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SUMMARY 

Functional materials with controllable phase transitions have been widely used in devices 

for information storage (e.g. hard-disk, CD-ROM, memory) and energy storage (e.g. 

battery, shape memory alloy). One of the important issues to design such materials is to 

realize the desirable phase transition processes, in which atomistic simulation can be used 

for the prediction of materials properties. The accuracy of the prediction is largely 

dependent on searching the true value of the transition rate, which is determined by the 

minimum energy barrier between stable states, i.e. the saddle point on a potential energy 

surface (PES). Although a number of methods that search for saddle points on a PES 

have been developed, they intend to locate only one saddle point with the maximum 

energy along the transition path at a time. In addition, they do not consider the input 

uncertainty associated with the calculation of potential energy. To overcome the 

limitations, in this dissertation, new saddle point search methods are developed to provide 

a global view of energy landscape with improved efficiency and robustness. First, a 

concurrent search algorithm for multiple phase transition pathways is developed. The 

algorithm is able to search multiple local minima and saddle points simultaneously 

without prior knowledge of initial and final stable configurations. A new representation 

of transition paths based on parametric Bézier curves is introduced. A curve subdivision 

scheme is developed to dynamically locate all the intermediate local minima and saddle 

points along the transition path. Second, a curve swarm search algorithm is developed to 

exhaustively locate the local minima and saddle points within a region concurrently. The 

algorithm is based on the flocking of multiple groups of curves. A collective potential 

model is built to simulate the communication activities among curves. Third, a hybrid 

saddle-point search method using stochastic kriging models is developed to improve the 

efficiency of the search algorithm as well as to incorporate model-form uncertainty and 

numerical errors associated with density functional theory calculation. These algorithms 

are demonstrated by predicting the hydrogen diffusion process in FeTiH and body-

centered iron Fe8H systems.  
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Equation Chapter (Next) Section 1 

CHAPTER I  

                                  INTROUCTION 

 

To accelerate the development of new materials, we should adopt a “solution-

oriented” approach to create new materials by systematic design. In the traditional 

“discovery-based” approach, in which new materials are discovered first and then their 

potential applications are explored, heavily relies on trial-and-error laboratory 

experiments to turn them into commercial products for potential applications. The 

process is time-consuming and not cost-effective for developing new materials that 

satisfy increasing demand for them. Materials by design [1, 2] within the scope of the 

Materials Genome Initiative (MGI) [3] will be the focus of materials science and 

technology study in the next several decades. A materials innovation infrastructure that 

integrates computational tools, experimental tools, and digital data is the focus of MGI, 

as illustrated in Figure 1. Creating new materials by systematic design based on a 

problem-solving paradigm will be a major mission for engineers in the future. The 

availability of computational design tools is the key to improve the efficiency of the 

materials design process. The research presented in this thesis is to provide such kind of 

design tools, specifically the ones for simulation-based phase change materials design. In 

the rest of this chapter, the motivation of our research and the problem we try to solve are 

first described. A general description of the proposed method to solve the problem is 

given, followed by a summary of the contributions of this dissertation. 

1.1 Motivation 

Nanotechnology of today mainly focuses on the discovery of nanoscale materials 

with new properties and applications. So far it heavily relies on trial-and-error laboratory 

experiments to turn them into commercial products for potential applications. This 

discovery-based development approach is a time-consuming process and will not be able 

to satisfy the increasing demand on new materials in the future. A solution-oriented 
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approach should be adopted instead. That is, engineers start with the analysis of the 

existing needs in solving engineering problems, then design and produce new materials 

that can fulfill those needs in order to solve the specific problems. Engineers need 

enabling technologies to create novel materials by designing the microstructure of the 

materials systematically through a bottom-up approach. In order to achieve this goal, 

computational design tools are essential. For example, modeling and simulation software 

allows engineers to accurately predict the properties and functions of different material 

structures to improve the efficiency of the materials design process.  

 

                        

One category of the most important and widely-used materials in engineering are 

phase-change materials (PCMs). Each phase in materials has different physical properties 

such as thermal conductivity, electrical conductivity, and optical reflectivity. PCMs 

realize unique functionalities of products based upon the change of phases, which have 

attracted considerable attentions in industries [4, 5], including energy conservation (e.g. 

calcium chloride hexahydrate [6-8] and polyethylene glycol [9, 10] in construction), data 

storage (e.g. doped Sb2Te alloys in information and electronics [11, 12]), energy storage 

(e.g. paraffin waxes for battery in automobile [13]), logistics (e.g. nano-structured 

calcium silicate for food package [14]), bioengineering (e.g. shape memory alloys for 

Figure 1: Materials innovation infrastructure in 

Materials Genome Initiative [3] 
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implants [15]), and apparel (e.g. encapsulated paraffin wax for adjustable temperature in 

cloth [16, 17]), as illustrated in Figure 2.  

 

One of the most important design issues for PCMs is to engineer the phase 

transition processes. Simulation that predicts transition processes efficiently and 

accurately under desirable conditions is critical in the design of PCMs. The goal of 

designing PCMs is to find desirable stable phases and transition conditions to meet the 

performance requirements. For example, for PCMs in data storage that requires high-

speed write and erase and small energy consumption, the design for such materials is to 

identify and realize such structures using structure-property relationships. Simulation can 

be used in the iterative design process. 

In thermodynamics, a phase transition is described from a top-down viewpoint as 

the transformation of a thermodynamic system from one phase to another [18, 19]. A 

phase is one of the states of matter that have uniform physical properties, and the 

materials system has a particular level of free energy. When external conditions such as 

temperature or pressure vary, one or more properties of the material change and the phase 

Figure 2: Various applications of PCMs 
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transition occurs. As a result of these external influences, the system shifts from one free 

energy level to another. External conditions and the amount of required input energy, 

which can be quantitatively estimated, define a phase transition. From the atomistic point 

of view, a phase transition is a geometric and topological transformation process of 

materials from one phase to another, each with a unique and homogeneous physical 

property. This phenomenon is observed in many processes. For example, the diffusion of 

adatoms on a solid as a fundamental problem in surface science can be regarded as a 

phase transition process. Chemical reactions and protein folding can also be generally 

treated as phase transitions. Using the description at atomic level, we are interested in 

structural and topological changes at the atomistic scales. Understanding and controlling 

the transition at the microscopic level can provide the fundamental understanding for the 

purpose of design.  

Simulating phase transitions can provide the insights of the detailed physical and 

chemical processes at the atomistic scales. In simulation-based materials design, the 

challenge of accurately predicting a phase transition is the knowledge of the transition 

rate. Within the harmonic transition state theory (hTST) [20], the transition rates that 

characterize the probability of an event occurring is determined by the energy difference 

between the initial state and the corresponding transition state. Mathematically, the 

energy landscape is characterized by a potential energy surface (PES). The energy change 

during the transition process is determined by the initial state (a local minimum on the 

PES) and the transition state (a saddle point on the PES). The general process to simulate 

the phase transition process at atomistic scales is as follows. First, a PES is generated. 

Second, a minimum energy path (MEP) which is the most probable physical pathway of 

transition among all possible ones is located. Third, the activation energy is obtained by 

finding the maximum energy on the MEP and the transition rate is calculated using hTST.  

The key of phase transition simulation is searching the saddle points on the PES. 

Numerous efficient optimization algorithms are available to accurately locate the local 

minima on a PES. However, the determination of saddle points on a PES is still a 

challenging problem. First, a PES with high dimensionality is usually not explicitly 

known. In first principles approaches, the interaction between atoms can be obtained by 

solving the Schrödinger equation using ab initio calculation. However, an analytical 
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description of the high dimensional PES is still infeasible. Second, a good approximation 

of reaction coordinate is usually unavailable. On a PES, a saddle point is a stationary 

point with zero forces in all directions. The Hessian matrix of a saddle point has only one 

negative eigenvalue. The corresponding eigenvector defines the reaction coordinate. 

Hence, saddle point search usually involves maximization of the energy in one direction 

and minimization in all other directions. The challenge is to find the reaction coordinate 

which is unknown in most cases.  

To search saddle points on a PES, a number of algorithms [21-29] are proposed. 

These methods can be generally categorized into two groups: single-ended methods and 

double-ended methods, which are reviewed in Section 2.1. The single-ended search 

methods usually identify the saddle point without locating the transition path that 

connects the identified saddle point and corresponding local minima. The methods 

usually identify one saddle point at a time. In addition, the search in these methods is 

likely to be trapped at the intermediate saddle point without the highest energy if the 

transition consists multiple phases. For the double-ended search methods, they usually 

require the knowledge of initial and final states to locate the saddle point. In addition, 

they usually locate some but not all the intermediate saddle points and local minima 

between two stable states.  

In addition to the development of search algorithms, another key issue in phase 

transition simulation is the quantification of uncertainties during the simulation. For a 

phase transition simulation, the inaccuracy of the simulation results arises from two basic 

resources. First, hTST is a source of uncertainty. The calculation of transition rates based 

on hTST provides an upper bound of the transition rates. The theory has three 

assumptions: 1) the Born-Oppenheimer approximation is reasonable, 2) a Boltzmann 

distribution is accurate enough to describe the rate, and 3) an 1n  dimensional dividing 

surface exists between the initial state and final state, and the transition trajectory only 

crosses the dividing surface once. Second, the local minima and saddle point search 

algorithms also introduce uncertainties. Since all the algorithms are conducted on the 

computer, numerical errors are inevitable. The PES is another source of uncertainty. A 

PES is constructed by fitting or interpolating available energy data points either from 

experiments or ab initio calculations. Since fitting and interpolation methods employ 
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limited number of data points to build the whole surface, error is unavoidable. The details 

of uncertainties are reviewed in Section 2.4. 

The objective of this doctoral dissertation is to develop three new saddle point 

search methods to provide a global view of energy landscape efficiently and robust 

estimation of activation energy. Specifically, a concurrent search algorithm for multiple 

phase transition pathways is developed to locate all saddle points and local minima on a 

multiple transition pathway. As an extension to this algorithm, a curve swarm search 

algorithm is developed to further improve the efficiency of energy landscape survey by a 

swarm of curves. The curve swarm search algorithm will exhaustively locate the local 

minima and saddle points within the searching area on a PES. In addition, an efficient 

and robust saddle point search method using stochastic kriging metamodels is developed 

to improve the efficiency of the searching process and to incorporate the model-form 

uncertainty and numerical errors associated to DFT calculation and search algorithms on-

the-fly during the searching process, which is to improve the robustness of activation 

energy estimation. The detailed description of the three algorithms is presented in 

CHAPTER III, CHAPTER IV and CHAPTER V. 

1.2 An Overview of the Developed Algorithms 

This section gives a general description for the concurrent search algorithm, the 

curve swarm search algorithm, and the efficient and robust saddle point search algorithm.  

1.2.1 Concurrent Search Algorithm 

The concurrent search algorithm is to search the MEP between two stable states. 

The new algorithm is able to locate both the saddle point and local minima 

simultaneously. Therefore no prior knowledge of the precise positions for the reactant 

and product on the PES is needed. Unlike existing pathway search methods, the 

algorithm is able to locate multiple local minima and saddle points along a multiple phase 

transition pathway, which improves the accuracy of the activation energy estimation.  

Here the Bézier curve is used to represent the transition pathway. A Bézier curve 

is a parametric curve defined by control points which can be used to manipulate the shape 

of the curve. In the algorithm, each control point of the curve represents one state, also 
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called image, on the transition path. During the searching process, reactant and product 

states are located by minimizing the two end control points of the Bézier curve using the 

conjugate gradient method, while the shape of the transition pathway is refined by 

moving the intermediate control points of the curve in the conjugate directions. In each 

iteration, a set of conjugate directions are determined and then several line minimization 

steps along those conjugate directions are applied to each intermediate control points. As 

a result, the Bézier curve will gradually converge to the MEP.  

To keep the control points evenly distributed, we developed a constrained and 

local Bézier curve degree elevation and reduction scheme to redistribute the control 

points in each iteration. Since there could be more than one saddle point with extra local 

minima between the two stable states, one curve could be broken into two to represent 

two stages of transitions recursively. We also developed a curve subdivision scheme to 

check whether there is more than one saddle point with extra local minima between the 

two end points of the optimized curve. If there is, we break this curve into two which are 

regarded as the initial guess of the transition path for the two stages of transitions. Then 

those two curves are optimized by the same procedure as we did to the original curve. 

This ‘check-and-break’ process continues until each of the curves only passes through 

two adjacent local minima with their end points located at those local minima. Since in 

real applications, people are more concerned about the exact positions of the saddle 

points instead of the MEP in most cases, a climbing up scheme is also introduced to 

locate the saddle points on those curves that are close enough to the MEP. 

1.2.2 Curve Swarm Search Algorithm 

The curve swarm search algorithm is to exhaustively locate the local minima and 

saddle points on a PES within a searching area. Thus it provides a global view of the 

energy landscape. Unlike the concurrent search algorithm, the curve swarm search 

algorithm uses multiple groups of curves to locate multiple multi-stage transition paths 

within a search area, instead of one multi-stage transition path.  

The algorithm represents a transition path by a parametric Bézier curve with 

control points. Instead of using one initial curve as in concurrent search algorithm, the 

curve swarm search algorithm uses a number of initial curves to thoroughly explore a 

PES. The method uses the concept of flocking (i.e. swarming or schooling of multi-agent 
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systems) that describes the collective behavior of many interacting particles with a 

common objective [30, 31]. The algorithm treats all newly created curves (called 

descendants of one initial curve) as one group, with their end points connected together. 

For each curve in one group, its two end control points are minimized to locate two local 

minima, while intermediate control points is updated to refine the shape of the curve. If 

extra minima are found along the curve, it is broken into multiple curve segments to form 

a multi-stage transition path. During the searching process, each group will communicate 

with their neighbors to avoid getting too close or far away. 

A major issue in the curve swarm search algorithm is to maintain cohesion and to 

avoid collision with other groups at the same time during the searching process. Cohesion 

means that particles should stay relatively close to each other to explore a PES 

thoroughly, thus, locate all the local minima and saddle points. Collision means that more 

than one groups search the same area on a PES. The algorithm should avoid collision to 

prevent repetitive exploration, thus, maintains global search and reduces computational 

cost.  

To maintain cohesion and to avoid collision, we introduce a collective potential 

model which is a function of distance between two curves to simulation the forces among 

curves. During the searching process, the algorithm will calculate the collective force of 

one curve from its neighbors based on the collective potential model. The collective force 

is then applied to each intermediate control point during searching process. Thus, each 

intermediate control point is driven by a weighted sum of the collective force and a 

parallel component of the true potential force along the conjugate direction. The 

collective force is defined as a weighted sum of the pairwise forces between the curve 

and its neighbor curves within an area.   

1.2.3 Efficient and Robust Saddle Point Search Algorithm 

The efficient and robust saddle point search algorithm is to improve the efficiency 

of the saddle point searching using surrogate model and to incorporate the PES model 

error on the fly during the searching process, which is to improve the robustness of 

activation energy estimation. In the existing first-principle saddle point search methods, 

the requirement of a large number of expensive evaluations of potential energy, e.g. using 

density functional theory (DFT), limits the application of such algorithms to large 
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systems. Thus, it is meaningful to minimize the number of functional evaluations as DFT 

simulations during the search process. Furthermore, model-form uncertainty and 

numerical errors are inherent in DFT and search algorithms. Robustness of the search 

results should be considered. The efficient and robust saddle point search algorithm aims 

to handle this two aspects using kriging models with hidden Gaussian process. Different 

from existing searching methods, the algorithm keeps a memory of searching history by 

constructing surrogate models and uses the search results on the surrogate models to 

provide the guidance of future search on the PES. The surrogate model is also updated 

with more DFT simulation results.  

Kriging surrogate model is one of the interpolated surface to approximate the true 

surface. Thus, model-form uncertainties associate to the surrogate model is inevitable. 

Besides, the input data which are obtained from the DFT calculation for the kriging 

model also involves uncertainties. To capture this two types of errors, we introduce the 

kriging model of hidden Gaussian process which uses two Gaussian processes to 

represent the model-form uncertainties associated with kriging method and to represent 

the uncertainties associated with the input data from DFT calculation, separately. This 

idea is also implemented in the stochastic kriging method.    

As we know, every update of searching steps in the existing saddle point search 

methods requires a function evaluation based on DFT calculation at the current position 

which is computational expensive. The efficient and robust algorithm starts searching 

local minima and saddle points by evaluating each function value using DFT calculation 

and records the information (i.e. position and the corresponding value of total energy and 

gradient) at each updated position. After a predefined number of iterations, the algorithm 

constructs a surrogate model which represents the true PES using stochastic kriging 

method based on the data points collected in the previous searching iterations. Then all 

the function evaluations during the searching process are conducted using the surrogate 

model which is much cheaper in terms of computation cost. Since the surrogate model 

involves uncertainties, the algorithm needs more data to update the surrogate model to 

better approximate the true PES. Thus, after a predefined number of searching iteration 

on the surrogate model, the function evaluation is conducted again using DFT calculation. 

This ‘real-surrogate-real’ model continues until the saddle point position converges.    
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1.3 Dissertation Contributions 

In this research, we develop three new saddle point search methods to provide a 

global view of energy landscape efficiently and robust estimation of activation energy. In 

particular, we develop a concurrent search algorithm, a curve swarm search algorithm, 

and an efficient and robust saddle point search algorithm. The novel contributions of this 

research are summarized as 

 A new method is developed to search multiple local minima and saddle point 

concurrently along a path with multiple transition stages. A new approach based 

on parametric Bézier curves to represent transition paths is proposed, where new 

concepts of degree elevation and reduction are used to maintain the even 

distribution of images along the path. In addition, a curve subdivision scheme is 

developed to break one transition path into two stages of transition paths, which 

allows the algorithm to dynamically adjust the number of total images along one 

transition path one the fly during the searching process.  

 A new method that uses groups of curves to exhaustively explore a PES is 

developed. A new communication scheme among groups of curves is developed 

to maintain a balance between local and global exploration of a PES. Specifically, 

a scheme of determining the parameters of the potential model is developed to 

incorporate the information of the potential energy surface on the fly during the 

searching process. Also, a scheme is developed to determine how to apply the 

collective force to the curves to maintain cohesion and avoid collision.  

 A new method is developed to improve the efficiency of the searching process 

and to incorporate the model-form error in DFT calculation on the fly during the 

searching process, which provides a robust estimation of activation energy. A 

surrogate model is introduced to incorporate the error from both the surrogate 

model itself and the input data from the DFT calculation. A new scheme is 

developed to determine the searching region for particular local minimum.  

The rest of the dissertation is organized as follows. CHAPTER II provides some 

background knowledge related to the topics of transition pathway search methods, saddle 

point search methods, conjugate gradient methods and their convergence analysis, the 

Bézier curve degree reduction methods, PES fitting methods and associated uncertainties, 
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and kriging methods. CHAPTER III, CHAPTER IV and CHAPTER V give a detailed 

description and demonstration of the concurrent search algorithm, curve swarm search 

algorithm, and efficient and robust saddle point search algorithm respectively. 

CHAPTER VI concludes with a brief summary of the accomplishment and discussions 

about the future extension. 
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Equation Chapter (Next) Section 1 

CHAPTER II  

                            BACKGROUND 

This chapter provides the basic background information associated with 

activation energy search including saddle point search methods and uncertainties in PES 

model, conjugate gradient methods and associated convergence analysis, degree 

elevation and reduction methods of the Bézier curve, and kriging methods. A phase 

transition is a rare event characterized by occasional transitions from one atomic 

configuration referred to initial state to another referred to final state. To simulate these 

rare events, classical molecular dynamics method that is based on Newton’s second law 

is not efficient because the transitions of interest are many orders of magnitude slower 

than the vibration of atoms. To solve this time-scale problem, other simulation 

approaches, for example kinetic Monte Carlo (kMC) method, are developed and widely 

used to simulate the rare events. One of the key inputs for such simulation approaches is 

the transition rates for all possible rare events. The transition rates for each rare events 

is determined by the activation energy associated with that particular event.  Thus, the 

accuracy of the simulation results depends on the accuracy of the activation energy.  

 

2.1 Existing Saddle Point Search Methods 

The challenge for phase transition simulation is to search the transition rate which 

is determined by the activation energy between two states. An activation energy barrier 

always exits between two states. In 1931, Erying and Polanyi [32, 33] proposed the 

transition state theory (TST) as a means to calculate the transition rates using the 

activation energy to characterize reactions. Most of the simulation methods developed 

recently are based on the TST and harmonic transition state theory (hTST) [34]. Some 

variants of TST (Variational Transition State Theory [35] and Reaction Path Hamiltonian 

[36]) are also used. The general procedure to simulate a phase transition process is as 
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follows. First a PES is generated. Then a MEP which is the most probable physical 

pathway of transition among all possible ones is located. Finally the activation energy is 

obtained by finding the maximum energy on the MEP and the transition rate is calculated 

using TST. Subsequently the phase transition simulation can be done using KMC, 

Accelerated Molecular Dynamics (AMD) [37] or other simulation methods. The accuracy 

of the simulation depends on the accuracy of the rate constants. In other words, it 

depends on the accuracy of the activation energy. The research on transition pathway 

search and saddle point search aims to find the accurate MEP and the saddle point.  

To search saddle points on a PES, a number of algorithms [21-29] are developed 

in the past few decades. The algorithms can generally be categorized into two groups: 

single-ended methods and double-ended methods. Single-ended methods start with one 

configuration to search the saddle point on a PES without locating the corresponding 

MEP. Double-ended methods are to locate the saddle point and corresponding MEP 

between two starting states.  

The major group of single-ended methods is eigenvector-following methods [38-

47] that follow the eigenvector of Hessian matrix with local quadratic approximations of 

the PES. Newton-Raphson method [38] optimizes the energy iteratively along the 

eigenvector directions using Newton-Raphson optimizer. Surface walking algorithms 

[39-44] determine the walking steps by introducing lagrange multipliers [39], a trust 

radius [40, 42], and parameterized step vector [43, 44]. Partitioned rational function 

optimization method [41] makes a local rational function approximation to the PES with 

augmented Hessian matrix. Frontier mode-following method [45] identifies the uphill 

direction to the saddle point by following more than one eigenvectors. Hybrid 

eigenvector-following methods [46, 47] update the eigenvectors of the Hessian matrix 

using a stand shifting technique and minimize the energy in tangent space using 

conjugate gradient minimization.  

Other single-ended methods are presented as follows. Distinguished coordinate 

method [48-50] defines one internal coordinate as the reaction coordinate and iteratively 

minimizes the energy level along all other internal coordinates within a gradually 

converging lower and upper bounds of the reaction coordinate. Gradient norm 

minimization method [51] identifies the transition states by minimizing the Euclidian 
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norm of the gradient of the potential energy function using a generalized least-squares 

technique. Constrained uphill walk method [52, 53] employs simplex method to 

minimize the energy over a set of hypersphere surfaces, the center of which are several 

points on or near the reaction path. Image function methods [54-56] formulate an image 

function with the local minima located at position of the saddle points on the original 

PES. Gradient-only method [57] starts at the bottom of a valley and traces to a saddle 

point in the ascent direction that is defined based on gradient information. Activation-

Relaxation technique method [58] can travel between many saddle points using a two-

step process; an image first jumps from a local minimum to a saddle point, and then back 

down to another minimum. Reduced gradient following [59, 60] and reduced potential 

energy surface model [61] methods use intersections of zero-gradient curves and surfaces, 

with saddle point search occurring within the subspace of these curves or surfaces. 

Interval Newton’s method [62] is capable of finding all stationary points by solving the 

equation of vanishing gradient. 

The most popular double-ended methods are chain-of-states methods [63-85] 

including nudged elastic method (NEB) [73-76, 80, 83-85], string methods [77-79, 81, 

82], and other methods [63-72]. Chain-of-states methods rely on a collection of images 

that represent intermediate states of the atomic structure as it transforms from initial to 

final configurations along the transition path. These discrete states are chained to each 

other after the search converges, and the transition path and saddle point are obtained. 

The most common one among these methods is the NEB [73], which relies on a series of 

images connected by springs. To increase the resolution at the region of interest (ROI) 

and the accuracy of saddle point energy estimates, the NEB method omits the 

perpendicular component of the spring force, as well as the parallel component of the true 

force due to the gradient of the potential energy. In some cases, this method produces 

paths with unwanted kinks, or may not have any images that are directly on the saddle 

point. The improved tangent NEB [74] and doubly nudged elastic band [80] methods 

reduce the appearance of kinks by generating a better estimate of the tangent direction of 

the path and re-introducing a perpendicular spring force component. The adaptive nudged 

elastic band [76] method increase the resolution around the saddle point adaptively to 

improve the efficiency and accuracy of NEB. The free-end NEB method [83] only 
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requires knowledge of either the initial or final state, rather than both. The climbing 

image NEB [75] allows the image with the highest energy to climb in order to locate the 

saddle point. A generalized solid-state NEB (G-SSNEB) [85] was developed with a 

modified approach to estimate spring forces and perpendicular projection to search MEP 

for the process of solid-solid transformations which have both atomic and unit-cell 

degrees of freedom involved. Eigenvector following optimization can be applied to the 

result of NEB to locate actual saddle points, and the resolution of ROI can be increased 

by using adaptive spring constants [84].  

String methods [77, 78] represent the transition path continuously as Splines that 

evolve and converge to the MEP. As opposed to NEB, the number of points used in the 

String method can be modified dynamically. The growing string [79] takes advantage of 

this by starting with points at the reactant and product, and then adding points which meet 

at the saddle point. The quadratic string method [81] is a variation that uses a multi-

objective optimization approach. The string and NEB methods are comparable in terms 

of computational efficiency [86]. In addition to NEB and string methods, other chain-of-

states methods have been developed to find transition paths. Gaussian chain method [64] 

minimizes the average value of the potential energy along the path by formulating an 

objective function. Self-penalty walk (SPW) method [66] reformulates the Gaussian 

chain objective function by adding a penalty function of distance. Locally updated planes 

method [67, 68] minimizes the energy of each image in all directions expect their 

corresponding tangent directions estimated at the position of each images along the path. 

Variational Verlet method [69] formulates an objective function similar to the Gaussian 

chain objective function to locate dynamical paths. Sevick-Bell-Theodorou method [70] 

optimizes the energy with a constraint of fixed distance between images. Path energy 

minimization method [71] modifies the SPW objective function by including a high value 

of exponential index that increase the weight of the image with highest energy along the 

path. 

In addition to chain-of-states methods, other double-ended methods have been 

developed to search transition paths. Ridge [87] and dimer [88, 89] methods use a pair of 

images to search for the saddle point. Dewar-Healy-Stewart method [90] searches the 

saddle point by iteratively reducing the distance between reactant and product images. 
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Step and slide method [91] uses an image from the initial and final states. Energy levels 

of each are increased gradually, and the distance between them is minimized while 

remaining on the same isoenergy surface. Concerted variational strategy method [92] 

employs Maupertuis’ and Hamilton’s Principles to obtain a transition path that will be further 

refined using conjugate residual method [93] to locate the saddle point. Conjugate gradient 

methods [94-96] are based on conjugate gradient function minimization. Conjugate peak 

refinement method [97] finds saddle points and the MEP by searching the maximum of 

one direction and the minima of all other conjugate directions iteratively. Accelerated 

Langevin dynamics method [98] is a stochastic transition path sampling method that 

involves activation and deactivation paths described by Langevin equations. Hamilton-

Jacobi method [99] relies on the solution of a Hamilton-Jacobi type equation to generate 

the MEP. Missing connection method [100] identifies multistep paths between two local 

minima by connecting one minimum to its adjacent minimum one by one. Each 

intervening transition states is located by using the doubly NEB methods. For each cycle, 

the next targeted minimum that will be connected is determined by the criteria of 

minimum distance in Euclideam distance space using Dijkstra algorithm. Synchronous 

transit method [21, 95, 101] estimates the transition states and refines the saddle point by 

combining the conjugate gradient method and the quasi-Newton minimization method. 

Intersection surface method [102] formulates an intersecting surface model based on the 

quadratic basin approximations around the two local minima on the original PES. The 

minima of the intersecting surface are good approximation to the positions of saddle 

points on the original PES. Contingency curve method [103] formulates a bi-Gaussian 

model for the PES. The transition path is represented by using the equipotential contour 

contingency curve that connects two local minima and the corresponding saddle points. 

2.2 Conjugate Gradient Method 

Conjugate gradient method is an effective iterative method for solving large, 

sparse systems of linear equations numerically, provided that the coefficient matrix of 

which is symmetric and positive definite. This method is originally proposed by Hestenes 

and Stiefel [104]. In solving the linear equations A x b , the key idea of this method is to 
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minimize the residual i iA r b x  along conjugate directions. This method solves the 

equation in at most n steps provided that there is no round-off error. A detailed 

explanation and development of this method could be found in [105, 106]. Later on, this 

method is extended to solve nonlinear systems of equations and unconstrained 

optimization problems such as potential energy minimization. In [107], Fletcher and 

Reeves developed an algorithm namely Fletcher-Reeves method by using the conjugate 

gradient method to minimize a general function. For a quadratic function, the method 

could locate the minimum in at most n  steps apart from rounding off errors. For non-

quadratic function, it usually takes more than n iterations to locate the minimum. Later, 

Polak and Ribière [108] modified the Fletcher-Reeves method by changing the way how 

the conjugate directions are calculated. Hestenes and Stiefel [104] also have their own 

approach to calculate the conjugate directions.  

