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ABSTRACT

Very durable ceramic waste forms have been proposed which offer long-

term stability by binding certain radionuclides in their specific crystalline net-

work. Moreover, multiple such ceramic phases can be tailored to contain specific

radionuclides generated in the fuel cycle. Many such candidate ceramic forms are

in the early stages of development with limited data. Modeling and simulation

including modeling of diffusion can inform and provide direction to ongoing fab-

rication and experimental efforts. Material properties important in modeling can

be obtained through laboratory measurement where available and atomistic simu-

lation. Since diffusion occurs over multiple scales and follows multiple pathways,

multiscale modeling is important to capture the detailed behavior from different

material phases and microstructures. In light of this, a MOOSE based application

(TREX) has been developed to meet these conditions. Different kernel, material,

and postprocessor objects have been created in TREX to model anisotropic multi-

phase, multiscale, multipath diffusion, radionuclide decay , multiphase, multiscale

thermal conduction and other physics.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

The commercial nuclear fuel cycle produces nuclear waste in the form of

numerous distinct and mobile radionuclides. To ensure safe disposal of nuclear

waste, it is important to stabilize the radionuclides. To this end, certain ceramic

materials and phases are proposed to immobilize and stabilize these radionuclides.

Modeling these ceramics can be helpful in determining the effectiveness of these

waste storage systems. A key modeling detail will be diffusion. Diffusion will

occur on many scales and be affected by multiple characteristics.

1.2 OBJECTIVES

With the evolution of computers, computer modeling has become an appeal-

ing way to research real world phenomena. When modeling nuclear waste, com-

puter modeling can become irresistible because experiments that could take years

can be done in days, hours, or even possibly minutes. The objective of this research

is to create a tool to model and confirm the effectiveness of nuclear waste storage

systems (specifically the proposed ceramics) and to ultimately broaden computer

modeling capabilities. To achieve this goal, TREX was created. TREX uses MOOSE

as the base application.
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CHAPTER 2

REVIEW OF LITERATURE

2.1 WASTEFORMS

Glassy wasteforms are currently being used to immobilize high-level radio-

active waste [13]. The common glasses used are borosilicate and phosphate. Glass

was initially used because of its ability to contain radionuclides and the fabrication

process is well known. To make the wasteform, glass forming materials (like Sili-

con) are added to the high-level radioactive waste. In order for this to be done, the

high level waste needs to be a liquid. This waste is then put in a canister, usually

stainless steel, to cool and solidify. A concern with glass wasteforms though is the

uncertainty of long-term stability. Glass are able to contain radionuclides because

glass structures are highly disordered. Over time the glass could decompose be-

cause to become more stable. It has also been shown that glasses have to be stored

in a controlled environment due to leaching [16]. To this end, ceramic wasteforms

are currently being investigated because they offer the process and chemical stabil-

ity of glasses while adding the durability of ceramics. They will also have higher

saturation rates because the radionuclides will be bound in the crystalline struc-

ture. Synroc (Synthetic rock) has become a popular ceramic of interest for storing

high-level waste. It is usually comprised of Zirconolite, Perovskite, and Hollan-

dite. Zirconolite is added to immobilize Plutonium while Perovskite is added to

immobilize Plutonium, Strontium, and Barium. Hollandite is used to immobilize

Cadmium, Potassium, Rubidium, Barium, and Cesium. Since Cesium is soluble

2



in water, Hollandite’s ability to stabilize and immobilize Cesium is extremely im-

portant. Cesium’s solubility gives it a higher chance of contaminating the sur-

roundings. The mobility of Cesium in Hollandite will depend on Hollandite’s

microstructure. It has been shown that Hollandite will have preferred crystallo-

graphic directional dependence diffusion.

2.2 MODELING SOFTWARE

Currently in progress is TREX, which is a MOOSE based application for mod-

eling and simulating advanced ceramic wastes. MOOSE (Multiphysics Object-

Oriented Simulation Environment) is a finite-element (FEM) multiphysics frame-

work under development by Idaho National Laboratory [8]. It was chosen as the

base application for many different reasons. It is designed to be quickly and easily

adaptable; it contains a method for coupling multiple applications; and it has a

wide user base. Even though MOOSE is highly developed, some Kernel, Material

and Postprocessor objects were created and added in order to model the advanced

ceramic waste. Kernel objects are used to describe the physics. For example, a Ker-

nel would be used to describe Diffusion. Material objects are used to calculate the

material properties, which is where a diffusion coefficient would be defined. The

Material object can even compute material properties that depend on other vari-

ables such as temperature, concentration, etc. Postprocessor objects are used to find

results. For instance, the flux, concentration gradient, and concentration can be

computed using a Postprocessor object [8].

Modeling the microstructure of Hollandite is important because as stated ear-

lier, cesium’s diffusion rate through Hollandite will depend on Hollandite’s mi-

crostructure. Similarly, it will be just as important to model the entire wasteform

so that the effects of Cesium’s release to the surrounding can be seen. The entire

wasteform is on the scale of meters, while the microstructure is on the scale of

micro- and nano-meters. Modeling details so precise in a simulation is computa-

3



tionally demanding. To represent both of these realities then, multiscale modeling

will be vital. This will be done by having a main engineering scale simulation (to

capture the larger wasteform package) coupled with one or more mesoscale simu-

lations (to capture the microstructure). This can be seen in Figure 2.1.

2.3 FINITE-ELEMENT METHOD

As previously stated, MOOSE uses the finite element method (FEM) to solve

multiphysics problems. FEM is a numerical method for solving real-world prob-

lems involving complicated physics, geometry, and/or boundary conditions [15].

The finite element method has three distinguished characteristics that make it pre-

ferred to other numerical methods. The first is it solves real-world problems by

dividing domains into subdomains. These subdomains are referred to as finite

elements. This is beneficial because it is easier to represent a complicated func-

tion by many simple polynomial functions. The second characteristic is governing

equations from the problem are used to develop algebraic equations over each fi-

nite element. Third, all finite elements are assembled using certain interelement

relationships. In other words, the problem is solved with the subdomains in the

original position of the domain [15]. Apart from these three distinct characteristics,

there are some other features of the finite element method that are beneficial to this

area of research. One benefit is the FEM’s ability to solve differential equations,

like those used when modeling nuclear waste (i.e Diffusion, Decay, etc). While

FEM can solve many types of problems, it is exceptionally good at solving partial

differential equations. Another feature of FEM is the ability to couple equations,

this allows for many physical phenomena to be modeled together.

The finite element method is a very broad method, with many implemen-

tations. MOOSE uses the Jacobian-free Newton-Krylov (JFNK) model [8]. While

MOOSE can be used without a deep understanding of FEM, having an intimate

knowledge of it is crucial in developing a MOOSE based application. To help un-

4



derstand the JFNK model some introduction models will be discussed that under-

line many of the JFNK characteristics. The advantage of the JFNK model is the

ability to reduce the amount of memory needed therefore decreasing computa-

tional cost. In the finite element method, we seek approximation functions over

each element Ωe (where the e denotes the current element). The approximation

functions are in the form of polynomials. The polynomial power of the function

used depends on computational power, application of the problem, and the type

of mesh used. A mesh is how a domain is divided up into elements. The approxi-

mation functions are defined as followed.

ueh =
n∑
j=1

uejψ
e
j (x) (2.1)

It must meet some conditions in order that it be convergent to the actual solution,

though. First, the functions should be continuous over the element and differen-

tiable, as required by the weak form. Second, it should be a complete polynomial

(i.e. include all lower-order terms up to the highesst order used). Lastly, it should

be an interpolant of the primary variables at the boundary and if necessary other

points [15]. It must be at the boundaries first so the continuity of the solution can

be imposed across the interelement boundary. The points (including boundaries)

that are interpolants of the variables are refferred to as nodes. The number of nodes

depends on the polynomial power and solution type but each element must have

at least one node at each boundary point.

To show and derive the finite element model a 1D differential equation with

boundary condition will be considered. The eqaution is as follows and in Ω, the

domian.

− d

dx

(
a
du

dx

)
+ cu− f = 0 (2.2)

where a = a(x), c = c(x), and f = f(x). It can be seen that when c and f equal zero,

Equation 2.2 is the steady state diffusion equation (Eq. 2.21), where a would be the

diffusion coefficient. It is important to remember this domain will be divided up

5



into smaller domains (elements in Ωe) and then an approximation function will be

found over the boundary.

The first step in FEM is deriving the weak form. The weak form is desired

because it transfers part of the differential from the dependent variable. The weak

form is also the format used to add physics to MOOSE. To develop the weak form,

all terms need to be moved to one side, multiply by a test function w(x), and in-

tegrate over the whole domain Ω. The domain is not divided up until after the

equation is in the weak form. Next is to shift half of the derivatives from the de-

pendent variable to the test function. This can be done by the Divergence Theorem

(or in 1D by integration-by-parts). Last is to impose the actual boundary condi-

tions. The steps for deriving the weak form will be carried out on Equation 2.2.

Derivation of the weak form Step 1.∫ xb

xa

(
− w d

dx

(
a
du

dx

)
+ wcu− wf

)
dx = 0 (2.3)

For the second step inegration-by-parts formula is needed:∫ xb

xa

wdv = −
∫ xb

xa

vdw + [wv]xbxa (2.4)

Derivation of the weak form Step 2:∫ xb

xa

(
a
dw

dx

du

dx
+ wcu− wf

)
dx−

[
wa

du

dx

]xb
xa

= 0 (2.5)

Derivation of the weak form Step 3: Since the equation is being derived the bound-

ary condition have not yet been defined. They are therefore defined as followed:

Q1 =

(
− adu

dx

)∣∣∣∣
xa

, Q2 =

(
a
du

dx

)∣∣∣∣
xb

(2.6)

Now that the boundaries are defined the weak form equation is.

0 =

∫ xb

xa

(
a
dw

dx

du

dx
+ wcu− wf

)
dx− w(xa)Q1 − w(xb)Q2 (2.7)

Now that the weak form has been derived another important characteris-

tic of FEM is the approximate solution. The approximation functions are defined
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by Equation 2.1 and follow the condition describe for an approximation function

(which were described earlier). For Equation 2.7 the approximation functions are:

ueh(x) = ce1 + ce2x (2.8)

where c1 and c2 are constants. The approximation functions must be linear (or

higher) because it has to be differentiable according to the weak form, in this case

(Eq. 2.7) at least once. Linear was chosen because it is the simplest form. The

second condition is met because the polynomial is complete. The third condition

is satisfied if the following is met:

ueh(xa) = ce1 + ce2xa ≡ ue1, ueh(xb) = ce1 + ce2xb ≡ ue2 (2.9)

With two unknowns and two equation c1 and c2 can be found so the third condition

can be met.
ce1 =

ue1xb − ue2xa
xb − xa

ce2 =
ue2 − ue1
xb − xa

(2.10)

This can than be substituded back into Equation 2.8.

ueh(x) =
ue1xb − ue2xa
xb − xa

+
ue2 − ue1
xb − xa

x (2.11)

This equation is simplified.

ueh(x) = ψe1(x)ue1 + ψe2(x)ue2 =
2∑
j=1

ψej (x)uej (2.12)

where ψe1 and ψe2 are interpolation functions.

