have 

shown interest in gearbox element lubrication level and have conducted several studies in 

the past using different CBM techniques.   

Lee et al. was able to accurately predict gearbox lubrication in wind turbine 

planetary gears by using partial swarm optimization and weighted k-nearest neighbor 

algorithms on vibration data with an average confidence level of 87%. 

The experiment ran 100 lubrication samples in a 10:1 planetary gearbox at 11 

different levels.  Each test was run at 4,000 rpm with various loading on a test bed that 

consisted of a motor and generator.  The data was later divided into 990 training samples 

and 110 test data sets and analyzed using KNN.  Both the current and vibration signals 

were studied from the gearbox 

The study needs to be further analyzed because only one gearbox was used and 

the findings focused heavily on a current signal, which cannot be collected for the AH-

64D using on-board sensors for the IGB.  The gearbox was also not exposed to the same 

loading conditions as an AH-64 and contained planetary gears instead of duplex gears.  

The group also neglected to analyze temperature as a possible source of grease level 

indication. 

Parikka et al. found that in roller element bearings the most sensitive frequencies 

at which to detect vibration acceleration RMS value are at 8-12 kHz, and that the natural 
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frequencies were the most sensitive to lubrication changes.  He also found temperature to 

be strong indicator of lubrication level because operating conditions decreased by 50°F 

throughout the experiment.  He believed this correlation may possibly be used in the 

determination of optimal re-greasing interval and quantity. 

His group used a bearing test stand that was run for approximately 225 hours with 

15kN of load applied at a speed between 0 and 2,500 rpm.  Temperature, vibration, and 

acoustic emission were monitored continuously throughout the experiment.  The bearing 

was tested until regreasing was necessary and then continued to run.  The experiment was 

completed three different times with comparable results from each series. 

This failed to analyze other rotating machinery and only studied a bearing, not 

looking at the regreasing of gearboxes.  The study was also completed at a speed and 

torque that was much lower than the standard operating rpm for the AH-64.  The data 

was also processed using a small amount of condition indicators.  This study was more of 

a proof of concept because no prediction or statistical analysis was conducted. 

Niknam et al. used acoustic emission to try and identify when rotating component 

was dry or lubricated.  He successfully completed this study, but only on components that 

were running between 60-100 Hz. 

Eight rotational speeds (30-100 Hz) and four levels of radial load were applied to 

various dry and lubricated bearings.  The acoustic emissions data was recorded 

throughout all of the runs and analyzed. 

An acoustic emission recorder is not a common sensor on the aircraft and to 

monitor grease level it would have to be added on, which would increase the aircraft 
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weight.  The work was only presented as a proof of concept because there was no 

analysis done to prove how much grease had been lost from the rotating component.  In 

order to implement this in the field and be able to service properly a correct amount of 

grease would need to be applied to the gearbox to avoid over servicing. 

Nooli et al. did work to prove that the simultaneous mechanical and thermal 

effects of the gearbox cause it to lose viscosity, which leads to the loss of grease in the 

aircraft gearbox.  He showed that current condition indicators on the aircraft were not 

viable for TGB grease leakage detection.  His work called for further explanation into the 

cause of this grease property change and how it affects the overall life of the IGB. 

His team tested three different tail rotor gearboxes that were lubricated a specified 

amount and gradually drained as the test progressed, all of the grease ejected after 150 

hours of testing.  The purpose of this work was to try and detect faults due to tooth wear 

of a component.  Each of these articles were test under normal flight loading conditions 

and were run for an average of 500 hours, some ran longer than others. 

This work did not look at temperature in-depth as a source for grease detection.  

Also there was no conclusion as to a possible earlier indicator for grease leakage on the 

gearbox.  There have been further advances in the condition indicators on the gearbox 

since this work was published, which could be analyzed further and possibly hold the 

answer to an early leak detection algorithm. 

His work called for further explanation into the cause of this grease property 

change and how it affects the overall life of the IGB.  These studies show the feasibility 
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of using software and sensors native to the aircraft to determine the grease lubrication 

level in the IGB on the AH-64 [14, 20, 21, 29]. 

1.3 Problem Definition 

To detect physical changes in the helicopter components, condition indicators 

(CIs) are calculated using various algorithms.  However, there are limitations on the 

extent at which CIs can detect problems since each of these algorithms is not targeted to 

every specific type of fault. Presently, there is no CI value to tell the maintainer the 

lubrication level, so it must be checked every 25 flight hours by a maintainer using a 

special tool designed for checking both the tail rotor and intermediate gearboxes. 

This problem introduces the two objectives of this work: One is to create a safer, 

more reliable helicopter by establishing a CI that can detect grease loss and allow the 

maintainer to properly service the gearbox without the need to add any additional sensors 

to an aircraft.  The second is to accurately quantify the amount of grease that the gearbox 

is serviced with to help prevent the further unnecessary loss of lubrication from the IGB. 

If an indicator can be created from this CI, which warns when the grease level has 

dropped, then maintainers can skip level testing every 25 flight hours which will lead to 

time savings and cost avoidance. 

1.4 Solution Proposal 

Experimentation is required to determine if a correlation exists between the grease 

service level and the vibration magnitude of the IGB.  If no correlation exists, current 

maintenance practices are confirmed and a grease level monitoring system via vibration 

cannot benefit the health of the helicopter. 
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One of the benefits of having components run on a test stand rather than on an 

aircraft is that experiments can be conducted safely and are more cost effective.  The 

safety of the testing setup has allowed the University of South Carolina (USC) to conduct 

an experiment in which three tail rotor gearboxes (TGB) were run-to-failure, which 

averaged out to 500 hours each, with no grease in the component housing.  During one of 

those runs, it was noticed that the vibration levels changed after being serviced with 

grease, leading to this investigation.  The change due to grease addition appeared in the 

Tail Rotor Gearbox Vertical Bearing Energy CI (Figure 1.1).  Grease was added on 

January 15
th

 and a significant drop in vibration can be seen following that date (denoted 

by the red arrow). 

