
University of South Carolina
Scholar Commons

Theses and Dissertations

2016

Numerical Studies Of Arterial Tissue Failure
Xiaochang Leng
University of South Carolina

Follow this and additional works at: http://scholarcommons.sc.edu/etd

Part of the Mechanical Engineering Commons

This Open Access Dissertation is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.

Recommended Citation
Leng, X.(2016). Numerical Studies Of Arterial Tissue Failure. (Doctoral dissertation). Retrieved from http://scholarcommons.sc.edu/
etd/3752

http://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F3752&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3752&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3752&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarcommons.sc.edu%2Fetd%2F3752&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd/3752?utm_source=scholarcommons.sc.edu%2Fetd%2F3752&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd/3752?utm_source=scholarcommons.sc.edu%2Fetd%2F3752&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:SCHOLARC@mailbox.sc.edu


 
 

NUMERICAL STUDIES OF ARTERIAL TISSUE FAILURE 
 

by 

 

Xiaochang Leng 

 

Bachelor of Science 

Wuhan University of Technology, 2008 

 

Master of Science 

Wuhan University of Technology, 2011 

 

 

 

 

Submitted in Partial Fulfillment of the Requirements 

 

For the Degree of Doctor of Philosophy in 

 

Mechanical Engineering 

 

College of Engineering and Computing 

 

University of South Carolina 

 

2016 

 

Accepted by: 

 

Xiaomin Deng, Major Professor 

 

Susan M. Lessner, Committee Member 

 

Michael A. Sutton, Committee Member 

 

Tarek Shazly, Committee Member 

 

Lacy Ford, Senior Vice Provost and Dean of Graduate Studies

 



ii 

© Copyright by Xiaochang Leng, 2016 

All Rights Reserved. 



iii 
 

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my supervisor Prof. Xiaomin Deng for 

giving me the opportunity to be a part of his laboratory. He provided me with the scientific 

advice and the enthusiasm without which this work could not be possible. I am also very 

grateful to Prof. Susan M. Lessner for her support and valuable suggestions during the PhD 

program. I wish to further thank my other two committee members, Prof. Michael A. 

Sutton and Prof. Tarek Shazly for valuable advices and precious time. 

I am indebted to my long-term work partner, Dr. Boran Zhou and Lindsey Davis, 

who have taken enormous efforts to perform the biomechanical tests for arterial tissue 

failure. Many thanks also go to Dr. Yingchao Yang from Rice University, who conducted 

the micromechanical tests for this study. I must acknowledge Dr. Xin Chen and Hongsheng 

Zhang for sharing with their experience and knowledge on fracture mechanics and 

computational mechanics. My appreciation also goes to colleagues, friends and department 

staff for their generous help and assistance.   

This work would not have been possible without the steadfast love and support from 

my family and other relatives. In particular, I would like to thank my wife, Liqiong Tian, 

and my little angel, Yanqi Leng, for their endless love, sacrifices and support.  

 

 



 

iv 
 

ABSTRACT 

 

Arterial tissue failure leads to a number of potentially life-threatening clinical 

conditions, such as atherosclerotic plaque rupture and aortic dissection which develop 

unpredictably and rapidly in vivo. Thus, a full understanding of the two conditions will 

provide a solid basis for medical advances in the intervention and prevention of the 

occurrence of this life-threatening event. The present work aims to develop a cohesive zone 

model (CZM) approach for analysis and simulation of arterial tissue failure, such as plaque 

and fibrous cap delamination and tearing, and to validate simulation predictions with 

experimental results. 

To characterize the hysteresis phenomenon of diseased aortic tissue, a viscoelastic 

anisotropic (VA) model for the bulk arterial material behavior is proposed based on a 

hyperelastic anisotropic model and a general viscoelastic formulation in the literature. The 

viscoelastic effects of the material are taken into account by using a generalized Maxwell 

model. In order to capture the failure process of the interface between arterial layers, three 

types of cohesive zone models were considered, which include the exponential, triangular 

and trapezoidal CZMs.  

Atherosclerotic plaque delamination experiments performed on ApoE-KO mouse 

aorta specimens were simulated using the CZM approach. A three-dimensional (3D) finite 

element model for the experiments was developed, in which the Holzapfel-Gasser-Ogden 



 

v 
 

(HGO) model for the bulk arterial material behavior and a CZM for the plaque-media 

interface behavior are adopted. A set of HGO and CZM parameter values were obtained 

through a material parameter identification procedure in which a subset of experimental 

loading-delamination-unloading cycle data was used. Simulation predictions for additional 

loading-delamination-unloading cycles were obtained, which show good agreement with 

experimental measurements.  

Two types of delamination experiments (a “mixed-mode” type and a “mode I” type) 

were conducted on porcine aorta specimens. These experiments were analyzed and 

compared using finite element simulations. Simulation results revealed that the intuitive 

classification of these two types of experiments is not necessarily accurate for soft tissue 

materials. In particular, the “mixed-mode” experiment was found to have a dominant mode 

II component in the cohesive zone ahead of the growing delamination front.   

Human fibrous cap delamination experiments were conducted and simulated using 

the finite element method by employing the VA bulk material model and three types of 

CZMs. A set of VA and CZM parameter values was determined using the same material 

parameter identification procedure as in the simulations of mouse plaque delamination 

experiments. Using this set of parameter values, simulation predictions for two sequential 

loading-delamination-unloading cycles were performed, which show good agreement with 

experimental measurements, including the hysteresis behavior during unloading. 

Furthermore, a mode I tearing test was conducted on human fibrous cap in order to 

investigate the failure process of plaque rupture. The CZM parameter values were obtained 

through an inverse analysis. These parameter values will provide input for further 

numerical simulation of plaque rupture events.  
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The CZM based approach was applied to develop a micromechanical model for 

arterial delamination along the interface between the fibrous cap and the underlying plaque 

tissue in order to understand delamination mechanisms, including fiber bridging. A 3D unit 

cell containing an individual fiber between two arterial tissue layers was considered. With 

the unit cell model, micromechanical factors affecting the resulting traction-separation 

relation were investigated through a parametric study. 
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 CHAPTER 1 

INTRODUCTION 

 

1.1  Background and Motivation 

Arterial tissue failure leads to a number of potentially life-threatening clinical 

conditions, including atherosclerotic plaque rupture and aortic dissection. Atherosclerotic 

plaque rupture is a serious complication of advanced atherosclerosis, often leading to 

catastrophic clinical consequences such as myocardial infarction (heart attack) or stroke 

(Assemat and Hourigan, 2013; Badimon and Vilahur, 2014; Schwartz et al., 2007). 

Roughly 75% of all myocardial infarctions originate from plaque rupture and 

approximately 1.1 million people are affected in the USA per year (Virmani, 2007). The 

American Heart Association has developed a method to predict future costs of 

cardiovascular disease, which includes coronary heart disease and stroke; associated costs 

are estimated to increase from $172 billion in 2010 to $276 billion in 2030 (Heidenreich et 

al., 2011). These forecasts illustrate the magnitude of the clinical problems resulting from 

arterial tissue failure and the importance of improving our basic understanding of the 

arterial failure process. A full understanding of plaque rupture will provide a solid basis 

for medical advances in intervention and prevention of this life-threatening event. 
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 A common plaque rupture site is the shoulder region (Fig. 1.1a, blue arrow) where 

the interface between the plaque and the underlying vascular wall is located (Loree et al., 

1992). This site is prone to delaminate along the plaque-media interface, for example, when 

the arterial wall experiences large expansion under balloon angioplasty (Badel et al., 2014). 

In general, due to mismatch in mechanical properties across a vessel wall interface, 

interlayer shear stress concentration is expected to occur at geometric discontinuities (e.g. 

along the edge of the plaque-media interface) when the artery is deformed, which may 

cause initiation of interfacial delamination. Plaque delamination (dissection) (Fig. 1.1b) at 

the shoulder with intimal flap formation during balloon angioplasty and stenting has been 

demonstrated by in vivo imaging modalities such as intravascular ultrasound and optical 

coherence tomography (Ferrante, 2013; Honye, 1992; Sakai, 2003; Tearney, 2012). Shear 

loading due to flow induced shear traction on the plaque surface is also expected to 

contribute to the initial tearing and delamination of the plaque. The subsequent 

delamination growth may be mixed-mode, in which the Mode I (opening mode) component 

can be significant. The Mode I component can be due to the normal loading from flow 

pressure (e.g. immediately after the initial tear and delamination) and/or due to a peeling 

action created by the flow-induced shear traction on the now delaminated portion of the 

plaque. Once delamination occurs, it seems that this shear traction will tend to pull the 

delaminated plaque in the direction of the flow, because the plaque is compliant and the 

delaminated portion will tend to bend in the flow direction. As such, it is important to 

understand plaque delamination (dissection) failure in order to develop effective 

approaches for treatment and intervention. 
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Abdominal aortic dissection, manifested as delamination and separation of the 

medial layer of the arterial wall (Fig. 1.1a, the part between blue and red lines), may direct 

the blood flow into the newly created false lumen, and the blood flow in turn aggregates 

the delamination in the form of Mode I or mixed-mode failure (Gasser and Holzapfel, 2006; 

Leng et al., 2015b). Moreover, with the inherent inhomogeneity of the arterial wall along 

the delamination path, the delaminated medial layer may be peeled from the arterial wall 

in a mixed-mode manner (Leng et al., 2015b). The failure process inside the media and the 

resultant damage would trigger aortic dissection which may cause rupture of abdominal 

aortic aneurysm (Daugherty and Cassis, 2002; Golledge and Norman, 2010; 

Venkatasubramaniam et al., 2004) and false lumen patency of thoracic descending aorta 

(Bernard et al., 2001). Numerous studies investigated the dissection behavior of the arterial 

tissue under Mode I (Ferrara and Pandolfi, 2010; Gasser and Holzapfel, 2006) or mixed-

mode conditions between atherosclerotic plaque and the media (Leng et al., 2015b), yet 

few investigations have focused on comparing the contributions of these two failure modes 

on the delamination propagation process in the arterial wall (Fig. 1.1c).  

Another type of plaque rupture (Fig. 1.1a, red arrow) is often in the form of fibrous 

cap separation (delamination) from the underlying tissue (Fig. 1.1d). Fibrous cap failure 

typically occurs at one of two locations. One location is at the center of the plaque, where 

the fibrous cap may be very thin and prone to rupture under large deformations and stress 

concentrations. Another is at the shoulder region, where the interface between the fibrous 

cap and the underlying plaque tissue is located (Jensen et al., 2006; Loree et al., 1992), 

which is prone to delaminate along the interface. This type of failure occurs, for example, 

when the atherosclerotic plaque experiences large expansion under balloon angioplasty or 
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stenting, possibly caused by stress concentration along the interface due to mismatch in 

mechanical properties (Badel et al., 2014; Kolodgie et al., 2007; Li et al., 2008). For 

example, fibrous cap delamination at the shoulder region during balloon angioplasty has 

been demonstrated by intravascular ultrasound in vivo (Honye, 1992). At the site of stress 

concentration, mechanical damage is expected to initiate and accumulate, leading to 

delamination when the damage reaches a critical level. In general, the subsequent 

delamination growth may contain Mode I (opening mode, caused by an opening force) and 

Mode II (shearing mode, caused by a shearing force) components.  

 

Fig. 1.1 Images of arterial delamination events: (a) A schematic image of a ruptured plaque, 

with rupture circled; (b) plaque delamination from the underlying media layer (blue arrow) 

(Wang et al., 2013); (c) delamination within the media layer (Madaloso and Benvenuti, 

2013); (d) fibrous cap delamination from the underlying plaque tissue (Tavora et al., 2010); 

(e) fibrous cap rupture at the at shoulder (red arrow) (Pasterkamp et al., 2000); (f) collagen 

fibers bridging at a delamination interface in a microscale fiber pullout test. 

 

Furthermore, fibrous cap tearing under Mode I conditions (Fig. 1.1a, green arrow) 

is one mechanism that leads to plaque rupture. The inflation of a carotid artery with 

atherosclerotic plaque under balloon angioplasty or stenting will cause extension of the 
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fibrous cap at the shoulder or middle area (Fig. 1.1e) which may trigger tearing of the 

fibrous cap through the thickness (Glagov et al., 1997; Richardson et al., 1989; Walraevens 

et al., 2008). Plaque failure initiation is a very slow process. At the beginning, fibrous cap 

tissue degradation accumulates due to the cyclic stress from the interaction with blood flow 

or with a stent within the inner lumen of the artery, which causes micro tearing propagation 

and stress concentration inside the fibrous cap (Versluis et al., 2006). The mechanical 

damage is expected to initiate and accumulate, leading to the macro tearing across the total 

thickness of the fibrous cap. At last, the atherosclerotic plaque will rupture when the 

damage continues and reaches a critical level (Bentzon et al., 2014). Thus, the material 

properties or interfacial strength and critical energy release rate across the thickness of the 

fibrous cap have large effects on the integrity of the atherosclerotic plaque (Leng et al., 

2015b; Leng et al., 2016).  

Arterial tissue failure may correlate with age-related extracellular matrix 

remodeling within the aortic wall (London et al., 2004; Sekikawa et al., 2012). This 

remodeling process is a common potential cause for arterial stiffening, which is related to 

the development of fatal stroke and heart failure (Graham et al., 2011; Prim et al., 2016). 

Meanwhile, the age-related aortic remodeling occurs at multiple length scales: at the 

macroscale, aging aortic diameters and arch length have increased significantly (Lakatta, 

2008; Redheuil et al., 2011; Sokolis et al., 2012; Tsamis et al., 2009); at the microscale, 

the micromechanical remodeling in the aging artery includes: (i) changes in the amount of 

fibrillar collagen, elastin (Cattell et al., 1993; Tsamis et al., 2013) and subtype of collagen 

fiber (type I and type III) (Israelowitz et al., 2005; Qiu et al., 2007; Zhou et al., 2014); (ii) 
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collagen fiber degradation (Ahmann et al., 2010; Driessen et al., 2004; Enderling et al., 

2008).  

The mechanical properties of arterial tissues at the microscale are essential for 

determining the failure process in arterial layers. In the references (Leng et al., 2016; Wang 

et al., 2011), the measured local critical energy release rates of the interface inside arterial 

walls vary over a wide range, suggesting that the local critical energy release rate depends 

on the local plaque composition, such as collagen fibers (colorless strands 1 to 100 𝜇𝑚 

thick (Gentleman et al., 2003; Ushiki, 2002)), which play a crucial role in determining the 

mechanical behavior of the aortic wall (Yanagisawa et al., 2002; Zhou et al., 2015). These 

observations suggest that damage accumulation before delamination, oscillations in the 

force-displacement curve during delamination, and the distribution of the critical energy 

release rates (Wang et al., 2011) reflect differences in the mechanisms of collagen fiber 

failure behavior (e.g. collagen fiber pullout and breakage) at the arterial tissue interface.  

1.2 Literature Review 

Constitutive model for arterial tissue 

Fung (Fung, 1967; Fung, 1973) first used an exponential strain energy potential to 

describe the mechanical behavior of living tissues with nonlinear stress-strain relationship 

under large deformations. Thereafter, Lanir (Lanir, 1983) introduced fiber dispersion 

factors in the strain energy based function for the connective tissue. In 1993,  a linearly 

elastic material model was used in the finite element analysis of the concentrations of 

circumferential tensile stress in the atherosclerotic plaque (Cheng, 1993). Later, to capture 

the large deformation behavior of human coronary lesions, the isotropic, incompressible, 

Mooney-Rivlin material model was applied in the evaluation of the impact of calcification 
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on plaque structural stability (Huang et al., 2001). In order to differentiate contributions 

from different components of the arterial wall, Holzapfel (Holzapfel and Weizsäcker, 1998) 

analyzed highly nonlinear biomechanical behavior of the elastic type (abdominal rat aorta) 

and muscular type (rat artery) of arteries using a classical exponential type material model, 

which contains an isotropic contribution from the elastin of the arterial wall and an 

anisotropic contribution from the collagen of the vascular wall. The anisotropic 

contribution was also characterized by the potential function used in the literature for bio-

tissues, which was originally proposed by Fung et al (Fung, 1973; Fung et al., 1979).  

In another study by Holzapfel et al. (Holzapfel, 2000b), the artery was modeled as 

a thick-walled nonlinearly elastic circular tube, in which each arterial layer is treated as a 

fiber-reinforced material with fibers embedded in a non-collagenous matrix, and the 

orientations of fibers are obtained from a statistical analysis of histological sections from 

arterial layers. With the application of this study, Holzapfel (Holzapfel et al., 2002b) first 

computed the mechanical response of balloon angioplasty with the implementation of a 

layer-specific three-dimensional model based on in vitro magnetic resonance imaging of a 

human diseased artery. In 2003, Schulze-Bauer and Holzapfel (Schulze-Bauer and 

Holzapfel, 2003) determined the constitutive equations of human arteries from clinical data 

based on a two-dimensional Fung-type strain energy function, which characterized 

nonlinear and anisotropic behavior of arteries. Later, Holzapfel compared the multi-layer 

structural constitutive model with a three-dimensional form of Fung-type strain-energy 

function through describing the highly nonlinear and anisotropic characterization of a 

carotid artery under inflation and extension (Holzapfel et al., 2004a). Meanwhile, Zulliger 

and Fridez extended a structural model (Holzapfel, 2000b) by adding the wavy nature of 
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fibers with the fraction of both elastin and collagen and evaluated the new model by fitting 

experimental data from inflation-extension tests on mouse carotid arteries (Zulliger et al., 

2004). Considering the remodeling effects, Hariton proposed a mechanical model by taking 

into account collagen fiber remodeling for a soft connective tissue. By using this model, 

the simulation of human common carotid artery fiber morphology correlated well with 

experimental results (Hariton et al., 2006).  

In order to describe the dispersion of collagen fibers in the nonlinear constitutive 

model, Holzapfel added a dimensionless parameter 𝜌 in an earlier model (Holzapfel, 2000b) 

to obtain the layer-specific mechanical properties of human coronary arteries (Holzapfel et 

al., 2005). In a subsequent study by the same authors, a parameter κ was incorporated into 

the hyperelastic material model to account for the dispersion of collagen fibers in the 

adventitial and media layers of arterial walls (Gasser et al., 2006), which was widely used 

in the numerical modeling of arterial tissue deformations. In the work of Li and Robertson, 

a new fiber strain-based activation criterion was proposed in a nonlinear, anisotropic, 

multi-mechanism constitutive model, which can be used to capture the mechanical 

response of cerebral arteries (Li and Robertson, 2009). Based on the previous model, 

Rodríguez  introduced a threshold value for the un-crimped condition of collagen fibers in 

order to capture the strong stiffness of collagenous tissues (Rodríguez et al., 2008).  

The viscoelastic mechanical properties of arterial tissue have been taken into 

account for modeling the mechanical behaviors of vulnerable arteries in the finite element 

analysis (Zareh et al., 2015). It has also been shown that the viscoelasticity of arterial tissue 

plays an important role in the response of arterial wall to vasoactive drugs or pathologies 

(hypertension and atherosclerosis) (Antonova et al., 2008; Hemmasizadeh et al., 2012). 
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Meanwhile, quantifying the passive viscoelastic mechanical properties is of great 

importance to understand the primary determinants of aortic tissue mechanical 

performance. Understanding the viscoelastic mechanical behavior of the arterial tissue can 

provide guidelines to evaluate effects of vasoactive medicines and to design appropriate 

protocols for endovascular interventions.  

Viscoelasticity of soft tissues stems from the friction between collagen fibers and 

the matrix components (e.g., smooth muscle cells and elastin); from the friction from the 

movement and permeation of water molecules between these matrix components and fibers 

(Screen, 2008); and from the viscoelastic response of isolated collagen fibrils (Shen et al., 

2011). Numerous biomechanical investigations have been focused on characterizing the 

viscoelastic mechanical properties of native and fabricated arterial tissues. A viscoelastic 

algorithm with the generalized Maxwell model, containing a free spring on one end and an 

arbitrary number of dashpot elements arranged in parallel, was incorporated into the 

hyperelastic model and implemented to predict the hysteresis of arterial tissues (Holzapfel, 

2000a; Holzapfel, 2003; Holzapfel, 2000b). Based on the previous studies, a viscoelastic 

model was proposed to simulate the ‘stretch inversion phenomenon’ in the low pressure 

range and to illustrate the anisotropic viscoelastic mechanical characteristics of a fiber-

reinforced composite material (Holzapfel and Gasser, 2001), leading to a viscoelastic 

anisotropic (VA) model (Gasser et al., 2006; Holzapfel, 2000a). Another transversely 

isotropic and hyperelastic material combined with a Kelvin-Voigt linear viscous model was 

proposed to characterize the viscoelastic mechanical responses of native and fabricated 

biological tissues (Peña et al., 2007; Weiss et al., 1996). Moreover, at the micro-scale level, 

the generalized Maxwell model was used to characterize the viscoelastic mechanical 



 

10 
 

behaviors of three-dimensional biopolymer networks (Unterberger et al., 2013). A 

structure-motivated viscoelastic constitutive model of the soft tissue is required to calculate 

the local stress environment of resident vascular cells and to fully understand the 

mechanical implications of both vascular injury and clinical intervention.  

Cohesive zone model  

  The cohesive zone model (CZM) is an effective method to solve fracture problems 

in homogeneous and composite materials and can be implemented in finite element codes. 

Barrenblatt (Barenblatt, 1959) and Dugdale (Dugdale, 1960) first introduced the concept 

of CZM. With this idea, Needleman (Needleman, 1987) developed a polynomial CZM to 

solve the debonding problem of rigid spherical inclusions in a metal matrix and also to 

analyze the initiation and decohesion along interfaces (Needleman, 1990). In 1990, 

Tvergaard (Tvergaard, 1990) used a quadratic traction-separation CZM model to analyze 

the decohesion of the fiber-matrix interface which described the failure with normal and 

tangential separations. Later, he and Hutchinson (Tvergaard and Hutchinson, 1992) 

developed a trapezoidal CZM to predict the toughness and interface plasticity of void 

growth and coalescence processes in order to illuminate the enhancement effect of 

plasticity to dual-phase solids. For another type of CZM, Xu and Needleman (Xu and 

Needleman, 1993) implemented the polynomial separation CZM to do the numerical 

micromechanical study of inclusion debonding in a crystal matrix, which investigated the 

occurrence of decohesion or localization determined by the triaxial stress state. Thereafter, 

Camacho and Ortiz (Camacho and Ortiz, 1996) used a CZM with a bilinear tensile cohesive 

relation to predict the propagation of multiple cracks along arbitrary paths in brittle 

materials. It is noted that the bilinear CZM is widely used for modeling material failure 



 

11 
 

processes. Geubelle and Baylor (Geubelle and Baylor, 1998) applied this CZM to conduct 

an investigation of the delamination process in thin composite plates under low-velocity 

impact conditions, which had the ability to capture complex delamination events including 

micro-cracking of the matrix and delamination propagation. Using the same type of CZM, 

Ortiz (Ortiz and Pandolfi, 1999) developed an irreversible cohesive law to track 

dynamically growing cracks in steels using three-dimensional cohesive elements.  

The cohesive zone model (CZM) has been proven to be an effective way of 

modeling delamination failure in composite materials (Turon et al., 2006). The CZM 

approach has also been used to understand the mechanism of arterial tissue failure. Gasser 

and Holzapfel (Gasser and Holzapfel, 2006) combined CZM with the partition of unity 

finite element method to study the dissection failure of a rectangular tissue strip of aorta 

wall. Later, they used the same method to investigate plaque fissuring and dissection in 

atherosclerosis-prone human iliac arteries under balloon angioplasty conditions. The 

results indicated that the localized trauma caused by plaque fissuring and dissection can 

prevent the continuous tissue failure around the stenosis where high stress occurred (Gasser 

and Holzapfel, 2007). Considering the anisotropic characteristics of arterial tissue, Ferrara 

and Pandolfi (Ferrara and Pandolfi, 2010) developed an anisotropic CZM to predict 

dissection in the medial layer of an aorta, which provided an effective model to describe 

damage events such as intramural dissection and plaque rupture. In order to perform 

parametric analyses of the arterial tissue dissection behavior,  Badel et al. (Badel et al., 

2014) used a CZM with an exponential softening process to study dissection events in an 

atherosclerotic coronary artery during the early stages of balloon angioplasty treatments 

using a two-dimensional finite element model. The results showed that the initiation of 
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dissection damage happened very early, which is important for understanding this clinical 

event.  

In the current study, atherosclerotic plaque delamination is considered as analogous 

to the common delamination damage phenomenon between layers in laminated composites, 

and thus the CZM approach seems applicable. To the author’s knowledge, the CZM 

approach has not been applied in the literature to the study of plaque delamination. While 

the CZM has been widely used in the studies of fracture failures in engineering materials, 

the use of CZM in the studies of failures in arterial materials has been very limited. Thus, 

CZM-based three-dimensional finite element models are needed to better understand 

arterial tissue failure events. 

For the implementation of CZMs to simulate the micromechanical failure process 

of composite materials, Difrancia et al. (DiFrancia et al., 1996) reviewed the test 

methodologies, the experimental and theoretical discussion on the single fiber pull-out test 

in order to interpret the failure of fiber-reinforced composite materials. Later, Chandra et 

al. (Chandra et al., 2002) implemented exponential and bilinear CZMs to simulate the 

single fiber push-out test, and the simulation predictions matched well with experimental 

data. It is found that the shape of the CZM cohesive law depends on the nonlinear 

mechanical response at the micromechanical level and on the material properties of the 

CZM such as the interfacial strength, critical energy release rate and maximum separation. 

These parameters have large effects on the loading and unloading behaviors of the fiber 

push-out process.  

In order to study the effects of collagen fiber bridging on the arterial tissue failure 

process, the mechanical behavior of collagen fibers in arterial tissues needs to be 
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investigated. To this end, a method based on AFM was performed on a single tow of 

collagen fibrils isolated from collagenous materials, in order to quantify the Young’s 

modulus (van der Rijt et al., 2006; Yang et al., 2007), and the bending and shear moduli 

(Yang et al., 2008). Another method using nanoindentation by AFM was conducted on a 

single tow of collagen fibrils to acquire the reduced modulus, which provides new insights 

into the collagen structure. The yield stress and strain at failure of collagen fibrils from sea 

cucumber were obtained through uniaxial tensile testing (Shen et al., 2008). In the studies 

of individual collagen fibers, Kato et al. (Kato et al., 1989) performed tensile tests on 

collagen fibers from rat tail tendons to obtain the tensile strengths.  Miyazaki and Hayashi 

(Miyazaki and Hayashi, 1999) acquired the modulus, tensile strength and strain at failure 

through uniaxial tensile tests of collagen fibers from rat tail tendons. Moreover, the 

modulus, tensile strength and strain at failure of collagen fascicles from the rabbit patellar 

tendon were quantified by tensile testing (Yamamoto et al., 1999). However, these studies 

do not provide all mechanical properties such as the modulus and adhesive strength of 

bundles of collagen fibers from arterial wall. Therefore, experimental and numerical 

studies of collagen fiber failure processes are required to characterize the arterial tissue 

failure mechanism.  

1.3 Research Objectives 

The current dissertation is aimed at investigating the applicability of the CZM- 

based approach in simulating plaque rupture (peeling tests of mouse atherosclerotic plaques 

and human fibrous cap, etc.) and related failure events. Three types of CZMs and the HGO 

model (or VA model for describing the hysteresis phenomenon) will be employed in the 

CZM-based approach to simulate the delamination and tearing of arterial tissue using 3D 
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finite element models. Simulation predictions will be compared with experimental 

measurements in order to validate the CZM-based approach. 

This study will provide a quantification of delamination modes in the arterial 

delamination events by analyzing and comparing two types of delamination experiments 

(“mixed-mode” and “Mode I” delaminations). In particular, the CZM approach will be 

validated through comparisons of the load-displacement curve and the distances from the 

delamination front to the initial front, between simulation predictions and experimental 

measurements. Results of the current study can offer guidance for arterial tissue 

delamination tests and insights into the arterial layer delamination events.  

The current study will estimate the CZM parameter values of interfaces across the 

thickness of human fibrous caps through an inverse analysis procedure. With the simulation 

prediction from the inverse analysis, the mechanism of fibrous cap Mode I tearing will be 

explored.  

Finally, the study will develop a 3D unit cell model to study the arterial tissue 

failure mechanisms at the microscopic scale. With the input parameter values obtained 

from tensile tests of collagen fibers harvested from an arterial tissue, the factors at the 

micromechanical scale affecting the cohesive traction-separation relation of the unit cell 

model will be investigated.  

1.4 Outline of the Dissertation 

   The current dissertation contains nine chapters. The subsequent chapters are 

outlined as follows. 
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Chapter 2 presents the Holzapfel-Gasser-Ogden (HGO) model (a fiber-reinforced 

hyperelastic model), and a Viscoelastic Anisotropic (VA) model which was extended from 

the HGO model. These models will be used to characterize the bulk material behavior of 

arterial tissue or to capture the hysteresis phenomenon of diseased aortic tissue in the 

simulations from Chapter 4 to Chapter 8. 

Chapter 3 focuses on the derivation of three types of cohesive zone models, 

including the exponential, triangular and trapezoidal CZMs, which describe the 

relationship between the cohesive traction and the separation across a material interface. 

These CZM models will used in the simulations from Chapter 4 to Chapter 8. 

Chapter 4 describes the procedure to determine and validate HGO and CZM 

parameter values using experimental measurements of the load vs. load-point displacement 

curve in the atherosclerotic plaque delamination experiments in mouse abdominal aorta 

specimens. In addition, the effects of geometric uncertainty on simulation predictions will 

be discussed.  

Chapter 5 first presents the mixed-mode and mode I delamination experiments of 

porcine aorta and quantifies the critical energy release rates in the media layer, and then 

compares simulation predictions of the load-displacement curve and the delamination front 

with experimental measurements.  In addition, the ratio of mode I to mode II components 

in these experiments will be studied. These studies will provide a basis for subsequent 

arterial tissue delamination tests and simulation predictions.  

Chapter 6 identifies the VA model and CZM parameter values through the same 

procedure as described in Chapter 4, and validates the applicability of the viscoelastic 
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anisotropic model and the CZM approach for the simulation of diseased arterial tissue 

failure processes.  

Chapter 7 employs an inverse analysis procedure to identify the CZM parameter 

values of the interface across the thickness of human fibrous cap by matching the 

simulation predictions of load-displacement curves with experimental measurements of the 

human fibrous cap mode I tearing tests. Furthermore, the failure mechanism of fibrous cap 

mode I tearing will be investigated through numerical simulations.  

Chapter 8 introduces a micromechanical model describing arterial delamination 

mechanics at the fibrous cap-underlying plaque tissue interface. A 3D unit cell containing 

an individual fiber between two arterial tissue material layers is considered. With the unit 

cell model, micromechanical factors affecting the resulting traction-separation relation of 

the unit cell will be investigated using a parametric approach. 

Chapter 9 concludes the current work.  
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CHAPTER 2 

ANISOTROPIC HYPERELASTIC MODEL FOR ARTERIAL MATERIAL 

 

2.1 Introduction 

      In the current study, the Holzapfel-Gasser-Ogden (HGO) model (Gasser et al., 2006) 

was initially considered to provide a hyper-elastic constitutive law for the bulk material 

behavior of all arterial layers. The HGO model is commonly employed for arterial walls. 

