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ABSTRACT 

The dissertation addresses Structural Health Monitoring (SHM) using linear and 

nonlinear ultrasonic guided waves, with an emphasis on the development of analytical 

and numerical models of guided wave propagation and interaction with linear and 

nonlinear structural damage. 

An analytical model was developed based on the exact Lamb wave solution for 

the simulation of Lamb wave propagation and interaction with damage. The damage 

effects were inserted into the model using complex valued wave damage interaction 

coefficients (WDICs). The analytical procedure was coded as a framework into a 

MATLAB Graphical User Interface (GUI), and the software WaveFormRevealer (WFR) 

was developed as a general description of wave generation, propagation, interaction with 

damage, and detection. The WDICs were extracted from the harmonic analysis of small-

size local finite element models (FEM) with non-reflective boundaries (NRB). By joining 

the analytical framework and the local FEM, a Combined Analytical/FEM Approach 

(CAFA) was developed for efficient simulation of Lamb wave propagation and 

interaction with damage. To model guided wave propagation in composite structures, the 

semi-analytical finite element (SAFE) procedure was investigated and coded with 

MATLAB, and the software SAFE-DISPERSION was developed to generate guided 

wave dispersion curves, mode shapes, and directivity plots for composites. 

Nonlinear ultrasonic SHM techniques were also examined because they have been 

reported to have remarkable sensitivity to incipient damage. An analytical model
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was developed to capture the nonlinear higher harmonic generation phenomena for 

localized damage. Also investigated was the nonlinear interaction between Lamb waves 

and breathing cracks using FEM through two specific simulation techniques: element 

activation/deactivation method and contact analysis. A damage index based on the 

nonlinear features of the sensing signal was proposed in order to identify the presence 

and severity of a breathing crack. Nonlinear ultrasonic SHM was also investigated for 

monitoring bolt tightness status of an aerospace bolted lap joint. The 3-D contact FEM 

simulation was carried out and compared with experiments using Scanning Laser 

Doppler Vibrometer (SLDV). 

The dissertation finishes with a summary of contributions followed by 

conclusions, and suggestions for future work. 
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CHAPTER 1  

INTRODUCTION 

Structural Health Monitoring (SHM) is an emerging multi-disciplinary field which aims 

at detecting/characterizing structural damage and providing diagnosis/prognosis of 

structural health status in a real-time or on-demand manner. With the advancement of 

SHM technology, the industry can reduce the maintenance cost, shorten the machine 

service down time, and improve the safety and reliability of engineering structures. It has 

shown great potential in both the health management of aging structures and the 

development of novel self-sensing smart structures. This chapter serves as the 

introduction to the entire dissertation by addressing the motivation and importance of 

conducting the research, discussing research goal, scope, and objectives will be discussed, 

and introducing the organization of the dissertation. 

1.1 MOTIVATION 

The development of computational models for Lamb wave propagation and 

interaction with damage is of great importance for both SHM system design and signal 

interpretation purposes. Effective design of SHM systems requires the exploration of a 

wide range of parameters (transducer size, sensor-damage relative locations, interrogating 

wave characteristics, etc.) to achieve the best detection and quantification of certain types 

of damage. On the other hand, active sensing signals using Lamb waves are usually 

difficult to interpret due to the multi-mode and dispersive nature of Lamb waves. Their 

interaction with damage involves even more complex scattering and mode conversion
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phenomena. Practical applications have imposed three main requirements on 

computational models: (1) accuracy for high frequency, short wavelength, and long 

propagation distance waves; (2) efficiency in terms of computational time and computer 

resources; and (3) versatility with a wide range of parameter exploration capabilities. 

However, these requirements have not been satisfied with conventional analytical 

methods or commercially available finite element software. Thus, it is of great 

importance to develop accurate, efficient, and versatile computational techniques for the 

simulation of guided wave based active sensing procedures. 

In addition to the development of efficient computational models, this dissertation 

also addresses nonlinear techniques in SHM. Conventional guided wave techniques 

relying on linear properties such as signal amplitude change, phase shift, scattering, and 

attenuation are not sensitive to early stage damage. Nonlinear ultrasonic guided waves are 

found to be more sensitive to incipient changes that are precursors to structural damage. 

By using the distinctive nonlinear ultrasonic characteristics, we can detect fatigue, micro 

cracks, and delamination in their early stages to prevent catastrophic failures. There have 

been intensive studies into nonlinear ultrasonic bulk waves in nondestructive evaluation 

(NDE), but the studies of nonlinear dispersive guided waves are still limited with 

unlimited possibilities and new applications in SHM (Jhang 2009). There are also 

difficulties not solved or answered well in the nonlinear guided wave inspection, such as 

the nonlinear phenomena threshold conditions and interaction mechanisms between 

guided waves and nonlinear damage (Broda et al. 2014). Thus, investigations of modeling 

nonlinear ultrasonic guided waves need to be carried out to better understand and apply 

nonlinear techniques in SHM. 
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1.2 RESEARCH GOAL, SCOPE, AND OBJECTIVES 

The research goal of the PhD work presented in this dissertation is to develop 

accurate, efficient, and versatile computational models for guided wave propagation and 

interaction with damage. The scope of this research covers the analytical modeling, finite 

element simulation, and experiments for the development of SHM concepts. The 

modeling techniques were advanced in both linear and nonlinear region. The objectives 

of the work presented in this dissertation are as follows: 

1. To construct a 1-D analytical framework which can describe wave damage 

interaction phenomena, including transmission, reflection, mode conversion, 

and nonlinear higher harmonic addition. 

2. To extend the concept developed in the 1-D case to the 2-D wave propagation 

and damage interaction problems. 

3. To develop a non-reflective boundary condition for plate guided Lamb waves 

which is effective for both symmetric and antisymmetric modes, and apply it 

for the construction of efficient local finite element models (FEM). 

4. To develop an accurate, efficient, and versatile hybrid approach for the 

simulation of 2-D Lamb wave propagation and interaction with damage. 

5. To develop user-friendly software to guide/assist effective and efficient design 

of SHM and active sensing systems. 

6. To apply the semi-analytical finite element (SAFE) method to the modeling of 

ultrasonic guided wave propagation in composite structures, and develop user 

friendly software for the calculation of dispersion curves, mode shapes, and 

directivity plots in composite structures. 
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7. To advance the modeling techniques of nonlinear interaction between guided 

waves and structural damage. 

8. To review the nonlinear SHM techniques and apply nonlinear ultrasonic 

techniques for the detection of fatigue crack and health monitoring of bolted 

lap joints. 

1.3 ORGANIZATION OF THE DISSERTATION 

To achieve the objectives set forth in the preceding section, the dissertation is 

organized in nine chapters. The focus and contents of each chapter is introduced in 

Chapter 1. 

In Chapter 2, guided wave theory is briefly reviewed, guided wave application to 

SHM was discussed, and the piezoelectric wafer active sensors (PWAS) were introduced. 

In Chapter 3, the 1-D analytical framework for 1-D multimode Lamb wave 

propagation and interaction with damage is developed. The predictive tool 

WaveFormRevealer 1-D (WFR-1D) is presented. 

In Chapter 4, the analytical framework is extended to 2-D wave problems. The 

development of an effective non-reflective boundary (NRB) condition for plate guided 

Lamb waves is presented. Also presented is a combined analytical/FEM approach (CAFA) 

for the accurate, efficient, and versatile simulation of 2-D Lamb wave active sensing. 

In Chapter 5, the derivation of the semi-analytical finite element (SAFE) 

formulation for plate waveguides is discussed. The user-friendly software SAFE-

DISPERSION is presented. Case studies conducted to verify the SAFE-DISPERSION 

results against analytical solutions and global matrix method (GMM) solutions are 

discussed. 
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In Chapter 6, nonlinear ultrasonic mechanisms and nonlinear phenomena are 

discussed. Nonlinear techniques for SHM are introduced. 

In Chapter 7, two nonlinear finite element techniques for the simulation of 

nonlinear interaction between Lamb waves and a breathing crack are investigated. A 

damage index is proposed to detect the breathing cracks and further estimate the severity 

of the nonlinear damage. 

In Chapter 8, the higher harmonics nonlinear ultrasonic technique for the 

application on the bolt load monitoring of an aerospace bolted lap joint is investigated. 
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CHAPTER 2  

FUNDAMENTALS OF GUIDED WAVES AND PIEZOELECTRIC WAFER ACTIVE 

SENSORS FOR STRUCTURAL HEALTH MONITORING 

This chapter introduces fundamentals of guided wave theory, basic concepts of Structural 

Health Monitoring (SHM), and piezoelectric wafer active sensors (PWAS) for generating 

and receiving guided waves. It will also serve as the theoretical prerequisite for the wave 

modeling and simulation tasks. First, the guided wave theory is briefly reviewed by types, 

including Rayleigh waves, shear horizontal (SH) plate waves, straight crested Lamb 

waves, circular crested Lamb waves, and guided waves in rods, pipes, and waveguides 

with arbitrary cross sections. Next, guided waves based SHM concepts and techniques 

are introduced. The key points of modeling guided wave based SHM are discussed. 

Finally, the PWAS transducers are introduced, including their working principle, their 

coupling with guided waves and tuning effect, and their operation modes. 

2.1 BRIEF REVIEW OF GUIDED WAVE THEORY 

Guided waves are widely used as interrogating field for damage detection, 

because they can travel long distances without much energy loss, with the wave energy 

confined and guided within the structures. Besides, guides waves can travel inside curved 

walls, and across component joints. These aspects make them suitable for inspection of 

large areas of complicated structures. Ultrasonic guided waves are sensitive to changes in 

the propagating medium, such as plastic zone, fatigue zone, cracks, and delamination. 

This sensitivity exists for both surface damage and cross thickness/interior damage,
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because guided waves have various mode shapes throughout the cross section of the 

waveguides.  

2.1.1 RAYLEIGH WAVES 

Rayleigh waves, known as the surface wave, propagate close to the body surface, 

with the motion amplitude decreasing rapidly with depth. The polarization of Rayleigh 

wave lies in a plane perpendicular to the surface. The effective depth of penetration is 

less than a wavelength. 

One benefit of using Rayleigh waves for structural health monitoring lies in that 

Rayleigh wave is not dispersive, i.e. the wave speed is constant. It is found that the 

Rayleigh wave speed, Rc , depends on the shear wave speed, Sc , and the Poisson ratio,  . 

A common approximation of the wave speed of Rayleigh wave is given as 

 
0.87 1.12

( )
1

R Sc c





 
  

 
 (2.1) 

For common Poisson ratio values, the Rayleigh wave speed takes values close to and just 

below the shear wave speed (Giurgiutiu 2008). The particle motion or the mode shape of 

the Rayleigh waves across the thickness direction, y , is given by 
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where A  is the wave amplitude factor, Rc   is the wavenumber of Rayleigh surface 

waves,   and   are coefficients given in Eq. (2.3). Figure 2.1 shows the Rayleigh wave 

in a semi-infinite medium. 
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Figure 2.1: Simulation of Rayleigh wave in a semi-infinite medium (Giurgiutiu 2008). 

2.1.2 SHEAR HORIZONTAL PLATE WAVES 

Shear horizontal (SH) plate waves have a shear-type particle motion contained in 

the horizontal plane. Figure 2.2 shows the coordinate definition and particle motion of 

SH plate waves. According to the coordinate defined, an SH wave has the particle motion 

along the z  axis, whereas the wave propagation takes place along the x  axis. The 

particle motion has only the zu  component. Unlike Rayleigh wave which is non-

dispersive, SH plate waves are dispersive and may travel with different modes. 

The phase velocity dispersion curve of the SH plate wave can be calculated as 
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where   is given in Eq. (2.5) and d  is the half plate thickness. 
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By substituting the appropriate eigenvalue, one gets an analytical expression for the 

wave-speed dispersion curve of each SH wave mode. For detailed expressions, the 

readers are referred to Giurgiutiu (2007). 

 

Figure 2.2: Coordinate definition and particle motion of SH plate  

waves (Giurgiutiu 2008). 

 

Figure 2.3: (a) SH plate wave-speed dispersion curves; (b) symmetric mode shapes; (c) 

antisymmetric mode shapes (Giurgiutiu 2008). 

(b) 

(a) 

(c) 
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Figure 2.3 shows the wave-speed dispersion curve of SH plate waves and the 

mode shapes. It can be noticed that the fundamental symmetric mode (S0) wave is non-

dispersive and always exists starting from low frequency-thickness product values. This 

nice property makes it a good candidate as the interrogating waves in SHM systems. 

Recently, considerable research has been carried out on the transmission and reception of 

SH plate wave for SHM (Kamal et al. 2013; Zhou et al. 2014). Higher wave modes only 

appear beyond the corresponding cut-off frequencies, showing dispersive characteristics, 

i.e., their phase velocity changes with frequency. For dispersive waves, group velocity is 

usually used to evaluate the propagation of wave packets. The definition of group 

velocity is given in Eq. (2.6). 

 g

d
c

d




  (2.6) 

2.1.3 STRAIGHT CRESTED LAMB WAVES 

Lamb waves are a type of ultrasonic waves that are guided between two parallel 

free surfaces, such as the upper and lower surfaces of a plate. Lamb waves can exist in 

two basic types, symmetric and antisymmetric. Figure 2.4 shows the particle motion of 

symmetric and antisymmetric Lamb waves. The Lamb wave motion has asymptotic 

behavior at low frequency and high frequency. At low frequency, the symmetric mode 

resembles axial waves, while the antisymmetric mode resembles flexural waves. At high 

frequency, both symmetric and antisymmetric wave approaches Rayleigh waves, because 

the particle motion is strong at the surfaces and decays rapidly across the thickness. The 

axial wave and flexural wave, by their nature, are only low frequency approximations of 

Lamb waves. The plate structure cannot really sustain pure axial and flexural motion at 

large frequency-thickness product values. 
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Figure 2.4: Particle motion of Lamb wave modes: (a) symmetric mode and (b) 

antisymmetric mode (Giurgiutiu 2008). 

The straight crested Lamb wave equations are derived under z-invariant 

assumptions using pressure wave and shear vertical wave (P+SV) waves in a plate. 

Through multiple reflections on the plate’s lower and upper surfaces, and through 

constructive and destructive interference, the pressure waves and shear vertical waves 

give rise to the Lamb–waves, which consist of a pattern of standing waves in the 

thickness y–direction (Lamb–wave modes) behaving like traveling waves in the x–

direction. For detailed derivation of Lamb wave equations, readers are referred to Graff 

(1991), Rose (1999), and Giurgiutiu (2007). The derivation finally reaches the Rayleigh-

Lamb equation: 
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where +1 exponent corresponds to symmetric Lamb wave modes and -1 exponent 

corresponds to antisymmetric Lamb wave modes. d  is the half plate thickness, and   is 

the frequency dependent wavenumber. 
P  and 

S  are given in Eq. (2.8).   and   are 

Lame’s constants of the material, and   is the material density. 
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Figure 2.5: (a) Wave speed dispersion curve; (b) wavenumber dispersion curve. 

Figure 2.5 shows the dispersion curves of aluminum plates calculated from the 

Rayleigh-Lamb equations. It can be noticed at least two wave modes (the fundamental 

symmetric mode: S0; the fundamental antisymmetric mode: A0) exist simultaneously. 

Beyond the corresponding cut-off frequencies, higher Lamb modes will participate in the 

propagation. At small frequency-thickness product values, the S0 mode is less dispersive 

than A0 mode, and all the Lamb wave modes converge to non-dispersive Rayleigh waves 

at large frequency-thickness product values. The dispersive and multi-mode nature of 
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Lamb waves adds complexity in both Lamb wave propagation modeling and SHM 

application. 

In their multi-modal and dispersive nature, Lamb waves also have complicated 

frequency dependent mode shapes associated with particle motion across the plate 

thickness. Even for certain Lamb modes, the mode shape changes under different 

frequencies. The displacement mode shapes can be calculated using Eq. (2.9) and Eq. 

(2.10) (Giurgiutiu 2008). 

For symmetric Lamb modes: 
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For antisymmetric Lamb modes: 
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where SC  and AC  determine the mode shape amplitudes; y  is the location of interested 

point across the plate thickness; i  is the imaginary unit; x is the coordinate along 

propagation direction. 

Figure 2.6 shows the mode shapes of fundamental S0 and A0 Lamb waves in a 2-

mm aluminum plate under various frequencies. It can be observed that for certain Lamb 

mode, the mode shapes vary a lot with frequency. Within low frequency range, the mode 

shapes show that S0 and A0 Lamb modes could be approximated by axial and flexural 

wave motion. However, within high frequency range, the mode shapes become more 

complicated and deviate from the axial-flexural approximation. And, at even higher 

frequency, e.g. at 10 MHz, the particle motions are mainly near the top and bottom 
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surfaces of the plate, while the particles in the middle of the plate undergo very small 

oscillation. This shows that at high frequency range, Lamb modes converge to Rayleigh 

waves. 

 

Figure 2.6: Mode shapes of S0 and A0 Lamb waves in a 2-mm thick aluminum plate. 
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In their practical applications, the interrogating Lamb waves generated by a 
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the large inspection area. With the wave propagating outward, this amount energy is 

distributed on a larger area. Thus, the amplitude of the interrogating wave is strong near 

-1 0 1
-1

-0.5

0

0.5

1

Normalized Amplitude

T
h
ic

k
n
e
s
s
 (

m
m

)

-1 0 1
-1

-0.5

0

0.5

1

Normalized Amplitude

T
h
ic

k
n
e
s
s
 (

m
m

)

-1 0 1
-1

-0.5

0

0.5

1

Normalized Amplitude

T
h
ic

k
n
e
s
s
 (

m
m

)

-1 0 1
-1

-0.5

0

0.5

1

Normalized Amplitude

T
h
ic

k
n
e
s
s
 (

m
m

)

-1 0 1
-1

-0.5

0

0.5

1

Normalized Amplitude
T

h
ic

k
n
e
s
s
 (

m
m

)

-1 0 1
-1

-0.5

0

0.5

1

Normalized Amplitude

T
h
ic

k
n
e
s
s
 (

m
m

)
-1 0 1

-1

-0.5

0

0.5

1

Normalized Amplitude

T
h
ic

k
n
e
s
s
 (

m
m

)

-1 0 1
-1

-0.5

0

0.5

1

Normalized Amplitude

T
h
ic

k
n
e
s
s
 (

m
m

)

S0 @ 0.2 MHz S0 @ 2 MHz S0 @ 5 MHz S0 @ 10 MHz 

A0 @ 0.2 MHz A0 @ 2 MHz A0 @ 5 MHz A0 @ 10 MHz 

ux uy uy uy uy 

uy uy uy uy 

ux ux ux 

ux ux ux ux 

Normalized Amplitude 

Normalized Amplitude 

T
h
ic

k
n
es

s 
(m

m
) 

T
h
ic

k
n
es

s 
(m

m
) 

   

   



 

15 

the wave source and decays along the propagation direction. The circular crested Lamb 

wave solution can capture these effects due to outward propagation pattern. 

A detailed and rigorous derivation of circular crested Lamb waves is well 

documented in Giurgiutiu (2014). The derivation of circular crested Lamb waves is found 

to be more appropriate in a cylindrical coordinate system shown in Figure 2.7a. The 

derivation arrives at the same Rayleigh-Lamb equation as Eq. (2.7), which means the 

circular crested Lamb waves propagate with the same wave speed as the straight crested 

Lamb waves. 

 

Figure 2.7: (a) Cylindrical coordinate for problem derivation (Giurgiutiu 2014); (b) 

circular crested wave pattern. 
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Hankel functions (  2

0H  and  2

1H ) describes an outward propagating wave field, when 

i te   is chosen as the convention for the derivation. The mode shape solutions for the 

circular crested Lamb waves are given below for outward propagating wave fields. 

Symmetric Lamb modes: 
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Antisymmetric Lamb modes: 
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  (2.12) 

where SC  and AC  are the amplitude factor for symmetric mode and antisymmetric mode, 

and can be determined from the wave generation calculation. ,P S   are defined as 
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It can be observed from Eq. (2.11) and Eq. (2.12), that the in-plane radian direction 

motion accepts the solution of the first kind Hankel function of order one ( (1)
1H ), while 

the out-of-plane direction motion accepts the solution of the first kind Hankel function of 

order zero( (1)
0H ). Figure 2.7b shows a typical outward propagation wave pattern 

calculated using Hankel function (1)
0H , describing an out-of-plane wave motion. It can be 

noticed that the wave amplitude at the wave source (coordinate center) is strong, and it 
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decays as it propagates out. Figure 2.8 shows the plots of Hankel functions of order zero 

and order one. It can be noticed that the amplitude is high near the origin of R , and 

beyond certain distance, the amplitude becomes stable and changes more gradually 

compared with the origin range of R. 

 

Figure 2.8: Hankel function of order zero (
   1

0H R ) and order one (
   1

1H R ). 
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Meitzler (1961) showed that, under certain conditions, mode coupling could exist 

between various wave types propagating in solid cylinders such as wires. Extensive 

numerical simulation and experimental testing of these phenomena was done by 

Zemenek (1972). Comprehensive work on wave propagation in hollow circular cylinders 

was done by Gazis (1959). A comprehensive analytical investigation was complemented 

by numerical studies. The nonlinear algebraic equations and the corresponding numerical 

solutions of the wave–speed dispersion curves were obtained. These results found 

important applications in the ultrasonic NDE of tubing and pipes. Silk and Bainton (1979) 

found equivalences between the ultrasonic in hollow cylinders and the Lamb waves in 

flat plates and used them to detect cracks in heat exchanger tubing. Rose et al. (1994) 

used guided pipe waves to find cracks in nuclear steam generator tubing. Alleyne et al. 

(2001) used guided waves to detect cracks and corrosion in chemical plant pipe work. 

 

Figure 2.9: Discretization of the cross sections in SAFE: (a) square rod; (b) circular pipe; 

(c) rail track (Hayashi et al. 2004). 

Several researchers have applied the SAFE method to obtain the guided wave 

solutions in waveguides with arbitrary cross sections. Gavric (1995) calculated the 

dispersion curves and mode shapes of guided waves in a rail track. Figure 2.9 shows 

typical discretization of the arbitrary cross sections. A comprehensive case study was 

(a) (b) (c) 
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presented by Hayashi et al. (2004). Bartoli et al. (2006) further invested the SAFE 

method and successfully included damping effects into the model. 

2.2 STRUCTURAL HEALTH MONITORING USING GUIDED WAVES 

Structural Health Monitoring (SHM) is an emerging multi-disciplinary field with 

wide applications. This technology evolves from the conventional nondestructive 

evaluation (NDE) and conditional based maintenance (CBM), where the damage 

detection and evaluation are done in a schedule based or conditional based manner. In 

contrast with NDE and CBM, SHM aims at developing real-time or on-demand damage 

detection and characterization systems for evaluation of structural health status. Within 

the scope of SHM, guided wave techniques are favorable for their capability of 

interrogating large areas of structure from a single location. In this section, fundamental 

SHM concepts are introduced, prevalent guided wave techniques are covered, and key 

points in guided wave based SHM are discussed. 

2.2.1 STRUCTURAL HEALTH MONITORING CONCEPTS 

General sensing technology can be cast into two methodological categories: (1) 

passive sensing and (2) active sensing. Passive sensing systems only passively record 

events which happened during an interested period of time. By analyzing the recorded 

signal, diagnosis can be made on the health status of the structure. Examples of passive 

sensing SHM can be found in the acoustic emission (AE) monitoring and impact 

detection, where passive sensors are triggered by crack advancing or impact events. By 

analyzing the AE or impact signal, location of the AE or impact source can be identified 

(Yu et al 2012; Gresil et al. 2013). In contrast to passive sensing, active sensing methods 

interrogate the structures with defined excitations, and record the corresponding response. 
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By analyzing the response, diagnosis can be made. Active sensing procedure has three 

main advantages for SHM applications: (1) it allows the real-time and on-demand 

inspection of the structures; (2) the excitation can be optimized for the most sensitive and 

effective response for damage detection; (3) the active sensing procedure is repeatable, 

which allows the comparison between two independent interrogations (a baseline data 

and a current status data). 

Figure 2.10 shows a schematic representation of a generic SHM system. The 

active sensors clusters are implemented on the critical areas of high monitoring interest, 

such as airplane wines, engine turbines, fuselage, and fuel tank. Permanently bounded on 

the host structures, the sensors can actively interrogate large areas from local cluster 

zones in a real-time or on-demand manner, gathering sensing data to the data 

concentrators. These data concentrators will transmit the data to the SHM processing unit, 

where the data will be processed and diagnosis will be made. 

 

Figure 2.10: Schematic representation of a generic SHM system, consisting of active 

sensors, data concentrators, wireless communication, and SHM central unit (Giurgiutiu et 

al. 2002). 

SHM is a pattern recognition process. SHM techniques aim at finding deviations 

of sensing signals or data pattern from the baseline, which are due to the presence of 
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damage. Farrar and Worden (2012) described SHM from a machine learning perspective 

and showed how statistical pattern recognition can be achieved for damage detection. The 

pattern recognition usually requires the comparison of two states of the structures, i.e., 

the initial or healthy state serving as the baseline and the current state under inspection. 

This aspect was illustrated by Worden (2007) in the fundamental axioms of SHM. Recent 

development of SHM technology has pushed the barriers of the axioms. Investigators 

have proposed baseline-free or reference-free techniques, where on baseline data are 

required for making diagnosis on the presence and severity of damage, such as the time 

reversal method and the nonlinear techniques (Wang et al. 2004; Sohn et al. 2013). 

2.2.2 GUIDED WAVE TECHNIQUES 

The guided wave techniques can be generally categorized into linear techniques 

and nonlinear techniques. Many of the interrogating principles stem from conventional 

NDE. The linear techniques include pitch-catch, pulse-echo, electro-mechanical 

impedance spectroscopy (EMIS), phased array, and sparse array time-reversal imaging 

method. The prevalent nonlinear techniques are higher harmonic generation, 

subharmonic generation, and mixed frequency response (nonlinear modulation). 

Figure 2.11 shows the pitch-catch active sensing method in SHM, where one 

transducer acts as the transmitter and sends out the guided waves, and another transducer 

acts as the receiver and pick up the sensing signal. In the pristine case (baseline), the 

interrogating waves are generated by the transmitter, propagate along the structure, and 

are picked up by the receiver. In the damaged case, the interrogating waves generated by 

the transmitter, propagate along the structure, interact with the damage, carry the damage 

information with them, and are finally picked up by the receiver. The subtraction between 
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these two states reveals the damage scattering response, which may indicate the presence 

and severity of the damage. 

 

Figure 2.11: Pitch-catch active sensing: (a) baseline response; (b) response with damage; 

(c) scattered response. (Ihn and Chang 2008) 

Several sensors may work together in a systematically designed manner forming a 

sensor network and achieve more complicated diagnostic approaches. Advanced damage 

imaging techniques have been developed using phased array and sparse array. Giurgiutiu 

and Bao (2004) investigated the embedded-ultrasonics structural radar (EUSR) for in situ 

monitoring of thin-wall structures. Figure 2.12a shows the 1-D phased array EUSR and 

its imaging result of a crack. Yu and Giurgiutiu (2007) further extended the EUSR 

principle to 2-D phased array using 64 sensors. Based on Fink’s work (1992), Wang et al. 