Same as other iterative methods used in minimization problem, convergence is 

always the key issue. When the conjugate gradient method is applied to a general 

function, a local quadratic approximation is always involved. In order to determine the 

step size in each conjugate direction for a general function, a line minimization search 

process is adopted, which could affect the convergence properties of the method 

depending on which convergence criteria is used for the line searches. When the method 

is used to solve unconstrained optimization problems, extensive research has been 

conducted on the convergence properties of this method.  Zoutendijk [109] proved that 

the Fletcher-Reeves method with exact line searches is globally convergent on general 

functions. Al-Baali [110] extended Zoutendijk’s conclusion to inexact line searches, 

particular for a variation of the Wolfe line-search. Powell [111] demonstrated that the 

Polak- Ribière and Hestenes-Stiefel methods are not globally convergent even with exact 

line searches. Meanwhile, Hu and Storey [112], and Gilbert and Nocedal [113] studied 

the global convergence of the algorithm related to the Fletcher-Reeves method with the 

strong Wolfe line search which indicates that the analysis is under the sufficient decent 

condition. In [113], Gilbert and Nocedal also studied the global convergence for the 

algorithms related to the Polak-Ribière method by considering different choice of k . 

Liu, Han and Yin [114] demonstrated the global convergence of the Fletcher-Reeves 
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method under some conditions that are weaker than those in [110]. Dai and Yuan proved 

that the Fletcher-Reeves method with the strong Wolfe line search is globally convergent 

provided that the search direction is downhill in each iteration. Dai, Han, Liu., et al [115] 

demonstrated the global convergence of the Fletcher-Reeves- and Polak-Ribière-type 

methods without assuming the sufficient descent condition. This paper showed that the 

sufficient descent condition is no longer a need in the analysis of the global convergence 

of the Fletcher-Reeves and Polak-Ribière method. 

2.3 Existing Methods for Degree Reduction of Bézier Curve 

In this dissertation, Bézier curve is used to represent the transition path. Bézier 

curve is a parametric curve which is defined by a set of control points. The number of 

control points determines the degree of the Bernstein polynomial basis functions that 

describe the shape of the curve. The curve interpolates its first and last control points and 

is tangent to the first and last sides of the open polygon defined by these control points 

[116]. We use degree elevation and reduction to maintain the space between control 

points during MEP search. Degree elevation of Bézier curve is exact. In contrast, degree 

reduction always has approximation involved. Degree reduction of Bézier curve is a 

process that uses a lower order curve to approximate a higher order curve. There are two 

major applications for the degree reduction of Bézier curve. One is to generate a 

piecewise linear approximation to a prescribed curve. The other is to transfer data from 

one geometric modeling system to another. During the process, usually a curve with 

higher degree must be approximated by several lower degree curves due to the limitation 

on the maximum polynomial degree that certain systems can store and work with.  

Intensive research has been conducted on the degree reduction of Bézier curve in 

order to minimize the error between the original and reduced curve. The approximation to 

the original curve depends heavily on the chosen distance or error function to be 

minimized. There are typically two categories of approaches. One is to approximate the 

shape for the curve. The other is to approximate polynomial function that defines the 

curve. It treats the degree reduction process as the inverse process of degree elevation. 

Hence, the degree reduction problem is shifted to the problem of solving an over-

determined linear system for the polynomial coefficients that defines the curve. Watkins 
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and Worsey [117] developed a degree reduction method which is based on minimax 

approximation techniques. The method looks at the degree reduction from the perspective 

of the curve itself and as a result can achieve a better approximation to the original curve 

measured in the uniform norm. Eck [118] extended the degree reduction scheme 

originally proposed by Forrest [119] by introducing real weighting factors to blend the 

two set of coefficients together. It is a linear interpolation of the two set of coefficients. 

This shifts the problem of degree reduction to a problem of determining a set of real 

weighting factors. By minimizing the maximal Euclidean distance between the reduced 

curve and original curve based constrained Chebyshev polynomials, the weights could be 

determined. However, this algorithm requires intensive implementation effort because the 

constrained Chebyshev polynomials are known implicitly in general. In [120], Eck 

improved the algorithm by minimizing the least squares distance function using 

constrained Legendre polynomials.  

Bogacki and Weinstein [121] developed two algorithms (one-degree reduction 

and multiple degree reduction) that compute a constrained approximation of an thn  

degree Bézier curve by an ( )thm m n  degree curve. The approximation is performed in 

the uniform norm applied component-wise with endpoint interpolation. Brunnett et al. 

[122] studied the optimal degree reduction (optimal approximation of an thn  degree 

Bézier curve by an ( )thm m n  degree curve) with respect to different norms, particularly 

to pL norms and the uniform norm ( p  ). Kim and Moon [123] addressed the degree 

reduction problem in the 
1L norm with endpoint interpolation. The scheme gives the best 

one-degree reduction of Bézier curve of the degree less than six with endpoint 

interpolation by using splines. For higher order curves, they proposed a scheme which is 

based on an appropriate transform of the Chebyshev polynomials of second kind. Kim 

and Ahn [124] developed a 1C constrained degree reduction method using the constrained 

Jacobi polynomials, the coefficients of which are represented explicitly, as the error 

function for good degree reduction of Bézier curve. In [125], Ahn extended the 1C

constrained degree reduction method to ( 2,3)kC k  constrained degree reduction using 

the constrained Jacobi polynomials. 



20 

 

In recent years, multi-degree reduction has been intensively studied. Instead of 

conducting the multi-degree reduction stepwise, methods are developed to perform multi-

degree reduction at a time. Chen and Wang [126] developed a method named MDR by 

2L  norm, which gives an explicit form of the least squares solution of multi-degree 

solution of Bézier curve with constraints of endpoints continuity. Sunwoo [127] 

generalized Chen and Wang’s work [126] by finding an explicit form of the multi-degree 

reduction matrix for a Bézier curve with constraints of endpoints continuity. The control 

points of the degree reduced curve can be expressed as a product of degree reduction 

matrix and the vector of original control points. Lu and Wang [128, 129] developed a 

multi-degree reduction method with 2G continuity under 2L norm. Later on, they 

developed another multi-degree reduction with respect to the 
2t t -weighted square 

norm by using the transformation matrix between Bernstein and Chebyshev basis. 

Rababah and Lee [130]  developed a simple matrix form for r times degree reduction 

with respect to the weighted 2L -norm by using the matrices of transformations between 

Chebyshev and Bernstein basis. Woźny and Lewanowicz [131] proposed a multi-degree 

reduction method under 2L norm by using dual Bernstein basis polynomials. A re-

parameterization-based multi-degree method is developed by Chen and Ma [132] recently, 

which introduces a piecewise linear function to replace the general t in the least square 

distance. 

2.4 PES Fitting Methods and Associated Uncertainties 

The prediction of transition rates for a phase transition process requires the 

knowledge of the PES for the transition system. A PES is a mathematical function that 

provides the electronic ground state energy for a system of atoms defined by their relative 

positions in the space. The general process to construct a PES is as follows. First, ground 

state energy data points are collected by conducting ab initio calculations or experiments. 

Second, energy data points are fitted using analytical functions that are able to reproduce 

the energy at those energy data points. During the past three decades, a number of fitting 
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methods [133-138] have been developed to construct the analytical forms of PESs. Those 

methods can be categorized as global and local methods.  

Global methods fit the PES without weighting any ab initio data points. The 

adjustment made to any fitting data points will change the potential values at each point 

on the fitted PES. Global methods include spline methods [139-143], hybrid methods 

such as Morse-spline [144] and rotated Morse-spline [145-147] methods, least square 

methods [148] , reproducing kernel Hilbert space methods [149-151], and neural methods 

[137, 152-154]. The spline interpolation methods [139-143] describe the PES as an 

expansion of polynomial functions. The coefficients of the polynomial functions are 

determined by interpolating the ab initio points. Since the determination of the 

coefficients of the spline interpolation methods requires a large number of ab initio data 

points, the Morse-spline method [144] is developed. The method first fits one coordinate 

using Morse function with four fitting parameters that are functions of the rest 

coordinates. Then the explicit form of the four parameters is determined by spline 

interpolation on the data points of the rest coordinates. The rotated Morse-spline methods 

[145-147] are based on the rotated Morse function. The methods share the generalized 

ideals of the Morse-spline method.  

The least square method [148] represents a PES as an expansion of basis 

functions with the geometry of the system as argument. The coefficients of basis 

functions are determined by minimizing the sum of weighted square errors between the 

calculated energies from the fitted functions and the one from ab initio calculations. The 

reproducing kernel Hilbert space methods [149-151] are a general way to do interpolation, 

in which the interpolation functions referred as kernels are determined by the order of 

smoothness and the boundary conditions associated with the chosen coordinates. The 

neural methods [137, 152-154] represent the fitting function as a neural network 

expression in which the parameters and weights are determined by learning processes.  

In contrast to global methods, local methods add weights to each ab initio data 

points. As a result, each geometry of the fitted PES is determined by only the ab initio 

data points that are close to the geometry. The changes at one ab initio data point will 

affect only the fitted region that are close to the point. Local methods include modified 

Shepard interpolation methods [155-163], interpolating moving least squares (IMLS) 
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methods, and neural networks methods. The modified Shepard methods [155-163] 

represent the PES as a weighted sum of Taylor expansions about each available ab initio 

data points, which requires the information of ab initio energies, gradients, and Hessians. 

The weight function is formulated as a function of the distance between the fitted point 

and the corresponding ab initio data point. For one particular ab initio point, the 

corresponding weight function is large when the interpolated position is close to the point 

and is small when is far from the point. Efforts have been made to optimize the weight 

function [162, 164] to improve the accuracy of the PES. The interpolating moving least 

square methods [136, 165-167] combine the moving least square method [168] and 

Shepard interpolation method without the requirement of ab initio gradient and hessian 

calculations. 

The PES model that is constructed using one of the above fitting methods 

involves uncertainties that arise from four sources. First, ab initio data points are a source 

of error. Those data points are from ab initio calculations in which approximations are 

made to solve the Schrӧdinger equation. Second, the distribution of data points is another 

source of error. Lack of sufficient number of data points in the region of interested could 

lead to huge interpolation errors. For example, for the modified Shepard method, if there 

is no data point available in the region of interest, an error will be introduced since the 

accuracy of the local Taylor expansion depends on the expansion radius. Third, fitting 

methods are sources of error. Fitting and interpolation methods have coefficients or 

weights that are determined using optimization methods. In addition, methods have their 

own limitations. For example, the local Taylor expansion in the modified Shepard 

method introduces truncation errors. The weight functions that could be optimized by an 

optimal weighing scheme are sources of errors. Other examples include, but not limited 

to, the polynomial functions in the spline interpolation methods, and the basis and weight 

functions in least square methods. 

2.5 Kriging Method 

Kriging was originally developed in geostatistics by a South African mining 

engineer, Krige [169]. This method is further developed by Matheron [170, 171]. In 1989, 

Sacks et al. [172] first brought the application of Kriging method to the design and 
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analysis of computer experiments. Currin et al. [173], and Welch et al. [174] further 

expand the application of Kriging in computer simulation. Morris et al. [175] extend the 

method to include the first derivative information in model construction. Since then, the 

Kriging method becomes popular in constructing surrogate models for deterministic but 

computationally expensive simulations and design optimization [176-184].  

Kriging predicts functional values from a limited number of existing ones by 

modeling the unknown function as a Gaussian process. The response function y( )x  with 

n-dimensional input x is composed by a polynomial model and a Gaussian process model 

with zero mean as [172] 

  y( ) ( ) ( )T  x f x β x  (2.1) 

in which  1( ) [ ( ), , ( )]T

pf ff x x x is a vector of p basis polynomial functions, 

1[ , , ]T

p β are the corresponding unknown regression coefficients, and 

2( ) ~ GP(0, ) x R  represents the Gaussian process with zero mean and covariance   

  
2cov( ( ), ( )) ( )i j    x x R  (2.2)  

in which 2 is the process variance and ( )R is the mm correlation matrix for m data 

points with   as the process correlation parameter. For instance, for Gaussian correlation 

function, the element ij is defined as 

  ( ) ( ) ( ) 2

1
( , , ) exp( ( ) )

n k k k

i j i jk
R x x  


  x x  (2.3)  

for n dimensional space with parameter 
(1) ( )( , , )n

      . For an unknown position x, 

the vector of correlation is 1( ) [ ( , , ), , ( , , )]T

mR R  r x x x x x .  

Given m data points with inputs 
1* ( , , )mx x x , the corresponding output vector

1[ , , ]T

my yY , and an mp matrix of polynomial values 1[ ( *), , ( *)]T

mF f x f x ,   is 

determined by the maximum likelihood estimation (MLE), which is to maximize the 

likelihood function L  defined as 

  

2

ln ln | |
ln

2

n
L

 
 

R
 (2.4) 
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in which 
2

1( ) ( ) /T m   Y Fβ R Y Fβ  is the estimator of the process variance and 

1 1 1( )T T  β F R F F R Y  is the generalized least square estimator of coefficients. 

Parameter  is determined by solving the MLE problem. After  is determined, the 

regression coefficient matrix β  can be calculated and then followed by the variance 2 .  

The estimation of functional value at the unknown position x is 

  
1ˆ ˆˆ( ) ( ) ( ) ( )T Ty   x f x β r x R Y Fβ    (2.5) 

The kriging methods can be categorized into two types: the ordinary kriging 

methods (OKG) and the universal Kriging methods (UKG) based on the order of 

polynomials used in the mean structure. The OKG assumes a zero or constant mean 

structure on the entire domain. The UKG constructs the mean structure using first or 

second-order polynomials. One extension for the UKG is the blind Kriging method [185] 

and dynamic Kriging method [186], both of which assume that the mean structure is 

unknown. In the blind Kriging method, the unknown mean model is identified using a 

Bayesian variable selection technique based on experimental data, while the dynamic 

Kriging method uses a genetic algorithm to select the optimal basis function locally.  

Besides the application in deterministic simulation models, the kriging method 

also has been extended to approximate random or stochastic simulation models [187-189]. 

More detailed review of the Kriging methods and its application can be found in [190-

195]. 

 

 
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Equation Chapter (Next) Section 1 

CHAPTER III  

CONCURRENT SEARCH ALGORITH                

The concurrent search algorithm is to locate multiple local minima and saddle 

points along one transition path without the prior knowledge of initial and final stable 

configurations on a PES simultaneously. Staring from one initial curve that represents 

one transition path, the algorithm locates multiple curves with their end points connected 

together located at multiple local minima. In addition, each curve has one control point 

located at the corresponding saddle point position. Different from the existing transition 

pathway and saddle point search methods, the algorithm is able to locate multiple local 

minima, saddle points, and corresponding transition paths between two stable 

configurations simultaneously. In addition, the algorithm represents the transition path 

using a parametric Bézier curve thus enables an efficient way that involves only linear 

interpolation of control points or images to maintain their even distribution along the 

path. This chapter gives a detailed description of the concurrent search algorithm. In 

addition, the algorithm is demonstrated by examples of LEPS potential function, LEPS 

harmonic oscillator potential function, Rastrigin function and Schwefel function. Also, 

the algorithm is used to study the diffusion process of the hydrogen in Iron Titanium 

(FeTi) system and body-centered iron (Fe) system. 

 

3.1 Overview for the Concurrent Search Algorithm 

The concurrent search algorithm has three stages: 1) a single transition pathway 

search, 2) multiple transition pathways search, and 3) climbing process to locate the 

saddle position. The algorithm represents the transition path using the control polygon of 

a Bézier curve. Each control point represents one intermediate state along the transition 

path. At the first stage, the algorithm locates two local minima by minimizing two end 

control points of the curve using the conjugate gradient method. In addition, the 
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algorithm refines the shape of the curve through moving the intermediate control points 

along their corresponding conjugate directions with positive eigenvalues of the Hessian 

matrix for the PES. At the second stage, the algorithm locates all local minima between 

two stable configurations obtained from the first stage. To locate all local minima along 

the path, we developed a curve subdivision scheme to check whether there is more than 

one saddle point with an extra local minimum between two local minima (i.e. end points 

of the optimized curve produced from the first stage). If one curve is breakable, the 

algorithm breaks the curve into two curve sections representing two stages of transition. 

At the third stage, the algorithm locates all saddle points on multiple curves with their 

end points connected together. Multiple saddle points can be located by a proposed 

climbing up scheme. 

The general process for the search algorithm is shown in Figure 3. An initial 

guess of the transition path is first provided. Then the path is optimized by minimizing 

the two end control points using the conjugate gradient method and meanwhile moving 

all the intermediate control points along the corresponding conjugate gradient directions. 

When two local minima are located by the end control points of the curve, the algorithm 

determines whether the curve crosses an extra local minimum or not. If not, the 

maximum energy point on the curve climbs up along the conjugate gradient directions to 

locate the true saddle point. If yes, the curve breaks into two new curves which represent 

initial guess for two new transition paths. Those two new curves are optimized and then 

checked following the same procedure as the initial curve. The check-and-break 

procedure continues until all the curves are unbreakable with their end control points 

locating at local minima and one intermediate control point locating at the saddle point. 

3.2 A Single Transition Pathway Search 

For the initial guess of a transition path which is represented by a single Bézier 

curve, the searching process for the stable configurations and the MEP is carried out in a 

sequential manner within a given iteration. A total of five control points are used for the 

initial curve. The more control points the curve has, the more accurate the search results 

will be, but with higher computational costs. The general process for a single transition 

pathway search is as follows. First, the two end control points of the curve are minimized 
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by using the conjugate gradient method. Then, a set of conjugate directions for each 

intermediate control point is determined based on the new positions of the two end 

control points. Several minimization steps are applied to each intermediate control points 

along their associated conjugate directions. After several iterations, the two end control 

points of the curve will gradually converge to the minimum energy positions and the 

curve will approach to the MEP. Figure 4 illustrates the procedure of searching a single 

transition path. Table 1 lists the pseudo-code of the algorithm for a single transition 

pathway search. The details are described in the following subsections. 

 

 

 

Figure 3: Procedure for the concurrent search algorithm 

Input initial guess for a single transition path 

represented by a Bézier curve 

Optimize the curve using a single transition pathway 

search algorithm 

Let the points with maximum energy on curves to 

climb up to the saddle position 

Breakable? 

Stop 

Break the curve into two 

curve sections using curve 

division scheme  

Yes 

No 
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Table 1: Pseudo-code of the algorithm for a single transition pathway search 

INPUT: Initial guess of a curve with control points of 0 1 2 3 4, , , , .p p p p p  

OUTPUT: A curve with two end points located at two local minima and the curve itself 

approaches to the MEP. 

TOL= threshold for the percentage of change in potential energy value; 
(#)

*( )V p =potential energy value at points 
(#)

*p ; 

 
( )

0

iD ,
( )

4

iD = search direction at 0p and 4p respectively; 

 
( )

0

i ,
( )

4

i =step size for minimizing 0p and 4p respectively;  

 

WHILE True 

       IF ( ) ( 1) ( 1)

0 0 0( ( ) ( )) / ( )i i iV V V TOL  p p p  and 

( ) ( 1) ( 1)

4 4 4( ( ) ( )) / ( )i i iV V V TOL  p p p  

            
( ) ( 1) ( ) ( )

0 0 0 0

i i i i p p D ; 
( ) ( 1) ( ) ( )

4 4 4 4

i i i i p p D ; 

           Minimize 
( 1) ( 1) ( 1)

1 2 3, ,i i i  p p p in their associated conjugate directions to get a new set of  

           intermediate control points 
( ) ( ) ( )

1 2 3, ,i i ip p p  (see section 3.2.2). 

            IF There is zigzag along the curve 

                      Do degree elevation or reduction locally (see Section 3.2.3 and 3.2.4). 

            END IF 

Figure 4: Procedure for the single transition path search  

Input initial guess for a single 

transition path represented by 

a Bézier curve 

Update the position for the 

two end control points 

Update the positions of the 

intermediate points along their 

corresponding conjugate 

directions 

Converge? 

Go to the 

second stage 

Check the change of the function 

value at the end points  
 

Yes 

Construct conjugate basis for 

each intermediate points 

Redistribute the 

control points 

No 
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    ELSEIF ( ) ( 1) ( 1)

0 0 0( ( ) ( )) / ( )i i iV V V TOL  p p p  and 

( ) ( 1) ( 1)

4 4 4( ( ) ( )) / ( )i i iV V V TOL  p p p  

             
( ) ( 1) ( ) ( )

4 4 4 4

i i i i p p D ; 

            Minimize 
( 1) ( 1) ( 1)

1 2 3, ,i i i  p p p in their corresponding conjugate directions to get a new 

           set of intermediate control points 
( ) ( ) ( )

1 2 3, ,i i ip p p . 

            IF There is zigzag along the curve 

                      Do degree elevation or reduction locally (see Section 3.2.3 and 3.2.4). 

            END IF 

     ELSEIF ( ) ( 1) ( 1)

0 0 0( ( ) ( )) / ( )i i iV V V TOL  p p p  and 

( ) ( 1) ( 1)

4 4 4( ( ) ( )) / ( )i i iV V V TOL  p p p  

             
( ) ( 1) ( ) ( )

0 0 0 0

i i i i p p D ; 

             Minimize 
( 1) ( 1) ( 1)

1 2 3, ,i i i  p p p in their corresponding conjugate directions to get a new  

             set of intermediate control points 
( ) ( ) ( )

1 2 3, ,i i ip p p . 

            IF There is zigzag along the curve 

                      Do degree elevation or reduction locally (see Section 3.2.3 and 3.2.4). 

            END IF 

        ELSE 

                 Stop. 

         END IF 

END WHILE  
IF Two end points converge to the same local minimum 

     Re-input the initial guess of the control points 0 1 2 3 4, , , , .p p p p p  

END 

 

3.2.1 Searching the Stable Configuration 

As shown in Table 1, the local minima are located by minimizing the two end 

control points of the curve iteratively. By definition the minimum energy location 
*

x  on 

the PES satisfies 

   * 0V x  (3.1) 

where *( )V x  is the potential energy function with respect to the position vector 
*

x  in an 

n-dimensional configuration space;  *V x  is the gradient of the potential on the PES at 

the location 
*

x . The iterative location update during the minimization is given by 

  ( ) ( 1) ( ) ( )i i i i x x d  (3.2) 
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where ( )i is the step length, and ( )id is the search direction. The minimization process for 

the end points is carried out using the conjugate gradient method [107]. Detailed 

description about this method can be found in section 2.2. In our algorithm, the Fletcher-

Reeves method is employed. The conjugate searching direction ( )id in the thi iteration are 

defined as a linear combination of 
( )ig and ( 1)id [107], 

  

( )

2
( )( )

( ) ( 1)

2
( 1)

for 1

for 2

i

ii

i i

i

i

i



 


 
  


g

gd
g d

g

 (3.3) 

The step size ( )i is determined by using inexact line search which is presented in Section 

3.2.5 along the corresponding conjugate directions. Namely, along each conjugate 

direction, several mini-steps are applied to the end points in order to locate the minima 

along that direction. The minimum position in one conjugate gradient direction is the 

starting point for the corresponding followed conjugate searching direction. In Table 1, in 

an n -dimensional search space, the search direction
( )i

D  in thi iteration can be represented 

as 

  
( ) ( ) ( ) ( ) ( ) ( )

1 1

i i i i i i

n n    D d d  (3.4) 

For a quadratic potential function with n -dimensional inputs, the local minimum 

can be determined in at most n steps. For a non-quadratic function, local quadratic 

approximation is involved during the minimization process. For a non-quadratic function 

with n-dimensional inputs, it requires more than n steps to locate a minimum. For those 

functions, the conjugate searching directions which are built based on the Eq. (3.3) will 

gradually lose conjugacy when searching process continues, which could lead to 

divergence. In our algorithm, we recalculate the conjugate directions from one iteration to 

another, namely after n steps of conjugate search in order to avoid the divergence. 

3.2.2 Searching the MEP 

Mathematically, for the n-dimension PES, the Hessian matrix H(the matrix of the 

second derivative of the energy) at the first-order saddle points has one negative 

eigenvalue and 1n  positive ones. The eigenvectors is  form a conjugate basis (i.e.
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0,T

i j i j  s Hs ) with respect to the Hessian matrix. For a set of conjugate direction 

is ’s, in the vicinity of a first-order saddle point, there is one direction 0s along which the 

potential energy has a local maximum. For each of the other 1n  directions, the potential 

energy has a local minimum. The method presented here constructs a set of conjugate 

directions by making use of the Eq. (3.5) develop by Beale [196] which starts with a 

given arbitrary direction 0s . The rest conjugate directions are defined as 

  

1 1 0
1 1 0

0 1 0

1 1 0 1 1
1 1 0

0 1 0

( )

( )

( )
, 1

( )

T

T

T T

i i i
i i iT T

i i

i  
 


  




    



g g g
s g s

s g g

g g g g g
s g s s

s g g g g

 (3.5) 

In this algorithm, for each intermediate control points, a set of corresponding conjugate 

directions are constructed by setting the 0s
 
as the tangent direction approximated by the 

backward finite difference for the first half of the intermediate points and by the forward 

finite difference for the second half respectively. For example, for the thk control point
kp ,  

  

1

0

1

if
2

if
2

k k

k k

N
k

N
k





  
   

  
 

       

p p

s

p p

 (3.6) 

where N is the total number of control points and    rounds up to an integer. In order to 

calculate 1s  in Eq.(3.5), we first need to determine 
0g  and 

1g . Here for the thk  control 

point 
kp , 0g

 is defined as the gradient at the middle point of the line segment connecting 

kp  and its neighbor, namely, 

  

1

0

1

( ) if
2 2

( ) if
2 2

k k

k k

N
V k

N
V k





   
   
  

 
       

p p

g
p p

 (3.7) 

1g is defined as the gradient at the position with maximum energy 
maxp along the 

direction 0s . Several steps of line maximization are applied to the point 
kp  along 0s  in 
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order to locate 
maxp . Then several steps of line minimization along the conjugate 

direction 1s  are applied to kp . The rest of the conjugate basis set are then built 

recursively using Eq.(3.5). Simultaneously, each time when a new conjugate direction is 

determined, several steps of line minimization along this direction are applied to the 

associated new positions of maxp . 

3.2.3 Constrained Degree Elevation and Degree Reduction 

After the evolution of the intermediate control points along the conjugate 

directions, those control points may become too close to each other. As a result, the 

control points only capture part of the information along the transition path. The 

resolution around the saddle region may be too low. This could lead to an 

underestimation of the energy barrier. Similar to the re-parameterization process in the 

string method [197], a redistribution process of the control points after each evolution 

step is introduced in order to ensure that these intermediate control points are relatively 

well distributed. The degree elevation and reduction scheme for the Bézier curve are 

employed to redistribute the intermediate control points in our algorithm.  

Degree elevation increases the flexibility of a curve by introducing more degrees 

of freedom for control. By adding an extra control point to the definition of a Bézier 

curve, its degree is raised by one. The advantage of using the degree elevation technique 

is that we can increase the degree of a Bézier curve without changing its shape. The 

degree elevation of an thn order Bézier curve by one produces an ( 1)thn  order Bézier 

curve with a new set of  vertices 
kq  defined by [198] 

  
1

1

, 0

1 , 1,...,
1 1

, 1

k k

k k k

k k

k

k k
k n

n n

k n





 

  

     
  

   

q p

q p p

q p

 (3.8) 

where 
kp ’s are the original vertices of the thn  order Bézier curve. Eq. (3.8) can be 

written in a matrix form as 

  
nTQ P  (3.9) 
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where
0 1 1( , , , )n



Q q q q , 
0 1( , , , )n

P p p p , and 
nT is a ( 2)n   by ( 1)n  matrix 

defined as  

  n

1 0 0 0 0 0

1 0 0 0 0

0 2 1 0 0 0
1

1
0 0 0 1 2 0

0 0 0 0 1

0 0 0 0 0 1

n

n

n

T
n

n

n

n

 
 
 
 
 

  
 
 
 
  

  

The Bézier curve can be elevated more than one degree by applying Eq.(3.4) multiple 

times. In our algorithm, the curve is elevated only once within each iteration in order to 

make control points well distributed.  

The purpose of degree elevation in our algorithm is to redistribute the 

intermediate control points. In other words, we are concerned more about how well the 

procedure makes the control points distributed than about how small the error between 

the elevated curve and the original curve may have, as long as the introduced error is 

within a tolerance range. Based on those two considerations, a constraint is added to the 

original degree elevation scheme in order to better serve our purpose. When two control 

points become too close to each other after the degree elevation by Eq.(3.8), we manually 

set the new control point to be the arithmetic average of the two adjacent control points in 

the original curve. In other words, for each newly created control points of the elevated 

curve, we calculate the Euclidean distance between this point and the middle point of its 

corresponding adjacent points of the original curve. For the thk control points kq of the 

elevated curve, if it satisfies the condition  

  1
1

2

k k
k k kc




  

p p
q p p  (3.10) 

where (0 1)c c   is a predefined constant, then kq is set as the middle point of the 

straight line 1k kp p . Since it is too computationally expensive to keep elevating the curve 

recursively, degree reduction is introduced to keep a balance with degree elevation and 

maintain a reasonable computational cost. 
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Degree reduction approximates an thn  order Bézier curve with an ( )thm m n  

order curve. Different from degree elevation, no exact degree reduction is possible in 

practice. Thus, approximation is inevitable. Similar to some of the existing methods 

reviewed in section 2.3, we treat the degree reduction as an inverse process of the degree 

elevation. Equation (3.8) shows that the control points of an elevated Bézier curve can be 

exactly determined by the control points of the original Bézier curve through linear 

interpolation of the two adjacent points. For the degree reduction, we need to solve the 

over-determined system in Eq.(3.8) for the unknowns  
0

n

k k
p as a linear combination of 

 
1

0

n

k k




q .  

