
DEVELOPMENT OF GENERAL FINITE DIFFERENCES FOR
COMPLEX GEOMETRIES USING IMMERSED BOUNDARY

METHOD

A Thesis
Presented to

The Academic Faculty

by

Yaroslav V. Vasyliv

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Mechanical Engineering

Georgia Institute of Technology
December 2015

Copyright c© 2015 by Yaroslav V. Vasyliv

DEVELOPMENT OF GENERAL FINITE DIFFERENCES FOR
COMPLEX GEOMETRIES USING IMMERSED BOUNDARY

METHOD

Approved by:

Professor Alexander Alexeev, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

Professor Satish Kumar
School of Mechanical Engineering
Georgia Institute of Technology

Professor Edmond Chow
School of Computational Science and
Engineering
Georgia Institute of Technology

Date Approved: 4 November 2015

To my parents,

who came to the United States with four kids, a hundred bucks, and a dream.

iii

ACKNOWLEDGEMENTS

I would like to thank Dr. Alexeev for his practical research advise as well as his dedication

to furnishing an encouraging and enabling lab environment. I would also like to acknowledge

the rest of the committee for their valuable feedback. Lastly, I am grateful for the financial

support provided by the National Science Foundation (NSF) Graduate Research Fellowship,

Grant No. DGE-1148903.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . vii

I INTRODUCTION . 1

1.1 Outline . 1

II BACKGROUND AND RELATED TOPICS 5

2.1 Collocated Meshfree Method . 5

2.2 Shape Functions . 7

2.3 General Finite Differences (GFD) . 8

2.4 Diffuse Element Method (DEM) . 9

2.5 Moving Least Squares (MLS) and Element-Free Galerkin Method (EFG) . . 10

2.6 Smoothed Particle Hydrodynamics (SPH) 13

2.6.1 Taylor Series Corrections . 15

2.6.2 Reproducing Corrections . 23

2.6.3 Weight Functions . 30

III GENERAL FINITE DIFFERENCES (GFD) 32

3.1 Method . 32

3.2 Boundary Conditions . 35

3.2.1 Dirichlet . 38

3.2.2 Neumann . 40

3.2.3 Putting it Together... 41

3.3 Recovering Finite Differences . 42

IV GRID GENERATION . 44

4.1 Uniform Poisson Disc Sampling . 44

4.2 Variable Poisson Disk Sampling . 45

4.3 Neighbor Search . 46

v

V ALGORITHM . 48

5.1 Fractional Step Method for Navier-Stokes Equations 48

5.2 Algorithm . 49

5.3 Post Processing . 50

VI VALIDATION . 52

6.1 2D Poisson with Dirichlet Boundary Conditions 52

6.2 2D Cavity . 56

6.3 2D Uniform Flow Over Cylinder . 60

6.4 2013 FDA Cardiovascular Benchmark . 63

VII CONCLUSION AND FUTURE WORK 72

7.1 Conclusion . 72

7.2 Future Work . 74

REFERENCES . 75

vi

LIST OF FIGURES

1 Weight functions and their respective derivatives as a function of r/h. 31

2 Truncated central difference stencil near the linear boundary element ∂Ωe. . 36

3 Unit normal definition. 40

4 Star node a with example support domain which intersects a boundary ele-
ment ∂Ωe. For linear interpolation two additional points located at ~xw and
~xo are used to linearly extrapolate values to the ghost nodes falling in the
support domain. The boundary conditions on the element ∂Ωe will determine
whether Dirichlet or Neumann conditions will be imposed at ~xw. Note that
point ~x6 is again used in Figure 4b, however, this may not always be the case. 42

5 Central difference stencil. 42

6 Poisson disk sampling on a square using k = 30 with relaxation applied 10
times. 45

7 Uniform (left) versus variable (right) Poisson disk sampling. 46

8 Variable poisson disk sampling using an image’s greyscale. 46

9 Head of chain and linked list arrays for an example grid. 47

10 Post processing example. Lid driven cavity solution (Re = 100) sampled from
Poisson disk distribution onto a lattice. 51

11 GFD solution for 2D Poisson equation with a constant source using the expo-
nential weighting function where k = 4, h = 1.5s, rc = 1.5h and with N ≈ 20
nodes spanwise. 53

12 Number of iterations to reach ε < 1 × 10−10 using BiCGSTAB as smoothing
length h increased for GFD using We(k = 1, rcutoff = 1.5h). 54

13 Spatial convergence for 2D Poisson equation for GFD, MLS, and BCG. Five
irregular grids generated using uniform Poisson disk sampling corresponding
to N2 ≈ 102, 202, 402, 802, 1602 total nodes. 55

14 Lid driven cavity streamlines for Re=100,400,1000 and 3200. 57

15 Lid driven cavity steady state solution for velocity components, Re = 100.
LBM grid size is 200 × 200, while GFD is ≈ 100× 100. 58

16 Lid driven cavity steady state solution for velocity components, Re = 400.
LBM grid size is 200 × 200, while GFD is ≈ 100× 100. 58

17 Lid driven cavity steady state solution for velocity components, Re = 1000.
LBM grid size is 200 × 200, while GFD is ≈ 300× 300. 59

vii

18 Lid driven cavity steady state solution for velocity components, Re = 3200.
LBM and GFD grid size is ≈ 500× 500. 59

19 Variable radii Poisson disk distribution with refinement around the cylinder
using a maximum to minimum spacing ratio of 6. The variable radii function
is simply a linear ramp function where the minimum spacing smin = 1/6smax
is at the wall and the maximum spacing smax = 0.88 is a few diameters away
from the wall. Note this example is a 16D × 16D domain, ghost nodes are
not shown. 60

20 Comparison of skin friction coefficient Cf at the cylinder surface for Re = 40
using different resolutions compared to the boundary fitted solution presented
in Reference [33]. 61

21 Comparison of pressure coefficient Cp at the cylinder surface for Re = 40 using
different domain sizes compared to the boundary fitted solution presented in
Reference [33]. 62

22 Uniform flow over cylinder, streamlines plotted for Re = 40 showing the two
symmetrical standing vortices. 62

23 2013 FDA Benchmark. Steady flow through a nozzle with a sudden con-
traction and downstream conical diffuser. Geometry modified from Stewart
et al.[31]. The overlapped velocity contour plot is the Lattice Boltzmann
Method (LBM) solution for Re = 500. 63

24 Axisymmetric grid used for FDA test case with nn ≈ 8 across the throat. The
image is zoomed in on axial location z4. The red nodes define the immersed
boundary while the small gray nodes are ghost nodes used to modify the
computational stencil. 64

25 2013 FDA Benchmark (Re = 50), GFD solution for axial velocity profiles at
various z locations using nn ≈ 8 nodes across nozzle radius (19,000 total)
and nn ≈ 12 nodes (40,000 total). Compared to LBM solution obtained
using nn = 40 nodes across nozzle radius. All velocities are normalized with
respect to the average inlet velocity while radial positions are normalized to
fall between (−0.5, 0.5). GFD solution used ≈ 18 neighbors. 67

26 2013 FDA Benchmark (Re = 50), GFD solution for centerline velocity profiles
compared at two different resolutions. 68

27 2013 FDA Benchmark (Re = 50), normalized flow rates for GFD solution
calculated using Simpson’s rule at two different resolutions. 68

viii

28 2013 FDA Benchmark (Re = 500), GFD lattice solution (nn = 30) for axial
velocity profiles at various z locations compared to the LBM solution (nn =
60) and to the four raw experimental data sets. All velocities are normalized
with respect to the average inlet velocity while radial positions are normalized
to fall between (−0.5, 0.5). GFD solution used approximately 400,000 nodes
with each node having 13 neighbors. 69

29 2013 FDA Benchmark (Re = 500). GFD lattice solution (nn = 30) for axial
profiles at various z locations compared to the 95 percent confidence intervals
for the four experimental data sets, as well as to the LBM solution (nn = 60). 70

30 2013 FDA Benchmark (Re = 500), normalized flow rate and centerline profile
using GFD on a lattice with 13 neighbors. 71

ix

CHAPTER I

INTRODUCTION

In meshfree methods, partial differential equations are solved on an unstructured cloud

of points distributed throughout the computational domain. In collocated meshfree meth-

ods, the differential operators are directly approximated at each grid point based on a local

cloud of neighboring points. The set of neighboring nodes used to construct the local ap-

proximation is determined using a variable search radius which establishes an implicit nodal

connectivity and hence a mesh is not required. As a result, meshfree methods have the

potential flexibility to handle problem sets where the computational grid may undergo large

deformations as well as where the grid may need to undergo adaptive refinement. In this

work we develop an immersed boundary framework for collocated meshfree approximations.

We use the framework to implement three meshfree methods: General Finite Differences

(GFD), Smoothed Particle Hydrodynamics (SPH), and Moving Least Squares (MLS). We

evaluate the numerical accuracy and convergence of these methods by solving the 2D Poisson

equation. We demonstrate that GFD is computationally more efficient than MLS and show

that its accuracy is superior to a popular corrected form of SPH and comparable to MLS.

We then use GFD to solve several canonic steady state fluid flow problems on meshfree grids

generated using uniform and variable radii Poisson-disk algorithm.

1.1 Outline

In Chapter 2, we introduce collocated meshfree methods - as described by Belytschko et

al. and Onate et al. - briefly touching on how boundary conditions are typically handled.

Before proceeding to discuss various meshfree methods, we introduce shape functions and

explain why in general meshfree shape functions lose their interpolating property. We then

proceed to give an initial introduction to General Finite Differences (GFD), holding off on

a detailed explanation until Section 3.1. Instead, we focus on tracking the history of GFD,

introducing popular pseudonyms for the method. In Section 2.4, we show that the backbone

of the approximation in the Diffuse Element Method is simply the GFD approximation using

a complete basis. We next introduce the Moving Least Squares (MLS) approximation and

derive how a collocated version may appear where the constant basis has been removed.

We show that for function and 1st derivative approximations GFD and MLS will produce

the same estimate, while for 2nd derivative approximations, MLS carries an additional term

1

related to the spatial variation of the weight functions. We later use collocated MLS to solve

the 2D Poisson equation in Section 6.1.

We spend the remainder of the Chapter 2 introducing Smoothed Particle Hydrodynam-

ics (SPH) with the majority of the time devoted to the various corrections proposed to

restore consistency. The approaches to restore consistency can be grouped into Taylor-series

based corrections and reproducing corrections. We first summarize the main Taylor series

based corrections which we further subdivide into implicit and semi-implicit corrections.

Under the semi-implicit category, higher order derivative approximations are constructed

sequentially from lower order derivative approximations. We introduce Chen and Beraun’s

Corrected Smoothed Particle Method (CSPM) which lacks consistent 2nd derivatives due to

propagation of same order errors from the 1st derivative approximations. Subsequently, we

introduce Fatehi and Manzari’s consistent approach for 2nd derivatives. Contrary to CSPM,

Fatehi and Manzari keep track of the same order truncation error resulting from the first

gradient correction and use it in the construction of the second correction. Last under this

category is a simple form for second derivatives based on Randles and Libersky popular

gradient correction applied to Brookshaw’s approximation. Here we call this 2nd derivative

approximation, Brookshaw Corrected Gradient (BCG). We test the BCG approximation on

the simple 2D Poisson example in Section 6.1. Moving to the implicit category, we intro-

duce Zhang and Batra’s consistent Modified Smoothed Particle Hydrodynamics (MSPH).

In MSPH, the Taylor series is integrated with respect to spatial derivatives of the kernel

resulting in a system of equations which allows for higher and lower order derivatives to be

approximated simultaneously via a single matrix inversion.

Following Belytschko et al., we introduce the reproducing conditions and outline how they

can be applied to correct the kernel and the gradient of the kernel. When the polynomial

reproducing conditions are enforced on the kernel approximation, the corrected kernel ulti-

mately leads to the MLS approximation. In this manner, SPH using a completely corrected

weight function is simply the MLS approximation. We then summarize the reproducing

corrections as they apply to the gradient of the kernel. We show that Method 2, proposed

by Belytschko et al., is identical to GFD with a complete basis while Method 3 - another

gradient correction approach proposed by the same group - leads to MSPH.

In Chapter 3, we formally introduce GFD as the minimization of the euclidean error norm

with respect to the Taylor coefficients. In order to use the approximation to solve boundary

value problems such as those that may be encountered in a fractional step Navier-Stokes

solver, we show how to rewrite the approximation in terms of i neighboring scaled shaped

functions evaluated at the collocation point. To simplify the discretization of operators, we

introduce the m × n matrix of scaled shape functions φ, where the rows m correspond to

2

contributions to themth Taylor coefficient while the columns n correspond to the ith neighbor.

In this manner, a particular row contains the scaled coefficients necessary to discretize the

mth Taylor coefficient for a particular collocation point (i.e., star node a). In Section 3.2,

we present a novel generalization of the sharp interface form of the Immersed Boundary

method to collocated meshfree methods. By using linear extrapolation matrices Q and R - for

Dirichlet and Neumann boundary conditions respectively - we extrapolate appropriate values

to ghost nodes such that boundary conditions are fulfilled at all intersecting boundary points

between a star node a and ghost nodes gi in the star node’s support domain. Continuing

further, since the ghost node values are simply a linear combination of the neighboring

values of node a, we modify the i neighboring coefficients in the computational stencil of

a accordingly. During this process, we keep track of the additional known boundary terms

that may fall out to the RHS for row a of the corresponding system. As we show through

numerical tests in Chapter 6, the combination of modifying the coefficients and RHS - for

a star node a near the boundary - allows us to enforce the boundary conditions without

actually having equations corresponding to nodes on the boundary.

In Chapter 4, we address automatic and (potentially) adaptive grid generation for mesh-

free methods. We introduce uniform and variable radii Poisson disk sampling - a random grid

generation technique mostly used by the graphics community. In Poisson disk sampling, the

grid points are generated in such a way as to respect a certain spacing between grid points

(i.e., each grid point has a disk or bubble which no other grid points may occupy). The spac-

ing between grid points may be specified arbitrarily by some function. As example, we use

the variable radii Poisson disk algorithm to generate a grid based on an image’s normalized

greyscale. We later use the algorithm to generate the uniform and variable meshfree grids

used in the validation test cases presented in Chapter 6. We conclude the chapter with a

brief discussion on a neighbor search algorithm.

In Chapter 5, we introduce the backbone of the algorithm use to solve the fluid test cases

presented in Chapter 6 - an explicit fractional step solver for the Navier-Stokes equations.

In the method, the momentum equation is split into a viscous and non-viscous parts. In

the viscous equation, the pressure term is dropped and an intermediate velocity may be

obtained which does not satisfy the divergence-free condition but does satisfy both normal

and tangential velocity boundary conditions. In the non-viscous equation, the intermediate

velocity field is decomposed into a divergence free velocity field and curl free vector field

(i.e., the gradient of pressure). By taken the divergence of the non-viscous equation, a

Poisson Pressure Equation (PPE) may be obtained with a right hand side equal to the

divergence of the intermediate velocity field. Solving the boundary value problem for the

pressure, the intermediate velocity field can be corrected using the non-viscous equation to

3

obtain a divergence free velocity field which satisfies the normal boundary condition and

approximately satisfies the tangential condition. Concluding the chapter, we outline the

overall meshfree algorithm within the Immersed Boundary framework, list the discretization

of various operators in cartesian and axisymmetric cylindrical coordinates, and lastly briefly

elaborate on post-processing.

In Chapter 6, we present validation test cases solved within the generalized sharp interface

framework using grids generated by the uniform and variable radii Poisson disk algorithm.

We first solve the 2D Poisson equation with Dirichlet boundary conditions considering three

different meshfree approximation techniques: GFD, MLS, and BCG. In all three methods, we

remove the constant basis. Using the same meshfree grids we evaluate the discrete L2 relative

error norm and spatial convergence rate and compare results to central differences. Numerical

tests indicate that when the constant basis is removed GFD has accuracy comparable to MLS

and superior to the BCG approximation and moreover is computationally more efficient than

MLS. Furthermore, our 2D numerical tests used on average 14 - 20 neighbors, a factor of 2 - 3

times lower than the average number of neighbors typically reported in the inconsistent but

conservative SPH approximations. Choosing GFD to explore further, we solve two canonical

steady state fluid flow problems - the lid driven cavity and uniform flow over a cylinder.

For the lid driven cavity, we compare the horizontal and vertical velocity solutions to the

Ghia data set using Reynolds number of Re = 100, 400, 1000, 3200. While for the uniform

flow over a cylinder test case, we compare the skin friction and pressure coefficients to a

boundary fitted solution for Re = 40. We conclude the validation examples with the 2013

Food and Drug Administration cardiovascular benchmark. Using an axisymmetric model and

a Poisson-disk grid, we first compare the axial velocity profiles and the centerline velocity

profile to an axisymmetric Lattice Boltzmann Method (LBM) solution for a low Reynolds

number Re = 50. Unable to resolve stability issues encountered on the Poisson-disk grids

at higher Reynolds numbers, we switch to a simple lattice arrangement for Re = 500, and

using n = 13 neighbors compare GFD results to the LBM solution as well as to the available

experimental data sets.

