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ABSTRACT 

Guided waves based damage detection techniques are popular for their ease of 

generation and detection along with their ability to travel long distances. Accurate and 

efficient modeling is a key for successful implementation of guided waves for 

NDE/SHM. However, efficient prediction of scattering from various damage is 

challenging due to the complex nature of these guided waves. 

This dissertation presents as physics based efficient and accurate modeling 

techniques to predict ultrasonic wave propagation and their interaction with various 

damage. Detection and characterization of damage in structures can typically be divided 

into two categories, active and passive. This research is aimed towards detection and 

characterization of damage in thin walled structures. Therefore, the type of guided wave 

that we discussed is plate guided waves. For active detection, our focus is to develop an 

efficient analytical predictive simulation of scattered wave field and extract the damage 

characteristics based on physics of Lamb wave propagation. For passive characterization, 

our focus is on detection of acoustic emission caused by fatigue-crack growth. The scope 

of this research is to develop a predictive simulation method for acoustic emission signals 

and extract the damage related information from acoustic emission signals based on 

physics of material. This approach is in contrast with the traditional approach involving 

statistics of acoustic emissions and their relation with damage criticality. We present our 

unique method to extract fatigue crack length information from acoustic emission signals 

recorded during fatigue crack growth. 
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CHAPTER 1  

INTRODUCTION 

1.1 MOTIVATION 

In the field of non-destructive evaluation (NDE) and structural health monitoring 

(SHM), methods based on ultrasonic guided waves are most popular for their ability to 

inspect large structures. Due to this popularity, interaction of guided waves with damage 

has been a major preoccupation among researchers. However, modeling of guided waves 

is challenging due to their multi-modal and dispersive nature. To complicate the matter 

even further, upon interaction with damage, guided waves like Lamb waves undergo 

mode conversion and scattering. Because of these complications most of the researchers 

have adopted some numerical techniques, such as FEM or BEM, to solve this problem. 

Although these approaches produce good results, the process can be described as 

numerical experimentation because various factors affecting the study cannot be fully 

understood by these kinds of simulations. Also, as these techniques are not tailored for 

complex phenomena like guided wave propagation, the solutions obtained by these 

techniques are typically computationally expensive and cannot be performed in real time. 

The motivation for this research is to develop physical understanding on the 

effects of damage on Lamb wave propagation. We aim is to use this understanding to 

develop efficient predictive methodology for damage detection and characterization. 

Therefore, in one part of this research, we focus on creating analytical tools to 

tackle the complex phenomena like Lamb waves interaction with damage using physical 
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understanding of Lamb wave propagation. This would achieve two main objectives. First, 

the analytical modeling of the interaction process will help us develop unique insight of 

the problem which can be extended to modeling of other complex physical phenomena. 

Two the created fully analytical models will be able to predict a phenomenon like 

scattering of Lamb waves from damage in real time with full control over all of the 

parameters involved in the process. This would give us capability to design complex 

experiments more efficiently. 

In another part of this research, a similar approach is taken towards understanding 

the phenomenon of acoustic emission. For most of the thin walled engineering structures, 

the acoustic emission detection through sensor network has been well established. 

However, the majority of the research is focused on prediction of the acoustic emission 

due to fatigue crack growth using stochastic methods. Where, stochastic models are used 

to predict the criticality of the damage. However, these models cannot predict the 

physical characteristics of the damage. In our approach, first, our aim is to understand 

fatigue crack growth as source of acoustic emission using physics of guided wave 

propagation. Then our aim is to investigate detectability of crack lengths directly from 

crack-generated acoustic emission (AE) signals using this physical understanding of 

acoustic emissions due to fatigue crack growth.  

1.2 RESEARCH GOAL, SCOPE AND OBJECTIVE 

The scope of this research is to develop physics base prediction methodologies for 

active and passive damage detection and characterization in structures. This dissertation 

is focused on thin walled structures such as aircraft, ships and many other modern 

structures. Because of its intended application we focused on plate guided waves such as 

Lamb waves. 
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Figure 1.1: Schematic diagram of active damage detection 

In general, damage detection can be divided into two main groups; active and 

passive detection. In active detection energy is imparted in the structure using transducers 

to created elastic waves. These incident waves then travel in the structure and they are 

scattered when they encounter a damage or sudden change in the geometry or material 

properties. The scatter field is sensed using various types of strain or velocity sensors. 

The scatter fields are then compared with the incident waves to calculated scatter 

coefficients (Figure 1.1). In a typical SHM or NDE system, these scatter coefficients are 

analyzed to detect and characterize the damage. However, to identify damage using 

scatter coefficients we need to understand the effects of different types of damage on 

these scatter coefficients. 

 
(a)    (b)    (c) 

Figure 1.2: Typical types of damage in plate structure 

In plate structures, typically, there are three main types of damage; surface 

breaking cracks, corrosions, and horizontal cracks or disbonds (Figure 1.2). To 

successfully identify these types of damage we need to understand their unique 

characteristics (if any) represented by the scatter coefficients. Also, each of these types of 

Damage Incident Wave Reflected Wave Transmitted Wave 

Transmitter/Receiver Receiver 

Scattered waves = Scatter Coefficients × Incident 

wave 
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damage has specific features such as, their depth, inclination of surface angle, width, 

surface roughness, etc. Ideally, the goal of a SHM or NDE system is to identify these 

characteristics too. Therefore, to successfully detect and characterize these types of 

damage we also need to understand the effects (if any) of each of these features on scatter 

coefficients. 

Figure 1.3 shows examples of several different cracks with different features and 

the corresponding scatter coefficients generated using FE simulations. In Figure 1.3 (a) 

we can see the variation of scatter coefficients for surface breaking vertical cracks with 

different depths (solid lines) along with corresponding inclined cracks with the same 

depths (dashed lines). We can observe that, as the depths of the vertical cracks increase, 

so does scatter coefficients. 

 
(a)      (b) 

Figure 1.3: (a) Forward scatter coefficient of S0 with incident S0 for surface breaking 

cracks with different geometric features, (b) diagram of surface breaking cracks with 

different geometric features 

From the same figure we can also see that, for an inclined crack of the same 

vertical depth the scatter coefficient remains same at low frequencies; but as the 

frequency increases a dip appears in the scatter coefficient plot. Also, the frequency 

2.165 

mm 

1.768 

mm 
1.25 

mm 
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corresponding to this dip decreases as the inclination angle increases. Therefore, depths 

and inclination angles are distinguishable clearly from these scatter coefficients. 

Similar plots can be seen in Figure 1.4 (a) for a crack with smooth surfaces vs a 

crack with rough surfaces. We can see, for the crack with smooth surface, the scatter 

coefficient varies with frequency quite smoothly with monotonic increasing trend. 

However, as we introduced surface roughness, this trend changed. Though the behavior 

remains very similar al low frequencies, there appears a distinctive hump at higher 

frequency. Therefore, the scatter coefficient carries the information related to the major 

features of a surface breaking crack. 

 
(a)      (b) 

Figure 1.4: (a) Scatter coefficient for a crack with smooth surface vs. rough surface, (b) 

diagram of cracks with smooth and rough surfaces 

Although the scatter coefficients carry specific features corresponding to the each 

of the features of damage, so far, we have presented scatter coefficients calculated using a 

forward problem solver. A forward solver typically uses a predefined mathematical 

model of the system of interest. Then different input parameters are simulated using this 

model to predict the output (Figure 1.5 (a)). In our examples, we used a mathematical 

model constructed using finite element analysis for this purpose. Then, we introduced 
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incident wave field in the model which, using predefined formulation, predicted the 

scattered wave field. 

 
(b) 

 

Figure 1.5: (a) Forward problem, (b) inverse problem 

However, in reality, the problem is quite different from a typical forward 

problem. In SHM or NDE systems we do not know the mathematical or physical model 

of the system, at least not fully. We know the input to the structure in the form of excited 

waves and we know the output in the form of sensed scattered waves; our aim is to 

predict the material and physical state of the structure (Figure 1.5 (b)). 

To solve an inverse problem, we first need to ensure that the problem in well-

posed. There are three conditions for an inverse problem to be well-posed. Since the 

system of interest has distinctive physical properties that can be mathematically define, 

we may assume that the problem has a solution that we are looking for. But, for us to 

obtain the solution, it has to be unique. For example, as shown in Figure 1.6, for 

identifying the surface roughness of a crack, we need to gather data corresponding to a 

wider frequency of excitation because at lower frequencies, the scatter coefficient may 

not be distinguishable from that of a crack with smooth surfaces. This means, we need to 

collect more information to clearly identify the differences in the physical system. But, 
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(Unknown) ? 
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the solution must also be stable in the sense a small disturbance of the measured data 

should only cause a small deviation in the solution of the inverse problem. The stability 

of the solution may be compromised by more information because more information will 

also bring in more stochastic variations. 

 

Figure 1.6: Detectability of surface roughness of a crack using scatter coefficients 

Therefore, as we can see that, the real problem of damage detection and 

characterization is a lot more complex that just simulation the effects of a damage using a 

forward problem solver or simulator. In fact, the solution of the inverse problem 

completely independent of the forward problem is impossible as we will not be able to 

interpret the scatter coefficients obtained from the tests. 

Therefore, the solution process of a problem of this complexity typically involves 

both predictors (forward problem solver or simulator) and detectors (inverse problem 

solver) as shown in Figure 1.7. However, for a detector the problem of detection and 

characterization of damage is obscured by stochastic confounding factor such as variation 

in the physical geometric, material, and physical systems. Also, as discussed earlier, to 

identify the damage, the sensitivity of these scatter coefficients to specific features have 

to be high. Therefore, to maximize the probability of success using this process of 



 8   

 

damage detection and characterization, a predictor is used to predict distinguishable 

outcomes of a test for various situations possible. We can also use the predictor to design 

our tests such that the sensitivity of the scatter coefficients to the features of damage is 

maximum and the sensitivity to the confounding factors is minimum.  

 

Figure 1.7: Efficient physics based predictor and its use in the solution of inverse 

problem for in-situ damage detection and characterization 

However, the execute the process in a very short time, if not in real time, we need 

a very fast predictor. Especially for SHM systems which aim toward detecting damage in 

real time in-situ. But, due to the complexity associated with the mathematical and 

physical model of guided wave propagation in plate structures, researchers rely on 

numerical solvers as predictor. Though robust and generic, the popular numerical 

techniques such as FEM and BEM are slow. Therefore, an accurate and efficient 

predictor is desirable. In the first part of this dissertation we present our research to 
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develop a fast and accurate predictor using an analytical model based on physics of Lamb 

wave propagation and interaction with damage. 

 

Figure 1.8: Schematic diagram of passive damage detection 

In the second part of this dissertation we present our research to detect and 

characterize damage in passive detection technique. As shown in Figure 1.8, in passive 

detection, sensors are used to sense an acoustic event. This acoustic event could be 

caused by various environmental sources of by events of damage. One of the main 

challenges of passive detection is to identify the damage events from the environmental 

sources and predict the criticality of damage. Traditionally, various stochastic models 

have been used for this purpose. Typically, a stochastic model is used to predict the 

criticality of the damage based on rate of emission, energy of emission, etc. Although, 

this method is useful to predict the critical conditions of the structure, it is not very useful 

for pre-critical damage characterization. In our research, we focused on acoustic emission 

due to fatigue crack growth; we focused on developing physical understanding of fatigue 

crack as acoustic emission source and use this understanding to extract the features of the 

fatigue crack such as the size of the crack. Therefore, the scope of this research is to 

develop a predictive method for acoustic emission signals and extract the damage related 

information from acoustic emission signals based on physics of material. 

1.3 ORGANIZATION OF THE DISSERTATION 

This dissertation is divided into total eight chapters including the current chapter. 

Chapter two present theoretical background of guided waves in plate and physical 

understanding of the Lamb wave modes in plates. 

Damage/Acoustic 
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Chapter three and four presents an analytical model based on the physics of the 

Lamb wave modes to predict the scattering of them from various types of damage. This 

chapter also presents their validation using finite element models. 

Chapter five presents an experimental method to verify theoretical models 

predicting Lamb wave propagation in plates. We also present the verification of the 

analytical model using this experimental method for most fundamental damage type. 

Chapter six presents our experimental and numerical study to understand fatigue 

crack growth as a source of acoustic emissions. We also present a method invented to 

detect fatigue crack length from the acoustic emissions along with its experimental 

verification. 

Finally, chapter seven presents conclusions from our research and recommended 

future work along with the major contributions of this research. 
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CHAPTER 2  

FUNDAMENTALS OF GUIDED WAVES 

2.1 THEORY OF GUIDED WAVES 

Guided waves are elastic waves carrying energy confined near the boundary or 

between the boundaries separating different materials. Guided waves propagate parallel 

to these boundaries. The guided waves are created by interactions of bulk waves and the 

boundaries. These interactions create standing wave modes perpendicular to the 

boundaries and these standing modes propagate parallel to the boundaries. There are 

three major guided wave types; Rayleigh waves (known as surface acoustic waves, 

SAW) which exists near the traction free boundary of a semi-infinite solid; shear 

horizontal (SH) waves and Lamb waves (Achenbach 1973; Giurgiutiu 2014; Graff 1991; 

Viktorov 1967) which exist in plate structure between two traction free boundaries. In 

this dissertation, our focus will be on Lamb waves. 

2.1.1 LAMB WAVES 

Lamb waves or plate guided waves, are a type of stress waves that remain 

confined between two parallel traction free plate surfaces. For brief introduction of the 

Lamb wave theory we consider the Navier-Lame equations in vector form for Cartesian 

coordinates given as 

   2( ) u u u          (2.1) 

where, ˆˆ ˆ
x y zu u i u j u k   , with î , ĵ , k̂  being unit vectors in the x , y , z  directions 

respectively. Following the formulation proposed by Helmholtz (Helmholtz 1867) we 
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express the displacement vector u  as summation of dilatational and rotational motion, 

i.e., 

 dilatational motion + rotational motion d ru u u    (2.2) 

On one hand, we express the dilatational motion as 

 
du   (2.3) 

where,   is a scalar potential and du  represents irrotational motion because curl of a 

gradient vector field is zero, i.e.,  

   0du     (2.4) 

On the other hand, we express the rotational motion as  

 
ru H  (2.5) 

where, H  is a vector potential defined as 

 x y zH H i H j H k    (2.6) 

The displacement field, ru  represents only rotation motion because divergence of 

curl of any vector field is zero, i.e., 

   0ru H     (2.7) 

Therefore, we express the displacement field as sum of dilatational and rotational 

motion in the form 

 d ru u u H    (2.8) 

Using equation (2.8), we write the components of the equations (2.1) as 

        2 2( ) ( ) ( )u H H               (2.9) 

 2 2 2 2( )u H H      (2.10) 

Note that the outcome of equation (2.9) is independent of the divergence field of 

H  and this property is known as “gauge invariance”. The gauge invariance is evident as, 

in equation (2.9), 

       ( ) 0H H            (2.11) 
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where, H   is a scalar field known as “gauge condition”. Therefore, we may 

assume   to be any scalar function. However, following Helmholtz (Helmholtz 1867), 

we assume H  to be a vector field related to only rotational displacements with zero 

divergence. Therefore, 

 0H    (2.12) 

Upon substitution of equations (2.9), (2.10) into equation (2.1) yields 

    2 2( 2 ) 0H H              (2.13) 

If we perform divergence operation on equation (2.13), we obtain  

 

    
   
 

2 2

2 2

2

( 2 ) 0

( 2 ) 0

( 2 ) 0

H H

H H

    

    

  

         

        

     

 (2.14) 

From equation (2.14), we can see that the only surviving term related to the 

dilatational motion on the left hand side is the first term of equation (2.13). Similarly, if 

we perform curl operation on equation (2.13), we obtain  

 

    
   

 

2 2

2 2

2

( 2 ) 0

( 2 ) 0

0

H H

H H

H H

    

    

 

         

        

   

 (2.15) 

We see that the only surviving term related to the rotational motion on the left 

hand side is the second term of equation (2.13). The equation (2.13) holds at any place 

and time only when  

 

2

2 2

( 2 ) 0

Pc

      

   
 (2.16) 

and 
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2

2 2

0

S

H H

c H H

   

  
 (2.17) 

where, Pc  and Sc  are the wave speeds of pressure wave and shear waves, respectively. 

From equations (2.14) and (2.15) we can conclude that equation (2.16) is related to the 

dilatational motion and equation (2.17) is related to the rotational motion. Therefore, 

equations (2.16) and (2.17) represent the governing system of equations for 

elastodynamic field at any location at any time in an isotropic solid. Using equation (2.8), 

we can express the displacement vector as  

 

ˆˆ ˆ

ˆˆ ˆ

x y z

y yx xz z

u u i u j u k

H HH HH H
i j k

x y z y z x z x y

  

         
            

            

 (2.18) 

The stresses can be expressed in terms of the displacements in Cartesian 

coordinates as 

 

 

 

 

2 ;

2 ;

2 ;

y yx xz
xx xy

y yx z z
yy yz

yx xz z
zz zx

u uu uu

x y z y x

u uu u u

x y z z y

uu uu u

x y z x z

      

      

      

   
      

     

    
      

     

   
      

     

 (2.19) 

In this dissertation we consider straight crested Lamb waves in plane strain 

condition. We assume the wave propagation direction is aligned with the unit vector î

along x  axis and the plate thickness direction is aligned with the unit vector ĵ  along y  

axis. We also assume the plate is infinitely wide in the k̂  direction along z  axis. 

Therefore the problem becomes z-invariant. Using equations (2.18) and (2.19) the 
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displacements and stresses for z-invariant elastodynamic field are expressed as 

(Giurgiutiu 2014) 

 ; ;
y xz z

x y z

H HH H
u u u

x y y x x y

   
     
     

 (2.20) 
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x y x yx y y

H H
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(2.21) 

Also, the equations (2.16) and (2.17) become 

 

2 2
2 2

2 2 2

2 2
2 2

2 2 2

1

Equations for  and  
1

P

P

x y

z z
S z z z

S

c
x y c

u u
H H

c H H H
x y c

   
      

  


      
  

 (2.22) 

 

2 2
2 2

2 2 2

2 2

2 2

2 2 2

1

Equations for 
1

x x
S x x x

S

z

y y

S y y y

S

H H
c H H H

x y c
u

H H
c H H H

x y c

 
     

  


  
    

  

 (2.23) 

From equation (2.20), we can see that equations (2.22) govern xu  and yu  

displacements and equations (2.23) govern zu  displacement. Equations (2.22) contain 

both dilatational and rotational terms and describe pressure wave and shear vertical wave; 

equations (2.23) contain only rotational term and describes shear horizontal waves. This 

decoupling of zu  displacement component from xu  and yu  displacement components is 

possible because of the z-invariance condition. This makes it possible for us to split the 

governing equation of the elastodynamic field into two as shown in equations (2.22) and 

(2.23). 
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For a plate with thickness 2d  the wave is confined between two traction free 

plate surfaces at y d  . Therefore, the boundary conditions for a plate are 

 0; 0yy xyy d y d
 

 
   (2.24) 

 0yz y d



  (2.25) 

If we assume standing wave modes in plate thickness direction y , then the 

solutions of equations (2.22) and (2.23) take the general form 

 

( ) ( )

( ) ( )

( ) ; ( )

( ) ; ( )

i x t i x t
z z

i x t i x t
x x y y

f y e H h y e

H h y e H h y e

   

   

 

 

  

 
 (2.26) 

 Using equations (2.26) in equations (2.22) and (2.23) gives 
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 (2.27) 

where,   is the wave number in x  direction with 
2

2 2

2P

Pc


    and 

2
2 2

2S

Sc


    and A

, B , C , D , E , F , G , H  are unknown coefficients. To obtain these unknowns, we use 

the boundary conditions given in equations (2.24) and (2.25). However the six boundary 

conditions are not sufficient for the eight unknown coefficients in equations (2.27). The 

additional conditions are obtained from the gauge condition of equation (2.12). Meeker 

and Meitzler (Meeker and Meitzler 1964) used this condition at the top and bottom 

surfaces of the plate to obtain two additional boundary conditions to solve for the 

unknown coefficients in equations (2.27) directly. The method is also described by Graff 

(Graff 1991). Another method for solving the wave equations for a plate is to solve for 

system of equations (2.22) and (2.23) separately. In this method, to solve equations (2.22)
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, we assume the solution to be of similar general form as given in equations (2.26). This 

will result in four unknowns, A , B , G , H , i.e., 

 
 

 

( )

( )

cos sin

cos sin

i x t
P P

i x t
z S S

A y B y e

H G y H y e

 

 

 

 





  

 
 (2.28) 

These four unknowns are directly obtained by using the four boundary conditions 

given by equations (2.24). Next, we solve for xu , yu  using  , zH  into equation (2.20). 

