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MOTIVATION 

Nowadays, the composite materials are being used in more and more industries 

such as aerospace, naval and automotive. They slowly replace the traditional ferrous 

materials due to their great properties (lightness, better resistance to stress and shocks, 

longer life etc.). 

One common way to inspect such materials is to use ultrasonic nondestructive 

evaluation methods (NDE) which allow examining complex structures without damaging 

them. NDE allows the detection of damage before it becomes a major problem. In the 

aerospace industry, for example, detection techniques for delaminations, cracks and 

corrosions are so vital that they can sometimes make the difference between life and 

death, being able to prevent catastrophic failures and adding a new edge of safety and a 

lower maintenance and operating cost for the airplanes. In recent decades, the trend is 

to move towards NDE methods with embedded ultrasonic sensors instead of the 

conventional coupled transducers ones. 
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ABSTRACT 

This research proposes a new approach to structural health monitoring (SHM) 

for composite laminates using piezoelectric wafer active sensors (PWAS) and fiber optic 

bragg grating sensors (FBG). One major focus of this research was directed towards 

extending the theory of laminates to composite beams by combining the global matrix 

method (GMM) with the stiffness transfer matrix method (STMM). The STMM 

approach, developed by Rokhlin et al (2002), is unconditionally stable and is more 

computationally efficient than the transfer matrix method (TMM). Starting from theory, 

we developed different configurations for composite beams and validated the results 

from the developed analytical method against experimental data. STMM was then 

developed for pristine composite beam and delaminated composite beam. We studied 

the influence of the bonded PWAS by looking at their mode frequencies and amplitudes 

via experiments and simulations with different sensor positions on pristine and 

damaged beams, with different delamination sizes and depths. 

We also extended the TMM and the electro-mechanical (E/M) impedance 

method for applications to the convergence of TMM of beam vibrations. The focus was 

on the high-accuracy predictive modeling of the interaction between PWAS and 

structural waves and vibration using a methodology as in Cuc (2010). We expanded the 

frequency resonances of a uniform beam from the range of 1-30 kHz previously 
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studied by Cuc (2010) to a higher frequency range of 10-100 kHz and performed the 

reliability and accuracy analysis (error rates) of all available theoretical models (modal 

expansion, TMM, and FEM) given experimental data for the uniform beam specimen. 

Another focus of this research was to explore the use of FBG for fiber composites 

applications. We performed tests that vary the load on the free end in order to 

understand the behavior of composite materials under tensile forces and to extend 

results to ring sensor applications. The last part this research focused on developing a 

novel acousto-ultrasonic sensor that can detect acoustic emission (AE) events using 

optical FBG sensing combined with mechanical resonance amplification principles. This 

method consists of a sensor that can detect the ultrasonic out of plane motion with 

preference for a certain frequency (300 kHz).  

Finally, we introduced the concept of a FBG ring sensor for a Navy application, 

which can provide significant improvements in detecting vibrations. We use a laser 

vibrometry tool (PSV-400-3D from Polytec) to study the mode shapes of the sensor ring 

under different resonance frequencies in order to understand the behavior of the ring in 

the frequency band of interest (300 kHz) and further compare these results and shapes 

with FEM predictions (ANSYS WB). Our experiments proved that the concept works and 

a ring sensor that can reach the first resonance at any desired frequency could be built. 

This work was finalized with an invention disclosure for a novel acousto-ultrasonic FBG 

ring sensor (Disclosure ID No. 00937). 

The dissertation ends with conclusions and suggestions for future work. 
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Equation Chapter 1 Section 1 

PART I - STATE OF THE ART 

1. LITERATURE REVIEW OF VIBRATION ANALYSIS BY MODAL EXPANSION 

In this section, we present a brief introduction to the vibration theory (modal 

expansion). The modal expansion method consists of determining the axial and flexural 

frequencies using MATLAB, which combined give the frequency response function. We 

follow the approach of Giurgiutiu (2008) to calculate the admittance and impedance. 

To proceed with this method, we consider a PWAS transducer attached to a 

structure as in  

Figure 1. When we apply a voltage to the PWAS of length pl
 at 1x

 and 2x
 from 

the left side, the PWAS expands and contracts by amount Pε
. The tension created by 

the PWAS produces a reaction force PF
 from the beam to the PWAS, that in turn, 

produces an opposite reaction force from the PWAS to the beam. The force produced 

by the sensor PF
 brings an axial force FN

 and a bending moment FM
at the center of 

the beam (neutral axis). The harmonic excitation of the PWAS with a high frequency 

signal induces in the structure standing or travelling waves.
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Figure 1: Forces and moments created by a PWAS bonded to a beam structure 

Source: Cuc (2010) 

In order to determine the axial force and the bending moment we begin from 

the force generated by the PWAS ( PF
 is the complex amplitude): 

 ˆi t i i t i t
P PF Ae Ae e F eω ϕ ϕ ω ω+= = ⋅ =  (1.1) 

The axial force and bending moment at locations 1x  and 2x
are written as: 

 
ˆ i t

P P PN F N e ω= =  (1.2) 

 ˆ ˆ
2 2

i t i t
P P P P

h h
M F F e M eω ω= = =  (1.3) 

We use the Heaviside function: 

 ( ) ( )
1

1 2 1 2

2

0

1

0

x x

H x y H x y x x x

x x

<


− − − = ≤ ≤
 >

 (1.4) 

The axial force and bending moment at any point xon the beam are provided by: 

 ( ) ( ) ( )2 1
ˆ, i t

P PN x t N H x x H x x e ω= − − −    (1.5) 

 ( ) ( )2 1
ˆ i t

P PM M H x x H x x e ω= − − −    (1.6) 
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1.1  AXIAL VIBRATIONS 

In this part, we consider the free axial vibrations of a uniform elastic bar of 

length l  cross-sectional area ,A mass ,m and axial stiffness EA  as in Figure 2. We look 

for the beam response under forced axial vibration. 

 
Figure 2: Flexural vibration of a uniform bar 

Source: Cuc (2010) 

From the summation of forces in the x  axis the equation of motion can be derived: 

 ( ) ( ) ( ) ( ), , , ,N x t dN x t N x t Au x tρ+ − = &&
 (1.7) 

and 

u
N A EA EAu

x
σ

∂
′= = =

∂  the equation of motion for free axial vibrations can be 

written as: 

 ( ) ( ), , 0EAu x t Au x tρ′′ − =&&
 (1.8) 

Define 

 

E
c

ρ
=

 (1.9)  

Hence Eq. (1.8) becomes 

 ( ) ( )2 , , 0c u x t u x t′′ − =&&
 (1.10) 

In order to find a solution for (1.8) we use the method of separation of variables. 

 ( ) ( ) ( ) ( ), i tu x t U x T t U x e ω= =
 (1.11) 

We look for the steady-state solution ( )U x .We substitute (1.8) into (1.7) and 

differentiate and obtain a second order differential equation: 
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 ( )2 2( ) 0c U x U xω′′ + =
 (1.12) 

Equation (1.12) admits the general solution in the form: 

 ( ) 1 2sin cosU x C x C xγ γ= +
 (1.13) 

Where c

ω
γ =

 represents a harmonic oscillation similar to a wave, as such γ  is also 

called the wave number. The two constants 1C
 and 2C

are determined from the 

boundary conditions (i.e. free-free, clamped-free, etc.). For the free-free case the 

boundary conditions are: 

 

( )
( )
' 0 0

' 0

U

U l

=

=
 (1.14) 

We differentiate(1.12), substitute into (1.13) and solve the characteristic equation for 

the eigenvalues jγ
 and the general solution yields the mode shapes in the form: 

 
( ) cos , , 1,2,3,......j j j jU x C x j j

l

π
γ γ= = =

 (1.15) 

where jC
 is calculated as 

2 /jC ml=
 and the mode shapes satisfy the orthogonality 

property: 

 
( ) ( )

0

1 ,

0 ,

l

m n mn

m n
U x U x dx

m n
δ

=
= = 

≠
∫

 (1.16) 

For forced vibrations, the equation of motion takes the form 

 ( ) ( ) ( ), , ,PEAu x t Au x t N x tρ′′ ′− =&&
 (1.17) 

Next, we assume the modal expansion 

 ( ) ( ), , 1, 2,3,...i t
j j

j

u x t C U x e jω= =∑  (1.18) 



5 

 

Here, the constants jC
 are the modal participation factors and 

( )jU x
 are the modes 

shapes that satisfy (1.12). We substitute the modal expansion (1.18) into the equation of 

motion (1.17) and get: 

 
( ) ( ) ( )2 ' ,i t i t

j j j j P
j j

A C U x e EA C U x e N x tω ωω ρ− − =∑ ∑
 (1.19) 

From (1.19) 
( ),PN x t′

 is derived and substituted into (1.18) and we get 

 
( ) ( ) ( ) ( )2 ''

2 1
ˆ

j j j j P
j j

A C U x EA C U x N x x x xω ρ δ δ− − = − − −  ∑ ∑
 (1.20) 

From equation(1.20), 

 
( ) ( )

2
n

jU x U x
E

ρω
′′ = −

 (1.21) 

We substitute (1.20) in (1.19) and get 

 
( ) ( ) ( ) ( )2 2

2 1

ˆ
P

j n j
j

N
C U x x x x x

A
ω ω δ δ

ρ
 − = − − −   ∑

 (1.22) 

We multiply with 
( )kU x

 on both sides and take the integral over the length of the beam 

of (1.22) and get 

 

( ) ( ) ( )

( ) ( ) ( )

2 2

0

2 1

0

ˆ

l

k j j j
j

l
P

k

U x C U x dx

N
U x x x x x dx

A

ω ω

δ δ
ρ

 − 

= − − −  

∑∫

∫
 (1.23) 

By rearranging the terms 

 
( ) ( ) ( ) ( ) ( ) ( )2 2

2 1

0 0

ˆl l
P

j n j k k
j

N
C U x U x dx U x x x x x dx

A
ω ω δ δ

ρ
− = − − −  ∑ ∫ ∫

 (1.24) 

Using the orthogonality property of mode shapes (1.15) and the property of the delta 

function 
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( ) ( ) ( )f x x a dx f aδ

+∞

−∞

− =∫
 (1.25) 

Equation (1.24)becomes 

 
( ) ( ) ( )2 2

2 1

ˆ
P

j j k k
j

N
C U x U x

A
ω ω

ρ
− = −  ∑

 (1.26) 

Then, the modal participation factors jC
 can be expressed as 

 
( ) ( )2 12 2

ˆ1 P
j k k

j

N
C U x U x

Aω ω ρ
= −  −

 (1.27) 

Using equation(1.18), the axial vibration response becomes 

 
( )

( ) ( )
( )2 1

2 2

ˆ
, j j i tP

j
j j

U x U xN
u x t U x e

A
ω

ρ ω ω

−
=

−∑
 (1.28) 

For a damped system with the hysteretic damping coefficient g , equation becomes 

 
( )

( ) ( )
( )

( )2 1

2 2

ˆ
,

1
j j i tP

j
j j

U x U xN
u x t U x e

A ig
ω

ρ ω ω

−
=

+ −∑
 (1.29) 

1.2  FLEXURAL VIBRATIONS 

In this part, we analyze a portion of a beam that undergoes flexural vibrations 

under the excitation of an external force per unit length of the beam ( , )f x t  as in Figure 

3. We consider the flexural displacement w  for the flexural vibration of a uniform elastic 

bar of length l , mass m  and flexural stiffness EI . 

 
Figure 3: Flexural vibration of a uniform bar 
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Source: Cuc (2010) 

From the free-body diagram, we have the equation of motion in the z  direction and the 

moment equation about the y  axis through the point O  as: 

 
( ) ( ) ( ) ( ) ( ), , , , ,V x t f x t dx V x t dV x t m w x t+ − + =   &&

 (1.30) 

 ( ) ( ) ( ), ' , ( , )f x t V x t A x w x tρ− = &&
 (1.31) 

 
( ) ( ) ( ) ( ) ( ) ( ), , , , , , 0

2

dx
M x t dM x t f x t dx V x t dV x t dx M x t+ + ⋅ − + − =  

 (1.32) 

Neglecting the terms involving second order in dx   

 ( ) ( )' , ( , ) 0 ( , ) ' ,M x t V x t V x t M x t− = => =
 (1.33) 

Applying the Euler-Bernoulli elementary beam theory, the relation between bending 

moment and deflection is: 

 ( ) ( ) ( ), '' ,M x t EI x w x t=
 (1.34) 

Using equations (1.34) and (1.33) and substituting in (1.31) the equation of motion for a 

uniform beam undergoing flexural vibrations under a force ( , )f x t  can be expressed as: 

 ( ) ( ) ( ), '''' , ,Aw x t EIw x t f x tρ + =&&
 (1.35) 

For free vibrations, ( , ) 0f x t =  and the equation of motion becomes 

 ( ) ( ), '''' , 0Aw x t EIw x tρ + =&&
 (1.36) 

Define 

 

4 EI
a

Aρ
=

 (1.37) 

Hence, Eq. (1.36) becomes 

 
4 0a w w′′′′ + =&&  (1.38) 

Using the separation of variables method, we obtain a solution: 
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 ( ) ( ), ( ) ( ) i tw x t W x T t W x e ω= =
 (1.39) 

We substitute (1.39) in (1.36) we obtain a fourth order differential equation 

 
( ) ( )

1/4
4 0 ,

m
W x W x

EI
γ γ ω ′′′′ − = =  

   (1.40) 

(1.40) admits the general solution in the form 

 ( ) ( ) ( )3 2 3 22
x L R L R

P

h
W x Ce u u uλ ϕ ϕ= = − − −  (1.41) 

We substitute (1.41) in (1.40) and the solution is: 

 ( ) 1 2 3 4, sin cos sinh coshW x t C x C x C x C xγ γ γ γ= + + +
 (1.42) 

where 1 2 3 4, , ,C C C C
 are constants from the boundary conditions. 

In order to calculate the total flexural displacement for a uniform bar under a moment 

excitation PM
 the equation of motion is 

 ( ) ( ) ( ), '''' , ,PAw x t EIw x t M x tρ ′′+ = −&&
 (1.43) 

We assume the modal expansion 

 
( ) ( ), i t

j j
j

w x t C W x e ω= ∑
 (1.44) 

where 
( )jW x

 are orthonormal mode shapes satisfying the free vibration differential 

equation (1.36) We differentiate ( , )w x t  and PM
and get 

 

( ) ( )

( ) ( )

2,

,

i t
j j

j

i t
j j

j

w x t C W x e

w x t C W x e

ω

ω

ω= −

′′′′′′′′ =

∑

∑

&&

 (1.45) 

 
( ) ( ) ( )2 1

ˆ, i t
P PM x t M x x x x e ωδ δ′′ ′ ′= − − −    (1.46) 

We substitute (1.46) and (1.45) into (1.43) 

 
( ) ( ) ( ) ( )2 1

ˆ, , PAw x t EIw x t M x x x xρ δ δ′′′′ ′ ′+ = − − − −  &&
 (1.47) 
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We multiply (1.46) by 
( , )kW x t

 and take the integral over the length of the beam 

 
( ) ( ) ( ) ( ) ( ) ( )2 1

0 0

ˆ, ,
l l

k P kW x Aw x t EIw x t dx M W x x x x x dxρ δ δ′′′′ ′ ′+ = − − − −      ∫ ∫&&

(1.48) 

We use the property of the δ  function 

 
( ) ( ) ( ) ( ) ( )

b b

a a

df xd d
f x x g dx x g dx f g

dx dx dx
δ δ− = − − = −∫ ∫

 (1.49) 

RHS of (1.48) becomes 

 
( ) ( ) ( ) ( ) ( )2 1 1 2

0

ˆ ˆ
l

P k P k kM W x x x x x dx M W x W xδ δ  ′ ′′ ′− − − − = − −    ∫
 (1.50) 

and since the mode shapes 
( )kW x

satisfy the free flexural vibration equation (1.50) we 

get 

 ( ) ( ) ( ) ( )2 20,k k k kEIW x AW x EIW x AW xω ρ ω ρ′′′′ ′′′′− = =
 (1.51) 

LHS of (1.50) becomes 

 
( ) ( ) ( ) ( ) ( ) ( )2 2

0 0

, '''' ,
l l

k j j k j
j

W x Aw x t EIw x t dx C A W x W x dxρ ω ω ρ+ = −   ∑∫ ∫&&

 (1.52) 

where ( ) ( )
0

1
l

k jW x W x dx =∫  as per the orthogonality property of the mode shapes. We 

use (1.51) and (1.47) and substitute in (1.47) 

 
( ) ( ) ( )2 2

1 2
ˆ

j n P k k
j

C A M W x W xω ω ρ  ′ ′− = − −
 ∑

 (1.53) 

the modal participation factors jC are 

 ( ) ( ) ( )2 12 2

ˆ
P

j k k

j

M
C W x W x

Aω ω ρ
 ′ ′= − −
 −

 (1.54) 

We substitute (1.54) into (1.44) and the flexural response of the beam becomes 
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( )
( ) ( )
( ) ( )2 1

2 2

ˆ
, j j i tP

j
j j

W x W xM
w x t W x e

A
ω

ρ ω ω

′ ′−
= −

−
∑

 (1.55) 

For a damped system with the hysteretic damping coefficient g (1.55) becomes 

 
( )

( ) ( )
( )

( )1 2

2 2

ˆ
,

1
j j i tP

j
j j

W x W xM
w x t W x e

A ig
ω

ρ ω ω

′ ′−
=

+ −∑
 (1.56) 

1.3  MODAL ANALYSIS WITH ANSYS WORKBENCH 

Another way to determine the natural frequencies and modeshapes of a beam is 

through FEM analysis. We perform the analysis in ANSYS Workbench software and 

determine the natural frequencies (Figure 4) and the modeshapes. Figure 5 to Figure 17 

present all natural frequencies and mode shapes for a uniform beam between 10 to 100 

kHz. 

 
Figure 4: ANSYS Workbench natural frequencies (range 10 to 100 kHz) 
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Figure 5: Flexural (14.38 kHz) 

 

Figure 6: Flexural (19.96 kHz) 

 

 

Figure 7: Axial (26.24 kHz) 

 

Figure 8: Flexural (26.39 kHz) 

 

Figure 9: Flexural (33.65 kHz) 

 

Figure 10: Flexural (41.73 kHz) 

 

Figure 11: Flexural (50.63 kHz) 

 

Figure 12: Axial (52.48 kHz) 
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Figure 13: Flexural (60.36 kHz) 

 

Figure 14: Flexural (70.93 kHz) 

 

Figure 15: Axial (78.71 kHz) 

 

Figure 16: Flexural (78.71 kHz) 

 

Figure 17: Flexural (94.79 kHz) 

As per results in Figure 5 to Figure 17, all mode shapes match the modal 

expansion solution and the experimental results. 

In order to assess whether there are differences between the ANSYS WB and the modal 

expansion solution in regards to the mode shapes, we compare separately the axial and 

flexural modes. We look at the numbers and location of the modes in the modeshape. 

Analysis of Figure 18 allows us to conclude that they coincide. 
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Figure 18: Analytical versus WB modes 
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Equation Chapter (Next) Section 2 

2. LITERATURE REVIEW OF LAMB WAVES FOR NON-DESTRUCTIVE EVALUATION 

(NDE) 

The ultrasonic NDE and SHM methods are used for detection of damage in 

different structures. The majority of the methods using ultrasonic waves to detect 

damage and are based on the same principles: a transmitter is used to create ultrasonic 

waves in the structure and the waves travel through the structure and are picked up by 

a receiver. In practice, the most commonly used waves to detect damage are P-waves 

which travel through the thickness of the structure, and  guided Lamb waves which 

travel parallel to the surface of the structure. 

Lamb waves (guided waves) are a better alternative for ultrasonic inspection and 

detection of cracks, corrosion, and disbonds/delaminations in various structures than 

conventional transducers which are a time consuming process since they can travel over 

large distances with little loss in amplitude, are sensitive to different types of defects, 

and are capable to propagate along curved structures and can reach enclosed or hidden 

areas. 

2.1  LITERATURE REVIEW OF WAVE PROPAGATION THEORY 

As per the Webster dictionary, waves are "disturbances or variations that 

transfers energy progressively from point to point in a medium and that may take the 

form of an elastic deformation or of a variation of pressure, electric or magnetic  
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intensity, electric potential, or temperature.” A classification of different types of waves 

in elastic solids is shown in Table 1. 

Table 1: Wave types in elastic solids (Source: Giurgiutiu (2008), Table 5.1 page 130) 

Wave Types Motion Shape 

1. Pressure Waves (P) - 

longitudinal, 

compressional, 

dilatational, axial 

Parallel to the surface of the structure 

2. Shear Waves (S) - 

transverse, distortional 

Perpendicular to the surface of the structure 

3. Flexural Waves Elliptical; plane sections remain plane 

4. Rayleigh Waves 

(bending) 

Elliptical; amplitude decays quickly with depth 

5. Lamb  Waves (guided, 

plates) 

Elliptical; free-surface conditions satisfied at the top 

and bottom surface 

2.1.1 PRESSURE WAVES (P) 

Pressure waves or P-waves (Figure 19) propagate parallel to the surface of the 

structure. In pressure waves, a transmitter and receiver are positioned on opposite sides 

of the structure in a “through-transmission” setup and an ultrasonic transducer (coupled 

to the structure through couplant, water, or air) serves as the transmitter or receiver. As 

per Giurgiutiu and Cuc (2004), if the wave transmitted between the emitter and receiver 

crosses a damaged area, it can be dispersed, attenuated, or shifted in time. Damage can 

be identified and measured by analyzing these changes. However using this type of 

waves, damage perpendicular to the surface can be difficult to detect. 
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Figure 19: P-wave that travels through a medium by means of compression and dilation. In 

this figure, particles are represented by cubes in this mode (Source: Lawrence Braile, 

http://www.geo.mtu.edu/UPSeis/waves.html) 

According to the p-wave theory, the particle displacement in a pressure wave can be 

written as: 

 ( )
0( , ) i kx t

xu x t u e ω−= ⋅  (2.1)  

where: 

k  is the wave number 

ω  is the angular frequency 

The wave number can be written in terms of the wave speed c  and the angular 

frequency ω as: 

 

2w
k

c

π
λ

= =
 (2.2) 

The particle displacement can be also written in terms of the wave lengthγ . 
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2

0 0( , )
x x t

iw t i
c T

xu x t u e u e
π

λ
   − −   
   = ⋅ = ⋅  (2.3) 

where cTγ = and 
1 2

T
f

π
ω

= = is the period of oscillation. 

For a three-dimensional free solid, the wave speed c  for a p-wave is: 

 

2
pc

λ µ
ρ
+

=
 (2.4) 

Where: 

( ) ( )1 2 1

Eν
λ

ν ν
=

+ +
 and

( )2 1

E
µ

ν
=

+
 are the Lamé constants 

E  is the Young’s modulus 

υ  is the Poisson ratio 

ρ  is the density. 

For a two-dimensional plate with free top and bottom surfaces, the longitudinal wave 

speed becomes: 

 
2

1

1p

E
c

ν ρ
=

−  (2.5) 

And for a one-dimensional slender bar the longitudinal wave speed is: 

 

E
c

ρ
=

 (2.6) 

2.1.2 SHEAR WAVES (S) 

Shear waves or S-waves (Figure 20) propagate perpendicularly to the surface of 

the structure. 
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Figure 20: Wave that travels through a medium. In this figure, particles are represented by 

cubes in this mode (Source: Lawrence Braile, http://www.geo.mtu.edu/UPSeis/waves.html) 

The particle displacement can be expressed as: 

 ( ) ( )
0, si k x t

yu x t u e ω−=  (2.7) 

where the wave number 
/S Sk cω=

 

In terms of the Lamé constants the wave speed of the shear waves can be expressed as: 

 
Sc

µ
ρ

=
 (2.8) 

2.1.3 FLEXURAL WAVES 

As per Giurgiutiu (2008) and Cuc (2010), flexural waves appear due to bending 

actions (Figure 21). The Bernoulli-Euler beam theory assumes that plane sections remain 

plane after deformation, but shear deformation and rotary inertia effects are ignored. 

The Kirchhoff plate theory assumes that straight normals to the mid-surface remain 
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straight after the deformation takes place but. The two theories imply a linear 

distribution of axial displacement across the thickness. 

 
Figure 21: Simulation of flexural waves (Source: Giurgiutiu, 2008) 

The axial and vertical displacements xu
 and yu

 for a beam can be determined as: 

 x yu yu′= −
 (2.9) 

We consider a harmonic expression for the vertical displacement as follows: 

 ( ) ( )
0, , Fi k x t

yu x y t u e ω−=  (2.10) 

And the in-plane displacement field across the thickness becomes: 

 
( ) ( ) ( )

0 0, , F Fi k x t i k x t
x Fu x y t y u e ik u e

x
ω ω− −∂

= ⋅ = ⋅
∂  (2.11) 

The flexural wave number Fk
in terms of the geometric and materials properties is: 

 
Fk

a

ω
=

 (2.12) 

where 

 

3 1

12 2 3

EI E bh h E
a

A bhρ ρ ρ
= = =

 (2.13) 

The flexural wave speed is: 

 F Fc ak aω= =  (2.14) 

According to equation (2.14), the wave speed is frequency dependent. If the wave speed 

is a function of frequency the wave is called dispersive. 
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2.1.4 RAYLEIGH WAVES 

Rayleigh waves or surface waves (Figure 22) propagate close to the surface of 

the structure, and the motion amplitude decreases quickly with depth. The effective 

depth of penetration into the material is less than a wavelength. 

 
Figure 22: Rayleigh Wave that travels through a medium. In this figure, particles are 

represented by cubes in this mode (Source: Lawrence Braile, 

http://www.geo.mtu.edu/UPSeis/waves.html) 

The two components of the Rayleigh wave xu
 and yu

 are calculated using an 

approximated equation for the wave velocity: 

 

0.87 1.12

1R Sc c
ν

ν
+ =  +   (2.15) 

The Rayleigh wave number is  and the components xu
 and yu

are: /R Rk cω=
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( ) ( )

0 2 2

2
, , Ri k x tqy sy

x R
R

qs
u x y t u k e e e

k s
ω−− − 

= − +   (2.16) 

 
( ) ( )

2

0 2 2

2
, , Ri k x tqy syR

y
R

k
u x y t iu q e e e

k s
ω−− − 

= − +   (2.17) 

Where 
2 2
R Pq k k= −

 and
2 2
R Ss k k= −

. 

2.1.5 LAMB WAVES 

2.1.5.1 LAMB WAVE EQUATIONS 

In order to derive the Lamb wave equations we consider a traction-free surface 

plate with thickness 2d  in which straight crested Lamb waves are propagating (Figure 

23). 

 
Figure 23: Plate of thickness 2d, with a PWAS of width 2a, under harmonic loading on the top 

surface (Giurgiutiu, 2008) 

We make the following assumptions: 

z -invariant motion  

0zu =
 (P+SV waves only) 

0; 0x yu u≠ ≡
 

traction-free surface 

0zx yzσ σ= =
 

0; 0; 0; 0xx yy xyσ σ σ σ≠ ≠ ≠ ≠
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The potentials of the pressure P  and shear vertical SV waves are: 

 ( ) ( ) ( ), , i x tx y t f y e ζ ωφ −=  (2.18) 

 ( ) ( ) ( ), , i x t
zH x y t ih y e ζ ω−=  (2.19) 

Where 

( )f y  describes the motion in the y–direction 

( )i x tζ ω−  describes the motion in the x-direction 

The wave equation in terms of the two potentials can be written as: 

 

2
2

1

Pc
φ φ∇ = &&

 (2.20) 

 

2
2

1
z z

S

H H
c

∇ = &&

 (2.21) 

Where 

( )2 2 /Pc λ µ ρ= +  is the speed of the pressure wave; 

2 /Sc µ ρ=  is the speed of the shear vertical wave; 

, ,λ µ ρ  are the two Lame constants and the density, respectively. 

The displacements in the x  and y  directions are: 

 

z
x

H
u

x y

φ ∂∂
= +

∂ ∂  (2.22) 

 

z
y

H
u

y x

φ ∂∂
= +

∂ ∂  (2.23) 

After derivations and applying the boundary conditions, we arrive at the two differential 

equations: 

 

( ) ( )
( ) ( )

2

2

0

0

P

S

f y f y

h y h y

η

η

′′ + =

′′ + =  (2.24) 
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The general solutions for the equations (2.24)are: 

 

( ) ( ) ( )
( ) ( ) ( )

sin cos

sin cos

P P

S S

f y A y B y

h y C y D y

η η

η η

= +

= +
 (2.25) 

where 

2 2
2 2 2 2

2 2
;P S

P Sc c

ω ω
η ζ η ζ= − = − , and ζ  are the directional wave numbers. 

Substituting equations (2.25) in equation (2.18) and equation(2.19), we obtain the two 

potentials as: 

 
( ) ( ) ( ) ( ), , sin cos i x t

P Px y t A y B y e ζ ωφ η η −= +    (2.26) 

 
( ) ( ) ( ) ( ), , sin cos i x t

z S SH x y t C y D y e ζ ωη η −= +    (2.27) 

The displacements are: 

 
( ) ( )sin cos cos sin i

x P P S P Pu i A y B y C y D y eψζ η η η η η= + + −    (2.28) 

 
( ) ( )cos sin sin i

y P P P S Su A y B y C y Dcon y eψη η η ζ η η= − + +    (2.29) 

where x tψ ζ ω= −  

The two non-zero stresses are: 

 
( )

22 2 2

2 2 2
2 2 z

yy

H

x y x x y

φ φ φ
σ λ µ µ

   ∂∂ ∂ ∂
= + + − +  ∂ ∂ ∂ ∂ ∂     (2.30) 

 

2 22

2 2
2 z z

xy

H H

x y x y

φ
σ µ

 ∂ ∂∂
= − + ∂ ∂ ∂ ∂   (2.31) 

After calculation they are: 

 
( )( ) ( )2 2 sin cos 2 cos cos i

xy S P P S S SA y B y C y D y eψσ µ ζ η η η ζη η η = − + + −   (2.32) 

 
( ) ( )( )2 22 cos cos sin cos i

xy P P P S S Si A y B y C y D y e ψσ µ ζη η η ζ η η η = − + − +   (2.33) 



 

2.1.5.2 SYMMETRIC AND ANTI

Lamb waves or guided plate waves are ultrasonic waves that travel parallel to 

the surface of the structure. There are two different types of lamb waves: symmetric 

(Figure 24) and anti-symmetric (

different modes shapes, based on the solutions of the Rayleigh

symmetric modes are denoted as 

denoted as 0 1, ,....A A
. The wave motion for the two cases, symmetric and anti

symmetric is presented in Figure 

Figure 24: Simulation of Lamb wav,: 

Figure 25: Simulation of Lamb waves,

Symmetrical Lamb modes are similar to axial waves. The displacement of 

particles is shown in Figure 26

24 

YMMETRIC AND ANTI-SYMMETRIC LAMB MODES 

Lamb waves or guided plate waves are ultrasonic waves that travel parallel to 

the surface of the structure. There are two different types of lamb waves: symmetric 

symmetric (Figure 25). For each propagation type, there are 

apes, based on the solutions of the Rayleigh-Lamb equation. The 

symmetric modes are denoted as 0 1, ,....,S S
 while the anti-symmetric modes are 

. The wave motion for the two cases, symmetric and anti

Figure 24 and respectively Figure 25. 

: Simulation of Lamb wav,: symmetric S0 mode (Source: Giurgiutiu, 2008)

: Simulation of Lamb waves,: anti-symmetric A0 mode (Source: Giurgiutiu, 2008)

Symmetrical Lamb modes are similar to axial waves. The displacement of 

26. 

Lamb waves or guided plate waves are ultrasonic waves that travel parallel to 

the surface of the structure. There are two different types of lamb waves: symmetric 

). For each propagation type, there are 

Lamb equation. The 

symmetric modes are 

. The wave motion for the two cases, symmetric and anti-

 
(Source: Giurgiutiu, 2008) 

 
mode (Source: Giurgiutiu, 2008) 

Symmetrical Lamb modes are similar to axial waves. The displacement of 
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ux 

uy(d) 

uy(-d)= - uy(d) 

y 

 

Figure 26: Displacement of particles for a symmetric Lamb wave 

Source: Cuc (2010) 

We use equations (2.28), (2.29) and (2.31) and apply the boundary conditions at 

; 0yy xyy d σ σ= ± = = . 

We obtain a homogeneous system of linear equations. The characteristic equation is: 

 ( ) ( ) ( )2 2 2tan 4 tan 0S S S P Pd dξ η η η η ζ η− + =
 (2.34) 

From equation (2.34) the Rayleigh-Lamb frequency equation can be derived in the form: 

 
( )

2

22 2

tan 4

tan
S S P

P S

d

d

η η η ζ
η ζ η

= −
−

 (2.35) 

Anti-symmetrical Lamb modes are similar to flexural waves. The displacement is shown 

in Figure 27. 
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Figure 27: Displacement of particles for an anti-symmetric Lamb wave 

Source: Cuc (2010) 

We use equations(2.32),(2.33) and (2.35) and apply the boundary conditions at 

; 0yy xyy d σ σ= ± = =
 

We obtain a homogeneous system of linear equations. The characteristic equation is: 

 ( ) ( ) ( )2 2 2tan 4 tan 0S P S P Sd dζ η η η η ζ η− + =
 (2.36) 

The Rayleigh-Lamb frequency equation for the anti-symmetric mode is: 

 

( )22 2

2

tan

tan 4
SS

P S P

d

d

ζ ηη
η η η ζ

−
= −

 (2.37) 

Equation (2.36) and equation (2.37) can be combined as follows: 

 

( )
( )

1
2

22 2

1tan 4
, 0,

1tan
S S P

P S

symmetricd
F

antisymmetricd

η η η ζ
ζ ω

η ζ η

±
  + = = + = 
  − =−   (2.38) 

2.1.5.3 DISPERSION OF LAMB WAVES 

Lamb waves exhibit velocity dispersion, that is, the wave speed is contingent on 

the product of frequency and thickness of the plate in which the Lamb waves are 

traveling. 

Figure 28 ilustrates this by cosidering a tone burst which consists of a carrier frequency 

(tone) and has a short duration in time (burst). The initial signal is a sinusoidal having 

ten complete cycles. Figure 28 also shows the frequency spectrum of the tone burst 

signal where cf  is the dominant frequency. 



 

Figure 28: Ten-count sine tone burst and frequency spectrum of the tone burst signal

For a case of non-dispersive wave propagation, the 

the same and the wave speed is constant, while for a case of dispersive wave 

propagation, each frequency component travels with a different speed and the grade of 

dispersion is contingent on the spectrum bandwidth.

2.2  LAMB WAVES FOR CRACK 

In the last decade, there has been a large 

of Lamb waves with cracks in different structures. Alleyne and Cawley (1992) studied 

how Lamb waves interact with damage and used FEM to study the interaction

individual Lamb waves with simulated damages (represented by notches). They found 

that the theory and the experimental results are in concord and that the sensitivity of 

Lamb waves to particular notches depended on the frequency

mode type (symmetric or anti
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count sine tone burst and frequency spectrum of the tone burst signal

(shown in red) 

dispersive wave propagation, the shape of the wave remains 

the same and the wave speed is constant, while for a case of dispersive wave 

propagation, each frequency component travels with a different speed and the grade of 

dispersion is contingent on the spectrum bandwidth. 

RACK DETECTION 

In the last decade, there has been a large amount of research on the interaction 

of Lamb waves with cracks in different structures. Alleyne and Cawley (1992) studied 

how Lamb waves interact with damage and used FEM to study the interaction

individual Lamb waves with simulated damages (represented by notches). They found 

that the theory and the experimental results are in concord and that the sensitivity of 

Lamb waves to particular notches depended on the frequency-thickness product, the 

mode type (symmetric or anti-symmetric), the mode order and the geometry of the 

count sine tone burst and frequency spectrum of the tone burst signal 

shape of the wave remains 

the same and the wave speed is constant, while for a case of dispersive wave 

propagation, each frequency component travels with a different speed and the grade of 

of research on the interaction 

of Lamb waves with cracks in different structures. Alleyne and Cawley (1992) studied 

how Lamb waves interact with damage and used FEM to study the interaction of 

individual Lamb waves with simulated damages (represented by notches). They found 

that the theory and the experimental results are in concord and that the sensitivity of 

thickness product, the 

symmetric), the mode order and the geometry of the 
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notch. In their paper, the transducers used in the experiments were conventional 

wideband ultrasonic immersion transducers as per Figure 29. 

 

a) 

b)  

Figure 29: (a) Schematic diagram of the experimental setup; 

(b) Schematic of the Lamb wave test rig 

Source: Alleyne and Cawley (1992) 

Literature shows that the propagation of Lamb waves and the interaction with 

damages can be modeled using various simulation techniques such as finite difference 

equations (FDE), finite element analysis (FEM), boundary element methods (BEM), 

spectral element methods (SEM), and local interaction approach simulation (LISA). 

An important strand of lamb waves’ research looks at the scattering of Lamb 

waves from defects. Although tomographic image techniques can normally be utilized to 
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extract the location, shape, and the extent of flaws in structures, the scattering of Lamb 

waves from severe defects introduces artifacts that make the tomographic 

reconstruction difficult. McKeon and Hinders (1999) used the Mindlin’s higher order 

plate theory to explain the scattering of S0 Lamb waves from a cylindrical through hole 

in an aluminum plate. Their theoretical model predicted that for three holes with 

increasing radii, the lobes with maximum amplitude are located at 1800, and 900 and 

2700. The experimental results using a “point source” solution showed a good 

correlation with the theoretical model, and confirmed that scattering is important when 

the hole size is larger than the beam size. 

Valle et al. (2001) studied the propagation of guided circumferential waves in a 

metallic hollow cylinder and the interaction of the guided waves with a simulated crack. 

As part of their approach, they used guided waves to both locate and size the crack. 

First, the crack was sized using a scattering formula developed by Auld and modified to 

analyze transient signals. Second, the crack was located using the backscattered signal 

and applying a time-frequency digital signal processing technique (reassigned 

spectrogram). The processed signal is then compared with signals obtained from a 

pristine cylinder (without cracks). In order to model the scattering of guided 

circumferential waves caused by a crack and to calculate the transient response of the 

wave guides the authors used the commercial FEM code ABAQUS. They presented that 

the results for both crack sizing and crack locating are dependent on the frequency of 

the input signal and that for detecting multiple cracks, both the Auld’s formula and the 

reassigned spectrogram must be utilized. 
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Another strand of research focuses on the identification of the location and the 

size of defects which entails the use of faster and more efficient numerical methods 

than FEM. Clezio et al. (2002) used a modal decomposition method to solve problems of 

Lamb wave scattering. They focus on the interaction of the first symmetric Lamb mode, 

S0, with vertical cracks in an aluminum plate placed in vacuum. The cracks are 

symmetric with respect to the middle plane of the aluminum plate. The reflection and 

transmitted coefficients and the crack motion were predicted and compared against 

FEM calculations and experimental data. In the experiments, they used an 8 mm-thick 

aluminum plate (Figure 30a) with three double notches of 0.7 mm width and height 

varying from 25%, 50%, and 75% of the plate thickness. 