(2004) proposed the synthetic time-reversal imaging method for structural health 

monitoring. Figure 2.12b shows the sparse array with four sensors and its imaging result 

using time-reversal method. 

(a) (b) (c) 
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Figure 2.12: (a) Phased array imaging using EUSR (Giurgiutiu and Bao 2004); (b) sparse 

array imaging using time-reversal method (Wang et al. 2004). 

 

Figure 2.13: (a) Electro-mechanical coupling between the PZT active sensor and the 

structure (Giurgiutiu et al. 1999); (b) EMIS spectrum (Zagrai and Giurgiutiu 2001). 

In addition to traveling wave techniques, the EMIS is a standing guided wave 

SHM method. The continuous harmonic excitation of a transducer will excite the 

(a) Phased array (EUSR) (b) Sparse array (time-reversal) 

(a) (b) 
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structure with guided waves, which will be reflected by structural boundaries and damage, 

forming standing waves between the wave source and the reflectors. This standing wave 

formation will result in local mechanical resonance, which will be shown in the electrical 

response through the electro-mechanical coupling. Figure 2.13a shows the electro-

mechanical coupling between the transducer and the structure. Figure 2.13b is a typical 

EMIS spectrum, showing that the damaged case spectrum deviates from the pristine case. 

There are other guided wave based SHM techniques, which will not be detailed 

here. Especially, the nonlinear guided wave techniques will be introduced in a separate 

chapter later. 

2.2.3 KEY ASPECTS IN GUIDED WAVE BASED SHM 

Several key aspects play important roles in the success and improvement of SHM 

systems. Each of them by itself is an independent branch of study, and the advancement 

of each field may bring evolutionary progress to SHM. Figure 2.14 shows the key aspects 

in guided wave based SHM. 

 

Figure 2.14: Key aspects in guided wave based SHM system. 

An active sensing function unit consists of wave generation, propagation, wave-

damage interaction, and wave detection. The actuation technology plays the key role in 

Actuation 
technology 

Sensing 

technology 

Wave 
generation 

Wave 
propagation 

Wave damage 

interaction 

Wave 
detection 

Wave 
mechanism 

Active sensing 

function unit 

Sensor network design; data 

acquisition and collection 
Data fusion 

methods 
Diagnose 

criteria 
Prognoses 

theory 



 

25 

generating the interrogating wave fileds. Conventional ultrasonic transducers can only 

generate pressure wave across the thickness of the plate, which can be applied to conduct 

a time consuming point by point inspection. Researchers have used wedge transducers to 

generate Lamb waves in plate structures by adjusting the incident angle of the pressure 

waves (Rose 1999). The piezoelectric wafer active sensors (PWAS) were developed to 

satisfy these requirements on low profile, light weight, and low cost transducers that can 

be permanently bonded on host structures in large quantities (Giurgiutiu 2008). The shear 

horizontal PWAS were used to generate this shear wave motion (Kamal et al. 2013; Zhou 

et al. 2014). Electromagnetic acoustic transducers (EMAT) have been developed to 

generate torsional mode guided waves in pipelines for detection of axial direction cracks 

(Bottger et al. 1987). The in-depth understanding of wave mechanism both in wave 

propagation and wave damage interaction are significant for effective detection of certain 

damage. It is always found that certain guided wave mode is more sensitive to a specific 

kind of damage. It can provide more insight in SHM system design by selecting 

appropriate interrogating wave frequency and mode type, as well as on choosing the 

sensitive detection location. Sensing technology deals with wave detection. In addition to 

sensing methods using piezoelectricity, new sensing approaches have been developed, 

such as fiber bragg grating (FBG) and laser vibrometry (Kabashima et al. 2001; Michaels 

et al. 2011). Each of them has opened a new field of study in SHM. The sensor network 

design is of great importance for comprehensively evaluating the interrogating area and 

collecting sufficient data of structural information for signal processing. The data 

acquisition, collection, and transmission are associated with hardware implementation 

and wireless communication between the sensor clusters and the central unit. Since SHM 
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is a pattern recognition process, the data fusion and processing is among the key aspect. 

Using different active sensing schemes and data processing methods, various 

characteristics of the damage may be identified, such as location, severity, and damage 

type. To diagnose the structural health status, judging criteria need to be developed based 

on the corresponding SHM method. A statistical technique is always desired to avoid 

false alarm or failure in detection. The prognoses of the structure residual service life 

depend on the fatigue theory and models which aims at predicting the material behaviors. 

Beside the theoretical models, experiments and computational models can also support 

the prognoses. Recently, a structural life prediction concept is proposed by using a digital 

twin, i.e., the actual structure collects all the operation data during its service, and the 

data are updated to a computer model acting as a virtual twin. By observing the behavior 

of the computer model, the performance of the actual structure can be predicted (Tuegel 

et al. 2011).  

2.3 PIEZOELECTRIC WAFER ACTIVE SENSORS 

Piezoelectric wafer active sensors (PWAS) are convenient enablers for generating 

and receiving guided waves. Figure 2.15 shows the comparison between the conventional 

ultrasonic transducer and PWAS. 

 

Figure 2.15: Comparison between conventional ultrasonic transducer and PWAS. 

Piezo element 

P-wave  

 

 

Conventional transducer Piezoelectric wafer active sensors (PWAS) 
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The conventional ultrasonic transducers are bulky, expensive, and can only 

generate through thickness pressure wave in the structures, which cannot satisfy the need 

for inspection of large areas. Compared with conventional transducers, PWAS are low 

profile, light weight, low cost, and unobtrusive to structures. They can be permanently 

bonded on host structures in large quantities and achieve real-time monitoring of the 

structural health status. They couple with the structure through in-plane motion and 

generate Lamb waves, which makes them suitable for inspection large areas of interest. 

2.3.1 PWAS PRINCIPLES AND OPERATION MODES 

Piezoelectric wafer active sensors (PWAS) couple the electrical and mechanical 

effects (mechanical strain, ijS , mechanical stress, klT , electrical field, kE , and electrical 

displacement, jD ) through the tensorial piezoelectric constitutive equations 

 

E

ij ijkl kl kij k

T

j klj kl jk k

S s T d E

D d T E

 

 
 (2.14) 

where E

ijkls  is the mechanical compliance of the material measured at zero electric field 

( 0E  ), T

jk  is the dielectric permittivity measured at zero mechanical stress ( 0T  ), and 

kljd  represents the piezoelectric coupling effect. PWAS utilize the 31d  coupling between 

in-plane strains, 1 2,S S  and transverse electric field 3E . 

PWAS transducers can be used as both transmitters and receivers. Their modes of 

operation are shown Figure 2.16. PWAS can serve several purposes (Giurgiutiu 2008): (a) 

high-bandwidth strain sensors; (b) high-bandwidth wave exciters and receivers; (c) 

resonators; (d) embedded modal sensors with the electromechanical (E/M) impedance 

method. By application types, PWAS transducers can be used for (i) active sensing of far-
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field damage using pulse-echo, pitch-catch, and phased-array methods, (ii) active sensing 

of near field damage using high-frequency E/M impedance method and thickness gage 

mode, and (iii) passive sensing of damage-generating events through detection of low-

velocity impacts and acoustic emission at the tip of advancing cracks (Figure 2.16). The 

main advantage of PWAS over conventional ultrasonic probes is in their lightweight, low 

profile, and low cost. In spite of their small size, PWAS are able to replicate many of the 

functions performed by conventional ultrasonic probes. 

 

Figure 2.16: Schematic of PWAS application modes (Giurgiutiu 2010). 

2.3.2 PWAS COUPLED GUIDED WAVES AND TUNING EFFECT 

Figure 2.17 shows the coupling between PWAS and the host structure, and 

illustrates how PWAS transducers generate Lamb waves. When an oscillatory electric 

voltage at ultrasonic frequencies is applied on PWAS, due to the piezoelectric effect, a 

oscillatory strain is induced to the transducer. Since the structure constrains the motion of 
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PWAS, the reacting force from the bonding layer will act as shear stress on the host 

structure and generate wave motion. 

 

Figure 2.17: Lamb wave generation using PWAS transducers (Giurgiutiu 2008). 

The Lamb wave amplitude excited by PWAS depends on the PWAS size, plate 

thickness, and excitation frequency. For a given PWAS and plate geometry, the 

amplitudes of Lamb modes changes with frequency. It was found that tuning possibility 

exists for generating single Lamb mode with PWAS transducers. The tuning effect is 

important because it overcomes the multimode difficulty for Lamb wave applications. 

The analytical expression on tuning effect was first developed by Giurgiutiu (2003)  
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Figure 2.18 shows the tuning curve for 7 mm PWAS and 1.6 mm thick aluminum 

plate situation. It is apparent that the amplitudes of S0 and A0 Lamb modes excited by 

the PWAS transducer change with frequency. Around 300 kHz, A0 Lamb mode reaches 

the rejecting point where no A0 mode Lamb wave will be excited. This is a sweet spot for 

generating only S0 wave mode for structural inspection. 
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Figure 2.18: (a) Strain Lamb wave tuning results from analytical solution; (b) 

Experimental results from PWAS response (Giurgiutiu 2003). 

(a) (b) 
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CHAPTER 3  

MODELING 1-D LAMB WAVE PROPAGATION AND INTERACTION WITH 

DAMAGE: WAVEFORMREVEALER 1-D 

This chapter presents the theory and an analytical framework for simulating 1-D Lamb 

wave propagation and interaction with damage. The method of inserting damage effects 

into the analytical model is addressed, including wave transmission, reflection, mode 

conversion, and nonlinear higher harmonics. The analytical model is coded into 

MATLAB, and a graphical user interface (GUI) WaveFormRevealer 1-D (WFR-1D) is 

developed to obtain real-time predictive waveforms for various combinations of sensors, 

structural properties, and damage. In this chapter, the theoretical foundation and main 

functions of WFR are introduced. Case studies of selective Lamb mode linear and 

nonlinear interaction with damage are presented. Experimental and numerical 

verifications are carried out. 

3.1 INTRODUCTION AND STATE OF THE ART 

Guided waves retain a central function in the development of structural health 

monitoring (SHM) systems using piezoelectric wafer active sensor (PWAS) principles. 

This study focuses on guided plate waves, i.e. Lamb waves, which are guided and 

propagate in thin wall structures. The modeling of Lamb waves is challenging, because 

Lamb waves propagate in structures with multi-mode dispersive characteristics. At a 

certain value of the plate thickness-frequency product, several Lamb modes may exist 

simultaneously, and their phase velocities vary with frequency (Graff 1991; Rose 1999;
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 Giurgiutiu 2008). When Lamb waves interact with damage, they will be transmitted, 

reflected, scattered and mode converted. Nonlinear interaction with damage may also 

exist and this will introduce distinctive features like higher harmonics (Jhang 2009; Dutta 

et al. 2009; Shen and Giurgiutiu 2012). These aspects give rise to the complexity of 

modeling the interaction between Lamb waves and damage. Typical approaches to 

solving such complex problems are numerical methods like finite element method (FEM) 

and boundary element method (BEM). However, to ensure the accuracy of simulating 

high-frequency waves of short wavelengths, the transient analysis requires considerably 

small time step and very fine mesh ( , 20 30
FEM

T

t l





), which is expensive both in 

computational time and computer resources (Moser et al. 1999; Gresil et al. 2011). 

Analytical modeling provides an alternative approach to attack the same problem lower 

computational costs (Giurgiutiu et al. 2012). 

PWAS transducers are a convenient way of transmitting and receiving guided 

waves in structures for SHM applications (Giurgiutiu 2008). The analytical model of 

PWAS generated Lamb waves and its tuning effect has been investigated, and a closed-

form solution for straight crested guided Lamb wave was derived by Giurgiutiu (2005). 

Extension of tuning concepts to 2-D analytical models of Lamb waves generated by 

finite-dimensional piezoelectric transducers was given by Raghavan and Cesnik (2005). 

These analytical developments facilitate the understanding of PWAS-coupled Lamb 

waves for SHM applications. However, these analytical solutions only applied to guided 

wave propagation in pristine structures, whereas the use of Lamb waves in SHM 

applications requires that their interaction with damage be also studied. After interacting 

with damage, Lamb waves will carry damage information resulting in waveforms with 
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special characteristics (phase change, new wave packets generation through mode 

conversion, and higher-harmonic components, etc.), which need to be investigated for 

damage detection. 

Several researchers have studied the interaction between guided waves and 

damage analytically using normal-mode expansion and boundary-condition matching 

(Norris and Venula 1995; Hinders 1996; Vemula and Norris 1997; McKeon and Hinders 

1999; Grahn 2002; Moreau et al. 2011; Moreau et al. 2012). Damage interaction 

coefficients were derived to quantify the guided-wave transmission, reflection, mode 

conversion, and scatter at the damage site. Due to their mathematical complexity, these 

analytical solutions are restricted to simple damage geometries: notches, holes, or partial 

through holes. Extension to more complicated damage geometries has been attempted 

through series expansion of the rugged damage contour. In the generic case of arbitrary-

shape damage, the numerical approaches using space discretization (FEM/BEM) are used 

due to their convenience, but on the expense of orders of magnitude increase in 

computational time and/or computer resources. 

The design of a SHM system requires computationally-efficient predictive tools 

that permit the exploration of a wide parameter space to identify the optimal combination 

between the transducers type, size, number, and guided wave characteristics (mode type, 

frequency, and wavelength) to achieve best detection and quantification of a certain 

damage type. Such parameter space exploration desiderate can be best achieved with 

analytical tools which are fast and efficient. 

In this chapter, we describe an analytical approach based on the 1-D (straight 

crested) guided wave propagation analysis. In our study, we inserted the damage effect 
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into the analytical model by considering wave transmission, reflection, mode conversion, 

and higher harmonics components described through damage interaction coefficients at 

the damage site. We do not attempt to derive these damage interaction coefficients here, 

but assume that they are available either from literature or from FEM/BEM analysis 

performed separately in a separate computational module. This analytical approach was 

coded into MATLAB and the WaveFormRevealer (WFR) graphical user interface was 

developed. The WFR can generate fast predictions of waveforms resulting from Lamb 

wave interaction with damage for arbitrary positioning of PWAS transmitters and 

receivers with respect to damage and with respect to each other. The users may choose 

their own excitation signal, PWAS size, structural parameters, and damage description. 

The current chapter focuses WFR-1D for simulation of 1-D (straight crested) guided 

wave propagation; extension of this approach to 2-D (circular crested) guided wave 

propagation is introduced in a later chapter where WaveFormRevealer 2-D is coupled 

with local finite element model forming a highly efficient Combined Analytical/FEM 

Approach (CAFA). 

3.2 MODELING OF 1-D LAMB WAVE INTERACTION WITH DAMAGE 

This section addresses the analytical modeling of Lamb wave propagation in plate 

waveguides. The first part introduces the analytical model of multi-mode wave 

propagation in pristine structures. The second part illustrates the methodology of 

inserting damage effects into the analytical model. 

3.2.1 ANALYTICAL MODELING OF LAMB WAVE PROPAGATION IN A PRISTINE PLATE 

One aspect of the difficulties in modeling Lamb wave propagation is due to their 

multi-mode feature. WFR is capable of modeling multi-mode Lamb wave propagation in 
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structures. From the  Rayleigh-Lamb equation, the existence of certain Lamb mode 

depends on the plate thickness-frequency product. The fundamental S0 and A0 modes 

will always exist, but the higher modes will only appear beyond their respective cutoff 

frequencies (Graff 1991). 

This section describes how an electrical tone burst applied to a transmitter PWAS 

transducer (T-PWAS) propagates through a structural waveguide to the receiver PWAS 

transducer (R-PWAS) in pitch-catch mode (Figure 3.1). 

The propagation takes place through ultrasonic guided Lamb waves which are 

generated at the T-PWAS through piezoelectric transduction and then captured and 

converted back into electric signal at the R-PWAS. Since several Lamb wave modes 

traveling with different wave speeds exist simultaneously, the electrical tone-burst 

applied on the T-PWAS will generate several wave packets. These wave packets will 

travel independently through the waveguide and will arrive at different times at the R-

PWAS where they are converted back into electric signals through piezoelectric 

transduction. 

 

Figure 3.1: A pitch-catch configuration between a T-PWAS and a R-PWAS. 
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The predictive analytical model for Lamb wave propagation between the T-

PWAS and R-PWAS is constructed in frequency domain. The modeling flowchart is 

shown in Figure 3.2a (Shen and Giurgiutiu 2014). 

 

Figure 3.2: WaveFormRevealer flow charts: (a) propagation in a pristine structural 

waveguide; (b) propagation and interaction with damage at location dx . 
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The detailed steps of model construction are listed below: 

STEP 1: Perform Fourier transform of the time-domain excitation signal ( )TV t  to obtain 

the frequency domain excitation spectrum, ( )TV  . For a tone burst, the signal ( )TV t  and 

its Fourier transform ( )TV   look like in Figure 3.3. 

 

Figure 3.3: Tone burst signal: (a) time domain; (b) frequency domain. (from Giurgiutiu 

2008, page 153). 

STEP 2: Calculate the frequency-domain structural transfer function ( , )rG x   from T-

PWAS to R-PWAS. The structure transfer function  ,rG x   is given by Eq. (99) in 

Giurgiutiu (2007), page 327, which gives the in-plane wave strain at the plate surface as 
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where   is the frequency dependent wave number of each Lamb wave mode and the 

superscripts S and A refer to symmetric and antisymmetric Lamb wave modes. If only the 

two fundamental modes, S0 and A0, are present, then  ,rG x   can be written as 
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where 
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PWAS  is the complex transduction coefficient that converts applied voltage into guided 

wave strain at the T-PWAS; a  is half length of PWAS size; d  is plate half thickness. The 

modal participation functions ( )S   and ( )A   determine the amplitudes of the S0 and A0 

wave modes. The terms sin( )S a and sin( )Aa  control the tuning between the PWAS 

transducer and the Lamb waves.   and   are Lame’s constants of the structural material; 

  is the material density. The wavenumber   of a specific mode for certain frequency 

  is calculated from Rayleigh-Lamb equation: 

 

 

1

2

2
2 2

tan 4

tan

d

d

 

  



 
 

 
 

 (3.5) 

where +1 exponent corresponds to symmetric Lamb wave modes and -1 exponent 

corresponds to antisymmetric Lamb wave modes. 

STEP 3: Multiply the structural transfer function by frequency-domain excitation signal 

(Figure 3.3b) to obtain the frequency domain signal at the R-PWAS, i.e., 

     , ,R r r TV x G x V    . Hence, the wave arriving at the R-PWAS location is 

      , ( ) ( )
S A

r ri x i x

R r T TV x S V e A V e         (3.6) 
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This signal in Eq. (3.6) can be decomposed into symmetric and antisymmetric 

components 

    , ( )
S

ri xS

R r TV x S V e      (3.7) 

    , ( )
A

ri xA

R r TV x A V e      (3.8) 

STEP 4: Perform the inverse Fourier transform to obtain the time domain wave signal at 

the R-PWAS, i.e., 

 ( , ) { ( , )}R r R rV x t IFFT V x   (3.9) 

Due to the multi-mode character of guided Lamb wave propagation, the received 

signal has at least two separate wave packets, S0 and A0 (Figure 3.4). 

 

Figure 3.4: T-PWAS signal and R-PWAS signal. 

This analysis can be extended to include higher guided wave modes (S1, A1, etc.) , 

i.e., 

      , ( ) ( )
S A

r r

S A

i x i x

R r T TV x S V e A V e
 

 

     
    (3.10) 
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All the wave modes propagate independently in the structure. The final waveform 

will be the superposition of all the propagating waves and will have the contribution from 

each Lamb mode. 

3.2.2 INSERTION OF DAMAGE EFFECTS INTO THE ANALYTICAL MODEL 

Figure 3.5 shows the pitch-catch active sensing method for damage detection. The 

T-PWAS transducer generates ultrasonic guided waves which propagate into the structure, 

interact with structural damage at dx x , carry the damage information with them, and 

are picked up by the R-PWAS transducer at rx x . 

 

Figure 3.5: A pitch-catch configuration between a T-PWAS and a R-PWAS. 

To model the damage effect on Lamb wave propagation, we consider the damage 

as a new wave source at dx x  and we add mode conversion and nonlinear sources at the 

damage location through damage interaction coefficients. The predictive analytical model 

for Lamb wave interaction with damage is constructed in frequency domain in the 

following steps: 
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STEP 1: This step is identical to step 1 of the pristine case. Perform Fourier transform of 

the time-domain excitation signal ( )TV t  to obtain the frequency domain excitation 

spectrum, ( )TV  . 

STEP 2: Calculate the frequency-domain structural transfer function up to the damage 

location, ( , )dG x  . The structure transfer function  ,dG x   is similar to Eq. (3.6) of 

previous section, only that dx x , i.e., 

      , ( ) ( )
S A

d di x i x

D d T TV x S V e A V e
      

   (3.11) 

STEP 3: Multiply the structural transfer function by frequency-domain excitation signal 

to obtain the frequency domain signal at the damage location, i.e., 

     , ,D d d TV x G x V    . Hence, the signal at the damage location is 

      , ( ) ( )
S A

d di x i x

D d T TV x S V e A V e
      

   (3.12) 

This signal could be decomposed into symmetric and antisymmetric components 

    , ( )
S

di xS

D d TV x S V e
   

  (3.13) 

    , ( )
A

di xA

D d TV x A V e
   

  (3.14) 

STEP 4: The wave signal at the damage location takes the damage information by 

considering transmission, reflection, mode conversion, and higher harmonics. Each of 

these addition phenomena is modeled as a new wave source at the damage location using 

damage interaction coefficients (Figure 3.6). We distinguish two damage interaction 

types: (a) linear, and (b) nonlinear, as discussed next. 
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3.2.2.1 Linear damage interaction 

Wave transmission, reflection, and mode conversion are realized by using 

complex-amplitude damage interaction coefficients. Our notations are as follows: we use 

three letters to describe the interaction phenomena, with the first letter denoting the 

incident wave type, the second letter standing for resulting wave type, and the third letter 

meaning propagation direction (transmission/reflection). For instance, SST (symmetric-

symmetric-transmission) means the incident symmetric waves transmitted as symmetric 

waves, while SAT (symmetric-antisymmetric-transmission) means incident symmetric 

waves transmitted and mode converted to antisymmetric waves. Thus the complex-

amplitude damage interaction coefficient SSTi

SSTC e
  denotes the transmitted symmetric 

mode generated by incident symmetric mode with magnitude SSTC  and phase SST . 

Similarly, SATi

SATC e
  represents the transmitted antisymmetric mode generated by 

incident symmetric mode with magnitude SATC  and phase SAT . These coefficients are 

determined by the features of the damage and are to be imported into the WFR model. 

3.2.2.2 Nonlinear damage interaction 

The center frequency of waves arriving at the damage location can be obtained 

from Eq. (3.13) and (3.14) as c . The 2
nd

 and 3
rd

 higher harmonics act as wave sources 

with center frequencies of 2 c  and 3 c  respectively. Modeling of higher harmonics is 

achieved by moving the frequency domain signal at the damage location to the right hand 

side of the frequency axis by c  and 2 c , i.e.,    2 , ,D d D d cV x V x     and 

   3 , , 2D d D d cV x V x     represent the 2
nd

 and 3
rd

 higher harmonics nonlinear wave 

source. 
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The nonlinear damage interaction coefficients are defined in the same way as the 

linear ones. For instance, the complex-amplitude damage interaction coefficient 

M

SST

SST

iMC e


  denotes the Mth higher harmonics transmitted symmetric mode generated by 

incident symmetric mode with magnitude 
SST

MC  and phase 
SST

M . 

 

Figure 3.6: Modeling wave transmission, reflection, mode conversion, higher harmonics 

components ( cf  is the center frequency of wave signal arriving at the damage). 

STEP 5: The guided waves from the new wave sources at the damage location propagate 

through the rest of the structure and arrive at the R-PWAS. The received wave signal is 

calculated in frequency domain as 
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(3.15) 

where m is the number of higher harmonics considered. For linear interaction with 

damage, m equals to one. 
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STEP 6: Perform inverse Fourier transform to obtain the time domain receiver sensing 

signal 

 ( , , ) { ( , , )}R d r R d rV x x t IFFT V x x   (3.16) 

It should be noted that the above analysis only considers S0 and A0 modes. But the 

principle could be easily extended to higher modes (S1, A1, etc.). The difficulty with 

extending to higher modes will be on defining the increasing number of transmission, 

reflection, mode conversion coefficients. For each excited Lamb mode, the interaction 

with damage may result in more mode conversion possibilities. In this study, the WFR 

has been designed to simulate: (a) multimode (S0, A0, S1, A1) Lamb waves propagation 

in pristine plates; (b) fundamental modes (S0 and A0) Lamb waves interaction with 

damage. 

3.3 WAVEFORMREVEALER INTERFACE AND MAIN FUNCTIONS 

The analytical representation of this process was coded in MATLAB and resulted 

in the WFR GUI shown in Figure 3.7. 

WFR allows users to control several parameters: structure material properties, 

PWAS size, location of sensors, location of damage, damage type (linear/nonlinear 

damage), and excitation signal (frequencies, count numbers, signal mode excitation, 

arbitrary waveform type, etc.). Dual display of waveforms allows for the sensing signals 

to be shown at two different sensor locations. For instance, Figure 3.7 shows two receiver 

waveforms at locations 1 0 mmx   and 2 500 mmx   as measured from the transmitter 

(in this case 1 0 mmx   means that receiver PWAS-1 collocated with the transmitter 

PWAS). Thus, PWAS-1 shows the reflections from damage, and PWAS-2 shows the 

signal modified after passing through the damage. Users are able to conduct rapid 
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parametric studies with WFR. It may take several hours for commercial finite element 

software to obtain an acceptably-accurate solution for high frequency, long distance 

propagating waves; but it takes only several seconds to obtain the same solution with 

WFR. Besides analytical waveform solutions, the WFR can also provide users with wave 

speed dispersion curves, tuning curves, frequency components of received wave packets, 

structure transfer function, etc. All the calculated results are fully available to the user, 

and can be exported as Excel. Figure 3.8 shows a case study for Lamb wave propagation 

of a 100 kHz tone burst in a 1-mm thick aluminum plate, presenting: (1) the dispersion 

curves; (2) the excitation spectrum overlap with the S0 and A0 tuning curves; (3) the 

spectra of the S0 and A0 packets displaying frequency shifts; (4) the structure transfer 

function  ,G x  . 

 

Figure 3.7: Main GUI of WaveFormRevealer. 
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Figure 3.8: Calculation of various quantities in Lamb wave propagation: (a) wave speed 

dispersion curve; (b) tuning curve; (c) frequency contents of received wave packets; (d) 

structure transfer function. 