To find zu , which is uncoupled from xu , yu , we solve the Navier-Lame equations 

considering only zu , which results in the wave equation for zu , i.e., 

 
2 2

2

2 2 2 2

1 1z z
z z z

S S

u u
u u u

c x y c

 
    

 
 (2.29) 

Note that we avoid solving equation (2.23) because it contains two unknown 

fields xH  and yH . To solve equation (2.29), we assume zu  to have similar general form 

as equations (2.26). This will result in two unknowns which can be obtained using two 

boundary conditions given by equation (2.25). This method is elaborated by both Graff 

(Graff 1991) and Giurgiutiu (Giurgiutiu 2014). 

In this dissertation we focus only on Lamb waves in plane strain condition; 

application of boundary conditions (2.24) yields the well-known Rayleigh-Lamb 

equations. 

 

1
2 2 2

2

( )tan

tan 4

SP

S P S

d

d

 

   


 

  
 

 (2.30) 

Lamb waves exist in plate structures in two basic types of modes, symmetric and 

antisymmetric modes. The power of the right hand side of equation (2.30) changes sign 

for symmetric and antisymmetric modes; 1  is for symmetric modes and 1  is for 

antisymmetric modes. Equation (2.30) can also be expressed as 
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 (2.31) 

The equations (2.31) are transcendental equations in complex domain. The only 

way to obtain the roots of these equations is by numerical techniques. To our knowledge, 

there is no standard method to obtain all possible complex roots of a transcendental 

equation in the complex domain. Therefore the complete solution of Rayleigh-Lamb 

equations is quite challenging. 

2.1.1.1 Complete Solution of the Rayleigh-Lamb Equation 

Numerical root finding methods typically fall into two categories; bracketing 

methods and open methods (Burden and Faires 2011; Kreyszig 1997). Open methods 

such as Newton Raphson method, are faster than the bracketing methods but requires an 

initial guess. These methods make use of the slope of the curve at different points. 

Therefore, if the function is non differentiable at a point or has a point of inflexion, the 

method may not be able to find a root. Also, if the function changes its slope very quickly 

or is discontinuous, then it cannot be solved by this type of methods. Also there is no 

straightforward way to find all the roots in an interval or even ascertain the number of 

roots in the interval. Hence, the open methods are faster but not robust. Also they are not 

able to deal with the points of bifurcation in the locus of the solution. Therefore open 

methods may not be successful in solving complex transcendental equations such as 

equations (2.31). 
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Figure 2.1: Illustration of bisection method 

Bracketing methods are slower but robust. Amongst all the bracketing methods, 

the bisection method is guaranteed to find a solution in a given domain if a solution exists 

in that domain. In this method, a domain is selected for root search where the function of 

interest is monotonic (Figure 2.1). If the function changes its sign across the domain, then 

there is a root in that domain and subsequently the domain is bisected. Since the function 

is monotonic, it must change sign across one of these two halves. The same operation is 

continued on the subdomain where the function changes sign until the subdomain size is 

smaller than the required accuracy, i.e., a zero of the function is found. For the method to 

work, the initial domain should be small enough to assume monotonicity of the function. 

However, there is no straightforward analytical method to find these domains. 

Nonetheless, if such monotonicity is ensured, then the method is guaranteed to find the 

root in the domain. 
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Figure 2.2: Illustration of modified bracketing method 

In modified bracketing method, the domain of interest is subdivided into 

subdomains where the function is monotonic (Press et al. 1987). These subdivisions can 

be more than two and need not be of the same size. If the function changes sign across 

one or more of these subdivisions then there are roots of the function in these 

subdivisions. The same sub-dividing operation is repeated until the subdivisions where 

the function changes sign are smaller than the required accuracy, i.e., the zeroes of the 

function are obtained. The advantage of this method over bisection method is that the 

domain of interest need not be a region where the function is monotonic. Also, since the 

number of subdomains can be more than two this method is faster than the bisection 

method. However, the size of subdomains in the first iteration should be small enough 

such that the function of interest is monotonic in these subdomains. If this is ensured then 

the method is guaranteed to find multiple roots in a given domain to an accuracy limited 

only by the computer.  
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In 1957 Mindlin described the behavior of the roots of Rayleigh-Lamb equations 

but with limited numerical investigation (Mindlin 1957). The earliest work on application 

of numerical method to find the complex roots of Rayleigh-Lamb is by Torvik in 1966 

(Torvik 1966). Torvik used Newton iteration method to find first few complex Lamb 

wave modes. Later Gregory and Gladwell in 1981 (Gregory and Gladwell 1983) and 

Scandrett and Vasudevan (Scandrett and Vasudevan 1991) in 1991 used similar method 

to find the complex roots of Rayleigh-Lamb waves in limited numbers for eigen modes 

expansion. All these methods depended on the initial guess of the roots starting with the 

analytical solution at zero frequency or zero wave number. In 2001 Pagneux and Maurel 

(Pagneux and Maurel 2001) proposed an alternate method for initial guesses used by 

transforming the transcendental equation to a traditional eigen value problem. They used 

direct projection of the ordinary differential equation governing the Lamb modes on a 

spectral basis of orthogonal functions. However, the initial guesses are only possible for a 

homogeneous plate medium. To obtain the eigen values corresponding to a layered or 

anisotropic plate guide, the initial guess is not possible and therefore the Newton iteration 

method is not suitable. Recently Quintanilla et al. have also demonstrated the use of 

spectral collocation method to compute complex roots for plates of highly anisotropic 

materials with damping (Hernando Quintanilla, Lowe, and Craster 2015).  

We used modified bracketing method to solve the equation  , 0D k    directly 

and found all possible roots of the Rayleigh-Lamb equation. This method is applicable 

for any system of equations governing the behavior of the eigen values of the plate guide 

without any initial guess. To find complex roots of any system of equations, we find the 
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roots of the real and imaginary parts separately and then the common roots of these two 

parts are the complex eigen values, i.e., 

 
     

   

0; ; ,

0; 0

R I

R I

f z f z if z z x iy x y

f x iy f x iy

      

    
 (2.32) 

 
(c)      (d) 

Figure 2.3: Application of modified bracketing method to find complex roots; (a) initial 

mesh to find sign change, (b) refined mesh to find sign change, (c) intersection of real 

and imaginary loci of zero crossings , (d) finding locus of zero crossings 

This method is illustrated in Figure 2.3. Figure 2.3 (a) and (b) show how the 

initial sub-domain is further divided and checked for monotonicity. Also the subdomain 

is divided again if the real part of the function changes sign in it. This operation is 

repeated until the required accuracy is achieved and results in the curve correspond to 

zeroes of the real part of the function as shown in Figure 2.3 (d). Same operation is 

performed on the imaginary part of the functions also. The intersections of these curves 

corresponding to the real part and imaginary part give us the roots of the complex 

equation (Figure 2.3 (c)). 
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The method was implemented in a Matlab program. In this program, the 

subdomains are further divided only if both the imaginary and real parts of the function 

change sign or have encountered an exact zeros in that subdomain. The program uses 

recursive algorithm to progressively refine the subdomains where the roots exist. This 

results in a fractal like self-similar structure of the algorithm. This recursion is 

implemented by a self-calling of functions; this makes the algorithm efficient. The 

algorithmic structure of the program is shown in Figure 2.4.  

 

Figure 2.4: Algorithm to find complex root using modified bracketing method  
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Figure 2.5: Real roots of the Rayleigh-Lamb equations 

 

Figure 2.6: Imaginary roots of the Rayleigh-Lamb equations 

To find the complex roots of Rayleigh-Lamb equations first we expressed 

equations (2.31) in terms of the dimensionless wavenumber K d  and the 

dimensionless frequency Sd c   as 
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 (2.33) 

where,    
1/2 1/2

2 2 2 2 2,   /a K b K      , P Sc c   and Pc , Sc are pressure and 

shear wave speeds respectively. 

 

Figure 2.7: Complex roots of the Rayleigh-Lamb equations 

Since   is a function of Poisson’s ration ( ), equations (2.33) are also functions 

of  . We assumed    as it is most common among metals such as aluminum. Then 

we solved functions Sf  and Af  separately for symmetric and antisymmetric modes. The 

algorithm searches for complex values of K  for a given real value of   in the first 

quadrant of the complex plane. Although, for any given value of  , equations (2.33) 

have infinite number of roots for K , we limited our search for roots only in a large 

complex plane in the first quadrant. The initial mesh size was determined based on the 

monotonicity of the real part and imaginary part of the two functions. An initial 

discretization of 0.1 in both real and imaginary parts on the complex K  plane was 
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chosen. This was sufficient to ensure monotonicity of the real and imaginary parts of both 

the functions Sf  and Af . Then the mesh was progressively densified in the regions where 

the complex roots existed, until, the mesh size was smaller than 
510
. Therefore, the roots 

obtained have errors less than 52 10 .in magnitude. The roots were obtained for a non-

dimensional frequency range of 0 20   with a step of 0.01. 

 
(a)    (b)    (c) 

 Figure 2.8: All possible roots of the Rayleigh-Lamb equations in all four quadrants of a 

large complex plane (ν = 0.33); (a) real roots, (b) imaginary roots, and (c) complex roots 

The complete solution of Rayleigh-Lamb equations has three distinctive groups: 

real solutions, imaginary solutions, and complex solutions as shown in Figure 2.5, Figure 

2.6, and Figure 2.7 respectively. It is important to mention that the K  values 

corresponding to the pressure wave (P wave) and shear vertical wave (SV wave) are also 

part of the solution, as can be seen from Figure 2.5. We can notice in Figure 2.5 and 

Figure 2.6 that there are only a finite number of real and imaginary Lamb wave roots for 

a given frequency. Also, note that there is no imaginary root for frequencies between 1.57 

and 4.7. From Figure 2.7 we notice that the complex Lamb wave roots exist for all the 

frequencies and that there is an infinite number of them at any given frequency. These 

Symmetric Mode  Antisymmetric Mode 
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roots shown in Figure 2.5, Figure 2.6, and Figure 2.7 are solutions in the first quadrant of 

the complex planes only. It can be easily verified that if K  is a solution of equations 

(2.33), so are K , K , K , where K  is the conjugate of K . Therefore we obtain all 

possible solutions of the Rayleigh-Lamb equations for .33    in a large domain as 

shown in Figure 2.8. 

2.1.1.2 Behavior of Lamb Wave Modes 

 

Figure 2.9: Propagating modes from real roots of the Rayleigh-Lamb equations 

The three different groups of solution have very different physical behavior 

despite of them being solutions of the same elastodynamic problem. Assume a generic 

wave field of the form 

      (( ) ) ( )( ) R I I Ri i x t x i x ti x tf y e f y e f y e e              (2.34) 

with complex wavenumber R Ii    . In general, a complex valued wave number will 

result in a harmonic wave field as represented in equation (2.34); we can see that the 

Propagating with time 
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imaginary part represents decay in amplitude in the positive x  propagation direction and 

the real part dictates the harmonic motion in space along the propagating direction. 

Therefore, as shown in Figure 2.9, the real solutions of the Rayleigh-lamb 

equations represent wave modes that are purely harmonic in space-time. These modes 

propagate in the space and carry power along the direction of propagation; they are called 

propagating modes and the wave fields associated with them can be expresses as 
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 (2.35) 

Note that the positive value of the wave number results in power flow in the 

ve x  direction. 

 

Figure 2.10: Non-propagating (evanescent) modes from imaginary roots of the Rayleigh-

Lamb equations 

However, for imaginary solutions, equation (2.34) is no longer harmonic in space; 

it becomes pure exponential in space while being harmonic in time. These modes can be 

represented as motions that exponentially vary with space but do not propagate in space 

Non-propagating vibration 
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as the time passes. This is depicted in Figure 2.10. Since the motion stays trapped in 

space there is no power flow associated with these modes. These modes are called non-

propagating (evanescent) modes and the motion can be expresses as 
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 (2.36) 

It is important to note that, the negative imaginary value of the wave number 

cannot be associated with the positive x  direction because it will result in absurd 

physical situation of exponentially increasing amplitude in the positive x  direction with 

unlimited amount of energy, i.e., violates the radiation condition. 

For complex roots equation (2.34) stays unchanged and the motion associated 

with these wave modes appear as a decaying harmonic motion in space and pure 

harmonic in time. 
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Note that for all the complex roots, K , K , K , K , the associated motions are 

different. To avoid physically implausible condition of exponentially increasing 

amplitude, the roots with ve  imaginary part are associated with the positive x  direction 

and vice versa as shown in equations (2.37). Another interesting fact is that these modes 

do carry power in the propagating direction because they are harmonic in space. 

Interestingly, on one hand, for the roots those lie in the first and third quadrant of the 

complex plane, the complex modes look like propagating modes with damping (Figure 

2.11). However, no material damping or other energy dissipative mechanism was 

assumed in the elastodynamic system. On the other hand, for the roots those lie in the 
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second and fourth quadrant of the complex plane, the complex modes appear to be 

propagating modes emanating from within the material and exponentially increasing in 

amplitude without any assumption of energy source in the elastodynamic system (Figure 

2.12). Though these modes are eigen modes, it seems implausible for them to exist on 

their own without energy dissipative or additive mechanisms in the elastodynamic 

system.  

 

Figure 2.11: Forward propagating modes from complex roots of the Rayleigh-Lamb 

equations in first and third quadrant  

This apparent paradox is resolved by the fact that the complex roots may appear 

in conjugate pair. So, if we consider these modes as coexisting pairs then the equation of 

motion becomes 
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 (2.38) 

From equations (2.38) we can see that if we consider a coexisting pair of these 

complex modes then the wave modes become exponentially decaying cosine function of 

Exponentially decaying in space and  

propagating with time 
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space while being harmonic in time. These complex mode pairs do not have any power 

flow associated with them as they do not propagate in space. Similar to the imaginary, 

these complex mode pairs also represent non-propagating local vibrations as shown in 

Figure 2.13. 

 

Figure 2.12: Backward propagating modes from complex roots of the Rayleigh-Lamb 

equations in the second and fourth quadrant 

In general a wave field contains a large number of complex modes corresponding 

to these complex roots. These complex modes, in aggregate, will not carry any power. 

However, for this zero power flow, two complex modes corresponding to a complex root 

pair may not have equal amplitudes and may not represent a non-propagating vibration. 

The elastodynamic field corresponding to sum of these complex modes will represent a 

local vibration field and will not carry any power. 

So, according to the solution of equations (2.33), for a given frequency of 

excitation, infinite number of wave modes may exists in a plate. Based on the inherent 

assumption made in the solution process of the general elastodynamic system (recall 

Exponentially growing in space and  

propagating with time 
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equations (2.26)), these modes are standing wave modes across the plate thickness but, in 

general, are bi-harmonic along the plane of the plate and time. Thus, the solutions of 

Rayleigh-Lamb equation are the eigen values of the elastodynamic system defined by the 

equations (2.22), (2.23), and (2.24), (2.25) and the corresponding eigen vectors are 

standing waves in the thickness direction and propagating in the plane of the plate with 

time. Also, these eigen vectors form the basis vector space of the displacement field in an 

isotropic plate. Therefore, at this point it is important to note that, in a plate structure, any 

general displacement in xy  plane can be represented as the linear combination of these 

eigen vectors. 

 

Figure 2.13: Non-propagating modes from a complex root pair of the Rayleigh-Lamb 

equations 

In general, the displacement field can be depicted as shown in Figure 2.14; the 

local non-propagating and exponentially decaying vibrations corresponding to imaginary 

and complex modes disappear very quickly as we move away from the source with only 

Non-propagating vibration 



 33   

 

the propagating wave modes surviving to carry power through space in the propagating 

direction away from the source. 

 

Figure 2.14: Total wave field wave field for real, imaginary and complex roots of the 

Rayleigh-Lamb equations 

So far, to characterize displacements in xy  plane for z-invariant condition in an 

elastodynamic field bounded by two traction free parallel surfaces, we have assumed 

standing wave modes across the field perpendicular to the surfaces. This assumption 

resulted in infinite number of eigen vectors in the form of propagating and non-

propagating Lamb wave modes that are needed to represent any displacements in xy  

plane in this elastodynamic field at any frequency. However, any elastodynamic field has 

only two fundamental eigen vectors, namely, pressure wave and shear wave. Therefore, it 

should be possible to represent the Lamb wave modes in terms of these two waves in a 

plate. Also, for displacements in xy  plane, we need pressure wave (P wave) and shear 

vertical wave (SV wave) only.  

Non-propagating vibration 

+ 

Propagating in time 
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Figure 2.15: Multiple reflections of pressure and shear vertical waves in a plate 

As shown in Figure 2.15, if we assume a P wave or SV wave travelling in a plate 

with traction free surfaces, then the resulting wave field will consist of multiple reflection 

patterns between the two surfaces. These reflected waves can also be assumed to be 

emanating from point sources distributed on the free surfaces with the distribution and 

the reflection angles being functions of the angle of incidence ( P  or S  in Figure 2.15). 

However, there are infinite such possible angles of incidences; but only a finite 

number of them will form a sustained reflection pattern between the two surfaces and 

others will disappear due to the destructive interferences with each other. For example, 

for some angles of incidences, when the distance l  in Figure 2.15 vanishes, the 

reflections will be repeated identically along the plate and will form a standing wave 

mode across the thickness of the plate propagating along the plate in time. However, for 

others, the reflections will undergo progressive phase shift and decay as it travels due to 

destructive interference with each other. 
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Thus, the relative phases of the reflection patterns will dictate the resultant wave 

filed. Therefore, we will need only two wave modes as eigen vectors to characterize the 

displacement field; but, there are infinite such possible reflection patterns which make it 

difficult to analyze. The solutions of Rayleigh-Lamb equation give us these thickness 

wise standing modes created by the interactions of P and SV weaves with the plate 

boundaries. 

Therefore, the propagating Lamb wave modes are reflection patterns of P and SV 

waves sustained along the plate and the non-propagating modes are decaying reflection 

patterns due to the destructive interferences cause by the changing phases of these 

reflections. Also, it can be understood from Figure 2.15 that, this phase change will 

depend on the thickness h  of the plate and frequency. Thus, the Lamb wave modes are 

functions of both frequency and thickness. 

2.2 CONCLUSION AND FUTURE WORK 

In this chapter we have explained the theoretical background of plate guided 

waves. We have illustrated an algorithm to solve for complex roots of a transcendental 

equation in a large complex domain. We have also applied this algorithm to obtain all 

complex roots of the Rayleigh-Lamb equations in a large complex domain containing 

several hundreds of complex Lamb wave modes. We have also explained the physical 

behaviors of these Lamb wave modes and how they appear in an elastodynamic field in a 

plate. We have also illustrated the physical behavior of Lamb wave modes in terms of 

fundamental pressure wave and shear wave. 

The algorithm described in this chapter uses modified bracketing method for the 

entire complex domain. However, this method can be improved; based on the roots 

already obtained we can predict the roots along the direction of increasing  . This will 
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improve the speed by narrowing the region for root search and follow the modes as they 

appear.   
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CHAPTER 3  

CMEP: A NEW ANALYTICAL MODEL FOR SCATTERING OF STRAIGHT CRESTED 

LAMB WAVES FROM DAMAGE 

3.1  STATE OF THE ART 

In the field of non-destructive evaluation (NDE) and structural health monitoring 

(SHM), methods using ultrasonic plate guided waves are popular for their potential use in 

the inspection of large structures. Due to this popularity, the prediction of the scattering 

of Lamb waves from damage has been a major focus for researchers in NDE and SHM. 

Damage characterization in particular, as an inverse problem, requires fast and accurate 

prediction of scattered waves. But the solution of the scattering problem is highly 

challenging because of the existence of multiple dispersive modes of Lamb waves at any 

frequency along with mode conversion at the damage location. Therefore, well-developed 

numerical methods such as the finite element method (FEM) and the boundary element 

method (BEM) have been popular (Cho and Rose 2000; Galán and Abascal 2005; 

Mackerle 2004; Moser, Jacobs, and Qu 1999). However commercial FEM codes are time 

consuming and they do not provide much insight of the wave field in the structure, 

especially near the damage location. Therefore, for efficiency of simulation, researchers 

developed hybrid methods using FEM, BEM, and normal mode expansion  (Cho and 

Rose 2000; Galán and Abascal 2005; Gunawan and Hirose 2004; Terrien et al. 2007). 

Glushkov et al. proposed the layered element method (LEM) which, unlike BEM, 

satisfies the plate boundary conditions by formulation (Y. V. Glushkov et al. 2009). They 

also proposed a simplified analytical model based on Kirchhoff plate theory for fast 
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simulation (E. Glushkov et al. 2015). However, the prospect of developing analytical 

models based on normal mode expansion has also attracted attention for possible speed 

and accuracy(Castaings, Le Clezio, and Hosten 2002; Feng, Shen, and Lin 2012; Feng, 

Shen, and Shen 2016; Flores-López and Douglas Gregory 2006; Grahn 2003; Gregory 

and Gladwell 1983; Gunawan and Hirose 2007; Moreau et al. 2011, 2012; Torvik 1966). 