 

Figure 30: (a) Aluminum plate with symmetrical double surface notches; 

(b) Schematic of the FE model with a double surface crack 

Source: Clezio et al. (2002) 

 
a) 

b) 
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Authors use a frequency of the excitation (incident mode S0) of 0.14 MHz, so 

that the frequency-thickness product was 1.12 MHz, below the S1 mode cut-off 

frequency. Based on this fact and the symmetry of the problem no mode conversion 

was obtained. 

 

Figure 31: Reflection and transmission coefficients vs. crack height/plate thickness; FEM 

predictions, modal decomposition (MD) predictions and experimental results 

Source: Clezio et al. (2002) 

Clezio et al. (2002) found that there is accord between the predictions and the 

experimental data as per Figure 31. Besides, the results using modal decomposition 

method were very similar to those obtained using the FEM but the computational time 

was about 100 times smaller when using the modal decomposition method. 

Grondel et al. (2002) used Lamb waves to examine riveted aluminum lap-joints 

during cyclical loading. As part of their approach, they excited and received Lamb waves 

using piezoelectric transducers coupled onto the aluminum plates. Authors used 

 

O - FE predictions refl. coeff.  
 - FE predictions transm. coeff. 
 - MD predictions refl. coeff. 
… - MD predictions transm. coeff. 
X – experimental data 
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symmetrical aluminum multi-riveted plates 750x300x2 mm fastened by six rows of a 

total of 84 rivets as specimens. They were manufactured in such a way to ensure crack 

initiation from the central rivets, as shown in Figure 32a. The piezoelectric transducers 

were bonded symmetrically with respect to the middle strap joint as shown in Figure 

32b. The excitation consisted of a 5 cycle sinusoidal tone burst at 400 kHz. The received 

signal was processed using the short Fourier transform. 

 
Figure 32: (a) Schematic description of the metallic specimen; 

(b) experimental Lamb wave set-up 

Grondel et al. (2002) 

Grondel et. Al (2002) results confirmed the emergence of a 8 mm crack around 

the central rivet at 107,000 cycles. Also, they observe a variation in the distribution of 

the energy between 100,000 and 107,000 (Figure 33) and an even stronger one 

between 107,000 cycles and 180,000 cycles. 

 
Figure 33: Time-frequency analysis of the Lamb wave signal during fatigue loading: 

(a) at 100,000 cycles; (b) at 107,000 cycles; (c) at 180,000 cycles 

Source: Grondel et al. (2002) 

 

a) b) 
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The ultrasonic inspection techniques can be very time consuming and labor 

intensive and as a result a lot of recent research focuses on building fast and low-cost 

structural health monitoring systems. These systems are meant to allow for an 

inspection of the structure without interrupting the service of the aircraft or the 

machinery and eliminate the labor-intensive inspection and the need to disassemble 

and re-assemble good structural parts, process during which accidental damage can be 

induced in the healthy structure. The new SHM systems should have low weight, low 

cost, low maintenance and require as little as possible change in the host structure. 

In the area of structural health monitoring systems, Ihn and Chang (2004) developed a 

piezoelectric based built-in diagnostic technique for monitoring fatigue crack growth in 

metallic structures. Their proposed method consists of three components: diagnostic 

signal generation, signal processing and damage interpretation as shown in Figure 34. 

 
Figure 34: (a) Crack detection scheme; (b) experimental set-up 

Source: Ihn and Chang (2004) 

Authors used an excitation signal consisted of a 5-count sine burst signal. Lamb 

waves were generated in the structure by surface mounted piezoelectric actuators. The 

raw signals are processed using MATLAB, and the envelope of the signal is extracting by 



34 

 

applying the short time Fourier transform (STFT) to the initial signal. The time of flight 

(TOF) information can now be extracted. When Lamb waves travel over damage areas 

scattering occurs and the energy of the scattered signal can provide good information 

about the crack propagation. Based on these assumptions, Ihn and Chang (2004) 

developed a damage index (DI) defined as the ratio of the scatter energy contained in 

the S0 mode wave-packet to the baseline energy contained in the S0 mode wave-

packet: 
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Figure 35 shows the crack detection scheme and the experimental set-up. The 

experiments were carried on a 3.175 mm thick aluminum plate with a 0.2 mm wide 

notch cut. The length of the notch was increased and the sensor measurements at 

different notch lengths were taken. 
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Figure 35: Damage index vs. crack growth 

Source: Ihn and Chang (2004) 

The Ihn and Chang (2004) results showed that the proposed damage index 

measured from the piezo-ceramic sensors was in good accord with the actual fatigue 

crack growth obtained from visual inspection of the specimen (Figure 35). The 

disadvantage of their proposed method is that it is sensitive to the noise and the signal 

to noise ratio of the received signal must be high. 

2.3  LAMB WAVES FOR CORROSION DETECTION 

Metals corrosion can cost a lot of money (in the United States alone costs are 

estimated to be about $300 billion a year, or approximately 3.2% of the U.S. GDP1) and 

in some cases corrosion accelerated fatigue failures can have catastrophic results (e.g. 

tragic example of that occurred in 1988 when a nineteen-year old Boeing 737 lost a 

                                                           
1 Boyd D. Howard, Kenneth Gibbs and James B. Elder III, Corrosion detection devices, Westinghouse 
Savannah River Company, Army Corrosion Summit, 2004 
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major portion of its upper fuselage in full flight at 24,000 feet). A variety of Non-

Destructive Evaluation (NDE) methods have become available that are good candidates 

for the detection of corrosion: visual, ultrasonic, radiographic, electromagnetic, acoustic 

transducer scanning, thermo graphic inspection, and ground penetrating radar. In the oil 

and chemical industries in particular, because of the insulation layer that covers the 

pipes, detection of hidden corrosion in aged pipes is particularly difficult. Moreover 

current technologies involving point-by-point inspection are expensive because of the 

need to remove the insulation layer. Hence, there is a lot of recent research that focuses 

on the development of a quick and reliable method for detection of corrosion under the 

insulation layer. 

Ever since a few decades ago, researchers began to look at using ultrasonic 

guided waves for tubes inspection (Thomson et. Al (1972), Silk et, al (1979)) and a major 

focus was on the inspection of heat exchanger tubing. Other studies looked at the 

interaction of Lamb waves with defects in plates and pipe structures. Lowe et al (1998) 

developed a method in which guided waves propagate in the walls of thin pipes, and 

capture the reflected signals from defects. Authors used the pulse-echo configuration 

and in parallel with the experiments, conducted analytical and numerical studies. Their 

testing scheme utilized a pulse-echo arrangement from a single location on a pipe as per 

Figure 36a. The waves were excited and received using a ring transducer made by dry-

coupled piezoelectric elements distributed around the circumference. 
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Figure 36: (a) Pulse-echo set-up for pipe inspection using Lamb waves; 

(b) Reflection from a through-thickness notch extending around of the circumference of a pipe 

Source: Lowe et al. (1998) 

They used as an excitation signal a longitudinal (0, 2)L axially symmetric mode 

at 70 kHz since this mode is non-dispersive over a wide bandwidth around the 70 kHz 

frequency. This mode is sensitive to internal or external defects. Their results showed a 

clear reflection from the notch and as well as the reflection from the end of the pipe. 

Corrosion poses a threat also in the aerospace industry. Conventional through-

the-thickness ultrasonic methods for corrosion inspection of large surfaces using point-

by-point examination can be tedious and time consuming. Besides, the disadvantage of 

this method is that the corrosion will create irregular surfaces and the echo signals are 

unclear and hard to interpret. 

Recent research lead to the development of new ultrasonic inspection methods 

using guided waves (Lamb waves). These provided more measurable features related to 

 

a) 

b) 
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the interaction between guided waves and defects and hence contain more information 

about the flaws in structures. Rose et al. (1995, 1998, and 2002) did extensive work in 

the NDE for corrosion detection in pipes and plates using guided waves. Zhu et al. (1998) 

conducted an experimental study of hidden corrosion using guided waves, combined 

with a boundary element method (BEM) numerical simulation. Their experimental work 

involved both corrosion simulated specimens and real corrosion specimens. The BEM 

method was used to simulate the guided wave scattering, mode cutoff, and conversion 

phenomena. Based on the BEM method they proposed a quantitative technique to 

measure the hidden corrosion depth and compare the results with those obtained 

experimentally. They used two types of aluminum corrosion specimens: plates with 

simulated corrosion prepared by a machine cutting and real corrosion plates prepared 

by controlled electrochemical procedure (Figure 37). The experimental set-up is appears 

in Figure 38. 

 
Figure 37: (a) Corrosion simulated specimen; (b) real corrosion specimen 

Source: Zhu et al. (1998) 

 

a) 

b) 
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In order to produce and detect guided waves (Lamb waves) Zhu et. al (1998) 

used a pair of wedge transducers and both through-transmission and pulse-echo 

method and the plexi-glass wedges were specially conceived to decrease the effect of 

multi-reflection inside the wedges. 

 
Figure 38: Experimental set-up: oblique incidence and reception for through-transmission 

Source: Zhu et al. (1998) 

They used a tone burst signal as well as a shock device to generate different 

guided waves required for mode selection and feature extraction. The time domain 

results showed a clear difference between the A3 Lamb mode in the pristine specimen 

(no corrosion) and the corroded specimen Figure 39a and the same difference for the S5 

Lamb mode between the pristine and corroded specimen, Figure 39b. 
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Figure 39: Transmitted signals with and without 5% corrosion thickness: 

(a) A3 mode at 4.39 MHz and 25o incidence; (b) S5 mode at 6.37 MHz and 25o incidence 

Source: Zhu et al. (1998) 

Authors used the boundary element model (BEM) to determine the transmission 

and reflection coefficients for different corrosion depths (Figure 40). 

 

a) 

b) 
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Figure 40: (a) Transmission coefficients for the S2, A2, and S3 incidence vs. corrosion depth; 

(b) Reflection coefficients for the S2, A2, and S3 incidence vs. corrosion depth 

Source: Zhu et al. (1998) 

The results obtained by Zhu et al. (1998) can be used to establish a vector 

feature to be used in pattern recognition analysis. 

Rose et al. (2002) also focused on the phase velocity, frequency wave resonance 

tuning and mode selection. They presented a mathematical model for the propagation 

of waves in hollow cylinders and also the numerical and experimental results. They 

found out that as a result of tuning it is possible to improve penetration power despite 

the coating layers and to detect difficult defect shapes. 

2.4  LAMB WAVES FOR DISBOND/DELAMINATION DETECTION 

Composite materials are starting to play a very important role in aerospace, 

naval, and automotive industries. There are currently many approaches for the damage 

detection in composite materials, however they can be divided into two main 

 

a) 

b) 
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categories: structural health monitoring (SHM) and nondestructive evaluation (NDE). An 

SHM system is a bonded system of fixed sensors which are permanently attached to the 

structure and monitoring can be either on demand or continuous. An NDE approach 

consists of inspecting a structure with adjustable and moveable sensors that 

systematically check the structure for damage when not in use. While an SHM system 

has the benefit of being able to monitor a structure while it is in service, tracking the 

growth of damage and providing a frequent report of the state of the structure, some 

capabilities are sacrificed so the system can be attached to the structure (cost, size, and 

weight need to be considered). NDE has the benefit of being able to use large, expensive 

equipment for damage detection; however the drawback is that the structure needs to 

be taken offline for the inspection. 

Since delamination is the most important defect in composite materials, there is 

a large body of recent research that focuses on mathematical models that can predict 

delamination location. 

Hanneman and Kinra (1991) focused on the study of uniaxial, steady state time 

harmonic wave propagation in adhesively bonded joints. They derived an exact formula 

for the transmission coefficient '( )H w and studied the natural frequencies of the bond 

as a function of normalized adhesive thickness. To determine the transfer function of 

the bond, they considered a three-layer plate immersed in an elastic fluid (water). 

Authors found that the sensitivity of the transfer function '( )H w  is higher at odd 

resonance modes and thus the odd resonances are more sensitive to changes in the 

material properties and thickness of the adhesive layer than the even resonances. 
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Rose et al. (1994) used ultrasonic guided waves for NDE of adhesively bonded 

structures and developed a double spring hopping probe (DHSP) to introduce and 

receive Lamb waves. Their method was used to inspect a lap splice joint of a Boeing 737-

222. They used a pair of variable angle beam transducers in order to excite the Lamb 

waves. Preliminary results showed the capability of through transmission for disbond 

detection using the symmetric mode S0 at 1.455 MHz frequency and the anti-symmetric 

mode A1 at 3.525 MHz. They found severe corrosion area using the DHSP hand held. 

Lowe and Cawley (1994) studied the applicability of plate wave techniques for 

inspection of adhesive and diffusion bonded joints. Problems addressed by them were 

related to the measurement of the cohesive properties (the material properties of the 

adhesive layer) and the measurement of the adhesion properties (the quality of bonding 

at the two interfaces between the adhesive and the metal parts). Authors found that 

the Lamb wave techniques are limited by their strong sensitivity to the material 

properties and the thickness of the adherents and that they are relative insensitive to 

those of the adhesive layer. 

Lee et al. (2003) studied the problem of wave propagation in a diffusion bonded 

model using spectral elements (SE) and a new local interaction simulation approach 

(LISA) for numerical modeling. The novelty of their work was the sensor/actuator 

configuration consisting of five different layers of materials with one piezo-ceramic 

element generating a thickness mode vibration. The five layers were: two electrodes 

used for actuating and sensing (Sonox P5), two copper layers, and in the middle a 

couplant layer. The experiments validated the numerical simulation, showing that the 
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actuator/sensor configuration could operate either in S0 or A0 mode using an excitation 

frequency of 260.5 and 100 kHz, respectively. However the coupling layer distorts the 

wave propagation, due to its low impedance at the interface point and low speed within 

the couplant medium. Kwon et al. (2003) focuses on the reliability of piezoelectric 

monitoring of adhesive joints. They tested a single lap adhesively bonded tubular joint 

during a torsional fatigue test. Their results showed that the piezoelectric properties of 

the joint are related to the crack propagation and that the measured electric flux density 

is a good estimator of the failure strain, and are sensitive to the maximum stress or 

strain in the layer rather than the average stress. 

Another area of research focuses on repair patches which are widely used in the 

aircraft industry for small repairs of the aircraft fuselage in order to extend the 

operational life of aging aircrafts. Chiu et al. (2000) focused on the development of a 

smart system which will provide information on the in-service performance of the repair 

and the associated structure. Their results showed the possibility to use piezoelectric 

elements to develop a smart patch, and use the impedance measurements to detect the 

presence of damage. For impedance measurements the sensor/actuator must be 

located close to the damaged area. Galea et al. (2001) described two in-situ health 

monitoring systems, one consisting of a piezoelectric polyvinylidene fluoride (PVDF) 

film-based, and the second one consisting of an electrical –resistance strain gauge-

based sensing system and the methods were tested on a composite bonded patch 

applied to an F/A-18 aircraft. The “smart patch” approach described was to detect 

disbond growth in a safe life zone of the patch where disbonds are unacceptable, and to 
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monitor the damage growth in a damage tolerant region. The method used to assess 

the “health” of the patch was to measure the load transfer in the safe-life zone. This was 

achieved by monitoring the ratio of 
����� ����	
�

����	
 	
 ��� ��
��
�
�
 during the service life. Any 

decrease in this ratio was an indication of the disbonding of the patch. The results 

showed that the concept of “smart patch” approach for an autonomous health 

monitoring system is viable. However, more work is to be done to minimize the power 

requirements of the system, and to develop other confidence building indicators. 

Recently, Koh and Chiu (2003) did a numerical study of the disbond growth of a 

composite repair patch. As part of their approach, they used impedance method and 

the transfer function method to identify typical disbond growth shapes and sizes 

underneath the repair patch. The results showed it is possible to obtain information 

about the location, type, and severity of disbond by using signal processing techniques 

and via strategic placement of the PWAS. 

Even more recently, Kudela and Ostachowitz (2009) developed a numerical 

model that can predict wave propagation behavior in delaminated structural elements 

such as beams and plates. They considered signals of propagating waves excited by 

PWAS and registered at some points of a structure and compared damaged state signals 

with reference signals. They found that delamination occurred. The essence of their 

proposed model is that only a small amount of degrees of freedom is necessary to 

predict the behavior of propagating waves in a composite structural element with 

delamination. The scheme of their model is shown in Figure 41. 
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Figure 41: Scheme of models: a) part of a delaminated composite beam; 

b) the cross-section of a beam near the delamination tips; 

c) region of delamination modeled by separated spectral elements; 

d) a beam spectral finite element. Source: Kudela and Ostachowitz (2009) 

2.4.1 ELECTROMECHANICAL (E/M) IMPEDANCE METHOD 

The resistance of a structure to an applied force is called the mechanical 

impedance. The mechanical impedance method is the primary method for detecting 

disbonds in laminated structures and delaminations in composite materials up to a 

depth of 6 mm (Giurgiutiu, 2008). 
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where: 

( )Z ω  is the mechanical impedance as it varies with frequency, ω  

( )F ω  is the applied harmonic force 
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( )v ω  is the induced velocity 

The mechanical impedance analysis (MIA) is used in the nondestructive testing 

community to test bonded structures like composites materials and can determine 

changes in the local stiffness. 

The electromechanical (E/M) impedance is very similar to the MIA technique, 

but it comes with several key advantages for structural health monitoring (SHM) use 

(Giurgiutiu, 2008). While, the E/M impedance method uses piezoelectric wafer active 

sensors (PWAS) to create an in-plane strain excitation the MIA method uses a 

transducer to create a normal force excitation. Also, while the MIA method uses the 

force and velocity measurements to calculate the structural impedance, the PWAS is 

coupled to the structure and the electrical impedance measured at the electrodes is a 

direct reflection of the structural impedance. Finally, the thin, non-intrusive nature of 

the PWAS and its simple measurement method makes the E/M impedance method a 

viable SHM method. 

Giurgiutiu (2008) showed that by combining the axial displacements and flexural 

displacements at each point of the beam for different frequencies, we can calculate the 

E/M impedance (Figure 42). We can identify the resonant frequencies by looking at the 

peaks on the admittance plot. The peaks shift when defects appear in the structure so 

we can immediately identify them. 
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Figure 42: Comparison of real part of impedance on simple beam elements; 

Source: Giurgiutiu et al. (2008) 
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Equation Chapter (Next) Section 3 

3. LITERATURE REVIEW OF PIEZOELECTRIC WAFER ACTIVE SENSORS (PWAS) 

FOR STRUCTURAL HEALTH MONITORING (SHM) 

3.1 INTRODUCTION TO STRUCTURAL HEALTH MONITORING (SHM) 

As noted in Giurgiutiu (2008), structural health monitoring (SHM) is an area of 

increasing interest and praiseworthy for novel and groundbreaking approaches. In the 

United States, a considerable amount of money is spent each year (more than $200 

billion) on the maintenance of plant equipment and facilities and aging infrastructure 

since approximately a third of all bridges in the US national inventory, are either in need 

of repairs, or replacement (“structurally deficient” or “functionally obsolete”) , deeming 

them an on–going concern. Structural health monitoring systems is a solution as when it 

is installed on the aging infrastructure could ensure increased safety and reliability but 

also save significant costs. Moreover, for existing structures, SHM can replace scheduled 

maintenance with as–needed maintenance, can forecast the remaining life of the 

structure and preclude occasional and unexpected maintenance. For new structures, 

SHM included from the early design stage can reduce the life–cycle cost. 

SHM is an emerging research area with applications in many other fields such as 

for example, aerospace and civil infrastructure systems. SHM can ensure they will 

remain possible in service for an extended period, beyond their design life but also 

makes possible condition–based maintenance inspection for them instead of schedule–

driven inspections. Therefore, SHM is a revolutionizing new way to monitor a structure 
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for the length of its life and, when applied correctly and timely, can lead to considerable 

savings in weight, size, and cost. 

3.2 PIEZOELECTRIC WAFER ACTIVE SENSORS (PWAS) THEORY 

Recently developed piezoelectric wafer active sensors (PWAS) can improve 

significantly structural health monitoring, damage detection, and nondestructive 

evaluation. Piezoelectric wafer active sensors (PWAS) are inexpensive transducers that 

operate on the piezoelectric principle (Giurgiutiu, 2008). Their main role is to convert 

electric energy to mechanical energy or mechanical energy back to electrical energy. 

Initially, PWAS were used for vibrations control2 and later researchers (Tzou and Tseng 

(1990); Lester and Lefebvre (1993)) modeled the piezoelectric sensor/actuator design 

for dynamic control or damage detection (Banks et al. (1996)). In SHM, the use of PWAS 

has followed three main approaches: (a) modal analysis and transfer function; (b) 

electromechanical (E/M) impedance (Chaudhry et al.(1994), Ayres et al. (1996), Park et 

al. (2001), Giurgiutiu et al. (1997–2002)); (c) wave propagation (Dupont et al. (2000), 

Osmont et al. (2000), Diamanti, Hodgkinson, and Soutis (2002)). PWAS have been used 

under various names for bonded ultrasonic testing for structural health monitoring. 

PWAS are a type of ultrasonic transducers that are bonded to the structure and operate 

on the piezoelectric principle coupling electrical and mechanical variables. 

 
E

ij ijkl kl kij kS d Eε σ= +
 (3.1) 

 j jkl kl jk kD d Eσσ ε= +
 (3.2) 

                                                           
2 E.g., Crawley et al. (1987, 1990) and Fuller et al. (1990) 
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Equations (3.1) and (3.2) show how the mechanical strain, ijε
, and stress, klσ

, 

and electrical field, kE , and displacement, jD
, relate, where 

E
ijklS

 is the mechanical 

compliance of the material at zero electrical field ( 0)E = , klσ
 is the stress, jk

σε
 is the 

dielectric constant at zero stress 
( 0)σ =

, and jkld
 is the induced strain coefficient 

(mechanical strain per unit electric field). In order to create in-plane strain from a 

transverse electric field or vice versa, the 31d  property is utilized by the PWAS. 

Figure 43 shows the schematic of a PWAS with coupling and in-plane shear 

stress. 

 

 
Figure 43: (a) Schematic of the PWAS shows the coupling of the in-plane shear stress; 

(b) PWAS interaction with SO and AO Lamb modes. 

Source: Giurgiutiu (2008) and Giurgiutiu (2003) 

http://www.tms.org/pubs/journals/JOM/0301/Giurgiutiu/Giurgiutiu-0301.html 

PWAS performance exceeds that of conventional resistance strain gages because 

PWAS are active devices that can monitor the structure at will, whereas strain gages are 

 

(a) 

(b) 
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passive devices that can only listen to the structure. Besides, PWAS can address high–

frequency applications at hundreds of kHz and beyond. 

PWAS present some important functionalities. First, in their functions as high–

bandwidth strain sensors and exciters, PWAS convert directly mechanical energy to 

electrical energy, in their function as high–bandwidth strain exciters and act very well as 

an embedded generator of waves and vibration, being called “active sensors”. Second, 

in their function as resonators, PWAS can perform resonant mechanical vibration under 

direct electrical excitation. Third, as embedded modal sensors, PWAS can directly 

measure the high–frequency modal spectrum of a support structure achieved with the 

E/M impedance method. 

There are four ways that the PWAS can be used for structural health monitoring 

with propagating guided waves, (a) pitch-catch and (b) pulse-echo, (c) Thickness mode 

and (d)impact/AE detection as shown in Figure 44. 
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Figure 44: PWAS Modes of Operation 

Source: Giurgiutiu et al., US patents: 7,174,255/2007; 7,024,315/2006; 6,996,480/2006 

We now elaborate more on the two most used modes of operation: the pitch-

catch method and the pulse-eco. 

The pitch-catch method can be used to detect structural changes that take place 

between a transmitter transducer and a receiver transducer. Typically, one PWAS first 

acts as a transmitter while the other PWAS acts as receivers. Then another PWAS acts as 

a transmitter while all the others act as receivers. This “pitch-catch” pattern is continued 

until waves have been transmitted and received from every PWAS on the structure. 

These collected signals constitute the first scan and form the benchmark to which all 

future scans are compared. This method detects damage from the changes in the lamb 

waves travelling through a damaged region. More precisely, damage that has developed 

in the structure between the PWAS pairs can be detected by comparing a current scan 

(after the damage was incurred) with the original benchmark can. Lamb wave change as 
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it travels through a damaged area. It can become more dispersed or even change speed. 

The pitch-catch method can detect delaminations, cracks, disbonds in joints or impact 

damage. 

The pulse-echo method uses only one transducer. Thus, a PWAS bonded to a 

structure can both transmit and receive waves. More precisely, the PWAS is first to used 

transmit the wave into the structure and then if the wave hits a deflect zone, a part of 

the wave will be reflected back by the damaged zone and will be captured by the PWAS. 

The collected signals can be compared to the baseline signal and damage can be found. 

In order for the pulse-echo method to be successful, the transmitted wave needs to 

reflect off of the damage. Different types of damage reflect the Lamb wave differently. 

Damage through the thickness will reflect the largest percentage of the 

transmitted wave. The pulse-echo method is successful at detecting cracks but not very 

successful to detect delaminations. 

3.2.1 CONSTRAINED PWAS 

When attached to a structure, a PWAS is constrained by the structure and its 

dynamic behavior is altered. Let us consider that a structure constraining a PWAS is 

represented by an unspecified dynamic structural stiffness, strk . Because the dynamic 

structural stiffness is frequency dependent, the interaction mode with the PWAS will 

also be frequency dependent and can change the PWAS resonances. As shown in 

Giurgiutiu (2008), the structural dynamics can overpower the inherent PWAS dynamics, 

in which case, the PWAS E/M impedance will follow the dynamics of the structure and 

the PWAS becomes a sensor of the dynamical modal behavior of the structure. 
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3.2.1.1  ONE-DIMENSIONAL ANALYSIS OF A CONSTRAINED PWAS 

As in Giurgiutiu (2008), let us consider a PWAS of length al , thickness at , and 

width ab , undergoing longitudinal expansion, 1u , induced by the thickness polarization 

electric field, 3E . 

The electric field is formed by the application of a harmonic voltage ˆ( ) i tV t Ve ω=  

between the top and bottom surface electrodes. The resulting electric field, /E V t= , is 

assumed uniform w.r.t. 1x ( 1/ 0E x∂ ∂ = ). We assume the length, width, and thickness 

have widely separated values ( at << ab << al ) such that the length, width, and thickness 

motions are basically uncoupled. 

The constitutive equations of the piezoelectric material are 

 

1 11 1 31 3

3 31 1 33 3

E

T

S s T d E

D d T Eε

= +

= +  (3.3) 

where  

1S  is the strain 

1T  is the stress 

3D  is the electrical displacement (charge per unit area) 

SE is the mechanical compliance at zero field 

ε is the dielectric constant at zero stress 

31d is the induced strain coefficient, i.e., mechanical strain per unit electric field. 
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When the PWAS is bonded to the structure, the structure will constrain the 

PWAS motion with a structural stiffness, strk . Here we focus on the study of an 

elastically constrained PWAS as shown in Figure 45. 

 

Figure 45: PWAS constrained by structural stiffness, strk
; Source: Giurgiutiu (2008) 

The overall structural stiffness applied to the PWAS has been divided into two 

equal components applied to the PWAS ends. The values of these components are 2 strk

each, so that 

 
( ) ( )

11 1
2 2total str str strk k k k

−− − = + =   (3.4) 

The boundary conditions applied at the PWAS ends balance the stress resultant, 1 a aTb t , 

with the spring reaction force, 12 strk u : 
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   = −   
   

   − = −   
     (3.5) 

The strain–displacement relation is 

 
'

1 1S u=  (3.6) 

By replacing equations (3.3) and (3.6) in (3.5) we obtain 
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1 1 31 3
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 (3.7) 
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The quasi–static PWAS stiffness is 

 11

a
PWAS E

a

A
k

s l
=

 (3.8) 

and the stiffness ratio is 

 

str

PWAS

k
r

k
=

 (3.9) 

Equation (3.7) can be rewritten as 
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1 1 31 3
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1 1 31 3
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E

a a a str a

E
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s
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   = − +   
   

   − = − +   
     (3.10) 

3.2.1.2 MECHANICAL RESONANCE 

We replace Newton’s law of motion, 1T uρ′ = ⋅ && , and the strain–displacement 

relation, 11S u ′= , into equation (3.3) and obtain the axial waves equation: 

 
2

1 1au c u′′=&&  (3.11) 

Where 

/u u t= ∂ ∂&&  

/u u x′ = ∂ ∂ , and 

2
111/ E

ac sρ=  is the piezoelectric material wave speed 

The general solution of (3.11) is 

 ( ) ( )1 1ˆ, i tu x t u x e ω=
 (3.12) 

where 

 ( ) ( )1 1 2ˆ sin sinu x C x C xλ λ= +
 (3.13) 

And / acγ ω=  is the wavenumber. 
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The constants C1 and C2 can be obtained from the boundary conditions. By 

replacing the general solution equation (3.13) into the boundary conditions (3.10), we 

obtain the following linear system in C1 and C2: 

 

1 2 1 2 31 3

1 2 1 2 31 3

1 1 1 1 1 1 ˆcos sin sin cos
2 2 2 2 2 2

1 1 1 1 1 1 ˆcos sin sin cos
2 2 2 2 2 2

l C l C l r C l C l l d E

l C l C l r C l C l l d E

γ λ λ λ λ

γ λ λ λ λ

   − + + = ⋅   
   

   + − − + = ⋅   
     (3.14) 

By rearranging, we obtain 

 

1 2 31 3

1 2 31 3

1 1 1 1 1 1 1 ˆcos sin sin cos
2 2 2 2 2 2 2

1 1 1 1 1 1 1 ˆcos sin sin cos
2 2 2 2 2 2 2

l l r l C l l r l C l d E

l l r l C l l r l C l d E

γ λ λ γ λ λ

γ λ λ γ λ λ

   + + − + = ⋅   
   

   + + + − = ⋅   
     (3.15) 

By substituting the definitions 31 3
ˆ

ISA au d E I=  and 
1

2 alφ γ= , we get a linear system in 1C

and 2C . 

 

( ) ( )

( ) ( )

1 2

1 2

1
cos sin sin cos

2
1

cos sin sin cos
2

ISA

ISA

r C r C u

r C r C u

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

+ − − =

+ + − =
 (3.16) 

We assume the system determinant is different from zero and the solution can be 

obtained by subtracting the first equation from the second: 

 ( ) 22 sin cos 0r Cϕ ϕ ϕ− =
 (3.17) 

2 0C = . By adding the two equations, we obtain: 

 
( ) 1

1
2 cos sin 2

2 ISAr C uϕ ϕ ϕ+ =
 (3.18) 

Thus 

 ( )1 2

1 1
, 0

2 cos sinISAC u C
rϕ ϕ ϕ

= =
+  (3.19) 
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We substitute 1C  and 2C  and 
1

2 alφ γ=  into equation (3.13) and get 

 

( )1

1 sin
ˆ

1 1 12 cos sin
2 2 2

ISA

x
u x u

l l r l

γ

γ γ γ
=

+
 (3.20) 

3.2.1.3 ELECTRICAL RESPONSE 

Let us consider a constrained PWAS under harmonic electric excitation from 

Figure 46. 

. 

Figure 46: Schematic for the electrical response analysis of a constrained PWAS under 

harmonic electric excitation; Source: Giurgiutiu (2008) 

The electrical displacement equation is 

 3 31 1 33
T

eD d T Eε= +  (3.21) 

Equation (3.3) yields the stress as function of strain and electric field 

 
( )1 1 31 3

11

1
E

T S d E
s

= −
 (3.22) 

The electric displacement can be expressed as 

 
( )31

3 1 31 3 33 3
11

T
E

d
D S d E E

s
ε= − +

 (3.23) 

By substituting the strain–displacement relation of equation (3.6) we get 

 

2
'31 31

3 1 3 33 3
11 11

T
E E

d d
D u E E

s s
ε= ⋅ − ⋅ +

 (3.24) 

i.e. 



60 

 

 

'
2 1

3 33 3 31
31 3

1 1T u
D E k

d E
ε

  
= − −  

    (3.25) 

where 

2 2
31 31 11 33/ ( )E Tk d s ε= is the electromechanical coupling coefficient. By integrating equation 

(3.25) over the electrodes area A bl= we obtain the total charge. 

Equation (3.3) can be re-rewritten as 

 
( )

'
' 231 1

3 1 31 3 33 3 33 3 31
11 31 3

1 1T T
E

d u
D u d E E E k

s d E
ε ε

  
= − + = + −  

    (3.26) 

By integrating equation (3.26) over the area of the piezoelectric wafer we get the total 

charge 

 

1
22 2 2

3 33 31 1 1
31 32 2 2

1 1
1 1

a a

a a

l l
lT a a

l l
l

a a

b l
Q D dxdy V k u

t l d E
ε

+ +

− −

  
= = + −      
∫ ∫

 (3.27) 

We assuming harmonic time dependence as in Giurgiutiu (2008) ( ˆ iwtQ Qe= ) and get 

 

2
3 31 1 1

31 3

1 1 1 1ˆ ˆ ˆ1 1
2 2a

Q CE k u l u l
l d E

       = + − −               (3.28) 

where C is the conventional stress–free capacitance of the PWAS  and is given by 

 
33
T a a

a

b l
C

t
ε=

 (3.29) 

Using the definitions 31 3
ˆ

ISA au d E I=  and 3
ˆ

ˆ
a

E
V

t
= , we obtain 

 

1 1
2 2
31 31

1 1
ˆ ˆ

2 2ˆ ˆ 1
ISA

u l u l
Q CV k k

u

     − −     
     = − +

  
      (3.30) 

We obtain the electric current as the time derivative of the electric charge 
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 I Q i Qω= =&  (3.31) 

Thus 

 

1 1
2 2
31 31

1 1
ˆ ˆ

2 2ˆ ˆ 1
ISA

u l u l
I i CV k k

u
ω

     − −     
     = − +

  
      (3.32) 

and the admittance, Y , is the ratio between the current and voltage and is thus 

 

1 1
2 2
31 31

1 1
ˆ ˆˆ 2 2

1
ˆ

ISA

u l u l
I

Y i C k k
uV

ω

     − −     
     = = − +

  
      (3.33) 

We define the displacement solution as 

 
( )1

1 sin
ˆ

2 cos sinISA

x
u x u

r

γ
ϕ ϕ ϕ

=
+  (3.34) 

Therefore, the term of equation (3.33) that contains 1̂u becomes 

 
1 1

1 1
sin sin

1 1 1 1 sin 12 2ˆ ˆ 2
2 2 2 cos sin 2 cos sin cot

l l
u l u l

r r r

γ γ
φ

ϕ φ φ ϕ φ φ φ φ

 −       − − = = =    + + +    (3.35) 

where 
1

2 alφ γ= . 

When substituting, we obtain 

 

2 2
31 31

ˆ 1
1

ˆ cot

I
Y i C k k

rV
ω

φ φ
 

= = − + +   (3.36) 

or 

 

2
31

ˆ 1
1 1

ˆ cot

I
Y i C k

rV
ω

φ φ
  

= = − −  +    (3.37) 

The admittance is purely imaginary, and consists of a capacitive admittance, 

i Cω , modified by the effect of piezoelectric coupling between mechanical and electrical 
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variables, while the impedance, Z , is the ratio between the voltage and current and can 

be written as 

 

1

2
31

ˆ 1 1
1 1

ˆ cot

V
Z k

i C rI ω φ φ

−
  

= = − −  +    (3.38) 

We arrived at the admittance and impedance expressions for a PWAS 

constrained by the structural substrate with an equivalent stiffness ratio r . If we 

consider equations (3.36) and (3.37), the structural stiffness ratio, r , is additive to the 

PWAS resonance term, cosϕ ϕ . Moreover, these two equations suggest that both 

structural resonances and PWAS resonances will be in the admittance and impedance 

frequency spectra. When the PWAS is used in a frequency sweep, the structural 

stiffness, strk , will change with frequency, being in the range from zero for structural 

resonances to extreme values for structural anti–resonances. 

3.2.1.4 FREE PWAS 

In the case of a free piezoelectric wafer, we have 0strk = . Here, the admittance 

and impedance expressions for a free PWAS are recuperated. Indeed, as the r  term in 

the denominator of equations (3.36) and (3.37) cancels, we obtain 

 

2
31

1
1 1

cosfreeY i C kω
φ φ

  
= − −  

    (3.39) 

 

1

2
31

1 1
1 1

cosfreeZ k
i Cω φ φ

−
  

= − −  
    (3.40) 

These are equivalent to the previously determined expressions for the 

admittance and impedance expressions of a free piezoelectric wafer. 
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3.2.1.5 FULLY CONSTRAINED PWAS 

 

( )

( )

2
31

12
31

1

1
1

blocked

blocked

Y i C k

Z k
i C

ω

ω
−

= −

= −
 (3.41) 

3.2.1.6 CONSTRAINED PWAS UNDER QUASI-STATIC CONDITIONS 

In the case of a fully constrained piezoelectric wafer we have strk → ∞  and 

r → ∞  . Now, the fraction which contains r at the denominator cancels out, and the 

admittance and impedance are 

 

2
31

1
2
31

1
1

1
1

1

r
Y i C k

r

r
Z k

i C r

ω

ω

−

 = − + 

 = − +   (3.42) 

3.2.1.7 DAMPING EFFECTS 

The damping effects can be related either with the piezoelectric material or with 

the elastic constrained. The damping effects in the piezoelectric material are covered 

through the adoption of complex compliance and dielectric constant expressions 

 ( ) ( )11 11 33 331 , 1s s i iη ε ε δ= − = −
 (3.43) 

The values of η  and δ  vary with the piezoceramic formulation but are usually small (< 

5%). 

The damping in the elastic constraint is similarly accounted for by assuming a 

complex stiffness expression, strk . The stiffness ratio will also take complex values, that 

is str

PWAS

k
r

k
= . This frequency–dependent complex stiffness ratio reflects both the elastic 
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constraint damping and the sensor dissipation mechanisms. Therefore, the admittance 

and impedance expressions of equation (3.38) take the complex notation form 

 

2
31

1

2
31

1
1 1

cos

1 1
1 1

cos

Y i C k
r

Z k
i C r

ω
ϕ ϕ

ω ϕ ϕ

−

  
= − −  +  

  
= − −  +    (3.44) 

where  

( )2 2
13 31 11 33/k d s s= is the complex coupling factor and ( )1C i Cδ= − , and 1 iφ φ η= −  

 
( ) ( ) ( ) ( )2

strk k m i cω ω ω ω ω ω = − −   (3.45) 

3.2.1.8 RESONANCE 

To determine the resonances, we analyze the behavior of the determinant of the 

system of equations (3.16). 

 

( ) ( )
( ) ( )

cos sin sin cos

cos sin sin cos

r r

r r

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ

+ − −
∆ =

+ −
 (3.46) 

 ( ) ( )2 cos sin sin cosr rϕ ϕ ϕ ϕ ϕ ϕ∆ = + −
 (3.47) 

This determinant Δ is zero when either the first parenthesis or the second 

parenthesis is zero. When the first parenthesis in Δ is zero, the denominator of equation 

(3.34) disappears and the response of the system to electrical excitation increases. This 

is a case that can be identified with an electromechanical resonance. When the second 

parenthesis in Δ vanishes, the denominator of the equation (3.34) does not disappear, 

and the electromechanical response does not increase. This is a case that can be 

identified with a mechanical resonance, which cannot be excited electrically under the 
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constant–field distribution considered here. Thus, the next two resonance conditions 

are identified. 