Many methods are available to solve Eq. (3.8) approximately. Here, we developed 

a reduction scheme similar to Eck’s method [120] which solves the equations by three 

steps. In Eck’s method, the Eq. (3.8) is solved first in the forward direction. That is, for 

1, , 1k n  , we receive  

    1

1
1

1

I I

k k kn k
n k

  
 

p q p  (3.11) 

where the superscript I indicates that the control points are obtained from the forward 

procedure. Then the control points  
1

1

n
I

k k




p  can be obtained recursively by setting 

1 1

I

k k p q when 1k  , which indicates that the two end control points are fixed for the 

degree reduction. Then Eq. (3.8) is solved in the backward direction. That is, for 

, , 2k n , we receive 

      1

1
1 1II II

k k kn n k
k

     p q p  (3.12) 

where the superscript II indicates the control points is obtained from the backward 

procedure. And the control points  
1

1

n
II

k k




p  can be obtained recursively by setting 

1

II

k kp q  when k n . Thirdly, the unknown control points  
0

n

k k
p of the reduced Bézier 

curve are calculated as a linear combination of the control points  
1

1

n
I

k k




p  and  

1

1

n
II

k k




p   

as 
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0

(1 ) 1, , 1

k k

I II

k k k k k

k k

k

k n

k n

 

 


    
  

p q

p p p

p q

 (3.13) 

where 
k is the weights for

II

kp .  

The degree reduction problem is then converted to the one of determining the 

weights of the corresponding control points. In Eck’s method, k ’s are determined by 

minimizing the least square distance between the original curve and the reduced curve, 

which is too costly for our purpose. Since the degree reduction in our algorithm is to 

redistribute the control points instead of transforming geometric information of curves 

which requires the error between the reduced curve and the original curve should be as 

small as possible. In order to reduce the computational cost, here the weights k are 

defined as  

  ( 1, , 1)k

k
k n

n
     (3.14) 

The implementation test shows that this simplified degree reduction scheme 

makes the distribution of the points worse for some cases. Sometimes it introduces loops, 

which is undesirable for our algorithm. Thus we developed a reduction scheme similar to 

Eck’s [120] but with a modified forward and backward procedure. In order to determine 

the new control points for the reduced curve, we make use of the information of three 

adjacent points instead of one as in Eck’s scheme from the original curve. The three-step 

procedure is described as follows. In the forward step, three sets of points are calculated 

by using  

    ,1 1

1
1

1

I I

k k kn k
n k

  
 

p q p  (3.15) 

    ,2 1

1
1

1

I

k k kn k
n k

  
 

p q q  (3.16) 

and 

    ,3 2 1

1
1

1

I

k k kn k
n k

   
 

p q q  (3.17) 

where 1, , 1k n  . Then an average of them 
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  ,1 ,2 ,3

3

I I I

k k kI

k

 


p p p
p  (3.18) 

forms a new set of points  
1

1

n
I

k k




p . Similarly, in the backward step, a new set of control 

points  
1

1

n
II

k k




p can be obtained by using Eqs.(3.19), (3.20), (3.21), and (3.22). 

      1,1

1
1 1II II

k k kn n k
k

     p q p  (3.19) 

      1,2 1

1
1 1II

k k kn n k
k

     p q q  (3.20) 

      1,3 2 1

1
1 1II

k k kn n k
k

      p q q  (3.21) 

  1,1 1,2 1,3

1
3

II II II

k k kII

k

  



 


p p p
p  (3.22) 

Finally, the new control points  
0

n

k k
p can be obtained by using Eq.(3.13) and (3.14). 

3.2.4 Local Degree Elevation and Degree Reduction 

The degree elevation and reduction of a Bézier curve changes the shape of the 

curve globally, which will gradually smooth out the curve. Consequently, this prevents 

the curve from converging to a curved MEP. The remedy for this issue is to introduce a 

local degree elevation and reduction scheme. Within each iteration, we first check 

whether there is zigzag along the curve or not. If there is no zigzag along the curve, we 

do not do degree elevation and reduction to the curve. Otherwise, we do degree elevation 

and reduction locally based on the distribution of the zigzag. For example, for the thk

control point 
kp ( 1,..., 1i n  ), if it satisfies the condition  

  1 1

1 1

arccos k k k k

k k k k

p p p p

p p p p
 

 

 
  
 
 

 (3.23) 

where (0 )    is a predefined constant, then it indicates that there is zigzag at the 

control point kp . We check each of the intermediate control points within each iteration. 

If there is no zigzag along the curve, degree elevation or reduction is not needed; 

otherwise, degree elevation or reduction is done locally. If the zigzag only exists within 

the first half of control points, degree elevation or reduction is only performed to the first 
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half of control points. Similarly, it is performed only to the second half of control points 

if the zigzag only exists within the second half. If the zigzag exists in both, we do degree 

elevation or reduction globally. 

3.2.5 Inexact line search 

In multivariable optimization, the line search method is used to determine the 

searching direction and a suitable step length along that direction. Usually, the searching 

direction can be computed by various methods, such as gradient descent and conjugate 

gradient. In the concurrent search algorithm, the searching directions for the end control 

points are determined by conjugate gradient method, specifically by Fletcher-Reeves 

method. The searching directions for the intermediate control points are determined by 

the scheme developed by Beale [196].  

After defined the searching direction, the key problem is to determine a step 

length in the searching direction such that the objective function value have certain 

amount decrease for a minimization problem and certain amount increase for a 

maximization problem. For example in Eqn. (3.2),  let define 

  ( ) ( 1) ( ) ( )( ) ( )i i- i iV   x d  (3.24) 

To find the step length along ( )id is to find ( )i such that  

  ( )( ) (0)i     

If the ( )i we found makes the objective function a minimum along the direction ( )id  , 

i.e., 

  ( 1) ( ) ( ) ( 1) ( )

0
( ) min ( )i- i i i- iV V


 


  x d x d  (3.25) 

such a line search is referred as exact line search and the step length ( )i is referred as 

optimal step length. Usually, it is very computational expensive to find the optimal step 

length. In addition, for most of the cases, it is not necessary to find the optimal step 

length since the determined searching direction is an approximation to the ideal one 

which has the fast convergence rate when the step size along that direction is an optimal 

one. Hence, it is more practical to identify a step length such that the objective function 

value has acceptable amount decrease, i.e.,  

  ( 1) ( ) ( ) ( 1)( ) ( )i- i i i-V V    x d x     
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in which  is a positive constant that represents the acceptable changes in the objective 

function value, such a line search is referred as inexact line search. The line search 

method for the algorithm developed in this dissertation is inexact line search. 

To conduct the inexact line search, the key is to determine the termination 

conditions such that the identified step length ( )i  satisfies specified requirements. There 

are three popular termination conditions which are the Wolfe conditions, the strong 

Wolfe conditions and the Goldstein conditions.  The Wolfe conditions stipulates that the 

step length ( )i should give sufficient decrease in the objective function value. The 

condition is usually presented by inequality  

  
( 1) ( ) ( ) ( 1) ( ) ( 1) ( )

1( ) ( ) ( )i- i i i- i i- T iV V c V    x d x x d  (3.26) 

in which  1c is some constant between 0  and 1, i.e., 10 1c  . This condition means that 

the reduction in objective function V should be proportional to the step length ( )i and the 

directional derivative 
( 1) ( )( )i- T iV x d . However, this Wolfe condition is not enough to 

ensure that the algorithm makes reasonable progress since the condition in (3.26) can be 

satisfied by any sufficient small ( )i . To eliminate such small step length, the curvature 

condition is added which requires ( )i to satisfy the inequality 

  
( 1) ( ) ( ) ( ) ( 1) ( )

2( ) ( )i- i i T i i- T iV c V   x d d x d  (3.27) 

in which 2c is some constant between 1c  and 1, i.e., 1 2 1c c  . The strong Wolfe 

conditions requires the step length ( )i  to satisfy both the Wolfe condition and the 

curvature condition.  

The Goldstein conditions ensures that the objective function has sufficient 

decrease with the identified step length ( )i while preventing the step length ( )i from 

being too small. The condition is usually presented in two inequalities  

  

( 1) ( ) ( ) ( ) ( 1) ( )

( 1) ( ) ( ) ( ) ( 1) ( )

( ) ( )

( ) (1 ) ( )

i- i i i i- T i

i- i i i i- T i

V c V

V c V

 

 

   


   

x d x d

x d x d
 (3.28) 

in which c is some constant between 0 and 1, i.e.,
1
2

0 c  . The first inequality is the 

Wolfe condition which ensures that the objective function has sufficient decrease. The 

second inequality ensures that the step length is not too small, which means the algorithm 
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will make some progress after the advancement with step length ( )i . However, the 

second condition may excludes all the step length that are close to the minimum at that 

direction. In this dissertation, we implemented the inexact line search with strong Wolf 

conditions.  

3.3 Multiple Transition Pathway Search  

Here, we present how to search multiple transition paths on the PES. Our 

algorithm starts with the initial guess of a single transition path. Once the local minima 

are found as described in Section 3.2.1, this single path will be divided into two curves if 

an extra basin is located along the path. Both subdivided curves will then be treated 

individually and the algorithm will be applied to them. This subdivision process 

continues recursively until there is only one possible saddle point between any pair of 

local minima. As a result, multiple local minima and transition paths can be found within 

a target search area. Therefore, the initial guess of this single path should be set up such 

that the search area of interest can be covered. 

During the multiple transition path search stage, a curve with two end control 

points located at the two local minima obtained from the single transition path search will 

be examined by using the curve subdivision scheme. It determines whether the curve 

crosses an extra basin with another local minimum.  If yes, the curve is divided into two 

new curves at the intermediate control point that is located in the extra basin. Since the 

number of control points for those two newly created curves may be less than five, the 

degree elevation is applied to the two curves recursively until the number of control 

points for each curve reaches five. Those two elevated curves now represent the initial 

guesses for the two new transition paths. The elevated curves are optimized using the 

procedure listed in Table 1. After their respective local minima are identified, the curve 

subdivision scheme is applied to them again. The check-and-break procedure continues 

until all of the curves are unbreakable with their end control points located at local 

minima. By now, those curves are still the approximations of the individual MEPs. In 

order to find the actual energy barrier for each curve, the algorithm selects the control 

point with the maximum energy and makes it climb up to locate the saddle point. During 

the climbing process, a set of conjugate directions corresponding to the identified control 
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point with the maximum energy are constructed. Different from the procedure in the 

single transition path search, the point with the maximum energy will be first maximized 

along 0s  direction, and then minimized along other directions is ’s ( 1i ). The same 

procedure in the single transition path search, i.e. minimization along directions with 

positive eigenvalues, is applied to the rest of intermediate control points during the 

climbing process. This further makes the curve converge to the MEP.  

Table 2 lists the pseudo-code of the algorithm for multiple transition path search. 

A curve with two end control points locating at two local minima is obtained from the 

single transition pathway search. The curve subdivision scheme is used to determine 

whether the curve crosses an extra local minimum or not.  If not, energy point with 

maximum energy value on the curve climbs up along the conjugate gradient directions to 

locate the saddle point. If yes, the curve breaks into two new curves each of which has a 

total number of control points less than five. The degree elevation is applied to the two 

curves recursively until the number of control points for each curve reaches five.  Those 

two elevated curves represent initial guess for two new transition paths. The elevated 

curves are optimized and then checked following the same procedure as the initial curve. 

The check-and-break procedure continues until all the curves are unbreakable with their 

end control points locating at local minima and one intermediate control point locating at 

the saddle point. 

The major step during the multiple transition path search is to determine some 

criteria of whether a curve is breakable and which intermediate control point we should 

select to break the curve. Here the subdivision scheme for the fourth-order (with five 

control points) and fifth-order (with six control points) curves are used to demonstrate. If 

we use a curve with a degree lower than four, the limited number of control points may 

miss the detailed curvature information of the actual path on the PES. As a result, some 

of the local minima will be missed. The subdivision scheme can be similarly extended to 

higher-order curves.  
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Table 2: Pseudo-code of the algorithm for multiple transition pathway search 

INPUT: A curve ( ) x  with two end control points located at two local minima.
  

OUTPUT: Multiple curves with their end points connected together locating at multiple 

local minima. Besides, each curve has one point locating at the saddle point position.  

 

iN =number of newly produced curve for thi  iteration ( 0N  is set to be 1). 

0i   

WHILE There exists newly produced curves in thi  iteration  

      1i i  ; 

     iN =0; 

     FOR 11,2..., ij N   

         IF ( )j x  is breakable (using the scheme listed in Table 5) 

             Break the curve ( )j x  into two curves 
1( )j x  and 

2 ( )j x . 

              2i iN N  ; 

           END IF 

           IF the number of control points for 
1( )j x or 

2 ( )j x  is less than five 

                  Do degree elevation to the curve 
1( )j x  or 

2 ( )j x . 

             END IF 

            Optimize 
1( )j x and 

2 ( )j x  after degree elevation to get two optimized curve 

            ( )k x and 1( )k  x  ( 1ik N  ). 

     END FOR 

END WHILE 

FOR 1,2...,j  (total number of non-breakable curves produced during the WHILE 

loop ) 

     Select the maxi-energy control point of the ( )j x  to climb up in order to locate the 

saddle point. 

END FOR 

 

3.3.1 Scheme for Selecting Breakpoint 

In this section, we present a curve subdivision scheme to determine whether a 

curve can be divided into two curves and which control point to be selected as the 

breakpoint for this breakable curve. This curve subdivision scheme is based on an 

assumption that the control points of a Bézier curve are relatively evenly distributed in a 

sequential manner. In other words, the curve itself has no loop or big curvature. We make 

use of the information of the gradient and potential energy value at each of the 
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intermediate control points as well as their relative positions. Figure 5 shows a Bézier 

polygon on the PES with two end control points located at the minima of two separate 

basins of local minima. 0 1 2 3, , ,p p p p  and 4p  are control points.
1( )V p , 2( )V p ,and 

3( )V p  illustrate the negative gradient directions at the position 1 2, ,p p  and 3p

respectively. 1 2, ,  and 3 are the angles between the negative gradient and the control 

polygon. By examining the three angles as well as the potential energy values at those 

intermediate control points, it is able to determine whether the curve crosses a third basin 

of local minima. There are a total of eight combinations with the angle distributions. The 

process of this scheme includes three steps. The first step is to check the combination of 

1  and 3 . If no conclusion can be reached, a second step is to check 2 . If we still 

cannot decide by the second step, the energy values at the intermediate points will be 

considered as the third step. 

Table 3 summarizes the curve subdivision scheme for a fourth order curve. The 

details about the scheme to determine a breakpoint for a fourth-order curve is described 

in the remainder of this section.  

The first step of the process is to check the angles 1  and 3 . If both 1  and 3  are 

larger than 2 (i.e. Case 2 and Case 3 in Table 3) not only 0p  and 1p  are in different 

basins of local minima but also 3p  and 4p , which indicates that the curve crosses at least 

a third basin of local minimum. Any of the three intermediate control points could be a 

breakpoint. In our algorithm, we choose 2p as the breakpoint.  If either 1  or 3  is less 

than 2  (i.e. Case 1, 4, 5, 6, 7, and 8 in Table 3), it is not guaranteed that the curve 

would go through a third basin of local minimum by checking 1  and 3  only. For 

example, when 1  is larger than 2  and 3  is less than 2 , there are two sets of 

possible positions for the control points, i.e. Case 1 and 4. Since 3  is less than 2 , 3p  

and 4p could be located in the same basin. If 2p  is located in a different basin from 3p , 

the curve crosses the third basin. Otherwise, 1p , 2p , 3p , and 4p could be in the same 

basin and the curve crosses only two adjacent basins.  Therefore, we are unable to decide 
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whether the curve is breakable or not with the only information that 1  is larger than 2  

and 3  is less than 2 . More information is required.  

As a second step, we take 2p into consideration by checking 2 . Here we use 

Cases 1 and 4 to illustrate. When 2  is less than 2  (Case 1 in Table 3), it indicates that 

2p  cannot be located in the same basin as 3p  and 4p . Also as discussed in the first step, 

0p  and 1p are located in two different basins as in Case 1. Thus the curve should cross at 

least a third basin. Either 1p  or 2p  could be a breakpoint. Here, we select 2p  to break. 

When 2  is larger than 2  (Case 4 in Table 3), the negative gradients at the position 1p , 

2p , and 3p  are in the similar directions. 1p , 2p , 3p , and 4p  could be in the same basin 

which means that the curve crosses only two adjacent basins of local minima. Thus we 

need further information to determine if the curve is breakable.  

In the third step, the potential energy values at 1p , 2p , and 3p  are considered. If 

the potential energy values at positions 
1p , 

2p , and 
3p  have the monotonic relationship 

1 2 3( ) ( ) ( )V V V p p p , 1p , 2p , and 3p  are considered as in the same basin, although 

there is still a slight chance that they are not. The curve is defined as unbreakable under 

this condition; otherwise, we break up the curve at the point 1p .  

The above three-step procedure for Cases 1 and 4 can be extended to Cases 5, 6, 7, 

and 8. For Cases 5 and 8, 1 is less than 2  and 3  is larger than 2 . When 2  is 

larger than 2 (Case 8 in Table 3), the curve is breakable at the points 2p  and 3p . Here 

we select 2p  as the break point. When 2  is less than 2  (Case 8 in Table 3), and

3 2 1( ) ( ) ( )V V V p p p , the curve is unbreakable; otherwise, we break it at 3p . When 

both 1 and 3  are less than 2  (Cases 6 and 7 in Table 3), the additional information of 

2  does not help to determine. Hence we use the potential energy value directly. When a 

curve crosses two adjacent basins and the control points are relatively evenly distributed, 

the energy level at the middle point should be the largest. Based on this fact, when 
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2 1( ) ( )V Vp p  and 
2 3( ) ( )V Vp p , the curve is defined as unbreakable in the algorithm; 

otherwise, at the break point is chosen as 2p . 

The above procedure for breaking a fourth order curve can be extended to higher 

order curves. As an example, Table 4 summarizes the curve subdivision scheme for a 

fifth order curve. The discussion of the algorithm in this thesis is based on a fourth order 

curve. As an example, Table 5 lists the pseudo-code for breaking a curve with five and 

six control points. 

 

Table 3: Curve subdivision scheme (five control points) 

Eight Cases 

Greater (>) or smaller 

(<) than 2  Breakable ? 

1  2  3  

1 
p1 p2 p3p0

θ1 θ2 θ3

-g1 -g2 -g3

p4

 
> < < Break at 2p  

2 θ1 θ2 θ3  > < > Break at 2p  

3 θ1 θ2 θ3

 
> > > Break at 2p  

4 θ1 θ2
θ3  > > < 

If
1 2 3( ) ( ) ( )V V V p p p , the curve is 

defined as unbreakable; Otherwise, break 

at 1p . 

5 θ1 θ2 θ3  < < > 

If 
3 2 1( ) ( ) ( )V V V p p p , the curve is 

defined as unbreakable; Otherwise, break 

at 3p  

6 θ1 θ2 θ3  < < < 

If 
1 2( ) ( )V Vp p and

3 2( ) ( )V Vp p , the 

curve is defined as unbreakable; 

Otherwise, break at 2p  

7 θ1 θ2 θ3

 
< > < Same as case 6 

8 θ1 θ2 θ3  < > > Break at 2p  
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Table 4: Curve subdivision scheme (six control points) 

Sixteen Cases 

Greater (>) or smaller 

(<) than 2  Breakable? 

1  2  3  4  

1 
p1 p2 p3

p5p0

θ1 θ2 θ3

-g1 -g2 -g3

θ4
-g4

p4

 
> < < > Break at 2p  

2 θ1 θ2 θ3 θ4  > < > > Break at 2p  

3 θ1 θ2 θ3 θ4  
> > > > Break at 2p  

4 θ1 θ2
θ3 θ4  > > < > Break at 2p  

5 θ1 θ2 θ3 θ4  > < < < Break at 2p  

6 θ1 θ2 θ3 θ4  > < > < Break at 3p  

7 θ1 θ2 θ3 θ4  > > > < Break at 3p  

8 θ1 θ2
θ3 θ4

 
> > < < 

If 
1 2 3 4( ) ( ) ( ) ( )V V V V  p p p p , 

the curve is defined as unbreakable; 

otherwise, break at 2p  

9 θ1 θ2
θ3 θ4  < > < > Break at 3p  

10 θ1 θ2 θ3 θ4  < > > > Break at 3p  

11 θ1 θ2
θ3 θ4  < < < > Break at 3p  

12 θ1 θ2 θ3 θ4  
< < > > 

If
4 3 2 1( ) ( ) ( ) ( )V V V V  p p p p , 

the curve is defined as unbreakable; 

otherwise, break at 4p  

13 θ1 θ2 θ3 θ4  < < < < 

If 
3 4( ) ( )V Vp p  and

2 1( ) ( )V Vp p , 

the curve is defined as unbreakable; 

otherwise, if
2 1( ) ( )V Vp p , break at 

2p , else break at 3p  

14 θ1 θ2 θ3 θ4  < < > < 

If
3 2 1( ) ( ) ( )V V V p p p , the curve 

is defined as unbreakable; otherwise, 

break at 3p  

15 θ1 θ2 θ3 θ4  < > > < Break at 2p  

16 θ1 θ2
θ3 θ4

 
< > < < 

If
2 3 4( ) ( ) ( )V V V p p p , the curve 

is defined as unbreakable; otherwise, 

break at 2p  
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Table 5: Pseudo-code of the curve division scheme (five and six control points) 

INPUT: An optimized curve ( ) x  with two end control points located at two local 

minima. 

OUTPUT: Two curve sections of ( ) x  

IF ( ) x  has five control points 0 1 2 3 4, , , ,p p p p p (refer to Figure 5)  

    IF 
1 2  and 

3 2   

         2p is selected as breakpoint 

    ELSEIF 
1 2  and 

3 2   

            IF 
2 2   

                2p is selected as breakpoint 

            ELSE 

                 IF 
1 2 3( ) ( ) ( )V V V p p p  

                       ( ) x is non-breakable 

                  ELSE 

                         1p is selected as breakpoint 

                  END IF 

             END IF 

    ELSEIF 
1 2  && 

3 2   

            IF 
2 2   

                2p is selected as breakpoint 

            ELSE 

                 IF 
3 2 1( ) ( ) ( )V V V p p p  

                      ( ) x is non-breakable 

                  ELSE 

                         1p is selected as breakpoint 

                  END IF 

             END IF 

    ELSEIF 
1 2  and 

3 2   

              IF 
2 1( ) ( )V Vp p and 

2 3( ) ( )V Vp p  

                    ( ) x is non-breakable 

              ELSE 

                    2p is selected as breakpoint 

              END IF 

    END IF 

ELSEIF ( ) x  has six control points 0 1 2 3 4 5, , , , ,p p p p p p (refer to Figure 6)  
 

    IF 1 2  and 4 2   

         2p is selected as breakpoint 
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    ELSEIF 
1 2  or 

4 2   

            IF Either 
2 2  or 

3 2   

                2p is selected as breakpoint 

            ELSE 

                 IF 
1 2 3 4( ) ( ) ( ) ( )V V V V  p p p p  

                       ( ) x is non-breakable 

                  ELSE 

                         1p is selected as breakpoint 

                  END IF 

             END IF 

    ELSEIF 
1 2  and 

4 2   

            IF Either 
2 2  or 

3 2 
 

                3p is selected as breakpoint 

            ELSE 

                 IF 
4 3 2 1( ) ( ) ( ) ( )V V V V  p p p p  

                       ( ) x is non-breakable 

                  ELSE 

                         4p is selected as breakpoint 

                  END IF 

             END IF 

ELSEIF 
1 2  and 

4 2 
 

          IF 
2 2  and 

3 2   

                   IF 
3 2 1( ) ( ) ( )V V V p p p  

                         ( ) x is non-breakable 

                   ELSE 

                         IF 
1 2( ) ( )V Vp p  

                              2p is selected as breakpoint 

                          ELSEIF 
2 3( ) ( )V Vp p  

                              3p is selected as breakpoint 

                           END IF 

                   END IF 

              ELSEIF 
2 2  and 

3 2   

                        IF 
2 1( ) ( )V Vp p and 

3 4( ) ( )V Vp p  

                         ( ) x is non-breakable 

                        ELSE 

                             3p is selected as breakpoint 

                         END IF 

              ELSEIF 
2 2  and 3 2   
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                        IF 
2 3 4( ) ( ) ( )V V V p p p  

                            ( ) x is non-breakable 

                        ELSE 

                             2p is selected as breakpoint 

                         END IF 

              ELSEIF 
2 2  and 

3 2   

                             2p is selected as breakpoint 

              END IF 

     END IF 

END IF 
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Figure 5: Illustration for multiple pathway search (five control points) 
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Figure 6: Illustration for multiple pathway search (six control points) 

 

3.3.2 Discussion for the Subdivision Scheme 

The proposed curve subdivision scheme for selecting the breakpoint is not perfect. 

It could treat some breakable curves as unbreakable ones. For example, for a curve with 

five control points, when 
1 2  , 

3 2   and
1 2 3( ) ( ) ( )V V V p p p , we define the 

curve as unbreakable. It is true if the curve only passes through two adjacent basins of 

local minima. But if the curve covers a long range with several extra local minima, there 
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is still a small chance that the control points are positioned in the manner which satisfies 

the unbreakable conditions. The scheme will treat both of the two curves as unbreakable. 

A remedy for missing breakable curves is adding an extra step to double check each 

unbreakable curve for one more time. If a curve is identified as unbreakable curve for the 

first time, the control points of the curve will be redistributed by using degree elevation 

or degree reduction. Then this elevated or reduced curve will be checked again to see 

whether it is breakable. This extra step will increase the accuracy of subdivision but also 

with extra computational cost. 

3.4 Implementation and Demonstration 

This chapter demonstrates the proposed concurrent search algorithm for multiple 

phase transition pathways. First, we test the algorithm of a single transition pathway on 

LEPS potential and LEPS plus harmonic oscillator potential [73, 199]. These two 

potential functions are two-dimensional benchmark problems which are frequently used 

to test transition pathway search methods. These two potential model mimics a reaction 

involving three atoms. Details will present in Section 3.4.1 and 3.4.2. Then we 

demonstrate the proposed multiple transition pathway search algorithm by applying it to 

search the saddle points and local minima on two different two-dimensional PESs defined 

by the Rastrigin function and Schwefel function respectively. The implementation was 

done using MATLAB. Source codes are included in the Appendix. Table 6 lists the 

definition and graphic in two-dimension for the four test functions. For LEPS potential, 

the Q  functions illustrate Coulomb interactions between the electron clouds and the 

nuclei. The J functions illustrate the quantum mechanical exchange interactions. The 

parameters for the LEPS potential are defined as 0.05,a   and 1.942  . 

00.30, 0.05, 4.746, 4.746, 3.445, 0.742,AB BC ACb c d d d r      For LEPS plus 

harmonic oscillator potential, the parameters are defined as 3.742,ACr  0.2025,ck   

and 1.154c  . All the other parameters are the same as the ones defined for LEPS 

potential except 0.80b   in LEPS plus harmonic oscillator potential. 

In addition, the algorithm is demonstrated on high-dimensional PESs by example 

of the diffusion process of hydrogen in iron-titanium (FeTi) and body centered iron (Fe). 
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FeTi is being extensively studied as a candidate material for hydrogen storage 

applications. However, the major issues for the FeTi as a hydrogen storage materials is 

that it requires a complicated activation process i.e. high temperature and hydrogen 

pressure. Extensively research has been done to improve the activation process by using 

elemental substitution [200-202]. It is meaningful to understand the diffusion process of 

the hydrogen in the FeTi system to design the elemental substitution. Steel (Fe) is one of 

the widely used engineering structure materials. Hydrogen can greatly change the 

mechanical properties of structural metals and alloys. Hydrogen embrittlement is 

believed to be one of the main reasons for cracking of steel structures under stress. To 

investigate the solution to control and prevent the hydrogen embrittlement, it is 

meaningful to understand the diffusion process of the hydrogen in the iron system at 

atomic level. The detailed implementation of the FeTi-H system and Fe8-H is presented 

in Section 3.4.5 and 3.4.6.  
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3.4.1 Test Result for LEPS Potential 

The LEPS potential model mimics a reaction involving three atoms A, B, and C 

constricted to motion along a straight line. There is only one bond formed, either between 

atoms A and B or between B and C [73, 199]. The detailed description and a 3-D graphic 

of the potential function can be found in Table 6. We test the single transition pathway 

search algorithm on this function by using two different initial positions of the transition 
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path. The constant coefficient of the step size for minimizing the end control points and 

moving the intermediate control points is set to be 0.01 and 0.025 respectively. The 

results are illustrated in Figure 7 using contour plot. The black line represents the initial 

path. The red line represents the final path identified by using the algorithm listed in 

Table 1. The purple circle markers indicate the position of local minima, while the purple 

square marker represents the position of saddle point.  

For different initial positions (refer to (a) and (b) in Figure 7), the algorithm 

locates the same saddle point while it locates different local minima. The result for 

locating different local minima is sensitive to the initial positions. This is due to the 

characteristic of the LEPS potential function. The 3-D graphic for LEPS potential 

function in Table 6 shows that there is a long flat valley around the local minimum region. 

Each point along the valley could be a potential local minimum. The algorithm will stop 

searching local minima as long as it locates one of the potential local minima. Starting 

from different initial positions, the algorithm will follow different searching path. As a 

result, it will locate different potential local minima. That explains why the located local 

minima are different for different initial positions.  

For the initial position in Figure 7 (c), the algorithm failed to locate the saddle 

point. The two end control points tend to converge to the same local minimum. This is 

because that the conjugate gradient method is a local search method. The control point 

will converge to the nearest local optimal point. Since in the algorithm developed in this 

thesis, the two end control points are optimized independently based on conjugate 

gradient method, the two end control points will converge to the same local minima when 

the initial positions of the two points are close to the same local minimum. 