It treats each artery layer as a fiber-reinforced material with the fibers symmetrically 

disposed with respect to the circumferential direction of the artery. However, this model 

was not able to capture the hysteresis behavior observed in the load-displacement curves 

obtained from the fibrous cap delamination experiments (section 6.2), because there is no 

viscoelastic component in the HGO model. To extend the HGO model, a viscoelasticity 

formulation developed by Holzapfel (Holzapfel, 2000a) was adopted in the current study 

to incorporate a viscoelastic component into the HGO model, leading to a viscoelastic 

anisotropic (VA) model, which is used in the current study.  

To describe the mechanical behavior of diseased arterial materials such as 

atherosclerotic plaque and fibrous cap, a viscoelastic, anisotropic material model extended 

from the HGO model (Gasser et al., 2006) (which does not have a viscoelastic component) 

is proposed, so that the hysteresis behavior seen in the loading-delamination-unloading 

data from the fibrous cap delamination experiments can be captured.  
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For convenience of easy reference, the HGO model, its extension to include a 

viscoelastic component, and some associated concepts are briefly described below. 

2.2 Anisotropic Hyperelastic Model: Holzapfel-Gasser-Ogden (HGO) Model 

The HGO model (Gasser et al., 2006) assumes that the mean orientation of collagen 

fibers lies parallel to the arterial wall (as shown in Fig. 2.1), thus neglecting the out-of-

plane component. A Helmholtz free energy function 𝛹(𝑪̅,𝑯1, 𝑯2) which is defined per 

unit reference volume in a decoupled form is expressed as: 

 𝛹(𝑪,𝑯1, 𝑯2) = 𝛹𝑣𝑜𝑙(𝐽) + 𝛹̅(𝑪̅,𝑯1, 𝑯2)  (2.1) 

In the above equation, 𝑪 is the right Cauchy-Green strain tensor, and 𝑪̅ denotes a modified 

version of C, 𝑪̅ = 𝑭𝑇̅̅̅̅ 𝑭̅ with 𝑭̅ = 𝐽−1/3𝑭, where  𝑭 is the deformation gradient, and 𝐽 =

det (𝑭). The volumetric part, 𝛹𝑣𝑜𝑙(𝐽), as given in (ABAQUS, 2013) is  

 𝛹𝑣𝑜𝑙(𝐽) =
1

𝐷
(
𝐽2−1

2
− In 𝐽) (2.2) 

where 
1

𝐷
 is analogous to the bulk modulus of the material. 

The potential 𝛹̅(𝑪̅, 𝑯1, 𝑯2) can be represented by a superposition of an isochoric 

potential 𝛹̅𝑔(𝑪̅) for the non-collagenous ground-matrix (indicated by subscript ‘𝑔’), which 

accounts for the material behavior with no fibers, and two transversely isochoric potentials 

𝛹̅𝑓1 and  𝛹̅𝑓2,  which represent the two families of collagen fibers (with subscript ‘𝑓’), 

respectively. Hence, the free-energy function 𝛹̅ is expressed as 

 𝛹̅(𝑪̅, 𝑯1, 𝑯2) =  𝛹̅𝑔(𝑪̅) + [𝛹̅𝑓1(𝑪̅, 𝑯1(𝒂01, 𝜅)) + 𝛹̅𝑓2(𝑪̅, 𝑯2(𝒂02, 𝜅))]  (2.3) 

In the above, 𝑯1, 𝑯2 are two structure tensors depending on the direction vectors 

𝒂01 and 𝒂02,  
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  𝑯1(𝒂01, κ) = κ𝑰 + (1 − 3κ)(𝒂01⨂𝒂01) (2.4) 

 𝑯2(𝒂02, κ) = κ𝑰 + (1 − 3κ)(𝒂02⨂𝒂02) (2.5) 

where I is the identity tensor; 𝜅  is the dispersion parameter, which characterizes the 

dispersion of the two families of fibers along the two mean distributed directions, and 0 ≤

𝜅 ≤ 1/3; the collagen fibers of one family of fibers are parallel to each other when  𝜅 = 0, 

whereas the fibers distribute isotropically when 𝜅 = 1/3. The two vectors 𝒂01  and 𝒂02 

have the following matrix forms in a rectangular coordinate system (as shown in Fig. 2.1): 

 [𝒂01] = [
𝑐𝑜𝑠𝑟
𝑠𝑖𝑛𝑟
0
], [𝒂02] = [

𝑐𝑜𝑠𝑟
−𝑠𝑖𝑛𝑟
0

] (2.6) 

where 𝑟 represents the angle between the mean fiber orientation of one family of fibers and 

the circumferential direction of the artery, as shown in Fig. 2.1. 

 

Fig. 2.1 Arterial tube with helicoidal arrangement of two families of fibers in cylindrical 

and rectangular coordinate systems. The two direction vectors 𝒂01 and 𝒂02 are tangent to 

the fiber directions and 2r is the angle between 𝒂01 and 𝒂02. 
 

An incompressible isotropic Neo-Hookean model has been used to denote the 

response of the non-collagenous ground-matrix. Thus, 
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 𝛹̅𝑔(𝑪̅) =
𝜇

2
(𝐼1̅ − 3)    (2.7) 

In the above, 𝐼1̅ = 𝑡𝑟(𝑪̅)  denotes the first invariant of 𝑪̅ , and μ is the neo-Hookean 

parameter, which characterizes the shear modulus of the material without fibers. The 

mechanical behavior of the two families of collagen fibers is represented by the following 

transversely isotropic free-energy functions  

 𝛹̅𝑓1(𝑪̅, 𝑯1(𝒂01, 𝜅)) =
𝑘1

2𝑘2
[𝑒𝑘2[tr(𝑯1𝑪̅)−1]

2
− 1]   (2.8) 

 𝛹̅𝑓2(𝑪̅, 𝑯2(𝒂02, 𝜅)) =
𝑘1

2𝑘2
[𝑒𝑘2[tr(𝑯2𝑪̅)−1]

2
− 1]   (2.9) 

 tr(𝑯1𝑪̅) = 𝜅𝐼1̅ + (1 − 3𝜅)𝐼4̅1  ;  tr(𝑯2𝑪̅) = 𝜅𝐼1̅ + (1 − 3𝜅)𝐼4̅2   (2.10) 

where 𝐼4̅1 = 𝒂01 ∙ 𝑪̅𝒂01 and 𝐼4̅2 = 𝒂02 ∙ 𝑪̅𝒂02 are tensor invariants equal to the square of 

the stretch in the directions of 𝒂01 and 𝒂02, respectively. Finally, according to relations 

(2.7), (2.8) and (2.9), we obtain  

 𝛹̅(𝑪̅, 𝑯1, 𝑯2) =
𝜇

2
(𝐼1̅ − 3) +

𝑘1

2𝑘2
[𝑒𝑘2[𝜅𝐼1̅+(1−3𝜅)𝐼4̅1−1]

2
− 1] + 

𝑘1

2𝑘2
[e𝑘2[𝜅𝐼1̅+(1−3𝜅)𝐼4̅2−1]

2
− 1]   (2.11) 

Note that constitutive parameter 𝑘1 is related to the relative stiffness of the fibers, 

which is determined from mechanical tests of arterial tissues; and 𝑘2 is a dimensionless 

stiffness parameter. 

2.3 Stress Tensors 

To prepare for the introduction of a viscoelastic anisotropic material model by 

extending the HGO model with the addition of a viscoelastic component, in the following 

the superscript “∞” will be used to signify stress quantities derived from the HGO model. 
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In particular, the second Piola-Kirchhoff stress can be derived from the Clausius-Planck 

inequality and given by: 

 𝑺  
∞ = 𝑺 𝑣𝑜𝑙

∞ + 𝑺 𝑖𝑠𝑜
∞  (2.12) 

 𝑺  
∞ = 2

∂𝛹(𝑪,𝑯1,𝑯2)

∂𝑪
 , 𝑺 𝑣𝑜𝑙

∞ = 2
∂𝛹𝑣𝑜𝑙(𝐽)

∂𝑪
, 𝑺 𝑖𝑠𝑜

∞ = 2
∂𝛹̅(𝑪̅,𝑯1,𝑯2)

∂𝑪
  (2.13) 

The partial derivative of local volume ratio 𝐽 and the modified right Cauchy-Green 

tensor 𝑪̅ to 𝑪 are obtained by using the chain rule:  

 
∂𝐽

∂𝑪
=

1

2
𝐽𝑪−1 ,   

∂𝑪̅

∂𝑪
= 𝐽−2/3 (𝕀 −

1

3
𝑪⨂𝑪−1) (2.14) 

In the above, 𝕀 is the fourth order identity tensor, which has the form below in indicial 

notation (Holzapfel, 2000a) 

 (𝕀)IJKL =
𝛿𝐼𝐾𝛿𝐽𝐿+𝛿𝐼𝐿𝛿𝐽𝐾

2
 (2.15) 

where 𝛿𝐼𝐾 is the Kronecker delta. 

With the associated property in the first equation in (2.14), the volumetric part of 

the second Piola-Kirchhoff stress has the form: 

  𝑺 𝑣𝑜𝑙
∞ = 2

∂𝛹𝑣𝑜𝑙(𝐽)

∂𝑪
= 𝑝𝐽𝑪−1 (2.16) 

where 𝑝 is the hydrostatic pressure (Holzapfel, 2000b) 

 𝑝 =
𝑑𝛹𝑣𝑜𝑙(𝐽)

𝑑𝐽
=

1

𝐷
(𝐽 −

1

𝐽
) (2.17) 

According to the second equation in (2.14), the isochoric part of the ground matrix 

of the arterial material is expressed as: 
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 𝑺 𝑔
∞ = 2

∂𝛹̅𝑔(𝑪̅)

∂𝑪
= 𝐽−2/3ℙ: μ𝑰 (2.18) 

where ℙ is the projection tensor which has the form: 

 ℙ = 𝕀 −
1

3
𝑪−1⨂𝑪 (2.19) 

With the associated property in the second equation in (2.14), the isochoric part 

used to describe the behavior of the two families of fibers is given by 

 𝑺 𝑓𝑖
∞ = 2

∂𝛹̅𝑓𝑖

∂𝑪
= 𝐽−2/3ℙ: 2𝑘1𝑒

𝑘2𝐸̅𝑖
2

𝐸̅𝑖𝑯𝑖 (2.20) 

where 𝐸̅𝑖  (𝑖 = 1, 2) are the structure strain invariants and 𝒉̅𝑖  (𝑖 = 1, 2) are the modified 

structure tensors which can be expressed by 

 𝐸̅𝑖 = tr𝒉̅𝑖 − 1 (2.21) 

 𝒉̅𝑖 = 𝜅𝒃̅ + (1 − 3𝜅)(𝒂̅ 𝑖⨂𝒂̅ 𝑖) (2.22) 

where 𝒃̅ denotes the modified left Cauchy-Green strain tensor, 𝒃̅ = 𝑭̅𝑭𝑇̅̅̅̅ ; 𝒂̅𝑖 = 𝑭̅𝒂0𝑖  (𝑖 =

1, 2) represents the push-forward of 𝒂0𝑖 through tensor 𝑭̅. 

Considering the relations (2.16) , (2.18) and (2.20), the second Piola-Kirchhoff 

stress can be written as (Holzapfel, 2000a): 

𝑺  
∞ = 𝑺 𝑣𝑜𝑙

∞ +𝑺 𝑖𝑠𝑜
∞
= 𝑺 𝑣𝑜𝑙

∞ + 𝑺 𝑔
∞ +∑𝑺 𝑓𝑖

∞

2

𝑖=1

= 

𝑝𝐽𝑪−1 + 𝐽−2/3ℙ: μ𝑰 + ∑ [𝐽−2/3ℙ: (2k1e
k2𝐸̅𝑖

2

𝐸̅𝑖𝑯𝑖)]
2
𝑖=1    (2.23) 
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2.4 Elasticity Tensors 

It is noted that the derivation of the elasticity tensors for the hyperelastic 

constitutive law of the HGO model is important for its implementation in the general-

purpose finite element code ABAQUS (ABAQUS, 2013) via its user subroutine option. 

The closed-form elasticity tensor ℂ  is defined through ℂ = 2
𝜕𝑺  

∞
 

𝜕𝑪
, which can be 

determined by following the process described in (Holzapfel, 2000a), and is denoted in the 

decoupled form below: 

  ℂ 
∞ = ℂ𝑣𝑜𝑙

∞ + ℂ𝑖𝑠𝑜
∞   (2.24) 

 ℂ𝑖𝑠𝑜
∞ = ℂ̅𝑔

∞ + ℂ̅𝑓
∞ (2.25) 

In the current study, the volumetric part ℂ𝑣𝑜𝑙
∞  and the isochoric part ℂ𝑖𝑠𝑜

∞  of the elasticity 

tensor (the tangent modulus tensor) are obtained using the approximate expressions (A.6) 

described in Appendix A. 

2.5 Viscoelastic Anisotropic (VA) Model   

In the current study, a Viscoelastic Anisotropic (VA) model for arterial materials is 

extended from the HGO model (Gasser et al., 2006) by introducing a viscoelastic 

component into the HGO model. This is done by employing a viscoelasticity formulation 

developed by Holzapfel (Holzapfel, 2000a). According to this formulation, a VA model 

can be built upon the HGO model by adding a strain-energy function term in Eq. (2.1). 

This additional term represents the dissipative potential responsible for the viscoelastic 

contribution. Based on this formulation, the second Piola-Kirchhoff stress tensor of the AV 

model 𝑺𝑛+1 at time 𝑡𝑛+1 can be written as: 
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 𝑺𝑛+1 = (𝑺 𝑣𝑜𝑙
∞ +𝑺 𝑖𝑠𝑜

∞ +∑ 𝑸𝛼
𝑚
𝛼=1 )

𝑛+1
        (2.26) 

where the superscript “∞” denotes the equilibrium condition when the time approaches 

infinity. The first and second terms with the superscript “∞” in Eq. (2.26) are contributions 

from the HGO model (see Eq. (2.12)), and the third term in Eq. (2.26) describes the 

viscoelastic contribution to the stress state. 

The non-equilibrium stress tensor 𝑸𝛼 𝑛+1 at time 𝑡𝑛+1 is expressed as 

 𝑸𝛼 𝑛+1 = 𝓗𝛼 𝑛 + 𝛽𝛼 𝑒𝑥𝑝 (−
∆𝑡

2𝘛𝛼
) (𝑺 𝑖𝑠𝑜

∞ )
𝑛+1

 (2.27) 

where the history term is defined as: 

 𝓗𝛼 𝑛 = 𝑒𝑥𝑝 (−
∆𝑡

2𝘛𝛼
) [𝑒𝑥𝑝 (−

∆𝑡

2𝘛𝛼
)𝑸𝛼 𝑛 − 𝛽𝛼(𝑺 𝑖𝑠𝑜

∞ )
𝑛
]  (2.28) 

In the above equations, ∆𝑡 is the time increment from time 𝑡𝑛  to 𝑡𝑛+1; 𝘛𝛼  (α =

1, … ,𝑚) is the relaxation time and 𝛽𝛼 is a non-dimensional parameter. The viscoelastic 

parameters 𝘛𝛼  and 𝛽𝛼 ( α = 1,… ,𝑚)  correspond to the parameters in a generalized 

Maxwell model for one-dimensional viscoelasticity (Rajesh, 2000) with m Maxwell 

elements (see Fig. 2.2). 

 

Fig. 2.2 Schematic model of a viscoelastic material (Unterberger et al., 2013). 
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The corresponding viscous part (ℂ𝑣𝑖𝑠)𝑛+1 of the elasticity tensor at time 𝑡𝑛+1 is  

 (ℂ𝑣𝑖𝑠)𝑛+1 = (ℂ𝑖𝑠𝑜
∞ )𝑛+1∑ 𝛽𝛼 𝑒𝑥𝑝 (−

∆𝑡

2𝘛𝛼
)𝑚

𝛼=1  (2.29) 

and the total elasticity tensor at time 𝑡𝑛+1 is 

 (ℂ )𝑛+1 = [ℂ𝑣𝑜𝑙
∞ + {1 + ∑ 𝛽𝛼 𝑒𝑥𝑝 (−

∆𝑡

2𝘛𝛼
)𝑚

𝛼=1 } ℂ𝑖𝑠𝑜
∞ ]

𝑛+1
   (2.30)  

Table 2.1 below provides a concise summary of the procedure and associated 

quantities involved in the VA model for implementation in ABAQUS via a user material 

subroutine. 

In the current study, finite element simulation results show that it is sufficient to 

use only one viscoelastic term (i.e. m=1 in Eq. (2.26) and subsequent equations) in the VA 

model to capture the essential hysteresis behavior observed in the fibrous cap delamination 

experiments (additional terms do not improve the results significantly). Thus, the only 

viscoelastic parameters involved in the simulations described subsequently are 𝘛1 and 𝛽1.   

The nonlinear static analysis option in ABAQUS/Standard (ABAQUS, 2013) with 

implicit time integration was employed to carry out the fibrous cap delamination 

simulations. The tangential modulus tensor that is implemented in this study in the 

ABAQUS user UMAT subroutine can be found in Appendix A.  
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Table 2.1 Summary of the procedure for creating an efficient user material subroutine 

implemented in ABAQUS 

 

The deformation gradient of solid elements is provided at the beginning of each 

increment, 𝑭 

A unimodular distortional part of 𝑭,   𝑭̅ = 𝐽−1/3𝑭, 𝐽 = det𝑭 

Modified counterparts of Cauchy-Green tensors 𝒃,   𝒃 ̅ = 𝑭̅𝑭̅T 

Structure tensors 

  𝑯𝑖 = 𝜅𝑰 + (1 − 3𝜅)(𝒂0𝑖⨂𝒂0𝑖)  
  𝒉̅𝑖 = 𝜅𝒃̅ + (1 − 3𝜅)(𝒂̅ 𝑖⨂𝒂̅ 𝑖), 𝒂̅𝑖 = 𝑭̅𝒂0𝑖 
Structure strain invariants 

  𝐸̅𝑖 = tr𝒉̅𝑖 − 1 = tr (𝜅𝒃̅) + (1 − 3𝜅)tr(𝒂̅ 𝑖⨂𝒂̅ 𝑖) − 1  

Stress tensor 

 𝑺 𝑔
∞ = 𝐽−2/3ℙ: 𝜇𝑰  , 𝑺 𝑓𝑖

∞ = 𝐽−2/3ℙ: 2𝑘1𝑒
𝑘2𝐸̅𝑖

2

𝐸̅𝑖𝑯𝑖 , 𝑺 𝑣𝑜𝑙
∞ = 𝑝𝐽𝑪−1  

  𝑺  𝑖𝑠𝑜
∞ = 𝑺𝑔

∞ + ∑ 𝑺 𝑓𝑖
∞2

𝑖=1   

     ℙ = 𝕀 −
1

3
𝑪−1⨂𝑪 

The second Piola-Kirchhoff stress tensor 𝑺𝑛+1 at time 𝑡𝑛+1  

𝑺𝑛+1 = (𝑺 𝑣𝑜𝑙
∞ +𝑺 𝑖𝑠𝑜

∞ +∑𝑸𝛼

𝑚

𝛼=1

)

𝑛+1

 

The Cauchy stress tensor 𝝈𝑛+1 at time 𝑡𝑛+1  

𝝈𝑛+1 = (𝐽−1𝑭𝑺𝑭𝑇)𝑛+1 

The current non-equilibrium stress tensor 𝑸𝛼 𝑛+1 at time 𝑡𝑛+1 

𝑸𝛼 𝑛+1 = 𝓗𝛼 𝑛 + 𝛽𝛼 𝑒𝑥𝑝 (−
∆𝑡

2𝘛𝛼
) (𝑺 𝑖𝑠𝑜

∞ )
𝑛+1

 

where the history term is defined as: 

𝓗𝛼 𝑛 = 𝑒𝑥𝑝 (−
∆𝑡

2𝘛𝛼
) [𝑒𝑥𝑝 (−

∆𝑡

2𝘛𝛼
)𝑸𝛼 𝑛 − 𝛽𝛼(𝑺 𝑖𝑠𝑜

∞ )
𝑛
] 

The viscous part (ℂ𝑣𝑖𝑠)𝑛+1 of the elasticity tensor at time 𝑡𝑛+1 is  

(ℂ𝑣𝑖𝑠)𝑛+1 = (ℂ𝑖𝑠𝑜
∞ )𝑛+1∑𝛽𝛼 𝑒𝑥𝑝 (−

∆𝑡

2𝘛𝛼
)

𝑚

𝛼=1

 

The elastic tensor at time 𝑡𝑛+1 is 

(ℂ )𝑛+1 = [ℂ𝑣𝑜𝑙
∞ + {1 +∑𝛽𝛼 𝑒𝑥𝑝 (−

∆𝑡

2𝘛𝛼
)

𝑚

𝛼=1

} ℂ𝑖𝑠𝑜
∞ ]

𝑛+1

 

 

2.6 Conclusions 

     The Holzapfel-Gasser-Ogden constitutive model which aims to describe the basic 

mechanical response of aortic tissue was introduced at the beginning of this chapter.  In 
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order to capture the viscoelastic effect of the diseased arterial material, a Maxwell model 

was incorporated in the HGO model. With the derivation of stress tensors and elasticity 

tensors, the process for developing the user UMAT subroutine in ABAQUS was presented.  
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CHAPTER 3 

INTERFACE DAMAGE MODEL 

 

3.1 Introduction 

As a novel method for the simulation of soft tissue failure, an efficient and robust 

interface damage model formulation is important for the simulation of arterial tissue failure. 

Hence, a mixed-mode cohesive zone model is introduced at the begging of this chapter. 

Furthermore, three types of cohesive zone models are considered, which include the 

exponential, triangular and trapezoidal CZMs. These models are developed with the same 

parameters and implemented in the commercial finite element code ABAQUS through a 

user UEL subroutine. 

3.2 Interface Cohesive Element 

The nodal coordinates of the undeformed interface element is given by (Y. Arun 

Roy, 2001) 

 𝑷 = {𝑋1,𝑌1, 𝑍1, … , 𝑋8, 𝑌8, 𝑍8}  (3.1) 

where (𝑋𝑗, 𝑌𝑗 , 𝑍𝑗) is the coordinate of the 𝑗-th node. According to Fig. 3.1, the vector 𝑷 can 

be written as 

 𝑷− = {𝑋1,𝑌1, 𝑍1, … , 𝑋4, 𝑌4, 𝑍4}
𝑇, 𝑷+ = {𝑋5,𝑌5, 𝑍5, … , 𝑋8, 𝑌8, 𝑍8}

𝑇 (3.2) 
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The use of standard shape functions 𝑁 enables the construction of the material 

coordinate  

 𝑷̃− = 𝑵𝑷−,  𝑷̃+ = 𝑵𝑷+    (3.3) 

where 𝑷̃ = {𝑋 (𝜂, 𝜁),𝑌(𝜂, 𝜁) , 𝑍(𝜂, 𝜁) }. The matrix of shape function is expressed as 

 𝑵 = [
𝐿1 0 0
0 𝐿1 0
0 0 𝐿1

    
𝐿2 0 0
0 𝐿2 0
0 0 𝐿2

    

𝐿3 0 0
0 𝐿3 0
0 0 𝐿3

   
𝐿4 0 0
0 𝐿4 0
0 0 𝐿4

]  (3.4) 

And with 

 𝐿1 =
1

4
(1 − 𝜂)(1 − 𝜁),  𝐿2 =

1

4
(1 + 𝜂)(1 − 𝜁)   (3.5) 

 𝐿3 =
1

4
(1 + 𝜂)(1 + 𝜁),  𝐿4 =

1

4
(1 − 𝜂)(1 + 𝜁)   

The nodal displacements are given by vector  

 𝒅 = {𝒅−, 𝒅+} = {𝑢1,𝑣1, 𝑤1, … , 𝑢8, 𝑣8, 𝑤8}
𝑇  (3.6) 

And nodal displacements of the upper and lower surface are showed as follows: 

 𝒅− = {𝑢1,𝑣1, 𝑤1, … , 𝑢4, 𝑣4, 𝑤4}
𝑇, 𝒅+ = {𝑢5,𝑣5, 𝑤5, … , 𝑢8, 𝑣8, 𝑤8}

𝑇  (3.7) 

where 𝒅 = {𝑢 (𝜂, 𝜁),𝑣(𝜂, 𝜁) , 𝑤(𝜂, 𝜁) }. The material coordinates of the displacement filed 

are interpolated with the shape function matrix 𝑵 as 

 𝒅̃− = 𝑵𝒅−,  𝒅̃+ = 𝑵𝒅+  (3.8) 

where 𝒅̃ = {𝑢 (𝜂, 𝜁),𝑣(𝜂, 𝜁) , 𝑤(𝜂, 𝜁) }. The material coordinates of the middle surface of 

the interfacial element is expressed as 
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 𝒄̃ =
𝟏

𝟐
(𝑷̃− + 𝑷̃+ + 𝒅̃− + 𝒅̃+) =

𝟏

𝟐
𝑵(𝑷− + 𝑷+ + 𝒅− + 𝒅+)   (3.9) 

The tangential vectors to the interfacial middle surface at (𝜂, 𝜁)are obtained by the 

following expression: 

 𝒓𝟏 =
𝜕𝒄̃

𝜕𝜂
,   𝒓̅𝟐 =

𝜕𝒄̃

𝜕𝜁
  (3.10) 

The normal vector to the interfacial middle surface 𝒓3 is acquired from the equation: 

 𝒓3 = 𝒓1 × 𝒓̅2 =
𝜕𝒄̃

𝜕𝜂
×
𝜕𝒄̃

𝜕𝜁
 (3.11) 

The vector 𝒓̅2 is not orthogonal to 𝒓1, and the orthogonal vector to 𝒓1 is obtained 

through: 𝒓2 = 𝒓3 × 𝒓1. Hence, the unit vectors are defined as: 𝒓̂𝑖 = 𝒓𝑖/|𝒓𝑖| (𝑖 = 1, 2, 3). 

The rotation tensor 𝑹 used to transform the global coordinate system (𝑋 , 𝑌 , 𝑍 ) to the local 

material coordinate system (𝜂, 𝜁, 𝜉) is given by  

 𝑹 = {𝒓̂𝟏, 𝒓̂𝟐 , 𝒓̂𝟑 }  (3.12) 

In order to calculate the relative displacement jumps and tractions across the 

cohesive interface element, the displacement jumps in the global coordinate system should 

transform to the local material coordinate system through the matrix 𝑹. 

Finally, the displacement jumps across the interfacial element are given by 

 𝜹 = 𝑩𝒅 = 𝑹𝑻[−𝑵 𝑵]𝒅  (3.13) 
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Fig. 3.1 Eight node interface element for three dimensional analysis. 

 

The rate of the relative displacement jumps and tractions can be obtained through 

a tangent modulus matrix 𝑫, 

 𝒕̇ =  𝑫𝒗̇  (3.14) 

where 𝒕 = (𝑡1, 𝑡2, 𝑡3)
𝑇 and 𝐷𝑖𝑗 =

𝜕𝑡𝑖

𝜕𝑣𝑗
, (𝑣1,   𝑣2, 𝑣3) = (𝛿𝑠1,   𝛿𝑠2, 𝛿𝑛). The full derivation 

of tangential modulus is provided in Appendix B.  

The global nodal force vector from the virtual principles for the 8 nodes interface 

element is defined as (Y. Arun Roy, 2001) 

 𝒇 = ∫ ∫ 𝑩𝑇
1

−1

1

−1
𝒕|𝑟3|𝑑𝜂𝑑𝜁 (3.15) 

where 𝒕  is the cohesive traction vector. For the implicit solution process, the global 

tangential stiffness matrix for the cohesive elements is obtained by (Y. Arun Roy, 2001) 

 𝑲𝑇 = ∫ ∫ 𝑩𝑇
1

−1

1

−1
𝑫𝑩|𝑟3|𝑑𝜂𝑑𝜁 (3.16) 
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3.3 Mixed-Mode Cohesive Zone Model 

The mixed-mode CZM is implemented in the current study through a user UEL 

subroutine in ABAQUS (ABAQUS, 2013). It describes the relationship between the 

cohesive tractions between the two faces of an interface and the separations (displacement 

jumps) across the interface. According to the CZM, the delamination failure of the plaque-

media interface involves three steps. The first step is damage initiation, which refers to the 

start of degradation of the cohesive element when an effective displacement jump ∆𝑚
0  is 

reached (as shown on the damage initiation locus in Fig. 3.2). The second step is damage 

evolution, during which damage accumulation occurs in the cohesive element. The third 

step is complete failure of the cohesive element after the effective displacement jump 

reaches a critical effective separation value ∆𝑚
𝑓

 (as shown on the full failure locus in Fig.3. 

2) (Turon et al., 2006). 

 

Fig. 3.2 Interfacial triangular mixed-mode cohesive traction-separation law. 
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The failure criterion proposed by Benzeggagh and Kenane (M.L. Benzeggagh, 

1996) has been found to fit experimental results accurately and is employed in the current 

study to govern the failure of the cohesive element. It can be expressed as: 

 𝐺 𝑐
 = 𝐺𝑇 (3.17) 

 𝐺 𝑐
 = 𝐺𝐼𝑐 + (𝐺𝐼𝐼𝑐 − 𝐺𝐼𝑐) (

𝐺𝑠ℎ𝑒𝑎𝑟

𝐺𝑇
)
𝛼

 (3.18) 

 𝐺𝑇 = 𝐺𝐼 + 𝐺𝑠ℎ𝑒𝑎𝑟   , 𝐺𝑠ℎ𝑒𝑎𝑟 = 𝐺𝐼𝐼 + 𝐺𝐼𝐼𝐼  (3.20) 

where 𝐺𝑐  is the fracture toughness of the material; 𝐺𝐼𝑐 , 𝐺𝐼𝐼𝑐  are the fracture toughness 

values of the material for mode I and mode II, respectively; 𝐺𝐼, 𝐺𝐼𝐼 and 𝐺𝐼𝐼𝐼 represent the 

mode I, mode II and mode III energy release rate, respectively. 

  The triangular cohesive law that governs material separation process under mix-

mode loading can be written as: 

 𝜏3 = {

𝐾∆3 ,
(1 − 𝑑)𝐾∆3 ,

0 ,
  

0 ≤ ∆3< ∆3
0(𝛾)

  ∆3
0(𝛾) ≤ ∆3< ∆3

𝑓
(𝛾)

∆3≥ ∆3
𝑓
(𝛾)

    (3.21) 

 𝜏𝑠ℎ𝑒𝑎𝑟 = {

𝐾∆𝑠ℎ𝑒𝑎𝑟 ,
(1 − 𝑑)𝐾∆𝑠ℎ𝑒𝑎𝑟 ,

0 ,
  

∆𝑠ℎ𝑒𝑎𝑟< ∆𝑠ℎ𝑒𝑎𝑟
0 (𝛾)

  ∆𝑠ℎ𝑒𝑎𝑟
0 (𝛾) ≤ ∆𝑠ℎ𝑒𝑎𝑟< ∆𝑠ℎ𝑒𝑎𝑟

𝑓
(𝛾)

∆𝑠ℎ𝑒𝑎𝑟≥ ∆𝑠ℎ𝑒𝑎𝑟
𝑓

(𝛾)

 (3.22) 

where 𝜏3 and 𝜏𝑠ℎ𝑒𝑎𝑟 are the cohesive tractions, which are the function of the displacement 

jumps ∆𝑖  ( 𝑖  =1,2,3) in the local coordinates and ∆𝑠ℎ𝑒𝑎𝑟= √(∆1)2 + (∆2)2 ; 𝜏3 = 𝐾∆3 

when ∆3< 0 in order to avoid interpenetration of the delaminated plaque-media interface; 

 𝐾 is a penalty stiffness; 𝑑 is the damage variable which ranges from 0 to 1;  ∆1
0 , ∆2

0 and 

∆3
0 are the displacement jumps corresponding to damage initial under pure Mode I, Mode 
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II and Mode III conditions (∆1
0= ∆2

0= ∆𝑠ℎ𝑒𝑎𝑟
0  

= 𝑇 𝑠ℎ𝑒𝑎𝑟
0 /𝐾 and ∆3

0 = 𝑇 3
0/𝐾), respectively; 

∆3
𝑓
= 2𝐺𝐼𝑐/𝑇 3

0  and ∆𝑠ℎ𝑒𝑎𝑟
𝑓

= 2𝐺𝑠ℎ𝑒𝑎𝑟_𝑐/
 𝑇 𝑠ℎ𝑒𝑎𝑟
0  

 (𝐺𝑠ℎ𝑒𝑎𝑟_𝑐 = 𝐺𝐼𝐼𝑐 ) are the displacement 

jumps corresponding to full failure under pure open mode and shear mode conditions, 

respectively; and 𝑇 3
0  and 𝑇 𝑠ℎ𝑒𝑎𝑟

0  are the strengths of the cohesive interface along the 

normal direction and tangential direction, respectively (as shown in Fig.3.2);  𝛾 =
∆𝑠ℎ𝑒𝑎𝑟

∆𝑠ℎ𝑒𝑎𝑟+∆3
 

(∆3≥ 0) and 𝛾 = 1 (∆3< 0), 𝛾 is a given mode ratio for mix-mode loading condition.  