4

CHAPTER II

BACKGROUND AND RELATED TOPICS

2.1 Collocated Meshfree Method

We first introduce the traditional collocated meshfree method as described by Belytschko

et al. and Onate et al. [3, 25]. Supposed we have the following boundary value problem:

Lu(~x) = f(~x) , ~x ∈ Ω− Γ (2.1)

where L is a differential operator acting on the unknown field u(~x). With u(~x) subject to

the following boundary conditions:

u(~x) = g(~x) , ~x ∈ Γd

∇u(~x) · n̂ = h(~x) , ~x ∈ Γn
(2.2)

The boundary Γ is split into the portion associated with Dirichlet conditions Γd and the

portion associated with Neumann conditions Γn. Here n̂ represents the unit normal at the

boundary and so the quantity ∇u(~x) · n̂ is the gradient in the normal direction. We can

construct an approximate solution uh(~x) as the following linear combination:

uh(~x) =
NP∑
i

φi(~x)ui (2.3)

where i ∈ 1, 2, ...NP and where φi(~x) are a set of linearly independent functions called shape

functions. Here NP = Nd + Nn + N and is the total number of nodes discretizing Ω. In a

collocation approach, the approximation given by Eq. 2.3 is directly substituted into Eq. 2.2

and is evaluate at the NP nodes discretizing the domain. In other words, the residual is

minimized at a set of NP discrete points. Upon substitution we arrive at the following

NP ×NP system:

Luh(~xa) = f(~xa) , ~xa ∈ N (2.4)

uh(~xa) = g(~xa) , ~xa ∈ Nd (2.5)

∇uh(~xa) · n̂ = h(~xa) , ~xa ∈ Nn (2.6)

where the differential operators are simply passed off onto the shape functions. Note that

here we have (Nd +Nn) equations stemming from nodes that lay directly on the boundary.

5

As NP →∞, we except the residual to be zero everywhere and - stability aside - expect the

approximate solution to converge to the exact solution (i.e., the approximation is consistent).

To ensure a sparse matrix, a local support domain for the node a is enforced via a weight

function, also called a kernel function. The weight function’s support domain is typically

chosen to be a circle (2D) with radius kh, where h is the smoothing length and k is a factor

specific to the weight function. Outside of the support domain, the weight function is zero.

Consequently, the neighbors contributing to the local approximation at node a are found

within a search radius kh. Moreover, establishing the nodal connectivity via a search radius

circumvents the requirement for an explicit meshing procedure. Note that some authors use

rectangular support domains. Here we only consider circular domains. Continuing further,

the approximation evaluated a collocation point uh(~xa) will read:

uh(~xa) =
n∑
i

φi(~xa)ui (2.7)

where n is the number of neighbors found in the local support domain for node a. In this

work, sometimes we will drop the the h superscript and just list the approximation as ua, a

commonly used shorthand in the cited texts. Similarly for the derivatives we would have:

∂uh

∂x

∣∣∣∣
~xa

=
n∑
i

∂φi
∂x

∣∣∣∣
~xa

ui (2.8)

Note that finding the right number of neighbors is critical as it will determine whether

shape functions can be found (i.e., is the matrix singular?). Moreover, as will be shown

using GFD in Chapter 6, too large of a support domain will reduce the accuracy of the

approximation. It is clear, finding the right spatial distribution of neighbors ultimately

determines the stability and accuracy of the approximation. In this work, we try to alleviate

these concerns by producing grids based on the Poisson-disk algorithm discussed later. On a

final note, we will not implement boundary conditions as described above but rather we will

generalize the sharp interface variant of the Immersed Boundary method to directly modify

the computational stencil such that boundary conditions are approximately enforced [23].

As such, the framework we present in Section 3.1 will only require an N ×N system to be

solved rather than an NP ×NP system. Note that the approximations provided can easily

be used on regular grids. In this work we choose to work with irregular grids because of the

possible extension of our code to Lagrangian particle-based solvers. This is discussed further

in Chapter 5.

6

2.2 Shape Functions

Before proceeding, it is necessary to understand shape functions a little better. We give

a simple example using the 1D linear polynomial basis as our approximation space (i.e.,

PT =
[
1 x

]
). If the number of points is equivalent to the number of basis, then we will

have the following system in order to find a0 and a1 such that uh(x) = PTa interpolates

values u1 and u2: [
1 x1

1 x2

][
a0

a1

]
=

[
u1

u2

]
(2.9)

and so a = A−1u, where we have let u be the vector of nodal values and have let A denote

the matrix 1. Substituting the found coefficients, we now have the linear approximation

uh(x) = PTA−1u, where the vector of shape functions Φ(x) =
[
φ1(x) φ2(x)

]
is:

Φ = PTA−1 (2.10)

Here the number of unknown coefficients is equivalent to the number of nodal values and

so the shape functions are just the Lagrange interpolation polynomials. That is, the shape

functions have the following property:

φi(xj) = δij (2.11)

In meshfree methods, the interpolating property of shape functions is generally lost unless the

number of coefficients are equal to the number of unknown nodal values. However, this does

not mean if there are more nodes than coefficients that the approximation can not interpolate

all nodal values in its cloud. If the shape functions enforce the reproducing conditions and if

the function being approximated is spanned by the basis then the approximation uh(~x) will

still interpolate all points. Typically, the underlying function is rarely spanned by the basis.

This implies for a particular point i in the cloud of star node a that uh(~xi) 6= ui, which in

turn implies that the locally constructed approximations are multivalued between clouds. It

is often argued that when using “point collocation” [25, 1] it is okay for the approximation

to be multivalued as long as you restrict use of the approximation to the star node, however,

it is unclear what underlying implications may exist. We do not discuss this further, but

simply point it out to the reader.

1To improve the conditioning number of the matrix, typically the basis is shifted about point xa and the
polynomial approximation is now simply the truncated Taylor series with the unknown coefficients now the
Taylor coefficients.

7

2.3 General Finite Differences (GFD)

Smoothed Particle Hydrodynamics (SPH) is widely attributed as the eldest of the mesh-

free family of methods, dating back to an astrophysics paper in 1977 by Gingold and Mon-

aghan [13]. Predating SPH by five years2 was Jensen when he published finite differences

for arbitrary grids (FIDAG) in 1972 [16]. In FIDAG, Jensen constructed a mth order Taylor

series expansion about a node a by interpolating the (m + 1)(m + 2)/2 required nodes in

the neighboring 2D area to construct a nodal matrix which could be used to approximate

the derivative vector (i.e., the Taylor coefficients) to O(hm+1−i), where i refers to the ith

derivative. As one may expect, this approach was found to be extremely sensitive to the

nodal distributions.

Subsequently in 1974, Perrone and Kao extended these ideas by considering ua as known

for the approximation, proposing a 9 point control scheme to improve the accuracy and

conditioning of the nodal matrix. Perrone and Kao point out that if the mixed derivative is

dropped and ua is considered known, the scheme collapses to the well known central difference

estimates for the 1st and 2nd derivatives when using equally spaced points. Motivated by

recovering the central difference estimate for the mixed derivative, they showed that by

taking the 5th point to be one of the four corners, 4 sets of 5× 5 systems could be obtained

which when averaged recover the central difference scheme for the mixed derivative. They

extended this notion to an irregular grid by considering the 4 points closest to the orthogonal

axes as nodes 1-4, and choosing the 5th point - four times - from the remaining points and

averaging the resulting systems [26].

The main ideas that have been introduced so far are not new and in fact mathematically

probably have been around for quiet sometime. It was not until they became computational

practical around the 70’s did a number of papers get published on the subject – see Refer-

ence [19]. Ultimately, they were overshadowed by the simultaneous rise of the Finite Element

Method (FEM). Nonetheless, by 1979 Liszka and Orkisz introduced a set of computer pro-

grams FIDAM (Finite Difference-Arbitrary Mesh)3. Generalizing Perrone and Kao’s work,

they introduced more nodes in the approximation leading to an overdetermined system. They

obtained a solution for the Taylor coefficients by solving a weighted least squares problem

under the squared error norm. They reported better accuracy for derivatives than traditional

central difference estimates or Perrone’s elaborate averaging process.

Over the years, the basic approximation as outlined in Liszka’s paper has resurfaced

multiple times under various pseudonyms: Least Square Finite Differences (LSFD), Finite

2See Perrone and Kao [26] references 8-9 for even earlier texts from the 1960s.
3To paint the state of computational power at this time, their program was limited to about 1000 nodes.

8

Point Method (FPM)4, Finite Cloud Method (FCM) 5 and as the backbone of the approx-

imation in Diffuse Element Method (DEM) [24]. It even has been mistakenly labeled as

Moving Least Squares (MLS) by Gossler at Sandia Labs [14]. A quick inspection shows

that the differentiation only took place with respect to the polynomial basis leading to an

identical approximation as found in Reference [19]. Here we will refer to this local Taylor

series based approximation as General Finite Differences (GFD) since it can be shown to

reduce to classical finite difference estimates under special circumstances. We hold off on

a detailed explanation of GFD until Section 3.1 and instead choose to first describe other

meshfree methods.

2.4 Diffuse Element Method (DEM)

In 1992, Nayroles et al. introduced the Diffuse Element Method (DEM)[24]. In DEM, the

weak form of a PDE is solved using a weighted least squares fitting performed on “diffuse”

elements consisting of a cloud of neighboring points surrounding an evaluation point (i.e.,

the sole integration point for the “diffuse element”). As they point out, by shifting the origin

to occur about the evaluation point (i.e., shift the basis from PT (~x) to PT (~x− ~xa)), DEM’s

formulation ultimately approximates the Taylor coefficients. When the coordinate shift is

performed their approximation for the solution over an element with nodal values u and

evaluation point located at ~xa reads:

uh(~x) = PT (~x− ~xa)a(~xa) (2.12)

Solving the least squares problem for a(~xa) and upon substitution:

uh(~x) = PT (~x− ~xa)A
−1(~xa)B(~xa)u (2.13)

where the vector of shape functions corresponding to each of the n neighboring nodes is:

Φ(~x) = PT (~x− ~xa)A
−1B (2.14)

From the collocation perspective, here the matrices A and B are identical to those presented

in the the GFD section when the constant basis has not been removed. Note that Nayroles

et al. assumed the weight function was a continuous function as opposed to discrete weights,

however, when evaluating derivatives, ultimately, only the polynomial term in the shape

4Onate et. al. refered to a variety of meshfree methods under this name but - as they themselves point
out - they ultimately implemented Liszka’s method referring to it as Weighted Least Squares (WLS)[25].

5In FCM, Aluru and Li referred to the approximation as the “fixed reproducing kernel approximation”
[1].

9

function was differentiated while the rest of the terms were assumed constant. For instance,

for
∂

∂x
we have:

∂Φ

∂x
=
∂PT (~x− ~xa)

∂x
A−1B (2.15)

We remark that if the DEM approximation is used with a collocation technique then it

will be equivalent to the GFD approximation. In DEM and GFD the approximation is m

times differentiable (as determined by the order of the basis) while MLS (as shown next)

will produce an approximation k times differentiable (as determined by the continuity of the

weight function). For example, if we wished to approximate derivatives using DEM with a

collocation approach, we can evaluate the derivative at the star node a using the quadratic

basis:

∂uh

∂x

∣∣∣∣
~xa

=
∂Φ

∂x

∣∣∣∣
~xa

u =
[
0 1 0 0 0 0

]
A−1Bu =

n∑
i

φ2iui (2.16)

or for
∂2

∂x2
:

∂2uh

∂x2

∣∣∣∣
~xa

=
∂2Φ

∂x2

∣∣∣∣
~xa

u =
[
0 0 0 2 0 0

]
A−1Bu = 2

n∑
i

φ4iui (2.17)

Here we see that the estimate of derivatives are identical to those presented in Section 3.1

when ua is treated as unknown. In fact Nayroles et al. mentions that one of the possible

uses of their approximation is to “generate new ‘finite difference like’ formula based on any

irregular set of discretization points”. Apparently, the group was not aware of the work done

a decade earlier by Liszka and Orkisz [19].

2.5 Moving Least Squares (MLS) and Element-Free Galerkin
Method (EFG)

In 1994, Belytschko et al. extended the ideas presented in DEM in their EFG Method

where again the Galerkin method is used with shape functions constructed from a weighted

least squares fitting over a cloud of neighbors [4]. Besides two important differences related

to boundary conditions and numerical evaluation of resulting integrals, Belytschko et al.,

citing Lancaster and Salkauskas [18], include the spatial variation of the matrices A and B,

making their approximation the moving least squares (MLS) approximation which reads:

uh(~x) = PT (~x− ~xa)a(~x) (2.18)

10

Here it is important to emphasize that a(~x) is a vector of “coefficients” which are functions

of space – they are not constant. The least squares problem under the weighted squared

error norm reads:

E =
n∑
i

(
PT (~xi − ~xa)a(~x)− ui

)2
W (~x− ~xi) (2.19)

where W (~x − ~xi) = W (~xi − ~x) is now a continuous weight function, rather than discrete

weights as in GFD, making a(~xa) now a function a(~x). The basis PT can be any orthogonal

basis and any function included in this basis is reproduced exactly (i.e., the approximation

is consistent to the kth order if the polynomial basis is chosen and is complete to order k)

[3]. After minimizing
∂E

∂a
= 0, solving for a(~x), and substituting, the final approximation

reads:

uh(~x) = PT (~x− ~xa)A−1(~x)B(~x)u (2.20)

with the shape function vector (“MLS interpolants”):

Φ(~x) =
[
φ1(~x) φ2(~x) φ3(~x) ... φn(~x)

]
= PT (~x− ~xa)A−1(~x)B(~x) (2.21)

where the moment matrix is defined as:

A(~x) =
n∑
i

W (~x− ~xi) P(~xia)⊗P(~xia) (2.22)

We reiterate that the entries of the moment matrix are now actually functions. Similarly B

(entries also functions) is defined as:

B =


W (~x− ~x1)P1(~x1a) W (~x− ~x3)P1(~x3a) . . . W (~x− ~xn)P1(~xna)

W (~x− ~x1)P2(~x1a) W (~x− ~x2)P2(~x2a) . . . W (~x− ~xn)P2(~xna)

.

W (~x− ~x1)Pm(~x1a) W (~x− ~x2)Pm(~x2a) . . . W (~x− ~xn)Pm(~xna)

 (2.23)

Using numerical tests, Belyschtko et al. showed that not accounting for the spatial vari-

ation of the weight function reduces the accuracy of their integral formulation. Accounting

for this spatial variation is necessary when using the Galerkin method since the matrices

A(~x) and B(~x) will vary at different points in the integration region. However, the question

remains whether the spatial variation will need to be accounted for when using a collocation

technique or if GFD will suffice.

In this work, we investigate a collocated version of MLS where we treat the value at the

collocation point ua as known leading to the removal of the constant basis and correspond-

ingly decreased matrix sizes (as is done with GFD). The collocated MLS approximation

using a quadratic basis (constant basis removed) may be obtained as follows:

11

1. Drop the constant basis in PT (~x− ~xa) treating ua as known.

uh(~x) = ua + PT (~x− ~xa)a(~x) (2.24)

2. Solve for a(~x) using n neighboring points:

a(~x) = A−1(~x)B(~x) (u− ua) (2.25)

3. Substitute in a(~x) and differentiate twice:

uh(~x) = ua + PT (~x− ~xa)a(~x) (2.26)

∂uh

∂x
=
∂PT

∂x
a + PT ∂a

∂x
(2.27)

∂2uh

∂x2
=
∂2PT

∂x2
a + 2

∂PT

∂x

∂a

∂x
+ PT ∂

2a

∂x2
(2.28)

4. Evaluating at ~xa, PT (~xa − ~xa) = ~0 and a(~xa) = A−1(~xa)B(~xa)(u− ua):

∂uh

∂x

∣∣∣∣
~xa

=
[
1 0 0 0 0

]
a(~xa) (2.29)

∂2uh

∂x2

∣∣∣∣
~xa

=
[
0 0 2 0 0

]
a(~xa) +

[
2 0 0 0 0

] ∂a

∂x

∣∣∣∣
~xa

(2.30)

A similar procedure can be followed for other derivatives. Note that the first derivative is

identical to the derivative obtained by GFD in Section 3.1, however, for the second deriva-

tive an additional term related to the spatial derivatives of the matrices A(~x) and B(~x) is

included. Moreover, note that if the constant basis was not dropped, for 2nd derivatives an

additional term related to
∂2a

∂x2

∣∣∣∣
~xa

would need to be included while for 1st derivatives the

term related to
∂a

∂x

∣∣∣∣
~xa

would also need to be included. Applying the product rule, the spatial

variation of the coefficients can be calculated as follows:

∂a

∂x
=

(
∂A−1

∂x
B + A−1

∂B

∂x

)
(u− ua) (2.31)

where the spatial derivative of the inverse is found by rearranging
∂
(
A−1A

)
∂x

= 0:

∂A−1

∂x
= −A−1

∂A

∂x
A−1 (2.32)

12

To approximate the Laplacian of a scalar field we would have the following discretization

using a quadratic basis with the constant basis removed:

∇ · ∇ua = 2

(
n∑
i

(φ4i + φ2i,x + φ6i + φ3i,y)ui − ua
n∑
i

(φ4i + φ2i,x + φ6i + φ3i,y)

)
(2.33)

where the following terms correspond to the GFD approximation, with φ the 5 × n matrix

presented in the Section 3.1 :

2

(
n∑
i

(φ4i + φ6i)ui − ua
n∑
i

(φ4i + φ6i)

)
(2.34)

and where the following are additional terms related to MLS:

2

(
n∑
i

(φ2i,x + φ3i,y)ui − ua
n∑
i

(φ2i,x + φ3i,y)

)
(2.35)

The additional terms are the appropriate rows of φx and φy, m×n matrices related to
∂

∂x
,
∂

∂y
of A−1(~x)B(~x) evaluated at ~xa. For example, φ2i,x corresponds to the 1st row of the 5 × n
matrix φx. The convention used here is that the row index refers to absolute position in the

quadratic basis (i.e., the index related to x in
[
1 x y x2 xy y2

]
will have a value of 2

regardless if the constant basis is dropped). Notice that the polynomial vector simply acts

to select (and scale) a given row of the resulting 5× n matrix. We use Eq. 2.33, to solve the

2D Poisson problem in Chapter 6.

To conclude the section, we must note that Belystchko et al. - citing the original authors

- points out the MLS approximation is actually a subset of the Partition of Unity (PU)

methods. We will not discuss PU methods here but reference the reader to Belytschko et al.

and the papers cited therein [3]. Moreover, we leave exploring the consequences of dropping

the constant basis in MLS to future work.