 

cos sin 0

sin cos 0

r

r

ϕ ϕ ϕ
ϕ ϕ ϕ

+ =

+ =  (3.48) 

The condition that Δ is zero can be re-written as 

 

( ) ( )
( )

( )

2 2 2 2

2 2

2 2

cos sin sin cos 0

cos sin sin cos sin cos 0

sin 2 cos 2 0

tan 2

r r

r r

r r

r

r

φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

φ φ φ φ

φ
φ

φ

∆ = + − =

+ − − =

− − =

=
−  (3.49) 

The solution of equation (3.49) provides all the mechanical resonances, including the 

electromechanical ones. 
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Equation Chapter (Next) Section 4 

4. LITERATURE REVIEW OF LAMINATED COMPOSITES THEORY 

A basic definition for a composite material is a combination of two or more 

materials on a macroscopic scale that can have properties derived from its constituents 

or different properties. The components of a composite material can have different 

forms or material compositions and are fundamentally insoluble in each other. 

As per Jones (1999), there are four commonly accepted types of composite 

materials and namely: fibrous composite materials (fibers in a matrix), laminated 

composite materials (layers of various materials), particulate composite materials 

(particles in a matrix), and combinations of some or all of the first three types. 

In recent years, composite materials are increasingly being used in many aerospace, 

automotive, navy, and military applications since they can provide several key technical 

advantages over metals. For example, they are light but can achieve high strength and 

stiffness, provide better resistance to environmental degradation, superior fatigue 

performance and are multi-functional. However composite material can be very costly 

compared to metals and unpredictable in terms of behavior due to their complex 

structure.
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4.1  ISOTROPY, ORTHOTROPY AND ANISOTROPY 

The laminated composites present three important properties that help us study 

their behavior in different environments and applications. We summarize their features 

as per Jones (1999) in Table 2. 

 

Table 2: Composite Properties 

Property Material properties Orientation at a point in the 

body 

Isotropic Material properties that are the same in 

every direction at a point in the body.  

Material properties are 

independent of orientation at a 

point in the body. 

Orthotropic Material properties that are different in 

three mutually perpendicular directions at 

a point in the body and, further, has three 

mutually perpendicular planes of material 

property symmetry.  

Properties depend on the 

orientation at a point in the body. 

Anisotropic Material properties that are different in all 

directions at a point in the body and no 

planes of material property symmetry 

exist.  

 

Properties depend on the 

orientation at a point in the body. 

Figure 47 shows the differences in the deformation of isotropic, orthotropic and 

anisotropic materials subjected to uniaxial tension and pure shear stresses. 
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Figure 47: Differences in the deformation of isotropic, orthotropic, and anisotropic materials 

subjected to uniaxial tension and pure shear stresses; Source: Jones (1999) 

4.2  REVIEW OF MECHANICS OF LAMINATED COMPOSITES 

A laminate is constructed by stacking a number of laminas in the thickness 

direction (in Figure 48 in direction 3 of the coordinate system). 

 
Figure 48: Cross-ply laminate composite; Source: Majumdar (2009) 

The mechanics of the materials cover stresses, strains and deformations. 
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Conventional materials such as steel and aluminum have an isotropic endurance, 

while fiber reinforced composites are orthotropic which makes them more complex 

than metals. 

 
Figure 49: General 3-D representation of strain and stress relations; 

Source: Majumdar (2009) 

We will discuss the generalized stress-strain relations in laminate composite structures 

(Figure 49). Let us consider: 

11E
 the longitudinal modulus in one direction of the coordinate system above 

22E
 is the transversal modulus 

33E
 is the vertical modulus 

12 21 13 31 23 32, , , , ,v v v v v v
 represent the Poisson’s ratio 13 31 23 32, , ,v v v v

 are calculated using 

the same approach as  for 12 21,v v
  

1 2 3, ,σ σ σ
 are applied tensile stress 

12 21 13 31 23 32, , , , ,τ τ τ τ τ τ
 are shear stresses 



 

Figure 

The Poisson ration when the tensile stress is longitudinal (

 

Figure 

The Poisson ration when the tensile stress is transversal (

 

The equation for the engineering shear strain (

 

And the equation for the tensor shear strain (
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Figure 50: Longitudinal tensile stress 

The Poisson ration when the tensile stress is longitudinal (Figure 50) is as follows:

2
12

1

ε
ν

ε
= −

 

 
Figure 51: Transversal tensile stress 

The Poisson ration when the tensile stress is transversal (Figure 51) is as follows:

1
21

2

ε
ν

ε
= −

 

The equation for the engineering shear strain (Figure 52) is: 

1
21

2

ε
ν

ε
= −

 

And the equation for the tensor shear strain (Figure 52) is: 

1 2
12 21

2 1

1

2

u u

x x
ε ε

 ∂ ∂
= + = ∂ ∂   

) is as follows: 

(4.1) 

) is as follows: 

(4.2) 

(4.3) 

(4.4) 



71 

 

The tensor shear strain is useful when we deal with transformation of coordinates. The 

Poisson ratios when the tensile stress is vertical are as follows: 

 

3 1
13 31

1 3

;
ε ε

ν ν
ε ε

= − = −
 (4.5) 

 

3 1
23 31

2 3

;
ε ε

ν ν
ε ε

= − = −
 (4.6) 

 
Figure 52: Pure shear and tensor shear strain; Source: Jones (1999) 

In order to build a compliance matrix for the laminates, we have to go through 

different steps. First, we write the Generalized Hooke's law when stiffness and 

compliance matrices are not symmetric as: 

 [ ] [ ][ ]Sε σ=
 (4.7) 

 [ ] [ ][ ]Cσ ε=
 (4.8) 

 [ ] [ ] 1
C S

−
=

 (4.9) 
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11 12 13 14 15 161 1

21 22 23 24 25 262 2

31 32 33 34 35 363 3

41 42 43 44 45 4623 23

51 52 53 54 55 5613 13

61 62 63 64 65 6612 12

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

ε σ
ε σ
ε σ
γ τ
γ τ
γ τ

    
    
    
       

=     
    
   
   
       



  (4.10) 

 

11 12 13 14 15 161 1

21 22 23 24 25 262 2

31 32 33 34 35 363 3

41 42 43 44 45 4623 23

51 52 53 54 55 5613 13

61 62 63 64 65 6612 12

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

σ ε
σ ε
σ ε
τ γ
τ γ
τ γ

    
    
    
       

=     
    
   
   
       



  (4.11) 

Where: 

[ ]S  is called Compliance matrix 

[ ]C  is called Stiffness matrix 

When stiffness and compliance matrices are symmetric, we get: 

 
, 1, 2,3 6ij jiS S for i j= = L

 (4.12) 

 
, 1, 2,3 6ij jiC C for i j= = L

 (4.13) 

 

11 12 13 14 15 161 1

12 22 23 24 25 262 2

13 23 33 34 35 363 3

14 24 34 44 45 4623 23

15 25 35 45 55 5613 13

16 26 36 46 56 6612 12

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

ε σ
ε σ
ε σ
γ τ
γ τ
γ τ

    
    
    
       

=     
    
   
   
       



  (4.14) 
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11 12 13 14 15 161 1

12 22 23 24 25 262 2

13 23 33 34 35 363 3

14 24 34 44 45 4623 23

15 25 35 45 55 5613 13

16 26 36 46 56 6612 12

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

σ ε
σ ε
σ ε
τ γ
τ γ
τ γ

    
    
    
       

=     
    
   
   
       



  (4.15) 

If we split the cube figure in two identical parts, we obtain one plane of 

symmetry as shown in Figure 53. 

 
Figure 53: One plane of symmetry 

In this case, if in one plane of symmetry, the direction 3 is normal to the plane of 

material symmetry, the stiffness and compliance matrices become: 

 

11 12 13 161 1

12 22 23 262 2

13 23 33 363 3

44 4523 23

45 5513 13

16 26 36 6612 12

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0

S S S S

S S S S

S S S S

S S

S S

S S S S

ε σ
ε σ
ε σ
γ τ
γ τ
γ τ

    
    
    
       

=     
    
    
    
          (4.16) 

 

11 12 13 161 1

12 22 23 262 2

13 23 33 363 3

44 4523 23

45 5513 13

16 26 36 6612 12

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0

C C C C

C C C C

C C C C

C C

C C

C C C C

σ ε
σ ε
σ ε
τ γ
τ γ
τ γ

    
    
    
       

=     
    
    
    
          (4.17) 
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For the case of orthotropic composite laminates, we have three mutually 

orthogonal planes of symmetry (Figure 54) and coordinates are aligned with principal 

material direction. 

 
Figure 54: Three symmetric planes; Source: Jones (1999) 

The stiffness and compliance matrices are: 

 

11 12 131 1

12 22 232 2

13 23 333 3

4423 23

5513 13

6612 12

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

S S S

S S S

S S S

S

S

S

ε σ
ε σ
ε σ
γ τ
γ τ
γ τ

    
    
    
       

=     
    
    
    
          (4.18) 

 

11 12 131 1

12 22 232 2

13 23 333 3

4423 23

5513 13

6612 12

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C

C

C

C

σ ε
σ ε
σ ε
τ γ
τ γ
τ γ

    
    
    
       

=     
    
    
    
          (4.19) 

It is important to note that for orthotropic materials, the extension shear is 

uncoupled and the shear modulus does not depend on the Young modulus. 

In our next step we construct the components of the compliance matrix: 



75 

 

 

3121
11 12 13

11 22 33

3121
11 12 13

11 22 33

3212
21 22 23

11 22 33

13 23
31 32 33

11 22 33

44 55 66
23 13 12

1
; ;

1
; ;

1
; ;

1
; ;

1 1 1
; ;

S S S
E E E

S S S
E E E

S S S
E E E

S S S
E E E

S S S
G G G

νν

νν

νν

ν ν

= = − = −

= = − = −

= − = = −

= − = − =

= = =

 (4.20) 

And the compliance matrix will take the following form: 

 

11 12 131 1

21 22 232 2

31 32 333 3

4423 23

5513 13

6612 12

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

S S S

S S S

S S S

S

S

S

ε σ
ε σ
ε σ
γ τ
γ τ
γ τ

    
    
    
       

=     
    
    
    
          (4.21) 

For orthotropic lamina, the strain-stress relation: 

 

11 12 131 1

12 22 232 2

13 23 333 3

4423 23

5513 13

6612 12

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

S S S

S S S

S S S

S

S

S

ε σ
ε σ
ε σ
γ τ
γ τ
γ τ

    
    
    
       

=     
    
    
    
          (4.22) 

Where: 

 

1312
11 12 13

11 11 11

23
22 23 33

22 22 33

44 55 66
23 13 12

1
; ;

1 1
; ;

1 1 1
; ;

S S S
E E E

S S S
E E E

S S S
G G G

νν

ν

−−
= = =

−
= = =

= = =
 (4.23) 



76 

 

For the orthotropic lamina the stiffness matrix becomes: 

 

11 12 131 1

12 22 232 2

13 23 333 3

4423 23

5513 13

6612 12

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C

C

C

C

σ ε
σ ε
σ ε
τ γ
τ γ
τ γ

    
    
    
       

=     
    
    
    
          (4.24) 

Where: 

 

22 33 23 23 13 23 12 33
11 12

33 11 13 13 12 23 13 22
22 13

12 13 23 1111 22 12 12
33 23

44 55 66
44 55 66

1 1 1

S S S S S S S S
C C

S S
S S S S S S S S

C C
S S

S S S SS S S S
C C

S S

C C C
S S S

− −
= =

− −
= =

−−
= =

= = =
 (4.25) 

 [ ] [ ][ ]Cσ ε=  (4.26) 

 
1[ ] [ ]C S −=  (4.27) 

 11 22 33 11 23 23 22 13 13 33 12 12 12 23 132S S S S S S S S S S S S S S S S= − − − +  (4.28) 

For the isotropic lamina, the properties are similar in every direction: 

 ( )

11 22 33

12 13 23

12 13 23 2 1

E E E E

E
G G G G

ν ν ν

ν

= = =

= =

= = = =
+

 (4.29) 

 

( )
11 12 44

2 11 1
S S S

E E G E

νν +−
= = = =

 (4.30) 

 

( ) ( )
( )

( )( )

( )

11 12

44

1

1 1 2 1 1 2

1

2 1

EE
C C

E
C

G

ν
ν ν ν ν

ν

−
= =

+ + + +

= =
+

 (4.31) 
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For this case, the compliance and stiffness matrix become: 

 

[ ]

11 12 12

12 11 12

12 12 11

44

44

44

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

S S S

S S S

S S S
S

S

S

S

 
 
 
 

=  
 
 
 
    (4.32) 

 [ ]

11 12 12

12 11 12

12 12 12

44

44

44

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C
C

C

C

C

 
 
 
 

=  
 
 
 
  

 (4.33) 

Next, we consider the case when between the orthotropic material behavior and 

the isotropic material behavior there is transversely isotropic behavior where material is 

isotropic in one plane. If the 2-3 plane is considered as plane of transverse isotropy, 

then properties in the 2 and 3 directions are similar. 

 ( )

22 33 12 13 12 13

22
23

232 1

E E G G

E
G

ν ν

ν

= = =

=
+

 (4.34) 

The components of the stiffness matrix are given by: 

 

12
11 12 22

11 11 22

23
23 33 55

22 33 12

1 1

1 1

S S S
E E E

S S S
E E G

ν

ν

−
= = =

−
= = =

 (4.35) 

 
( ) 23

44 22 23
22 23

1 1
2 2S S S

E G

ν +
= − = = 

   (4.36) 

The compliance and stiffness matrices are as follows: 
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[ ] ( )

11 12 12

12 22 23

12 23 22

22 23

55

55

0 0 0

0 0 0

0 0 0

0 0 0 2 0 0

0 0 0 0 0

0 0 0 0 0

S S S

S S S

S S S
S

S S

S

S

 
 
 
 

=  
− 

 
 
    (4.37) 

 [ ] ( )

11 12 12

12 22 23

12 23 22

22 23

55

55

0 0 0

0 0 0

0 0 0

0 0 0 2 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C
C

C C

C

C

 
 
 
 

=  
− 

 
 
  

 (4.38) 

4.3  2D LAMINA PROPERTIES 

The 3-D approach for the orthotropic material can be reduced to a 2-D approach 

by assuming a state of plane stress or plane strain. This is a convenient and reasonably 

accurate simplification. In this case, the height is much smaller compared to the length 

and the width which leads to the fact that the stress is much smaller in the height 

direction. If we make this assumption, the stress in the third direction is zero and as a 

result the 3-D stress is reduced to 2-D stress. 

By assuming that the out-of-plane stresses are small relative to the in-plane 

stresses, we obtain the following reduced compliance matrix and stiffness matrix: 

 

1 11 12 1

2 12 22 2

12 66 12

0

0

0 0

Q Q

Q Q

Q

σ ε
σ ε
τ γ

     
    =    
           (4.39) 

 

1 11 12 1

2 12 22 2

12 66 12

0

0

0 0

S S

S S

S

ε σ
ε σ
γ τ

     
    =    
           (4.40) 

Where: 
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 21 21

21

11 2 12 1 21
11 12

12 21 12 12

22
22 66 12

12

,
1 1 1

,
1

E E E
Q Q

E
Q Q G

ν ν
ν ν ν ν ν ν

ν ν

= = =
− − −

= =
−

 (4.41) 

and 

 

12 21
11 12

11 11 2

22 66
22 12

1
,

1 1
,

S S
E E E

S S
E G

ν ν− −
= = =

= =

 (4.42) 

In a global coordinate system, general laminates comprise of lamina of multiple 

orientations with each lamina having its own 3-D material coordinate system as per 

Figure 55: 

 
Figure 55: Fiber orientation; Source: Jones (1999) 

In this case, we are building the transformation matrix (stress) as follows: 

 

2 2
1

2 2
2

2 2
12

2 2
1

2 2
2

2 2
12

1

2

12

cos sin 2sin cos

sin cos 2sin cos

sin cos sin cos cos sin

2

2

x

y

xy

x

y

xy

m n mn

n m mn

mn mn m n

σ θ θ θ θ σ
σ θ θ θ θ σ
τ θ θ θ θ θ θ τ

σ σ
σ σ
τ τ

σ
σ
τ

    
    

= −    
    − −    

    
    

= −    
    − −    

 
 

= 
 
 

[ ]
x

y

xy

T

σ
σ
τ

 
 
 
 
   (4.43) 
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Where cos sinm nθ θ= =  and the plane stress transformation matrix is of the form: 

 

[ ]

2 2

2 2

2 2

2

2

m n mn

T n m mn

mn mn m n

 
 

= − 
 − −   (4.44) 

Then, the inverse transformation matrix becomes: 

 

2 2
1

2 2
2

2 2
12

2 2
1

2 2
2

2 2
12

cos sin 2sin cos

sin cos 2sin cos

sin cos sin cos cos sin

2

2

x

x

xy

x

y

xy

x

y

xy

m n mn

n m mn

mn mn m n

σ θ θ θ θ σ
σ θ θ θ θ σ
τ θ θ θ θ θ θ τ

σ σ
σ σ
τ τ

σ
σ
τ

   −  
    

=    
    − −     

   −  
    

=    
    − −     

 
 

= 
 
 

[ ]
1

1

2

12

T

σ
σ
τ

−
 
 
 
 
   (4.45) 

Where 

 

[ ]

2 2

1 2 2

2 2

2

2

m n mn

T n m mn

mn mn m n

−

 −
 

=  
 − −   (4.46) 

We can derive the transformed matrix (strain) as follows: 

 

2 2
1

2 2
2

2 2

12

2

2

1 1

2 2

x

y

xy

m n mn

n m mn

mn mn m n

ε ε
ε ε

γ γ

   
    
    

= −    
    − −    
   

 (4.47) 

Where 

 

[ ]

2 2

2 2

2 2

2

2

m n mn

T n m mn

mn mn m n

 
 

= − 
 − −   (4.48) 

We can derive the compliance matrix as follows: 
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 [ ] [ ]
1 1

1

2 2

12 12

;

1 1 1 1

2 2 2 2

x x

y y

xy xy

T T

ε ε ε ε
ε ε ε ε

γ γ γ γ

−

       
       
       

= =       
       
       
       

 (4.49) 

 

1 1111 12

2 12 22 22

6612 12

0

0

0 0

S S

S S

S

ε σ

ε σ

γ σ

    
    =    
          (4.50) 

Let’s define the Reuter matrix: 

 

[ ]
1 0 0

0 1 0

0 0 2

R

 
 =  
    (4.51) 

Where 

 

[ ] [ ]
1 1 1 1

2 2 2 2

12
12

;

1 1

2 2
xy

xy

R R

ε ε ε ε

ε ε ε ε

γ γ
γ γ

   
     
     

= =       
       
      

     (4.52) 
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[ ] [ ][ ] [ ][ ]

[ ] [ ] [ ][ ]

[ ]

1 1111 12

2 12 22 22

6612 12

1

2

12

1 1

1

0

0 ;

0 0

1 1
2 2

;

1

2

x x

y y

xy
xy

x x

y y

xy
xy

x

S S

S S

S

R R T S T

T R S T

R

ε ε

ε ε

γ τ

ε εε

ε ε ε

τγ γ

ε ε

ε ε

τ
γ

ε

− −

−

    
    

=    
        

  
    
      = =     

     
    

    

 
   
    

=   
   

  
  

[ ] [ ] [ ][ ]1 1
x

y y

xy xy

T R S T

ε

ε ε

γ τ

− −

   
   

=   
   
   

 (4.53) 

Where 

 

[ ][ ] [ ] [ ][ ] [ ] [ ][ ]1 1
x x x x

T

y y y y

xy xy xy xy

R T R S T T S T S

ε σ σ σ

ε σ σ σ

γ τ τ τ

− −

       
       

 = = =        
       
         (4.54) 

Note: 
[ ] [ ][ ] [ ] [ ][ ]1 1T
T R T R S T

− −
=

 and [ ] [ ][ ]T
S T S T  =   

The transformed reduced compliance matrix is: 

 

11 12 16

12 22 26

16 26 66

x x

y y

xy xy

S S S

S S S

S S S

ε σ
ε σ
γ τ

    
    =     
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Where: 
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And 
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 ijS S  =   (4.57) 
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 (4.58) 

And the transformed reduced stiffness matrix is: 
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 (4.61) 

4.4  LAMINATION THEORY 

Following a 2-D plane stress analysis of a lamina and knowing the constitutive 

relations (stress-strain) we can determine the stress-strain relation at a point P on the 

reference plane (Figure 56) using Kirchhoff’s hypothesis (normal line does not deform 

and it simply translates and rotates as a consequence of deformation of the reference 

surface). 
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Figure 56: Resulting Displacement; Source: Majumdar (2009) 

The mid-surface strains for the lamina are given by: 
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And the mid-surface curvatures for the lamina are given by: 
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The four keystones of the classical lamination theory consist of the kinematics, 

constitutive, force and moment resultants and equilibrium equations. 
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Let’s first consider the constitutive relations. We use the reduced transformed 

stiffness matrix (4.59) and the Kirchhoff strain relations(4.62), in order to determine the 

in plane stresses (4.63) in any ply and at any point within the ,x y  plane defined by the 

reference surface. 
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Before we proceed further, it is important to note several characteristics of the 

stress resultants and namely: 

• Stress in each layer varies through the thickness.  

• We can define stress in terms of equivalent forces at the middle surface. 

• At the edge, stresses can be divided into increments and summed. 

• The resulting integral is the stress resultant (force per length). 

The stress resultant in X direction is represented in Figure 57: 



 

Figure 57: Stress Resultant in X direction; Source: Majumdar (2009)

Total force in x -direction = ∑

As a result 

 

If we consider all stress and moment resultants, they are as depicted in 

Figure 58: Stress and Moment Resultants; Source: Jones (1999)

After derivations, we obtain:
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If we consider all stress and moment resultants, they are as depicted in Figure 

: Stress and Moment Resultants; Source: Jones (1999) 

After derivations, we obtain: 

 
: Stress Resultant in X direction; Source: Majumdar (2009) 
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Figure 58: 
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Figure 59: Laminate cross-section with geometric mid-plane; Source: Giurgiutiu (2012) 

Figure 59 represents the cross-section of the laminate composite expressing the 

height of the layers from the mid-plane. When we relate stress to strain for the laminate 

composite we obtain: 
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Since the Stiffness 
Q    is constant across the layer and since the mid-plane strains and 

curvatures
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x y xyε ε ε   , 

0 0 0
x y xyk k k    are independent of z , Eq.(4.70) can be rearranged as 
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Substitution of Eq. (4.72)into (4.71) yields 
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Next, we define the laminate stiffness terms ABD as follows: 

[ ]A  is the extensional stiffness matric for the laminate 

[ ]B  is the coupling stiffness matrix for the laminate 

[ ]D  is the bending stiffness matrix for the laminate 
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 (4.74) 

The constitutive equations in matrix form are: 
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Next, we will cover the physical significance of the matrix in which we can observe the 

shear, bending, and bend-twist couplings. 
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Where 

16A
 and 26A

are the shear-extension coupling 
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 and  26D

 represents  the bend-twist coupling  
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Equation (4.77) can be written in compact form as: 
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and 
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The ABD matrix can take different shapes, depending, on the fiber orientation. 

For example in the case of symmetric laminates as per Figure 60, for every layer to one 

side of the laminate reference surface with a specific thickness, material properties, and 

fiber orientation, there is another layer at an identical distance on the opposite side. In 

this case, all components of the B  matrix are zero and the 6x6 set of equations 

decouples into two 3x3 sets of equations. 

 
Figure 60: Symmetric laminates: Source: Jones (1999) 

For the case of balanced laminates as per Figure 61 , for every layer with a 

specified thickness, material properties, and fiber orientation, there is another layer 
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with the identical thickness, material properties, but opposite fiber orientation 

somewhere in the laminate, That means that if the laminate is balanced, 16A
 and 26A

 

are always zero and 16Q
 and 26Q

 from opposite orientation have opposite signs. 

 
Figure 61: Balanced laminates; Source: Jones (1999) 

Table 3  shows several examples of common laminate configurations. 

Table 3: Laminate Examples 

Fiber Orientation (layers and angle) Laminate Type 

0/90/90/0 Symmetric 

0/90/0 Symmetric 

0/90/0/90 Non-symmetric-tension / bending coupling 

0/90/45/90/0 Symmetric, non-balanced tension/ shear coupling 

0/90/45/-45/-45/45/90/0 Balanced and symmetric 

4.5  STRENGTH OF COMPOSITES 

The performance of a material is determined by its properties and behavior 

under tensile, compressive, shear and other static or dynamic loading (Figure 62), so we 

should take this into consideration when selecting the material in different applications. 

The material properties are determined by conducting mechanical and physical 

experiments. 
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Figure 62: Tension, Compression, and Shear; Source: Jones (1999) 

Another important aspect for the behavior of the anisotropic materials is the 

failure criteria. Test configurations can have a significant effect on the results of the 

tests (Figure 63), especially for thin sections, which are common for composite 

materials. 

 
Figure 63: Tensile test specimen configurations; Source: Jones (1999) 

Test results may be elastic, or elasto-plastic, or visco-elastic under various 

loading conditions (Figure 64). 
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Figure 64: Strength / Strain; Source: Jones (1999) 

The loading direction (Figure 65) relative to the fiber direction has a significant 

effect on the strength test. 

 
Figure 65: Load distribution; Source: Jones (1999) 

For an anisotropic material, the failure criteria used are as follows: 

• Maximum stress criterion entails that the material will fail when the maximum 

stress reaches the critical value which is called the strength of the material. 

• Maximum shear stress entails that the material will fail when the maximum 

shear stress reaches the critical value (Tresca and Guest approach) 
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• Total strain energy entails that the material will fail when the total strain energy  

reaches the critical value (Beltrami approach) or  when the distortional energy 

reaches a critical value (Huber, Von Mises and Hencky approach). 

For the anisotropic, inhomogeneous composite materials, it is required that the 

failure criteria incorporate a sufficient number of material parameters to correctly 

represent the failure modes detected in the material under multi-axial applied stress 

states. In this sense, we can consider the formulation of Tsai and Wu (1971) and Tsai 

and Hahn (1980): 

 
( )ij ij ij ijkl ij kl ijklmn ij kl mnf F F F etcσ σ σ σ σ σ σ= + + +

 (4.81) 

The comparison of fiber stress of Tsai and Wu (1971) and Tsai and Hahn (1980) 

versus measured data is represented in Figure 66: 

 
Figure 66:  Fiber Direction Stress; Source: Majumdar (2009) 

If we take a 2-D approach for a fiber-reinforced material, we get: 

 
2 2 2

1 1 2 2 12 1 2 11 1 22 2 66 62 1F F F F F Fσ σ σ σ σ σ σ+ + + + + =  (4.82) 
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Using the minimum value for F12 from Tsai and Hahn (1980), the resulting expression 

becomes: 

 

2 2
1 2 1 2 1 2

1 1 1 1 1 1 1
( ) ( ) 1

t t c t c t c t c t c
X Xc Y Y X X YY X X YY

σ σ σ σ σ σ− + − + + − =
 (4.83) 

This general form of the equation is a comparison of stress in a given direction to 

strength in that direction. It is important to note that the anisotropic materials can be 

much stronger in one direction (fiber direction) than in another (the direction 

perpendicularly to the fiber), so that the stress required to cause failure can be much 

smaller in the first direction than in the second.  That is why, criteria based only on 

effective stress, distortional energy, principal stress, and principal strain is intrinsically 

not suitable for the representation of the strength of anisotropic, inhomogeneous 

materials. 

4.6  DAMAGE AND LIFE PREDICTION CONCEPTS 

The modes of failure in composite laminates are tension, compression and shear. 

These three modes cause a progression of damage in an area of the structure before the 

failure occurs and although the progressive damage is not critical, it will eventually lead 

to failure. 

According to Talreja (1981), when a composite laminate has a load applied to it 

as in Figure 67, the individual layers that make up the composite will have a normal 

stress in the fiber direction, a normal in-plane stress perpendicular to the fibers and a 

shear in-plane stress. When there is a tensile in-plane stress perpendicular to the fibers, 
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small cracks will develop in the composite. When dealing with cyclic loading conditions, 

these micro-cracks play a critical role in the expansion of subsequent damage. 

 
Figure 67: Crack spacing in 900, 450 and 450 plies as function of global applied stress; 

Source: Jones (1999) 

The crack progresses until the point the matrix of the composite reaches its 

saturation or the fatigue limit is reached, point after which no future cracks form as the 

load is increased. 

The saturation matrix crack spacing (before delamination) is the same for cyclic 

and fatigue loading. In general, fiber fractures develop near the matrix crack tips (Figure 

68), while debonds occur near the broken fiber ends. 

 
Figure 68: Different defects; Source: Jones (1999) 

Due to the loads, a region of the laminated composite deforms differently 

generating a separation between layers (3-D Poisson effect) which is known as 



 

delamination. Figure 69 shows the stages of damage development in the lifetime of a 

composite material. 

Figure 

The delamination is the main damage in the laminated composite material. This

damage can be either developed during the manufacturing stage (because of 

incomplete curing or foreign particles) or produced by impact damage, or result of inter

laminar stresses that generate discontinuities. The delamination grows under different 

loads, redistributes stresses in layers and can affect residual stiffness, strength and 

fatigue life. Figure 70 presents examples of partial and total edge

composite. 
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shows the stages of damage development in the lifetime of a 

 
Figure 69: Time cycle; Source: Talreja (1981) 

The delamination is the main damage in the laminated composite material. This

damage can be either developed during the manufacturing stage (because of 

incomplete curing or foreign particles) or produced by impact damage, or result of inter

laminar stresses that generate discontinuities. The delamination grows under different 

, redistributes stresses in layers and can affect residual stiffness, strength and 

presents examples of partial and total edge delamination in a 

shows the stages of damage development in the lifetime of a 

The delamination is the main damage in the laminated composite material. This 

damage can be either developed during the manufacturing stage (because of 

incomplete curing or foreign particles) or produced by impact damage, or result of inter-

laminar stresses that generate discontinuities. The delamination grows under different 

, redistributes stresses in layers and can affect residual stiffness, strength and 

delamination in a 
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Figure 70: Different stages of delamination; Source: Talreja (1981) 

The general case of damage progression in a composite laminate is as follows.  

First, the small micro-cracks develop in the matrix between fibers that are not parallel to 

the loading direction. Second, the micro-cracks grow and become macroscopic cracks as 

the cyclic loading carries on, at which point the material has reached the Characteristic 

Damage State (CDS). Then, the cracks spread through the ply and the stress 

concentrations cause micro-cracks to advance in the plies on each part. At this point, 

the stress concentrations between plies cause local delaminations and from this point 

on the damage in the composite material will grow rapidly and then cause failure. As a 

result, a composite structure has to be examined periodically to monitor the 

progression of damage (Figure 71). 
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Figure 71: Life predictions of a composite laminate; Source: Majumdar (2009) 
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Equation Chapter (Next) Section 5 

5. LITERATURE REVIEW OF TRANSFER MATRIX METHOD (TMM) 

The transfer matrix method (TMM) is an analytical method for structural analysis 

which is an alternative to modal expansion. The transfer matrix method is a new way to 

determine the natural frequencies of a nonuniform beam. Pestel and Leckie introduced 

the TMM concept for beams in 1967. 

The TMM principle is to break up the structure into smaller components across 

which one calculates the transfer of a state vector (displacements and forces). For 

example, if we have a beam with a PWAS bonded to the structure as per Figure 72(a), by 

applying TMM we will split the beam in segments with the same configuration (same 

height, width and same excitation) as per Figure 72(b). For each end of segment we 

show the relevant axial forces, flexural moments, shear forces and the moment 

generated by the PWAS. 
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Figure 72: Free vibration of a uniform beam: 

(a) schematic of beam elements; (b) free-body diagram 

 

5.1 TRANSFER MATRIX METHOD DEVELOPED BY PESTEL AND LECKIE (1967) 

Pestel and Leckie presented the transfer matrix method in their seminal 1967 

textbook. The beam is divided in smaller segments, and for each segment the state 

vectors (displacements and internal forces) are calculated using the field transfer 

matrices and the point transfer matrices. Then, the state vectors and the frequency 

response function at any location on the beam are determined. Finally, the overall 

frequency response function is computed. Euler-Bernoulli beam theory is used; shear 

deformation and rotary inertia are disregarded. The field transfer matrices and point 

transfer matrices are used to determine the state vectors at different points in the 

structure and solve the eigenvalues and eigenvectors in MATLAB. 

Figure 73 shows a uniform beam of length l  (which can be under both axial and 

flexural loads) and can be divided into N segments. 
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Figure 73: Beam element with displacement and internal forces; Source: Cuc (2010) 

In order to proceed with the TMM, we have to build a state vector iz
comprising 

the displacements and internal forces for each interval: 

 i

i

u

w

N

V

M

ϕ

 
 
 
 

=  
 
 
 
 

z  (5.1) 

Displacements are: u  - axial displacement; w  - flexural displacement; w

x
ϕ

∂
=

∂
 - 

rotation or slope 

Internal forces are: N = axial force; V = shear force; M  = bending moment; 

Nodes index is: 0,1,2i N= K  

Segments index ( 1)i +  is: 1, 2j N= K , 1;j i i N= + <  
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 Mi-1
R 

 Vi-1
R 

 Ni-1
R 

 Mi
L 

 Vi
L 

 Ni
L 

 Mi
R 

 Vi
R 

 Ni
R 

x 

 wi 

i-1  i 



105 

 

Using the elastodynamic equations, we write the relation between two 

consecutive state vectors as 

 1
L R
i i i−=z F z  (5.2) 

where superscript L or R  represents left or right hand side of the beam segment 

(Figure 74). 

 
Figure 74: State vectors, field and point transformation matrices (three segment-case) 

The matrix iF
 is the field transfer matrix and connects the state vectors at the 

left and right end side of the ith segment. For each node, we express the state vector on 

the right side of the node given the left side one. 

From the equilibrium equation and the continuity conditions for each node we have: 

 
R L
i i i=z P z  (5.3) 

where matrix iP
 is the point transfer matrix and connects two neighboring state 

vectors. 

The matrix iP
can take into account changes of axes between one segment and the next. 

Matrix iP
 can be also extended to include external forces and moments applied at the 

nodes. 

From equations (5.2) and (5.3) we get the relations between adjacent state vectors. 
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As an example, consider a beam split into three segments (Figure 74) 

 

0

1 1 0 1

1 1 1 1 1

2 2 1 2 1 1

2 2 2 2 2 1 1

3 3 2 3 2 2 1 1

  

   

   

  (  ) (  )

  (  ) (  )

R L
BC

L R L
BC

R L L
BC

L R L
BC

R L L
BC

R L R L
BC BC

=

= ⋅ = ⋅

= ⋅ = ⋅ ⋅

= ⋅ = ⋅ ⋅ ⋅

= ⋅ = ⋅ ⋅ ⋅ ⋅

= = ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅

z z

z F z F z

z P z P F z

z F z F P F z

z P z P F P F z

z z F z F P F P F z

 (5.4) 

The start and end state vectors of the beam connect through an overall transfer matrix

U , defined as 

 3 2 2 1 1(  )  ( )U F P F P F= ⋅ ⋅ ⋅ ⋅  (5.5) 

Hence, equation (5.4) can be expressed as 

 
R L
BC BC=z Uz  (5.6) 

From equations (5.6), we get the displacements and forces at one end knowing the state 

vector at the other end. 

Let’s consider the general case of Figure 75. 

 
Figure 75: General state vectors, field and point transfer matrices 

Using the same approach as in the three-segment case, we get the following relations 

between adjacent state vectors and transfer matrix U  so that: 

 1 1 1

1 1 2 1 1 0

( )

( ) ( ) ( ) ( )

R L
i i i

L R L
i i i i i i

N N N i i

R L
BC BC

+ + +

− +

= ⋅

= ⋅ = ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

=

z P z

z F z F P z

U P F P F P F P F P

z Uz

K K

 (5.7) 



107 

 

5.1.1 CALCULATION OF THE FIELD TRANSFER MATRIX F  

Consider a single element of length l . To calculate the field transfer matrix F  

consider a generic point x  inside the segment and write the state vector 
( )xz

 as a 

matrix ( )xB
 multiplied by a constant column a , i.e., 

 ( ) ( )x x=z B a  (5.8) 

where [ ] [ ]1 2 3 4 5 6,
T T

u w N V M A A A A A Aϕ= =z a  

To determine the expression of ( )xB , consider the general solutions for axial and 

flexural vibration of a uniform beam, i.e., 

 ( ) ( ) ( )1 1 2 2u x A g x A g x= +  (5.9) 

 ( ) ( ) ( ) ( ) ( )3 1 4 2 5 3 6 4w x A f x A f x A f x A f x= + + +  (5.10) 

where 

 

( ) ( )
( ) ( )

( ) ( ) ( ){ }

( )
( )

( ) ( ){ }

( )
( )

( ) ( ){ }

( )
( )

( ) ( ){ }

1

2

1

2

3 2

4 2

, sin

, cos

1
, cosh cos

2
1

, sinh sin
2

1
, cosh cos

2

1
, sinh sin

2

a

a

f f

f f
f

f f
f

f f
f

g x x

g x x

f x x x

f x x x

f x x x

f x x x

ω γ ω

ω γ ω

ω γ ω γ ω

ω γ ω γ ω
γ ω

ω γ ω γ ω
γ ω

ω γ ω γ ω
γ ω

=   

=   

   = +   

   = +   

   = −   

   = −   
 (5.11) 

The constants aγ
 and fγ

 are the wave numbers for axial and flexural vibration, i.e., 

 
( )a

m

EA c

ω
γ ω ω= =

 (5.12) 
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( )

1/4

f

m

EI a

ω
γ ω ω = = 

   (5.13) 

The axial force is defined as 

 

u
N EA

x

∂
=

∂  (5.14) 

The bending moment and shear force are defined as 

 

2 3

2 3
,

w w
M EI V EI

x x

∂ ∂
= = −

∂ ∂  (5.15) 

Hence, the state vector becomes 

 

3

3

2

2

u

w
u w
w x

u
EA

N x

V w
EI

xM
w

EI
x

ϕ

 
 
 

   ∂   ∂   
  ∂ =   ∂   
  ∂ −   ∂   

∂ 
 ∂   (5.16) 

Substitution of equations (5.9), (5.10),(5.11) into equation (5.16) yields 

 

1 2

1 2 3 4

1
31 2 4

2

31 2

4

33 3 3
31 2 4

3 3 3 3

22 2 2
31 2 4

2 2 2 2

0 0 0 0

0 0

0 0

0 0 0 0

0 0

0 0

g g

f f f f
Au ff f f
Aw x x x x
Ag g

EA EA
AN x x

AfV f f f
EI EI EI EI

x x x xM
ff f f

EI EI EI
x x x x

ϕ

 
 
 

   ∂∂ ∂ ∂   ∂ ∂ ∂ ∂   
  ∂ ∂ =   ∂ ∂   
  ∂∂ ∂ ∂ − − − −   ∂ ∂ ∂ ∂   

∂∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 

5

6A

 
 
 
 
 
 
 
 
  

(5.17) 

If we define 
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1 2

1 2 3 4

31 2 4

1 2

33 3 3
31 2 4

3 3 3 3

22 2 2
31 2 4

2 2 2 2

0 0 0 0

0 0

0 0

0 0 0 0

0 0

0 0

g g

f f f f

ff f f

x x x x
g g

EA EA
x x

ff f f
EI EI EI EI

x x x x

ff f f
EI EI EI

x x x x

 
 
 
 ∂∂ ∂ ∂
 ∂ ∂ ∂ ∂ 

∂ ∂ =  ∂ ∂
 

∂∂ ∂ ∂ − − − − ∂ ∂ ∂ ∂
 

∂∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 

B

 (5.18) 

Then, equation (5.17) can be expressed as 

 = ⋅z B a  (5.19) 

Note the matrix B  depends on x  and ω , i.e., 
( ),x ω=B B

, since the functions 

1 2 1 2 3 4, , , , ,g g f f f f
 of equation (5.11) depend on x  and ω . 