ψe1(x) =
xb − x
xb − xa

, ψe2(x) =
x− xa
xb − xa

(2.13)

In the local cordinate system, where x̄ is the local position (x̄ = x − xa) and he is

the element size (he = xb − xa), the interpolation functions are

ψe1(x̄) = 1− x̄

he
, ψe2(x̄) =

x̄

he
(2.14)
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The order of the polynomial approximation can be increased to improve the ac-

curacy. If the polynomial was increased to quadratic the approximation functions

would be as follows:
ue1 ≡ ueh(x1) = ce1 + ce2x1 + ce3x

2
1

ue2 ≡ ueh(x2) = ce1 + ce2x2 + ce3x
2
2

ue3 ≡ ueh(x3) = ce1 + ce2x3 + ce3x
2
3

(2.15)

where x1 and x3 are the nodes at the boundary and x2 is a node between x1 and

x3. x2 is commonly the midpoint but it does not have to be. To get the interpo-

lation functions the same method as above could be carried out. When interpo-

lation functions are only derived from interpolating the function values and not

the derivatives of the function (Eq. 2.8, and Eq. 2.9), they are known as Lagrange

interpolation functions [15]. By definition then, Lagrange functions derivatives are

not continues between the elements. When the interpolation functions are derived

from interpolating the function values and the derivatives of the function they are

known as Hermite family of interpolation functions [15]. Hermite functions would

be used if the derivatives needed to continue between elements. An example can

be seen below.
we1 ≡ weh(xa) = ce1 + ce2xa + ce3x

2
a + c4x

3
a

we2 ≡
weh
dx

∣∣
xa

= ce2 + 2ce3x2 + 3c4x
2
a

we3 ≡ weh(xb) = ce1 + ce2xb + ce3x
2
b + c4x

3
b

we4 ≡
weh
dx

∣∣
xb

= ceb + 2ce3xb + 3c4x
2
b

(2.16)

The minimum power of a Hermite polynomial is cubic because if the function and

first derivative are interpolated the minimal number of equations will be four, giv-

ing the need for four unknowns. The next step in FEM is to plug the approximation

functions into the weak-form equation for each element. This process is very te-

dious and involves extremely good book keeping. The new equation can then be

assembled in a matrix to be solved. This is where FEM has many permutations

for solving. Different solving techniques can improve the FEM process but can be
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very complicated. The JFNK method uses different algorithms and theorems to

make some assumption about the matrix to solve it quicker.

2.4 DIFFUSION

In Section 2.1 diffusion was identified as a key phenomenon for possibly re-

leasing radionuclides from the ceramic waste. Diffusion is the movement of atoms

from areas of high concentration (Wasteform) to areas of lower concentration (Can-

ister, Nature, etc.). This is most commonly done through lattice defects. Solid Ma-

terials have an organized system for configuring atoms. When an atom is missing

or out of configuration, it is referred to as a lattice defect. Three important lat-

tice defects are vacancies, grain boundaries, and interstitials. Vacancies (as one

would assume) are empty atom sites. An atom next to a vacancy can move if it

attains enough energy (like thermal energy) to squeeze by its neighbors [11]. This

can be seen in Figure 2.2. A grain boundary is a boundary at which two grains

come together. Diffusion commonly occurs here because the atoms at this bound-

ary are not as closely packed as the grains of the material. This can be seen in

Figure 2.3. Interstitials are atoms in spacing between atom sites. This can happen

when an area is overpacked; it can be seen in Figure 2.4. Interstitials diffusion is

most common in two (or more) element diffusions when one (or more) elements

atoms are smaller than the other elements atoms. The smaller atoms allow the el-

ement to move more freely in the interstitials than larger atoms. The atoms move

through these lattice defects because they are constantly oscillating. The higher

the frequency of oscillation, the higher the probability of moving lattice sites. This

relation can be modeled by an Arrhenius-type equation.

f = f0exp

(
−Q
kBT

)
(2.17)

where f is the number of jumps per second, f0 is a constant that depends on the

number of equivalent neighboring sites and on the frequency, Q is the activation
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energy and kb is Boltzmann’s constant. These types of diffusion are all driven by

concentration gradients. Fick’s laws can be used to describe this. Fick’s first law

is:

J = −D∇C (2.18)

whereD is the diffusion coefficient (in m2/s), which is an important material prop-

erty. ∇ is the gradient operator ( ∂
∂x

î + ∂
∂y

ĵ + ∂
∂z

k̂), and C is the concentration. The

diffusion coefficient is similar and could be derived from the jump rate. The jump

rate is the ‘probability’ of a jump occurring per time unit, and the diffusion coeffi-

cient is the ‘average’ distance an atom will travel per time unit. This relation can

most easily be understood when the diffusion coefficient equation is known.

D = D0exp

(
−Q
kBT

)
(2.19)

It can now be seen that D0 ≈ f0 and more than that, the following is known:

D0 =
1

6
f0a

2 (2.20)

where a is the jump distance (the distance to the nearest neighbor). This relation

helps show that the diffusion coefficient is average distance traveled per time unit.

Fick’s first law describes diffusion through a cross-sectional area in a given time

interval. This is known as flux. Fick’s second law describes how concentration

moves through a host material over time. This is the nonsteady-state case (Steady

state ∂C
∂t

= 0)
∂C

∂t
= ∇(D∇C) (2.21)

If the diffusion coefficient does not depend on position, then it can be brought out

of the gradient. Since the FEM process moves half of the differential to the weight-

ing function, it can handle a position-dependent diffusion coefficient. MOOSE

already had a kernel for modeling diffusion. The diffusion equation (Eq. 2.21) was

broken into two parts to be added to MOOSE. The first kernel was just the time

derivative and included ∂C
∂t

the kernels name is ’TimeDerivative‘. The second part
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was−∇(D∇C) the kernels name is ’Diffusion‘. MOOSE can break up equations be-

cause the code is fully couplable. This means when two or more kernels are acting

on one variable, the equation is the sum of the kernels. When the ’TimeDerivative‘

and ’Diffusion‘ are used on the same variable, the equation is equivalent to ∂C
∂t

+

−∇(D∇C) = 0, which is Equation 2.21. Dividing the equation into two kernels

is also benificial because it allow ’Diffusion‘ to be used alone for the steady state

case and ’TimeDerivative‘ to be used for other equations that use ∂v
∂t

where v is the

variable the kernel is acting on.

An analytical solution to Fick’s second law can be found, if the diffusion is

one dimensional, the diffusion coefficient is constant with position, and the sol-

vent is “infinitely long” (i.e. the solute does not reach the boundary of the solvent

10
√
Dt). The analytical solution is:

Ci − Cx
Ci − C0

= erf

(
x

2
√
Dt

)
(2.22)

where Ci is the solute concentration at the interface, Cx is the solute concentration

at distance x and time t and C0 is the initial solute concentration.

2.5 HEAT TRANSFER

Heat generation from radionuclide decay was also identified as an important

factor in modeling this high-level waste. The heat generation is of interest because

it can cause high temperatures which can increase release rate. In section 2.4, it was

explained that atoms are oscillating and that with an increase in energy, they have a

higher chance of changing lattice sites and therefore will diffuse. This relation was

first seen in the jump rate equation Equation 2.17 and ultimately seen carried out

in the diffusion coefficient equation (Eq. 2.19). This, along with other temperature

dependent processes, make the heat generation from radionuclide decay an area

of interest. The equation used to model this is the heat diffusion equation, which
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is as follows:

∇k∇T + q = ρcp
∂T

∂t
(2.23)

where T is temperature, k is thermal diffusivity, q is the volumetric heat genera-

tion, ρ is density and cp is the heat capacity [3]. MOOSE again already had ker-

nels for the heat equation. Again the equation was broken up. The first part was

−∇k∇T the kernels name is ‘HeatConduction’. The second part is the heat genera-

tion term−q the kernels name is ‘HeatSource’. The last part was the time derivative

ρcp
∂T
∂t

the kernels name is HeatConductionTimeDerivative.

2.6 RADIONUCLIDE DECAY

Radionuclide decay will be another significant phenomenon. It will help val-

idate the wasteform by showing whether or not it contains the radionuclides until

it has decayed into something stable. It can be modeled by the following differen-

tial equation:

−λN =
dN

dt
(2.24)

where N is the concentration of radionuclides and λ is a decay constant, which is a

property of the radionuclide. A more common constant used is the half-life which

is related to the decay constant as followed:

t1/2 =
ln2

λ
(2.25)

The solution to Equation 2.24 can be solved with some simple calculus. The ana-

lytical solution is:

N(t) = N0e
−λt (2.26)

MOOSE only had part of the decay equation, so a kernel had to be added to TREX.

As usual, the equation was broken up. The time derivative dN
dt

was already in

MOOSE. This kernel was already described in section 2.4. However, the other part

of the equation, −λN , had to be added to TREX. To add the equation it must be
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in the weak form. The first thing in deriving the weak form is to move everything

to one side so the equation is equal to zero. Since dN
dt

is already implemented as

positive −λN will be moved to the right side making it positive λN . Next, the

equation can be split into two (since dN
dt

is already implemented), multiply by a

test function and integrate over the domain. The equation then becomes:

0 =

∫
Ω

wλNdΩ (2.27)

The equation is now in the form to add to TREX. The name of the kernel is ‘Ra-

dioactiveDecay’. It is also necessary to look at the rate of generation of the daugh-

ter isotope. This can be useful if a phenomenon (like diffusion, or decay chain)

depends on the concentration of the daughter isotope. For example in hollandite

cesium does not like to be in the same tunnel as barium (cesium daughter isotope).

This could cause cesium to diffuse quicker when in the presence of barium. If the

radionuclide decay rate follows Equation 2.24, then the daughter isotope generates

at the following rate:
mad

ma

λN =
dNd

dt
(2.28)

where N is the concentration of radionuclide, λ is the decay constant of the ra-

dionuclide, ma is the Atomic mass of the radionuclide, mad is the Atomic mass of

the daughter isotope and Nd is the concentration of the daughter isotope. When

the radionuclide decays to multiple daughters isotope the equation becomes:

p
mad

ma

λN =
dNd

dt
(2.29)

where p is the percent of the radionuclide that decays to the daughter isotope.

Adding radionuclide generation to TREX must take similar steps as adding ra-

dionuclide decay. Again move everything to the side that makes dNd

dt
positive (since

it is already implemented in MOOSE) and split the equation into two equations.

Next multiply by a test function and integrate over the domain.

0 =

∫
Ω

−pmad

ma

λNdΩ (2.30)
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The equation is now in the format accepted by TREX. The name of the kernel is

‘RadioactiveGeneration’.

2.7 EFFECTIVE PROPERTIES

A key desire when designing TREX was the ability to couple microscale sim-

ulations to an engineering scale. MOOSE offers the ability to run multiple simu-

lations and share data across them. This makes MOOSE a good base for multi-

scale modeling because the only thing left to design is a method for applying these

properties found on the micro scale to the engineering scale. In other words, the

microscale simulation will be heterogeneous. It will have multiple grain bound-

aries, grains, phases, and other preferred paths, while the engineering scale will

be homogenous. The engineering scale will be homogenous because modeling the

heterogeneity of the entire waste form would require the mesh to be extremely

fine and therefore be computationally demanding. This is similar to an extremely

detailed picture that requires many pixels so the picture will not be blurry. It is im-

possible to directly apply a heterogeneous property as a homogenous property but

an ‘average’ value of a region of the heterogeneous property could be applied as a

homogenous property. It would only be a region of the heterogeneous property be-

cause again it would be too computationally demanding to model the entire waste

form. To use a region, it is important that the region captures the entire hetero-

geneity of the property. This means that if the waste form has multiple grains and

phases the ‘average’ of a single phase and single grain would be invalid because

it does not capture the entire heterogeneity. Also, since the material property is

multi-dimensional, it is not as simple as finding the ‘average’ of the heterogeneous

property. It will require finding an effective property. Effective properties depend

on the equation they are applied to. There are many methods for finding effective

properties. Three methods are used and will be discussed.