3.4.2 Test Result for LEPS Plus Harmonic Oscillator Potential 

Different with the LEPS potential model, the location of the two end atoms A and 

C in this model is fixed. Only atom B is allowed to move. In addition, this model 

introduces an additional degree of freedom which can be interpreted as a fourth atom that 

is coupled in a harmonic way with the atom B [73, 199]. The detailed description and a 3-

D graphic of the potential function can be found in Table 6. We test the single transition 

pathway search algorithm on this function by using three different initial positions of the 

transition path. The constant coefficient of the step size for minimizing the end control 
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points and moving the intermediate control points is set to be 1/35 and 1/45 respectively. 

The results are illustrated in Figure 8 using contour plot. The black line with triangle 

markers represents the initial path. The red line with square markers represents the final 

path identified by using the algorithm listed in Table 1.The purple circle markers indicate 

the position of local minima, while the purple square marker represents the position of 

saddle point. The results show that the algorithm is able to locate the local minima and 

saddle points for different initial positions. 

 

 

(a) (b) 

(c) 

Figure 7: Test results for LEPS potential function 
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3.4.3 Test Result for Rastrigin Function 

The Rasrigin function is a non-convex function frequently used to test the 

optimization algorithm. The function has a global minimum at (0, ,0)x  as well as 

several local minima. As discussed in Section 3.3, the initial guess for the transition path 

should be a curve with five control points which are relatively evenly distributed. Here, 

we choose a curve ( ) x  with five control points located at (−2.81, 0.50), (−1.43, 2.90), 

(0.23, −2.47), (1.57, 2.67), and (2.91, −0.11), which are visualized in Figure 9 as ‘initial 

path’.
 
First, the optimization procedure listed in Table 1 is applied to ( ) x , which 

produces a curve '( ) x with two end control points located at the two local minima. Then 

the multi-transition pathway search algorithm listed in Table 2 is applied to '( ) x . A 

total of seven local minima and six corresponding saddle points are located by this 

(a) (b) 

(c) 

Figure 8: Test results for LEPS plus harmonic oscillator potential function 
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algorithm. The positions of those local minima and the corresponding saddle points are 

listed in Table 7.  Figure 9 shows the result using contour graphs. In order to test the 

robust of the algorithm, we test the algorithm by using a set of different initial positions 

located at (−2.81, −1.50), (−1.43, −1.50), (0.23, −1.50), (1.57, −1.50), and (2.91, −1.50), 

which are shown in Figure 10 as black dots. The result shows that the algorithm performs 

well for different initial positions. For the second set of initial positions, a total of seven 

local minima and six corresponding saddle points are located. The details about the local 

minima and corresponding saddle points are listed in Table 8. The result is also illustrated 

in Figure 10. 

 

Table 7: Test results on Rastrigin function (contour plot refer Figure 9) 

Path No Local minima Saddle 

1 (−2.9849, 0) (−1.9899, 0) (−2.5516, 0.0201) 

2 (−1.9899, 0) (−0.9950, 0) (−1.5484, 0.0210) 

3 (−0.9950, 0) (0, 0) (−0.5345, −0.0133) 

4 (0, 0) (0.9950, 0) (0.4656, −0.0116) 

5 (0.9950, 0) (1.9899, 0) (1.4688, −0.0132) 

6 (1.9899, 0) (2.9849, 0) (2.4742, 0.0472) 

 

Table 8: Test results on Rastrigin function (contour plot refer Figure 10) 

Path No Local minima Saddle 

1 (−2.9849, −0.9950) (−1.9899, −0.9950) (−2.5497, −0.9832) 

2 (0, −0.9950) (0.9950, −0.9950) (0.4591, −0.9764) 

3 (−1.9899, −0.9950) (−0.9950,−0.9950) (−1.5496, −0.9776) 

4 (−0.9950, −0.9950) (0, −0.9950) (−0.5441, −0.9738) 

5 (0.9950, −0.9950) (1.9899, −0.9950) (1.5399, −0.9666) 

6 (1.9899, −0.9950) (2.9849, −0.9950) (2.5491, −0.9816) 
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Figure 9: Test result for Rastrigin function with the initial position at (−2.81, 0.50), 

(−1.43, 2.90), (0.23, −2.47), (1.57, 2.67), and (2.91, −0.11). 

 

Figure 10: Test result for Rastrigin function with the initial position at (−2.81, −1.50), 

(−1.43, −1.50), (0.23, −1.50), (1.57, −1.50), and (2.91, −1.50). 
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3.4.4 Test Result for Schwefel Function 

Section 3.4.3 shows that the algorithm works very well on the PES defined by 

Rastrigin function. But the contour of the Rastrigin function is uniformly distributed as 

we can see from the contour plot in Figure 9. In real application, most of the potential 

energy surfaces are non-uniform.  Thus the Schwefel function which has a relatively non-

uniform potential energy surface is selected to test our algorithm. We test our algorithm 

on the Schwefel surface following the same procedure as we did on Rastrigin surface. We 

also test the algorithm with two set of initial positions. The first initial positions are 

located at (−100.3, 25), (−40.5, 40), (17.8, −10), (69.8, 70.6), and (130.2, 98.7), which are 

illustrated in Figure 11 with black dots. A total of six local minima and five 

corresponding saddle points are located. Details are listed in Table 9. Also, the results are 

visualized in Figure 11. The second initial positions are located at (−100.3, −70), (−40.5, 

−70), (17.8, −70), (69.8, −70), and (130.2, −70), as shown in Figure 12 with black dots. A 

total of five local minima and four corresponding saddle points are located. Details are 

listed in Table 10. The results are visualized in Figure 12. 

 

 

Figure 11: Test result for Schwefel function with the initial position at (−100.3, 25), 

(−40.5, -45), (17.8, 50.3), (69.8, 70.6), and (130.2, 98.7). 
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Table 9: Test results on Schwefel function (contour plot refer Figure 11 ) 

Path No Local minima Saddle 

1 (−124.8170, 5.2615) (−124.4369, 65.4794) (−124.2794, 25.7779) 

2 (5.2807, 65.4046) (65.5185, 65.2612) (26.0773, 65.3830) 

3 (65.5185, 65.2612) (203.7441, 65.5489) (124.8765, 65.0411) 

4 (−124.6262, 65.5132) (−26.2200, 65.4095) (−66.1930, 65.1174) 

5 (−26.2200, 65.4095) (5.2516, 65.4740) (−3.9133, 65.3002) 

 

 

Figure 12: Test result for Schwefel function with the initial position at (−100.3, 25), 

(−40.5, 25), (17.8, 25), (69.8, 25), and (130.2, 25). 
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Table 10: Test results on Schwefel function (contour plot refer Figure 12) 

Path No Local minima Saddle 

1 (−124.8274, −124.7472) (−26.1493, −125.1159) (−67.1757, −124.7392) 

2 (−26.1493, −125.1159) (5.2426, −124.6550) (−4.6699, −124.8731) 

3 (5.2402, −124.7391) (65.3225, −124.8080) (25.8758, −124.8290) 

4 (65.4076, −125.0250) (203.7606, −124.8008) (124.7793, −124.8429) 

3.4.5 Test Results for FeTi-H Transition  

FeTi experiences transition from a body-centric structure to an orthorhombic state 

where it can hold two hydrogen (H) atoms. FeTi has CsC1-type structure which 

corresponds to 3Pm m space group with a lattice parameter of 2.9789 Å. Figure 14 (a) 

shows four unit cells of the FeTi structure at its initial state. The unit cell of FeTi is a 

body-centered where the Ti atoms are at the center and Fe atoms at the corners. Figure 14 

(b) shows one of the possible final states when two H atoms are absorbed in each unit cell 

forming the structure of FeTiH. The unit cell of FeTiH is an orthorhombic structure of 

dimension 2.956a  Å, 4.543b  Å, and 4.388c  Å. The Fe atoms occupy the corner, 

and the center position of the front and back face. The Ti atoms sits at the center of the 

rest of faces and the H atoms are located on two side faces. Notice that Figure 14(b) 

shows two unit cells of FeTiH, which correspond to four unit cells of FeTi.  

3.4.5.1 Computational Details 

Since searching the saddle point of the transition process where H atoms are 

absorbed, requires us to have the same number of atoms in a unit cell, H atoms are 

introduced into the body centered cubic FeTi structure to match the final FeTiH structure. 

As shown in Figure 14(b), there are two basis atoms for each type of Fe, Ti, and H in one 

unit cell of FeTiH as the final structures. Correspondingly, for two unit cell of the body-

centered FeTi, there are two Fe atoms and two Ti atoms as the basis of the initial 

structures, in addition to the two H atoms. There are multiple adsorption sites of H atoms 

onto the free surface of Iron-Titanium alloy FeTi. Here, we study four potential 

adsorption sites of H atoms which are a) on the Fe-Fe bridge along the first primitive 

lattice vector, b) on the Fe-Fe bridge along the third primitive lattice vector, c) at the 
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center of the (001) surface, and (d) at the center of the (010) surface. The corresponding 

initial structures are shown in Figure 15. It important to mention that the size of the unit 

cell for the initial structures is also set to be the size of the final structure, where a meta-

stable structure is likely to form. For the purpose of convenient reference to the four 

transition paths in the following paragraphs, we refer the transition processes from the 

initial structures in Figure 15(a), (b), (c), and (d) to the final structure (i.e. β phase FeTiH) 

as FeTiH_tran_a, FeTiH_tran_b, FeTiH_tran_c, and FeTiH_tran_d, respectively.  

In this study, the total energy of the system and the forces on each atom are 

calculated based on density functional theory (DFT) calculation using Vienna Ab-initio 

Simulation Package (VASP) [203, 204]. The projector augmented wave potentials [205, 

206], specifically LDA potentials [207], are used here. The convergence test for the k-

point sampling with respect to the total energy shows that 26 13 13   gamma centered 

grid of k-point sampling is adequate for study of FeTiH structure. Here, to reduce 

computational time, we use a k-point sampling of 4 2 2   for all the four scenarios. 

Since the algorithm is implemented in Matlab, an interface between the Matlab and 

VASP is developed as shown in Figure 13. 

 

The fractional coordinates for the four initial structures and the final structure are 

listed in Table 11 and Table 12 respectively. The unit cell for both initial and final 

structures are defined as 2.956a  Å, 4.543b  Å, and 4.388c  Å. The coordinate of 

the intermediate images are obtained by linear interpolation of the coordinate of the 

initial and final images. To demonstrate the algorithm’s capability to locate stable states, 

we slightly shift the hydrogen atoms from the equilibrium positions which are shown in 

Figure 15.  

Figure 13: Illustration of the interface between Matlab and VASP 

Matlab: 

Concurrent 

search 

algorithm 

VASP: Static 

calculation 

Atomic positions 

Total energy and 

forces 
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There are total four initial curves which requires to run the concurrent search 

algorithm four times separately. The following procedure is applied to each of the initial 

curves. Firstly, the optimization procedure listed in Table 1 is applied to the initial curve 

which locates two stable configurations. If there is at least one extra stable configuration 

Figure 14: Comparison between FeTi and FeTiH 

(a) FeTi (b) FeTiH 

Figure 15: Initial structures of FeTiH with H atoms locating at the (a) Fe-Fe bridge 

along the first primitive lattice vector (b) Fe-Fe bridge along the third primitive 

lattice vector (c) center of the (001) surface (d) center of the (010) surface 

(a) (b) 

(c) 
(d) 
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between these two stable configurations, the curve is broken into two curve sections. 

Secondly, the optimization procedure listed in Table 2 is applied to the two curve 

sections to locate the extra stable configuration. The process continues until all the curves 

are unbreakable. Thirdly, for each unbreakable curve, the image with highest energy is 

selected to climb to the saddle position.  

 

Table 11: Fractional coordinates for the four initial structures of FeTiH 

 â  b̂  ĉ   â  b̂  ĉ  

    

(a) 

Fe 0 0 0 

(b) 

Fe 0 0 0 

Fe 0 0.5 0 Fe 0 0.5 0 

Ti 0.5 0.25 0.5 Ti 0.5 0.25 0.5 

Ti 0.5 0.75 0.5 Ti 0.5 0.75 0.5 

H 0.6 0 0 H 0 0 0.6 

H 0.4 0.5 0 H 0 0.5 0.4 

(c) 

Fe 0 0 0 

(d) 

Fe 0 0 0 

Fe 0 0.5 0 Fe 0 0.5 0 

Ti 0.5 0.25 0.5 Ti 0.5 0.25 0.5 

Ti 0.5 0.75 0.5 Ti 0.5 0.75 0.5 

H 0 0 0.6 H 0.45 0 0.55 

H 0 0.5 0.4 H 0.5 0.5 0.55 

 

Table 12: Fractional coordinates for the final structure of FeTiH 

 â  b̂  ĉ  

Fe 0 0 0 

Fe 0 0.5 0.5 

Ti 0.5 0 0.5 

Ti 0.5 0.5 0 

H 0 0.25 0.3 

H 0 0.25 0.7 

 

3.4.5.2 Computational Results and Disscussion 

The located minimum energy paths (MEPs) for the four initial curves are plotted 

in terms of total energy (eV) with respect to the reaction coordinates which are shown in 

Figure 16. Here, reaction coordinate which is an abstract one-dimensional coordinate to 
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represent the progress of the atomic configuration along the transition path is used to 

shown the relative distribution of the images along the path. The EI and Es are the total 

energy at the initial states and transition states (i.e. saddle points with highest energy or 

global saddle points along the transition path). The ΔE represents the activation energy. 

The square markers in red are the local minima and the round markers in blue are the 

saddle points. The asterisk markers are intermediate images along the MEPs. Each curve 

section in different color represents a sub-stage transition path. For example, in Figure 

16(b), there are three sub-stage curves which are shown in blue, dark green and purple. 

For the first initial curve, the algorithm locates six MEPs with seven local minima and six 

saddle points which are shown in Figure 16 (a). The activation energy E is the energy 

difference between the saddle point with highest energy (i.e. global saddle point along the 

transition path) and the initial state. The global saddle point is the one on the fifth MEP 

with the total energy of –37.3421 eV. The total energy of the initial structure is –38.3651 

eV. Thus the activation energy for the transition from the initial structure with hydrogen 

atoms locating at the Fe-Fe bridge along the first primitive lattice vector to the final 

orthorhombic structure (i.e. FeTiH_tran_a) is 1.0230 eV.  

Similarly, for the second initial curve, the algorithm locates three MEPs with four 

local minima and three saddle point which are shown in Figure 16(b). The total energy 

for the initial structure is –37.7664 eV and for the global saddle point is –35.9240 eV. 

The activation energy for the transition from the initial structure with hydrogen locating 

at the Fe-Fe bridge along the third primitive lattice vector to the final orthorhombic 

structure (i.e. FeTiH_tran_b) is 1.8424 eV. For the third initial curve, the algorithm 

locates five MEPs with six local minima and five saddle points which are shown in 

Figure 16(c). The total energy for the initial structure and saddle point is –38.0376 eV 

and –35.7164 eV. The activation energy for the transition from the initial structure with 

hydrogen locating at the center of the (001) surface to the final orthorhombic structure 

(i.e. FeTiH_tran_c) is 2.3212 eV. For the fourth initial curve, the algorithm locates two 

MEPs with three local minima and two saddle points which are shown in Figure 16(d). 

The total energy for the initial structure is –38.0242 eV and for the saddle point is –

35.7615 eV. The activation energy for the transition from the initial structure with 

hydrogen locating at the center of the (010) surface to the final orthorhombic structure 
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(i.e. FeTiH_tran_d) is 2.2627 eV. The results are summarized in Table 13. The last 

column listed the experimental result of the activation energy for the diffusion of 

hydrogen in the β phase FeTiH which is 1±0.05 eV per H2 [208].  

The transition process from the initial structures (a) with hydrogen locating at the 

Fe-Fe bridge along the first primitive lattice vector to the final structure has the lowest 

energy barrier with the activation energy of 1.023 eV. The difference between the 

calculated activation energy and the experimental one is only 2.3% which is quite 

acceptable in the saddle point search with first principle DFT calculation. The activation 

energy for all the other three transitions starting from the three initial states in Figure 

15(b-d) are all higher than the experimental one. This is reasonable which can be 

explained in the following aspects. First, the formation of the β phase FeTiH includes two 

steps which are 1) adsorption of the free hydrogen onto the free surface of Iron-Titanium 

alloy FeTi and 2) the hydrogen diffusion in the FeTiH system. The transition processes 

studied in the dissertation are potential diffusion paths which could happen in step 2 

depending on external conditions. The initial structures of these transition processes are 

the final products of the adsorption process (i.e. step 1). The theoretical study using ab 

initio calculation shows that there are many possible hydrogen adsorption sites on the 

free surface of Iron-Titanium alloy and the hydrogen position in the initial structure in 

Figure 15(a) is one of the favorite adsorption sites [209]. This explains that the transition 

FeTiH_tran_a has a higher probability of occurring in physical world than the rest three 

transitions. In other words, the process captured by the experiment will most likely be the 

transition FeTiH_tran_a. Second, according to the harmonic transition state theory, the 

lower the activation energy for one transition is, the higher the probability that the 

transition will occur in physical world. This also explains that the transition in the 

experiment will be the FeTiH_tran_a. In addition, this indicates that the activation energy 

of the rest three transitions should be higher than the transition FeTiH_tran_a; otherwise, 

one of the transition with lowest activation energy should occur during the experiment. In 

conclusion, the computational results for the hydrogen diffusion process in the 

dissertation match well with the experimental results as well as theoretical explanations.  
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Figure 16: Minimum energy paths obtained by concurrent search algorithm for 

hydrogen diffusion in the FeTiH structure starting from different initial structures 

with hydrogen locating at (a) the Fe-Fe bridge along the first primitive lattice vector 

(b) Fe-Fe bridge along the third primitive lattice vector (c) center of the (001) surface 

(d) center of the (100) surface, to the same final orthorhombic structure  

(c) 

(b) 

(d) 

(a) 

El=–38.3651 

Es=–37.3421 

ΔE=1.0230 

El=–37.7664 

Es=–35.9240 

ΔE=1.8424 

El=–38.0376 
ΔE=2.3212 

Es=–35.7164 

El=–38.0242 

Es=–35.7615 

ΔE=2.2627 
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Figure 17-Figure 19 show the detailed transition paths for each atom in one unit 

cell along the MEPs in the transition FeTiH_tran_a, FeTiH_tran_b, FeTiH_tran_d, and 

FeTiH_tran_c, respectively. Since the detailed distribution of the intermediate images can 

be found in Figure 16, here only the energies are shown in the boxes above the 

corresponding atomic configurations. The ones with the energy value in bold text are the 

local minima and the energy value in bold italic text are the saddle points.  

 

 

E (eV)  Initial states Local minima  

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 17: Detailed atomic configuration transition of hydrogen atoms in FeTiH for 

FeTiH_tran_a (a) MEP_1 (b) MEP_2 (c) MEP_3 (d) MEP_4 (e) MEP_5 (f) MEP_6 

obtained by concurrent search algorithm  
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E (eV)  
Initial states Local minima  

(a) 

(b) 

(c) 

Figure 18: Detailed atomic configuration transition of hydrogen atoms in FeTiH for 

FeTiH_tran_b (a) MEP_1 (b) MEP_2 (c) MEP_3 obtained by concurrent search 

algorithm  

E (eV)  Initial states Local minima  

(a) 

(b) 

Figure 19: Detailed atomic configuration transition of hydrogen atoms in FeTiH for 

FeTiH_tran_d (a) MEP_1 (b) MEP_2 obtained by concurrent search algorithm  
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Table 13: Summary of the results for the concurrent search algorithm on FeTiH system 

 # of 

MEPs 

# of 

local 

minima 

# of 

saddle 

points 

Energy 

for initial 

state EI 

(eV) 

Energy 

for saddle 

point Es 

(eV) 

Activation 

energy ΔE 

(eV) 

Experiment 

ΔE (eV)  

FeTiH_tran_a 6 7 6 –38.3651 –37.3421 1.0230 1±0.05 

FeTiH_tran_b 3 4 3 –37.7664 –35.9240 1.8424 

FeTiH_tran_c 5 6 5 –38.0376 –35.7164 2.3212 

FeTiH_tran_d 2 3 2 –38.0242 –35.7615 2.2627 

 

E (eV)  Initial states Local minima  

(a) 

(b) 

(c) 

(e) 

Figure 20: Detailed atomic configuration transition of hydrogen atoms in FeTiH for 

FeTiH_tran_c (a) MEP_1 (b) MEP_2 (c) MEP_3 (d) MEP_4 (e) MEP_5 obtained by 

concurrent search algorithm  

(d) 
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3.4.6 Test Results for Fe8-H Transition 

Here we study the diffusion process of hydrogen atoms in pure body-centered iron 

with a lattice parameter of 2.86 Å. There are two possible sites that H atoms reside in the 

body-centered iron. One is octahedral site, and the other is tetrahedral site which are 

shown in Figure 21(a) and (b). The big black dots represent the metal atoms in a body-

centered unit cell. The small blue dots in Figure 21(a) are the octahedral site and those in 

Figure 21(b) are tetrahedral site. Both experimental and theoretical studies are conducted 

to uncover the favorite site for hydrogen. [210-212] found that hydrogen atoms prefer to 

reside at tetrahedral site whereas [213] shows that the preferable site is the octahedral site. 

[214] discovered that there is no preference between these two sites.  Here, we use a 

supercell with four unit cells which include a total of eight Fe atoms. Since it is generally 

believed that hydrogen has low solubility in body-centered iron, we assume there is only 

one hydrogen atom in the supercell (Fe8H). We study the diffusion process of the 

hydrogen from one octahedral site to the tetrahedral site and two other octahedral sites 

within the supercell.  

3.4.6.1 Experiment Details 

The lattice parameter for the unit cell (Fe8H) is set to be 5.72a  Å, 2.86b  Å, 

and 5.72c  Å for both initial and final structures. Figure 22 shows the initial structure 

with hydrogen residing on one of the octahedral site. Figure 23 shows three possible final 

structures with hydrogen residing on the a) tetrahedral site on the (100) surface (b) 

octahedral site on the (001) surface (c) octahedral site on the (100) surface. The fractional 

coordinates for the initial structure and the three final structures are listed in Table 14 and 

Table 15 respectively. The coordinates of the intermediate images are obtained by linear 

interpolation of the coordinate of the initial and final states. To demonstrate the 

algorithm’s capability to locate stable states, we slightly shift the hydrogen atoms from 

the equilibrium positions which are shown in Figure 22 and Figure 23. For the purpose of 

convenient reference to the four transition paths in the following paragraphs, we refer the 

transition from the initial structures in Figure 22 to the final structures in Figure 23(a), (b), 

and (c) as Fe8H_tran_a, Fe8H_tran_b, and Fe8H_tran_c, respectively. 
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Similar to the study of FeTiH system, the total energy of the system and the forces 

on each atom are calculated based on density functional theory (DFT) calculation using 

Vienna Ab-initio Simulation Package (VASP). The projector augmented wave potentials, 

specifically LDA potentials, are used here. The convergence test for the k-point sampling 

with respect to the total energy shows that 13 26 13   gamma centered grid of k-point 

sampling is adequate for study of Fe8H structure. Here, to reduce the computational time, 

we use a k-point sampling of 2 4 2  for all the three scenarios.  

There are total three initial curves which requires to run the concurrent search 

algorithm three times separately. Similar to the example of FeTiH, firstly, the 

optimization procedure listed in Table 1 is applied to the initial curve which locates two 

stable configurations. If there is at least one extra stable configuration between these two 

stable configurations, the curve is broken into two curve sections. Secondly, the 

optimization procedure listed in Table 2 is applied to the two curve sections to locate the 

extra stable configuration. The process continues until all the curves are unbreakable. 

Thirdly, for each unbreakable curve, the image with highest energy is selected to climb to 

the saddle position. 

 

 

 

 

 

Figure 21: The interstitial sites in a body-centered lattice with metal 

atoms (big black dot) (a) Octahedral site (small blue dot) (b) Tetrahedral 

site (small blue dot) 

(a) (b) 
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Table 14: Fractional coordinates for the initial structure of Fe8H 

 â  b̂  ĉ  

Fe 0 0 0 

Fe 0.25 0.5 0.25 

Fe 0.5 0 0 

Fe 0.75 0.5 0.25 

Fe 0 0 0.5 

Fe 0.25 0.5 0.75 

Fe 0.5 0  0.5 

Fe 0.75 0.5 0.75 

H 0.23 1 0.25 

 

Table 15: Fractional coordinates for the three final structures of Fe8H 

 â  b̂  ĉ   â  b̂  ĉ  

    

(a) 

Fe 0 0 0 

(b) 

Fe 0 0 0 

Fe 0.25 0.5 0.25 Fe 0.25 0.5 0.25 

Fe 0.5 0 0 Fe 0.5 0 0 

Fe 0.75 0.5 0.25 Fe 0.75 0.5 0.25 

Fe 0 0 0.5 Fe 0 0 0.5 

Fe 0.25 0.5 0.75 Fe 0.25 0.5 0.75 

Fe 0.5 0  0.5 Fe 0.5 0  0.5 

Fe 0.75 0.5 0.75 Fe 0.75 0.5 0.75 

H 0.63 1 0.125 H 0.25 0.48 1 

(c) 

Fe 0 0 0 

 

Fe 0.25 0.5 0.25 

Fe 0.5 0 0 

Fe 0.75 0.5 0.25 

Fe 0 0 0.5 

Fe 0.25 0.5 0.75 

Fe 0.5 0  0.5 

Fe 0.75 0.5 0.75 

H 0.78 0 0.75 
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3.4.6.2 Experiment Results and Discussion  

The located minimum energy paths (MEPs) for the three initial curves are plotted 

in terms of total energy (eV) with respect to the reaction coordinates which are shown in 

Figure 24. Similarly, the EI and Es are the total energy at the initial state and transition 

states (i.e. saddle points with highest energy or global saddle points along the transition 

path). The ΔE represents the activation energy. The square marker in red are the local 

minima and the round marker in blue are the saddle points. The asterisk markers are 

intermediate images along the MEPs. Each curve section in different color represents a 

Figure 22: Two unit cell of the initial structure with hydrogen 

residing on the octahedral site 

(a) (b) 

(c) 

Figure 23: Final structure with hydrogen 

residing at (a) tetrahedral site on the 

(100) surface (b) octahedral site on the 

(001) surface (c) octahedral site on the 

(100) surface 
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sub-stage transition path. For the first initial curve, the algorithm locates three MEPs with 

four local minima and three saddle points which are shown in Figure 24(a). The global 

saddle point is the one on the first MEP with the total energy of –74.7253 eV. The total 

energy of the initial structure is –75.0992 eV. Thus the activation energy for the transition 

from the initial structure to the final structure with hydrogen residing at tetrahedral site on 

the (100) surface (i.e. Fe8H_tran_a) is 0.3739 eV.  

For the second initial curve, the algorithm locates five MEPs with six local 

minima and five saddle points which are shown in Figure 24(b). The total energy for the 

initial structure is –75.0992 eV. The global saddle point is the one on the first MEP with 

the total energy of –74.8023 eV. The activation energy for the transition from the initial 

structure to the final structure with hydrogen residing on the octahedral site on the (001) 

surface (i.e. Fe8H_tran_b) is 0.2969 eV. For the third initial curve, the algorithm locates 

five MEPs with six local minima and five saddle points which are shown in Figure 24(c). 

The total energy for the initial structure is –75.0992 eV. The global ‘saddle point’ is the 

one one the third MEPs with the total energy of –74.7950 eV. The activation energy for 

the transition from the initial structure to the final structure with hydrogen residing at the 

octahedral site on the (100) surface (i.e. Fe8H_tran_c) is 0.3042. The results are 

summarized in Table 13.  

The experimental results for the activation energy of the hydrogen diffusion in the 

iron is significantly affected by the impurities of the iron used for the study. Thus, the 

activation energy from the experiments conducted by ten research groups around the 

world are scattered from 0.035 eV to 0.142 eV, which are included in [215] by Hayashi 

and Shu. The results for all three transition are out of the range with a higher activation 

energy which does make sense since the algorithm might locates the transition paths with 

higher activation energy. The detailed explaination can be found in Section 3.4.5.2.   

Figure 25-Figure 27 give the detailed transition paths for each atom in one unit 

cell along the MEPs in the transition Fe8H_tran_a, Fe8H_tran_b, Fe8H_tran_c 

respectively. 
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Figure 24: Minimum energy paths obtained by concurrent search algorithm for 

hydrogen diffusion in Fe8H structure starting from the initial structure to final 

structures with hydrogen residing at (a) tetrahedral site on the (100) surface (b) 

octahedral site on the (001) surface (c) octahedral site on the (100) surface 

(b) 

(c) 

(a) 

El=–75.0992 

Es=–74.7253 

ΔE=0.3739 

EI=–75.0992 

Es=–74.7950 

ΔE=0.3042 

El=–75.0992 

Es=–74.8023 

ΔE=0.2969 

E (eV)  Initial states Local minima  

(a) 

(b) 

Figure 25: Detailed atomic configuration transition of hydrogen atoms in Fe
8
H for 

Fe
8
H_tran_a (a) MEP_1 (b) MEP_2 (c) MEP_3 obtained by concurrent search 

algorithm 

(c) 
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Table 16: Summary of the results on Fe8H system using concurrent search algoirthm 

 # of 

MEPs 

# of 

local 

minima 

# of 

saddle 

points 

Energy 

for initial 

state EI 

(eV) 

Energy 

for saddle 

point Es 

(eV) 

Activation 

energy ΔE 

(eV) 

Experiment 

ΔE (eV)  

Fe8H_tran_a 3 4 3 –75.0992 –74.7253 0.3739 0.035~0.142 

Fe8H_tran_b 5 6 5 –75.0992 –74.8023 0.2969 

Fe8H_tran_c 5 6 5 –75.0992 –74.7950 0.3042 

 

E (eV)  Initial states Local minima  

(a) 

(b) 

(c) 

(d) 

(e) 

Figure 26: Detailed atomic configuration transition of hydrogen atoms in Fe8H for 

Fe8H_tran_b (a) MEP_1 (b) MEP_2 (c) MEP_3 (d) MEP_4 (e) MEP_5 obtained by 

concurrent search algorithm 
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3.5 Discussion  

Section 3.4 demonstrates that the method is able to locate multiple local minima 

and saddle points along one transition path. Here, we give a brief discussion on the rate of 

convergence and limitations of the algorithm.  