Besides the main interface, WFR has two sub-interfaces shown in Figure 3.9: (1) 

damage information platform; (2) guided wave spatial propagation solver. The damage 

information platform allows users to input the damage location and damage interaction 

coefficients. For example, SST represents the magnitude of transmitted S0 mode 

generated by an incoming S0 mode; whereas, SAT and phi-SAT represent the magnitude 

and phase of the transmitted A0 mode resulting from the mode-conversion of an 

incoming S0 mode. The values of these damage interaction coefficients are not calculated 
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by the WFR. This gives the users the freedom to define their own specific problem. For 

instance, a particular type of damage (plastic zone, corrosion, or fatigue cracks) with 

certain degree of severity will have different interaction characteristics with the 

interrogating guided waves. These coefficients may be determined experimentally or 

calculated through other methods (analytical, FEM, BEM, etc.). Among all the above 

methods, FEM approach shows good results for obtaining the interaction coefficients of 

arbitrary shaped damage. Successful examples and details are given by Velichko and 

Wilcox (2011; 2012) and Moreau et al. (2012). In an example presented later in this study, 

we used a trial-and-error approach to tune the WFR coefficients to the data obtained from 

experiments and finite element simulations. 

 

Figure 3.9: User interfaces: (a) damage information platform; (b) guided wave spatial 

propagation solver. 

(a) (b) 
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The spatial propagation solver is like a B-scan. Using the analytical procedure, we 

obtain the time domain waveform solution at various locations along the structure. Thus, 

the time domain waveform solutions of a sequence of points along the wave propagation 

path are obtained. If we select the sequence of solution points fine enough, a time-spatial 

domain solution of the wave field is obtained. The spatial solution of wave field at a 

particular time instance is available as shown in Figure 3.9b. After the time-spatial 

solution of wave field is obtained, we can do the frequency-wavenumber analysis 

(Ruzzene 2007) to see the wave components of the signal (Figure 3.10). These will be 

illustrated in the case studies discussed later in this chapter. 

 

Figure 3.10: Frequency-wavenumber display window. 

3.4 CASE STUDIES 

3.4.1 LINEAR INTERACTION WITH DAMAGE OF SELECTIVE LAMB WAVE MODES 

WFR allows users to select single mode (S0/A0) or multimode (S0 and A0) to be 

excited into the structure. Three test cases were conducted: (a) incident S0 wave linear 

interaction with damage, (b) incident A0 wave linear interaction with damage, and (c) 
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combined S0 and A0 waves linear interaction with damage. The test case setup is shown 

in Figure 3.11. The transmitter PWAS (T-PWAS) and receiver PWAS (R-PWAS) are 

placed 600 mm away from each other on a 1-mm thick aluminum 2024-T3 plate. The 

damage is placed 200 mm from the T-PWAS. A 5-count Hanning window modulated 

tone burst centered at 100 kHz is used as the excitation. The time domain and the time-

frequency domain signals of the test cases are shown in Figure 3.12 (single S0 mode 

excitation), Figure 3.13 (single A0 mode excitation), and Figure 3.14 (S0 and A0 multi-

mode excitation). 

 

Figure 3.11: Test case setup for pitch-catch Lamb wave interaction with damage. 

 

Figure 3.12: Simulation of linear interaction between Lamb waves and damage: S0 mode 

excitation. It should be noted that no higher harmonics are observed. 
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Figure 3.13: Simulation of linear interaction between Lamb waves and damage: A0 mode 

excitation. It should be noted that no higher harmonics are observed. 

 

Figure 3.14: Simulation of linear interaction between Lamb waves and damage: S0 and 

A0 mode excitation. It should be noted that no higher harmonics are observed. 
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Figure 3.12 through Figure 3.14 show that new wave packets appear due to the 

interaction between interrogation Lamb waves and damage. The incident S0 wave will 

generate A0 wave component from mode conversion at the damage; whereas the incident 

A0 wave will generate S0 wave component from mode conversion at the damage. 

However, from the time-frequency analysis, it could be observed that after linear 

interaction, the frequency spectrum of the waves still center around the excitation 

frequency 100 kHz. No higher harmonic frequency components are observed. 

3.4.2 NONLINEAR INTERACTION WITH DAMAGE OF SELECTIVE LAMB WAVE MODES 

To investigate nonlinear interaction between Lamb waves and damage, three 

simulations were carried out: (a) incident S0 wave nonlinear interaction with damage; (b) 

incident A0 wave nonlinear interaction with damage; (c) combined S0 and A0 waves 

nonlinear interaction with damage. The test case setup is the same as shown in Figure 

3.11, only the interaction with damage is nonlinear. The time signals and the time-

frequency analysis of the test cases are shown in Figure 3.15 (single S0 mode excitation), 

Figure 3.16 (single A0 mode excitation), and Figure 3.17 (S0 and A0 multi-mode 

excitation). 

Figure 3.15 through Figure 3.17 show that after nonlinear interaction with the 

damage, the waveforms become distorted and contain distinctive nonlinear higher 

harmonics. For S0 waves which are less dispersive at the given frequency range, the 

nonlinear higher harmonics stay inside the wave packet. However, for A0 waves which 

are dispersive at the given frequency range, the higher harmonic components travel faster, 

leading the way and may escape from the fundamental wave packet. 
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Figure 3.15: Simulation of nonlinear interaction between Lamb waves and damage: S0 

mode excitation. It should be noted that distinctive higher harmonics are observed. 

 

Figure 3.16: Simulation of nonlinear interaction between Lamb waves and damage: A0 

mode excitation. It should be noted that distinctive higher harmonics are observed. 
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Figure 3.17: Simulation of nonlinear interaction between Lamb waves and damage: S0 

and A0 mode excitation. It should be noted that distinctive higher harmonics are 

observed. 

3.5 EXPERIMENTAL AND NUMERICAL VERIFICATIONS 

3.5.1 MULTI-MODE LAMB WAVE PROPAGATION IN A PRISTINE PLATE 

In our study, two PWAS transducers were mounted on a 3.17-mm thick aluminum 

7075-T6 plate. Figure 3.18 shows the experiment setup. The transmitter PWAS (T-

PWAS) sent out ultrasonic guided waves into the structure. The guided waves i.e., Lamb 

waves propagated in the plate, undergoing dispersion and were picked up by the receiver 

PWAS (R-PWAS). The Lamb waves are multi-modal, hence several wave packets 

appeared in the received signal. An Agilent 33120A Arbitrary Waveform Generator was 

used to generate 3-count Hanning window modulated tone burst excitations. A Tektronix 

Digital Oscilloscope is used to record the experimental waveforms. The excitation 

frequency was swept from 300 kHz to 600 kHz. 
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Figure 3.18: Experiment setup for multi-mode Lamb wave propagation. 

Corresponding plate material, thickness, PWAS size, and sensing location 

information is input into WFR. The analytical waveforms of various frequencies are 

obtained. Figure 3.19 shows the comparison between analytical solution from WFR and 

experimental data. 

It can be observed that at 300 kHz, only S0 and A0 modes exist. The WFR 

solution matches well with experimental data. At 450 kHz, S0 mode become more 

dispersive; besides S0 and A0 modes, A1 mode starts to pick up with highly dispersive 

feature. At 600 kHz, S0, A0, and A1 modes exist simultaneously. The simulation results 

and the experimental data have slight differences due to the fact that 1-D analytical 

formulas and pin force excitation assumptions are used in this study. 

To further validate WFR predictions, we also conducted 1-D wave propagation 

FEM simulations with pin force excitation. Figure 3.20 shows the comparison between 

WFR and 1-D wave propagation FEM simulations. It can be observed that the 300 kHz 

and 450 kHz waveforms match very well between WFR and 1-D FEM. 600 kHz signals 

also have reasonably good agreement. It should be noted, even for 1-D wave propagation 

FEM simulation, the 600 kHz wave computation requires considerably small element size 
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and time marching step. The FEM simulation for such high frequency, short wavelength 

situation is becoming prohibitive due to the heavy consumption of computation time and 

computer resources. On the contrast, WFR only requires several seconds to obtain the 

same results due to its highly efficient analytical formulation. 

 

Figure 3.19: Comparison between WFR and experiment for multi-mode Lamb wave 

propagation in a pristine 3.17-mm aluminum plate. 
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Figure 3.20: Comparison between WFR and FEM for multi-mode Lamb wave 

propagation in a pristine 3.17-mm aluminum plate. 

The guided wave spatial propagation solver in WFR is used to obtain the time 

space wave field (B-scan) as shown in Figure 3.21a. The frequency-wavenumber analysis 

is conducted next, as shown in Figure 3.21b. The 600 kHz case is used as an example. 

From the B-scan, S0, A0, and A1 wave components can be observed. Frequency-
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wave field. Transmitted S0 wave (S0-T), A0 wave (A0-T), and A1 wave (A1-T) are 

clearly noticed in Figure 3.21b. 

 

Figure 3.21: (a) Time-space wave field (B-scan); (b) Frequency-wavenumber analysis 

from WFR. 
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303 mm. 3-count Hanning window modulated tone burst signals were used as the 

excitation. The center frequency was swept from 150 kHz to 300 kHz. 
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picked up by the R-PWAS. The damage interaction coefficients are physically 

determined by the size, severity, type of the damage. In this study, we used a trial-and-

error approach to tune the WFR damage interaction coefficients to the data obtained from 

the experiments. 

 

Figure 3.22: Experiment for Lamb waves’ linear interaction with a notch (pitch-catch 

mode). 

The adjusted damage interaction coefficients which gave best match with 

experiments for 150 kHz excitation case are shown in Table 3.1. 

Table 3.1: Damage interaction coefficients for pitch-catch mode 

Figure 3.23 shows the WFR simulation results compared with experiments. It can 

be noticed that the analytical waveforms agree well with experimental data. A new wave 

packet is generated due to mode conversion at the notch. 
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Figure 3.23: Comparison between WFR simulations and experiments for Lamb waves’ 

interaction with a notch in pitch-catch mode. 
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kHz is used as the excitation. Guided Lamb waves generated by the T-PWAS will 

propagate into the structure, reach the notch, and be reflected back as echoes. At the 

notch, S0 waves will be reflected as S0 waves and also will be mode converted to 

reflected A0 waves. A0 waves will be reflected as A0 waves and also will be mode 

converted to reflected S0 waves. All the echoes will reach the R-PWAS and be picked up. 

 

Figure 3.24: Experiment for Lamb waves’ linear interaction with a notch (pulse-echo 

mode). 

The adjusted damage interaction coefficients which gave best match with the 

experiment are shown in Table 3.2. 

Table 3.2: Damage interaction coefficients for pulse-echo mode 

Figure 3.25 shows the WFR simulation result compared with the experiment. The 
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the experiment data. Differences are noticed: first, the direct waves have a phase shift due 

to the fact that the R-PWAS and T-PWAS are some distance away from each other, while 

in our analytical model, we consider them to be at the same location; second, the 

boundary reflections are present and mixed with the weak echoes from the notch in the 

experiment, but in our model, the boundary reflections are not considered. 

 

Figure 3.25: Comparison between WFR simulations and experiments for Lamb waves 

interaction with a notch in pulse-echo mode. 

 

Figure 3.26: (a) Time-space domain solution (B-scan); (b) frequency-wavenumber 

analysis from WFR. Wave transmission, reflection, and mode conversion damage effects 

can be clearly noticed. 
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Figure 3.26 shows the results from WFR spatial propagation solver. The wave 

transmission, reflection, mode conversion can be clearly noticed in both the B-scan and 

frequency-wavenumber analysis. It is apparent that the wave field contains transmitted S0 

and A0 modes, and reflected S0 and A0 modes. 

3.5.3 NONLINEAR INTERACTION BETWEEN LAMB WAVES AND DAMAGE 

A guided wave pitch-catch method may be used to interrogate a plate with a 

breathing crack which opens and closes under tension and compression (Shen and 

Giurgiutiu 2012; 2013). The ultrasonic waves generated by the transmitter PWAS (T-

PWAS) propagate into the structure, interact with the breathing crack, acquire nonlinear 

features, and are picked up by the receiver PWAS (R-PWAS). This process is shown in 

Figure 3.27. The nonlinear interaction between Lamb waves and the breathing crack will 

introduce nonlinear higher harmonics into the interrogation waves. A multi-physics 

transient finite element model was used to simulate the Lamb waves' interaction with a 

nonlinear breathing crack. The damage interaction coefficients obtained from fitting the 

FEM solution (Table 3.3 shows the nonlinear interaction coefficients for fundamental 

frequency; Table 3.4 shows the coefficients for second and third higher harmonics) were 

input into the WFR simulator. Details of the nonlinear finite element model can be found 

in Chapter 6. 

Figure 3.28 shows the comparison between FEM and the WFR analytical solution. 

It is noticed that the FEM results and the analytical solution agree very well because the 

damage interaction coefficients were fitted to the FEM solution. The time domain 

waveforms show nonlinear characteristics of noticeable nonlinear distortion in S0 packet 

and zigzags in the new packet. The frequency spectrums show distinctive nonlinear 
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higher harmonics (200 kHz and 300 kHz). Since we only consider up to the 3
rd

 higher 

harmonic in this case study, the frequency domain of analytical solution shows only the 

first three peaks, while the finite element solution have even higher harmonics. But the 

solution up to the third higher harmonics is accurate enough to render an acceptable 

waveform in time domain. 

 

Figure 3.27: Pitch-catch method for the detection of breathing crack; the mode 

conversion at the crack is illustrated by the two arrows. 

Table 3.3: Nonlinear interaction coefficients of fundamental frequency 
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Figure 3.28: Comparison between finite element simulation (FEM) and analytical simulation (WFR). 
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The guided wave spatial propagation solver in WFR was used to obtain the time-

space wave field. Figure 3.29 shows the time-space wave field and frequency-

wavenumber analysis of Lamb waves interaction with nonlinear breathing crack. 

 

Figure 3.29: Time-space wave field and frequency-wavenumber analysis from WFR. 

Transmission, reflection and mode conversion phenomena at the damage can be 

clearly noticed. The frequency-wavenumber analysis reveals the wave components 
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Figure 3.30: Spatial wave propagation of Lamb wave interaction with breathing crack 

(calculated using WFR).
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CHAPTER 4  

COMBINED ANALYTICAL/FEM APPROACH FOR EFFICIENT SIMULATION OF 2-D 

GUIDED WAVE PROPAGATION 

This chapter presents the Combined Analytical/Finite Element Method (FEM) Approach 

(CAFA) for efficient simulation of guided Lamb wave propagation and interaction with 

damage. The development of computation models for Lamb wave propagation and 

interaction with damage is of great importance for both Structural Health Monitoring 

(SHM) system design and signal interpretation. Effective design of SHM systems 

requires the exploration of a wide range of parameters (transducer size, sensor-damage 

relative locations, interrogating wave characteristics, etc.) to achieve best detection and 

quantification of certain types of damage. On the other hand, active sensing signals using 

Lamb waves are usually difficult to interpret due to the multi-mode, dispersive nature of 

Lamb waves, and their interaction with damage, which involves complicated scattering 

and mode conversion phenomena. Practical applications have imposed three main 

requirements on the computation models: (1) accuracy for high frequency, short 

wavelength, and long propagation distance waves; (2) efficiency in terms of computation 

time and computer resources; (3) versatility, the capability of exploring a wide range of 

parameters. 

4.1 STATE OF THE ART 

Research has been conducted on analytical models of PWAS generated Lamb 

waves and the tuning effect between PWAS transducers and host structures (Giurgiutiu
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2005; Raghavan and Cesnik 2005). These models only consider the wave propagation in 

pristine structures, whereas the design of SHM systems requires research into wave-

damage interaction. 

Regarding the aspect of wave-damage interaction, many researchers have 

developed analytical models using Kirchhoff, Mindlin, Kane-Mindlin plate theory, and 3-

D elasticity solution or exact Lamb mode solutions (Norris and Vemula 1995; Vemula 

and Norris 1997; Wang and Chang 2005; Moreau 2012; McKeon and Hinders 1999; 

Grahn 2002), while others have adopted numerical methods such as finite element 

method (FEM) (Alleyne and Cawley 1992; Moreau et al. 2012; Shen and Giurgiutiu 

2014), boundary element method (BEM) (Cho et al. 2000), spectral element method 

(SEM) (Ostachowicz et al. 2012), and finite difference method (LISA) (Lee and 

Staszewski 2007; Nadella and Cesnik 2013). The advantage of analytical models is that 

they are fast, efficient, and capable of providing parametric studies, but the drawback is 

that they only apply to simple damage geometries such as circular holes, partial-through 

circular holes, or flat-bottom cavities. The advantage of numerical methods is that they 

can simulate wave damage interaction phenomena in very complicated structures; 

however, these methods usually require the discretization of the analyzed domain and the 

time marching procedure. For such high frequency, short wavelength, and long 

propagation wave simulations, considerably small time marching step and dense 

discretization are are required to obtain an accurate solution, which can make the target 

problem computationally prohibitive. 

Recently, semi-analytical method and small-size numerical methods, such as 

semi-analytical finite element (SAFE) method and distributed point source method 
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(DPSM) have been developed to make the computation load manageable (Rahani and 

Kundu 2011; Srivastava 2009; Benmeddour et al. 2011; Ahmad and Gabbert 2012). The 

SAFE method has been used to combine with local finite element models to simulate 

wave interaction with damage in 1-D wave propagation problems, but 2-D wave 

propagation models have not been achieved. For DPSM method, 1-D wave propagation 

and mode conversion at damage have been reported. 2-D wave propagation interaction 

with through thickness damage has been simulated, but 2-D wave interaction with partial 

through thickness types of damage (i.e. corrosion) has not been reported using DPSM. 

Hybrid modeling techniques have been proposed to develop efficient simulation schemes. 

Promising results have been achieved for bulk wave scattering from an axisymmetric 

inclusion and Lamb wave interaction with cracks in rivet holes (Goetschel et al. 1982; 

Chang and Mal 1999). However, these studies considered bulk wave or single Lamb 

mode interaction with damage, and used conventional wedge transmitters and bulky 

accelerometers as receivers. Terrien et al. (2007) investigated the optimization of hidden 

corrosion detection in aircraft structures using Lamb waves. In their study, they adopted a 

1-D wave propagation hybrid model to predictive the structural response, combining a 

local 2-D FEM with global 1-D wave modal decomposition. Moreau and Castaings (2008) 

have used orthogonally relation to reduce the size of FEM to obtain 3-D guided wave 

scattering features. Gresil and Giurgiutiu (2013a; 2013b) investigated the hybrid 

modeling concept in time domain, and achieved promising results. But this model 

requires interface matching between analytical and local FEM, and time domain hybrid 

model has to be re-run for each test frequency. Obenchain et al. (2014) used a hybrid 

global matrix/local interaction simulation approach for modeling wave propagation in 
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composites. The formulation uses a finite difference technique and requires time 

marching procedure. In our study, we developed a Combined Analytical/FEM Approach 

(CAFA) for efficient simulation of 2-D guided wave propagation and interaction with 

damage. We are not trying to compare with other methods such as DPSM, LISA and 

SAFE; instead we are putting forward a new approach for the efficient simulation of 

guided wave active sensing and SHM system design. Our study advances the state of the 

art with the following aspects: (1) we incorporated the analytical solution of PWAS-

generated Lamb waves, making our model capable of simulating SHM systems with 

permanently bonded PWAS transducers; (2) our model can selectively generate 

symmetric, anti-symmetric, or both interrogating wave modes, instead of only the 

symmetric wave mode; (3) we used the wave-damage interaction coefficients (WDICs) 

for coupling the analytical expression with small-size local FEM models. These WDICs 

can describe complicated 3-D interaction between interrogating waves and damage, i.e., 

scattering and mode conversion. The 3-D wave-damage interaction case study (involving 

mode conversions among S0, A0, and SH0 wave modes) has not been reported elsewhere 

using DPSM, SAFE, or other hybrid approaches; (4) CAFA was constructed in the 

frequency domain and consists of a transfer function method analytical model and 

harmonic analysis of the local FEM. The frequency domain formulation facilitated a high 

computation efficiency and wide parameter space exploration capability; (5) to obtain 

WDICs, we have improved the modeling technique for artificial non-reflective 

boundaries using spring-damper elements; (6) we have developed an analytical predictive 

tool, WaveFormRevealer 2-D, as a user-friendly interface for realization of CAFA. 
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4.2 OVERVIEW OF CAFA 

Figure 4.1 shows the schematic for CAFA. 

 

Figure 4.1: Overview of Combined Analytical/FEM Approach (CAFA). 

Lamb wave generation, propagation, damage interaction (scattering, mode 

conversion), and detection are modeled using the exact analytical expressions, while the 

WDICs are extracted from the harmonic analysis of small-size local FEM models with 

non-reflective boundaries (NRB). 

CAFA couples the global analytical wave expression with the local FEM solution 

through WDICs. CAFA combines the virtues of both analytical and numerical methods: 

the analytical formulation provides high calculation efficiency, a wide parameter 

exploration capability, and excellent accuracy, while FEM models have the ability to 

simulate damage with complicated geometries. 

4.3 ANALYTICAL FRAMEWORK FOR GUIDED WAVE ACTIVE SENSING 

In this section, we will present the methodology for modeling damage effects, and the 

steps required to construct the analytical framework for PWAS-generated 2-D Lamb 

wave propagation and interaction with damage. 
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4.3.1 MODELING OF DAMAGE EFFECTS USING COMPLEX-VALUED WDICS 

Figure 4.2 shows a typical active sensing procedure via the PWAS and scanning 

laser vibrometer approach. Under electrical excitation, the transmitter PWAS (T-PWAS) 

generates Lamb waves into the host structure. They propagate along the structure, interact 

with damage, undergo scattering and mode conversion, and are finally picked up by the 

scanning laser vibrometer, which measures the out-of-plane particle velocity at the 

surface of the structure. 

In our analytical framework, the received signal is comprised of two parts: (1) 

direct incident waves from the T-PWAS; (2) scattered waves from damage. Thus, 

damage can be modeled as a secondary wave source. The total wave field TOTALW  is the 

superposition of the incident wave field INW  and the scattered wave field SCW  from the 

damage.  

 TOTAL IN SCW W W   (4.1) 

 

Figure 4.2: Schematic of guided wave active sensing; Frequency dependent complex 

valued wave-damage interaction coefficients (WDICs). 
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We used frequency and direction dependent complex-valued WDICs to model the 

scattering and mode conversion phenomena of wave-damage interaction. These WDICs 

are capable of describing the scattered waves amplitude and phase as a function of 

frequency and direction. 

Our notations are as follows: two letters are used to describe the interaction 

phenomena, with the first letter denoting the incident wave type, and the second letter 

standing for the resulting wave type. For instance, SS (symmetric-symmetric) means the 

incident symmetric waves are scattered as symmetric waves, while SA (symmetric-

antisymmetric) means incident symmetric waves are scattered and mode converted into 

antisymmetric waves. Thus WDIC    ,
, SSi

SSC e
  

 


 denotes the scattered symmetric 

mode generated by incident symmetric mode with amplitude ratio  ,SSC    and phase 

shift  ,SS   . Similarly,    ,
, SAi

SAC e
  

 


 represents the scattered antisymmetric 

mode generated by incident symmetric mode with amplitude ratio  ,SAC    and phase 

shift  ,SA   .   is the wave component frequency and   represents the scattering 

angle with respect to the incident wave direction. These coefficients are determined by 

damage features and are calculated from the small-size local FEM harmonic analysis, 

which will be introduced later. 

4.3.2 2-D ANALYTICAL FRAMEWORK CONSTRUCTION 

Figure 4.3 shows the analytical framework flowchart. The analytical model was 

constructed in frequency domain based on the exact 2-D Lamb wave solution in the 

following steps: 
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Figure 4.3: Analytical framework flowchart. 

STEP 1: Perform Fourier transform of the time-domain excitation signal ( )TV t  to obtain 

the frequency domain excitation spectrum, ( )TV  . 

STEP 2: Calculate structure transfer function. Detailed analytical derivation of 2-D Lamb 

waves generated by a circular transmitter PWAS is given in by Giurgiutiu (2014), 
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 (4.3) 

where a  is the radius of the circular PWAS, d  is half plate thickness, and r  is the 

distance between the point of interest and T-PWAS. a  represents shear stress between 

the transducer and host structure and   denotes the shear modulus of the structure. 1J  is 

Bessel function of order one, which captures the tuning effect between PWAS and the 

host structure. 
 1

1H  is the first kind Hankel function of order one, which represents an 

outward propagating 2-D wave field.   is the frequency dependent wavenumber 

calculated from the Rayleigh-Lamb equation
 
(Graff 1991): 
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 (4.4) 

where +1 exponent corresponds to symmetric Lamb wave modes and -1 exponent 

corresponds to antisymmetric Lamb wave modes. Pc  and Sc  represent the pressure wave 

speed and shear wave speed;   is Lame’s constant of the structural material;   is the 

material density. The transfer function  PWAS   in Eq. (4.5) converts the applied voltage 

( )TV   into the shear stress a , where  r   is the stiffness ratio between host structure 

and T-PWAS (Lin et al. 2012). 

  
 

 
31

11 1
PWAS E

rd

s r


 





 (4.5) 
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Taking Fourier transform of Eq. (4.2), one can obtain the frequency domain 

structure transfer function for both symmetric and anti-symmetric modes. For each wave 

mode, the corresponding wavenumber   should be chosen. 

  
 2

(1)1
1

( ) ( )
, ( )

2 ( )

PWAS S

S

a J a N
G r i H r

D

   
  

 
 


  (4.6) 

STEP 3: Multiply the structure transfer function by the frequency-domain excitation 

signal to obtain the direct incident waves at the sensing location, where the distance INR  

from T-PWAS up to sensing location is used. Similarly, multiply the structure transfer 

function up to the damage location by the frequency-domain excitation signal to obtain 

the interrogating waves arriving at the damage, where the distance DR  from T-PWAS up 

to the damage location is used. 

      , ( ) , ,S A

IN IN T IN INu R V G R G R        (4.7) 

      , ( ) , ,S A

D D T D Du R V G R G R        (4.8) 

It can be noticed that the direct incident wave field is the superposition of 

symmetric and antisymmetric wave modes. 

STEP 4: Scattered wave source at the damage location is obtained by modifying incident 

waves at the damage with WDICs. 

        , ,
, ,SS ASi iS S A

N SS D AS Du C e u C e u
     

   
 

   (4.9) 

        , ,
, ,SA AAi iA S A

N SA D AA Du C e u C e u
     

   
 

   (4.10) 

where S

Nu  and A

Nu  represent the S0 and A0 damage generated wave sources respectively. 

These scattered waves are transferred from damage up to the sensing point. The 2-D 



 

77 

Lamb wave field eradiating from a point source takes the following solution (Glushkov et 

al. 2011; Giurgiutiu 2014): 

      1

1

1

i t

r n n

n

u a z H r e 






  (4.11) 

where  na z  is the thickness dependent modeshape of wave mode number n . Since the 

amplitude relationship between the interrogating waves and the scattered waves is 

enclosed in the WDICs, the transfer function from the damage up to the sensing point is 

simply 
   1

1 SCH R , where SCR  is the distance from the damage up to the sensing 

location. Thus, the scattered waves arriving at the sensing point can be calculated. 

        1 1

1 1;S S S A A A

SC N SC SC N SCu u H R u u H R    (4.12) 

STEP 5: The total wave field at the sensing location is the superposition of the direct 

incident waves calculated from Eq. (4.7) and the scattered waves calculated from Eq. 