2.6 Smoothed Particle Hydrodynamics (SPH)

Smoothed Particle Hydrodynamics (SPH) was initially introduced by the astrophysics

community in 1977 but was later adopted by other communities as an attractive alternative to

modeling free surfaces and interfacial flows due to its Lagrangian nature [10]. In Lagrangian

methods, nodes in the computational grid are treated as particles occupying a certain volume

and having a certain mass with a position which is evolved in time according to Newton’s

laws (contrary to the Eulerian viewpoint where the grid points are fixed and are treated

simply as observation points). Typically in SPH, the governing equations are discretized

13

using the collocation technique described earlier. In the worst case scenario - due to the

evolving nature of the grid - the neighboring particles must be found at the beginning of

each time step via a neighbor search algorithm. Here we will not focus on the Lagrangian

nature of SPH but instead focus on the underlying function and derivative approximations.

To introduce the approximations behind SPH, we start with a general Taylor series

expansion of the field value at a neighboring point u(~xi) about the field value at our point

of interest u(~xa). Here we loosely follow the notation used by Fatehi and Manazari [11].

ui = ua + ~xia · ∇ua +
1

2
~xia ⊗ ~xia : ∇∇ua +

1

6
~xia ⊗ ~xia ⊗ ~xia

...∇∇∇ua + · · · (2.36)

where ⊗ refers to the tensor product and ·, :, ... refer to the the appropriate tensor contraction

(e.g., for rank 2 tensors A : B = AijBij). Weighting each term with a function W (~x − ~xi),
integrating over the domain, and finally discretizing and evaluating at the collocation point:

∑
uiWai∆Vi = ua

∑
i

Wai∆Vi +∇ua ·
∑
i

~xiaWai∆Vi +
1

2
∇∇ua :

∑
i

~xia ⊗ ~xiaWai∆Vi + · · ·

(2.37)

where ∆Vi is the volume (3D) or area (2D) assigned to a neighboring node. Here we have

pulled ua, ∇ua and ∇∇ua outside the summation over the i neighboring nodes and have

additionally commuted the tensor contraction. The weight function is chosen such that it

is symmetric, positive and monotonically decreasing with a compact support domain. If

we differentiate the Taylor series with respect to ~x before collocation and then collocate we

obtain:∑
ui∇Wai∆Vi = ua

∑
i

∇Wai∆Vi+∇ua·
∑
i

~xia⊗∇Wai∆Vi+
1

2
∇∇ua :

∑
i

~xia⊗~xia⊗∇Wai∆Vi

(2.38)

Here the notation Wai corresponds to the ith weight function evaluated at the collocation

point ~xa (i.e., Wai = W (~xa − ~xi)). Similarly, ∇Wai = ∇W (~x− ~xi)|~xa corresponds to the

gradient of the ith weight function with respect to ~x, evaluated at ~xa. The notation carries

over to other variables such as the position, ~xia = ~xi−~xa. For a discussion on weight functions

and computing their derivatives see Section 2.6.3. At this point we recognize the truncation

error terms as the required “moment conditions” needed to have a desired consistency 6. In

general, these moment conditions are not met even when using a symmetric and normalized

6Similar moment conditions can be shown for higher order approximations as well as higher derivatives,
in fact these moment conditions are equivalent to the reproducing conditions mentioned in the subsequent
sections.

14

kernel due to potential disorder in particle positions (i.e., “particle inconsistency”) as well

as support domain truncation near boundaries.

M0F =
∑
i

Wai∆Vi 6= 1 M1F =
∑
i

~xiaWai∆Vi 6= ~0

M0G =
∑
i

∇Wai∆Vi 6= ~0 M1G =
∑
i

~xia ⊗∇Wai∆Vi 6= I
(2.39)

The first index refers to the degree of the polynomial which can be reproduced exactly if the

condition is met, while the second index refers to whether it is “F”, a function approximation

or “G”, a gradient approximation. In the continuous case, the moment conditions hold

leading to second order accurate expressions. For a detailed error analysis of the discrete

case, we refer the reader to Fatehi and Manzari and the references therein [11]. If we

ignore these error terms, we have the following uncorrected approximations for functions

and derivatives:

〈ua〉 =
∑
i

uiWai∆Vi

〈∇ua〉 =
∑
i

ui∇Wai∆Vi
(2.40)

Notice that the spatial derivatives are simply passed off onto the weight function. In this

manner, the weight functions are analogous to shape functions which lack the interpolating

property. If we use these uncorrected forms, the numerical solution is not guaranteed to

converge to the actual solution due to large numerical errors present wherever the moment

conditions are violated.

To reconcile these issues, SPH practitioners introduced various corrections to restore the

moment conditions in the discrete setting. As Belytschko et al. points out there are two

basic approaches [2]:

1. enforcing reproducing conditions on either the kernel or gradients of the kernel such

that desired functions are reproduced exactly

2. manipulation of terms in the Taylor series expansion such that the truncation error in

the approximation is of the desired order

We will first introduce Taylor series based approaches and later introduce the approach via

reproducing conditions as is done by Beltyschko et al. [2]

2.6.1 Taylor Series Corrections

The promising corrections that have been proposed in SPH literature to correct the

gradient ∇u(~x) and the Laplacian ∇ · ∇u(~x) can be categorized as either semi-implicit or

15

implicit. In semi-implicit corrections, the gradient is first approximated considering ua as

known and then normalized by the truncation error term M1G to restore consistency. The

gradient estimate is then considered as a known when constructing higher derivatives. In

this manner, a better estimate for higher order derivatives may be sequentially obtained.

Chen and Beraun called this approach Corrected Smoothed Particle Method (CSPM) [7].

Building on CSPM, Zhang and Batra recognized that if ua is treated as an unknown the

function and derivatives maybe approximated simultaneously [35]. The implications of this

approach are that the truncation error for ∇ua will not propagate into the estimate of higher

order terms as occurs in CSPM. Zhang and Batra called this approach Modified Smoothed

Particle Hydrodynamics (MSPH). Within a year, Liu et al. arrived at the same approach

calling it Finite Particle Method (FPM) [21].

Over a decade later, Fatehi and Manzari proposed a semi-implicit correction to construct

a consistent Laplacian7. Using Brookshaw’s approximation[6] as a starting point, they kept

track of the truncation error associated with lower derivatives and included the error when

constructing the normalization matrix needed to correct second derivatives. Before demon-

strating each of these corrections we summarize the corrections below:

1. Semi-Implicit corrections

(a) CSPM - Excludes same order truncation error stemming from lower derivatives

and considers ua as known. In 2D, this approach involves a 2×2 matrix inversion

in order to reproduce the gradient of a linear field, followed by a 3 × 3 matrix

inversion with the corrected gradient now treated as as known leading to an

improved but still inconsistent Laplacian.

(b) Fatehi and Manzari - Includes same order truncation error stemming from lower

derivatives and considers ua as known. In 2D, this approach involves a 2 × 2

matrix inversion in order to reproduce the gradient of a linear field, followed by

a 3 × 3 matrix inversion where the corrected gradient is treated as known. By

including the associated leading error term of the gradient approximation in the

construction of the 3× 3 matrix, they obtain a consistent Laplacian estimate.

2. Implicit correction. (MSPH, FPM) Implicitly includes lower truncation error with ua

considered unknown. In 2D, this involves a 6×6 matrix inversion to arrive at first and

second derivatives estimates exact for quadratic functions.

7Fatehi and Manzari mention in their paper they were not aware of any consistent second order derivative
scheme in SPH literature. We note that at the time of their writing Belytschko et al. and others made it
clear over a decade earlier that MLS could be used to restore consistency [3]. Moreover, MSPH or GFD
could have been used.

16

2.6.1.1 Corrected Smoothed Particle Method (CSPM)

Starting with the differentiated Taylor series, dropping the ∇∇ua error term, and sub-

tracting ua we have:∑
i

(ui − ua)∇Wai∆Vi = ∇ua ·
∑
i

~xia ⊗∇Wai∆Vi (2.41)

In order for the estimate ∇ua to be exact for constant and linear functions, the 1st

gradient moment condition must be equal to I. This can be achieved by taken the inverse

of the moment condition and dotting the gradient of the kernel:(∑
i

~xia ⊗∇Wai∆Vi

)−1

·
∑
i

(ui − ua)∇Wai∆Vi = ∇ua · I (2.42)

More compactly we have:

〈∇ua〉 =
∑
i

(ui − ua) ∇̃Wai∆Vi (2.43)

where ∇̃Wai is the corrected gradient of the kernel:

∇̃Wai = M−1
1G · ∇Wai (2.44)

where M1G is the symmetric matrix corresponding to 1st gradient moment listed earlier.

Here the notation 〈∇ua〉 is necessary to indicate an estimate since we will later substitute

the expression in the Taylor series and it will be necessary to distinguish the estimate of the

gradient from the actual gradient at ~xa. Randles and Libersky were the first to propose the

above normalization to construct an exact gradient estimate for a linear tensor field [28].

Bonet and Lok point out that the approach is equivalent to enforcing rotational invariance

[5]. Lastly, we note the above gradient correction is the first step of CSPM. For convenience

we list out the equations for the 2D case:
∑
i

xia
∂W

∂x
∆Vi

∑
i

yia
∂W

∂x
∆Vi∑

i

xia
∂W

∂y
∆Vi

∑
i

yia
∂W

∂y
∆Vi



∂ua
∂x
∂ua
∂y

 =


∑
i

(ui − ua)
∂W

∂x
∆Vi∑

i

(ui − ua)
∂W

∂y
∆Vi

 (2.45)

here the notation
∂W

∂x
indicates the derivative with respect to x of W (~x − ~xi) and then

evaluated at ~xa. Notice that if M−1
1G is dropped, the gradient approximation reduces to only

being exact for constant functions. Furthermore, if we reverse the sign for ua we arrive

17

at the popular pairwise symmetric formulation which will in general not even be exact

for constant functions. We see there exists a trade off between restoring consistency and

preserving pairwise symmetry . Typically (to restore consistency) a unique matrix inversion

is necessary at each node since in the general setting node a and neighboring node i will

likely have different distribution of neighbors. As a result, pairwise symmetry is broken.

Continuing with the CSPM approach, a system maybe obtained for 2nd derivatives by

considering the gradient as known for a second system constructed by integrating the Taylor

series with respect to second derivatives of the weight function:∑
(uia)∇∇Wai∆Vi−〈∇ua〉·

∑
i

~xia⊗∇∇Wai∆Vi =
1

2
∇∇ua :

∑
i

~xia⊗~xia⊗∇∇Wai∆Vi+· · ·

(2.46)

where∇∇ indicates the gradient of the gradient. Dropping the higher order terms, combining

equivalent mixed derivatives, a simplified system of equations may be obtained for the second

derivatives. In the general case, this approximation will not be able to reproduce second

derivatives for a quadratic function since the leading error term dropped in the approximation

for 〈∇ua〉 actually is proportional to ∇∇ua [11]. This leading error term ∇ua − 〈∇ua〉 is

given by:

∇ua − 〈∇ua〉 = −1

2
∇∇ua : M2G ·M−1

1G (2.47)

where the symmetric second gradient moment tensor is given by:

M2G =
∑
i

~xia ⊗ ~xia ⊗∇Wai∆Vi (2.48)

We leave expanding the compact form to the reader but note that it results in a 3 × 3

system (in 2D) for the second derivatives. Furthermore, while the approximation is not fully

consistent it is still improved in the sense it no longer has sources of error proportional to

the lower order terms. We next explain Fatehi and Manzari’s approach in more detail in the

following sections.

2.6.1.2 Fatehi and Manzari Approach

The starting point in their approximation is the Brookshaw approximation [6], where the

first gradient is approximated using a finite difference while the second gradient is passed off

onto the weight function8:

〈∇∇ua〉 = 2
∑
i

ui − ua
|~xia|

~eia ⊗∇Wai (2.49)

8Fatehi and Manzari actually introduce ∇ · ∇ua first but it is clear from their work that they construct
their final approximation actually starting from ∇∇ua.

18

where |~xia| is the distance between node i and node a while ~eia =
~xia
|~xia|

is the unit vector

between them. Expanding ui using a Taylor series and absorbing the magnitude:

〈∇∇ua〉 = 2
∑
i

(
ua + ~eia · ∇ua +

1

2
~xia ⊗ ~eia : ∇∇ua + · · · − ua

)
~eia ⊗∇Wai (2.50)

Simplifying using the identities (~a ·~b)~c = ~b · (~a⊗~c) and (~a⊗~b : B)~c⊗ ~d = B : (~a⊗~b⊗~c⊗ ~d)

we have:

〈∇∇ua〉 = 2∇ua ·
∑
i

~eia ⊗ ~eia ⊗∇Wai +∇∇ua :
∑
i

~xia ⊗ ~eia ⊗ ~eia ⊗∇Wai + · · · (2.51)

As in CSPM, the leading error term is approximated using the corrected gradient 〈∇ua〉.
Subtracting 2〈∇ua〉 ·

∑
i

~eia ⊗ ~eia ⊗∇Wai we have:

〈∇∇ua〉∗ = 2 (∇ua − 〈∇ua〉) ·
∑
i

~eia⊗~eia⊗∇Wai +∇∇ua :
∑
i

~xia⊗~eia⊗~eia⊗∇Wai + · · ·

(2.52)

where 〈∇∇ua〉∗ = 〈∇∇ua〉−2〈∇ua〉·
∑

i ~eia⊗~eia⊗∇Wai. The novelty of Fatehi and Manzari’s

approach occurs at this point in the process. Instead of ignoring error from ∇ua− 〈∇ua〉 as

is done in CSPM, they instead calculate the leading truncation error term for the gradient

as given by Equation 2.47. The idea is that the corrected gradient’s leading error term

will contribute a term proportional to ∇∇ua and therefore must be considered during the

construction process. After substitution of Equation 2.47 we have:

〈∇∇ua〉∗ =
(
−∇∇ua : M2G ·M−1

1G

)
·
∑
i

~eia⊗~eia⊗∇Wai+∇∇ua :
∑
i

~xia⊗~eia⊗~eia⊗∇Wai+· · ·

(2.53)

Grouping terms in front of ∇∇ua and rewriting in terms of moment gradient tensors we

have:

〈∇∇ua〉∗ = ∇∇ua : C + · · · (2.54)

where C is a fully symmetric fourth order tensor given by:

C =

(
1

|~xia|2
(
M3G −M2G ·M−1

1G ·M2G

))
(2.55)

where M3G is the third gradient moment tensor defined as:

M3G =
∑
i

~xia ⊗ ~xia ⊗ ~xia ⊗∇Wai (2.56)

19

To see that C is fully symmetric, note that ∇Wai = −~eia
∂W

∂r
and ~xia = |~xia|~eia. Leading

the moment gradient tensors M1G,M2G and M3G to be the summation of individual fully

symmetric tensors constructed from some scalar multiple of ~eia⊗~eia, ~eia⊗~eia⊗~eia, and ~eia⊗
~eia⊗~eia⊗~eia, respectively. Furthermore, the left and right product of M−1

1G in M2G ·M−1
1G ·M2G

will contract the third and first indexes of each M2G into ultimately some scalar in front of

~eia⊗~eia⊗~eia⊗~eia, leading to the final product to also simply be the summation of individually

fully symmetric fourth order tensors. Now that the full symmetry of C is established we

look for a second order tensor B such that C : B = I since ∇∇ua : I = ∇ · ∇ua.

〈∇∇ua〉∗ : B = ∇∇ua : C : B (2.57)

Fatehi and Manzari state that B is symmetric but do not explain why. Consider the 4 × 4

system in 2D given by CijklBkl = Iij. Expanding we have:
C1111 C1112 C1121 C1122

C1211 C1212 C1221 C1222

C2111 C2112 C2121 C2122

C2211 C2212 C2221 C2222



B11

B12

B21

B22

 =


1

0

0

1

 (2.58)

Using the full symmetry of Cijkl we reduce the 16 components to only 5 potentially unique

components: 
c1 c2 c1 c3

c2 c3 c3 c4

c2 c3 c3 c4

c3 c4 c4 c5



B11

B12

B21

B22

 =


1

0

0

1

 (2.59)

This leads to a singular system since row 2 and row 3 are identical. Choosing the free variable

to be B21 and by setting it equal to B12 we reduce the system to a 3× 3 system where B is

now symmetric: c1 c2 c3

c2 c3 c4

c3 c4 c5


B11

B12

B22

 =

1

0

1

 (2.60)

where c1 = C1111, c2 = C1112, c3 = C1122, c4 = C1222 and c5 = C2222. Once B is found, the

final corrected approximation for the Laplacian reads:

〈∇ · ∇ua〉 = B : 2
∑
i

(
ui − ua
|~xia|

− ~eia · 〈∇ua〉
)
~eia ⊗∇Wai (2.61)

We do not consider this scheme here although it is consistent for second derivatives. We

simply present their unique approach and clarify some details left out of the original paper.

20

We refer the reader to numerical results presented by Fatehi and Manzari or more recently

Trask et al., who applied it to solve the Poisson equation [32].

2.6.1.3 Modified Smoothed Particle Hydrodynamics

Building on CSPM, Zhang and Batra introduced a strictly implicit procedure for ob-

taining consistent estimates [35]. By simultaneously solving for derivatives in one step,

they bypassed the issue in CSPM where truncation errors from lower derivative estimates

propagate into the estimates of higher derivatives. The MSPH approximation starts from

integrating the Taylor series with respect to the weight function and its derivatives. The

system of equations for ua and ∇ua reads:

ua
∑
i

Wai∆Vi +∇ua ·
∑
i

~xiaWai∆Vi =
∑

uiWai∆Vi

ua
∑
i

∇Wai∆Vi +∇ua ·
∑
i

~xia ⊗∇Wai∆Vi =
∑

ui∇Wai∆Vi
(2.62)

To obtain ua and ∇ua either a 3× 3 system (2D) or a 4× 4 (3D) would need to be inverted.