Gunawan et al. (Gunawan and Hirose 2007) developed a semi analytical solution to the 

reflection of an oblique guided wave from the free edge of a plate by substituting the 

stress free edge boundary conditions into the complex orthogonality relations. However, 

this approach was not applied to a geometric discontinuity problem such as the step 

problem. Feng et al. (Feng, Shen, and Lin 2012), (Feng, Shen, and Shen 2016) used the 

normal mode expansion method to analyze thickness discontinuities in a plate under the 

plane strain condition. They split the initial plate into layers of real and virtual subplates 

in order to achieve the step discontinuity. Then, free-end reflection conditions were 

imposed on some of the subplates to generate a system of algebraic equations which 

yielded the modal expansion coefficient.  

One of the main challenges of the scattering problem is to satisfy the thickness 

dependent boundary conditions at the discontinuity (Castaings, Le Clezio, and Hosten 

2002; Terrien et al. 2007). Gregory et al. (Gregory and Gladwell 1982, 1983) developed 

the ‘projection method’ to satisfy these thickness dependent boundary conditions. This 

method was developed to predict the singularity in stresses in the case of geometric 

discontinuities (Flores-López and Douglas Gregory 2006). A scalar form of the 

projection method was also used by Grahn (Grahn 2003); though simple, this approach 

proved to be not very stable and to have slow convergence due to the use of simple sine 
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and cosine functions (Moreau et al. 2012). Moreau et al. (Moreau et al. 2011) used the 

displacement components of the complex Lamb wave modeshapes instead of simple sine 

and cosine functions and attained a faster convergence in the projection method. 

3.2 ANALYTICAL MODEL FOR LOW FREQUENCIES: THE STEP PROBLEM 

At first, to understand the modal expansion for guided wave, we apply this 

method on the simplest of the plate guided wave formulation, axial-flexural waves. Also, 

we use the simplest of the geometric discontinuities, a step in plate thickness, to 

demonstrate the application of modal expansion to calculate unknown scatter fields of 

guided waves. In terms of analytical modeling, a step involves challenges same as a 

realistic damages in very simple form. Therefore, for any new method aiming to solve the 

scattering problem, the step problem becomes a benchmark problem even though it may 

lack practical importance. 

In this dissertation we present the formulation of axial and flexural waves in brief 

(Giurgiutiu 2014). For straight crested axial waves the motion is assumed to be uniform 

across the thickness for the plate and parallel to the mid plane. The governing equation of 

motion for axial wave is 
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where, 
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1

1
L

E
c

 



 is the phase velocity of axial wave in plate. The solution of 

equation (3.1) is 

 
( ) ( )

1 2( , ) L Li x t i x t
u x t Ae A e

     
   (3.2) 

where L

Lc


   is the wavenumber for axial plate waves with L  is the velocity in the 

positive x  direction and L  being in the negative x  direction. 
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For straight crested flexural waves in plate, we assume Kirchhoff plate theory. 

The governing equation is 

 
4 0a w w    (3.3) 
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being the flexural wave speed and d  being the plate half thickness. Equation (3.3) 

accepts solution of type  

 ( ) ( )

1 2 3 4( , ) F F F Fi x t x i x t xi t i tw x t Ae A e e A e A e e               (3.5) 

where, F

Fc


   is the wavenumber for axial plate waves with F  is the velocity in the 

positive x  direction and F  being in the negative x  direction. Note that in equation 

(3.5) the wave field of flexural waves contains propagating wave modes along with non-

propagating wave modes which decay exponentially with space. 

3.2.1 SCATTERING OF AXIAL-FLEXURAL WAVES FROM A STEP 

 
(a)      (b) 

Figure 3.1: Schematic of the axial-flexural waves interacting with a step: (a) incident, 

transmitted, and reflected waves (b) boundary conditions at the step 
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Recall the axial-flexural wave solutions for a plate [15]. To begin our analysis, let 

us assume a step of depth d in a plate of thickness h at a distance 0x x  as shown in 

Figure 3.1 (a). The region before the step is named Region 1 and after the step is named 

Region 2. The eccentricity between the Region 1 and the Region 2 is  1 2 / 2a h h   and 

the depth ratio of the step is defined as  1 2 1/R h h h  . Also, consider a straight-crested 

axial-flexural 1D wave travelling in the +ve x  direction in the Region 1. Let us define 

these waves considering the origin at 0x   as, 
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 (3.6) 

where, 
1

ˆ
i

u  and 
1

ˆ
i

w  are known amplitudes of the incident waves. 

After interacting with the step, the incident waves result in a scattered field. This 

scattered field is assumed to be originating from the location of the step. For the sake of 

complete representation, the scattered field is expressed in terms of all possible modes 

including the evanescent modes. Therefore the scattered field is expressed as the 

combination of reflected and transmitted waves with unknown complex amplitudes as 
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 (3.7) 

where, the subscript t stands for the transmitted wave and the subscript r stands for the 

reflected waves. The scattered waves have unknown complex amplitudes which we want 

to obtain by applying the boundary conditions at the location of the step. We consider the 

boundary conditions to be continuities of slope and displacements with force and moment 

balance at the neutral axis (Figure 3.1 (b)). This leads us to a set of linear equations 

which can be expressed as 
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     A X B  (3.8) 

where,    1 1 1 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ

T

r r r t t tX u w e u w e  is the vector containing unknown amplitudes of 

the scattered waves, 
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related to the known geometric and material properties and  
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 is 

related to the known incident wave field. Equation (3.8) can be solved for {X} as, 

      
1

X A B


  (3.9) 

3.2.2 NUMERICAL RESULTS FOR THE AXIAL-FLEXURAL WAVES MODEL 

Assuming 1iu   and 0iw   we obtained the unknown complex amplitudes by 

solving Equation (3.9). Figure 3.2 shows the result from the axial-flexural wave model 

for a step. We can see how the displacement field varies for scattered axial-flexural 

waves for 0 1R  . We can notice that for free end  1R   the net axial wave amplitude 

is doubled ( 2tu  ) and the reflected wave amplitude is same as the incident wave 

amplitude ( 1ru  ); the amplitude of the flexural waves also vanish at the free end (

0t rw w  ). It can also be seen that the calculated displacement fields are accurate for 
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the continuous plate case  0R  . From Figure 3.3 we can see that the power flow 

through the step is balanced as power flow through the Region 1 and the Region 2 are 

identical. Therefore from Figure 3.2 and Figure 3.3 we can conclude that the axial-

flexural wave model is correct.  

 
(a)      (b) 

 
(c)      (d) 

Figure 3.2: Variation with frequency and depth-ratio of the axial-flexural reflected and 

transmitted waves for incident axial wave (a) reflected axial (b) transmitted axial (c) 

reflected flexural (d) transmitted flexural 
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(a)      (b) 

Figure 3.3: Total axial-flexural wave power flow for incident axial wave through, (a) 

Region 1 and (b) Region 2 

Analytically, the power flow through the step can be expressed as, 
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 (3.10) 

It should be noted that in Equation (3.10) there is no contribution of the 

evanescent modes to the power flow. However it is very important to consider them for 

the modal expansion as they are solutions of the governing equation of the wave field 

(Giurgiutiu 2014).  

3.3 ANALYTICAL MODEL FOR ALL FREQUENCIES: THE STEP PROBLEM 

In this section, we present an efficient analytical method for the prediction of 

Lamb wave scattered field using complex mode expansion and vector projection. We 

improved in several ways upon previous authors. One improvement is that we modified 

the projection method to take advantage of the power flow associated with Lamb wave 

modes. As different from the references (Grahn 2003), (Moreau et al. 2011), the stress 

boundary conditions are projected onto the conjugate of the displacement modeshapes 
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and the displacement boundary conditions are projected onto the conjugate of the stress 

modeshapes. Therefore this method transforms stress and displacement equations into the 

power equations. Another improvement is that we applied the projection to all the 

unknown wave fields. Our approach leads to fast convergence in terms of the number of 

complex modes needed in the modal expansion because it creates dominant diagonal 

terms in the matrix equation. It also ensures that, when the method has converged, the 

power balance is automatically satisfied. We call this method complex modes expansion 

with vector projection (CMEP). It is a Galerkin type approach where we implemented 

vector projection of the boundary conditions directly using the power flow expression.  

Other approaches exist in the literature using the orthogonality between modal 

stresses and displacements (Feng, Shen, and Lin 2012), (Feng, Shen, and Shen 2016) but 

they are different from our method because they need to assume virtual wave guides and 

vertical free-ends to implement the orthogonality relations.  

In this paper, we demonstrate the CMEP method using the step problem which is 

one of the simplest forms of plate discontinuities. However, in terms of analytical 

modeling, the step problem poses the same challenges as a realistic damage. Therefore, 

for any new method aiming to solve the scattering problem, the step problem can be used 

as a benchmark problem even though it may lack a direct practical relevance. 

3.3.1 PROBLEM SETUP FOR A STEP 

To begin our analysis, let us consider a plate with a cross section as shown in 

Figure 3.4. We assume that there is an incident straight-crested Lamb wave mode 

travelling from the left towards the step. Upon interacting with the step, it will result in 

reflected wave modes and transmitted wave modes. 
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Figure 3.4: Schematic of Lamb waves interacting with a step 

As shown in Figure 3.4, the step is located at a distance 0x x  with the thickness 

of the plate being 1h  before the step and 2h after the step. Also, let us imagine that the 

incident wave field is represented by  0 0, H , travelling in the +ve x  direction in the 

Region 1. We define the reflected wave field as  1 1, H  and the transmitted wave field 

as  2 2, H . The incident and scattered wave fields satisfy the generic wave equations 
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These must satisfy the zero-stress boundary conditions at the top and the bottom 

of the plate, 
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The boundary conditions at the traction free vertical step are, 
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where, the subscript 0 stands for incident waves in Region 1, the subscript 1 stands for 

reflected waves in Region 1 and the subscript 2 stands for transmitted waves in Region 2. 

We assume the incident wave field to be time harmonic of the form 

        
0 0

n ni x t i x t

n nf y e H ih y e
    

    (3.16) 

Assuming n  to be one of the roots of the Rayleigh-Lamb equation for the plate 

in the Region 1, Equations (3.11) and (3.12) are satisfied by the definition of Lamb waves 

and the incident wave becomes one of the modes of Lamb waves.  

3.3.2 COMPLEX MODES EXPANSION OF THE SCATTERED WAVE FIELD FOR A STEP 

In this section, we present the general concept of CMEP algorithm. We assume 

the scattered wave field to consist of a reflected wave field  1 1, H  and a transmitted 

wave field  2 2, H  having harmonic expressions similar to the incident wave field 

 0 0, H  given by Equation (3.16). Since the boundary conditions at the step cannot be 

satisfied by assuming any finite number of Lamb wave modes (Torvik 1966), we expand 

these reflected and transmitted wave fields in terms of all possible complex Lamb wave 

modes corresponding to the complex roots of Rayleigh-Lamb frequency equation. 

Therefore, the scattered wave field is expressed as 
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where, 1y  and 2y  are connected by the expression 2 1y y a   with  1 2 / 2a h h   

being the eccentricity between the Region 1 and the Region 2. The wavenumber 
1n is the 

1n th complex root of the Rayleigh-Lamb equation in the Region 1 and the wavenumber 

2n is the 2n th complex root of the Rayleigh-Lamb equation in the Region 2. The 

coefficient 
1 ,1nC  is the unknown amplitude of the 1n th mode of Lamb waves in the 

Region 1 whereas 
2 ,2nC  is the unknown amplitude of the 2n th mode of Lamb waves in 

the Region 2. Equation (3.17) expresses the scattered wave field as the summation of all 

possible complex Lamb wave modes at a given frequency. The amplitudes 
1 ,1nC , 

2 ,2nC  of 

these modes have to be determined through the boundary matching process. Recall the 

boundary conditions at the step 0x x  as given by Equations (3.13), (3.14) and (3.15). 

Also note that the plate boundary conditions given by Equations (3.11) and (3.12) are 

satisfied by the definition of Lamb waves. We express stress and displacement fields 

from Equations (3.13), (3.14) and (3.15) using the complex Lamb wave mode expansion 

of Equation (3.17), i.e., 
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where, for the displacement vectors, subscripts x and y indicate the directions of the 

displacement. For stresses, the subscript xx stands for the normal stress in the x direction 

and subscript xy stands for the shear stress. The notations 
1 ,1nC , 

2 ,2nC are the unknown 

amplitudes of the complex Lamb wave modes in Regions 1 and 2, respectively. In the 

same vein, the incident wave field uses the subscript 0, i.e., 
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Using Equations (3.18), (3.19) into Equations (3.13), (3.14) and (3.15) yields 
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 (3.20) 

 0 1 2 0 1 2 1, , 2 2u u u x x h y h h        (3.21) 

Therefore, Equations (3.20), and (3.21) represent the thickness dependent 

boundary conditions at the step location. 

3.3.3 VECTOR PROJECTION OF THE BOUNDARY CONDITIONS FOR A STEP 

To make Equations (3.20), (3.21) independent of ,y  we follow Grahn (Grahn 

2003) and project them onto appropriate complete orthogonal vector spaces as described. 

But, different from (Grahn 2003), we do not use generic sine and cosine functions, 

instead, we use the time averaged power flow expression which uses the stress-velocity 

product (Auld 1973). Thus, in the Region 1, we project the stress boundary conditions 

onto the conjugate displacement vector space of the complex Lamb wave modes. By the 

same token, in the Region 2, we project the displacement boundary conditions onto the 

conjugate stress vector space of the complex Lamb wave modes. By doing so, the CMEP 

formulation automatically incorporates the average power flow associated with both the 

reflected and the transmitted wave fields. This approach has two main advantages: first, 

following the time averages power flow associated with the modes, it creates dominant 

diagonal terms in the final matrix equation which leads to fast convergence; second, it 

transforms the stress and displacement equations at the interface into the equations 

representing the power flow balance across the interface between the two separate wave 

fields. In short, this approach incorporates the balance of power flow across the interface 

achieving fast convergence. 
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The projection vector space for the Equation (3.20) is 
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 (3.22) 

After projecting Equation (3.20) onto Equation (3.22), the stress boundary 

conditions in Equation (3.20) take the form 
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  (3.23) 

where, ,

b
b

a

a

P Q dy P Q   represents the inner product. The projection vector space for 

Equation (3.21) is 
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After projecting Equation (3.21) onto Equation (3.24), the displacement boundary 

conditions in Equation (3.21) take the form 
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   (3.25) 

3.3.4 NUMERICAL SOLUTION FOR A STEP 

For numerical calculation we consider finite values for the indices 1 2 1 2, , ,n n n n . 

We assume, 1 11,2,3,...,n N , 2 21,2,3,...,n N , 
1 11,2,3,...,n N , 

2 21,2,3,...,n N . 

Then, Equation (3.23) contains 
1N  linear equations with  1 2N N  unknowns and 
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Equation (3.25) contains 
2N  linear equations with  1 2N N  unknowns. Recall that the 

 1 2N N unknowns are the complex Lamb wave mode amplitudes  
1 2,1 ,2,n nC C . Thus, 

Equations (3.23), (3.25) combined are a set of  1 2N N linear algebraic equations in 

 1 2N N  unknowns. Equations (3.23) and (3.25) can be written together in matrix form 

as 
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where, [A] and [B] are known entities and {C} contains the  1 2N N  unknowns 

 
1 2,1 ,2, .n nC C  The unknown {C} can be calculated as 

      
1

C A B


  (3.27) 

As a test case we consider aluminum as the material of the plate with 

1 2 70E E   GPa, 2780   kg/m
3
 and    with 1 2h   mm and 2 1h   mm. We 

also consider 
1 2 1 2N N N N    with S0 as the incident Lamb wave mode. We use a 

frequency-thickness range of up to 2.75 MHz-mm. We perform convergence studies to 

determine the maximum number of complex roots of the Rayleigh-Lamb equation needed 

to calculate the first three scattered Lamb wave modes, S0, A0 and A1 with high 

accuracy. Figure 3.5 shows the convergence study for the amplitudes of the first three 

modes of Lamb waves, S0, A0 and A1. From Figure 3.5 we can also see that the 
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convergence of the A1 mode does not change much as it goes from being an evanescent 

mode (0.2 and 1.5 MHz-mm) to being a propagating mode (2.75 MHz-mm).  

 
(e)      (f) 

Figure 3.5: Convergence of (a) amplitude at 0.2 MHz-mm, (b) phase at 0.2 MHz-mm, (c) 

amplitude at 1.5 MHz-mm, (d) phase at 1.5 MHz-mm, (e) amplitude at 2.75 MHz-mm, 

(f) phase at 2.75 MHz-mm of scattered Lamb wave modes for S0 mode incident on half 

thickness step  

0.2 MHz-mm 

1.5 MHz-mm 

2.75 MHz-mm 

0.2 MHz-mm 

1.5 MHz-mm 

2.75 MHz-mm 

(a)        (b)  

(c)      (d) 



 53   

 

Considering 27 modes in the expansion ensured convergence of S0, A0 and A1 

modes close to 0.5% error up to 2.75 MHz-mm. However, at even higher frequencies 

when the propagating S1 mode appears, we may need to consider a higher number of 

Lamb wave modes for proper convergence of the complex amplitudes. This is because 

the S1 mode does not exist below 2.75 MHz-mm, neither as complex mode nor as 

evanescent mode; this changes the structure of the wave field.  

Another important verification of convergence is the power flow balance. Figure 

3.6 shows that a 27-mode expansion gave a balanced average power flow though the step 

over the whole frequency range up to 2.75 MHz. It is apparent that power flow balance 

requirements are met since the “Pav incident” line overlaps with the “Pav Scattered 

(Reflected + Transmitted)” line. 

 

Figure 3.6: Variation of time average power flow Pav through the step as calculated using 

CMEP with a 27-mode expansion for S0 mode incident on half thickness step 

3.3.5 ASYMPTOTIC BEHAVIOR OF LAMB WAVES AT LOW FREQUENCIES 

We consider again the test case of an aluminum plate having 1 2 70E E   GPa, 

2780   kg/m
3
 and    with 1 2h   mm and 2 1h   mm. For simplicity, we 

consider
1 2 1 2N N N N   . We then solve Equation (3.27) for {C} with S0 as the 

incident wave. 
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(a)      (b) 

Figure 3.7: Comparison between the displacement amplitudes of the Lamb-wave CMEP 

solution and axial-flexural solution: (a) symmetric mode (b) antisymmetric mode waves 

 

Figure 3.8: Frequency-wavenumber plot: axial-flexural waves vs. Lamb waves 

We compare the results from the axial-flexural wave solution with the Lamb wave 

CMEP solutions for its validity as frequency 0 . Figure 3.7 shows the comparison of 

the scattered wave amplitudes from the axial-flexural model and the CMEP with 27 

modes expansion. We can see that the scattered wave amplitudes from these two models 

converge at low frequencies. However the results diverge as the frequency increases. This 

divergence happens quickly for the A0 wave (Figure 3.7 (b)) and a little slower for the S0 

wave (Figure 3.7 (a)). Figure 3.8 explains this clearly by showing that the A0 

wavenumber diverges very quickly from the flexural wavenumber as the frequency 
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increases whereas the S0 wavenumber takes a little longer. This shows that the simplified 

assumption of no shear deformation for the flexural waves is valid only as frequency

0.   

3.4 VERIFICATION OF CMEP FOR A STEP USING FEM 

For the validation of the results from CMEP at higher frequencies, we made finite 

element models (FEM) using the commercial software ANSYS. The dimensions and the 

material properties were chosen as described in section 3.3.4. To ensure accuracy of the 

FEM results we follow Moser et al. (Moser, Jacobs, and Qu 1999). We used PLANE182 

elements in ANSYS multi physics. We ensured the value of FEMl  to be at least 30 

(Figure 3.9) which is higher than the recommended value for an accurate result. We also 

performed convergence study with progressively smaller element sizes with the value of 

FEMl  to be up to 40. 

3.4.1 FEM MODELING STRATEGY 

We consider again the test case of an aluminum plate having 70E   GPa, 

2780   kg/m3 and    with 1 2h   mm and 2 1h   mm being the thicknesses of 

the plate at region 1 and 2 respectively. The frequency range for comparison was chosen 

to be 50 kHz to 750 kHz to avoid exciting the propagating A1 mode. The S0 Lamb wave 

mode was excited by applying force at the top and bottom node of the plate in phase at 

the transmission location. However, at the specified frequencies, this type of excitation 

will create the S0 Lamb wave mode along with large number of non-propagating 

evanescent modes. Therefore, for successful simulation of the S0 mode incident on the 

step, the distance between the transmission location and the step should be sufficiently 

large for the evanescent modes to die out. 
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Figure 3.9: Variation of 
FEMl   with frequency 

 

Figure 3.10: Schematics of the finite element model with nonreflecting boundary for 

harmonic analysis 

From chapter 2, section 2.1.1.2 we know that the decay of evanescent modes 

depend on the imaginary part of their complex wave numbers as I x
e


. Therefore, for the 

above frequencies, A1 mode is the slowest decaying evanescent mode with the smallest 

imaginary part of its wavenumber among all the evanescent Lamb modes (Figure 

3.11(a)). Figure 3.11 (b) shows the distance travelled by A1 mode in both regions 1 and 2 

for 99% decay of its amplitude. Therefore, in our FEM model, the distances between 

sources and sensors were chosen to be larger than that shown in Figure 3.11 Similarly, as 

shown in Figure 3.10, for sensing of scattered waves, we recorded the displacements at 

the top and bottom nodes at the sensing locations sufficient distances from the step. 
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(a)      (b) 

Figure 3.11: (a) Travel distance of A1 evanescent mode for 99% amplitude decay; (b) 

wavenumber of A1 mode in regions 1 and 2. 