(4.12). 

 TOTAL IN SCu u u   (4.13) 

It should be noted that the total wave field obtained in Eq. (4.13) is the in-plane 

wave displacement. Since laser vibrometer measures out-of-plane particle velocity, we 

need to convert this in-plane wave motion into out-of-plane wave motion. 

STEP 6: The out-of-plane displacement wave field can be obtained by the modeshape 

component ratio. 

 
 

 

 

 

, ,
;

, ,

S A
z zS S A A

z r z rS A
r r

U d U d
u u u u

U d U d

 

 
   (4.14) 

where , , ,S S A A
r z r zU U U U  are Lamb wave modeshape displacement components evaluated 

at the top surface of the structure. The modeshape solutions can be found in Giurgiutiu 



 

78 

(2008). The out-of-plane velocity was calculated by differentiating the out-of-plane 

displacement with respect to time. Through this differentiation, the wave amplitude will 

be modified by a factor of i  as shown in Eq.(4.15). 
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 (4.15) 

Thus, the solution for out-of-plane velocity in frequency domain can be obtained in the 

following form. 

  , , ,z D SC zu R R i u     (4.16) 

STEP 7: Perform inverse Fourier transform to obtain the time domain sensing signal. 

    , , , , , ,z D SC z D SCu t R R IFFT u R R       (4.17) 

In this study, we focused our attention on fundamental modes of Lamb waves (S0 

and A0), which find the widest application in Lamb wave based SHM. However, higher 

orders of Lamb modes (S1, A1, S2, A2, etc.) as well as shear horizontal (SH) modes from 

wave-damage interaction may also exist. The analytical framework can be easily 

extended to consider these aspects under the same principle; however, difficulty may be 

found in the extraction of WDICs. The small-size FEM technique developed in this study 

can solve the WDICs for S0, A0, SH0 wave modes. It should also be pointed out that, for 

model validation purpose, we used scanning laser vibrometer which measures the out-of-

plane velocity of the wave field. Thus, the scattered SH waves, which do not have out-of-

plane motion, cannot be captured. 

4.4 ANALYTICAL SIMULATION TOOL: WAVEFORMREVEALER 2-D 

The analytical model is a general description of wave generation, propagation, 

damage interaction, and detection. Parameter exploration is made possible for T-PWAS 
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size, structure material and thickness, sensor-damage locations, and arbitrary excitations, 

etc. This analytical framework was coded with MATLAB, and a graphical user interface 

(GUI) called WaveFormRevealer 2-D (WFR-2D) was developed (Shen and Giurgiutiu 

2014). Figure 4.4 shows the WFR-2D interfaces. 

Figure 4.4a shows the WFR-2D main interface which calculates the real time 

sensing signals as well as dispersion curves and tuning curves. The parameter control 

panel allows users to modify host structure material properties, thickness, and transmitter-

damage-sensing locations. The excitation control panel provides excitation waveform, 

frequency, and arbitrary excitation loading options. Users can also selectively choose the 

excited wave mode of interest. Figure 4.4b shows the scatter information platform for 

inputting wave-damage interaction coefficients (WDICs). Figure 4.4c and Figure 4.4d 

show the sub-interfaces for loading S0 and A0 WDICs. The T-PWAS properties module 

allows users to define T-PWAS geometric and material properties (Figure 4.4e). The 

spatial propagation solver, shown in Figure 4.4f, is like a C-scan, which calculates the 

transient time-space domain wave field. Thus, the transient spatial wave field can be 

obtained at any instance during wave propagation. 

Users can visualize wave propagation and interaction with damage easily with the 

animation functions offered by WFR. Additionally, all the calculation data is available 

for user analysis with the data saving functions. With this analytical tool, an increase in 

computation efficiency for large parameter space exploration can be achieved. It may 

take tens of hours for commercial finite element software to run a full scale 3-D 

simulation for an accuracy solution of a high frequency, short wavelength, and long 
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distance wave propagation problem, but it takes only several seconds to obtain the same 

solution with the WFR coupling along with two or three hours local FEM calculation. 

 

Figure 4.4: GUI of WFR-2D: (a) WFR-2D main interface; (b) damage information 

platform; (c) S0 WDICs module; (d) A0 WDICs module; (e) T-PWAS properties 

module; (f) spatial propagation solver. 

The extraction of WDICs is the key for CAFA. To obtain these frequency and 

direction dependent complex-valued coefficients, harmonic analysis of local FEM were 

carried out. To minimize the model size, we adopted the non-reflective boundary (NRB) 

technique. The next section will illustrate how we realized and improved the NRB 

condition in FEM using spring-damper elements. 

4.5 NON-REFLECTIVE BOUNDARY CONDITION FOR WAVE PROPAGATION 

Non-reflective boundaries (NRB) can eliminate boundary reflections, and thus 

allow for simulation of wave propagation in infinite medium with small-size models. In 

commercial FEM codes, such as ANSYS LS-DYNA solver with NRB option and 

(a) WFR Main Interface (b) Scatter Information Platform (c) S0 WDICs Module 

(d) A0 WDICs Module 
(e) T-PWAS Properties Module 

(f) Spatial Propagation Solver 
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ABAQUS using “solid infinite elements”, non-reflective viscous boundary condition has 

been realized by matching reacting forces at the defined NRB. Lysmer and Kuhlemeryer 

(1969) found that the matching normal and shear stresses should satisfy 

 P

u
c

t
 





 (4.18) 

 S

v
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t
 





 (4.19) 

where the reacting stresses on the artificial boundary depends on the normal and 

tangential velocities 
u

t




 and 

v

t




. COMBIN14 spring-damper elements have been used to 

construct a viscoelastic boundary condition for wave propagation problems in seismic 

engineering, and a viscous boundary condition for wave propagation in honeycomb plates 

(Liu 2005; Wang and Liu 2012; Hosseini et al. 2013). This NRB works well for bulk 

waves, and in the case of plate guided Lamb waves, it works well for S0 mode, but 

noticeable reflections occur when A0 mode interacts with the NRB. 

 

Figure 4.5: (a) COMBIN14 spring-damper element (ANSYS); (b) 3-D NRB construction 

using COMBIN14; (c) COMBIN14 parameter distribution of NRB for Lamb waves. 

In this study, we improved the NRB, making it effective for both symmetric and 

antisymmetric Lamb modes, in 3-D FEM using COMBIN14 spring-damper elements. 

(a) (b) (c) 
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Figure 4.5a shows the schematic of COMBIN14 in ANSYS, and Figure 4.5b illustrates 

the method of constructing NRB in a 3-D FEM mesh, where each node is connected with 

three COMBIN14 elements in three directions: one normal direction, and two tangential 

directions. 

According to Eqs. (4.18) and (4.19), the spring damper coefficients can be found 
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



 

 
 (4.20) 

In conventional practice for constructing NRB, COMBIN14 are only defined at 

the target boundary. Numerical experiments have found noticeable A0 reflections. In our 

design of NRB for Lamb waves, we consider the nature of Lamb waves, which is the 

superposition of multi-reflections of pressure wave and shear vertical wave between top 

and bottom plate surfaces as shown in Figure 4.5c. Thus, to better absorb out-of-plane 

wave motion, we distribute COMBIN14 elements not only along the target vertical plate 

surface, but also along the top and bottom surfaces in the vicinity of the target boundary. 

Besides, when waves interact with the NRB, the sudden change in FEM matrices will 

cause reflections. After a series of numerical experiments, a linear transition distribution 

from zero up to 20%  of the full coefficients (given in Eq. (4.20)) was chosen for top and 

bottom surface COMBIN14 element parameters. This transient distribution should cover 

at least two A0 wavelengths along the propagation direction. The vertical plate end was 

implemented with COMBIN14 elements with full parameters calculated from Eq.(4.20). 

To evaluate the effectiveness of the NRB for Lamb waves, transient finite element 

analyses were conducted. Figure 4.6shows the comparison between wave fields and 

signals from reflective boundaries (RB) and NRB. It can be observed, in Figure 4.6a, that 

the RB wave field has obvious reflections, however, in Figure 4.6b, the incident waves 
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are absorbed by NRB and no reflections occurred. Figure 4.7 shows that RB simulation 

signal contains reflected S0 and A0 waves, while the signal from NRB simulation shows 

neither reflected S0 nor A0 waves. It is remarkable that the proposed NRB for Lamb 

waves works well for both S0 mode and A0 mode waves. 

 

Figure 4.6: (a) Reflective boundaries (RB) wave field; (b) Non-reflective boundaries 

(NRB) wave field. 

 

Figure 4.7: Comparison of sensing signals between RB and NRB simulation. 
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4.6 EXTRACTION OF WDICS FROM LOCAL FEM 

4.6.1 LOCAL FINITE ELEMENT MODEL 

The development of NRB was shown in the previous section with an example of a 

transient analysis. This NRB application was extended to analyze harmonic responses, in 

order to calculate the steady-state response under sinusoidal loads. NRB are used in the 

FEM harmonic analysis to simulate continuous harmonic waves which are incident to a 

region of interest, as well as waves scattering from an arbitrary damage. This analysis can 

be performed for any specific frequency of interest. The steady-state amplitude and phase 

information facilitate the extraction of WDICs    ,
,

i
C e

  
  

 . In order to extract 

WDICs for a certain Lamb mode, a pair of harmonic analyses needs to be conducted: a 

pristine case and a damaged case. Since this study focused on fundamental S0 and A0 

wave interaction with damage, two pairs of (a total of four) harmonic analyses need to be 

performed. Figure 4.8 shows the small-size FEM pair designed for a 2.032-mm thick 

2024-T3 aluminum plate. Each model is 100mm long, 100 mm wide, and 2.032 mm thick, 

with a 30 mm wide NRB covering each boundary. 

Figure 4.8 also shows the loading nodes and the sensing nodes. The loading nodes 

are aligned to create a straight crested harmonic incident wave field, which is a good 

approximation when the damage is located far away from the excitation source. In the 

pristine model, a circle of sensing nodes and one center sensing point are designed to 

collect the structural harmonic response. The center sensing point records the incident 

waves arriving at the damage location. In the damaged case, only a circle of sensing 

nodes, with the same location as the pristine model, are used to collect the response data. 
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The design of the circular positioned sensing nodes allows us to extract information for 

all the directions of interest. 

 

Figure 4.8: Small-size local FEM pair for WDICs extraction. 

A damage example is shown in Figure 4.8. The geometry of damage is kept 

simple to ensure consistent FEM and experimental models, but complex enough to 

represent general wave-damage interaction phenomena, which have many mode 

conversion possibilities in the given frequency range. It should be noted that different 

types of damage will have different scattering characteristics; this will require a 

corresponding local damage model for WDIC extraction. 

4.6.2 IMPOSING EXACT LAMB MODE EXCITATION 

In this study, we imposed Lamb mode excitation through nodal forces by 

evaluating integrals of stress mode shape components on the loading nodes. The stress 

mode shapes are calculated analytically from Eq. (4.21) and Eq. (4.22). 
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For symmetric modes: 
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For antisymmetric modes: 
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  (4.22) 

 

Figure 4.9: Imposing Lamb mode excitation. 

Figure 4.9 shows the process of imposing Lamb mode excitation on the model. 

The stress mode shapes were obtained for each calculation frequency analytically. Then, 

the stress mode shapes were converted to nodal forces through boundary integration on 
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        
0 0

;
element elementL L

e e e e e e

ix xx i iy xy iF s N s ds F s N s ds     (4.23) 

where e

ixF  and 
e

iyF  are nodal forces in x  and y  direction evaluated on element e ; i  is the 

element node number;  e

xx s and  e

xy s  are the normal and shear stress field acting on 

this element;  e

iN s is the shape function of selected element type. In this study, we used 

SOLID45 3-D eight-node structure element, which utilizes linear shape function

 , ,e

iN x y z . Along the thickness direction, it becomes  e

iN s , which is 1-D interpolation 

function along the line. 

    1 21 ;e e

element element

s s
N s N s

L L
    (4.24) 

After all the nodal forces were obtained, an assembly process was carried out to obtain 

the global nodal forces. Then the nodal forces were updated for each calculation step, 

imposing Lamb mode excitation for each excitation frequency. 

4.6.3 WDICS EXTRACTION PROCEDURE 

When Lamb waves arrive at damage, they will be scattered and mode converted. 

The scattered wave field, by its nature, can be regarded as the superposition of waves 

irradiating from distributed point sources around the damage contour. The constructive or 

destructive interference among these waves is the cause of scattered wave field 

directionality and phase lead or delay. We used frequency and direction dependent 

complex-valued WDICs  to represent the wave scattering phenomena. It has been shown 

in Eq. (4.11) that Lamb waves irradiating from a point source follows a Hankel function 

of order one (
   1

1 nH r ) propagation pattern. Shear horizontal (SH) waves irradiating 

from a point source can be derived starting from the governing equation. 
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In polar coordinate system, considering an axisymmetric condition, Eq. (4.25) becomes 
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Assuming a harmonic wave field 
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Substitution of Eq. (4.27) into Eq. (4.26) yields 
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where 
SH

sc


   is the wavenumber of SH waves. Recall the Bessel equation of order  . 
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Eq. (4.28) can be immediately recognized as the Bessel equation of order zero and 

accepts the following solution for outward propagating waves. 

      1

0

1

SH i t

n n

n

u b z H r e 

 






  (4.30) 

where  nb z  is the modeshape of the n
th

 SH mode, and 
 1

0H  is the first kind Hankel 

function of order zero. 

Figure 4.10 shows the schematic of the sensing region from the small-size FEM 

for the extraction of WDICs. The in-plane displacements at the sensing nodes are used. 

According to Eq.(4.1), the scattered wave field can be obtained by the subtraction of the 

incident waves from the total waves. 



 

89 

 

Figure 4.10: Extraction of WDICs from small-size FEM. 

 SC TOTAL INW W W   (4.31) 

The sensing nodes data in the pristine model is the incident wave field, while the 

data from damaged model represents the total wave field containing both incident and 

scattered waves. Thus, the subtraction of the data between these two models provides the 

scattered wave field in all directions. Using Eq. (4.31) and a transformation from 

Cartesian to polar coordinate system, we calculated the scattered wave displacements at 

the top and bottom surface sensing nodes in both radial (
T

ru  and 
B

ru ) and tangential (
Tu  

and 
Bu ) directions. Using Eq. (4.32), we can separate and selectively represent each wave 

mode. 

 0 0 0; ; ;
2 2 2

T BT B T B

S A SHr r r r

SC SC SC

u uu u u u
u u u   

    (4.32) 

The incident wave arriving at the damage location is recorded by the center 

sensing point and denoted as INu . The relationship between the incident wave arriving at 

the damage and the scattered wave picked up on the sensing boundary can be formulated 

as Eq. (4.33). 
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            , 1
, SCIN i ii

IN m SCu e C e H r u e
        


   

   (4.33) 

where INi

INu e


 is the A mode incident wave recorded by the center sensing node with 

amplitude and phase information;    ,
,

i
C e

  
  

  is the WDIC, containing mode 

conversion (A mode to B mode), direction dependency, amplitude ratio, and phase 

relationship information;    1

mH r   represents the outward propagating 2-D wave field 

of the resulting scattered wave mode B, with 1m   for Lamb waves and 0m   for SH 

waves.    SCi

SCu e
 


  is the resulting scattered waves recorded on the sensing circle with 

scatter angle, amplitude and phase information. 

The harmonic analysis of the small-size FEM can provide the incident and 

scattered wave amplitude-phase information in Eq. (4.33), with    ,
,

i
C e

  
  

  left 

as the only unknown term. Upon rearrangement, Eq. (4.33) becomes 
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By identification, the amplitude coefficient and phase coefficient can be extracted. 
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4.6.4 EXAMPLES OF WDICS 

Figure 4.11 shows an example of S0 wave interaction with damage at 200 kHz. 

The first row shows the amplitude coefficients and the second row shows the phase 

coefficients. It can be observed that the interaction between the incident S0 wave and the 
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damage not only involves scattered S0 wave, but also involves mode converted A0 and 

SH0 waves. Also, the amplitude and phase coefficients are different for each scattering 

direction, i.e., they are heavily direction-dependent. The calculation of amplitude 

coefficients has been investigated in many literatures with various methods, but the 

estimation of phase coefficients has been ignored by previous researchers. The phase 

coefficients are of great significance in simulating wave-damage interaction, because they 

represent the constructive or destructive superposition of incident and scattered wave 

fields. Figure 4.12 shows the SAC  amplitude coefficient and SA   phase coefficient under 

various frequencies. It can be observed that WDICs are frequency dependent. 
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Figure 4.11: WDICs example of S0 wave interaction with damage at 200 kHz. 
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Figure 4.12: WDICs under various frequencies. 

200 kHz 

300 kHz 

400 kHz 

 under various frequencies  under various frequencies 



 

 

9
4
 

 

Figure 4.13: WDICs example of A0 wave interaction with damage at 200 kHz. 
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Figure 4.13 shows the WDICs for the incident A0 wave at 200 kHz. Similar 

scattering, mode conversion and direction-dependency phenomena can also be noticed in 

the coefficient patterns. 

4.7 NUMERICAL AND EXPERIMENTAL VERIFICATIONS 

In this section, we will present the multiphysics finite element models and 

experiments for CAFA verification. The comparison results are shown for wave 

propagation in a pristine plate and a damaged plate. 

4.7.1 MULTI-PHYSICS FINITE ELEMENT MODEL 

Figure 4.14 shows the finite element model. The specimen is a 2.032 mm thick 

aluminum plate. To minimize the calculation burden, NRB were implemented around the 

model. We used SOLID5 coupled field elements to simulate the piezoelectric effect of T-

PWAS, SOLID45 eight node structure element to mesh the plate, and COMBIN14 

spring-damper element to construct the NRB. The mesh size adopted in this study is 1 

mm for in-plane direction and 0.5 mm for thickness direction. The T-PWAS and damage 

regions were meshed with even smaller elements to accommodate the high stress gradient. 

A total of 423,468 elements were used. The time step was set to 0.25 μs. 

 

Figure 4.14: Multi-physics finite element model. 
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Two sets of simulations were carried out: (1) 2-D Lamb wave propagation in a 

pristine plate; (2) 2-D Lamb wave propagation in a damaged plate. The location and 

geometry information of the T-PWAS, damage and specimen are shown in Figure 4.14. 

4.7.2 EXPERIMENTS WITH SCANNING LASER VIBROMETER 

Figure 4.15 shows the experimental setup. The function generator was used to 

generate a 3-count Hanning window modulated tone burst which was amplified to 50 vpp 

by the amplifier and applied to the T-PWAS. Lamb waves generated by the T-PWAS 

propagated along the structure, interacted with the damage, and were measured by a 

Polytec PSV-400 scanning laser vibrometer. The quantity measured by the scanning laser 

vibrometer is the out-of-plane velocity of surface particle motion. Reflective tape was 

used to enhance the surface reflections and improve visualization quality. A C-scan of the 

specimen surface was carried out for both the pristine and the damaged plates. The 

locations of the T-PWAS, damage, and special recording points are illustrated.  

 

Figure 4.15: Experimental setup with scanning laser vibrometer. 
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4.8 RESULTS AND DISCUSSION 

4.8.1 WAVE PROPAGATION IN A PRISTINE PLATE 

Figure 4.16 shows the comparison of the transient spatial wave field among 

CAFA, FEM simulation, and experimental measurement in a pristine plate. 

 

Figure 4.16: Comparison of 200 kHz wave field in the pristine plate: (a) CAFA 

prediction; (b) FEM simulation; (3) experiment. 

It can be observed that CAFA predictions have good agreement with both FEM 

and experiment. A circular wave front was generated by the T-PWAS, strong near the 

wave source, and weak at far field due to the outward propagation pattern. 

Figure 4.17 shows the waveform validation results at various sensing locations for 
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with both FEM simulation and experiments. At the near field (location #2), S0 and A0 

waves are mixed together. The FEM result shows a shift from the CAFA prediction, 
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with smaller time marching step, but this increase in accuracy requires additional 

computation resources and a much longer computation time. For higher frequency 

simulations, full scale FEM becomes prohibitive. It can also be observed that CAFA 

prediction of the far field waveform agrees well with both FEM and experiments for a 

pristine plate. 

 

Figure 4.17: CAFA (solid line) validation with full FEM (dashed line) and experiments 

(dotted line). 200 kHz signals of pristine plate at various sensing locations shown in 

Figure 4.15. 
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be noticed, propagating with a short wavelength from S0 interaction with the damage. At 

50 μs, after A0 waves interact with damage, the scattered A0 mode can be observed as 

well as the shading left behind the damage. This shading effect is caused by the 

destructive superposition between the incident A0 waves and the scattered A0 waves. 

This also illustrates the importance of obtaining phase information in the WDICs. It 

should be noted that measurement discontinuities were found in the experimental data, 

which were caused by the reflective tape boundaries. 

 

Figure 4.18: Comparison of wave field in damaged plate, showing S0 and A0 Lamb 

modes interacting with damage: (a) CAFA prediction; (b) FEM simulation; (c) 

experiment. 
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Figure 4.19 shows the waveform validation results at various sensing locations for 

a 200 kHz excitation. It can be observed that WFR predictions match well with FEM 

simulation and experiments. The signals at location #1, #2, and #3 show that the scattered 

A0 wave amplitude increases when the sensing location moves closer to the damage. The 

signal at location #5 shows the mode converted A0 wave packet from the S0 interaction 

with damage. 

 

Figure 4.19: CAFA prediction (solid line) validation with full FEM (dashed line) and 

experiments (dotted line). 200 kHz signals of damaged plate at locations #1 through #5 

shown in Figure 4.15. 
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Figure 4.20 shows the comparison of the sensing signals at locations #6, #7, and 

#8, which are in certain directions with respect to the incident waves and the damage. It 

should be noted that at location # 6 and #7, damage scattered waves are clearly observed, 

but at location #8, no damage effect can be seen. Recall the WDICs pattern in Figure 4.13, 

the scattered A0 amplitude coefficient reaches a minimum value near 90 degrees with 

respect to the incident waves. This fact illustrates that at certain sensing locations, the 

damage cannot be effectively detected. Using CAFA and WFR-2D, the waveform can be 

predicted at arbitrary sensing locations, and the users can determine whether these 

locations are sensitive points or blind zones, optimizing the design of a sensor network 

for damage detection. 

 

Figure 4.20: CAFA prediction (solid line) validation with full FEM (dashed line) and 

experiments (dotted line). 200 kHz signals of damaged plate at locations #6 through #8 

shown in Figure 4.15. 
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4.8.3 TEST AT VARIOUS FREQUENCIES 

The results demonstrated in the previous sections are from examples of a 200 kHz 

excitation. To illustrate the accuracy of CAFA for various frequencies, we compared 

CAFA predictions with experimental results for 150 kHz, 200 kHz, and 250 kHz 

excitations. The results of sensing signals at location #5 are shown for both the pristine 

plate case and the damaged plate case. 

 

Figure 4.21: Test for various frequencies in the pristine plate. 
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dominant. As the excitation frequency goes up, the amplitude of the S0 wave grows and 

its participation in the wave signal increases. 

Figure 4.22 shows the signal comparison in the damaged plate under 150 kHz, 

200 kHz, and 250 kHz. The CAFA predictions for the test frequencies compare well with 

experimental measurements. By comparing with Figure 4.21, it can be observed that 

beside S0 and A0 wave packet, damage effects showed up in the sensing signal as an 

additional wave packet between the S0 and A0 waves. At low frequencies, i.e. 150 kHz, 

the damage effect is not clear, but at higher excitation frequencies, the damage effect can 

be distinguished clearly. This illustrates the importance of choosing the right 

interrogation frequency. 

 

Figure 4.22: Test for various frequencies in the damaged plate. 
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4.8.4 ADVANTAGE OF CAFA OVER CONVENTIONAL FEM 

For the simulation of guided wave active sensing, conventional transient FEM 

simulation is widely used (also shown in our comparative study). CAFA’s advantage over 

conventional FEM comes from its highly efficient computation algorithm. Conventional 

transient FEM simulation requires the dense discretization of the entire analysis domain, 

and extremely small time marching step to ensure the accuracy for high frequency, short 

wavelength, and long propagation distance waves. Such kind of computation may 

become prohibitive for high frequency and large scale problems. CAFA only requires the 

discretization of the local damage region, where the numerical model size is minimized. 

Instead of transient analysis, the damage interaction phenomena are calculated through 

harmonic analysis, which is the most efficient way of extracting wave damage interaction 

characteristics under all the frequencies of interest. The frequency domain global 

analytical formulation, using Fourier and inverse Fourier transform, facilitates the high 

efficiency of transient wave field calculation. The analytical formulation also enables the 

exploration of a wide range of parameters. Besides, the conventional FEM needs to save 

all the nodal solutions for each time marching step, which is a memory consuming 

procedure and requires large hard drive space for storing the big size of data. However, 

CAFA generates a 2-D wave field data with much less computer resource consumption. 

Taking the examples in this study, we used the multi-physics (with coupled-field 

elements for piezoelectric effect simulation) implicit solver of ANSYS to conduct the 

conventional FEM simulation. For each test frequency, it takes more than 20 hours. 

CAFA contains two steps: (1) local FEM calculation; (2) sensing signal calculation using 

analytical predictive tool WFR-2D. The local FEM takes only two to three hours. The 
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WFR-2D takes only 1 minute in addition to the local FEM calculation time. Conventional 

FEM requires re-model and re-run for the exploration of design parameters such as 

PWAS transducer size, sensor-damage relative location, interrogating wave frequency, 

and excitation waveform; however, CAFA only requires the modification of the 

corresponding calculation parameter and the exploration for each parameter only takes 

several minutes. Thus, CAFA can achieve orders of magnitude greater design efficiency 

when compared with conventional FEM. The data size of conventional 3-D FEM 

simulation can reach several hundreds of Gigabytes, while the 2-D time space wave field 

only consumes several hundreds of Megabytes. Therefore, CAFA can achieve orders of 

magnitude saving of computer resources. 
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CHAPTER 5  

SEMI-ANALYTICAL FINITE ELEMENT METHOD FOR MODELING GUIDED 

WAVES IN COMPOSITE STRUCTURES 

This chapter presents the semi-analytical finite element (SAFE) method for modeling 

guided waves in composite structures. The theoretical foundation for calculating guided 

waves in plate structures using the 1-D quadratic element is illustrated. The SAFE 

formulation forms a stable eigenvalue problem for solving wavenumbers and mode 

shapes in a given frequency range. Based on SAFE method, we developed the predictive 

tool SAFE-DISPERSION for calculating of dispersion curves, mode shapes, and 

directivity information of isotropic and composite plate structures. Case studies on 

various materials were carried out to verify SAFE solutions. First, dispersion curves and 

mode shapes were obtained for isotropic materials, which were then compared with the 

exact analytical solutions. Second, dispersion curves and modes shapes in composite 

structures were calculated and compared with commercially available software, 

DISPERSE
TM

, which is based on the global matrix method. Several cases were 

investigated, including unidirectional carbon fiber reinforced polymer (CFRP) plate, 0/90 

CFRP cross plies, and quasi-isotropic CFRP plates. 