From equation (5.19), the state vector at the two ends of a segment of length il  can be 

written as  

 ( ) ( )0 0=z B a  (5.20) 

 ( ) ( )l l=z B a  (5.21) 

The coefficients column vector a  can be calculated as 

 ( ) ( )1 0 0−=a B z  (5.22) 

From (5.22) and (5.21) we get 

 ( ) ( ) ( ) ( )1 0 0l l −=z B B z  (5.23) 

Equation (5.23) can be written as 

 ( ) ( )0l = ⋅z F z
 (5.24) 

Where F  is the field transfer matrix defined as 

 ( ) ( )1 0l −=F B B
 (5.25) 
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For the general case of N  segments, the field transfer matrix is calculated for each 

segment as 

 ( ) ( )1 0 , 1,...,i i i il i N−= =F B B
 (5.26) 

5.1.2 CALCULATION OF THE POINT TRANSFER MATRIX P 

The point transfer matrix is used to apply forces and moments at the nodes. To 

calculate the point transfer matrix P, we impose the compatibility conditions and apply 

the equilibrium equations at each node. Figure 76 shows a beam segment with forces 

applied at each end. At the left side and, i.e. at node 1, the force F  is applied in the 

negative direction; at the right end, i.e. at node 2 , the force F  is applied in the positive 

direction. The forces F  induce axial loads 1 2,F FN N
, and bending moments 1 2,F FM M

 at 

the nodes 1 and 2 , respectively. 

The calculation of the point matrices 1P
 and 2P

 is illustrated next. 

 
Figure 76: One segment - Forced vibration of a uniform beam: 

@ node #1 

Compatibility conditions: 
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1

1

1

R L
BC

R L
BC

R L
BC

u u

w w

ϕ ϕ

=

=

=  (5.27) 

Equilibrium equations: 

:xF∑  1 1
R L F

BCN N N= +  (5.28) 

:yF∑  1
R L

BCV V=  (5.29) 

:M∑  1 1
R L F

BCM M M= +  (5.30) 

In matrix form Eqs. (5.27) through (5.29) can be written as 

 
1

11

01 0 0 0 0 0

00 1 0 0 0 0

00 0 1 0 0 0

0 0 0 1 0 0

00 0 0 0 1 0

0 0 0 0 0 1

R L

F

F

BC

u u

w w

NN N

V V

MM M

ϕ ϕ

      
      
      
      

= ⋅ +       
      
      
      
        

 (5.31) 

 1 1 1
R L F

BC= ⋅ +z P z P  (5.32) 

where 1 =P I
 and the forcing term 1

FP
 is 

1
1

1

0

0

0

0

F
F

F

N

M

 
 
 
 

=  
 
 
 
  

P

 

In a similar manner  

@ node #2 

Compatibility conditions 
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2

R L
BC

R L
BC

R L
BC

u u

w w

ϕ ϕ

=

=

=

 (5.33) 

Equilibrium equations 
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:xF∑  2 2
R L F
BCN N N= −  (5.34) 

:yV∑  2
R L

BCV V=  (5.35) 

:M∑  2 2
R L F
BCM M M= −  (5.36) 

Eqs. (5.33) through (5.35) can be written in matrix form as 

 
1

12 2

01 0 0 0 0 0

00 1 0 0 0 0

00 0 1 0 0 0

0 0 0 1 0 0

00 0 0 0 1 0

0 0 0 0 0 1

BC L

F

F

u u

w w

NN N

V V

MM M

ϕ ϕ

      
      
      
      

= ⋅ +       
−      

      
      
−        

 (5.37) 

 2 2 2
R L F
BC = ⋅ +z P z P  (5.38) 

where 2 =P I
 and the forcing term is  

 

2
1

1

0

0

0

0

F
F

F

N

M

 
 
 
 

=  
− 

 
 
−  

P

 (5.39) 

For an uniform continuous isotropic beam, the point transfer matrix P is the unit matrix

I , that is, 

 P Ii =  (5.40) 

5.1.3 TMM FOR FREE VIBRATION ANALYSIS 

Partition the state vector z  into displacement and stress resultant components 

u  and p , respectively, i.e., 

 

, ,

u N

V

w M

ϕ
   

     = = =             

u
z u p

p
 (5.41) 
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Consider the free-free boundary conditions in the form 

 

0; 0L R
BC BC

N N

V V

M M

   
   = = = =   
      

p p

 (5.42) 

In this case, the unknowns are the displacements, 
L
BCu

 and 
R
BCu

, i.e., 

 

;

L R

L R
BC BC

BC BC

u u

w w

ϕ ϕ
   
   = =   
      

u u

 (5.43) 

Recall Eq. (5.7) and write the state vector at the right-end in terms of the state vector at 

the left –end as 

 
R L
BC BC=z U z  (5.44) 

Equation (5.44) can be rewritten in partitioned form as 

 

R L
uu upBC BC

R L
pu ppBC BC

    
=    

    

U Uu u
U Up p  (5.45) 

By expansion, equation (5.45) becomes 

 

R L L
BC uu BC up BC

R L L
BC pu BC pp BC

= +

= +

u U u U p

p U u U p
 (5.46) 

Applying the free-free boundary conditions and rearranging, equations (5.46) become 

 

0
00

R L L
uuBC uu BC BC

L R
pupu BC BC

I− =    ⇔ =   =    

Uu U u u
UU u u

 (5.47) 

We have a linear homogeneous system which has a unique non-trivial solution if 

its determinant is non-zero. The solutions of the homogeneous system yields the 

eigenvalues iω
. 

To obtain the eigenvalue we perform a search for the roots of determinant, i.e., 
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( ) 0pu ω =U

 (5.48) 

The eigenvalues are calculated using a frequency search algorithm. A search 

algorithm (e.g., bisection method, Newton-Raphson, etc.) can be used to scan a 

predetermined interval to extract all the ω  roots, i.e. the natural frequencies of the 

beam. 

For each natural frequency ω , we use equation (5.47) to find 
R
BCu

 and 
L
BCu

. Thus, we 

can complete the left-end state vector as 

 0

L
L BC
BC

 
=  

 

u
z

 (5.49) 

From 
R
BCz

, we can use the transfer matrix process to find state vectors 
R
iz

, 

0,1,..., 1i N= −  at the beginning of each segment. From the state vector 
R
iz

 at the 

beginning of each segment we calculate the coefficients 
{ }1 6,...i i

iA A = a
 with the 

formula. 

 

( )

1

2

1 3

4

5

6

0,

i

i

i
R

i i i i

i

i

A

A

A

A

A

A

ω−

 
 
 
 

= ⋅ =  
 
 
 
  

a B z

 (5.50) 

Knowing the coefficients 1 2 3 4 5 6, , , , ,i i i i i iA A A A A A
, we can calculate the mode shapes 

for axial and flexural vibrations inside the element as 

 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 2 2

3 1 4 2 5 3 6 4

i i i i
i

i i i i i i i i
i

u x A g x A g x

w x A f x A f x A f x A f x

= +

= + + +  (5.51) 
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Repeating this process for all the segments yields the modeshape over the whole beam. 

5.1.4 TMM FOR FORCED VIBRATION ANALYSIS 

Consider the boundary conditions generated by time harmonic external forces 

applied on the beam. E.g., for an external force 
i tFe ω

 applied as shown in Figure 76; the 

left and right boundary conditions in terms of stress resultants are 

 

0 ; 0L i t R i t
BC BC

N N

e e

M M

ω ω

−   
   = =   
   −   

p p

 (5.52) 

The state vector at the right-end can be expressed in terms of the state vectors at the 

left using the overall transfer matrix U , i.e., 

 
R L
BC BC=z U z  (5.53) 

By applying the boundary conditions, the following relation between state vectors at the 

right –end and the left-end is obtained 

 

R L
uu upBC BC

R L
pu ppBC BC

    
=    

    

U Uu u
U Up p  (5.54) 

By expansion of equation (5.54) we get 

 
R L L
BC uu BC up BC= +u U u U p

 (5.55) 

 
R L L
BC pu BC pp BC= +p U u U p

 (5.56) 

We can rearrange equation (5.56) to get 

 ( )L R L
pu BC BC pp BC= −U u p U u

 (5.57) 

We use equation (5.57) to find 
L
BCu

 

 ( )1L R L
BC pu BC pp BC

−= −u U u U p
 (5.58) 

From (5.58) and (5.55) we calculate 
R
BCu
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 ( )1R R L L
BC uu pu BC pp BC up BC

−= − +u U U p U p U p
 (5.59) 

Equations (5.58), (5.59) give the displacements  
L
BCu

, 
R
BCu

. Knowing the 

displacements we can build the frequency response function FRF.  

For frequencies outside resonance range, the response is given by equation (5.59). This 

assumes that the invers of matrix puU
 exists, i.e. the matrix is not singular, i.e. 

0pu ≠U
. 

At resonance, the matrix puU
  becomes singular, i.e. 

0pu =U
. In this case, the response 

R
BCu

 given by equation (5.59) become infinite and the structure oscillates in a natural 

mode of vibration. 

5.1.5 PROBLEMS WITH TMM 

The main problem of TMM is the numerical instability at high frequencies. This 

aspect will be presented in detail in the next sections. 

5.2 TMM DEVELOPMENTS 

Vibration analysis of complexly shaped structures using the transfer matrix 

method has been the focus of many researchers. Ritchie et. al. (1975) integrated the 

transfer matrix method into a simple FEM to calculate the spectrum of flexural and 

torsional resonant frequencies of specimens of material of orthotropic symmetry. 

Authors considered the torsion-flexure coupling and utilized the Timoshenko 

beam corrections for flexure. They stated that the transfer matrix technique can be used 

to predict the free-free resonant frequencies for composite material beams of 

orthotropic symmetry and that the coupling torsion-flexure produces measurable 

perturbations of the resonant frequencies and distortion of the vibration shapes. 
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Giurgiutiu and Stafford (1977) used TMM to calculate the vibration of helicopter 

blades modeled as rotating Timoshenko beams. Subrahmanyam and Garg (1997) used 

TMM to determine the frequencies and mode shapes for uncoupled flexural vibrations 

of straight beams for different types of boundary conditions. Authors considered in their 

method the shear deformation effects, rotary inertia and variable axial loading and 

utilized a beam of length L = 1 m divided into 100 equal segments. The mass and mass 

moments of inertia were lumped at the centroid of each segment. They used the 

Timoshenko beam theory in order to derive the exact solution for the pinned-sliding 

case and used the Euler-Bernoulli theory to compare the results. Authors showed that 

there was a match between their TMM method solutions and the exact analytical 

solutions. 

Lee (2000) presented a general approach to the spectral transfer matrix method 

(STMM) by merging the features of the spectral element method (i.e., high accuracy) 

with the features of the TMM (i.e., high analysis efficiency) and used this method for 

solving vibration problems of large periodic lattice structures. He used a plane lattice 

structure with four beam-like lattice substructures and one single lattice cell, united at 

the center. He applied the STMM method to both a simple Euler-Bernoulli beam a large 

plane lattice structure and was able predict the dynamic response for each structure. 

Ellakany et. al. (2004) used a mix between the TMM and the analog beam method 

(TMABM) in order to study the vibration of a composite beam (composed of an upper 

slab and a lower beam, connected at the interface by shear transmitting studs). TMABM 

provides the coupling between the bending and torsional modes of deformation. As part 
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of their method, authors replace the real beam by an equivalent beam where all the 

shear deformation is concentrated in a thin horizontal layer called the shear layer. 

Several assumptions are made: (a) each sub-beam behaves as a simple Euler-Bernoulli 

beam (no shear effects); (b) the vertical displacements of the sub-beams are the same 

(the shear layer is transversely rigid). Authors used the method to calculate the natural 

frequencies of a simple supported beam with uniformly distribute mass and compared 

the results against the classical solution for simple supported beams. They found that 

the TMABM method and the classical method converge. 

Bilello and Bergman (2004) used TMM to solve the eigenvalue problem for a 

one-dimensional system with non-uniform mechanical properties (the vibration of a 

damaged beam under a moving mass). The beam was divided into N segments of 

constant linear mass density, flexural stiffness, and length and the cracked beam was 

modeled using the “rotational spring model” which considers the damage by using the 

local compliance, which assesses the relation between the load and the strain in the 

proximity of the crack. Authors used the modal expansion method to obtain the 

dynamic response and they found that the analytical and experimental results converge. 

In addition, the presence of damage produced larger perturbation to the dynamic 

response of a moving load. 

The use of TMM to analyze the detection of delamination with PWAS 

transducers and the electromechanical impedance method was recently been 

attempted by Bois et.al. (2004, 2007) and Cuc (2010). These developments are detailed 

in the next sections. 
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5.3  TMM METHOD DEVELOPED BY BOIS ET. AL. (2004, 2007) FOR DELAMINATION 

DETECTION IN COMPOSITE BEAMS 

Bois, Herzog, and Hochard (2004, 2007) used the theory of piezoelectric 

laminates to extend TMM to composite beams. They focus on building a monitoring 

system that can predict the damage in a quasi-isotropic laminate. The analysis of Bois et 

al. (2004, 2007) has the following steps: 

1. Analysis of a composite laminated plate with piezoelectric layers and 

simplification to the case of a composite beam. 

2. Transfer matrix modeling of a beam with a localized delamination and a 

piezoelectric wafer located away from the delamination. 

3. Determination of the electric current resulting from an electric a.c. voltage 

applied to the piezo wafer at various frequencies. The a.c. voltage induces the 

vibrations of the composite beam through piezoelectric transduction; hence, the 

resulting current varies strongly around the beam resonances. This is shown in 

the plot of admittance ( ( ) ( ) ( )/Y I Vω ω ω= ) and of equivalent capacitance 

( )C ω . 

The next sections present details of this method using the notations of Bois et al. 

(2004, 2007). 

5.3.1 ANALYSIS OF THE LAMINATED COMPOSITE BEAM 

In order to proceed with this method, let us consider a 2-D approach and define 

a stress vector σ and a strain vector ε . 
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11 11

22 22

12 12

;

2

σ ε

σ ε

σ ε

   
   = =   
      

σ ε

 (5.60) 

The constitutive law first shown in equation (4.6) can be expressed as follows (where S  

is the compliance tensor): 

 ε = S σ  (5.61) 

For an orthotropic material, S  becomes: 

 

21

1 2

21

2 2

12

1
0

1
0

1
0 0

E E

E E

G

υ

υ

 
− 

 
 

= − 
 
 
 
 

S  (5.62) 

where: 

1E
is the longitudinal Young’s modulus 

2E
is the transversal Young’s modulus 

12G
is the shear modulus 

21υ
is the Poisson’s ratio. 

Let us then consider a piezoelectric material approach and considering equations (3.1) 

and (3.2) for the mechanical strain ijε
, and respectively the displacement, jD

, we can 

write: 

 3
E E= ⋅ijε S σ + d  (5.63) 

 3 33 3
TD Eσε= +d σ  (5.64) 

where:  
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33
σε

is the dielectric tensor at constant stress field 

ES is the compliance tensor at constant electrical field 

d is the corresponding piezoelectric coupling tensor 
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223

123

d

d

d

 
 =  
  

d  (5.65) 

and 
Td  is the transposed of d . 

We can rewrite equation (5.63) as follows: 

 1
3( ) ( )E E−= − ⋅σ S ε d  (5.66) 

And by replacing σ into (5.64) we obtain 

 1 -1
3 33 3( ) [ ]T E T ED Eσε−= + −d S ε d (S ) d  (5.67) 

(5.66) and (5.67) are the constitutive laws and εand 3E
are independent variables. 

 
Figure 77: Kirchhoff-Love’s displacement field (Bois et al., 2007) Fig. modified 

For simplicity, let us consider equations (4.62) and (4.63) but follow the coordinate 

system shown in Figure 77. Following Kirchhoff Love’s displacement field, we have: 
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0 0

3 3( )u u x grad u= −  (5.68) 

where 
0u is the displacement of the point 

0m . 

Following this approach, we can rewrite (5.60) as follows: 

 3x+0
ε = ε K  (5.69) 

 

0 0
1,1 3,11

0 0
2,2 3,22

0 0 0
1,2 2,1 3,12

,

2

u u

u u

u u u

   −
   

= = −   
   

+ −      

0
ε K  (5.70) 

We can calculate the dynamic bending equations for piezoelectric laminates taking into 

consideration all assumptions above. Figure 78 shows the layers for a laminate 

composite, with height being defined from the center. 

 
Figure 78: Layers for Laminate Composite (Bois el al., 2007) Fig. modified 

As a first step, we calculate the axial forces and the moments: 

 

1 1

1

1 1

1

3 3
1

3 3 3 3
1

 

n i

i

n i

i

h hn

ih h

h hn

ih h

dx dx

x dx x dx

+ +

+ +

=

=

 
= =  

 
 

 
= =  

 
 

∑∫ ∫

∑∫ ∫

N σ σ

M σ σ

 (5.71) 

Using equation (5.66) and(5.71), we can express the system of equations as follows: 

 

1 1

1 1

1 1

1 1

-1 -1
3 3 3

-1 -1
3 3 3 3 3

 

  

n n

n n

h h
E E

h h

h h
E E

h h

dx E dx

x dx E x dx

+ +

+ +

= − ⋅

= − ⋅

∫ ∫

∫ ∫

N (S ) ε (S ) d

M (S ) ε (S ) d

 (5.72) 
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Using equations (5.69) through (5.72), the system becomes: 

 3

3

E

E

0

0

N = Aε + B - F

M

K

K= Bε + D - G
 (5.73) 

Where: 
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2 2
-1 1

1
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E
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h h

h h

h h

+
=

+

=

+

=

+

+

= −

 −
=  

 

 −
=  

 

= −

−
=

∑

∑

∑

A S )

B (S )

D (S )

F  (S ) d

G (S ) d

 (5.74) 

And i represents the layer index in the equations above. 

Following the same approach presented above, we can rewrite equation (5.67) as: 

 ( ) ( ) ( )-1 -1

3 333 3
E T E
i i

T x ED σε = + + −  
0S ε K d S dd  (5.75) 

Our initial assumption was that 3D
 is independent of 3x

, however as per 

equation (5.36), this is not the case and 3D
 is strictly related to 3x

. Because the PWAS is 

very thin though, we do not take into consideration this relation, but we can take an 

approximation on the average displacement of the electrical charge in the 3x
 direction 

and rewrite (5.75) as follows: 

 ( ) ( )
2 2

-1 -1
1

3 33 32
E T Ei i
i i

T h h
ED σε+ −  = + + −     

0S ε K d S dd  (5.76) 
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We study the bending moments of the beam in the 2-D plane 1 3( , )x x
and we are 

looking only at solutions  where only the forces in the 1x
 direction is not equal to zero, 

which leads to: 

 22 22 12 120; 0; 0; 0N M N M= = = =  (5.77) 

The conditions given by equation (5.67) and (5.73) allow us to determine the 

stresses in terms of
0
11 11 3, ,K Dε

. We are only left now with solving the equation: 

 

0 0 0
22 22 22 22 23 12 23 12 12 11 12 11 2 3

0 0 0
22 22 22 22 23 12 23 12 12 11 12 11 2 3

0 0 0
32 22 32 22 33 12 33 12 13 11 13 11 3 3

0 0 0
32 22 32 22 33 12 33 12 13 11 13

A B K A B K A B K F E

B D K B D K B D K G E

A B K A B K A B K F E

B D K B D K B D

ε ε ε

ε ε ε

ε ε ε

ε ε ε

− − +

− − +

+ + + =

+ + + =

+ + − − +

−

=

+ = −

+

+ + 11 3 3K G E+  (5.78) 

This can be expressed in a matrix format 

 

00
22 22 23 23 12 11 12 11 2 322

0
22 22 23 23 12 11 12 11 2 322 

00
32 32 33 33 13 11 13 11 3 312

0
32 32 33 33 13 11 13 11 3 312

 

    
 

  

A B A B A B K F E

B D B D B D K G EK

A B A B A B K F E

B D B D B D K G EK

εε
ε
εε
ε

   − − + 
    − − +    =
    − − +
   
− − +          (5.79) 

We then determine 11N
 and 11M

 as a function of 
0
11 11, Kε

 and 3E
 as 

 
0

11 11 11 3

0
11 11 11 3

 

 M

N N

M M

NN A B K F E

M B D K G E

ε

ε

= + −

= + −
 (5.80) 

Similarly, we solve (5.76) 

 11 3
0

3 11
D D DQ K EP JD ε + +=  (5.81) 

All the coefficients above , , , , , , , ,N N N M M M D D DA B F G B D P Q J  are numerically 

calculated. Then, we apply Kirchhoff Love’s plate theory and obtain the dynamical 
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equilibrium equations, (we ignore the inertial forces in directions 1x
 and 2x

 due to the 

bending mode which is much lower than the first axial mode): 

 
11,1 12,2

22,2 12,1
2 0

11, 11 22,22 12, 12 3

 0

 0

    0

N N

N N

M M M uλω

+ =

+ =

+ + + =

 (5.82) 

where λ  is the area density. 

From equations (5.77) and (5.82) we obtain: 

 
11,1

2 0
11, 11 3

0

  0

N

M uλω
=

+ =
 (5.83) 

From equations (5.80) and (5.83) and also considering the fact that 3E
 does not depend 

on 1x
, we obtain: 

 
0 0
1,11 3,111

0 0 2 0
1,111 3,1111

3

3

,1

3,11

0

  0

NN

M

N

M M

A u F E

G E

B u

B u D u uλω

 − − =


− +− =
 (5.84) 

Knowing that 3E
is independent of 1x

, we obtain: 

 
0 0
1,11 3,111

0 0 2 0
1,111 3,1111 3

0

  0M

N

M

NA u B u

B u D u uλω

 − =


− + =
 (5.85) 

The terms
NB  and 

MB  will be zero due to the laminate symmetry and only on 

the delaminated zone we will have asymmetry. To decouple the system of equations in 

(5.85), and use the first equation as follows: 

 

0 0
1,11 3,111

N

N

B
u u

A
=

 (5.86) 

The derivative gives 

 

0 0
1,111 3,1111

N

N

B
u u

A
=

 (5.87) 
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Replacing into the second equation of the system we obtain: 

 0 2 0
3,1111 3 0Ru uλω− =  (5.88) 

Where 

 
N M

M
N

B B
R D

A
= −  (5.89) 

The solutions for equation (5.88) are given by: 

 
0
3 1 1 1 2 1 3 1 4 1( ) ( ) ( ) ( ) ( )u x a cos x a sin x a cosh x a sinh xγ γ γ γ= + + +  (5.90) 

Where 

 
2

R

λω
γ =  (5.91) 

and the solutions for equation (5.86)  are given by: 

 
( ) ( ) ( ) ( ) ( )0

1 1 1 1 2 1 3 1 4 1

5 1 6

sin cos sinh cosh
N

N

B
u x a x a x a x a x

A
a x a

γ
γ γ γ γ = − + + + 

+ +
 (5.92) 

1 2 3 4 5 6, , , , ,a a a a a a
 are constants determined from the initial strain and stress conditions. 

Following the transfer matrix method approach, the beam is split into several segments 

and then we write the kinematical and dynamical conditions between each of adjacent 

pairs of the segments. We use expressions (5.90) and (5.92) for each pair shown in 

Figure 79 to build the whole beam. 
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Figure 79: Kinematical node variables; Source: Bois, Herzog, and Hochard (2007) 

The displacement 
0
1 1( )u x

 is: 
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 (5.93) 

The displacement 
0
3 1( )u x

 is: 
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 (5.94) 

where: 



128 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

1 0 0

1 0 0

1 0 0

1 0 0

1 1
0 0

0 0 0 0 0

T

X X
Si Sh CoSh SiSh Ch Co

Y Y
X X

SiSh CoSh Co Ch ChSi CoSh Sh Si
Y Y

X X
ChSi CoSh Si Sh CoCh SiSh Co Ch

CL Y Y
X X

CoSh SiSh Co Ch

X X
ChSi CoSh

Y Y
X X

Y Y
X X

Y

ChSi CoSh Sh Si
Y Y

X X

L L

Y
X X

Y

L L
X

Y

γ γ

γ γ

γ γ

γ γ

 + + − −


− + − − −

+ + − − −

− +

=

+ − − − −

− −

−

−

−

−





 
 
 
 
 
 
 
 
 
 
 
 

 (5.95) 
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 (5.96) 

and 

 

Co  cos( );  Si  sin( );  Ch  cosh( );  Sh  sinh

;

)

2(

(

1)
N
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B
X Y CoC

L L L

A

L

h

γ γ γ γ

= =

= =

−

= =

 (5.97) 

Then, we can write the dynamic equilibrium for each node. By solving the system of 

equations, we can calculate the displacement field depending on the electric potential. 

5.3.2 DETERMINATION OF THE E/M IMPEDANCE OF THE LAMINATED COMPOSITE 

We describe now the mathematical algorithm for the E/M impedance method 

for composite materials following Bois, Herzog and Hochard (2007) approach. 

Let us consider that the transducer admittance is 

 
I

Y
V +

=
&

 (5.98) 

From the electric charge displacement, we obtain the electrical current I as follows: 
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1,i in n + are the nodes at the transducer ends. 

We then use (5.99) to express I&  depending on the displacement field and the electrical 

field: 
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where L� is the length of the transducer  
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And 
0
1u∆

 and 
0
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Admittance becomes: 
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And total capacitance is: 
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5.3.3 DAMAGE DETECTION WITH THE BOIS ET AL. (2004, 2007) METHOD 

Bois et al. (2004,2007) used the piezoelectric impedance method as a local 

detection technique to provide information on the size and the position of the 

delamination inside the beam’s structure and concluded that there is a phase shift in 

the impedance measurement and the resonance peaks are smaller in experimental 

results than in the simulation (error rate =15%). When looking at the influence of 

relative position between sensor and damage, they found that the excitation position 

does not modify the mode frequency, but influences their amplitude. The simulations 

were used to study more closely the influence of damage (Figure 80) and sensor size in 

order to consider the insertion of thinner sensors in composite materials to generate 

bending modes. They found that resonance frequency increases with delamination 

depth and that only resonances of modes located near the sensor (on the delamination) 

are shifted when the thickness or the length changes as shown in Figure 81 and Figure 

82. 

 
Figure 80: TMM model of a delaminated composite beam with a segment having a 

piezoelectric wafer (Bois et al.,2007) 
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Figure 81: Influence of delamination length – Experiment L=180mm (length), Ld=40mm 

(delamination), L1=20mm, and L2=23mm (L1, L2 - delamination located inside the beam) 

Source: Bois et. al. (2004) 

 
Figure 82:  Carbon/epoxy- Influence of delamination length – Simulation L=180mm (length), 

Ld=40mm (delamination), L1=20mm, and L2=23mm (L1, L2 - delamination located inside the 

beam) Source: Bois et. al. (2004) 

Bois et. al. (2007) extends the analysis in Bois et. al. (2004) and calculate the 

frequency response of a composite beam with delaminations. The analytical model also 
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considered the 3D constitutive laws for the PWAS and expressed them in terms of the 

plane stress terms with uniaxial electric field and instead of measuring the admittance 

they measure the capacitance of the PWAS (Figure 83). 

 
Figure 83: Delamination at one end - Real part and imaginary part of the equivalent capacitor 

Source: Bois et al. (2007) 

Authors derived the expressions for the electric charge displacement, 

longitudinal displacement and transversal displacement and divided the beam into 

several segments (the kinematic and continuity conditions were applied for each 

segment). They obtained an 3n  linear system of equation where In is the number of 

nodes and by solving the system they obtain the displacement fields in terms of the 

electric potentialV+ . Then, from the displacement fields, the current I was calculated 

and the electrical admittance Y . 

Experimentally, they considered a laminate consisted of 16 unidirectional 

carbon/epoxy plies; six piezoelectric transducers were bonded on the beam. Two cases 

of delaminations were considered: 1) when delamination is at one end of the beam and 

2) when delamination is located inside the beam (Figure 84). The frequency range 
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considered was 0.1 kHz-30 kHz. For the first delamination case, authors considered two 

influence parameters, length, and depth and they concluded that their simulated 

delamination was underestimated by 10% compared to experimental results. For the 

second delamination case, authors used three parameters, length, position and depth 

and they concluded that their simulated delamination was underestimated by 15% 

compared to experimental results. 

 
Figure 84: Configurations of studied delamination. 

(a) Delamination at one end of the beam. (b) Delamination located inside the beam 

Source: Bois et. al. (2007) 

5.3.4 NUMERICAL RESULTS WITH BOIS ET AL. (2004, 2007) METHOD 

In order to understand this theory, we start with a simple case: one single 

composite beam segment (10 unidirectional epoxy plies). Having one segment means 

we have 2 nodes: one at the beginning and one at the end of the segment. For each 

node, we will have 3 unknowns: the displacement on 1x
(horizontal) axis, the 

displacement on 3x
(vertical) axis and the bending moment M . Hence, for one 

segment, we have a total of 6 unknowns. The link between the two nodes is the shape 

functions given by Equations (5.95) and (5.96). 
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Following the transfer matrix method approach, the beam is split into several 

segments and then we write the kinematical and dynamical conditions between each of 

adjacent pairs of the segments. Using the same approach, we write the dynamic 

equilibrium for each node and by solving the system of equations, and then we calculate 

the displacement field depending on the electric potential. 

Table 4: Material & PWAS Properties 

 

The material and PWAS properties for this case are presented in Table 4. 

PWAS

Material 

Properties Unidirectional glass-epoxy Composite APC-850

Elastic properties E1/E2/G12/ν12/ν21 E1/E2/ν12/ν21

Gpa 32/30/4/0.26/0.26 64.5/64.5/0.3/0.3

Damping 

Coefficient ξ1/ξ2/ξ12 ξ1/ξ2/ξ12

Elastic Properties 

with Damping 0.001/0.01/0.01 0.001/0.01/0.01

Mass Density 1900 7500

Permittivity - 1750*8.85*10
-12

Coupling Terms: 

d33, and d31 - 400*10
-12

 / -175*10
-12     

Layers                          

( No. & Hight) 10 layers;    h=2mm;   200μm/layer Dimensions    8x8x0.2 mm
Stacking 

Sequence (0
0
)10 -

Segment 

dimensions: one segment  - beam length = PWAS two segmments - PWAS + segment

Length 60 mm (100 + 8) mm

Hight  2 mm  2 mm

Width 8 mm 8 mm

MATERIAL
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Figure 85: One – segment model with PWAS 

Figure 86 and Figure 87 represent the real and imaginary parts of the total 

capacitance of the PWAS for one single segment when using the TMM method. The 

simulation was done in MATLAB in the range 0.1-30 kHz. 

 
Figure 86: One – segment model - The real part of the capacitance 
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Figure 87: One – segment model - The imaginary part of the capacitance 

Figure 88 and Figure 89 show the real part and the imaginary part of the 

admittance. 

 
Figure 88: One – segment model - The real part of admittance (Re Y) 
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Figure 89: One – segment model - The imaginary part of admittance (Imag Y) 

We then redo the analysis for 2 segments which represent 3 nodes (Figure 90). 

For each node, we have the 1x
 displacement, 3x

 displacement and the bending 

moment. We can express the dynamic equilibrium at the middle node following the 

approach described above. Applying the continuity laws and the displacement fields, we 

were able to express the dynamic equilibrium equations according the kinematical node 

variables, obtaining a matrix 18 x 9. Starting from the left hand side, we can write the 

link between the middle node and the first one by the shape functions, 1
TCL

 and 3
TCL

. 

The starting point of the second segment will be equal with the end point of the first 

segment, so these two points are only one. The displacements of the end of point of the 

second segment will be determined using the same shape function but all the results for 

the second segment will be linked to the first segment by the middle point. 
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Figure 90: Two segments with PWAS 

Figure 91 and Figure 92 represent the real and imaginary parts of the total 

capacitance of the PWAS for two segments when using the TMM method. The 

simulation was done in MATLAB in the range 1-30 kHz. 

 
Figure 91: Two - segment model - The real part of the capacitance  
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Figure 92: Two - segment model - The imaginary part of the capacitance 

Figure 93 and Figure 94 show the real part and the imaginary part of the 

admittance. 

 
Figure 93: Two - segment model -The real part of the admitance (Re Y) 
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Figure 94: Two - segment model -The imaginary part of the admittance (Imag Y) 

5.3.5 CRITIQUE OF THE BOIS ET AL. (2004, 2007) METHOD 

The numerical tests presented above have shown how this method works, but 

have also highlighted its limitations: 

1. The method was applied by Bois et al. (2004, 2007) only to low frequencies (≤ 30 

kHz). For these frequencies, the changes in the vibration behavior due to a small 

delamination were small and hence difficult to detect. 

2. In our tests shown above, we took the method to 30 kHz, but could not go 

further up because the method had a breakdown. This is due to numerical 

instability in the TMM algorithm, a fact that has been also reported elsewhere. 
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5.4  TMM DEVELOPED BY CUC (2010) FOR DISBOND DETECTION 

Cuc (2010) used TMM to develop the analytical model for a uniform beam using 

the Euller-Bernoulli beam theory (shear deformation and rotary inertia were not 

considered) and expanded the method to the case of a multi-layer adhesively bonded 

beam (Figure 95). The length of the beam was divided in smaller segments, and for each 

segment he calculated the state vectors (displacements and internal forces) using the 

field transfer matrices and the point transfer matrices. If damage (disbond) was present 

in the structure, then the beam was divided in branches and for each branch, the 

mathematical formulation for the equivalent material properties, field and point 

transfer matrices were developed. As a final step, he calculated the state vectors, and 

the frequency response function at any location on the beam as well as the 

electromechanical impedance using the frequency response function. Cuc (2010) also 

performed FEM analysis in which a harmonic force was applied at the nodes to simulate 

the two ends of the PWAS. A coupled-field FEM was performed  and he compared both 

analytical and FEM results with the experimental results from two simple beam 

specimens: one pristine and one damaged with artificially simulated disbond. In 

addition, a set of damage indices were developed to detect the presence of disbond 

damage in the structure. From the results, it was shown that by using only one damage 

index it may be difficult to have positive damage detection and different damage indices 

respond in different ways to changes in the impedance spectrum. Author also concluded 

that analytical and experimental results are in agreement (Figure 98) and that a small 
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change in the location of one sensor produced a significant change in the impedance 

response. 

 
Figure 95: Instrumentation set-up 

Source: Cuc (2010) 
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Figure 96: Changes in the damage indices and the real part of the electromechanical 

impedance for different damage lengths (dotted line is the damaged case; solid line is the 

pristine case).Source: Cuc (2010) 

Cuc (2010) plotted the analytical electromechanical impedance results for a 

narrower frequency interval of 30 kHz to 60 kHz to the changes in the impedance 

spectra due to increased damage. (Figure 96). The electromechanical impedance spectra 
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display amplified frequency response changes as the damage increases. Moreover, 

author found the following changes due to damage growth: peak shifts, usually to the 

left, indicative of increased structural stiffness, peak splitting or coalescence, increase in 

peak heights and appearance of new peaks. 

 

 
Figure 97: DI comparison for different damage lengths. Source: Cuc (2010) 

In addition, Cuc (2010) finds that the values of the damage indices are also 

varying with the change in the damage size. A comparison of all three DI’s in Cuc(2010) 

is presented in Figure 97 indicates that all three damage indices modify with the 

increase in damage length. However, each of the DI curves has a different shape. The 

only DI that shows steady increase with the damage length is the mean absolute 

percentage deviation (MAPD). The other two, RMSD and CCD, are not monotonic with 

damage length; this result is credited to the fact that they are not as sensitive to the 

small unceasing variations in the electromechanical impedance range but only to the 

more sudden ones. 
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Figure 98: Comparison between the analytical and experimental electro-mechanical 

impedance spectrum for PWAS #2: (top) pristine specimen; (bottom) damaged specimen 

Source: Cuc (2010) 
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Equation Chapter (Next) Section 6 

6. LITERATURE REVIEW OF FIBER OPTIC BRAGG GRATING SENSORS (FBG)  

Fiber optic is one predominant damage detection technique for composite 

structures. Kuang (2003) states that optical fiber sensors are flexible, small and thus can 

be integrated into composite materials for damage detection. Among the various types 

of optical fiber sensors, the fiber Bragg gratings (FBG) are the primary method used to 

monitor structures for damage. 

6.1 FEATURES OF FIBER BRAGG GRATINGS  

The fiber brag grating sensors (FBGS) are becoming more and more utilized in 

the field of experimental stress analysis because they are well suited for composites.  

Kreuzer (2007) provides a review of the FBG sensors and discusses their special 

strengths and weaknesses compared to alternative methods (e.g. strain gage). He also 

provides details on measuring FBG and strain gages at the same time. Kreutzer (2007) 

mentions that the main superior advantage of FBG is the fact that they are immune to 

electro-magnetic interference, even lighting interference and thus they are adequate for 

special applications in the aerospace and navy industry. Besides, Kreutzer (2007) and 

other authors mention other important strengths of FBG such as: FBG match well with 

the new composite materials (carbon and fiber glass), can measure very high strain, are 

of small size and light, intrinsically passive, and no electrical power needed. Also, they 

are not distance dependent, can provide long-term stability, low magnetic field 
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interference, and are easy to install. Special FBG versions also present good corrosion 

and resistance to extreme temperatures. 

Since FBGs are used by monitoring shifts in optical wavelength, Guemes et al. 

(2010) and Ciang (2009) find that FBG does not suffer problems typical for plague 

electrical strain gages, such as signal attenuation, background noise, electrical 

interference, and power surges. 

Some drawbacks though to using FBG are the fact that they present high 

temperature dependency, cannot provide self-compensation of apparent strain, show 

high sensitivity to lateral forces or pressure, and are expensive. 

6.2  FBG SENSORS FUNCTIONAL PRINCIPLE 

The FBG consists of a very small inner core (which has a high reflection index 

caused by germanium dopping) and an outer part of pure glass. The glass fiber is coated 

with acrylate, polyimide, or ORMOCER (organic modulated ceramic) to protect it against 

the water. In order to measure the strain, the sensor should be securely bonded to the 

specimen. Each individual fringe reflects a very small part of the incoming wavelength. 