 

Figure 1.1 Tail Rotor Gearbox Vertical Bearing Energy measured over time 

Though this change was noted, no further research was conducted and the 

correlation between grease level and vibration remained unconfirmed and 

uncharacterized.  The expected outcome of further experimentation is that the grease 

level is a critical factor to the performance of the helicopter and that when the grease 

level decreases, the vibration will increase parametrically.  By showing this correlation 
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using on-board CIs, maintenance practices can be changed from the current time-based 

scheduling to a condition-based procedure contingent on vibration levels in the gearbox.  

Furthermore, if the correlation is determined to be consistent between gearboxes, a 

standard minimum grease service level can be set. 

1.5 Overview 

This thesis is formatted into six chapters that go through the research experiment 

conducted; starting from the theory and practice and ending at the results and suggestions 

for future work.  This chapter introduces the goals of the research, condition-based 

maintenance, define the project, and suggest a solution for how to solve the problem. 

The second chapter presents the theory and background of the project by first 

introducing three different maintenance practices and the positive and negative ideas 

associated with machine maintenance.  Then it transitions into how to properly test 

components and the specific options for sensors. Finally, digital source collection 

practices are covered and how to analyze the specific types of data that were acquired 

during this experiment. 

The third chapter gives an overview of the experimental setup, including the test 

stand at USC, and then goes into detail about the sensor setup first through the different 

data acquisition systems used, and then the specifications of each type of sensors from 

which data is collected. 

The fourth chapter covers the actual experiment conducted and the parameters in 

which it followed during testing.  These include the change outs of the gearboxes and the 

precautions taken to yield the safest environment possible. 
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The fifth chapter is the results of the experiment mentioned above.  These include 

the raw vibration data that came from the USC DAQ and a select few CIs from the health 

usage monitoring system (HUMS) box that is installed on most of the aircraft.  Other 

results include operating temperature of the gearbox and grease ejection for the duration 

of the tests. 

The sixth chapter concludes the work, explaining the benefits of the work and the 

future endeavors that can now be undertaken because of this experiment. 
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CHAPTER 2:  CONDITION MONITORING THEORY AND TECHNIQUES

2.1 Run-to-failure Management 

Run-to-failure is an idea that was institutionalized at the height of the Industrial 

Revolution.  The objective is to maximize the productivity of each machine by running it 

until it stops working. This style of maintenance is the basis of the quote, “If it ain’t 

broke, don’t fix it.”  While this style does get the most life out of each component, the 

downtime and financial burden placed on the company during the unforeseen 

maintenance outweighs the benefit of longer life. 

2.2 Time-Based Maintenance 

Time-based maintenance, also known as preventative maintenance, attempts to 

head off the problems caused by the run-to-failure method by scheduling service times.  

This method of servicing equipment is implemented according to standards set forth by 

the manufacturer so that certain actions will occur at specific intervals of run-time.  A 

common example of this form of upkeep is oil changes being performed between every 

3,000-7,500 miles on automobiles.  This maintenance practice does allow for a smaller 

stock of parts and less standby equipment, but the constant maintenance being performed 

on the component makes it more vulnerable to failure.  Time based maintenance does 

make the user aware of downtime, but it still does not maximize the life of the 

component, and does not account for sudden changes in the operating conditions [13]. 
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2.3 Condition-Based Maintenance (CBM) 

By utilizing condition-based maintenance, the operator can be warned when the 

component is about to fail through sensor-based analysis of the machine.  Through data 

collected, such as vibration and temperature, the maintainer can be notified when the 

performance is degrading.  If done correctly, a user can schedule maintenance closer to 

the time-of-failure and at a time that is convenient to the rest of the facility.  Condition 

indicators (CI) are algorithms that are a more quantifiable way to describe the health of a 

component without having to wait until failure.  Temperature and vibration are two 

reliable sources of data for CIs that may detect faults in a component that would not be 

noticed through normal operation inspections.  Temperature also serves as a good 

condition indicator because a sudden rise indicates a component is near the end of its 

service life and needs to be taken offline immediately.  This form of service does have a 

high initial start-up and requires frequent access to equipment [13].  CBM is the most 

preferred form of maintenance because it gives the user the ability to see how the 

machine is functioning and allows him to properly control downtime. 

2.3.1 Smart Predictive Systems (SPS) 

The SPS method is the future of machinery maintenance:  it combines historical 

data, test stand data, and simulation data to create algorithms that can predict the amount 

of life left in a component based on the operating conditions.  It takes data collected using 

condition-based maintenance a step further because it can accurately predict the run time 

of a particular component by fusing the three aforementioned data sources.  In CBM, 

thresholds on a component can only be applied based on testing, but those thresholds are 

sometimes inaccurate due to limited amounts of data.  Ideally a significant amount of 
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testing should be completed so that reliable CIs can be created.  Being based on statistical 

information from failure history and test stand data, it yields the best results for 

predicting component failure based on average operating conditions [12].  The best 

model is one that combines physics based simulations and reliability information and will 

lead to steady improvement in prognostics maintenance in the future. 

2.4 Testing 

A test stand is used as a platform to get reliable data that would otherwise have to 

come from the field.  Testing facilities can be equipped with single components or entire 

drive systems based on the need.  This makes them a more cost effective option than 

running an entire machine just to test a single component.  Furthermore, the environment 

can be controlled and faults can be introduced into the system where safety is not a 

significant risk; unlike if the same procedure were being performed in the field.  When 

dealing with a system like an aircraft, it is much easier to perform a modification to a test 

stand than on an aircraft in the fleet.  One of the goals of testing is to be able to accurately 

compare data between components run on a test stand to the data that would come off of 

an article being run in the field. 