5.1 INTRODUCTION AND STATE OF THE ART 

Composite materials are currently widely used in aerospace, automotive, and civil 

structures due to their light weight and high strength properties. However, composite 

materials are generally anisotropic and the damage developed in them is hard to be 
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observed from the structural surface. Thus, their wide application raises new challenges 

for the Structural Health Monitoring (SHM) community (Rose 2012). Ultrasonic guided 

wave technique provides a promising solution for damage detection and health 

monitoring of composite structures. However, due to the anisotropic material properties, 

the guided waves excited in composites exhibit directivity behaviors. These complicated 

behaviors include direction dependent dispersion curves and mode shapes. 

To solve wave propagation problems in composite structures, many methods have 

been developed. Transfer matrix method (TMM) is used to solve wave propagation in 

layered media (Thomson 1950; Haskell 1953). It is computational efficient for its 

condensed equation system, but numerical instability has been reported at large 

frequency-thickness (fd) products (Lowe 1995). The TM formulation itself has no 

deficiency, but numerical value of the real exponential fluctuates at high frequency and 

cause the instability problem. A number of researches have been carried out to propose 

reformulation of the TMM equations to avoid instability (Wang and Rokhlin 2001). The 

method is based on Stiffness matrix method (SMM) instead of TMM. At large fd values, 

the SMM turned out to be stable, but for small fd values, it suffers root finding problems. 

Kamal and Giurgiutiu (2014) proposed a stable Stiffness Transfer matrix method 

(STMM), aiming at combining the virtues of TMM and SMM. Steady stability was found 

for all the fd values. However, the transition between small fd TMM region and large fd 

SMM region needs to be determined for each calculation setup. The Global matrix 

method (GMM) was first developed by Knopoff (1964). It combines stress and 

displacement components at the boundaries of each layer with boundary conditions. All 

these quantities are assembled in one single matrix. Compared with TMM technique, the 
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GMM has the advantage that it remains stable throughout the fd range. The disadvantage 

of GMM is that the global matrix assembled to be a large matrix for laminates with a 

large number of layers, resulting in heavy computation burden and long computation time. 

This chapter focuses the semi-analytical finite element (SAFE) method. Different 

from the analytical approaches, the SAFE method discretizes the cross section of the 

waveguide (plate, rod, or cylinder) with finite elements and uses analytical formulation 

along the wave propagation direction (Gavric 1995). The finite element discretization 

makes SAFE capable of modeling waveguides with arbitrary cross section and material 

properties (Bartoli et al. 2006). Promising results have been reported using SAFE for 

calculation of dispersion curves and mode shapes in pipe and rail structures (Hayashi et al. 

2004). The application of SAFE method to composite structures showed very good 

results with the straight forward manner in material property definition (Rose 2012; 

Ahmad et al. 2013). Besides, the SAFE method does not require a root searching 

procedure like most of the analytical method. Instead, the formulation reaches a stable 

eigenvalue problem, which is efficient and easy in terms of numerical computation. 

5.2 SEMI-ANALYTICAL FINITE ELEMENT METHOD FORMULATION 

This section illustrates the SAFE formulation for plate structures. Details of the 

mathematical derivation and finite element implementation are shown. 

5.2.1 PROBLEM DESCRIPTION 

To model wave propagation in plate structures, we only need 1-D elements to 

discretize the cross section and describe the mode shapes of guided waves. The SAFE 

setup in an infinitely wide plate is shown in Figure 5.1. The waves propagates along x  

direction with wavenumber   at frequency  . The cross section lies in the y z  plane. 
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The harmonic displacement, stress, and strain field components at each point of the 

waveguide are expressed by 

 
x y z

x y z yz xz xy x y z yz xz xy

u u u

           

   

       

u

σ , ε
 (5.1) 

 

Figure 5.1: SAFE model of wave propagation in plate structures. 

The constitutive equation at a point is given by Cσ ε , where C  is complex valued 

stiffness matrix. This complex stiffness matrix contributes to complex valued 

wavenumbers for the modeling of damped guided wave propagation. The stress-

displacement relation can be written in matrix form as 

 x y z
x y z

   
   

   
ε L L L u  (5.2) 

where 

 

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1
, ,

0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0

0 1 0 1 0 0 0 0 0

x y z

     
     
     
     

       
     
     
     
     

L L L  (5.3) 
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5.2.2 COORDINATE TRANSFORM FOR STIFFNESS MATRIX OF LAMINATED COMPOSITES 

The stiffness matrix is usually defined in a coordinate system according to fiber 

orientation, with the 1-axis long the fiber direction, the 2-axis in the laminate plane and 

perpendicular to the fiber direction, and the 3-axis perpendicular to the laminate plane. 

Figure 5.2 shows two situations of lamina stacking angle. 

 

Figure 5.2: Coordinate transformation for different stacking angle. 

Figure 5.2a shows the 1-2-3 axis coincides with the x-y-z global coordinate 

system, which refers to a situation where the stacking angle   is zero. Since the stiffness 

matrix localC  is defined in 1-2-3 systems, in this case, the stiffness matrix C  in global 

coordinate equals localC , i.e., localC C . Figure 5.2b shows the 1-2-3 axis no longer 

coincides with the x y z   global coordinate system, which refers to a situation where 

the stacking angle   is nonzero. The stiffness matrix C  in global coordinate is calculated 

from localC  by the coordinate transform 

 
1 T

localC C T T  (5.4) 

where -1 means the inverse of a matrix, and the superscript T  means the transpose of a 

matrix. T  is the transformation matrix defined as 
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T  (5.5) 

where  cosm   and  sinn  . In this way, we can define the stiffness matrix for 

implementation in the finite element procedure for each layer of lamina with a certain 

stacking angle. 

5.2.3 GOVERNING EQUATION 

The governing equation is obtained by inserting the kinetic and potential energies 

into Hamilton’s equation; its variation form is expressed in Eq. (5.6) (see Bartoli et al. 

2006). 

  
2

1

0

t

t

H K dt     (5.6) 

where   is the strain energy and K  is the kinetic energy. The strain energy and kinetic 

energy are given by 

 
1 1

,
2 2

T T

V V
C dV K dV   ε ε u u  (5.7) 

where V  is the volume,   is the material density, and the dot represent a time derivative. 

After integrating by parts, Eq. (5.6) can be written as 

    
2

1

0

t

T T

V V
t

C dV dV dt    
   ε ε u u  (5.8) 

In general, the displacement filed can be described as 
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   

    
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   

u  (5.9) 

where i  is the imaginary unit,   is the wavenumber, and   is the angular frequency. It 

can be noticed in Eq. (5.9) that at each point, there are three degrees of freedom 

corresponding to x, y, and z direction. The displacement field is assumed to be harmonic 

along the x  propagation direction. And, the displacement amplitude is a function of 

space. The y-z plane amplitude describes the mode shape of guided waves. For a plate 

waveguide, considering a straight crested wave field propagating in x  direction, the 

problem is y-invariant for the given setup in Figure 5.1. Thus the displacement field is 

independent of the y  coordinate and can be simplified as 

  

 

 

 

 
, ,

x

i x t

y

z

U z

x z t U z e

U z

 

 
 

  
 
 

u  (5.10) 

5.2.4 FINITE ELEMENT PROCEDURE 

The finite element formulation uses shape functions to describe the displacements. 

In this study, we used the 1-D quadratic isoparametric element. Figure 5.3 shows the 

quadratic isoparametric element, the local coordinates, and its shape functions. The 1-D 

quadratic element is comprised of three nodes. The shape functions are evaluated at each 

node, so that the function value reaches one at the corresponding node and vanishes at the 

other two nodes. In this way, the displacement at a certain node is described exactly by 

the nodal solution, while the displacement at arbitrary location is approximated by the 

weighted contribution from the nodal solutions, with the weight being the shape function. 
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Figure 5.3: 1-D quadratic isoparametric element, local coordinate, and shape function. 

The global coordinate z  can be expressed with local coordinates 1 2 3, ,z z z  with the 

interpolation functions 1 2 3, ,N N N , i.e., 
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 (5.11) 

where z  is an arbitrary location in the global coordinate. z  is described by the shape 

functions and nodal coordinates. 

The displacements over the element domain are expressed in terms of the shape 

functions  kN z  and the nodal unknown displacements kxU , 
kyU , and kzU  of node k  in 

x , y , and z  direction in Eq. (5.12). For the quadratic element, there are totally three 

nodes in each element, so k  takes the value from one to three ( 3N  ). 
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where 

  
1 2 3

1 2 3

1 2 3

N N N

z N N N

N N N

 
 


 
  

N  (5.13) 

  
1 1 1 2 2 2 3 3 3

Te

x y z x y z x y zU U U U U U U U U   q  (5.14) 

The symbol  e  means the elemental expression. Recall Eq. (5.2) and Eq. (5.12), the 

strain vector can also be expressed in terms of nodal displacement and shape functions. 

 
             

1 2

e e i x t e i x t

x y y z e i e
x y y

   


    
     

   
ε L L L N q B B q  (5.15) 

where  

 1 y
y






N
B L 2;z x

z


 



N
L B L N  (5.16) 

It should be noted that for this y-invariant problem, the first term in 1B  vanishes. It 

should also be noted that the derivatives of shape functions are with respect to the global 

coordinate z , while the shape functions are given in local coordinate   of the 

isoparametric element.  

In general, a Jacobian matrix is used to convert the derivatives from global 

coordinate to the local isoparametric coordinate. For the 1-D quadratic element, the 

Jacobian becomes a constant, and the derivative in global coordinate can be expressed as 

 
1d d d d

dz d dz J d



 
 

N N N
 (5.17) 

where the Jacobian, according to Eq. (5.11), is evaluated as 
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 (5.18) 

Let en  being the total number of elements along the plate thickness, the discrete 

form of the governing equation from Eq. (5.8) is 

          
2

1
1

0
e

e e

t n
e T e e T e

e e e e
V V

et

C dV dV dt  


       
  ε ε u u  (5.19) 

where eC  and e  are the stiffness matrix and density of the corresponding element. For 

multilayer laminated composites, these material properties need to be defined for the 

elements in each layer. The symbol  denotes the assembling procedure. 

The substitution of Eq. (5.15) into the strain energy term in Eq. (5.19) yields 

         2

1 1 2 1 1 2 2 2
e e

e T e e T eT T T T

e e e e e e e
V

C dV C i C i C C d    

       ε ε q B B B B B B B B q  

  (5.20) 

where e  is the elemental domain. 

The substitution of the displacement expression in Eq. (5.12) into the kinetic 

energy term in Eq. (5.19) yields 

         2

e e

e T e e T eT

e e e e
V

dV d    


   u u q N N q  (5.21) 

Substituting Eq. (5.20) and Eq. (5.21) into Eq. (5.19) yields 

            
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where 
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 (5.23) 

It should be noted that the integration in Eq. (5.23) is carried out with the 

Gaussian quadrature method in the master element under local coordinate, and then 

converted to global coordinate with the Jacobian. For the given 1-D, three node quadratic 

elements, a two-point Gaussian quadrature can accurately evaluate the integration. The 

Gaussian quadrature integration points locations i  and weights iw  are shown in Table 

5.1. A typical numerical integration example is illustrated for the 
 
1

e
k  term of Eq. (5.23) 

in Eq. (5.24). 

  
2

1 1 1

1

1

2

e T

G e G i

i

C Jw


 k B B  (5.24) 

where 1GB  denotes the 1B  term in the global coordinate. According to Eq. (5.17), 1GB  

can be expressed in the local coordinate as 1LB  

 
1

1 1 1

1
G L LJ

J

 B B B  (5.25) 

Table 5.1: Gaussian quadrature points locations and weights. 

Point number i   Location i   Weight iw   

1 -0.5773502691896257 1.00 

2 0.5773502691896257 1.00 

 

Upon applying the standard finite element assembling procedure, Eq. (5.22) becomes 

  
2

1

2 2

1 2 3 0

t

T

t

i dt         U K K K M U  (5.26) 
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where U  is the global vector of unknown nodal displacements, and  

 
       

1 1 2 2 3 3

1 1 1 1

, , ,
e e e en n n n

e e e e

e e e e   

   K k K k K k M m  (5.27) 

Since Eq. (5.26) is true for an arbitrary U , the following homogeneous general 

wave equation is finally obtained 

 2 2

1 2 3 0i       K K K M U  (5.28) 

Eq. (5.28) can be written in an equivalent equation system 
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Eq. (5.29) is an eigenvalue problem. If we let M  equals the dimension of vector 

U , then at each frequency  , 2M  eigenvalues and consequently, 2M  eigenvectors are 

obtained. The eigenvectors are the M  forward and the corresponding M  backward wave 

mode shapes. The eigenvalues occur as pairs of real numbers ( Re ), representing 

propagative waves in the x  directions, or as pairs of complex conjugate numbers 

( Re Imi   ), representing damped propagative waves decaying in the x  directions, or 

as pairs of purely imaginary numbers ( Imi ), representing the evanescent waves in the 

x  directions. The phase velocity can be calculated by 
Rephc   , and the attenuation, 

in Nepers per meter, by Im . 

5.2.5 POSTPROCESSING OF SAFE DATA 

Although the eigenvalue SAFE solution is easy and straight forward, the data 

processing, however, is very complicated. The wavenumber solutions are discrete points 

of pure real numbers, pure imaginary number, or complex numbers. These discrete 

solutions also do not provide information on which wave mode they belong to. In 
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practical applications, it is very important to distinguish the wavenumber solution for 

each wave mode. In addition, although the nodal displacement solution can describe the 

displacement mode shape, the strain solutions are only available at Gaussian quadrature 

points. Furthermore, the stress mode shapes for composites are generally discontinuous 

due to the sudden change of the material properties for each lamina. All these factors 

bring difficulties to the data post processing. 

5.2.5.1 Auto-tracing and mode separation of wavenumber solutions 

In this study, we focus on the propagative wave modes which are used as 

interrogating field for SHM systems. The general wave expression 
 i x t

Ae
 

 represents a 

wave field propagating in the positive direction with the amplitude A . The wavenumber 

solution in the first octant of the solution domain ( Re Im f    shown in Figure 5.4a) 

can be expressed as Re Imi    . Substituting this wavenumber solution into the general 

wave expression yields 

        Re Im ReIm
i i x t i x ti x t x

Ae Ae Ae e
              (5.30) 

Eq. (5.30) shows that the general complex valued wavenumber solution in the 

first octant of the solution domain is physically meaningful for SHM application. The 

 Rei x t
e

 
 term represents the propagative wave in the positive direction, and the Imx

Ae


 

represents the decaying amplitude with propagation distance x  due to damping. 

Figure 5.4b shows the auto-tracing algorithm to connect the discrete solutions and 

separate the wave modes. The solution tracing starts from high frequency wavenumbers, 

where the solution experiences fewer crossings among various wave modes. Thus, the 

first few solution points are treated as separated solutions for each wave mode. Then, 

extrapolation was used to predict the solution for the next frequency as a guess value. 
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Finally, the solution set at that frequency is compared with the guess value, and the 

nearest solution in the set is regarded as the target solution. There are two specific 

scenarios in the auto-tracing procedure: (1) forward tracing like mode one in Figure 5.4b; 

(2) forward-backward tracing like mode seven in Figure 5.4b. The scenario of mode one 

is easy, while we need to set a threshold value for the scenario of mode seven. It should 

be noted that the default tracing direction is from high frequency to low frequency. When 

all the values of the next frequency solution set exceed a threshold limit from the guess 

value, the frequency tracing direction will change to a backward one, i.e., instead of 

searching in the lower frequency solution set, we turn to search in the higher frequency 

set (described as backward tracing in Figure 5.4b). The results show that this auto-tracing 

algorithm can effectively connect the discrete solution points and distinguish the wave 

modes. 

 

Figure 5.4: (a) Octant of propagative modes; (b) wavenumber solution tracing algorithm. 
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5.2.5.2 Displacement, strain, and stress mode shapes 

The SAFE eigenvalue problem provides the displacement mode shape directly by 

the eigenvectors which are the displacement components at each element node. The strain 

mode shape solution is obtained from Eq. (5.15), and is only evaluated at the Gaussian 

quadrature points. It should be noted that the strain mode shape should be continuous 

across the thickness. Thus, we used the interpolation and extrapolation to obtain the strain 

solution at an arbitrary location. Since strain is the derivative of displacement, the finite 

element procedure states that strain solution, in general, is one order less accurate than 

that of displacement. The accuracy of strain mode shape can be achieved by a denser 

discretization of the waveguide cross section. For laminate composite structures, although 

the strain mode shapes are continuous across the thickness, the stress mode shapes are not. 

We used the continuous strain mode shapes ε  to evaluate the stress mode shapes σ  

through the stress-strain relationship 

 kCσ ε  (5.31) 

where kC  is the stiffness matrix of the corresponding k
th

 lamina. 

5.3 SOFTWARE DEVELOPMENT: SAFE-DISPERSION 

The SAFE procedure was coded in a MATLAB graphical user interface (GUI), 

and the software SAFE-DISPERSION was developed. SAFE-DISPERSION aims at 

providing dispersion curves (phase velocity, group velocity, and frequency-wavenumber), 

mode shapes (displacement, strain, and stress), and directivity plots for isotropic plates, 

laminate composite plates, and sandwich composite plates. 

Figure 5.5 shows the main interface of SAFE-DISPERSION. It is comprised of 

several function panels: the material properties input panel, the parameter control panel, 
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the dispersion curve plot panel, the mode shape plot panel, and the directivity plot panel. 

The material input panel allows users to define three kinds of plate waveguides: isotropic 

materials, laminated composites, and sandwich composites. The parameter control panel 

is used to define the frequency range of interest, the frequency resolution for the solution, 

and the single/all direction calculation scenario. For the single direction calculation, users 

can specify which wave propagation direction solution is desired. For the omnidirectional 

calculation, users can define the angular step for the calculation setup. The frequency and 

direction slider, as well as the text input, allows users to specify the result display for the 

dispersion curves and mode shapes. The dispersion curve plot panel has three options: 

phase velocity dispersion curves, group velocity dispersion curves, and frequency-

wavenumber dispersion curves. The mode shape plot panel can display displacement 

mode shape, strain mode shape, and stress mode shape. The dispersion plot and the mode 

shape plot are inter connected, i.e., by clicking a wave mode on the dispersion curve, the 

corresponding mode shape at the selected frequency will be shown in the mode shape 

plot panel. The directivity plot panel can display direction-dependent wave properties. 

 

Figure 5.5: Main interface of SAFE-DISPERSION. 
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Figure 5.6 shows the material properties input panel sub-GUIs for: (a) isotropic 

material; (b) laminated composites; (c) sandwich composites. For isotropic materials, the 

properties are defined through Young’s modulus, Poisson’s ratio, density, damping ratio. 

Users need to specify the plate thickness and how many elements are used for the 

calculation. For laminated composites, each lamina is considered to have the same 

material properties, but the thickness and stacking angle of each lamina can vary. The 

material properties are defined by the stiffness matrix, density, and damping ratio of the 

lamina. Users need to specify how many elements will be used for each lamina for the 

calculation. At least one element per lamina is required. The thickness and stacking angle 

of each lamina are also defined in this panel. The sandwich composites material input 

panel is similar to that of laminated composites. The difference is that users need to 

define the properties of each layer one by one through clicking the “NEXT LAYER”. 

 

Figure 5.6: Material properties input panel. 

(a) 

(b) (c) 
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On the SAFE-DISPERSION main interface and sub-GUIs, users can use the 

“DEFAULT” button to load default parameters. The “SAVE” button allows users to 

export the calculation results to Excel files. The “FIGURE” button can float the figures 

which are displayed, so that users can use them for documentation. 

5.4 CASE STUDY OF GUIDED WAVES IN ISOTROPIC MATERIALS 

To verify the SAFE-DISPERSION solution, we first conducted a case study of 

wave propagation in isotropic materials, where, the exact analytical solution for 

dispersion curves and mode shapes exist. In this section, the comparison between SAFE-

DISPERSION and analytical solution is shown for aluminum 2024-T3 plate. The 

material properties of aluminum 2024-T3 are given in Table 5.2. 

Table 5.2: Material properties of aluminum 2024-T3. 

Young’s modulus ( E ) Poisson’s ratio ( ) Density (  ) 

73.1 GPa 0.33 2780 kg/m
3 

 

5.4.1 SAFE-DISPERSION VS EXACT ANALYTICAL SOLUTION: DISPERSION CURVES 

Figure 5.7 shows the comparison between exact analytical solution and SAFE-

DISPERSION solution of phase velocity dispersion curve for a 1-mm thick aluminum 

2024-T3 plate. It can be observed that the result from SAFE method match well the 

analytical solution. The number of Lamb modes, the cut-off frequencies, and the phase 

velocity values all agree very well. It should be pointed out that the accuracy of SAFE 

solution depends on the number of elements to mesh the waveguide cross section for 

describing the mode shapes. For high frequency-thickness products, more elements are 

required to obtain an accurate solution, which also means with certain number of 
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elements, the high frequency solutions are less accurate. For the simulation of 1-mm 

thick plate up to 10,000 kHz, we used 10 quadratic elements across the thickness. At very 

high frequency, a slight deviation of SAFE solution from exact analytical solution can be 

observed, but the overall accuracy is excellent, considering that SHM techniques usually 

adopt frequencies within hundreds of kilohertz. It should be noted that SAFE also 

provides shear horizontal modes. In Figure 5.7, we only selected the Lamb modes to 

compare with the solutions from the Rayleigh-Lamb equation. 

 

Figure 5.7: Phase velocity dispersion curve comparison between (a) exact analytical 

solution and (b) SAFE-DISPERSION solution. 

SAFE-DISPERSION can also provide group velocity dispersion curves and 

wavenumber dispersion curves. Figure 5.8 shows the group velocity and wavenumber 

dispersion curves calculated by SAFE-DISPERSION. Figure 5.9 shows the directivity 

plots of phase velocity, group velocity, and slowness curve for the aluminum plate at 100 

kHz, with blue line standing for the fundamental symmetric (S0) mode, green line 

standing for the fundamental shear horizontal (SH0) mode, and red line standing for the 
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the same in all the directions. This is because aluminum is an isotropic material which 

possesses the same material properties in all the directions. 

 

Figure 5.8: (a) Group velocity dispersion curve; (b) wavenumber dispersion curve. 

 

Figure 5.9: Directivity plots of (a) phase velocity, (b) group velocity, and (c) slowness 

curve(blue line: S0; green line: SH0; red line: A0). 
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with the analytical results for both S0 and A0 mode even at high frequency values such as 

5 MHz. It should also be noted that SAFE-DISPERSION also provides the 
yu  

displacement component, which represents a shear horizontal motion. For isotropic 

materials, such as aluminum, the Lamb modes are decoupled from shear horizontal 

motion. Thus, the 
yu  displacement always equals to zero for Lamb waves. 

 

Figure 5.10: Comparison of displacement mode shapes between analytical and SAFE 

solution. 

 

Figure 5.11: Comparison of stress mode shapes between analytical and SAFE solution. 
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Figure 5.11 shows the comparison of stress mode shapes between the exact 

analytical and SAFE solution. It can be observed that the results agree very well with 

each other for both S0 and A0 modes even at high frequency values such as 5 MHz. The 

stress boundary condition can further verify the SAFE simulation results. According to 

the stress free boundary condition of Lamb waves, the zz  and xz  stress components 

should vanish at the plate surfaces. This phenomenon can be clearly noticed in the SAFE 

results. It should also be noticed, since we used a 3-D elasticity formulation for SAFE-

DISPERSION, we can obtain all the stress components. 

5.5 CASE STUDY OF GUIDED WAVES IN COMPOSITE STRUCTURES 

The second phase of case study in this chapter focuses on the guided wave 

modeling in laminate composite plates. We selected carbon fiber reinforced polymer 

(CFRP) plates as our subject, which have a wide application in aerospace and automotive 

structures. The stiffness of the CFRP lamina is given in Eq. (5.32). The material density 

is 1560 
3kg m . 

 

143.8 6.2 6.2 0 0 0

6.2 13.3 6.5 0 0 0

6.2 6.5 13.3 0 0 0

0 0 0 3.6 0 0

0 0 0 0 5.7 0

0 0 0 0 0 5.7

CFRPC GPa

 
 
 
 

  
 
 
 
 

 (5.32) 

5.5.1 SAFE-DISPERSION VS GLOBAL MATRIX METHOD: DISPERSION CURVES 

Three cases were investigated: (1) wave propagation in various directions in 

unidirectional CFRP plates, (2) guided waves in cross ply CFRP plates, and (3) guided 

waves in quasi-isotropic CFRP plates. The global matrix method (GMM) solutions were 

obtained from the software DISPERSE
TM

 (Lowe 1995). Both phase velocity results and 
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group velocity plots were compared between GMM solution obtained from DISPERSE
TM

 

and SAFE solution obtained from SAFE-DISPERSION. 

5.5.1.3 Unidirectional CFRP plates: wave propagation in various directions 

Figure 5.12 shows the dispersion curve comparison between GMM and SAFE for 

wave propagation in 0 degree direction (along the fiber) in a 1-mm unidirectional CFRP 

plate. In the SAFE simulation, we used 10 elements across the thickness. The SAFE-

DISPERSION solution matches well with GMM result. It should be noted that SAFE 

method provides the SH0 mode, which is not present in DISPERSE
TM

 solution. 

 

Figure 5.12: Dispersion curves along fiber (0
 
degree) direction in a 1-mm unidirectional 

CFRP plate. 
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Figure 5.13 shows the comparison of dispersion curves for wave propagation in 

30 degree direction with respect fiber orientation. The results from GMM and SAFE-

DISPERSION match well with each other. Compared with the results in Figure 5.12, one 

significant change is that the phase velocity of the fundamental symmetric mode 

decreases. This is because this value is directly related to the stiffness in the propagation 

direction. 

 

Figure 5.13: Dispersion curves in 30
 
degree direction in a 1-mm unidirectional CFRP 

plate. 
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Figure 5.14 shows the comparison of dispersion curves for wave propagation in 

45 degree direction with respect to fiber orientation. The SAFE-DISPERSION solutions 

also match well with those from GMM. Again, the velocity of the fundamental mode 

further drops due to the decreased stiffness in the 45 degree direction. 

 

Figure 5.14: Dispersion curves in 45 degree direction in a 1-mm unidirectional CFRP 

plate. 
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Figure 5.15 shows the comparison of dispersion curves for wave propagation in 

90 degree direction with respect to fiber orientation. The solutions from both methods 

agree very well. It should be noted that the S0 mode is missing from GMM solution, 

while the S0 mode in SAFE-DISPERSION solution shows a very small value due to the 

fact that the stiffness in the 90 degree direction is small. 

 

Figure 5.15: Dispersion curves in 90
 
degree direction in a 1-mm unidirectional CFRP 

plate. 
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Figure 5.16 shows the directivity plots, showing the heavy dependence of 

dispersion quantities on wave propagation directions. Since unidirectional CFRP plates 

have big differences in the stiffness for various directions, a drastic change in phase 

velocity, group velocity, and slowness curve can be observed. The fundamental 

symmetric and antisymmetric motion wave velocities are highest along fiber direction, 

and lowest in the perpendicular direction with fiber orientation. However, the shear 

motion wave has highest velocity in the direction between 0 and 90 degree. This effect of 

anisotropic composite material is completely different from that of aluminum shown in 

Figure 5.9. 