The energy release rate for open mode and shear mode under mix-mode loading 

can be written as: 

 𝐺𝐼 = {

1

2
𝜏3∆3 ,

1

2
𝐾∆3

0(𝛾)∆3
𝑓(𝛾) −

1

2
𝜏3∆3

𝑓(𝛾),
 
0 ≤ ∆3< ∆3

0(𝛾)

  ∆3(𝛾)
0 ≤ ∆3≤ ∆3

𝑓(𝛾)
 (3.23) 

 𝐺𝑠ℎ𝑒𝑎𝑟 =

{

1

2
𝜏𝑠ℎ𝑒𝑎𝑟∆𝑠ℎ𝑒𝑎𝑟 ,

1

2
𝐾∆𝑠ℎ𝑒𝑎𝑟

0 (𝛾)∆𝑠ℎ𝑒𝑎𝑟
𝑓 (𝛾) −

1

2
𝜏𝑠ℎ𝑒𝑎𝑟∆𝑠ℎ𝑒𝑎𝑟

𝑓 (𝛾),
 

0 ≤ ∆𝑠ℎ𝑒𝑎𝑟< ∆𝑠ℎ𝑒𝑎𝑟
0 (𝛾)

  ∆𝑠ℎ𝑒𝑎𝑟
0 (𝛾) ≤ ∆𝑠ℎ𝑒𝑎𝑟≤ ∆𝑠ℎ𝑒𝑎𝑟

𝑓 (𝛾)
 (3.24) 

where ∆3
0(𝛾) and ∆𝑠ℎ𝑒𝑎𝑟

0 (𝛾) are the normal and shear displacement jumps corresponding 

to damage initial under mix-mode loading, respectively; ∆3
𝑓(𝛾)  and ∆𝑠ℎ𝑒𝑎𝑟

𝑓 (𝛾)  are the 

normal and shear displacement jumps corresponding to full failure under mix-mode 

loading, respectively; From equation (3.20), the effective displacement jump of damage 

initiation ∆𝑚
0  and critical effective  separation value ∆𝑚

𝑓
 can be expressed as: 

 ∆𝑚
0  = √(∆3

0)2 + [(∆𝑠ℎ𝑒𝑎𝑟
0 )2 − (∆3

0)2] (
𝐺𝑠ℎ𝑒𝑎𝑟

𝐺𝑇
)
𝛼

 (3.25) 
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 ∆𝑚
𝑓  
=

2[𝐺𝐼𝑐+(𝐺𝐼𝐼𝑐−𝐺𝐼𝑐)(
𝐺𝑠ℎ𝑒𝑎𝑟
𝐺𝑇

)
𝛼

]

𝐾 ∆𝑚
0  (3.26) 

where 𝛼 is a parameter obtained from the experiment (Camanho, 2003); Clearly, single 

open mode or shear mode is particular case of the proposed formulation, as ∆𝑚
0 = ∆3

0, ∆𝑚
𝑓
=

∆3
𝑓
 for open mode (Mode I), and ∆𝑚

0 = ∆𝑠ℎ𝑒𝑎𝑟
0 , ∆𝑚

𝑓
= ∆𝑠ℎ𝑒𝑎𝑟

𝑓
 for shear mode. Details of the 

cohesive finite element can be found in (Camanho, 2003; Turon et al., 2006). 

3.4 Exponential CZM 

   An exponential form for the free energy potential (𝜑) per unit (undeformed) area 

can be expressed as (Ortiz and Pandolfi, 1999; Y. Arun Roy, 2001) 

  𝜑 = 𝑒𝜎𝑐𝛿𝑐 [1 − (1 +
𝛿

𝛿𝑐
) 𝑒𝑥𝑝 (−

𝛿

𝛿𝑐
)]   (3.27)  

where 𝑒 = exp(1) ≈ 2.71828  and 𝜎𝑐  denote the strength of the material; 𝛿𝑐  is the 

maximum effective displacement at 𝑡 = 𝜎𝑐. Considering the loading conditions:  

               With the reference to Fig. 3.3, 𝜹𝑛 = (𝜹 ∙ 𝒏)𝒏 = 𝛿𝑛𝒏 > 0 for opening separation, 

and 𝜹𝑠 = 𝜹 − 𝛿𝑛𝒏 = (𝑰 − 𝒏⨂𝒏)𝜹 represents the sliding displacement across the cohesive 

surfaces (S), 𝜹𝑛 and 𝜹𝑠  characterizing the projection of 𝜹 onto the line spanned by 𝒏 and 

onto the plane normal to 𝒏, respectively. Similarly, 𝒕𝑛 is the normal traction and the two 

shear tractions, 𝒕𝑠1 and 𝒕𝑠2, across the cohesive surfaces. A possible equation to show that 

a local traction (𝒕) across the cohesive surfaces (S) can be derive from a free energy 

potential per unit (undeformed) area, 𝜑(𝜹, 𝒒), denotes as 

  𝑡 =
𝜕𝜑

𝜕𝜹
(𝜹, 𝒒)  (3.28) 
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Fig. 3.3 Schematic of the tractions and displacement jump perpendicular and across to the 

cohesive surface. 

 

where 𝜹  is the displacement jump across the cohesive surfaces, and 𝒒  represents the 

internal variables which denote the inelastic behavior of the separation of the cohesive 

interfaces. The single scalar function, 𝜑(𝜹, 𝒒), can be expressed as 𝜑(𝛿𝑛, 𝛿𝑠, 𝒒) when the 

displacement jump (𝜹) is simplified by 𝛿𝑛, which denote the displacement jump along the 

normal direction; and 𝜹𝑠, which is the sliding displacement across the cohesive surfaces, 

in the form 

  𝛿𝑠 = ‖𝜹𝑠 ‖ = √𝛿𝑠1
2 + 𝛿𝑠2

2   (3.29) 

where 𝛿𝑠1 and 𝛿𝑠2 denote components of the two directions of the sliding displacement (𝜹𝑠 ) 

across the cohesive surfaces and the quantity‖𝐀‖ is called the magnitude of a tensor 𝐀. 

Hence, the local traction (𝒕) becomes 

  𝒕 =
𝜕𝜑

𝜕𝛿𝑛
(𝛿𝑛, 𝛿𝑠, 𝒒)𝒏 +

𝜕𝜑

𝜕𝛿𝑠
(𝛿𝑛, 𝛿𝑠, 𝒒)

𝜹𝑠 

𝛿𝑠
= 𝒕𝑛 + 𝒕𝑠   (3.30) 

The effective displacement jump is shown 

  𝛿 = √𝜆2𝛿𝑠 2 + 𝛿𝑛2 .  (3.31) 
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where 𝜆 is a scalar parameter which introduced to assign different weights to the opening 

and sliding displacements. Using eqs. (3.28) and (3.30) we obtain the cohesive tractions in 

the form 

  𝒕 =
𝑡

𝛿
(𝜆2𝜹𝑠 + 𝛿𝑛𝒏)   (3.32) 

where 

  𝑡 =
𝜕𝜑

𝜕𝛿
(𝛿, 𝒒)  (3.33) 

The effective traction can be obtained from eqs. (3.32) and (3.33), which expressed 

as 

  𝑡 = √𝛽−2‖𝒕𝑠  ‖2 + 𝑡𝑛2 ,   (3.34) 

  𝑡 =
𝜕𝜑

𝜕𝛿
= 𝑒𝜎𝑐

𝛿

𝛿𝑐
𝑒𝑥𝑝 (−

𝛿

𝛿𝑐
)  if 𝛿 ≥ 𝛿𝑚𝑎𝑥 or 𝛿̇ ≥ 0  (3.35) 

And for the unloading conditions: 

  𝑡 = (
𝑡𝑚𝑎𝑥

𝛿𝑚𝑎𝑥
) 𝛿  if  𝛿 < 𝛿𝑚𝑎𝑥 or 𝛿̇ < 0   (3.36) 

The work of separation per unit cohesive surface follows the form 

  𝐺𝑐 = 𝑒𝜎𝑐𝛿𝑐  (3.37) 
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Fig. 3.4 Exponential irreversible cohesive model denotes with normalized effective 

traction and effective displacement. 

 

For the purposes to express the irreversible mechanism, we introduce a damage 

parameter in order to represent the damage of the cohesive surfaces during the loading and 

unloading conditions, it defined as 

  𝑑 =
𝜑(𝛿𝑚𝑎𝑥)

𝐺𝑐
  (3.38) 

Evidently, 𝑑  ranges from 0 to 1, corresponding to no damage of the cohesive 

surface and a complete separation of the cohesive surface, respectively. Fig. 3.4 illustrates 

the loading and unloading processes of the exponential cohesive traction-separation law, 

the damage will accumulate when effective traction 𝑡  exceeds zero. Thus, the force-

displacement relation will go along line AO and BO when unloading at point A and B, 

respectively, because permanent damage occurs on the cohesive surface at point A and B. 
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Summary of the quantities required for an efficient finite element implementation 

of exponential CZM in writing UEL subroutine for ABAQUS is expressed in Table 3.1. 

The derivation of elastic tensor is presented in Appendix B.  

Table 3.1 Summary of the quantities required for an efficient finite element 

implementation of exponential CZM in writing UEL subroutine for ABAQUS. 

Cohesive parameters: 𝐺𝑐, 𝜎𝑐, 𝐾, 𝜆  (Given) 

THEN: 

Initial condition 𝑟0 = 0, 𝑑0 = 0, 𝑓0 = 0 (Intermediate variable), 𝑔0 = 0 

(Intermediate variable) 

DO 𝑖 = 1,𝑚  (the number of integration points) 

Cohesive damage parameter  𝑑𝑖 = 𝑑𝑖−1 

Maximum effective displacement 𝛿𝑐 = 𝐺𝑐/𝑒𝜎𝑐 
Sliding displacements and normal displacement jump: 𝛿𝑠1 𝑖, 𝛿𝑠2 𝑖 and 𝛿𝑛 𝑖  
(Calculate with the nodal displacements from ABAQUS) 

Effective displacement 𝛿𝑖 = √𝜆2𝛿𝑠 𝑖 
2 + 𝛿𝑛 𝑖

2 , 𝛿𝑠 𝑖 = √𝛿𝑠1 𝑖
2 + 𝛿𝑠2 𝑖

2   

Mixed-mode damage threshold 𝑝𝑖 = 𝑝𝑖−1 

Update internal variables  

     If (𝛿𝑖 > 𝑝𝑖) then (loading) 

𝑝𝑖 = 𝛿𝑖, 𝑓𝑖 = 1 

else (Unloading) 

 𝑓𝑖 = 0 
     End if 

𝑑𝑖 = 1 − (1 +
𝛿𝑖
𝛿𝑐
) 𝑒

−
𝛿𝑖
𝛿𝑐 

      Determination of tractions  

𝑔𝑖 = 𝑔𝑖−1 

𝑡𝑖 = 𝑒𝜎𝑐(1 − 𝑑𝑖) − 𝑒𝜎𝑐𝑒
−
𝛿𝑖
𝛿𝑐 

If (𝑓𝑖 = 0) then 

𝑡𝑖 = (𝑔𝑖/𝑝𝑖)𝛿𝑖 
             End if 

𝑡1 𝑖 = 𝑡𝑖𝜆
2𝛿𝑠1 𝑖/𝛿𝑖,  𝑡2 𝑖 = 𝑡𝑖𝜆

2𝛿𝑠2 𝑖/𝛿𝑖,  𝑡3 𝑖 = 𝑡𝑖𝛿𝑛 𝑖/𝛿𝑖 
If (𝛿𝑛 𝑖

 < 0) then 

𝑡3 𝑖 = 𝐾𝛿𝑛 𝑖
  (Avoid interpenetration of the elements) 

End if 

If (𝑡𝑖 > 𝑔𝑖) then 

𝑔𝑖 = 𝑡𝑖 
End if 

If (𝑡𝑖 < 𝜎𝑐 and 𝛿𝑖 > 𝛿𝑐 and 𝑓𝑖 = 1 ) then 

𝑔𝑖 = 𝑡𝑖 
End if 
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𝜑′
𝑖
= (𝑔𝑖/𝑝𝑖)𝛿𝑖, 𝜑

′′
𝑖
= 𝑔𝑖/𝑝𝑖, 

If (𝑓𝑖 = 1 ) then 

𝜑′
𝑖
= 𝑡𝑖, 𝜑

′′
𝑖
=

𝜑′𝑖
𝛿𝑖
(1 −

𝛿𝑖

𝛿𝑐
) 

End if 

Update the elasticity tensor  

𝑆𝑖 = 𝜑
′′
𝑖
−
𝜑′

𝑖

𝛿𝑖
 

𝐷11 𝑖 =
𝜑′𝑖𝜆

2

𝛿𝑖
+
𝜆4𝛿𝑠1 𝑖

2

𝛿𝑖
2 𝑆𝑖, 𝐷12 𝑖 = 𝐷21 𝑖 =

𝜆4𝛿𝑠1 𝑖𝛿𝑠2 𝑖

𝛿𝑖
2 𝑆𝑖, 𝐷13 𝑖 = 𝐷31 𝑖 =

𝜆2𝛿𝑠1 𝑖𝛿𝑛 𝑖

𝛿𝑖
2 𝑆𝑖, 

𝐷12 𝑖 = 𝐷21 𝑖 =
𝜆4𝛿𝑠1 𝑖𝛿𝑠2 𝑖

𝛿𝑖
2 𝑆𝑖, 𝐷22 𝑖 =

𝜑′𝑖𝜆
2

𝛿𝑖
+
𝜆4𝛿𝑠2 𝑖

2

𝛿𝑖
2 𝑆𝑖, 𝐷23 𝑖 = 𝐷32 𝑖 =

𝜆2𝛿𝑠2 𝑖𝛿𝑛 𝑖

𝛿𝑖
2 𝑆𝑖, 

𝐷13 𝑖 = 𝐷31 𝑖 =
𝜆2𝛿𝑠1 𝑖𝛿𝑛 𝑖

𝛿𝑖
2 𝑆𝑖, 𝐷23 𝑖 = 𝐷32 𝑖 =

𝜆2𝛿𝑠2 𝑖𝛿𝑛 𝑖

𝛿𝑖
2 𝑆𝑖, 𝐷33 𝑖 =

𝜑′𝑖
𝛿𝑖
+
𝛿𝑛 𝑖
2

𝛿𝑖
2 𝑆𝑖 

END DO 

 

 

3.5 Triangular CZM 

    A triangular form of energy release rate for the cohesive surface can be expressed 

as: 

  𝐺𝑐 =
1

2
𝜎𝑐𝛿𝑐  (3.39) 

The displacement jump for the damage initiation and complete damage of the 

cohesive element denote by 

  𝛿0 =
𝜎𝑐

𝐾
  (3.40) 

  𝛿𝑐 =
2𝐺𝑐

𝜎𝑐
  (3.41) 

where  𝐾 is a penalty stiffness. 
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Fig. 3.5 Triangular irreversible cohesive model denotes with effective traction and 

effective displacement. 

 

The effective traction can be expressed as 

  𝜑′ = 𝑡 =

{
 
 

 
 

𝛿

𝛿0
𝜎𝑐   ,   𝛿 ≤ 𝛿0

𝜎𝑐 (
𝛿𝑐−𝛿

𝛿𝑐−𝛿0
) = 𝜎𝑐(1 − 𝑑)   ,   𝛿0 ≤ 𝛿 < 𝛿𝑐

 
0   ,   𝛿𝑐 ≤ 𝛿 

  (3.42) 

where 𝛿 is the ‘effective’ opening displacement which is given by 

  𝛿 = √𝜆2𝛿𝑠 2 + 𝛿𝑛2   (3.43) 

where 𝜆 is a scalar parameter which introduced to assign different weights to the opening 

displacement 𝛿𝑛
  and sliding displacement, which is denoted by 

   𝛿𝑠 = √𝛿𝑠1
2 + 𝛿𝑠2

2    (3.44) 
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where 𝛿𝑠1 and 𝛿𝑠2 denote components of the two directions of the sliding displacement  𝛿𝑠 

across the cohesive surfaces. 

The first-order partial derivative of the effective traction 𝑡  with respective to 

effective opening displacement is given by 

  𝜑′′ =
𝜕𝑡

𝜕𝛿
=

{
 
 

 
 

−𝜎𝑐

𝛿𝑐−𝛿0

𝜎𝑐

𝛿0
   ,   𝛿 ≤ 𝛿0

=
−𝜎𝑐𝑑

𝛿 −𝛿0
   ,   𝛿0 ≤ 𝛿 < 𝛿𝑐

 
0   ,   𝛿𝑐 ≤ 𝛿 

   (3.45) 

where 𝑑 is the Damage variable defined to represent the softening of the cohesive 

element 

  𝑑 =

{
  
 

  
 

0   ,   𝛿 ≤ 𝛿0
 

𝐺𝑐−[𝜎𝑐(
𝛿𝑐−𝛿

𝛿𝑐−𝛿0
)𝛿𝑐

1

2
]

𝐺𝑐
=

𝛿 −𝛿0

𝛿𝑐−𝛿0
  ,   𝛿0 ≤ 𝛿 < 𝛿𝑐

 
 

1   ,   𝛿𝑐 ≤ 𝛿 

 (3.46) 

Evidently, 𝑑 ranges from 0 to 1, which corresponding to that there is no damage of 

the cohesive surface and a fully separate of the cohesive surface, respectively. Fig. 3.5 

illustrates the loading and unloading processes of the triangular cohesive traction-

separation law, the damage will accumulate when effective traction 𝑡 exceeds 𝜎𝑐, where at 

the point A in Fig. 3.5. Thus, the traction-separation relation will go along line AO and BO 

when unloading at point A and B, respectively, because a permanent damage occurs on the 

cohesive surface at point A and B. On the contrary, the traction-separation relation will go 

along the original curve when no damage occurs on the cohesive surface. The derivations 

of the triangular CZM implemented in ABAQUS are shown in Table 3.2.  
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Table 3.2 Summary of the quantities required for an efficient finite element 

implementation of triangular CZM in writing UEL subroutine for ABAQUS. 

Cohesive parameters: 𝐺𝑐, 𝜎𝑐, 𝐾, 𝜆  (Given) 

THEN: 

Initial condition 𝑟0 = 0, 𝑑0 = 0, 𝑓0 = 0 (Intermediate variable), 𝑔0 = 0 

(Intermediate variable) 

DO 𝑖 = 1,𝑚 (the number of integration points) 

Cohesive damage parameter  𝑑𝑖 = 𝑑𝑖−1 

Effective displacement of damage initiation 𝛿0 =
𝜎𝑐

𝐾
 

Maximum effective displacement  𝛿𝑐 =
2𝐺𝑐

𝜎𝑐
 

Sliding displacements and normal displacement jump: 𝛿𝑠1 𝑖, 𝛿𝑠2 𝑖 and 𝛿𝑛 𝑖  
(Calculate with the nodal displacements from ABAQUS) 

Effective displacement 𝛿𝑖 = √𝜆2𝛿𝑠 𝑖 
2 + 𝛿𝑛 𝑖

2 , 𝛿𝑠 𝑖 = √𝛿𝑠1 𝑖
2 + 𝛿𝑠2 𝑖

2   

Mixed-mode damage threshold 𝑝𝑖 = 𝑝𝑖−1 

Update internal variables  

   If (𝛿𝑖 > 𝑝𝑖) then (loading) 

𝑝𝑖 = 𝛿𝑖, 𝑓𝑖 = 1 

else (Unloading) 

 𝑓𝑖 = 0 
       End if 

        If (𝛿𝑖<𝛿0) then  

𝑑𝑖 = 0 
else  

𝑑𝑖 =
𝛿 − 𝛿0
𝛿𝑐 − 𝛿0

 

End if 

      Determination of tractions  

𝑔𝑖 = 𝑔𝑖−1 

              If (𝛿𝑖<𝛿0) then 

𝑡𝑖 = 
𝛿

𝛿0
𝜎𝑐 

              else 

𝑡𝑖 = 𝜎𝑐(1 − 𝑑) 
              End if 

If (𝑓𝑖 = 0) then 

𝑡𝑖 = (𝑔𝑖/𝑝𝑖)𝛿𝑖 
             End if 

𝑡1 𝑖 = 𝑡𝑖𝜆
2𝛿𝑠1 𝑖/𝛿𝑖,  𝑡2 𝑖 = 𝑡𝑖𝜆

2𝛿𝑠2 𝑖/𝛿𝑖,  𝑡3 𝑖 = 𝑡𝑖𝛿𝑛 𝑖/𝛿𝑖 
If (𝛿𝑛 𝑖

 < 0) then 

𝑡3 𝑖 = 𝐾𝛿𝑛 𝑖
  (Avoid interpenetration of the elements) 

End if 

If (𝑡𝑖 > 𝑔𝑖) then 

𝑔𝑖 = 𝑡𝑖 
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End if 

If (𝑡𝑖 < 𝜎𝑐 and 𝛿𝑖 > 𝛿0 and 𝑓𝑖 = 1 ) then 

𝑔𝑖 = 𝑡𝑖 
End if 

𝜑′
𝑖
= (𝑔𝑖/𝑝𝑖)𝛿𝑖, 𝜑

′′
𝑖
= 𝑔𝑖/𝑝𝑖 

If (𝑓𝑖 = 1 ) then 

If (𝛿𝑖<𝛿0) then 

𝜑′
𝑖
= 𝑡𝑖,  𝜑

′′
𝑖
=

𝜎𝑐

𝛿0
 

                   else 

𝜑′
𝑖
= 𝑡𝑖,  𝜑

′′
𝑖
=

−𝜎𝑐𝑑

𝛿 −𝛿0
 

                  End if 

End if 

Update the elasticity tensor  

𝑆𝑖 = 𝜑
′′
𝑖
−
𝜑′

𝑖

𝛿𝑖
 

𝐷11 𝑖 =
𝜑′𝑖𝜆

2

𝛿𝑖
+
𝜆4𝛿𝑠1 𝑖

2

𝛿𝑖
2 𝑆𝑖, 𝐷12 𝑖 = 𝐷21 𝑖 =

𝜆4𝛿𝑠1 𝑖𝛿𝑠2 𝑖

𝛿𝑖
2 𝑆𝑖, 𝐷13 𝑖 = 𝐷31 𝑖 =

𝜆2𝛿𝑠1 𝑖𝛿𝑛 𝑖

𝛿𝑖
2 𝑆𝑖, 

𝐷12 𝑖 = 𝐷21 𝑖 =
𝜆4𝛿𝑠1 𝑖𝛿𝑠2 𝑖

𝛿𝑖
2 𝑆𝑖, 𝐷22 𝑖 =

𝜑′𝑖𝜆
2

𝛿𝑖
+
𝜆4𝛿𝑠2 𝑖

2

𝛿𝑖
2 𝑆𝑖, 𝐷23 𝑖 = 𝐷32 𝑖 =

𝜆2𝛿𝑠2 𝑖𝛿𝑛 𝑖

𝛿𝑖
2 𝑆𝑖, 

𝐷13 𝑖 = 𝐷31 𝑖 =
𝜆2𝛿𝑠1 𝑖𝛿𝑛 𝑖

𝛿𝑖
2 𝑆𝑖, 𝐷23 𝑖 = 𝐷32 𝑖 =

𝜆2𝛿𝑠2 𝑖𝛿𝑛 𝑖

𝛿𝑖
2 𝑆𝑖, 𝐷33 𝑖 =

𝜑′𝑖
𝛿𝑖
+
𝛿𝑛 𝑖
2

𝛿𝑖
2 𝑆𝑖 

END DO 

 

3.6 Trapezoidal CZM 

A trapezoidal form of energy release rate for the cohesive surface can be expressed 

as (RDSG Campillho, 2013): 

  𝐺𝑐 =
1

2
𝜎𝑐[(𝛿2 − 𝛿1) + 𝛿𝑐]   (3.47) 

The displacement jump for the damage initiation, traction softening initiation and 

complete damage of the cohesive element denote by 

  𝛿1 =
𝜎𝑐

𝐾
   (3.48) 
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  𝛿2 =
𝐺𝑐

𝜎𝑐
   (3.49) 

  𝛿𝑐 = 𝛿1 + 𝛿2   (3.50) 

where  𝐾 is a penalty stiffness. 

 

 

Fig. 3.6 Trapezoidal irreversible cohesive model denotes with effective traction and 

effective displacement. 

 

The effective traction can be expressed as 

  𝜑′ = 𝑡 =
𝜕𝜑

𝜕𝛿
=

{
 
 

 
 

𝛿

𝛿1
𝜎𝑐   ,    𝛿 ≤ 𝛿1

𝜎𝑐   ,     𝛿1 ≤ 𝛿 < 𝛿2
(1−𝑑)(𝛿2−𝛿1+𝛿𝑐)

𝛿𝑐
𝜎𝑐   ,   𝛿2 ≤ 𝛿 < 𝛿𝑐

0   ,   𝛿𝑐 ≤ 𝛿 

   (3.51) 

where 𝛿 is the ‘effective’ opening displacement which is given by 
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  𝛿 = √𝜆2𝛿𝑠 
2 + 𝛿𝑛

2   (3.52) 

where 𝜆 is a scalar parameter which introduced to assign different weights to the opening 

displacement 𝛿𝑛
  and sliding displacement, which is denoted by 

   𝛿𝑠 = √𝛿𝑠1
2 + 𝛿𝑠2

2    (3.53) 

where 𝛿𝑠1 and 𝛿𝑠2 denote components of the two directions of the sliding displacement  𝛿𝑠 

across the cohesive surfaces. 

The first-order partial derivative of the effective traction t  with respective to 

effective opening displacement is given by 

  𝜑′′ =
𝜕𝑡

𝜕𝛿
=

{
 
 

 
 

𝜎𝑐

𝛿1
   ,   𝛿 ≤ 𝛿1

0   ,   𝛿1 ≤ 𝛿 < 𝛿2

−𝜎𝑐
(1−𝑑)(𝛿2−𝛿1+𝛿𝑐)

𝛿𝑐(𝛿𝑐−𝛿)
   ,   𝛿2 ≤ 𝛿 < 𝛿𝑐

0   ,   𝛿𝑐 ≤ 𝛿 

  (3.54) 

where 𝑑 is the Damage variable defined to represent the softening of the cohesive 

element 

  𝑑 =

{
  
 

  
 

0   ,   𝛿 ≤ 𝛿1
 

(𝛿 −𝛿1)

(𝛿2−𝛿1+𝛿𝑐)
   ,   𝛿1 ≤ 𝛿 < 𝛿2

1 −
𝛿𝑐(𝛿𝑐−𝛿 )

(𝛿𝑐−𝛿2)(𝛿2−𝛿1+𝛿𝑐)

   ,   𝛿2 ≤ 𝛿 < 𝛿𝑐 
 

 
1   ,   𝛿𝑐 ≤ 𝛿 

  (3.55) 

Evidently, 𝑑 ranges from 0 to 1, which corresponding to that there is no damage of 

the cohesive surface and a fully separate of the cohesive surface, respectively. Fig. 3.6 

illustrates the loading and unloading processes of the Trapezoidal cohesive traction-
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separation law, the damage will accumulate when effective traction 𝑡 exceeds σc, where at 

the point A in Fig. 3.6. Thus, the force-displacement relation will go along line AO and 

BO when unloading at point A and B, respectively, because a permanent damage occurs 

on the cohesive surface at point A and B. On the contrary, the force-displacement relation 

will go along the original curve when no damage occurs on the cohesive surface. The 

derivations of the trapezoidal CZM implemented in ABAQUS are shown in Table 3.3. 

Table 3.3 Summary of the quantities required for an efficient finite element 

implementation of trapezoidal CZM in writing UEL subroutine for ABAQUS. 