We performed a harmonic analysis in ANSYS to verify the CMEP results in the 

frequency domain. To achieve a transient response from a finite dimensional model from 

the harmonic analysis, we introduced non-reflective boundaries (NRB) at both the ends 

of the model to eliminate the boundary reflections and thereby eliminating standing 

waves. The NRBs were created using the COMBIN14 spring damper element (Shen and 

Giurgiutiu 2015). These elements were arranged at the top and the bottom surfaces of the 

NRBs and also at both the ends. The damping coefficients of the elements were varied 

gradually in a sinusoidal pattern starting from zero (Figure 3.10). This eliminated any 

reflection from the edge of the NRB itself. 

A similar model was created without the step to capture the incident wave field 

only. We subtracted the incident wave field from the wave field in the Region 1 obtained 

from the step model to get the reflected wave fields. The transmitted wave field was 

obtained directly from the Region 2. The symmetric and the antisymmetric modes were 
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separated by averaging the summation and by subtraction of displacements at the top and 

the bottom nodes. 

3.4.2 CMEP VS. FEM FOR A STEP 

Table 3.1: Computational advantages of CMEP over FEM 

FEM 

CMEP/FEM 

Comparative 

Run Time 

(%) 

λ/lFEM 

(Min.) 

Amplitude Phase 

Run 

Time 

(Sec.) 

% Diff. 

with 

CMEP 

(Max.) 

Convergence 

% Diff. 

with 

CMEP 

(Max.) 

Convergence 

30 1.2 Yes 63 No 5000 0.5% 

35 0.6 Yes 2.1 Yes 5400 0.46% 

40 0.7 Yes 2.2 Yes 6000 0.42% 

 

Figure 3.12 shows a comparison of CMEP, FEM and axial-flexural results over a 

wide range of frequencies. It is apparent that the axial-flexural results only apply for 

frequency → 0. Regarding FEM vs. CMEP, the amplitudes and the phases of the 

reflected and the transmitted waves obtained from the CMEP analysis are in perfect 

agreement with the FEM results. However, from Table 3.1 we can see that the 

convergence of the FEM model was quite expensive in terms of computational time and 

it took 200 times more computational time than the CMEP code to obtain the same 

results. The disparity in computational time was because the FEM model required a very 

high level of discretization with more than 30 elements per wavelength to obtain 

convergence of the phase (Table 3.1).  

This confirms that the CMEP method is a reliable and accurate method for 

predicting the scattering of Lamb waves. It is very important to obtain correct scatter 

coefficients quickly for NDE and SHM. This can be done easily by using the specialized 
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analytical model, CMEP which can predict the scatter coefficients in seconds instead of 

hours. 

 
(a)      (b) 

 

 
(c)      (d) 

Figure 3.12: Comparison of ux displacement of transmitted wave (a) amplitudes and (b) 

phases; reflected wave (c) amplitudes and (d) phases 

3.5 CONCLUSION AND FUTURE WORK 

This chapter has illustrated how the Lamb wave complex eigen space can be used 

efficiently to project the thickness dependent boundary conditions encountered in the 

Lamb wave scatter problem. The convergence and accuracy of the CMEP method was 

verified over a wide range of frequency-thickness values up to 1.5 MHz-mm. It was 

found that the CMEP method is more than two orders of magnitude faster than FEM for 
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the same accuracy. As a byproduct, the CMEP method also yields the local vibration field 

near the damage which is dominated by the evanescent and complex wave modes. The 

CMEP method is different from other methods (Feng, Shen, and Lin 2012), (Feng, Shen, 

and Shen 2016) which use the orthogonality between modal stresses and displacements. 

Unlike these methods, CMEP does not need to assume virtual wave guides and vertical 

free-ends to implement the orthogonality relations. 

The CMEP method was demonstrated for straight crested Lamb waves which 

exist in z invariant condition. Similar approach can be taken to analyze interactions of 

non-straight crested Lamb waves with damages. However, in addition to Lamb waves, 

we need to consider shear horizontal waves for such analysis in non z invariant 

elastodynamic field. 
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CHAPTER 4  

CMEP FOR LAMB WAVES SCATTERING FROM VARIOUS DAMAGE TYPES 

4.1 STATE OF THE ART 

As discussed in section 3.1, the full analytical solution of scattering of Lamb 

waves from various types of damage is rare due to the complexity associated with the 

physical phenomenon. Earlier analytical work focused on the free edge problem and 

prediction of the associated stress singularities using a projection method (Gregory and 

Gladwell 1982, 1983). Flores-López et al. have used this method to predict scattering 

from non-resonating type damage, a vertical crack. Feng et al. (Feng, Shen, and Lin 

2012), (Feng, Shen, and Shen 2016) used the normal mode expansion method to analyze 

thickness discontinuities in a plate. They split the initial plate into layers of real and 

virtual subplates and vertical free-ends to implement the orthogonality relations. Then, 

free-end reflection conditions were imposed on some of the subplates to generate a 

system of algebraic equations which yielded the modal expansion coefficient. They have 

applied this method for either resonating or non-resonating type damage. However, this 

method requires virtual wave guides and is complex in its application. For notch like 

resonating damage, Grahn (Grahn 2003) used a scalar projection method to predict the 

scattered Lamb wave modes. He used simple sine and cosine function as basis vectors 

which resulted in slow convergence (Moreau et al. 2012). Moreau et al. (Moreau et al. 

2011) have used harmonic functions as projection vector space for similar problem. They 

have also used displacement components of complex Lamb wave modeshapes instead of 

simple sine and cosine functions and attained a faster convergence in the projection 
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method (Moreau et al. 2012). These studies focused on notch like damage because of the 

similarity of a notch with corrosion type damage. Similarly, the interaction with 

horizontal cracks is also important not only in the case of disbonds in layered media, but 

also in the case of forging and diffusion bonding of isotropic materials (Lampman, Zorc, 

and Ronke 1992). For interaction with horizontal cracks, Karim et al. (Karim, Awal, and 

Kundu 1992) and Gunawan et al. (Gunawan and Hirose 2004) combined FEM with 

analytical approach for faster prediction of the scatter field of Lamb waves. Full 

analytical approaches such as Wiener-Hopf technique and higher order plate theories 

were also used by Rocklin (Rokhlin 1980) and Wang et al. (Wang and Rose 2003) to 

solve this problem. Glushkov et al. have proposed the layered element method (LEM) 

which, unlike BEM, satisfies the plate boundary conditions by formulation (Y. V. 

Glushkov et al. 2009). 

In section 3.3, we have demonstrated modal expansion of complex Lamb wave 

modes and its effective use to express unknown scattered wave fields. We have also 

demonstrated the use of vector projection of the associated thickness dependent boundary 

conditions onto the complex eigen vector space of the Lamb modes. We have shown that, 

this vector projection can utilize power flow associated with each of the wave guides and 

ensures power flow balance and the convergence of the predicted scattered wave 

amplitudes. The method was demonstrated using the step problem. In this chapter we will 

extend the CMEP method to more realistic damage in a plate structure, such as a 

horizontal crack, a vertical crack and a vertical notch. These damages can be grouped in 

to two main types; resonating and non-resonating.  
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4.2 ANALYTICAL MODEL OF SCATTERING FROM RESONANT TYPE 

DAMAGE 

Resonance in an elastodynamic field is typically associated with finite geometric 

dimensions like finite width of a plate. Damage with finite width creates two different 

boundary conditions at the ends. This creates a finite geometric effect causing standing 

wave field confined along the damage. This standing wave field resonates with the width 

of the damage. Examples of this type of damage are a horizontal crack, a vertical notch, 

etc. 

4.2.1 CMEP FOR A NOTCH 

4.2.1.1 Problem Setup for a Notch 

To begin our analysis, let us consider a plate with a cross section as shown in 

Figure 4.1. We assume that there is an incident straight-crested Lamb wave mode 

travelling from the left towards a notch. Upon interacting with the notch, it will result in 

reflected wave modes, transmitted wave modes, and wave modes trapped in the notch. As 

shown in Figure 4.1, the notch is located at a distance 0x x  with the thickness of the 

plate being 1h . At the notch the plate has been corroded to a thickness 2h  with the width 

of the notch being 2L b . At the notch, we define depth ration as 1 2 1( )dR h h h   and 

width ratio as 12wR b h . Also, let us imagine that the incident wave field is represented 

by  0 0, H , travelling in +ve x  direction in the Region 1. We define the reflected 

wave field as  1 1, H  and the transmitted wave field in Region 3 as  3 3, H . We also 

define the trapped wave field inside the notch in Region 2 as  2 2, H .  
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Figure 4.1: Schematic of Lamb waves interacting with a notch 

The incident and scattered wave fields satisfy the generic wave equations 
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where, PC  and SC  are the wave speeds of pressure wave and shear waves, respectively. 

 

Figure 4.2: Boundary conditions at the notch 

These must satisfy the zero-stress boundary condition at the top and bottom of the 

plate, 
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 (4.2) 

The stress and displacement fields associated with the wave fields are expressed 

as 

 ; ;
xx xx xx x
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σ  (4.3) 

where, σ  is stress tensor, σ  is stress vector, and u  is displacement vector. For the 

displacements, subscripts x  and y  indicate the directions of the displacement. For 

stresses, the subscripts xx , yy stand for the normal stress in x , y  directions, respectively 

and the subscript xy  stands for the shear stress. The boundary conditions at the notch are 

illustrated in Figure 4.2. The boundary conditions at the interface at 0x x b   are, 
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 0 1 2 0 1 2 1, , 2 2u u u x x b h y h h         (4.5) 

The boundary conditions at the interface at 0x x b   are, 
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 (4.6) 

 3 2 0 1 2 1, , 2 2u u x x b h y h h        (4.7) 

where 
1 3

ˆ ˆ,x xn n  are the unit surface normal vectors of the interface surfaces represented by 

   1 3,x y x y  and ˆ
xn  is the unit vector in +ve x  direction as shown in Figure 4.2. Also, 

note that for a vertical notch, 
1

ˆ ˆ
x xn n  and 

3
ˆ ˆ

x xn n . The subscript 0 stands for incident 

waves in Region 1, subscript 1 stands for reflected waves in Region 1, subscript 2 stands 

for the trapped waves in Region 2 and subscript 3 stands for transmitted waves in Region 

3. Let us assume the incident wave field to be a harmonic wave field of the form 
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        0 0i i
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    (4.8) 

Assuming 0  to be one of the roots of Rayleigh-Lamb equation for the plate in 

Region 1, Eq. (4.1) and (4.2) are satisfied by definition of Lamb waves and the incident 

wave becomes one of the modes of Lamb waves.  

4.2.1.2 Complex Modes Expansion of the Scattered Wave Field for a Notch 

In this section, we present the general concept of our CMEP algorithm. We 

assume that the transmitted, reflected, and trapped wave fields to have harmonic 

expressions similar to the incident wave field  0 0, H  given by Eq. (4.8). Since the 

boundary conditions at the notch cannot be satisfied by assuming any finite number of 

Lamb wave modes (Torvik 1966), we expand these transmitted, reflected, and trapped 

wave fields in terms of all possible complex Lamb wave modes corresponding to the 

complex roots of Rayleigh-Lamb frequency equation. Therefore, the scattered wave 

fields are expressed as 
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where, 1y  and 2y  are connected by the expression 2 1y y a   with  1 2 / 2a h h   being 

the eccentricity between Region 1 and Region 2 and 1 3y y . The wavenumber 
11 ,B n is the 

1n th complex root of the Rayleigh-Lamb equation corresponding to backward 

propagating Lamb waves in Region 1 and the wavenumbers 
22 ,F n  and 

22 ,B n  are 2n th 

complex root of the Rayleigh-Lamb equation corresponding to forward and backward 

propagating waves in Region 2, respectively. Similarly, wavenumber 
33 ,F n is the 

3n th 

complex root of the Rayleigh-Lamb equation corresponding to forward propagating 

waves in Region 3. The coefficient 
11 ,B nC  is the unknown amplitude of the 1n th mode of 

backward propagating Lamb waves in Region 1 whereas 
22 ,F nC  and 

22 ,B nC  are the 

unknown amplitudes of the 2n th mode of forward and backward propagating Lamb 

waves in Region 2, respectively. Similarly, the coefficient 
33 ,F nC  is the unknown 

amplitude of the 3n th mode of forward propagating Lamb waves in Region 3. Eq. (4.9)

expresses the scattered wave field as the summation of all possible complex Lamb wave 

modes at a given frequency. The amplitudes , ,  and 
33 ,F nC  of these 

modes have to be determined through the boundary matching process. Recall the 

boundary conditions at the interfaces at 0x x b   and 0x x b   are given by Eq. (4.4), 

(4.5), (4.6), and.(4.7). Also, note that the plate boundary conditions given by Eq. (4.1) 

and (4.2) are satisfied by the definition of Lamb waves. We express the stress and 

displacement fields of Eq. (4.4), (4.5), (4.6), and (4.7) using the complex Lamb wave 

mode expansion of Eq. (4.9), i.e., 

11 ,B nC
22 ,F nC

22 ,B nC
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 (4.10) 

In the same vein, the incident wave field uses subscript 0, i.e., 
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σ  (4.11) 

Therefore, for a vertical notch, using Eq. (4.10), (4.11) into Eq. (4.4), (4.5), (4.6) 

and (4.7) yields 

 
0 2 1 1

0 1

2 0 1 2 1

0, , / 2 / 2

, / 2 / 2

x x b h h y h

x x b h y h h
 



    
  

     
 (4.12) 

 0 1 2 0 1 2 1, , 2 2u u u x x b h y h h         (4.13) 
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 (4.14) 

 3 2 0 1 2 1, , 2 2u u x x b h y h h        (4.15) 

Therefore, Eq. (4.12), (4.13), (4.14), and (4.15) represent the thickness dependent 

boundary conditions at the notch. 

4.2.1.3 Vector Projection of the Boundary Conditions for a Notch 

To make Eq. (4.12), (4.13), (4.14), and (4.15) independent of ,y  we follow Grahn 

(Grahn 2003) and project them onto appropriate complete orthogonal vector spaces as 

described. But, different from (Grahn 2003), we do not use generic sine and cosine 

functions, instead, we use the time averaged power flow expression which uses stress-

velocity product (Auld 1973). Thus, in Region 1, we project the stress boundary 

conditions onto the conjugate displacement vector space of the complex Lamb wave 
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modes; in Region 2, we project the displacement boundary conditions onto the conjugate 

stress vector space of the complex Lamb wave modes. By the same token, in Region 3, 

we project the stress boundary conditions onto the conjugate displacement vector space 

of the complex Lamb wave modes. By doing so, the CMEP formulation automatically 

incorporates the average power flow associated with the reflected, transmitted, and 

trapped wave fields. This approach has two main advantages: first, following the time 

averages power flow associated with the modes, it creates dominant diagonal terms in the 

final matrix equation which leads to fast convergence; second, it transforms the stress and 

displacement equations at the interface into the equations representing the power flow 

balance across the interface between the two separate wave fields. In short, this approach 

incorporates the balance of power flow across the interface achieving fast convergence. 

The projection vector space for Eq. (4.12) is 
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 (4.16) 

After projecting Eq. (4.12) onto Eq. (4.16), the stress boundary conditions in Eq. 

(4.12) take the form, 
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 (4.17) 

where, ,

b
b

a

a

P Qdy P Q   represents the inner product. Similarly, the projection vector 

space for Eq. (4.14) is 
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Upon projecting Eq. (4.14) onto Eq. (4.18), the stress boundary conditions in Eq. 

(4.14) take the form, 
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The projection vector space for Eq. (4.13) is, 
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After projecting Eq. (4.13) onto Eq. (4.20), the displacement boundary conditions 

in Eq. (4.13), take the form, 
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The projection vector space for Eq. (4.15) is, 
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Upon projecting Eq. (4.15) onto Eq. (4.22), the displacement boundary conditions 

in Eq. (4.15) take the form, 
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4.2.1.4 Numerical Solution for a Notch 

For numerical calculation we consider finite values for the indices 

1 2 3 1 2 3, , , , ,n n n n n n . We assume, 1 11,2,3,...,n N , 2 21,2,3,...,n N , 3 31,2,3,...,n N , 

1 11,2,3,...,n N , 2 21,2,3,...,n N , 3 31,2,3,...,n N . Then, Eq. (4.17) contains 1N  linear 

equations with  1 22N N unknowns and Eq. (4.19) contains 3N  linear equations with 

 3 22N N . Also Eq. (4.21) contains 2N  linear equations with  1 22N N  and Eq. 

(4.23) contains 2N  linear equations with  3 22N N  unknowns. Recall that the 

 1 2 32N N N  unknowns are the complex Lamb wave mode amplitudes 

 
1 2 2 31 , 2 , 2 , 3 ,, , ,B n F n B n F nC C C C . Thus, Eq. (4.17), (4.19), (4.21), (4.23) combined are a set of 

 1 2 32N N N   linear algebraic equations in  1 2 32N N N   unknowns
11 ,B nC , 

22 ,F nC , 

22 ,B nC , and 
33 ,F nC . By assuming 1 2 3 1 2N N N N N N    

, we get 4N  equations in 

4N  unknowns. Then Eq. (4.17) and (4.19) can be written as 
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(4.25) 

Similarly from Eq. (4.21) and (4.23) can be written as 
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(4.26) 
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(4.27) 

In Eq. (4.24), (4.25), (4.26) and (4.27) the coefficient matrices  A ,  B ,  D , 

 E ,  F ,  G ,  H ,  J ,  K ,  L ,  M ,  N ,  O and  P  are known matrices 

containing the vector projected boundary conditions. Combining them we get 
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(4.28) 

Eq. (4.28) can be solved for the unknown amplitudes of the reflected and 

transmitted Lamb wave modes as 
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(b) 

Figure 4.3: Convergence of (a) amplitudes, (b) phases of scattered Lamb wave modes for 

S0 mode incident on a vertical notch with Rd=0.5 and Rw=0.5 over a wide frequency 

range of 200 kHz.mm to 1.5 MHz.mm. 

(a) 
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(a) 

 
(b) 

Figure 4.4: Variation of time average power flow Pav through the notch as calculated 

using CMEP with a 27-mode expansion for S0 mode incident on a notch with Rd=0.5 and 

(a) Rw=0.5, (b) Rw=10. 

As a test case we consider a vertical notch in an aluminum plate with 70E   

GPa, 2780   kg/m
3
,   , 1 2h   mm, 2 1h   mm, and 0.5b   mm. This results in 

depth ratio 1 2 1( ) 0.5dR h h h   , and width ratio 12 0.5wR b h  . We also consider S0 

as the incident Lamb wave mode. We use a frequency-thickness range of up to 1.5 MHz-

mm for its relevance to practical applications. We perform convergence studies to 

determine the maximum number of complex roots of the Rayleigh-Lamb equation needed 

to calculate the first two scattered Lamb wave modes S0 and A0 with high accuracy. 

Figure 4.3 shows the convergence study for the amplitudes of the first two modes of 
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Lamb waves, S0 and A0. Considering 27 modes in the expansion ensured convergence to 

less than 0.5% error. Another important verification of convergence is the power flow 

balance. Figure 4.4 (a) and (b) show that a 27-mode expansion gave a balanced average 

power flow though the vertical notches with different widths over the whole frequency-

thickness range up to 1.5 MHz. It is apparent that power flow balance requirements are 

met since the “Pav incident” line exactly overlaps with the “Pav Scattered (Reflected + 

Transmitted)” line. 

4.2.2 VERIFICATION OF CMEP FOR A NOTCH USING FEM 

For the validation of the results from CMEP for a notch, we made finite element 

models (FEM) using the commercial software ANSYS. The dimensions and the material 

properties were chosen as described in sections 4.2.1.4 with 0.5dR   and 10wR  . 

4.2.2.1 FEM Modeling Strategy 

The modeling strategy was same as described in section 3.4.1 for a step. The 

element size and the model sizes were same except, instead of a step, a notch was 

modeled in the 2D FEM model. The range of frequencies was also same along with the 

thickness of the plate modeled. 