The popular method used in TREX is the Asymptotic Expansion Homoge-
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nization method (AEH) [9] [2]. AEH was chosen because it is a diverse and well-

developed method. These other methods were mostly used for validating AEH.

The effective diffusion coefficient using the AEH method is:

Deff
ij =

1

|Ω|

∫
Ω

D∗ik

(
Ikj +

∂χ∗j
∂yk

dΩ

)
(2.31)

Deff
ij is the effective diffusion coefficient matrix, Dkj is the heterogeneous diffusion

coefficient of the microstructure, Ω is the domain, I is the identity matrix and the

vector field χ is the solution of following local boundary-value problem.

− ∂

∂yi

[
D∗ik

(
Ikj +

∂χ∗j
∂yk

)]
= 0 (2.32)

−Ni

[
D∗ik

(
Ikj +

∂χ∗j
∂yk

)]
= 0 on Γ (2.33)

where Γ is the boundary of Ω. The effective thermal diffusivity using the AEH

method is similar:

keffij =
1

|Ω|

∫
Ω

k∗ik

(
Ikj +

∂ψ∗j
∂yk

dΩ

)
(2.34)

keffij is the effective thermal diffusivity matrix, kkj is the heterogeneous thermal

diffusivity of the microstructure and the vector field ψ is the solution of following

local boundary-value problem.

− ∂

∂yi

[
k∗ij

(
Ijk +

∂ψ∗j
∂yk

)]
= 0 (2.35)

−Ni

[
k∗ij

(
Ijk +

∂ψ∗j
∂yk

)]
= 0 on Γ (2.36)

These effective equations are similar because their governing equations (Eq. 2.21,

Eq. 2.23) are similar. When deriving these two equations, using AEH, the assump-

tion is made that the homogeneous (x) to heterogeneous (y) scale is very small

(1 << ε = x/y). This will be valid on our cases because the wasteform is on the

scale of meters (x=1) and the micro scale is on the scale of micro-, nano-meters

(y=1e6 or 1e9) making the scale ε = 1e − 6 or 1e − 9. The effects of the scale not

being small will be shown in section 3.2. To use the AEH method in TREX for ef-

fective diffusion coefficients it must first be in the weak form. To do this, multiply
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Equation 2.32 by a test function and integrate over the domain (since the equation

is already equal to zero).

0 = −
∫

Ω

(
w
∂

∂yi

[
D∗ij

(
Ijk +

∂χ∗j
∂yk

)])
dΩ (2.37)

Next using integration by parts Equation 2.37 can be rearranged.

0 = −
∫

Ω

(
∂

∂yi
w

[
D∗ij

(
Ijk +

∂χ∗j
∂yk

)]
− ∂w

∂yi

[
D∗ij

(
Ijk +

∂χ∗j
∂yk

)])
dΩ (2.38)

Then using the divergence theorem the equaiton becomes:

0 =

∫
Ω

(
∂w

∂yi

[
D∗ij

(
Ijk +

∂χ∗j
∂yk

)])
dΩ−

∫
Γ

(
Niw

[
D∗ij

(
Ijk +

∂χ∗j
∂yk

)])
dΓ (2.39)

The equation now has two parts.∫
Ω

(
∂w

∂yi

[
D∗ij

(
Ijk +

∂χ∗j
∂yk

)])
dΩ (2.40)

−
∫

Γ

(
Niw

[
D∗ij

(
Ijk +

∂χ∗j
∂yk

)])
dΓ (2.41)

Equation 2.40 was added as a kernel named ’HomogenizationDiffusionCoefficient‘.

Equation 2.41 was already implemented as a Boundary Condition named ’period-

icBC‘. A postprocessor named ’HomogenizedDiffusionCoefficient‘ was added based

on Equation 2.31. The AEH method for effective thermal diffusivity was already

implemented in MOOSE. The kernel based on Equation 2.35 name is ’Homogeniza-

tionHeatConduction‘. The postprocessor based on Equation 2.34 name is ’Homoge-

nizedThermalConductivity‘.

The second method is quicker and computationally easier but it is for limiting

cases. It is limited to 1D isotropic cases. The effective diffusion coefficient can be

derived by finding the average of Fick‘s first law (Eq. 2.18) using integration.∫ b
a
Jdx

b− a
=

∫ b
a
−Deff dC

dx
dx

b− a
(2.42)

Since the definition of Deff is that it is homogenous (does not depend on x) it can

move outside of the integral and be solved.

Deff =

∫ b

a

Jdx

/∫ b

a

dC

dx
dx (2.43)
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The third method is a common method used in electronics for resistors in par-

allel and series [21]. This method is restricted to materials with parallel preferred

paths that are parallel or perpendicular to the flux. To derive these equations for a

material with two paths (path A and path B), the following variables are defined:

Flux JT , JA and JB, diffusion coefficient De, DA and DB, concentration gradient
dCT

dx
, dCA

dx
and dCB

dx
, and volume VT , VA and VB for the total block, path A and path

B, respectively. Also, the volume fraction for path A and B is fA and fB where

volume fraction is the volume of the path over the total volume. When the flux is

parallel to the paths, the following is known:

dCT
dx

=
dCA
dx

=
dCB
dx

VTJT = VAJA + VBJB

(2.44)

Using Ficks First Law (Eq. 2.18), the following is derived:

DPRL = De = fADA + (1− fA)DB (2.45)

To derive this, equation 1
dCT
dx

was multiplied throughout, making the equation in-

valid when the concentration gradient is equal to zero. When the flux is perpen-

dicular to the paths, the following is known:

VT
dCT
dx

= VA
dCA
dx

+ VB
dCB
dx

JT = JA = JB

(2.46)

Equation 2.47 is derived using Ficks First Law (Eq. 2.18):

DPRP = De =
DADB

fADB + (1− fA)DA

(2.47)

To derive this equation, 1
JT

was multiplied throughout, making the equation in-

valid when the flux is equal to zero.
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Figure 2.1 Coupled Simulation

Figure 2.2 Vacancy Diffusion
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Figure 2.3 Grain Boundary Diffusion

Figure 2.4 Interstitials Diffusion
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CHAPTER 3

METHODOLOGY

3.1 ADDED OBJECTS

To model these ceramics many objects (Kernels, Material, etc.) were developed

and created for TREX. These objects were used to model the ceramics, validate the

code, and/or obtain resualts. Some of these objects, like the ’HomogenizationDif-

fusionCoefficient‘, have been mentioned. The following section will describe all of

the objects created for TREX and provide some sample inputs. An object, if desired

and benificial outside of modeling ceramics, could be pushed to MOOSE to help

improve MOOSE’s ability to model. Many of these objects have that potential. All

objects are indirect, if not direct, sub-objects of the respected main object. This is

important to note because certain objects will inherit different inputs. For exam-

ple, to create a new kernel, the new kernel does not have to create an input for the

variable it is acting on. An input for the variable it acts on will be inherited from

the main object.

Kernels

The Kernel objects are the heart of TREX. This is were the actual physics is

described. Table 3.1 shows all of the kernel objects added to TREX.

’CylinderHeatSource‘ is a sub-kernel of ’HeatSource‘ which is based on the

heat diffusion equation (Eq. 2.23). As the name would reveal, ’CylindricalHeat-
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Source‘ allows the user to restrict the volumetric heat generation term to a cylindri-

cal shape. Since ’CylindricalHeatSource‘ is a sub-kernel of ’HeatSource‘ it accepts

the same input plus whatever is added to restrict the heat generation to a cylin-

der. Since the parent kernel (’HeatSource‘) already has the necessary inputs for

volumetric heat generation, the following inputs were the only ones needed to be

added, radius, height, normal, normal axis and origin. Radius is the radius of the

cylinder. Height is the height of the cylinder. Normal and Normal axis is the axis

parallel to the height. Normal takes an input in vector, while normal axis takes an

input of ‘x’, ‘y’, or ‘z’. Only one of the inputs is required, not both. Lastly, origin

is the midpoint of the cylinder. Since origin is the midpoint it is important to note

the height only extends half way up and down from the origin. For example, the

wasteform modeled later will be a cylinder with a radius in the xy plan of 0.5612

meters with a height extending from 0 to 2.95 meters in the z-axis (Figs. 3.6 - 3.8).

An example code can be seen in Input 1. After the initial values are set the heart

of the code computes the solution. When solving the equation the current point

is tested to see if it is in the region of the defined cylinder. If it is in the cylinder

the solution of HeatSource is called (the physics for heat generation). If not the

solution is set to zero (no heat generation).

’HomogenizationDiffusionCoefficient‘ and ’HomogenizationAnisoDiffusion-

Coefficient‘ model Equation 2.40 discussed in section 2.7. The only difference with

the two is, ’HomogenizationDiffusionCoefficient‘ uses an isotropic diffusion coef-

ficient and ’HomogenizationAnisoDiffusionCoefficient‘ uses an anisotropic diffu-

sion coefficient. The two kernels were created because MOOSE uses a single value

for isotropic values to increase computational time. The only necessary inputs to

add (since it is a sub-kernel of ’kernel‘) are those that model the specific equation,

which are D name and component. D name is the name of the material property

of the diffusion coefficient (D∗ik). Component is the direction of the variable this

kernel acts on (component = k in Eq. 2.40).
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’RadioactiveDecay‘ was added to model Equation 2.27. The created kernel

takes one input half life. Half life is the half life of the radionuclide. The object

finds the decay constant using Equation 2.25. An example input block for cesium

137 (half life of 30.1 years) can be seen in Input 2.

The last kernel added was ’RadioactiveGeneration‘. This was added to model

Equation 2.30. The created kernel takes four inputs coupled, half life, mass ratio,

and decay chain ratio. Coupled is the name of the variable decaying. Half life

is the half-life of the decaying variable. Mass ratio is the mass of the daughter

isotope over the mass of the decaying isotope. Decay chain ratio is the percent

of the radionuclide that decays to the daughter isotope. An example of the input

blocks can be seen in Input 3.

Aux Kernels

Aux Kernel objects are used to find secondary values of actual physics. For

example, if flux was needed in another equation a Kernel would be used to describe

diffusion and store the concentration and a Aux Kernel would be used to find and

store the flux. While the same calculation could be done in a postprocessor if it will

be used in another equation in MOOSE common practice is to use an Aux Kernel.

Table 3.2 shows all of the Aux Kernel objects added to TREX.

The ’FluxAux‘ and ’FluxAnisoAux‘ are used to create an aux variable of the

diffusion flux defined by Fick’s first law (Eq. 2.18). The only difference with the

two ’FluxAux‘ used an isotropic diffusion coefficient and ’FluxAnisoAux‘ uses an

anisotropic diffusion coefficient. Since this is an aux kernel it uses a variable to find

the aux variable and it does not have to be in the weak form. These kernels can

take four inputs, coupled, D name, cross section axis, and normal. Coupled is the

concentration variable. D name, like before, is the name of the diffusion coefficient.

Cross section axis and normal are axis normal to the flux. Cross section axis takes

an input of ‘x’, ‘y’, or ‘z’ while normal takes the input in vector form. Again, only
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of the inputs is required, not both.