The system can be written as follows where the matrix entries are the moment conditions

M0F ,M1F ,M0G, and M1G:
∑
i

Wai∆Vi

(∑
i

~xiaWai∆Vi

)T

∑
i

∇Wai∆Vi
∑
i

~xia ⊗∇Wai∆Vi


[
ua

∇ua

]
=

 ∑uiWai∆Vi∑
ui∇Wai∆Vi

 (2.63)

The above matrix approximates the appropriately sized identity matrix. We see if ua is

considered as known, then the system collapses to a 2×2 (2D) or 3×3 (3D) system which is

equivalent to the corrected gradient approximation first introduced by Randles and Libersky

and later introduced by Chen and Beraun in CSPM under the context of a Taylor series

expansion. To approximate 2nd derivatives consistently, the unknowns ua, ∇ua, and ∇∇ua
may be found by integrating the Taylor series with respect to W,∇W and ∇∇W resulting

in the following 6× 6 (2D) or 10× 10 (3D) system:

ua
∑
i

Wai +∇ua ·
∑
i

~xiaWai +
1

2
∇∇ua :

∑
i

~xia ⊗ ~xiaWai =
∑
i

uiWai

ua
∑
i

∇Wai +∇ua ·
∑
i

~xia ⊗∇Wai +
1

2
∇∇ua :

∑
i

~xia ⊗ ~xia ⊗∇Wai =
∑
i

ui∇Wai

ua
∑
i

∇∇Wai +∇ua ·
∑
i

~xia ⊗∇∇Wai +
1

2
∇∇ua :

∑
i

~xia ⊗ ~xia ⊗∇∇Wai =
∑
i

ui∇∇Wai

(2.64)

21

where the mixed derivatives in ∇∇ need to be combined before the system can be formed

and where we have dropped ∆Vi for convenience. We do not consider this scheme here as

the matrices are asymmetric, thereby requiring more storage. Additionally, computing the

matrix entries involves not only evaluating the weight function at each point but also the

first and second partial derivatives of the weight functions at each point.

2.6.1.4 Brookshaw Corrected Gradient (BCG)

A popular form to estimate second derivatives is Brookshaw’s approximation [6]. In

Brookshaw’s approximation,
(ui − ua)
|~xia|

~eia approximates the first gradient followed by pass-

ing the second gradient onto the weight function. Some authors have gone a step further

and combined this form with the gradient correction for the weight function to obtain the

following Laplacian estimate:

〈∇ · ∇ua〉 = 2
∑
i

ui − ua
|~xia|

~eia · ∇̃Wai (2.65)

where ∇̃Wai is given by Eq. 2.44. We call this form Brookshaw Corrected Gradient (BCG).

If we expand ui via the Taylor series given by Equation 2.36:

〈∇ · ∇ua〉 = 2
∑
i

∇ua · ~xia + 1/2∇∇ua : (~xia ⊗ ~xia)
|~xia|

~eia · ∇̃Wai (2.66)

Rearranging and simplifying:

〈∇ · ∇ua〉 = 2∇ua ·
∑
i

∇̃Wai +∇∇ua :
∑
i

~xia ⊗ ∇̃Wai (2.67)

where 〈∇ · ∇ua〉 − ∇ · ∇ua:

〈∇ · ∇ua〉 − ∇ · ∇ua = 2∇ua ·
∑
i

∇̃Wai +∇∇ua :

(∑
i

~xia ⊗ ∇̃Wai − I

)
(2.68)

The leading error term is proportional to 2∇ua ·
∑

i ∇̃Wai which is not equal to ~0 unless a

regular grid is used. Moreover, note that even if an irregular grid is used, since the kernel

is corrected using the 2 × 2 (2D) or 3 × 3 (3D) matrix M−1
1G , the term

∑
i ~xia ⊗ ∇̃Wai = I.

As a result, we will not have the error term proportional to ∇∇ua. Khorasanizade et al.

used this Laplacian estimate when discretizing the Poisson equation in their incompressible

Lagrangian solver [17]. Despite the inconsistency, their numerical tests for lid driven cavity

solution at Re = 100, 400, 1000, 3200 had excellent agreement with the Ghia data set. Based

on their results, we decide to explore the BCG approximation further in Chapter 6, although

it should be clear based on the above that the approximation is not consistent.

22

2.6.2 Reproducing Corrections

Belytschko et al. describes how reproducing conditions can be used to restore consistency

of the function or gradient approximation by modifying the kernel (i.e., weight function) or

gradient of the kernel[2]. In fact, if the reproducing conditions are used to reproduce the

polynomial basis, they will be equivalent to the moment conditions arrived at earlier using the

Taylor series approach. As a result, we should expect some of the previous approximations

to reappear in the following sections. Following Belytschko et al., we first introduce the

polynomial reproducing conditions.

2.6.2.1 Polynomial Reproducing Conditions

In terms of shape functions, the function approximation can be written as:

uh(~x) =
∑
i

φi(~x)u(~xi) (2.69)

where in the case of SPH, φi(~x) = W (~x−~xi)∆Vi with the shape functions generally no longer

having the interpolating property. The reproducing conditions require that a particular

set of linearly independent functions are reproduced exactly by the approximation uh(~x).

Typically, the polynomial reproducing condition is enforced where the set of functions to be

reproduced will be a linear combination of the polynomial basis (e.g., 1D quadratic basis

[1 x x2]). Take for example the constant reproducing condition which requires that any

constant function be reproduced exactly. Substituting uh(~x) = co and u(~xi) = co into

Eq. 2.69:

co =
∑
i

φi(~x)co →
∑
i

φi(~x) = 1 (2.70)

Here it is no coincidence that we have arrived at the zeroth moment condition M0F or more

commonly known as the unity condition. In fact, it should be clear that the polynomial

reproducing condition used with φi(~x) = W (~x − ~xi)∆Vi, will be equivalent to the function

moment conditions (e.g., M0F ,M1F ,M2F , ...MmF) introduced earlier in the weighted Taylor

series based approach. To see this insert the general form of a polynomial shifted about ~xa

for uh(x) and u(~xi) into Eq. 2.69:

∑
m

cmPm(~x) =
∑
i

φi(~x)

(∑
m

cmPm(~xi)

)
(2.71)

where Pm(~x) is the mth polynomial basis shifted about ~xa. Rearranging we arrive at:

∑
m

cmPm(~x) =
∑
m

cm

(∑
i

φi(~x)Pm(~xi)

)
(2.72)

23

which gives us the reproducing conditions to recover a mth order polynomial:

Pm(~x) =
∑
i

φi(~x)Pm(~xi) (2.73)

Taking the gradient we arrive at the gradient reproducing conditions:

∇Pm(~x) =
∑
i

∇φi(~x)Pm(~xi) (2.74)

When evaluated at the collocation point ~xa, the previously seen moment conditions on

functions and gradients (M0F ,M1F ,M0G,M1G) are recovered as given by Eq. 2.39.

2.6.2.2 Kernel Correction

The simplest correction is normalizing by the unity condition as is done in the Shepard

interpolant φSi (~x). By enforcing the unity condition, zeroth order consistency is restored to

both the function and derivative approximations [30]:

φSi (~x) =
φi(~x)∑
j

φj(~x)
=

W (~x− ~xi)∆Vi∑
j

W (~x− ~xj)∆Vj
(2.75)

Here the index j still refers to same set of local neighboring nodes. Upon substituting and

evaluating at ~xa the function approximation reads:

ua =

∑
i

uiWai∆Vi∑
j

Waj∆Vj
(2.76)

Here we see if ui = c0, the constant can be pulled out and the two sums will always cancel,

reproducing constant functions exactly. Moreover if we take the gradient before collocation:

∇φSi =

∇φi
∑
j

φj − φi
∑
j

∇φj(∑
j

φj

)2 (2.77)

and upon substitution we arrive at the derivative estimate:

∇ua =

∑
i

ui∇φi
∑
j

φj −
∑
i

uiφi
∑
j

∇φj(∑
j

φj

)2 (2.78)

24

We see that for a constant field the derivative will also be computed exactly since the

numerator terms will cancel. The Shepard interpolant can be interpreted as a correction

to the kernel function by a constant function which normalizes the estimate. Lancaster

and Salkauskas point out that the Shepard interpolant is identical to the constant basis

MLS approximation [18]. Moreover, this means the non-corrected SPH estimates given by

Eq. 2.40 are in fact a constant basis MLS approximation where the normalizing function in

the denominator has been dropped and as a result the approximation is incapable of even

reproducing constant functions.

The approach of modifying the weight function by a constant function can be generalized

to a correction function comprised of a linear combination of unknown functions. For example

in 2D the linearly corrected kernel (denoted by the tilde) would be:

φ̃i(~x) = (α1(~x) + α2(~x)(xi − xa) + α3(~x)(yi − ya)φi(~x) (2.79)

where if we wish for the corrected shape functions to reproduce linear functions we would

have: ∑
i

φ̃i = 1
∑
i

φ̃ixia = 0
∑
i

φ̃iyia = 0 (2.80)

After enforcing the linear reproducing conditions, a system maybe obtained for the unknown

functions α1, α2 and α3 which correct φi(~x) such that reproducing conditions are enforced.

Ultimately the corrected kernels are identical to the MLS shape functions when ∆Vi = 1, see

Reference [3]. This is in fact the approach introduced by Liu et al. as the Reproducing Kernel

Particle Method (RPKM) [22]. Consequently, the mth order consistent SPH approximation

- obtained by correcting the weight function to enforce the reproducing (moment) conditions

on the kernel - is simply the mth order MLS approximation either obtained by solving the

least squares problem or by enforcing the reproducing conditions on the weight function.

To estimate the kth derivative, the function approximation would simply be differentiated k

times before collocation as was shown in Section 2.5.

2.6.2.3 Mixed Kernel and Gradient Corrections

So far the reproducing conditions have been placed on the weight function, leading to

the MLS approximation. Alternatively, reproducing conditions may instead be placed on a

combination of the kernel and the gradient of the weight function as was done by Belytschko

et al. and Bonet and Lok [2, 5]. Bonet and Lok proposed a single approach they called a

“mixed kernel and gradient correction” while Belytschko et al. refered to the overall approach

as simply “derivative corrections”, proposing three schemes. To start, the linear gradient

25

reproducing conditions are: ∑
i

∇φi = ~0∑
i

~xia ⊗∇φi = I
(2.81)

Here we will go over the three approaches - Method 1, Method 2, and Method 3 - proposed

by Belytschko et al. We will focus on linear reproducing conditions for the function and

gradient approximations but it should be straightforward from the examples to arrive at

higher order reproducing conditions as well as construct higher derivative estimates. We will

show Method 2 is equivalent to the GFD approximation while Method 3 is equivalent to the

MSPH approximation, which will provides us with an additional interpretation of GFD and

MSPH.

Method 1

In Method 1, the constant reproducing conditions on derivatives are ignored. Instead the

constant reproducing condition is enforced by replacing φi with the shepard interpolant φSi ,

thereby sidestepping the first two conditions (2D). The remaining reproducing conditions

are now written as: ∑
i

~xia ⊗∇φSi = I (2.82)

The corrected gradient of the shepard interpolant ∇̃φSi is then constructed as a linear com-

bination of unknown correction functions applied to the uncorrected shepard gradient ∇φSi :

∇̃φSi = α · ∇φSi (2.83)

After requiring the reproducing conditions given by Eq. 2.82 to hold on ∇̃φSi we arrive at

the following sets of symmetric systems:

α ·
∑
i

~xia ⊗∇φSi = I (2.84)

After solving for the unknown correction functions α, the following gradient approximation

will be exact for linear functions:

∇ua =

(∑
i

~xia ⊗∇φSi

)−1

·
∑
i

ui∇φSi (2.85)

Note that Method 1 is equivalent to the approach presented in Bonet and Lok as the mixed

kernel and gradient approach [5]. Moreover, Belytschko et al. points out Method 1 differs

from the Randles and Libersky gradient approximation (Equation 2.43) simply by the

choice of weight function, which no longer requires the error term associated with ua to be

subtracted in order for the derivative approximation to be exact for constant functions.

26

Method 2

Here Belytschko et al. proposes looking for correction functions for both the kernel and

derivatives using the shepard interpolant. The linear 2D example given for the corrected

kernels and kernel derivatives is:

φ̃i = (α11(~x) + α12(~x)xia + α13(~x)yia)φ
S
i (~x)

∂φ̃i
∂x

= (α21(~x) + α22(~x)xia + α23(~x)yia)φ
S
i (~x)

∂φ̃i
∂y

= (α31(~x) + α32(~x)xia + α33(~x)yia)φ
S
i (~x)

(2.86)

Where the basis evaluated at point ~xi about point ~xa is included (i.e., xia, yia) when con-

structing the approximation. The reproducing conditions require:

∑
i

φSi
∑
i

∂φSi
∂x

∑
i

∂φSi
∂y∑

i

xiaφ
S
i

∑
i

xia
∂φSi
∂x

∑
i

xia
∂φSi
∂y∑

i

yiaφ
S
i

∑
i

yia
∂φSi
∂x

∑
i

yia
∂φSi
∂y


=

1 0 0

0 1 0

0 0 1

 (2.87)

After imposing the above conditions on φ̃i,
∂φ̃i
∂x

,
∂φ̃i
∂y

, the following symmetric system is

obtained which may be solved for the correction functions:

∑
i

φSi
∑
i

xiaφ
S
i

∑
i

yiaφ
S
i∑

i

xiaφ
S
i

∑
i

x2
iaφ

S
i

∑
i

xiayiaφ
S
i∑

i

yiaφ
S
i

∑
i

xiayiaφ
S
i

∑
i

y2
iaφ

S
i


α11 α21 α31

α12 α22 α32

α13 α33 α33

 =

1 0 0

0 1 0

0 0 1

 (2.88)

Notice that the linearly corrected kernel is obtained again via the first row and correction

functions α11, α12, α13. However, instead of differentiating the linearly corrected kernel to

obtain derivatives, the linearly corrected derivatives are obtained by imposing the gradient

reproducing conditions on the above linear combinations. After collocation, Method 2 will

be identical to GFD when φi = W (~x−~xi) is used as opposed to φSi . Note that the correction

functions evaluated at ~xa are equivalent to the inverse of the symmetric moment matrix for

GFD presented in Section 3.1:

α(~xa) = A−1 (2.89)

27

To see that the above formulation will recover GFD, substitute the correction functions

evaluated at ~xa into the approximation given by Eq. 2.86, evaluated at ~xa:


ua
∂ua
∂x
∂ua
∂y

 =



∑
i

uiφ̃i

∑
i

ui
∂φ̃i
∂x∑

i

ui
∂φ̃i
∂y


=



α11

∑
i

uiφi + α12

∑
i

uixiaφi + α13

∑
i

uiyiaφi

α21

∑
i

uiφi + α22

∑
i

uixiaφi + α23

∑
i

uiyiaφi

α31

∑
i

uiφi + α32

∑
i

uixiaφi + α33

∑
i

uiyiaφi


(2.90)

where we split the vector into a matrix-vector product:

α11

∑
i

uiφi + α12

∑
i

uixiaφi + α13

∑
i

uiyiaφi

α21

∑
i

uiφi + α22

∑
i

uixiaφi + α23

∑
i

uiyiaφi

α31

∑
i

uiφi + α32

∑
i

uixiaφi + α33

∑
i

uiyiaφi


=

α11 α12 α13

α21 α22 α23

α31 α32 α33




∑
i

uiφi∑
i

uixiaφi∑
i

uiyiaφi


(2.91)

taking φi = W (~xa − ~xi) = Wai and using the symmetric matrix of what are now correction

coefficients α = A−1 we arrive at the GFD approximation. Note the LHS is simply the vector

of Taylor coefficients a (constant basis included), while the RHS vector can be rewritten in

terms of Bu (see Section 3.1):

a(~xa) = A−1Bu (2.92)

Method 3

In the last method, the linearly corrected kernels and kernel derivatives are written as the

following linear combination of correction functions:

φ̃i = β11(~x)φSi + β12(~x)
∂φSi
∂x

+ β13(~x)
∂φSi
∂y

∂φ̃i
∂x

= β21(~x)φSi + β22(~x)
∂φSi
∂x

+ β23(~x)
∂φSi
∂y

∂φ̃i
∂y

= β31(~x)φSi + β32(~x)
∂φSi
∂x

+ β33(~x)
∂φSi
∂y

(2.93)

Compared to Method 2, the linear combination no longer has a term proportional to the

polynomial terms in its construction. The following system for the correction functions can

be obtained by similarly enforcing the linear reproducing conditions given by Equation 2.87

28

on φ̃i,
∂φ̃i
∂x

,
∂φ̃i
∂y

:



∑
i

φSi
∑
i

∂φSi
∂x

∑
i

∂φSi
∂y∑

i

xiaφ
S
i

∑
i

xia
∂φSi
∂x

∑
i

xia
∂φSi
∂y∑

i

yiaφ
S
i

∑
i

yia
∂φSi
∂x

∑
i

yia
∂φSi
∂y



β11 β21 β31

β12 β22 β32

β13 β33 β33

 =

1 0 0

0 1 0

0 0 1

 (2.94)

As we showed that Method 2 collocated is actually is just the GFD approximation, similarly

we can show that replacing the Shepard interpolant above with φi = W (~x − ~xi) and then

collocating will lead to Zhang and Batra’s MSPH approximation. The linearly corrected

approximations after collocation reads:


ua
∂ua
∂x
∂ua
∂y

 =



β11

∑
i

uiφi + β12

∑
i

ui
∂φi
∂x

+ β13

∑
i

ui
∂φi
∂y

β21

∑
i

uiφi + β22

∑
i

ui
∂φi
∂x

+ β23

∑
i

ui
∂φi
∂y

β31

∑
i

uiφi + β32

∑
i

ui
∂φi
∂x

+ β33

∑
i

ui
∂φi
∂y


=

β11 β12 β13

β21 β22 β23

β31 β32 β33




∑
i

uiφi∑
i

ui
∂φi
∂x∑

i

ui
∂φi
∂y


(2.95)

Noting that the system for the correction functions given by Eq. 2.94 reads:

A
3
βT = I

β =
(
AT

3

)−1 (2.96)

where we have defined A
3

to be the moment matrix associated with Method 3 given in

Equation 2.94. Taking the transpose, AT
3

is equivalent to the linear moment matrix defined

in Equation 2.63. Hence, Method 3 implicitly approximates the Taylor series coefficients and

is equivalent to MSPH. It is no coincidence that enforcing the reproducing conditions leads us

to MSPH. The equivalence between the two approaches is due to the fact the truncation error

terms (i.e., moment conditions) in the integrated Taylor series are simply the reproducing

conditions.