 

Figure 5.16: Directivity plots of (a) phase velocity, (b) group velocity, and (c) slowness 

curve. 
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Figure 5.17: Dispersion curves for 1-mm thick 0/90 cross ply CFRP plate. 

 

Figure 5.18: Directivity plots of (a) phase velocity, (b) group velocity, and (c) slowness 

curve. 
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Figure 5.18 shows the directivity plots for this test case. Since the 0/90 cross ply 

plate has the material properties in the 0 degree and 90 degree directions, the dispersion 

quantities are also the same in 0 and 90 degree directions. The symmetric and 

antisymmetric waves reach their highest velocity in the 0 and 90 directions, while the 

shear motion wave reaches the maximum velocity in its 40 degree direction. 

 

Figure 5.19: Dispersion curves for 1-mm thick [0/90]s cross ply CFRP plate. 
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match well with GMM. It should be noted that, for all the results presented, SAFE-

DISPERSION provides stable solutions for all the possible wave modes including shear 

horizontal waves. But fine training is required to get satisfying results using 

DISPERSE
TM

 based on the GMM. The group velocity calculated from GMM in Figure 

5.19 shows numerical discontinuities, while SAFE-DISPERSION result shows smooth 

solutions. 

Figure 5.20 shows the directivity plots for the case of 1-mm [0/90]s cross ply 

CFRP plate. Similar effects to those in Figure 5.18 can be observed. However, the 

material properties are no longer the same for anti-symmetric waves. For 0 degree 

propagation antisymmetric waves, the 0 degree lamina is at the very outside, which make 

the effective “bending stiffness” bigger, while, for 90 degree propagating antisymmetric 

waves, the 90 degree lamina is at the very outside, which make the effective “bending 

stiffness” smaller. Thus, antisymmetric waves will have a higher velocity along 0 degree 

propagation direction, and will have a relatively lower velocity along 90 direction 

propagation direction. 

 

Figure 5.20: Directivity plots of (a) phase velocity, (b) group velocity, and (c) slowness 

curve. 
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5.5.1.5 Quasi-isotropic CFRP plates 

A 1-mm eight layer quasi-isotropic CFRP plate is considered in this case study. 

The stacking sequence is [+45/-45/0/90]s. For SAFE-DISPERSION, we used two 

elements for each layer, i.e., 16 elements were used to discretize the cross section of the 

plate and describe the mode shapes. 

 

Figure 5.21: Dispersion curves for 1-mm thick [+45/-45/0/90]s quasi-isotropic CFRP 

plate. 

0 500 1000 1500 2000 2500
0

5

10

15

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8

9

10

P
h
as

e 
v
el

o
ci

ty
 (

k
m

/s
) 

G
ro

u
p
 v

el
o
ci

ty
 (

k
m

/s
) 

Frequency (MHz) Frequency (MHz) 

Global matrix method (GMM) from DISPERSE
TM

 
 

Frequency (kHz) Frequency (kHz) 

P
h
as

e 
v
el

o
ci

ty
 (

k
m

/s
) 

G
ro

u
p
 v

el
o
ci

ty
 (

k
m

/s
) 

Semi-analytical finite element (SAFE) method from SAFE-DISPERSION 



 

137 

Figure 5.21 shows that the dispersion curves for this 1-mm 8 layer quasi-isotropic 

CFRP plate match well with each other. Beyond 2000 kHz, slight differences are noticed. 

This is because the quasi-isotropic plate has 8 layers of lamina, which makes the cross 

section more complicated than the previous cases. Thus, the accurate modeling of mode 

shapes across the thickness requires more elements. Numerical discontinuities can be 

observed from DISPERSE
TM

 solution. Smooth results are obtained from SAFE-

DISPERSION. 

 

Figure 5.22: Directivity plots of (a) phase velocity, (b) group velocity, and (c) slowness 

curve. 
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the outermost two laminate on top and bottom surfaces have the stacking angle of +45 

degree, and these outermost layers have the biggest contribution to the bending stiffness 

of the plate, which will result in the largest antisymmetric mode velocity. 

5.5.2 SAFE-DISPERSION VS GLOBAL MATRIX METHOD: MODE SHAPES 

The mode shapes of composite material are more complicated than those of 

isotropic materials. The DISPERSE
TM

 software is based on the GMM, and provides a 

mode shape display option. The SAFE-DISPERSION, developed in this study using 

SAFE method, also has a mode shape display function. To verify our SAFE-

DISPERSION results for mode shapes in composites, we conducted the case study on a 

1-mm 0/90 cross ply CFRP plate and compared the results with DISPERSE
TM 

(GMM). 

We choose this two layer laminate, because it is very representative with drastic stiffness 

change between the two layers. 

 

Figure 5.23: Comparison of displacement mode shapes between GMM and SAFE at 500 

kHz. 
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Figure 5.23 shows the comparison of displacement mode shapes between GMM 

and SAFE method at 500 kHz. It should be noted that the figure captured from 

DISPERSE
TM

 software has slightly different figure margins and line colors. But it can be 

observed that the SAFE-DISPERSION solutions match very well for both fundamental 

symmetric and antisymmetric wave mode. Compared with the mode shapes in isotropic 

materials (Figure 5.10), the fundamental symmetric and antisymmetric mode 

displacement components are no longer purely symmetric or antisymmetric to the mid-

plane of the plate. The 90 degree layer with lower stiffness undergoes greater motion than 

the 0 degree layer with higher stiffness. 

 

Figure 5.24: Comparison of stress mode shapes between GMM and SAFE at 500 kHz. 
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at the interface between the two layers. This is because the deformation (displacement 

and strain) is continuous across the thickness considering the compatibility of elastic 

solid, but the stiffness varies a lot between the 0 degree lamina and the 90 degree lamina. 

According to Eq. (5.31), the discontinuity in stiffness will result in the drastic change in 

the stress across the plate thickness. The 0 degree layer with higher stiffness carries 

higher stress than the 90 degree layer with lower stiffness. Another aspect which serves 

as an additional proof of the correctness is the free surface boundary condition. It can be 

observed that the zz  and xz  stress components vanishes at the top and bottom surfaces, 

which satisfies the stress free boundary condition. 

 

Figure 5.25: Comparison of displacement mode shapes between GMM and SAFE at 

10000 kHz. 
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Compared with Figure 5.23 and Figure 5.24, the mode shapes become more complicated. 

For even higher frequency, more elements are required to accurately model the waves. 

 

Figure 5.26: Comparison of stress mode shapes between GMM and SAFE at 1000 kHz. 
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CHAPTER 6  

NONLINEAR OSCILLATION THEORY AND TECHNIQUES FOR STRUCTURAL 

HEALTH MONITORING 

This chapter introduces the fundamentals of nonlinear oscillation theory and its 

application to Structural Health Monitoring (SHM). Three nonlinear mechanisms, with 

promising application potentials, are discussed, including the classical nonlinear elasticity, 

contact and clapping nonlinearity, and material hysteresis behavior. To illustration the 

contact and clapping nonlinearity, we conducted a parameter study with a bi-linear 

stiffness model using MATLAB SIMULINK. The most prevailing nonlinear ultrasonic 

techniques are introduced and discussed, including higher harmonics technique, 

subharmonic and DC response technique, nonlinear resonant ultrasound spectroscopy 

technique, and mixed frequency response (nonlinear modulation) technique.  

6.1 INTRODUCTION 

Conventional ultrasonic NDE and SHM techniques are developed based on linear 

elastic theory, and they normally rely on measuring some particular parameter, such as 

wave speed, attenuation, and transmission/reflection coefficients, to detect damage. The 

logic behind these conventional ultrasonic techniques is that the presence of damage will 

bring changes to the above measuring quantities. Practical applications have shown that 

the linear theory is sensitive to gross damage or open cracks, where there exists an 

effective scatterer for wave propagation. However, they are found to be less sensitive to 

incipient structural damage such as micro cracks, fatigue zone, or close cracks.
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Nonlinear techniques, on the other hand, have shown great potential for detecting such 

incipient changes at their early stage, using features that are distinctive from nonlinear 

frequency responses (Jhang 2009). 

6.2 NONLINEAR ULTRASONIC MECHANISMS 

For various physical situations, the nonlinear ultrasonic mechanisms are very 

complicated. This section discusses three physics of nonlinear ultrasonics: (1) classical 

nonlinear elasticity, (2) contact and clapping nonlinearity, and (3) material hysteresis 

behavior. 

6.2.1 CLASSICAL NONLINEAR ELASTICITY 

The classical nonlinear elasticity model describes a nonlinear relationship 

between stress and strain, which is associated with material change at a mesoscopic level, 

such as accumulation of dislocations in metallic structures (Nagy 1998; Cantrell 2009; 

Jhang 2009; Broda et al. 2014).  

A fundamental representation of the classical nonlinear elasticity is the nonlinear 

Hooke’s law which accounts for higher-order elastic terms. There are two basic nonlinear 

types which are considered and distinguished due to their distinctively different forced 

responses: (1) quadratic nonlinearity and (2) cubic nonlinearity. Considering a general 

nonlinear dynamic system, the quadratic nonlinearity can be expressed using Eq. (6.1). 

  21QU Ax x x      (6.1) 

where 
QU  is the output of the quadratic nonlinear system, A  is the scale factor, and   

and   are the second and third nonlinear coefficients. It should be noted that Eq. (6.1) 

contains all the higher-order terms. A single frequency forced response of the quadratic 
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nonlinear system will bring in nonlinear higher harmonics. This effect can be illustrated 

by considering a harmonic input in the form of Eq. (6.2). 

   ˆ i tX xe    (6.2) 

By substituting Eq. (6.2) in to Eq. (6.1), the output of the nonlinear system takes the form 

 

2 3

2 2 3

2

ˆ ˆ ˆ( ) ( )

ˆ ˆˆ ˆ ˆ

ˆ ˆ( ) (2 ) (3 )

i t i t i t

Q

i t i t i t

U Axe A xe A xe

Axe A xxe A x xe

AX A xX A x X

  

  

 

 

    

   

   

   

 (6.3) 

Eq. (6.3) shows that the output of the quadratic nonlinear system contains all the 

higher harmonics 2 ,3  , while the input to the system contains only one frequency 

component . This distinctive feature allows us to detect material degradation, fatigue, or 

accumulated dislocations which may introduce nonlinearity into the materials. 

Similar to quadratic nonlinearity, the cubic nonlinearity can be expressed using 

Eq. (6.4). It can be noticed that compared with Eq. (6.1), the cubic expression is an odd 

function, which only keeps the odd higher-order terms. 

  2 41CU Ax x x     (6.4) 

where CU  is the output of a cubic nonlinear system, and   and   are the third and fifth 

nonlinear coefficients. The single frequency forced response of cubic nonlinear system 

will only generate odd higher harmonics shown in Eq. (6.5). 

 2 4ˆ ˆ( ) (3 ) (5 )CU AX A x X A x X         (6.5) 

Figure 6.1 shows the quadratic and cubic nonlinear elasticity relationship between 

input X  and output terms 
QU  and CU , as well as their frequency response to a single 

frequency excitation centered at cf . The first vertical line stands for the fundamental 

response at the excitation frequency, and the rest represent the nonlinear higher 
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harmonics response. The difference in the response spectrum can be clearly identified: 

the quadratic nonlinearity response contains all the higher order harmonics, whereas the 

cubic nonlinearity response contains only the odd higher order harmonics. 

 

Figure 6.1: (a) Quadratic nonlinear system and its response to single frequency forced 

excitation; (b) cubic nonlinear system and its response to single frequency forced 

excitation (modified after Broda et al. 2014). 

Other explanations of the higher order harmonic generation due to material 

nonlinear elasticity are found using perturbation theory (Nayfeh and Mook 1995). An 

example of such problem is longitudinal wave propagation through a thin circular rod 
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equation considering one higher order nonlinear term with nonlinear coefficient   

(Jhang 2009). 
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2 2 2

2 2 2
2

u u u
E E

t x x
 
  

 
  

 (6.6) 

where   is the material density, x  is the propagation direction coordinate,   is the 

stress, and u  is the displacement. The perturbation theory is then applied by assuming 

the displacement as 

 0 'u u u   (6.7) 

where 0u  represents the initially excited wave and 'u  represents the first order 

perturbation solution. If we set 0u  to a sinusoidal single frequency wave at   with the 

wavenumber   expressed in Eq. (6.8), 

  0 1 cosu A x t    (6.8) 

then, we can obtain the perturbation solution up to the second order as follows (Brillouin 

1964; Mumaghan 1951) 

    0 1 2' cos sin 2u u u A x t A x t          (6.9) 

 
2 2

2 1
8

A A x


  (6.10) 

The second term in Eq. (6.9) represents the second harmonic frequency component. Eq. 

(6.10) gives the relationship between the fundamental component amplitude 1A  and the 

second harmonic component amplitude 2A . It can be observed that the participation of 

second harmonic component depends on the nonlinear elasticity parameter  . It can also 

be noted that the second harmonic is cumulative with propagation distance x . This 

dependency of higher harmonic amplitude to nonlinear parameters makes it possible to 

evaluate the degradation of elastic properties by monitoring the magnitude of the higher 

harmonic wave component in the transmitted wave. 
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More complicated cases, such as the cumulative second-harmonic generation of 

Lamb waves in plate structures, have also been studied theoretically (Deng 1999 and 

2003). Experimental observations of such material nonlinear effects on Lamb waves have 

been reported (Bermes 2007). Srivastava and Lanza di Scalea (2009) further discussed 

the existence of antisymmetric nonlinear Lamb modes due to material nonlinear elasticity. 

The same authors (Srivastava and Lanza di Scalea 2010) also investigated the nonlinear 

guided wave generation in arbitrary cross section waveguides using the semi-analytical 

finite element (SAFE) method. All the theoretical and numerical studies mentioned here 

also started from the nonlinear form of wave equations. The derivation proved to be 

mathematically complicated and hard to attain. 

6.2.2 CONTACT AND CLAPPING NONLINEARITY 

All the models in the nonlinear elasticity section consider the nonlinear elastic 

behavior exhibited over the whole material domain, which may correspond to the case of 

material degradation and mesoscopic accumulated dislocations. More practical 

applications of nonlinear techniques should focus on the detection of fatigue cracks, 

breathing cracks, or closed cracks, which are local damage and exhibit totally different 

nonlinear behaviors. The widely accepted approach to understanding this nonlinear 

mechanism is the contact and clapping model. In this section, a bi-linear stiffness model 

is introduced and programed using MATLAB SIMULINK. This model is constructed 

based on the mechanical behavior of micro cracks: the presence of tension and 

compression leads to crack opening and closing (Worden and Tomlinson 2001; Friswell 

and Penny 2002; Giurgiutiu 2002). Parameter studies on damage severity and excitation 
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frequency were carried out to demonstrate the capability of nonlinear techniques for 

detection and quantification of structural damage. 

6.2.2.1 Bi-linear stiffness model for contact nonlinearity 

Fatigue cracks or micro cracks may cause structures to behave nonlinearly under 

dynamic load. Figure 6.2 shows the contact bi-linear behavior of cracks in structures. 

When the crack zone is stretched, the crack opens, and the structure is discontinuous with 

a lower effective stiffness sk . However, when the crack zone is under compression, the 

crack closes, and the structure behaves like a continuum with the original structural 

stiffness ck , which is greater than sk . Therefore, the structure has a changing effective 

stiffness related with the size and status of the “breathing crack”. 

 

Figure 6.2: Bi-linear contact behavior of cracks in structures (Giurgiutiu 2002). 

A reduced order model was built to approximate a general contact nonlinear 

behavior for parameter study. Figure 6.3a shows the bi-linear stiffness effect under 

compression and tension. Figure 6.3b shows the reduced order model with changing 

spring coefficient. The spring coefficient is higher under compression than that under 

tension. 
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Figure 6.3: Bi-linear stiffness model for contact nonlinearity of cracks. 

A piecewise-linear nonlinear equation was used to model the contact nonlinear 

system (after Giurgiutiu 2002). 

 
 

 
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2
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     


    

 (6.11) 

where the subscripts C and T denote “compression” and “tension” of the crack status. 

Under compression, the structure behaves like a continuum, so c n   which is the 

natural frequency of the component in pristine condition. At stretching, the crack opens, 

the component becomes discontinuous, and the effective stiffness decreases. Hence, it is 

apparent that t n  . t is directly related to the severity of the damage in the structure. 

The more severe the damage, the more t  deviates from n . Assuming 1t n r   , 

c n  , where r  is the relative crack size, r a h , the severity index of the damage. 

The piecewise-linear equation was solved numerically by MATLAB SIMULINK. 

Figure 6.4 shows the SIMULINK program to solve Eq. (6.11). The natural frequency of 

the pristine system is set to 200 Hz. The damping ratios for both stretching and 

compression are considered as 0.02.  
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Figure 6.4: SIMULINK for solving the piecewise-linear nonlinear equation. 

6.2.2.2 Parameter study on damage severity 

A parameter study was carried out to investigate the influence of the damage 

severity on the sensing signal. Figure 6.5 shows the parameter study plots. Each row of 

the plots corresponds to one damage situation. Four degrees of damage severity was 

investigated, with r = 0.0, 0.1, 0.4, 0.6, standing for respectively pristine, small damage, 

medium damage, and severe damage cases. The first column shows the time domain 

displacement signal. The second column shows the phase plane including the information 

from both displacement and velocity. A phase plane is the representation of oscillations 

showing the variation of velocity u  with displacement u  (Nayfeh and Mook 1995). The 

third column shows the frequency spectrum of the displacement signals. It should be 

noted that SIMULINK provided a transient response. The excitation is at 50 Hz. The 

signals shown in Figure 6.5 are selected when the response reaches steady state.  
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Figure 6.5: Parameter study on damage severity. Time domain signal, phase plane signal, 

and frequency domain spectrum (blue line: pristine case; red line: damaged case). 
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The time domain displacement signals in the first column show that with higher 

degree of damage severity, more distortion is introduced into the signal. When the 

structure is pristine, the displacement oscillation takes a perfect sine waveform. When 

damage appears in the structure, the signal deviates from the sine waveform. One 

significant phenomenon is that the amplitude is no longer equal with respect to the origin. 

When the damage is severe, obvious zigzags can be noticed, denoting the participation 

from higher harmonic frequency components. 

The phase planes can also show the effects from the nonlinear damage. It has 

been shown that the displacement takes a sine waveform. The velocity is the derivative of 

displacement with respect to time and takes a cosine waveform. 

      sin ; cos
u

u A t u A t
t

  


  


 (6.12) 

Squaring both sides of displacement and velocity formulae in Eq. (6.12) yields 

 
 

       

2 2 2

2 22 2 2

sin

cos 1 sin

u A t

u A t A t



   



    

 (6.13) 

The phase plane showing the variation of velocity u  with displacement u  can be 

obtained from Eq. (6.13) as 

 

2 2

1
u u

A A

   
    

   
 (6.14) 

Thus, when the structure is pristine, the phase plane is a regular elliptic as shown in 

Figure 6.5. When damage appears, the phase plane starts to deviate from the elliptic 

shape, and takes an irregular form, unbalanced with respect to the origin and axis in an 

asymmetric shape. When the damage is severe, obvious deviation from the elliptic can be 
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noticed with additional complete cyclic motions, which indicate the appearance of 

zigzags in the time domain signal and strong participation of other harmonic components. 

The frequency spectrum shows even more distinctive features of nonlinear 

oscillations. It can be observed, for the pristine case, there is only one frequency 

component at the excitation frequency ef , and no other frequency components are 

noticed. When damage appears, beside the fundamental excitation component at ef , 

small amplitude higher harmonic components are present at 2 ef , 3 ef , and 4 ef , etc.. 

When the severity of damage goes up, the nonlinear higher harmonics become much 

stronger. This distinctive feature can be used for detecting nonlinear damage and further 

identify the severity of damage. 

6.2.2.3 Parameter study on excitation frequency 

Another special feature of nonlinear systems is that their response is sensitive to 

the excitation frequency, and can be totally different for certain special frequencies. To 

illustrate this important aspect, a parameter study was conducted on the bi-linear stiffness 

model. We kept the damage severity the same at r = 0.6 for a severe damage case. The 

natural frequency of the pristine structure is set to 200 Hz. By using 1t n r   , the 

crack open status natural frequency is 126.5 Hz. We tested four excitation frequencies: 50 

Hz, 100 Hz, 250 Hz, and 334.67 Hz. Figure 6.6 shows the parameter study plots. Each 

row contains the results for an excitation frequency case. The first column shows the time 

domain displacement signal. The second row shows the phase plane containing both the 

displacement and velocity relationship information. The third column shows the 

frequency spectrum of the displacement signal. The steady state response was used to 

generate these plots. 
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Figure 6.6: Parameter study on excitation frequency. Time domain signal, phase plane 

signal, and frequency domain spectrum (blue line: pristine case; red line: damaged case). 
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It can be observed that at 50 Hz, obvious nonlinear effects can be identified from 

time domain signal which shows zigzags, the phase plane showing asymmetric deviation 

from the elliptic shape, and the frequency spectrum with strong higher harmonics. When 

we apply 100 Hz excitation to the nonlinear system, the time domain signal and the phase 

plane look totally different. The time domain oscillation gains higher amplitude toward 

the negative direction, which also appears in the phase plane as the asymmetry to the left 

hand side, instead of to the right hand side as in the 50 Hz case. The frequency spectrum 

still shows obvious nonlinear higher harmonics. At a certain frequency, such as 250 Hz, 

the nonlinear effects are not obvious. The 250 Hz time domain signal approaches a 

perfect sine waveform, and the phase plane shows a nice and smooth symmetric elliptic. 

The only difference is the amplitude. The frequency spectrum also shows no obvious 

higher harmonic components. There is a special excitation frequency, around which a 

distinctive subharmonic may be excited. This frequency is identified as twice the natural 

frequency of the linearized damaged system. The natural frequency of the linearized 

damaged system is given by Johnson et al. (2010) in Eq. (6.15). 

  2 2

0 2c tf f f   (6.15) 

which is 167.335 Hz for this case study. The bottom row of Figure 6.6 shows the unique 

subharmonic phenomenon for a 334.67 Hz excitation, which is twice the natural 

frequency of the linearized damaged system. The time domain signal shows a waveform 

component with a period twice as much as the pristine case signal. This means the 

corresponding frequency of this component is half of the excitation. A component at half 

the excitation frequency is referred to as subharmonic. The phase plane shows obvious 

nonlinearity with an asymmetric deviation from the elliptic shape, and the additional 
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complete cyclic motion indicates the zigzags in time domain signal and the strong 

participation of other harmonic components. The frequency spectrum shows that, besides 

the fundamental frequency at 326.5 Hz, an obvious subharmonic component at 163.25 Hz 

appears. This subharmonic effect can help us identify nonlinear damage and avoid 

influence from electronic devices with inherent nonlinearity; this is because electronic 

devices can generate higher harmonics but not subharmonics. 

6.2.3 MATERIAL HYSTERESIS BEHAVIOR 

Another nonlinear material behavior is stress strain hysteresis. This aspect of the 

nonlinear model will only be briefly introduced here. Hysteresis in metals and rocks was 

observed experimentally as early as the end of 19
th

 and the beginning of 20
th

 century 

(Love 1944). Experimental results show that hysteresis nonlinearity is stronger under 

rapid loading/unloading, and weaker in the case of slow deformation. Many factors have 

been suggested to cause this phenomenon, such as plasticity, viscosity, and the presence 

of cracks. 

 

Figure 6.7: Stress strain hysteresis (Broda 2014). 
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Figure 6.7 shows a typical stress strain hysteresis loop, which is different from the 

classical nonlinear elasticity model described in Figure 6.1. In the classical nonlinear 

model, the loading and unloading will go through the same path. The hysteresis behavior, 

however, shows different paths of stress strain relation under loading and unloading. 

During the initial loading, the material behavior is described by the curve ABC. When the 

material is unloaded, instead of going back along the path CBA, the material behavior 

follows the path CDE. When reloaded again, the material will move along the path EFC. 

Additionally, the hysteresis path can be totally different under various loading levels, i.e., 

under smaller loading, the path can be GHG. The integration of stress over strain 

provides strain energy. It can be noticed that the loop area is the energy dissipated during 

cyclic loading. Most of the models describing the hysteresis behavior are 

phenomenological, the theoretical explanation of the cause is still not clear. 

6.3 NONLINEAR TECHNIQUES FOR STRUCTURAL HEALTH MONITORING 

Nonlinear ultrasonic techniques for structural health monitoring are attracting 

more and more interest in recent years for their remarkable sensitivity to incipient 

damage. In this section, four prevailing nonlinear techniques are introduced. 

6.3.1 HIGHER HARMONICS TECHNIQUE 

Higher harmonic generation is a classical phenomenon where the waveform of an 

incident wave is distorted by the nonlinear elastic response of the medium to the incident 

wave; therefore, higher harmonics are generated in the transmitted wave. Figure 6.8 

shows the higher harmonic technique. Figure 6.8a shows that when the structure is 

pristine, if we input an excitation at a certain frequency, the output waveform will not be 

distorted and contains only the frequency component of the excitation. Figure 6.8b shows 

A 
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that when the structure is damaged, wave distortion will occur at the damage and the 

frequency spectrum will not only contain the excitation frequency, but also the distinctive 

nonlinear higher harmonics.  

 

Figure 6.8: Nonlinear higher harmonic technique: (a) response of pristine structure shows 

no waveform distortion or nonlinear higher harmonics; (b) response of damaged structure 

shows waveform distortion and distinctive nonlinear higher harmonics. 

This technique has been used to detect fatigue damage in various metals (Cantrell 

and Yost 1994; Hurley et al. 1998). A direct correlation between dislocation density 

within the fatigued material and an increase in harmonic ultrasonic signals has been 

reported (Kim et al. 2006). Since the experimental observation and theoretical analysis of 

Transmitter Receiver 
Pristine structure 

0 200 400 600 800
0

2

4

6

0.9 0.92 0.94 0.96 0.98 1

-2

-1

0

1

2

FFT 

Input 

Signal 

0.9 0.92 0.94 0.96 0.98 1

-2

-1

0

1

2
0 200 400 600 800

0

2

4

6

FFT 

Signal 

Output 

(a) 

Transmitter Receiver 
Damaged structure 

0 200 400 600 800
0

2

4

6

0.9 0.92 0.94 0.96 0.98 1

-2

-1

0

1

2

FFT 

Input 

Signal 

FFT 

Signal 

Output 

0.9 0.92 0.94 0.96 0.98 1

-2

-1

0

1

2
0 200 400 600 800

0

2

4

6

(b) 



 

159 

the generation of the second harmonic from interfaces and cracks, there have been 

numerous investigations due to its potential application to the ultrasonic inspection of 

imperfect interfaces and cracks (Buck et al. 1978; Richardson 1979; Donskoy et al. 2001; 

Biwa et al. 2004). 