Initial Conditions

Table 3.3 shows all of the Initial Condition objects added to TREX. Bounding-

BlockIC is used to give a block an initial value. A block is a region defined when

creating the mesh. The IC takes two input, inside and outside. Inside is the initial

value of the block. Outside is the rest of the mesh.

BoundingBoxIC is used to give a mesh blocks different initial values. A mesh

block can be defined when creating the mesh. The IC takes two inputs block and

inside. Block is the block the initial conditions is applied to and inside is the value

applied to the block.

BoundingCircleIC is used to give a defined circle (or cylinder) an initial value.

The IC uses radius, height, origin, inside, and outside as inputs. Radius is the

radius of the circle (or cylinder). If applicable height is the height of the cylinder.

Origin is the starting point of the circle (if applicable the height start at the initial

point and goes up and down half the height). Inside is the value inside the cylinder

and outside is the value outside.

Materials

Material objects are used to define material properties. For example, the diffu-

sion coefficient would be defined in the Material objects. The Material object can be

broad, like describing the Arrhenius type equation use for diffusion coefficients, or

it can be specific describing the diffusion coefficient of Cesium in Graphite. Table

3.4 shows all of the Material objects added to TREX.

’AnisoArrheniusDiffusionCoefFromPostprocessor‘ object is used to create a

diffusion coefficient material property from values in a postprocessor. This was

created to be used with multiscale simulations. When simulating multiscale sim-

ulations using multiapp, data can be shared through postprocessors. This material
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object is used for creating a position dependent diffusion coefficient from the effec-

tive diffusion coefficient found at different sub regions. Currently this object uses

a linear fit between known diffusion coefficients. The inputs for this object are

diffusion coef, D xx, D xy,...,D zz, radius, x, y, z, and position from center. Diffu-

sion coef is the name of the material property, it is used for other objects to ref-

erence the value. D xx,D xy,..., and D zz are the names of the postprocessors the

contains the sub regions diffusion coefficient. There must be a postprocessor name

for each sub region and at least two regions. Radius, x, y, and z are the dimensions

of the domain where the diffusion coefficient will be applied to. If only x, y, and

z are supplied then the domain is a rectangle. If the radius and either x, y, or z

are supplied then the domain is a cylinder with the height parallel to the axis sup-

plied. If only the radius is supplied then it is a sphere. It is important to note that

the x, y, and z are the distances from the center. If the mesh is off center use po-

sition from center. Lastly, position from center is the distance of the center of the

geometry from the center of the mesh. After the initial conditions are set, If else

statements are used to find which region the current position is between. Then the

following equation is used.

Dik =
pl − pc
pl − pf

Df
ik +

pc − pf
pl − pf

Dl
ik (3.1)

where Dik is the diffusion coefficient, pl is the position of the region furthest from

the center, pc is the current position (this value should be between pl and pf ), pf

is the position of the region closest to the center, Df
ik is the value of the diffusion

coefficient closest to the center, and Dl
ik is the value of the diffusion coefficient

furthest from the center. An example input block of a cylinder region (similar to

the one modeled in the final cases) can be seen in Input 4. An example input block

of a rectangular region can be seen in Input 5.

The ’ArrheniusDiffusionCoef‘ and ’ArrheniusAnisoDiffusionCoef‘ model the

diffusion Arrhenius equation (Eq. 2.19). The only difference with the two are ’Ar-

rheniusDiffusionCoef‘ uses an isotropic diffusion coefficient and ’ArrheniusAniso-
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DiffusionCoef‘ uses an anisotropic diffusion coefficient. The inputs are diffusion -

coef, D0, Q, R, and T. Diffusion coef is the name of the material property, it is used

for other objects to reference the value. Q is the activation energy. R is the gas

constant. T is the temperature of the material, this can be a variable or a constant

value.

’BoxDiffusionCoef‘ is used to restrict a diffusion coefficient to a box. The in-

puts are diffusion coef, inside, outside, x1, y1, x2, and y2. Diffusion coef is the

same as previous material objects, it is name of the material property referenced by

other objects. Inside is the value of the diffusion coefficient inside the box and out-

side is the value of the diffusion coefficient outside the box. X1 is the left position,

y1 is the bottom position, x2 is the right position and y2 is the top position of the

box.

’CalcDiffusionCoef‘ is used to create a diffusion coefficient from the flux and

concentration gradient. This material object was described in section 2.7. The in-

puts are diffusion coef, flux, and grad. The diffusion coef is the same as described

previously. Flux is the name of the postprocessor that computes the average flux.

Grad is the name of the postprocessor that computes the average concentration

gradient.

’GenericTensorConstantMaterial‘ creates constant generic material proper-

ties. This could be anything from thermal conductivity to diffusion coefficients

to youngs modules, any constant anisotropic material property. The inputs are

prop name and prop value. Prop name is the name of the material property ref-

erenced by other objects. Prop value is the tensor value of the constant material

property.

’GrainMaterialDiffusion‘ and ’GrainAnisoMaterialDiffusion‘ create an iso-

tropic or anisotropic diffusion coefficient from a ‘map’ of the microstructure. The

inputs are diffusion coef, D B value, D GB value, shape var, unique grains, and

euler angle provider. As previously described the diffusion coef is the name of
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the diffusion coefficient referenced by other objects. D B value is the value of the

diffusion coefficient in the grains, this will contain a value for each phase, if ap-

plicable. D GB value is the value of the diffusion coefficient in the grain bound-

ary. Shape var is a binary map of the microstructure. A value of zero is the grain

boundary and a value of one is the grain. Unique grains is a ‘map’ of each grain.

Euler angle provider contains each grains angle and phase. Figure 3.1 shows an

example of a map of a microstructure (left image), the unique grains (center image)

and the final diffusion coefficient value (right image).

’GrainMaterialThermal‘ is similar to ’GrainMaterialDiffusion‘ and ’GrainAni-

soMaterialDiffusion‘. ’GrainMaterialThermal‘ creates the specific heat and thermal

conductivity from a ‘map’ of the microstructure. The inputs are specific heat name,

thermal conductivity name, density name, unique grains, and euler angle provid-

er. specific heat name, thermal conductivity name, and density name are the nam-

es of the specific heat, thermal conductivity and density referenced by other ob-

jects. Unique grains is a ‘map’ of each grain. Euler angle provider contains each

grains phase.

’LineGrains‘, ’SquareGrains‘, ’HexagonGrains‘, and ’CircleGrains‘ create mi-

crostructure ’map‘. The inputs are shape name, volume fraction, sections, and

dimensions. Shape name is the name of the map that will be referenced by other

objects, volume fraction is the ratio of grain vs. grain boundaries, and sections is

the number of grains. The four different shapes can be seen in Figure 3.2. A value

of zero (blue) is the grain boundary and one (red) is a grain.

’WasteContainer‘ and ’WasteAnisoContainer‘ create the necessary material

properties to model a cylinder waste container. The inputs are prop names, inside,

outside, T, radius, and height. Prop names are the name of the material properties

referenced by other objects, more than one can be defined. This could be diffusion

coefficients, thermal conductivity, etc. Inside and outside are the values of the

material properties. T is the temperature, radius is the radius of the cylinder and
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height is the height of the cylinder.

’DiffusionProperties‘ are predefined diffusion coefficient of many different

materials used. These material objects were created for materials that are com-

monly used. Rather than the user inputting the material properties every simu-

lation certain material have predefined material properties. All of the diffusion

coefficients follow the Arrhenius-type equation (Eq. 2.19). The following are im-

plemented, cesium in Hollandite [20], barium in Hollandite [20], cesium in Borosil-

icate glass [19], cesium in graphite [10], iodine in graphite [5], cesium in silicon

carbide [17], iodine in silicon carbide [7], cesium in Stainless Steel [12], barium in

Stainless Steel, and iodine in Stainless Steel. Input 6 is an example code block.

’ThermalProperties‘ are predefined thermal conductivity, specific heat and

density of many different materials used. The thermal conductivity and specific

heat can be temperature dependent. The following were implemented: Hollandite

[4], Borosilicate glass [14], graphite [3], silicon carbide[3], stainless steel [3] and

uranium dioxide [6]. Input 7 is an example code block.

Postprocessors

Table 3.5 shows all of the Postprocessor objects added to TREX. Postprocessors

are used to extract the date from the simulation. This can be as simple as returning

a variable’s value at a given point or it can involve a complex equation over the

whole domain.

The first postprocessor is different than most, in that it is used to find a good fu-

ture time step when modeling diffusion. ’AverageTimeStepForDiffusion‘ was de-

signed to be used with the timestepper object ’PostprocessorDT‘. ’PostprocessorDT‘

uses the value of the postprocessor as the time step. ’AverageTimeStepForDiffu-

sion‘ can be used when modeling diffusion. When modeling diffusion it is impor-

tant to take the right size time steps that capture change in concentration. If the

time steps are too large, though, then the simulation could miss certain things, but
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if the time steps are too small then computer resources can be wasted, like time

and memory because the simulation will take longer and the output will be larger.

While an initial time step could meet this criterion over time the concentration be-

comes saturated making larger time steps more beneficial because the diffusion is

“slower” (a change in concentration takes longer) because the concentration gra-

dient is smaller. The postprocessor takes the desired concentration change and

calculates a time step that would achieve this. The postprocessor was designed for

a 1D homogeneous case. It can be used in most diffusion cases, though, and yield

the same results. With this in mind the inputs for the postprocessor are increase by,

interface value, average concentration, volume, and decreasing. Increase by is the

desired percent of change in the concentration per time step. Interface value is the

value dividing the solute and the solution (or equivalent value for other cases).

Average concentration is the name of the postprocessor that computes the average

concentration of the mesh. Volume is the volume (area or length) of the mesh.

Decreasing is a boolean value, true if the concentration is decreasing. To find the

future time step an equation was derived using the following. Since the error func-

tion is for an ‘infinitely long’ solute and the mesh is finite, to find the average the

error function can be integrated over infinity. This is a better measurement because

it captures conservation of mass.

Cch =
Cavg,t1 − Cavg,t2

Cavg,t1
(3.2)

whereCch is the concentration change in percent,Cavg,t1 is the average conentration

at t1, the current time and Cavg,t2 is the average concentration at some time t2.

Both Cch and Cavg,t1 are known values. Cavg,t2 can then be calculated, if t2 can be

calculated than the time step size can be found knowing dt = t2− t1. The analytical

solution to Fick’s second law involving the error function (Eq. 2.22) can be used to

find t2. Equation 2.22 finds the concentration at a given point though. To find the

average concentration, the equation can be integrated and divided by the volume
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(area or length).

Cavg,t =

∫ ∞
0

Cierfc

(
x

2 ·
√
D · t

)
dΩ

/
V (3.3)

Equation 3.2 and 3.3 can be combined and rewriten as:

Cavg,t1 − Cch · Cavg,t1 =

∫ ∞
0

Cierfc

(
x

2 ·
√
D · t2

)
dΩ

/
V (3.4)

Everything in Equation 3.4 are known except D, and t2. D can be solved using

Equation 3.3 and Cavg,t1 .