Although testing in a controlled environment may not exactly replicate every 

extreme situation seen by an aircraft it can still provide valuable information about the 

operating characteristics.  Being able to have control over certain variables allows the test 

stand operator to create some conditions, like a misaligned driveshaft, that are more 

extreme than normal conditions.  Testing allows for the upper limits of the flight 

envelope to be pushed and surpassed in a safe environment so that the limits of 

components can be verified in harsh conditions for extended periods of time. 
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2.5 IGB Overview 

The purpose of the IGB on the AH-64D is to change the direction of the drive as 

well as output speed.  The main components of the IGB are the input rolling bearing, 

input duplex bearing, output duplex bearing, and output roller bearing.  The primary 

lubricant on the IGB is NS 4405-FG grease, which has lithium complex as thickener and 

is of NLGI grade 000 [21].  The AH-64 uses grease as a lubricant because of its high 

viscosity characteristics; this allows the lubrication of the gearboxes to continue to 

function if the component happened to be damaged. 

A naturally occurring fault of the IGB is the ejection of grease from the breather 

port; even newly serviced AH-64D IGBs have been found to eject large volumes of 

grease.  This fault could require the aircraft to land for immediate maintenance, which is 

the focus of this experiment (Figure 2.1). 

 

Figure 2.1 Diagram of Intermediate Gearbox [7] 

A common belief is that the ejection occurs when the grease is exposed to in-

flight operating conditions.  The physical and rheological properties of the grease change 

after a certain period of time even when the temperatures are within operating limits [3].  

One possible mechanism responsible for this phenomenon is the simultaneous application 
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of mechanical and thermal loads.  Rheological characterization of the IGB grease 

samples revealed reduction in their apparent viscosities when compared to the virgin 

grease at shear rates tested (Figure 2.2). 

 

Figure 2.2 Sweep test results for virgin grease and an IGB and TGB grease sample 
 

2.6 Sensors 

Sensors commonly used in the CBM field collect vibration, temperature, acoustic, 

speed, and torque data.  Vibration is normally collected through piezoelectric devices 

known as accelerometers, and is regarded as one of the most critical pieces of data 

collection for CBM.  Although an increase or decrease in amplitude may indicate a 

change in the system, this is not always true; therefore, every change in vibration source 

should be well characterized [13].  The system’s speed is measured with a magnetic 

tachometer.  This tachometer is normally used to verify that the system running is at the 
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correct speed and also plays a vital role in calculating some CIs which require knowledge 

of the exact speed of rotation.  Along with speed, torque is also measured using the USC 

DAQ. This ensures that nothing critical is being altered by a component on the drivetrain 

that would stop power from being transmitted.  Temperature is normally collected 

through thermistors on the aircraft which detect overheating in components, usually 

indicating imminent failure. Thermocouples are used on the test stand to provide a wider 

measurement range.  Temperature and vibration analysis techniques can be used to 

provide managers with information that will allow them to achieve improved reliability 

and availability by detecting failures before they occur [13]. 

2.7 Digital Signal Acquisition 

An analog signal is a signal that is continuous in both time and amplitude. In 

contrast, a digital signal is discrete in both the time and the amplitude and can only accept 

a finite number of values. The continuous time domain is used to convert a signal to the 

discrete time domain signal, where the analog signal is sampled at certain intervals of 

time [11].  When trying to find out the best method to collect digital signal the user needs 

to know the desired resolution, the sample rate, and the expected frequencies to measure. 

2.8 Temperature Analysis 

The temperature analysis used focuses on normal thresholds set on a components 

current temperature and thermal time gradient.  Once it exceeds these limits, failure is 

expected.  The short time between reaching the threshold limit and failure makes 

temperature monitoring a poor way to predict a components health.  Despite the short 

time before failure, temperature may prove to be a good indicator of a change in the 
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system, such as grease loss, because the different operating condition might change the 

steady state temperature of the gearbox. 

2.9 Vibration Analysis 

Predictive maintenance through vibration is based on two ideas: (1) all common 

failure modes have unique vibration signatures that can be isolated and identified, and (2) 

the amplitude of that signature will not change unless altered by the system dynamics 

[13].  Discussed in the next sections are the CIs, based on time and frequency data, most 

relevant to the IGB, which was used in this experiment. The block diagram shown below 

in Figure 2.3 demonstrates how raw vibration data is used create a CI value that can be 

used to determine whether or not a vehicle is fit for continued use.  Not only can the 

health of the component be observed, but the life of a component can be predicted by 

using certain techniques. 
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Figure 2.3 A flowchart of signal processing analysis [14] 

 

2.10 Time-Domain Analysis 

Time-domain data is the most basic form of data that comes from a vibration 

sensor; its output is vibration versus time.  Time-domain plots are critical for all linear 

motion machinery, but are often difficult to use to diagnose one specific component in a 

system.  Their ability to show the health of the system by representing the total 

displacement at any time does make them a useful tool for CBM practices [12]. 

2.10.1  RMS Value 

The RMS value is a simple way to determine the shape of a waveform.  For 

example, the RMS value of a 1 volt sine wave would be .707 volts, where a triangle wave 
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would be .577 volts.  The main usage of this parameter is to view the overall condition of 

the gearbox without identifying exactly what is the problem [15]. 

 

RMS is the root mean square value of dataset x(n) 

xn is a data series of length N 

N is the number of points in dataset x(n) 

2.10.2  Maximum Amplitude 

The maximum amplitude is simply the peak of a waveform in either a time or 

frequency domain.  Although it may be a simple concept, it can be a very powerful 

indicator of performance.  It can be used to measure fault progression over a period of 

time because a larger defect should result in higher vibration. 

2.10.3  Time Synchronous Average 

Time synchronous averaging is a way of detecting a signal in uncorrelated noise 

by sampling based off a trigger (like a tachometer pulse) to achieve a better 

understanding of the condition of the system [21].  To do this properly, every frequency 

has to be analyzed individually.  It is a useful parameter for identifying faults in a specific 

component because when comparing a certain frequency with an expected signal, the 

change and error can be calculated.  An example is a small fluctuation in speed can look 

like a frequency shift even though no damage has occurred to the system.  This particular 

error can be accounted for because the trigger for the average can be based off of 
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tachometer pulses rather than a theoretical number, but others cannot so a new domain 

analysis needs to be established. 