Although super harmonic generation is the classic and straight forward nonlinear 

technique, there is still great potential for research. First, most of the previous research 

work focuses on nonlinear non-dispersive bulk waves, but the amount of research on 

dispersive guided nonlinear waves is still limited. Further, inherent electronic 

nonlinearity from experimental device is unavoidable, which will greatly influence the 

judgment of the final results based on the generation of super harmonics. However, few 

solutions were found or mentioned in literatures. 

6.3.2 SUBHARMONIC AND DC RESPONSE TECHNIQUE 

Sub-harmonic and DC responses have been extensively studied recently (Korshak 

et al. 2002; Solodov et al. 2002). Sub-harmonics is a nonlinear wave distortion where the 

amplitude of adjacent carriers becomes different, resulting in a doubling of the period and 

a halving of the excitation frequency, i.e., 2cf . A DC response is a nonlinear rectifying 

effect resulting in amplitude demodulation (Yamanaka et al. 1994), which the present 

authors also discovered in the cantilever of an atomic force microscope (Kolosov and 

Yamanaka 1993). Sub-harmonic and DC responses have a common feature of having a 

frequency range lower than that of the input wave. Sub-harmonic response of structures 

can help us avoid inherent electronic nonlinearity because the nonlinearity from 

electronic device can only generate higher harmonics, but the generation of subharmonics 

has two main requirements. First, the amplitude of the interrogating waves must be large 
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enough to overcome a certain threshold in order to excite the structure. Second, the 

excitation frequency must be tuned to meet the sweet spot for such subharmonic 

phenomenon to occur, which was identified as twice the natural frequency of the 

linearized damaged system (Johnson et al. 2010). Figure 6.9 shows the model for the 

generation of sub-harmonic and DC responses at a closed crack. 

 

Figure 6.9: Model for subharmonic and DC responses (Ohara et al 2006). 

6.3.3 NONLINEAR RESONANT ULTRASOUND SPECTROSCOPY TECHNIQUE 

It has been shown in previous discussion that the response of nonlinear systems is 

sensitive to excitation frequency. Another important aspect of nonlinear responses is that 

they are also sensitive to excitation amplitude. This distinctive phenomenon has been 

used in a Nonlinear Resonant Ultrasound Spectroscopy (NRUS) technique (Abeele et al. 

2000). This method measures the resonant frequency under various excitation amplitudes. 

By observing the relative frequency shift, it is possible to measure the internal 

degradation of the micro structure properties of the material (Johnson 2001; Windels and 
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Abeele 2004). The principle behind this method is that the nonlinear effects are different 

under different excitation amplitudes, usually stronger under higher amplitude excitation. 

6.3.4 MIXED FREQUENCY RESPONSE: NONLINEAR MODULATION TECHNIQUE 

One of the simplest ways to evaluate nonlinear acoustic properties of a material is 

to measure the modulation of an ultrasonic wave by low-frequency vibration. This 

method is known as Nonlinear Wave Modulation Spectroscopy (NWMS). Figure 6.10 

shows the the principle of this technique. Two frequencies are usually used to excite the 

structure. The low frequency input is usually referred to as the pumping wave, and the 

high frequency input is usually referred to as the probing wave (Yoder and Adams 2010). 

When the structure is pristine, the frequency spectrum of the received signal only 

contains the original input frequency components. When nonlinear damage appears, the 

modulation frequency components will be present. The advantage of this method is that 

one does not need baseline data of the pristine specimen for the detection of nonlinear 

damage. Thus, it is regarded as a baseline free technique (Lim et al. 2014). 

 

Figure 6.10: Nonlinear wave modulation technique (Sohn et al. 2013). 
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The physical nature of this modulation can be explained simplistically as shown 

in Figure 6.11, with a single crack shown as a slit. The crack opens and closes under the 

pumping excitation, while the probing signal pass through the cracked area. 

 

Figure 6.11: Mechanism of nonlinear modulation (Sutin and Johnson 2005). 

An applied low-frequency vibration signal changes the width of the slit depending 

on the phase of the vibration. Consider that the sample is under sufficient vibration 

amplitude such that the compression phase completely closes the crack, whereas the 

subsequent dilation opens the crack. A high-frequency signal is simultaneously applied to 

the crack. During the dilation phase of the low-frequency cycle, the high frequency signal 

is partially decoupled by the open crack. This reduces the amplitude of the high-

frequency signal passing through the crack. In the other half of the low-frequency cycle, 

the closed crack does not interrupt the ultrasonic signal and the amplitude of the 

transmitted signal amplitude increases. This results in an amplitude modulation of the 

ultrasonic signal. Fourier transformation of this signal reveals sideband frequencies that 
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are the sum and difference of the frequencies of the ultrasonic probe and vibration signals. 

These new frequency components may indicate that a flaw or crack is present. Research 

based on this nonlinear technique has been reported recently for fatigue crack detection 

and monitoring of composite delamination (Sohn et al. 2013; Giurgiutiu and Soutis 2012). 

Although a considerable amount of research has been carried out on the nonlinear 

ultrasonic techniques for nondestructive evaluation and structural health monitoring, 

there are still phenomena that are unclear, mechanisms that are unknown, and new 

approaches that are uninvestigated, leaving great potential for future research and 

applications. 
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CHAPTER 7  

PREDICTIVE MODELING OF NONLINEAR GUIDED WAVES INTRODUCED BY 

BREATHING CRACKS FOR STRUCTURAL HEALTH MONITORING 

This chapter presents predictive modeling of nonlinear guided waves for structural health 

monitoring using finite element method (FEM). The nonlinearity of guided waves may 

serve as an indication for the presence and severity of small size incipient fatigue cracks. 

Under dynamic loading, the surfaces of these cracks may come into contact under 

compression and depart from each other under tension. Such cracks, where the surfaces 

close and open under cyclic loading, are usually referred to as breathing cracks. In our 

study, the nonlinearity of the guided waves is generated by the interaction with a 

nonlinear breathing crack. Two nonlinear FEM techniques are used to simulate the 

breathing crack: (a) element activation/deactivation method; (b) contact analysis. Both 

techniques are available in the ANSYS software package. The solutions obtained by 

these two FEM techniques compare quite well. The relationship between the nonlinearity 

of guided waves and damage severity (crack depth) was shown using a damage index. 

7.1 INTRODUCTION AND STATE OF THE ART 

The nonlinear ultrasonic technique, which uses distinctive higher harmonics and 

sub harmonics features, has proven to be a promising approach to detect incipient 

changes which are precursors to structural damage (Jhang 2009; Kruse and Zagrai 2009). 

The combined use of guided Lamb waves and nonlinear methods is drawing increasing
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interest because the nonlinear Lamb waves have the advantage of both the sensitivity of 

nonlinear methods and the large inspection ranges of guided waves. 

To date, most studies on nonlinear ultrasonics have been experimental, 

demonstrating the capability of nonlinear Lamb waves to detect structural damage 

(Bermes et al. 2007; Jumar et al. 2009; Cantrell 2009; Nagy 1998; Dutta 2009). However, 

few theoretical predictive studies exist, especially for nonlinear Lamb waves. Generation 

of the higher harmonics of Lamb waves have been investigated theoretically (Deng 1999; 

2003), and the existence of antisymmetric or symmetric Lamb waves at nonlinear higher 

harmonics has been discussed via the modal analysis approach and the method of 

perturbation (Srivastava and Lanza Di Scalea 2009). However, these theoretical studies 

considered only the situations where nonlinearity are present over the whole domain of 

wave propagation in the material (mesoscopic nonlinearity); other cases of nonlinear 

wave propagation, such as wave propagation through localized breathing cracks, are also 

possible. 

 

Figure 7.1: Microscopic cracks nucleated at structural surface (Corrosion Testing Lab 

2007, www.corrosionlab.com). 

When structures are under cyclic fatigue loading, microscopic cracks will begin to 

form at the structure surface, shown in Figure 7.1. They need to be found before they 
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grow to the critical size and cause catastrophic failures. In our study, we investigated the 

characteristics of the inspection waves interacting with this kind of microscopic cracks, 

especially when they behave as nonlinear breathing cracks under wave cycles. 

Figure 7.2 shows the typical breathing crack behavior when ultrasonic waves 

propagate through it. When ultrasonic waves reach a microscopic crack, the crack can be 

closed and opened under compression and tension; the compression part of the waves can 

penetrate the crack, while the tension part cannot. The nonlinear phenomenon lies in the 

fact that the apparent local stiffness of the crack region changes under tension and 

compression. 

 

Figure 7.2: Ultrasonic waves propagating through a breathing crack (Shen and Giurgiutiu 

2012). 

The interaction of elastic waves with clapping mechanisms has been studied in the 

past. Research on clapping-induced nonlinearities and higher harmonics has been carried 

out (Richardson 1979; Biwa et al. 2004; 2006); however, most of these investigations aim 

at the nonlinearity of elastic bulk waves. Our study focuses on the modeling aspect of 

contact acoustic nonlinearity (CAN) of Lamb waves, which is a localized nonlinear 

phenomenon of dispersive guided plate waves, and it is different from the previous 
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theoretical studies of nonlinear Lamb waves (Deng 1999; 2003; Srivastava and Lanza di 

Scalea 2009). 

7.2 FINITE ELEMENT SIMULATION OF LAMB WAVES INTERACTION WITH 

NONLINEAR BREATHING CRACKS 

A pitch-catch method may be used to interrogate a plate with a breathing crack 

which opens and closes under tension and compression. The ultrasonic waves generated 

by the piezoelectric wafer active sensor (PWAS) propagate into the structure, interact 

with the breathing crack, acquire nonlinear features, and are picked up by the receiver 

PWAS. This process is shown in Figure 7.3. 

 

Figure 7.3: Pitch-catch method for the detection of a breathing crack; the mode 

conversion at the crack is illustrated by the two arrows. 

Two methods are used to model the breathing crack: (a) the element 

activation/deactivation method; (b) contact analysis. The solving scheme and results from 

both methods are discussed and compared. 

7.2.1 ELEMENT ACTIVATION/DEACTIVATION METHOD 

The element activation/deactivation technique can be described as deactivating 

and reactivating selected elements according to certain criteria. To deactivate elements, 

the stiffness matrices of the elements are multiplied by a severely small reduction factor, 

  (usually 1E-6 or smaller), while mass, damping, loads and other such effects are set to 

zero. Thus, upon deactivation, the element stiffness matrix, mass matrix and associated 

loads will no longer contribute to the assembled global matrices. It should be noted that 

the deactivated elements are not removed from the model, but left in place in a dormant 

T-PWAS R-PWAS Breathing crack 
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state with a greatly diminished participation. Similarly, when elements are activated, they 

are not added to the model. Instead, the dormant elements are simply reactivated, 

recovering their original stiffness, mass, damping, element loads, etc. The assembled 

global equation will take the following form 

Original global equation 

 

11 1 111 11 110 0 0

0 0 0

e e e e

nn n nn n nn n n

Qu u uM C K

M C K Q

M u C u K u Q

           
           

                  
            

            

 

  (7.1) 

Deactivated global equation 
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  (7.2) 

where , , ,e e e eM C K Q  are the elemental mass matrix, damping matrix, stiffness matrix, 

and external loads. The reduction factor   is very small ( 1  , typically 1 6E   ). 

The symbol   denotes a zero matrix or vector. Comparing Eq. (7.2) with Eq. (7.1), it is 

apparent that the elements, after deactivation, will no longer contribute to the structure, 

because [ ]eK    with 1  . The nonlinear effect is imparted by the periodical 

change of matrices ,M C and K . 

The solving scheme for this transient dynamic problem using the element 

activation/deactivation method is shown in Figure 7.4. The crack status, open or closed, 

is judged for each calculation step in the transient analysis; calculation configuration of 

the current step is based on the results of the previous step. 
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The crack open/close criterion is based on the tension and compression status of 

the thin layer of nonlinear elements which simulate the breathing crack. When these 

elements are under tension, the crack is considered open. The criterion is shown in the 

following equation 

 1( 2 1 0) ( 0)

n

n

U U
n



    


 (7.3) 

where 1U  and 2U  are the displacements of the two nodes located on the two edges of 

the selected element in the crack opening direction.   is the average strain of the selected 

elements in the crack opening direction. This criterion is developed based the contact 

behavior of the breathing crack and through numerical experiments. Details of this 

criterion can be found in Shen and Giurgiutiu (2012). It should be noted that for mode 

shapes at high frequency and plate thickness combination (high fd value), the criterion 

needs to be modified by taking into account more nodes across the crack surface in order 

to consider the more complicated contact behavior. 

 

Figure 7.4: Solving scheme of element activation/deactivation method. 
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7.2.2 CONTACT ANALYSIS WITH FINITE ELEMENT METHOD 

In the physical world, no penetration will happen between contact surfaces; 

however, in finite element analysis, hypothetical penetration is allowed to ensure 

equilibrium. The contact parameters are determined by either (a) Lagrange multiplier or 

(b) penalty methods. In this research, the penalty method is adopted. The relationship of 

penetration and contact tractions is illustrated in Figure 7.5, where k  is the contact 

stiffness, N  and T are the normal and tangential penetrations. 

 

Figure 7.5: Penetration between contact surfaces and contact tractions  

(Hughes et al. 1975). 

The choice of contact stiffness is an important part of contact analysis, because it 

influences both the accuracy and convergence of the solution, and usually calls for 

previous experience. When analyzing a contact problem, there is a dilemma: a small 

amount of penetration will render more accurate results, so we should chose large contact 

stiffness; however, this may lead to ill-conditioning of the global stiffness matrix and to 

convergence difficulties. Lower stiffness values can lead to a certain amount of 

penetration/slip and make the solution easier to converge, but this gives a less accurate 
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solution. Thus, we are searching for a high enough stiffness that the penetration/slip is 

acceptably small and render a relatively accurate result, but a low enough stiffness that 

the problem will be well-behaved in terms of convergence. ANSYS provides a suggested 

value of contact stiffness, which will be modified by the penalty coefficient to achieve 

both convergence and accuracy. A common practice is to start from a low contact 

stiffness which ensures convergence, check if the penetration of the contact surfaces is 

reasonable, and then increase the penalty coefficient until the surface penetration is 

reasonably small and ensure solutions between two sequent penalty coefficients do not 

change. The final contact stiffness used in this study is 7.051×10
15 

Pa. 

7.3 FINITE ELEMENT MODEL FOR PITCH-CATCH ANALYSIS 

Figure 7.6 shows the finite element model of a pitch-catch method for detection of 

a nonlinear breathing crack. 

 

Figure 7.6: Nonlinear finite element model of pitch-catch method for detection of a 

breathing crack. 

Two 7 7 0.2mm mm mm   PWAS are considered ideally bonded on a 2 mm thick 

aluminum plate. The plate is long enough to ensure the received signals are not 

influenced by boundary reflections. The crack is located 200 mm from the transmitter, 
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such that the S0 and A0 wave packets will have already separated by the time they arrive 

at the crack location, therefore the S0 and A0 wave packets interact with the breathing 

crack individually, which allows us to see how the crack interacts with S0 and A0 waves. 

The plate is made of aluminum 2024-T3 with a Young’s modulus of 72.4 GPa, a 

density of 2700 kg/m
3
, and Poisson's Ratio of 0.33. The APC-850 material properties are 

assigned to the PWAS as follows 

 

97 49 49 0 0 0

49 84 49 0 0 0

49 49 97 0 0 0

0 0 0 24 0 0

0 0 0 0 22 0

0 0 0 0 0 22

pC GPa
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 (7.6) 

where 
pC    is the stiffness matrix, 

p    is the dielectric matrix, and 
pe    is the 

piezoelectric matrix. The density of the PWAS material is assumed to be 7600   

kg/m
3
. 

The finite element model is built under the plane strain assumption. PWAS 

transducers are modeled with coupled field elements (PLANE13) which couple the 

electrical and mechanical variables (ANSYS 13.0 Multi-Physics). The plate is modeled 

with the four node structure element PLANE182 with “element birth and death” 

capability. A 20 vpp 5-count Hanning window modulated sine tone burst signal centered 



 

173 

at 100 kHz is applied on the top electrode of the transmitter PWAS. The plate is under 

free boundary condition. 

To solve this problem with good accuracy and high efficiency, a meshing strategy 

of varying density needs to be performed. The maximum acceptable element size and 

time step to ensure accuracy is shown in the following equations (Moser et al. 1999). 

 min

20
el


  (7.7) 

 
max

1
t =

20f
  (7.8) 

For the excitation centered at 100 kHz, we considered the maximum frequency of 

interest up to 400 kHz, containing up to the third higher harmonic. The dispersion curve 

is calculated by solving the Rayleigh-Lamb equation and shown in Figure 7.7(a). The 

frequency wavelength relationship is obtained using Eq. (7.9) from the dispersion data, 

and plotted in Figure 7.7(b). The minimum wavelength at 400 kHz appears in A0 mode at 

5.478 mm. According to Eq. (7.7), the maximum element size should be 0.275 mm. 

According to Eq. (7.8), for 400 kHz, the maximum time step is 0.125 microsecond. 

 c f   (7.9) 

Since the mechanical response at the crack zone is very complicated, the crack 

zone is more densely meshed. The region between the breathing crack and the receiver 

has a mesh size of 0.25 mm (smaller than 0.275) to accurately depict up to the third 

higher harmonic. A time step of 0.125 microseconds is adopted. In the element 

activation/deactivation method, a very thin layer of nonlinear elements (0.1 mm thick) at 

the crack zone are selected to be deactivated and reactivated. For the contact analysis, the 

contact pair is constructed using contact elements (CONTA172 and TARGE169). 



 

174 

 

Figure 7.7: (a) Dispersion curve; (b) frequency wavelength curve. 

The severity of damage is represented by the number of elements selected to be 

deactivated and reactivated. We define the damage severity r a h  ( a  and h  are the 

crack size and plate thickness respectively). An index of 0.0r   corresponds to a pristine 

condition, where there is no crack in the plate. In our simulation, we used 20 elements 

across the thickness at the crack zone. Different damage severities 

0.6,0.5,0.4,0.3,0.2,0.1r   and 0.0 are generated by selecting 12, 10, 8, 6, 4, 2 and 0 

elements. ANSYS uses an average nodal solution for data post-processing. Hence, the 

deactivated elements must be excluded from the average process to avoid result 

contamination. 

To highlight the effect of nonlinear wave propagation through a breathing crack, 

the linear wave propagation through the crack is also investigated. 

7.4 FINITE ELEMENT SIMULATION RESULTS AND DISCUSSION 

The 0.6r   case is used as a representative for demonstrating Lamb wave 

interaction with a breathing crack and is shown in Figure 7.8. The same crack behavior 
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could be observed for both the element activation/deactivation method and contact 

analysis. It is shown that the tension part of the Lamb waves opens the crack, and the 

waves do not penetrate through it. On the other hand, the compression part of the Lamb 

waves closes the crack with collision between crack surfaces; hence, the compression 

part of the Lamb wave can penetrate into the crack. 

 

Figure 7.8: FEM simulation of Lamb waves interacting with breathing crack. 

Figure 7.9 shows the waveforms of Lamb waves after linear interaction with the 

crack (Figure 7.9a) and the waveforms of Lamb waves after nonlinear interaction with a 

breathing crack (Figure 7.9b). 

It can be observed that compared with pristine condition, the cracked plate signal 

has a slight amplitude drop and phase shift in both S0 and A0 packets. Another difference 

is that a new wave packet appears due to the presence of the crack. This new packet is 

introduced by mode conversion and contains both S0 packet converted A0 mode, and A0 
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packet converted S0 mode. The linear crack signal is smooth, but the nonlinear breathing 

crack signal has small zigzags. 

 

Figure 7.9: Superposed time domain simulation signals at receiver PWAS for pristine (r = 

0) and cracked (r = 0.6) cases: (a) linear crack; (b) nonlinear breathing crack. 

The S0, A0, and new wave packets were extracted from the whole time-history 

using a Hanning window and then Fourier transformed. Frequency spectrums of S0, A0, 

and the new wave packets, with r = 0.6 case for linear crack signal and nonlinear 

breathing crack signal, are carried out and plotted in Figure 7.10 and Figure 7.11 

respectively. For all the wave packets, the pristine signal does not show any higher 

frequency components. Figure 7.10 shows, for the linear crack case, all the wave packets 
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show only the fundamental excitation frequency at 100 kHz. It should be noted there are 

no higher harmonics for linear interaction between Lamb waves and cracks. 

 

Figure 7.10: Frequency spectrum of the Lamb wave signals after linear interaction with a 

crack: (a) S0 mode; (b) new packet; (c) A0 mode. Note the absence of higher harmonics. 

However, the signal from the breathing crack plate shows distinctive nonlinear 

higher harmonics. Figure 7.11a shows nonlinear higher harmonics in the S0 wave packet. 
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 and 3
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step. The frequency components calculated beyond 400 kHz cannot be correctly 
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nd

 higher 
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combination (Giurgiutiu 2005). The tuning curve shown in Figure 7.11d indicates that at 

around 300 kHz, where the 3
rd
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point; in other words, for the given PWAS and plate structure, this frequency could not 

be detected due to the rejection effect at the receiver PWAS. Analysis of the observed 

“new packet” (Figure 7.11b) also reveals the nonlinear higher harmonics pattern. In this 

new packet, the feature of nonlinear higher harmonics seems to be more obvious than in 

the S0 and A0 packets, and the spectral amplitudes of the higher harmonics are closer to 

that of the excitation. 

 

Figure 7.11: Frequency spectrum of the Lamb wave signals after nonlinear interaction 

with a crack: (a) S0 mode; (b) new packet; (c) A0 mode; (d) tuning curves for A0 and S0 
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modes explaining the missing A0 peak in (c). Note the presence of distinctive nonlinear 

higher harmonics. 

To diagnose the severity of this nonlinear damage, the results of all the damage 

severities are compared. The square root of the spectral amplitude ratio of the second 

harmonic to the excitation frequency is adopted to show the degree of signal nonlinearity, 

which may serve as a damage index, i.e. 

 
(2 )

( )

c

c

A f
DI

A f
   (7.10) 

where ( )cA f  and (2 )cA f  denote the spectral amplitude at the excitation frequency and at 

the second higher harmonic. 

 

Figure 7.12: Damage severity index. 

The variation of DI with crack damage intensity is shown for S0 and A0 packets in 

Figure 7.12a and for the new packet in Figure 7.12b. It can be observed that the 

amplitude ratio DI is relatively small for both S0 and A0 packets, but it is quite big for 

the new wave packet even at small damage severity. The DI for S0 and A0 has a 

(b) 

0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

r--Damage Severity

D
I 

A
m

p
li
tu

d
e

Damage Index -- S0 and A0

 

 

S0

A0

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

r--Damage Severity

D
I 

A
m

p
li
tu

d
e

Damage Index -- New Packet

 

 

new packet

(a) 

Damage Index – S0 and A0 Damage Index – new packet 

r – Damage Severity r – Damage Severity 

D
I 

A
m

p
li

tu
d
e 

D
I 

A
m

p
li

tu
d
e 



 

180 

monotonically increasing relationship with the crack damage intensity. So the DI from 

the new packet could serve as an early indicator for the presence of a breathing crack, and 

the DI for the S0 and A0 packets can serve as an indicator of damage severity. 

7.5 COMPARISON OF NUMERICAL RESULTS BETWEEN THE TWO 

NONLINEAR FEM ANALYSIS METHODS 

The numerical results from the element activation/deactivation method and the 

contact analysis are compared. The superposed time domain simulation signals and 

frequency spectrum from the two finite element methods, for 0.6r   case, are shown in 

Figure 7.13a and Figure 7.13b. 

It can be observed that the solutions from these two methods agree well with each 

other. The S0 packets match well; however, the A0 and the new packet have slight phase 

and amplitude difference. In the frequency spectrum, it could be noticed that at a lower 

frequency range (within two harmonics range) the two methods have a good match, but at 

higher frequency they deviate from each other. 

The difference between the two solutions are measured and presented by the non-

dimensional 2L  norm 
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where eu and cu are the solutions from the element activation/deactivation method and 

contact analysis; N is the number of solution points in the time domain signal. The L2 

norm values for 0.1,0.2,0.3,0.4,0.5,0.6r   are plotted in Figure 7.14. It can be observed 
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that for all the damage severity cases, both methods match consistently well with each 

other. 

 

Figure 7.13: Comparison between signals from element activation/deactivation method 

and contact analysis (a) time domain signal; (b) frequency spectrum. 
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Figure 7.14: Difference between two solutions for various 

 damage severities. 
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CHAPTER 8  

HEALTH MONITORING OF BOLTED LAP JOINTS USING NONLINEAR 

ULTRASONICS 

This chapter presents a theoretical and experimental study of nonlinear ultrasonic 

spectroscopy method for health monitoring of bolted lap joints. This study is aimed at the 

monitoring of bolt load status through nonlinear features of ultrasonic guided waves. The 

interrogating waves generated by a transmitter piezoelectric wafer active sensor (T-

PWAS) propagate along the structure, interact with the lap joint contact surfaces, carry 

the information of bolt load and are picked up by a receiver PWAS (R-PWAS). The 

contact acoustic nonlinearity (CAN) introduced by the interaction between guided waves 

and contact surfaces serves as an index for the assessment of bolt load status. Contact 

finite element models (FEM) are built to simulate the contact behavior of the lap joint 

surfaces under ultrasonic cyclical loading. The relationship between the bolt load and the 

CAN is investigated. Experiments on a bolted lap joint are carried out to verify the FEM 

predictions. The inherent nonlinearity of the electronic equipment (function generator, 

amplifier, etc.) is addressed. Scanning Laser Doppler Vibrometry (SLDV) is used to 

visualize the wave propagation through the lap joint, and the results are compared with 

FEM simulations. Nonlinear effects such as higher harmonics are observed from the 

FEM predictions and the experimental results. 
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8.1 INTRODUCTION AND STATE OF THE ART 

Bolted lap joints are widely used to connect structural components. The loosening 

of a bolt may result in instant structural failure or a progressive level of fatigue on 

neighboring fasteners. Thus, a structural health monitoring (SHM) strategy is desired for 

bolt load condition monitoring. 

A significant amount of research has been carried out aimed at developing SHM 

techniques for bolt load monitoring using ultrasonic waves. An attenuation based method 

relates the transmitted wave energy with the bolt preload level (Yang and Chang 2006). 

A wave propagation delay method relates the relative delay of waves with the applied 

torque (Zagrai et al. 2008). Numerical studies have been done to establish computational 

setup for SHM of bolted lap joints (Doyle et al. 2011). Linear and nonlinear finite 

element models were proposed to investigate Lamb wave interaction with bolted lap 

joints (Bao et al. 2013). Nonlinear ultrasonic techniques when compared with traditional 

linear methods are found to be more sensitive to incipient changes with distinctive sub 

and higher harmonics and side band effects (Amerini and Meo 2011); however, the 

nonlinear techniques still leave many aspects to be investigated before they can be 

implemented in an SHM system. This chapter discusses the nonlinear ultrasonic 

spectroscopy method, both theoretically and experimentally, for the application of bolted 

lap joints load status monitoring. 