Cavg,t1 =

∫ ∞
0

Cierfc

(
x

2 ·
√
D · t1

)
dΩ

/
V (3.5)

The interpolation search is a common computer science methods for searching an

assorted array. It can be applied, though, to solve for D in Equation 3.5 and t2 in

Equation 3.4. The interpolation search finds a value n (where n is known to be in

the array) in a sorted array through a recursive search. The search starts with a min

and max position, the min being the start of the array, 0 and the max being the end,

l. First, the search checks the midpoint of these two points m = l−0
2

. If the value

at the midpoint is greater than n, then since the array is sorted the search knows n

must be somewhere before m. Therefore the search keeps the min point the same

and sets the max point to m. If the value at the midpoint is less than n, then since

the array is sorted the search knows n must be somewhere after m. Therefore the

search sets m to the min point and keeps the max point the same. It continues this

process until n is found. This can be applied to find D in Equation 3.5 by having

a Dmax and a Dmin. In most cases, the diffusion coefficient is below one so Dmax

is one and Dmin is zero because a diffusion coefficient cannot be negative. The

Dmid(= Dmax−Dmin

2
) is then tested. If Cavg,t1 is to low then Dmid is set to Dmin. If

Cavg,t1 is to high then Dmid is set to Dmax. This process is then repeated till Cavg,t1 is

within a tolerance. Once the diffusion coefficient is found then the same method

can be used to solve for t2 in Equation 3.4. The Gaussian integration method is

used to integrate both equations.
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’HomogenizedDiffusionCoefficient‘ and ’HomogenizedAnisoDiffusionCoef-

ficient‘ model Equation 2.31. The inputs for these postprocessors are D name,

conc x, conc y, conc z, row, and col. D name is the name of the material prop-

erty of the diffusion coefficient referenced by other objects (D∗ik). Conc x, conc y,

and conc z is the solution to Equation 2.32 when k = 0, 1, and 2, respectively. Row

and col are the row and column of the diffusion coefficient to return, i and j, re-

spectively.

Actions

Action objects are similar to scripts, they can be used to repeat processes.

Table 3.6 shows all of the Action objects added to TREX.

PointValueOnLineAction is used to find a value of a variable at a given number

of points on a line. The object is a Action because rather it creates a new postprocessor

for each point needed. The inputs are variable, point1, point2, num out per unit,

and base name. Variable is the name of the variable this object will act on. Point1

and point2 are the starting and ending points of the line. Num out per unit is the

number of points on the line. Base name can be specified to give the postprocessors

a base name. This could be used if the action is used more than once. The name

of postprocessors are x position, y position, z position appended to the base name,

if one is given. An example input can be seen in Input 8. This produces 100 points

on the line from ’0 0.5 0’ to ’10 0.5 0’.

Executioners

Executioner objects are where the properties for solving the problem are de-

fined. This is where the problem can be defined as steady state or time dependent.

If necessary start time, end time, and/or run time can be defined. Certain con-

vergence criteria is defined here too. Table 3.7 shows all of the Executioner objects

added to TREX.
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TransientPPEnd is a transient executioner that ends the simulation when a

given postprocessor criteria is met. The criteria can be defined to end with the post-

processor gets above or below a certain value. The inputs are postprocessor, criteria,

and below. Postprocessor is the name of the postprocessor that is being monitored.

Criteria is the value that must be met. Below is a boolean value true if the postpro-

cessor value must be below the criteria, and false if it must be above. TransientP-

PEnd is a sub-Executioner of Transient object. Since its a sub-Executioner if an end

time is defined it will end on whichever comes first, the postprocessor criteria or

time.

Multiapps

Multiapp objects are used to couple codes together. It can be used to couple

MOOSE based applications or other codes. Table 3.8 shows all of the Multiapp

objects added to TREX.

SteadyMultiApp is a MultiApp object used to couple a transient main app with

steady state sub apps. Rather than creating a new instance of a steady state app

every time step, the sub app creates a backup during initialization. This can be

done because the geometry (mesh) never changes, only initial conditions on the

mesh. By using a backup the run time can be decreased noticeably. The sub app

then starts at the backup every time step. The SteadyMultiApp is used when the

AEH method is used on a microstructure and the effective values are applied to

the an engineering scale simulation. The AEH method uses a transient executioner

because the equation do not depend on time.
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3.2 VALIDATING CASES

Diffusion Validation

A simple diffusion case was simulated and compared to the literature to val-

idate the ’diffusion‘ kernel and ensure understanding of TREX and MOOSE. The

case found in the literature is cesium diffusing through graphite. Since Hollandite

is in early stages of development and known material properties are few, many

cases use Cesium diffusing through graphite (additionally Silicon Carbide for the

final case). Graphite and Silicon Carbide were chosen to replicate low diffusion

coefficient of Cesium in Hollandite. For this experiment, the graphite was in a

cylindrical shape and had a Cesium source disk on one end of the graphite. The

graphite was then annealed at 700 C for 4 h and a concentration profile of the cen-

ter of the disk was plotted [10]. The diffusion coefficient for these conditions was

found to be 9 · 10−5 mm2

s
. Since the center was examined, the simulation in TREX

could be treated as 2D. A representation of the simulation in TREX can be seen in

Figure 3.3. The results from TREX matched the data found in the literature well.

They can be seen in Figure 3.4.

To further validate the diffusion model a case was compared to the analytical

solution of Fick’s first law (Eq. 2.22). The diffusion coefficient for this case was

the same as cesium in graphite, the boundary is a 5 mm by 1 mm block. The left

boundary (x=0) has an infinite source of cesium holding the boundary to a constant

concentration of 1. The flux at the top, bottom and right boundary are set to zero

(cesium cannot leave the mesh). The results can be seen in Figure 3.5. Since the

analytical solution to Fick’s first law (Eq. 2.22) assumes an infinite boundary it can

be seen when the cesium reaches the boundary the models start to differ. This is

expected because once the cesium reaches the boundary the simulated case can no

longer be considered infinitely long. The blue lines are 4 hours, green are 15 hours,

and red are 30 hours.
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Thermal Validation

To validate the thermal model in MOOSE a case found in the literature was

again compared with an equivalent simulation. The case is Heat release from

borosilicate glass wasteform in a stainless steel canister. The material properties

of the borosilicate glass and stainless steel are in Tables 3.9 and 3.10. The heat gen-

eration versus time was in an article by Savannah River Site. The temperature at

the edge of the canister will be equal to a function of the ambient temperature.

The decay heat and ambient air function is created during the simulation by TREX

from data found in the literature [14]. The geometry can be seen in Figures 3.6, 3.7,

and 3.8. The results can be seen in Figure 3.9.

Radioactive Decay and Generation Validation

To validate ’RadioactiveDecay‘ a decay case will be compared to the ana-

lytical solution (Eq. 2.26) and the conservation of mass will be used yo validate

’RadioactiveGeneration‘. The case will be 482 g (1.547 ·1015 Bq) of Cesium 137 with

a half life of 30.1 years. This would be the typical mass of Cs-137 in a waste canis-

ter. A typical waste canister contains 1.5 fuel assemblies. It is known that 1.115 ·105

Ci is discharged per tonne of heavy metal [18] and 3.7 · 1010 Bq per Ci. Knowing a

PWR assembly contains 0.25 tonne of heavy metal [1]. This gives:

(0.25)(1.5)(1.115 · 105)(3.7 · 1010) = 1.547 · 1015 Bq (3.6)

To convert this to mass the following equation is used:

M =
A ·ma

NAλ
(3.7)

where A is activity in Bq (decays per second), ma is atomic mass (137 fo Cesium

137), NA is Avogadro number (6.022 · 1023 1/mol) and λ is the decay constant in

1/s (7.30 · 10−10 1/s for cesium 137). Knowing this the typical mass of Cs-137 in

a waste canister is 482 g. All of the cesium will decay to barium making p equal
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to one and since cesium beta decays to barium the difference in mass is negligible

making mda/md equal to one also. The resualts for this case can be seen in Figure

3.10. The dark blue line is the mass of cesium 137 and the orange line is the mass of

barium 137. The red dashed line is the analytical solution for the decay of cesium

137. Since the decay and generation is a 1 to 1 ratio the conservation of mass (the

sum of the two isotopes) can be used to validate the kernel. The sum of the two

isotopes for all time is equal to the initial amount of cesium 137 (482 g) validating

the kernel. The conservation of mass is the green line on the graph.

A second case was modeled to further validate ’RadioactiveDecay‘ with dif-

fusion. The second case was the decay of radionuclide A to radionuclide B with

diffusion. All of A will beta decay to B making both p and mda/md equal to one.

The necessary condition and properties for radionuclides A and B can be seen in

Table 3.11. The geometry will be the canister described earlier except there will be

not be a stainless steel outer layer. The geometry can be seen in Figures 3.6, 3.7, and

3.8. The boundarys of the canister have a constant concentration of zero. The resu-

alts can be seen in Figure 3.11. The dark blue solid line is the mass of radionuclide

A in the canister, the dashed line is the amount of mass released of radionuclide

A, the red solid line is the mass of radionuclide B in the canister, and the dashed

line is the amount of mass released of radionuclide B. Again the green line is the

sum (released + contained). By the law of conservation of mass, the sum should

be equal to the initial mass validating the kernel.

Adaptive Time Step Validation

To validate ’AverageTimeStepForDiffusion‘ postprocessor a simple diffusion

simulation was set up. The solute is a 10 by 10 micrometer block, the left boundary

interface has a constant solution concentration of 1. The solutions diffusion coef-

ficient in the solute is 25 µm2

s
. The change in concentration per time step will be

set to 0.05 percent using AverageTimeStepForDiffusion object. The graph shows that
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when using AverageTimeStepForDiffusion over time change in concentration falls

away from the user’s input. The graph shows that it does stay close, but as the

concentration starts to level out (approach equilibrium) the postprocessor is not as

effective. The postprocessor did cut the computational demand down significantly,

though. When using a constant time step the simulation took 350 steps to reach 90

percent of possible saturation. The run time for this was 2 minutes and 9 seconds

(129 seconds). When using ’AverageTimeStepForDiffusion‘ the simulation took 20

steps to reach 90 percent of possible saturation. The run time for this was 12 sec-

onds. By using this postprocessor the run time was cut down by 90 percent. In a

simple diffusion simulation case, the difference in run time might only be minutes

but in a large case the difference could be hours. The concentration profiles can

be seen in Figure 3.13 (the concentration is normalized by the possible saturation).

The concentration profiles agree and are within tolerance.

Effective Properties Validation

Effective properties are a key method to the design and development of TREX.

This will allow TREX to model engineering scale simulations while still capturing

the microstructure dependent properties. With this in mind, many tests were done

to validate the used methods. Since the asymptotic expansion homogenization

method is the most versatile it is implemented in TREX. The other two methods

(Eq. 2.43, 2.45, and 2.47), though, will be used to validate the asymptotic expansion

homogenization method (Eq. 2.31). The effective diffusion coefficients, for five

different material structure, found using Equations 2.31, 2.43, 2.45, or 2.47 (when

applicable) will be compared. These simulations will all be a 10 by 10 micrometer

block, 1D, and steady state. To achieve 1D on a 2D surface the boundary on the left

will have a constant value of one. The diffusion coefficient in the bulk is 0.1 µm2

s

and in the grain boundary is 10 µm2

s
. Each preferred path will be tested for volume

fractions of the fast path ranging from 0 to 0.5 by 0.1. The different structures can
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be seen in Figure 3.14. The results can be seen in Figure 3.15. The solution for solid

lines were found using Equation 2.31, ’X’ markers were found using Equation 2.43,

and ’O‘ markers were found using Equation 2.45 or 2.47.