3.5.1 Convergence Analysis 

The convergence of the algorithm to the local minima and the MEPs are discussed 

in this section. In this algorithm, the conjugate gradient method is adopted in the 

searching the local minimum. For a quadratic function with n variables, the method can 

E (eV)  Initial states Local minima  

(a) 

(b) 

(c) 

(d) 

(e) 

Figure 27: Detailed atomic configuration transition of hydrogen atoms in Fe8H for 

Fe8H_tran_c (a) MEP_1 (b) MEP_2 (c) MEP_3 (d) MEP_4 (e) MEP_5 obtained by 

concurrent search algorithm 
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guarantee the local minimum will be located in at most n  iterations apart from round-off 

errors. The searching points converge to the local minimum quadratically. For a non-

quadratic function with n variables, the searching process is usually iterative rather than 

n steps. The approximated conjugate directions generated using Eq. (3.3) are the 

directions corresponding to the local quadratic approximation to the non-quadratic 

function. The rate of convergence for the non-quadratic function depends on the response 

to changes in the local quadratic approximation from one iteration to another. When the 

searching point approaches the local minimum, it converges to the minimum 

quadratically. Hence, the choice of the initial position of the end points of the Bézier 

curve is very important. Those initial positions that require the least number of steps to 

converge to the bottom of the valley, where the local quadratic approximation is accurate, 

are the best choices for the initial position of the end control points. In addition, the line 

search method is employed to determine the step size in each conjugate direction. In each 

conjugate direction, only several limited mini-steps are applied to locate the minimum 

along that direction in order to reduce the computational cost. In other words, the point 

we locate by the mini-steps search may not be the minimum point along that direction. 

This could expand the approximation error in terms of conjugacy.  Ultimately it will lead 

to more steps for the conjugate gradient method to converge. There is a trade-off between 

the number of functional evaluations during the line search process in each conjugate 

directions and the number of iterations needed for the conjugate gradient method to 

converge to the minimum. 

3.5.2 Limitations for the Algorithm 

As mentioned in section 3.3.2, the curve subdivision scheme will miss some 

breakable curves in some rare cases. The corresponding remedy is also introduced in the 

same section. However, this remedy is still not good enough, and it increases the 

computational cost.  

In addition, this algorithm can locate several transition paths along one transition 

path. There is still possibility that it misses some paths which are important. For example, 

for two particular stable states, the current algorithm can only locate one transition path 

which consists of multiple curves with their end points connected together locating at 
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multiple local minima. There could be other possible paths between those two states. 

Figure 28 gives an example of such cases, where A, B, C, D, and E are stable states. 

From the initial state A to final state B, there are two possible transition paths in this case. 

One is A-D-E-B, and the other is A-C-B. Our algorithm can only locate either the 

transition path A-D-E-B or A-C-B, not both. The ideal case is to locate both the transition 

paths. As we know, in most of cases we are interested in identifying the minimum energy 

barrier between two states. If the algorithm can only locate one transition path, this could 

lead to an overestimation of the minimum energy barrier between the states A and B 

because the identified path could be the one with the energy barrier higher than the 

minimum energy barrier. For example, if the path A-C-B is the one with minimum 

energy barrier between states A and B. The algorithm may locate the path A-D-E-B 

instead of A-C-B. As a result, the minimum energy barrier between states A and B will 

be overestimated.  

The ideal case is to locate all the paths on the PES which gives us a better 

overview of the landscape of the PES. Once all the local minima as well as corresponding 

saddle points are identified, it is easy to locate the transition path that requires the least 

energy to transit from reactant to product. As a result, we can estimate the minimum 

energy barrier between two states accurately. Several trials with different initial guesses 

for the transition path are needed in order to locate all the transition paths on the PES. 

This trial procedure is computationally expensive. One trial with different initial guesses 

from previous trials may locate some transition paths which are already identified by the 

previous trials, since for each trial they can converge to several transition paths. In 

addition, in real applications, we actually do not know the PES in advance. As a result, it 

is difficult to determine whether all the transition paths are located or not. To solve this 

problem, we develop the curve swarm algorithm to exhaustively search the local minima 

and saddle points within a searching area simultaneously. The algorithm is presented in 

the next chapter.  
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Figure 28: Illustration for two possible transition paths between two states 
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Equation Chapter (Next) Section 1 

CHAPTER IV  

A CURVE SWARM SEARCH ALGORITH FOR GLOBAL 

SEARCH OF PHASE TRANSTION PATHS 

Previously, we developed a concurrent search algorithm to search multiple local minima 

and saddle points along one transition path. This improves the accuracy of activation 

energy estimation along one transition path. However, for complicated potential energy 

surfaces (PES’s), the transition from one stable configuration to another can be done 

through more than one path. The lowest energy path (i.e. MEP) between two states 

should be located. Since the existing saddle point search methods are local methods, the 

result sensitively depends on the initial guess of the transition path. The path identified by 

those methods may not be the MEP. Consequently, this will lead to an overestimation of 

the energy barrier between two states. To solve this problem and provide a global view of 

the landscape of the PES, we developed the curve swarm search algorithm to 

exhaustively locate the local minima and saddle points on a PES within a searching area. 

In this chapter, we present the curve swarm search algorithm and demonstrate it by 

examples of Rastrigin function and Schwefel function. In addition, we applied the 

algorithm to study the diffusion process of the hydrogen in Iron Titantium alloy (FeTi) 

and pure Iron (Fe). The algorithm represents a transition path by a parametric Bézier 

curve with control points. It uses multiple groups of such curves, each of which 

represents a multi-stage transition path. During the searching process, each group of 

curves communicates with others to maintain cohesion and avoid collision based on a 

collective potential model. For each curve in one group, its two end control points are 

minimized to locate two local minima, while intermediate control points move along their 

corresponding conjugate directions to refine the shape of the curve. If extra minima are 

found along the curve, it is broken into multiple curve segments to form a multi-stage 

transition path.  
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4.1 Overview for the Curve Swarm Search Algorithm 

The curve swarm algorithm uses several groups of curves to try to exhaustively 

search local minima and saddle points within one area on a PES. The algorithm 

represents the transition path using a parametric Bézier curve with control points. It uses 

multiple groups of such curves, each of which represents a multi-stage transition path. At 

the initial stage, each group includes only one curve representing one initial transition 

path. The curve in one group will gradually be divided into multiple curves to locate 

multiple local minima and saddle points along the transition path. At the final stage, each 

group includes multiple curves with their end points connected together and located at 

multiple local minima. In addition, each curve has one intermediate point located at the 

saddle point position. The central issue in the curve swarm algorithm is to maintain 

cohesion and to avoid collision between groups during the searching process. Cohesion 

means that groups should stay relatively close to each other to explore a PES thoroughly, 

thus locating all the local minima and saddle points. If two adjacent groups stay too far 

away from each other, some intermediate space between them may not be explored. 

Collision means that more than one group search the same area on a PES. The algorithm 

should avoid collision to prevent repetitive efforts, thus maintaining a global view and 

reducing computational cost.  

To maintain cohesion and avoid collision between groups, in this dissertation, we 

introduce a collective potential model to describe the collective behavior among groups. 

In other words, we introduce collective forces that could be either attractive or repulsive 

between groups. The forces are applied to control points in each group. If two curves are 

too close to each other, the repulsive force is applied to the control points of the curves; 

otherwise, attractive force is applied. 

The procedure to search local minima and saddle points within each group 

includes three stages that are 1) a single transition pathway search, 2) multiple transition 

pathway search, and 3) climbing process to locate the saddle position. In the first stage, 

the algorithm minimizes the two end control points to locate two local minima using 

conjugate gradient method, while the shape of the curve is refined by moving 

intermediate control points along the direction determined by both collective force and 

the parallel component of the potential force in the corresponding conjugate directions of 
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the control point. As long as the curve identifies two local minima, the algorithm moves 

into the second stage in which the algorithm examines whether the curve crosses an extra 

energy basin based on curve subdivision scheme. If the curve crosses an extra energy 

basin, the algorithm breaks the curve into two curve sections at one break point. This 

point is then minimized using the conjugate gradient method to locate the minimum for 

the extra energy basin. At the same time, the shapes of the two curves are refined in the 

same way as in the first stage. The process continues till each curve crosses only two 

adjacent energy basins. Then in the third stage, the algorithm selects the point with 

maximum energy on each curve to climb up to locate the saddle point position. The 

pseudo code for the algorithm is included in Table 17. 

 

A total of Curves  that 

represent initial transition paths within a 

searching area. 

Let the points with maximum energy on 

curves to climb up to the saddle position. 

Stop 

Break the curve into 

two curve sections at 

one breakpoint. 

Breakable? 

Figure 29: Flow chart of the curve swarm search algorithm 

Yes 

No 

For each curve, minimize two end control 

points to locate two local minima. Move the 

intermediate control points along the 

direction determined by both the collective 

force and the parallel components of 

potential force in the corresponding 

conjugate direction. 

For each curve section, 

calculate their corresponding 

collective forces. 

Minimize the breakpoint. For each 

curve section, move the intermediate 

control points along the direction 

determined by both the collective force and 

the parallel components of potential force 

in the corresponding conjugate direction. 
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Table 17: Pseudo-code of the curve swarm search algorithm 

INPUT: A number of initial curves ( 1, , )j j n   

OUTPUT: The same number of groups of curves. Each group includes multiple curves with their 

end control points connected together located at multiple local minima. In addition, each curve in 

one group has one control point located at the corresponding saddle point position. 

 
m

jM =number of newly produced curve in the
thm  iteration for the thj group  

 WHEN 1m  (the first iteration) 

DO  

Minimize the two end control points for each initial curve ( 1, , )j j n   using conjugate 

gradient method. Move all the intermediate control points in their corresponding conjugate 

directions with positive eigenvalues.  

END  

1m  ; 

WHILE There exists newly produced curves in the 
thm  iteration  

1m m  ; 

0m

jM  ; 

FOR 1, ,j n (the number of total groups) 

     FOR 
1# 1, , m

jM   

           IF 
#( )j x is breakable 

      Break the curve 
#( )j x  into two curves 

#,1( )j x  and 
#,2( )j x  at one break point. 

      
2m m

j jM M  ; 

           END IF 

           IF The number of control points for 
#,1( )j x or 

#,2( )j x  is less than five 

          Do degree elevation to the curve 
#,1( )j x  or 

#,2( )j x . 

            END IF 

          Calculate the collective forces for the newly created curves. 

         Minimize the break point using conjugate gradient method, while the intermediate control  

         points for curve 
#,1( )j x  and 

#,2( )j x  moves along the directions defined by their  

        corresponding conjugate directions and the collective forces from other curves  

     END FOR 

END FOR 

END WHILE  

FOR 1,2, ,u  (total number of non-breakable curves produced during the WHILE loop 

Do 

Select the control point with maximum energy along each non-breakable curve to climb up to 

locate the corresponding saddle point.  

END FOR 
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4.2 A Single Transition Pathway Search in Curve Swarm Algorithm 

For the procedure at the first stage (i.e. a single transition pathway search), the 

difference between the concurrent search algorithm and curve swarm algorithm is the 

way to refine the shape of the curve. In the concurrent search algorithm, the shape of the 

curve is refined by moving the intermediate control points along the conjugate directions 

subject to only potential forces (i.e. the gradient of the PES at the intermediate control 

points), whereas in the curve swarm algorithm, the intermediate control points are subject 

to both the collective force from their neighbors and the potential force. In each iteration, 

a set of conjugate directions are constructed for each intermediate control points using 

Eqn.(3.5). Then the intermediate control points move along the directions determined by 

both the collective force and the parallel components of potential force in the 

corresponding conjugate direction. For example, for the thk intermediate control point on 

a curve   that needs to be optimized, the search direction associated to its thi ‘conjugate 

direction’ is defined as 

  
( ) ( 1) ( ) ( )

, , , ,( ( ) )i i i i C

k, g k k k c kw V w V    

    D x s s  (4.1) 

in which 
( 1)

,

i

k 

x is the position for the thk intermediate control point along thi  search 

direction 
( )

,

i

k D . 
,

C

kV 
 is the collective potential for the thk point on the curve  ; gw and 

cw are the weights for the parallel component of the true potential force and collective 

force ,

C

kV   respectively. The definition of the search direction 
( )

,

i

k D  is illustrated in 

Figure 30. In step (a), the true potential force is projected to the conjugate direction 
( )

,

i

k s

to obtain its parallel component. Then in step (b), the search direction is obtained by 

adding the weighted parallel component of the true potential force and the weighted 

collective force of the curve.  

The collective potential for the thk intermediate control point on a curve   is 

defined as a weighted sum of the pair-wise potential between the control point and the 

curves in its neighbor groups. That is  

  ,

1

( )
L

C

k l kl

l

V w r 


  (4.2) 
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in which 
lw is the weight for the thl ( 1l L ) curve from its neighbor groups; L is the 

total number of curves from its neighbor groups;   is the pairwise potential between two 

points; klr is the approximate distance from the thk  point to the thl curve in its neighbor 

groups. The detailed definition for klr is given in Section 4.3.2.    

The key issue here is to model the pairwise potential that is able to maintain 

cohesion and avoid collision between two curves. The following section gives a detailed 

description on the pairwise potential model.  

 

4.3 Euclidean Distance Based Collective Potential Model 

As stated in Section 4.1, we introduce a collective potential model to solve the 

central issue in the curve swarm algorithm that is to maintain cohesion and to avoid 

collision between groups during the searching process. Since the collective force between 

two curves could be either attractive or repulsive depending on the distance between two 

curves, the collective potential model we choose in this dissertation is Lennard-Jones 

potential that is widely used to describe the pairwise potential between two atoms or 

molecules. The potential is defined as 

  

12 6

4
r r

 
 

    
     

     
  (4.3) 

in which  is the depth of the potential well,  is the characteristic distance at which the 

pair potential is zero, r is the distance between two atoms or molecules. The central issue 

Figure 30: An illustration of the definition of the searching direction for the 

intermediate control points in curve swarm search algorithm 

 

 

 

 

 

 

 

 

Step (a) Step (b) 
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here is to define the three parameters to make the model well serve our purpose that is to 

maintain cohesion and avoid collision among curves. 

4.3.1 Parameter Determination 

4.3.1.1 The depth of the potential well   

Since the curves in this algorithm evolve under the forces from both true potential 

(i.e. energy potential) and imaginary potential (i.e. collective potential among curves), the 

criteria of determining  is that the value of imaginary collective potentials are at the 

same magnitude with the true potential of the system. Also, to capture more information 

of the potential energy surface, the depth of the potential well is adaptive. Based on this 

criterion, we define   as the average value of the potential energy at the two local 

minima that are identified by the end control points of the breakable curve, as 

  2

2

endpoint_1 endpoint_E E



   (4.4) 

in which endpoint_1E  and 2endpoint_E are the true potential energy at two local minima 

identified by the two end control points of the breakable curve which shows in Figure 32. 

In the algorithm, the depth of the potential well  is adaptive to precisely capture the 

information of energy landscape on the fly of the searching process. In other words, for 

every two newly created curves, to calculate their collective forces with the curves from 

other groups, the depth of the well is redefined based on the energy level of the two local 

minima identified by the two end control points for the breakable curve.  

4.3.1.2 The Characteristic distance   

Beside of  , another important parameter needed to be determined in Lennard-

Jones potential is the characteristic distance at which the pair-wise potential is zero. Since 

movement of the curves are directly controlled by the collective forces, it is difficult to 

directly define the distance at which the potential between two curves is zero. Here, the 

characteristic distance is derived by defining a distance 0r at which the collective force is 

zero (i.e. zero-force distance). Since the algorithm break one curve at only one breakpoint, 

here, we define the zero-force distance associated with these two curve sections 
1 and 
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2  as the minimum distance between the breakpoint and the corresponding two end 

control points, as 

  0 2min(|| ||,|| ||)breakpoint endpoint_1 breakpoint endpoint_r   x x x x  (4.5) 

in which breakpointx , endpoint_1x , and 2endpoint_x are the positions for the breakpoint, the first 

endpoint, and the second endpoint of the breakable curve. The definition of the distance 

at which the collective force between two curves is zero is illustrated in Figure 32. The 

reason that we define the zero-force distance as the minimum distance instead of 

maximum distance between the breakpoint and the corresponding two end control points 

is given in the following separate paragraph. The characteristic distance is determined by 

solving  

  0
r





   (4.6) 

The solution to the Eqn. (4.6) is 1/62r  . By replacing r  with 0r  in the equation 

1/62r  , the characteristic distance is calculated as  

  00.8909r   (4.7) 

In the algorithm, the characteristic distance is adaptive to precisely capture the 

information of energy landscape on the fly of the searching process. In other words, for 

every two newly created curves, to calculate their collective forces with the curves from 

other groups, the characteristic distance is updated by using the positions of their 

breakpoint and the end control points. 

Here, we analyze and demonstrate that it is better to define the zero-force distance 

as the minimum distance between the breakpoint and the corresponding two end control 

points. The curve subdivision scheme in Section 3.3.1 defines the breakpoint in the way 

which guarantees that the breakpoint lies within the third energy basin which is different 

from the two whose local minima are located by the two end control points. In other 

words, there is no need to apply either attractive force or repulsive force between 

endpoint and breakpoint. Thus, the distance between breakpoint from both endpoints can 

be defined as zero-force distance. As shown in Figure 32(a), the zero-force distance 0r  is 

the critical distance from repulsive force to attractive force. Suppose we define the zero-
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force distance as the maximum distance between breakpoint and endpoints, the critical 

location for the Lennard-Jones potential will be shifted to the right. Some curves in the 

neighborhood that should have attractive force will have repulsive force now. As a result, 

those fake repulsive force from the curve that is far away will decrease the effect of the 

repulsive force that is from the closer curves. In addition, it increases the cutoff distance 

for the attractive force. In other words, some curves that is very far away should not have 

pairwise force now still have attractive force, which will decrease the effect of the force 

that from the closer curves. In conclusion, the definition of the zero force distance based 

on the minimum distance between breakpoint and end points can define the cutoff 

distance for both repulsive and attractive force more precisely. As a result, it serves better 

for the purpose of maintaining cohesion and avoiding collision.  To verify the above 

reasoning, experiments were conducted by first defining the zero-force distance as the 

minimum distance between breakpoint and end points, and then changing the definition 

of the zero-force distance to be the maximum distance between breakpoint and end points. 

The comparison of the results is shown in Figure 31.  

Figure 31(a) shows the result with the zero-force distance being defined as 

minimum distance between the breakpoint and the end point, while Figure 31(b) is the 

result with the distance being defined as maximum distance. In Figure 31(a), when the 

first and second groups of curves getting too close, the algorithm push them away in a 

right amount of distance. Also, when the third group of curves is far away from the first 

two groups, the algorithm pulls them closer to the first two groups. However, in Figure 

31(b), the algorithm pushes the first two curves far away which means the magnitude of 

the collective force is not defined appropriately. For the third group, the algorithm did not 

pull them closer. Thus, the minimum distance scheme is better than the maximum 

distance scheme in terms of maintaining cohesion among curves.     

After determining the two central parameters for Lennard-Jones potential, the 

next critical issue is to calculate the collective forces for the curves which is presented in 

Section 4.3.2. 
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Figure 31: Comparison of the results for two different ways of zero-force distance 

definition (a) Zero-force distance is defined as the minimum distance between 

breakpoint and end point (b) Zero-force distance is defined as the maximum 

distance between breakpoint and end point 

(a)  

(b)  

 



90 

 

 

4.3.2 Collective Force 

The collective force for one curve is the weighted sum of the pairwise forces from 

its neighbor curves, which is defined as 

  
1

( ) ( )
L

l

l

F w f


x x  (4.8) 

in which ( )f x  is the pairwise force between the curve and one of its neighbor curves, 

which is the gradient of the pairwise potential as  

  ( ) ( )f r
r


 


x x  (4.9) 

in which r is the distance between two curves.  

Based on the definition of the distance r , there are two general  methods to 

define the pairwise force ( )f x  at the thk control point for the curve   mentioned in 

Section 4.1. One is based on the Euclidean distance between the average position of two 

curves, and the other is based on the minimum Euclidean distance among the control 

points of two curves. In the average position based Euclidean distance method, for each 

curve or each group of curves, the average position of all the control points of the curve 

or the group of curves is first calculated. Then the distance r  between two curves is 

defined as the Euclidean distance between their corresponding average positions. Based 

Figure 32: An illustration of the definition for the distance at which the 

collective force between two curves is zero  

breakpoint endpoint_2 

φ1 φ2
 

breakable curve attractive 

force 

repulsive 

force 

12 6

4
r r

 
 

    
     

     

zero-force location 

(a) Lennard-Jones potential (b) A breakable curve 

endpoint_1 
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on the way to define the average position of one curve, the method includes three 

scenarios which are pairwise force between one group and other groups, pairwise force 

between one curve and other groups, and pairwise force between one curve and other 

curves. In the average position based Euclidean distance method, each intermediate 

control point within one curve has the same collective force. The details of the three 

scenarios are presented in Section 4.3.2.1.1, 4.3.2.1.2, and 4.3.2.1.3 respectively.  

In the minimum Euclidean distance method, the distance r  is defined as the 

minimum Euclidean distance between two intermediate control points on two different 

curves.  Based on the way to define the minimum Euclidean distance, the method 

includes two scenarios which are ‘global’ minimum Euclidean distance and ‘local’ 

minimum Euclidean distance. In the ‘global’ minimum Euclidean distance method, the 

distance r is defined as the minimum distance between two curves. Each intermediate 

control point within one curve has the same collective force which are calculated using 

the global minimum distance r for the curve. Different from the ‘global’ minimum 

Euclidean distance method, the ‘local’ minimum Euclidean distance method defines the 

minimum distance for each intermediate control point within one curve separately. For 

each intermediate control point within one curve, the method finds the corresponding 

minimum distance from the control point to its neighbor curves. In other words, the 

collective force on each intermediate control point within one curve are the different. The 

details of these two methods are presented in Section 4.3.2.1 and 4.3.2.2, respectively.  

The collective force calculated from Eqn. (4.8) will be infinite when ( )r x

approaches zero. As a result, the collective force will dominant the search process and 

push two curves too far away from each other, which violates the cohesion criterion. On 

the other hand, when two curves are far away from each other, they should not interact 

with each other during search process. However, the force calculated from the pairwise 

force model is not zero, which violates the requirement. To solve the problem, we 

introduce two cut-off distances. One is introduced to keep the collective force at the same 

magnitude with the true potential force, which is defined as  

  _L cut offr c   (4.10) 
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in which _cut offc is a constant. If ( ) Lr rx , the pairwise force is defined as the force 

calculated at ( ) Lr rx . The other is introduced to deactivate the interaction among 

curves which are far away from each other, which is defined as  

  2.5Ur   (4.11) 

If ( ) Ur rx , the pairwise force is set to be zero. Hence, the pairwise force is defined as 

  

_

_

_

0 if ( )

( ) ( ) if ( )

( ) if ( )

U

L U

t curve

cut off L

cut off

r r

f r r r r
r

c r r
r c




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





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   







x

x x x

x x
x

 (4.12) 

4.3.2.1 Average Position based Euclidean Distance  

In this method, the distance r  is defined as the Euclidean distance between 

average positions of two curves. Specifically, for the curve   that mentioned in Section 

4.1, the ( )r x  is defined as 

  ( ) || ||aver  x x x  (4.13) 

in which
ave

x  is the average position for the curve  , which are defined as  

  ,

1

1 M
ave

k

kM
 



 x x  (4.14) 

in which is M the total number of control points for curve  ;  x in the Eqn (4.13) is the 

average position of all the control points for the curve in its neighbor groups. For 

example, the ( )r x  at the thl curve in the curve  ’s neighbor groups is defined as 

( )ave

lr x . The 
ave

lx is the average position for the thl curve, which is defined in the same 

way as 
ave

x . By plugging 
ave

lx into Eqns (4.13), (4.9) and (4.8), the collective force for the 

curve   is  

  
1

( ) ( )
L

ave ave

l l

l

F w r
r

 






 


x x  (4.15) 
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As mentioned at the beginning of the Section 4.3.2, the method includes three 

scenarios which are pairwise force between one group and other groups, pairwise force 

between one curve and other groups, and pairwise force between one curve and other 

curves based on the definition of the average positions of one curve and its neighbor 

curves. To understand the definition of the average position of one curve, it is necessary 

to clearly define the scope of the curve. The average position of one curve is defined as 

the arithmetic mean of the positions of all the control points within the scope of the curve. 

Figure 33 and Table 18 illustrate the definition of the scope for the curve   and the thl  

curve mentioned in Section 4.1 within the three scenarios for the calculation of the 

collective forces for the curve section 
1  and

2 . In the first scenario in which the 

pairwise forces are calculated between one group and the other groups, the curve   is 

defined as all the curves in the group that the curve section 
1  and 

2 belongs to. In the 

simple example in Figure 33, the   is defined as the curve that connects the states A, B, 

C, and D. So the average position of the curve   (i.e.
ave

x ) is the arithmetic mean of the 

positions for the control points on the sub-curve sections AB, BC, and CD. Each’s 

neighbor group is treated as one single curve for the pairwise force calculation. In other 

words, the thl  curve in  ’s neighbor groups is defined as all the curves in the thl group. 

The neighbor curves for curve   are defined as the curve that connects the states A, F, E, 

and D, and the curve that connects the states G, H, I, and J. Thus, the average position for 

the thl  curve (i.e.
ave

lx ) is the arithmetic mean of the positions for the control points on the 

sub-curve sections AF, FE, ED when 1l   (i.e. the first neighbor curve) and GH, HI, IJ 

when 2l   (i.e. the second neighbor curve). 

In the second scenario in which the pairwise forces are calculated between one 

curve and the other groups, the curve   is defined as either curve section 
1  or 

2

depending on the curve section that the calculated collective forces will be applied. If the 

calculated collective force will be applied to section
1 , then the curve   is defined as 

curve section
1 ; otherwise is defined as curve section

2 . The thl curve is defined as the 

same in the first scenario. In the third scenario in which the pairwise forces are calculated 

between one curve and the other curves, the curve   is defined in the same way as in the 
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second scenario. The algorithm calculates the pairwise forces between curve   and each 

curve in  ’s neighbor groups one by one. In other words, each curve in  ’s neighbor 

groups is one of the thl curve. In the example in Figure 33, the neighbor curves for curve 

  are defined as the curves that connects the states A and F, the states F and E, the states 

E and D, the states G and H, the states H and I, and the states I and J. The detailed 

description on how to calculate the collective force for the three scenarios and their 

corresponding test results are presented in Section 4.3.2.1.1, 4.3.2.1.2, and 4.3.2.1.3 

respectively.  

 

Table 18: Summary for the definition of curve scopes corresponding to the example in 

Figure 33 

 

 curve   The thl curve ( 1l L ) 

Scenario_1 (group to group) ABCD AFED;GHIJ 

Scenario_2 (curve to group) AB or BC AFED;GHIJ 

Scenario_3 (curve to curve) AB or BC AF;FE;ED;GH;HI;IJ 

A B 

C 

D 

E 

F 

 

 

G 

H 

J 

I 

Figure 33: An illustration of the definition for the scope of curves in different 

scenarios 
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4.3.2.1.1 Pairwise Force between One Group and Other Groups 

In this scenario, the pairwise forces are calculated between two groups and each 

curve within one group has the same collective force. In other words, the algorithm 

calculates the pairwise forces by treating each group as one curve. The position of such 

curve is defined as the average position of all the control points in the group as in Eqn. 

(4.14). As in the simple example in Figure 33, to calculate the collective force for curve 

section 1 , the 
ave

x  is defined as the average position for all the control points of the 

curve that connects the states A, B, C, and D. The number of curves in  ’s neighbor 

groups is two, which means 2L  in Eqn. (4.15) The 
ave

lx is defined as the average 

position for all the control points of the curve that connects the states A, F, E, and D, and 

of the curve that connects the states G, H, I and J. The collective force for 1  in the 

example is  

  1 2( ) ( ) ( )ave ave
AFED GHIJ

ave

ABCD

ABCD ABCD

F w r w r
r r

 

 

 
 
 

 
   

 x x x x
x x x  (4.16) 

The collective force for the curve section 
2 is the same as the one for the curve 

1 .  

The algorithm is tested by the example of Rastrigin function which is a non-

convex function frequently used to test global optimization algorithms. The function has 

a global minimum at (0, ,0)x and uniformly distributed local minima as shown by a 

contour plot in Figure 34. As mentioned in Section 4.1, the algorithm uses groups of 

curves to search local minima and saddle points concurrently on a PES. Here three 

groups of curve are used. The initial curve for each group is a forth order Bézier curve 

( 1,2,3)j j  . The initial positions for the three curves are listed in Table 19 and indicated 

in Figure 34 as ‘initial path of group 1’, ‘initial path of group 2’, and ‘initial path of group 

3’. The collective force for each curve is defined as the average force of the 

corresponding pairwise forces, i.e., the weights for the pairwise forces in Eqn. (4.15) are 

defined as 1. The cutoff coefficient _cut offc  for the Lennard-Jones potential in Eqn. (4.10) 

is defined as 1.0621 in the test. 