29

2.6.3 Weight Functions

Many different weight functions are possible. As illustrated in Figure 1, here the cubic

W3, quintic W5 and Gaussian We kernels are considered [20]:

W3(r, h) =
15

7πh2


2/3−

(r
h

)2

+
1

2

(r
h

)3 r

h
≤ 1

1

6

(
2− r

h

)3

1 <
r

h
≤ 2

0
r

h
≥ 2

(2.97)

W5(r, h) =
7

478πh2



(
3− r

h

)5

− 6
(

2− r

h

)5

+ 15
(

1− r

h

)5 r

h
≤ 1(

3− r

h

)5

− 6
(

2− r

h

)5

1 <
r

h
≤ 2(

3− r

h

)5

2 <
r

h
< 3

0
r

h
≥ 3

(2.98)

We(r, h) =
k

πh2
e
−k
(r
h

)2

(2.99)

where r = ||~x− ~xi|| and h is the smoothing length which defines the compacts support. The

coefficients in front are the 2D normalization constants such that the continuous integral

of the kernels is unity. Except for the Gaussian kernel, the kernels have a built in cut off

radius rc. For example, the cubic kernel only assigns non-zero values to nodes within r < 2h.

For the Gaussian kernel, rc must be specified. For MLS and SPH, derivatives of the weight

function are necessary. They can be obtained via repeated application using the chain rule.

For
∂

∂x
:

∂W

∂x
=
∂W

∂r

∂r

∂x
=

(x− xi)
r

∂W

∂r
(2.100)

Notice that for SPH and MLS, each weight function is actually associated with the ith

neighbor and as such is centered about ~xi. Similarly, so are the derivatives of the weight

function. For example, in 1D the derivative at xa using the uncorrected SPH form reads:

du

dx

∣∣∣∣
xa

=
∑
i

ui
dWi

dx

∣∣∣∣
xa

∆xi (2.101)

Consider a support domain which only has three nodes ur, uc, ul - a right, center, and left

node. If we evaluate the derivative we would see that using Eq. 2.100,
dWi

dx

∣∣∣∣
xa

for the right

node evaluates to a positive weight, for the left node it evaluates to a negative weight, and

30

for the center node it evaluates to zero. Hence, on a regular grid we would have a finite

difference like expression for
d

dx
.

(a) Cubic, quintic, and Gaussian kernels. (b) 1st derivative of kernels.

Figure 1: Weight functions and their respective derivatives as a function of r/h.

31

CHAPTER III

GENERAL FINITE DIFFERENCES (GFD)

3.1 Method

One route to obtaining the GFD approximation is to use a weighted least squares fitting

to the Taylor series expansion of a function u(~x) expanded about the star node located at

~xa:

uh(~x) =
m∑
j

Pj(~x− ~xa)aj(~xa) = PT (~x− ~xa)a(~xa) (3.1)

with the polynomial basis:

PT (~x− ~xa) =
[
1 x− xa y − ya (x− xa)2 (x− xa)(y − ya) (y − ya)2 . . . Pm

]
(3.2)

and Taylor coefficients:

aT (~xa) =

[
u(~xa)

∂u

∂x

∣∣∣∣
~xa

∂u

∂y

∣∣∣∣
~xa

1

2

∂2u

∂x2

∣∣∣∣
~xa

∂2u

∂x∂y

∣∣∣∣
~xa

1

2

∂2u

∂y2

∣∣∣∣
~xa

. . .
1

c!
am

]
(3.3)

Here the index m refers to the absolute position of the Taylor coefficient starting with the

first index at m = 1, while c corresponds to the coefficient (i.e., for
∂2

∂x2
, c = 2). Using the

squared error norm as the metric to describe the error of the constructed approximation:

E =
n∑
i

(
PT (~xi − ~xa)a(~xa)− ui

)2
W (~xa − ~xi) (3.4)

where n is the number of neighboring points in the support domain for node a determined

by the smoothing length h of the symmetric weight function W (~xa−~xi) = W (~xi−~xa). Note

that ~xa was substituted for ~x, making this approximation GFD and not MLS. Taking the

partial derivatives with respect to the Taylor coefficients 1:

∂E

∂a
= 2

n∑
i

W (~xa − ~xi)P(~xia)⊗P(~xia)a(~xa)− 2
n∑
i

P(~xia)uiW (~xa − ~xi) (3.5)

1The resulting equations are called the “normal equations” and are equivalently obtained by making the
residual vector orthogonal to the space spanned by the basis. The approaches yield the same equations.

32

and finding the minimum by setting
∂E

∂a
= 0:

n∑
i

W (~xa − ~xi)P(~xia)⊗P(~xia)a(~xa) =
n∑
i

P(~xia)uiW (~xa − ~xi) (3.6)

where ⊗ represents a tensor product of two vectors. At this point, if the PDE can be

recast to a decoupled set of ODEs as would be the case in an explicit version of Chorin’s

artificial compressibility method for the Navier Stokes equations [8], then the LHS can be

inverted and the Taylor coefficients can be used to discretize the derivatives as ≈ c!am.

However, if a system of equations needs to be solved, as would be the case using a variant of

Chorin’s projection method [9], then a little bit more work is necessary to recast the above

formulation in terms of n neighboring shape functions evaluated at node a. Start by defining

the symmetric moment matrix A with size (m×m):

A =
n∑
i

W (~xa − ~xi)P(~xia)⊗P(~xia) (3.7)

Next rewrite the RHS as follows:
n∑
i

P(~xia)uiW (~xa − ~xi) = Bu (3.8)

where B is a m× n matrix with each column as the weighted basis vector evaluated at the

ith neighbor:

B =


W (~xa − ~x1)P1(~x1a) W (~xa − ~x2)P1(~x2a) . . . W (~xa − ~xn)P1(~xna)

W (~xa − ~x1)P2(~x1a) W (~xa − ~x2)P2(~x2a) . . . W (~xa − ~xn)P2(~xna)

.

W (~xa − ~x1)Pm(~x1a) W (~xa − ~x2)Pm(~x2a) . . . W (~xa − ~xn)Pm(~xna)

 (3.9)

and where u is the vector of the field values u(~xi) at the n neighboring points. Solving for

a(~xa) and substituting into the approximation u(~x) given by Eq. 3.1:

uh(~x) = PT (~x− ~xa)A−1(~xa)B(~xa)u (3.10)

where the shape function vector is:

Φ(~x) =
[
φ1(~x) φ2(~x) φ3(~x) ... φn(~x)

]
= PT (~x− ~xa)A−1(~xa)B(~xa) (3.11)

As was shown before, derivatives are approximated by simply taking the appropriate deriva-

tive of u(~x), which in GFD results in a differentiation of PT (~x − ~xa) while the other terms

are held constant. The resulting matrix coefficients for a given row a of the system will

correspond to the n neighboring shape functions (and or their derivatives) evaluated at the

star node a. When compared to MLS we have the following differences:

33

1. The GFD approximation is m times differentiable where m is the highest order in the

basis, while MLS is k times differentiable where k is how many times the kernel is

differentiable.

2. If a polynomial basis is used, the GFD shape functions are polynomials while the MLS

shape functions are not.

3. Both GFD and MLS will reproduce any function that can be written as a linear com-

bination of the basis. 2

4. Both GFD and MLS are in general approximations and not interpolations except for

special circumstances.

Continuing, instead of keeping tracking of a specific derivative via appropriate differentiation

of PT (~x−~xa), let us keep track of all Taylor coefficients given in Eq. 3.6 and then later scale

them by the appropriate constant c!. The Taylor coefficients can be written as:

a(~xa) = φu (3.12)

where φ is a m× n matrix defined as:

φ = A−1B (3.13)

Each row of the matrix φ can be thought of as the mth Taylor derivative of the n neighboring

shape functions evaluated at the star node a scaled by 1/c!. The first row of shape function

values can be used as the coefficients for a smoothing filter for u(~xa). Additionally, it may

be used to estimate u(~x) where ~x is a location which happens to not coincide with any

of the nodes. Alternatively, one can also think of the matrix φ as a container of finite

difference coefficients where the mth row contains scaled coefficients to discretize the mth

Taylor derivative. Equivalently we have:

am =
n∑
i

φmiui (3.14)

Up to now we have not been clear about one important question and that is whether to

include ua as a known variable when solving the normal equations. If we treat ua as known,

the local approximation will fit through ua and our matrix sizes will reduce by one row and

one column. Taking the first Taylor coefficient as known and repeating the above procedure

we have:

2An intuitive analogy is that just like any vector in a 2D plane can be represented by two orthonormal
vectors, so can any function which happens to live in the space spanned by the basis.

34

a = A−1B(u− ua) (3.15)

equivalently written as:

am =
n∑
i

φmiui − ua
n∑
i

φmi (3.16)

Here φmi are the entries of the shape function matrix φ which is now a (m − 1) × (n − 1)

matrix. The Taylor coefficients a will also be reduced to a size of m− 1 since the first entry

ua is known. For the examples presented in this work, we use the quadratic basis without

the constant basis:

PT (~x− ~xa) =
[
x− xa y − ya (x− xa)2 (x− xa)(y − ya) (y − ya)2

]
(3.17)

aT (~xa) =

[
∂u

∂x

∣∣∣∣
~xa

∂u

∂y

∣∣∣∣
~xa

1

2

∂2u

∂x2

∣∣∣∣
~xa

∂2u

∂x∂y

∣∣∣∣
~xa

1

2

∂2u

∂y2

∣∣∣∣
~xa

. . .
1

c!
am

]
(3.18)

where the final approximation reads:

uh(~x) = ua + PT (~x− ~xa)A−1(~xa)B(~xa)(u− ua) (3.19)

As before, derivatives can be evaluated by differentiating the approximation and then collo-

cating:

∂uh

∂x

∣∣∣∣
~xa

=
∂Φ

∂x

∣∣∣∣
~xa

u =
[
1 0 0 0 0

]
A−1B(u− ua) =

n∑
i

φ2iui − ua
n∑
i

φ2i (3.20)

or for
∂2

∂x2
:

∂2u

∂x2

∣∣∣∣
~xa

=
∂2Φ

∂x2

∣∣∣∣
~xa

u =
[
0 0 2 0 0

]
A−1B(u− ua) = 2

(
n∑
i

φ4iui − ua
n∑
i

φ4i

)
(3.21)

Note that here φ2i uses the convention we mentioned previously where we number the rows

of the container matrix using absolute indexes (i.e., if a row is removed in the event a basis

is removed, the row numbering does not change).

3.2 Boundary Conditions

One way to implement boundary conditions is the traditional collocation approach de-

scribed in the introduction where nodes are positioned directly on the boundary allowing for

an approximation to be constructed at the boundary [3, 25]. In the resulting NP ×NP sys-

tem, some of the rows will correspond to Γ while the majority will correspond to Ω−Γ. The

35

boundary operators directly act on the approximation at the boundary and will determine

the coefficients and RHS for a particular row corresponding to a node belonging to Γ, while

the differential operator corresponding to the PDE will act on the nodes corresponding to

Ω−Γ and will determine the corresponding row and RHS. While this approach is conceptu-

ally simple, one of the limitations in positioning nodes on the boundary is what Liszka and

Orkisz referred to as the problem of an “unbalanced star” wherever Neumann conditions

are applied. At the boundary, the support domain will be biased in the normal direction

towards the interior and as a result so will the derivative estimate.

To balance the star, Liszka and Orkisz proposed adding “auxillary” nodes outside the

computational domain near Neumann boundaries to which they extrapolated a value such

that the star is balanced. Following this reasoning, here we generalize the sharp interface

immersed boundary approach (as classified by Mittal and Iaccarino) to meshfree grids. When

the immersed boundary is treated as a sharp interface, the boundary conditions are imposed

by modifying the computational stencil for nodes near the boundary [23]. For example,

consider the central difference stencil truncated near the boundary element ∂Ωe as shown

below.

Figure 2: Truncated central difference stencil near the linear boundary element ∂Ωe.

Writing a central difference for the star node a we have:

∂2u

∂x2

∣∣∣∣
~xa

=
u3 − 2ua + ug

h2
(3.22)

Suppose we have a Dirichlet boundary condition uw imposed at the intersection of the line

segment ag with ∂Ωe. We wish to find a value for ug such that the boundary condition at

~xw is approximately enforced. One possible approach is to linearly interpolate ua, uw, and

u2 by the matrix Q given by Equation 3.28 and then extrapolate the value to ~xg using Q−1

where ug = Q−1
11 ua + Q−1

12 uw + Q−1
13 u2. We see that ug is linearly dependent on ua, u2, and

36

uw. Upon substitution, we have:

∂2u

∂x2

∣∣∣∣
~xa

=
u3 − 2ua +Q−1

11 ua +Q−1
12 uw +Q−1

13 u2

h2
(3.23)

after regrouping terms:

∂2u

∂x2

∣∣∣∣
~xa

=
u3 + (Q−1

11 − 2)ua +Q−1
13 u2

h2
+
Q−1

12 uw
h2

(3.24)

We see two coefficients in row a would be modified to incorporate the Dirichlet boundary

conditions, while an additional term related to uw would need to be subtracted from the

RHS for row a. Note that the coefficients that need to be modified will correspond to the

nodes used in the interpolation matrix.

The above example is potentially misleading since u2 − ua is orthogonal to ua − ug and

will not contribute to the spatial derivatives in the x direction (i.e., Q−1
13 = 0). Only the

coefficient for ua would actually be modified, while the known boundary term would be

subtracted from the RHS. Another approach would be to construct a quadratic polynomial

centered about ~xa that interpolates u3, ua, uw and then to differentiate, however, this could

not be used to implement a Neumann boundary condition at ∂Ωe, since u3 and uw are co-

linear with ua and ug, but could potentially be non co-linear with the boundary normal of

∂Ωe.

We circumvent these problems by using enough points in the support domain of node a

(near the boundary) such that appropriate interpolation points can be found (see Figure 4).

We note that our approach differs from Tseng and Ferziger’s approach [33] in the following

ways:

1. they designed for and limited their approach to Cartesian grids.

2. they do not modify the computational stencil near the boundary but instead extrapo-

late a value to ghost nodes to be used as a forcing function.

3. they consider higher order interpolations.

4. we explicitly place a restriction that the interpolation points must come from the

computational stencil of node a.

5. our interpolation matrices are linear approximations and are centered about the ghost

nodes.

37

To generalize enforcing boundary conditions via the sharp interface approach for an irreg-

ular grid, some extra accounting is necessary. We start by expressing the Taylor coefficient

given by Eq. 3.16 over different sets of local indexes:

am =
∑
i∈f

φmiui +
∑
i∈gd

φmiui +
∑
i∈gn

φmiui − ua
∑
i∈n

φmi (3.25)

where the sets of local indexes for star node a are:

1. n - set of local indexes of fluid and ghost points in the support domain of the star node

2. f - set of local indexes of the nodes which are strictly in the fluid.

3. gd - set of local indexes of the ghost nodes for which the relative vector ~xa−~xg intersects

a boundary element ∂Ωe which has Dirichlet boundary conditions imposed.

4. gn - set of local indexes of ghost nodes for which the relative vector ~xa − ~xg intersects

a boundary element ∂Ωe which has Neumann boundary conditions imposed.

In the following sections, we will show how each ui, in the ghost sets gd and gn, can be

represented as a linear combination of the star node a, another fluid node o, and a boundary

point w. Depending on the boundary conditions needed, an appropriate value is extrapolated

to ug by using either linear interpolation matrix Q or R, for Dirichlet and Neumann boundary

conditions respectively. By choosing the linear interpolation matrices to be centered about

the ghost point, the linear relation for a ghost node is simplified to only three coefficients

(corresponding to the first row of the matrix inverse) making it easier to regroup terms,

modify coefficients, and determine the additional terms that need to be subtracted from the

RHS.