2.11 Frequency-Domain Analysis 

Frequency-domain analysis is the most widely used diagnostic tool for predictive 

maintenance.  The main concept behind this parameter is changing the time series data 

into the frequency domain using integral techniques.  Since the time domain only allows 

a fault to be established in the system and not further investigated another technique 

needs to be used.  Frequency-domain analysis approaches are more precise, so condition 

monitoring that can focus on frequencies generated by an exact component, allowing 

analysis of faults directly instead of the entire systems response to the fault.  

2.11.1  Fourier Transform 

The Fourier Transform is the most widely used technique for getting frequency 

data.  It is a very simple and efficient algorithm that saves valuable computational when 

calculating the standard discrete Fourier transform (DFT).  The DFT takes a time domain 

signal and calculates all of the frequencies present in the signal.  It is a lossless 

transformation where only the dependent variable is changed, the time domain to the 

frequency domain.  This is a critical device when analyzing a device that is as sensitive to 

frequency changes as a drivetrain. 

 

G(f) is the representation of g(t) in the frequency domain 

g(t) is any arbitrary signal in the time domain 



 

19 

2.11.2  Gear Failure Diagnostic Techniques 

Gear signals normally yield harmonics of associated shaft speeds.  The 

frequencies can be dependent on three different variables: tooth deflection due to the 

torque in the system which can cause spalls or cracks, an error in manufacturing which 

caused the tooth spacing to be off, and uniform wear over all the teeth [12].  The next 

condition indicator presented is the main source of data collected in this paper; although 

other techniques were used they did not yield the desired results. 

2.11.3  Kurtosis 

The absolute Kurtosis is defined as the fourth statistical moment of a signal about 

the mean of the signal [15].  The purpose of this tool is to identify how sharp the peaks 

are in any signal. 

 

 

K is the Kurtosis of the signal x of length N 

xi is the amplitude of the signal of the i-th  sample 

 ̅  is the arithmetic mean of the signal x 

 

2.11.4  Fourth-Order Figure of Merit  

The fourth-order figure of merit, FM4, was an early gear diagnostic technique of 

time-based data, and is considered to be one of the most promising of the early time-
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based approaches [12].  It uses the Kurtosis of the current operating condition, generated 

by subtracting the time domain data from the baseline gear mesh pattern, and is then 

normalized by the difference signal’s variance squared [9] (Figure 2.4).  One of the only 

drawbacks of FM4 is that if more than one gear tooth fails, the response becomes less 

pronounced [15]. 

 

FM 4 is the fourth-order figure of merit 

di is the amplitude of the i-th point of the difference signal 

 ̅  is the arithmetic mean of the difference signal d 

N is the length of the difference signal 
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Figure 2.4 Flow chart of transforming raw vibration into a CI value [15] 

2.11.5  Bearing Energy 

Bearing Energy uses a bandwidth that includes the IGB’s ball bearing frequencies 

and has reject frequencies that are associated with other drive shafts in the system [17].  

There are no fault cases associated with this CI, and it is purely based on theoretical 

frequencies at which the ball bearings operate at in the IGB. 
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CHAPTER 3:  EXPERIMENTAL PROGRAM AND TEST FACILITY

For over 15 years, the University of South Carolina (USC) has been collaborating 

with the South Carolina Army National Guard (SCARNG).  Combined efforts between 

two parties led to a fully developed CBM Research Center within the USC Department of 

Mechanical Engineering that hosts several aircraft component test stands in support of 

CBM objectives.  At the USC test stands, different CIs have been tested and validated to 

detect faults that occur over the lifetime of various drivetrain articles including such 

components as the AH-64D forward hanger bearing, aft hanger bearing, IGB, TGB, and 

tail rotor swashplate (TRSP) (Figure3.1). 

 

Figure 3.1 Comparison between the aircraft and USC test stand 



 

23 

The test stand emulates the complete tail rotor drivetrain (TRDT) from the main 

transmission to the tail rotor swashplate assembly.  The TRDT is comprised of actual 

aircraft hardware and is capable of handling drive shafts installed at the maximum 

allowable misalignment of two degrees.  Structure, instrumentation, data acquisition 

systems, and supporting hardware are installed according to military standards.  The test 

stand’s two 800 horsepower motors are capable of exceeding 150% of the actual aircraft 

drivetrain loading.  The test stand was designed and built to accommodate the use of 

various HUMS and is currently equipped with a Honeywell MSPU.  USC’s own data 

acquisition results have been validated with data obtained from actual airframes.  The 

testing facility is also capable of being modified to test new and existing drivetrain 

components of military and civilian aircraft, including the ARH-70, CH-47, and UH-60 

drivetrains [1]. 

3.1 IGB 

The purpose of the IGB on the AH-64D is to change the drive direction as well as 

output speed.  The main components of the IGB are the input rolling bearing, input 

duplex bearing, output duplex bearing, and output roller bearing (Figure 3.2).  The IGB is 

outfitted with two accelerometers and four thermocouples.  The accelerometer and 

thermocouple positions are identical to what can be found on the aircraft.  
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Figure 3.2 Internal view of the IGB [7] 

3.2 Instrumentation and Data Acquisition System 

3.2.1 MSPU 

The MSPU is a Honeywell product that is the standard data acquisition unit for all 

AH-64 aircraft participating in the HUMS program.  It contains a high speed data 

acquisition card, which can accommodate up to 36 accelerometer channels with 

bandwidth of 1.5 KHz to 96 KHz, eight tachometers, two blade tracker channels, eight 

general purpose analog or discrete channels, and eight low level analog signals [16].  