4.2.2.2 CMEP vs. FEM for A Notch 

Figure 4.5 shows that the amplitudes and phases of the scattered waves obtained 

from FEM are convergent with the CMEP results for a wide range of frequencies; this 

confirms that the complex modes expansion with vector projection method is a reliable 

and accurate method for predicting the scattering of Lamb waves from a notch like 

discontinuity. We can also see that both CMEP and FEM results predicted resonance 

frequencies associated with the notch in the form of peaks in amplitude and phases of the 

scattered waves. These frequencies depend on the depth and width ratios of the notch.  
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 (a)       (b) 

 
(c)       (d) 

Figure 4.5: Comparison of ux displacement of scattered waves for incident S0 mode, (a) 

amplitude of transmitted modes; (b) amplitude of reflected modes; (c) phase of 

transmitted modes and (b) phase of reflected modes 

Therefore, by detecting these resonance frequencies we can estimate the notch 

dimensions. However, the convergence of FE models is quite expensive in terms of 

computational time. The reported FE analysis took about 6000 seconds computational 

time but the CMEP code took only about 26 seconds to compute the same results. 
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Therefore, CMEP is an accurate and efficient tool to predict scattering from notch type 

damage; CMEP can be an effective tool for NDE and SHM. 

4.2.3 CMEP FOR A HORIZONTAL CRACK 

4.2.3.1 Problem Setup for a Horizontal Crack 

 

Figure 4.6: Schematic of Lamb waves interacting with a horizontal crack 

To begin our analysis, let us consider a plate with a cross section as shown in 

Figure 4.6. We assume that there is an incident straight-crested Lamb wave mode 

travelling from the left towards a horizontal crack in the form of a horizontal crack. Upon 

interacting with the horizontal crack, it will result in reflected wave modes, transmitted 

wave modes, and wave modes trapped in the horizontal crack. As shown in Figure 4.6, 

the horizontal crack is located at a distance 0x x  in a plate with thickness 1h . The 

horizontal crack has a width 2W b  and is located at height 2h from the bottom of the 

plate. At the horizontal crack, we define depth ration as 1 2 1( )dR h h h   and width ratio 

as 12wR b h .  

Also, let us imagine that the incident wave field is represented by  0 0, H , 

travelling in +ve x  direction in the Region 1. We define the reflected wave field as 
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 1 1, H  and the transmitted wave field in Region 4 as  4 4, H . We also define the 

trapped wave field in the horizontal crack area as  2 2, H  and  3 3, H  in Regions 2 

and 3, respectively.  

The incident and scattered wave fields satisfy the generic wave equations (4.1). 

Equations (4.1) must satisfy the zero-stress boundary condition at the top and bottom of 

the plate, 
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(4.30) 

The stress and displacement field vectors associated with these wave fields are 

expressed as 
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 (4.31) 

The boundary conditions at the horizontal crack are illustrated in Figure 4.7. The 

boundary conditions at the interface at 0x x b   are, 
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The boundary conditions at the interface at 0x x b   are, 
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The subscript 0 stands for incident waves in Region 1, subscript 1 stands for 

reflected waves in Region 1, subscripts 2 and 3 stand for the trapped waves in Regions 2 

and 3, respectively. The subscript 4 stands for transmitted waves in Region 4. Let us 

assume the incident wave field in Region 1to be harmonic of the form 

        0 0

0 0 0 0

i x t i x t
f y e H ih y e

    
    (4.36) 

where, 0  satisfies the Rayleigh-Lamb equation for Region 1, and  0f y ,  0h y  are the 

corresponding wave modes.  

 

Figure 4.7: Boundary conditions at the horizontal crack  

4.2.3.2 Complex Modes Expansion of the Scattered Wave Field for a Horizontal Crack 

In this section, we present the general concept of our CMEP algorithm. We 

assume that the transmitted, reflected, and trapped wave fields to have harmonic 

expressions similar to the incident wave field  0 0, H  given by equation (4.8). Since 

the boundary conditions at the horizontal crack cannot be satisfied by assuming any finite 

number of Lamb wave modes (Torvik 1966), we expand these transmitted, reflected, and 

trapped wave fields in terms of all possible complex Lamb wave modes corresponding to 

 

 

 

 

 

  

 



 80   

 

the complex roots of Rayleigh-Lamb frequency equation with unknown complex 

amplitudes. Therefore, the scattered wave fields are expressed as 
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 (4.37) 

where, subscripts B and F stand for backward and forward propagating wave, 1y , 2y , 3y  

are connected by the expressions 2 1 2y y a   and 3 1 3y y a   with  2 1 2 / 2a h h   and 

3 2 / 2a h   being the eccentricities of Region 2 and Region 3 from Region 1 and 1 4y y

. The wavenumber 
11 ,B n is the 1n th complex root of the Rayleigh-Lamb equation 

corresponding to backward propagating Lamb waves in Region 1 and the wavenumbers 
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22 ,F n  and 
22 ,B n  are 2n th complex root of the Rayleigh-Lamb equation corresponding to 

forward and backward propagating waves in Region 2, respectively. Similarly, 

wavenumber 
44 ,F n is the 4n th complex root of the Rayleigh-Lamb equation 

corresponding to forward propagating waves in Region 4 and the wavenumbers 
33 ,F n  and 

33 ,B n  are 3n th complex root of the Rayleigh-Lamb equation corresponding to forward 

and backward propagating waves in Region 3, respectively. The coefficient 
11 ,B nC  is the 

unknown amplitude of the 1n th mode of backward propagating Lamb waves in Region 1 

whereas 
22 ,F nC  and 

22 ,B nC  are the unknown amplitudes of the 2n th mode of forward and 

backward propagating Lamb waves in Region 2, respectively. Similarly, the coefficient 

44 ,F nC  is the unknown amplitude of the 4n th mode of forward propagating Lamb waves 

in Region 4 whereas 
33 ,F nC  and 

33 ,B nC  are the unknown amplitudes of the 3n th mode of 

forward and backward propagating Lamb waves in Region 3, respectively. Equation 

(4.37) expresses the scattered wave field as the summation of all possible complex Lamb 

wave modes at a given frequency. The amplitudes , , , 
33 ,F nC , 

33 ,B nC and 

44 ,F nC  of these modes have to be determined through the boundary matching process. 

Recall the boundary conditions at the interfaces at 0x x b   and 0x x b   are given by 

equations (4.32), (4.33), (4.34), and.(4.35). Also, note that the wave equations and the 

plate boundary conditions given by equations (4.1) and (4.30) are satisfied by the 

definition of Lamb waves. We express the stress and displacement fields of equations 

(4.32), (4.33), (4.34), and.(4.35) using the complex Lamb wave mode expansion of 

equation (4.37), i.e., 

11 ,B nC
22 ,F nC

22 ,B nC
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  (4.38) 

In the same vein, the incident wave field uses subscript 0, i.e., 

 0

0 0

x xx

y xy

u
u

u






   
    
   

 (4.39) 

Using equations(4.10), (4.11) into equations (4.4), (4.5), (4.6) and (4.7) yields 

 
3 0 2 1 1

2 0 1 2 1

, , 2 2

, , 2 2

x x b h h y h

x x b h y h h


 


 

    
  

     
 (4.40) 

 0 1 3 0 2 1 1, , 2 2u u u x x b h h y h        (4.41) 

 0 1 2 0 1 2 1, , 2 2u u u x x b h y h h         (4.42) 

 
3 0 2 1 1

4

2 0 1 2 1

, , 2 2

, , 2 2

x x b h h y h

x x b h y h h






    
 

     
 (4.43) 

 4 3 0 2 1 1, , 2 2u u x x b h h y h       (4.44) 

 4 2 0 1 2 1, , 2 2u u x x b h y h h        (4.45) 

Therefore, equations (4.40), (4.41), (4.42), (4.43), (4.44) and (4.45) represent the 

thickness dependent boundary conditions at the horizontal crack. 

4.2.3.3 Vector Projection of the Boundary Conditions for a Horizontal Crack 

To make equations (4.40), (4.41), (4.42), (4.43), (4.44) and (4.45) independent of 

,y  we follow Grahn (Grahn 2003) and project them onto appropriate complete 

orthogonal vector spaces. But, different from (Grahn 2003), we do not use generic sine 

and cosine functions, instead, we use the time averaged power flow expression which 

uses the stress-velocity product (Auld 1973). Thus, in Region 1, we project the stress 
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boundary conditions (4.40), onto the conjugate displacement vector space of the complex 

Lamb wave modes; in Region 2 and 3, we project the displacement boundary conditions 

(4.41), (4.42),(4.44), and (4.45), onto the conjugate stress vector space of the complex 

Lamb wave modes. By the same token, in Region 4, we project the stress boundary 

conditions (4.43), onto the conjugate displacement vector space of the complex Lamb 

wave modes. By doing so, the CMEP formulation incorporates the average power flow 

associated with the reflected, transmitted, and trapped wave fields. This approach has two 

main advantages: first, by following the time averages power flow associated with the 

modes, it creates dominant diagonal terms in the final matrix equation which leads to fast 

convergence; second, it transforms the stress and displacement equations at the interface 

into the equations representing the power flow balance across the interface between 

separate wave fields. In short, this approach incorporates the balance of power flow 

across the interface which ensures fast convergence. 

The projection vector space for equation (4.40) is 

 

1 1

1 1

1 , 1 ,

conj , 1,2,3,...
x x

B

y yB n B n

u u
u n

u u

   
     

   
 (4.46) 

After projecting equation (4.40) onto equation (4.16), the stress boundary 

conditions in equation (4.40) take the form, 
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(4.47) 

where, ,

b
b

a

a

P Qdy P Q   represents the inner product. Similarly, the projection vector 

space for equation (4.14) is 
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 (4.48) 

Upon projecting equation (4.14) onto equation (4.18), the stress boundary 

conditions in equation (4.14) take the form 
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(4.49) 

The projection vector space for equation (4.13) is 
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 (4.50) 
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After projecting equation (4.13) onto equation(4.20), the displacement boundary 

conditions in equation(4.13), take the form 
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(4.51) 

The projection vector space for equation (4.42) is 
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 (4.52) 

After projecting equation (4.42) onto equation(4.20), the displacement boundary 

conditions in equation(4.42), take the form 
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(4.53) 

The projection vector space for equation (4.15) is 
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 (4.54) 

Upon projecting equation (4.15) onto equation (4.22), the displacement boundary 

conditions in equation (4.15) take the form 
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The projection vector space for equation (4.45) is 
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 (4.56) 

Upon projecting equation (4.45) onto equation (4.22), the displacement boundary 

conditions in equation (4.45) take the form 
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(4.57) 

 

4.2.3.4 Numerical Solution for a Horizontal Crack 

For numerical calculation we consider finite values for the indices 

1 2 3 4 1 2 3 4, , , , , , ,n n n n n n n n
. We assume, 1 11,2,3,...,n N

, 2 21,2,3,...,n N
, 

3 31,2,3,...,n N
, 4 41,2,3,...,n N

, 1 11,2,3,...,n N
, 2 21,2,3,...,n N

, 3 31,2,3,...,n N
,

4 41,2,3,...,n N
. Then, equation (4.17) contains 1N

 linear equations with 

 1 2 32 2N N N  unknowns and equation (4.19) contains 4N
 linear equations with 
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 4 2 32 2N N N   unknowns. Also, equation (4.51) contains 3N
 linear equations with 

 1 32N N  unknowns, equation (4.21) contains 2N
 linear equations with  1 22N N  

unknowns, equation (4.55) contains 3N
 linear equations with  4 32N N  unknowns, 

and equation (4.23) contains 2N
 linear equations with  4 22N N  unknowns. Recall 

that the  1 2 3 42 2N N N N    unknowns are the complex Lamb wave mode amplitudes 

 
1 2 2 3 3 41 , 2 , 2 , 3 , 3 , 4 ,, , , , ,B n F n B n F n B n F nC C C C C C . Thus, equations (4.17), (4.19), (4.51), (4.21), 

(4.55), (4.23) combine to form a set of  1 2 3 42 2N N N N    linear algebraic 

equations in  1 2 3 42 2N N N N    unknowns 
11 ,B nC , 

22 ,F nC , 
22 ,B nC , 

33 ,F nC , 
33 ,B nC , 

44 ,F nC . By assuming 1 2 3 4 1 2 3 4N N N N N N N N N       
, we get 6N  equations 

in 6N  unknowns. Then, equations (4.17), (4.19) can be written as 
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 (4.59) 

Similarly equations (4.21) through (4.23) can be written as 
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In equations (4.24), (4.25), (4.26), (4.27), (4.62), (4.63) the coefficient matrices 

 A ,  B ,  D ,  E ,  F ,  G ,  H ,  J ,  K ,  L ,  M ,  N ,  O ,  P ,  Q ,  R , 

 S ,  T ,  U ,  V ,  W ,  X ,  Y ,  Z ,    are known matrices containing the 

vector-projected boundary conditions; the vectors  2FC ,  2BC ,  3FC ,  3BC ,  1BC  

and  4FC  contain the unknown coefficients. Combining equations (4.24) through (4.63) 

yields them we get 
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 (4.64) 

Equation (4.28) can be solved for the unknown amplitudes of the reflected and 

transmitted Lamb wave modes as 

      
1

6 1 6 6 6 1N N N N
C



  
    (4.65) 

As a test case we consider a horizontal crack in an aluminum plate with 70E   

GPa, 2780   kg/m
3
,   , 1 2h   mm, 2 1.5h   mm, and 5b   mm. This results in 

depth ratio 1 2 1( ) 0.25dR h h h   , and width ratio 12 5wR b h  . We also consider S0 

as the incident Lamb wave mode. We use a frequency range of up to 1.5 MHz-mm for its 

relevance to practical applications. We perform convergence studies to determine the 

maximum number of complex roots of the Rayleigh-Lamb equation needed to calculate 

the first two scattered Lamb wave modes with high accuracy. Figure 4.8 shows the 

convergence study for the amplitudes of the first two modes of Lamb waves, S0 and A0. 

Considering 39 modes in the expansion ensured convergence to about 0.5% error.  
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 (b) 

Figure 4.8: Convergence of (a) amplitudes, (b) phases of scattered Lamb wave modes for 

S0 mode incident on a horizontal crack with Rd=0.25 and Rw=5; results are averaged over 

a wide frequency range, 200 kHz.mm to 1.5 MHz.mm 

Another important verification of convergence is the power flow balance. Figure 

4.9 shows that a 39-mode expansion gave a balanced average power flow though the 

horizontal cracks over the whole frequency range of up to 750 kHz. It is apparent that 

power flow balance requirements are met since the “Pav incident” line exactly overlaps 

(a) 



 90   

 

with the “Pav Scattered (Reflected + Transmitted)” line. Also, Figure 4.9 shows that at 

certain frequencies the power flow associated with reflected and transmitted waves show 

sharp spikes. This is because the forward and backward propagating trapped Lamb wave 

modes in Region 2 and 3 form standing wave fields between the two geometric interfaces 

of the horizontal crack and at these frequencies the standing wave modes resonates and 

increases scattered wave amplitudes as well. Similar behavior was also shown by 

Glushkov et al. for notch type damages(Y. V. Glushkov et al. 2009). 

 

Figure 4.9: Variation of time average power flow Pav through the horizontal crack as 

calculated by CMEP with a 39-mode expansion (S0 mode incident on a horizontal crack 

with Rd = 0.25 and Rw = 5) 

4.2.4 VERIFICATION OF CMEP FOR A HORIZONTAL CRACK USING FEM 

For the validation of the results from CMEP for a notch, we made finite element 

models (FEM) using the commercial software ANSYS. The dimensions and the material 

properties were chosen as described in section 4.2.3.4 with 0.25dR   and 5wR  . 

4.2.4.1 FEM Modeling Strategy 

The modeling strategy was same as described in section 3.4.1 for a step. The 

element size and the model sizes were same except, instead of a step, a horizontal crack 
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was modeled in the 2D FEM model. The range of frequencies was also same along with 

the thickness of the plate modeled. 

4.2.4.2 CMEP vs. FEM for A Horizontal Crack 

 
(a)      (b) 

 
(c)      (d) 

Figure 4.10: Comparison of ux displacement of transmitted modes; (a) S0 amplitude, (b) 

S0 phase, (c) A0 amplitude, (d) A0 phase for incident S0 mode scattered from a 

horizontal crack with Rd = 0.25 and Rw = 5 

Figure 4.10 and Figure 4.11 shows the comparison of results from CMEP and 

FEM; we can see that the amplitudes and phases of the reflected and transmitted waves 

obtained from FEM are convergent with the CMEP results for a wide range of 

frequencies. Both CMEP and FEM results show characteristic resonances of the 

horizontal crack at certain frequencies due to the standing wave field created by trapped 

Lamb wave modes. These resonance frequencies depend on the width and depth rations 



 92   

 

of the horizontal crack. Therefore these frequencies can be used to estimate the horizontal 

crack dimensions. Since a disbond is also a horizontal crack, similar approach can also be 

taken to model a disbond between two plates or laminas.   

 
(a)      (b) 

 
(c)      (d) 

Figure 4.11: Comparison of ux displacement of reflected modes; (a) S0 amplitude, (b) S0 

phase, (c) A0 amplitude, (d) A0 phase for incident S0 mode scattered from a horizontal 

crack with Rd = 0.25 and Rw = 5 

However, the convergence of FE models is quite expensive in terms of 

computational time; FEM takes about 200 times more computational time than CMEP to 

compute the same results. This disparity in computational time is due to the fact that 

FEM requires very fine discretization for convergence of both phase and amplitude. It is 

very important to obtain correct scatter coefficients quickly for NDE and SHM. 

Therefore, with fast, accurate, and reliable prediction of the scatter field, CMEP can be an 
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important tool to solve the inverse problem of detection and characterization of horizontal 

cracks and disbonds. 

4.3 ANALYTICAL MODEL OF SCATTERING FROM NON-RESONANT TYPE 

DAMAGE 

If the damage has zero width, then there is no finite geometric effect due to its 

presence. Therefore, there is no standing wave field along the width of this damage, and 

no resonance due to this damage. This type of damage includes a vertical crack, a step in 

plate thickness, etc. In this section we will present a vertical crack as non-resonating type 

damage. 

4.3.1 CMEP FOR A CRACK 

4.3.1.1 Problem Setup for a Crack 

To begin our analysis, let us consider a plate with a cross section as shown in 

Figure 4.1. We assume that there is an incident straight-crested Lamb wave mode 

travelling from the left towards a vertical surface breaking crack. Upon interacting with 

the vertical crack, it will result in reflected wave modes, transmitted wave modes, and 

wave modes trapped in the crack. As shown in Figure 4.1, the crack is located at a 

distance 0x x  with the thickness of the plate being 1h . At the crack, the plate has a 

thickness 2h  with the width of the crack being zero. At the crack, we define depth ration 

as, 1 2 1( )dR h h h  . Also, let us imagine that the incident wave field is represented by 

 0 0, H , travelling in +ve x  direction in the Region 1. We define the reflected wave 

field as  1 1, H  and the transmitted wave field in Region 3 as  3 3, H . We also 

define the trapped wave field inside the crack in Region 2 as  2 2, H . The incident and 

scattered wave fields satisfy the generic wave equations 
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where, PC  and SC  are the wave speeds of pressure wave and shear waves, respectively.  

 

Figure 4.12: Schematic of Lamb waves interacting with a notch 

These must satisfy the zero-stress boundary condition at the top and bottom of the 

plate, 
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 (4.67) 

The stress and displacement fields associated with the wave fields are expressed 

as 

 ; ;
xx xx xx x
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σ  (4.68) 

where, σ  is stress tensor, σ  is stress vector, and u  is displacement vector. For the 

displacements, subscripts x  and y  indicate the directions of the displacement. For 

stresses, the subscripts xx , yy stand for the normal stress in x , y  directions, respectively 
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and the subscript xy  stands for the shear stress. The boundary conditions at the notch are 

illustrated in Figure 4.2. The boundary conditions at the interface at 0x x  are, 
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 0 1 2 0 1 2 1, , 2 2u u u x x h y h h        (4.70) 

 

Figure 4.13: Boundary conditions at the crack 

The boundary conditions at the interface at 0x x b   are, 
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 3 2 0 1 2 1, , 2 2u u x x h y h h       (4.72) 

where 
1 3

ˆ ˆ,x xn n  are the unit surface normal vectors of the interface surfaces represented by 

   1 3,x y x y  and ˆ
xn  is the unit vector in +ve x  direction as shown in Figure 4.2. Also, 

note that for a vertical crack, 
1

ˆ ˆ
x xn n  and 

3
ˆ ˆ

x xn n . The subscript 0 stands for incident 

waves in Region 1, subscript 1 stands for reflected waves in Region 1, subscript 2 stands 

for the trapped waves in Region 2 and subscript 3 stands for transmitted waves in Region 

3. Let us assume the incident wave field to be a harmonic wave field of the form 

        0 0i i

0 0 0 0e i e
x t x t

f y H h y
    

    (4.73) 
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Assuming 0  to be one of the roots of Rayleigh-Lamb equation for the plate in 

Region 1, Eq. (4.1) and (4.2) are satisfied by definition of Lamb waves and the incident 

wave becomes one of the modes of Lamb waves.  

From the problem setup we can see that the case of a crack is a special case of a 

notch with vanishing width. Therefore, in CMEP, a the crack problem can be solved by 

the CMEP by assuming it to be a notch with zero width. Therefore, the complex modes 

expansion and vector projection of complex Lamb wave modes for the crack problem are 

identical to the notch problem. 