As stated in Section 4.1, the central issue of the curve swarm algorithm is to 

maintain cohesion and avoid collision which is achieved by introducing a collective 
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potential model to describe the collective forces among groups. To demonstrate the 

effectiveness of the collective potential model, we first run the experiment by setting the 

collective potential as zero, i.e., without applying the collective force to the intermediate 

control points. The selection of the initial curves in the test is based on the criterion that 

the first two groups of curves will collide with each other after several iterations in order 

to test the capability of avoiding collision of the algorithm and the third one will keep far 

away from the first two in order to test the capability of maintaining cohesion for the 

algorithm. Then with the same sets of initial curves, we run the experiment in which 

collective forces are applied to all the intermediate control points. The results for the 

experiments without and with collective force being applied to intermediate control 

points are showed in Figure 34 (a) and (b), separately.  

The results show clearly that the collective forces which are calculated based on 

group to group pairwise forces are not effective in both collision avoidance and cohesion 

maintenance. In other words, the collective forces do not push two curves away when 

they are getting too close to each other and pull close when they are far away from each 

other. The reason is that using the arithmetic mean of positions at all the control points in 

one group to approximate the position of one curve is too rough. In other words, the 

distance between two groups of curves calculated based on average positions does not 

correctly capture the distribution of the curves on the PES. Thus, in the next section, we 

provide a different way to calculate the average position of the curves.  

   

Table 19: Position for initial curves in each group (Rastrigin function) 

Initial 

curve 
Point 1 Point 2 Point 3 Point 4 Point 5 

1  (−2.81, 0) (−1.43, −1.19) (0.23, −0.1) (1.57, −1) (2.91, −0.51) 

2  (−2.9, −0.4) (−1.5, −1.6) (0.3, −0.7) (1.63, −1.49) (3, −0.5) 

3  (−3.5, −3.5) (−1.4, −4.5) (0.3, −3) (1.7, −4.5) (3.5, −3.3) 
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4.3.2.1.2 Pairwise Force between One Curve and the Other Groups 

In this scenario, the pairwise forces are calculated between one curve and other 

groups. The difference between this scenario and the one in Section 4.3.2.1.1 lies in the 

definition of the curve   that needs to be optimized. In this scenario, the curve   is 

defined as the curve section that needs to be optimized instead of as the whole group of 

curves to which the curve section belongs to. As in the simple example in Figure 33, to 

calculate the collective force for curve section 
1 , the curve   is defined as the curve 

section 
1 . In other words, the 

ave

x  in Eqn. (4.15) is defined as the average positions for 

all the control points of the curve that connects the states A and B. The number of curves 

in  ’s neighbor group is two, which means 2L   in Eqn. (4.15) The 
ave

lx is defined as 

the average position for all the control points of the curve that connects the states A, F, E, 

and D, and of the curve that connects the states G, H, I, and J. The collective force for 1  

in the example is  

  1 2( ) ( ) ( )ave ave
AFED GHIJ

ave

AB

AB AB

F w r w r
r r

 

 

 
 
 

 
   

 x x x x
x x x  (4.17) 

(a) (b) 
Figure 34: Test results (a) without collective force (b) with group to group 

collective force applied to intermediate control points.  
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The collective force for the curve section 
2  is different with the one for the curve 

1 . To 

calculate the collective force for the curve section 
2 , the curve   is defined as the curve 

section 
2  i.e., the 

ave

x  in Eqn. (4.15) is defined as the average positions for all the 

control points of the curve that connects the states B and C. The definition for its 

neighbor curves are the same as the ones for curve 
1 . Hence, the collective force for 

2  

in the example is 

  1 2( ) ( ) ( )ave ave
AFED GHIJ

ave

BC

BC BC

F w r w r
r r

 

 

 
 
 

 
   

 x x x x
x x x  (4.18) 

 

 

To compare with the result of the first scenario in which the pairwise force is 

calculated between two groups, the algorithm is tested in the same way as did in Section 

4.3.2.1.1. We choose the same three initial curves whose positions are listed in Table 19 

as in the first scenario. The cutoff coefficient _cut offc  for the Lennard-Jones potential in 

Eqn. (4.10) is defined as 1.0621 in the test. The test result for the scenario with curve to 

group pairwise force is shown in Figure 35 (b). As a comparison, the result for the 

scenario with group to group pairwise force is listed in Figure 35 (a). The result in Figure 

35 (b) is does not show any improvement compared with the one in Figure 35 (a). The 

(a) (b) 

Figure 35: Test results (a) without group to group collective force (b) with curve 

to group collective force applied to intermediate control points.  
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reason is that the error involved in approximating the position of the neighbor curves 

using the average position at all the control points that group is too big. The distribution 

of the neighbor curves is not correctly captured. Thus, in the next section, we provide a 

more accurate way to approximate the positions of the neighbor curves  

4.3.2.1.3 Pairwise Force between One Curve and the Other Curves 

In this scenario, the pairwise forces are calculated between two curves. The 

difference between this scenario and the one in Section 4.3.2.1.2 lies in the definition of 

the thl curve in the curve  ’s neighborhood. In the scenario, each curve in  ’s neighbor 

groups represents an independent curve i.e., the thl curve. As in the simple example in 

Figure 33, to calculate the collective force for curve section 
1 , the curve   is defined as 

the curve section 
1 . In other words, the 

ave

x  in Eqn. (4.15) is defined as the average 

positions for all the control points of the curve that connects the states A and B. The 

number of curves in  ’s neighbor group is six, which means 6L   in Eqn. (4.15) Each 

ave

lx in Eqn. (4.15) is defined as the average position for all the control points of the curve 

that connects the states A and F, F and E, E and D, G and H, H and I, I and J. The 

collective force for 
1  in the example is 
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 (4.19) 

The collective force for the curve section 
2  is different with the one for the curve 

1 . To 

calculate the collective force for the curve 
2 , the curve   is defined as the curve section 

2  i.e., the 
ave

x  in Eqn. (4.15) is defined as the average position for all the control points 

of the curve that connects the states B and C. The definition for its neighbor curves are 

the same as the ones for curve 
1 . Hence, the collective force for 

2  in the example is 
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 (4.20) 

 

 

To compare with the result of the second scenario in which the pairwise force is 

calculated between one curve and the other groups, the algorithm is tested in the same 

way as did in Section 4.3.2.1.1. We choose the same three initial curves whose positions 

are listed in Table 19 as in the first scenario. The cutoff coefficient _cut offc  for the 

Lennard-Jones potential in Eqn. (4.10) is defined as 1.0621 in the test. The test result for 

the scenario with curve-to-curve pairwise force is shown in Figure 36(b). As a 

comparison, the result for the scenario with curve-to-group pairwise force is shown in 

Figure 36(a). The result in Figure 36(b) is better than the one in Figure 36(a) in terms of 

avoiding collision. It indicates that the curve-to-curve pairwise force is a better way to 

describe the collective behavior among curves than the group-to-group pairwise force. 

The reason for this is that the error in approximating the position of a curve using the 

average position of its control points is smaller than the one in approximating the position 

(a) (b) 

Figure 36: Test results (a) with curve to group collective force (b) with curve to 

curve collective force applied to intermediate control point.  
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of a group of curves using their average positions of all the control points of the curves in 

the group. However, the algorithm does not work effectively in terms of maintain 

cohesion. The algorithm pushes the first two groups too far away. Also, it does not pull 

the third group closer. The curve to curve scheme is not able to correctly describe the 

distribution of curves. Hence, in the next section, a new scheme is presented to solve this 

issue.  

4.3.2.2 Minimum Euclidean Distance among Control Points 

In this scenario, the pairwise force between two curves is calculated between two 

control points with minimum Euclidean distance. Since the introduction of pairwise 

forces calculated based on the methods in sections from 4.3.2.1.1 to 4.3.2.1.3 does not 

solve the cohesion problem, the minimum Euclidean distance scheme is introduced here 

to solve such problem. The key idea behind the minimum distance scheme is to push two 

curves away at their closest position between each other. Since it is computational 

expensive to locate the exact closest position between two curves using traditional 

distance based optimization methods, we simplify the problem by locating a pair of 

control points with minimum Euclidean distance on these two curves.  

To better illustrate how to locate the control points with minimum distance, we 

may use a matrix form for the locations of the intermediate control points of each curve, 

with rows from one to n  containing the n -dimensional coordinates for each intermediate 

control points on the curve. For example, for one curve with four intermediate control 

points is represented by the matrix 

11 21 31 41

12 22 32 42

1 2 3 4n n n n

x x x x

x x x x

x x x x

 
 
 
 
 
 

 

The number of columns is the total number of the intermediate control points for the 

curve. To locate the pair of control points with minimum distance between the newly 

created curve and one of its neighbor curves, we first represent the locations of their 

intermediate control points in two separate matrices with identical row dimensions. 

Starting with the first column of the matrix for the newly created curve, we calculate the 

Euclidean distance between this location and each location in the matrix of its neighbor 
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curve. The process is then repeated for all the columns in the matrix of the newly created 

curve. The locations of the pair of control points that will be used to calculate the 

pairwise force between these two curves are determined by minimum distance. That is, if 

1[ , , ]mp p , in which 
1[ , , ]T

m m mnx xp  is the matrix for the newly created curves with 

m  intermediate control points, and the matrix for its neighbor curve is 
1 '[ , , ]mq q , in 

which 
' '1 '[ , , ]T

m m m nx xq , then the distance ijd  between the thi location in the matrix of 

the newly created curve and the thj  location in the matrix of its neighbor curve is 

| |ij i jd  p q , in which 1 i m   and 1 'j m  .  

After calculating all the pairwise distances, the locations of the minimum distance 

is determined by two different ways. One is ‘global’ minimum distance between two 

curves, and the other is ‘local’ minimum distance between two curves. Here, ‘global’ 

means the minimum distance is the minimum value of all combinations of ijd . We locate 

only one pair of control points with ‘global’ minimum distance between two curves. The 

pairwise force between these two curves is calculated using the locations of this pair of 

control points. The pairwise force is then applied to each intermediate control point. In 

other words, each of the intermediate control point has the same pairwise force and as 

result the same collective force. On the other hand, ‘local’ means that each intermediate 

control point has its own corresponding minimum distance. For the thi intermediate 

control point in the newly created curve, the corresponding minimum distance is defined 

as 
1 '
min ij

j m
d

 

. The pairwise force for each intermediate control point is calculated separately 

using its own corresponding minimum-distance control point. In other words, each of the 

intermediate control point has different pairwise force and as result the different 

collective force. The detailed description and test results of the two schemes are 

presented in Section 4.3.2.2.1 and 4.3.2.2.2. 

4.3.2.2.1 Global minimum distance between two curves 

The scheme includes three steps which are 1) determining each pair of control 

points with ‘global’ minimum distance between one curve and each of its neighbor 

curves; 2) calculating the pairwise forces from each of its neighbor curves using the 

identified control points; 3) summing up the pairwise forces to obtain the collective force 
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which is applied to each intermediate control point of the curve as defined by Eqn.(4.1). 

As mentioned at the beginning of the Section 4.3.2.2, the ‘global’ minimum distance is 

the minimum value of all combinations of ijd . The locations of the pair of control points 

with ‘global’ minimum distance is determined by  

  
1
1 '

( , ) arg minnew neighbor ij
i m
j m

i j d
 
 

  (4.21) 

in which newi and neighborj  is the location of the control point with ‘global’ minimum 

distance on the newly created curve and its neighbor curve correspondingly. 

To better illustrate the scheme, we take the simple example in Figure 37. The 

collective force for curve section 
1  is the sum of the pairwise forces between the curve 

section AB and the curve sections from its neighbor groups, i.e. AF, FE, ED, GH, HI, and 

IJ. Here, I will illustrate the minimum distance scheme by the example of calculating the 

pairwise forces between the curve sections AB and AF. The curve section AB has five 

control points with p1, p2, and p3 as its intermediate control points. The curve section AF 

has six control points with q1, q2, q3, and q4 as its intermediate control points. To find the 

pair of control points with minimum distance, we first construct the location matrices for 

curve AB and AF, which are 
1 2 3[ , , ]p p p  and 

1 2 3 4[ , , , ]q q q q  respectively. The *p  and *q

are location vectors for intermediate control points. Starting from the first column 
1p  of 

the matrix for curve AB, the Euclidean distances between the location 
1p  and each 

column of the matrix for curve AF are calculated, which are 
11d , 

12d , 
13d , 

14d and as 

shown in Figure 37. The process is repeated for the rest of columns in matrix for curve 

AB which produces eight more distances that are 
21d , 

22d , 
23d , 

24d , 
31d , 

32d ,
33d  , and

34d . The two control points that have the distance equals to the ‘global’ minimum 

distance 
1 3,1 4

min ij
i j

d
   

are used to calculate the pairwise force between the curve AB and AF. 

Similarly, the procedure is applied to the rest of the curves FE, ED, GH, HI, and IJ to 

calculate the pairwise forces between the curve AB and each of those curves. After 

obtaining all the pairwise forces, the collective force is obtained by summing up all the 

pairwise forces. The collective force is then applied to each intermediate control point 

during the search process as stated in Section 4.1.  
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The scheme is tested using the example of Rastrigin function. The parameter 

settings and the locations of initial curves are the same with the one in previous sections 

Curve φ1 needed to be ‘optimized’ 

A 

B 

φ1’s neighbor curve  

 

 
F 

p1 p2 p3 

q1 
q2 

q3 q4 
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φ1  
φ

2
  

Figure 37: Illustration of the minimum distance scheme 
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Figure 38: Test results (a) with curve to curve collective force (b) with global 

minimum distance based collective force. 

(a) (b) 
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for the convenience of comparison. The result is compared with the one from the curve to 

curve scheme in Section 4.3.2.1.3. Figure 38(a) and (b) show the result from the curve to 

curve scheme and the one from the ‘global’ minimum distance scheme. Figure 38(b) does 

not show much improvement in terms of maintaining cohesion. The reason is that the 

‘global’ minimum distance is not able to capture the correct distance between two curves 

at each intermediate control point. Hence, the ‘local’ minimum distance is proposed and 

presented in the next section.   

4.3.2.2.2 Local minimum distance for each control points 

Similar to the ‘global’ minimum distance scheme in Section 4.3.2.2.1, the scheme 

includes three steps which are 1) determining the corresponding control points with ‘local’ 

minimum distance for each intermediate control point on the newly created curve; 2) 

calculating the pairwise forces from each of its neighbor curves using the identified 

control points; 3) summing up the corresponding pairwise forces to obtain the collective 

forces for each intermediate control point which is applied to the corresponding control 

points of the curve as defined by Eqn.(4.1). As mentioned at the beginning of the Section 

4.3.2.2, the ‘local’ minimum distance indicates that each intermediate control point has 

its own corresponding minimum-distance control point on each of its neighbor curves. 

For the thi intermediate control point with the index 
newi  in the newly created curve, the 

corresponding minimum-distance control point with the index neighborj  on one of its 

neighbor curves is defined as  

  

1 '

( , ) min
new

new neighbor ij
i i

j m

i j d

 

  (4.22) 

To better illustrate the scheme, we take the simple example in Figure 37  as did in 

Section 4.3.2.2.2. The collective force for curve section 
1  is the sum of the pairwise 

forces between the curve section AB and the curve sections from its neighbor groups, i.e. 

AF, FE, ED, GH, HI, and IJ. Here, I will illustrate the ‘local’ minimum distance scheme 

by the example of calculating the pairwise forces between the curve section AB and AF. 

The curve section AB has five control points with p1, p2, and p3 as its intermediate control 

points. The curve section AF has six control points with q1, q2, q3, and q4 as its 

intermediate control points. As stated at the beginning of this section, each intermediate 
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control point has its own collective force. In this example, we need to calculate the 

collective force for control points p1, p2, and p3 respectively. To find the control points 

with local minimum distance for control points p1, p2, and p3 respectively, we first 

construct the location matrices for curve AB and AF, which are 
1 2 3[ , , ]p p p  and 

1 2 3 4[ , , , ]q q q q respectively. The 
*p and 

*q are location vectors for intermediate control 

points. Starting from the first column 
1p  of the matrix for curve AB, the Euclidean 

distances between the location 
1p  and each column of the matrix for curve AF are 

calculated, which are 
11d , 

12d , 
13d , and 

14d as shown in Figure 37. The process is 

repeated for the rest of columns in matrix for curve AB which produces eight more 

distances that are
21d , 

22d , 
23d , 

24d , 
31d , 

32d , 
33d , and

34d . The corresponding local 

minimum distance control point for p1 is the one with distance equals to 
1,1 4
min ij

i j
d

  

. Such 

control point is used to calculate the pairwise force between the curve AB and AF at 

control point p1.  Same for the control point p2, and p3, the corresponding local minimum 

distance control points are the ones with distance equals to 
2,1 4
min ij

i j
d

  

 and 
3,1 4
min ij

i j
d

  

, 

respectively. Those two control points are used to calculate the pairwise force between 

the curve AB and AF at control points p2, and p3 respectively. Similarly, the procedure is 

applied for the rest of the curves FE, ED, GH, HI, and IJ to calculate the pairwise forces 

between the curve AB and each of those curves at the control points p1, p2, and p3 on 

curve AB respectively. At the end, the corresponding pairwise forces are summed up to 

obtain the collective forces at the control points p1, p2, and p3 respectively.  

The scheme is tested using the example of Rastrigin function. The parameter 

settings and the locations of initial curves are the same with the one in previous sections 

for the purpose of result comparison. Figure 39(a) and (b) shows the results from the 

global minimum distance scheme and local minimum distance scheme, respectively. Both 

of the global and local minimum distance scheme effectively avoid collision. However, 

only the local minimum distance scheme maintains cohesion. The minimum distance 

scheme is able to correctly capture the distribution of curves. Thus, the minimum 

distance scheme is adopted in the algorithm to calculate the compare wise force among 
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curves using Lennard-Jones potential. To test the robustness, convergence, scalability of 

the algorithm, more tests are conducted which are described in Section 4.4 and 4.5. 

   

 

4.4 Implementation and Demonstration 

The algorithm is demonstrated by examples of Rastrigin function, Schwefel 

function, and the diffusion process of the hydrogen atoms in the FeTi system and the pure 

iron system. The detailed description of those functions and processes are presented in 

Section 3.4. The algorithm is implemented in MATLAB. Based on the test results in 

Section 4.3.2, the collective force in the following examples are calculated using the 

scheme of local minimum distance for each control point which is presented in Section 

4.3.2.2.2.  

4.4.1 Test Results for Rastrigin Function 

In Section 4.3.2.2.2, we test the local minimum distance scheme using Rastrigin 

function. Here, the algorithm is tested with more initial curves. All the computational 

settings are the same with the ones in Section 4.3.2.2.2. The initial positions for the initial 

curves are listed in Table 19. Similarly, the algorithm’s capability to exhaustively search 

local minima and saddle points within an area is demonstrated by comparing the results 

Figure 39: Test results with (a) with global minimum distance (b) with local 

minimum distance based collective force. 

(b) (a) 
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from the curve swarm algorithm and the ones from the concurrent search algorithm 

without applying collective force. Figure 40(a) shows that two curves (e.g. the first and 

second curve, and the third and fourth curve) may duplicate the search efforts and find 

the same result when there is no communication among curves. Figure 41(b) shows that 

the collective force introduced in the curve swarm algorithm pushed those two curves 

away. As a result, the curve swarm search algorithm locates 35 local minima and 35 

saddle points which is more than the ones (26 local minima and 29 saddle points) located 

by concurrent search algorithm without applying collective forces. The number of local 

minima and saddle points which are identified by the concurrent search algorithm without 

applying collective force and curve swarm search algorithm are listed in Table 20. 

 

Table 20: Coordinates of the control points for the five initial curves (Rastrigin function) 

Initial 

curve 
Point 1 Point 2 Point 3 Point 4 Point 5 

1 (−2.81, 0) (−1.43, −1.49) (0.23, −0.1) (1.57, −1) (2.91, −0.51) 

2 (−2.9, −0.4) (−1.5, −2.) (0.3, −1) (1.63, −2) (3, −0.5) 

3 (−2.9, −1.2) (−1.5, −2.5) (0.3, −2.1) (1.63, −3.1) (3, −1.4) 

4 (−2.9, −2) (−1.5, −3) (0.3, −3.1) (1.6, −4) (3, −2.4) 

5 (−2.9, −2.8) (−1.5, −3.5) (0.3, −4.1) (1.6, −5) (3, −3.3) 

 

 

Figure 40: Test results (a) without collective force (b) with global minimum 

distance based collective force applied to the intermediate control points 

(b) (a) 
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Table 21: The number of identified local minima and saddle points (Rastrigin function) 

 Number of local minima Number of saddle points 

Concurrent search algorithm 

without applying collective force  
26 29 

Curve swarm search algorithm 35 35 

4.4.2  Test Results for Schwefel Function 

Here, we test the algorithm with Schwefel function which has a more complicate 

energy landscape than Rastrigin function. There are a total of five initial curves which are 

the curves in black with asterisk marker in Figure 41. The coordinates of the control 

points on the initial curves are included in Table 22.  

Similarly, the algorithm’s capability to exhaustively search local minima and 

saddle points within an area is demonstrated by comparing the results from the curve 

swarm algorithm and the ones from the concurrent search algorithm without applying 

collective force. Figure 41 (a) shows that two curves (e.g. the first and second curve, and 

the fourth and fifth curve) may duplicate the search efforts and find the same result when 

there is no communication among curves. Figure 41(b) shows that the collective force 

introduced in the curve swarm algorithm pushed those two curves away. As a result, the 

curve swarm search algorithm locates more local minima and saddle points than the 

concurrent search algorithm without applying collective forces. The number of local 

minima and saddle points which are identified by the concurrent search algorithm without 

applying collective force and curve swarm search algorithm are listed in Table 23. 

Table 22: Coordinates of the control points for the initial curves (Schwefel function) 

Initial 

curve 
Point 1 Point 2 Point 3 Point 4 Point 5 

1 (−225.3, 256) (−89, 100) (49, 360) (185.6, 115) (320, 375) 

2 (−225.3, 158) (−89, 2) (49, 262) (185.6, 17) (320, 277) 

3 (−225.3, 60) (−89, −96) (49, 164) (185.6, −81) (320, 179) 

4 (−225.3, −38) (−89, −194) (49, 66) (185.6, −179) (320, 81) 

5 (−225.3, −136) (−89, −292) (49, −32) (185.6, −277) (320, −17) 

 

Table 23: The number of identified local minima and saddle points (Schwefel function) 

 Number of local minima Number of saddle points 

Concurrent search algorithm 

without applying collective force 
27 27 

Curve swarm search algorithm 34 35 



110 

 

 

Figure 41: Test result Schwefel function (a) concurrent search algorithm without 

applying collective force (b) curve swarm search algorithm 

(a) 

(b) 
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4.4.3 Test Results for FeTi-H System 

In this section, the curve swarm search algorithm is used to study the hydrogen 

diffusion process in the Iron-Titanium system. The detailed description about the FeTi-H 

can be found in Section 3.4.5.  

4.4.3.1 Computational Details 

To save the computational time, here three initial curves are used in the test. The 

initial structures for the three initial curves are the ones in Figure 15(a-c) with the 

fractional coordinates being listed in Table 11(a-c). The final structures for all the initial 

curves are set to be β phase FeTiH which shown in Figure 14(b) with its fractional 

coordinates being listed in Table 12. To maintain consistence with the previous studies, 

here we refer the three transitions as FeTiH_tran_a, FeTiH_tran_b, and FeTiH_tran_c.  

Similarly, the total energy of the system and the forces on each atom are 

calculated based on DFT calculation using VASP. The projector augmented wave 

potentials, specifically LDA potentials, and a 4 2 2   k-point sampling scheme are used 

here. The unit cells for both initial and final structures are defined as 2.956a  Å, 

4.543b  Å, and 4.388c  Å. The procedure described in Figure 29 and Table 17 is 

applied to the three initial curves to locate multiple local minima and saddle points. The 

collective force among curves are calculated using ‘local’ minimum distance scheme. 

The cutoff coefficient _cut offc  for the Lennard-Jones potential in Eqn. (4.10) is defined as 

1.085. 

4.4.3.2 Computational Results and Discussion 

The located minimum energy paths (MEPs) for the three groups of curves are 

plotted in terms of total energy (eV) with respect to the reaction coordinates which are 

shown in Figure 42. Similarly, the EI and Es are the total energy at the initial states and 

transition states (i.e. saddle points with highest energy or global saddle points along the 

transition path). The ΔE represents the activation energy in eV. The square marker in red 

are the local minima and the round marker in blue are the saddle points. The asterisk 

markers are intermediate images along the MEPs. Each curve section separated by the 

square marker in different colors represents a sub-stage transition path. For the first group, 

the algorithm locates eight MEPs with nine local minima and eight saddle points which 
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are shown in Figure 42(a). The global saddle point along the transition FeTiH_tran_a is 

the one on the fourth curve with a total energy of –35.7084 eV. The total energy for the 

initial state is –38.3649 eV. The activation energy for the transition is the energy 

difference between the global saddle point and the initial state which is 2.6565 eV for 

FeTiH_tran_a.  

For the second group, the algorithm locates four MEPs with five local minima and 

four saddle points which are shown in Figure 42(b). The total energy of the initial state is 

–37.7664 eV and the global saddle point is –35.9057 eV which is the one on the fourth 

curve. The activation energy for the FeTiH_tran_b is 1.8607 eV. For the third group, the 

algorithm locates only one MEPs with two local minima and one saddle points with a 

total energy of –36.9167 eV which is shown in Figure 42(c). The total energy for the 

initial state is –38.0398 eV and the activation energy for FeTiH_tran_c is 1.1231 eV. The 

test results are summarized in Table 24.  

It is worth to notify that even with the same initial curves, the results obtained by the 

curve swarm search algorithm are different with the ones by the concurrent search algorithm. 

The reason is based on the fact that there are multiple transition paths for the transition from 

one initial state to the final state as illustrated in Figure 28. Due to the introduction of the 

collective forces in the curve swarm search algorithm, the same initial curve may end up with 

different final MEPs in curve swarm search algorithm compared with the one in the 

concurrent search algorithm. With more groups of initial curves, the curve swarm search 

algorithm will provide more information about the landscape of the transition in a systematic 

way. Even though the concurrent search algorithm can provide more information as well 

given many trials are done with different initial curves, it is not systematic and computational 

expensive since it may end up duplicate exploration in the same paths. In addition, there is 

high chance they may miss some search area since the search on the surface is pure random. 

The curve swarm search algorithm is designed to solve these two problems by using groups 

of curves which are manipulated by the collective forces.  

Figure 43-Figure 45 shows the detailed transition of the atomic configurations along 

the MEP for transition FeTiH_tran_a, FeTiH_tran_b and FeTiH_tran_c. By comparing the 

detailed transition of the atomic configurations shown in Figure 43-Figure 45 and the ones in 

Figure 17, Figure 18, and Figure 20, it clearly shows that the transition paths located by the 

curve swarm and concurrent search algorithm are different.  
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Table 24: Summary the test results by curve swarm algorithm on FeTi-H system 

 # of 

MEPs 

# of 

local 

minima 

# of 

saddle 

points 

Energy 

for initial 

state EI 

(eV) 

Energy 

for saddle 

point Es 

(eV) 

Activation 

energy ΔE 

(eV) 

Experiment 

ΔE (eV)  

FeTiH_tran_a 8 9 8 –38.3649 –35.7084 2.6565 

1±0.05 FeTiH_tran_b 4 5 4 –37.7664 –35.9057 1.8607 

FeTiH_tran_c 1 2 1 –38.0398 –36.9167 1.1231 

El=–38.0398 

Es=–36.9167 

ΔE=1.1231 

El=–37.7664 

Es=–35.9057 

ΔE=1.8607 

Figure 42: Minimum energy paths from curve swarm search algorithm for hydrogen 

diffusion in the FeTiH structure starting from different initial structures with 

hydrogen locating at (a) the Fe-Fe bridge along the first primitive lattice vector (b) 

Fe-Fe bridge along the third primitive lattice vector (c) center of the (001) surface  

El=–38.3649 ΔE=2.6565 

Es=–35.7084 

(a) 

(b) 

(c) 
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E (eV)  

Initial states Local minima  

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

Figure 43: Detailed atomic configuration transition of hydrogen atoms in FeTi-H for 

FeTiH_tran_a (a) MEP_1 (b) MEP_2 (c) MEP_3 (d) MEP_4 (e) MEP_5 (f) MEP_6 

(g) MEP_7 (h) MEP_8 obtained by curve swarm algorithm 
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4.4.4 Test Results for Fe8-H System 

In this section, the curve swarm search algorithm is used to study the hydrogen 

diffusion process in the pure Iron system. The detailed description about the FeTi-H can 

be found in Section 3.4.6. 

E (eV) 

Energy 

Initial state Local minima  

(a) 

(b) 

(c) 

Figure 44: Detailed atomic configuration transition of hydrogen atoms in FeTi-H for 

FeTiH_tran_b (a) MEP_1 (b) MEP_2 (c) MEP_3 (d) MEP_4 obtained by curve 

swarm algorithm 

(d) 

E (eV) 

Energy 

Initial state Local minimum  

Figure 45: Detailed atomic configuration transition of hydrogen atoms in FeTi-H for 

FeTiH_tran_c obtained by curve swarm algorithm 
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4.4.4.1 Computational Details 

Here, three initial curves are used in the test. For comparison purpose, we study 

the diffusion process from the same initial structure to the final structures as we did in the 

demonstration of the concurrent search algorithm. The initial structures for the three 

initial curves are the same one as shown in Figure 22 with the fractional coordinates 

being listed in Table 14. The final structures are the ones as shown in Figure 23(a-c) with 

its fractional coordinates being listed in Table 15. To maintain consistence with the 

previous studies, here we refer the three transitions as Fe8H_tran_a, Fe8H_tran_b, and 

Fe8H_tran_c.  