3.2.1 Dirichlet

The field function value at a ghost node located at ~xg which is a neighbor of the star

node a can be extrapolated using a Taylor polynomial expanded about ~xg:

u(~x) = ao + a1(x− xg) + a2(y − yg) +O(h2) (3.26)

Here we will consider a linear basis and interpolate three nodes - two in the fluid and one

on the boundary domain - to construct the following (3× 3) system:1 xa − xg ya − yg
1 xw − xg yw − yg
1 xo − xg yo − yg


aoa1

a2

 =

u(~xa)

u(~xw)

u(~xo)

 (3.27)

38

As shown in Figure 4, ua is the field function value at the star node, uw is the known

boundary value at the intersection point of line ag with the piecewise linear element ∂Ωe,

and uo is field value at a third interpolation point in the support domain of ~xa. We choose

~xo which has the minimum distance to ~xw such that line ag and ao are not co-linear3. Define

the linear interpolation matrix for Dirichlet boundary conditions as Q:

Q =

1 xa − xg ya − yg
1 xw − xg yw − yg
1 xo − xg yo − yg

 (3.28)

By choosing the approximation to occur around ~xg, the extrapolated value at the ghost node

will simply be the dot product of the first row of Q−1 and the RHS:

u(~xg) = ao = Q−1
11 ua +Q−1

12 uw +Q−1
13 uo (3.29)

As shown in Figure 4, each ghost node will potentially have a unique matrix Q, unique uw,

and unique uo. As such, we must add a subscript i to each term upon substitution into the

Dirichlet summation term of Eq. 3.25:∑
i∈gd

φmiui = ua
∑
i∈gd

φmiQ
−1
11,i +

∑
i∈gd

φmiQ
−1
12,iuw,i +

∑
i∈gd

φmiQ
−1
13,iuo,i (3.30)

Since each ghost node (see Figures 4a and 4b) may potentially share the same uo in their

extrapolation matrices, a particular uo may be modified more than once. As such, it will

be necessary to reduce each uo,i into a unique set of uo,j in order to correctly group the

modifying coefficients:

∑
i∈gd

φmiQ
−1
13,iuo,i =

∑
j

uo,j

(∑
i∈q

φmiQ
−1
13,i

)
(3.31)

here j corresponds to the unique set of uo,i, while set q corresponds to the set of ghosts

nodes with Dirichlet boundary conditions which share the same uo and ua. Substituting, the

summation term over set gd reads:

∑
i∈gd

φmiui = ua
∑
i∈gd

φmiQ
−1
11,i +

∑
i∈gd

φmiQ
−1
12,iuw,i +

∑
j

uo,j

(∑
i∈q

φmiQ
−1
13,i

)
(3.32)

Here we see that the set gd contributes a modification to the coefficient of ua and to the

coefficients of each uo,j used. In addition, a known term related to each uw,i is produced

which will be subtracted from the RHS.

3Note that we always position grid points approximately half a unit away from the boundary.

39

3.2.2 Neumann

Following the procedure that was outlined in the preceding section for Dirichlet boundary

conditions, we now consider the modification of the computational stencil that occurs when

Neumann conditions are imposed. For Neumann boundary conditions we must satisfy:

∂u

∂n
= ∇u · n̂ =

∂u

∂x
nx +

∂u

∂y
ny (3.33)

where the unit normal of the piecewise linear element is defined as:

n̂ = −sinθî+ cosθĵ (3.34)

Figure 3: Unit normal definition.

Replacing row 2 in the preceding system with the Neumann boundary condition:

1 xa − xg ya − yg
0 −sinθ cosθ

1 xo − xg yo − yg


bob1

b2

 =


u(~xa)

∂u

∂n

∣∣∣∣
~xw

u(~xo)

 (3.35)

where we define the Neumann interpolation matrix R which will be used to extrapolate a

value to the ghost node for a particular star - ghost pair:

R =

1 xa − xg ya − yg
0 −sinθ cosθ

1 xo − xg yo − yg

 (3.36)

Upon substituting each ghost value ug into the Neumann ghost set we arrive at:∑
i∈gn

φmiui = ua
∑
i∈gn

φmiR
−1
11,i +

∑
i∈gn

φmiR
−1
12,i

∂uw,i
∂n

+
∑
i∈gn

φmiR
−1
13,iuo,i (3.37)

Similarly: ∑
i∈gn

φmiR
−1
13,iuo,i =

∑
j

uo,j

(∑
i∈r

φmiR
−1
13,i

)
(3.38)

40

where j is again the unique set of “other” fluid nodes used during extrapolation while r is

the set of ghost nodes with Neumann boundary conditions which share the same uo and ua.

After substituting the Neumann summation term over ghosts reads:

∑
i∈gn

φmiui = ua
∑
i∈gn

φmiR
−1
11,i +

∑
i∈gn

φmiR
−1
12,i

∂uw,i
∂n

+
∑
j

uo,j

(∑
i∈r

φmiR
−1
13,i

)
(3.39)

We see that the Neumann set will produce modifications to ua, each uo,j, and will produce

a known term that will be subtracted from the RHS.

3.2.3 Putting it Together...

After substituting Equations 3.32 and 3.39 into Equation 3.25 and grouping terms in

front of unique nodal values, the general form for the Taylor coefficients evaluated at a given

star node a with a set of n neighboring support points using linear extrapolation is:

am =
∑

i∈(f /∈j)

φmiui + ua

(∑
i∈gd

φmiQ
−1
11,i +

∑
i∈gn

φmiR
−1
11,i −

∑
i∈n

φmi

)
+
∑
j

kjuo,j +BRHS (3.40)

where the coefficient in front of the “other” nodes used in extrapolation is given as:

kj = φmj +
∑
i∈q

φmiQ
−1
13,i +

∑
i∈r

φmiR
−1
13,i (3.41)

BRHS are the terms falling out of the extrapolation matrix involving the boundary and are

considered knowns.

BRHS =
∑
i∈gd

φmiQ
−1
12,iuw,i +

∑
i∈gn

φmiR
−1
12,i

∂uw,i
∂n

(3.42)

Note that Equation 3.40 is the general form of the Taylor coefficients in terms of i scaled

shape functions evaluated at node a. The additional terms will only appear if the star node’s

support domain overlaps a boundary element, in which case modifications to coefficients are

performed using appropriate linear extrapolation to fulfill boundary conditions at intersection

points between the star node and each of its ghost nodes. Multiplying the Taylor coefficient

by c!, gives us the appropriate derivatives to approximate a differential operator and will

ultimately define the coefficients of row a. Note that this form can be used with GFD, SPH,

or MLS, as long as the approximations are collocated with ua treated as a known variable

and where i scaled shape functions maybe evaluated at ~xa.

41

(a) Matrix Q9 or R9 used to extrapolate ap-

proach values to the ghost node at ~x9 to fulfill

the boundary condition at ~xw

(b) Matrix Q10 or R10 used to extrapolate

approach values to the ghost node at ~x10 to

fulfill the boundary condition at ~xw.

Figure 4: Star node a with example support domain which intersects a boundary element

∂Ωe. For linear interpolation two additional points located at ~xw and ~xo are used to linearly

extrapolate values to the ghost nodes falling in the support domain. The boundary conditions

on the element ∂Ωe will determine whether Dirichlet or Neumann conditions will be imposed

at ~xw. Note that point ~x6 is again used in Figure 4b, however, this may not always be the

case.

3.3 Recovering Finite Differences

Consider the star node ua shown in Figure 5 with the 4 neighbor support domain. Drop-

ping the cross derivative term we use the following basis with a uniform weight function:

PT (~x− ~xa) =
[
x− xa y − ya (x− xa)2 (y − ya)2

]
(3.43)

Figure 5: Central difference stencil.

42

Calculating A−1, B, and φ:

A−1 =



1

2h2
0 0 0

0
1

2h2
0 0

0 0
1

2h4
0

0 0 0
1

2h4


B =


h 0 −h 0

0 h 0 −h
h2 0 h2 0

0 h2 0 h2

 φ =



1

2h
0 − 1

2h
0

0
1

2h
0 − 1

2h
1

2h2
0

1

2h2
0

0
1

2h2
0

1

2h2


(3.44)

Resulting in the classic central difference estimates when using Eq. 3.16:

∂u

∂x

∣∣∣∣
~xa

≈ a2 =
u1 − u3

2h
(3.45)

∂u

∂y

∣∣∣∣
~xa

≈ a3 =
u2 − u4

2h
(3.46)

∂2u

∂x2

∣∣∣∣
~xa

≈ 2a4 =
u1 − 2ua + u3

h2
(3.47)

∂2u

∂y2

∣∣∣∣
~xa

≈ 2a6 =
u2 − 2ua + u4

h2
(3.48)

By using the above fact, we were able to facilitate the debugging phase of code development

by limiting the support domain to four neighbors and dropping the mixed basis to see

if the corresponding central difference estimates would be recovered when using a lattice

arrangement.

43

CHAPTER IV

GRID GENERATION

4.1 Uniform Poisson Disc Sampling

Spatially distributing nodes for an unstructured grid is a non trivial matter. Choosing a

random distribution of points will lead to highly ill-conditioned moment matrices A due to

the linear dependence that results when nodes inevitably cluster. To alleviate the clustering

seen in random distributions, Poisson disk sampling is used. We follow the algorithm as

described by Schechter and Bridson [29]. In uniform Poisson disk sampling, the goal is to

create a random distribution of nodes with a guaranteed minimum spacing s. Without going

into implementation details, the algorithm is as follows:

1. Choose initial point ~xo.

2. Randomly generate k candidates within an annular disk ranging from s to s+ ∆s.

3. Add candidate to the “active” list if it is 1) within the domain and 2) > s away from

all existing nodes. If no “active” candidates are generated, mark node a as “inactive”.

4. Choose a random “active” node a from the list and go back to step 2. When there are

no more “active” nodes, the algorithm ends.

After the generation step, an optional relaxation step may be applied to each node a:

1. Calculate rmin, the minimum distance to neighboring nodes for node a.

2. Generate k candidates whose radial distance τ away from from the selected node is

given by the following decreasing function τ =

(
k − i
k

)
s, where i ∈ [0, k − 1] and is

the candidate id

3. If candidate i is in the domain, calculate r∗min the minimum distance to neighboring

nodes.

4. If r∗min > s and r∗min > rmin, set rmin = r∗min and update the tracking index for the

candidate id.

44

5. Test the next candidate starting with step 3. If no candidate remains to be tested,

update the position of node a to the candidate position corresponding to the tracking

index.

Figure 6 shows a Poisson distribution and the effect of relaxation on an initial distribution is

to increase the characteristic spacing s between nodes (i.e., filling in empty regions). Ideally,

this relaxation should decrease the condition number of A at each of our star nodes, however

this is hard to guarantee.

(a) Before relaxation. (b) After relaxation.

Figure 6: Poisson disk sampling on a square using k = 30 with relaxation applied 10 times.

4.2 Variable Poisson Disk Sampling

In variable Poisson disk sampling, the spacing can be a function of space and time s(~x, t)

as shown in Figure 7. In step 2, now the active node a generates k candidates in an annulus

s(~xa, t) + ∆s. In addition, step 3 is modified to consider a non constant “bubble” around

each neighbor. Letting the distance between the candidate c and an arbitrary neighbor point

p be Rcp, then two conditions are required: Rcp > s(~xc) and Rcp > s(~xp). In other words,

no two points can reside within each others bubbles. Note that if there are sharp spatial

gradients in the spacing function then the algorithm will potentially fail to fill empty coarse

regions when the active node a resides in the fine region and tries to produce a candidate in

the coarse region if s(~xa)+∆s < s(~xc). If s(~xa)+∆s > s(~xc) is not satisfied, the active node

a will always produce rejected candidates since the node a will always reside in the bubble

of each candidate.

45

Figure 7: Uniform (left) versus variable (right) Poisson disk sampling.

The algorithm was tested on a series of images converted to greyscale and normalized

resulting in a spatial function ranging from 0 (black) to 1 (white). The greyscale function

was used to describe the varying radii of each bubble as follows:

s(~x) = smin + (smax − smin)G(~x) (4.1)

where smin is the minimum spacing of the grid, smax is the maximum spacing, and G(~x)

is the normalized greyscale value. The image on the left in Figure 8 is actually a variable

Poisson disk distribution where the nodes are represented by gray markers as shown in the

zoomed in image. The nodes do not actually overlap but rather their markers do. The dark

areas correspond to fine areas of a grid where the spacing between nodes would be small.

The visual effect is very similar to the pointillism painting technique, though we do not color

the dots here.

(a) Zoomed out. (b) Zoomed in.

Figure 8: Variable poisson disk sampling using an image’s greyscale.

4.3 Neighbor Search

An important detail left out so far is an efficient algorithm for a neighbor search. The

typical approach taken in particle-based methods is to divide the domain into cells of equal

46

sizes so that only the surrounding cells need to be checked for neighbors. The particle

positions are mapped to a cell index which is linked to a list of all particles ids residing in

the cell. The linking can be achieved by maintaining two arrays: a head of chain array and

a linked list array. The first array is indexed using the cell ids and returns the corresponding

id of the “head of chain” in the linked list. The value at the “head of chain” is the index

used to obtain the next node residing in the current cell from the linked list. If the end

of the chain is reached, -1 is returned. This is shown graphically in Figure 9. Although it

is incredibly inefficient, here we use the same algorithm for uniform and variable grids by

setting cell sizes based on the coarsest resolution.

Figure 9: Head of chain and linked list arrays for an example grid.

47

CHAPTER V

ALGORITHM

5.1 Fractional Step Method for Navier-Stokes Equations

Written in terms of the primitive variables in non-conservative form, the momentum and

mass conservation equations for a viscous, incompressible fluid from the Eulerian viewpoint

reads:
∂~u

∂t
+ (~u · ∇) ~u = −∇P + ν∇2~u (5.1)

∇ · ~u = 0 (5.2)

where ~u is the velocity field, P is the density scaled pressure, and ν is the kinematic viscosity.

A relatively simple scheme to solve the pressure-velocity coupled equations is an explicit

fractional step projection method [9, 27]. In this method, the momentum equation is split

into a viscous and inviscid equation:

~u∗ − ~un

∆t
=
(
− (~un · ∇) ~un + ν∇2~un

)
(5.3)

~un+1 − ~u∗

∆t
= −∇P n+1 (5.4)

Adding these two equations recovers the original momentum equation. We see the first

equation predicts an intermediate velocity ~u∗ only considering viscous effects. The predicted

intermediate velocity satisfies both the tangential and normal boundary conditions, that

is ~u∗|Γ = bn+1 [27]. However, ~u∗ does not satisfy the divergence free condition since the

pressure term was dropped (i.e., ∇ · ~u∗ 6= 0).

In the second equation, the intermediate velocity is split into a divergence free field un+1

and a curl free field ∇P n+1. By taking the divergence of Eq. 5.4 and using the incom-

pressibility condition ∇ · ~un+1 = 0, we can obtain the following Pressure Poisson Equation

(PPE):

∇ · ∇P n+1 =
1

∆t
∇ · ~u∗ (5.5)

Here we see that the RHS is the divergence of the intermediate velocity field. In order to solve

the PPE, boundary conditions are needed on pressure. According to Quartapelle, the inviscid

equation can only satisfy the normal boundary condition on ~un+1 (i.e.,~un+1 · n̂ = bn+1 · n̂) and

so we project Eq. 5.4 at the boundary Γ onto the normal obtaining the following condition

48

on pressure:
∂P n+1

∂n

∣∣∣∣
Γ

= 0 (5.6)

After solving for P n+1, ∇P n+1 is used to correct the intermediate field to obtain the diver-

gence free field ~un+1:

~un+1 = ~u∗ −∆t∇P n+1 (5.7)

As Quartapelle describes, the corrected field ~un+1 will satisfy the normal boundary condition,

but will only approximately satisfy the tangential condition [27]. The argument here is that

the tangential velocity condition is imposed on the intermediate field and so the corrected

field will approximately satisfy the tangential conditions as well. To march the momentum

equation forward in time, the time step ∆t is chosen as the minimum between the following

convective and diffusive guidelines:

∆tu = 0.5
∆s

umax

∆tν = 0.125
∆s2

ν

(5.8)

where ∆s is the minimum spacing between grid points, and umax is the maximum velocity

magnitude.

5.2 Algorithm

Using the sharp interface framework described previously, the algorithm can be summa-

rized as follows:

1. Initialize the piecewise linear elements delineating the boundaries and describing the

boundary conditions. Initialize the grid using the variable Poisson disk algorithm.

2. For each star node a , find the nearest neighbors within kh, where k depends on the

weight function used and h is a variable smoothing length such that the specified

number of neighbors are found.

3. For each star node a in Ω − Γ, calculate φ - the m × n scaled shape function matrix

evaluated using Equation 3.40.

4. Populate the N ×N Laplacian system, where each row corresponds to a star node a.

5. Calculate ~u∗ using Equation 5.3 and then calculate ∇ · ~u∗.

49

6. Solve the PPE for P n+1 using an appropriate linear solver. 1

7. Calculate ∇P n+1 and correct ~u∗ using Equation 5.7 to obtained un+1. Go back to Step

5 and repeat till terminating condition.

In Cartesian coordinates (x, y) the operators are approximated using Eq. 3.40 as follows:

1. ∇ (gradient):
∂

∂x
î+

∂

∂y
ĵ = a2î+ a3ĵ

2. ∇· (divergence):
∂

∂x
u+

∂

∂y
v = a2(u) + a3(v)

3. ∇2 = ∇ · ∇() (laplacian):
∂2

∂x2
+

∂2

∂y2
= 2(a4 + a6)

In axisymmetric cylindrical coordinates (r, z) some of the operators take on additional terms:

1. ∇ (gradient):
∂

∂z
ẑ +

∂

∂r
r̂ = a2ẑ + a3r̂

2. ∇· (divergence):
ur
r

+
∂uz
∂z

+
∂ur
∂r

=
ur
r

+ a2(uz) + a3(ur)

3. ∇2 = ∇ · ∇() (laplacian):
1

r

∂

∂r
+

∂2

∂z2
+

∂2

∂r2
=

1

r
a3 + 2(a4 + a6)

where r is radial coordinate and z is the axial coordinate. The above algorithm can easily

be modified into a Lagrangian solver where now Steps 2, 3, and 4 would need to be repeated

at approximately every time step. However, it is not clear at this moment how well variable

resolution will be handled since in the Lagrangian solver care must be taken to assign masses

via some notion of the volume a particle occupies.

5.3 Post Processing

It is desirable to have the numerical solution on a regular lattice for processing reasons.

As a result, it may be necessary for the meshfree solution to be sampled onto a lattice.

To sample field values onto the lattice, GFD with a complete basis is used to approximate

functions and their derivatives. Below we have given an example in Figure 10, where the

meshfree velocity field in the image on the left was sampled onto a lattice in order to calculate

contour plots of the velocity magnitude.

1In general, the system will be non-symmetric. Here we use the BiCGSTAB method as implemented in
the Eigen library [15].

50

(a) Before sampling - unit velocity vectors

colored by magnitude.

(b) After sampling - contour plot of ve-

locity magnitude.