Cohesive parameters: 𝐺𝑐, 𝜎𝑐, 𝐾, 𝜆  (Given) 

THEN: 

Initial condition 𝑟0 = 0, 𝑑0 = 0, 𝑓0 = 0 (Intermediate variable), 𝑔0 = 0 

(Intermediate variable) 

DO 𝑖 = 1,𝑚 (the number of integration points) 

Cohesive damage parameter  𝑑𝑖 = 𝑑𝑖−1 

Effective displacement of damage initiation 𝛿1 =
𝜎𝑐

𝐾
 

Effective displacement of traction softening initiation  𝛿2 =
𝐺𝑐

𝜎𝑐
 

Maximum effective displacement  𝛿𝑐 = 𝛿1 + 𝛿2 

Sliding displacements and normal displacement jump: 𝛿𝑠1 𝑖, 𝛿𝑠2 𝑖 and 𝛿𝑛 𝑖  
(Calculate with the nodal displacements from ABAQUS) 

Effective displacement 𝛿𝑖 = √𝜆2𝛿𝑠 𝑖 
2 + 𝛿𝑛 𝑖

2 , 𝛿𝑠 𝑖 = √𝛿𝑠1 𝑖
2 + 𝛿𝑠2 𝑖

2   

Mixed-mode damage threshold 𝑝𝑖 = 𝑝𝑖−1 

Update internal variables  

   If (𝛿𝑖 > 𝑝𝑖) then (loading) 

𝑝𝑖 = 𝛿𝑖, 𝑓𝑖 = 1 

else (Unloading) 

 𝑓𝑖 = 0 
       End if 

        If (𝛿𝑖<𝛿1) then  

𝑑𝑖 = 0 
End if 

        If (𝛿𝑖<𝛿2 and 𝛿𝑖 ≥ 𝛿1) then  

𝑑𝑖 =
(𝛿𝑖 − 𝛿1)

(𝛿2 − 𝛿1 + 𝛿𝑐)
 

End if 

        If (𝛿𝑖>𝛿2) then  
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𝑑𝑖 = 1 −
𝛿𝑐(𝛿𝑐 − 𝛿𝑖)

(𝛿𝑐 − 𝛿2)(𝛿2 − 𝛿1 + 𝛿𝑐)
 

End if 

 

      Determination of tractions  

𝑔𝑖 = 𝑔𝑖−1 

        If (𝛿𝑖<𝛿1) then  

𝑡𝑖 =
𝛿𝑖
𝛿1
𝜎𝑐 

End if 

        If (𝛿𝑖<𝛿2 and 𝛿𝑖 ≥ 𝛿1) then  

𝑡𝑖 = 𝜎𝑐 
End if 

        If (𝛿𝑖>𝛿2) then  

𝑡𝑖 =
(1 − 𝑑𝑖)(𝛿2 − 𝛿1 + 𝛿𝑐)

𝛿𝑐
𝜎𝑐 

End if 

If (𝑓𝑖 = 0) then 

𝑡𝑖 = (𝑔𝑖/𝑝𝑖)𝛿𝑖 
             End if 

𝑡1 𝑖 = 𝑡𝑖𝜆
2𝛿𝑠1 𝑖/𝛿𝑖,  𝑡2 𝑖 = 𝑡𝑖𝜆

2𝛿𝑠2 𝑖/𝛿𝑖,  𝑡3 𝑖 = 𝑡𝑖𝛿𝑛 𝑖/𝛿𝑖 
If (𝛿𝑛 𝑖

 < 0) then 

𝑡3 𝑖 = 𝐾𝛿𝑛 𝑖
  (Avoid interpenetration of the elements) 

End if 

If (𝑡𝑖 > 𝑔𝑖) then 

𝑔𝑖 = 𝑡𝑖 
End if 

If (𝑡𝑖 = 𝜎𝑐 and 𝛿𝑖 > 𝛿1 and 𝑓𝑖 = 1 ) then 

𝑔𝑖 = 𝑡𝑖 
End if 

If (𝑡𝑖 < 𝜎𝑐 and 𝛿𝑖 > 𝛿2 and 𝑓𝑖 = 1 ) then 

𝑔𝑖 = 𝑡𝑖 
End if 

 

𝜑′
𝑖
= (𝑔𝑖/𝑝𝑖)𝛿𝑖, 𝜑

′′
𝑖
= 𝑔𝑖/𝑝𝑖 

If (𝑓𝑖 = 1 ) then 

                    If (𝛿𝑖<𝛿1) then  

𝜑′ = 𝑡𝑖,  𝜑
′′ =

𝜎𝑐

𝛿1
 

            End if 

                   If (𝛿𝑖<𝛿2 and 𝛿𝑖 ≥ 𝛿1) then  

𝜑′ = 𝑡𝑖,  𝜑
′′ = 0 

           End if 

                   If (𝛿𝑖>𝛿2) then  

𝜑′ = 𝑡𝑖,  𝜑
′′ = −𝜎𝑐

(1−𝑑𝑖)(𝛿2−𝛿1+𝛿𝑐)

𝛿𝑐(𝛿𝑐−𝛿𝑖)
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            End if 

End if 

Update the elasticity tensor  

𝑆𝑖 = 𝜑
′′
𝑖
−
𝜑′

𝑖

𝛿𝑖
 

𝐷11 𝑖 =
𝜑′𝑖𝜆

2

𝛿𝑖
+
𝜆4𝛿𝑠1 𝑖

2

𝛿𝑖
2 𝑆𝑖, 𝐷12 𝑖 = 𝐷21 𝑖 =

𝜆4𝛿𝑠1 𝑖𝛿𝑠2 𝑖

𝛿𝑖
2 𝑆𝑖, 𝐷13 𝑖 = 𝐷31 𝑖 =

𝜆2𝛿𝑠1 𝑖𝛿𝑛 𝑖

𝛿𝑖
2 𝑆𝑖, 

𝐷12 𝑖 = 𝐷21 𝑖 =
𝜆4𝛿𝑠1 𝑖𝛿𝑠2 𝑖

𝛿𝑖
2 𝑆𝑖, 𝐷22 𝑖 =

𝜑′𝑖𝜆
2

𝛿𝑖
+
𝜆4𝛿𝑠2 𝑖

2

𝛿𝑖
2 𝑆𝑖, 𝐷23 𝑖 = 𝐷32 𝑖 =

𝜆2𝛿𝑠2 𝑖𝛿𝑛 𝑖

𝛿𝑖
2 𝑆𝑖, 

𝐷13 𝑖 = 𝐷31 𝑖 =
𝜆2𝛿𝑠1 𝑖𝛿𝑛 𝑖

𝛿𝑖
2 𝑆𝑖, 𝐷23 𝑖 = 𝐷32 𝑖 =

𝜆2𝛿𝑠2 𝑖𝛿𝑛 𝑖

𝛿𝑖
2 𝑆𝑖, 𝐷33 𝑖 =

𝜑′𝑖
𝛿𝑖
+
𝛿𝑛 𝑖
2

𝛿𝑖
2 𝑆𝑖 

END DO 

 

3.7 Summary 

The interface cohesive element implemented for the user UEL subroutine was 

provided. After that, a mixed-mode cohesive zone model used most in simulation of 

composite material was introduced. In order to find out the effects to the simulation results 

derived from different types of CZM, the exponential, triangular and trapezoidal shape of 

traction-separation laws were provided with detail derivations. The material parameters 

required to define the constitutive relations are the critical energy release rate, the strength 

of the interface, the penalty stiffness and the displacement jump ratio.  These parameters 

are kept the same for the three different types of CZM. 
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CHAPTER 4 

MODELING OF EXPERIMENTAL  

ATHEROSCLEROTIC PLAQUE DELAMINATION 

 

4.1 Introduction 

    Atherosclerotic plaque delamination depends both on the deformation and stress 

experienced by the arterial wall and on the interfacial strength between the plaque and the 

vascular wall. One measure of the interfacial strength is the critical energy release rate, 

which is the energy required to delaminate a unit area of the plaque from the underlying 

vascular wall. This critical energy release rate can be measured in plaque delamination 

experiments and can serve as an input to a mechanics model (such as the cohesive zone 

model) that describes the interfacial strength mathematically.  

  To this end, a finite element modeling and simulation approach for atherosclerotic 

plaque delamination experiments has been developed. In particular, plaque delamination 

experiments performed on apolipoprotein E-knockout (ApoE-KO) mouse aorta specimens 

are modeled in order to gain an understanding of the role of mechanical failure in human 

atherosclerosis because the ApoE-KO mouse aorta has been shown to develop 

atherosclerotic lesions similar in many respects to those seen in humans (Meir and 

Leitersdorf, 2004). It is noted that the modeling approach developed in this study can deal 

with  mixed-mod  delamination  failure.  The particular  delamination  experiments  noted
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above, in which a Mode I type delamination occurs due to the peeling of the delaminated 

portion of the plaque from the aorta wall, are used to demonstrate and validate this approach 

because of their availability and the lack of other types of experimental data in the literature. 

This study tries to establish the credibility and viability of this approach in order to provide 

a strong basis for its application to other clinically relevant failure modes such as those 

involving shear failure. 

In the current study, the atherosclerotic plaque delamination phenomenon is 

investigated through modeling and simulation of experiments performed on ApoE-KO 

mouse aorta specimens in which a plaque is peeled off from an arterial wall. A three-

dimensional (3D) finite element model for the experiments is developed, in which the 

Holzapfel-Gasser-Ogden (HGO) model (Gasser et al., 2006; Holzapfel, 2000b) in Section 

2.2 for the bulk arterial material behavior and a mixed-mode CZM in Section 3.3 for the 

plaque-media interface behavior are adopted. Simulation predictions of the load vs. load-

point displacement curve are compared with experimental measurements as validation for 

the proposed modeling approach. Also, uncertainties about the specimen geometry are 

analyzed in order to understand how these factors affect the predicted load vs. load-point 

displacement responses.   

4.2 Experimental Procedure 

The current study is focused on the modeling of atherosclerotic plaque deamination 

experiments performed on mouse aorta specimens reported in (Wang et al., 2011). In these 

experiments, ApoE-KO  mice were fed a high-fat (42% of total calories) Western-style diet 

for 8 months, starting at the age of six weeks, in order to develop atherosclerosis throughout 

the aorta (Nakashima et al., 1994). At the start of the experiment, a small initial 
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delamination was carefully introduced by a scalpel at the proximal end of the plaque, so 

that the micro-clamp can clamp the plaque edge, as shown in Fig. 4.1. The plaque was 

delaminated in situ. Pins were placed at both ends of a specimen to prevent excessive 

outward motion of the aorta, as shown in Fig. 4.1c and Fig 4.2. The tissues surrounding 

and underlying the aorta provide considerable structural support and restrict the outward 

motion of the aorta during the delamination procedure; in particular, the dorsally-oriented 

intercostal branches prevent the outward motion of the thoracic aorta (Wang et al., 2011). 

 

Fig. 4.1 A schematic of the atherosclerotic plaque delamination experimental setup: (a) 

Side view of the schematic diagram of the experiment, a mouse specimen on a loading 

table; (b) a schematic diagram of the experimental process represented by a finite element; ; 

(c) top view of the schematic diagram of the experiment; (d) three typical consecutive 

experimental load vs. load-point displacement curves.  

 

A mouse carcass with exposed aorta was fastened to a small plate connected to the 

load cell of a Bose ELF 3200 for load data recording. The small delamination on the 

proximal end of the plaque was gripped by a pair of micro-clamps connected to the Bose 

ELF 3200 actuator, which applies sequential loading-delamination-unloading cycles, as 
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shown in Fig 4.1d. The delamination process was recorded by a computer vision system 

which was placed a certain distance above the mouse carcass, and one of the recorded 

images is shown in the center insert box in Fig. 4.1c. For each experiment, a load-

displacement curve with multiple loading-delamination-unloading cycles was obtained, 

and three sequential loading-unloading cycles from specimen #1 are shown in Fig. 4.1d. 

After the experiment, the specimens were prepared for histological analyses, which reveal 

that the plaque delamination took place between the plaque and the underlying internal 

elastic lamina (IEL), instead of within the media (Wang et al., 2011).      

4.3 Numerical Simulations of Atherosclerotic Plaque Delamination 

4.3.1 Simulation Model 

An important part of the plaque delamination simulation model is the geometric 

dimensions of the aorta (e.g. diameter, thickness of wall, length and curvature) and plaque 

(e.g. thickness and length of plaque along the longitudinal direction of aorta) since errors 

in the geometric dimensions will lead to errors in simulation predictions. Since limited 

geometric values were obtained from the delamination experiments being modeled in this 

study, several considerations and assumptions are found necessary to create the simulation 

model (the finite element model).  

First, the digitized images from the plaque delamination experiments are used to 

measure certain geometry data directly, including the length and width of the plaque. 

Second, reference geometry data from the literature are considered in approximating the 

arterial wall thickness because the variation of thickness for mouse aorta with the same age, 

diet and genotype is small.  
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Based on these considerations, an approximate geometry model of the plaque 

specimen is created. The effects of the uncertainties in the geometric values will be 

examined in section 4.6.  

4.3.2 Two Contributions to Define Geometry of Finite Element Model 

a. Delamination Experimental Images 

The width and length of the delamination area can be measured directly from the 

available experimental images. For example, one experimental image of specimen #1 is 

shown in Fig. 4.2. Considering the curvature of the lower face, the geometrical values for 

the plaque are measured from the upper face, in which W1, W2 and W3 are three values 

of the width used to approximate the cross-section of the mouse atherosclerotic plaque 

specimen, and L1 and L2 are the distances from the proximal end of the specimen to the 

positions where W1 and W2 are measured, respectively. The total length of the plaque 

specimen is determined by the distance from the left pinned end (the proximal end) to the 

right pinned end (the distal end) of the plaque specimen. The thickness of the plaque, T, 

can be estimated only at the proximal end from the experimental image. Thus, as an 

approximation, T is taken to be constant along the total length of the specimen in the finite 

element model. The radius R of the interface between the aortic wall and the plaque is also 

available only approximately from experimental images.      
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Fig. 4.2 An experimental delamination image of a mouse plaque specimen (specimen #1). 

The “upper face” is the separated surface pulled by the micro-clamp, and the “lower face” 

is the exposed surface. Scale bar=1 mm. 

 

b. Geometry Values from the Literature 

The literature provides some reference values for the aorta geometry useful in the 

current study. For example, reference (Gregersen et al., 2007) studied the remodeling of 

the zero-stress state of the aorta in apoE-deficient mice at the ages of 10, 28 and 56 weeks, 

in which aortic rings were excised from several locations along the aorta. The geometry 

values of the aortic rings at zero-stress state measured from mice at the ages of 28 and 56 

weeks from reference (Gregersen et al., 2007) are employed in the current study to provide 

a range of approximate geometry values for mice at the age of 43 weeks which were used 
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in the delamination experiments being modeled in the current study. Therefore, for the 

arterial wall, the range of the inner circumference (𝐶𝑖) is 1.4 mm to 2.8 mm, the range of 

the outer circumference (𝐶𝑜) is 2.0 mm to 3.3 mm, and the range of the thickness is 0.08 

mm to 0.16 mm.               

4.3.3 FE Model of the Plaque Delamination Experiments 

For the in-situ experiments, it is difficult to obtain the geometry of the 

atherosclerotic plaque and the arterial wall, not only because of the complexity of the 

geometry, but also because of the very small dimensions of the mouse aorta. The 

geometrical dimensions of the width and length of the atherosclerotic plaque are more 

accurate because these values can be directly measured from the experimental images, as 

shown in Fig. 4.2. In addition, the delaminated area between the plaque and underlying 

vascular wall shows large variations during the delamination process. Therefore, in 

building the finite element model, the two contributions in section 4.3.2 are incorporated 

into the model based on available information. The resulting 3D finite element model with 

a reasonable approximation of the actual specimen contains an asymmetrical 

atherosclerotic plaque as shown in Fig. 4.3. 

In the model, the widths of the plaque are measured at different locations along the 

longitudinal direction of the arterial wall from the experimental images, as shown in Fig. 

4.2. The thickness of the plaque is taken as a constant value for the delamination length of 

each loading-delamination-unloading cycle (which is around 0.2 mm).  

In the experiments, both ends of the specimen were constrained by pins, but the 

pins could not completely constrain the movement of the specimen along the longitudinal 

direction, as if the pinned vessel acted as an elastic foundation in the longitudinal direction. 
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Therefore, in the finite element model, the arterial wall is made longer than the plaque, so 

that the extra length of the arterial wall can provide the needed freedom to model this elastic 

foundation effect. For simplicity, the lengths of the arterial wall on either side of the plaque, 

from the two ends of the plaque to the two ends of the arterial wall, are set to equal half the 

length of the plaque, as shown in Fig. 4.3a.      

 

Fig. 4.3 A FE model of the mouse aorta (specimen #1): (a) a FE model for delamination 

simulation, where L is the length of the atherosclerotic plaque; elastic springs under the 

arterial wall in x, y and z directions. (b) a cross-sectional view of the aorta and parameters, 

where r is the radius of the aortic wall curvature away from the plaque, R is the radius of 

curvature of the interface between the plaque and the arterial wall, t is the thickness of the 

aortic wall, W is the width of the plaque, T is the height of the atherosclerotic plaque, and 

Co is the total circumferential width of the aortic wall. 

4.3.4 Boundary Conditions 

Because perivascular adipose tissue (Szasz et al., 2013; Verhagen and Visseren, 

2011) and other surrounding connective tissues are in close association with the arterial 

wall and serve as the vascular bed, they are expected to constrain the movement of the 

arterial wall. Due to limited information regarding the structure and material properties for 

those tissues, the effects of the underlying tissues are modeled by an elastic foundation 

under the aortic wall. To this end, the boundary of the arterial wall is approximated by 

elastic springs that connect points to the ground in x, y and z directions, as shown in Fig. 
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4.3a. The proximal and distal ends of the wall are approximated by fixed boundary 

conditions. 

The equations used to describe the response of the tissues connecting to the arterial 

wall are 𝐹𝑥 = 𝑘𝑥𝑢𝑥 , 𝐹𝑦 = 𝑘𝑦𝑢𝑦  and 𝐹𝑧 = 𝑘𝑧𝑢𝑧 . The parameters 𝑘𝑥 ,  𝑘𝑦 ,  𝑘𝑧  are the 

stiffness values, 𝑢𝑥, 𝑢𝑦, 𝑢𝑧 are the displacements, and 𝐹𝑥, 𝐹𝑦, 𝐹𝑧 are the spring forces in the 

three directions, respectively.  

Reasonable values of the spring stiffness are chosen as part of a numerical 

identification procedure that matches simulation predictions of the overall load vs. load-

point displacement curve with experimental measurements. In selecting the spring stiffness 

values, only the loading phase of the load vs. load-point displacement curve is used.  

Fig. 4.3 shows a complete finite element model using the geometry described 

earlier. The mesh is generated using ABAQUS (ABAQUS, 2013). The arterial wall and 

plaque regions are meshed with 8-node brick elements, C3D8H, while the cohesive zone 

interface is meshed with zero thickness 8-node 3D user-defined elements. A layer of 

cohesive elements is placed along the delamination path, starting from the initial crack 

front to the end of the plaque. It is noted that while the CZM approach can handle material 

separation without a given separation path, it will greatly save the computational cost if the 

separation path is not part of the simulation prediction. In the current study, since the 

material separation path in the experiments being simulated is known in advance, the 

delamination path is taken as known in order to save computational effort and to avoid 

complexities associated with the need to predict the separation path. The global bulk 

element size (for the arterial wall and plaque) is 0.1 mm and the cohesive element size is 

0.02 mm.  
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4.3.5 Parameter Value Identification 

The parameter values for the bulk arterial material, the elastic springs, and the CZM, 

are obtained through an inverse identification procedure that matches simulation 

predictions of the overall load vs. load-point displacement curve with experimental 

measurements. Since the current study involves many parameters, and only a limited 

amount of experimental data are available, a fully automated inverse procedure (Chen et 

al., 2014) will be very time consuming and thus was not employed. Instead, approximations 

were made (e.g. most of the bulk material parameter values were set to be the same for the 

arterial wall and for the plaque), simple values were chosen (e.g. single-digit rounded 

values were chosen for the elastic foundation spring constants), and a manual numerical 

procedure (Chen et al., 2013) was performed. The experimental load vs. load-point 

displacement curve for the first loading-delamination-unloading cycle from specimen #1 

and reference parameter values from the literature are used as the input data for the 

identification procedure. In this study, a set of parameter values is determined when the 

average error, 𝑒𝑎𝑣𝑔 = [∑ (
𝑓𝑠𝑖𝑚−𝑓𝑒𝑥𝑝

𝑓𝑒𝑥𝑝
)𝑁

𝑖=1 ] /𝑁, between simulation predicted reaction forces, 

fsim, and experimentally measured reaction forces, fexp, is less than 10%, where N is the 

number of data points which spread over the loading, delamination and unloading phases 

of the load-displacement curve for the first loading cycle. A relatively large error (10%) is 

accepted because the match between simulation predictions and experimental data is 

expected not to be perfect due to several uncertainties in the simulation model and input 

data. 
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4.3.6 Parameter Values for the HGO Model and Elastic Springs 

Reference (Van Herck, 2009) investigated the stress strain response of aortas from 

ApoE-/-Fbn1+/C1039G and ApoE-/- mice that were fed with normal chow or Western-style 

(high-fat) diets for 10 and 20 weeks. It was observed that the stiffness of the mouse aorta 

not only increases with age but also correlates with the diet. For the experiments being 

modeled in the current paper, the mice were fed a Western-style diet for 34 weeks, which 

means that the stiffness of the mouse aorta is expected to be greater than those reported in 

Reference (Van Herck, 2009). Similarly, the values of the HGO model parameters reported 

in the literature for mouse aorta refer to mice at the age near 10 weeks (Collins, 2011; 

Collins, 2012; Eberth, 2009), which means that they are not directly applicable in the 

current study.  

Therefore, the values for HGO model parameters for the bulk material and the 

values of the stiffness of elastic springs are determined based on values suggested in the 

literature (Collins, 2011) and by matching simulation predictions with measurements using 

the loading phase of the load-displacement curve from the 1st loading-unloading cycle of 

specimen #1 (𝑒𝑎𝑣𝑔 = 6.37%,𝑁 = 54) , as shown in Fig. 4.4a. In carrying out this 

identification procedure, the deformations of arterial wall and plaque are also checked to 

make sure that they are consistent with those observed experimentally.  

The arterial wall and plaque are treated as two layers of heterogeneous materials. 

As a first-order approximation, their HGO model parameter values are chosen mostly to 

be the same, due to the lack of proper literature reference data and the lack of sufficient 

experimental data for more adequate inverse identification. These HGO model parameter 

values are shown in Table 1. The values of the stiffness of elastic springs in the elastic 
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foundation under the arterial wall are listed in Table 2. Meanwhile, with the same HGO 

model parameter values (Table 1) identified from specimen #1, the values of the elastic 

springs for specimen #2 (Table 2) were obtained through matching simulation predictions 

with measurements using the loading phase of the load-displacement curve from the 1st 

loading-delamination-unloading cycle of specimen #2, as shown in Fig. 4.4b. The stiffness 

values are smaller than those for human and porcine adipose tissues (which have elastic 

moduli of approximately 1 kPa) (Alkhouli N, 2013; Comley K, 2009).  

Table 4.1 Material parameters of mouse arterial wall and plaque identified from specimen 

#1  

 μ (kPa) 𝑘1 (kPa) 𝑘2 𝜅 𝑟 (degree) 

Arterial wall 4 4e3 525 0.226 46.4 

Plaque 4 4e3 525 0.226 27.2 

 

Table 4.2 Stiffness of spring for specimen #1 and specimen #2 

Specimen  𝑘𝑥(𝑁/𝑚𝑚
3) 𝑘𝑦(𝑁/𝑚𝑚

3) 𝑘𝑧(𝑁/𝑚𝑚
3) 

#1 1e-4 1e-4 1e-4 

#2 3e-5 5e-5 1e-4 

 

The simulation predicted von Mises stress contours for three typical points along a 

loading-delamination-unloading cycle from specimen #1 are shown in Fig. 4.5. The stress 

contour levels shown in the zoomed-in views (a), (b) and (c) are consistent with the 

corresponding loading levels in the load-displacement diagram. For example, the loading 

level in (b) is the highest and is sufficient to grow the delamination, and the resulting von 

Mises stress field shows that it has the highest contour level of the three cases.  In all three 

cases, the highest stress contour level occurs in the middle portion of the plaque near the 
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delamination front, which is expected. In (b), the highest stress level is located somewhat 

behind the delamination front, which is consistent with the fact that the loading level in (b) 

occurs somewhat after the peak load is reached in the load-displacement diagram. 

 

Fig. 4.4 (a) The simulated load-displacement curve of the first loading-unloading cycle 

from specimen #1 is compared with the measured curve, 𝐺𝑐 = 0.019 N/mm. (b) The 

simulated load-displacement curve of the first loading-unloading cycle from specimen #2 

is compared with the measured curve, 𝐺𝑐 = 0.01 N/mm. The entire cycle includes the 

loading phase in which the plaque is pulled without delamination, the delamination phase 

in which the plaque is pulled and separated from the underlying internal elastic lamina 

(IEL), and the unloading phase in which the plaque is returned to the initial position. 

 

Fig. 4.5  von Mises stress (MPa) contours for three typical points of loading-unloading 

cycle of plaque delamination simulation from specimen #1. 



 

63 
 

4.3.7 CZM Material Properties 

In the current study, the delamination of atherosclerotic plaque is approximated as 

a pure Mode I process (Wang et al., 2011), in which the dominant cohesive traction is the 

tensile cohesive traction normal to the plane of delamination. Therefore, for simplicity, the 

values of 𝐺𝐼𝐼𝑐 for all cycles are set to be equal to 𝐺𝐼𝑐, because the exact value of this Mode 

II parameter in a Mode I event has negligible effect on the simulation results. Due to the 

variation in geometry of the delamination area and material heterogeneities along the 

longitudinal direction of the aorta, the energy release rate in pure Mode I, 𝐺𝐼𝑐, varied from 

one delamination cycle to another (Wang et al., 2011). The measured 𝐺𝐼𝑐 values are used 

as the input cohesive parameter values. 

The rest of the CZM parameter values, as shown in Table 3, are selected based on 

values suggested in the literature, such as the tensile strength of the interface between the 

plaque and the underlying tissue (the arterial wall) (Gasser and Holzapfel, 2006), and by 

matching simulation predictions of the load-displacement curve with measurements using 

the delamination phase of the first loading-delamination-unloading cycle of specimen #1 

(as shown in Fig. 4.4a). Care was taken to ensure that the deformations of the arterial wall 

and the plaque during the delamination phase are consistent with those from experimental 

measurements, as described earlier for determining parameter values of the HGO model 

for the bulk arterial wall and plaque behavior.  

Table 4.3 CZM parameter values 

CZM parameters 𝑇 3
0 (MPa) 𝑇 𝑠ℎ𝑒𝑎𝑟

0  (MPa) 𝐾 (N/mm3 ) 𝛼 

Values 0.14 0.14 1e4 1.2 
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For the numerical convergence, the stiffness of the cohesive zone model and the 

size of the cohesive element need to be taken into consider (Chen et al., 2013; Chen et al., 

2014).  

(a) Stiffness of the Cohesive Element 

In order to avoid introducing a fictitious structure compliance, the stiffness of the 

cohesive surface between the plaque and the arterial wall must meet the condition (Chen 

et al., 2013; Chen et al., 2014): 

  𝐾 ≥
𝑎𝐸3

t
    (4.1) 

where 𝐸3 is the through-thickness Young’s modulus of the bulk material, t is the thickness 

of the plaque or aorta wall, and 𝑎 is a parameter much larger than 1 (e.g. 50). In the current 

study, the maximum thickness was chosen where t is equal to the thickness of the plaque. 

A suitable stiffness must be selected to inhibit numerical convergence difficulty and 

spurious oscillations of the tractions values in the elements.  

It was reported in Reference (Asawinee Danpinid, 2009) that the Young’s modulus 

of the arterial wall in six mice in vivo for elastin, elastin-collagen and engaged collagen 

fibers has a mean values of 91.6 kPa, 229.0 kPa and 137.5 kPa, respectively. Considering 

these stiffness values and the thickness of the plaque in the current study, it is found that a 

value of 104 N/mm3 for K is sufficient.  

(b) Length of the Cohesive Element  

The length of the cohesive zone 𝑙𝑐𝑧 is defined as the distance from the delamination 

front to the point ahead of the front where the maximum cohesive traction is attained. In 

order to predict the cohesive zone length 𝑙𝑐𝑧  of the interface between the materials of 
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plaque and arterial wall, a form related to the fracture properties of the interface is shown 

below (Turon et al., 2006): 

 𝑙𝑐𝑧 = 𝑀𝐸
𝐺c

(T𝑐
 )2

   ,   𝑙𝑒 =
𝑙𝑐𝑧

𝑁𝑒
   (4.2) 

where 𝐺c is the critical energy release rate, 𝐸 is the Young’s modulus of the material, 𝑇𝑐 is 

the maximum interface strength, and 𝑀 is a parameter that depends on the cohesive zone 

model. For cycle 1 of specimen #1, 𝐺c is equal to 0.019 N/mm, 𝑇𝑐 has the value as 0.14 

MPa, and 𝑀 was chose equal to unity, Using equation (4.2) with Young’s modulus of 

elastin, elastin-collagen and engaged collagen fibers, respectively, the values of the 

cohesive zone length are 0.09 mm, 0.22 mm, and 0.13 mm. When the number of elements 

in the cohesive zone, 𝑁𝑒, is chose as 5, the cohesive element size in the direction of crack 

propagation, 𝑙𝑒, is equal to 0.02 mm, 0.04 mm and 0.03 mm for the three values of the 

Young’s modulus , respectively. In the current study, a cohesive element size of 0.02 mm 

is chosen. 

4.4 Convergence Analysis 

A convergence study was performed on the bulk material element and the cohesive 

element in order to exclude mesh dependency effects. Mesh 1 is a coarse mesh with 3,472 

nodes and 1,972 brick elements (C3D8H), mesh 2 (the reference mesh) is refined from 

Mesh 1 (the element size in Mesh 2 is half of that in Mesh 1, along x, y and z directions) 

with 19,446 nodes and 14,136 brick elements, and mesh 3 is refined from mesh 2 with 

119,365 nodes and 99,423 brick elements (the cross-sections of three meshes are shown in 

Fig. 4.6a). 
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The cohesive element size is dictated by the bulk material element size along the 

delamination path. Specifically, the cohesive element size, le, is 0.04 mm, 0.02 mm, 0.01 

mm, respectively, for the three different meshes. It is observed that, from one mesh to 

another, there is little change in the predicted loading and unloading phases of the load-

displacement curve, as shown in Fig. 4.6b. The average value of the pulling load during 

the delamination phase is constant and defines a plateau, which decreases with the decrease 

of the element size. The average relative errors for mesh 1 and mesh 3 compared to mesh 

2 are 3.6% and 2.3%, respectively. Overall, mesh 2 is found to give reasonably converged 

predictions. 

  

Fig. 4.6 (a) Cross-section of three different meshes, (b) predicted 1st-cycle load-

displacement curves using the three meshes, with comparison to the experimental curve. 

 

4.5 Prediction and Validation 

Simulation predictions and validation of the predictions are performed for loading-

delamination-unloading cycles 2 and 3 from both specimen #1 and specimen #2, using the 

(a) 
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HGO model and CZM parameter values determined according to the parameter 

identification procedure, based on the 1st loading-delamination-unloading cycle of the 

experimental load-displacement curve for specimen #1. The stiffness values of the elastic 

foundation springs for the two specimens are determined, respectively, from cycle 1 of 

each specimen, and are listed in Table 2. 

 

Fig. 4.7 Comparisons of the predicted and measured load-displacement curves for loading-

unloading cycles. (a) cycle 2 and (b) cycle 3 of specimen #1; (c) cycle 2 and (d) cycle 3 of 

specimen #2. 
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Two simulations for each cycle are carried out due to two input choices for each 

cycle. Specifically, for each cycle, there are two choices for the critical energy release rate 

input value: (1) the experimental value from the corresponding cycle (see the red short 

dashed line in Fig. 4.7), and (2) the value is kept the same as in cycle 1 of specimen #1 (see 

the blue long dashed line in Fig. 4.7). The first choice is more reasonable because it reflects 

the variation of the experimental critical energy release rate value from cycle to cycle. 

Simulations with the second choice are made for comparison purposes.  

It can be seen from Fig. 4.7 that the simulation predictions using the critical energy 

release rate from the corresponding loading cycles provide better predicted average values 

for the load during the delamination phase of the loading cycle. There are some differences 

between the predictions and measurements, especially for the delamination and unloading 

phases. There are several possible reasons for these differences. In the experiments, the 

tissue along the delamination path may not be homogeneous. It may contain weak material 

(e.g., lipid cores) and strong material (e.g., bridging fibers and calcification in the tissue), 

which can lead to oscillations in the delamination load. In the simulations, however, 

material inhomogeneity is not taken into consideration, thus oscillations in the 

delamination load are not predicted. The larger difference in the unloading curve is 

believed to be caused by the fact that the HGO model is not capable of modeling the 

viscoelastic behavior in the bulk material, while in the delamination experiments the 

viscoelastic effect may be non-negligible. Moreover, the differences may be caused by the 

approximations and simplifying assumptions made in the simulation models due to the lack 

of experimental data for geometrical dimensions and material model parameters, and by 

the choices of the material models themselves.  Overall, the simulation predictions match 
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reasonably well with the experimental measurements. Thus, it can be said that a good 

validation for the CZM-based simulation approach for the plaque delamination process has 

been achieved, although further improvements in the overall simulation model are still 

necessary.  

4.6 Analysis of the Effects of the Geometric Uncertainty 

There are several uncertainties in the simulation model for the plaque delamination 

experiments, which may partly be responsible for the differences observed in the 

comparisons between simulation predictions and experimental results shown in Fig. 4.7. 