Additional features of the MSPU include having a built in sensor test function to allow 

the maintainer to diagnosis if a sensor is functioning correctly.  It also has the capability 

to calculate additional parameters which have been deemed by the aviation engineering 

directorate (AED) as reliable to diagnose the mechanical systems through vibration.  The 

MSPU displays its results through a graphic user interface program known as PC-Ground 

Based Station (GBS), which shows the user the current condition of each component on 

the aircraft.   
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Figure 3.3 Model of MSPU 

3.2.2 Data Acquisition (DAQ) 

Since the MSPU only outputs processed data, a second data acquisition unit is 

required to capture raw vibration results and monitor additional parameters.  USC has 

equipped its test facility with a modular National Instruments DAQ unit with vibration 

sensors and thermocouples which collect data off of the input motor, forward hanger 

bearing, aft hanger bearing, intermediate gearbox, tail rotor gearbox, and tail rotor 

swashplate.  Other sensors have also been installed that allow for the collection of speed 

and torque from both the input and output motor. 

Data monitoring, storage and system control are all handled through the National 

Instruments hardware, programmed in the LabVIEW environment.  Operators monitor 

the data on indicators that display current sensor values necessary to determine the 

correct operation of the facility. In addition, the software has built in checks that check 

the current value against the cut-off value used on the aircraft and alert the operator if the 

stand is in an unsafe operating mode.  
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On the back end, data is stored at different rates to facilitate analysis after runs are 

completed. Temperature data is recorded at 30 Hz because it changes slowly over a run. 

Speed and torque are updated at 60 Hz, since the load steps are changed quickly and 

vibration is recorded at the fastest rate, 48 kHz. 

3.2.3 Instrumentation 

To replicate the data coming off of the MSPU the sensors that are used for USC’s 

DAQ are in close proximity and in the same orientation as the military devices (Figure 

3.4).  The test stand is equipped with two different types of accelerometers, a spark plug 

and bracket type.  The spark plug configuration is a Dytran 3062A accelerometer that has 

a frequency range of .48 Hz to 10 kHz and can read up to 500 G’s.  The Dytran 3077A is 

the bracket style accelerometer used on the stand and it covers the frequencies from .5 Hz 

to 5 kHz and can read up to 500 G’s. 

The thermocouples on the test stand are in the same location as where the 

thermistors would be on the aircraft.  The thermocouples used are Type K, which is the 

most inexpensive and common style used, and have the capability to read between -201 

°C and 1349 °F, which is well within the gearbox operating range.  In spite of their 

commonality, the sensitivity, 41µV/°C, is accurate enough for this application, making 

the Type K thermocouple the best candidate for temperature measurement. 
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Figure 3.4 Sensor layout of the IGB 
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CHAPTER 4:  EXPERIMENTAL PROCEDURES

This experiment was conducted using three intermediate gearboxes, each run at 

five different service levels of grease (0%, 25%, 50%, 75%, and 100%); these levels will 

be calculated based off of the Army standard for a fully lubricated gearbox (964 grams of 

grease).  These tests totaled approximately 34 hours of testing.  It was decided that all of 

the gearboxes should start at 0% grease and increase to 100% as shown in Table 4.1.  

Table 4.1. List of Tests 

Test # Serial # Grease % 

1 1 0 

2 1 25 

3 1 50 

4 1 75 

5 1 100 

6 2 0 

7 2 25 

8 2 50 

9 2 75 

10 2 100 

11 3 0 

12 3 25 

13 3 50 

14 3 75 

15 3 100 

 

4.1 Gearbox Changeout 

After every fifth test in Table 4.1 the IGB was removed and left to sit overnight 

twice, filled with an oil based solution for the first night and denatured alcohol the 
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second.  A borescope was used to check the lubrication level of the gearbox(Figure 4.1).  

During this part of the procedure, any damage to the gearbox could be noted.   

 

Figure 4.1 A comparison, from a previous experiment, of worn gear teeth (left) to 

healthy teeth (right) 

4.2 Pre-run Procedures 

The operators consider the test stand as an actual aircraft and it is treated with the 

same standards.  Before each run, an inspection of the test stand is conducted. Additional 

inspection measures were implemented (i.e. grease ejection monitoring, and the removal 

of unnecessary equipment from the test stand since a new experiment was being 

conducted).  Additionally, the operators carefully monitor the data collection equipment 

to ensure the measurements appear accurate and the ejected grease is collected.  Excess 

burped grease would normally dispense over the gearbox, but a special collection device 

was constructed so the amount ejected could accurately be quantified (Figure 4.2). 
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Figure 4.2 Breather port adapter setup 

4.3 Running Procedures 

The USC TRDT test stand operated with the standard test profile, shown in Table 

4.2, built to simulate the flight characteristics of the AH-64D gearboxes.  These numbers 

were agreed upon by AED and USC as the load steps to best represent the damage 

accrued by the gearboxes during flight.  Flat Pitch Ground (FPG) 101 is when the aircraft 

is sitting with no pitch in the blades and the rotor is running at 101% of maximum speed, 

approximately 4863 rpm. During this time, a survey is taken and data is collected by the 

MSPU and used to create a CI.  
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Table 4.2. Modified TRDT Load Profile 

Load Step 
Run Time 

(minutes) 

Elapsed Time 

(minutes) 

Speed 

(rpm) 

Torque 

(ft-lbs) 
HP 

FPG 101 00:05-00:15 10 4863 111 30 

Normal 00:15-01:05 50 4863 371 100 

FPG 101 01:05-01:15 10 4863 111 30 

Normal 01:15-02:05 50 4863 979 264 

FPG 101 02:05-02:15 10 4863 111 30 
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CHAPTER 5:  EXPERIMENTAL RESULTS AND DISCUSSION OF CURRENT 

CONDITION INDICATORS

The main objective of this experiment was to determine if a trend for vibration 

with different grease service levels exists across multiple gearboxes.  This analysis was 

done for three different gearboxes by using two different vibration analysis techniques: 

one used the CI values from the MSPU (Figure 5.1) and the other was looking at known 

frequencies of interest in the raw vibration data.  The CI values were taken directly from 

the PC-GBS.  The raw vibration data was collected by the USC DAQ at 48 kHz from an 

accelerometer in a similar position to that of the aircraft standard. 