Similarly, the total energy of the system and the forces on each atom are 

calculated based on DFT calculation using VASP. The projector augmented wave 

potentials, specifically LDA potentials, and a 2 4 2   k-point sampling scheme are used 

here. The unit cell for both initial and final structures are defined as 5.72a  Å, 2.86b 

Å, and 5.72c  Å. The procedure described in Figure 29 and Table 17 is applied to the 

three initial curves to locate multiple local minima and saddle points. The collective force 

among curves are calculated using ‘local’ minimum distance scheme.  

4.4.4.2 Computational Results 

The located minimum energy paths (MEPs) for the three groups of curves are 

plotted in terms of total energy (eV) with respect to the reaction coordinates which are 

shown in Figure 46. For the first group, the algorithm locates four MEPs with five local 

minima and four saddle points which is shown in Figure 46(a). The global saddle point 

along the transition Fe8H_a is the one on the second curve with a total energy of –

74.8022 eV. The total energy for the initial state is –74.9868eV. The activation energy for 

the transition is the energy difference between the global saddle point and the initial state 

which is 0.1846 eV for Fe8H_a.  

For the second group, the algorithm locates four MEPs with five local minima and 

four saddle points which is shown in Figure 46(b). The total energy of the initial state is –

74.9868 eV and the global saddle point is –74.7037 eV which is the one on the third 

curve. The activation energy for the Fe8H_b is 0.2831 eV. For the third group, the 

algorithm locates two MEPs with three local minima and two saddle points which is 

shown in Figure 46 (c). The global saddle point is the one on the second curve with a 
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total energy of –74.8576 eV. The total energy for the initial state is –74.9868 eV and the 

activation energy for Fe8H_c is 0.1292 eV. The test results are summarized in Table 25. 

The total energy for the initial structure here is higher than the one obtained from the 

concurrent search algorithm in Section 3.4.6. For the curve swarm search algorithm, to 

reduce computational cost, a higher break condition (EDIFF=10-4) is used, while the EDIFF 

is set to be 10-5 in the example in Section 3.4.6. 

Figure 47-Figure 49 shows the detailed transition of the atomic configurations along 

the MEP for transition Fe8H_a Fe8H _b and Fe8H _c. 

 

ΔE=0.1292 

Es=–74.8576 

El=–74.9868 

Figure 46: Minimum energy paths from curve swarm search algorithm for for 

hydrogen diffusion in Fe8H structure starting from the initial structure to final 

structures with hydrogen residing at (a) tetrahedral site on the (100) surface (b) 

octahedral site on the (001) surface (c) octahedral site on the (100) surface 

Es=–74.7037 

ΔE=0.2831 El=–74.9868 

(b) 

(c) 

(a) 

El=–74.9868 ΔE=0.1846 

Es=–74.8022 
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Table 25: Summary of the results on Fe8H system using curve swarm search algoirthm 

 # of 

MEPs 

# of 

local 

minima 

# of 

saddle 

points 

Energy 

for initial 

state EI 

(eV) 

Energy 

for saddle 

point Es 

(eV) 

Activation 

energy ΔE 

(eV) 

Experiment 

ΔE (eV)  

Fe8H_tran_a 4 5 4 –74.9868 –74.8022 0.1846 0.035~0.142 

Fe8H_tran_b 4 5 4 –74.9868 –74.7037 0.2831 

Fe8H_tran_c 2 3 2 –74.9868 –74.8576 0.1292 

 

E (eV)  Initial states Local minima  

(a) 

(b) 

(c) 

(d) 

Figure 47: Detailed atomic configuration transition of hydrogen atoms in Fe8H for 

Fe8H_tran_a (a) MEP_1 (b) MEP_2 (c) MEP_3 (d) MEP_4 obtained by curve swarm 

search algorithm 
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E (eV)  Initial states Local minima  

(b) 

(c) 

(d) 

Figure 48: Detailed atomic configuration transition of hydrogen atoms in Fe8H for 

Fe8H_tran_b (a) MEP_1 (b) MEP_2 (c) MEP_3 (d) MEP_4 obtained by curve swarm 

search algorithm 

(a) 

E (eV)  Initial states Local minima  

(a) 

(b) 

Figure 49: Detailed atomic configuration transition of hydrogen atoms in Fe8H for 

Fe8H_tran_c (a) MEP_1 (b) MEP_2obtained by curve swarm search algorithm 
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4.5 Discussion  

Section 4.4 demonstrates that the curve swarm search algorithm is able to 

thoroughly search the local minima and saddle points within one area. The proposed 

collective potential model works well in terms of maintaining cohesion and avoiding 

collision. Since computational cost and convergence are always the concerns for 

searching algorithms, in this section, we conduct the scalability and convergence test of 

the algorithm on Rastrigin function. The detailed description of the tests are presented in 

Section 4.5.1 and 4.5.2.   

4.5.1 Scalability Test 

The scalability of the curve swarm search algorithm is tested by gradually 

increasing the number of the initial curves on the PES. The number of the curves and the 

corresponding CPU time in minutes are shown in Table 26. Starting with five initial 

groups, we gradually increase the number of groups to ten, fifteen till forty. For two 

different initial curves, the required total running time for each curve may be different if 

the length of this two curves or the landscape that this two curves cross are different. In 

this case, the characteristic of the curve and the landscape of the PES together with the 

number of curves will determine the total running time. However, for scalability test, we 

should set up the experiment that the total running time is determined only by the number 

of curves. To eliminate the effect of the characteristic of the curve and the landscape of 

the PES, we choose Rastrigin function with uniformly distributed local minima and 

saddle points to conduct the experiment. Also, each initial curve has relative the same 

length as shown in those figures in Table 26. Those curves in black are initial curves and 

the curves in colors are located transition paths. Figure 50 shows a near quadratic 

relationship between the total CPU time and the total number of initial curves (i.e. 

number of groups) which is acceptable in terms of computational efficiency. 
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Table 26: Detailed results of the scalability test 

Number of curves Total CPU time(min) Number of curves Total CPU time (min) 

5 21.67 10 52.93 

  

15 102.31 20 132.77 

 
 

25 203.48 30 339.38 
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35 439.28 40 451.31 

  

 

 

4.5.2 Convergence Test 

The convergence rate of the algorithm is also tested by gradually increasing the 

number of initial curves within a fixed area. Similarly, for the convergence test, we need 

to eliminate the effect of the characteristic of the curve and the landscape of the PES, 

hence, we choose Rastrigin function as the test function and each initial curve has the 

same length. Also, the area is set to be [ 6.5 6.5]x  and [ 7.5 7.5]y  . The located 

saddle points and local minima which are outside this area are not considered in the total 

number of located points. The total number of local minima and saddle points within this 

Figure 50: The total CPU running time with respect to the total 

number of groups.   
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area is 195 and 338 respectively. For each number of initial curve, the total number of 

located local minima and saddle points is recorded. We start the test by using three initial 

curves, and then gradually increase the number of initial curves to five till nineteen with 

the same space.   

The change of the total number of located local minima and saddle points with 

respect to the number of initial curves is plotted in Figure 51(a) in which the yellow curve 

with square marker is for saddle points and the light blue one with round marker for local 

minima. It shows that the total number of located local minima converges when the 

number of initial curves approaches to 17. However, the total number of located saddle 

points keeps increasing which means it needs more initial curves to locate all the saddle 

points in the area. Also, the percentage of located points with respect to the total number 

of initial curves is plotted as shown in Figure 51(b). It shows that the percentage of 

located local minima converges when the total number of initial curves approaches 17 

which is consistent with the results shown in Figure 51(a). The percentage of located 

local minima is 88.2% when the total number of initial curves is 17, and 89.2% when the 

number of curves is 19.  Similarly, for saddle point, more initial curves are needed in 

order to converge.  

 

 

 

Figure 51(b) also shows that the percentage of the located saddle points is much 

lower than the one of the local minima. The percentage of the located saddle points is 

Figure 51: The relationship between the total number of initial curves and (a) total 

number of located local minima and saddle point (b) percentage of located points 

(b) (a) 
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56.8% when the number of initial curves approaches 19. This is due to the distribution of 

the local minima and saddle points on the surface defined by Rastrigin function as shown 

in Table 27. 

Table 27: Detailed results of the convergence test 

Number of 

curves 

Located local 

minima out of 

195 

Located 

saddle points 

out of 338 

Number of 

curves 

Located local 

minima out of 

195 

Located 

saddle 

points out 

of 338 

3 39 36 5 66 59 

  

7 79 69 9 115 104 

  

11 140 128 13 147 136 
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15 167 163 17 172 168 

  

19 174 192    
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Equation Chapter (Next) Section 1 

CHAPTER V  

EFFICIENT AND ROBUST SADDLE POINT SEARCH 

Simulating phase transformation of materials at the atomistic scale requires the 

knowledge of saddle points on the potential energy surface (PES). In the existing first-

principles saddle point search methods, the requirement of a large number of expensive 

evaluations of potential energy, e.g. using density functional theory (DFT), limits the 

application of such algorithms to large systems. Thus, it is meaningful to minimize the 

number of functional evaluations as DFT simulations during the search process. 

Furthermore, model-form uncertainty and numerical errors are inherent in DFT and 

search algorithms. Robustness of the search results should be considered. In this chapter, 

a new search algorithm based on stochastic Kriging is presented to search local minima 

and saddle points on a PES efficiently and robustly. Different from existing searching 

methods, the algorithm keeps a memory of searching history by constructing surrogate 

models and uses the search results on the surrogate models to provide the guidance of 

future search on the PES. The surrogate model is also updated with more DFT 

simulation results. The algorithm is demonstrated by the examples of LEPS potential, 

Rastrigin and Schwefel functions with a multitude of minima and saddle points. At the 

end, the algorithm is applied to study the real material system.  

5.1 Overview of the Saddle Point Search Algorithm Using Kriging 

Method 

In this section, how the stochastic Kriging method is used to construct the 

metamodel and integrated with the concurrent search algorithm is described. The goal is 

to improve the efficiency and robustness of the searching algorithm. Different from the 

classical Kriging methods, which select the point with maximum square error as the next 

sampling point to improve the accuracy of the surrogate model, here a new sampling 

scheme is developed to serve the purpose of locating local minima and saddle points.  
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Similar to the original concurrent search algorithm, the general process of the 

algorithm includes three stages. The major difference is that the single transition pathway 

search is integrated with the Kriging method. The climbing process which aims to locate 

saddle points also incorporate kriging. The overall flowchart of using the Kriging method 

for saddle point search algorithm is shown in Figure 52. 

 

 

5.2 New Local Sampling Scheme for the Searching Algorithm 

The major function of the surrogate model is to help decide the next sampling 

point in the searching process. In classical Kriging methods, the next sampling point is 

chosen as the one with the maximum square error. Since our primary goal is not to reduce 

the prediction error as fast as possible, a new sampling scheme is developed for searching 

local minima, which uses the criterion of choosing a sampling point with the minimum 

functional value around end control points.  

For interpolation methods such as Kriging, the density of sample points within a 

region determines the accuracy of the model prediction for that region. Thus sampling 

Figure 52: Flowchart for concurrent search algorithm with Kriging method 

Initial guess for a single transition path  

A single transition pathway search algorithm 

with Kriging method is applied to each curve 

section to locate local minima and push the 

curve to MEP 

Climbing process with Kriging method to 

further refine the saddle point position 

Breakable? 

Stop 

Break the curve into 

two curve sections 

using curve division 

scheme  

Yes 

No 
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needs to occur in the regions where local minima and saddle points are most likely 

located. The algorithm first updates the positions of control points using the real model 

with underlying physics, which however is computationally expensive. After collecting a 

predefined number of sample points which should be at least larger than the required 

number of design sites to construct the Kriging model, the algorithm then constructs a 

surrogate model using those sample points. Then the searching process is switched to the 

surrogate model. Since the surrogate model involves approximation error, there is no 

need to actually find the local minima or saddle points on the surrogate surface. After one 

iteration of search which includes moving both the end control points along each 

conjugate gradient direction and the intermediate control points along their corresponding 

conjugate directions, the algorithm switches the functional evaluation back to the real 

model. Then the searching process continues with sampling more points that are closer to 

the region of interest. This ‘real-surrogate-real’ iteration continues till the searching 

process converges.  

To further improve the efficiency of the searching process, the new local 

sampling scheme is developed for the region of local minima which are located by the 

two end control points in our algorithm. On the surrogate model, for those two end 

control points, the algorithm determines their new positions by locating the positions with 

lowest energy using different search schemes which are presented in Section 5.6.1, 5.6.2, 

5.6.3, and 5.6.4. 

Since error is involved in surrogate model, it is important to constrain the 

searching area within the same basin where the starting position is. Otherwise, it will lead 

to jumping back and forth between two different energy basins. Consequently, it 

increases the computational time to converge.  Here, the boundary of the searching area is 

defined as follows. First, the center of the searching area is set to be the current location 

of the end control point. Second, the area is a hypercube with the side length calculated as  

  2 min( , )pre neighbora c d d  (5.1) 

in which (0,1]c  is a constant; pred  is the distance between the positions of the end point 

in current and previous iteration, i.e. 
( ) ( 1)|| ||i i

pred  x x  where i is the index for the 

iteration; and neighbord is the distance between the end point and its neighboring control 



129 

 

point, i.e. 
( ) ( )|| ||i i

pre end neighbord  x x . The definition of the hypercube length assures that the 

new end control point will not jump to the position which is far away from the closest 

local minimum. In addition, it prevents the formation of possible loops at the end of the 

curve. The following two subsections present how the proposed sampling scheme and 

Kriging are integrated into a single transition pathway search and climbing process.  

5.3 Single Transition Pathway Search with Kriging Model 

In the concurrent search algorithm, the local minimum is identified using the 

conjugate gradient method and the path is refined by moving the intermediate control 

points along conjugate direction, both of which require a large number of functional 

evaluations for the physical model. To reduce the number of functional evaluations, the 

new algorithm developed in this paper keeps track of all information about the searching 

history (i.e. the functional values and gradients at the control points in all previous 

iterations) and incorporate it into the surrogate construction and searching process by the 

Kriging method. The algorithm embodies the search history into the construction and 

refinement of the surrogate model. The memory is then used to help decide the future 

search.  

The general process for the single transition pathway search algorithm with 

Kriging is as follows. First, the algorithm updates the positions of the end points based on 

the real model using the conjugate gradient method and the positions of intermediate 

control points by moving them along conjugate directions until a predefined number of 

functional evaluations is reached. During this searching process, the functional 

evaluations in the line search along conjugate directions are conducted based on the real 

model until the number of evaluations reaches a threshold level. When more functional 

evaluations are required in the line search, the surrogate model is used instead so that the 

associated computational cost can be reduced. Second, a surrogate model is constructed 

or updated using all available sample points and functional values. The whole searching 

process on the surrogate model is based on the evaluation of the surrogate. Third, when 

the searching process switches from the real model to the surrogate model, the positions 

of the end control points are updated with the sample points with the minimum functional 

values within the corresponding sample areas on the surrogate model. The intermediate 
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control points move along the conjugate directions with all the functional evaluations 

conducted on the surrogate model. Fourth, after one searching iteration on the surrogate 

model, the searching process switches back to the real model except that the second 

portion of the functional evaluations during each line search are still performed on the 

surrogate model. The overall flowchart of single transition pathway searching with the 

Kriging method is shown in Figure 53. 

5.4 Line Search with Kriging Model 

Line search is one of the critical components for the searching algorithm as it 

involves in all stages of the searching process. During the searching of local minima and 

MEP, line search is used to determine the minimum or maximum along each conjugate 

direction. Hence, the line search is widely used to search the optimum in a particular 

direction. For large systems with many degrees of freedom, a large number of line 

searches are required since a line search is applied to each conjugate direction. Therefore 

introducing Kriging will significantly improve the efficiency of the algorithm with 

reduced numbers of functional evaluations during line searches. 

During the line search, the second portion of functional evaluations are conducted 

on the surrogate model. The general process for the line search is as follows. First, the 

algorithm conducts a couple of trial searches to determine an appropriate step length, 

which is based on the real model. Second, after the step length is determined, the 

algorithm refines the position of the control point along the direction using the 

determined step length. In this step, functional evaluations are also conducted on the real 

model. Third, the algorithm refines the surrogate model based on the results from the first 

and second steps and then continues updating the position of the point with functional 

evaluations being conducted on the surrogate model until the predefined stop criteria are 

satisfied. 
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Figure 53: Flowchart for single transition pathway search algorithm with Kriging 

method 

One curve or two curve sections with at least one end control 

point not locating at local minimum 

Update 

end points 

Converge? 

Go to the second stage 

Redistribute the control points  

Yes 

Check the change of the function value 

at the end points  
 

Criteria satisfied? 

Local sample on 

surrogate model. New 

position is determined 

by minimum function 

value 

Conjugate gradient search on 

real model except that the 

second portion of mini-steps on 

each line search along each 

conjugate gradient direction are 

on surrogate model 

Yes No 

Updated position 

Update 

intermediate 

control 

points 

Criteria satisfied? 

Search completely 

on surrogate model 

Search on real model except the 

second portion of mini-steps on 

each inexact line search along 

each conjugate direction are on 

surrogate model 

Yes No 

Updated position 

No 
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5.5 Climbing Process with Kriging Model 

During the climbing stage in the concurrent searching algorithm, the control point 

with the maximum energy for each path climbs up to the saddle position, while all the 

other intermediate control points are minimized along their corresponding conjugate 

directions with positive eigenvalue. Integrated with Kriging, the new climbing process is 

as follows. First, the algorithm lets the control point with the maximum energy climb up 

along a conjugate direction and minimize all of the intermediate control points along their 

corresponding conjugate directions with positive eigenvalues. During the process, the 

construction of the conjugate directions is conducted on the real model except that some 

functional evaluations during the line search are conducted using the surrogate model. 

Second, after the number of iterations reaches a threshold, the algorithm refines the 

surrogate model and the whole searching process is conducted on the refined surrogate 

model.  

5.6 Efficiency Demonstration with Universal Kriging Method Using 

Different Local Search Methods 

Section 5.2 presents a new local sampling scheme to improve the efficiency of 

locating the local minima. In addition, to further improve the efficiency, a jumping 

scheme is developed to further improve the efficiency of locating the local minima on the 

surrogate model. Here, we present different methods to realize the jumping scheme. Each 

method is demonstrated using at least one of the well-known LEPS potential, Rastrigin 

function, and Schwefel function. We use these simple functions to help visualize the 

searching process and results. The Rastrigin and Schwefel functions are among the most 

used benchmark functions for global optimization, as defined in Table 6. The 

implementation is done using MATLAB and the Kriging model is constructed with 

DACE toolbox [216]. In this experiment, the basis polynomial function is set to be the 

second order and the correlation function is Gaussian correlation function.  

The experiments are designed to test the accuracy and efficiency of the algorithm. 

The general process for the demonstration is as follows. First, we test the accuracy of the 

algorithm by setting a set of initial positions and test the capability of locating the local 
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minima and saddle points. Second, we test the efficiency of the algorithm by comparing 

the average number of functional evaluations required to locate one transition path 

between the new searching algorithm with Kriging and the original concurrent searching 

algorithm. Since the most time-consuming portion of the saddle point searching 

algorithm is the functional evaluations on the real model, we use the total average 

number of functional evaluations as the metric to compare the efficiency in the examples. 

5.6.1 Jumping Scheme by Using Uniform Sampling Method around the 

End Control Points 

In this method, for each end control point, the algorithm draws samples uniformly 

within its local region which is defined by Eqn.(5.1). The sample point with the smallest 

functional value is selected as the next sampling point for the end control point. 

5.6.1.1 Test Result for LEPS potential 

The LEPS potential model describes a reaction involving three atoms A, B, and C 

whose motions are restricted along a straight line. This function is a benchmark function 

for saddle point search algorithms. Here, we use two different initial positions to test how 

well the new algorithm works. Figure 54(a) shows the located local minima and 

corresponding saddle points by using concurrent searching algorithm, while Figure 54(b) 

shows the results by the integrated Kriging searching algorithm. By comparing the results 

in Figure 54(a) and (b), it clearly shows that the new algorithm maintains a good 

accuracy of locating the local minima and the saddle point. The final path identified by 

the algorithm is very similar to the ones identified by the concurrent search algorithm.  

Table 28 shows that the total number of functional evaluations for the new 

algorithm is much lower than the one for the concurrent search algorithm.  

5.6.1.2 Test Result for Rastrigin Function 

We choose a PES defined by Rastrigin function with multiple local minima and 

saddle points to demonstrate the capability of locating multiple saddle points. The 

Rastrigin function is a non-convex function which is frequently used to test global 

optimization algorithms. The function has a global minimum at (0, ,0)x  and local 

minima are uniformly distributed as shown by the contour plot in Figure 55. We test the 
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new algorithm using four sets of initial positions. The results in Figure 55 show that the 

algorithm accurately locates local minima and saddle points. The identified final paths 

are also consistent with the ones identified by the concurrent search algorithm.  

The total numbers of functional evaluations for the four initial positions are 

shown in Table 29. To minimize the influence of the initial positions on the complex 

functional landscape, four different initial positions are applied and the total average 

number of functional evaluations per final path (N/path) is shown in Table 29. The result 

in Table 29 shows that in average the number of functional evaluations required to locate 

one final path for the new algorithm with integrated Kriging is less than half of the one 

for the concurrent search algorithm. The algorithm works very well for the Rastrigin 

function. 

5.6.1.3 Test Result for Schwefel Function 

A third example to test the algorithm is Schwefel function which has a relatively 

non-uniform PES as shown in Figure 56. We follow the same procedure as for the 

Rastrigin function. The results are shown in Figure 56 and Table 30. The total average 

number of function evaluations for the new algorithm is 326 which is lower than the one 

(461) for the concurrent search algorithm. 

   

Table 28: Test results for LEPS potential 

Algorithm Pos_1 Pos_2 Total N/path 

Con Nf 2104 6264 8368 4184 

Np 1 1 2 

Krig Nf 643 941 1584 792 

Np 1 1 2 

 

Note: “Con” represents the concurrent search algorithm; “Krig” indicates the new search 

algorithm integrated with kriging; “Pos_*” means the initial position * which are shown in Figure 

54; Nf is the number of function evaluation at each initial position; Np is the number of identified 

final paths; N/path is the average number of function evaluation to locate one final path.     
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Table 29: Test results for function Rastrigin 

Algorithm Pos_1 Pos_2 Pos_3 Pos_4 Total N/path 

Con Nf 4289 4186 2120 3452 14047 502 

Np 8 8 6 6 28 

Krig Nf 1594 1841 1437 795 5667 218 

Np 8 7 7 4 26 
 

 

Table 30: Test results for function Schwefel 

Algorithm Pos_1 Pos_2 Pos_3 Pos_4 Total N/path 

Con Nf 3037 3799 2742 2875 12453 461 

Np 7 7 6 7 27 

Krig Nf 2380 1937 1785 4028 10130 326 

Np 7 8 8 8 31 
 

 

 

 

Figure 54: test results for LEPS potential (a) concurrent searching algorithm (b) 

integrated kriging search algorithm based on concurrent searching algorithm  

(a) (b) 
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(b) 

Figure 55: test results for Rastrigin function (a) concurrent searching algorithm (b) 

integrated kriging search algorithm based on concurrent searching algorithm  

(a) 
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(a) 

(b) 

Figure 56: test results for Schwefel function (a) concurrent searching algorithm (b) 

integrated kriging search algorithm based on concurrent searching algorithm  
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5.6.2 Jumping Scheme by Using Random Sampling around the End 

Control Points                                                                                                             

The test results in Section 5.6.1 show that the new algorithm with uniform 

sampling method significantly reduces the number of functional evaluations compared to 

concurrent search algorithm. However, the uniform sampling on the surrogate model 

requires ( _ )nN samp  number of functional evaluations for n -dimensional surface with 

_N samp number of sample points in each direction on the surrogate model. The 

scalability of the computational time of the functional evaluation on the surrogate model 

is not good. Here, a new jumping scheme by using random sampling is proposed to solve 

the scalability issue. In this method, for each end control point, the algorithm randomly 

sample a predefined number of points within its local region which is defined in 

Eqn.(5.1). The sample point with the smallest functional value is selected as the next 

sampling point for the end control point.  

The test results on the function Rastrigin and function Schwefel are summarized 

in Table 31 and Table 32 in which t is the total CPU running time in hours. For the 

different jumping methods, we consider both the number of functional evaluations on the 

real model and the efficiency of surrogate model evaluations. Thus, the total CPU time is 

also included here as a criterion for efficiency test. It shows that the random sampling 

scheme needs more functional evaluations than the uniform sampling for Rastrigin 

function but requires less functional evaluations for Schwefel function. Overall, those 

two jumping methods have the same level of efficiency in terms of function evaluations 

on both the real model and the surrogate model. Figure 57 and Figure 58 visualize the 

located local minima and saddle points using integrated Kriging method with random 

sampling for function Rastrigin and function Schwefel, respectively. It clearly shows that 

random sampling method maintains the same accuracy level of locating local minima and 

saddle points with the uniform sampling method.  

5.6.3 Constrained Local Search on the Surrogate Model 

In this method, for each end control point, the genetic algorithm (GA) is used to 

search the position with lowest function value on the surrogate model within the area 

defined in Eqn.(5.1). The located position is the next sampling point for the end control 
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point. The test results on the Rastrigin function are summarized in Table 31. For the 

second and forth initial curves, the algorithm diverges during the local minima search. 

For the first and third initial curves, the algorithm requires twice number of function 

evaluations compared with the uniform sampling random sampling methods. A major 

part of functional evaluations are conducted during the optimization process of the initial 

curves, in which two local minima are located by the two end control points of the initial 

curve. The reason is that the GA search algorithm locates the constrained local minimum 

instead of finding an approximate one on the surrogate model which involves big error 

due to insufficient number of data points at the beginning of the search process. The 

surrogate model is refined when there are new data points. As a result, the local minimum 

on the surrogate model keeps changing which leads to the convergence problem.   

5.6.4 Local Search with hybrid Line Search 

Here, the conjugate gradient method is used to search local minima on the surface. 

In the above three jumping methods, the local minima search is switching between the 

real model and surrogate model. In other words, in one iteration, the search process is on 

the real model, and then in the other iteration, the search process is all on the surrogate 

model. However, for the local search with hybrid line search, the whole search process is 

on the real model except that the second half of the functional evaluations of the line 

search along each conjugate gradient direction are done on the surrogate model. The test 

results on the function Rastrigin and function Schwefel are summarized in Table 31 and 

Table 32. It shows that both the number of functional evaluations and the total CPU time 

per path are reduced significantly compared with the previous three jumping methods. 

The visualized results in Figure 59 and Figure 60 shows that the hybrid line search 

method maintains the same level of accuracy in terms of locating the local minima and 

saddle points.  
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Table 31: Summary of the test results for different jumping methods (Rastrigin function) 

Jumping scheme Pos_1 Pos_2 Pos_3 Pos_4 Total N/path & 

t(h)/path 

Uniform sampling Nf 1594 1841 1437 795 5667 218 

Np 8 7 7 4 26 

t(h) 0.4 0.513 0.285 0.055 1.253 0.048 

Random sampling Nf 1810 1637 1269 995 5711 228.44 

Np 8 7 6 4 25 

t(h) 0.58 0.43 0.2 0.11 1.32 0.053 

Constrained local 

search 

Nf 2926 N/A 3429 N/A 6355 530 

Np 6 N/A 6 N/A 12 

t(h) 4.46 N/A 4.74 N/A 9.2 0.76 

Local search with 

hybrid line search 

Nf 1625 1303 1030 1224 5182 192 

Np 8 7 6 6 27 

t(h) 0.39 0.2 0.11 0.19 0.89 0.033 

 

 

Table 32: Summary of the test results for different jumping methods (Schwefel function) 

Jumping scheme Pos_1 Pos_2 Pos_3 Pos_4 Total N/path & 

t(h)/path 

Uniform sampling Nf 2380 1937 1785 4028 10130 326 

Np 7 8 8 8 31 

t(h) 0.55 0.28 0.069 0.379 1.278 0.041 

Random sampling Nf 1063 1830 1662 2071 6626 228 

Np 5 7 8 9 29 

t(h) 0.08 0.487 0.24 0.525 1.332 0.046 

Local search with 

hydrid line search 

Nf 781 1336 1091 1296 4504 187 

Np 5 6 6 7 24 

t(h) 0.03 0.18 0.074 0.121 0.405 0.017 
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Figure 57: test results for Rastrigin function using integrated Kriging methods with 

random sampling method  

Figure 58: test results for Schwefel function using integrated Kriging methods with 

random sampling method  
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Figure 59: test results for Rastrigin function using integrated Kriging methods with 

hybrid line search  

Figure 60: test results for Schwefel function using integrated Kriging methods with 

hybrid line search  
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5.7 Robust Saddle Point Search using Kriging Models of Hidden 

Gaussian Process                                                                                               

 To capture the uncertainties from DFT calculation associated with the inputs, a 

generalized Kriging model is developed to construct the surrogate model to approximate 

the real PES model. The generalized Kriging model  

  
( ) ( ) ( )

( ) ( ) ( )T

z y

y





 

 

x x x

x f x β x
 (5.2) 

regards metamodel ( )y x  as hidden and the value of ( )y x  is inferred from observable 

( )z x , where 2( ) ~ GP(0, ( )) x s x is a Gaussian process with zero mean and covariance 

2 ( ) s  in addition to 2( ) ~ GP(0, ( )) x r x . ( )  captures model-form uncertainty 

associated with the metamodel, whereas ( )  represents uncertainty associated with input 

data. It is assumed that the two Gaussian processes are independent. ( )Tf x β is the mean 

part of ( )y x  where 1( ) [ ( ), , ( )]T

pf ff x x x is a vector of p basis polynomial functions, 

1[ , , ]T

p β are the corresponding unknown regression coefficients.  