Besides uncertainties in the material parameter values, a key uncertainty is in the geometry 

of the mouse aorta. The effects of this uncertainty are analyzed in this section and specimen 

#1 is chosen for this purpose. 

In the simulations, the thickness of the plaque and curvature of the arterial wall are 

taken to be constant along the length of the aorta due to the lack of experimental data. In 

reality, the thickness of the plaque and curvature of the arterial wall vary along the 

longitudinal direction of the aorta. To gain some insight into the effect of plaque thickness 

on simulation predictions, three plaque thickness values are considered: 0.15 mm 

(thickness-1), 0.26 mm (thickness-2) and 0.35 mm (thickness-3) (Fig. 4.8a). Furthermore, 

to study the effect of the aortic curvature in the cross-section on simulation predictions, 

three shapes of the cross-section are considered based on the curvature of the aorta below 

the plaque: 0.00 𝑚𝑚−1  (Curvature-1), 1.69 𝑚𝑚−1  (Curvature-2), and 2.22 𝑚𝑚−1 

(Curvature-3) (Fig. 4.8c). All other aspects of the simulation model stay the same.  
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Fig. 4.8  Analysis of the effects of the geometric uncertainty: (a) The cross-sections of 

finite element models with three typical atherosclerotic plaque thicknesses. (b) Predicted 

load-displacement curves from simulations with three different thicknesses. (c) The cross-

sections of finite element models with three typical atherosclerotic plaque curvatures. (d) 

Predicted load-displacement curves from simulations with three different curvatures. 

 

The simulation predicted load-displacement curves are shown in Fig. 4.8 along with 

experimental data. It is seen that the predicted maximum load is only slightly affected by 

the plaque thickness, as shown in Fig. 4.8b. However, the loading and unloading phases 

(especially the loading phase) of the load-displacement curve are strongly affected by the 

(a)
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plaque thickness. The reason for these observed thickness effects seems to be related to the 

fact that when the thickness is changed, the structural stiffness of the model is changed (but 

not the delamination resistance of the interface), which is why the loading/unloading 

response is strongly affected (but not the peak load, which is more dictated by the 

delamination resistance). 

In addition, the unloading phase of the load-displacement curve is not much 

affected by the curvature, but the loading and delamination phases of the load-displacement 

curve are more strongly affected by the curvature, as shown in Fig. 4.8d. A straightforward 

explanation for the predicted effects of the curvature is not clear at this time. This is because, 

when the curvature changes, several possibly coupled effects may be involved, including 

differences in the reactions of the foundation springs, the effects on the overall structural 

stiffness, and the effects on the energy release rate.  

 

4.7 Conclusions  

Plaque delamination often occurs at the shoulder region of the fibrous cap.  Studies 

of atherosclerotic plaque delamination in mouse specimens provide a way to understand 

the mechanisms of arterial failure and damage evolution at material layer interfaces. There 

are studies that focus on the analysis of stress-strain behavior and tissue dissection inside 

the arterial material (Ferrara and Pandolfi, 2010; Gasser and Holzapfel, 2007; Gasser and 

Holzapfel, 2006), but few studies have investigated the delamination of atherosclerotic 

plaque from the underlying arterial wall.  

In the present work, a finite element based modeling approach for simulating 

atherosclerotic plaque delamination events has been developed and demonstrated. 
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Simulations of plaque delamination experiments on mouse aorta specimens have been 

carried out, in which the HGO model for the bulk arterial material behavior and the CZM 

for the delamination behavior along the plaque-media interface are adopted. The 3D 

geometry model is generated based on images from the plaque delamination experiments 

and on geometric values from the literature.  

Parameter values for the HGO model and the CZM were determined based on 

values suggested in the literature, by matching simulation predictions of the first loading-

delamination-unloading cycle of the load-displacement curve from specimen #1 with the 

measured curve, and by requiring that the predicted deformations be consistent with those 

from experimental measurements. As validation of the CZM approach, the parameter 

values identified from the first loading-delamination-unloading cycle of specimen #1 were 

employed for one group of simulations for loading cycles 2, 3 from specimen #1 and 

another group of simulations for loading-unloading cycles 2, 3 from specimen #2. The 

simulation predictions of the load-displacement curves for these cycles were found to 

match reasonably well with experimental curves.  

Furthermore, the simulation model was used to study the effects of geometric 

uncertainty on simulation predictions. It was found that the predicted load in the 

delamination phase was not affected by the plaque thickness, but it was strongly affected 

by the curvature of the arterial wall in cross-section.  

While the geometric uncertainty and associated simplifications and approximations 

for the simulation model may be partly responsible for the differences seen in the 

comparisons between simulation predictions and experimental results, approximations in 

modeling the bulk material behavior for the arterial wall and for the plaque are also 
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expected to contribute to the observed differences. First, it is known that the mechanical 

behavior of the plaque is in general different from that of the arterial wall. In the current 

study, the plaque was modeled using the HGO constitutive model which was developed 

for the arterial wall. The HGO model may not be appropriate for the plaque because the 

histological components of the plaque are different from those of the arterial wall (Huang 

et al., 2001). Hence, a more suitable constitutive model for the plaque is needed. Second, 

due to the lack of experimental data, several of the HGO model parameter values for the 

arterial wall and for the plaque were simply chosen to be the same in the current study, 

which may be grossly inadequate. Third, adventitia, media and intima are three layers in 

the arterial wall which in general have different material properties, but they are lumped 

together in the current study as a single layer. Fourth, experimental data show the existence 

of hysteresis behavior in the load-displacement curve, which suggests that there may be a 

need to consider the viscoelastic behavior of the arterial wall and the plaque.  
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 CHAPTER 5 

EXPERIMENTAL AND NUMERICAL STUDIES OF MIXED-MODE  

AND MODE I DELAMINATION OF ARTERIAL WALL 

 

5.1  Introduction 

In the previous chapter, a mouse atherosclerotic plaque delamination test was 

conducted. This experiment is different from the arterial tissue peeling test performed by 

Sommer (Sommer et al., 2008). In order to explore mechanisms of the two types of 

delamination tests (a “mixed-mode” type and a “mode I” type), the comparison of these 

two tests is conducted and the findings from the experimental and numerical studies of the 

two types of tests will provide more guidance for further investigations of arterial tissue 

failure.  

For the numerical simulation of arterial layer delamination, numerous studies 

employed a CZM approach to characterize interfacial debonding and delamination 

processes of fiber-reinforced composite materials (Roy and Dodds, 2001; Turon et al., 

2006). This method has also been implemented to study the failure of arterial tissue in two 

dimensions (2D) (Ferrara and Pandolfi, 2010; Gasser and Holzapfel, 2006) and three 

dimensions (3D) (Leng et al., 2015a; Leng et al., 2015b; Leng et al., 2016).  

It is well known that elastin is the major load bearing structural component of the 

arterial wall at low strain and that collagen fibers contribute to the stiffening of the arterial 
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tissue at high strain (Ferrara and Pandolfi, 2010; Zhou et al., 2015). With the advantage of 

quantifying the separate mechanical contribution of each component to the overall 

mechanical behavior of the arterial tissue, the Holzapfel-Gasser-Ogden (HGO) model has 

widely been employed for modeling the mechanical behavior of arterial wall and 

calculating the local stress of the vascular cells in the arterial wall under large deformation 

(Ferrara and Pandolfi, 2010; Leng et al., 2015b).  

Existing studies in the literature have investigated the dissection of the arterial wall, 

but experimental investigations of arterial wall delamination events and the analyses and 

numerical simulations of such events have been limited. To this end, delamination 

experiments on porcine abdominal aorta focusing on mixed-mode and mode I failures are 

performed. In addition, the interfacial strength and critical energy release rate of the 

interface within the media are quantified, and these experiments have been simulated 

numerically using the finite element method and the cohesive zone model approach. In the 

current study, a three-dimensional (3D) finite element model for the experiments is 

developed, in which the Holzapfel-Gasser-Ogden (HGO) model (Gasser et al., 2006; 

Holzapfel, 2000b) in Section 2.2 for the bulk arterial material behavior and an exponential 

CZM in Section 3.4 for the interface (inside the media layer) behavior are adopted. 

Through the simulation of arterial tissue delamination, the CZM method can be validated 

by the comparison of loading-delamination-unloading curves and the distances from the 

delamination front to the initial front between simulation and experimental measurements. 

Meanwhile, the level of constraint along the delamination path and the shape of 

delamination front are investigated, which focus on the study of the effects from the 

interfacial strength and critical energy release rate of the interface of arterial material. 
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Finally, the dominant fracture mode of the two types of arterial material delamination 

processes has been discussed in order to better understand the arterial tissue failure 

mechanism.  

5.2 Experimental Procedure  

The delamination experimental protocol in this study and the method to obtain the 

critical energy release rate follow our previous studies (Wang et al., 2013; Wang et al., 

2014; Wang et al., 2011). One set of intact kidneys was obtained from the local 

slaughterhouse, rinsed in iced phosphate-buffered saline (PBS) solution and transported 

back to the laboratory. The abdominal aorta was isolated from the surrounding tissue, 

washed in PBS and dissected from the perivascular tissue. An approximately 30 mm long 

segment was cut, followed by a radial cut imposed onto the sample along the vessel axis, 

yielding a strip. Two groups of specimens oriented at the angle of 0° and 90° with respect 

to the circumferential vessel axis were cut from two porcine aortas (Fig. 5.1), respectively.  

   There are twelve specimens for each group, half of the twelve specimens oriented 

at the angle of 0° with respect to the circumferential vessel axis were used for mixed-mode 

delamination and the remainder were used for mode I delamination. The same experiments 

were also performed on specimens cut at an angle of 90° with respect to the circumferential 

vessel axis, as shown in Fig. 5.1. In each case, to initiate a delamination process in the 

media layer of the arterial wall, a small initial delamination flaw with a straight 

delamination front was carefully introduced at one end of the specimen inside the media 

layer. In the “mixed-mode” experiment (see Figs. 5.2a and 5.2c), the bottom surface of the 

lower portion of the specimen was glued to a glass plate in order to restrict its motion 

during loading, and the proximal end of the upper delaminated portion was peeled away 
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by a micro-clamp. During the delamination process, the delaminated upper portion became 

almost parallel to the lower portion and to the not-yet delaminated interface (Fig. 5.2c). In 

the “Mode I” experiment (see Figs. 5.2b and 5.2d), the proximal end of one of the two 

initially separated portions of the specimen was fixed by tissue glue to a glass plate and the 

proximal end of the other separated portion was pulled away by a micro-clamp. During the 

delamination process, the two delaminated portions stay parallel to each other but are 

approximately perpendicular to the not-yet delaminated interface (Fig. 5.2d). 

    During each experiment, the prescribed displacement and reaction load were 

recorded via the system actuator and load cell (Bose ELF 3200, Biodynamic Co, MN). The 

delamination process was recorded by a computer vision system in which two cameras 

were perpendicularly positioned to get both front and side views of the specimen.  

 

 

Fig. 5.1 Schematic of experimental setup. (a) A radial cut was made on the porcine 

abdominal aorta and strips oriented at the angle of 0o and 90o with respect to the 

circumferential vessel axis were obtained; (b) Experimental setup of delamination tests; (c) 

mixed-mode and (d) mode I delamination experiment setup (zoomed-in view).  

5.3 Numerical Implementation 

Simulations of the arterial delamination process are implemented via the general-

purpose finite element software ABAQUS 6.13 (ABAQUS, 2013). The mechanical data in 
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terms of the load vs. displacement relationship from the first cycle of the media 

delamination experiment was used for the identification of the HGO constitutive model. 

Simulations of loading-delamination-unloading for the subsequent cycles were performed 

by using the intact set of identified parameters, validating the CZM-based approach by 

comparing the numerical predictions of load-displacement curves and distances from 

delamination front to the initial front with experimental measurements. 

5.3.1 Finite element model 

The images (Fig. 5.2a, 5.2b) taken during the experiments were used to reconstruct 

the material geometry (Fig. 5.2c, 5.2d). The delamination areas during a delamination 

experiment were quantified directly from the experimental images taken at different times 

during the testing. 

 

Fig. 5.2  Images of (a) mixed-mode and (b) mode-I delamination experiments on porcine 

abdominal aorta specimens, and deformed shapes of (c) the mixed-mode and (d) mode-I 

specimens from finite element simulations. The right delaminated part of the specimen (red 

section) contains intima and part of media, and the left delaminated part (blue section) 

contains adventitia and part of media. The delamination of aorta propagated inside the 

media layer.  
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Meshing 

The arterial layers are meshed with eight-node brick elements (C3D8H). The 

cohesive interface is meshed with zero thickness eight-node 3D user-defined elements, 

which are placed along the delamination path starting from the initial delamination front to 

the end of the media. The global size of the element for the arterial wall is 0.4 mm and the 

cohesive element size is 0.1 mm, as shown in Fig. 5.2.  

Boundary conditions 

At the beginning of the mixed-mode delamination experiment, the bottom surface 

of the lower portion of the specimen was fixed and a certain area of the proximal end of 

the upper delaminated portion was applied displacement loading causing delamination at 

the media layer (Fig. 5.2b, 5.2d). For the mode I delamination experiment, the proximal 

end of one of the two initially separated portions of the specimen was fixed and the 

proximal end of the other separated portion was pulled away causing delamination at the 

media layer (Fig. 5.2a, 5.2c). The displacement loading rate in the experiments was 

prescribed as 0.05mm/s. 

5.3.2 Identification of material parameters for HGO model 

Material parameter values associated with the HGO model for the aortic layer and 

the CZM for the delamination interface were identified via matching the simulation 

predictions of the overall load-displacement curve from the loading phase and the 

delamination phase with experimental measurements of mixed-mode and mode I 

delamination tests, respectively (Fig. 5.3) (Chen et al., 2013; Leng et al., 2015b).  
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In this study, the criteria for identifying material parameters associated with the 

HGO and CZM models is based on the root of mean square error (Leng et al., 2016; Zhou 

et al., 2015; Zhou et al., 2014) , 

    𝑓𝑟 =
√
𝜒2

𝑛−𝑞

𝐹𝑟𝑒𝑓
< 0.15 , 𝜒2 = ∑ [(𝐹𝑒𝑥𝑝 − 𝐹𝑠𝑖𝑚)𝑖

2
]𝑛

𝑖=1   (5.1) 

where 𝐹𝑒𝑥𝑝  and 𝐹𝑠𝑖𝑚  are the experimentally measured and numerically predicted force, 

respectively; 𝐹𝑟𝑒𝑓 is the mean value of force over all data points; n is the total number of 

data points distributed over the whole delamination cycle that were used for the parameter 

identification process; 𝑞 is the number of parameters of the HGO function. A proper set of 

HGO material parameter values for mixed-mode (𝑓𝑟 = 0.104, N=68,𝑞 = 6) and mode I 

tests (𝑓𝑟 = 0.078, N=71,𝑞 = 6) are shown in Table 5.1, respectively. 

 

Fig. 5.3  The predicted load-displacement curves of one loading-unloading cycle are 

compared with the measured curves. (a) mixed-mode delamination; (b) mode I 

delamination. 

 

Table 5.1  Material parameter values of HGO model 

 𝜇 (kPa) 𝑘1 (kPa) 𝑘2 𝜅 𝑟 (degree) 

Mixed-mode 40b 350b 0.8b 0.226a 49b 

Mode I 40b 500b 0.8b 0.226a 45b 

(a from reference (Leng et al., 2016); b from parameter value identification ) 
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5.3.3 Material parameters associated with the CZM  

    In the current study, two failure modes, mixed-mode and mode I, were investigated. 

The values of critical energy release rate of the arterial tissue were quantified from the 

experiments refer to section 5.2, and the CZM parameters 𝐾 and 𝜆 were chosen from the 

literature (Leng et al., 2016). A material property identification process described in section 

5.3.2 was used to determine the interfacial strength 𝜎𝑐  for the CZM through matching 

simulation predictions of the delamination phase of the load-displacement curve from cycle 

1 with experimental measurements. Those values are shown in Table 5.2 (the same error 

function in Eq. (5.1) was used).  

Table 5.2 CZM parameter values 

CZM parameters 𝐺𝑐 (N/mm ) 𝜎𝑐 (MPa) 𝐾 (N/mm3 ) 𝜆 

Mixed-mode 0.22d 0.44b 1e 1e 

Mode I 0.186d 0.44b 1e 1e 

(d from experimental measurement; b from parameter value identification; e assumed for 

simplicity) 

 

5.4 Results 

5.4.1 Arterial tissue delamination  

 The delamination behaviors of the arterial tissue are manifested as the load-

displacement relationships, which are characterized by the jagged plateau regions (Fig. 5.4, 

5.5). The distances of positions for the start and the end of the delamination phase from 

point O in one loading-delamination-unloading cycle are represented by 𝑎0  and  𝑎𝑒 , 

respectively. The lengths from the loading point to point O when the delamination front is 

at 𝑎0 and 𝑎𝑒 are represented by 𝑙0 and 𝑙𝑒, respectively (Fig. 5.4a and 5.4b). 
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Fig. 5.4 Load/width versus load-point displacement curves for 6 circumferential and 6 axial 

strip specimens of mixed-mode delamination tests. The thick black curves represent the 

arithmetic mean values. 

 

 

Fig. 5.5  Load/width versus load-point displacement curves for 6 circumferential and 6 

axial strip specimens of Mode I delamination tests. The thick black curves represent the 

arithmetic mean values. 

The arithmetic means of load/width vs. load-point displacement curves show no 

difference for the fracture modes (mixed-mode and mode I) and directions of specimens 

(circumferential and axial), because the values are all approximately 0.06 N/mm. However, 

the distributions of the force/width for the axial specimens (0.063 N/mm±0.015 N/mm and 

0.058 N/mm±0.014 N/mm for mixed-mode and mode I experiments, respectively) cover a 

larger range than those for the circumferential specimens (0.061 N/mm±0.01 N/mm and 

0.06 N/mm±0.009 N/mm for mixed-mode and mode I experiments, respectively) (Fig. 5.4, 

5.5).  
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The average values of energy release rate with their related standard deviations 

(mean±S.D.) for circumferential and axial strip specimens under mixed-mode and mode I 

delamination are shown in Table 5.3.  

Table 5.3  The values of energy release rate (𝐺𝑐) for mixed-mode and mode I delamination 

of porcine aortic tissue: Mix-C1~Mix-C6, Mix-A1~Mix-A6, MI-C1~MI-C6 and MI-

A1~MI-A6 are the specimens of mixed-mode and mode I delamination tests from 

circumferential and axial directions, respectively.  

Circumferential Axial 

Mixed-mode Mode I Mixed-mode Mode I 

Specimen  Gc(N/mm) Specimen   Gc(N/mm) Specimen  Gc(N/mm) Specimen   Gc(N/mm) 

Mix-C1 0.215 ± 0.007 MI-C1 0.19 ± 0.023 Mix-A1 0.166 ± 0.043 MI-A1 0.137 ± 0.04 

Mix-C2 0.163 ± 0.033 MI-C2 0.179 ± 0.01 Mix-A2 0.329 ± 0.084 MI-A2 0.22 ± 0.014 

Mix-C3 0.136 ± 0.022 MI-C3 0.111 ± 0.011 Mix-A3 0.137 ± 0.005 MI-A3 0.301 ± 0.096 

Mix-C4 0.133 ± 0.004 MI-C4 0.184 ± 0.016 Mix-A4 0.14 ± 0.015 MI-A4 0.111 ± 0.029 

Mix-C5 0.151 ± 0.003 MI-C5 0.123 ± 0.007 Mix-A5 0.227 ± 0.032 MI-A5 0.111 ± 0.008 

Mix-C6 0.2 ± 0.01 MI-C6 0.126 ± 0.028 Mix-A6 0.172 ± 0.019 MI-A6 0.104 ± 0.008 

Total 0.167 ± 0.036  0.151 ± 0.037  0.19 ± 0.072  0.165 ± 0.083 

 

For circumferential strip specimens, the arithmetic mean of 𝐺𝑐  for mixed-mode 

experiments (0.167±0.036, mean±SD, n=6) is larger than that of mode I experiments 

(0.151±0.037, mean±SD, n=6); for axial strip specimens, the arithmetic means of 𝐺𝑐 for 

mixed-mode experiments (0.19±0.072, mean±SD, n=6) is also larger than that of mode I 

experiments (0.165±0.083, mean±SD, n=6). Moreover, the arithmetic means of energy 

release rate for axial specimens is larger than that for circumferential specimens from both 

mixed-mode and mode I delamination tests, which is in accord with observations of peeling 
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tests in the literature (Tong et al., 2011). This phenomenon demonstrates the anisotropic 

delamination properties of aortic media.  

5.4.2 Validation of the CZM method  

Validation by prediction of the load-displacement curves 

    In the previous sections, two finite element models were developed for the mixed-

mode (specimen Mix-C1) and Mode I (specimen MI-C2) aortic media delamination 

experiments, and the parameter values for the HGO model and for the exponential CZM 

were identified. This section will focus on the prediction of the load vs. load-point 

displacement curve, because it can be used as a validation of the CZM-based modeling 

approach for porcine aortic media delamination processes through comparison with 

experimental measurements of cycle 2 and cycle 3 for mixed-mode and mode I 

delamination events, respectively.  

    Simulation predictions of the load-displacement curves for cycle 2 ( 𝐺𝑐 =

0.219 𝑁/𝑚𝑚) and cycle 3 (𝐺𝑐 = 0.205 𝑁/𝑚𝑚) of mixed-mode delamination are shown 

in Fig. 5.6a and 5.6b, and those for cycle 2 (𝐺𝑐 = 0.191 𝑁/𝑚𝑚) and cycle 3 (𝐺𝑐 =

0.161 𝑁/𝑚𝑚) of mode I delamination are shown in Fig. 5.6c and 5.6d, respectively. The 

overall simulation predictions match reasonably well with the experimental data, especially 

the loading phases of cycle 2 and cycle 3 for mixed-mode delamination. 
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Fig. 5.6 The simulation predicted load-displacement curves of four loading-delamination-

unloading cycles are compared with the experimentally measured curves: (a) cycle 2 and 

(b) cycle 3 of mixed-mode delamination; (c) cycle 2 and (d) cycle 3 of mode I delamination. 

Validation  through  the delamination  fronts 

In the previous section, the comparison of simulation predictions of the load vs. 

load-point displacement curves with the experimental measurements was used as a way to 

validate the CZM-based approach. In the current section, the simulation predictions of 

delamination fronts for each cycle of mixed-mode and mode I delamination are used for 

comparison with those from experimental measurements in order to validate the CZM 

modeling method. For the mouse plaque delamination (Leng et al., 2015b) and human 

fibrous cap delamination studies (Leng et al., 2016), the delamination fronts were not 
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recorded during the delamination process. Therefore, it is impossible to compare the 

delamination fronts predicted by simulation with those from experimental measurements. 

At steady propagation conditions, the delamination fronts move forward with the 

separation of two aortic layers. Fig. 5.7 compares the total delamination distances from 

cycle 1 to cycle 3 with respect to the initial crack front for mixed-mode (Fig. 5.7a) and 

mode I (Fig. 5.7b), respectively. The distance from one lateral side to the opposite side 

along the width direction is characterized by W, and the distance from the initial crack front 

to that of the last time point of the delamination phase of one cycle is represented by a. It 

can be seen that the overall simulation predictions of delamination fronts match reasonably 

well with the experimental data for each cycle.  

 

Fig. 5.7  Comparison of predicted and measured delamination front profiles: (a) mixed-

mode experiment; (b) mode I experiment. 

 

5.4.3 Ratios of (𝜹𝒔𝟏 𝜹)⁄ 𝟐
and (𝜹𝒏 𝜹)⁄ 𝟐

 

In most cases, mixed-mode delamination tests involve mode I-dominated fracture 

processes (Wang et al., 2014). However, the delamination of soft tissues reveals a different 

phenomenon, in that sliding (shearing) displacement has a large effect on the mixed-mode 
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delamination test. This effect is indicated by a value of 0.8 for the ratio of (δs1 δ)⁄ 2
, which 

is four times the value of (δn δ)⁄ 2
 (Fig. 5.8c and 5.8d). In addition, the ratios of (δs1 δ)⁄ 2

 

and (δn δ)⁄ 2
 for mode I experiments are 0 and 1, respectively, indicating that tissue 

damage occurs only by opening separation. 

 

 

 

Fig. 5.8  Predicted ratios of (δn δ)⁄ 2
 and (δs1 δ)⁄ 2

; figurative depiction of the definition 

of delamination fronts (damage parameter equals to one) for (a) mixed mode and (b) mode 

I fracture; ratios of (δn δ)⁄ 2
 and (δs1 δ)⁄ 2

 of delamination tests for mixed mode (c) at the 

outside surface and (d) at the mid-plane as well as for mode I (e) at the outside surface and 

(f) at the center plane, respectively. 
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Taking into account the loading angles (Fig. 5.9a) of the mixed-mode delamination, 

the ratio of (δn δ)⁄ 2
 increased with the loading angle, whereas the ratio of (δs1 δ)⁄ 2

 

decreased with the loading angle. Moreover, the values of (δn δ)⁄ 2
 are larger for the 

position at the mid-plane than those at the outside surface, but this is reversed for the ratios 

of (δs1 δ)⁄ 2
 because there is more constraint at the center plane.  

 

Fig. 5.9  (a) Loading angles at middle plane 𝜃𝑚𝑖𝑑 and outside surface 𝜃𝑜𝑢𝑡; (b) predicted 

ratios of (δs1 δ)⁄ 2
 and (δn δ)⁄ 2

 related to loading angles for mixed-mode experiment. 

5.5 Discussion 

      The aim of this study was to quantify the delamination behavior for circumferential 

and axial strip specimens of porcine aorta using mixed-mode and mode I delamination tests 

and to develop a mathematical formulation to model the arterial tissue delamination 

behaviors. The experimental data were processed to calculate the energy release rate that 

describes the strength of the arterial tissue. A structure-motivated constitutive model (HGO) 

and a cohesive zone model of the arterial tissue were proposed and verified to allow solving 

aortic media delamination events.  

      The aim of this study was to quantify the delamination behavior for circumferential 

and axial strip specimens of porcine aorta using mixed-mode and mode I delamination tests 
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and to develop a mathematical formulation to model the arterial tissue delamination 

behaviors. The experimental data were processed to calculate the energy release rate that 

describes the strength of the arterial tissue. A structure-motivated constitutive model (HGO) 

and a cohesive zone model of the arterial tissue were proposed and verified to allow solving 

aortic media delamination events.  

For the aortic media delamination tests, the arithmetic means of load/width ratios 

are approximately 0.06 N/mm for all the fracture modes and specimen orientations, which 

are larger than the force/width ratios of human aortic media, 0.023±0.003 N/mm and 

0.035±0.002 N/mm, from peeling tests of specimens in the circumferential and axial 

directions (Li et al., 2013). Numerous biomechanical studies have quantified the critical 

energy release rate. From published results, the dissection work for the upper descending 

thoracic porcine aorta is 0.159±0.009 N/mm (Badimon and Vilahur, 2014), and the 

work/area has a range from 0.019±0.009 N/mm to 0.113±0.004 N/mm for the porcine 

abdominal aorta (Lawlor et al., 2011). In addition, the dissection energies per area are 

0.051±0.006 N/mm and 0.076±0.003 N/mm for circumferential and axial specimens of 

human aortic media (Li et al., 2013), respectively. The values of the critical energy release 

rate from the current delamination tests are somewhat larger than the data presented in the 

literature, but the values are still in the range described above (Badimon and Vilahur, 2014; 

Lawlor et al., 2011; Li et al., 2013). With the numerical simulation of the delamination 

response for the subsequent loading-delamination-unloading cycles of the porcine media 

delamination process, the good quantitative agreement of essential features of the load-

displacement curves and distances of delamination front from experimental measurements 
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provided a validation for the CZM based approach for modeling and simulating aortic 

media delamination processes. 

The ratio of (δn δ)⁄ 2
 increased with loading angle, whereas the ratio of (δs1 δ)⁄ 2

 

decreased with increasing loading angle. In other words, the delamination process is mode 

I-dominated failure when the loading angle is approximately 900. Meanwhile, the values 

of (δn δ)⁄ 2
 are larger for the position along the mid-plane than those at the outside surface, 

but this is reversed for the ratios of (δs1 δ)⁄ 2
 because there is more constraint at the center 

plane. 

       There are two regions where the predictions have the largest differences from the 

experimental measurements. One is the unloading phase of mixed-mode delamination (as 

shown in Fig. 5.6a and 5.6b) when the load is small, and the other is the delamination phase. 

First, approximation of the geometrical values of thickness and width plays an important 

role in determining the response of the aortic material with small loading forces. The 

material properties of the artery wall were identified from cycle 1 for mixed-mode and 

mode I delamination processes, and the stress strain response may vary with variation of 

the thickness along the delamination path, causing differences in the loading and unloading 

phases between  simulation predictions and experimental measurements (Leng et al., 

2015b). Moreover, the set of material parameter values for the bulk material is a reasonable 

group of values which may not capture all stages of the behavior of this kind of material. 

Second, the local composition of the aortic media, especially the fiber bridging along the 

delamination path, plays an essential role in determining the local energy release rates. The 

heterogeneous distribution of strong extracellular matrix components (e.g., collagen fibers) 
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and weaker ECM components (e.g., elastin) is expected to lead to material property 

variations throughout the specimen, which can largely influence the local mechanical 

response and hence alter the load-displacement curve. Third, the critical energy release rate 

data for three cycles of mixed-mode and mode I delamination were averages of the whole 

delaminated area for each cycle, while in reality the data vary along the delamination path 

from cycle to cycle revealing oscillation of the values in a certain range, as shown in Table 

5.3. Hence, the approximation of the material properties is expected to affect agreement 

between simulation predictions and experimental measurements of the delamination phase. 

    Considering validation of the simulations through measurements of the 

delamination front, no studies have been found focusing on the application of this approach 

in aortic tissue. In the current work, there is still some difference between the simulation 

predictions and experimental measurements. First, the delamination fronts from 

experiments show some difference between simulations especially for cycle 2 and cycle 3, 

which may due to the fibers bridging that parts of the fibers enduring large deformation 

without breakage and the delamination front stop moving forward during the experiments 

(Pal et al., 2014). Moreover, another reason may relate to the strengths of the CZM, 𝜎𝑐, 

which were kept the same at 0.44 MPa for cycles with different values of energy release 

rate. According to Eq. (3.37) and Fig. 3.4, 𝛿𝑐 increases with increasing 𝐺𝑐 and decreasing 

𝜎𝑐. Thus, the delamination front (crack front) should vary with different values of 𝜎𝑐, which 

needs further study in the future.  

    The ratios of (δs1 δ)⁄ 2
 and (δn δ)⁄ 2

 revealed that mixed-mode delamination tests 

of aortic tissue involve a shear mode-dominated fracture process when the loading angle is 

less than 28o at the middle plane and 41o at the outside surface of delamination specimens, 
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respectively. However, the ratios of (δs1 δ)⁄ 2
 and (δn δ)⁄ 2

 may vary according to changes 

in material parameter values of the bulk material model and the interface model (CZM), as 

well as the geometry of the specimen (width, thickness and length of the upper and bottom 

layers, respectively), factors which require additional study in the future. 