 

Figure 5.1 List of IGB condition indicators monitored by the MSPU 
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5.1 Raw Vibration Results 

The raw vibration results were collected off of the USC DAQ and analyzed using 

a FFT.  A list of important operating frequencies of the IGB was used to analyze the data.  

A band of ±1% was placed on the important frequencies to account for shifts in peaks due 

to this analysis being done on a real system which may not have the same aircraft 

standard operational speed of 4863 rpm every time it conducts an experiment.  An 

example FFT is shown below as well as some of the results from the IGBs (Figure 5.2). 

 

Figure 5.2 Example of a FFT made from vibration data 

It has been proven that it is possible to identify the vibration signatures of 

different components of the system from a sensor located on a single component.  For 

example, when looking at the IGB vibration data, the natural frequencies of the aft hanger 

bearing can be observed in the results taken from the IGB.  Although this interference 

makes it harder to observe trends in the data of a single component, it allows a more 

complete model to be produced because it accurately represents the entire aircraft much 

better than a stand-alone test bed that only runs a single component. In this experiment 
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the extra data is filtered out and the results are based only on the IGB frequencies of 

interest. 

The IGB frequency results were computed using the method stated above by 

selecting the magnitude of vibration at nearly 80 different frequencies.  These come from 

the Army’s list of calculated natural frequencies of the system components visible from 

IGB sensors.  These results were graphed and the slope was compared between gearboxes 

at different service levels.  A sample of these results for three frequencies (25.51 Hz, 27 

Hz, and 33.78 Hz) is graphed below (Figure 5.3-5.4); the full list of slopes can be found 

in Appendix B. 

 

Figure 5.3 Gearbox #1 vibration results 

 The three frequencies shown above are just an example of all the frequencies 

analyzed.  The ideal trend would be downward starting at 0% grease and ending linearly 

at 100% grease.  None of the frequencies for gearbox #1 display this trend, including the 
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example frequencies: 25.51 Hz magnitude has a small trend upward, the 27 Hz result has 

no trend, and the 33.87 Hz result has a slight upward trend. 

 

Figure 5.4 Gearbox #3 vibration results 

 For gearbox #3 the results are exactly what were expected coming into this 

experiment.  All of the frequencies shown above have a sharp downward trend starting 

0% grease level going to 100%.  However, they are not ideal because the points do not 

directly trend down, an example of this is in the 25.51 Hz result, the 25% and 50% 

vibration magnitude were higher than 0%, and the 75% data point was lower than 100%. 

Although the three example frequencies in gearbox #3 displayed the expected a 

sharp downward trend as grease level increased versus vibration the results were not 

consistent with gearbox #1. The non-repeatability between gearboxes makes the grease 

estimation through the vibration’s maximum amplitude a poor indicator for the aircraft.   
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Since there was no correlation between the frequencies for both gearboxes no further 

analysis was done for those values.  After analyzing the rest of the critical frequencies for 

the IGB in a similar fashion to the process that was described above, it was concluded 

that none of the frequencies displayed the ideal characteristic of a lower vibration level as 

grease level increased for any of the gearboxes tested.  This could have been due to a 

small amount of data points analyzed which could have been the cause for the less than 

ideal results.  More points analyzed could have also led to a stronger result showing that 

there was no correlation to the data.  The vibration for the gearboxes was further 

processed to establish a trend between vibration and grease level.   

5.2 MSPU CI Results 

The MSPU calculates 24 different CI values for the IGB.  All of these values were 

graphed with respect to grease service level and then compared to one another based on 

gearbox.  Out of all the CI’s analyzed, only two had a common correlation between 

vibration amplitude and grease service level, Output Bearing Energy and Input Bearing 

Energy, for that reason only the results for these indicators are shown.  The vibration 

plots are displayed to put emphasis on the trend for each gearbox through all the grease 

level changes. The figures below (Figure 5.5-5.7) each show the data for one run broken 

up by CI.  During the course of a run, the vibration is expected to decrease because the 

grease has a break-in period and then after that time the changing conditions will not 

affect the grease performance.  The additional figures at the end of the section (Figure 

5.8-5.9) are the normalized results for the two promising CI values for all of the 

gearboxes tested. 
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Figure 5.5 Graph displaying two CI values for gearbox #1, Output Bearing 

Energy(Left) and Input Bearing Energy(Right)  

The MSPU vibration results displayed in the figure above show little correlation 

for vibration being a good indicator for grease level.  The data trend for both output and 

input bearing energy are varied for gearbox #1 with several grease service levels having 

higher amplitude than the lower level.  However, the results do display a negative trend a 

grease level increases making them an acceptable candidate for further analysis.  

It is theorized that the CI values have dispersion between the grease levels 

because they were run a different torque values before a survey was taken, so that the 

progression upward by the vibration amplitude at a certain grease level is a product of the 

increased torque load on the gearbox. This phenomenon is clearly shown (Figure 5.5) and 

is evident throughout the rest of the results. 
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Figure 5.6 Graph displaying two CI values for gearbox #2, Output Bearing 

Energy(Left) and Input Bearing Energy(Right) 

The MSPU vibration results for gearbox #2 display a better trend than the first 

gearbox analyzed when considering input and output bearing energy.  The correlation for 

output bearing energy is very high and has a downward trend that does not contain as 

many points that have a higher vibration level for a lower grease level.  The input bearing 

energy has a higher slope but there is one point, the 75% grease service level, where the 

vibration is lower than a higher grease service level, 100%.  Some of the grease service 

levels may appear to only have two data points, but in actuality they have three because 

there is some overlap between two of the results.  Overall, this gearbox shows the desired 

trend of lower vibration amplitude as grease service level increases, and justifies further 

research for another gearbox to be examined. 
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Figure 5.7 Graph displaying two CI values for gearbox #3, Output Bearing 

Energy(Left) and Input Bearing Energy(Right)  

For gearbox #3 the MSPU vibration results for input and output bearing energy 

were nearly identical to what was expected from the condition indicators versus grease 

service level.  Overall the condition indicators we lower than the previous grease level 

except for the 25% iteration for the output bearing energy.  The trend for the input 

bearing energy CI was not as stable it raised and lowered from grease level to grease 

level, but ultimately resulted in a high correlation for the results. 