It can be seen that these three methods strongly agree. After comparing the

effective diffusion coefficient it is important to test how effective they are. For this

validation, only the asymptotic expansion homogenization method will be used

(again because it is the most versatile). The concentration profiles of heteroge-

neous and homogeneous material will be compared. The heterogeneous material

will be the structures shown in Figure 3.14. The homogeneous material will be

the equivalent effective diffusion coefficient found from AEH. It is important to

note that one of the assumptions of the AEH method is the homogeneous (x) to

heterogeneous (y) scale is very small (1 << ε = x/y). To model such detail is

computationally demanding. Because of this, these test will only be done for a

scale of one (ε = 1). It will be shown later the effects of not having a small scale.

For the validation cases 1D and 2D were tested. The domain was 10 by 10 mi-

crometer block, for both the microstructure and homogenized body domain. For

1D the diffusion coefficient in the grain boundary (fast path) was 10 µm2

s
, the Bulk

(slow path) was 0.1 µm2

s
. The Initial concentration of the solute in the solution was

0 percent. The left boundary then had a constant concentration of one. For 2D

isotropic and anisotropic were tested, the initial concentration of the solute in the

solution was 100 percent and the four boundaries had a constant concentration of

zero. This was done because the wasteform case will model concentration being

released from the waste. The diffusion coefficients were the same as 1D, except

for 2D anisotropic, the grain boundary in the y direction was 0.01 µm2

s
. The results

can be seen in Figures 3.16 - 3.30. The concentration profiles for the homogeneous

1D and 2D isotropic structures lined up well with the concentration profiles of the

heterogeneous 1D and 2D isotropic structures. The concentration profiles for the

homogeneous 2D anisotropic structures lined up well with the concentration pro-
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files of the heterogeneous 2D anisotropic structures, too, except for the structure

with parallel paths parallel to the x-axis (Fg. 3.26). This error is caused by the small

scale. To validate this the size of the homogenized body domain was changed. Due

to computational limits, two domains were tested, one with a larger scale (scale =

2) (Fg. 3.31) and the other with a smaller scale (scale = 0.5) (Fg. 3.32). The error

of the large, original and small scale were graphed. It can be seen that as the scale

decreased the error decreased. This would be expected since the equation assumes

the scale is very small (1 << ε = x/y). Since this method will be used to apply

effective properties found from the microstructure to the engineering scale simula-

tion the scale will be extremly small. The ratio of the microstructure to engineering

scale will roughly be ε = 1/106. To have the homogenous and heterogeneous con-

centration profiles to agree the smallest scale was ε = 1/2, but most concentration

profiles agreed with a scale of ε = 1/1.
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Table 3.1 Added Kernel objects

Name Description

CylinderHeatSource Heat generation term, confined to a cylindrical
shape.

HomogenizationDiffusionCoefficient Asymptotic Homogenization method for an
isotropic diffusion coefficient.

HomogenizationAnisoDiffusionCoefficient Asymptotic Homogenization method for an
anisotropic diffusion coefficient.

RadioactiveDecay Radioactive decay model.
RadioactiveGeneration Radioactive daughter generation model.

Table 3.2 Added Aux Kernel objects

Name Description
FluxAux Calculates flux from concentration and an isotropic diffusion coefficient.
FluxAnisoAux Calculates flux from concentration and an anisotropic diffusion coefficient.

Table 3.3 Added Initial Condition objects

Name Description
BoundingBlockIC Creates an initial value on given blocks.
BoundingCircleIC Creates an initial value in a given circle.
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Table 3.4 Added Material objects

Name Description

AnisoDiffusionCoefFromPostprocessor Defines a diffusion coefficient from postprocessor
values.

ArrheniusDiffusionCoef Generic Diffusion Coefficient described by the Ar-
rhenius equation.

ArrheniusAnisoDiffusionCoef Generic Anisotropic Diffusion Coefficient de-
scribed by the Arrhenius equation.

BoxDiffusionCoef Restricts diffusion coefficients to a box.

CalcDiffusionCoef Creates diffusion coefficient from flux and concen-
tration gradient.

GenericTensorConstantMaterial Creates an anisotropic generic material property.

GrainMaterialDiffusion Creates a diffusion coefficient from a map of the
microstructure.

GrainAnisoMaterialDiffusion Creates an anisotropic diffusion coefficient from a
map of the microstructure.

GrainMaterialThermal Creates thermal properties from a map of the mi-
crostructure (Only needed for different phases).

LineGrains Creates a ’microstructure‘ with parallel lines.
SquareGrains Creates a ’microstructure‘ with square grains.
HexagonGrains Creates a ’microstructure‘ with hexagonal grains.
CircleGrains Creates a ’microstructure‘ with circle grains.

WasteContainer Creates thermal properties and diffusion proper-
ties for borosilicate glass container.

WasteAnisoContainer Creates thermal properties and anisotropic diffu-
sion properties for borosilicate glass container.

DiffusionProperties* Diffusion coefficient of different materials.
ThermalProperties* Thermal properties of different materials.

Table 3.5 Added Postprocessor objects

Name Description

AverageTimeStepForDiffusion Finds a future time step for diffusion that will
change the concentration by a prescribed amount.

HomogenizedDiffusionCoefficient Asymptotic Homogenization method for an
isotropic diffusion coefficient.

HomogenizedAnisoDiffusionCoefficient Asymptotic Homogenization method for an
anisotropic diffusion coefficient.

Table 3.6 Added Action objects

Name Description
PointValueOnLineAction Finds the value of certain points on a line.

Table 3.7 Added Executioner objects

Name Description
TransientPPEnd Creates a transient executioner that ends on a given postprocessor criteria.
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Table 3.8 Added MultiApp objects

Name Description
SteadyMultiApp Runs a steady state TREX app.

Table 3.9 Thermal Material Properties

Properties Borosilicate Glass Stainless Steel
Specific Heat (J/kg −K) 467.7 + 1.2057 · T 477
Thermal Conductivity (W/m−K) 0.95 14.9

Density (kg/m3) 2027.4 7900

Table 3.10 Heat Output

Years Heat Output (W/Canister) Heat Output (W/m3)
1 730 1000
5 414 567.12
10 257 352.05
100 39.2 53.699

Table 3.11 ’RadioactiveGeneration‘ case properties

Radionuclide Initial Mass Half Life Diffusion Coefficient
A 482 g 30.1 years 0.00055 m2

y (1.7428 · 10−5mm2

s )
B 0 g – 0.00065 m2

y (2.0597 · 10−5mm2

s )
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Figure 3.1 Multi Phase Diffusion Coefficient

Figure 3.2 Multi Grains

Figure 3.3 Diffusion Validation a: initial and boundary conditions
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Figure 3.4 Diffusion Validation a: Results

Figure 3.5 Diffusion Validation b: Results
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Figure 3.6 Side View of Canister

Figure 3.7 Top View of Canister
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Figure 3.8 Canister

Figure 3.9 Thermal Validation: Results
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Figure 3.10 Radionuclide Decay Validation

Figure 3.11 Radionuclide Decay, Generation and Diffusion Validation
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Figure 3.12 AverageTimeStepForDiffusion Validation

Figure 3.13 AverageTimeStepForDiffusion Concentration Validation

Figure 3.14 Preferred Paths Structures

46



Figure 3.15 1D Validation

Figure 3.16 Structure One 1D Isotropic Validation
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Figure 3.17 Structure Two 1D Isotropic Validation

Figure 3.18 Structure Three 1D Isotropic Validation
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Figure 3.19 Structure Four 1D Isotropic Validation

Figure 3.20 Structure Five 1D Isotropic Validation
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Figure 3.21 Structure One 2D Isotropic Validation

Figure 3.22 Structure Two 2D Isotropic Validation
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Figure 3.23 Structure Three 2D Isotropic Validation

Figure 3.24 Structure Four 2D Isotropic Validation
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Figure 3.25 Structure Five 2D Isotropic Validation

Figure 3.26 Structure One 2D Anisotropic Validation
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Figure 3.27 Structure Two 2D Anisotropic Validation

Figure 3.28 Structure Three 2D Anisotropic Validation
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Figure 3.29 StructureFourTwoDACValidation

Figure 3.30 Structure Five 2D Anisotropic Validation

54



Figure 3.31 Structure One Small Domain 2D Anisotropic Validation

Figure 3.32 Structure One Large Domain 2D Anisotropic Validation
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Figure 3.33 Structure One Small Domain 2D Anisotropic Validation Error

Figure 3.34 Structure One Original Domain 2D Anisotropic Validation Error
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Figure 3.35 Structure One Large Domain 2D Anisotropic Validation Error

57



[./xyCylinder] # The reference name
type = CylindricalHeatSource # The name of the kernel
variable = temp # The name of the variable this kernel acts on
value = 2 # The value of the volumetric heat generation term, if ap-

plicable
function = power function # The function of the volumetric heat generation term,

(can be a function of time, position, etc..)
radius = 2 # Radius of the cylinder, units are in the same units as the

mesh
height = 2.95 # Height of the cylinder, units are in the same units as the

mesh
normal axis = ’z’ # The axis parallel to the height OR normal = ’0 0 1’
origin = ’0 0 1.475’ # The orgin of the center of the cylinder

[../] # End of entry

Input 3.1 CylindricalHeatSource Input

[./cesiumDecay] # The reference name
type = RadioactiveDecay # The name of the kernel
variable = Cs 137 conc # The name of the variable this kernel acts on
half life = 65008656 # The half life of Cesium in seconds (must be in the same

units as the rest of the input)
[../] # End of entry

Input 3.2 RadioactiveDecay Input

[./bariumGeneration] # The reference name
type = RadioactiveGeneration # The name of the kernel
variable = Ba 137 conc # The name of the variable this kernel acts on
coupled = Cs 137 conc # The name of the variable this kernel acts on
half life = 65008656 # The half life of Cesium in seconds (must be in the same

units as the rest of the input)
mass ratio = 1 # Since cesium beta decays to barium the mass ratio is one
decay chain ratio = 1 # Since cesium fully decays to barium the decay chain ra-

tio is one (cesium does first decay to metastable barium
but the half life is small)

[../] # End of entry

Input 3.3 RadioactiveGeneration Input
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[./CylRegionDiffusionCoef] # The reference name
type = AnisoArrheniusDiffu-

sionCoefFromPostprocessor
# The name of the kernel

diffusion coef = ‘D’ # The name of the material property referenced by other
objects

D xx = ‘sim1 D xx sim2 D xx’ # The name of the postprocessors with the value of the
D xx (The first value is the center, the second is the bound-
ary)

D xy = ‘sim1 D xy sim2 D xy’ # The name of the postprocessors with the value of the
D xy

D xz = ‘sim1 D xz sim2 D xz’ # The name of the postprocessors with the value of the
D xz

D yx = ‘sim1 D yx sim2 D yx’ # The name of the postprocessors with the value of the
D yx

D yy = ‘sim1 D yy sim2 D yy’ # The name of the postprocessors with the value of the
D yy

D yz = ‘sim1 D yz sim2 D yz’ # The name of the postprocessors with the value of the
D yz

D zx = ‘sim1 D zx sim2 D zx’ # The name of the postprocessors with the value of the
D zx

D zy = ‘sim1 D zy sim2 D zy’ # The name of the postprocessors with the value of the
D zy