5.6 Conclusions 

    For both basic science and clinical studies, including disease diagnosis and risk 

evaluation, it is advantageous to understand the arterial mechanical response during 

delamination under various loading conditions. The major goals of vascular biomechanics 

are to determine the appropriate mathematical formulations that describe tissue mechanical 

properties and interface damage strength, allowing the solution of boundary value 

problems with predictive power. In this study, the use of an arterial wall structure-

motivated constitutive law and a cohesive zone model has enabled the simulation of aortic 

media delamination behavior based on the critical energy release rate determined from 

mechanical testing. This integrated theoretical-experimental approach was demonstrated 

by comparing the loading-delamination-unloading curves and the crack fronts between 

numerical simulation predictions and experimental measurements for two types of 

experiments. The delamination simulation facilitates quantification of the delaminated 

mechanical response of arterial walls and understanding of the pathophysiological 

mechanical performance, and may shed light on the genesis and progression of certain 

forms of arterial aneurysms and dissections.
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CHAPTER 6 

NUMERICAL MODELING OF EXPERIMENTAL  

HUMAN FIBROUS CAP DELAMINATION 

 

6.1 Introduction 

This chapter will focus on the experimental and numerical study of another type of 

plaque rupture (Fig. 1.1a, red arrow), which is often in the form of fibrous cap separation 

(delamination) from the underlying tissue (Fig. 1.1d). With the conclusions from chapter 

5, the fibrous cap delamination process can be taken as a mode II dominated failure events. 

In the current study, the Holzapfel-Gasser-Ogden (HGO) model (Gasser et al., 2006) 

was initially considered to provide a hyper-elastic constitutive law for the bulk material 

behavior of all arterial layers (including the fibrous cap and the underlying plaque tissue). 

The HGO model is commonly employed for arterial walls. It treats each artery layer as a 

fiber-reinforced material with the fibers symmetrically disposed with respect to the 

circumferential direction of the artery. However, this model was not able to capture the 

hysteresis behavior observed in the load-displacement curves obtained from the fibrous cap 

delamination experiments, because there is no viscoelastic component in the HGO model. 

To extend the HGO model, a viscoelasticity formulation developed by Holzapfel 

(Holzapfel, 2000a)   was   adopted   in   the  current  study  to   incorporate  a  viscoelastic 
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component into the HGO model, leading to a viscoelastic anisotropic (VA) model (section 

2.5), which is used in the current study.  

To capture the material separation (delamination) process along the interface 

between the fibrous cap and the underlying plaque tissue, the cohesive zone model (CZM) 

approach is employed in the current study. The CZM approach has been shown to be an 

effective way of modeling separation failure processes in composite materials, including 

debonding and delamination across interfaces (Turon et al., 2006).This approach has also 

been applied in limited cases to the study of material separation failure in arteries (Ferrara 

and Pandolfi, 2010; Gasser and Holzapfel, 2007; Gasser and Holzapfel, 2006; Leng et al., 

2015a; Leng et al., 2015b). In the current study, an exponential traction-separation law 

(section 3.4) is adopted for the CZM, which utilizes the critical energy release rates 

obtained directly from the fibrous cap delamination experiments.  

        Both the VA model and the CZM are implemented in the general-purpose finite 

element code ABAQUS (ABAQUS, 2013) via user subroutines, which enables the finite 

element simulations of the fibrous cap delamination experiments. In order to make the 

simulations possible, one challenge in the current study is the determination of the material 

parameter values for both the VA model and the CZM model, which are not readily 

available from the literature. To overcome this difficulty, in the current study a set of 

parameter values is determined based on limited values suggested in the literature and 

through matching simulation predictions of the load vs. load-point displacement curve with 

one set of measurements from the fibrous cap delamination experiments, which involves 

multiple loading-delamination-unloading cycles (cycle #1, cycle #2, etc.) of the fibrous cap. 

This set of experimental measurements for determining the material model parameter 
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values is taken from the load-displacement curve for cycle #1 and from the loading phase 

of the curve for cycle #2 (see later in Fig. 6.5a). Once the set of parameter values is 

determined, it is kept intact and used to enable simulations of subsequent loading-

delamination-unloading cycles, so that comparisons of the simulation predictions of the 

load-displacement curves with experimental measurements for the subsequent cycles 

provide a validation of the parameter values and of the CZM-based finite element modeling 

and simulation approach for understanding fibrous cap delamination phenomena in arterial 

failure processes.    

6.2 Experimental Details 

6.2.1 Human Fibrous cap Delamination Experiments 

  The current study is focused on numerical modeling and simulation of fibrous cap 

delamination experiments performed on human carotid artery plaque specimens obtained 

from endarterectomies. The experiments are similar to the mouse plaque and human media-

intima delamination experiments reported in the literature (Wang et al., 2013; Wang et al., 

2014; Wang et al., 2011).  

  Six fresh carotid endarterectomy samples were obtained at the time of surgery from 

six patients, and one specimen from each sample was successfully prepared, leading to a 

total of six fibrous cap (FC) delamination experiments. The fresh carotid endarterectomy 

samples were sliced transversely into segments 5-7 mm in width. Each ring-shaped 

segment was opened with fine scissors on the side opposite the plaque.  

  At the start of an experiment, a longitudinal cut was made at one plaque shoulder. 

At this edge, a scalpel was used to carefully introduce a small initial delamination between 

the fibrous cap and the underlying plaque tissue. A micro-clamp was used to grip the free 
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edge of the cap, as shown in Fig. 6.1. The medial face of the carotid artery was glued with 

DermaBond to a glass plate connected to the load cell of a Bose ELF 3200 test system for 

load data recording. The delaminated tissue tab on the lateral edge of the fibrous cap was 

gripped by a pair of micro-clamps connected to the Bose ELF 3200 actuator, which controls 

the sequential loading-delamination-unloading cycles. For each experiment, a load vs. 

load-point displacement curve with multiple loading-delamination-unloading cycles was 

obtained. The delamination process was recorded by a microscopic computer vision system 

which was placed at a fixed distance above the specimen. After the experiment, the 

specimen was prepared for histological analysis, which showed that fibrous cap 

delamination took place between the fibrous cap and the underlying plaque tissue, as shown 

in Fig. 6.2. 

 

Fig.  6.1  Fibrous cap delamination experiments: experimental setup (scale bar=5 mm). 
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6.2.2 Histological Images 

 

(a) 

 

 

(b) 

Fig. 6.2 Histological images of the fibrous cap delamination surfaces after Masson’s 

Trichrome staining: (a) a longitudinal section of a completely delaminated specimen, 

including a partial media and the tissues of atherosclerotic plaque and fibrous cap; (b) a 

fibrous cap delaminated from the underlying plaque tissue. In these images, the collagen is 

stained blue, the nuclei are stained purple-black, and the smooth muscle cells (SMCs) are 

stained red. (Lipid rich core and necrotic core are identified by LC and NC labels, 

respectively) 

  Two histological images of paraffin sections of the human fibrous cap delamination 

specimen stained with Masson’s Trichrome are shown in Fig. 6.2. The double-headed 

arrows show the delamination surface (Fig. 6.2a). It is noted that part of the media layer 

remained on the glass plate after the fibrous cap was peeled off because of the adhesion of 

the glue. The boundary of the remaining part of the media in the specimen is marked by 

red dotted lines, as shown in Fig. 6.2a.      
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  According to Tong et al. (Tong et al., 2011), because the fibrous cap was 

delaminated along the circumferential direction where the tearing strength is lower than 

that along the axial direction, the delaminated surface appears smooth when the 

delamination occurs along the interface between the fibrous cap and the underlying plaque 

tissue. 

6.3 Modeling and Simulation 

  Although six fibrous cap delamination experiments were performed, at the time of 

the experiments the focus was on the experimental determination of the critical strain 

energy release rate, not on the reconstruction of the specimen geometry. As a result, 

sufficient images of the specimen geometry were taken only for two of the six specimens. 

These two specimens are labeled samples FC1 and FC2 and are utilized in the modeling 

and simulation effort.  

  The geometric models of these two specimens were reconstructed from the images 

recorded at the start of the experiments. Since the geometry reconstruction procedure is the 

same for both samples, the specimen geometry model is described in detail below for 

sample FC1 only. 

  Further, since the subsequent modeling and simulation procedure is also the same 

for both samples, it is described in detail below also for sample FC1 only. 

6.3.1 Finite Element Model 

  Through a Boolean operation, the shape of the specimen created according to an 

image of the side view (as shown in Fig. 6.3a) was merged with the shape created from an 

image of the top view (as shown in Fig. 6.3b). The delamination area was measured directly 

from the available experimental images recorded by the microscopic vision system during 
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a delamination experiment. The area to be delaminated is marked in red in Fig. 6.3c. The 

resulting three-dimensional (3D) FE model based on the geometric model is shown in Fig. 

6.3d (the edge portion (tab) of the initial delaminated fibrous cap away from the 

delamination front was not included in the FE model because it does not affect the stress 

state along the delamination front, and its exclusion improves computational efficiency). 

  It is noted that the geometric model and the subsequent FE model are not perfect 

due to approximations and uncertainties inherent in the recorded images and from the shape 

reconstruction process. Thus, approximation errors in the geometric model are expected to 

affect the accuracy of the FE simulation results and their agreement with experimental 

measurements. The effect of geometry approximation was studied in an earlier paper on a 

related topic (Leng et al., 2015b) in which a sensitivity analysis was performed about the 

effects of geometric approximations on simulation predictions.  

  The FE mesh is generated using ABAQUS (ABAQUS, 2013). The media and 

plaque regions are meshed with 6,302 eight-node brick elements, C3D8H, while the 

cohesive interface is meshed with 255 zero thickness eight-node 3D user-defined elements 

which are placed along the delamination path starting from the initial delamination front to 

the end of the fibrous cap. The global size of the element for the media and plaque is 0.5 

mm and the cohesive element size is 0.1 mm. The CZM can be implemented for simulating 

interfacial material separation events with a high computational efficiency when the 

delamination path is known in advance or pre-defined. In the current study, the 

delamination path was known from experimental observations and thus was pre-defined at 

the beginning of simulations.  
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Fig. 6.3  Representative experimental images of the fibrous cap delamination specimen: (a) 

a front view of the specimen and the finite element (FE) model; (b) a top view of the 

specimen and the FE model; (c) the delamination area and the area for simulation 

predictions are marked by red color (the delamination direction is along the X axis); (d) 

the FE model based on the geometric model reconstructed from the images. 

6.3.2 Boundary Conditions 

  The human carotid artery plaque specimens were obtained from endarterectomies, 

which contain part of the media layer along with the fibrous cap and the underlying plaque 

tissue from the carotid artery. At the beginning of an experiment, the bottom media surface 

of the specimen was glued with DermaBond to a glass plate. Therefore, in the finite element 

model the boundary condition for the bottom surface of the specimen was taken to be that 

all nodes on the bottom surface were fixed so that they could not move in any direction.  

  The delaminated tissue tab on the lateral edge of the fibrous cap was gripped by a 

pair of microclamps which were translated with a certain displacement parallel to the glass 
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plate, as shown in Fig. 6.1. Thus, in the finite element model, nodes at the lateral edge of 

the fibrous cap were given a displacement boundary condition in which the displacement 

parallel to the glass plate followed the experimentally recorded loading-delamination-

unloading cycle values. The displacement loading rate in the experiments was 0.05 mm/s. 

  Except for the fixed bottom surface and the lateral edge of the fibrous cap where 

displacement loading was applied, all other surfaces of the finite element model were given 

a traction-free boundary condition. 

6.3.3 Parameter Value Identification 

  The parameter values for the bulk arterial material models and for the CZM were 

obtained through a numerical identification procedure (Chen et al., 2013; Leng et al., 2015a) 

that matches simulation predictions of the overall load vs. load-point displacement curve 

with experimental measurements. Since the material models used for the simulation 

involved many parameters and only a limited number of experimental data were available, 

a fully automated inverse procedure (Chen et al., 2014) was not adopted (hence a manual 

procedure was used) and not all parameter values were determined from the numerical 

identification procedure. A subset of the material model parameter values were taken from 

the literature (or assigned simple values when literature data were not available) and were 

used as input for the identification procedure. The material model parameter values for the 

media were taken from the study by Cilla et al. (Cilla et al., 2012) (see Table 6.1); the value 

for the parameter D in eq. (2.2) was taken to be 10−4 (Holzapfel et al., 2002a) (see Table 

6.1); and the values for 𝐾 and 𝜆 for the CZM were assigned assumed values (see Table 6.2) 

that were simple but meaningful. 
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  The experimental load vs. load-point displacement curve for the first loading-

delamination-unloading cycle and for the loading phase of the second loading-

delamination-unloading cycle (shown in Fig. 6.6a) were used as input data for the 

identification procedure to determine the remaining material model parameter values. 

Material model parameter values from the literature (e.g. the material model parameter 

values for the fibrous cap for human carotid arteries (Balzani et al., 2012; Kiousis et al., 

2009) and for the plaque for human carotid arteries (Sommer and Holzapfel, 2012)) were 

also used as reference values. For CZM parameters, the ultimate tensile stress 𝜎𝑐  was 

acquired through matching simulation predictions with the experimental measurements 

using the delamination phase of the load-displacement curve for loading-delamination-

unloading cycle #1, and the value for the critical energy release rate 𝐺𝑐 was taken to be the 

mean measured value from the fibrous cap experiments averaged over three loading-

delamination-unloading cycles for each delamination group (e.g. cycles 1 to 3 for group 1 

and cycles 4 to 6 for group 2). 

   In the numerical identification process, the HGO and VA material model parameter 

values and CZM parameter values were considered “acceptable” when the root mean 

square error (Holzapfel et al., 2005; Zhou et al., 2015; Zhou et al., 2014) satisfies  

    𝑓𝑟 =
√ 𝜒2

𝑁−𝑀

𝐹𝑎𝑣𝑔
< 0.2 , with 𝜒2 = ∑ [(𝐹𝑒𝑥𝑝 − 𝐹𝑠𝑖𝑚)𝑖

2
]𝑁

𝑖=1   (6.1) 

where 𝐹𝑠𝑖𝑚 is the reaction force from simulations and 𝐹𝑒𝑥𝑝 is the experimentally measured 

force; 𝐹𝑎𝑣𝑔 is the sum of all experimentally measured forces for each data point divided by 

the number of data points; 𝑁 is the number of data points on the load-displacement curve 
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that were used in the parameter value identification procedure; and 𝑀 is the number of 

parameters whose values were determined from the identification procedure.  

  A set of HGO and VA material model parameter values is shown in Table 6.1, 

which were obtained when the root mean square error defined in Eq. (50) was 𝑓𝑟 = 0.152 

with N=183 and 𝑀 = 15. 

Table 6.1  HGO and VA material model parameter values 

 μ (kPa) D (kPa-1) 𝑘1 (kPa) 𝑘2 𝜅 𝑟 (degree) 𝘛1 (s) 𝛽1 

Media 1.4a 1E-4c 206.16a 58.55a 0.29a 28.35a 5.8b 10b 

Plaque 49.45b 1E-4c 23.7b 2630b 0.226b 30b 2.06b 20b 

Fibrous cap 21.89b 1E-4c 93.63b 7957b 0.226b 17.22b - - 

(a from reference (Cilla et al., 2012); b from parameter value identification; c from 

reference (Holzapfel et al., 2002a)) 

Table 6.2 CZM parameter values 

CZM parameters 𝐺𝑐 (N/mm ) 𝜎𝑐 (MPa) 𝐾 (N/mm3 ) 𝜆 

Cycles 1-3 (group 1) 0.23d 0.42b 10e 1e 

Cycles 4-6 (group 2) 0.294d 0.42b 10e 1e 

(d from experimental measurement; b from parameter value identification; e assumed for 

simplicity) 

  A set of CZM parameter values is shown in Table 6.2 (this set is from the same 

error function in Eq. (6.1)). It is noted that, although simple values for K and 𝜆 were 

assumed, they are relevant and meaningful. The value of 10 N/mm3 for K is sufficiently 

large so that artificial compliance from the cohesive interface can be prevented (a different 

but sufficiently large value will not change the outcome of the simulation). In the absence 

of experimental data, the value of 1 for the mode mixity parameter 𝜆 implies the choice 
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that Mode I and Mode II components have the same significance in the delamination 

process. 

6.3.4 Three Types of CZMs for the Interface Damage 

In order to study the effects to the simulation results from different types of CZM, 

three types of cohesive zone models are employed, including exponential, triangular and 

trapezoidal CZMs (material parameter values are kept the same as cycles 1-3 as shown in 

Table 6.2), which describe the relationship between cohesive traction and separation across 

a material interface subjected to delamination failure. The detail information about three 

types of CZM is described in Chapter 3. The simulation results (Fig. 6.4) show that the 

exponential CZM is a proper model for fibrous cap delamination simulation.  

 

Fig. 6.4  Predicted load-displacement curves of three different cycles using three different 

types of CZM, with comparison to the experimental curve.  

6.3.5 Mesh Convergence analysis 

  A mesh convergence study was performed in order to ensure that the finite element 

mesh is sufficiently refined to produce converged solutions. Since mesh generation in this 
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study was done by controlling the number of divisions along geometric lines, mesh 

refinements were done by doubling the number of divisions along the lines, which may 

lead to more or fewer elements than required for strict mesh refinement (in which each 

brick element is cut into eight elements and each cohesive element is divided into four 

elements), depending on the complexity of the geometry and the software used for the mesh 

refinement.  

  In the current study, Mesh 1 has 6,302 brick (C3D8H) elements and 255 interfacial 

cohesive elements, and 9,098 nodes. Mesh 2 is refined from mesh 1 so that the element 

size in mesh 2 is half of that in mesh 1 along x, y and z directions. Mesh 2 has 50,012 brick 

elements and 1,030 interfacial cohesive elements, and 60,605 nodes. During the mesh 

refinements, the cohesive element size is dictated by the bulk element size along the 

delamination path. Specifically, the cohesive element size is 0.1 mm and 0.05 mm, 

respectively, in the two meshes.  

 

Fig. 6.5  (a) Mesh 1 and Mesh 2 (a refinement of Mesh 1) of the 3D finite element model ; 

(b) the predicted load-displacement curves for three loading cycles using the two meshes; 

(c) relative percent error in the reaction load vs. displacement between Mesh 2 and Mesh 

1 (M2/M1) for three loading cycles. 

 

  We observed that, from Mesh 1 to Mesh 2, there is little change in the predicted 

load-displacement curves (see Fig. 6.5b). The corresponding variation of the relative error 
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(the percent difference between the predicted loads from Mesh 1 and Mesh 2) with 

displacement is shown in Fig. 6.5c. This relative error is greater than 5% only when the 

predicted reaction load has a small magnitude (below 0.05 N), in which case the large error 

is mostly due to division by a small value. The average relative percent error for all data 

points is 3.3%. Overall, Mesh 1 gives well converged predictions, and thus subsequent 

simulation results are derived from Mesh 1.  

6.4 Results 

6.4.1 Fibrous Cap Delamination Test Results 

Fibrous cap (FC) delamination tests were performed on six specimens. Test results 

include the load-displacement curves for multiple loading-delamination-unloading cycles 

for each test, and the critical energy release rate values calculated from these curves. 

  Test results show that there is a large inter-plaque and inter-sample variability, 

although the trends in the load-displacement curves are similar. The values of the critical 

energy release rate 𝐺𝑐 (see Table 6.3) acquired from the delamination tests show a mean 

value of 0.254 N/mm and a large standard deviation of ±0.15 N/mm. 

Typical load-displacement curves from these tests are presented in the next section 

when simulation predictions are compared with experimental data for samples FC1 and 

FC2. 

Table 6.3  Critical energy release rate values from fibrous cap delamination tests 

 Critical energy release rate Gc (N/mm) 

Specimen FC1 FC2 FC3 FC4 FC5 FC6 

Cycles 1-3 0.23 0.24 0.695 0.132 0.217 0.229 

Cycles 4-6 0.294 0.199 ─ ─ ─ 0.167 

Cycles 7-9 ─ ─ ─ ─ ─ 0.133 
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6.5 Prediction and Validation 

In the previous section, a finite element model was developed for the fibrous cap 

delamination experiments and the parameter values for the bulk material models and for 

the CZM were identified. In this section, simulation predictions of the mechanical response 

of the specimen during the experiments are discussed. The focus is placed on the prediction 

of the load vs. load-point displacement curve since it allows for a direct comparison with 

experimental measurements, which can serve as a validation of the CZM based 

modeling/simulation approach for fibrous cap delamination events.  

It is worth pointing out that, since the load-displacement curve for the first loading-

delamination-unloading cycle and for the loading phase of the second loading- 

delamination-unloading cycle have been utilized in identifying the material parameter 

values, they will not be used to validate the simulation predictions. However, comparisons 

of the predicted and measured load-displacement curves for the first loading-delamination-

unloading cycle and for the loading phase of the second loading-delamination-unloading 

cycle do provide useful information about the level of errors introduced in the geometry of 

the specimen and in determining the material parameter values, which serves as a good 

reference for assessing the level of agreement between simulation predictions and 

experimental measurements for subsequent loading-delamination-unloading cycles. 

Simulation results are presented for two fibrous cap samples, FC1 and FC2. For 

sample FC1, simulation predictions of the load-displacement curve for cycles #1, #2 and 

#3 are shown in Fig. 6.6a and those for cycles #4, #5 and #6 are shown in Fig. 6.6c. For 

sample FC2, simulation predictions for sample FC2 for cycles #1, #2 and #3 are shown in 

Fig. 6.6e. 
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Fig. 6.6 The simulation-predicted load-displacement curves of nine loading-delamination-

unloading cycles are compared with the measured curves: (a) the load-displacement curves 

and (b) relative error vs. displacement curves for cycles #1, #2 and #3 for sample FC1; (c) 

load-displacement curves and (d) relative error vs. displacement curves for cycles #4, #5 

and #6 for sample FC1; (e) the load-displacement curves and (f) relative error vs. 

displacement curves of cycles #1, #2 and #3 for sample FC2.  



 

109 
 

It is noted that, due to inter-sample variability (the test results and model parameter 

values are patient-specific), the material parameter values for sample FC1 cannot be 

transferred to sample FC2. As such, key material parameter values for sample FC2 are 

determined from the test results of FC2 according to the same procedure as the one used 

for FC1. The parameter values for FC2 that are different from those for FC1 are: 𝑟 =

58.35°  (media), μ = 11.45 kPa  (plaque), 𝑟 = 60°  (plaque), 𝘛1 = 9.06 𝑠  (plaque), μ =

11.89 kPa (fibrous cap), and 𝐺𝑐 = 0.24 𝑁/𝑚𝑚 (CZM). All remaining parameter values 

for FC2 are taken to be the same as those for FC1.  

The relative error vs. displacement curves for the comparisons of simulation 

predictions with experimental measurements are shown in Figs. 6.6b, 6.6d and 6.6f. 

Relative percent errors for the loading and unloading phases are large (above 10%) when 

the magnitude of the load is small (0.145 N for FC1 and 0.285 N for FC2). Factors that 

may contribute to these large errors are discussed in Section 6.6. However, relative errors 

for the rest of the loading and unloading curves as well as for the delamination phases are 

below 10%. It can be seen that overall the simulation predictions match well with the 

experimental data. The unloading phase of cycle#1 and the loading phase of cycle #2 from 

FC1, which describe the first hysteresis loop between cycles #1 and #2, show good match 

between predictions and measurements. The agreement between predictions and 

measurements for the subsequent hysteresis loops is similar to that for the first loop.  

  The von Mises stress contours in the specimen when the loading was at three typical 

points during the 3rd loading-delamination-unloading cycle are shown in Fig. 6.7. The 

values of stress contours in the area near the delamination front shown in the zoomed-in 

views in Figs. 6.7(a), (b) and (c) are correlated with the loading levels in the load-
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displacement curve. Taking the loading level for Fig. 6.7(b) as an example, the highest 

stress is located behind the delamination front in the delaminated cap, which is consistent 

with the corresponding effective traction level as shown in Fig. 6.7d, where the maximum 

effective traction 𝑡 = 0.42 MPa occurs behind the delamination front.  

    

 

Fig. 6.7 von Mises stress contours at three typical points during loading-delamination-

unloading cycle #3: (a) at point 1 in the loading phase; (b) at point 2 in the delamination 

phase; (c) at point 3 in the unloading phase; (d) the effective traction contours in the 

cohesive elements at point 2; (e) the cohesive damage parameter contours in the cohesive 

elements at point 2.  

  It can be seen from Fig. 6.7d that the interfacial cohesive elements are stretched 

and the effective traction contours in the cohesive elements enclosed by the black dotted 

line reveal the stiffening and softening portions of the interfacial separation process during 
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delamination propagation, as shown more clearly in the zoomed-in view of the insert. In 

Fig. 6.7d, the initial crack tip represents the delamination front at the beginning of cycle 

#1, the delamination tip indicates the delamination front at the end of the delamination 

phase of cycle #3 (a point where the cohesive traction is zero and the cohesive damage 

parameter 𝑑 = 1), and the cohesive zone tip shows the point where the traction equals the 

maximum value (𝑡 = 0.42 MPa). The cohesive elements are completely separated when 

the damage parameter 𝑑 = 1 (as shown in Fig. 6.7e) and also the effective traction 𝑡 is 

approximately equal to zero (as shown in Fig. 6.7d). The traction-separation curve and the 

damage-separation curve are shown in the zoomed-in views in the inserts of Figs. 6.7d and 

Fig. 6.7e, respectively.  

6.6 Discussion 

  There are two regions where the predictions have the largest differences from the 

measurements. One is when the load is small, and the other is during the delamination 

phase. The differences between the simulation predictions and experimental results may 

be due to several simplifications, approximations and uncertainties.  

  First, there are the approximations for the geometries of the delamination path and 

the specimen surfaces. The geometry of the diseased artery specimen is complex and many 

of the small features (e.g. the depressions on the uneven delaminated surface) were not 

modeled. The shape of the fibrous cap is not regular and has a zigzag boundary along the 

circumferential direction.  

  Second, the local components of the atherosclerotic plaque (e.g. the lipid core and 

calcified tissue) were assigned the same material properties due to the lack of sufficient 

experimental data. The lipid core and the calcified tissues are distributed randomly in the 
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plaque with different volumes (as shown in Fig. 6.2). The heterogeneous distribution of 

strong materials (e.g., calcified tissue and collagen fibers) and weak materials (e.g., lipid 

core) is expected to lead to material property variations throughout the specimen, which 

can largely influence the local mechanical response and hence alter the load-displacement 

curve.  

  Third, to reduce experimental data noise, the critical energy release rate data for 

cycles #1, #2 and #3 were averaged and the resulting mean value was set to be the input 

value for the critical energy release rate in the simulations for cycles #1, #2 and #3. The 

same was done for cycles #4, #5 and #6. In reality, the critical energy release rate is 

observed experimentally to vary along the delamination path and from cycle to cycle, and 

the measured values oscillate in a certain range (Tong et al., 2011; Wang et al., 2014). This 

gross approximation is expected to affect agreement between predicted and measured load-

displacement curve during the delamination phase of a loading cycle. 

  Fourth, the material parameter values used for the HGO and VA models may not 

be the best values to describe the complex bulk mechanical response. There were many 

unknown parameter values involved and the available experimental data were limited, and 

compromises were made in the numerical identification procedure for determining the 

parameter values. As a result, the parameter values determined through the identification 

process mentioned in section 6.3.3 may not be the only choice or the best choice for the 

specimen.  

  Furthermore, the differences between predictions and measurements seen in the 

first hysteresis loop of the load-displacement curve, which was used for parameter value 

identification, suggest that features not captured in the current study (e.g. local material 
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variations due to heterogeneous tissue distribution) may be an important factor that affects 

the accuracy of the results when the viscoelastic material model is implemented.   

  Considering the various simplifications, approximations and uncertainties involved 

in the simulations, which are unavoidable in this study due to the lack of available data, it 

can be said that the simulation predictions can capture, both qualitatively and quantitatively, 

the main features of the load-displacement curve, and that the overall good agreement 

between predictions and measurements provides a meaningful validation of the CZM based 

modeling and simulation approach for fibrous cap delamination events.  

6.7 Conclusions 

In the current study a cohesive zone model-based computational approach for 

modeling and simulating fibrous cap delamination events was developed and applied 

successfully to fibrous cap delamination experiments performed on human carotid artery 

endarterectomy specimens. A 3D finite element model was built based on a 3D specimen 

geometry reconstructed from recorded images of the specimen. 

The bulk material behavior of the arterial layers (including the fibrous cap and the 

underlying plaque tissue) was represented by the HGO anisotropic hyperelastic constitutive 

model and a viscoelastic extension of the model proposed in the current study that allows 

for capture of the hysteresis behavior exhibited in the load-displacement curve over 

loading-delamination-unloading cycles. The behavior of the interface between the fibrous 

cap and the underlying plaque was characterized by an exponential cohesive zone model, 

which governs the traction-separation relationship and the interfacial failure process. 

A numerical procedure for identifying material model parameter values was 

developed, in which measured load and load-point displacement data for the first loading-
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delamination-unloading cycle and for the loading phase of the second loading-

delamination-unloading cycle were used as input to an inverse analysis. The identified 

parameter values were then applied in the simulations to predict the load-displacement 

response for the subsequent loading-delamination-unloading cycles of the fibrous cap 

delamination experiments.  

Comparisons of simulation predictions of the load-displacement curve with 

experimental measurements reveal that the simulation predictions were able to capture the 

essential features of the load-displacement curve from the fibrous cap delamination 

experiments and show reasonably good quantitative agreement with experimental 

measurements. The results of this study provide a validation for the proposed CZM based 

approach for modeling and simulating fibrous cap delamination events.  
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CHAPTER 7 

AN INVERSE ANALYSIS OF COHESIVE ZONE MODEL PARAMETER 

 VALUES FOR HUMAN FIBROUS CAP MODE I TEARING SIMULATIONS 

 

7.1 Introduction 

Previous studies have evaluated the mechanical and/or failure behavior of human 

fibrous cap or plaque. Ultimate tensile stress and ultimate tensile strain were acquired 

through uniaxial tensile tests on human carotid plaques which contain lipid cores, 

intraplaque hemorrhage and a thin fibrous cap (Lawlor et al., 2011). Indentation tests on 

human fibrous cap samples were carried out in order to obtain the shear modulus of a neo-

Hookean model (Barrett et al., 2009). Several groups have obtained the circumferential 

tensile stress and associated strain of human fibrous caps through uniaxial tensile tests 

(Cheng, 1993; Holzapfel et al., 2004b; Lendon et al., 1991; Loree et al., 1994). Previous 

work used ultimate tensile stress and strain as the material parameters to evaluate fibrous 

cap tissue failure (Loree et al., 1992), but those parameters cannot be used to describe the 

damage initiation and propagation processes. Thus, the cohesive zone parameters such as 

interfacial strength and critical energy release rate can be implemented as input data in a 

finite element model to simulate and predict the entire fibrous cap failure process.  

The critical energy release rate can be obtained from plaque delamination (Wang 

et al., 2013) and fibrous cap delamination (Leng et al., 2015a) tests with the delaminated 
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areas acquired directly from the experiments. However, this method cannot be used directly 

to acquire the cohesive strength of the fibrous cap across its thickness due to limited data 

on tearing area from miniature single notch edge tearing (MSENT) experiments. Thus, an 

automated inverse modeling approach including finite element analysis provides a way to 

gain the interfacial strength and critical energy release rate from the fibrous cap tearing 

tests.  

Some automated methods have been used to obtain the material parameter values 

of arterial tissue under different types of mechanical tests. In one such approach, an 

experimental curve fitting method with simulations from FEA software ABAQUS and 

fitting tool from Matlab was implemented to acquire the shear modulus of human fibrous 

cap under indentation tests (Barrett et al., 2009) and material parameters of an anisotropic 

constitutive model for mitral valve anterior leaflets (Lee et al., 2014). In other studies, an 

inverse optimization protocol based on the Nelder-Mead Simplex method and FEA was 

conducted to estimate in vivo material parameters for a human aorta (Zeinali-Davarani et 

al., 2011). In other work, the material parameters of human carotid arteries were 

determined by means of a Levenberg-Maquardt algorithm in Matlab (Li et al., 2013; Prim 

et al., 2016; Sommer and Holzapfel, 2012; Zhou et al., 2015; Zhou et al., 2014).    