To make sure that these were the best CI values to conduct future analysis with 

for grease level detection, all of the gearbox results were graphed together in one figure 

and analyzed (Figure 5.8-5.9).  These results were normalized to account for the different 

baseline vibration levels that were recorded for each gearbox so that they could be 

compared against one another. 
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Figure 5.8 Graph displaying normalized Output Bearing Energy CI results across 

gearboxes 

The results for the output bearing energy display a negative trend of time that 

confirms the expected results.  There are also no grease levels that had a higher vibration 

value than the previous result making it a good candidate for grease level prediction.  

There was a 34% correlation resulting in a moderately negative relationship between the 

Output Bearing Energy CI magnitude levels and the grease levels. 
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Figure 5.9 Graph displaying normalized Input Bearing Energy CI results across 

gearboxes 

The correlation between Input Bearing Energy CI and grease level was 45% 

resulting in a moderately negative correlation.  This is a stronger trend than output 

bearing energy making it a better indicator for grease level than output bearing energy.  

Like the previously investigated CI, input bearing energy also showed no signs of the 

grease level having a vibration magnitude than the previous amount. 

All of the gearboxes exhibited all of the expected characteristics in this 

experiment through the Input Bearing Energy CI and the Output Bearing Energy CI.  

When changing grease levels from run to run all of the resulting trends from the input and 

output bearing energy had negative trends.   

These results are exactly what were expected to occur; that the less grease a 

gearbox contains the higher the vibration level of that component will be.  Using these 
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MSPU algorithms show improvement over the trend of vibration frequencies of interest, 

because they monitor a wide range of frequencies.   

5.3 Temperature Results 

On the aircraft, temperature plays an important role as an indicator for the health 

of a component.  The purpose of temperature readings throughout testing was to make 

sure that the article was not being damaged due to running in a state with a low grease 

service level.  Like vibration qualities, each gearbox has a different standard operating 

temperature. When that value starts to increase rapidly, it is a good indicator that the 

component is going to fail shortly.  The 0% grease service level was originally believed 

to have the highest average temperature because there is more friction at the gear contact 

surfaces of the gearbox.  Thermal readings are taken on the IGB at the input duplex 

bearing, input rolling bearing, output duplex bearing, and output roller bearing.  For 

visual purposes these values were averaged together and plotted for each run conducted 

on a gearbox (Figure 5.10-Figure 5.12). 
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Figure 5.10 Temperature of gearbox #1 at various grease levels 
 

After analyzing the results from gearbox #1, it can be seen that there is not a very 

noticeable change from run to run. An interesting result is that the temperature actually 

increased as the amount of grease increased, from 130.8°F average temperature at 0% 

grease to 139.7°F at 100% grease (Figure 5.11).  It is important to note that the torque 

affects the temperature of the grease.  This is seen at the beginning of the run when the 

torque is at 371 ft.-lbs. and goes back down around the one hour mark because a survey is 

taken at 111 ft.-lbs. It increases again at the last value of 979 ft.-lbs.  All of the gearboxes 

in this experiment were tested in the same facility with an ambient temperature around 

75°F ± 5°F, which explains the lower starting temperature of each grease service level. 
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Figure 5.11 Temperature of gearbox #2 at various grease levels 
 

The temperature profile for gearbox #2 shows similar results to the first test 

article.  The gradient increases with the service level, but it is not by a great amount 

(Figure 5.12).  The average temperature for the 0% grease run was 125.1°F and for 100% 

grease it was 143.8°F.  The increase in temperature due to torque is still evident in this 

gearbox, as it can be seen temperature drops down at a lower torque around 1.4 hours 

dues to a survey being taken.  The temperature for the 25% run is initially higher, due to 

being run just after a previous test was conducted and still having residual temperature in 

the gearbox box, but it does not have any effect on the temperature results. 
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Figure 5.12 Temperature of gearbox #3 at various grease levels 

Gearbox #3 shows some of the characteristics of an expected trend for a gearbox 

with different grease levels (Figure 5.13).  Although the 100% grease is the second 

highest average temperature value, the largest is the 0% grease value.  The lowest 

average temperature for this article was at 25% grease at 160°F and has a maximum 

average value of 198°F with the gearbox running on no grease.  Again it can be noted that 

with the exception of the 0% grease run the 100% grease article had the highest average 

temperature.  It was determined that the 0% grease level was two standard deviations 

away from the mean and considered to be an outlier and was not used for any further 

analysis.  

When placing the average values on one graph an interesting trend is observed.  

That for all of the gearboxes there was a positive trend for temperature when more grease 

was added to a gearbox as seen in Figure 5.13. 
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Figure 5.13 Temperature correlation to grease lubrication level 

This graph may be the most stable way to determine the lubrication level of a 

gearbox on the AH-64.  The slope of each of the lines is very similar between each 

gearbox.  Note that the 0% grease temperature reading for TE-003 was removed because 

it was more than two standard deviations from the mean, making it an outlier.  As such, 

the potential of using temperature as an indicator of service level is very high.  The 

resulting slope of the line indicates that the correlation between temperature and grease is 

a 6°F drop per every 25% of grease lost from the gearbox.  Possible explanations for the 

positive correlation between temperature and grease level are that the grease is an 

additional resistance to the gear system and it allows the hottest parts of the gearbox to 

influence the measurement points through the conductivity of the grease.   
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5.4 Sensor Fusion Results 

 Since the expected correlation between grease service level and sensor data were 

observed from the output bearing condition indicator, input bearing condition indicator, 

and temperature further analysis was conducted to come up with a better predictor of 

grease than what was obtained from each sensor individually.  To do this, SPSS Modeler 

Version 16 was used to statistically analyze all of the condition indicators obtained from 

the MSPU and temperature results, and then the best combination to predict the level of 

grease in the gearbox based on a test set of data the was displayed.  Based on this method 

the following equation was returned as the best predictor of grease service level. 