The FBG presents multiplexing aptitude and can sense strain in only one small 

region of the fiber, characteristics that permit strain mapping over the entire area on 

which the fibers are placed. FBGs are formed by using UV light to generate multiple 

mirrors over the length of the fiber which reflects only a slim part of a broadband light 

source transmitted through the fiber. Figure 99 shows the schematic of a fiber bragg 

grating and Figure 100 presents the functioning principle of a FBG. 
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Figure 99: Fiber Bragg Grating Schematic 

Source: Kreuzer (2007) 

 

 
Figure 100: Functioning Principle of Fiber Bragg Grating 

Source: Kreuzer (2007) 

6.3  METHODS TO INDUCE FIBER OPTIC BRAGG GRATINGS 

In order to induce the fiber optic bragg gratings, a Excimer laser is used and the 

interference can be generated via the phase mask or by slitting laser beams. 

6.3.1 BRAGG GRATING INDUCED BY A LASER AND A PHASE MASK 

In the case of the bragg grating induced by a laser and a phase mask, Kreuzer 

(2007) states that “the standard procedure to produce high reflections is to dismantle a 

standard telecom fiber (remove the acrylate and polyimide coating), expose to the fiber 
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to UV interference pattern and then embed it again in the suited coating” (see Figure 

101). It is important to mention that when measuring strain with FBG, it is best to use 

polyimide coating, rather than acrylate since acrylate is too soft and cannot transfer 

very well the strain from specimen to fiber, in particular when having high temperature. 

 
Figure 101: Bragg grating induced by a laser and a phase mask 

Source: Kreuzer (2007) 

Due to the energy to which the FBG is exposed by using this method, a 0.01-0.1 

change in the reflection index will occur. In order to avoid this problem, a second 

method was developed, the FBG gratings produced on the fly. 

6.3.2 FBG GRATINGS PRODUCED ON THE FLY 

Using the FBG grating produced on the fly method, the inscription occurs on the 

fly during the fiber pulling process (Figure 102) and after the fiber is inserted into the 

coating. For this method, no additional dismantling process is needed. 
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Figure 102: FBG grating produced on the fly 

Source: Kreuzer (2007) 

This technique implies that only one  inscription UV laser flash is triggered for 

each bragg grating uses ORMOCER (organic modulated ceramic) as primary coating 

material due to the fact that its Young’s modulus is high. 

6.4  MEASURING SYSTEM FOR FBG SENSORS 

There are two main approaches to read the strain from the fiber. In the first 

approach, the mirrors (grating) can be produced in such a way so as each grating reflects 

a different frequency of the incoming light and thus the strain measurements for each 

grating can be done individually. In the second approach, all gratings are generated so 

that they reflect the same frequency. Figure 103 show a strain field produced using this 

second approach. 



 

Figure 103: Network created by one fiber to map the strain on the surface of the composite 

FBG is designed to work with minimal instrumentation, which makes them very 

useful in health monitoring of composite structure. For example, they are good at 

detecting delaminations and impact damage as shown in 

(2010). 

Also, due to the optical nature of these sensors, the strain readings are not 

predisposed to drift during a long

use of FBGs for real time impact detection and acoustic emission detection.

 

151 

: Network created by one fiber to map the strain on the surface of the composite 

plate Guemes et al. (2010) 

to work with minimal instrumentation, which makes them very 

useful in health monitoring of composite structure. For example, they are good at 

detecting delaminations and impact damage as shown in Figure 104 from Guemes et al. 

Also, due to the optical nature of these sensors, the strain readings are not 

predisposed to drift during a long-term test. Recent research in the field focuses on the 

of FBGs for real time impact detection and acoustic emission detection.

 

 
: Network created by one fiber to map the strain on the surface of the composite 

to work with minimal instrumentation, which makes them very 

useful in health monitoring of composite structure. For example, they are good at 

from Guemes et al. 

Also, due to the optical nature of these sensors, the strain readings are not 

term test. Recent research in the field focuses on the 

of FBGs for real time impact detection and acoustic emission detection. 



 

Figure 104: (a) Ultrasonic C-scan of an impacted area. (b) Strain increase in the impacted area 

measured by a FBG sensor; Source: Guemes et al. (2010)
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scan of an impacted area. (b) Strain increase in the impacted area 

measured by a FBG sensor; Source: Guemes et al. (2010) 

 

 
scan of an impacted area. (b) Strain increase in the impacted area 
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Equation Chapter (Next) Section 7 

7. ADMITTANCE AND IMPEDANCE CALCULATION BASED ON THE DYNAMIC 

STRUCTURAL STIFFNESS 

According to Giurgiutiu (2008, page 283), the electrical admittance for a 

constrained PWAS is 
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1 1
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ω κ

ϕ ϕ
  
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The electrical impedance at the PWAS terminals is 
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Following Giurgiutiu (2008, page 280) the frequency-dependent stiffness ratio is  
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Figure 105: (a) PWAS attached to a beam;. (b) pin-end forces F  acting on the beam at 

PWAS ends; (c) displacement 
Au  and 

Bu  used to calculate PWAS  expansion 

PWAS B Au u u= −  

For a PWAS  attached to a beam as shown in Figure 105 the structural stiffness ( )strk ω  is 

calculated by taking the ratio between the applied  force F  and the frequency 

dependent response ( )PWASu ω . First, we calculate the frequency response function, FRF

, i.e., 

 
( ) ( )PWASu

FRF
F

ω
ω =

 (7.5) 

where 

 ( ) ( ) ( )PWAS B Au u uω ω ω= −
 (7.6) 

Next we calculate the dynamic structural stiffness 
( )strk ω

 as the inverse of FRF , i.e., 

 
( )

( )
( )1

str
PWAS

F
k FRF

u
ω ω

ω
−= =

 (7.7) 

The 
( )FRF ω

 can be calculated in various ways. One way to calculate the 
( )FRF ω

 uses 

the modal expansion. Another way to calculate the 
( )FRF ω

 uses the TMM approach. 
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In the following sections, we will exemplify these methods and will give 

numerical results for the test beam presented in Table 5. As a benchmark, we perform a 

set of experiments on a steel beam instrumented with a PWAS as described in the next 

section. 

Table 5: Test beam for numerical trials 

 

7.1  BENCHMARK E/M ADMITTANCE EXPERIMENTS ON A STEEL BEAM 

In this section, we conduct the experiment that serves as benchmark for all 

theoretical methods. We machined a stainless steel (SS) 304 beam specimen (Figure 

107), having a length of 100 mm, width of 8 mm and height of 2.035 mm and we keep 

precision around 0.1 mm for dimensions, flatness, and parallelism (the minimum 

chamfer possible). We bonded a PWAS (7x7x0.2 mm) from one side of the beam at 60 

mm and then excite it between 10 to 100 kHz. We collected the impedance and 

PWAS

Material Properties SS 304 APC-850

Elastic properties E/ν E1/E2/ν12/ν21

Gpa 200/0.3 64.5/64.5/0.3/0.3

Damping Coefficient ξ ξ1/ξ2/ξ12

Elastic Properties with 

Damping 0.01 0.001/0.01/0.01

Mass Density 7750 pp=7500

Permittivity - S11
E
= 1750*8.85*10

-12

Coupling Terms: d33 and 

d31 - 400*10
-12

/ -175*10
-12       

Dimensions                       

(Length, Height, Width) L = 100 mm;    h = 2.035 mm;   b = 8 mm lp=8mm;  hp=0.2mm

PWAS location 60 mm from o side of the beam

MATERIAL
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admittance using a HP spectrum / impedance analyzer and imported results into 

MATLAB for comparison with the modal expansion, FEM and TMM results. 

As part of the experiment, a small beam specimen was machined out of 304 

stainless steel (100mx8x2.035 mm3) and a PWAS was bonded to the beam and the 

frequency testing range was 10 to 100 kHz. In Figure 106 and Figure 107 we have the 

experimental setup and the beam specimen with bonded PWAS. 

 
Figure 106: Instrumentation set-up 

 

Figure 107: Beam Specimen with bonded PWAS 
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In Figure 108, we show a graph plotting the admittance results from the HP 

spectrum / impedance analyzer (Re Y). As shown, we obtain 13 values for the natural 

frequencies between 10 and 100 kHz, which includes both flexural and axial resonance 

frequencies. 

 
Figure 108: Experiment –Admittance (Re Y) 

7.2  ADMITTANCE CALCULATION VIA MODAL EXPANSION 

The PWAS  excitation of Figure 109 induces both axial vibration u  and flexural 

vibration w  in the beam. 

 
Figure 109: Horizontal displacement induced by flexure 

Source: Giurgiutiu (2008) 
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In order to proceed with the computation of the frequency response function,

( )FRF ω , we find the total in-plane displacement Tu
 on the top of the beam where the 

PWAS is located. The total displacement on the top of the beam is the superposition of 

the axial displacement u  and the rotation 'w . 

 
'

2T

h
u u w= +

 (7.8) 

For a PWAS attached to a beam, the differential displacement between two points A  

and B representing the terminals of the PWAS is 

 ( ) ( ) ( ) ( ) ( )2 1PWAS B A B Au x u x u x u x u x= − = −  (7.9) 

From(7.8), (7.9) becomes 

 ( ) ( ) [ ]2 1 2 1'( ) '( )
2PWAS

h
u u x u x w x w x= − − −  (7.10) 

Using (1.29) and (7.10), we can get the axial displacement u and the rotation 'w  at the 

two locations x1 and x2. We substitute these values into Equation (7.10) and get 

 

( ) ( )
( )

( )
( ) ( )

( )
( )

( ) ( )
( )

( )
( ) ( )

( )
( )

2 1 2 1
2 12 2 2 2

2 1 2 1
2 12 2 2 2

ˆ

1 1

ˆ

2 1 1

j j j j i tP
PWAS j j

j jJ j

j j j j i tP
j j

j jj j

U x U x U x U xN
u U x U x e

A ig ig

W x W x W x W xMh
W x W x e

A ig ig

ω

ω

ρ ω ω ω ω

ρ ω ω ω ω

 − −
= − 

+ − + −  

 ′ ′ ′ ′− −
 + −

+ − + −  

∑ ∑

∑ ∑
 (7.11) 

By calculations and simplifications, the total axial displacement is 

 
( ) ( )

( )
( ) ( )

( )

2
2

2
2 12 1

2 2 2 21 2 1

j jj jP
PWAS

j jj j

W x W xU x U xF h
u

A ig igρ ω ω ω ω

  ′ ′− −     = +  + − + −  
 

∑ ∑  (7.12) 

The frequency response function 
( )FRF ω

 is  
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( )
( ) ( )

( )
( ) ( )

( )

12
2 2

2 12 1

2 2 2 2

1

1 2 1

j jj j

j jj j

W x W xU x U x h
FRF

A ig ig
ω

ρ ω ω ω ω

−
  ′ ′− −     = +  + − + −  
 

∑ ∑
 (7.13) 

For the test beam of Table 5,we combine the axial and flexural vibrations and we 

obtain in MATLAB the frequency function response as per Figure 110. Next, we use the 

FRF results to calculate the admittance. 

 
Figure 110: Frequency Response Function, ( )FRF ω  

Based on the results, we obtain for the frequency range 10 and 100 kHz a total of 

13 frequencies, out of which 3 are axial and 10 are flexural natural frequencies. By 

comparing these with the experimental results, we can conclude that there is a very 

good match in terms of accuracy with the experimental values (13 frequencies). 

The dynamic stiffness of the structure is 
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( )
( )

( ) ( )
( )

( ) ( )
( )

122 ' '2
2 12 1

2 2 2 21 2 1

PWAS
str

PWAS

j jj j

j jj j

F
k

u

W x W xU x U x h
A

ig ig

ω
ω

ρ
ω ω ω ω

−

= =

    −−     = +  + − + −   
∑ ∑

 (7.14) 

Since we now know the frequency response function of the structure, we can 

relate the mechanical impedance of the structure to the electrical impedance of the 

sensor. 

Using the frequency function response, we calculate the admittance (Re Y) in MATLAB 

as shown in Figure 111. 

 
Figure 111: Modal Expansion Solution – Admittance (Re Y) 
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7.3  ADMITTANCE CALCULATION VIA TRANSFER MATRIX METHOD  

In this part we calculate electromechanical admittance for a uniform beam via 

the transfer matrix method approach. On top of the beam, we attach a PWAS 

transducer which will apply a force PF
 on the structure as shown in Figure 112. 

The field transfer matrices are calculated as shown in Section 4.1.1. 

 
Figure 112: Uniform beam under PWAS excitation:  

(a) schematic of beam elements, (b) free-body diagram 

In order to determine the point transfer matrices we apply the compatibility 

conditions and the equilibrium equations to each node. 

Thus, for node #1 we have 

Compatibility conditions 

 

1

1

1

R L
BC

R L
BC

R L
BC

u u

w w

ϕ ϕ

=

=

=

 (7.15) 

Equilibrium equations 

 1: R L
x BCF N N=∑  (7.16) 

 1: R L
y BCV V V=∑  (7.17) 
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 1: R L
BCM M M=∑  (7.18) 

Equations (7.15) through (7.17) can be written as 

 

1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

R L

BC

u u

w w

N N

V V

M M

ϕ ϕ

     
     
     
     

= ⋅     
     
     
     
     

 (7.19) 

 1 1
R L

BC= ⋅z P z , where 1 =P I  (7.20) 

Now for node #2 we have 

Compatibility conditions 

 
2 2

2 2

2 2

R L

R L

R L

u u

w w

ϕ ϕ

=

=

=

 (7.21) 

Equilibrium equations 

 2 2: R L F
xF N N N= +∑  (7.22) 

 2 2: R L
yV V V=∑  (7.23) 

 2 2: R L FM M M M= +∑  (7.24) 

Equations (7.21) through (7.23) can be written as 

 

2 2

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1 0

R L

F

F

u u

w w

N N N

V V M

M M

ϕ ϕ

       
       
       
       

= ⋅ +       
       
       
       
       

 (7.25) 

 2 2 2 1
R L F= ⋅ +z P z P  (7.26) 
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where 2 =P I
 and the forcing term 1

FP
 is 

1

0

0

0

0

F
F

F

N

M

 
 
 
 

=  
 
 
 
 

P

 

Then for node#3 we have 

Compatibility conditions 

 

3 3

3 3

3 3

R L

R L

R L

u u

w w

ϕ ϕ

=

=

=

 (7.27) 

Equilibrium equations 

 3 3: R L F
xF N N N= −∑  (7.28) 

 3 3: R L
yV V V=∑  (7.29) 

 3 3: R L FM M M M= −∑  (7.30) 

Equations (7.26) through (7.29) can be written as 

 

3 3

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1

R L

F

F

u u

w w

N N N

V M

M V M

ϕ ϕ

       
       
       
       

= ⋅ +       
−       

       
       

−       

 (7.31) 

 3 3 3 2
R L F= ⋅ +z P z P  (7.32) 

where 3 =P I
 and the forcing term is 

2

0

0

0

0

F
F

F

N

M

 
 
 
 

=  
− 

 
 
− 

P
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Then for node#4 we have 

Compatibility conditions 

 

4

4

4

R L
BC

R L
BC

R L
BC

u u

w w

ϕ ϕ

=

=

=

 (7.33) 

Equilibrium equations 

 4: R L
x BCF N N=∑  (7.34) 

 4: R L
y BCV V V=∑  (7.35) 

 4: R L
BCM M M=∑  (7.36) 

Equations (7.33) through (7.36) can be written as 

 

4

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

R L

BC

u u

w w

N N

V V

M M

ϕ ϕ

     
     
     
     

= ⋅     
     
     
     
     

 (7.37) 

 4 4 4
R L
BC where= ⋅ =z P z P I  (7.38) 

In order to calculate the frequency response function we determine the unknown state 

vectors: 
L
BCz

, 1
Rz

, 2
Rz

, 3
Rz

 and 
R
BCz

. 

Then we apply the free-free boundary conditions: 

 L L L
BC BC BCat x  0 :   = = =0 L

BCN M V= ⇒ =p 0  (7.39) 

 R R R
BC BC BCat x  L :   = = =0 R

BCN M V= ⇒ =p 0  (7.40) 

After considering the free-free boundary conditions, the corresponding unknown 

displacements and internal forces vectors are:
L
BCd

, 1
Rd

, 1
Rp

, 2
Rd

, 2
Rp

, 3
Rd

, 3
Rp

,
R
BCd

. 
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From(7.20), 1
R L

BC= =p p 0
 and hence we will have seven unknowns

L
BCd

, 1
Rd

, 2
Rd

, 2
Rp

, 3
Rd

, 

3
Rp

, 
R
BCd

 which requires seven equations in order to solve for the unknowns. 

Since all the point transfer matrices P are equal with the unity matrix I we will drop 

them from the future calculations. From the equations(7.14),(7.16), (7.22), and (7.28) 

we get: 

 

1

2 2 1

3 3 2

4

R L
BC

R L F

R L F

R L
BC

 =


= +


= +
 =

z z

z z P

z z P

z z  (7.41) 

which is expanded into 

 

1

3 3 3 3

3 3 3 3

1 1 2

1 1 2 1

2 2 2 2 3

2 2 2 2 3 2

L R
BC

dd R dd R R
BC

pd R pp R

dd R R

pd R R F

dd R dp R R

pd R pp R R F

− + =


⋅ + ⋅ − =
 ⋅ + ⋅ =


⋅ − =
 ⋅ − = −
 ⋅ + ⋅ − =


⋅ + ⋅ − = −

d d 0

F d F p d 0

F d F p 0

F d d 0

F d p p

F d F p d 0

F d F p p p
 (7.42) 

(7.42) is a non-homogeneous system of equations and can be written in a matrix form as 

 ⋅ =M X N  (7.43) 

and the unknown column vector X  is  

 1 2 2 3 3

TL R R R R R R
BC BC =  X d d d p d p d

 (7.44) 

From (7.43), the unknown column vector of displacements and internal forces can be 

solved as 

 
1−= ⋅X M N  (7.45) 
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Now that we have the axial and flexural displacements u and w and the rotation

w′ , the total displacement between the two ends of a PWAS attached to the beam at 

the distances x1 and x2 from LHS end can be calculated as 

 ( ) ( ) [ ] ( ) ( )2 1 2 1 3 2 3 2'( ) '( )
2 2

L R L R
PWAS PWAS

h h
u u x u x w x w x or u u u ϕ ϕ= − − − = − − − (7.46) 

We divide (7.46) by the excitation force F and we get the frequency response function 

( )FRF ω : 

 
( ) ( )3 23 2 2

L RL R

PWAS

h
u uu

F F F

ϕ ϕ−−
= −  (7.47) 

 ( ) ( ) ( )u wFRF FRF FRFω ω ω= −  (7.48) 

Where 

 
( )

( )
( )

( )3 2 3 2
; and .

2

L R L R

u w

u u h
FRF FRF

F F

ϕ ϕ
ω ω

− −
= =

 (7.49) 

The dynamic structural stiffness of the beam can be calculated as 

 
( )

( )
1

strk
FRF

ω
ω

=
 (7.50) 

Given the material properties and the dimensions of the PWAS, the electromechanical 

impedance is Z , while 1/Y Z= represents the admittance. 

 

1

2
31

1 1 1
1 1

cot
Z

Y i C r
κ

ω ϕ ϕ

−
  

= = − −  +    (7.51) 

where 
11, .

2
p p E

p p

l
s

γ
ϕ γ ωρ= =

 

Using the above procedure and the data shown in Table 5, we obtain the admittance 

( )ReY
 plot shown in Figure 113. 
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Figure 113: TMM – Admittance (Re Y) 

As per results shown in Figure 113, we obtain 13 natural frequencies that match 

the experimental results and also match the modal expansion solution. 

7.4  ADMITTANCE CALCULATION VIA FINITE ELEMENT METHOD (FEM) 

The FEM approach involves mathematical approximations associated with the 

displacement function of a particular element and geometric approximations to the 

component shape. A key advantage of FEM is that it can be used to analyze virtually any 

structural problem in a routine manner - hence non homogeneous material can be 

accommodated as the assembly of elements with different properties is 

straightforward. However, it might require increased computational time, large storage 

capabilities, and memory limitations. 
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We use the FEM approach (2D and 3D) to calculate the electromechanical 

admittance. In order to do this, we use the coupled-field FEM where the 

electromechanical admittance is obtained directly from the coupling between the 

structure’s stress field and the PWAS electrical field. Here, the electrical field of the 

PWAS is coupled with the mechanical stress field of the structure and a change in one 

field will generate a change in the other field based on the piezoelectric principles. In 

3D, we used 20-node multiphysics SOLID226 element for the PWAS and 20-node 

SOLID95 element for the beam (Figure 116). A voltage is applied to the two PWAS 

electrodes. The voltage applied is of unity amplitude. After that, a harmonic analysis is 

performed and the change with frequency of the electrical charge on the two PWAS 

electrodes is recorded. In order to be able to use the voltage DOF, the PWAS was 

modeled using a PLANE13 four nodes element with up to four DOF per node. The beam 

is modeled using a four node PLANE42 element with two degrees of freedom at each 

node. 

We carry out the harmonic analysis in the frequency range of 10 kHz to 100 kHz 

and apply a constant damping factor of 0.005 during the simulation. Figure 115 and 

Figure 117 present the admittance results for the FEM 2D and 3D. 

 
Figure 114: FEM 2D Approach - Mesh / voltage charge of the PWAS 
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Figure 115: FEM 2D Admittance (Re Y) 

As can be seen from Figure 115, the FEM 2D approach shows 13 resonance 

frequencies between 10-100 kHz. Even when increasing the meshing, we obtain the 

same resonance frequencies and, most importantly, they match the experimental 

results.  

 
Figure 116: FEM 3D Approach - Mesh / voltage charge of the PWAS 
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Figure 117: FEM 3D Admittance (Re Y) 

As can be seen from Figure 117, the 3D approach matches the experimental 

results, except that it is missing one frequency between 20 and 30 kHz. We increase the 

meshing and number of points in this area and we run the FEM again and the results are 

still missing that frequency. 

7.5 COMPARISON OF ANALYTICAL, TRANSFER MATRIX, FEM AND EXPERIMENTAL 

RESULTS 

Giurgiutiu et al. (2011) focus on modeling the interaction between piezoelectric 

wafer active sensors (PWAS) and structural waves and vibration. The TMM approach 

was used to predict the E/M impedance response of a PWAS attached to a free-free 

beam. Authors compared all methods, the modal expansion method, TMM, FEM, and 

experimental results and concluded that they all concord (Figure 118), however in the 

case of E/M impedance modeling, the MP-FEM approach (2D) was found to be closer to 
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the measurements than the analytical methods (modal expansion and TMM). In 

addition, it was observed that the 3D MP-FEM gave much better prediction of the 

vertical position of the dereverberated baseline, but missed the splitting of the peak at 

~26 kHz. 

 
Figure 118: Experimental admittance compared with predictions by analytical modal 

analysis, analytical TMM, and 3D MP-FEM; Source: Giurgiutiu et al. (2011) 
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Equation Chapter (Next) Section 8 

8. CRITIQUE OF GLOBAL MATRIX METHOD (GMM) PERFORMANCE IN THE 

CALCULATION OF ELECTROMECHANICAL IMPEDANCE AND ADMITTANCE 

This section uses the global matrix method approach (GMM) of Cuc (2010) which 

uses the electromechanical impedance method to calculate the frequency resonances of 

a uniform beam. Our focus is on determining the high-frequency behavior of this 

method in order to identify its limitations. More precisely, we expand the results from a 

uniform beam in the range of 1-30 kHz from Cuc (2010) to a higher frequency range of 

10-100 kHz and beyond, when possible. Cuc (2010) calculated the natural frequencies 

using a 100 mm length beam.  

When extending the frequency range, we notice some limitations due to 

MATLAB mathematical approximations of the dynamic transformation matrix B . Matrix 

B  uses hyperbolic ‘sin’ and ‘cos’ functions in its calculation and length and frequency 

are implicit part of the ‘sin’ and ‘cos’ functions. In order to check the limitations of GMM 

using MATLAB, we conduct several tests on the two terms that are part of the B  

matrix: the beam length and the frequencies. 

8.1  CRITIQUE OF SPECTRAL BEHAVIOR AT HIGH FREQUENCIES 

First, we look at several beam lengths to see what the maximum frequency that 

can be calculated is. Using a beam of 100 mm length, we are able to excite it until 112 

kHz and obtain all natural frequencies without any MATLAB errors (Figure 119). 
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However, whenever we reach 113 kHz (Figure 120), the errors generated by the 

functions ‘sin’ and ‘cos’ are visible and affect our results. 

 
Figure 119: Adequate numerical behavior for 100 mm 3-segment beam: maximum frequency 

attained without error is 112 kHz 
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Figure 120: Inadequate numerical behavior: for 100 mm 3-segment beam: numerical errors 

start to appear beyond 113 kHz 

Then, we do another test with a beam of 200mm length and we are able to 

excite it until 18 kHz without any MATLAB errors only until 17 kHz (Figure 121). The 

errors generated by the functions ‘sin’ and ‘cos’ are visible and affect our results (Figure 

122). 
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Figure 121: Adequate numerical behavior for 200 mm 3-segment beam: maximum frequency 

attained without error is 17 kHz 

 
Figure 122: Inadequate numerical behavior for 200 mm 3-segment beam: maximum frequency 

attained without error is 18 kHz  
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Finally, we do another test with a beam of 50mm length and we are able to 

excite it until 393 kHz without any MATLAB errors (Figure 123). But when we reach 394 

kHz, the errors generated by the functions ‘sin’ and ‘cos’ are visible and affect our 

results (Figure 124). 

 
Figure 123: Adequate numerical behavior for 50 mm 3-segment beam: maximum frequency 

attained without error is 393 kHz  
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Figure 124: Inadequate numerical behavior for 50 mm 3-segment beam: maximum frequency 

attained without error is 394 kHz  

As can be seen from the tests so far, the frequency and the length are inversely 
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are able to improve the accuracy for a large beam with a high frequency. In order to 

attain this solution, the 100 mm beam is split in 7 segments and we are able to excite 
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the beam and to obtain the natural frequencies until 324 kHz without errors as shown in 

Figure 125. When we reach 324 kHz, the errors generated by the functions ‘sin’ and ‘cos’ 

are visible and affect our results (Figure 126). 

 

Figure 125: Adequate numerical behavior for 100 mm 7-segment beam: maximum frequency 

attained without error is 323 kHz  
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Figure 126: Inadequate numerical behavior for 100 mm 7-segment beam: maximum frequency 

attained without error is 324 kHz  

8.2  CRITIQUE OF MODESHAPES BEHAVIOR AT HIGH FREQUENCIES 

We used the modal analysis equations of Chapter 1 to calculate frequencies and 

mode shapes for a steel specimen with length L  = 100mm, width W  = 8mm and height 

h =2.035 mm. The calculations were done in MATLAB. We calculate all axial natural 

frequencies between 10 and 100 kHz as in the experiment. The axial modes obtained 

are plotted in Figure 127 where fU represents axial frequency. 
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Figure 127: Axial Modes (between 10 and 100 kHz); fU = Axial Frequency 

After calculating also the flexural frequencies in the next part, we will combine 

them and compare with the experimental results. What we can conclude so far is that 

between 10 and 100 kHz we have three axial frequencies. 

We also calculate all flexural natural frequencies between 10 and 100 kHz as in 

the experiment. The flexural modes obtained are plotted in Figure 128 where fW

represents flexural frequency. 
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Figure 128: Flexural Modes (between 10 and 100 kHz); fW = Flexural Frequency 

Knowing the axial and flexural modes, we are now able to calculate the 

frequency response function for the uniform beam between 10 and 100 kHz. 

 
Figure 129: Flexural Modes (between 10 and 100 kHz) 
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Also, as per results obtained, we would like to point out some limitations of 

MATLAB. As can be seen in Figure 129 on flexural modes, the last frequencies come with 

some errors due to MATLAB approximation for ‘sin’ and ‘cos’ functions. Since the errors 

only appear for the last part of the mode shapes, a solution to avoid these errors (Lin, 

2010) is to calculate only the first half of the flexural modes and the other half to be 

mirrored matching the symmetric or asymmetric shapes. 

 
Figure 130: Flexural Modes (between 10 and 100 kHz) with proposed solution 

As per Figure 130, after implementing the above mentioned solutions, there are 

no more errors. 

 



183 

 

Equation Chapter (Next) Section 9 

PART II – PERFORMED WORK 

The present research proposes a new approach (STMM) to the nondestructive 

evaluation on composite laminates using small piezoelectric active sensors permanently 

fixed on the surface of the structure and develops a novel acousto-ultrasonic sensor that 

can detect ultrasonic waves for acoustic emission (AE) events using optical FBG sensing. 

In order to accomplish this, we will pursue the following tasks: 

• Task #1 – Analytical Model for Vibration of Laminated Composite Beams 

• Task #2 – The STMM Method 

• Task #3 - Validation of the STMM Mathematical Model by Comparison with 

FEM and Experiment 

• Task #4 - Sensitivity Studies of STMM E/M Impedance for Delamination 

Detection in Composite Beams 

• Task #5 - Develop a novel acousto-ultrasonic sensor: the FBG ring sensor 
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9. TASK #1: ANALYTICAL MODEL FOR VIBRATION OF LAMINATED COMPOSITE 

BEAMS 

In this task, the transfer matrix method was used to model the dynamic response 

of a composite laminate beam. The principle behind this method is to break down a long 

structure into small components that can be expressed in a matrix form. In this way, it 

can be easily solved and can be integrated into the Matlab program. In order to 

emphasize this method, we have to go through several steps and take into 

consideration some assumptions. 

The new method which is called Stiffness Transfer Matrix Method (STMM) will 

incorporate concepts from the theory of laminate composites combined with the 

transfer matrix method concept. 

9.1 VIBRATION EQUATIONS FOR COMPOSITE BEAMS 

This subsection provides the fundamental concepts of composite beam 

vibration, which covers the first step in STMM. Figure 131 shows the stress 

nomenclature. 
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Figure 131: Stress Nomenclature on body in deformed state 

Source: Majumdar (2009) 

It is important to note that given that we have six strain equations and three unknown 

displacements, we do not obtain a unique solution or a continuous one unless certain 

conditions are fulfilled as shown later in this section. 

9.1.1 EQUATIONS OF MOTION 

Following Whitney (1987) pg. 3, the nonlinear strain displacement relations are 

given by 
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where ijε
are strains and iu

are displacements. 
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From the theory of elasticity, we have the following compatibility relations (Whitney, 

1987) 
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For small displacements, equations (9.1) become 
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The nonlinear equations of motion are (Whitney, 1987) 



187 

 

 

1 1 1 1 1 1
11 12 13 12 22 23

1 1 2 3 2 1 2 3

2
1 1 1 1

13 23 33 1 0 2
3 1 2 3

2 2 2
11 12 13

1 1 2 3

1 1

1

1

u u u u u u

x x x x x x x x

u u u u
X

x x x x t

u u u

x x x x

σ σ σ σ σ σ

σ σ σ ρ

σ σ σ

      ∂ ∂ ∂ ∂ ∂ ∂∂ ∂
+ + + + + + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

  ∂ ∂ ∂ ∂∂
+ + + + + =  ∂ ∂ ∂ ∂ ∂  

  ∂ ∂ ∂∂
+ + + ∂ ∂ ∂ ∂ 

2 2 2
12 22 23

2 1 2 3

2
2 2 2 2

13 23 33 2 0 2
3 1 2 3

3 3 3 3 32
11 12 13 12 22 23

1 1 2 3 2 1 2 3

1

1

1 1

u u u

x x x x

u u u u
X

x x x x t

u u u u uu

x x x x x x x x

σ σ σ

σ σ σ ρ

σ σ σ σ σ σ

   ∂ ∂ ∂∂
+ + + + +    ∂ ∂ ∂ ∂   

  ∂ ∂ ∂ ∂∂
+ + + + + =  ∂ ∂ ∂ ∂ ∂  

   ∂ ∂ ∂ ∂ ∂∂∂ ∂
+ + + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

2
3 3 3 3

13 23 33 3 0 2
3 1 2 3

1
u u u u

X
x x x x t

σ σ σ ρ

 
+ 

 

  ∂ ∂ ∂ ∂∂
+ + + + + =  ∂ ∂ ∂ ∂ ∂   (9.4) 

where t  is time, 0ρ
 is the density and iX

 are body forces. 

For small linear deformation, equations (9.4) become 
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By integrating equation (9.3), we can calculate the displacements. 

Please note the following change of notations 
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9.1.2 BASIC ASSUMPTIONS 

In order to proceed for laminated plates and beams, it is important to make 

several basic assumptions 

1. The beam consists of several orthotropic layers bonded together 

2. The thickness edge is much smaller than all the other dimensions 

3. , ,u v w are small displacements compared to the plate thickness 

4. in-plane strains 
, ,x y xyε ε ε

are small compared to unity 

5. For in-plane stress effects, the nonlinear terms  in the motion relations that 

comprise of products of stresses and plates slope are retained 

6. transverse shear strains 
,xz yzε ε

 are negligible 

7. Displacements  ,u v are linear functions of  the z direction 

8. the transverse normal strain zε  is negligible 

9. Each layer follows Hooke’s Law 

10. The plate or beam thickness is constant 

11. Rotary inertia terms are negligible 

12. There are no body forces 

13. ,xz yzσ σ
 vanish on the surfaces 2

h
z = ±

 

14. zσ
is negligible (

0zσ =
). 

Recall the lamination theory of Section 3 and the definition of the stress 

resultants Figure 132 and Figure 134 
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Figure 132: Definition of cross-section stresses ., ,x y xyσ σ σ
 

 

Figure 133: In-plane stress resultants 
, , .x y xyN N N

 

 
 

Figure 134: Out-of-plane stress resultants (moments and transverse shears) 

, , , , .x y xy xz yzM M M N N
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Figure 135: Mid-plane displacements 
0 0, , .u v w

 

9.1.2.1 Simplification of the Nonlinear Equations of Motion 

Recall the strain displacement equations (3.54) and (3.55) defining the mid-

surface strains Figure 135 
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Retaining only the nonlinear terms in the equations of motion(9.4) that involve 

products of stress and plate slopes (and recalling the assumption
0zσ =

), we get the 

following relations for the kth layer of laminates 
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9.1.2.2 Integration of the Nonlinear Equations of Motion 

Recall the stress resultants defined by equations (4.68),i.e., 
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Integrating the first of equations (9.8) with respect to z  and interchanging the order of 

differentiation and integration, we get 
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Note that 
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Define the equivalent mass per unit area (area mass density) 
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Hence, equation (9.10) becomes 
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In a similar manner, integrating the second of equations (9.8) with respect to z  and 

interchanging the order of differentiation and integration yields 
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For integrating the third of equations (9.8) with respect to z and interchanging the order 

of differentiation and integration we proceed as follows 
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We note that: 
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Substituting equation (9.18) through (9.29) into equation(9.17), we get 
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Upon rearrangement, equations (9.30) becomes 
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Equations (9.13), (9.16), (9.31) are the equations of motion in terms of stress 

resultants, further simplification may be achieved by eliminating the stress resultants 

associated with out –of-plane shears, xzN
, yzN

. To achieve this, we first establish the 

relations between moments 
, ,x y xyM M M

 and out of plane shear resultants 
,xz yzN N

 

and then use these relations to eliminate 
,xz yzN N

 in equation (9.31). These steps are 

achieved in the next section. 
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9.1.2.3 Eliminations of out-of-Plane Shear Resultants 
,xz yzN N

 

Multiplying the first of equations (9.8) by z and integrating with respect to z over 

the plate thickness yields 
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u
zdz zdz zdz zdz

x y z t

σ
σ σ ρ

− − − −

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂∫ ∫ ∫ ∫
 (9.33) 

 

2
/2 /2

2/2 /2

h hxyx xz

h h

MM u
zdz zdz

x y z t

σ
ρ

− −

∂∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂∫ ∫
 (9.34) 

Note 

 

( )xz xz
xz

z

z z
z

z z

σ σ
σ

∂ ∂∂
= +

∂ ∂ ∂  (9.35) 

Hence 

 

( )xzxz
xz

z
z

z z

σσ
σ

∂∂
= −

∂ ∂  (9.36) 

Also note 

 

2 2
/2 /2

2 2/2 /2

h h

h h

u u
zdz zdz

t t
ρ ρ

− −

∂ ∂
=

∂ ∂∫ ∫ 0=
    (assumption 11) (9.37) 

Substituting equations (9.36) and (9.37) into equation (9.34) yields  

 

( )/2

/2
0

hxy xzx
xzh

M zM
dz

x y z

σ
σ

−

∂ ∂ ∂
+ + − = ∂ ∂ ∂ 

∫
 (9.38) 

Note 

 

( )/2 /2

/2/2
0

h hxz
xz hh

z
dz z

z

σ
σ

−−

∂
= =

∂∫
     (assumption 13) (9.39) 

and 

 

/2

/2

h

xz xzh
dz Nσ

−
=∫  (9.40) 



195 

 

Hence, equation (9.38) becomes 

 
0xyx

xz

MM
N

x y

∂∂
+ − =

∂ ∂  (9.41) 

In a similar way, multiplying the second of equations (9.8) by z and integrating with 

respect to z over the plate thickness yields 

 

2
/2 /2 /2 /2

2/2 /2 /2 /2

h h h hxy y yz

h h h h

v
zdz zdz zdz zdz

x y z t

σ σ σ
ρ

− − − −

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂∫ ∫ ∫ ∫
 (9.42) 

 

2
/2 /2 /2 /2

2/2 /2 /2 /2

h h h hyz
xy yh h h h

v
zdz zdz zdz

x y z t

σ
σ σ ρ

− − − −

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂∫ ∫ ∫ ∫
 (9.43) 

 

2
/2 /2

2/2 /2

h hxy y yz

h h

M M v
zdz zdz

x y z t

σ
ρ

− −

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂∫ ∫
 (9.44) 

Note 

 

( )yz yz
yz

z

z z
z

z z

σ σ
σ

∂ ∂∂
= +

∂ ∂ ∂  (9.45) 

Hence 

 

( )yzyz
yz

z
z

z z

σσ
σ

∂∂
= −

∂ ∂  (9.46) 

Also note 

 

2 2
/2 /2

2 2/2 /2

h h

h h

v v
zdz zdz

t t
ρ ρ

− −

∂ ∂
=

∂ ∂∫ ∫ 0=
    (assumption 11) (9.47) 

Substituting equations (9.46) and (9.45) into equation (9.44) yields  

 

( )/2

/2
0

h yzxy y
yzh

zM M
dz

x y z

σ
σ

−

 ∂∂ ∂
+ + − = 

∂ ∂ ∂  
∫

 (9.48) 

Note 

 

( )/2 /2

/2/2
0

h hyz

yz hh

z
dz z

z

σ
σ

−−

∂
= =

∂∫
     (assumption 13) (9.49) 
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and 

 

/2

/2

h

yz yzh
dz Nσ

−
=∫  (9.50) 

Hence, equation (9.48) becomes 

 
0xy y

yz

M M
N

x y

∂ ∂
+ − =

∂ ∂  (9.51) 

Differentiating equations (9.41) & (9.51) with respect to x and y, respectively, yields 

 

22

2

2 2

2

xyxz x

yz xy y

MN M

x x x y

N M M

y x y y

∂∂ ∂
= +

∂ ∂ ∂ ∂

∂ ∂ ∂
= +

∂ ∂ ∂ ∂  (9.52) 

Substituting equations (9.52) into (9.31) yields 

 

2 2 222 2 2 2

2 2 2 2 2
2 xy xy yx

x xy y

M M MMw w w w
N N N

x x y y x x y x y y t
ρ

∂ ∂ ∂∂∂ ∂ ∂ ∂
+ + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  (9.53) 

Upon rearrangement, equation (9.53) becomes 

 

2 22 2 2 2 2

2 2 2 2 2
2 2xy yx

x xy y

M MM w w w w
N N N

x x y y x x y y t
ρ

∂ ∂∂ ∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  (9.54) 

9.1.2.4 Displacement Equations of Motion for Composite Plates 

Recall the constitutive relations for the plate, equations (3.65), Chapter 3, i.e. 