4.3.1.2 Numerical Solution for a Crack 

As a test case we consider a vertical crack in an aluminum plate with 70E   

GPa, 2780   kg/m
3
,   , 1 2h   mm, 2 1h   mm, and 0b   mm. This results in 

depth ratio 1 2 1( ) 0.5dR h h h   , and width ratio 12 0wR b h  . We also consider S0 

as the incident Lamb wave mode. We use a frequency-thickness range of up to 1.5 MHz-

mm for its relevance to practical applications. We perform convergence studies to 

determine the maximum number of complex roots of the Rayleigh-Lamb equation needed 

to calculate the first two scattered Lamb wave modes S0 and A0 with high accuracy. 

Figure 4.14 shows the convergence study for the amplitudes of the first two modes of 

Lamb waves, S0 and A0. Unlike Figure 4.4 (a) which shows a monotonic convergence 

with increased number of modes for a finite width of the notch, Figure 4.14 show an 

initial monotonic behavior but around 50 modes it show a jump in the calculated 

amplitudes for zero width of the notch. Later it goes down to about 4% error around 75 

modes.  
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(b) 

Figure 4.14: Convergence of (a) amplitudes, (b) phases of scattered Lamb wave modes 

for S0 mode incident on a vertical crack with Rd=0.5 over a wide frequency range of 200 

kHz.mm to 1.5 MHz.mm. 

However, Figure 4.15 shows that a 75-mode expansion gave a balanced average 

power flow though the vertical notches over the whole frequency-thickness range up to 

1.5 MHz. It is apparent that power flow balance requirements are met since the “Pav 

incident” line exactly overlaps with the “Pav Scattered (Reflected + Transmitted)” line. 

(a) 
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Figure 4.15: Variation of time average power flow Pav through the crack as calculated 

using CMEP with a 75-mode expansion for S0 mode incident on a notch with Rd=0.5 and 

Rw=0. 

4.3.2 VERIFICATION OF CMEP FOR A CRACK USING FEM 

For the validation of the results from CMEP for a crack, we made finite element 

models (FEM) using the commercial software ANSYS. The dimensions and the material 

properties were chosen as described in section 4.3.1.2 with 0.5dR   and 0wR  . 

4.3.2.1 FEM Modeling Strategy 

The modeling strategy was same as described in section 4.2.2.1 for a notch. The 

element size was chosen to be 0.001 mm and the model size was kept same except, 

instead of a notch, a crack was modeled in the 2D FEM model. The increase in the mesh 

density was to capture the stress singularity at the crack tip. The range of frequencies was 

kept same along with the thickness of the plate modeled. 

4.3.2.2 CMEP vs. FEM for A Notch 

Figure 4.5 shows that the amplitudes and phases of the scattered waves obtained 

from FEM are convergent with the CMEP results for a wide range of frequencies for a 

half thickness vertical crack. However, unlike the case of notch with finite width we do 

not see any resonance phenomenon. This is because the resonance is associated with the 

width of the notch and in this particular case the width is zero. Therefore, there is no 
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resonance associated with this type of damage. In terms of efficiency, due to the slow 

convergence for a crack it took about 600 seconds of computational time which is 20 

times more than a usual notch problem. However, due to increase in the mesh density the 

reported FE analysis took about 25000 seconds, 4 times that of a notch problem.  

 
 (a)      (b) 

 
(c)      (d) 

Figure 4.16: Comparison of ux displacement of scattered waves for incident S0 mode, (a) 

amplitude of transmitted modes; (b) amplitude of reflected modes; (c) phase of 

transmitted modes and (b) phase of reflected modes 

4.4 CONCLUSION AND FUTURE WORK 

In this chapter we have demonstrated the use of complex Lamb wave modes and 

their application in analytical modeling of Lamb wave scattering from various types of 

damage. We have demonstrated the method complex modes expansion and vector 

projections (CMEP) for this purpose. We have applied CMEP to a horizontal cark, a 
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vertical crack and a notch to demonstrate its capability in predicting scattered Lamb wave 

field. We have also verified the predictions with FEM models and confirmed that CMEP 

is orders of magnitude faster than the FEM code we used and it is as accurate as FEM. 

However, there are some convergence issues in the case of a vertical crack for CMEP. 

The convergence required 75 complex Lamb wave modes for a vertical crack; this is 

much higher compared to only 27 for a vertical notch, despite the fact that we used the 

same CMEP code for both of these damages. In our opinion this could be due to the 

nature of discontinuity that a vertical crack creates. Farther study needs to be performed 

for better understanding. Also, the CMEP method that we demonstrated assumes straight 

crested Lamb wave modes in plate strain condition. However, similar approach of using 

complex modes expansion with the projection of thickness dependent boundary 

conditions onto the vector space of complex wave modes using power flow associated 

with the wave guides can be used for non-straight crested plate guided waves. One needs 

to keep in mind that shear horizontal waves should also be considered along with Lamb 

waves for such analysis. 
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CHAPTER 5  

EXPERIMENTAL VALIDATION OF CMEP 

5.1 STATE OF THE ART 

As mentioned in previous chapters, methods of predicting the scattered Lamb 

wave modes from different types of damage has been an interesting research topic for 

decades due to its possible application in SHM and NDE. Researchers have developed 

predictive models based on numerical techniques such as FEM, BEM (Cho and Rose 

2000; Galán and Abascal 2005; Mackerle 2004; Moser, Jacobs, and Qu 1999), and semi 

analytical techniques (Cho and Rose 2000; Galán and Abascal 2005; Gunawan and 

Hirose 2004; Terrien et al. 2007). However, validation of these models is of importance 

when it comes to application of them in predicting real life phenomenon. One of the 

earliest work was done by Alleyne et al.(Alleyne and Cawley 1992) where, they studied 

interaction of various types of notches with a straight crested Lamb waves using FEM 

and compared it with experiments. The FEM analysis was done in 2D assuming straight 

crested waves in plane strain condition. However, for experimental verification they 

assumed a circular crested wave front as straight crested at a distance from the 

transducer. Similar study was also performed by Lowe et al. (Lowe et al. 2000) where the 

prediction was done assuming a straight crested Lamb wave but the experiments did not 

involve straight crested waves. In other studies, Benmeddour et al. studies the mode 

conversion of S0 and A0 modes at symmetric and antisymmetric notches in a plate 

(Benmeddour et al. 2008a)(Benmeddour et al. 2008b). To excite a straight crested wave 

they used long transduces. However, it was not reported if it resulted in straight crested 
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Lamb waves. In another study Santhanam et al. (Santhanam and Demirli 2013) have 

attempted to validate their analytical model to predict oblique reflection of straight 

crested Lamb waves with experiments using circular crested Lamb waves. In many cases, 

building predictive models of Lamb wave scattering require experimental generation of 

straight crested Lamb for validation. The studies mentioned approximated cuved wave 

fronts to straight crested waves by placing the transducer at a distance or by using long 

transducers or simply ignoring the curvature of the wave front. However, creation of 

straight crested Lamb waves in a finite plate using finite transducers is quite challenging 

and has not been reported in literature. In this chapter, we present our technique to 

generate a straight crested Lamb waves in a finite plate with finite transducers. The aim 

of this experiment is to validate the predictions of CMEP, particularly for a Lamb wave 

mode interacting with a step in plate thickness  

5.2 GENERAL EXPERIMENTAL PROCEDURE 

There are several major challenges any researcher faces when attempting to 

generate a straight crested Lamb waves. These challenges and the challenges in 

experimentally determining the scatter coefficients of a straight crested Lamb wave mode 

are 

 Determining specimen geometry 

 Eliminating the boundary reflections 

 Creating a straight crested Lamb wave mode 

 Tuning symmetric or antisymmetric Lamb wave mode selectively 

 Measuring the scatter wave field with sufficient accuracy  
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5.2.1 DETERMINING THE SPECIMEN GEOMETRY 

 
(a)      (b) 

 
(c)      (d) 

Figure 5.1: CMEP results for variation of scattering coefficients of Lamb wave modes 

with frequency and depth-ratio for incident A0 mode (a) reflected S0 (b) transmitted S0 

(c) reflected A0 (d) transmitted A0 

To optimize the specimen geometry we used CMEP predictions for our 

experiments. We focused on capturing the mode conversion aspect of the step. We 

predicted the scattered wave amplitudes at various depth rations using CMEP. In Figure 

5.1 (a) and (b) we can see that for incident A0 at depth ratio of 0.6 the scatter coefficients 

of reflected and transmitted S0 modes mode are maximum. Therefore we chose this depth 

ration for our experiment. For safe handling, we avoided small plate thickness after the 
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step; we considered a plate of thickness 4.86 mm. We chose aluminum 6061 as the 

material for the plate for good machinability. 

In a pitch-catch type wave propagation experiment, for reliable measurement of 

scattered waves, the receiver should be at a sufficient distance from the source for 

separation of symmetric and antisymmetric modes. To predict the required distance, we 

used existing analytical tool WFR1D for straight crested Lamb waves (Figure 5.2). This 

suggested us to place the sensor at 300 mm away from the step to detect the reflected 

wave modes and 250 mm for the transmitted wave modes. We also needed sufficient 

distance between the edge of the plate and the actuator and sensors. Considering these 

requirement we selected 1220 mm × 305 mm × 4.86 mm plate. Figure 5.5 (a) shows the 

design of the plate geometry after considering all the dimensional criteria. Figure 5.3 

shows the plate after machining a step using a vertical milling machine. 

 

Figure 5.2: Separation of S0 and A0 modea predicted by WFR1D 
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Figure 5.3: Aluminum plate after machining the step 

5.2.2 ELIMINATING BOUNDARY REFLECTIONS 

 
(a) 

 
(b)      (c) 

 
(d) 

Figure 5.4: Creating absorbing boundary with modeling clay (a) schematic diagram (b) 

left end of the plate after application of clay (c) right end of the plate after application of 

clay (d) absorbing boundary around the plate 



 106   

 

To eliminate boundary reflections we took inspiration from our FEM model. As 

mentioned in section 3.4.1, in FE models we used non-reflecting boundaries (NRB) to 

absorb edge reflection. To create NRBs, we introduced surface damping in the form of 

spring damping elements to damp out reflected waves in a finite geometric model. 

Similarly we chose to use damping material on the surface of the plate around the edge. 

We considered modeling clay as the damping material as it is easy to apply and 

gives a very good surface adhesion after melting at 85
◦
C. As shown in Figure 5.4 (a), we 

varied the thickness of the modeling clay, starting from zero thickness to about 12 mm 

thick at the edge. This was done so that the waves do not reflect from the beginning of 

the clay boundary due to sudden change in boundary conditions. Figure 5.4 (b), (c) and 

(d) shows the variation of the absorbing clay boundary thickness in the real specimen. 

Figure 5.5 (b) shows the entire plate after application of the absorbing boundaries all 

around the specimen. 

5.2.3 CREATING A STRAIGHT CRESTED WAVE FRONT 

We used three 40 mm × 5 mm × 0.2 mm piezoelectric wafer active sensor 

(PWAS) and bonded them in a line to create a long line source. However, due to the edge 

effect, the wave crest does not stay straight at the ends of a line source. We created a 3D 

FE model of a similar plate for understanding. In Figure 5.6 (a) we can see FEM 

simulation of a similar setup where PWAS of the same size was used with 40 mm wide 

non-reflecting boundary. The non-reflecting boundary absorbed the curved crested waves 

produced around the corners of the PWAS. This results in a straight crested wave front 

after propagating less than 100 mm distance. In experiment we excited the three PWAS 

transducers in phase and measured the wave field using scanning LASER Doppler 
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velocimeter (SLDV). Figure 5.6 (b) shows that we were successful in generating straight 

crested A0 Lamb wave mode experimentally with absorbing clay boundaries. 

 
(a) 

 

 
(b) 

Figure 5.5: Top view of the specimen (a) schematic diagram (b) actual specimen 

 
(a)      (b) 

Figure 5.6: Creating straight crested waves using non-reflecting boundary (a) FEM 

simulation (b) experimental result  

In Figure 5.7 (b) we can see the signal corresponding to generated A0 mode after 

travelling different distances. We can see that the wave amplitude does not change much 

proving that we were successful in generating a straight crested Lamb wave mode 

Absorbing clay 

boundary 

Absorbing clay 

boundary 
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channeled by absorbing clay boundary. This also shows that the clay boundary does not 

really damp the channeled wave. the little differences that we can see between two 

signals in Figure 5.7 (b) are due to low dispersion of the A0 mode at 200 kHz evident 

from Figure 5.7 (a). 

 
(a)      (b) 

Figure 5.7: (a) Dispersion curve for 4.86 mm thick aluminum plate (b) experimental 

incident wave after travelling different distances 

5.2.4 TUNING S0 AND A0 MODE SEPARATELY 

To actuate a symmetric or an antisymmetric mode selectively we used PWAS 

transducers on both top and bottom surfaces for the plate with careful alignment. Since 

PWAS transfer function is sensitive to the bonding condition (Giurgiutiu 2014), we may 

never get the exact same transfer function for both top and bottom PWAS. For this reason 

we excited both the PWAS with amplitude and phase adjustment. To achieve this we 

used Tektronics AFG3052C dual channel signal generator to tune A0 mode using 175 

kHz 3.5 count tone burs signal. In Figure 5.9 we can see the above mentioned procedure 

resulted in excitation of only A0 mode and no S0 mode. 

 

Figure 5.8: Tuning S0 and A0 mode using top and bottom PWAS 
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Figure 5.9: Tuned A0 mode using top and bottom PWAS 

5.2.5 MEASURING SCATTERED WAVE FIELD 

 
(a)      (b) 

Figure 5.10: Out of plane velocity measurement using laser doppler velocimeter (LDV) 

(a) experimental setup (b) variation of measurement across width 

To measure the scattered wave field we used single laser scanning LASER 

Doppler velocimeter (SLDV) to measure the out of plane velocity (
yv ) at the surface of 

the plate (Figure 5.10). This also gave us the opportunity to visualize the wave modes 

scattered by the step. In Figure 5.11 we can see that the scattered wave modes are easily 

visible in the recorded wave field data. Also it is important to note that the amplitude of 

the scattered symmetric mode is much smaller than the amplitude of the antisymmetric 

mode. This is because the antisymmetric modes have much higher out of plane velocity 

than the symmetric mode. It is very difficult to measure symmetric modes accurately 

using single laser LADV as they have very low out of plane velocity. 
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For incident, reflected, and transmitter modes we used wave field data recorded at 

87 mm, 365 mm, and 264 mm, respectively, from the step. First, we separate the portions 

of the signal corresponding to different modes and converted the time domain signal to 

frequency domain using FFT algorithm. Then, we used equation (5.1) to calculate the 

scatter coefficient sC were indices s  and in  stand for scattered and incident wave modes, 

respectively. Also from equation (5.1), we can see that either the velocity (
yv ) or 

displacement (
yu ) will result in the same scatter coefficient. 

 

Figure 5.11: Experimentally measured scattered straigh crested Lamb wave modes using 

scanning LDV 

At this point it is worthwhile to mention that, as we used a scanning laser beam to 

measure the out of plane velocity the laser was not always perpendicular to the place 

surface. Also, since the plate was a rolled aluminum sheet the portion of the plate that 

was machined developed a curvature after machining. These two factors gave rise to 

experimental error. As we can see from Figure 5.10 (b), the measured wave amplitudes 

varied rather abruptly along the width of the wave field. To minimize the effects of these 

errors we have calculated the mean scatter coefficients across the width of the wave field. 

   

Reflected S0 Reflected A0 Transmitted S0 Transmitted A0 
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5.3 CMEP VS EXPERIMENT FOR A STEP 

 
(a)      (b) 

 
(c)      (d) 

Figure 5.12: Experiment vs CMEP result for variation of scatter coefficients of differen 

Lamb wave modes for incident A0 mode (a) reflected S0(b) transmitted S0 (c) reflected 

A0 (d) transmitted A0 

From Figure 5.12 we can see that the experimental results are in agreement with 

the CMEP results. From these figures we can also notice that the experimentally obtained 

scatter coefficients for reflected and transmitted A0 modes were consistently lower than 

the predicted ones. The CMEP predictions assumed no material damping. Whereas, in 

reality, there is material damping and its effect is higher on A0 mode than S0 mode. 

Since we are measuring the scattered waves at a significant distance away from the step, 
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this effect of damping may result in lower than predicted amplitude of the reflected and 

transmitted modes, particularly for A0 mode. 

However, all the four plots show the trends of the scatter coefficient predicted by 

CMEP are same as that of the experimentally obtained results. The values of the scatter 

coefficients are also sufficiently close to the predicted values from CMEP. This shows 

that CMEP is a reliable tool to predict the scattering of the Lamb waves from geometric 

discontinuities. The experimental results may also be obtained for a larger frequency 

domain. 

5.4 CONCLUSION AND FUTURE WORK 

In this chapter we demonstrated a method to create straight crested Lamb wave 

modes using inspirations from FE analysis. We showed that it is possible to create 

straight crested Lamb wave modes using absorbing boundary along with long 

transducers. This method of generating straight crested Lamb waves is useful for many 

experimental investigation and validation of predictive models. We used this method to 

validate the predictions from CMEP for a step in plate thickness. We used analytical 

models like CMEP and WFR1D to design our experiment successfully. The obtained 

experimental results agree with the CMEP predictions well. The major sources of errors 

were in specimen geometry and in the use of SLDV for measurement. Also, the reflective 

tape used on the entire wave guide for wave field measurement contributed to deviation 

of the experimental results from CMEP predictions. 

For better agreement of experimental results with predictions, one must control 

the specimen and damage geometry precisely. Also, the use of single point LDV instead 

of SLDV may result in more accurate measurement of scattered waves.  
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CHAPTER 6  

PASSIVE DETECTION AND CHARACTERIZATION OF FATIGUE CRACK 

6.1 STATE OF THE ART 

Passive detection of fatigue crack by sensing acoustic emission has attracted 

attention of many researchers for decades. The fundamental problem with passive sensing 

is its susceptibility to various sources of noise. There are various acoustic and non-

acoustic sources that contribute to the signals recorded during passive detection. Apart 

from the white noise, it contains signals from natural vibrations, impact, other types of 

sources along with acoustic emissions due to cracks and other structural damages. The 

fundamental challenge is to identify the crack related acoustic emission data from the 

sensed signal. Researchers have applied data driven methods ((Roberts and Talebzadeh 

2003), (Chang et al. 2009), (Gagar, Foote, and Irving 2014), (Cuadra et al. 2015)) to 

tackle this problem. However to successfully identify acoustic emission in passive 

sensing mode it is important to develop the science and understanding of how crack-

generated acoustic emission (AE) wave signals can be extracted from non-crack wave 

signals during AE monitoring under actual operational conditions. To develop this 

understanding researchers have studied acoustic emission (AE) due to crack propagation 

in elastic medium (Paris and Erdogan 1963) (Nemati, Metrovich, and Nanni 2015). 

Ceranogliu and Yih-Hsing (Ceranogliu and Yih-Hsing 1981) have analyzed how transient 

waves are generated by variety of dynamic nuclei of strains based on generalized ray 

theory. Chung and Kannatey-Asibu (Chung and Kannatey-Asibu 1992) have studied how 

acoustic emission occurs during plastic deformation for a pure crystal considering 
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acceleration of a moving dislocation. Lysak (Lysak 1996) investigated acoustic emission 

from a growing crack by formulating non-stationary dynamic problems of crack theory. 

Lysak obtained variety of new analytical relationship between crack parameters and AE 

signal parameters. Andreykiv et al. (O. Y. Andreykiv et al. 2001; O. Andreykiv et al. 

2010) have studied acoustic emission caused by internal crack growth. Sause and Horn 

(Sause and Horn 2010) have proposed a microscopic source model to simulate AE in 

CFRP. In another study, González and LLorca  (Gonzalez and LLorca 2006) have used 

multiscale modeling to capture the fracture behavior of fiber reinforced composite. Other 

researchers have used peridynamic formulation based on homogenization and mapping 

between elastic and fracture parameters of the micro-scale peridynamic bonds and the 

macro-scale parameters of the composite (Hu, Ha, and Bobaru 2011). Several studies 

were done to understand the emission of guided waves such as, Lamb waves, due to 

crack growth in plate like structures (Gorman and Ziola 1991). Gorman and Prosser 

(Gorman and Prosser 1996) suggested the application of normal mode expansion to 

address the issue. Maji, et al. (Maji, Satpathi, and Kratochvil 1997) have demonstrated 

the use of NDE technique based on Lamb wave propagation to locate the source of 

acoustic emissions. Prosser et al. (Prosser et al. 1999) used Mindlin plate theory and 

finite element analysis to model acoustic emissions. Zhou and Zhang (Zhou and Zhang 

2014) have studied how phase difference of the received signal at two different sensor 

locations can be used to locate AE source in a thick plate. Use of acoustic emission for 

detecting and locating fatigue cracks in metallic structures is widely reported but studies 

to estimate crack length from acoustic emission are rare. Gagar et al. (Gagar, Foote, and 

Irving 2014) have developed a method for deducing crack length based on correlations 
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between AE signals generated during fatigue crack growth and corresponding cyclic 

loads. However, this method was based on an experiment driven model. In this 

dissertation we present our work aimed towards identifying crack related acoustic 

emissions; our focus is on estimation of crack length based on physics of wave 

propagation in plate structures. 