                                            

EL is the estimated grease level 

A is constant of value 0.007906 

B is constant of value -0.0115 

C is constant of value -0.008396 

The resulting equation excluded the output bearing condition indicator because 

SPSS found that it did not add a significant change to the overall prediction equation.  

Following this equation a graph of grease prediction was formed based on testing data 

(Figure 5.14).  This confirms my results found in the MSPU results section because out 

of all the MSPU CIs SPSS analyzed, one of strongest indicators of grease loss was input 

bearing energy. 
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Figure 5.14 Estimated grease level based on the sensor fusion equation created 

As shown in the figure, the equation does not yield optimal results for correlating the two 

sensor results to grease level.  It does well at predicting the 50% and 75% values, but is 

very poor when trying to estimate 0%, 25%, and 100%.  This small correlation could be 

due to the fact that enough data points were not collected during the run so there is not 

enough data available to make an accurate prediction of the grease level.  This could have 

been improved by taking more surveys during the runs, by making the experiments 

longer, or running more tests on each gearbox. 

5.5 Grease Ejection Results 

A secondary objective of the study was to try and quantify the amount of grease that 

“burps” from the gearbox when it is fully serviced to the depot standard of 964 grams of 

lubricant.  If the amount cannot be standardized amongst all gearboxes then it could 
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possibly be shown that the each gearbox has a unique service level at which it prefers to 

operate at. 

 

Figure 5.15 Grease ejections for different gear boxes 

When looking at the results presented in Figure 5.15 it is clear that current Army 

practice of filling the gearbox with 964 grams of grease can be continued.  However, the 

procedure suggested by these results is to allow the gearbox to find its own equilibrium at 

which it operates by filling the component to the recommended level and letting it adjust 

to its proper level by burping excess grease.  Once this level has been established no 

more grease should be added to the gearbox to prevent unnecessary maintenance.  The 

key to this practice is not servicing the gearbox again because it will just eject the grease 

back out and it will end up not only frustrating the maintainer, but causing him 

Gearbox #1 Gearbox #3 Gearbox #2 
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unnecessary work.  It is important to note that after a gearbox ejects grease it should be a 

common practice that the new amount be considered the 100% service level [18].  The 

results agree with this rationale because there was only one gearbox, gearbox #1 that 

ejected the same amount of grease as the previous run, which was still 65% of the 964 

gram recommended service level.  The results from all of the components tested seem to 

indicate that the amount of grease ejected is a random amount and is unique to each 

gearbox. 
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CHAPTER 6:  CONCLUSION

The operational characteristics of the gearbox drivetrain components on the AH-

64D are unique to an individual article.  Throughout this paper, the differences between 

individual gearboxes can be seen in all of the condition metrics used to quantify the 

health of the gearboxes.  Not only are the magnitudes of vibration are different from 

gearbox to gearbox, they also vary with changing grease levels.  Temperature is another 

aspect in which their unique qualities are shown because, although design is the same, the 

operating temperature is still different between them.  These results show the difficulty in 

creating a standard indicator for grease service level because there is variation between 

gearboxes.  A secondary part of this experiment was to try and find a constant service 

level for all of the gearboxes to avoid the grease ejection issue.  It was determined that 

each gearbox burped a different amount of grease even when being run multiple times at 

a full service level.  According to these results, each gearbox should be theoretically over 

serviced and then allowed to find its own 100% service level instead of filling it up to a 

standard amount when it will just burp the extra immediately.  

The experiments establish a moderately negative correlation between Input 

Bearing Energy CI and grease level in addition to a moderately negative relationship 

between the Output Bearing Energy CI magnitude levels and the grease levels so that 

with the proper CIs, a low grease level will result in a higher vibration magnitude.  If 

implemented on the aircraft it will improve morale because unnecessary components no 
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longer have to be serviced.  This will lead to a large cost avoidance and time saving 

because excessive maintenance no longer has to be conducted.  The results prove that a 

correlation exists, but this data should not instantly be applied to an aircraft because of 

the small population sample.  This conclusion is affirmed in the sensor fusion results 

because when vibration data and temperature data are merged together in SPSS, there is 

not enough sensor data to yield an accurate model.  This could have been corrected in this 

work by shortening the loaded periods and increasing the amount of surveys taken during 

a run, thus increasing the amount of data points. The area that shows the most promise for 

future implementation is temperature.  The correlation between temperature and 

lubrication service level is very evident and shows similarities between all of the 

gearboxes tested, making it the best indicator of grease loss.  By using a controlled 

environment, the ambient temperature was relatively the same for each run.  Conducting 

each baseline at different temperatures could have had led to false positive results. 

There are a few objectives for future work: one is to increase the diversity of 

analysis algorithms, the second is increase the number of different gearboxes used in 

sampling, and the last is to try and use the temperature trends collected and implement 

them on gearboxes with unknown service levels. The two algorithms used in this paper 

are standard on the MSPU, but, as mentioned before, are not tuned to detect grease 

leakage. Furthermore, research into other factors in gearbox vibration response may help 

eliminate variables from our consideration. How different faults affect the gearbox and its 

response to other problems not entirely characterized so further research into this area 

would help determine how much of the response is due to grease and how much is due to 

the historic faults of the that gearbox reacting to the different loadings and conditions of 
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the test stand.  This work could be further analyzed on the intermediate gearbox box or 

another aircraft component.  The technique and type of data collected will remain the 

same no matter what component the testing is completed on. 

Ultimately, this proves that the CBM practice works and can actually help create 

new innovations in the field.  If a new CI can be created that accurately tracks the amount 

of grease in a machine, this can be very helpful to any application, not just aviation, 

especially if the component is in a confined space and cannot be checked frequently.  By 

continuing to innovate this field everyone can benefit from data collected from normal 

operation to experiment conducted like this one. 
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APPENDIX B – EXPANDED RAW VIBRATION RESULTS
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