However, little information is available regarding the interfacial strength and 

critical energy release rate of crack propagation during tearing of the fibrous cap. To this 

end, mode I tearing tests on circumferentially oriented human fibrous cap specimens have 

been carried out in order to obtain the cohesive strength across the thickness using an 

inverse analysis method. A finite element analysis of the tearing procedure is proposed to 

gain deeper understanding of the fibrous cap tearing phenomenon. Furthermore, these 
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studies will provide a perspective for using finite element methods to predict 

atherosclerotic plaque rupture, and a solid basis for medical advances in intervention and 

prevention of this life-threatening event.  

7.2 Materials and Methods 

7.2.1 Experimental Procedure  

In this study, fibrous cap tearing experiments are performed on human carotid 

atherosclerotic plaques obtained from endarterectomies. Five fresh carotid endarterectomy 

samples were obtained at the time of surgery from five patients. One fibrous cap sample 

was successfully prepared from each specimen, leading to five fibrous cap tearing (FCT) 

tests. The plaque specimens were slice transversely and opened longitudinally before 

isolation of the fibrous cap, yielding circumferentially-oriented tissue strips.  

Before the tearing test, samples were preconditioned by approximately 5 cycles of 

quasi-static uniaxial tensile tests at a loading rate of 0.05 mm/s in order to obtain a 

repeatable mechanical response (Zhou et al., 2016). The tensile loading experimental data 

were used to obtain the bulk material properties of each fibrous cap. Then, a surgical scalpel 

was used to carefully introduce an initial cut perpendicular to the direction of the loading 

(to initiate the tearing path) at the midline of the specimen (Fig. 7.1a, 7.1c). The lower edge 

of the tissue strip was gripped by clamps connected to the load cell of a Bose ELF 3200 

test system for load data recording, and the top edge (proximal end) of the fibrous cap was 

gripped by clamps connected to the Bose ELF 3200 actuator, which controlled the applied 

loading.  
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The tearing test was performed by moving the proximal end of the fibrous cap and 

the prescribed displacement and load were recorded via system actuator and load cell. The 

tearing process was recorded by a computer vision system with two cameras 

perpendicularly positioned in order to get the front and side views of the specimen.  

 

 

Fig. 7.1 Schematic of experimental setup. (a) Schematic of carotid artery plaque specimens 

obtained from endarterectomies and cut to strips transversely (A: axial direction; C: 

circumferential direction); (b) Experimental setup of fibrous cap tearing tests; (c) 

experiment setup (zoomed-in view).  

7.3 Numerical Implementation 

The simulations of fibrous cap tearing process are implemented through the finite 

element software ABAQUS 6.13 (ABAQUS, 2013). The material parameter values of the 

bulk material model of fibrous cap were obtained from the inverse analysis of the uniaxial 

tensile tests of fibrous cap before the tearing tests. These material parameter values were 

used as the input data for the bulk material model of the fibrous cap in the simulations of 

tearing experiments. Finally, cohesive parameters including interfacial strength and critical 

energy release rate were acquired through the inverse analysis of the fibrous cap tearing 
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tests using CZM-based approach by comparing the numerical predictions of load-

displacement curves with the experimental measurements.  

7.3.1 Geometrical Modeling 

The geometric models were reconstructed from the images obtained during the 

fibrous cap tearing experiments (Fig. 7.1). The tearing path of the fibrous cap specimens 

were measured directly from the experimental images taken at different stages during the 

testing. Specimen #1 (FCT1) with the fibrous cap teared into two separated parts, was used 

as a representative illustration of obtaining the cohesive parameter values of the fibrous 

cap by using inverse analysis method. A straight tearing path was pre-defined along the 

width of the specimen at the beginning of the simulations, as shown in Fig. 7.2c. 

 

Fig. 7.2  Representative experimental images of the fibrous cap tearing specimen: (a) a 

front view of the specimen; (b) a side view of the specimen; (c) FE model of front view of 

the specimen, which the white line shows the initial separated path and the red dot line 

represents the predefined tearing path that will be teared during the experiment; (d) FE 

model of side view of the specimen.  
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7.3.2 Meshing 

The fibrous cap are meshed with eight-node brick elements (C3D8H), while the 

cohesive interface (tearing path) is meshed with zero thickness eight-node 3D user-defined 

elements which placed along the tearing path starting from the initial tearing front to the 

end of the sample along the width. The front and side views of meshed geometric model 

of FCT1 are shown in Fig. 7.2c and 7.2d, respectively, with 0.4mm for the global size of 

the elements of fibrous cap and 0.1 mm for elements of the cohesive interface.  

7.3.3 Boundary Conditions 

At the beginning of the experiment, the lower edge was fixed by clamps. Therefore, 

in the finite element model the boundary condition for the lower edge was taken to be that 

all nodes on the low edge were fixed so that they could not move in any direction. The top 

edge was fixed by clamps which were translated with a certain displacement upward with 

loading rate 0.05 mm/s, as shown in Fig. 7.1c. Except for the fixed part of the two edges, 

all the other surfaces of the finite element model were set to a traction-free boundary 

condition.  

7.3.4 Identification of Model Parameter Values for HGO Model 

Material parameter values of HGO model were obtained through inverse analysis 

of the uniaxial tensile tests of fibrous cap that fitting simulation predictions of the load vs. 

load-point displacement curve with experimental measurements (Fig. 7.3). A set of HGO 

parameter values of fibrous cap from the reference (Leng et al., 2016) was used as the 

initial input values, then a fully automated inverse procedure (Chen et al., 2014) presented 

in Appendix C was adopted and all parameter values were determined when the objective 
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function 𝐹𝑝𝑖(𝜇, 𝑘1, 𝑘2, 𝑟, 𝜅, )  is minimized to an acceptable value during the numerical 

identification procedure.  

7.3.5 CZM Parameters along the Tearing Path 

 

Fig. 7.3  Flow chart of the inverse analysis of fibrous cap tearing tests which used to obtain 

the cohesive interface parameter values along the tearing path.  

 

The HGO model parameter values obtained from the material parameter 

identification procedure in the previous section were used as the material parameter values 

of bulk material. A set of exponential CZM parameter values obtained from the reference 

(Leng et al., 2016) was used as the initial guess of CZM parameter values for the cohesive 
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interface. For simplification, the value of K and 𝜆 were set equal to 10 N/mm3 and 1 (Leng 

et al., 2016), separately. The initial guess of the critical energy release rate and interfacial 

strength for the total tearing path are 0.23 N/mm (Leng et al., 2016) and 0.2 MPa (assumed 

value), respectively. For the entire tearing path, only the values of critical energy release 

rate and cohesive interfacial strength varied during the inverse analysis processes and a 

proper set of parameter values was determined when the objective function 

𝑓( 𝐺𝑐1,  𝜎𝑐1,  …𝐺𝑐𝑚, 𝜎𝑐𝑚) is minimized to an acceptable value. The whole inverse modeling 

processes of fibrous cap mode I tearing tests are shown in Fig. 7.3. 

7.4 Results 

7.4.1 Inverse Analyses of Uniaxial Tensile Tests of Fibrous cap 

In the numerical identification process, the HGO model parameter values of human 

fibrous cap were obtained when the objective function satisfies an acceptable value, which 

are shown in Table 7.1.  

Table 7.1  The parameter values of the HGO model for human fibrous cap samples under 

uniaxial tensile tests obtained from inverse analysis process. 

Sample 𝜇 (kPa)  𝑘1 (kPa) 𝑘2  𝑟 (angle) 𝜅 Residual  f 

FCT1 2.00 4705.30 54.26 57.01 0.27 0.0006642 

FCT2 2.00 413.9 37.96 66.69 0.27 0.0000013 

FCT3 5.1 938.80 20.09 38.53 0.23 0.0000225 

FCT4 4.00 388.9 16.26 65.87 0.25 0.0000258 

FCT5 4.40 3263 77.83 73.56 0.29 0.0000056 

 

7.4.2 Inverse Analyses of Fibrous Cap Tearing Experiments 

In the previous section, a finite element model was developed for the fibrous cap 

uniaxial tensile experiment and the parameter values for the bulk models were identified. 

In this section, the HGO model parameter values was used for the bulk material model of 
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the fibrous cap in order to obtained the cohesive interface parameter values along the 

tearing path (Fig. 7.3). The values of critical energy release rate and CZ interfacial strength 

of fibrous cap are shown in Table 7.2 (f represents the residual). The comparison of 

simulation predictions between experimental measurements of the load-displacement 

curve of the fibrous cap tearing tests are shown in Fig. 7.4. 

Table 7.2  The values of critical energy release rate and interfacial strength of fibrous cap 

tissue obtained from inverse analysis process.   

 FCT-1 FCT-2 FCT-3 FCT-4 FCT-5 

Area 𝐺𝑐 

(N/mm) 

𝜎𝑐 

(Mpa) 

𝐺𝑐 

(N/mm) 

𝜎𝑐 

(Mpa) 

𝐺𝑐 

(N/mm) 

𝜎𝑐 

(Mpa) 

𝐺𝑐 

(N/mm) 

𝜎𝑐 

(Mpa) 

𝐺𝑐 

(N/mm) 

𝜎𝑐 

(Mpa) 

1 0.237 0.368 1.341 0.572 0.089 0.029 0.797 0.289 0.172 0.026 

2 0.225 0.387 1.346 0.483 0.090 0.042 0.786 0.339 0.095 0.001 

3 0.203 0.378 1.391 0.492 0.110 0.051 0.779 0.518 0.213 0.096 

4 0.195 0.378 1.428 0.506 0.123 0.067 0.777 0.558 0.289 0.197 

5 0.434 0.211 1.313 0.494 0.085 0.093 0.778 0.564 0.182 0.354 

6 0.411 0.195 1.235 0.474 0.125 0.120 0.778 0.543 0.257 0.392 

7 0.411 0.195 1.224 0.500 - - - - 0.224 0.386 

8 0.413 0.198 - - - - - - - - 

9 0.341 0.159 - - - - - - - - 

10 0.188 0.082 - - - - - - - - 

Mean 0.306 0.255 1.326 0.503 0.096 0.057 0.782 0.468 0.205 0.207 

SD 0.105 0.112 0.075 0.032 0.026 0.040 0.008 0.122 0.063 0.171 

f 0.119 0.021 0.005 0.078 0.007 

 

To propose a quantitative understanding of the inverse iteration procedure, Fig. 7.5a 

shows the variations of CZM parameters (only the parameter values of the interfacial areas 

from the initial, the middle and the end of the tearing path) with iteration numbers of 

inverse modeling of tearing experiment for sample FCT-1. It is noted that the predicted 

interfacial strength and critical energy release rate converged to certain values after 

approximately 30 iterations. The convergence trend of the objective function is shown in 
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Fig. 7.5b, and the value is quickly reduced from a large value to a small value after seven 

iterations. 

 

 

 

Fig. 7.4  The simulation predicted load-displacement curves of loading-tearing cycles are 

compared with the experimental measured curves.  
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Fig. 7.5 (a) Variations of CZM parameters and (b) objective function with iteration 

numbers of inverse modeling of tearing experiment for sample FCT-1. 

7.4.3 Finite Element Results of the Fibrous Cap Tearing Process 

The simulation predicted tension stress (S22) contours for eight typical points along 

the loading-displacement curve during the tearing process are shown in Fig. 7.6. The states 

of deformation of specimen from experiment (Fig. 7.6a) and the tension stress contours 

(Fig. 7.6b) are consistent with the corresponding loading levels in the load-displacement 

diagram. At the beginning of the tearing test (Fig. 7.6a, at point 1), the sample deforms 

(Fig. 7.6a and 7.6b, at points 2 and 3) with extension along Y direction to the time point 

when the maximum tension stress occurs (Fig. 7.6a and 7.6b, at point 4). The loading level 
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at point 4 is the highest level and is sufficient to initiate the tearing, and the tension stress 

contour shows that the highest tension stress occurs in the cohesive interface and also the 

bulk material. After that, the tension stress decreases with the tear propagates along the 

tearing path (Fig. 7.6a and 7.6b, at points 5 and 6). At the loading point 7, the tearing 

propagation stops and the rest part of the tearing path (cohesive interface elements) deform 

with large extension which similar to the uniaxial tension test. At last, the tearing 

propagation of fibrous cap begins when resistant force decreases (Fig. 7.6a and 7.6b, at 

point 8).   

 

Fig. 7.6  Tension stress (S22, along Y direction) contours at eight typical points along the 

load-displacement curve during tearing process: (a) tension deformation from experiment 

and (b) simulation prediction.   
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7.5 Discussion 

For the acquiring of HGO model parameter values, uniaxial tensile tests on five 

fibrous cap samples were used. Since the mechanical behavior play an important role in 

determination of the critical energy release rate and the interfacial strength across the 

thickness of fibrous cap, the HGO parameter values were obtained through the inverse 

modeling method. Though the shear modulus of the matrix material μ are in the range 1 

kPa to 2.55 kPa, which are less than the values from the reference (43.78 kPa (Kiousis et 

al., 2009) and 24.12 kPa (Balzani et al., 2012)). However, the fiber reinforced response is 

associated with the constitutive parameters k1  and k2 , which dominate the mechanical 

behavior. And the values of k1 and k2 are within the same range as those in the reference.  

Moreover, for the simulation of arterial tissue delamination, the ultimate tensile 

stress has been used as the cohesive interfacial strength of CZM (Ferrara and Pandolfi, 

2010; Gasser and Holzapfel, 2006). In the present study, it was found that the values of 

cohesive interfacial strength of the fibrous cap along circumferential direction are in the 

range from 0.029 to 0.572 MPa (0.296±0.176 MPa, mean±S.D.). These values are in good 

agreement with the values of ultimate tensile stress obtained by other researchers: Lawlor 

et al. (Lawlor et al., 2011) have observed the values of ultimate tensile stress of fresh 

carotid artery plaques from circumferential direction using uniaxial tensile test, which are 

in the range between 0.131and 0.779 MPa (0.367±0.213 MPa, mean±S.D.). Teng et al. 

(Teng et al., 2015) have performed uniaxial tensile tests on human carotid fibrous cap in 

the circumferential direction, the mean ultimate strength of fibrous cap is 0.158 [0.072, 

0.259] MPa. Holzapfel et al. (Holzapfel et al., 2004b) have reported that the ultimate tensile 

stress of human carotid fibrous cap in the circumferential direction is 0.255±0.08 MPa.  
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The values of critical energy release rate across the thickness of fibrous cap 

obtained in the current study are in the range from 0.085 to 1.428 N/mm (0.533±0.449 

N/mm), which show a large variation from specimen to specimen or from position to 

position of one specimen. Under the same load conditions, the fibrous cap with lower 

energy release rate values will prone to break, or the positions of one fibrous cap with lower 

𝐺𝑐 will start tearing firstly. From previous studies of human fibrous cap delamination from 

the underlying plaque tissue, the critical energy release rate ranged from 0.132 to 0.695 

N/mm, with a mean of 0.254±0.155 N/mm (Leng et al., 2016). The values across the 

thickness of fibrous cap are larger than those between the fibrous cap and underlying tissue 

from the limit studies. Furthermore, the critical energy release rate has a large effect to 

failure mechanism of the atherosclerotic plaque. For one thing, the damage and dissection 

propagation will occur at the interface between fibrous cap and underlying tissue. For 

another thing, the fibrous cap will prone to tear across the thickness that the whole plaque 

tissue will be exposed to the blood vessel when the fibrous cap is weaker.  

There are some limitations for the current work. First, the geometry models were 

built from images of front view and side view, which the thicknesses were assumed 

constant along the direction along width of the sample. Secondly, the samples under 

uniaxial tensile tests are not underwent pure tensile deformation for the shearing forces 

may occur inside the samples with large width-length ratio. Third, the HGO model 

parameter values identified from this study were from a single stretch ratio which may not 

well characterize the mechanical behaviors of the tearing tests of arterial tissue. Since the 

stretch ratios of the tearing tests are larger than those from the uniaxial tensile tests. The 

further limitation is the inverse modeling method used in current study. The material 
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parameter values were obtained from a local optimal process (Lei and Szeri, 2007), so other 

combinations of different parameter values can characterize a similar mechanical response 

as the set of parameters in the current study.  

7.6 Conclusions 

In the current study, an inverse analysis method and a finite element based 

modeling approach for simulating human fibrous cap tearing event have been developed 

and demonstrated in order to acquire the cohesive interface parameter values. Simulations 

of human fibrous cap tearing experiments have been carried out, in which the HGO model 

for the bulk material behavior and the CZM for the tearing behavior along the tearing path 

are adopted. By implementation of the inverse modeling of the uniaxial tensile tests of 

human fibrous cap, the HGO parameter values were obtained and used as the input values 

for the bulk material model to model the fibrous cap tearing process. With the same inverse 

analysis method, the cohesive interfacial strength and critical energy release rate across the 

thickness of fibrous cap were acquired. 

Comparisons of simulation predictions of the load-displacement curve from inverse 

modeling with experimental measurements revealed that the simulation predictions were 

able to characterize the critical features of the deformation states of specimen for the human 

fibrous cap tearing tests. The results of this study provide a finite element based inverse 

analysis method to obtain the material parameter values from the simulations of arterial 

tissue failure events using CZM approach. 

 



 

130 
 

CHAPTER 8 

EXPERIMENTAL AND NUMERICAL STUDIES OF  

COLLAGEN FIBER FAILURE IN ARTERIAL TISSUE 

 

8.1 Introduction 

We have successfully developed a mechanical modeling approach ((Leng et al., 

2015b; Leng et al., 2016)) for arterial tissue failure in the form of plaque delamination 

(dissection) along the plaque-media interface and fibrous cap delamination along fibrous 

cap-underlying plaque tissue interface. However, the arterial tissue is a complex, laminated 

structure which contains several types of fiber reinforcing elements such as fiber bridges 

extending perpendicular to the interface between plaque and media or fibrous cap and 

underlying plaque tissue. The macro-scale cohesive zone model (CZM) approach is useful 

for the understanding of the overall arterial delamination behavior; it does not give the 

descriptions of the micromechanical physical basis for the arterial tissue delamination 

process. Furthermore, the structural elements in the artery compose of individual cells and 

extracellular matrix fibers (Twal et al., 2013). These individual components are affected 

by most drug treatments in the form of changing the relative amounts, mechanical 

properties, or interactions between each other (SIMPSON and BOUCEK, 1983). Therefore, 

to determine whether an intervention will prevent the arterial tissue failure, we need to 

know how the mechanical properties and organization of the individual components at the 
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microscale, especially the collagen fibers, contribute to the adhesive strength of interfaces 

in the arterial layers.   

The aims of this study are to go beyond the scope of the existing studies (e.g. 

(Ferrara and Pandolfi, 2010; Gasser and Holzapfel, 2007; Gasser and Holzapfel, 2006; 

Leng et al., 2015b)) to gain a mechanical understanding of the plaque rupture phenomenon 

at the microscopic scale. Firstly, a uniaxial tensile test on a single tow of collagen fibers 

from porcine arterial wall was performed in order to acquire the elastic modulus, tensile 

strength and strain at failure. Secondly, the interfacial strength of interface across fibers 

was obtained through best fitting of the load-displacement curve from the simulation 

predictions with the experimental measurements. Finally, these parameter values were used 

as input data for a micromechanical model of a plaque-arterial wall system, which was 

developed based on experimental observations and the cohesive zone model approach. The 

failure mechanism at the microscopic scale (such as possible collagen fiber breakage) was 

incorporated to develop a three-dimensional unit cell model, which will enable the 

characterization of the cohesive traction-separation relation and the factors at the 

micromechanical scale affecting this relation that plays an important role for the 

understanding of micromechanical mechanism in plaque rupture.  

8.2 Materials and Methods 

Specimen Preparation 

All tissue handling protocols were approved by the Institutional Animal Care and 

Use Committee at the University of South Carolina. The porcine abdominal aorta was 

harvested from the kidneys of the male Landrace Pigs (age 8-12 months, mass 60-70 kg). 
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All kidneys were acquired immediately after animal sacrifice and placed on ice for 

transport to laboratory. Upon kidney arrival, the abdominal aorta was isolated from the 

surrounding tissue, washed in phosphate buffered saline (PBS), dissected free of 

perivascular tissue. Strips of 20 mm ×10 mm were cut using surgical scissors (Fig. 8.1a). 

Scalpel was used to make a 2 mm long cut in the middle of the strip and tear it apart, 

releasing the collagen fibers embedded in the tissue. The separated surfaces obtained from 

this process is similar to those from the arterial tissue dissection and delamination processes. 

Hence, the shape and diameter of collagen fibers obtained are the same as the fibers along 

the surfaces from the delamination or dissection experiment of arterial tissue. A part of 

separated surface is shown in Fig. 8.1b, where several bundles of collagen fibers distribute 

randomly and connect to each other. Six specimens were harvested at the separated surface, 

which are consisted with bundles of collagen fibers twisted together.   

 

Fig. 8.1 Schematic of set-up for tensile testing in SEM. (a) A radial cut was made on the 

porcine abdominal aorta and strips oriented at the angle of 0o and 90o with respect to the 

circumferential vessel axis were obtained; (b) a strip was teared into two parts and a bundle 

of collagen fibers was harvested at the teared surface; (c) collagen fiber uniaxial tensile test 

setup.  
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Uniaxial Tensile Tests of Collagen Fibers 

Both ends of fibers were clamped onto a GatanTM Deben micro-tester (Gatan, Inc., 

Pleasanton, CA) equipped with a 2 N load cell (Fig. 8.1c). The fibers together with micro-

tester was fixed into a scanning electron microscope (SEM: FEI Quanta 400) for in-situ 

tensile tests. The loading speed was set as 1 mm/min. The completely fiber uniaxial tensile 

test was recorded by a video to reveal the corresponding deformation and fracture processes, 

and to ensure the validity of such tests. 

8.3 Numerical Implementation 

 

Fig. 8.2 Schematic representation of the numerical implementation of micromechanical 

model with fiber breakage. (a) SEM image of collagen fibers from the uniaxial tensile test 

and FE model of collagen fibers; (b) best fitting of load vs. load-point displacement curve 

between the simulation predictions and experimental measurements; (c) Schematic 

illustration of parametric studies using 3D unit cell model. 

In order to investigate the micro-mechanism of collagen fiber failure, a 3D unit cell 

model was implemented in the numerical studies. First, the CZM parameter values of the 

fiber-fiber interface (interface across the collagen fibers) were identified via fitting the 

simulation predictions of load vs. load-point displacement curve with experimental 
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measurements (Fig. 8.2a and 8.2b). Then, the CZM parameter values were used as input 

data for the parametric studies using the micromechanical model (Fig. 8.2c).  

8.4 Material Properties Identification Process 

The values for the interfacial strength and critical energy release rate of interface 

across fibers (fiber-fiber interface) as well as the modulus of collagen fibers were obtained 

via fitting simulation predictions with experimental measurements of the load vs. load-

point displacement curve.  

8.4.1 Material Properties of Fiber-Fiber Interface and Collagen Fibers  

Geometrical Modeling 

The geometric models of the collagen fibers were reconstructed from the images 

obtained during the tensile tests (Fig. 8.2a). The length and diameter of the specimen were 

measured directly from the experimental images (Fig. 8.3a). For simplification, the shape 

of the cross-section is assumed to be a circular section (Wang et al., 1994). 

 

Fig. 8.3  (a) SEM image of fibers after the tensile test and (b) the zoom-in image of the 

breakage surface of the collagen fibers. 
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Meshing 

The geometric model of the fibers was meshed with eight-node brick elements 

(C3D8). The zero thickness eight-node 3D user-defined elements were placed at the cross-

section perpendicular to the longitudinal axis where the fiber breakage occurred in the 

experiment.  

Boundary Conditions 

In line with the experiments, the left end of the fibers was fixed, the load applied 

on the right end with loading rate 1.0 mm/min. Except for the fixed part of the model, all 

other surfaces of FE model were set to a traction-free boundary condition. 

8.5 Results 

8.5.1 Material Properties of Collagen Fibers  

The equations for calculating the Cauchy stress and strain are given as follows, 

  𝜎 =
𝐹

𝐴0
(1 +

∆𝐿

𝐿0
), 𝜀 = 𝐼𝑛 (1 +

∆𝐿

𝐿0
)  (8.1) 

where 𝜎 and 𝜀 are the Cauchy stress and strain, respectively; 𝐹 is the resultant load in the 

tensile testing; 𝐴0  and 𝐿0  represent the initial cross-section and length of the fibers, 

respectively; ∆𝐿 denotes the increment of length during the fiber tensile test. The Cauchy 

stress-strain curves of all specimens for fiber breakage (FB) tests (uniaxial tensile tests) are 

shown in Fig. 8.4. The strain at failure and ultimate tensile strength were 23.00 ± 7.30 % 

and 81.75 ± 75.14 MPa (Table 8.1), respectively. 
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Fig. 8.4  Cauchy stress-strain curves from collagen fiber tensile tests. 

 

Table 8.1 Diameter, strain at failure and ultimate strength from fiber tensile tests. 

  FB-1 FB-2 FB-3 FB-4 FB-5 FB-6 Mean S.D. 

Diameter, D (µm) 28.6 11.1 16.8 39.5 32.3 12.4 23.5 10.7 

Strain at failure (%) 32 23 8 24 26 25 23.00 7.30 

Ultimate Strength (MPa) 10.81 156.88 50.29 28.34 32.35 211.82 81.75 75.14 

 

8.5.2 CZM Parameter Values of Fiber-Fiber Interface 

   The CZM parameter values for the interface across the fibers were obtained through 

a numerical identification procedure that matches simulation predictions of the load vs. 

load-point displacement curve with the experimental measurements (Leng et al., 2015b; 

Leng et al., 2016; Shazly et al., 2014), as shown in Fig. 8.5. The tangential modulus and 

ultimate tensile strength quantified from the fiber tensile tests were used as input data as 

the modulus 𝐸 of fibers and interfacial strength 𝜎𝑐 of fiber-fiber interface in the parameters 

identification procedure, respectively. The initial guess of critical energy release rate 𝐺𝑐 

was chosen according to the critical energy release rate of fibrous cap delamination tests 



 

137 
 

(Leng et al., 2016). The value of Poisson’s ratio 𝜈 of fibers was taken to be 0.3 (Genin et 

al., 2009).  

   In the numerical identification process, the modulus and Poisson’s ratio of fibers 

and the CZM parameter values of interface across fibers were considered “acceptable” 

when the root mean square error satisfies  

  𝑓𝑟 =
√ 𝜒2

𝑁−𝑀

𝐹𝑎𝑣𝑔
< 0.005 , with 𝜒2 = ∑ [(𝐹𝑒𝑥𝑝 − 𝐹𝑠𝑖𝑚)𝑖

2
]𝑁

𝑖=1   (50) 

where 𝐹𝑠𝑖𝑚  and 𝐹𝑒𝑥𝑝  are the simulation predicted and the experimentally measured 

resultant loads; 𝐹𝑎𝑣𝑔  is the sum of all experimentally measured forces divided by the 

number of data points; 𝑁 is the number of data points on the load-displacement curve 

which were used in the parameter value identification procedure; and 𝑀 is the number of 

parameters whose values were determined from the identification procedure.  

A proper set of modulus and Poisson’s ratio of fibers and the CZM parameter values 

of interface across fibers is shown in Table 8.2. It is noted that the values for K and 𝜆 were 

assumed equal to 1 N/mm3 and 1, respectively. These values are reasonable since the K 

value is sufficiently large that artificial compliance from the cohesive interface can be 

prevented and the values for mixity parameter 𝜆 is reasonable for the mode I fracture 

process of collagen fiber breakage process (Leng et al., 2015b; Leng et al., 2016). 

Table 8.2  Modulus and CZM parameter values of collagen fibers 

  FB-1 FB-2 FB-3 FB-4 FB-5 FB-6 Mean S.D. 

Modulus, E (MPa) 28.02 850 534.38 118.08 105.14 781.28 402.82 334.33 

𝐺𝑐 (N/mm) 0.005 0.32 0.21 0.1 0.15 0.47 0.209 0.151 

𝜎𝑐 (MPa) 11.32 160.82 55.75 28.34 29.39 211.82 82.91 75.71 

𝑓𝑟   0.0003  0.0023  0.0009  0.0047  0.0037 0.0008   0.0021  0.0016 
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Fig. 8.5  The simulation predicted load-displacement curves of tensile tests of collagen 

fibers are compared with the experimental measured curves. 

8.6 Parametric Studies 

A micromechanical model was proposed to characterize the arterial delamination 

mechanics at the fibrous cap-underlying plaque tissue interface in terms of the mechanical 
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properties and geometry of fibrous components including bridging fibers. A 3D unit cell 

containing a set of fibers between two arterial tissue layers was considered (Fig. 8.6).  

 

Fig. 8.6  Schematic representation of 3D unit cell models distributed in the fibrous cap 

delamination path.  

 

The top and bottom arterial tissue layers were modeled as hyperelastic anisotropic 

materials (HGO model) and the fibers were treated as a linear elastic material. In order to 

investigate the factors affecting the traction-separation response of delamination process at 

the micro scale, the parametric studies based on the 3D unit cell model was implemented, 

which considering: (1) the bonding strength of interface across the fibers; (2) variations in 

the fibers’ stress-strain behavior; (3) initial gap of the interface. 

8.6.1 3D Unit Cell Model for the Arterial Tissue Delamination 

Geometrical Modeling 

The geometry values are shown in Fig. 8.7, which are chose according to the 

average value of diameters of fibers in Table 1.  
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Fig. 8.7  Finite element model of the 3D unit cell model for micromechanical study of 

fibrous cap delamination: (a) left section view of 3D unit cell model, the collagen fibers 

connecting fibrous cap and underlying plaque tissue (the red line shows a zero thickness 

layer of cohesive elements assigned to the interface across fibers at the middle of fibers); 

(b) front view of 3D unit cell model; (c) collagen fibers; (d) top section view of 3D unit 

cell model. 

 

Meshing 

The eight-node brick elements (C3D8H) are implemented for the matrix part 

(contains collagen fibers and smooth muscle cells, etc.). The interface across the fibers is 

placed with zero thickness eight-node 3D user-defined elements. The meshed geometric 

model of 3D unit cell is shown in Fig. 8.7. 

Boundary conditions 
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The unit cell has symmetry conditions on the left and right vertical boundaries of 

the layers and is loaded in tension at the top and bottom boundaries by a uniform 

displacement. The 3D unit cell can be taken as a small part inside the human fibrous cap 

delamination model (Fig. 8.6). The boundary conditions should according to the stress 

states in the macro model. To this end, the front and back surfaces (perpendicular to the x 

axial) of the fibrous cap and underlying plaque tissue of the unit cell model were 

constrained along x direction (Constrain the deformation along the direction of length of 

fibrous cap, as shown in Fig. 8.6); and the left and right surfaces (perpendicular to the y 

axial) were set with restriction of y direction along the width of the fibrous cap and 

underlying plaque tissue during delamination test. The total reaction loads are determined 

from finite element solutions. The resulting relation between the applied displacement and 

the reaction load was used to analyze the traction-separation relation of the cohesive 

interface between the two arterial layers.  

The material parameter values of HGO model for matrix material are shown in 

Table 8.3 (Leng et al., 2016).      