6.2 ACOUSTIC EMISSION DUE TO FATIGUE CRACK GROWTH 

The aim of this research is to develop a predictive simulation method for acoustic 

emission (AE) from cracks in plate structures. This methodology will help identifying 

crack related acoustic emission signals from non-crack related acoustic emission signals 

and help characterize cracks. Our approach is different from most other approaches in the 

use of Lamb wave theory. Therefore, to use acoustic emission for damage detection and 

identification, we will use physics of material based approach. However, to identify and 

characterize cracks using acoustic emission signal we need to use experimental methods 

to generate acoustic emissions from cracks.  

6.2.1 EXPERIMENTAL PROCEDURE 

 

Figure 6.1: Specimen for fatigue test 

We performed fatigue tests on a 1 mm thick dog bone specimen of Al2024 as 

shown in Figure 6.1. We drilled a 1 mm hole at the center of the specimen to initiate 

crack growth from that particular location. Four PICO AE sensors were placed close to 

the hole, two of them being 5 mm away from the hole and other two were 20 mm away 

from the hole (Figure 6.2 (b)). To minimize reflections of the acoustic emission wave 

from the boundaries we used clay padding at the boundaries Figure 6.2 (a).  

60 mm 

14 mm 
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(a)   (b)    (c) 

Figure 6.2: Fatigue test of the specimen (a) actual specimen (b) schematic of the 

specimen (c) experimental setup 

 
(a)     (b) 

Figure 6.3: Fatigue loading of the specimen (a) Y   for 0.2% permanent strain after 

unloading (b) S-N curve for the material of the specimen 

The fatigue test was performed using Instron 8501 fatigue test machine. The 

stress range was chosen to be 30 MPa to 300 MPa using a load range of 0.4 kN to 4.2 kN. 

This meant that we were loading the specimen up to the yield stress of the material 

(Figure 6.3 (a)). From Figure 6.3 (b) we estimated the expected fatigue life for the 

specimen under these loading conditions to be about 5000 cycles. The actual specimen 

ruptured at about 6000 cycles. Figure 6.4 shows a picture of butterfly cracks at the hole. 
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Figure 6.4: Butterfly crack at the hole after fatigue loading at yield stress 

From Figure 6.5(a) we can see that the acoustic emission signal has trailing train 

of pulses which is unlike an acoustic emission signal with shorter time durations. Upon 

analysis of the acoustic emission signal, we found that these acoustic emission signals 

consist of two main bands of frequencies, around 50 kHz and 200 kHz. From the 

frequency vs. wavelength plot (Figure 6.5 (b)) we can see that at 196 kHz the wavelength 

of S0 Lamb wave mode is about 28 mm and for the A0 Lamb wave mode the wavelength 

at 50 kHz is about 14 mm. For standing waves in a plate with free boundaries the 

wavelengths should follow the relation 

 2 2 ; 1, 2, 3,...w n w n n      (6.1) 

where w  is the width of the specimen and   is the wavelength of the standing 

wave. Thus, for 1, 2n  , we get 28mmand14mm  , respectively. Therefore, the 

acoustic emission signal is obscured by standing Lamb wave modes across the width of 

5 mm 

5 mm 
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the specimen. To identify features of a crack from acoustic emission, it is important to 

minimize the effects of the boundary reflections on acoustic emission signals.  

 
(a)     (b) 

Figure 6.5: (a) Typical acoustic emission signal received during fatigue test (b) 

wavelength vs. frequency plot of Lamb waves and acoustic emission signal received in 

frequency domain 

6.2.2 PREDICTION OF ACOUSTIC EMISSION SIGNALS USING SIMULATION 

For initial analysis, we used analytical wave propagation simulation in plates to 

predict acoustic emission signals. For the simulation, we assumed that the specimen is 

under pure tension and the crack growth is symmetric with respect to the thickness of the 

plate. Therefore we also assumed symmetric emission of acoustic energy across the plate 

thickness (Figure 6.6). 

We modified an existing analytical tool, Wave Form Revealer 2D (WFR2D), to 

predict acoustic emission events (Figure 6.7 (a)). To simplify the problem, we further 

assumed that there is only one source of acoustic emission at the center of the hole and 

we neglected the effects of boundary reflections. We also considered only S0 mode of 

Lamb waves to represent acoustic emission signal. We added several different wave 

sources in WFR2D such as square pulse, rectangular pulse, and modulated/unmodulated 

Resonance across the width of the specimen due to boundary reflections 
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sinusoidal pulse as the choice of the excitation. The duration of the pulse is also 

controllable as the duration of the acoustic emission event may vary. 

 
(a)      (b) 

Figure 6.6: (a) Schematic of the fatigue crack growth (b) fatigue crack growth in the 

actual specimen 

 
(a)      (b) 

Figure 6.7: (a) Analytical tool, acoustic emission predictor (b) chosen excitation pulse 

As discussed earlier, due to the boundary reflections, we considered only the first 

pulse in the recorded acoustic emission signal for comparison with our analytical 

simulation. We chose the excitation pulse to be Hanning window modulated half cycle 

sine wave and compared the out of plane displacement with the signal recorded during 
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experimental. Figure 6.8 shows that the assumption of this pulse type gave us a good 

estimation of the initial part of the acoustic emission signal received. 

 
(a)      (b) 

 
(c)      (d) 

Figure 6.8: Comparison of out of plane displacement predicted by acoustic emission 

predictor and experimental result 

However, this simulation is not sufficient to capture the source characteristics 

because it involved some major assumptions about the source of acoustic emissions and 

the recorded signal. Assumptions about the recorded signals are: only the first pulse 

contains the acoustic emission related information from the source and the sensor is a 

point sensor. Since our aim is to predict acoustic emission as a source of wave 

propagation in plate structure, we need more detailed modelling of the acoustic emission 

source. Therefore, we used FE analysis to understand various types of acoustic emission 

sources in plate structure. 
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6.2.3 FEM MODELING OF ACOUSTIC EMISSION SOURCE 

 

Figure 6.9: Different FE models for different types of acoustic emission sources 

In this study, we modeled several different types of acoustic emission sources 

using FE analysis as show in Figure 6.9. We used 2D FE model to develop our 

understanding. To achieve a transient response without boundary reflections from a finite 

dimensional model, we used non reflective boundary (NRB) at both ends of the model 

and eliminated the boundary reflections. The NRBs were created using COMBIN14 

spring damper element. These elements were arranged at the top and bottom surfaces of 

the NRBs and also at both the ends. The damping coefficients of the elements were 

varied gradually in a sinusoidal pattern starting from zero (Figure 1.12). This eliminated 

all reflections from the edge of the NRB itself. We simulated emission of acoustic energy 
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due to nucleation of cracks. We modeled different types of cavities to represent the 

gradual formation of a crack (Figure 6.9). To simulate an acoustic emission event, we 

induced nodal displacements around the cavities symmetrically as shown in Figure 6.9. 

To incorporate the finite sensor effects we integrated the sensed parameter over the 

sensor area (Figure 6.9). 

 

 Figure 6.10: Comparison of different types of acoustic emission sources at 26 mm from 

sensor 

From Figure 6.10, we can see that the single cavities create lot of ripples after the 

initial pulse. This is due to multiple reflections from many sources between the two plate 

surfaces. As the number of single cavities increases these ripples coalesces; for a long 

cavity, as we can see in Figure 6.10, these ripples are absent. Therefore as the damage 

forms from single cavity to multiple single cavities across the thickness coalescing into a 

long cavity and eventually into a through thickness crack, the acoustic emission from 

these sources will also coalesce. Since the transition of a single cavity to a through 
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thickness crack will happen in a time scale much shorter than the time scale of the 

acoustic emission detection, we can assume the acoustic emission source to be a through 

thickness crack. We can also see that for a through thickness type source we do not see 

ripples. 

 

 Figure 6.11: Comparison of FEM and experiment assuming a line source at 26 mm from 

sensor 

Assuming a line source, we compared the out of plane displacement and velocity 

obtained from FE analysis with the experimentally recorded acoustic emission signal. 

From Figure 6.11, we can see that the out plate velocity for a line source assumption 

gives a closer estimate of the shape of the signal for first couple of pulses than out of 

plane displacement. However, none of them truly represent the experimentally obtained 

signal. One of the reasons for this is that in our 2D FEM model we ignored the fact that 

the acoustic emission source is located at the tip of a crack. The presence of the crack will 

modify characteristics of the acoustic emission source which cannot be captured with a 
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2D FEM. The acoustic emission source will also produce non-propagating Lamb wave 

modes which cannot be predicted by WFR2D as it assumes propagating Lamb wave 

modes only. Though WFR2D predicts wave propagation in a 3D plate assuming a point 

source, it cannot capture the effect of the crack  

As shown in Figure 6.12, the displacement field near the source will contain both 

propagating and non-propagating Lamb wave modes. The non-propagating modes will 

die out away from the source and only the propagating modes will exist. For a long cavity 

type source with thickness wise symmetric excitation and frequencies below 1.5 MHz, 

the propagating Lamb wave mode away from the source will be S0 mode. The mode 

shape for 500 kHz will be as shown in Figure 6.13. 

 

Figure 6.12: Schematic diagram of acoustic emission converging into a propagating 

Lamb wave mode  

To understand how the displacement pulse converges into Lamb wave modes we 

studied mode shape convergence across thickness using FEM for a long cavity type 

source. 

Based on the mode shape of S0 Lamb wave mode shown in Figure 6.13, we can 

see from Figure 6.14 that the displacement field across the thickness of the plate 

converges to that of the S0 Lamb wave mode after about 100 mm. So, if the sensor is less 
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than 100 mm away from the source of acoustic emission, then the received signal will 

have significant contribution from the non-propagating Lamb wave modes; therefore 

cannot be simulated using WFR2D without the inclusion of non-propagating modes. 

 
(a)      (b) 

Figure 6.13: (a) In plane and (b) out of plane displacement mode shape of S0 Lamb wave 

mode at 500 kHz for 1 mm thick Aluminum 

For analytical simulation of acoustic emission source for prediction of resulting 

wave field (both near field and far field), we need to use CMEP which can capture the 

effects of the non-propagating complex modes. However, for successful implementation 

of CMEP we need to incorporate the boundary conditions at the crack tip as the crack 

propagates. This approach has two main hurdles: first, it requires us to extend CMEP 

formulation for circular crested Lamb waves and their interactions with cracks; second, 

simulation of acoustic emission due to crack propagation will require in depth 
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understanding of the changing boundary condition at the moving crack tip and its 

implementation in CMEP. This study is beyond the scope of this dissertation. Since this 

dissertation is focused on crack identification and characterization from acoustic 

emission, we used 3D FE analysis instead of CMEP to simulate acoustic emission. 

 
 (b) 

Figure 6.14: Convergence of mode shape in to S0 Lamb wave mode shape for long cavity 

type source; (a) in-plane displacement and (b) out of plane displacement 

(a) 
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(a)      (b) 

Figure 6.15: (a) Time and (b) frequency characteristics of dipole as acoustic emission 

source 

Dynamic finite-element modeling requires that the element size must be smaller 

than the smallest wavelength of interest, and the time step must satisfy a stability 

condition called the Courant-Friedrichs-Lewy (CFL) condition. In our case the CFL 

condition required the time step to be less than the time required for the bulk longitudinal 

wave to traverse a single element. This means smaller element size will require smaller 

the time step.  

Due to limitation on simulation capability, we chose element size of 0.25 mm for 

our simulation. For AL2024T4 with bulk longitudinal wave speed of 6.2 mm/µs, we 

needed a time step of 40 ns or less to satisfy the CFL condition. But, because of 

limitation on computational resources, we were able to simulate at CFL 3  for the 

source rise time of 1.5 µs with half cycle cosine (Figure 6.15). Following Hamstad et 

al.(Hamstad, O’Gallagher, and Gary 1999), this also gave us minimum wavelength 

4.71m   mm. We used 9.4s  , 18.8cs  , 40D s   (where, s, cs, and D are 

element size, dipole size and the distance between the source and sensor) which 
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according to Hamstad et al. (Hamstad, O’Gallagher, and Gary 1999) should give 

satisfactory result for acoustic emission simulation.  

 
(b) 

Figure 6.16: (a) Dipoles at crack tips for simulation of acoustic emission due to crack 

growth; (b) distribution of dipoles across the thickness of the plate 

To create a 3D FEM model of a fatigue crack in a plate, we idealized a fatigue 

butterfly-crack in our specimen shown in Figure 6.4. We assumed crack surfaces to be 

perpendicular to the plate surface and radiating outwards from the hole. We have also 

assumed crack surfaces to be stress free. We placed the acoustic emission sources at the 

(a) 
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tips of the cracks. We modelled the acoustic emission source as equal strength dipoles 

distributed across the thickness of the plate (Figure 6.16). 

By incorporating a temporal variation of the dipole strength, we simulated 

generation of acoustic emission from the crack tips. As mentioned earlier, following 

Hamstad et al.(Hamstad, O’Gallagher, and Gary 1999), we used the temporal variation of 

the dipole strength as a cosine bell curve with 1.5 µs rise time. 

 

Figure 6.17: Schematic diagram of 3D FE model for AE from crack tips 

Figure 6.17 shows a schematic diagram of the FEM model created for simulation 

of acoustic emission in 3D. To minimize boundary reflections from the edges of the FE 

model, we used non-reflecting boundary (NRB) around the edges. The NRBs were 

created by adding damping elements on top and bottom surfaces of the plate around the 

edges along with damping elements at the edge of the boundaries (Shen and Giurgiutiu 

2015). The purpose of NRBs is to absorb the incident and reflected wave energies to 

minimize boundary reflections. Figure 6.18 (a) and (b) show out of plane displacements 

at 20 mm from the hole along the length of the specimen from FE model without NRB 
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and with NRB. We can see that the boundary reflections are almost eliminated by the use 

of NRB. The usefulness of NRB is also clear from Figure 6.19 (a) and (b) which show 

the time frequency analysis of the displacement plots shown in Figure 6.18.  

 
(a)      (b) 

Figure 6.18: Out of plane displacement at 20 mm from hole (a) without NRB, (b) with 

NRB 

 
(a)      (b) 

Figure 6.19: Time-frequency analysis of out of plane displacement at 20 mm from hole 

(a) without NRB, (b) with NRB  

However, the NRBs do not eliminate boundary reflections completely. From 

Figure 6.18 (b), we can see that the ripples after the arrival of the first acoustic emission 
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changes as the specimen dimensions are changed. This is the effect of specimen geometry 

on the acoustic emission signal due to reminiscent boundary reflections. But, these 

reflections are much smaller than the direct acoustic emission signal and contain only 

very low frequencies as shown in Figure 6.19 (b). Therefore, we conclude that, even 

though not perfect, NRBs are very effective in simulating acoustic emission using FE 

analysis. 

To investigate effects of the presence of the butterfly crack, we created another 

FE model with the identical geometry with no crack as shown in Figure 6.20. We placed 

the dipoles at the same locations relative to the hole. The purpose of this study was to 

understand if there is a difference in the acoustic emission signal due to the presence of 

the crack and if this difference is related to the crack geometry or not. 

Figure 6.21 shows the comparison between the out of plane displacement 

calculated by the two FE models; one is with butterfly cracks and the other is without. 

From the time variation of the displacements, we can clearly see that there is a significant 

difference due to the presence of the crack. 

Figure 6.22 shows the calculated displacements in frequency domain. We can see 

that the presence of the butterfly cracks modifies the frequency content of the acoustic 

emission signal significantly. Therefore, the crack acts as a frequency filter to the 

acoustic emission. It is apparent that, at least theoretically, a significant difference exists 

between the crack related acoustic emission and non-crack related acoustic emission. 
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Figure 6.20: Schematic diagram of 3D FE model for acoustic emission from point 

sources next to a hole 

 

Figure 6.21: Out of plane displacement at 20 mm from hole 
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Figure 6.22: Frequency content pf out of plane displacement at 20 mm from hole 

6.2.4 RESONANCE OF FATIGUE CRACK DUE TO FATIGUE CRACK GROWTH 

We have seen that the presence of the crack modifies the frequency content to the 

acoustic emission signal received. Next, we want to investigate if we can extract any 

crack feature from crack related acoustic emission. We first performed harmonic analysis 

on our FE models. On the model with crack, instead applying the dipole with time 

varying dipole strength, we applied frequency varying dipole strength. The aim was to 

understand the frequency characteristics of the crack vibration. Figure 6.23 shows that 

due to a harmonic source the crack will undergo resonances in crack-opening type 

motion. Also, it shows that this resonance frequency will depend on the length of the 

crack. For example, the fundamental resonance frequency of a 2 mm long crack will be 

higher than that of a 5 mm long crack; as the crack length increases, the fundamental 

resonance frequency will decrease. 
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Figure 6.23: Crack opening resonance frequencies from harmonic analysis 

 

Figure 6.24: Crack resonance captured from an acoustic emission signal measured at a 

distance 

Figure 6.24 shows the frequency content of the simulated acoustic emission in 

terms of out of plane displacement measured 20 mm away from the hole. We can clearly 

see multiple resonances from the simulated acoustic emission signal. Upon comparing 

Figure 6.23 and Figure 6.24, we can see that these resonance frequencies are same as the 

resonance frequencies associated with the crack opening motion. Therefore, we 
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confirmed through simulation that a wideband acoustic source located at the tip of a crack 

causes the crack to resonate and this resonance can be detected from the acoustic 

emission signal. Since the crack resonance frequency depends on the crack length, 

theoretically it is possible to detect crack length from this acoustic emission signal. 

6.2.5 EXPERIMENTAL VALIDATION OF THE RESONANCE PHENOMENON 

Our aim was to validate the simulation results with a fatigue test experiment. In 

our fatigue test, when the crack grows, the plate causes acoustic emissions from one of 

the crack tips. In our simulation, the crack surfaces was assumed to be stress free which is 

not the case in a fatigue crack. Therefore, to confirm the phenomenon of crack resonance 

due an acoustic emission source at the tip, we used a slit instead of a fatigue crack. We 

started with a 1.6 mm thick aluminum plate with 1220 mm in length and 1220 mm in 

width. We cut a through thickness slit in the plate with diamond cutting disc of 0.25 mm 

in thickness as shown in Figure 6.25. Then, piezoelectric wafer active sensors (PWAS) 

were bonded at one of the tips of the slit to emulate an acoustic source.  

Two PWAS transducers were bonded at the slit tip on the top and bottom surfaces 

of the plate. The advantage of using a PWAS in this configuration is in its excitability. 

We could excite the PWAS transducers in-phase or out-of-phase. However, in our fatigue 

test, we load the plate under uniform tension which, in our understanding, will cause 

symmetric type excitation at the crack when the crack grows. Therefore, we excited the 

PWAS transducers simultaneously in-phase to cause a symmetric excitation. To create a 

wideband acoustic emission, we excited the PWAS transducers with a voltage pulse as 

shown in Figure 6.26 (b) and (c). 
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Figure 6.25: Schematic diagram of experiment to detect resonance of a slit caused by an 

acoustic source at tip 

The resulted acoustic emission was measured 20 mm from the slit with a LASER 

Doppler Velocimeter (LDV). Figure 6.27 (a) shows the frequency domain plot of the 

measured acoustic emission at 20 mm from the slit; in this figure, we can see multiple 

peaks which look like resonances. To verify these peaks, we also scanned the area around 

crack using LDV to visualize the wave field around the crack. This was done by using 

chirp excitation with synchronized LDV measurement at a large number of points around 

the slit. This measurement made it possible to visualize resonances of the slit due to the 
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acoustic emission from PWAS. Figure 6.27 (b)-(e) show the plate surface velocity around 

the slit measured by LDV at various resonance frequencies. Upon comparison with 

Figure 6.27 (a), we can clearly understand that the resonance peaks in Figure 6.27 (a) 

correspond to the resonance at the through thickness slit. This experiment confirms the 

crack resonance due to acoustic emission from its tip and validates our FE analysis. 