D zz = ‘sim1 D zz sim2 D zz’ # The name of the postprocessors with the value of the
D zz

radius = 0.2806 # The value of the radius
z = 1.5 # The distance of the z from the center (if cylinder is in yz

plane x = height)
position from center = ‘0 0 0’ # The distance of the center of the shape from the center

of the axis
[../] # End of entry

Input 3.4 Cylinder Region Diffusion Coefficient Input
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[./RectRegionDiffusionCoef] # The reference name
type = AnisoArrheniusDiffu-

sionCoefFromPostprocessor
# The name of the kernel

diffusion coef = ‘D’ # The name of the material property referenced by other
objects

D xx = ‘sim1 D xx sim2 D xx’ # The name of the postprocessors with the value of the
D xx (The first value is the center, the second is the bound-
ary)

D xy = ‘sim1 D xy sim2 D xy’ # The name of the postprocessors with the value of the
D xy

D xz = ‘sim1 D xz sim2 D xz’ # The name of the postprocessors with the value of the
D xz

D yx = ‘sim1 D yx sim2 D yx’ # The name of the postprocessors with the value of the
D yx

D yy = ‘sim1 D yy sim2 D yy’ # The name of the postprocessors with the value of the
D yy

D yz = ‘sim1 D yz sim2 D yz’ # The name of the postprocessors with the value of the
D yz

D zx = ‘sim1 D zx sim2 D zx’ # The name of the postprocessors with the value of the
D zx

D zy = ‘sim1 D zy sim2 D zy’ # The name of the postprocessors with the value of the
D zy

D zz = ‘sim1 D zz sim2 D zz’ # The name of the postprocessors with the value of the
D zz

x = 1 # The distance of the x from the center
y = 2 # The distance of the y from the center
z = 1.5 # The distance of the z from the center
position from center = ‘0 0 0’ # The distance of the center of the shape from the center

of the axis
[../] # End of entry

Input 3.5 Rectangular Region Diffusion Coefficient Input

[./D B SiCa] # The reference name
type = DiffusionSiliconCarbide # The name of the kernel

diffusion coef = ‘D B SiCa’ # The name of the material property referenced by other
objects

T = ‘temp’ # The temperature of the mesh
[../] # End of entry

Input 3.6 ’DiffusionProperties‘ of Silican Carbide Input

[./Thermal StSt] # The reference name
type = ThermalStainlessSteel # The name of the kernel
T = temp # The temperature of the mesh

[../] # End of entry

Input 3.7 ’ThermalProperties‘ of Stainless steel Input
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[./PointValueOnLine] # Must be the name of as the action! This cannot change,
because type is not needed

variable = u # The variable of the kernel
point1 = ’0 0.5 0’ # The starting point
point2 = ’10 0.5 0’ # The ending point
num out per unit 100 # The number of points on the line between point1 and

point2
[../] # End of entry

Input 3.8 ’PointValueOnLineAction‘
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CHAPTER 4

RESULTS

After developing these objects, an analog case was developed to show the

capability of these tools. Even though Hollandite is in the early stages of develop-

ment some modeling details are known that can help design a great analog case.

As previously discussed some of the key modeling details are the diffusion coeffi-

cient will be path, phase, direction and temperature dependent and there will be

decay heat causing a temperature gradient (at least early on). To capture these key

details a multiscale simulation of Cesium diffusing through silicon carbide with

a second phase precipitation of graphite was simulated. Again Cesium was cho-

sen because it is an important radioisotope in nuclear waste and is more mobile

when released into the environment. Silicon Carbide and Carbon were chosen as

the solutes because there was extensive data on Cesium diffusing through Silicon

Carbide and Carbon. Since Silicon Carbide is not the same as hollandite for all

properties some silicon carbide properties were created to exemplify the capabil-

ity of the created tools.

To capture all of these details, the analog case is defined as followed. There

will be one main simulation with two sub-simulations. The main simulation will

simulate the entire wasteform (silicon carbide in our case) including the canister.

The canister will be a stainless steel cylinder with an inner and outer diameter of

0.56 m and 0.61 m and an inner and outer height of 2.95 m and 3.00 m, respec-

tively. This can be seen in Figures 3.6, 3.7, and 3.8. In these Figures, orange is the
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wasteform (Silicon Carbide and Carbon) and silver is the material of the canister

(stainless steel in this case). The stainless steel is modeled because some of the ce-

sium may decay in the stainless steel before being released into nature. Effective

properties will be used for the wasteform. The thermal properties of stainless steel

and the properties of the wasteform used to find the effective properties will be

found from literature and can be seen in Figure 4.2, Figure 4.3, and Figure 4.4. The

decay heat function and boundary condition for the case will be the same as the

thermal model validation case. The values can be seen 3.10. The concentration is

also computed in the main simulation. The cesium will also decay, making the con-

centration decrease over time. For this simulation, cesium 134, 136, and 137 will

be simulated with half-lives of 2.06 years, 13 days, and 30.1 years, respectively. For

the intial ammount of cesium, a typical waste canister contains 1.5 fuel assemblies.

From a tabel in Nuclear reactor physics [18] the discharge of each isotope can be

found as a Ci per tonne of heavy metal. Knowing a PWR assembly contains 0.25

tonne of heavy metal [1], the initial amount of the isotopes can be found. They are

shown in Table 4.2. Since cesium is highly mobile in the environment, it is assumed

to be released immediately from the boundary. Thus, the problem is assumed to

be diffusion controlled, making the boundary of the canister have a constant con-

centration of zero. The diffusion coefficient for cesium in stainless steel is an Ar-

rhenius equation found in the literature [12]. The diffusion coefficient for cesium

in the wasteform is a linear fit to the effective diffusion coefficient, found from the

two sub-simulations. The two sub-simulations simulate microstructure diffusion

of a region of the wasteform. The first region is at the center of the wasteform (Sub

Simulation 1), and the second region is at the edge of the wasteform (Sub Simu-

lation 2). This can be seen in Figure 4.5. The sub simulation will be executed at

the beginning of each main app time step. The microstructure of the wasteform is

steady and will not change over time. Two microstructures were chosen to show

the ability of modeling different microstructures in the same simulation. While
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these two microstructure are not the microstructures of the wasteform (or silicon

carbide), they were chosen because it is typical of a material under a large tem-

perature gradient. To replicate anisotropic diffusion with grain boundaries, some

diffusion coefficients were assumed based on the known bulk diffusion coefficient

of cesium in silicon carbide and graphite. The diffusion coefficient for the sub-apps

are in the form of the Arrhenius equation. Figure 4.6 shows the diffusion coeffi-

cients used versus temperature. The sub apps then use the Arrhenius equation

to find the diffusion coefficient of the microstructure region. The temperature for

the Arrhenius equation is supplied from the main app. Since the microstructure is

small compared to the main app, there is not a notable temperature gradient over

the microstructure, making it possible to use the single temperature value at the

point of the region. The Asymptotic Expansion Homogenization method is then

used to calculate the effective diffusion coefficient. The effective diffusion coeffi-

cient of each sub-app is then pushed back to be used in the main app.

Figure 4.7 shows the mass of cesium 134 contained over time. The dark blue

dashed line shows the mass of Cesium 134 in the Wasteform (orange in Figure 3.8)

and the orange dashed line shows the mass in the just the stainless steel (silver in

Figure 3.8). The red line shows the mass in the waste and stainless steel (orange

and silver in Figure 3.8). The mass of cesium 134 in the stainless steel, always being

zero, shows that Cesium was not released from the wasteform and therefore none

has been released from the canister into nature. This can also be seen in Figure 4.8,

which is a plot of the mass of Cesium released over time. In this figure, the dark

blue line shows the mass released from the wasteform (silver in Figure 3.8) into the

canister (orange in Figure 3.8). The orange dashed line shows the mass released

from the canister (orange in Figure 3.8) into nature. The mass released is found

by knowing the release of barium and cesium at each time step is equal to the

sum of the change in barium and cesium (ReleasePerTimeStep = ∆Cs+∆Ba). The

amount of cesium (or barium) released is equal to the percent of cesium (or barium)
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in the canister times the release of both (ReleasePerT imeStepCs = Cs/(Cs+ Ba) ·

ReleasePerT imeStep). The total release at some time is then equal to the previous

amount released plus the current time steps release (ReleaseCs,i = ReleaseCs,i−1 +

ReleasePerT imeStepCs,i). Again, both lines are zero, further confirming that no

cesium has been released into the canister or even into nature. This is what would

be expected, too. The diffusion coefficient of cesium in silicon carbide and graphite

is extremely small, making diffusion extremely slow; the half-life of cesium 134

is also small, making the cesium decay quickly. The graphs are plotted in Mass

versus time. The same thing can be seen for cesium 136 (Fig. 4.9, 4.10) and 137

(Fig. 4.11, 4.12).

Another analog case was developed with iodine 129, 131, and 132. This case

is exactly the same, but iodine is diffusing through the silicon carbide graphite

waste. Figure 4.13 shows the diffusion coefficients used versus temperature. Io-

dine was chosen because the diffusion coefficient is larger than cesium’s diffusion

coefficient in silicon carbide and graphite and iodine 129 has a very large half life.

The initial amount of the isotopes can be found; they are shown in Table 4.3. For

this simulation, iodine 129, 131, and 132 will be simulated with half-lives of 1.59e7

years, 8.04 days, and 2.285 hours, respectively.

The resualts were plotted the same way as the previous case and can be seen

in Figures 4.14 through 4.19. It can be seen iodine 129 is released (Fg. 4.15). It

can also be seen that some of iodine 131 is released from the wasteform but it is

not released from the canister (Fg. 4.17). It all decays in the canister before being

released.

The previous analog cases modeled different radionuclides (cesium and io-

dine) decaying and diffusing through a multiphase wasteform (Silicon Carbide

and Graphite) in a stainless steel canister. A final case was created to model hollan-

dite ceramic wasteform with current known properties. This case will be a worse

case scenario because of two things. The first is, the release of Cesium and Barium
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will not just depend on diffusion but will also depend on a voltage. Cesium or Bar-

ium will be diffusing as positive ions, therefore, to be released from the hollandite

it must be balanced by something to account for the change in the charge. This case

will be a worse case because it will assume the are the necessary items to balance

this change in charge. The second reason is this case, similar to the analog case,

will assume the cesium will be released once it reaches the boundary. The geom-

etry and boundary conditions of the cesium are the same as the previous analog

cases. Since the hollandite will have a higher waste loading the heat per canister

will be higher making the temperature in hollandite higher than the temperature

in borosilicate glass (this is why the thermal profile from the analog cases cannot be

used). To account for this the heat from the decay of cesium 134 and 137 per gram

was found. Figure 4.1 shows the heat output of the savannah river site borosilicate

glass case and the heat output of a similar cesium loading case only accounting for

the decay of cesium 134 and 137. The heat outputs are similar showing that only

accounting for the decay of cesium 134 and 137 is a valid argument. The decay heat

output can be seen in Table 4.4. In the future when other phases/radionuclides are

modeled the decay heat of the other radionuclides can be accounted for producing

a more accurate thermal model. The boundary of the canister was set to convection

with h = 50W/m2 − K at T∞ = 300K. Only the wasteform (the orange in Figure

3.8) in the simulations were changed. Therefore, only the material properties (such

as specific heat, thermal conductivity, density, initial cesium concentration, and

diffusion coefficient) and microstructure had to be changed. The specific heat and

thermal conductivity for hollandite were found in the literature and can be seen in

Figure 4.2 and Figure 4.3 [4]. The density of hollandite is 3920kg/m3. Knowing the

initial composition of hollandite (Cs1.33Ga1.33Ti6.67O16) and the density, the initial

concentration of cesium can be found.