Table 8.3  Material parameter values of HGO model 

 μ (kPa) 𝑘1 (kPa) 𝑘2(-) κ (-) 𝑟 (degree) 

Plaque   49.45 23.7 2630 0.226 30 

Fibrous cap 21.89 93.63 7957 0.226 17.22 

 

The linear elastic model was used to characterize the mechanical behavior of bulk 

material of collagen fibers, which includes parameters such as the elastic modulus and 

Poisson’s ratio. A CZM model was adopted to describe the stiffening and softening 
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behavior of collagen fibers during the tensile tests. The reference material parameter values 

of elastic modulus, interfacial strength and critical energy release rate for the 3D unit model 

were set equal to the average values of the parameters obtained from the experiment as 

shown in Table 8.3 (𝐺𝑐=0.209 N/mm, 𝜎𝑐=82.91 MPa, 𝐸=402.82 MPa and 𝜈=0.3) . 

One set of the traction-separation curves from simulation predictions using 3D unit 

cell model is shown in Fig. 8.8a. Traction is obtained through dividing the resultant force 

by the area of the fibrous cap-underlying plaque tissue interface (0.023mm2) and the 

separation is the load-point displacement. At the beginning of the traction-separation curve, 

the traction increases because of the resistance force from the interface across fibers and 

the matrix material. Further, the maximum traction occurs when the stress of interface 

across fibers equal to the interfacial strength. At last, the traction decreases to zero when 

the cohesive elements of the interface across fibers are completely damage. 

8.6.2 Bonding Strength of Interface across the Fibers 

Collagen fibers are the major load-bearing structural constituents in the vascular 

tissue, which increase strength exponentially at higher strains. Hence, collagen fiber 

breakage is considered as the main contribution to the arterial tissue failure (Pal et al., 

2014). In this section, we focus on the effects of bonding strength of interface across the 

collagen fibers to study the traction-separation relationship of the interface between two 

arterial layers including fiber bridging. To gain some insight into the effect of 𝐺𝑐 , five 

values for the 𝐺𝑐 are considered: 0.01 N/mm, 0.05 N/mm, 0.1 N/mm, 0.209 N/mm and 0.4 

N/mm. Furthermore, to investigate the effect of the interfacial strength on simulation 

predictions, five values of 𝜎𝑐 are considered: 50 MPa, 82.91 MPa, 100 MPa, 150 MPa and 

200 MPa. All other aspects of the simulation model keep the same.  
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Fig. 8.8  Traction-separation curves from simulation predictions with five different values 

of (a) critical energy release rate 𝐺𝑐 and (b) interfacial strength 𝜎𝑐.  

The predicted traction-separation curves are shown in Fig. 8.8. It is seen that the 

traction increases with increasing critical energy release rate 𝐺𝑐. Moreover, the traction is 

largely affected by the interfacial strength that the traction increases with increasing 𝜎𝑐, but 

the stiffness is not affected by the interfacial strength.  

8.6.3 Variations in the Fibers’ Stress-strain Behavior 

In order to gain insight into the effect of the elastic modulus 𝐸  on traction-

separation relation for unit cell model, five values are considered: 402.82 MPa, 500 MPa, 

600 MPa, 700 MPa and 800 MPa. Furthermore, to investigate the effect of the Poisson’s 

ratio 𝜈 on simulation predictions, five values of 𝜈 are considered: 0.1, 0.2, 0.3, 0.4 and 

0.499. Using these elastic modulus and Poisson’s ratio, ten simulations were carried out 

(as shown in Fig. 8.9), each with a different 𝐸 or 𝜈. Other values are kept the same in all 

simulations. The simulation predicted traction-separation curves are shown in Fig. 8.9. It 

is seen that the traction and the stiffness increase with increasing of elastic modulus and 

the traction decreases with increasing of Poisson’s ratio.  
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Fig 8.9  Traction-separation curves from simulations with five different values of (a) elastic 

modulus 𝐸 and (b) Poisson’s ratio 𝜈.  

8.6.4 The Initial Gap of the Interface  

Considering the effect of the initial gap of the interface 𝑙𝑔 on traction-separation 

relation for unit cell model, five values are considered: 0 mm, 0.05 mm, 0.1 mm, 0.15 mm 

and 0.2 mm. All other aspects of the simulation model are kept the same. 

 

Fig. 8.10  Traction-separation curves from simulations with five different values of initial 

gap of the interface 𝐿𝑔. 
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 The simulation predicted traction-separation curves are shown in Fig. 8.10. It is 

seen that the stiffness increases with decreasing of initial gap of the interface and the 

predicted maximum traction is only slightly affected by the initial gap of the interface. 

8.7 Discussion 

For the tensile tests, the fibers is composed of several bundles of collagen fibers. 

During the collagen fiber breakage process, the lamellae sliding occurred and it was also 

associated with fibril pulling out and breakage (Ikoma et al., 2003). Because some of the 

collagen fibers are attached to the matrix and connected to other collagen fibers (Fig. 8.1b), 

the arterial failure process may contain separation of matrix material and collagen fiber 

pull-out. Thus, the debonding and slippage of fibers embedded within the matrix may occur, 

but the main contribution of the micromechanical behavior of arterial delamination is the 

breakage of fibers perpendicular to the delamination interface (Pal et al., 2014).  

In the present study, the fibers contain bundles of collagen fibers (the diameters of 

fibers in the current study are larger than that of collagen fibers which ranged from 1 to 10 

µm (Miyazaki and Hayashi, 1999)). It was found that the strain at failure, ultimate strength 

and elastic modulus of fibers are 23.00 ± 7.3 %, 81.75 ± 75.14 MPa and 402.82 ± 334.33 

MPa, respectively. Miyazaki and Hayashi (Miyazaki and Hayashi, 1999) have observed 

the mechanical properties of single collagen fibers isolated from rabbit patellar tendon and 

the  failure strain, ultimate strength and elastic modulus are 21.6±3.0 %, 8.5±2.6 MPa and 

54.3±25.1 MPa, respectively. Except for the values of strain at failure obtained in this study 

are in line with those from tensile tests of single collagen fibers, the ultimate strength and 

elastic modulus obtained from tensile tests of bundles of collagen fibers from porcine aorta 

are larger than the values from Miyazaki’s research. Yamamoto et al. (Yamamoto et al., 
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1999) acquired the tensile properties of collagen fascicles (consists of collagen fibrils, 

fibers, interfibrillar matrix and fibroblasts (Miyazaki and Hayashi, 1999), the diameter is 

approximately 300 µm (Yamamoto et al., 1999)) from rabbit patellar tendons, and the strain 

at failure, ultimate strength and elastic modulus are 10.9±1.6 %, 17.2±4.1 MPa and 216±68 

MPa, respectively. The values of strain at failure, ultimate strength and elastic modulus are 

less than those from the present study. The differences may attribute to the different tissue 

source of the collagen fibers, the different geometric or structural properties of the samples.   

For the identification of CZM parameter values of interface across collagen fibers, 

the deformation of fibers should correlate to that from tensile tests. It was noted that the 

fibers was stretched during the tensile test until the fiber breakage occurred at the last time 

point with load completely dropping to zero. Moreover, the maximum effective 

displacement when the interface is damaged completely is very small compared to the 

length of fibers. Experimental results show a nonlinearity of the mechanical response 

which is attributed to the nonlinear mechanical response of elastin and the gradually 

recruited load-bearing collagen fibers as they straighten out with increasing strain. At the 

last stage, the softening behavior of the interface across the fibers occurs and the interface  

damage completely with the traction dropping to zero.  

For the 3D unit cell model, the parts of matrix material including fibrous cap and 

underlying plaque tissue were created according to the dimension of the arterial layers. The 

thickness, length and width should be small enough to attain a good numerical efficiency 

and also to eliminate the effects from the boundary conditions. For the parametric studies, 

the material parameter values for the CZM model and elastic model of fibers were chosen 

within the range of the values obtained from the experiments (Table 8.1and Table 8.2) in 
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order to simulate the actual failure process. The predicted maximum traction is largely 

affected by the critical energy release rate, interfacial strength and Poisson’s ratio while 

the stiffness of the traction-separation curves is affected by the elastic modulus of fibers 

and the initial gap of the interface. The damage accumulates as the fibers be elongated and 

its magnitude reaches 1 when the tractions of the 3D unit cell model as well as the tractions 

of cohesive elements decrease to zero after attaining the maximum values. Meanwhile, the 

cohesive element is completely damage and the two layers of the 3D unit cell model are 

separated.  

In one reference (SIMPSON and BOUCEK, 1983), It mentioned that the medicine 

act by decreasing the aortic tensile strengths to increase the high percentage of the animal 

death from the aortic dissecting aneurysms. It is noted that the drugs increase the 

ultrastructural disruption of collagen and decrease the arterial strength. For this reason, the 

increasing of critical energy release rate and interfacial strength of interface across fibers 

will increase the traction of the unit cell along the failure path, which will inhibit the arterial 

failure. Meanwhile, the effective displacement when the maximum traction of unit cell 

attained will increase, which will also prevent the damage of arterial tissue under certain 

deformation. The arterial stiffness increased with age and was taken as one factor to 

increase the cardiovascular disease (Janić et al., 2014). From the parametric studies, when 

the modulus of collagen fibers increases and the initial gap of the interface decreases, the 

stiffness of the interface prone to failure will increase, which will accelerate the damage of 

the interface under a certain small deformation. Therefore, the parametric studies using 3D 

unit cell will provide a possibility to investigate the mechanism of drug treatments to the 

arterial tissue failure. 



 

148 
 

Despite the novelty of some experimental observations and the encouraging 

predictive power of the proposed micromechanical model of the arterial tissue, certain 

limitations in our study should be recognized. Firstly, the fibers are assumed with constant 

cross-section area along the longitudinal direction, but actually the area of cross-section 

varies with irregular shape. Additionally, the fibers are composed of bundles of collagen 

fibers twisted together. Secondly, the cross-section of fibers were assumed to be a smooth 

interface perpendicular to the axial direction in the simulation of fiber breakage process. 

But, the breakage area may not be an ideal cross-section because the fibril pull-out and 

breakage occur inside the fibers.  

8.8 Conclusions  

In the current study, a 3D unit cell model was developed and applied successfully 

to do the parametric studies of the arterial tissue failure process at the microscopic scale. 

The mechanical behavior of the arterial layers (including parts of fibrous cap and 

underlying plaque tissue), collagen fibers and the interface across the fibers were 

represented by HGO anisotropic constitutive mode, linear elastic model and exponential 

CZM model, respectively. The CZM parameter values and elastic parameter values of 

fibers were obtained through material identification method that matching the load-

displacement curve from simulation predictions of tensile tests of bundles of collagen 

fibers with the experimental measurements. The identified parameter values were then 

applied in the parametric studies using 3D unit cell model to investigate the cohesive 

traction-separation relation affected by factors at the micromechanical scale.  

Comparisons of simulation predictions of the load-displacement curve with 

experimental measurements revealed that the simulation predictions were able to capture 
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the essential features of the load-displacement curve from the collagen fiber tensile tests 

and show good quantitative agreement with the experimental measurements. The results 

from the simulation predictions of fiber breakage provide a validation for the proposed 

CZM based approach for modeling and simulating collagen fiber breakage events. 

Furthermore, the parametric studies using 3D unit cell model provide a method to 

investigate the traction-separation relationship of fiber bridging across the arterial layers at 

the micromechanical scale. Considering the predicted maximum traction, it is largely 

affected by the critical energy release rate, interfacial strength and Poisson’s ratio. For the 

stiffness of the traction-separation curve, it is affected by the elastic modulus of fibers and 

the initial gap of the interface. 
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

 

A cohesive zone model-based computational approach for modeling and simulating 

delamination experiments on atherosclerotic plaque, media and fibrous cap as well as the 

fibrous cap model I tearing and collagen fibers breakage events have developed and applied 

successfully to characterize arterial tissue failure.  

    For the simulations of plaque rupture at the plaque-media interface. The aortic wall 

is treated as a fiber-reinforced, highly deformable, incompressible material, and the 

Holzapfel-Gasser-Ogden (HGO) model is adopted for the aortic bulk material behavior.  

Cohesive elements are placed along the plaque-media interface along which delamination 

occurs. The 3D specimen geometric models are created based on images from the 

experiments and certain simplifying approximations. A set of HGO and CZM parameter 

values is determined based on values suggested in the literature and through matching 

simulation predictions of the load vs. load-point displacement curve with experimental 

measurements for one loading-delamination-unloading cycle. Using this set of parameter 

values, simulation predictions for four other loading-delamination-unloading cycles are 

obtained, which show good agreement with experimental measurements. The findings of 

the current study demonstrate the applicability of the CZM approach in arterial tissue 

failure simulations. 
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The delaminated mechanical responses of the porcine abdominal aorta under mix-

mode and mode I delamination are quantified via mechanical testing. Mechanical data are 

used to parameterize and validate the structure-motivated constitutive model and the 

exponential cohesive zone model approach for simulations of the arterial wall delamination. 

This integrated theoretical-experimental approach is demonstrated by comparing the 

loading-delamination-unloading curve and the crack front between numerical simulation 

predictions and experimental measurements for two types of experiments. In addition, the 

mixed-mode delamination reveals a shear mode dominated fracture event whereas mode I 

delamination is purely an opening failure process. Experimental data and theoretical 

predictions of the arterial delamination provide a comprehensive description of the arterial 

delamination and aid in the predictions of abdominal aortic dissection.   

In order to describe the hysteresis phenomenon of diseased arterial tissue, a 

viscoelastic anisotropic (VA) model for the bulk material behavior is extended from 

existing HGO constitutive model. A finite element model is developed for the fibrous cap 

delamination experiments, in which arterial layers (including fibrous cap and underlying 

plaque tissue) are represented by 3D solid elements based on the VA model and fibrous 

cap-underlying plaque tissue interface is characterized by interfacial CZM elements. Using 

the set of parameter values from fibrous cap delamination experiments and material 

parameter identification process, simulation predictions for fibrous cap delamination 

events are conducted, which match well with the experimental measurements. Results of 

this study demonstrate the applicability of the viscoelastic anisotropic model and the CZM 

approach for the simulation of diseased arterial tissue failure processes.  
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    An inverse analysis method with finite element modeling and simulation approach 

is presented, which enables the analysis of fibrous cap Mode I tearing experiments for the 

purpose of acquiring the interfacial strength and critical energy release rate of the fibrous 

tissue across the thickness. A cohesive zone model (CZM) approach is applied to simulate 

the tearing of the fibrous cap tissue under uniaxial tensile tests along the circumferential 

direction and a fibers reinforced hyperelastic model (Holzapfel-Gasser-Ogden) is 

implemented for the mechanical response of bulk material. With the material parameter 

values of HGO model from inverse analysis process as the input for the bulk material, the 

interfacial strength and critical energy release rate along the tearing path or failure zones 

are obtained through the same method as material identification process of HGO model. 

Results of this study quantificational demonstrate the fibrous cap tissue mode I tearing 

failure processes. 

In order to demonstrate the arterial tissue failure at the microscale, a cohesive CZM 

based approach is applied to develop a micromechanical model for arterial delamination 

along the interface between the fibrous cap and the underlying plaque tissue. A 3D unit 

cell containing an individual collagen fibers between two arterial tissue layers is considered. 

An exponential cohesive zone model (CZM) is applied to describe the stiffening and 

softening behaviors of fibers (bundles of collagen fibers) between the two arterial layers. 

The CZM parameter values and elastic parameter values of fibers are obtained through a 

material parameter identification method that matches the load-displacement curve from 

simulation predictions of tensile test of collagen fibers with experimental measurements. 

The identified parameter values are applied in the 3D unit cell model. Using the unit cell 

model, micromechanical factors affecting the resulting traction-separation relation for the 
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unit cell are investigated using a parametric approach, which considers CZM model 

parameters, elastic model parameters and the initial gap of the interface. Through this 

investigation, CZM parameter values that describe the fiber failure process and the tensile 

properties of the fibers are obtained. Results of the parametric studies demonstrate the 

applicability of the 3D unit cell model approach for studying the micromechanical 

mechanisms of arterial tissue failure processes.  

The CZM approach developed in the current studies are not limited to simulating 

plaque delamination from the aortic wall, fibrous cap delamination from the underlying 

plaque tissue and so on. If proper experimental data are available so that CZM parameter 

values can be calibrated, the simulation procedure can be equally applied to rupture failure 

inside the plaque tissue or the arterial layers. This said, it is noted that the current studies 

seek to demonstrate and validate the numerical modeling approach for simulating material 

separation failure events in arterial tissues, which will provide a strong basis for its 

application to more clinically relevant arterial tissue failure events. The case of plaque 

delamination, fibrous cap delamination, aortic media delamination, fibrous cap tearing and 

collagen fiber breakage are chosen in these studies because these are the cases in which 

experimental data are available. These studies try to establish the credibility and viability 

of the CZM-based approach, so that it can be applied to more clinically relevant failure 

events of arterial tissue in the future. 

Based on this dissertation, several open questions are proposed: 

1) So far, a cohesive zone model was developed to simulate the mouse atherosclerotic 

plaque delamination and human fibrous cap delamination. However, the oscillation 
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of load from the delamination phase of loading-unloading cycles cannot be captured 

by the implementation of CZM method. Hence, a more reasonable model needs for 

further study. The fracture toughness of different tissue along the delamination path 

will be acquired through inverse analysis. The histological structures of specimens 

from the delamination tests will be used for creating geometry model with local 

tissue distribution. With the critical energy release rate for local materials, a structure 

based cohesive zone model will developed to mimic the oscillation of load during 

the delamination procedure. 

2) Based on the validated CZM method, a 3D idealized diseased carotid artery model 

will be created, and cohesive elements will be inserted on the interfaces prone to 

failure from clinical observations. This model will be used to study the arterial tissue 

failure process during angioplasty and stenting. 

3) The cohesive zone model will be employed to simulate three failure mechanisms at 

the microscopic scale: matrix (plaque and arterial wall) material separation, collagen 

fiber pull-out, and collagen fiber breakage. The plaque and arterial tissue forming 

the matrix material contain tiny fibers, presumably collagenous, which seem to be 

the dominant contributions to the adhesive strength of the interface between the 

plaque and arterial wall. According to this observation, a Micromechanical Cohesive 

Zone Model (MCZM) containing a set of fibers embedded in the matrix material will 

be considered. The failure of this MCZM has four stages as increasing tensile force 

is applied to it: (i) the separation of the matrix material; (ii) the fiber breakage; (iii) 

the combination of fiber breakage and fiber pull-out; (iv) the fiber pull-out. 
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APPENDIX A – DERIVATION OF TANGENTIAL MODULUS 

 

The use for the user material subroutine of viscoelastic material model in ABAQUS 

needs the tangent modulus for Newton-Rapson iteration procedures, and an approximation 

of the tangent modulus was implemented (Miehe, 1996; Sun et al., 2008). The Jaumann 

rate can be expressed as  

  𝝉
𝛁 = 𝝉̇ −𝑾𝝉 − 𝝉𝑾𝑻 = ℂ𝝉𝑱: 𝑫   (A.1) 

where ℂ𝜏𝐽 is the tangent modulus tensor for the Jaumann rate of the Kirchhoff stress. 𝑾 

and 𝑫 are spin tensor and rate of deformation gradient tensor, which are the antisymmetric 

and symmetric part of the spatial velocity gradient, respectively(Sun et al., 2008). 

The linearized incremental form of Jaumann rate is given by 

 ∆𝝉 − ∆𝑾𝝉 − 𝝉∆𝑾𝑻 = ℂ𝝉𝑱: ∆𝑫   (A.2) 

where 

 ∆𝑾 =
1

2
(∆𝑭𝑭−𝟏 − (∆𝑭𝑭−𝟏)𝑻)   (A.3) 

 ∆𝑫 =
1

2
(∆𝑭𝑭−𝟏 + (∆𝑭𝑭−𝟏)𝑻)   (A.4)  

The perturbation of the deformation gradient can be written as 

  ∆𝑭𝒊𝒋 =
𝜀

2
(𝒆𝒊⨂𝒆𝒋𝑭 + 𝒆𝒋⨂𝒆𝒊𝑭)   (A.5) 
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where 𝜀 is a small perturbation parameter and 𝒆𝑖, 𝑖 = 1,2,3 represents the unit vectors in 

the spatial description. 

With the relation of (A.5), we can obtain  

 ∆𝑾𝒊𝒋 =
1

2
[
𝜀

2
(𝒆𝒊⨂𝒆𝒋𝑭 + 𝒆𝒋⨂𝒆𝒊𝑭)𝑭

−𝟏 − (
𝜀

2
(𝒆𝒊⨂𝒆𝒋𝑭 + 𝒆𝒋⨂𝒆𝒊𝑭)𝑭

−𝟏)
𝑻

] = 𝟎 (A.6) 

 ∆𝑫𝒊𝒋  =
𝟏

𝟐
[
𝛆

𝟐
(𝒆𝒊⨂𝒆𝒋𝑭 + 𝒆𝒋⨂𝒆𝒊𝑭)𝑭

−𝟏 + (
𝜀

2
(𝒆𝒊⨂𝒆𝒋𝑭 + 𝒆𝒋⨂𝒆𝒊𝑭)𝑭

−𝟏)
𝑻

] =

𝜀

2
(𝒆𝒊⨂𝒆𝒋 + 𝒆𝒋⨂𝒆𝒊)       (A.7) 

So, ∆𝝉 can be approximated in another form through the difference between the 

perturbed and unperturbed Kirchhoff stresses and we find that 

 ∆𝝉 ≈ 𝝉(𝑭̂𝒊𝒋) − 𝝉(𝑭)    (A.8) 

Where 𝑭̂𝑖𝑗 = 𝑭 + ∆𝑭𝑖𝑗  is the perturbed deformation gradient.  With the expression of 

equations (A.2), (A.6) and (A.7), we find that ∆𝝉 = ℂ𝜏𝐽: ∆𝑫 , hence (A.8) can be written 

as (Sun et al., 2008) 

  𝝉(𝑭̂𝒊𝒋) − 𝝉(𝑭) ≈ ℂ𝝉𝑱
𝒊𝒋
:
𝜀

2
(𝒆𝒊⨂𝒆𝒋 + 𝒆𝒋⨂𝒆𝒊)     (A.9) 

The numerical approximation of the tangential modulus would be acquired through 

the application of symmetry properties: 

 ℂ𝝉𝑱
𝒊𝒋
≈

1

𝜀
[𝝉(𝑭̂𝒊𝒋) − 𝝉(𝑭)]   (A.10) 

The tangential modulus used in the ABAQUS subroutine has the expression as 

follow 
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 ℂ𝒎𝑱
𝒊𝒋
≈

1

𝐽𝜀
[𝝉(𝑭̂𝒊𝒋) − 𝝉(𝑭)]  (A.11)
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APPENDIX B – DERIVATION OF ELASTIC TENSOR 

 

The first-order partial derivatives of effective opening displacement 𝛿 with respect 

to 𝛿𝑠1, 𝛿𝑠2 and 𝛿𝑛 are written as (Roy and Dodds, 2001) 

 
𝜕𝛿

𝜕𝛿𝑠1
=

𝜕𝛿

𝜕𝛿𝑠

𝜕𝛿𝑠

𝜕𝛿𝑠1
=

𝜆2𝛿𝑠1

𝛿
    (B.1) 

 
𝜕𝛿

𝜕𝛿𝑠2
=

𝜕𝛿

𝜕𝛿𝑠

𝜕𝛿𝑠

𝜕𝛿𝑠2
=

𝜆2𝛿𝑠2

𝛿
 (B.2) 

 
𝜕𝛿

𝜕𝛿𝑛
=

𝜕𝛿

𝜕𝛿𝑛
=

𝛿𝑛

𝛿
 (B.3) 

And also the second-order partial derivatives of effective opening displacement 𝛿 

with respect to 𝛿𝑠1, 𝛿𝑠2 and 𝛿𝑛 are expressed as 

 
𝜕2𝛿

𝜕𝛿𝑠1𝜕𝛿𝑠1
= −𝜆2𝛿𝑠1

𝜆2𝛿𝑠1
 
 

𝛿3
+
𝜆2

𝛿
 (B.4) 

 
𝜕2𝛿

𝜕𝛿𝑠2𝜕𝛿𝑠2
= −𝜆2𝛿𝑠2

𝜆2𝛿𝑠2 
𝛿3

+
𝜆2

𝛿
 (B.5) 

 
𝜕2𝛿

𝜕𝛿𝑛𝜕𝛿𝑛
= −𝛿𝑛

𝛿𝑛
 
 

𝛿3
 (B.6) 

The individual traction components can be expressed using the chain rule as 

 𝑡𝑖 =
𝜕𝜑

𝜕𝛿

𝜕𝛿

𝜕𝑣𝑖
= 𝜑′

𝜕𝛿

𝜕𝑣𝑖
= 𝑡

𝜕𝛿

𝜕𝑣𝑖
   (B.7) 

where subscripts 𝑖 = 1, 2  and 3 represent s1 , s2 , and 𝑛 , respectively. To maintain 

consistent notation, let the relative displacements, (𝑣1,   𝑣2, 𝑣3) = (𝛿𝑠1,   𝛿𝑠2, 𝛿𝑛). 

Under conditions of loading, the relationship between effective traction, 𝑡  and 

effective displacement, 𝛿 can be specified as 
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  𝑡1 = 𝑡
𝜕𝛿

𝜕𝛿𝑠1
= 𝑡

𝜆2𝛿𝑠1

𝛿
  (B.8) 

 𝑡2 = 𝑡
𝜕𝛿

𝜕𝛿𝑠2
= 𝑡

𝜆2𝛿𝑠2

𝛿
   (B.9) 

 𝑡3 = 𝑡
𝜕𝛿

𝜕𝛿𝑛
= 𝑡

𝛿𝑛

𝛿
   (B.10) 

The tangent modulus matrix, 𝑫 can be derived as 

 𝐷𝑖𝑗 =
𝜕𝑡𝑖

𝜕𝑣𝑗
=

𝜕(𝜑′
𝜕𝛿

𝜕𝑣𝑖
)

𝜕𝑣𝑗
=

𝜕𝜑′

𝜕𝑣𝑗

𝜕𝛿

𝜕𝑣𝑖
+ 𝜑′

𝜕2𝛿

𝜕𝑣𝑗𝜕𝑣𝑖
= 𝜑′′

𝜕𝛿

𝜕𝑣𝑗

𝜕𝛿

𝜕𝑣𝑖
+ 𝜑′

𝜕2𝛿

𝜕𝑣𝑗𝜕𝑣𝑖
   (B.11) 

And with the properties shown as  

 𝐷𝑖𝑗 = 𝐷𝑗𝑖   (B.12) 

Using (B.7), (B.11) gives 

 𝐷11 = 𝜑
′′ 𝜕𝛿

𝜕𝛿𝑠1

𝜕𝛿

𝜕𝛿𝑠1
+ 𝜑′

𝜕2𝛿

𝜕𝛿𝑠1𝜕𝛿𝑠1
=

𝜑′𝜆2

𝛿
+
𝜆4𝛿𝑠1

2

𝛿2
[𝜑′′ −

𝜑′

𝛿
]   (B.13) 

 𝐷12 = 𝐷21 = 𝜑
′′ 𝜕𝛿

𝜕𝛿𝑠1

𝜕𝛿

𝜕𝛿𝑠2
+ 𝜑′

𝜕2𝛿

𝜕𝛿𝑠1𝜕𝛿𝑠2
=

𝜆4𝛿𝑠1𝛿𝑠2

𝛿2
[𝜑′′ −

𝜑′

𝛿
]   (B.14) 

 𝐷13 = 𝐷31 = 𝜑
′′ 𝜕𝛿

𝜕𝛿𝑠1

𝜕𝛿

𝜕𝛿𝑛
+ 𝜑′

𝜕2𝛿

𝜕𝛿𝑠1𝜕𝛿𝑛
=

𝜆2𝛿𝑠1𝛿𝑛

𝛿2
[𝜑′′ −

𝜑′

𝛿
]   (B.15) 

 𝐷22 = 𝜑′′
𝜕𝛿

𝜕𝛿𝑠2

𝜕𝛿

𝜕𝛿𝑠2
+𝜑′

𝜕2𝛿

𝜕𝛿𝑠2𝜕𝛿𝑠2
=

𝜑′𝜆2

𝛿
+
𝜆4𝛿𝑠2

2

𝛿2
[𝜑′′ −

𝜑′

𝛿
]   (B.16) 

 𝐷23 = 𝐷32 = 𝜑′′
𝜕𝛿

𝜕𝛿𝑠2

𝜕𝛿

𝜕𝛿𝑛
+ 𝜑′

𝜕2𝛿

𝜕𝛿𝑠2𝜕𝛿𝑛
=

𝜆2𝛿𝑠2𝛿𝑛

𝛿2
[𝜑′′ −

𝜑′

𝛿
]   (B.17) 

 𝐷33 = 𝜑′′
𝜕𝛿

𝜕𝛿𝑛

𝜕𝛿

𝜕𝛿𝑛
+ 𝜑′

𝜕2𝛿

𝜕𝛿𝑛𝜕𝛿𝑛
=

𝜑′

𝛿
+
𝛿𝑛

2

𝛿2
[𝜑′′ −

𝜑′

𝛿
]   (B.18) 

And 𝜑′′ is defined as 

 𝜑′′ =
𝜑′

𝛿
[1 −

𝛿

𝛿𝑐
]   (B.19) 

For unloading, 

 𝜑′ = (
𝑡𝑚𝑎𝑥

𝛿𝑚𝑎𝑥
) 𝛿   (B.20) 

and  

 𝜑′′ = (
𝑡𝑚𝑎𝑥

𝛿𝑚𝑎𝑥
)   (B.21) 

For purposes of display of results, we shall find it convenient to define a damage 

parameter 
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 𝑑 =
𝜑(𝛿𝑚𝑎𝑥)

𝐺𝑐
   (B.22) 

   

        Evidently, 𝑑 ranges from 0 to 1, with these limits corresponding to an intact and a 

fully damaged cohesive surface, respectively. Furthermore, it follows that 

 𝑑̇ ≥ 0   (B.23) 
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 APPENDIX C – INVERSE ANALYSIS METHOD 

 

Inverse analysis assumes that the history of variables (e.g., force, displacement and 

stress) are given in a test (e.g., uniaxial tensile test) and it attempts to obtain a set of 

parameter values which would generate a good fit to the given variables history after a 

direct analysis by using these parameter values (Lei and Szeri, 2007). The objective 

function describes the variations between the predicted and experimental results, is defined 

to be 

  𝑓 = ∑ [𝐹𝑝𝑖 − 𝐹𝑒𝑖]
2𝑛

𝑖=1   (C.1) 

where 𝐹𝑝𝑖 and 𝐹𝑒𝑖 are predicted and experimental results (forces), respectively, at the ith 

increment. A reasonable set of parameters values would yield when the objective function 

is minimized to an acceptable value.  

The routine “lsqnonlin” of MATLAB is used to solve the nonlinear least-squares 

analysis in order to obtain a set of optimized results through direct calculations with an 

arbitrary initial set of parameter values passing to the target set of values. A python program 

generates input file for ABAQUS with initial guess of material parameter values. A 

MATLAB code calls an external finite element program ABAQUS to run the direct 

analysis with the input file and an output file .odb will be yielded. An output file is 

generated with another Python program by using .odb file and the predicted results are used 

for the comparison with the experimental results. Later, a new set of parameter values will 
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be found through the routine “lsqnonlin” and will be transferred to the input file for another 

direct analysis. A series of cycles will generate an optimized set of parameter values when 

the criteria met.  
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