 

11 12 16 11 12 16

12 22 26 12 22 26

16 26 66 16 26 66

11 12 16 11 12 16

12 22 26 12 22 26

16 26 66 16 26 66

o
x x

o
y y

o
xy xy

x x

y y

xy xy

N A A A B B B

N A A A B B B

N A A A B B B

M B B B D D D

M B B B D D D

M B B B D D D

ε
ε
γ
κ
κ
κ

    
    
    
       

= ⋅    
   
   
   
      




  (9.55) 

Recall equation (9.7) 
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0 0 0 0
0 0 0

2 2 2

2 2

; ;

; ; 2

x y xy

x y xy

u v u v

x y y x

w w w

x y x y

ε ε ε

κ κ κ

∂ ∂ ∂ ∂
= = = +

∂ ∂ ∂ ∂

∂ ∂ ∂
= − = − = −

∂ ∂ ∂ ∂  (9.56) 

Substitute equation (9.56) into equation (9.55) to get 

 

0

0

11 12 16 11 12 16

0 0
12 22 26 12 22 26

16 26 66 16 26 66

2
11 12 16 11 12 16

2
12 22 26 12 22 26

2
16 26 66 16 26 66

x

y

xy

x

y

xy

u

x

v
N A A A B B B y

N A A A B B B u v
N A A A B B B y x

M B B B D D D w
M B B B D D D x

M wB B B D D D
y

∂
∂
∂
∂   

   
∂ ∂    +

    ∂ ∂ 
= ⋅  

∂   −   ∂
  

∂      −
∂ 2

2

2
w

x y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∂ − ∂ ∂   (9.57) 

 

0 0 0 0 2 2 2

11 12 16 11 12 162 2

0 0 0 0 2 2

12 22 26 12 22 262 2

2

2

x

y

u v u v w w w
N A A A B B B

x y y x x y x y

u v u v w w
N A A A B B B

x y y x x y

           ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + − + − + −           ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂           

         ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + − + − + −         ∂ ∂ ∂ ∂ ∂ ∂         

2

0 0 0 0 2 2 2

16 26 66 16 26 662 2

0 0 0 0 2 2

11 12 16 11 122 2

2xy

x

w

x y

u v u v w w w
N A A A B B B

x y y x x y x y

u v u v w w
M B B B D D

x y y x x y

 
 ∂ ∂ 

           ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + − + − + −           ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂           

       ∂ ∂ ∂ ∂ ∂ ∂
= + + + + − + −       ∂ ∂ ∂ ∂ ∂ ∂       

2

16

0 0 0 0 2 2 2

12 22 26 12 22 262 2

0 0 0 0 2

16 26 66 16 2

2

2y

xy

w
D

x y

u v u v w w w
M B B B D D D

x y y x x y x y

u v u v w
M B B B D

x y y x x

   ∂
+ −   ∂ ∂   

           ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + − + − + −           ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂           

       ∂ ∂ ∂ ∂ ∂
= + + + + −      ∂ ∂ ∂ ∂ ∂      

2 2

26 662
2

w w
D D

y x y

   ∂ ∂
+ − + −    ∂ ∂ ∂     (9.58) 

In order to substitute equation (9.58) into equation(9.13), calculate 
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2 0 2 0 2 0 2 0

11 12 162 2

3 3 3

11 12 163 2 2
2

xN u v u v
A A A

x x x y x y x

w w w
B B B

x x y x y

     ∂ ∂ ∂ ∂ ∂
= + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂     

     ∂ ∂ ∂
+ − + − + −     ∂ ∂ ∂ ∂ ∂       (9.59) 

 

2 0 2 0 2 0 2 0

16 26 662 2

3 3 3

16 26 662 3 2
2

xyN u v u v
A A A

y y x y y y x

w w w
B B B

y x y x y

∂      ∂ ∂ ∂ ∂
= + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂     

     ∂ ∂ ∂
+ − + − + −     ∂ ∂ ∂ ∂ ∂       (9.60) 

Adding equations (9.59) and(9.60), and substituting into equation (9.13) yields the x 

equation of motion 

 

( )

( )

2 0 2 0 2 0 2 0 2 0 2 0

11 16 66 16 12 16 262 2 2 2

3 2 3 3 2 0

11 16 12 66 263 2 2 3 2

2

3 2

u u u v v v
A A A A A A A

x x y y x x y y

w w w w u
B B B B B

x x y x y y t
ρ

           ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + −           ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂           

         ∂ ∂ ∂ ∂ ∂
− − − + − =         ∂ ∂ ∂ ∂ ∂ ∂ ∂          (9.61) 

In order to substitute equation (9.58) into equation (9.16) calculate 

 

2 0 2 0 2 0 2 0

16 26 662 2

3 3
3

16 26 663 2 2
2

xyN u v u v
A A A

x x x y x y x

ww w
B B B

x x y x y

∂      ∂ ∂ ∂ ∂
= + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂     

    ∂∂ ∂
+ − + − + −    ∂ ∂ ∂ ∂ ∂      (9.62) 

 

2 0 2 0 2 0 0

12 22 262 2

3 3 3

12 22 262 3 2
2

yN u v u v
A A A

y y x y y y x

w w w
B B B

y x y x y

∂      ∂ ∂ ∂ ∂
= + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂     

     ∂ ∂ ∂
+ − + − + −     ∂ ∂ ∂ ∂ ∂       (9.63) 

Adding equations (9.62) and(9.63), and substituting into equation (9.16) yields the y 

equation of motion 
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( )

( )

2 0 2 0 2 0 2 0 2 0 2 0

16 12 66 26 66 26 222 2 2 2

3 3 3 3 2 0

16 12 66 26 223 2 2 3 2

2

2 3

u u u v v v
A A A A A A A

x x y y x x y y

w w w w v
B B B B B

x x y x y y t
ρ

           ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + −           ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂           

         ∂ ∂ ∂ ∂ ∂
− − + − − =         ∂ ∂ ∂ ∂ ∂ ∂ ∂          (9.64) 

In order to substitute equation (9.58) into equation(9.54), calculate 

 

2 3 0 3 0 3 0 0

11 12 162 3 2 2 3

4 4 4

11 12 164 2 2 3
2

xM u v u v
B B B

x x x y x y x

w w w
D D D

x x y x y

     ∂ ∂ ∂ ∂ ∂
= + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂     

     ∂ ∂ ∂
+ − + − + −     ∂ ∂ ∂ ∂ ∂       (9.65) 

 

3 0 3 0 3 0 3 0

16 26 662 2 22

4 4 4

16 26 663 3 2 2

2 2

2

xy

u v u v
B B B

x y x y x y x yM

x y w w w
D D D

x y x y x y

      ∂ ∂ ∂ ∂
+ + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂       =  ∂ ∂      ∂ ∂ ∂ + − + − + −     ∂ ∂ ∂ ∂ ∂ ∂         (9.66) 

 

2 3 0 3 0 3 0 3 0

12 22 262 2 3 3 2

4 4 4

12 22 262 2 4 3
2

yM u v u v
B B B

y y x y y y x

w w w
D D D

y x y x y

∂      ∂ ∂ ∂ ∂
= + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂     

     ∂ ∂ ∂
+ − + − + −     ∂ ∂ ∂ ∂ ∂       (9.67) 

 

0 0 0 0

11 12 162 2

2 22 2 2

11 12 162 2
2

x

u v u v
A A A

x y y xw w
N

x xw w w
B B B

x y x y

      ∂ ∂ ∂ ∂
+ + + +      ∂ ∂ ∂ ∂  ∂ ∂      =   ∂ ∂     ∂ ∂ ∂   + − + − + −     ∂ ∂ ∂ ∂         (9.68) 

 

0 0 0 0

16 26 662 2

2 2 2

16 26 662 2

2 2

2
xy

u v u v
A A A

x y y xw w
N

x y x yw w w
B B B

x y x y

      ∂ ∂ ∂ ∂
+ + + +      ∂ ∂ ∂ ∂  ∂ ∂      =   ∂ ∂ ∂ ∂     ∂ ∂ ∂   + − + − + −     ∂ ∂ ∂ ∂         (9.69) 

 

0 0 0 0

12 22 262 2

2 22 2 2

12 22 262 2
2

y

u v u v
A A A

x y y xw w
N

y yw w w
B B B

x y x y

      ∂ ∂ ∂ ∂
+ + + +      ∂ ∂ ∂ ∂  ∂ ∂      =   ∂ ∂     ∂ ∂ ∂   + − + − + −     ∂ ∂ ∂ ∂         (9.70) 
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Adding equations (9.65) through (9.70) and substituting into equation (9.54) yields the z 

equation of motion 

 

( )

( )

( )

4 4 4 4 4

11 16 12 66 26 224 3 2 2 3 4

3 0 3 0 3 0 3 0 2 0

11 16 12 66 26 163 2 2 3
3

3

12 66

4 2 2 4

3 2

w w w w w
D D D D D D

x x y x y x y y

u u u u v
B B B B B B

x x y x y y x

v
B B

         ∂ ∂ ∂ ∂ ∂
+ + + + +         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂         

        ∂ ∂ ∂ ∂ ∂
− − − + − −         ∂ ∂ ∂ ∂ ∂ ∂ ∂         

∂
− +

0 3 0 3 0 2

26 222 2 3 2
3

v v w
B B

x y x y y t
ρ

       ∂ ∂ ∂
− − = −       ∂ ∂ ∂ ∂ ∂ ∂        (9.71) 

Equations (9.61), (9.64), (9.71) are the equations of motion in term of displacements for 

the composite plate. Upon rearrangement, we get 
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9.1.2.5 Equations of Motion for Symmetric laminates 

For symmetric laminates
0ijB =

; in this case, equations (9.72) through (9.74) 

become 
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Equations (9.75) are the equations of motion for couplet in plane (
0 0,u v ) and out of 

plane ( w ) vibration of a laminated composite plate with symmetric layup. 

9.1.2.6 Equations of Motion for Composite Beams 

For laminated composite beams, we assume the y displacement to be identically 

zero, 
0 0v ≡ ; hence its derivatives are also identically zero, i.e.,

2 2 2 2

2 2 2
, , , 0.

v v v v

x x y y t

∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂  

We also assume y  invariance, i.e., 

2 2 4 4

2 3 4
, , , , 0
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∂ ∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂ ∂ ∂ . Hence, equations 

(9.75) become 
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(9.76) 

i.e., 

 

2 0 2 0

11 2 2
0

u u
A

x t
ρ

∂ ∂
− =

∂ ∂  (9.77) 

 

4 2

11 4 2
0

w w
D

x t
ρ

∂ ∂
+ =

∂ ∂  (9.78) 

Equation (9.77) can be related to the axial vibration equation (1.8) of Section 1.1, 

whereas equation (9.78) can be related with the flexural vibration equation (1.34) of 

Section 1.2. 
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For axial vibration, define 

 
2

11 /c A ρ=  (9.79) 

Substitution of equation (9.79) into equation (9.80) yields 

  

2 0 2 0
2

2 2
0

u u
c

x t

∂ ∂
− =

∂ ∂  (9.80) 

Equation (9.80) is now of the same form as equation (1.8a); hence, the same solution 

procedure applies as described in Section 1 

For flexural vibration, define 

 
4

11 /a D ρ=  (9.81) 

Substitution of equation (9.81) into equation (9.78) yields 

 

4 2
4

4 2
0

w w
a

x t

∂ ∂
+ =

∂ ∂  (9.82) 

Equation (9.82) is now of the same form as equation (1.34a); hence, the same solution 

procedure applies, as described in Section 1. 

9.1.2.7 Equivalence with Isotropic Beam Model 

In order to seek the general solution for axial and flexural vibration of a uniform 

beam, we have to link the composite theory with the isotropic model. To proceed, recall 

the decoupled equations of motion for the vibration of an elastic beam Figure 136 as 

described in Section 1. 

 
Figure 136: Isotropic beam geometry, axes, and dimensions 
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2 2
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2 2
0,

u u EA
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x t m

∂ ∂
− = =

∂ ∂  (9.83) 

 

4 2
4 4

4 2
0,

w w EI
a a

x t m

∂ ∂
+ = =

∂ ∂  (9.84) 

where m  is the mass per unit length of the beam, 

 0m bhρ=  (9.85) 

Recall Eq. (3.66) of Chapter 3 defining the 
[ ] [ ] [ ], ,A B D

matrix for a composite plate, i.e., 
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 (9.86) 

where k
Q   is defined by equation (3.52) of Chapter 3 as 

 
[ ] [ ][ ]1

Q T Q T
−  =   (9.87) 

Where 
[ ]T

 is the rotation matrix and 
[ ]Q

 is the stiffness matrix in the local coordinates 

of the ply (layer) as given by equation (3.39), i.e., 
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Assuming the beam to be made up of isotropic layers of same properties, 

( )1 2 12 21 12, ,
2 1

E
E E E G Gυ υ υ

υ
= = = = = =

+
, we get 
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Hence, the new constant matrix 
[ ] [ ]k
Q Q=

can be factor out of Eq.(9.86) to get 
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Mutual cancelation inside the summation (e.g. 1h 0 2 1h h h− + − 2 0h h= −
, etc.) yields 
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 (9.91) 

Substitution of Eq.(9.91) into Eq.(9.90) gives 

 

[ ] [ ]
[ ] [ ]

[ ] [ ]
3

0

12

A Q h

B

h
D Q

=

=

=
 (9.92) 

Substitution of Eq.(9.89) into Eq.(9.92) yields 
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Recall now Eq.(9.12) defining the equivalent mass per unit area, i.e. 
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0/2

h

h
z dzρ ρ

−
= ∫  (9.95) 

In our case of isotropic layers of same properties, we have 
( )0 0 .z constρ ρ= =

 Hence, 

Eq.(9.95) becomes 

 0hρ ρ=  (9.96) 

 Substitution of Eq.(9.93) and (9.96) into Eq.(9.79) yields 
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Comparison of Eq. (9.97) and (9.83) indicates that agreement is achieved by using the 

plane-strain correction 
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21

E
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υ
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−
 (9.98) 

Similarly, multiplication of Eq. (9.94) by the width b yields 
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or 
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11 21

E I
D

bυ
=

−  (9.100) 

Substitution of Eq. (9.100) into Eq. (9.81) and use of Eq. (9.85) yields 

 

4 *11
2 2 2

01 1 1

D E I E I E I I
a E

b bh m mρ υ ρ υ ρ υ
= = ⋅ = ⋅ = ⋅ =

− − −  (9.101) 

Comparison of Eq. (9.101) and (9.84) indicates that agreement is achieved by using the 

plane-strain correction of Eq. (9.98) 
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Equation Chapter (Next) Section 10 

10. TASK #2: THE STMM METHOD 

Rokhlin et al (2002) resolve the numerical instability of the TMM by introducing 

the layer stiffness matrix and use an efficient recursive algorithm to calculate the global 

stiffness matrix for an arbitrary anisotropic layered structure. In this latter method, a 

layer stiffness matrix substitutes the layer transfer matrix. It is important to note that 

the stiffness matrix transmits the stresses at the top and bottom of the layer with the 

displacements at the top and bottom layer. The terms in the matrix have exponentially 

decomposing terms and the matrix has the same dimension and easiness to solve as the 

transfer matrix. Overall, the stiffness matrix method is unconditionally stable and is 

more computationally efficient than the TMM method. We combine both GMM and 

STMM approaches and apply the new simplifications to the composite materials theory 

described in Chapter 8. This novel approach builds a new direction for the STMM 

method. 

1. Beam is divided into segments as needed to introduce external loading 

2. Segments are subdivided into subsegments to improve numerical convergence 

at high frequencies as shown in Figure 137. 

 
Figure 137: Beam Segmentation
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3. Global matrix method (GMM) is applied to the beam segments 

4. Stiffness transfer matrix method (STMM) is used in the subsegments 

From the steps presented, the main advantages of combining the STMM and 

GMM approaches for composite materials are: 

1. Numerical stability is achieved through subsegmentation using STMM 

2. The number of variables is maintained low even at high frequencies (unlike 

GMM where high frequencies could only be attained through an expansion of 

the size of the global matrix 

3. Subsegmentation is achieved without the need to modify the global system of 

equations. This can be easily automated using convergence criteria. 

Unlike TMM method which can only handle a very short range of resonance 

frequencies without errors (~ 50 kHz as shown in Section 4), the STMM method brings a 

great improvement, allowing us to determine a long range of resonance frequencies 

without errors. (~500 kHz as will be shown in the new mathematical model in the 

current subsection). 

The general principle behind the STMM method is similar to TMM, in the sense 

that it breaks up a complicated structure into several smaller segments which then can 

be expressed in a matrix format. However, the mathematical approach is different. 

Namely, the instability problem in TMM is solved by introducing the compliance matrix 

and using a recursive algorithm to calculate the global stiffness matrix. 

Recalling the general solutions for axial and flexural vibrations of the uniform beam as 

described in Section 4. 
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 (10.1) 
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 (10.2) 
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The quantities aγ
 and fγ

 are the wave numbers for the axial and flexural vibration, i.e., 
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 (10.5) 

Recall the matrix 
( ),x ω=B B

 

 

[ ]

1 2

1 2 3 4

31 2 4

1 2

22 2 2
31 2 4

2 2 2 2

33 3 3
31 2 4

3 3 3 3

0 0 0 0

0 0

0 0

0 0 0 0
d

0 0

0 0

g g

f f f f

ff f f

x x x x
g g

EA EA
x x

ff f f
EI EI EI

x x x x

ff f f
EI EI EI EI

x x x x

 
 
 
 ∂∂ ∂ ∂
 ∂ ∂ ∂ ∂ 

∂ ∂ =  ∂
 

∂∂ ∂ ∂ 
 ∂ ∂ ∂ ∂
 

∂∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 

B

 (10.6) 

Introduce displacement vector, coefficient vector and the relation 

 [ ] [ ][ ]u B A=
 (10.7) 
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Where constant column vector A is: 
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And vector u : 
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10.1 FREE VIBRATION OF THE UNIFORM COMPOSITE BEAM 

10.1.1 STMM FOR ONE SEGMENT BEAM 

Before we develop the analytical model using the STMM for the composite 

beam, we start with a much simpler case: one segment having length L. 

 
Figure 138: One Segment 

Let us consider u for displacements which will cover w  the flexural displacement andϕ  

the rotation on the slope and p for forces which will cover V the shear force and M  the 

bending moment. Let us express the state vector z for the start point of the beam, 0 , as 

 

0
0

0

u
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p

 
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   (10.10) 
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according to the transfer matrix theory. Next, we rewrite the state vector z as the 

product of matrix B  and a constant column vector A  as follows: 
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Similarly, we do for the other end of the beam as follows: 
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By rearranging the displacements from the beginning and the end of the beam in one 

matrix and similarly for the forces, we obtain 
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By solving for matrix A  in the equation(10.13) in and replacing it into from the 

equation(10.14), we get the stiffness matrix K . 
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In a similar manner, by solving for matrix A  in equation (10.14) and replacing it into 

equation (10.13), we get the compliance matrix S . 
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                    

    
= =    

          (10.16) 

With the axial and flexural displacements calculated, the total displacement between 

the ends of a PWAS 1x
 and 2x

 are calculated  

 
( ) ( ) ( ) ( )

2 1 2 1' '
2P x x

h
u u u w x w x= − − −  

 (10.17) 

The frequency response function FRF 
( )ω

 can be expressed by dividing by the excitation 

force F: 

 

( ) ( )
( ) ( )

2 1
2 1' '

2x xP

h
w x w xu uu

F F F

− −  
= −

 (10.18) 

 ( ) ( ) ( )u wFRF FRF FRFω ω ω= −
 (10.19) 

Where: 

 
( ) ( ) ( ) ( )

( ) ( )
2 1

2 1' '
2;

x x

u w

h
w x w xu u

FRF FRF
F F

ω ω
− −  

= =
 (10.20) 

The dynamic structural stiffness of the composite beam is calculated as: 

 
( )

( )
1

strk
FRF

ω
ω

=
 (10.21) 

The electromechanical impedance of the PWAS  can be expressed as: 

 

1

2
31

1 1 1
1 1

cot
Z k

Y i C rω ϕ ϕ

−
  

= = − −  +    (10.22) 
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Where: 

 
11;

2
p p E

p p

l
s

γ
ϕ γ ωρ= =

 (10.23) 

Where piezoelectric properties of PWAS material (Giurgiutiu, 2008) are presented in 

Table 6 

Table 6: PWAS Material Properties 

Property Symbol Value 

Compliance, in plane 
11
Es  15.3e-12 

1Pa−
 

Compliance, thickness wise 
33
Es  17.3e-12 

1Pa−
 

Dielectric constant 
33
Ts  1750 0ε ; 0ε =8.85e-12 F/m 

Thickness wise induced strain 

coefficient 
33d  400e-12 m/V 

In plane induced strain 

coefficient 
31d  -175e-12 m/V 

Coupling factor, parallel to 

electric field 
33k  0.72 

Coupling factor, transverse to 

electric field 
31k  0.36 

Poisson ratio ν  0.35 

Density ρ  7700 
3/Kg m  

Using STMM method, we look at the maximum resonance frequencies (stability) that 

can be calculated using one segment beam of 100mm length, as described in Section 4 

for TMM method. We are able to excite it until 500 kHz and obtain all natural 

frequencies without any MATLAB errors (Figure 139). However, whenever we reach 525 

kHz (Figure 140), the errors generated by the functions ‘sin’ and ‘cos’ are visible and 

affect our results. 
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Figure 139: Maximum frequency 500 kHz without error - for 100 mm 1-segment beam 
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Figure 140: Frequency 525 kHz with error for 100 mm 1-segment beam 
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We are able to improve the accuracy for a large beam with a high frequency with the 

new method STMM 

10.1.2 STMM MULTI-SEGMENT BEAM 

We now continue with a multi-segment case. As we can see in Figure 141, for a 

two-segment 
( )1,2

case, we have three nodes 
( )1,2,3

. In a general case (multi-

segment), we have the segments 
( ), 1j j +

 and nodes 
( ), 1, 2j j j+ +

. 

 
Figure 141: Multi-segment concept 

Let us apply the same technique described for one segment for a two-segment case. 

This can be then extended to for the general case ( 1j + segments). 

 

{ } [ ] { }

{ } [ ] { }

1 111 12

1 11
21 222 2

2 222 23

2 22
32 333 3

1 1
#1

1 1

2 2
#2

2 2

u pS S
seg u S p

S Su p

u pS S
seg u S p

S Su p

    
⇒ = ⇒ =    

    

    
⇒ = ⇒ =    

      (10.24) 

Let us rewrite the equation (10.24) in an expanded way as follows: 

 1 11 1 12 21 1u S p S p= +  (10.25) 

 2 21 1 22 21 1u S p S p= +  (10.26) 

 2 22 2 23 32 2u S p S p= +  (10.27) 

 3 32 2 33 32 2u S p S p= +  (10.28) 

From (10.26) and (10.27), by eliminating 2u
 from the first segment and replacing it into 

the second segment, we will be able to calculate 2p
. 
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( )

( ) ( )
22 22 2 21 1 23 3

1 1

2 22 22 21 1 22 22 23 3

2 21 1 23 3

2 1 1 2 0

2 1 1 2 1 2

1 2

S S p S p S p

p S S S p S S S p

p IS S p IS S p

− −

− − + =

= − − −

= ⋅ − ⋅  (10.29) 

Where: 

 ( ) 1

22 222 1IS S S
−

= −
 (10.30) 

 ( ) ( )
1 11 1 22 21 1 12 23 3

11 12 21 1 12 23 3

1 1 1 1 2

1 1 1 1 2

u S p S IS S p S IS S p

S S IS S p S IS S p

= ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ =

+ ⋅ ⋅ − ⋅ ⋅
 (10.31) 

Where: 

 

11 11 12 21

13 12 23

1 1 1

1 2

S S S IS S

S S IS S

= + ⋅ ⋅

= ⋅ ⋅  (10.32) 

In a similar manner we obtain 3u
: 

 ( ) ( )
3 32 21 1 32 23 3 33 3

32 21 1 23 32 23 3

2 1 2 2 2

2 1 2 2 2

u S IS S p S IS S p S p

S IS S p S S IS S p

= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ =

⋅ ⋅ + − ⋅ ⋅
 (10.33) 

Where: 

 

31 32 21

33 33 32 23

2 1

2 2 2

S S IS S

S S S IS S

= ⋅ ⋅

= − ⋅ ⋅  (10.34) 

Briefly, this is equivalent to: 

 

( )
{ } [ ] { }

22 22

13 1313

1 11 13 1

3 31 33 3

11 11 12 21

13 12 23

31 32 21

33 33 32 23

1

2 1

1 1 1

1 2

2 1

2 2 2

IS
S S

u S p

u S S p

u S S p

S S S IS S

S S IS S

S S IS S

S S S IS S

=
−

=

     
=     

     
= + ⋅ ⋅

= − ⋅ ⋅

= ⋅ ⋅

= − ⋅ ⋅  (10.35) 
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10.2 ADDING EXTERNAL LOADS 

External loads (forces and moments) are introduced at the nodes between 

segments. 

10.2.1 SIMPLE CASE: OFFSET AXIAL LOAD APPLIED TO A SINGLE SEGMENT 

For illustration, we will consider the excitation F to be a horizontal force applied 

to node 2 as shown in Figure 142. For simplicity, we represent the forces with a 

superscript 1 or 2  to denote the left or the right side of the node. F is a generalized 

force containing forces and moments 

N

F V

M

 
 =  
    up to case study.(In this case we will 

consider F N= ) 

 
Figure 142: Forced vibration of a uniform beam 

Now we rewrite all equations for a two-segment case and, in addition, we add the 

excitation force 2
ep
: 

 

1 111 12

21 222 2

2 222 23

32 333 3

1 1

1 1

2 2

2 2

R

L

R

L

u pS S

S Su p

u pS S

S Su p

    
=     

     

    
=     

       (10.36) 

This is equivalent to the following expanded form: 
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 1 11 1 12 21 1R Lu S p S p= +  (10.37) 

 2 21 1 22 21 1R Lu S p S p= +  (10.38) 

 2 22 2 23 32 2R Lu S p S p= +  (10.39) 

 3 32 2 33 32 2R Lu S p S p= +  (10.40) 

We then introduce the excitation force and using the free body diagram in Figure 142 , 

we write the equilibrium equation for node two as follows: 

 2 2 2
R L ep p p= +  (10.41) 

From equations (10.38), (10.39) and (10.41), we determine 2
Lp

: 

 ( )

21 1 22 2 22 2 23 3

22 2 22 2 23 3

22 22 2 21 1 23 3 22 2

1 1 2 2

2 2 2

2 1 1 2 2

R L R L

L e L

L R L e

S p S p S p S p

S p S p S p

S S p S p S p S p

+ = + =

+ + ⇒

− = − −  (10.42) 

Where: 

 ( ) 1

22 222 1IS S S
−

= −
 (10.43) 

By rearranging the equation(10.42), 2
Lp

 became: 

 2 21 1 23 3 22 21 2 2L R L ep IS S p IS S p IS S p= ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅  (10.44) 

From (10.44) and (10.37), we can calculate the displacements on node 1: 

 ( ) ( ) ( )1 11 12 21 1 12 23 3 12 22 21 1 1 1 2 1 2R L eu S S IS S p S IS S p S IS S p= + ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅
 (10.45) 

From (10.44) and (10.40), we can calculate the displacements on node 3: 

 ( ) ( ) ( )3 32 21 1 33 32 23 3 32 32 22 22 1 2 2 2 2 2 2R L eu S IS S p S S IS S p S S IS S p= ⋅ ⋅ + − ⋅ ⋅ + − ⋅ ⋅
(10.46) 

Rewriting (10.45) and (10.46) in matrix form, we obtain: 

 

11 11 13 1

31 33 22 23

013 13 0 13

13 13 0 13

R
e

eL
e

pu S S S

S S Su pp

        
= +        

          (10.47) 

Where 
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( )22 22

11 11 12 21

13 12 23

31 32 21

33 33 32 23

1 12 22

2 32 32 22

2 1

13 1 1 1

13 1 2

13 2 1

13 2 2 2

13 1 2

13 2 2 2
e

e

I
IS

S S

S S S IS S

S S IS S

S S IS S

S S S IS S

S S IS S

S S S IS S

=
−

= + ⋅ ⋅

= − ⋅ ⋅

= ⋅ ⋅

= − ⋅ ⋅

= − ⋅ ⋅

= − ⋅ ⋅  (10.48) 

Having all the equations for all three nodes, we can write the compliance matrix S: 

 

(1) (1)
1 1
(1) (1)

(1)2 2
(2) (2)

(2)1 1
(2) (2)

(3)2 2
(3) (3)
1 1
(3) (3)
2 2

u p

u p
S

u p
S

u p
S

u p

u p

   
   
    
    

=    
        
   
        (10.49) 

Where 
(1)S ,

(2)S ,
(3)S  are 2 2x matrices.  The general form is: 

 u S p= ⋅  (10.50) 

Where 

 

[ ]

(1)

(2)

(3)

S

S S

S

 
 

=  
    (10.51) 

We then apply the external moment to the beam as shown in Figure 143. (In this case 

we will consider F M= ) 
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Figure 143: Moment vibration of a uniform beam 

Let us build a general case equation for the compliance matrix: 

 

[ ]1 1

2 2
j

j j

u p
S

u p

   
=   

     (10.52) 

Where j is a positive integer number. In the current case, 3j = . 

We then write the node equilibrium equation 

 

( )

( ) ( )

( ) ( )

( )

( )

( ) ( )

( ) ( )

( )

1 1
1 1 1 1

2 1 1 2
1 2 2 2 1 2

3 2 2 3
1 2 3 2 1 3

3 3
2 4 2 4

p F p F

p p F p p F

p p F p p F

p F p F

 = − = −
 

= − − + = − 
⇒ 

= − − + = − 
 

= − = −   (10.53) 

This is equivalent to matrix form: 

 

( )

( )

( )

( )

( )

( )

1
1

1
2 1
2

1 2

2
32

3 4
1

3
2

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

p

p FI

p FI I

FI I p
FI p

p

 
 
    
    −      =    −
    
    
 
    (10.54) 

Where I is the identity matrix and for simplicity we denote 
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[ ]

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

I

I I
A

I I

I

 
 − =
 −
 
   (10.55) 

The displacement compatibility equations are 

 

(2) (1) (2) (1)
1 2 1 2
(3) (2) (3) (2)
1 2 1 2

0

0

u u u u

u u u u

 = − =
⇒ 

= − =   (10.56) 

This is equivalent to 

 

(1)
1
(1)
2
(2)
1
(2)
2
(3)
1
(3)
2

0 0 0 0
0

0 0 0 0

u

u

I I u

I I u

u

u

 
 
 
 − 

=  −   
 
 
    (10.57) 

Where 

 
[ ]

0 0 0 0

0 0 0 0

I I
B

I I

− 
=  −   (10.58) 

We thus have 12 unknowns and 12 equations, which should be solvable using the global 

matrix approach, which is numerically stable. The numerical instability can be solved by 

subsegmenting. 

We build a global matrix 

 [ ] [ ] [ ]M X N⋅ =
 (10.59) 

Where 
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{ }
{ }
{ }

[ ] [ ]

[ ] [ ]

[ ] [ ]

0

0

0 0

u
X

p

u
I S

p

u
A F

p

u
B

p

  
=  

  

 
− = 

 

 
= 

 

 
= 

   (10.60) 

 

[ ] [ ] [ ]

12

12

0

0

0 0

0

0 ; ;

0 0

I S
u

A F
p

B

I S
u

M A X N F
p

B

−   
    =           

−   
    = = =             (10.61) 

The expanded form of the global matrix is 

 

(1)

(2)

(3)

0

0

0

0

0

0

0 0 0 0 0 1
0

0 0 0 0 2

0 0 0 0 3
0

0 0 0 0 0 4

0 0 0 0 0
0

0 0 0 0 0

I
S

I

I
S

I

I
S

I u

I p F

I I F

I I F

I F

I I

I I

   
−   

   
   

−   
   
   

−   
    =    −     

−   
   −   
   
   −   
   −     (10.62) 

Each u  and p  contains two components 

 
;

w V
u p

p M

   
= =   

     (10.63) 

Hence the sizes of the matrices double 



224 

 

 

12 12 12 12 1

8 12 8 12 8 1

24 1
4 12 4 12 4 124 24 24 1

x x

x x x

x
x x xx x

I S O
u

O A F
p

B O O

−   
    =             (10.64) 

Where:  

 

[ ]

[ ]

[ ]

( )

( )

( )

2 2 2 2 2 2

2 2 2 2 2 2

8 12
2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2

4 12
2 2 2 2 2 2 2 2

1

2

12 12

3

seg

seg

x

x xN

x
x xN

x

I O O O O O

O I I O O O
A

O O O I I O

O O O O O I

O I I O O O
B

O O O I I O

S

S S

S

− 
 − =
 −
 
 

− 
=  − 

 
 

=  
 
    (10.65) 

Having the global matrix M X N⋅ = , we can solve for X as /X M N= . 

We start the analysis of force vibrations of the uniform composite beam by assuming a 

value for ω and calculating the displacement based on STMM approach. 

10.2.2 EXTERNAL FORCES AND MOMENTS 

Figure 144 shows the schematic of the beam with both force and moment 

excitation. We denote by u  displacements that cover u the axial displacement, w  the 

flexural displacement andϕ  the rotation on the slope. We denote by
p

 forces that 

cover N the axial force, V the shear force and M  the bending moment. 
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Figure 144: External Force and Moment 

The compliance matrix will take the following form for a three-segment case: 

 
[ ]1 1

6 6
2 26 6

x

u p
S

u p

   
=   

     (10.66) 

We build a global matrix 

 [ ] [ ] [ ]M X N⋅ =
 (10.67) 

Where: 

 

[ ] [ ] [ ]

18 18 18 18 1

12 18 12 18 12 1

36 1
6 18 6 18 6 136 36 36 1

18 18 18 18 1

12 18 12 18 12 1

36 1
6 18 6 18 6 136 36 36 1

; ;

x x

x x x

x
x x xx x

x x

x x x

x
x x xx x

I S O
u

O A F
p

B O O

I S O
u

M O A X N F
p

B O O

−   
    =           

−   
    = = =             (10.68) 

and, 
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[ ]

[ ]

[ ]

( )

( )

( )

3 3 3 3 3 3

3 3 3 3 3 3

12 18
3 3 3 3 3 3

3 3 3 3 3 3 2 2

3 3 3 3 3 3

6 18
3 3 3 3 3 3 2 2

1
6 6 6 6

2
6 6 6 618 18

3
6 6 6 6

seg

seg

x

x xN

x
x xN

x

xx

x

I O O O O O

O I I O O O
A

O O O I I O

O O O O O I

O I I O O O
B

O O O I I O

S O O

S O S O

O O S

− 
 − =
 −
 
 

− 
=  − 

 
 

=  
 
    (10.69) 

The complete expanded form of the global matrix can be seen in Figure 145. 

 
Figure 145: Global matrix with all elements 

Having the global matrix M X N⋅ = , we can solve for X as /X M N= . 
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10.3 MODELING OF A DELAMINATED COMPOSITE BEAM 

The methodology to model a delaminated composite beam is almost the same 

as previously demonstrated with the difference that we have to divide the beam in 

several segments. The delamination will create a discontinuity in the composite material 

which will split the beam in two branches as illustrated in Figure 146. 

 
Figure 146: Schematic of delaminate composite beam 

In this section, we develop a mathematical model which integrates the delamination 

into STMM. In order to do this, the first step is to find the location of the neutral axis for 

a composite multi-layer beam. Once the location of the neutral axis is determined, all 

the multi-layer beam material properties will be expressed with respect to the elastic 

center. 

10.3.1 NEUTRAL AXIS SHIFT 

For a better understanding of this concept, we will study neutral axis for an 

isotropic bar of arbitrary cross-section (Figure 147). By definition, neutral axis is such 

that the axial and flexural effects are decoupled. 
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Figure 147: Neutral axis –Arbitrary cross section 

Where: 

 

0

2
0

2

0

.

x

x

x

E const

zk

k
x

E Ek z

ε ε

ω

σ ε

=

= +

∂
= −

∂
= +  (10.70) 

 
( )0 0x x

A A A

N dA E Ek z dA EA Ek zdAσ ε ε= = + = +∫ ∫ ∫
 (10.71) 

 
( )0 0x

A A A

M zdA E Ek z zdA E zdAσ ε ε− = = + =∫ ∫ ∫ xEIk+
 (10.72) 

To decouple axial and flexural effects, we need the first moment of area to be zero, i.e. 

 
0

A

zdA =∫
 (10.73) 

Consider a generic system of axis 0xZ  (Figure 148). 

 

Figure 148: Position 0z
of the neutral axis 
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We want to find the position 0z
of the neutral axis. The solution is to calculate first 

moment of area about the neutral axis and make it zero. 