Figure 10: Post processing example. Lid driven cavity solution (Re = 100) sampled from

Poisson disk distribution onto a lattice.

51

CHAPTER VI

VALIDATION

6.1 2D Poisson with Dirichlet Boundary Conditions

The two dimensional Poisson equation with a constant source term reads:(
d2T

dx2
+
d2T

dy2

)
+Q = 0 (6.1)

with Q = 1 subject to T (x, y) = 0 at boundary of the unit square. The analytical solution

is known and is given by:

T (x, y) =
16

π4

∞∑
n

∞∑
m

sin(πnx)sin(πmy)

nm(n2 +m2)
(6.2)

Here we discretize the equation on uniform Poisson disk grids using GFD, MLS, and

BCG resulting in a sparse system of ≈ (N ×N) equations:

2(a4i + a6i) = −1 (6.3)

where N is the target number of nodes we wish to span a given dimension and is used to scale

the system such that s ≈ 1, while a4i and a6i correspond to the appropriate Taylor coefficients

given by Eq. 3.40 for a particular star node i. After populating the matrix coeffecients, this

system is solved using Eigen’s BiCGSTAB solver, where we set the residual to ε < 1× 10−10

[15]. Note that a quadratic basis is used for GFD and MLS with the constant basis treated

as a known. The contours and center profile are presented in Figure 11.

The spatial convergence is presented in Figure 13 and was evaluated using the discrete

L2 relative error norm:

L2 =

∑
i

(
u(xi, yi)− uh(xi, yi)

)2

∑
i

u(xi, yi)
2

(6.4)

where uh(xi, yi) is the numerical solution and u(xi, yi) is the analytical. In order to eliminate

the error associated with the truncated infinite series, enough terms were carried out for both

summations in Eq. 6.2 such that the norm maintained 3 significant digits as the number of

terms in the series increased.

52

(a) T (x, y) = c, contour plot. (b) Centerline profile comparison with analytical.

Figure 11: GFD solution for 2D Poisson equation with a constant source using the exponen-

tial weighting function where k = 4, h = 1.5s, rc = 1.5h and with N ≈ 20 nodes spanwise.

Before proceeding we note that W3(h = 1.1s),We(h = 1.5s), and W5(h = 0.7s) corre-

spond to n ≈ 16 neighbors, W3(h = 1.25s) to n ≈ 20, W5(h = 0.9s) to n ≈ 24 and the range

We(h = 1.25s)− (h = 3.0s) corresponds to n ≈ 11 to n ≈ 66. Moreover, W = 1 corresponds

to a uniform weighting function with a support domain of n = 14 neighbors. Numerical

tests indicate that GFD, MLS, and BCG all under perform the classic central difference

estimate as shown in Figure 13. The finite difference computations were performed using

the sharp interface framework with the regular lattice positioned half a unit away from the

wall. By dropping the mixed basis and reducing the search radius to four neighbors, the

classic central difference stencil was obtained. In fact, within the sharp interface framework

used here and with our treatment of the constant basis, it appears that the central difference

curve is a lower limit for all three estimates. It is evident that tested forms of GFD and

MLS have comparable accuracies with approximately quadratic convergence rates, while the

inconsistent BCG estimate has error which is about 2-3 orders of magnitude higher with not

even a linear convergence rate. BCG’s poor convergence rate is expected as it was shown

earlier using a Taylor series expansion that the scheme is inconsistent. The curve marked

as W5 − B − (h = 0.7s) in Figure 13c corresponds to the Brookshaw estimate without the

gradient correction. Compared to the corrected gradient curve (i.e., W5(h = 0.7s)), we see

applying the gradient correction slightly improves accuracy for some of the uniform Poisson

disk grids used here.

Notice that in Figure 13b, MLS with the grid N = 80, required adjusting the smoothing

length for each kernel in order to maintain the convergence rate. Plotting the error |ui− uhi |

53

indicated an isolated region with error an order of magnitude higher than the rest of the

domain. Since the collocated version of MLS used here differs from GFD only by accounting

for the spatial variation of the moment matrix, we suspect these extra terms to potentially

be the problem. On another note, Jensen argued that since not all derivatives appear in a

PDE, they can be dropped in the moment matrix in order to reduce the matrix size [16].

Curve W ∗
5 in Figure 13a shows GFD with the mixed basis dropped. The curve indicates the

reasoning holds up to a certain resolution, after which the convergence rate stagnates due to

errors stemming from the dropped Taylor series term. Since the point at which truncation

error due to the mixed derivative becomes significant is unknown apriori, this approach is

not recommended.

Testing GFD (constant basis removed) with a uniform weight W = 1 indicates that -

within our sharp interface formulation - convergence order has little to do with the choice of

weight function and is actually close to quadratic convergence regardless of kernel choice and

despite only using a quadratic basis to estimate second derivatives. Moreover, kernel choice in

GFD or MLS, appears to affect accuracy minimally as indicated by the narrow spread of the

curves1. Lastly, Figure 13d, demonstrates that increasing the smoothing length decreases

the accuracy of the approximation but simultaneously decreases the required number of

iterations as shown in Figure 12. In 2D, the number of neighbors grows quadratically with

the smoothing length, so the computational cost of matrix multiplication will still increase

since the number of iterations was found to only halve with every doubling of the smoothing

length.

With GFD and MLS having comparable accuracy and convergence rates and with GFD

requiring less computations it was decided to choose GFD to explore several other test cases.

Figure 12: Number of iterations to reach ε < 1 × 10−10 using BiCGSTAB as smoothing

length h increased for GFD using We(k = 1, rcutoff = 1.5h).

1This does not mean that the same results will hold if the constant basis is included. We will test this in
future work.

54

(a) GFD convergence using different kernels. (b) MLS convergence using different kernels.

(c) BCG convergence using different kernels. (d) Smoothing length varied (GFD).

Figure 13: Spatial convergence for 2D Poisson equation for GFD, MLS, and BCG. Five

irregular grids generated using uniform Poisson disk sampling corresponding to N2 ≈
102, 202, 402, 802, 1602 total nodes.

55

6.2 2D Cavity

The configuration we test is as follows: an incompressible, Newtonian fluid initially at

rest is bounded by a square domain when at time t = 0 the top wall suddenly moves with

a constant speed U to the right, while the rest of the walls remain stationary. Depending

on the Reynolds number, eventually the fluid reaches a steady state solution. This test case

does not have a known analytical solution so numerical results are compared to the available

Ghia data set [12] as well as to a Lattice Boltzmann Method (LBM) solution. The explicit

fractional step Navier-Stokes solver described in Section 5.1 is used to march the solution

forward in time until steady state is reached. The collocation is performed using GFD with

W5(h = 0.7s) resulting on average n = 16 neighbors. As in the 2D Poisson test case, the side

of the square domain is scaled to N to improve conditioning of the moment matrices such

that s ≈ 1. Again N is the desired number of nodes to span a side. In addition, respective

grids are generated using the uniform Poisson disk algorithm. The lid speed is set to U = 1

and so different Reynolds numbers are obtained via the kinematic viscosity as follows:

ν =
UN

Re
(6.5)

We simulate the following Reynolds numbers: 100, 400, 1000, and 3200. The cavity

streamlines for the four cases are presented in Figure 14. In Figure 14, we see the GFD

solution is able to capture the strong clockwise vortex as well as the vortex core’s slow

movement towards center of the cavity as the Reynolds number increases. Additionally, with

increasing Reynolds number, we see the formation of secondary counter-clockwise vortices

at the corners of the cavity. With the main flow characterstics captured, we next compare

the velocity components in Figures 15, 16, 17, 18 to the Ghia data set as well as to an

LBM solution. We see there is good agreement with both data sets for both components of

velocity for the entire range of Reynolds numbers considered here.

56

(a) Re = 100 (b) Re = 400

(c) Re = 1000 (d) Re = 3200

Figure 14: Lid driven cavity streamlines for Re=100,400,1000 and 3200.

57

(a) Horizontal velocity component. (b) Vertical velocity component.

Figure 15: Lid driven cavity steady state solution for velocity components, Re = 100. LBM

grid size is 200 × 200, while GFD is ≈ 100× 100.

(a) Horizontal velocity component. (b) Vertical velocity component.

Figure 16: Lid driven cavity steady state solution for velocity components, Re = 400. LBM

grid size is 200 × 200, while GFD is ≈ 100× 100.

58

(a) Horizontal velocity component. (b) Vertical velocity component.

Figure 17: Lid driven cavity steady state solution for velocity components, Re = 1000. LBM

grid size is 200 × 200, while GFD is ≈ 300× 300.

(a) Horizontal velocity component. (b) Vertical velocity component.

Figure 18: Lid driven cavity steady state solution for velocity components, Re = 3200. LBM

and GFD grid size is ≈ 500× 500.

59

6.3 2D Uniform Flow Over Cylinder

The configuration tested here is steady 2D uniform flow over a cylinder in an “unbounded”

domain with the Reynolds number defined as Re = U∞D/ν, where D is the cylinder diame-

ter. The test case has been thoroughly investigated by others and it is generally agreed that

past a critical Reynolds number of Rec ≈ 46 the two standing symmetric vortices detach

from the cylinder surface and begin to oscillate [34]. Here we consider the steady case where

Re = 40. To model the “unbounded” domain we consider a 32D × 32D square domain

with the cylinder placed 8D from the inlet. Since the gradients with largest magnitude

are localized around the cylinder wall and the cylinder dimensions are small relative to the

computational domain, it is necessary to consider a variable resolution grid. We generate

the grid using the variable radii Poisson disk algorithm with grid points clustered near the

cylinder wall in order to capture the boundary layer. See Figure 19 below for an example

grid used.

(a) Zoomed out. (b) Zoomed in.

Figure 19: Variable radii Poisson disk distribution with refinement around the cylinder using

a maximum to minimum spacing ratio of 6. The variable radii function is simply a linear

ramp function where the minimum spacing smin = 1/6smax is at the wall and the maximum

spacing smax = 0.88 is a few diameters away from the wall. Note this example is a 16D×16D

domain, ghost nodes are not shown.

We compare the pressure coefficient Cp and skin friction coefficient Cf to the boundary

fitted grid results presented in Tseng and Ferziger [33]. The pressure coefficient is calculated

60

as:

Cp =
2(p− p∞)

ρU2
∞

(6.6)

and the skin friction coefficient is calculated as:

Cf =
2τw
ρU2
∞

(6.7)

where τw is the wall shear stress defined as:

τw = ν (∇~u) · n̂ (6.8)

with the sign determined by whether or not it is aligned with the unit tangent. Both

coefficients are calculated as a function of θ, with θ measured clockwise from the stagnation

point θ = 0. In order to calculate wall shear stress with an immersed boundary technique,

some additional work must be done during post processing since the computational points

do not lie on the boundary. We estimate ∇~uw · n̂ using the GFD approximation with a

full basis. Here we construct the local approximation at each wall point ~xw defining the

immersed cylinder boundary. By taking n ≈ 20 neighbors in the local approximation, we

were able to get very smoothed profiles for Cf , despite the irregular grid points. As shown

in the figures, both coefficients match the boundary fitted grid solution presented in Tseng

and Ferziger. To get better agreement for the pressure coefficient, the height of the domain

needed to be increased to 40D in order to simulate an “unbounded” domain.

(a) Cf at lower resolution using smin =

1/10smax with a 32D × 40D domain. Ap-

proximately 20 nodes across diameter with

9,400 total fluid nodes.

(b) Cf at higher resolution using smin =

1/6smax with a 32D×32D domain. Approxi-

mately 48 nodes across diameter with 84,000

total fluid nodes.

Figure 20: Comparison of skin friction coefficient Cf at the cylinder surface for Re = 40

using different resolutions compared to the boundary fitted solution presented in Reference

[33].

61

(a) Cp at lower resolution using smin =

1/10smax but with a a 32D × 40D do-

main. Approximately 20 nodes across diam-

eter with 9,400 total fluid nodes.

(b) Cp at higher resolution using smin =

1/6smax but with a 32D×32D domain. Ap-

proximately 48 nodes across diameter with

84,000 total fluid nodes.

Figure 21: Comparison of pressure coefficient Cp at the cylinder surface for Re = 40 using

different domain sizes compared to the boundary fitted solution presented in Reference [33].

Figure 22: Uniform flow over cylinder, streamlines plotted for Re = 40 showing the two

symmetrical standing vortices.

62

6.4 2013 FDA Cardiovascular Benchmark

In 2013, the U.S. Food and Drug Administration released a cardiovascular benchmark

in order to compare experimental and computational modeling practices among different

groups. As seen in Figure 23 the problem is a simple geometry with a sudden contraction

and downstream conical diffuser. Stewart et al., compiled the 28 simulation data sets from

around the world in addition to 4 experimental data sets for different Reynolds numbers -

500, 2000, 3500, 5000, and 6500 as measured at the nozzle [31]. We first consider a uniform

Poisson disk grid and use GFD with n = 18 neighbors to compute the steady state solution

for a low Reynolds number of Re = 50. We then consider a higher Reynolds number of

Re = 500, using a uniformly spaced grid and compute the steady state solution using GFD

with n = 13 neighbors. Due to unresolved stability issues, we were unable to use the Poisson

disk grid at higher Reynolds numbers. For both cases, we compare results to a Lattice

Boltzmann Method (LBM) solution. Additionally, for Re = 500, we compare GFD results

to the experimental data sets presented in Reference [31].

Figure 23: 2013 FDA Benchmark. Steady flow through a nozzle with a sudden contraction

and downstream conical diffuser. Geometry modified from Stewart et al.[31]. The overlapped

velocity contour plot is the Lattice Boltzmann Method (LBM) solution for Re = 500.

63

Model

Rather than use a 3D model, we use a 2D axisymmetric model by switching the cartesian

operators with the cylindrical operators as is detailed in Chapter 5. The centerline is con-

sidered part of the immersed boundary and is located s/2 away from any node. When the

uniform Poisson disk grid is used, we target a certain number of nodes nn across the nozzle

radius scaling the system by nn such that s ≈ 1. A sample uniform Poisson disk grid is shown

in Figure 24. The Reynolds number is obtained by setting the kinematic viscosity such that

ν = 6niu/Re, where ni is the number of nodes across the inlet, u = 1 and is the inlet velocity,

and Re is the desired Reynolds number as measured at the nozzle. The factor of six results

from doubling the radius to get the inlet diameter and the fact Reinlet = 1/3Rethroat due to

the geometry and conservation of mass. At the inlet, we specify a parabolic velocity profile.

Depending on the Reynolds number, we place the outlet far enough downstream such that

fully developed flow is achieved (i.e.,
∂vz
∂n

= 0). At the centerline, a symmetry boundary

condition is imposed (i.e., vr = 0,
∂vz
∂r

= 0).

Figure 24: Axisymmetric grid used for FDA test case with nn ≈ 8 across the throat. The

image is zoomed in on axial location z4. The red nodes define the immersed boundary while

the small gray nodes are ghost nodes used to modify the computational stencil.

Re = 50 (GFD with uniform Poisson disk grid)

We compare the GFD solution to an axisymmetric Lattice Boltzmann Method (LBM)

solution as implemented by us and as described in Zhou [36]. To simplify comparison, rather

than interpolate LBM and GFD solutions to the exact axial locations, we instead sample

the GFD solution onto a lattice which is offset by ∆s/2 and which is at an equivalent

resolution as the meshfree grid. As a result, sampled axial locations are close to LBM lattice

locations. We first introduce low resolution GFD results as compared to high resolution

LBM resolutions and then later introduce higher resolution GFD results.

Figure 25 shows the sampled axial profiles as measured at several of the axial locations

64

when using a resolution of nn ≈ 8 while Figure 26 shows the centerline velocity profile. We

see good agreement with the axisymmetric LBM solution except for locations z4 and z9.

At z4, due to the sudden contraction, the fluid abruptly accelerates to a plug like profile

with a maximum normalized velocity of vz/Uavg = 10.8. At z4, the disagreement with

the LBM solution is mainly with regard to the profile near the wall where sharp gradients

exist. Since the GFD profile underestimates the solution as compared to the high resolution

LBM solution, we see that the flow rate is not exactly conserved as indicated by Figure 27.

This is to be expected, since GFD is a non-conservative approximation and furthermore,

the non-conservative form of the Navier-Stokes equation were solved. Continuing down the

nozzle, the flow develops into a parabolic profile with a maximum normalized velocity of

vz/Uavg = 17.8 by z6 - underestimating the basic conservation analysis value of 18.0 2. As

the flow enters the conical diffuser, we see the GFD solution captures the effect of the adverse

pressure gradients on near wall velocity profiles as shown at z8 and z9. At higher Reynolds

number, we expect flow reversals to occur in this region. Upon exiting the diffuser, since the

Reynolds number is low, the flow redevelops into a parabola by z11 as expected.

Figure 25 also shows the axial profiles at an increased resolution of nn ≈ 12 nodes across

the nozzle. We see the velocity profiles match better with the LBM solution with vz/Uavg =

10.7 at z4 and vx/Uavg = 18.0 at z6, matching the expected fully developed maximum velocity.

More importantly, we see the flow rate is better conserved with a maximum change of only

three percent ∆Q̄max = .03. However, there are still noticeable discrepancies between the

GFD and LBM solution near the wall of the sudden contraction, although visibly they are

reduced. We expect as the resolution increases, for this discrepancy to be resolved. Lastly,

we found we were unable to simulate higher Reynolds numbers for this particular test case

using GFD with a uniform Poisson disk grid. As we increased the resolution (to handle higher

Reynolds numbers), stability issues near the centerline were encountered. The oscillations

grew overtime and occurred regardless of the size of the time step. Further investigation is

needed to pin point the root of the problem.