8.2 MODELING OF WAVE PROPAGATION THROUGH BOLTED LAP JOINTS 

In this section, a static to transient finite element solving scheme was put forward 

to simulate wave propagation through bolted lap joints under various bolt loads. We 

studied the mechanism of contact acoustic nonlinearity and its dependence on bolt load 
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pressure using a simplified 2-D finite element model. Then a 3-D finite element 

simulation was carried out to predict the experimental wave signals. 

8.2.1 A STATIC TO TRANSIENT FINITE ELEMENT SOLVING SCHEME 

Doyle et al. (23011) investigated the finite element setup of wave propagation 

through bolted lap joints. They adopted the conventional transient analysis in their 

simulation and found a pulse wave generated by the bolt load applied to the lap joints. 

This is because the transient analysis regards the bolt load as an instant pressure which 

will cause transient effects by deforming the loading area which propagates into the 

structure. To avoid the influence of the initial pulse wave, the authors reported that they 

need to wait for the pulse wave to damp out and then apply the interrogating signal. This 

conventional solving scheme for such specific problems has two main disadvantages: (1) 

the calculation time is long due to the delay from the pulse wave; (2) the simulation 

deviates from the actual situation where the bolt load is a static pressure. 

To better approximate the real situation and avoid the long delay time between the 

application of the bolt load and the signal generation, we put forward the static to 

transient solving scheme. Figure 8.1 shows the flow chart of conventional transient finite 

element analysis and our static to transient solving scheme (Shen et al. 2013). 

It can be observed that in conventional transient analysis (Figure 8.1a) the time 

integration is always on, which will take the pressure as an initial loading. In contrast, the 

static to transient solving scheme (Figure 8.1b) turns off the time integration on the first 

step when the pressure is applied on the structure. Thus, the first step is calculated in the 

transient solver as a static problem and serves as an initial condition for the later steps. 

On the second step, the time integration is turned on and a full transient analysis is started 
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with the initial condition from the first step. Then PWAS excitation is applied. By 

switching off and on the time integration in the transient analysis, we achieved the static 

to transient solving scheme. This allows us to treat the pressure loading from the bolt as 

an initial condition similar to the real situation; we also do not need the redundant waiting 

time for PWAS excitation. 

 

Figure 8.1: (a) conventional transient analysis; (b) static to transient solving scheme. 

8.2.2 2-D FEM FOR STUDYING NONLINEARITY GENERATION MECHANISM 

To understand the mechanism of nonlinearity generation and its relationship with 

normal pressure on the contact surfaces, 2-D finite element models were built to simulate: 

(1) pressure wave propagation through contact surfaces subjected to normal clamping 

pressure; (2) 1-D Lamb wave propagation through a bolted lap joint under various bolt 

loads. 
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8.2.2.1 Contact Acoustic Nonlinearity under Various Contact Surface Pressures 

Figure 8.2 shows the 2-D finite element model of bulk wave propagation through 

contact surfaces. The excitation was a 5-count 1 MHz Hanning window modulated 

pressure tone burst. The maximum pressure of the excitation was set to 1 MPa peak to 

peak. The uniformly distributed pressure was applied on top of the model to create 

normal contact pressure between the contact surfaces. The static pressure was increased 

from 0 to 500 kPa by 50 kPa steps to see the relationship between transmitted wave 

nonlinearity and normal contact or clamping pressure between contact surfaces. As 

shown in Figure 8.2, the contact surfaces under pressure presented two wave transmission 

modes: (1) breathing surfaces where the pressure wave is strong enough to open and 

close the contact surfaces; this wave transmission behavior will introduce contact 

acoustic nonlinearity (CAN); (2) closed surfaces where the contact surfaces stay closed 

under the applied normal pressure, where wave transmission will not exhibit nonlinearity. 

 

Figure 8.2: Finite element model for CAN mechanism study. 
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Figure 8.3 shows that the pressure excitation generated two wave packets: (1) a 

pressure wave which travels with a faster speed; (2) a shear vertical wave which travels 

more slowly. When the pressure wave arrived at the contact surface, it interacted with the 

surfaces, after this interaction a clear nonlinear wave pattern could be observed in the 

transmitted wave packet. 

 

Figure 8.3: Simulation of bulk wave propagation through contact surfaces. 
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Figure 8.4: Time domain signal of bulk wave propagation through contact surfaces. 

 

Figure 8.5: (a) frequency spectrum of simulation signals; (b) nonlinearity index vs 

clamping pressure. 
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amplitude is higher than the lower clamping pressure level cases. Figure 8.5b shows that 

the nonlinearity goes up with the clamping pressure first for a short range, then decreases 

monotonically from 100 kPa to 500 kPa reaching 0. Thus, we can deduce that when the 

lap joint becomes loose, the clamping pressure lies in the monotonic region. An 

increasing nonlinearity index may indicate the loosening of the bolt load. 

8.2.2.2 2-D FEM of Bolted Lap Joint 

After investigating the bulk wave and clamping surface interaction, we continued 

our study with a simplified 2-D contact finite element model in order to understand the 

nonlinearity from the interaction between guided Lamb waves with bolted lap joints. 

Figure 8.6 shows the simplified 2-D model of a bolted lap joint. 

 

Figure 8.6: Simplified 2-D finite element model for nonlinear mechanism study. 
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To introduce nonlinearity, the wave power must be strong enough to interact with 

the contact surface; therefore, a 100 vpp tone burst is used as the excitation signal. From 

the experiments on lap joint monitoring, it was determined that the A0 mode has better 

sensitivity in this application. In addition, a narrow-band excitation and response is 

desired to show clear frequency component peaks. Thus, a 20 count Hanning window 

modulated tone burst centered at 25 kHz was used to send a strong A0 mode Lamb wave 

through the lap joint. Figure 8.7a shows the excitation signal used in this study; Figure 

8.7b shows the typical sensing signal at the R-PWAS. 

The frequency spectrum of the sensing signal is shown in Figure 8.8a; the 

nonlinear index and bolt load relationship is shown in Figure 8.8b. It can be observed that 

at low torque values (low clamping pressure) there are nonlinear higher, while at high 

torque levels (high clamping pressure) the nonlinearity disappears. The nonlinear index 

or nonlinearity of the signal goes down with an increasing torque load; at high torque 

values, the nonlinearity disappears. 

 

Figure 8.7: (a) Excitation Signal; (b) Receiver Signal. 
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Figure 8.8: (a) Frequency spectrum of sensing signal; (b) Nonlinear index vs torque load. 
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burst (36 kHz 20 counts 50 Vpp). The bolt load is applied through the pressure loading 

on the washer area. The pressure is calculated from Eq. (8.1) 

 
T

P
kdA

  (8.1) 

where P  is the pressure, T  is the applied torque, k  represents the torque coefficient 

which depends on a variety of parameters including but not limited to geometry and 

friction of the threads, d  is the nominal diameter of the bolt, and A  is the washer area. 

 

Figure 8.9: 3-D finite element model of the bolted lap joint. 
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catch active sensing method was used to interrogate the bolted lap joint. A Scanning 

Laser Doppler Vibrometer (SLDV) was used to visualize the field of wave propagation 

through the bolted lap joint and compare with the 3-D FEM simulation. 

8.3.1 RELATIONSHIP BETWEEN APPLIED TORQUE AND BOLT LOAD 

A torque wrench (Check-line DTL-100i) is used to apply specific torque to the 

bolts. The torque range measures the applied torque with a resolution of 0.1 lb-in, and the 

maximum torque load is rated at 106 lb-in. We also use two bolt sensors (Omega LC901) 

to directly measure the clamping force from the bolt. The bolt sensors are capable of 

measuring force up to 2000 lb force, with an accuracy of +/-3.5% full scale output. A 

calibration experiment was performed to evaluate the relation between the applied torque 

and the actual load in the bolted joint. Figure 8.10 shows the torque wrench and bolt load 

sensor used in this study. Figure 8.11 shows the linear relationship between the applied 

torque and the bolt load, which can be described by Eq. (8.1). 

 

Figure 8.10: Check-line DTL-100i torque wrench and Omega LC901 bolt load sensor. 
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The experimental setup for a pitch-catch nonlinear ultrasonic experiment is shown 
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is generated by the HP 33120A function generator. This signal is then amplified by an 

HAS 4014 amplifier to 50 Vpp and applied to the T-PWAS. The T-PWAS converts the 

electrical energy into mechanical energy and generates ultrasonic guided waves which 

interact with the bolted lap joint. The interrogating waves are finally picked up by the R-

PWAS, where the mechanical energy is converted back into an electrical signal and 

recorded by the Tektronix TDS5034B oscilloscope. 

 

Figure 8.11: Linear relationship between applied torque and bolt load. 

 

Figure 8.12: Experiment setup for pitch-catch active sensing of the bolted lap joint. 
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8.3.3 WAVE FILED VISUALIZATION WITH SCANNING LASER DOPPLER VIBROMETER 

To visualize the wave propagation through the bolted lap joint structure and 

compare with 3-D FEM predictions, the Polytec PSV-400 Scanning Laser Doppler 

Vibrometer is used to capture the propagating wave field. The experimental setup is 

shown in Figure 8.13. The excitation signal generated by the HP 33120A function 

generator and HAS 4014 amplifier is applied to the T-PWAS. The SLDV scans the 

specimen surface, and measures the out-of-plane vibration velocity during wave 

propagation. The out-of-plane wave field is then visualized by post processing of the 

scanning data. The reflective tape is used to enhance the surface reflection and improve 

the visualization quality. 

 

Figure 8.13: Experiment setup for wave propagation visualization. 
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and opened under the cyclic wave excitation. The total area of contact surface changes 

while the interrogating waves pass through the lap joint. When contact surfaces are 

closed, the lap joint reacts with the waves like a continuous medium. However, when 

contact surfaces are partially opened, the non-contact area cannot let the waves pass 

through, and the lap joint acts as a discontinuous medium. The nonlinearity of the 

received wave signal lies in the fact that the apparent local stiffness of the lap joint 

changes under cyclic wave excitation. It is important to note that under a higher torque 

level, the contact surface clapping phenomenon will degrade. 

 

Figure 8.14: Wave interaction with the lap joint for 10 lb-in loading condition: (a) contact 

surfaces closed; (b) contact surfaces opened. 

Figure 8.15 presents the comparison between simulation and experimental 

waveforms for a torque load of 10 lb-in. It can be observed that the waveforms are in 

good agreement with each other. It should be noted that the experimental waveform is 

found to be very sensitive to the lap joint condition. Fine tuning of the plate and bolt 

placement were used to achieve the results shown in Figure 8.15. The wave amplitudes of 

the multi-physics FEM simulation and the experiment differ from each other by a factor 
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around 50. Normalization to the maximum amplitude is used to compare the waveforms 

from the experiment and simulation. 

 

Figure 8.15: Comparison between simulation and experiment waveforms for 10 lb-in 

loading condition. 
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the lap joint area. The finite element model is artificially restricted at three different 

nodes at the end to constrain structural rigid body motion, which will also result in 

differences between the experimental wave field and the numerical simulation. 

 

Figure 8.16: Comparison between wave fields: (a) Laser measurement; (b) FEM 

simulation. 
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signal and experimental data. This shows the contact model can simulate the nonlinear 

phenomena of wave interaction with the bolted lap joint. 

 

Figure 8.17: Spectrum of simulation and experimental signal. 

The degree of nonlinearity is expressed by Eq. (8.2), and serves as the index of 

the bolt load status of the bolted lap joint. 
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where  cA f  and  2 cA f  denote the spectral amplitude at the excitation frequency and 

at the second harmonic. The nonlinearity indexes of various torque values are calculated 
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torque values, the nonlinearity index of the signal is high, and then with increased torque, 

the index fluctuates around certain values. 

 

Figure 8.18: Nonlinear index plots: (a) FEM simulation results; (b) experimental data. 

 

Figure 8.19: Statistical boxplot of experimental data. 
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Statistically, Figure 8.19 shows at low value of applied torque, an increment of 

nonlinearity index could indicate the loosening of bolts. A possible cause of the 

complicated nonlinearity index pattern is the inherent nonlinearity from the excitation 

signal constructed by the function generator and amplifier. In addition, the nonlinearity of 

the bolted lap joint structure is found to be very sensitive to the initial relative positioning 

of the two strips of the lap joint and the load difference between the two bolts. Due to the 

wide spread of the nonlinear index, the practical application of this higher harmonic 

method requires further investigation. 

8.4.3 INHERENT NONLINEARITY FROM ELECTRONIC EQUIPMENT 

Figure 8.20 shows the excitation signal constructed by the function generator and 

amplifier, and directly recorded by the oscilloscope. The frequency spectrum of the 

excitation signal shows higher harmonic frequency components generated by the 

electronic equipment, which will influence the experimental results. These inherent 

higher harmonic frequency components will also be converted by the T-PWAS and 

contribute to the R-PWAS received signal. It is difficult to distinguish between the 

inherent nonlinearity from electronic equipment and the nonlinearity from wave-structure 

interaction. The transmission coefficients for different frequency components may vary 

with the bolt loading conditions, resulting in the complicated nonlinearity index change 

patterns. 

The inherent electronic nonlinearity generally exists as a considerable negative 

influence in structural health monitoring using nonlinear ultrasonic guide waves. Future 

work will focus on minimizing the influence of the inherent electronic nonlinearity, and 
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understanding how to use sub-harmonic characteristics for damage identification and 

detection. 

 

Figure 8.20: Excitation signal and inherent nonlinearity from electronic equipment. 

0 50 100 150 200

10
-4

10
-3

10
-2

10
-1

10
0

Frequency  spectrum of excitation signal

Frequency (kHz)
A

m
p
li
tu

d
e

0 200 400 600 800 1000
-50

0

50
Excitation from function gererator and amplifier

Time (microsecond)

A
m

p
lit

u
d
e
 (

V
)

Excitation after amplification Spectrum of the excitation 

A
m

p
li

tu
d
e 

(V
) 

A
m

p
li

tu
d
e 

Time (microsecond) Frequency (kHz) 



 

204 

CHAPTER 9  

CONCLUSIONS AND FUTURE WORK 

This dissertation has presented Structural Health Monitoring (SHM) using linear and 

nonlinear ultrasonic guided waves, with a focus on the development of accurate, efficient, 

and versatile modeling techniques for guided wave based active sensing procedures. 

The dissertation started with an introduction to guided waves, SHM concepts, and 

piezoelectric wafer active sensors (PWAS). A 1-D analytical framework was constructed 

based on the exact Lamb wave solution for the simulation of 1-D multimode Lamb wave 

propagation and interaction with linear/nonlinear structural damage. Case studies were 

carried out and verified with experiments and finite element simulations. Then, the 

analytical framework was extended to 2-D wave problems, and the combined 

analytical/FEM approach (CAFA) was developed for the efficient simulation of 2-D 

Lamb wave propagation and damage interaction. The wave damage interaction 

information was extracted from a local finite element model (FEM) with non-reflective 

boundaries (NRB). The analytical framework was coded with MATLAB into the user 

friendly software WaveFormRevealer (WFR). CAFA results were compared and verified 

with full scale FEM simulations and experiments utilizing Scanning Laser Doppler 

Vibrometry (SLDV). To study guided wave propagation in composite structures, the 

semi-analytical finite element (SAFE) method was adopted to calculate the dispersion 

curves, mode shapes, and directivity plots of guided waves in composites. The SAFE 

procedure was coded with MATLAB, and the software SAFE-DISPERSOIN was
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developed. Case studies on an aluminum plate and various kinds of composite plates 

were carried out. The SAFE-DISPERSION results were compared and verified with 

analytical solutions and the global matrix method (GMM). 

The dissertation continued with an introduction to nonlinear ultrasonic techniques. 

The classical nonlinear theory and phenomena were discussed. Two nonlinear FEM 

techniques were investigated for the simulation of nonlinear interaction between guided 

waves and a breathing crack. These two techniques are (1) the element 

activation/deactivation approach and (2) contact analysis. The simulation results from 

both methods were compared. The characteristics of the nonlinear interaction were 

studied. A damage index was proposed for the detection of breathing cracks and further  

diagnosing the severity of the nonlinear damage. Then, the higher harmonic technique 

was applied for bolt load monitoring of an aerospace bolted lap joint. The relationship 

between the nonlinearity of the sensing signal and the contact pressure was investigated. 

2-D and 3-D FEM simulations were carried out to study wave propagation through bolted 

lap joints. Experiments using SLDV and the PWAS pitch-catch method were conducted 

and compared with FEM simulations. A review of the main results of this research is 

given next. 

9.1 RESEARCH CONCLUSIONS 

9.1.1 1-D WAVE MODELING AND WFR 

The complex valued wave damage interaction coefficients (WDICs) successfully 

inserted damage effects into the analytical model, and can describe complicated 

interaction phenomena, such as wave transmission, reflection, mode conversion and 

nonlinear higher harmonics components. The analytical model was coded into MATLAB, 
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and the WFR software was developed to obtain fast predictive waveforms for arbitrary 

combinations of sensors, structural properties, and damage. It can be used to obtain time-

space domain waveforms with damage effects, and frequency-wavenumber analysis. 

WFR can provide fast predictive solutions for multi-mode Lamb wave propagation and 

interaction with linear/nonlinear damage. The solutions compared well with experiments 

and finite element simulations. It was also found that computational time savings of 

several orders of magnitude are obtained by using the analytical WFR instead of FEM 

methods. WFR allowed users to conduct fast parametric studies with their own designed 

materials, geometries, and excitations. 

9.1.2 2-D WAVE MODELING AND CAFA 

CAFA was developed to obtain accurate, efficient, and versatile simulation of 2-D 

guided wave propagation and interaction with damage. WFR-2D was developed as the 

analytical framework which uses the exact 2-D Bessel and Hankel function solution to 

calculate Lamb wave propagation excited by a piezoelectric wafer and WDICs for 

scattered field prediction. A non-reflective boundary (NRB) condition for Lamb waves 

was developed for the construction of a local FEM. The WDICs are calculated from the 

efficient local area FEM analysis. The CAFA results compared well with full-scale multi-

physics FEM simulations and scanning laser vibrometer experiments.  

CAFA has the following advantages over other SHM simulation tools: 

1. CAFA can deal with transient wave interaction with complicated damage type and 

geometries in an easier and more user-friendly way, than other analytical or semi-

analytical formulations such as distributed point source method (DPSM) and 

semi-analytical finite element (SAFE) method. 
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2. CAFA does not require meshing of the entire structure, thus it minimizes the 

computation burden; the analytical framework is constructed in the frequency 

domain, and does not require a time marching procedure, thus it saves 

considerable computation time, compared with conventional numerical methods 

such as finite element method (FEM), spectral element method (SEM), or finite 

difference method (LISA). 

3. The harmonic analysis of small-size FEM with NRB is faster and more target-

oriented compared with conventional transient analysis. The use of NRB 

minimizes the model size. Also, harmonic analysis does not require the results of 

the previous calculation step to solve the current step, as is the case in 

conventional transient analysis. 

4. Because it is fast and efficient, CAFA can be used for parameter studies of 

various engineering scenarios. It enables researchers to define transducer size, 

structure material and thickness, sensor-damage locations, and arbitrary 

excitations by interacting with the graphical user interface of WFR. This user-

friendly feature and parameter definition freedom allows users to explore the best 

sensor arrangement for damage detection in a highly efficient manner, whereas 

any of these parameter changes will result in re-built/re-mesh/re-run of the whole 

model in the case of conventional FEM simulation. 

9.1.3 GUIDED WAVES IN COMPOSITES 

The SAFE formulation for layered plate structures was derived. The SAFE 

method can calculate guided wave dispersion curves and mode shapes through an 

eigenvalue problem instead of conducting root searching procedure as other matrix 
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methods. The post processing methodology was presented, including auto mode tracing 

and mode shape formation. The SAFE procedure was coded with MATLAB into a user 

friendly software SAFE-DISPERSION for the calculation of dispersion curves, mode 

shapes, and directivity plots.  

Case studies were conducted to verify SAFE-DISPERSION solutions. First, the 

dispersion curves and mode shapes in an aluminum plate were calculated and compared 

with the exact analytical solution. The results compare well with each other. Then, the 

guided waves in various composites were calculated, including a unidirectional CFRP 

plate with different propagation directions, cross ply CFRP plates, and quasi-isotropic 

CFRP plates. The dispersion curves, displacement mode shapes, and stress mode shapes 

all compared well with those obtained from the global matrix method (GMM) using the 

commercial software DISPERSE
TM

. It was found that SAFE-DISPERSION can generate 

a more stable solution when compared with DISPERSE
TM

 which requires fine training 

for the users. The stress mode shapes in composite structures are no longer continuous 

across the plate thickness. 

9.1.4 NONLINEAR ULTRASONIC THEORY 

The classical nonlinear mechanisms were reviewed. The contact acoustic 

nonlinearity (CAN) was investigated with a reduced order bi-linear stiffness model. A 

parameter study on damage severity was conducted to illustrate the potential of nonlinear 

ultrasonic techniques to detect nonlinear damage and further diagnose the severity of the 

damage. A parameter study on the excitation frequency was carried out to show the 

frequency dependence of the distinctive nonlinear phenomena, such as super harmonic 

and sub harmonic generation. The nonlinear response was found to be sensitive to the 
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appearance of incipient damage and the excitation frequency. A review of prevalent 

nonlinear ultrasonic techniques was presented, including higher harmonic technique, 

subharmonic and DC response technique, nonlinear resonant ultrasound spectroscopy 

technique, and nonlinear modulation technique. 

9.1.5 BREATHING CRACK DETECTION USING NONLINEAR ULTRASONICS 

The nonlinear ultrasonic technique was investigated to detect breathing cracks in 

plate structures. Two nonlinear finite element methods were proposed to simulate the 

nonlinear interaction between guided waves and the breathing crack: (1) the element 

activation/deactivation technique; (2) contact analysis. The solutions obtained by these 

two FEM techniques compared quite well. A linear FEM analysis of this situation was 

also performed. 

It was found that the two FEM methods considered in this study can simulate 

equally well the nonlinear behavior of the breathing crack. Also, it was found that the 

nonlinear interaction between guided waves and the breathing crack generates higher 

harmonics, which were not found in the linear FEM simulation. A damage index (DI) 

was proposed based on the amplitude ratio of the signal spectral harmonics to relate the 

signal nonlinearity with damage severity. This DI was applied to the S0 and A0 wave 

packets as well as to a new packet resulting from the interaction between the guided 

waves and the damage. It was found that the DI of the new packet is more sensitive to the 

presence of the crack, while the DIs of the S0 and A0 packets can provide monitoring 

information on the damage severity. 
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9.1.6 BOLT LOAD MONITORING OF BOLTED LAP JOINTS 

First, he relationship between CAN and contact pressure was investigated. The 

nonlinearity of the transmitted waves showed a monotonic decaying trend with increasing 

contact pressure beyond a contact pressure threshold. This correlation between contact 

pressure and signal nonlinearity shows great potential for monitoring the change of 

contact pressure. This phenomenon was applied for monitoring the bolt load status of a 

bolted lap joint. 

We proposed a static to transient finite element solving scheme to simulate guided 

wave propagation through a bolted lap joint. It was found that the contact finite element 

model can describe the interaction between guided ultrasonic waves and bolted lap joints. 

The waveforms and wave fields from the FEM simulation agree well with the 

experimental data from PWAS pitch-catch and scanning laser vibrometer measurements. 

Distinctive nonlinear higher harmonics are found in both the numerical simulation and 

experimental results. The theoretical study shows a decaying trend of nonlinearity with 

increasing applied bolt load level, which could be used as a correlating quantity for 

monitoring bolt tight/loose status. However, the experimental data shows more 

complicated patterns. Two sources of nonlinearity are found in the experiments: (1) 

inherent nonlinearity from electronic equipment; (2) nonlinearity from wave-structure 

interaction. The final nonlinearity has a contribution from both sources. 

9.2 MAJOR CONTRIBUTIONS 

This dissertation has contributed to the SHM community in a variety of ways. The 

major contributions of this dissertation to the state of the art are listed below: 
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1. A novel methodology was proposed for inserting damage effects into an 

analytical model. We have introduced the complex-valued WDICs which are 

capable of describing mode conversion, amplitude, phase, directionality 

information, and nonlinear higher harmonic components during wave damage 

interaction. We have found that the phase information is very important, 

although it was ignored by previous researchers. 

2. The effective non-reflective boundary (NRB) was developed for Lamb wave 

problems. It was found to work well for both the symmetric and 

antisymmetric modes. 

3. A novel approach has been developed for coupling analytical model with local 

FEM models for simulation of 2-D interaction between guided waves and 

damage. 

4. The methodology of using small-size local FEM harmonic analysis with NRB 

to determine the WDICs over the frequency band required for analytical 

simulation has been presented. 

5. We not only developed the analytical framework and derived the semi-

analytical finite element formulation, but also developed corresponding 

software which can benefit the SHM community. The software packages are: 

(1) WaveFormRevealer 1-D (WFR-1D); (2) WaveFormRevealer 2-D (WFR-

2D); (3) SAFE-DISPERSION. These graphical user interfaces provide a 

versatile user-friendly method for studying a large family of SHM problems. 
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6. The element activation/deactivation approach was used to simulate the contact 

nonlinearity of a breathing crack, which has not been attempted in existing 

literatures. 

7. The damage index based on nonlinear spectral amplitude was developed for 

detection of nonlinear damage and diagnosis of damage severity. 

8. The static to transient finite element solving scheme was proposed to simulate 

the transient response of wave interaction with pre-loaded structures, which 

has not been reported elsewhere. 

9.3 RECOMMENDATION FOR FUTURE WORK 

This dissertation has presented various modeling techniques for the simulation of 

guided wave propagation and interaction with linear/nonlinear damage. This work has 

laid the foundation for future investigations to extend the methodologies to more 

complicated structures. The suggestions for future work are listed below: 

1. CAFA verification with other types of damage should be performed. 

2. Extension to more than the basic S0, A0, and SH0 modes should be made. 

3. Inclusion of nonlinear effects in CAFA should be attempted.  

4. WFR concept should be developed to simulate wave propagation in composite 

structures. 

5. The small-size FEM with NRB should be further explored to obtain 

characteristics of waves excited by arbitrary shaped PWAS transducers on 

various kinds of structures. 

6. CAFA should be explored to solve wave propagation in structures with more 

complicated geometries and should include boundary reflections. 
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7. The analytical framework should be further investigated to include thermal 

and loading effects to consider wave generation, propagation, damage 

interaction, and detection under various temperature and loading conditions. 

8. The behavior of a breathing crack under different interrogating wave 

amplitude should be studied, as well as the transition requirement from an 

initially opened or closed crack into a breathing crack. Experiments should be 

performed to verify these theoretical predictions. 

9. Nonlinear ultrasonic techniques should be further studied. The possibility of 

separating inherent nonlinearity and wave-structure interaction nonlinearity 

should be explored.  

10. Design of the bolted lap joint test specimen should be improved to represent a 

real structure, for example, two plates joint by multiple bolts or rivets. The 

case of loosening only one of the multiple bolts should also be explored by 

this nonlinear spectroscopy method using PWAS transducers.
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