 
( )0 0 0zdA z z dA zdA z dA= − = − =∫ ∫ ∫ ∫  (10.74) 

 

0

1A

A

A

zdA

z zdA
AdA

= =
∫

∫
∫

 (10.75) 

Neutral axis for a composite laminate by definition is such that the axial and flexural 

effects are decoupled. Difference from isotropic bar: 

 

E = ( );const E E z

ρ

=

= ( );const zρ ρ=
 (10.76) 

From equation (10.76), (10.71)and (10.72) we got: 

 

( )0

2
0

x

A A A

x

A A A

N dA E dA Ek zdA

M zdA E zdA Ek z dA

σ ε

σ ε

= = =

− = = +

∫ ∫ ∫

∫ ∫ ∫
 (10.77) 

Define equivalent elastic properties: 

 

2; ;
A A A

EA EdA EI Ez dA m dAρ= = =∫ ∫ ∫
 (10.78) 

From equations (10.78) and(10.76): 

 

0 x

A

N EA k EzdAε= + ∫

0

A

M EzdAε− = ∫ xEIk+
 (10.79) 

Need to make zero the integral (modulus-weighted first moment of area) 

 
0

A

EzdA =∫
 (10.80) 

To find position of neutral axis, we modify equation (10.75) such that: 
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0
A

A

EzdA

z
EdA

=
∫

∫
 (10.81) 

For a laminated composite, the properties 
( ) ( ),E z zρ

 are piece wise constant inside a 

lamina and integrate become summations, i.e.,( per unit width b=1) 

 

( )

( )

( )

( )

( )

1

1
1 1

2 3 3
1

1

1
1

2 2
1

1
0

1
1

1

3

1
2

k

k

zN N

k k k k
k kA z

N

k k k
kA

N

k k k
kA

N

k k k
k

N

k k k
k

EA EdA E dz E z z

EI Ez dA E z z

m dA z z

E z z
z

E z z

ρ ρ

−

−
= =

−
=

−
=

−
=

−
=

= = = −

= = −

= = −

−
=

−

∑ ∑∫ ∫

∑∫

∑∫

∑

∑
 (10.82) 
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Figure 149: STMM delamination - free body diagram 

 



232 

 

10.3.2 NODE EQUILIBRIUM AND COMPATIBILITY EQUATIONS FOR TRANSFER INTO THE 

DELAMINATED REGION 

We write the node equilibrium equations for the left hand side (node 2) and 

right hand side (node 3) of the delamination shown in Figure 149. In this case, segment 

2 , which contains the delamination, will be split into two segments: the upper part 

denoted 2a  and the bottom part denoted 2b . In order to link those two new segments 

with the previous segment (segment 1), we have to define the distance between the 

center of the first segment and the center of the new upper segment 2a  and  

respectively the lower segment 2b . We denote by ar the distance between the center of 

segment 1 and the center of the segment 2a  and br  the distance between the center of 

segment 1 and the center of the segment 2b . 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 2
2 1 1

1 2 2
2 1 1

1 2 2 2 2
2 1 1 1 1

3 2 2
1 2 2

3 2 2
1 2 2

3 2 2 2 2
1 2 2 2 2

0

0

0

0

0

0

a b

a b

a a b b
a b

a b

a b

a a b b
a b

N N N

V V V

M r N M r N M

N N N

V V V

M r N M r N M

 − − =


− − =


+ − − − =

 − + + =


− + + =

− − + + + =  (10.83) 

We can rewrite the moment equations in a matrix form as follow: 
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[ ]

( )

( )

( )

[ ]

( )

( )

( )

[ ]

( )

( )

( )

[ ]

( )

( )

( )

[ ]

( )

( )

( )

[ ]

( )

( )

( )

1 2 2
2 1 1

1 2 2
2 1 1

1 2 2
2 1 1

3 2 2
1 2 2

3 2 2
1 2 2

3 2 2
1 2 2

0 0 1 0 1 0 1 0

0 0 1 0 1 0 1 0

a b

a b
a b

a b

a b

a b
a b

a b

N N N

V r V r V

M M M

N N N

V r V r V

M M M

     
     

+ − + − − =     
     
          

     
     

− + − + =     
     
            (10.84) 

By rearranging: 

 

[ ] [ ] [ ]

( )

( )

( )

( )

( )

( )

( )

( )

( )

1
2

1
2

1
2

2
1

2
1

2
1

2
1

2
1

2
1

0 0 1 0 1 0 1 0

a

a
a b

a

b

b

b

N

V

M

N

r r V

M

N

V

M

 
 
 
 
 
 
 
  − − − =   
 
 
 
 
 
 
   (10.85) 

 

[ ] [ ] [ ]

( )

( )

( )

( )

( )

( )

( )

( )

( )

3
1

3
1

3
1

2
2

2
2

2
2

2
2

2
2

2
2

0 0 1 0 1 0 1 0

a

a
a b

a

b

b

b

N

V

M

N

r r V

M

N

V

M

 
 
 
 
 
 
 
  − − =   
 
 
 
 
 
 
   (10.86) 

or: 
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( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1
2

1
2

1
2

2
1

2
1

2
1

2
1

2
1

2
1

1
2

22 2
1 1 1

2
1

2 2
1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0

0 0 1 0 1 0 1

1 0 0 1 0 0

0 1 0 ; 0 1 0

0 1 0

a

a

a
a b

b

b

b

aa b

b

a b

a b

N

V

M

N

V

r r M

N

V

M

p

I T T p

p

T T

r r

 
 
 
 
 
 

− −   
   − − =   
 − −   

 
 
 
 
 
 

 
 

 ⇒ − −   
 
  

 
    = =    
 − 

;

1

 
 
 
    (10.87) 
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( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

3
1

3
1

3
1

2
2

2
2

2
2

2
2

2
2

2
2

3
1

22 2
1 1 2

2
2

2 2
2 2

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0

0 0 1 0 1 0 1

1 0 0 1 0 0

0 1 0 ; 0 1 0

0 1 0 1

a

a

a
a b

b

b

b

aa b

b

a b

a b

N

V

M

N

V

r r M

N

V

M

p

I T T p

p

T T

r r

 
 
 
 
 
 

−   
   − =   
 − −   

 
 
 
 
 
 

 
 

 ⇒ − + +   
 
  

 
    = =    
 − 

 
 
 
    (10.88) 

We write the node equilibrium equations for the entire beam 

 

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1
1 1

1 2 2 2 2
2 1 1 1 1 2

2 2 2 3
2 2 2 2 1

3
2 4

a a b b

a a b b

p F

p T p T p F

T p T p p

p F

 − =


− − =


+ − =


=  (10.89) 

This is equivalent to the matrix format: 
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( )

( )

( )

( )

( )

( )

( )

( )

( )

[ ][ ] [ ]

[ ]

1
2

1
2

1
2

2 1
12 2

21 1 2
2 2 1

32 2 2
1

4
2

1

2
1

2
1

2 2
1 1

2 2
2 2

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

a

a b

a
a b

a

b

b

b

a b

a b

N

V

M
FI

N
FI T T

V
FT T I

M FI
N

V

M

A P F

I

I T T
A

T T I

I

 
 
 
 
 

−     
    − −      =
    −
    

    
 
 
 
 
 

=

−

− −
=

−

[ ]

( )

( )

( )

( )

( )

( )

( )

( )

( )

[ ]

1
2

1
2

1
2

2 1
1

22
1

32
1

4
2

1

2
1

2
1

;

;

a

a

a

b

b

b

N

V

M
F

N
F

P FV
F

M F
N

V

M

 
 
 
 
 
 

 
 
 
 
 

  
  
  = =
  
  
  

 
 
 
 
   (10.90) 

We write the displacement compatibility equations: 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 2
2 1

1 2
2 1

2 3
2 1

2 3
2 1

0

0

0

0

a

b

a

b

u u

u u

u u

u u

 − =


− =


− =


− =  (10.91) 

This is equivalent to the matrix format: 
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( )

( )

( )

( )

( )

( )

( )

( )

[ ][ ]

[ ] [ ]

( )

( )

( )

( )

( )

( )

( )

( )

1
1

1
2

2
1

2
2

2
1

2
2

3
1

3
2

1
1

1
2

2
1

2
2

2
1

2
2

3
1

3
2

0 0 0 0 0 0

0 0 0 0 0 0
0

0 0 0 0 0 0

0 0 0 0 0 0

0

0 0 0 0 0 0

0 0 0 0 0 0
;

0 0 0 0 0 0

0 0 0 0 0 0

a

a

b

b

a

a

b

b

u

u

uI I

uI I

I I u
I I u

u

u

B u

u

u

uI I

uI I
B u

I I u
I I u

u

u

 
 
 
 

−   
  −    =
  −
  

−   
 
 
 
 

=






−  
 −  = =
 −

 
− 












 
 
 
 
 

  (10.92) 

10.3.3 GLOBAL MATRIX FORMATION FOR APPLYING PWAS LOADS TO DELAMINATED 

COMPOSITE BEAM 

We build a global matrix 

 [ ][ ] [ ]M X N=
 (10.93) 

Where: 

 

[ ] [ ] [ ]

24 24 24 24 1

12 24 12 24 12 1

48 1
12 24 12 24 12 148 48 48 1

24 24 24 24 1

12 24 12 24 12 1

48 1
12 24 12 24 12 148 48 48 1

; ;

x x

x x x

x
x x xx x

x x

x x x

x
x x xx x

I S O
u

O A F
p

B O O

I S O
u

M O A X N F
p

B O O

−   
    =           

−   
    = = =             (10.94) 

The expanded form of the global matrix is 
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( )

( )

( )

( )

1

2

3

4

1
2 2

1 1 2

2 2
32 2

4

0

0

0

0

0

0

0

0

0 0 0 00 0 0

0 00 0 0

0 0 00 0

0 0 00 0 0 0

00 0 0 0 0 0
0

00 0 0 0 0 0

00 0 0 0 0 0
0

00 0 0 0 0 0

a b

a b

I
S

I

I
S

I

I
S

I

I
S

I u

I p F

T TI F

FIT T

FI

I I

I I

I I

I I

  
−  

  
  

−  
  
  

−  
  
  
  −
   

=   −    
 − −
 

− 
 
 

− 
 − 
 −
 

−  
















 
 
 
 
 
 
 
 
 
 

 (10.95) 

After developing the mathematical approach to integrate a delamination into STMM, let 

us apply the theory to two different situations which are detailed in next subsections. 

10.3.4 DELAMINATION OUTSIDE THE PWAS ZONE 

Let us consider a composite beam with a PWAS attached on top and a 

delamination between the pre-specified layers (non-overlapping). Figure 150 is a 

graphical representation of the case under study. 

 
Figure 150: Location of the PWAS different from the delamination 
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We build the free body diagram for the current case study as shown in Figure 

151. We have six segments and six nodes. 
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Figure 151: Free body diagram 
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As a first step, we write the equilibrium equation following the free body diagram: 

 

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

1
1 1

1 2 2 2 2
2 1 1 1 1 2

2 2 2 2 3
2 2 2 2 1 3

3 4
2 1 4

4 5
2 1 5

5
2 6

a a b b

a a b b

p F

p T p T p F

T p T p p F

p p F

p p F

p F

− =


− − =


+ − =


− =


− =
 =  (10.96) 

We can rearrange them in a matrix form as follows: 

 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1
1

1
2

2
1

2
2

1
22 2

1 21 1
22 2

322 2

3
1

3
2

4
1

4
2

5
1

5
2

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

a

a

ba b

ba b

p

p

p

p FI
p FI T T

FpT T I

FI I p
I I p

I
p

p

p

p

 
 
 
 
 
 

−   
  − −   
  −

=  
−   

  −
  
  
 
 
 
 
 
  

4

5

6

F

F

 
 
 
 
 
 
 
 
  

(10.97) 

 [ ] [ ] [ ]A p F⋅ =
 (10.98) 

 

[ ]

2 2
1 1

2 2
2 2

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

a b

a b

I

I T T

T T I
A

I I

I I

I

− 
 − − 
 −

=  
− 

 −
 
   (10.99) 
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[ ]

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

[ ]

1
1

1
2

2
1

2
2

1
2

1 2
2

32

3
41

3 5
2

4 6
1

4
2

5
1

5
2

;

a

a

b

b

p

p

p

p F
p F

Fp
p F

Fp
Fp
F

p

p

p

p

 
 
 
 
 
 
   
   
   
   

= =   
   
   
   

    
 
 
 
 
 
    (10.100) 

Where: 

 

2 2
1 1

2 2
2 2

1 0 0 1 0 0

0 1 0 ; 0 1 0 ;

0 1 0 1

1 0 0 1 0 0

0 1 0 ; 0 1 0

0 1 0 1

a b

a b

a b

a b

T T

r r

T T

r r

   
      − = − =      
   −   

   
      = =      
   −     (10.101) 

The displacement compatibility equations are: 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 2
2 1

1 2
2 1

2 3
2 1

2 3
2 1

4 3
1 2

5 4
1 2

0

0

0

0

0

0

a

b

a

b

u u

u u

u u

u u

u u

u u

 − =


− =


− =


− =

− + =

− + =  (10.102) 

This is equivalent to the matrix form: 
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( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1
1

1
2

2
1

2
2

2
1

2
2

3
1

3
2

4
1

4
2

5
1

5
2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

a

a

b

b

u

u

u

uI I
uI I

uI I

I I u
I I u

I I
u

u

u

u

 
 
 
 
 
 

−   
  −   
  −

=  
−   

  −
  

−   
 
 
 
 
 
    (10.103) 

 [ ][ ] 0B u =
 (10.104) 

 

[ ]

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

I I

I I

I I
B

I I

I I

I I

− 
 − 
 −

=  
− 

 −
 

−   (10.105) 
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[ ]

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1
1

1
2

2
1

2
2

2
1

2
2

3
1

3
2

4
1

4
2

5
1

5
2

a

a

b

b

u

u

u

u

u

u
u

u

u

u

u

u

u

 
 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 
 
    (10.106) 

We build a global matrix 

 [ ] [ ] [ ]M X N⋅ =
 (10.107) 

Where: 

 

[ ] [ ] [ ]

36 36 36 36 1

18 36 18 36 18 1

72 1
18 36 18 36 18 172 72 72 1

36 36 36 36 1

18 36 18 36 18 1

72 1
18 36 18 36 18 172 72 72 1

; ;

x x

x x x

x
x x xx x

x x

x x x

x
x x xx x

I S O
u

O A F
p

B O O

I S O
u

M O A X N F
p

B O O

−   
    =           

−   
    = = =             (10.108) 

The expanded form of the global matrix is 
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( )

( )

( )

( )

( )

( )

1

2

2

3

4

1

5 2

3

4

5

6

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

a

b

I
S

I

I
S

I

I
S

I

I
S

I

I u
S

I p F

I F
S

I F

F

A F

F

B

 
 
 
 
 

   −   
   
   

−   
   
   
 −  
   
   
   −
   
       − =        
   −   
   
   
   
   
   
  
  
  
  
   





 










(10.109) 

10.3.5 DELAMINATION INSIDE THE PWAS ZONE 

Let us consider a composite beam with a PWAS attached on top and a 

delamination located under it. Figure 152 is a graphical representation of this case. 

 
Figure 152: Location of the delamination is under the PWAS 

We build the free body diagram for the current case study as shown in Figure 

153. We now have eight segments and eight nodes. 
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Figure 153: Free body diagram 
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Following the same approach as in the previous case, the equilibrium equations 

become: 

 

( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( )

1
1 1

1 2 2 2 2
2 1 1 1 1 2

2 3
2 1 3

2 3
2 1 3

3 4
2 1 4

3 4
2 1 4

4 4 4 4 5
2 2 2 2 1 5

5
2 6

a a b b

a

b b

a a

b b

a a b b

p F

p T p T p F

p p F

p p F

p p F

p p F

T p T p p F

p F

− =


− − =


− =


− =


− =


− =
 + − =
 =  (10.110) 

This can be written in matrix format as follows: 

 

( )

( )

( )

( )

( )

( )

( )

1
1

1
2

2
1

2
2

2
1

2
2 2 2

1 1
3

2

4 4
2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a

a

b

b
a b

a

a b

p

p

p

p

p
I

pI T T
pI I

pI I

I I

I I

T T I

I

− 
 − 
 −
 

− 
 −
 

− 
 −
 
  

( )

( )

( )

( )

( )

( )

( )

( )

( )

1

2

3
3

31

3
42

3
4

1

4 5
2

64
1

4
2

4
1

5
1

6
2

a
a

b

b
a

b
b

a

a

b

b

F

F

F

F

Fp
Fp
F

p
F

p

p

p

p

p

 
 
 
 
 
 
 
 
   
   
   
   
   
   =   
   
   
   
   
     
 
 
 
 
 
 
   (10.111) 

Where  
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[ ] [ ] [ ]

[ ]

2 2
1 1

4 4
2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a b

a b

A p F

I

I T T

I I

I I
A

I I

I I

T T I

I

⋅ =

− 
 − 
 −
 

− =  −
 

− 
 −
 
    (10.112) 

 

[ ]

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

[ ]

1
1

1
2

2
1

2
2

2
1

12
2

2
3

2 3
3

31

3
42

3
4

1

4 5
2

64
1

4
2

4
1

5
1

6
2

;

a

a

b

b

a

a
a

b

b
a

b
b

a

a

b

b

p

p

p

p

p
F

p F
p F

Fp
p F

Fp
Fp
F

p
F

p

p

p

p

p

 
 
 
 
 
 
 
 
   
   
   
   
   
   = =   
   
   
   
   
     
 
 
 
 
 
 
    (10.113) 

and 

 

2 2
1 1

4 4
2 2

1 0 0 1 0 0

0 1 0 ; 0 1 0 ;

0 1 0 1

1 0 0 1 0 0

0 1 0 ; 0 1 0

0 1 0 1

a b

a b

a b

a b

T T

r r

T T

r r

   
      − = − =      
   −   

   
      = =      
   −     (10.114) 

The displacement compatibility equations are: 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 2
2 1

1 2
2 1

2 3
2 1

2 3
2 1

3 4
2 1

3 4
2 1

4 5
2 1

4 5
2 1

0

0

0

0

0

0

0

0

a

b

a a

b b

a a

b b

a

b

u u

u u

u u

u u

u u

u u

u u

u u

 − =


− =


− =


− =


− =


− =
− − =
− − =  (10.115) 

 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1
1

1
2

2
1

2
2

2
1

2
2

3
1

3
2

3
1

3
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

a

a

b

b

a

a

b

b

u

u

u

u

u
I I

uI I
uI I

uI I

I I u
I I u

I I

I I

− 
 − 
 −
 

− 
 −
 

− 
 −
 

−  

( )

( )

( )

( )

( )

( )

4
1

4
2

4
1

4
2

5
1

5
2

0

a

a

b

b

u

u

u

u

u

u

 
 
 
 
 
 
 
 
 
 
 
 
 
  = 
 
 
 
 
 
 
 
 
 
 
 
 
    (10.116) 

Where: 

 [ ] [ ] 0B u⋅ =
 (10.117) 
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[ ] [ ]

( )

( )

( )

( )

( )

( )

( )

( )

1
1

1
2

2
1

2
2

2
1

2
2

3
1

3
2

3
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0
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a

b

b

a

a

u

u

u
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u
I I
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− 
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 

− = = −
 
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−  

( )
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( )
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2

4
1

4
2

5
1

5
2

b

b

a

a

b

b

u

u

u

u

u

u

u

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   (10.118) 

We build a global matrix 

 [ ] [ ] [ ]M X N⋅ =
 (10.119) 

Where: 

 

[ ] [ ] [ ]

48 48 48 48 1

24 48 24 48 24 1

96 1
24 48 24 48 24 196 96 96 1

48 48 48 48 1

24 48 24 48 24 1

96 1
24 48 24 48 24 196 96 96 1

; ;

x x

x x x

x
x x xx x

x x

x x x

x
x x xx x

I S O
u

O A F
p

B O O

I S O
u

M O A X N F
p

B O O

−   
    =           

−   
    = = =             (10.120) 

The expanded form of the global matrix is 
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F
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Having the analytical approach of the STMM expanded, we next plan to integrate 

this algorithm in Matlab. STMM is intended to require less mathematical calculation and 

to give accurate predictions as FEM in a shorter period of time. Having this in mind, the 

next steps will be to validate this mathematical algorithm. 
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Equation Chapter (Next) Section 11 

11. TASK #3: VALIDATION OF THE STMM MATHEMATICAL MODEL BY 

COMPARISON WITH FEM AND EXPERIMENTS 

In this chapter, we validate the STMM mathematical model by comparison with 

FEM and experiments. In addition, we compare the results obtained for the pristine and 

damaged specimens. 

We will go step-by-step through this process, where properties for the three 

composite materials under study are shown in Table 7. 

Table 7: Material Properties 

PWAS

Material 

Properties

Unidirectional CFRP 

Composite

T300/5208 Quasi-

Isotropic

Woven Glass-epoxy 

Composite APC-850

Elastic properties E1/E2/G12/ν12/ν21 E1/E2/G12/ν12/ν21 E1/E2/G12/ν12/ν21 E1/E2/ν12/ν21

Gpa 132/10.5/5.65/0.24/0.24132/10.8/5.65/0.24/0.24 32/30/4/0.26/0.26 64.5/64.5/0.3/0.3

Damping 

Coefficient ξ1/ξ2/ξ12 ξ1/ξ2/ξ12 ξ1/ξ2/ξ12 ξ1/ξ2/ξ12

Elastic Properties 

with Damping 0.001/0.01/0.01 0.001/0.01/0.01 0.001/0.01/0.01 0.001/0.01/0.01

Mass Density 1540 1540 1900 7500

Permittivity - - - 1750*8.85*10
-12

Coupling Terms: 

d11, d22 and d12 - - -

1750*8.85*10
-12

/             

-175*10
-12

/         

400*10
-12

Layers                          

( No. & Hight)

12 layers                         

h=1.500mm 

125μm/layer

16 layers                         

h=2.24mm              

140μm/layer

10 layers                         

h=3.2mm              

320μm/layer -

Stacking 

Sequence (0
0
)12 (0

0
/45

0
/90

0
/-45

0
)2S (0

0
/90

0
)10 -

0

45

90

-45

-45

90

45

0

COMPOSITE MATERIALS
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11.1 CALCULATION OF STMM RESULTS FOR COMPARISON WITH FEM AND 

EXPERIMENTS 

To validate the analytical method STMM, we calculate two sets of results to 

compare with FEM and experiments. We considered two composite beam specimens: 

one pristine and one damaged (180 10 1.5mm x mm x mm ).The chosen material is 

unidirectional CFRP as per Table 7. The impedance response in the range 0-100 kHz was 

simulated for each case. 

We start with the pristine case. We first consider the case when the sensor is 

located at 60mm distance from one side and the impedance response for the pristine 

specimen in this case can be seen in Figure 154. 

By looking at the frequency response function, we are able to differentiate how 

many axial and flexural frequency response functions we have between 0 and 100 kHz. 

As per Figure 155 and Figure 156, we have 4 axial frequencies and 30 flexural 

frequencies, respectively. 

Then, we consider the case where the PWAS is located 100mm from one side 

and we are looking for the impedance response in the same range 0-100 kHz and to see 

the sensitivity of the PWAS location. The impedance response for the new location can 

be seen in Figure 157. 

Let us overlap those two impedance response functions for those two different 

locations for the PWAS. This can be seen in Figure 158. What we can conclude from this 

figure is that the analytical method (STMM) is sensitive to the PWAS location, thus 

registering a decrease in the impedance amplitude. 
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We now consider the damaged case and we take the more complex situation 

when the delamination is under the PWAS. More specifically, the sensor is located at 

60mm distance from one side and the delamination is 10mm long and located between 

layers 3 and 4 under the PWAS as can be seen in Figure 159. 

We next analyze whether STMM is sensitive to the delamination by overlapping 

the impedance response of the pristine specimen with the impedance response of the 

delamination specimen. As can be seen from Figure 160, there are shifts and impedance 

amplitude changes which implies that the presence of the damage will significantly 

change the impedance spectrum. 
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Figure 154: STMM impedance spectrum for pristine specimen  

(PWAS 60 mm distance from one side) 
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Figure 155: Axial Frequency Response Function for pristine specimen  

(PWAS 60 mm distance from one side) 
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Figure 156: Flexural Frequency Response Function for pristine specimen  

(PWAS 60 mm distance from one side) 
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Figure 157: STMM impedance spectrum for pristine specimen 

(PWAS 100 mm distance from one side) 
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Figure 158: Impedance Response for 60 and 100mm PWAS location 

0 10 20 30 40 50 60 70 80 90 100
10

-1

10
0

10
1

10
2

10
3

Frequency kHz

Im
pe

da
nc

e 
re

al
(Z

)

 

 

60 mm - PWAS location - blue
100 mm - PWAS location - red



260 

 

 

Figure 159: Impedance Response for Delamination Specimen  

(PWAS location is at 60mm from one side; delamination between layers 3 and 4)  
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Figure 160: STMM Impedance Response for Pristine and Delamination Specimens 
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11.2 VALIDATION WITH FINITE ELEMENT METHOD 

Another approach to calculate the impedance is the finite element method 

(FEM), which is broadly used in engineering. Its key advantages are a good accuracy of 

the results, predicting relatively well the reality. However, it also has some limitations: it 

can increase the computation time, has large storage requirements and memory 

limitations. 

We use this method to calculate the electro-mechanical impedance. In order to 

do this, we use a 2D ANSYS FEM (multi-physics) and 3D FEM (Workbench) analysis. 

Following FEM calculation procedure presented in Giurgiutiu et al. (2011), we determine 

the impedance of the pristine and delaminated composite beams. 

We first show the results for the 2D FEM analysis as shown in Figure 161 

(pristine) and Figure 162 (delamination).Next, we overlap the pristine and delamination 

impedance 2D results as shown in Figure 163. We find that there are shifts and 

impedance amplitude changes which imply that the presence of the damage will 

significantly change the impedance spectrum same as in the STMM approach presented 

in previous section. 

Then, we calculate resonant frequencies using the modal analysis from ANSYS 

WB (3D).This type of analysis allows us to better understand and distinguish between 

axial and flexural frequencies and modeshapes. It also highlights the effects of 

delamination (Figure 191) on modeshapes. The results for the pristine specimen are 

shown in Figure 164 to Figure 190. The results for the delaminated specimen are shown 

in Figure 192 and Figure 216. 
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It is very important to stop on some situations which seem to be very complex; 

the main factor is the arrangement of the laminate layers of the composite material 

with respect to the delaminations position. As you can see in Figure 217, Figure 218, 

Figure 219, the delamination creates a local resonance which seems to be decoupled 

from the whole beam. 
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Figure 161: Impedance ANSYS 2D Analysis (Pristine Specimen) 
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Figure 162: Impedance ANSYS 2D Analysis  

(Delamination Specimen, layers 3 and 4,10mm delamination)  
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Figure 163: FEM Impedance Response for Pristine and Delamination Specimen 
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Figure 164: Flexural (0.3 kHz) 

 

Figure 165: Flexural (0.8 kHz) 

 

Figure 166: Flexural (1.6 kHz) 

 

Figure 167: Flexural (2.7 kHz) 

 

Figure 168: Flexural (4.1 kHz) 

 

Figure 169: Flexural (5.7 kHz) 
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Figure 170: Flexural (7.5 kHz) 

 

Figure 171: Flexural (9.6 kHz) 

 

Figure 172: Flexural (11.9 kHz) 

 

Figure 173: Flexural (14.4 kHz) 

 

Figure 174: Flexural (17.85 kHz) 

 

Figure 175: Axial (18.1 kHz) 
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Figure 176: Flexural (20.1 kHz) 

 

Figure 177: Flexural (23.25 kHz) 

 

Figure 178: Flexural (26.55 kHz) 

 

Figure 179: Flexural (33.63 kHz) 

 

Figure 180: Axial (36.17 kHz) 

 

Figure 181: Flexural (41.37 kHz) 
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Figure 182: Axial (54.22 kHz) 

 

Figure 183: Flexural (67.24 kHz) 

 

Figure 184: Axial (72.22 kHz) 

 

Figure 185: Flexural (76.58 kHz) 

 

Figure 186: Flexural (81.39 kHz) 

 

Figure 187: Flexural (86.22 kHz) 
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Figure 188: Axial (90 kHz) 

 

Figure 189: Flexural (91.13 kHz) 

 

Figure 190: Flexural (96.1 kHz) 

 

Figure 191: Beam with delamination 

 

Figure 192: Flexural (0.44 kHz) 

 

Figure 193: Flexural (1.2 kHz) 
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Figure 194: Flexural (2.35 kHz) 

 

Figure 195: Flexural (3.87 kHz) 

 

Figure 196: Flexural (5.73 kHz) 

 

Figure 197: Flexural (7.8 kHz) 

 

Figure 198: Flexural (10.47 kHz) 

 

Figure 199: Flexural (13.18 kHz) 
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Figure 200: Flexural (16.22 kHz) 

 

Figure 201: Flexural (19.59 kHz 

 

Figure 202: Flexural (22.94 kHz) 

 

Figure 203: Flexural (31.99 kHz) 

 

Figure 204: Flexural (34.66 kHz) 

 

Figure 205: Flexural (44.29 kHz) 
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Figure 206: Flexural (48 kHz) 

 

Figure 207: Axial (51.4 kHz) 

 

Figure 208: Flexural (54.06kHz) 

 

Figure 209: Flexural (57.77 kHz) 

 

Figure 210: Flexural (68.76 kHz) 

 

Figure 211: Axial (77.08 kHz) 
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Figure 212: Flexural (80.14 kHz) 

 

Figure 213: Flexural (84.18 kHz) 

 

Figure 214: Flexural (90.22 kHz) 

 

Figure 215: Flexural (94.72 kHz) 

 

Figure 216: Flexural (100 kHz). 
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Figure 217: Flexural (25.48 kHz) 

 

Figure 218: Flexural (76.4 kHz) 

 

Figure 219: Local torsional (95.65 kHz) 

 

 

11.3 VALIDATION WITH EXPERIMENTS 

In order to perform the experiments (pristine and delamination beam), we take a 

unidirectional CFRP composite beam and mount a PWAS at different locations (e.g. 

60mm, 80mm, 100mm, 120mm, 140mm and 160mm distance) from one side as per 

Figure 220. In order to be consistent, we use the 60mm PWAS location as above. The 

experimental setap for E/M impedance measurements was as described in Section 7.1, 

Figure 107. 
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Figure 220: Pristine Beam Experiment 

Using the HP Impedance Analyzer, we take the measurements in order to 

validate the experiment. For the first PWAS located at 60mm, the impedance response 

can be seen in Figure 221 and for the PWAS located at 100mm; the impedance response 

can be seen in Figure 222. 

We then overlap the impedance results for the two experiments and effects are 

shown in Figure 223. For delamination, the results are presented in Figure 224 and the 

overlap of the two cases (pristine and delamination), the results are shown in Figure 

225. 
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Figure 221: Experimental Pristine Beam Impedance (60mm location PWAS) 
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Figure 222: Experimental Pristine Beam Impedance (100mm location PWAS) 
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Figure 223: Experimental Impedance Response for Pristine and Delamination Specimen 
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Figure 224: Experimental Delamination Impedance (60mm location PWAS) 
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Figure 225: Experimental Pristine and Delamination Beam Impedance (60mm location PWAS) 
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11.4 COMPARISON OF STMM, FEM AND EXPERIMENTS FOR PRISTINE AND 

DELAMINATION BEAMS 

Before starting to compare the results from all three methods, it is very 

important to take into consideration a few aspects which can have some influence on 

our experimental results. Location of the delamination (position) and the length of the 

delamination are very hard to be checked on the physical model as well difficult to 

generate the delamination. 

The thickness of the non-uniformity of the beam (manufacturing) is another 

important aspect. The theoretical model is running under perfect conditions, which in 

reality is impossible to match. Having all those factors in our analysis, we seek to 

compare the results. 

We compare the three possible approaches (STMM, FEM and Experiments) to 

understand similarities differences among the methods in terms of the resonant 

frequencies. 

Figure 226 and Table 8 presents the pristine beam case. Figure 226 shows the 

impedance spectrum and the resonance peaks. In Table 8, we can see the resonance 

frequencies calculated using the three methods. 

Figure 227 and Table 9 presents the pristine beam case. Figure 227 shows the 

impedance spectrum and the resonance peaks. In Table 9, we can see the resonance 

frequencies calculated using the three methods. 

By looking at Table 8 and Table 9, with few exceptions, we see a good correlation 

between all the methods. The analytical numerical results are in accordance with the 
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experiment results. This proves that our method reached the goal. The main advantage 

of our method is the short time required to calculate the impedance spectrum. 

Using ANSYS WB, we have the possibility to observe the predicted modeshape of 

the beam at a certain resonance frequency. Figure 217, Figure 218, Figure 219, which 

are related to the resonance of the delamination, seem to be very complex, which raise 

some questions. Let's assume the PWAS to be bounded, close to one of the sides in the 

experiment case. The question is what this sensor will read, because on one side we 

have a very strong flexural mode and on the other side a very weak flexural mode. 

Definitely, our PWAS will read a different resonance frequency depending on its 

location. 

Another case is when the PWAS is bonded on the top of the delamination. By 

looking at Figure 219 from ANSYS WB, the sensor will see a flexural mode in that 

particular area but the whole beam is in the axial mode.These cases can explain some of 

the differences presented in Table 8 and Table 9. 

4From all these observations, the laminate theory seems to be very complex and 

hard to predict, which leaves room for further research in this area to better understand 

the behavior of laminates under different conditions as well as develop ways to control 

its behavior and make it more predictable so it can be used in industrial applications. 
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Table 8: Comparison of resonant frequencies: 

STMM vs. FEM vs. Experiment – pristine case study 
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Figure 226: unidirectional CFRP Impedance – STMM vs. FEM vs. Experiment – pristine case 
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Figure 227: unidirectional CFRP Impedance – STMM vs. FEM vs. Experiment – delamination case 
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Table 9: Comparison of resonant frequencies: 

STMM vs. Fem vs. Experiment – delamination case study 
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Equation Chapter (Next) Section 12 

12. TASK #4: SENSITIVITY STUDIES OF STMM E/M IMPEDANCE FOR 

DELAMINATION DETECTION IN COMPOSITE BEAMS 

We conducted experiments and simulations with different sensor positions on 

the damaged beam in order to determine the influence of the bonded PWAS and we will 

look for their modes frequencies and their amplitude. 

A very important aspect will be played by the position of the sensor of the PWAS 

(60mm location from the left side of the beam) given the damaged zone of the beam. 

We will look at several configurations: 

1) Delamination is 10mm length between layers 3 and 4 and it is located at 30mm 

from the left side of the beam  

2) Delamination is 10mm length between layers 2 and 3 and it is located at 30mm 

from the left side of the beam  

3) Delamination is 15mm length between layers 3 and 4 and it is located at 30mm 

from the left side of the beam  

4) Delamination is 10mm length between layers 3 and 4 and it is located at 25mm 

from the left side of the beam  

5) Delamination is 10mm length between layers 3 and 4 and it is located at 60mm 

from the left side of the beam (delamination under the PWAS) 

We looked for different phase shifts in the impedance measurements. We will 

ran more experiments for each case and determine the average error rate, standard 
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deviation of the error, skewness etc. in order to draw conclusions about the best 

accuracy that can be obtained in each case. 

We studied these aspects for three different materials: unidirectional CFRP 

composite, woven-glass epoxy composite and T300/5208 Quasi-Isotropic as per Table 7. 

The experimental setap for E/M impedance measurements was as described in Section 

7.1, Figure 107. 

12.1 CASE1: UNIDIRECTIONAL CFRP COMPOSITE 

Figure 228 shows all five configurations under study for CFRP. We use all three 

methods (STMM, ANSYS and Experiment) to look for the resonance frequencies and to 

measure the impedance. 

 
Figure 228: CFRP: 5 Configurations 

First, let us consider a CFRP beam (180x10x1.5mm) where the delamination is 

10mm length between layers 3 and 4and it is located at 30mm from the left side. The 

PWAS is bonded at 60 mm from the left side. In Figure 229, we can see the results for all 

three methods. 
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Second, we change the location of the delamination and consider a CFRP beam 

(180x10x1.5mm) where the delamination is 10mm length between layers 2 and 3 and it 

is located at 30mm from the left side. Results are shown in Figure 230. 

Third, we increase the delamination size and consider a CFRP beam 

(180x10x1.5mm) where the delamination is 15mm length between layers 3 and 4 and it 

is located at 30mm from the left side. Results are shown in Figure 231. 

Fourth, we modify the delamination location and consider a CFRP beam 

(180x10x1.5mm) where the delamination is 10mm length between layers 3 and 4 and it 

is located at 25mm from the left side. Results are shown in Figure 232. 

Fifth, we modify the delamination location and consider a CFRP beam 

(180x10x1.5mm) where the delamination is 10mm length between layers 3 and 4 and it 

is located at 60mm from the left side (delamination  is under the PWAS). Results are 

shown in Figure 233. 
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Figure 229: CFRP: PWAS=60mm & D=10 mm Loc =30mm for D (layers 3 & 4) 
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Figure 230: CFRP: PWAS=60mm & D=10 mm Loc =30mm for D (layers 2 & 3) 
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Figure 231: CFRP: PWAS=60mm & D=15 mm Loc =30mm for D (layers 3 & 4) 
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Figure 232: CFRP: PWAS=60mm & D=15 mm Loc =25mm for D (layers 3 & 4) 
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Figure 233: CFRP: PWAS=60mm & D=15 mm Loc =60mm for D (layers 3 & 4) 
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12.2 CASE2: WOVEN GLASS-EPOXY COMPOSITE 

Figure 234 shows all five configurations under study for woven glass epoxy 

composite. 

We use two methods (STMM and Experiment) to look for the resonance 

frequencies and to measure the impedance for delamination cases. Figure 236 shows 

the impedance spectrum and the resonance peaks for pristine case. The experimental 

setap for E/M impedance measurements was as described in Section 7.1, Figure 107. 

 
Figure 234: Woven Glass-Epoxy: 5 Configurations 

First, we considered a woven glass-epoxy beam (180x10x1.5mm) where the 

delamination is 10mm length between layers 3 and 4and it is located at 30mm from the 

left side. The PWAS is bounded at 60 mm from the left side. In Figure 236, we can see 

the results for all experiments. 

Second, we change the location of the delamination and consider a woven glass-

epoxy beam (180x10x1.5mm) where the delamination is 10mm length between layers 2 

and 3 and it is located at 30mm from the left side. Results are shown in Figure 237. 
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Third, we increase the delamination size and consider a woven glass-epoxy beam 

(180x10x1.5mm) where the delamination is 15mm length between layers 3 and 4 and it 

is located at 30mm from the left side. Results are shown in Figure 238. 

Fourth, we modify the delamination location and consider a woven glass-epoxy 

beam (180x10x1.5mm) where the delamination is 10mm length between layers 3 and 4 

and it is located at 25mm from the left side. Results are shown in Figure 239. 

Fifth, we modify the delamination location and consider a woven glass-epoxy beam 

(180x10x1.5mm) where the delamination is 10mm length between layers 3 and 4 and it 

is located at 60mm from the left side (delamination  is under the PWAS). Results are 

shown in Figure 240. 
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Figure 235: Woven Glass-Epoxy: PWAS=60mm - pristine 
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Figure 236: Woven Glass-Epoxy: PWAS=60mm & D=10 mm Loc =30mm for D (layers 3 & 4) 
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Figure 237: Woven Glass-Epoxy: PWAS=60mm & D=10 mm Loc =30mm for D (layers 2 & 3) 
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Figure 238: Woven Glass-Epoxy: PWAS=60mm & D=15 mm Loc =30mm for D (layers 3 & 4) 
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Figure 239: Woven Glass-Epoxy: PWAS=60mm & D=15 mm Loc =25mm for D (layers 3 & 4) 
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Figure 240: Woven Glass-Epoxy: PWAS=60mm & D=15 mm Loc =60mm for D (layers 3 & 4) 
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12.3 CASE3: T300/5208 QUASI-ISOTROPIC COMPOSITE 

Figure 241 shows all five configurations under study for T300/5208 quasi-

isotropic composite. We use two methods (STMM and Experiment) to look for the 

resonance frequencies and to measure the impedance for delamination cases. Figure 

242 shows the impedance spectrum and the resonance peaks for pristine case. 

 
Figure 241: T300/5208 Quasi-Isotropic: 5 Configurations 

First, let us consider a T300/5208 quasi-isotropic composite beam 

(180x10x1.5mm) where the delamination is 10mm length between layers 3 and 4and it 

is located at 30mm from the left side. The PWAS is bounded at 60 mm from the left side. 

In Figure 243, we can see the results for all experiments. 

Second, we change the location of the delamination and consider a T300/5208 

quasi-isotropic composite beam (180x10x1.5mm) where the delamination is 10mm 

length between layers 2 and 3 and it is located at 30mm from the left side. Results are 

shown in Figure 244. 

Third, we increase the delamination size and consider a T300/5208 quasi-

isotropic composite beam (180x10x1.5mm) where the delamination is 15mm length 
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between layers 3 and 4 and it is located at 30mm from the left side. Results are shown 

in Figure 245. 