C = ρ
MCs

MHollandite

= 374.68
kg

m3
(4.1)

where MCs equals 1.33 · 135.99 and MHollandite equals 1.33 · 135.99 + 1.33 · 69.72
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+ 6.67 · 204.3 + 16 · 16. The amount of each cesium isotopes discharged from a

reactor per ton of heavy metal is known and can be seen in Table 4.5 [18]. After

the waste is discharged from a reactor, it is cooled for five years before putting it in

the ceramic. The amount of cesium discharged will be different than the amount

of cesium isotopes in the wasteform because of decay while cooling. The amount

per tonne of heavy meatal and percent after five years can be seen in Table 4.5. The

table also shows the amount initially in the wasteform, which is the concentration

found earlier multiplied by the percent and the volume of the waste to get mass.

For the selected composition, the initial barium concentration is 0. The diffusion

coefficient for cesium and barium in hollandite were found from ionic conductivity

tests. The ionic conductivity temperature dependence can be described by the

Arrhenius equation [20].

σ = σ0exp

(
−Ea
kT

)
(4.2)

where σ0 is the conductivity preexponential, Ea is the activation energy in eV, k

is Boltzmann’s constant (8.617 · 10−5 eV/K) and T is the absolute temperature. As

previously discussed, the diffusion coefficient can be described by the Arrhenius

equation (Eq. 2.19). The relationship of ionic conductivity and diffusion can be

found through the Nernst-Einstein relation.

D0 =
RT

z2
i F

2

M

ρ
σ0 (4.3)

Where D0 is the diffusion coefficient preexponential, R is the gas constant (8.3145

J/(Kmol)), T is the absolute temperature at 298 K, z is the charge number of the

ion (+1 for Cs, and +2 for Ba), F is Faraday’s constant (9.6485 ·104 Coulomb/mol), M

is molar mass (1731.4 g/mol for hollandite), ρ is density (3.92 g/cm3) and σ0 is the

conductivity preexponential S/cm) [20]. Conductivity tests were done on many

different compositions of hollandite. As previously described, hollandite forms

long rod-like features in the microstructure. Xu et al. found that as the cesium

concentration increased the ring size and rod length increased. The crystal struc-
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tures involve tunnels, along which the Cs would reside and provides for highly

anisotropic preferred diffusion in the tunnel direction. The small grains will be

dominated by grain boundary diffusion because the tunnels will be frequently in-

terrupted, causing the tunnels to be less effective. The large grains will be domi-

nated by bulk because the tunnels will move the ions further without being inter-

rupted by grain boundaries. Therefore, when these rods are large, the diffusion

will be dominated by bulk diffusion; when they are small, the diffusion will be

dominated by the grain boundary. The high cesium concentration conductivity

was then used to approximate the bulk diffusion coefficient (due to large grains)

and the low cesium concentration conductivity (small grain) was used to approx-

imate the grain boundary diffusion coefficient. The diffusion coefficient of cesium

and barium in hollandite can be seen in Table 4.6 and Figure 4.20. The microstruc-

ture used will be a general 3D microstructure created in the phase field module of

MOOSE. The microstructure will have the same ratio of bulk versus total area as

hollandite. This ratio can be found from ρa/ρt (0.84 for this composition) where ρa

is the actual density and ρt is the theoretical density.

The resualts were plotted the same way as the previous cases and can be seen

in Figures 4.21 through 4.27. The temperature profile can be seen in Figure 4.30.

This case also included graphs of the mass of barium. It can be seen that, similar

to the silicon carbide analog cases, cesium was not released from the canister. The

same simulation but without a stainless steel canister can be seen in Figures 4.31

through 4.39
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Table 4.1 Thermal Properties of Analog Case

Material Specific Heat J/(kgK) Thermal Conductivity W/(mK) Density kg/m3

SiC 670− 1100 100− 300 3210

C 750 25 1600

S S 477 14.9 7900

Table 4.2 Cesium Discharge

Isotope Ci per THM Ci per Canister g per Canister g per m3

Cs 134 2.718 · 105 1.02 · 105 78.703 108.69

Cs 136 6.962 · 104 2.61 · 104 0.354 0.48818
Cs 137 1.115 · 105 4.18 · 104 482.3 666.07

Table 4.3 Iodine Discharge

Isotope Ci per THM Ci per Canister g per Canister g per m3

I 129 3.2190 · 10−2 1.207 · 10−2 69.259 95.646

I 131 1.028 · 106 3.855 · 105 3.1096 4.2943

I 132 1.511 · 106 5.666 · 105 0.054537 0.075315

Table 4.4 Heat Output of Final Case

Time (years) Power (W )
0 99782.256
0.82136 137100.914
8.2136 68202.731
82.136 11421.279
273.785 136.365

Table 4.5 Cesium Discharge and Initial Mass in Hollandite

Isotope Discharged
(g/tHM ) Half-Life After 5 years

(g/tHM )
Percent
(%)

Initially in Hol-
landite (kg)

Cs 134 271800 2.06 y 50535.216 33.711 92.204

Cs 136 69620 13 days 0 0 0

Cs 137 111500 30.1 y 99373.339 66.289 181.31

Table 4.6 Preexponential and activation energy in Hollandite

Isotope Bulk m2/s GB m2/s

Cs 2.0637 · 10−8exp

(
−0.803

kT

)
2.0637 · 10−8exp

(
−0.976

kT

)
Ba 5.159 · 10−9exp

(
−0.803

kT

)
5.487 · 10−9exp

(
−0.976

kT

)
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Figure 4.1 Heat Output

Figure 4.2 Specific Heat
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Figure 4.3 Thermal Conductivity

Figure 4.4 Thermal Diffusivity
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Figure 4.5 Analog Case

Figure 4.6 Cesium Diffusion Coefficients
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Figure 4.7 Cesium 134 Mass Contianed in SiC-C Phase

Figure 4.8 Cesium 134 Mass Released from SiC-C Phase
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Figure 4.9 Cesium 136 Mass Contianed in SiC-C Phase

Figure 4.10 Cesium 136 Mass Released from SiC-C Phase
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Figure 4.11 Cesium 137 Mass Contianed in SiC-C Phase

Figure 4.12 Cesium 137 Mass Released from SiC-C Phase
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Figure 4.13 Iodine Diffusion Coefficients

Figure 4.14 Iodine 129 Mass Contianed in SiC-C Phase
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Figure 4.15 Iodine 129 Mass Released from SiC-C Phase

Figure 4.16 Iodine 131 Mass Contianed in SiC-C Phase
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Figure 4.17 Iodine 131 Mass Released from SiC-C Phase

Figure 4.18 Iodine 132 Mass Contianed in SiC-C Phase
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Figure 4.19 Iodine 132 Mass Released from SiC-C Phase

Figure 4.20 Diffusion Coefficient in Hollandite
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Figure 4.21 Cesium 134 Mass Contianed in Hollandite

Figure 4.22 Cesium 134 Mass Released from Hollandite
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Figure 4.23 Barium 134 Mass Contianed in Hollandite

Figure 4.24 Barium 134 Mass Released from Hollandite
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Figure 4.25 Temperature Profile of Cesium 134 Case

Figure 4.26 Cesium 137 Mass Contianed in Hollandite
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Figure 4.27 Cesium 137 Mass Released from Hollandite

Figure 4.28 Barium 137 Mass Contianed in Hollandite
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Figure 4.29 Barium 137 Mass Released from Hollandite

Figure 4.30 Temperature Profile of Cesium 137 Case
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Figure 4.31 Cesium 134 Mass Contianed in Hollandite No Stainless Steel

Figure 4.32 Cesium 134 Mass Released from Hollandite No Stainless Steel
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Figure 4.33 Barium 134 Mass Contianed in Hollandite No Stainless Steel

Figure 4.34 Barium 134 Mass Released from Hollandite No Stainless Steel
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Figure 4.35 Temperature Profile of Cesium 134 No Stainless Steel Case

Figure 4.36 Cesium 137 Mass Contianed in Hollandite No Stainless Steel
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Figure 4.37 Cesium 137 Mass Released from Hollandite No Stainless Steel

Figure 4.38 Barium 137 Mass Contianed in Hollandite No Stainless Steel
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Figure 4.39 Barium 137 Mass Released from Hollandite No Stainless Steel

Figure 4.40 Temperature Profile of Cesium 137 No Stainless Steel Case
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CHAPTER 5

CONCLUSIONS

5.1 CONCLUSION

The purpose of these analog simulations was to demonstrate the developed

tools and methods for analyzing a possible wasteform. Many kernel, material, and

postprocessor objects have been created for this. These tools can help increase the

wasteforms ability to contain the radionuclides by providing useful results. By us-

ing effective properties, the developed tools are able to predict useful and accuret

results. To show the final hollandite case was simulated only using the fastest path.

The results can be seen in Figures 5.1 through 5.3. These results show that using

only the fast path the model inaccurately predicts Cesium and Barium release.

These tools and methods were then used to analyze hollandite at its current stage.

With the current data, it can be seen that hollandite is a promising wasteform. As

predicted, it contained the cesium and it held 400 times more cesium than the glass

wasteforms.

5.2 FUTUREWORK

The tools added to MOOSE through TREX is a great launching pad for mod-

eling nuclear waste. Many of the fundamental phenomena for modeling nuclear

waste have been included or improved in TREX. While these phenomena accu-

rately describe the physics, there are three main ways the proposed wasteform
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model can be refined. The first is to add more physics to model, the second is to

have more data on the wasteform, and the third is to model different scenarios. .

Different physics that could be added to refine the model are microstructure

modeling, leaching, and concentration release at the boundaries. Microstructure

modeling is most important for the initial microstructure of the wasteform. The

alternative (or done together) is to use SEM images to recreate the microstructure

(this will be discussed more). The microstructure may not change after fabrication

but the benefit of modeling it is the ability to model variations. To model the mi-

crostructure, the phase field module could be used as a starting point. As of now,

MOOSE can model UO2. Secondly, leaching could be added to sharpen the model.

When the waste is being stored, water could seep into the wasteform and cause

leaching. Depending on the canister and wasteform, the amount of an isotope re-

leased could increase. Lastly, modeling the concentration release at the boundary

could decrease the amount of an isotope released because the worse case scenario

is currently being modeled. All the radionuclide is released when it reaches the

boundary. An equation from different tests could be developed to find a better

function for concentration release at the boundary.

More data on the wasteform that could help is SEM images and thermal prop-

erties. To model the microstructure of the wasteform from images, layered images

of the microstructure would be needed. Layers would be needed to recreate the

microstructure in 3D. MOOSE already has a method for using images as initial

conditions. As of now, thermal properties used were from a different composition

of hollandite; having thermal conductivity and specific heat could help improve

the model.

The different scenarios that could be modeled are different types of canisters,

canisters with imperfections and no canister (like the last case done). Since there

was no cesium release in this model when there was no canister it was not impor-

tant to model different canisters with imperfections. If the future refined models
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release cesium when there is no canister it would be helpful to test the amount

cesium released if a canister had a crack or a chip in it.
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Figure 5.1 Cesium 137 Mass Contianed in Hollandite Fast Path

Figure 5.2 Cesium 137 Mass Released from Hollandite Fast Path

93



Figure 5.3 Barium 137 Mass Contianed in Hollandite Fast Path

Figure 5.4 Barium 137 Mass Released from Hollandite Fast Path
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