Re = 500 (GFD with uniform lattice)

Unable to simulate higher Reynolds number using irregular grids, we decided to test GFD

using a uniform lattice. It was found that using approximately nn = 30 nodes across the

nozzle allowed us to suppress the centerline oscillations. The smoothing length for the quin-

tic kernel W5 was set such that 13 neighbors were considered in the construction of the local

2At a higher Reynolds number, the 10D nozzle length will be insufficient for the flow to fully developed
and as such we will not obtain the maximum velocity as predicted by assuming full developed flow.

65

approximations. In Figure 28, we compare the GFD solution to the four available experimen-

tal data sets as well as to the axisymmetric LBM solution. Note the large variance between

the experimental data sets, especially at critical zones such as the sudden contraction. The

variation suggests some of the groups were more systematic in carrying out planar particle

image velocimetry (PIV) measurements than others. We note that even at a high Reynolds

number, despite attacking the problem from different frameworks (i.e.,Navier-Stokes equa-

tions versus Boltzmann transport equation), GFD and LBM axial profiles overlap nearly

perfectly with the exception of small differences at the sudden contraction 3.

To make Figure 28 more readable, we collapse the four experimental datasets into 95

percent confidence intervals plotted about the average of the four profiles. To calculate

the confidence intervals, it was necessary to linearly interpolate the raw experimental axial

velocity data onto the same r locations. The confidence intervals for the axial profiles are

shown in Figure 29. We see that both GFD and LBM fall within the axial profile confidence

intervals for all z locations with the exception of z3 and z4. Note that at z4, most of the

experimental curves - with the exception of EXP-763 - significantly underestimate the axial

velocity profile. For Re = 500, we see that as the flow exits the nozzle and enters the

conical diffuser, we start to see flow reversals at z8 as is indicated by the negative slope of

the velocity profile at the wall. Exiting the diffuser, the strong central jet that has formed

continues down the tube, with pronounced flow reversal occurring at z10 and z11.

On a final note, we compare the GFD solution to the centerline profile and respective

confidence intervals in Figure 30a. As could be guessed from the axial profile confidence

intervals, we see the GFD solution for the centerline profile falls within all confidence intervals

and moreover, overlaps the LBM solution. The centerline velocity starts at vx/Uavg = 10.7

at the throat, increasing to the maximum velocity attained at location z7 with vx/Uavg =

16.3. Exiting the nozzle, the centerline velocity steadily decreases to vx/Uavg = 10.3 by

z12, confirming that applying an outlet extension was necessary. Lastly, we calculate the

normalized flow rate in Figure 30b. We see the maximum change in flow rate is limited to

∆Q̄max ≈ .02 and is followed by a quick recovery after the sudden contraction.

3Note that the axisymmetric LBM grid is at twice the resolution.

66

(a) z2 (b) z3 (c) z4

(d) z5 (e) z6 (f) z8

(g) z9 (h) z10 (i) z11

Figure 25: 2013 FDA Benchmark (Re = 50), GFD solution for axial velocity profiles at

various z locations using nn ≈ 8 nodes across nozzle radius (19,000 total) and nn ≈ 12 nodes

(40,000 total). Compared to LBM solution obtained using nn = 40 nodes across nozzle

radius. All velocities are normalized with respect to the average inlet velocity while radial

positions are normalized to fall between (−0.5, 0.5). GFD solution used ≈ 18 neighbors.

67

Figure 26: 2013 FDA Benchmark (Re = 50), GFD solution for centerline velocity profiles

compared at two different resolutions.

Figure 27: 2013 FDA Benchmark (Re = 50), normalized flow rates for GFD solution calcu-

lated using Simpson’s rule at two different resolutions.

68

(a) z2 (b) z3 (c) z4

(d) z5 (e) z6 (f) z8

(g) z9 (h) z10 (i) z11

Figure 28: 2013 FDA Benchmark (Re = 500), GFD lattice solution (nn = 30) for axial

velocity profiles at various z locations compared to the LBM solution (nn = 60) and to the

four raw experimental data sets. All velocities are normalized with respect to the average

inlet velocity while radial positions are normalized to fall between (−0.5, 0.5). GFD solution

used approximately 400,000 nodes with each node having 13 neighbors.

69

(a) z2 (b) z3 (c) z4

(d) z5 (e) z6 (f) z8

(g) z9 (h) z10 (i) z11

Figure 29: 2013 FDA Benchmark (Re = 500). GFD lattice solution (nn = 30) for axial

profiles at various z locations compared to the 95 percent confidence intervals for the four

experimental data sets, as well as to the LBM solution (nn = 60).

70

(a) Centerline profile, nn = 30. (b) Normalized flow rate, nn = 30.

Figure 30: 2013 FDA Benchmark (Re = 500), normalized flow rate and centerline profile

using GFD on a lattice with 13 neighbors.

71

CHAPTER VII

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this work we first introduced and summarized the following collocated meshfree meth-

ods: General Finite Differences (GFD), Moving Least Squares (MLS) and Smoothed Particle

Hydrodynamics (SPH). In GFD, the local approximation for function and derivative approx-

imations is obtained after minimizing the weighted error of a local Taylor series approxima-

tion. As opposed to MLS, which introduces a continuous weight function at each neighboring

point - instead of discrete weights - resulting in an approximation as many times differen-

tiable as is the weight function or highest order polynomial. From a collocation viewpoint,

MLS can be interpreted as a deviation about the GFD approximation. Moreover, MLS can

also be interpreted as the form SPH takes after the weight function is corrected to enforce

the polynomial reproducing conditions. For SPH, we summarize Taylor series based correc-

tions aimed at restoring numerical consistency, namely CSPM, MSPH, Fatehi and Manzari’s

approach, and BCG. Additionally, following Belytschko et al. discussion on polynomial re-

producing conditions, we show that Method 2 and Method 3, proposed by the group, are

equivalent to GFD and MSPH.

Subsequently, we describe the main contribution of this work - an extension of the sharp

interface variant of the Immersed Boundary method to collocated meshfree methods. Using

linear interpolation matrices for Dirichlet and Neumann conditions, we modify the compu-

tational stencil for nodes whose support domain intersects a boundary element such that the

appropriate boundary conditions are approximately enforced without the requirement that

nodes be positioned exactly on the boundary. The stencil modification takes into account

that extrapolated ghosts values are a linear combination of the star node, the intersecting

boundary point, and a third interior node in the star node’s support domain.

To generate the meshfree grids used in the validation test cases, we implemented a uniform

and variable radii Poisson disk algorithm. In uniform Poisson disk sampling, grid points are

randomly generated such that a minimum spacing between grid points is guaranteed. In

variable Poisson disk sampling, the minimum spacing between grid points varies and is

determined by a spacing function which describes the spatial variation of each grid point’s

“bubble”. By using an image’s greyscale as the spacing function, we showed the algorithm

can be used to generate grids with varying resolution.

72

Using the sharp interface framework and uniform Poisson disk sampling, we then pro-

ceeded to evaluate the numerical accuracy and convergence rate of GFD, MLS, and BCG

on a simple 2D Poisson equation. When the constant basis is removed, we determined that

GFD and MLS have comparable accuracy and convergence rates with GFD requiring less

computations, while BCG - as expected - suffered from significant numerical inconsistencies

lacking even linear convergence.

Limiting our scope to GFD, we explored several incompressible fluid test cases using

an explicit fractional step method to solve the Navier-Stokes equations. For the lid driven

cavity case, numerical results agree favorably with the Ghia data set and Lattice Boltzmann

Method (LBM) solutions throughout the range of Reynolds numbers considered (i.e., Re

= 100 to 3200). We then presented results for uniform flow over a cylinder for Re = 40.

To capture the localized gradients near the cylinder surface, the variable radii Poisson disk

algorithm was used to cluster points near the cylinder surface according to a linear ramp

function. The grids considered used a maximum to minimum spacing ratio of 6 and 10

respectively. We were able to accurately capture the skin friction and pressure coefficients

evaluated at the cylinder’s surface using the variable resolution meshfree grid as was shown

with a direct comparison to a boundary fitted solution.

The last test case considered was the 2013 Food and Drug Administration cardiovascular

benchmark. We first presented results for a low Reynolds number of Re = 50 obtained

using a uniform Poisson disk grid. To model the 3D steady laminar flow, we assumed the

flow is axisymmetric with respect to the centerline and as such discretized the simplified

Navier-Stokes equations in cylindrical coordinates. Sampling from the uniform Poisson disk

grid onto a lattice, we compared the axial profiles at various z locations to a high resolution

axisymmetric LBM solution. It was determined that when using a low resolution, the non-

conservative GFD approximation combined with the non-conservative form of the Navier-

Stokes equations did not adequately conserve the flow rate. A significant change in flow rate

of approximately five percent occurred at the sudden contraction z4 when the meshfree grid

consisted of nn ≈ 8 nodes across the nozzle. Increasing the resolution to nn ≈ 12 reduced

this change to approximately three percent at the nozzle throat. Despite the disagreement

at the sudden contraction, we found good agreement with the axial profiles at the other

specified axial locations and were able to match centerline profiles.

Unable to overcome instabilities near the centerline for Re = 500, we decided to test GFD

with the sharp interface boundary formulation on a uniformly spaced lattice using n = 13

neighbors in the support domain of each node. We found excellent agreement with LBM and

more importantly showed the GFD solution fell within the 95 percent confidence intervals

for the 4 available experimental data sets when comparing the 12 axial profiles as well as the

73

centerline velocity profile.

7.2 Future Work

There are a number of topics that we consider would be valuable to further explore.

First, a direct comparison between the sharp interface formulation presented here and the

direct boundary collocation approach would provide insight as to when to use one approach

over the other. Additionally, we considered grids generated using uniform and variable

Poisson disk sampling, it would be interesting to test GFD on grids generated using other

techniques. Based on GFD lattice results for the FDA test case (Re = 500), we suspect a

variable grid obtained by further recursively partitioning a lattice would be cheap to compute

and would work well with the sharp interface framework presented here. Moreover, when

using GFD with the sharp interface framework, the boundary condition is approximately

imposed at several locations for a star node near the boundary. It is unclear whether this is

advantageous. Exploring test cases where the immersed boundary is moving through the fluid

could offer a potential answer to whether GFD has an advantage over other approaches when

enforcing the sharp interface. On another note, our results are based on an explicit fraction

step Navier-Stokes solver, naturally an extension of the code to a semi-implicit solver could

potentially address stability issues encountered here. Furthermore, we did not test upwinding

or filtering - two important topics traditionally used to improve stability. Incorporating these

techniques would be necessary to simulate higher Reynolds number. Lastly, here the fluid

test cases we have presented were more readily solved from the Eulerian frame, it would be

valuable to extend the current code to a Lagrangian particle-based solver and address test

cases more readily solved from the Lagrangian viewpoint.

74

REFERENCES

[1] Aluru, N. and Li, G., “Finite cloud method: a true meshless technique based on a
fixed reproducing kernel approximation,” International Journal for Numerical Methods
in Engineering, vol. 50, no. 10, pp. 2373–2410, 2001.

[2] Belytschko, T., Krongauz, Y., Dolbow, J., and Gerlach, C., “On the com-
pleteness of meshfree particle methods,” International Journal for Numerical Methods
in Engineering, vol. 43, no. 5, pp. 785–819, 1998.

[3] Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and Krysl, P.,
“Meshless methods: An overview and recent developments,” Computer Methods in Ap-
plied Mechanics and Engineering, vol. 139, no. 14, pp. 3 – 47, 1996.

[4] Belytschko, T., Lu, Y. Y., and Gu, L., “Element-free galerkin methods,” Inter-
national Journal for Numerical Methods in Engineering, vol. 37, no. 2, pp. 229–256,
1994.

[5] Bonet, J. and Lok, T.-S., “Variational and momentum preservation aspects of
smooth particle hydrodynamic formulations,” Computer Methods in applied mechan-
ics and engineering, vol. 180, no. 1, pp. 97–115, 1999.

[6] Brookshaw, L., “A method of calculating radiative heat diffusion in particle simu-
lations,” in Proceedings of the Astronomical Society of Australia, vol. 6, pp. 207–210,
1985.

[7] Chen, J. and Beraun, J., “A generalized smoothed particle hydrodynamics method
for nonlinear dynamic problems,” Computer Methods in Applied Mechanics and Engi-
neering, vol. 190, no. 1, pp. 225–239, 2000.

[8] Chorin, A. J., “A numerical method for solving incompressible viscous flow problems,”
Journal of computational physics, vol. 2, no. 1, pp. 12–26, 1967.

[9] Chorin, A. J., “Numerical solution of the navier-stokes equations,” Mathematics of
computation, vol. 22, no. 104, pp. 745–762, 1968.

[10] Colagrossi, A. and Landrini, M., “Numerical simulation of interfacial flows by
smoothed particle hydrodynamics,” Journal of Computational Physics, vol. 191, no. 2,
pp. 448–475, 2003.

[11] Fatehi, R. and Manzari, M., “Error estimation in smoothed particle hydrodynamics
and a new scheme for second derivatives,” Computers & Mathematics with Applications,
vol. 61, no. 2, pp. 482–498, 2011.

75

[12] Ghia, U. and others, “High-re solutions for incompressible flow using the navier-
stokes equations and a multigrid method,” Journal of Computational Physics, vol. 48,
no. 3, pp. 387–411, 1982.

[13] Gingold, R. A. and Monaghan, J. J., “Smoothed particle hydrodynamics - theory
and application to non-spherical stars,” Monthly Notices of the Royal Astronomical
Society, vol. 181, pp. 375–389, Nov. 1977.

[14] Gossler, A., “Moving least-squares: A numerical differentiation method for irregularly
spaced calculation points,” tech. rep., Sandia National Laboratories, 2001.

[15] Guennebaud, G., Jacob, B., and others, “Eigen v3.” http://eigen.tuxfamily.org,
2010.

[16] Jensen, P. S., “Finite difference techniques for variable grids,” Computers and Struc-
tures, vol. 2, no. 12, pp. 17–29, 1972.

[17] Khorasanizade, S. and Sousa, J. M., “A detailed study of lid-driven cavity flow
at moderate reynolds numbers using incompressible sph,” International Journal for
Numerical Methods in Fluids, 2014.

[18] Lancaster, P. and Salkauskas, K., “Surfaces generated by moving least squares
methods,” Math. Comp., vol. 37, no. 155, pp. 141–158, 1981.

[19] Liszka, T. and Orkisz, J., “The finite difference method at arbitrary irregular grids
and its application in applied mechanics,” Computers and Structures, vol. 11, pp. 83–95,
1979.

[20] Liu, M. and Liu, G., “Smoothed particle hydrodynamics (sph): an overview and
recent developments,” Archives of computational methods in engineering, vol. 17, no. 1,
pp. 25–76, 2010.

[21] Liu, M., Xie, W., and Liu, G., “Modeling incompressible flows using a finite particle
method,” Applied mathematical modelling, vol. 29, no. 12, pp. 1252–1270, 2005.

[22] Liu, W. K., Jun, S., Zhang, Y. F., and others, “Reproducing kernel particle meth-
ods,” International journal for numerical methods in fluids, vol. 20, no. 8-9, pp. 1081–
1106, 1995.

[23] Mittal, R. and Iaccarino, G., “Immersed boundary methods,” Annu. Rev. Fluid
Mech., vol. 37, pp. 239–261, 2005.

[24] Nayroles, B., Touzot, G., and Villon, P., “Generalizing the finite element
method: Diffuse approximation and diffuse elements,” Computational Mechanics,
vol. 10, pp. 307–318, 1992.

[25] Onate, E., Idelsohn, S., Zienkiewicz, O. C., and Taylor, R. L., “A Finite Point
Method in Computational Mechanics. Applications to Convective Transport and Fluid
Flow,” International Journal for Numerical Methods in Engineering, vol. 39, pp. 3839–
3866, 1996.

76

[26] Perrone, N. and Kao, R., “A general finite difference method for arbitrary meshes,”
Computers and Structures, vol. 5, no. 1, pp. 45–57, 1975.

[27] Quartapelle, L., Numerical solution of the incompressible Navier-Stokes equations,
vol. 113. Birkhäuser, 2013.

[28] Randles, P. and Libersky, L., “Smoothed particle hydrodynamics: some recent im-
provements and applications,” Computer methods in applied mechanics and engineering,
vol. 139, no. 1, pp. 375–408, 1996.

[29] Schechter, H. and Bridson, R., “Ghost sph for animating water,” ACM Transac-
tions on Graphics (Proceedings of SIGGRAPH 2012), vol. 31, no. 4, 2012.

[30] Shepard, D., “A two-dimensional interpolation function for irregularly-spaced data,”
in Proceedings of the 1968 23rd ACM national conference, pp. 517–524, ACM, 1968.

[31] Stewart, S. and others, “Results of FDAs First Interlaboratory Computational
Study of a Nozzle with a Sudden Contraction and Conical Diffuser,” Cardiovascular
Engineering and Technology, vol. 4, no. 4, pp. 374–391, 2013.

[32] Trask, N., Maxey, M., Kim, K., Perego, M., Parks, M. L., Yang, K., and
Xu, J., “A scalable consistent second-order sph solver for unsteady low reynolds number
flows,” Computer Methods in Applied Mechanics and Engineering, vol. 289, pp. 155–178,
2015.

[33] Tseng, Y.-H. and Ferziger, J. H., “A ghost-cell immersed boundary method for
flow in complex geometry,” J. Comput. Phys., vol. 192, pp. 593–623, Dec. 2003.

[34] Ye, T., Mittal, R., Udaykumar, H., and Shyy, W., “An accurate cartesian grid
method for viscous incompressible flows with complex immersed boundaries,” Journal
of computational physics, vol. 156, no. 2, pp. 209–240, 1999.

[35] Zhang, G. and Batra, R., “Modified smoothed particle hydrodynamics method and
its application to transient problems,” Computational mechanics, vol. 34, no. 2, pp. 137–
146, 2004.

[36] Zhou, J. G., “Axisymmetric lattice boltzmann method revised,” Phys. Rev. E, vol. 84,
Sep 2011.

77