Fourth, we modify the delamination location and consider a T300/5208 quasi-

isotropic composite beam (180x10x1.5mm) where the delamination is 10mm length 

between layers 3 and 4 and it is located at 25mm from the left side. Results are shown 

in Figure 246. 

Fifth, we modify the delamination location and consider a T300/5208 quasi-

isotropic composite beam (180x10x1.5mm) where the delamination is 10mm length 

between layers 3 and 4 and it is located at 60mm from the left side (delamination  is 

under the PWAS). Results are shown in Figure 247. 
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Figure 242: T300/5208 Quasi-Isotropic: PWAS=60mm - pristine 
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Figure 243: T300/5208 Quasi-Isotropic: PWAS=60mm &  

D=10 mm Loc =30mm for D (layers 3 & 4) 
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Figure 244: T300/5208 Quasi-Isotropic: PWAS=60mm &  

D=10 mm Loc =30mm for D (layers 2 & 3) 
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Figure 245: T300/5208 Quasi-Isotropic: PWAS=60mm &  

D=15 mm Loc =30mm for D (layers 3 & 4) 
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Figure 246: T300/5208 Quasi-Isotropic: PWAS=60mm &  

D=15 mm Loc =25mm for D (layers 3 & 4) 
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Figure 247: T300/5208 Quasi-Isotropic: PWAS=60mm &  

D=15 mm Loc =60mm for D (layers 3 & 4) 
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12.4 SENSITIVITY OF STMM TO DELAMINATION SIZE AND LOCATION 

As can be seen from all cases described above, the STMM method gives a good 

agreement with the experiments. The range 0-30 kHz gives a reasonably good 

correlation between all the methods. The range 30-100 kHz shows some more 

differences. This aspect was also observed and discussed in Section 11.4. 

Now, let us look at the sensitivity of the STMM regarding delamination. By 

overlapping the pristine case with the other five delamination cases, described in this 

section, as shown in Figure 248, Figure 249 and Figure 250 , we have a clearer view 

about STMM sensitivity for the unidirectional CFRP, woven glass epoxy and T300/5308 

quasi-isotropic materials. 

STMM sensitivity: 

1. Presence of the delamination can be seen as a shift in the impedance and a 

change in the amplitude 

2. By increasing the side of the delamination, the impedance shift and the change 

in amplitude become very clear, leading to new peaks (new resonance 

frequencies) 

3. The location of the delamination seems to be very important, resulting in new 

peaks 

4. PWAS reads different resonance frequencies depending on its location. 

5. Delamination location between layers seems to have some effect, but not so 

strong when compared to all the other factors described. 
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It is very important to notice the sensitivity of the method to the dimensions of 

the beam, the location of the sensor and the delamination. Even a small chance in the 

location of the PWAS will produce a change in the impedance respond. 
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Figure 248: Unidirectional CFRP: STMM Sensitivity 
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Figure 249: Woven Glass-Epoxy : STMM Sensitivity 
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Figure 250: T300/5208 Quasi-Isotropic: STMM Sensitivity 
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Equation Chapter (Next) Section 13 

13. TASK #5: DEVELOPMENT OF A NOVEL ACOUSTO-ULTRASONIC 

SENSOR: THE FBG RING SENSOR 

The aim of this task is to develop a novel acousto-ultrasonic sensor that can 

detect the ultrasonic waves from acoustic emission AE  events using optical FBG 

sensing combined with mechanical resonance amplification principles. 

The method consists of a sensor that can detect the ultrasonic out of plane 

motion with preference for a certain frequency (
300crf kHz=

). The mechanical 

amplification would produce a strain of around 5000 micro-strain in the FBG. 

In order to design such a sensor, we proceed to solve using two different 

methods: 1) analytical methods (2-D) and 2) numerical methods (FEM). 

13.1 FIRST CONCEPT: FBG D-SHAPE SENSOR 

13.1.1 ANALYTICAL APPROACH 

As per Figure 251, we consider the 2-D approach. In order to proceed with this 

method, we make the following three assumptions: 

a) disregard the undulations of the two arms 

b) consider the FBG fiber attached to a spring with constant K  

c) small displacement approximation: ,X Y∆ ∆  much smaller than L and h.

 



 

Figure 251: Schematic 

Figure 

Where: 

K  is the elastic constant of the spring to which the FBG optical sensing element is 

attached  

m is the effective mass of the sensor

X∆ is the displacement on the 

Y∆ is the displacement on the 

h is the height of the sensor 

L  is the length of the sensor

We choose the design values for 

kHz resonance subject to maximizing the ratio 
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: Schematic representation of the sensor concept 

Figure 252: Simplification of the sensor concept 

is the elastic constant of the spring to which the FBG optical sensing element is 

is the effective mass of the sensor 

is the displacement on the X  axis 

is the displacement on the Y  axis 

 

is the length of the sensor 

We choose the design values for ,h m  and L  such that the system can reach 300 

kHz resonance subject to maximizing the ratio 

X
r

Y

∆
=

∆  where r  > 1. In order to build a 

 

 

is the elastic constant of the spring to which the FBG optical sensing element is 

such that the system can reach 300 

> 1. In order to build a 
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2-D model and to simplify the approach, we disregard the vibrational undulations of the 

two arms (i.e. we assume them to be massless and infinitely stiff). By building the free-

body diagram (FBD) and kinematics, we find the equation of motion in the form of 1 

degree of freedom. 

 
0

k
y y

m
− ⋅ =&&

 (13.1) 

In order to calculate the optimum dimensions for the sensor to reach 300 kHz, 

we looked at the connection between the displacement in the x  and y directions and 

we obtain: 

 

1 2
2

L
L

Y X X
h h

∆ = ⋅ ⋅∆ = ⋅∆
 (13.2) 

Then we obtain an equation that contains all three adjustable parameters. By 

optimizing the configuration of the three parameters, ,L h  and m , we seek to reach 300 

kHz for the frequency as follows: 

 

3
2 2

2

( / 2)L
E A m f

h
π

 
⋅ = ⋅ ⋅ ⋅  

   (13.3) 

Using the OptimTool in MATLAB, we were able to come up with an optimum 

range for the parameters. We find that m should be between 0.014 - 0.056 kg, L  should 

be 0.02 m and h should be between 0.05 – 0.10m. We choose the minimum allowable 

configuration: m = 0.014 kg, L  = 0.02 m and h = 0.05 m in order to obtain 300 kHz for 

the frequency. 
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13.1.2 NUMERICAL APPROACH (FEM) 

For this approach, we use the commercial FEM software ANSYS Workbench and 

more precisely the analysis system Modal. We model a 3-D sensor using the dimensions 

predicted by the analytical method dimensions. We apply the boundary conditions and 

calculate the natural frequencies as per Figure 253. 

 
Figure 253: D-shape sensor where the straight part (FBG fiber) vibrates in flexure 

Material: SS 300 series; 

Geometry: L = 0.020 m; H = 0.050 m; FBG (cross-section) =0.006 X 0.006 m. 

Frequency: 

Analytical: 300 kHz; 

FEM: 6.93 kHz; 

Vibration mode for FBG: Flexural 

We obtain 6.93 kHz, instead of the 300 kHz predicted analytically. This is a big 

difference, so we try different adjustments in order to reach 300 kHz (Figure 254 and 
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Figure 255). First, we try to increase the depth of the side arms in order to stop the 

flexure as per Figure 254. 

 
Figure 254: D-shape when we increase the depth to stop the flexure 

Material: SS 300 series; 

Geometry: L = 0.020 m; H = 0.050 m; FBG (cross-section) =0.010 X 0.010 m. 

Frequency: 

Analytical: 325 kHz;  

FEM: 8.55 kHz; 

Vibration mode for FBG: Flexural 

Then by increasing the depth even further (Figure 255), we find that the 

frequency remains at almost the same level when using FEM. 
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Figure 255: D-shape when we increase the depth to stop the flexure but ended up with 

undulations of the wall 

Material: SS 300 series; 

Geometry: L = 0.020 m; H = 0.050 m; FBG (cross-section) =0.0127 X 0.0127 m. 

Frequency: 

Analytical: 350 kHz;  

FEM: 10.18 kHz; 

Vibration mode for FBG: Flexural 

13.1.3  FIRST CONCEPT CONCLUSIONS 

As per the numerical method FEM results presented above, we conclude that the 

simplifying of assumptions in the analytical approach is not correct. More precisely, we 

are referring here to assumption a) which states that we disregard the undulations of 

the two arms. This assumption was made in order to simplify the calculations; however 
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the two arms will add their own deflections which can be significant and thus reduce the 

natural frequency by more than an order of magnitude. 

Besides using both the analytical and FEM methods, it is always the case that the 

flexural resonance occurs first and the axial resonance occurs second for the beams. 

However, in the present case, the first resonant frequency needs to be 300 kHz and 

should be axial for FBG to work properly. 

Considering these aspects we conclude that the D-shape sensor approach is not 

suitable to reach an axial resonance of 300 kHz. Based on these results, we look at 

different sensor shapes that are able to reach 300 kHz and we decide to study rings. The 

modes of vibration of the rings can be of four different types as follows: 

a) Extensional  which are longitudinal elongations and contractions of the ring 

along its own axis 

b) Torsional  when ring twists around its own axis 

c) In-plane flexural which are inextensional vibrations in the plane of the ring 

d) Out-of-plane flexural which are inextensional vibrations out of the plane of 

the ring. 

From all these modes, only the flexural are of practical importance because the 

natural frequencies of the first two modes, extensional and respectively torsional, are 

much higher than the fundamental natural frequencies of the flexural modes.  

Given that the D-shape did not fit our purpose for the 300 kHz frequency and 

since theoretically the ring shape seems promising, we redo the analysis using both 

approaches, analytical and numerical, and a ring shape for the sensor. 
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13.2 SECOND CONCEPT: FBG RING SENSOR 

In order to design such a sensor, we proceed as before to solve using two 

different methods: 1) analytical methods (2-D) and 2) numerical methods (FEM). 

13.2.1  ANALYTICAL APPROACH 

We calculate the mode shape for a ring sensor (Figure 256) following Blevins 

(1979) approximation formula: 

 

( )
( )

2

2 2

1

2 1
i

i i EI
f

mR iπ

−
=

+
 (13.4) 

Where: i  is the mode number 

R  is the radius of the midline of the ring 

E  is the modulus of elasticity 

I  is the moments of inertia 

m  is the mass per unit length of the ring 

if  represents the natural frequencies 

Running this formula with ID  = 0.058 m, OD  = 0.072 m and H  = 0.006 m, we 

obtain 109 kHz for the first mode. We also run the FEM with these dimensions to see 

from the beginning what is the difference between the two methods. We find that the 

analytical results given an approximately 25% greater frequency FEM. Knowing this 

aspect, as well the fact that Blevins’ formula  is an approximation, we proceed the 

reverse way since we assume the FEM approach would give us more precise solutions 

than the analytical approach case. 
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Figure 256: In-plane flexural modes of the ring, Blevins (1979) 

Using dimensions ID  = 0.0016 m; OD  = 0.0048 m; H  = 0.0032 m and E  = 200 

GPa and Blevin’s formula (13.4), we obtain a flexural frequency of 391.4 kHz and using 

dimensions ID  = 0.0029 m; OD  = 0.0087 m; H  = 0.0058 m and E  = 133 GPa we obtain 

a flexural frequency of 387.5 kHz. 

13.2.2  NUMERICAL APPROACH (FEM) 

As before, we use the commercial software ANSYS WB (Modal Analysis). We 

model a 3-D sensor using the analytical method dimensions. We apply the boundary 

conditions and calculate the natural frequencies as per Figure 257, Figure 258 and 

Figure 259. Figure 257 shows a thin ring at low frequency and it is found that the FEM 

results are in accord with the analytical ones but we are not able to reach the 300 kHz 

that we require for the application. In the next steps we make more changes to 

dimensions until we reach the desired frequency using SS 300 series material. Figure 

258 shows a new shape for the ring which is able to reach 300 KHZ on FEM 
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Figure 257: Thin steel ring - low frequency 

Material: SS 300 series; 

Geometry: ID = 0.058 m; OD = 0.072 m; H = 0.006 m. 

Frequency: 

Analytical: 109 kHz; (Blevins formula) 

FEM: 76.56 kHz; 

Vibration mode for FBG: Axial 



328 

 

 
Figure 258: Thick steel ring with f=304 kHz 

Material: SS 300 series; 

Geometry: ID = 0.0016 m; OD = 0.0048 m; H = 0.0032 m. 

Frequency: 

Analytical: 391.4 kHz; (Blevins formula) 

FEM: 304 kHz; 

Vibration mode for FBG: Axial 

Finally, we are interested in reaching a frequency of 300 kHz by composite 

material instead of SS material. Due to the material properties of the composites and 

the fiber orientation in the ring, configuration in Figure 258 is not suitable, so we make 

further modifications to the ring dimensions. After multiple trials, we o in obtain the 

configuration in Figure 259, which allows us to reach the desired frequency of 300 kHz. 
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Figure 259: Thick composite ring with f=304 kHz 

Material: CFRP; 

Geometry: ID = 0.0029 m; OD = 0.0087 m; H = 0.0058 m. 

Frequency:  

Analytical: 387.5 kHz; (Blevins formula) 

FEM: 304 kHz; 

Vibration mode for FBG: Axial 

13.2.3  PROOF OF CONCEPT - EXPERIMENTS 

Following the mechanical design of the FBG ring sensor, we look for an 

inexpensive and very fast way to test the concept. The idea behind this is to have a ring-

like shape which by excitation can reach the vibration mode around 300 kHz. 

Conveniently, we found for this purpose a steel hex ¼”-20 nut (Figure 260). The most 

appropriate way to excite the nut at high frequencies was using a PWAS. 
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Figure 260: Steel hex nut - 1/4"-20 

In order to understand better the behavior of the nut under the problem 

constraints, we run several simulations in ANSYS WB (Figure 261) and we find that the 

first resonant frequency appears at 89 kHz. We decide this is an appropriate concept 

and we decide to use it forward. Table 10 shows the relevant resonance frequencies up 

to 300 kHz. 
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Figure 261: ANSYS WB - Nut Simulation 

Nut with thread Nut without thread 

ANSYS WB EMIS Exp. ANSYS WB EMIS Exp. 

89 kHz 78 kHz 72 kHz 69 kHz 

108 kHz 83 kHz 157 kHz 169 kHz 

201 kHz 186 kHz 177 kHz 185 kHz 

251 kHz 234 kHz 243 kHz 239 kHz 

331 kHz 294 kHz 311 kHz 281 kHz 

Table 10: Resonance frequencies for Nut with/without thread 

13.2.3.1 EMIS EXPERIMENTS 

We performed electromechanical impedance spectroscopy (EMIS) experiments 

on the nut specimens, one with thread, and the other with no thread (the thread was 

simply drilled out). 

As part of the experiment, we bound the PWAS to one of the sides of the steel 

hex nut 1/4"-20 as per the experimental setup in Figure 262 
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Figure 262: Experimental Setup 

We bonded a PWAS on one side of the nut, excited the nut at the frequency 

range between 0 to 350 kHz and we collected the impedance results using a HP 

Analyzer. The resonant frequencies can be seen electromechanical impedance spectrum 

(EMIS) shown in Figure 263. The first frequency is around 75 kHz, which is an important 

step in proving our concept. 

 
Figure 263: EMIS of the nut with thread 

In the next step, we took the same nut and we machined the thread to see if we 

observe a shift in the resonant frequencies. As per Figure 264, the resonant frequency 

declined to 68 kHz. 
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Figure 264: EMIS of the nut without thread 

It is important to note that we see a difference between the ANSYS WB 

simulation and the experimental results. This is due to the fact that, in ANSYS WB, we 

model the nut with a sharp edge and in reality the nut has chamfers all over its edges 

and probably the beginning of the thread does not coincide perfectly; however this is 

not a concern. 

13.2.3.2 LASER VIBROMETRY - MEASUREMENTS OF THE STEEL HEX NUT 

Laser vibrometry is a non-contact technology based on the Doppler effect, which 

is able to sense the frequency shift of back scattered laser light from a moving surface. 

The main advantage of a laser vibrometer compared to other alternative methods is the 

fact that this technology allows the accurate measurement of vibrations without contact 

at frequencies up to 1.2 GHz. Scanning laser vibrometers have been used extensively 

and successfully in the last years for characterizing small and large amplitude ultrasonic 

vibrations in solid surfaces. 
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In this section, we use a laser vibrometry tool (PSV-400-3D from Polytec as 

shown in Figure 265) to study the mode shapes of the sensor ring under different 

resonance frequencies and we explore the range around 300 kHz in order to understand 

the behavior of the composite or stainless steel ring in the frequency bound of interest. 

 
Figure 265: PSV-400-3D from Polytec 

We then compare these results and shapes with the FEM predictions (ANSYS 

WB) for the stress and strain distributions. 

The scanning vibrometer measures the strain at each point on a non-contact 

predefined grid using the laser probe. The non-contact measurement technique consists 

of a three lasers simultaneously measuring one grid point and each laser measures the 

vibration along its incident direction. Then the strain is calculated from the 

displacements. As a last step, the results of the strain from the laser vibrometer are 

compared with those from the FBG to understand which one is more accurate. 

After we obtain the final FBG ring sensor, we bind a PWAS to the ring sensor. We 

excite the sensor at a range of 300 kHz and we take the resonance frequency 

measurements in order to validate the concept and to prove this design is working. 



 

Using the set-up (laser vibrometer) in 

FBG ring sensor for 300 kHz. 

Figure 266: Conceptual

Due to functionality limitations of the vibrometer available for the tests (one 

head), we are only able to conduct 1D measurements, which means, we are still able to 

measure out-of-plane displacement however not

the laser measuring technique, we decide to use the nut (hexagonal) and measure the 

displacements out-of-plane on each lateral side. We take a variable

and mount the nut in the center using a do

control of the location of all six sides of the nut. Then, we spray paint the nut to reflect 

better the vibrometer laser beam. The final set
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up (laser vibrometer) in Figure 266 we will conduct tests for the 

 

Conceptual instrumentation set-up for the FBG ring sensor

laser vibrometer measurement 

Due to functionality limitations of the vibrometer available for the tests (one 

head), we are only able to conduct 1D measurements, which means, we are still able to 

plane displacement however not the in-plane displacement. To develop 

the laser measuring technique, we decide to use the nut (hexagonal) and measure the 

plane on each lateral side. We take a variable-angle drill

and mount the nut in the center using a double-sided tape in order to have a good 

control of the location of all six sides of the nut. Then, we spray paint the nut to reflect 

better the vibrometer laser beam. The final set-up is shown in Figure 267. 

we will conduct tests for the 

 
BG ring sensor  

Due to functionality limitations of the vibrometer available for the tests (one 
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Figure 

We use an amplifier to amplify the 3.5 V (

signal (one of the standard vibrometer excitation signals) by a factor of 10 (

Figure 268: 3.5 V Periodic Chirp Excitation Signal (original 
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Figure 267: Nut Set-up for Laser Vibrometer 

We use an amplifier to amplify the 3.5 V (Figure 268) a periodic chirp excitation 

signal (one of the standard vibrometer excitation signals) by a factor of 10 (Figure 

Periodic Chirp Excitation Signal (original – vibrometer)

 

) a periodic chirp excitation 

Figure 269).  

 
vibrometer) 



 

Figure 269: Periodic Chirp Excitation Signal (

This type of signal allows 

or other signal analysis methods.

Figure 
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Periodic Chirp Excitation Signal (X10 - amplifier) 

This type of signal allows long time samples such as are necessary for zoom FFT 

or other signal analysis methods. 

Figure 270: Laser Vibrometer Setup 

 

long time samples such as are necessary for zoom FFT 
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After doing all the alignments and set-up for the laser vibrometer (Figure 270), 

we are able to take the measurements (displacements out-of-plane) for all six sides of 

the nut and look for the resonance frequencies. The nut is then excited using the PWAS 

bound on one side as presented in Figure 271. 

 
Figure 271: PWAS Location 

We look at the vibrometer results for one side of the nut for the first resonance 

frequency which is at 69 kHz. We apply the same technique for all remaining sides of the 

nut and we notice that the resonance frequencies tend to appear at the same ranges as 

for the first side which is what we want as shown in Figure 272, Figure 273, Figure 274, 

Figure 275, Figure 276 and Figure 277. For reference, we observe the following 

frequencies 69, 167, 184 and 237 kHz. 
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Figure 272: Vibrometer Results – side 1 – 69 kHz 

 

Figure 273: Vibrometer Results – side 2 – 68 kHz 
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Figure 274: Vibrometer Results – side 3 – 68 kHz 

 

Figure 275: Vibrometer Results – side 4 – 68 kHz 
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Figure 276: Vibrometer Results – side 5 – 69 kHz 

 

Figure 277: Vibrometer Results – side 6 – 68 kHz 
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Next, we compare the resonance Table 11 frequencies predicted by FEM, the 

impedance analyzer and vibrometer to see whether all these three methods agree or 

there are any differences. This is a screening step before we test the real FBG ring 

sensor. Our goal is to have a sensor that can reach the first resonance frequency at the 

desired range. Since all methods agree, we met our goal and the concept is working 

properly. 

FEM Impedance Laser vib. measurement 

75 kHz 70 kHz 69 kHz (side #1) 

75 kHz 70 kHz 68 kHz (side #2) 

75 kHz 70 kHz 68 kHz (side #3) 

75 kHz 70 kHz 68 kHz (side #4) 

75 kHz 70 kHz 69 kHz (side #5) 

75 kHz 70 kHz 68 kHz (side #6) 

Table 11: Comparison of FEM, impedance, laser vibrometer measurement of nut resonances 

13.2.4 SECOND CONCEPT CONCLUSIONS 

As per results obtained above, we can see that we have a 25% difference 

between the analytical and the FEM results, which is important to remember for future 

estimation. 

We also notice the improvement of this design (ring shape) compared to the first 

design (D-shape). Knowing that the analytical results come with an approximation, we 

will use the FEM results as a benchmark until we will have experimental results. 

We obtain this frequency 304 kHz using two different materials:  

• Stainless steel ( E  = 200 GPa and ρ  = 7750 Kg/m3) with dimensions: ID = 

0.0016 m; OD  = 0.0048 m; H = 0.0032 m. 
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• CFRP ( E  = 133 GPa and ρ  = 1600 Kg/m3 with dimensions: ID  = 0.0029 m; OD  

= 0.0087 m; H  = 0.0058 m. 

It is very important to mention here that for CFRP, we will wrap the fibers 

around the cylinder; hence this provides the stiffness properties in the direction we 

want. By using this ring approach, we conclude that we are able to reach 300 kHz and 

have an axial vibration into the FBG fiber. 

After we performed the experiments with the stainless steel nut, using the EMIS 

method and the laser vibrometer, we conclude that the nut can reach the first 

resonance frequency in the form of axial displacement (2D plane). Those experiments 

emphasize the concept via the ring sensor. The sensitivity of the ring can be observed in 

tests where we have the stainless steel nut both with and without thread. By machining 

the thread, we can see a decrease in the first resonance frequency. This leads us to the 

idea that a very small ring can reach the first resonance frequency at a very high level. 

Taking these into consideration, we conclude that this design can reach our goal 

of reaching the first resonance frequency at 300 kHz (axial displacement). 

13.3 THIRD CONCEPT: REFINED FBG RING SENSOR 

13.3.1 IMPROVEMENTS OF THE FBG RING SENSOR DESIGN 

Given all of the above about our concept, it’s time to finalize the concept for our 

FBG ring sensor. There are a three more concerns to address to ensure correct 

functionality of our concept. 

• First, we need to consider that, by solely looking at the ring sensor, it’s quite 

difficult to predict that the in-plane displacement will be always in the 
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appropriate direction to stretch the fiber. Therefore, we should do something 

about this. One solution found to address this concern was to use an elliptical 

center instead of the round one; this, we force the in-plane displacement in one 

preferred direction all the time. 

• Second issue at hand is the mounting of the ring sensor on the structure; the 

exterior is a circular cylinder and the contact to a flat surface is just a line, i.e., it 

cannot be mounted on the structure. In order to address this, we came up with 

the idea of machining flatness on the top and bottom of ring in locations 

corresponding to the longer sides of the interior ellipse. This helps both with the 

mounting and to forcing the displacement to be on the same direction all the 

time. 

• Third concern is that, the fiber needs to be mounted in the direction of the 

longer part of the ellipse in such a way so that the in-plane displacements will 

stretch the fiber and enable us to measure the resonance frequency. In order to 

make this possible, we drill a hole from one side to the other and bind the fiber 

inside it with adhesive. 

This design seems to be feasible from the concept standpoint, so we test the 

concept in ANSYS WB. Practically, by using this concept and changing the dimensions, 

we can design a FBG ring sensor for any desired frequency. 

As a next step, we choose 3 frequencies for testing and proving our design: 100, 

200 and 300 kHz. We choose 304 Stainless Steel as the material for all rings; the 
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dimensions are shown in Table 12. The final concept with these enhancements is shown 

in Figure 278 Figure 279 and Figure 280 

The ANSYS WB results shown in Figure 278 Figure 279 and Figure 280 confirm 

that the predicted resonance is an in-plane mode and matches the desired frequency. 

By placing the FBG fiber inside the ring (in the direction of the ring deflection), we will 

be able to have axial displacements on the fiber. This ring will reach the natural 

frequencies predicted by the FEM analysis (100, 200, 300 kHz), exciting axially the FBG 

fiber as per the project request. 

Resonance 

Frequency 

OD r1 r2 Depth 

100 kHz 8.00 mm 2.50 mm 1.75 mm 6.00 mm 

 200 kHz 6.00 mm 1.45 mm 0.95 mm 5.00 mm 

300 kHz 4.35 mm 1.00 mm 0.60 mm 4.00 mm 

Table 12: Dimension for Rings 
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Figure 278: Final concept - FBG ring sensor 100 kHz prototype 



 

Figure 279: Final concept 
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Final concept - FBG ring sensor 200 kHz prototype 

 

 



 

Figure 280: Final concept 
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Final concept - FBG ring sensor 300 kHz prototype 
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13.3.2 MANUFACTURING OF FBG RING SENSOR PROTOTYPES 

As a next step we found a vendor that could manufacture this ring using the 

above mentioned specifications. A hole had to be also drilled along the diameter of the 

ring from one side to the other and the FBG sensor was bound to it as per Figure 281. 

 
Figure 281: FBG Ring Sensor 

Having the final design shape for the FBG ring sensor, we machine two 

prototypes: one for 100 kHz and the other one for 300 kHz. 

13.3.2.1 MANUFACTURING OF THE 100 KHZ PROTOTYPE 

The 100 kHz FBG ring sensor had manageable dimensions, and thus we were 

able to manufacture in the USC machine shop. We took a pipe, bent it to match the 

elliptical shape size and we cut it to match the necessary height. Then, we milled the flat 

sides. The final product seems to be approximately in our dimensions range and can be 

seen in Figure 282. 

 
Figure 282: 100 kHz FBG ring sensor 
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13.3.2.2 MANUFACTURING OF THE 300 KHZ PROTOTYPE 

The 300 kHz FBG ring sensor prototype could not be machined at USC due to the 

very small dimensions, so we sent it out to a vendor (Alpha Manufacturing CO INC, 100 

Old Barnwell RD West Columbia SC 29171) which made the prototype for us using the 

EDM technology. 

The manufacturing process seems to be very challenging due to the tiny size and 

very high tolerance. The most difficult step in this process of machining the rings is the 

hole and the alignment of the flat faces with the ellipse major axis. We can see in Figure 

283 the 300 kHz FBG ring sensor prototype. 

 
Figure 283: 300 kHz FBG ring sensor (various views) 

13.3.3 TESTING OF THE FBG RING SENSOR PROTOTYPES 

The FBG ring sensor prototypes were tested to determine their resonance 

frequencies and their response to vibration excitation in the high kHz range as described 

next. 
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13.3.3.1 TESTING OF THE 100 KHZ PROTOTYPE 

13.3.3.1.1 EMIS TESTING 

The next step is to see if the first resonant frequency of the structure is around 

100 kHz. In order to do this, we bound a PWAS on the flat service in order to excite the 

ring (Figure 284) and applied the EMIS method. 

 
Figure 284: 100 kHz ring sensor with PWAS attached to the top and wired 

The setup configuration and the result for 100 kHz FBG ring sensor is shown in 

Figure 285 and Figure 286, respectively. It is apparent from Figure 286 that the first 

resonance occurs at 114 kHz, while higher resonances appear beyond 250 kHz. 

 
Figure 285: 100 kHz FBG ring sensor experiment setup 
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Figure 286: Resonance frequency for 100 kHz FBG ring sensor 

13.3.3.1.2 FREQUENCY RESPONSE TESTING 

In order to better understand and study the sensitivity of the FBG ring sensor for 

our desired resonance frequency, we apply the frequency response method and we look 

for the natural resonance frequencies. In order to do this, we bound an additional PWAS 

on the other side of the ring as shown in Figure 287. 

 
Figure 287: FBG ring sensor with 2 PWAS 

Now, we have two PWAS, where one excites the specimen and the other 

measures its vibration response. This process takes place in the time domain. We use a 

function generator HP 33120A and apply a chirp signal excitation in the 0-250 kHz range 

for one second. We measured the response with a digital oscilloscope Tektronix 
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TDS5034B After each cycle, we notice a phase shift in the new starting position. Our HP 

33120A does not have the “hold function”. We notice this issue due to the fact that 

after we apply fast Fourier transform (FFT), we find a different resonance frequency for 

the ring than expected when computed with the impedance method. A FFT is an 

algorithm used to calculate the discrete Fourier transform (DFT) and its inverse. The DFT 

is obtained by breaking down a sequence of values into components of different 

frequencies. 

In order to have the same starting position all the time for our chirp signal, we 

connect the front “output” port to the “modulation in” socket in the back of the HP 

33120A with a cable so that we can synchronize and eliminate the phase shift. 

A chirp signal is a sinusoid with a frequency that changes continuously over a 

certain band 
( )1 2:ω ω ωΩ ≤ ≤

and a certain time period 
( )0 t M≤ ≤

. We use the 

following signal: 

 

2

1 2 1( ) cos( ) ( )
2

t
u t A t

M
ω ω ω= + −

 (13.5) 

Where: 

A  is the amplitude, t is time and ω  is the angular frequency, 2 fω π=  

The instantaneous frequency in this signal is obtained by differentiating the argument 

with respect to time t : 

 
1 2 1( )i

t

M
ω ω ω ω= + −

 (13.6) 
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The instantaneous frequency rises from the lower bound of the frequency band 

to the higher. When applying the signal to a system, it provides good control over the 

excited frequency band and is thus often used for system identification. 

The results obtained in the time domain Figure 288 from the receiver PWAS are 

then saved and converted into FFT using Matlab (Figure 289). Figure 288 indicates that 

during the chirp excitation experiment a strong resonance occur around ~456 ms, which 

corresponds to ~114 kHz. 

This is identical to the resonance frequency obtained using the HP impedance 

analyzer. We can conclude that the “pitch-catch” method is a very good approach even 

for this type of applications and the FFT conversion from time domain to frequency 

domain works as predicted with high accuracy. 



355 

 

 
Figure 288: Time domain testing: 

(a) linear chirp characteristics between 0 to 250 kHz over a 1-sec duration; 

(b) time domain signal showing a resonance at ~456 ms corresponding to ~ 114 kHz 
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Figure 289: Frequency domain signal for 100 kHz prototype 

13.3.3.2 TESTING OF THE 300 KHZ PROTOTYPE 

13.3.3.2.1 EMIS TESTING 

Following the same procedure described for 100 kHz ring sensor, we bound a 

PWAS on the flat surface of the 300 kHz (Figure 290).The setup configuration and the 

result for 300 kHz FBG ring sensor is shown in Figure 291 and Figure 292. 

 
Figure 290: 300 kHz FBG ring sensor - setup configuration 
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Figure 291: 300 kHz FBG ring sensor - setup configuration 

For the FBG ring sensor (300 kHz theoretical resonance frequency), the 

experimental result in Figure 292 shows that the resonance frequency is at 277 kHz in 

the ReZ spectrum. 

 
Figure 292: Resonance frequency at 300 kHz FBG ring sensor 

13.3.3.2.2 FREQUENCY RESPONSE TESTING 

Following the same procedure described for 100 kHz ring sensor, we obtain the 

results in time domain and convert them into FFT using Matlab for the 300 kHz ring 

sensor. 



358 

 

 
Figure 293: Time domain testing: 

(a) linear chirp characteristics between 0 to 400 kHz over a 1-sec duration; 

(b) time domain signal showing a resonance at ~657 ms corresponding to ~ 270 kHz 
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Figure 294: Frequency domain signal for 300 kHz prototype 

13.3.4 FINAL DESIGN CONCLUSIONS 

From the experimental results, we can see that we have a very good agreement 

with the predicted resonance frequencies. The first resonance frequency for both rings 

falls in the predicted area. In this case, the first resonance frequency is an axial one, 

which has the aim to stretch the fiber in order to get measurements with the FBG. In 

sum, our experiments proved that the concept is working and we can build such a ring 

sensor that can reach the first resonance frequency at any desired frequency. 
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Equation Chapter (Next) Section 14 

14. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK  

14.1 CONCLUSIONS 

The purpose of this dissertation has been to investigate the possibility of using 

small, permanently attached, low-cost piezoelectric wafer active sensors (PWAS) for 

structural health monitoring (SHM) of composite materials and detection of 

delamination. We direct our research towards the electromechanical impedance 

method for delamination detection. 

The electromechanical impedance (EMI) method was studied comprehensively 

with analytical and finite element method; we compared the theoretical predictions 

results with experiments on geometrically controllable specimens. 

The necessity for an analytical model to predict the behavior of composite 

materials guided us towards developing a new analytical model, which should reach 

higher frequencies, more stability and can precisely predict the vibration response 

under PWAS excitation. 

Giurgiutiu (2008) implements the high-frequency vibration modal analysis 

method using PWAS transducers for calculating the electromechanical impedance. This 

constitutes the starting point in developing a new method to calculate resonance 

frequencies.
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New consideration was given to the transfer matrix method (TMM) introduced 

by Pestel and Leckie (1963) for studying the vibration of mechanical systems. Giurgiutiu 

and Stafford (1977) used the TMM of Pestel and Leckie (1967) to calculate the vibration 

of helicopter blades modeled as rotating Timoshenko beams. Bois, Herzog, and Hochard 

(2004, 2007) used the theory of piezoelectric laminates to extend TMM to composite 

beams. They focus on building a monitoring system that can predict the damage in a 

quasi-isotropic laminate. Cuc (2010) used TMM to develop the analytical model for a 

uniform beam using the Euller-Bernoulli beam theory (shear deformation and rotary 

inertia were not considered) and expanded the method to the case of a multi-layer 

adhesively bonded beam. Due to the fact that all analytical methods so far are only able 

to run at very low frequencies and this aspect is very important for delamination 

detection studies, we develop a new method, Stiffness Transfer Matrix Method (STMM), 

which resolves some of the deficiencies in TMM (e.g. can run at high frequencies).The 

general principle behind the STMM is similar to TMM, in the sense that it breaks up a 

complicated structure into several smaller segments which then can be expressed in a 

matrix format. However, the mathematical approach is different. Namely, the instability 

problem in TMM is solved by introducing the compliance matrix and using a recursive 

algorithm to calculate the global stiffness matrix. 

In our new method (STMM), the first step is to develop the analytical model for 

the simpler case of composite beams. Then, we expand the method to address 

delaminations in composite material beams. In the case of delamination, the 

mathematical model becomes complex and the beam is divided into branches. The idea 
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behind high frequencies is the fact that the part where the delamination is present 

behaves totally different from the part where delamination is not present. This latter 

aspect was emphasized in detail in this research by using ANSYS WB which gives us the 

possibility to visualize this feature. Practically, it seems to exist a “decouple” between 

the delamination zone and the pristine zone (one is in axial and the other one is in 

flexural resonance). This can be particularly seen at very high frequencies and seems to 

be diminished at low frequencies and much more difficult to detect. 

Our current research is most closely related to Bois, Herzog, and Hochard (2004, 

2007) however their method uses TMM and has some limitations that we are able to 

address using s new method: Bois et al. (2004, 2007) only use TMM for composites to 

low frequencies (≤30 kHz). For these frequencies, the changes in the vibration behavior 

due to a small delamination were small and hence difficult to detect. In our tests, we 

took the method to 30 kHz, but could not go further up because the method had a 

breakdown. This is due to numerical instability in the TMM algorithm; a fact that has 

been also reported elsewhere. 

In order to validate the analytical results, we use finite element analysis (FEA): 

ANSYS Multiphysics (2D) and ANSYS WB (3D). For ANSYS MUltiphysics, we calculate the 

impedance, by applying a voltage to the top and bottom electrodes of the PWAS and 

measuring the electrical charge. The electrical charge stored on the surface electrodes 

of the PWAS is directly linked with the changes in the mechanical stiffness of the beam. 

The electrical charge is then used to calculate the current and he 

electromechanical impedance as the ratio between the applied voltage and the current. 
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For ANSYS WB, we were able to calculate only the resonance frequencies and the 3D 

visual results help us understand the behavior of the delamination. 

We conduct experiments for both composite pristine beam specimen with PWAS 

transducers attached and damaged specimens and we utilize different materials and 

different PWAS locations given the delamination location. For the pristine composite 

beam case, we find a very agreement among all the methods. For the delamination, we 

find relatively good results among all the methods, even if the location and the size of 

the delamination are very hard to control. Overall, the impedance results are very 

sensitive to the PWAS location and some discrepancies can show up due to the fact that 

composite materials are not uniform (e.g. dimensions). 

The last part of this research aimed to develop a novel acousto-ultrasonic sensor 

that can detect the ultrasonic waves from acoustic emission events using optical FBG 

sensing combined with mechanical resonance amplification principles. The method 

consists of a sensor that can detect the ultrasonic out of plane motion with preference 

for a certain frequency. We find a very good agreement with the predicted resonance 

frequencies. The first resonance frequency for the ring falls in the predicted area. In this 

case, the first resonance frequency is an axial one, which has the aim to stretch the fiber 

in order to get measurements with the FBG. In sum, our experiments proved that the 

concept is working and we built and successfully tested a ring sensor that can reach the 

first resonance at any desired frequency. This work was finalized with an invention 

disclosure for a novel acousto-ultrasonic FBG ring sensor (Disclosure ID No. 00937). 
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14.2 SUGGESTIONS FOR FUTURE WORK 

The research in this dissertation emphasizes the need for more work to 

understand and develop an accurate predictive model for damage detection in 

composite materials using PWAS transducers. This is essential for the development and 

implementation of an embedded SHM system able to detect and assess the magnitude 

of various damages that could emerge and reach intolerable levels. The following 

directions are recommended for future research: 

1. Extend current STMM method with new features to increase the stability for 

delamination cases 

2.  Extend the analytical method to plates and shells using the plate theory  

3. Extend the transfer matrix method to wave propagation theory in order to 

predict the wave propagation in composite materials. 

4. Develop a graphical user interface (GUI) in MATLAB for an easier and friendlier 

way of entering analysis parameters. 

5. Perform additional experimental tests with an increased number of specimens 

and with various features of damages. 

6. Further develop suitable damage indices (DI) for better detection competences 

using the modal features of the EMI spectrum. 

7. Perform additional FEA to compare the results between 2D and 3D and to 

understand why there are some differences for composite materials. 
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