 

(b)      (c) 

Figure 6.26: (a) Picture of the specimen with a slit; (b) excitation signal in time domain; 

(c) excitation signal in frequency domain 

PWAS 

(a) 
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(b)   (c)   (d)   (e) 

Figure 6.27: Resonance of the slit at multiple frequencies due to acoustic emission from 

PWAS (a) measured at 20 mm from the slit (b)-(e) area scan results showing standing 

wave field around the slit 

6.3 DETECTION OF FATIGUE CRACK LENGTH FROM ACOUSTIC EMISSION 

SIGNALS  

Section 6.2 proposed and validated the phenomenon of crack vibration due the 

presence of a wideband acoustic source at the crack tip using FE analysis and 

experimentation. As acoustic emission is a wideband excitation generally at the crack tip, 

our aim is to use this phenomenon to detect fatigue crack length from recorded acoustic 

emission signal. There are two main mechanisms for generation of acoustic emission 

from a fatigue crack as shown in Figure 6.28. As shown on the left branch of Figure 6.28, 

one mechanism is when the crack grows and some of the energy at the crack tip is 

173 kHz 359 kHz 147 kHz 105 kHz 

(a) 
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released in the form of acoustic emission (Moorthy, Jayakumar, and Raj 1996). The other 

mechanism is depicted on the right branch of Figure 6.28; when the crack resonated due 

to ambient vibration, the rubbing of the crack surfaces create acoustic emissions 

(Meriaux et al. 2010). Our main challenge is to detect these acoustic emissions and 

identify crack resonance from them. We follow the left branch in Figure 6.28. 

 

Figure 6.28: Flow chart diagram for detection of fatigue crack length from acoustic 

emission 

6.3.1 IDENTIFICATION OF CRACK LENGTH FROM ACOUSTIC EMISSION DUE TO CRACK 

GROWTH 

As discussed in section 6.2.1, it is important to minimize the boundary reflections 

to successfully extract crack information from acoustic emission. We have considered 

two methods to minimize the effects of boundary reflections: one is by using a wide 

specimen such that the reflections are farther apart; the other one is by using absorbing 

material at the boundary to absorb the boundary reflections. Therefore, we used a wider 
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specimen of 100 mm width with absorbing clay around the boundary (Figure 6.29(a) and 

(b)).The length of the specimens were 300 mm; a 1 mm diameter hole was drilled at the 

center for the crack initiation. To minimize the sensor effect on acoustic emission, we 

used smallest possible sensors available, i.e. the PICO AE sensor from MISTRAS Corp.  

 
(b) 

Figure 6.29: (a) 100 mm wide, 300 mm long, and 1 mm thick specimen (b) absorbing 

clay boundary to minimize boundary reflections 

Conventional acoustic emission sensors such as the PICO sensor are 

fundamentally resonant sensors. This implies that these sensors have strong resonances 

around the frequency it is designed for. This is good in general for detection of acoustic 

emissions even for low energy acoustic emissions. However, these resonating sensors 

may not be best to detect crack resonances as the signals detected by these sensors are 

modified by their own dynamics. Therefore, we have used PICO AE sensors along with 

PWAS sensors for detection of acoustic emissions during fatigue tests.  

(a) 
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Figure 6.30: Tuning curve of sensors 

One advantage of using PWAS is that it senses both in plane and out of plane 

motion, whereas PICO is predominantly sensitive to out of plane motion. Realistically, 

any contact type sensors will have its own dynamics which will influence the wave field 

that it senses. However, from Figure 6.30 we can see that, for out of plane type motion, 

PWAS is much more sensitive to lower frequencies than PICO because PICO resonated 

at around 450 kHz. This is advantageous for detection of crack resonances at lower 

frequencies. However, to verify PWAS as acoustic emission sensor, we used both PICO 

and PWAS and compared results.  

We used pencil lead break (PLB) to emulate acoustic emission in a plate. We 

bonded a PWAS and PICO on top and bottom surfaces of the plate at the same location in 

the plate as shown in Figure 6.31 (a). The pencil lead break signals received by the 

sensors are shown in Figure 6.31 (b). We can see that the frequency content of both 

signals are quite similar but PWAS has better detection at low frequency. Next, we 
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bonded two PWAS sensors on top and bottom surfaces of the plate at 20 mm from the 

hole as shown in Figure 6.32 (a).  

 
(a)      (b) 

Figure 6.31: Pencil lead break test for sensor comparison; (a) location of sensors and (b) 

plots of pencil lead break signals received by both the sensors 

 

 
(a)      (b) 

Figure 6.32: Detection of symmetric and antisymmetric modes in PLB; (a) location of 

sensors and (b) plots of pencil lead break signals received by both the sensors 
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Similarly, we bonded two PICO sensors at 20 mm from the hole on the opposite 

side of PWAS as shown in Figure 6.32 (a). Form Figure 6.32 (b) we can see that the 

initial part of the pencil lead break signal shows the same response for both the PWAS 

sensors. This shows that this initial part of the signal corresponds to symmetric Lamb 

wave modes. However, we do not see this behavior for PICO sensors. This proves that 

PICO sensors only detect the antisymmetric modes. We should keep in mind that we 

need both symmetric and antisymmetric modes to successfully detect crack resonances. 

Therefore, in fatigue tests we relied on the PWAS sensor signal. 

 
(a)      (b) 

Figure 6.33: (a)Specimen with PICO and PWAS sensor undergoing fatigue test; (b) 

PWAS disbonded under high fatigue loading 

We mounted the specimen in MTS machine for fatigue testing (Figure 6.33 (a)) 

and applied cyclic loading between 6.5% and 65% of the yield stress of the material 

(AL2024T4) to shorten the test duration. First, we bonded PICO AE sensor and PWAS 

sensors at 20 mm from the center of the hole. Several specimens were tested. On average, 
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the cracks started growing from the hole after about 23000 cycles and grew to a size of 

about 10 mm on each side after 30000 cycles (Figure 6.34). However, due to high surface 

strain, the bonding layer between the plate and the PWAS sensors started cracking from 

the beginning of the experiment and the PWAS sensors peeled off the plate surface 

(Figure 6.33(b)). So, most of the acoustic emission received by PWAS in this 

configuration was due to the bonding layer cracking rather than crack growth in the plate.  

 

Figure 6.34: 20 mm long fatigue crack after 30000 cycles of loading 

To resolve this issue, we conducted the next test in two stages. In the first stage 

we did not use any sensor or clay boundary on the specimen. Because of which we could 

use higher frequency (10 Hz to 12 Hz) of fatigue loading to shorten the duration of the 

test. In the second stage we used absorbing clay to absorb boundary reflections. Because 

of the fast first stage we could use very low frequency fatigue loading (0.25 Hz) for 

higher degree of control over the crack growth and still save time. First we grew a long 

crack in the specimen (Figure 6.34) and then we mounted the PWAS very close to the 

crack (Figure 6.35). Then, the crack was grown further under low frequency fatigue 

loading. The reason for such proximity of the PWAS was the surface strains being very 

low close to a long crack. This ensured that the PWAS bonding on the plate surface did 

not break and the acoustic emissions detected by the PWAS corresponded to the crack 

growth. 
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Figure 6.35: PWAS bonded next to a 20 mm long fatigue crack 

 

Figure 6.36: Cumulative number of acoustic emission recorded 

 

Figure 6.37: acoustic emission detected using PWAS without preamplifier 

Figure 6.36 shows accumulative number of acoustic emissions detected by the 

PWAS. This is consistent with the crack growth rate. As the crack grows longer, the 

growth rate increases resulting in higher rate of emissions. This can be easily understood 

from Figure 6.36. However, the recorded signals were very low in amplitude as shown in 
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Figure 6.37. Since the signal strength is in the same range of the lower limit of the 

hardware we were not successful in extracting any meaningful frequency information 

from the recorded signals.  

 
(a)      (b) 

Figure 6.38: (a) Picture of preamplifiers, (b) frequency characteristics of preamplifier  

To alleviate this issue, we used preamplifiers (Figure 6.38 (a)) to amplify the 

signal detected by PWAS before recording. To ensure the suitability of these amplifiers 

for our method we determined the frequency characteristics of these amplifiers. We used 

a wideband input signal (Figure 6.39) to record the response of these amplifiers and 

compared the response with the input signal in frequency domain to obtain the frequency 

characteristics of Figure 6.38 (b). From the plot we can see that at 40 dB gain the 

amplifier response is relatively flat up to about 700 kHz. Therefore, we used these 

amplifiers at 40 dB gain to amplify the PWAS signal. 
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(a)      (b) 

Figure 6.39: Input signal in (a) time domain and (b) frequency domain 

 
(a)      (b) 

Figure 6.40: acoustic emission signals received by PWAS: (a) type 1 and (b) type 2 

Figure 6.40 shows typical signals received by PWAS related to crack growth. 

Predominantly we recorded two types of acoustic emission signals type 1 and type 2. If 

we compare type 1 signals with type 2 signals as shown in Figure 6.40 (a) and (b), we can 

see that the type 1 signals appears to be non-dispersive and type 2 signals appear to be 

dispersive. Upon inspecting the tuning curves of PWAS in Figure 6.41 (a) and (b) we 

realize that the frequency contents of type 1 and type 2 signals are very similar to the 

tuning curves of PWAS for S0 and A0 modes respectively. Also it is well known fact that 
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S0 mode is non-dispersive and A0 mode is dispersive at relatively low frequencies. 

Therefore, we conclude that the type 1 and type 2 signals correspond to the S0 and A0 

Lamb wave modes respectively. 

 
(a) 

 
 (b) 

Figure 6.41: PWAS tuning curve: (a) S0 and (b) A0 Lamb wave mode 

A small percentage of signals appeared to contain both S0 and A0 modes (Figure 

6.42). However, type 1 and type 2 signals accounted for more than 90% of acoustic 

emissions recorded with both of these types being present in equal proportions. 

All the signals recorded contain noise of specific frequencies appearing as spikes 

in the frequency plots of the signals. This may be due to the electromagnetic noise 

generated by the servo-actuators in the MTS fatigue testing machine. This is clearly 

understood if the analyze the frequency content of the noise in the signal as shown in 

Figure 6.43. These are received by PWAS sensors as they are not shielded from 
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electromagnetic noise. We used Hanning window to isolate the meaningful part of the 

signal from the noise floor then filtered the noise using 8 order low pass Butterworth 

filter of 800 kHz.  

 

Figure 6.42: PWAS signal of mixed type 

 

Figure 6.43: Noise due to servo actuation system in MTS machine 
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(c)      (d) 

Figure 6.44: PWAS signal of type 1 at crack length of (a) 20 mm; (b) intermediate length 

1; (c) intermediate length 2; (d) 37 mm 

Since acoustic emissions due to fatigue crack growth occur within a very short 

time interval, the source should contain a wide frequency band. Therefore, based on the 

recorded acoustic emission signals, distinctive type 1 or type 2 signals are possible when 

the acoustic emission source is emitting either symmetric or antisymmetric modes 

respectively. So, there are two distinctive behaviors of the acoustic emission source 

represented by type 1 and type 2 signals. One possible explanation of this is, during the 

crack growth at the top of the loading cycle, the acoustic energy is released 

(a)      (b) 
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predominantly in S0 Lamb wave mode; subsequently, when the loading cycle is 

decreasing, the inclined crack surfaces rub against each other near the crack tip and emits 

A0 Lamb wave mode. 

Figure 6.44 (a) to (d) and Figure 6.45 (a) to (d) show samples of type 1 and type 2 

signals at different stages of the test with different lengths of the fatigue crack. However, 

in the frequency plots of either of these two types of signals, we do not see any obvious 

crack resonance peak decreasing in frequency as the crack increased in length.  

 
(c)      (d) 

Figure 6.45: PWAS signal of type 2 at crack length of (a) 20 mm; (b) intermediate length 

1; (c) intermediate length 2; (d) 37 mm 

(a)      (b) 
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If our explanation is correct, then the crack surfaces are not stress free when the 

A0 mode is emitted. So the boundary conditions are not stress free and are unpredictable 

at the crack surfaces during this type of acoustic emissions. Therefore, using type 2 

signals, we may not be able to predict crack length based on our crack resonance 

phenomenon which assumed stress free crack surfaces. At the top of the loading cycles, 

as the crack grows, the crack surfaces are stress free and, based on our hypothesis, this 

emits S0 mode. Therefore, using the crack resonance phenomenon we should be able to 

identify crack resonances from type 1 signals under ideal circumstances. However, to be 

successful in detecting crack resonance from type 1 signals, the lower frequency contents 

of the recorded signals should be noise free. 

There is also a possibility that our explanation is not correct because the 

proximity of the PWAS to the crack changes the crack resonance. This may also be the 

reason for the type 1 and 2 signals being very similar to the PWAS tuning curves. 

6.4 CONCLUSION AND FUTURE WORK 

In this chapter we have presented our efforts to understand the behavior of source 

of acoustic emission due to fatigue crack growth based on physics of materials. We used 

FE analysis to develop our understanding. A CMEP type approach could also be used to 

develop an analytical model for acoustic emission due to crack growth; the initial 

deformation field at the crack tip could be expressed as modal expansion of only the non-

propagating Lamb wave modes which will result into propagating Lamb wave modes due 

to the change in boundary conditions as the crack grows. However, detailed study needs 

to be performed to develop this type of analytical models. 

One of the main focuses of this study was to apply this physical understanding of 

the source characteristics to extract the length information of a growing crack from 
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acoustic emissions. We have invented a method to detect the crack length from the 

recorded acoustic emission signals and experimentally demonstrated its validity. 

However, detecting crack length of a growing fatigue crack during a fatigue test remains 

challenging. 

To obtain better results one should perform displacement controlled crack growth. 

In this method one should follow the first stage of the testing method as described earlier. 

But in the second stage, one should bond the PWAS farther away from the crack to 

minimize its effect on crack resonance. Also, in the second stage, instead of using low 

frequency fatigue loading one should use displacement controlled loading to ensure 

stable crack growth. This will also ensure no rubbing between the crack surfaces. In this 

method, in future, one should obtain acoustic emission signal related to the crack growth 

events only. This will also give opportunity to verify our explanation for two types of 

acoustic emission signals. 

One should also use coaxial cable to connect the PWAS along with grounding the 

plate to instrument grounds. This will minimize the noise received by the PWAS. Also, 

better post processing technique to eliminate noise from the recorded signals would be 

helpful. 

  



 154   

 

CHAPTER 7  

CONCLUSION AND FUTURE WORK 

7.1 RESEARCH CONCLUSIONS 

This dissertation has presented the theoretical background of plate guided waves. 

Along with that, it has illustrated an algorithm to solve for complex roots of a 

transcendental equation in a large complex domain. It has also presented an application of 

this algorithm to obtain all complex roots of the Rayleigh-Lamb equations in a large 

complex domain containing several hundreds of complex Lamb wave modes. It has 

explained the physical behaviors of these Lamb wave modes and how they appear in an 

elastodynamic field in a plate. It has illustrated the physical behavior of Lamb wave 

modes in terms of fundamental pressure wave and shear wave. It has illustrated an 

efficient method using of Lamb wave complex eigen space to project the thickness 

dependent boundary conditions encountered in the Lamb wave scatter problem. The 

presented method is called complex modes expansion and vector projection (CMEP). 

This dissertation has also presented convergence and accuracy of this method 

over a wide range of frequency-thickness values up to 1.5 MHz-mm. It was found that 

the CMEP method is more than two orders of magnitude faster than FEM for the same 

accuracy. As a byproduct, the CMEP method also yields the local vibration field near the 

damage which is dominated by the evanescent and complex wave modes. The CMEP 

method is different from other methods (Feng, Shen, and Lin 2012), (Feng, Shen, and 

Shen 2016) which use the orthogonality between modal stresses and displacements. 

Unlike these methods, CMEP does not need to assume virtual wave guides and vertical 
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free-ends to implement the orthogonality relations. We applied CMEP to a horizontal 

cark, a vertical crack and a notch to demonstrate its capability in predicting scattered 

Lamb wave field. We also verified the predictions with FEM models and confirmed that 

CMEP is orders of magnitude faster than the FEM code we used and it is as accurate as 

FEM. However, there were some convergence issues in the case of a vertical crack for 

CMEP. The convergence required 75 complex Lamb wave modes for a vertical crack; 

this is much higher compared to only 27 for a vertical notch, despite the fact that we used 

the same CMEP code for both of these damages. In our opinion this could be due to the 

nature of discontinuity that a vertical crack creates.  

For experimental verifications, this dissertation has demonstrated a method to 

create straight crested Lamb wave modes using inspirations from FE analysis. It has 

showed that it is possible to create straight crested Lamb wave modes using absorbing 

boundary along with long transducers. This method of generating straight crested Lamb 

waves is useful for many experimental investigation and validation of predictive models. 

We used this method to validate the predictions from CMEP for a step in plate thickness. 

We used analytical models like CMEP and WFR1D to design our experiment 

successfully. The obtained experimental results agree with the CMEP predictions well. 

The major sources of errors were in specimen geometry and in the use of SLDV for 

measurement. Also, the reflective tape used on the entire wave guide for wave field 

measurement contributed to deviation of the experimental results from CMEP 

predictions. 

This dissertation continued to present our efforts to understand the behavior of 

source of acoustic emission due to fatigue crack growth based on physics of materials. 
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We used FE analysis to develop our understanding. One of the main focuses of this study 

was to apply this physical understanding of the source characteristics to extract the length 

information of a growing crack from acoustic emissions. We invented a method to detect 

the crack length from the recorded acoustic emission signals and experimentally 

demonstrated its validity. However, detecting crack length of a growing fatigue crack 

during a fatigue test remains challenging. 

7.2 MAJOR CONTRIBUTIONS 

This dissertation has contributed to the state of the art in various ways. The major 

contributions are listed below: 

1. A novel approach was developed to solve for complex roots of generic 

transcendental equations and was applied to obtain complete solution of Rayleigh-

Lamb equations in a very large complex domain. 

2. Using the complex solution of Rayleigh-Lamb equations, a complex modes 

expansion and vector projection method (CMEP) was developed to predict Lamb 

wave scattering from a step in plate thickness and validated by FEM results. 

3. An analytical model to predict scattering of axial-flexural waves from a step in 

plate thickness was developed using simplified Kirchhoff plate theory and, after 

comparison with CMEP, was found to be useful only at low frequencies. 

4. Using the complex solution of Rayleigh-Lamb equations, a complex modes 

expansion and vector projection method (CMEP) was developed to predict Lamb 

wave scattering from a notch in plate thickness and validated by FEM results. 

5. Using the complex solution of Rayleigh-Lamb equations, a complex modes 

expansion and vector projection method (CMEP) was developed to predict Lamb 

wave scattering from a crack in plate and validated by FEM results. 
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6. Using the complex solution of Rayleigh-Lamb equations, a complex modes 

expansion and vector projection method (CMEP) was developed to predict Lamb 

wave scattering from a horizontal crack in plate and validated by FEM results. 

7. The developed CMEP method is orders of magnitude faster than conventional 

numerical techniques like FEM 

8. A unique experimental technique was developed to create straight crested Lamb 

wave modes in a finite plate for verification of predictive models. 

9. The developed experimental technique was used to verify CMEP predictions. 

10. A unique phenomenon of crack vibration due to a wide band excitation at the 

crack tip was identified. 

11. A method was invented to detect crack length from acoustic emission signals 

recorded during fatigue crack growth. 

7.3 RECOMMENDATION FOR FUTURE WORK 

The algorithm described in this dissertation to solve for complex roots of 

transcendental equations uses modified bracketing method for the entire complex 

domain. However, this method can be improved; based on the roots already obtained, we 

can predict the roots along the direction of increasing  . This will improve the speed by 

narrowing the region for root search and follow the modes as they appear (Gregory and 

Gladwell 1983).   

The CMEP method that we demonstrated assumes straight crested Lamb wave 

modes in plate strain condition. However, similar approach of using complex modes 

expansion with the projection of thickness dependent boundary conditions onto the vector 

space of complex wave modes using power flow associated with the wave guides can be 

used for non-straight crested plate guided waves. One needs to keep in mind that shear 
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horizontal waves should also be considered along with Lamb waves for such analysis. 

Also, some convergence issues have been identified for the case of a surface breaking 

crack and farther study needs to be performed for better understanding.  

For better agreement between theoretical predictions and experimental results 

obtained using the proposed method, one must control the specimen and damage 

geometry precisely. Also, the use of single point LDV instead of SLDV may result in 

more accurate measurement of scattered waves. 

To capture crack resonance due to acoustic emission during fatigue crack growth, 

one should perform displacement controlled crack growth. In this method one should 

follow the first stage of the testing method as described in section 6.3.1. But in the second 

stage, one should bond the PWAS farther away from the crack to minimize its effect on 

crack resonance. Also, in the second stage, instead of using low frequency fatigue loading 

one should use displacement controlled loading to ensure stable crack growth. This will 

also ensure no rubbing between the crack surfaces. In this method, in future, one should 

obtain acoustic emission signal related to the crack growth events only. This will also 

give opportunity to verify our hypothesis. 

One should also use coaxial cable to connect the PWAS along with grounding the 

plate to instrument grounds. This will minimize the noise received by the PWAS. Also, 

better post processing technique to eliminate noise from the recorded signals would be 

helpful. 

For fast and accurate predictive simulation of acoustic emission due to fatigue 

crack growth, a CMEP type complex modes expansion approach could also be used; the 

initial deformation field at the crack tip could be expressed as modal expansion of the 
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non-propagating Lamb wave modes which will result into propagating Lamb wave 

modes due to the change in boundary conditions as the crack grows. However, detailed 

study needs to be performed to develop this type of analytical models. 
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