Similar to composite Gaussian processes [189, 217], it is straightforward to derive  

  
2 2 1 1 2 2 1( ( ) ) ( )T T       β F R S F F R S Z  (5.3) 

and  

  
2 2 2 2 1ˆ ˆ( ) ( ) ( ( ) ( )) ( ) ( )T Tz         x f x β r x s x R S Z Fβ  (5.4) 

by minimizing the mean squared error of the predictor of z, where Z is the vector of m 

observed values. S is the covariance matrix associate with the input data at different 

design sites.  

For independent sampling, the errors ( ) x  associate with input data are assumed 

to be uncorrelated at different design sites i.e. ( , ) 0ij i jS x x if i jx x . Hence, the 

covariance matrix for ( ) x is a m m diagonal matrix with the diagonal elements being 

the variance at the corresponding design sites divided by 2  i.e. 

2 2 2 2 2 2

1 2{ / , / , , / }mdiag      S for m data points and ( ) 0s x at the unknown point 

(i.e. trial point).  Thus, the prediction at the unknown point becomes 
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2 2 1ˆ ˆ( ) ( ) ( ) ( / ) ( )T Tz      x f x β r x R S Z Fβ  (5.5) 

where 1( ) [ ( , , ), , ( , , )]T

mR R  r x x x x x is the covariance at position x , R is the 

m m correlation matrix at the m design sites (i.e. input data points) associate with the 

Gaussian process ( ) , F  is a m p  matrix of polynomial values 
1[ ( ), , ( )]T

mF f x f x . 

When the mean structure ˆ( )Tf x β is constructed using the zero order polynomials, the 

Kriging model of hidden process reduces to the stochastic Kriging model [188]. 

The Kriging model with hidden Gaussian process cannot be integrated into the 

search process as described in Sections 5.2-5.5. The reason is that the surrogate model 

using Kriging model of hidden Gaussian process incorporates the uncertainties associated 

with the DFT calculation. However, the total energy for the real model based on the 

computer experiments is deterministic as long as all the parameter settings are fixed. In 

other words, the real model does not incorporate such uncertainties. Thus, there is 

convergence problem if the Kriging model with hidden Gaussian process is integrated 

directly. To solve this issue, we divided the robust saddle point search into two stages. In 

the first stage, the surrogate model is constructed using universal Kriging method. The 

search process is the same with the one described in Sections 5.2-5.5. The local search 

with hybrid line search is used in the local search. After the saddle point position 

converged on each sub curves, the algorithm moves to the second stage. In this stage, the 

algorithm first construct a surrogate model using Kriging model with hidden Gaussian 

process. Then starting from the converged saddle point position, the algorithm refines the 

saddle point position by searching on the stochastic surrogate model. The flow chart for 

the efficient and robust saddle point search is shown in Figure 61. To construct the 

stochastic surrogate model, the variance at each sampling points should be provided in 

addition to the ones required by the universal Kriging method.   

In this algorithm, the first stage serves the purpose to locate the local minima and 

provide enough sampling points around the critical areas which in this case is the saddle 

point position. Thus, the stochastic surrogate model constructed based on those sampling 

points is accurate enough to predict the saddle point in the second stage.  
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5.8 Demonstration for the Robust Saddle Point Search Method 

 The robust saddle point search method is demonstrated using the Rastrigin and 

Schwefel function. All the settings are the same with the ones in 5.6.4. The variance is 

assumed to be 1.25 at all design sites, which means 2 (1.25, 1.25, )m mdiag S , where 

m is the number of design sites. For the real material system, the variance can be 

obtained by running DFT experiments with different settings (e.g. k-points, pseudo 

potentials, thresholds for the cutting off energy, or different simulation packages such as 

VASP, Quantum Espresso [218], etc.). For example, the variance for the total energy of a 

material system at a certain position can be obtained by conducting the following 

experiments. 

1) Run the DFT simulations at that position with different k-point sampling and 

record the total energy of the system corresponding to the different k-point 

sampling. 

2) Run the DFT simulations with different pseudo potentials. In those 

experiments, the value of the k-point sampling is set to be the one at which the 

total energy converges. Then record the total energy of the system 

corresponding to different pseudo potentials. 

Figure 61: Flowchart for the efficient and robust saddle point search  

Efficient saddle point search using 

universal Kriging metamodels until 

all the saddle points on the sub 

curves converges on the real model 

A surrogate model is 

constructed using Kriging 

models of hidden 

Gaussian process  

Refine the saddle point positions 

by searching on the new surrogate 

model starting the converged 

saddle point position. 

Variance at 

each sampling 

point (i.e. input 

data) 

Stage II 

Stage I 
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3) Run the DFT simulations using different cutting off energy and record the 

corresponding total energy of the system. 

4) Run the DFT simulations using different simulation packages such as VASP, 

Quantum Espresso and so on. Record the total energy of the system 

corresponding to different simulation packages.  

5) Calculate the variance of the total energy based on the data obtained from the 

above experiments. The calculated variance is the input for the algorithm.  

For each design site, the same procedure can be applied to find the variance at that 

design site. After the variance at each design site is obtained, the matrix 2 S  is defined 

with its diagonal elements being the variance at the corresponding design site. To save 

computational cost, it is reasonable to assume that the variances at each design sites are 

the same for the real material system. Therefore, the matrix 2 S  can be obtained by 

conducting the experiments at only one design site. 

5.8.1 Test Results for Rastrigin Function 

In the test, the efficient saddle point search algorithm with universal Kriging 

models is first applied to the initial curves to search all the local minima and saddle 

points on the PES. After the saddle points converge, the robust saddle point search 

algorithm with hidden Krigign models is applied to the converged saddle points to refine 

their positions with the consideration of the uncertainties associated with the uncertainty 

from DFT.  The positions of the located saddle points are shown in Figure 63(a) in which 

the horizontal axis is the x coordinates and the vertical axis is the y coordinates for the 

saddle point. Since the resolution is too low to clearly show the difference between the 

saddle point positions located by using efficient saddle point search algorithm and the 

ones refined by robust saddle point search algoirhtm, four examples of the saddle points 

(i.e. saddle_1, saddle_2, saddle_3 and saddle_4) are selected to zoom in which are shown 

in Figure 63 (b)-(e). The circle dots in the center of the rectangular boxes are the saddle 

points located by efficient saddle point search and the corners of the rectangular boxes 

are the saddle point positions located by the robust saddle point search. It clearly shows 

that the saddle point positions are shifted due to the uncertainties associated with the 

input data. The area of the rectangular boxes at each point indicates how sensitive the 
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saddle point positions could be with respect to the input uncertainty from DFT. The 

larger the area is, the more sensitive the saddle point position is.  

The total energy at each saddle point of Pos_1 is shown in Figure 62(a) in which 

the horizontal axis is the index for each saddle point and the vertical axis is the total 

energy. Figure 62(b)-(f) are the detailed views at each saddle point. The cross markers are 

the locations of the saddle points without uncertainty which are located by the efficient 

saddle point search algorithm and the ends of the error bar are the positions of the saddle 

with uncertainty which are located by the robust saddle point search. The length of the 

error bar at each point indicates how sensitive the results could be with respect to the 

input uncertainty. The larger the length is, the more sensitive the result is at that 

point.  

The positions and the total energy for the rest of the saddle points without and 

with robust saddle point search are listed in Table 33. The total time for the efficient and 

robust saddle points at different positions are summarized in Table 35. It shows that the 

saddle point refinement process using the hidden Kriging surrogate model does not add 

much extra running time.  

5.8.2 Test Results for Schwefel Function 

Similar to Rastrigin function, first the efficient saddle point search algorithm is 

applied to the initial curves. Then the robust saddle point search algorithm is used to 

refine the located saddle point positions. Figure 64 shows that the positions at the four 

saddle points are shifted after incorporating the uncertainties from the input data into the 

search process. Figure 64(b)-(e) show that the first saddle point position (saddle_1) is 

very sensitive to the uncertainties in the y direction, the second saddle point position 

(saddle_2) is very sensitive to the uncertainties in the x direction, the third one (saddle_3) 

is less sensitive to the uncertainties than the others, and the fourth one (saddle_4) is equal 

sensitive in both x and y directions.   

The effect of the uncertainties to the total energy at each saddle point for Pos_1 is 

shown in Figure 65. Similarly, the length of the error bar indicates how sensitive the total 

energy could be with respect to the uncertainties. The positions and the total energy for 

the rest of the saddle points without and with robust saddle point search are listed in 
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Table 34. The total CPU time in Table 35 shows that the refinement process does not 

require much time.  

 

Table 33: comparison between the located saddle point without and with robust saddle 

point search for Rastrigin function at Pos_1 

Saddle # 
Position Total energy 

without with without with 

1 (–2.5127,0) (–2.5121, –0.0185) 26.2818 26.1913 

2 (-1.5046,0) (-1.5083, -0.0112) 22.2596 22.1877 

3 (-0.9950, 0.5026) (-0.9959, 0.5024) 21.2462 21.2733 

4 (-0.5027, 0.9950) (-0.5027, 1.0004) 21.2462 21.2388 

5 (0.5027, 0.9950) (0.5023, 1.0089) 21.2462 21.2164 

6 (0.9946, 0.5049) (0.9934, 0.5028) 21.2452 21.2506 

7 (1.5076, 0) (1.5086, -0.0053) 22.2615 22.2338 

8 (2.5127,0) (2.5116, -0.0093) 26.2818 26.2542 

 

 

Table 34: comparison between the located saddle point without and with robust saddle 

point search for Schwefel function at Pos_1 

Saddle # 
Position Total energy 

without with without with 

1 (-203.8975, 203.6150) (-203.8320, 203.4696) 837.9463 837.9246 

2 (-65.5231, 203.961) (-65.6708, 202.9309) 699.7277 699.3544 

3 (25.8693, 203.7916) (27.0224, 203.2168) 660.334 660.1138 

4 (203.6463, 301.8220) (203.6786, 302.5962) 936.4825 936.4834 

5 (302.4806, 420.9720) (302.4599, 420.7908) 719.5250 719.6925 

 

Table 35: Summary of the total CPU time (h) for the robust saddle point search  

 Pos_1 Pos_2 Pos_3 Pos_4 

Rastrigin function 0.452 0.267 0.135 0.235 

Schwefel function 0.073 0.242 0.099 0.195 
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Figure 62: comparison of the total energy at the saddle points for Pos_1 located by the 

efficient saddle point search algorithm without (cross position) and with (the end of 

the error bar) robust saddle point search algorithm (Rastigin function) 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Figure 63: comparison of the saddle points position for Pos_1 located by the efficient 

saddle point search algorithm without (circle points) and with (the corner of the 

rectangular error bar) robust saddle point search algorithm (Rastigin function) 
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Figure 64: comparison of the saddle points position for Pos_1 located by the efficient 

saddle point search algorithm without (circle points) and with (the corner of the 

rectangular error bar) robust saddle point search algorithm (Schwefel function) 

Saddle_3 

Saddle_1 

Saddle_4 

Saddle_2 
(a) 

(b) (c) 

(d) 
(e) 



152 

 

 

5.9 Sensitivity Analysis  

Here, the sensitivity of the results with respect to different variances at the design 

sites is studied. The value of the variance at the design sites indicates how much 

uncertainties are involved. The bigger the variance is, the larger the uncertainties are 

involved at the design sites.  The expertiment is set up as follows. The robust saddle point 

search algorithm with hidden Kriging models is used to search the saddle points at the 

same position many times with different variance (from o.5 to 2.3) at the design sites. We 

select one saddle point and record the total energy at that point with repect to different 

variances. The results are plotted in Figure 66. The horizontal axis is the variance at the 

design sites and the vertical axis is the total energy at the selected saddle point with 

respect to different variances. The cross marker is the total energy at the selected saddle 

Figure 65: comparison of the total energy at the saddle points for Pos_1 located by the 

efficient saddle point search algorithm without (cross position) and with (the end of 

the error bar) robust saddle point search algorithm (Schwefel function) 
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point without uncertainty and the end point of the error bar is the total energy at the 

selected saddle point with uncertainty from the input data. It clearly shows that when the 

variance increases, the error between the total energy with and without the certainty 

increases as well. This indicates that the robust saddle point search algorithm with hidden 

Kriging models captures the uncertainties very well. It also shows that when the variance 

is small which is less than one in this case, the results is relatively unaffected by the 

uncertainty. However, when the variance approaches to 2.3, the result will be 

significantly affected by the uncertainties involved in the input data. Thus, it is very 

important to incorporate such uncertainties to the searh process.  

 

 

  

Figure 66: sensitivity test with respect to different variance at design sites using 

Rastrigin function 
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Equation Chapter (Next) Section 1 

CHAPTER VI  

CONCLUSIONS AND FUTURE WORKS 

This chapter summarizes the methodologies and contributions of this dissertation, 

and proposes the future work.   

6.1 Summary for the Dissertation 

The ultimate goal of the dissertation is to contribute to the creation of new 

modeling and simulation mechanisms and tools for design of new materials for better and 

faster product innovation. Specifically, we developed three new saddle point search 

methods to provide a global view of energy landscape efficiently and robust estimation of 

activation energy. First, a concurrent search algorithm is developed to locate multiple 

local minima and saddle points along one transition path. The transition path is modeled 

using a parametric Bézier curve. Each control point on the curve represents an image 

along the transition path. The local minima are located by minimizing the two end control 

points of the Bézier curve using the conjugate gradient method, while the saddle points 

are located by moving the intermediate control points with highest energy on each sub 

path along conjugate directions. The algorithm includes three stages which are a single 

transition pathway search, multiple transition pathway search, and climbing process. In 

the first stage, the algorithm optimizes the initial curve to locate two end control points as 

well as pushes the curve to minimum energy path.  If the optimized curve crosses an 

extra energy basin, the algorithm moves to the second stage in which the optimized curve 

is divided into two curve sections at a breakpoint by a curve subdivision scheme. The 

breakpoint is then minimized in the same way as did to the two end control points in the 

first stage to locate the extra local minimum. Similarly, the intermediate control points of 

these two curve sections are updated the same way as did to the intermediate control 

points of the initial curve. If one of the optimized sub curve crosses extra energy basin, 

the sub curve is divided into two curves. The process continues until all the sub curves 
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only cross two adjacent energy basins. Then the algorithm moves to the third stage in 

which the intermediate control point with highest energy on each sub curves climbs up to 

locate the saddle point.  

Second, a curve swarm search algorithm is developed to exhaustively search the 

local minima and saddle points within one area which provides a global view of the 

landscape of the PES. Unlike the concurrent search algorithm, the curve swarm search 

algorithm uses multiple groups of curves to locate multiple multi-stage transition paths 

within a search area, instead of one multi-stage transition path. The algorithm is inspired 

by the concept of flocking that describes the collective behavior of many interacting 

particles. It treats all newly created curves from one initial curve as one group, with their 

end points connected together. For each curve in one group, its two end control points are 

minimized to locate two local minima, while intermediate control points is updated to 

refine the shape of the curve. If extra minima are found along the curve, it is broken into 

multiple curve segments to form a multi-stage transition path. During the search process, 

each group communicates with its neighbor groups to avoid collision and maintain 

cohesion. To simulate the communication activities among curves, a collective potential 

model which is a function of distance between two curves is devised here. During the 

search process, the algorithm calculates the collective force of one curve from its 

neighbors based on the collective potential model. The collective force is then applied to 

each intermediate control point of the curve. Thus, each intermediate control point is 

driven by a weighted sum of the collective force and a parallel component of the true 

potential force along the conjugate direction. 

Third, an efficient and robust search algorithm using Kriging models of hidden 

Gaussian process is developed to improve the efficiency of the saddle point search and 

robustness of the activation energy estimation. A Kriging surrogate model is introduced 

to approximate the real model to reduce the number of expensive evaluations of potential 

energy which is the most time consuming part in first principle simulation and the major 

reason that limits the application of the existing saddle point search algorithms to large 

systems. In addition, the Kriging model with hidden Gaussian process uses two Gaussian 

processes to capture both the model-form uncertainty in Kriging model and the input data 

errors that are inherent in DFT and search algorithms. Different from existing search 
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methods, the algorithm keeps a memory of searching history by constructing surrogate 

models and uses the search results on the surrogate models to provide the guidance of 

future search on the PES. The surrogate model is also updated with more DFT simulation 

results. The algorithm starts searching local minima and saddle points by evaluating each 

function value using DFT calculation and records the information (i.e. position and the 

corresponding value of total energy and gradient) at each updated position. After a 

predefined number of iterations, the algorithm constructs a surrogate model which 

represents the true PES using kriging method with hidden Gaussian process based on the 

data points collected in the previous searching iterations. Then all the function 

evaluations during the searching process are conducted using the surrogate model which 

is much cheaper in terms of computational cost. Since the surrogate model involves 

uncertainties, the algorithm needs more data to update the surrogate model to better 

approximate the true PES. Thus, after a predefined number of searching iteration on the 

surrogate model, the function evaluation is conducted again using DFT calculation. This 

‘real-surrogate-real’ model continues until the saddle point position converges.   

6.2 Contributions  

The novel contributions of the dissertation are highlighted as follows. 

 A concurrent saddle point search algorithm is developed which is able to 

dynamically locate multiple local minima and saddle points along one 

transition path with multiple transition stages. A new approach based on 

parametric Bézier curves to represent transition paths is developed which 

enables an efficient images redistribution scheme based on degree 

elevation and reduction. A curve subdivision scheme based on the gradient 

and total energy information at each intermediate images is developed 

which makes the search algorithm dynamically insert images on the fly 

during the searching process.  

 A curve swarm search algorithm based on the concept of flocking is 

developed to exhaustively explore the local minima and saddle points 

within one area. Thus, it provide a global view of the PES landscape. A 

collective potential model is developed to simulate the communication 
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activities among curves which effectively avoid collision and maintain 

cohesion during the search process.  

 An efficient and robust saddle point search method using Kriging models 

is developed which significantly reduces the number of the expensive 

functional evaluations based DFT calculation. In addition, a Kriging 

model with hidden Gaussian process is developed to incorporate the 

uncertainties from both the surrogate model itself and the input data 

associated with model-form error and numerical error in DFT calculations. 

Thus, it improves the robustness of the activation energy estimation.  

6.3 Future Work 

In the curve swarm algorithm, the collective potential is defined as a weighted 

sum of pair potentials between two groups of curves. In the current scheme, the weights 

are assigned to be equal, which does not consider the physical implication of PES’s. If 

the distance between two groups is very large or there exists a third group between them, 

a slight difference about the collective behaviors could be observed. The equal weights 

however do not model such differences. In the future, the model could be improved by 

optimizing the weight function. For example, the weights could be a function of the 

distance between two groups. The longer the distance is, the lower the weight should be.  

The results shows that the integrated Kriging method of hidden Gaussian process 

works well with the simple examples such as Rastrigin function. In the future work, we 

will apply the robust saddle point search algorithm to large material systems with higher 

dimensions. The variance for the material system will be obtained by calculating the total 

energy for one structure using different k-point sampling, pseudopotential, and cut-off 

energies. In addition, the algorithm is only implemented with concurrent search algorithm. 

In the future, we will extend the algorithm to the curve swarm algorithm.  

 

 

 



158 

 

REFERENCES 

 

[1] Olson, G. B., 1997, "Computational design of hierarchically 
structured materials," Science, 277(5330), pp. 1237-1242. 
[2] Chemical Industry Vision2020 Technology Partnership, 2003, 
"Chemical Industry R&D Roadmap for Nanomaterials by Design: From 
Fundamental to Function," Available at 
http://www.ChemicalVision2020.org. 
[3] National Science and Technology Council, 2011, "Materials genome 
initiative for global competitiveness 
"http://www.whitehouse.gov/sites/default/files/microsites/ostp/mate
rials_genome_initiative-final.pdf. 
[4] Zalba, B., Marı́n, J. M., Cabeza, L. F., and Mehling, H., 2003, "Review on 
thermal energy storage with phase change: materials, heat transfer 
analysis and applications," Appl. Therm. Eng., 23(3), pp. 251-283. 
[5] Raoux, S., and Wuttig, M., 2009, Phase change materials: science and 
applications, Springer. 
[6] Khudhair, A. M., and Farid, M. M., 2004, "A review on energy 
conservation in building applications with thermal storage by latent 
heat using phase change materials," Energy Convers. Manage., 45(2), pp. 
263-275. 
[7] Pasupathy, A., Velraj, R., and Seeniraj, R., 2008, "Phase change 
material-based building architecture for thermal management in 
residential and commercial establishments," Renewable and Sustainable 
Energy Reviews, 12(1), pp. 39-64. 
[8] Tyagi, V. V., and Buddhi, D., 2007, "PCM thermal storage in buildings: 
a state of art," Renewable and Sustainable Energy Reviews, 11(6), pp. 
1146-1166. 
[9] Farid, M. M., Khudhair, A. M., Razack, S. A. K., and Al-Hallaj, S., 2004, 
"A review on phase change energy storage: materials and applications," 
Energy Convers. Manage., 45(9), pp. 1597-1615. 
[10] Kenisarin, M., and Mahkamov, K., 2007, "Solar energy storage using 
phase change materials," Renewable and Sustainable Energy Reviews, 
11(9), pp. 1913-1965. 
[11] Wuttig, M., 2005, "Phase-change materials: towards a universal 
memory?," Nature materials, 4(4), pp. 265-266. 

http://www.chemicalvision2020.org/
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf


159 

 

[12] Wuttig, M., and Yamada, N., 2007, "Phase-change materials for 
rewriteable data storage," Nature materials, 6(11), pp. 824-832. 
[13] Al Hallaj, S., and Selman, J., 2000, "A Novel Thermal Management 
System for Electric Vehicle Batteries Using Phase‐Change Material," J. 
Electrochem. Soc., 147(9), pp. 3231-3236. 
[14] Johnston, J. H., and Dodds, M., 2011, "The development of a flexible, 
re-useable thermal buffering and insulating liner for packaging 
temperature sensitive products," Appita Journal: Journal of the 
Technical Association of the Australian and New Zealand Pulp and 
Paper Industry, 64(2), p. 153. 
[15] El Feninat, F., Laroche, G., Fiset, M., and Mantovani, D., 2002, "Shape 
memory materials for biomedical applications," Adv. Eng. Mater., 4(3), p. 
91. 
[16] Shim, H., McCullough, E., and Jones, B., 2001, "Using phase change 
materials in clothing," Textile Research Journal, 71(6), pp. 495-502. 
[17] Salaün, F., Devaux, E., Bourbigot, S., and Rumeau, P., 2010, 
"Development of phase change materials in clothing part I: Formulation 
of microencapsulated phase change," Textile Research Journal, 80(3), pp. 
195-205. 
[18] Yeomans, J. M., 1992, Statistical mechanics of phase transitions, 
Oxford University Press. 
[19] Papon, P., Leblond, J., and Meijer, P. H. E., 2006, The physics of 
phase transitions: concepts and applications, Springer. 
[20] Voter, A. F., and Doll, J. D., 1985, "Dynamical corrections to 
transition state theory for multistate systems: Surface self‐diffusion in 

the rare‐event regime," J. Chem. Phys., 82, p. 80. 
[21] Bell, S., and Crighton, J. S., 1984, "Locating transition states," J. 
Chem. Phys., 80, p. 2464. 
[22] Schlegel, H. B., 1987, "Optimization of equilibrium geometries and 
transition structures," Advances in Chemical Physics; Ab Initio Methods 
in Quantum Chemistry-I, p. 249. 
[23] Mckee, M. L., and Page, M., 1993, "Computing reaction pathways on 
molecular potential energy surfaces," Reviews in Computational 
Chemistry, Volume 4, pp. 35-65. 
[24] Schlegel, H. B., 1995, "Geometry optimization on potential energy 
surfaces," Modern Electronic Structure Theory, D. R. Yarkony, ed., World 
Scientific, Singapore, pp. 459-500. 



160 

 

[25] Henkelman, G., Jóhannesson, G., and Jónsson, H., 2002, "Methods for 
finding saddle points and minimum energy paths," Theoretical Methods 
in Condensed Phase Chemistry, pp. 269-302. 
[26] Schlegel, H. B., 2003, "Exploring potential energy surfaces for 
chemical reactions: an overview of some practical methods," J. Comput. 
Chem., 24(12), pp. 1514-1527. 
[27] Olsen, R., Kroes, G., Henkelman, G., Arnaldsson, A., and Jónsson, H., 
2004, "Comparison of methods for finding saddle points without 
knowledge of the final states," J. Chem. Phys., 121, p. 9776. 
[28] Alhat, D., Lasrado, V., and Wang, Y., "A Review of Recent Phase 
Transition Simulation Methods: Saddle Point Search," ASME. 
[29] Lasrado, V., Alhat, D., and Wang, Y., "A Review of Recent Phase 
Transition Simulation Methods: Transition Path Search," ASME. 
[30] Kennedy, J., and Eberhart, R., "Particle swarm optimization," Proc. 
Neural Networks, 1995. Proceedings., IEEE International Conference on, 
IEEE, pp. 1942-1948. 
[31] Olfati-Saber, R., 2006, "Flocking for multi-agent dynamic systems: 
Algorithms and theory," Automatic Control, IEEE Transactions on, 51(3), 
pp. 401-420. 
[32] Eyring, H., and Polanyi, M., 1931, "Uber einfache Gasreaktionen," 
Zeitschrift für physikalische Chemie B, 12, p. 279. 
[33] Laidler, K. J., and King, M. C., 1983, "Development of transition-state 
theory," The Journal of Physical Chemistry, 87(15), pp. 2657-2664. 
[34] Vineyard, G. H., 1957, "Frequency factors and isotope effects in 
solid state rate processes," Journal of Physics and Chemistry of Solids, 
3(1-2), pp. 121-127. 
[35] Truhlar, D. G., and Garrett, B. C., 1980, "Variational transition-state 
theory," Accounts of Chemical Research, 13(12), pp. 440-448. 
[36] Miller, W. H., Handy, N. C., and Adams, J. E., 1980, "Reaction path 
Hamiltonian for polyatomic molecules," The Journal of chemical physics, 
72, p. 99. 
[37] Chen, L., Ying, S., and Ala-Nissila, T., 2002, "Finding transition paths 
and rate coefficients through accelerated Langevin dynamics," Physical 
Review E, 65(4), pp. 042101(042101-042104). 
[38] Hilderbrandt, R. L., 1977, "Application of Newton-Raphson 
optimization techniques in molecular mechanics calculations," 
Computers & Chemistry, 1(3), pp. 179-186. 
[39] Cerjan, C. J., and Miller, W. H., 1981, "On finding transition states," J. 
Chem. Phys., 75, p. 2800. 



161 

 

[40] Simons, J., Joergensen, P., Taylor, H., and Ozment, J., 1983, "Walking 
on potential energy surfaces," The Journal of Physical Chemistry, 87(15), 
pp. 2745-2753. 
[41] Banerjee, A., Adams, N., Simons, J., and Shepard, R., 1985, "Search 
for stationary points on surfaces," The Journal of Physical Chemistry, 
89(1), pp. 52-57. 
[42] Nguyen, D. T., and Case, D. A., 1985, "On finding stationary states on 
large-molecule potential energy surfaces," The Journal of Physical 
Chemistry, 89(19), pp. 4020-4026. 
[43] Nichols, J., Taylor, H., Schmidt, P., and Simons, J., 1990, "Walking on 
potential energy surfaces," J. Chem. Phys., 92, p. 340. 
[44] Tsai, C., and Jordan, K., 1993, "Use of an eigenmode method to 
locate the stationary points on the potential energy surfaces of selected 
argon and water clusters," The Journal of Physical Chemistry, 97(43), pp. 
11227-11237. 
[45] Gotō, H., 1998, "A frontier mode-following method for mapping 
saddle points of conformational interconversion in flexible molecules 
starting from the energy minimum," Chemical physics letters, 292(3), pp. 
254-258. 
[46] Munro, L. J., and Wales, D. J., 1999, "Defect migration in crystalline 
silicon," Physical Review B, 59(6), p. 3969. 
[47] Kumeda, Y., Wales, D. J., and Munro, L. J., 2001, "Transition states 
and rearrangement mechanisms from hybrid eigenvector-following and 
density functional theory.: application to C10H10 and defect migration 
in crystalline silicon," Chemical physics letters, 341(1), pp. 185-194. 
[48] Rothman, M. J., and Lohr Jr, L. L., 1980, "Analysis of an energy 
minimization method for locating transition states on potential energy 
hypersurfaces," Chemical Physics Letters, 70(2), pp. 405-409. 
[49] Williams, I. H., and Maggiora, G. M., 1982, "Use and abuse of the 
distinguished-coordinate method for transition-state structure 
searching," Journal of Molecular Structure: THEOCHEM, 89(3), pp. 365-
378. 
[50] Chekmarev, S. F., 1994, "A simple gradient method for locating 
saddles," Chemical physics letters, 227(3), pp. 354-360. 
[51] McIver Jr, J. W., and Komornicki, A., 1972, "Structure of transition 
states in organic reactions. General theory and an application to the 
cyclobutene-butadiene isomerization using a semiempirical molecular 
orbital method," Journal of the American Chemical Society, 94(8), pp. 
2625-2633. 



162 

 

[52] Müller, K., and Brown, L. D., 1979, "Location of saddle points and 
minimum energy paths by a constrained simplex optimization 
procedure," Theoretica chimica acta, 53(1), pp. 75-93. 
[53] Müller, K., 1980, "Reaction paths on multidimensional energy 
hypersurfaces," Angewandte Chemie International Edition in English, 
19(1), pp. 1-13. 
[54] Smith, C. M., 1988, "Application of a dynamic method of 
minimisation in the study of reaction surfaces," Theoretica chimica acta, 
74(2), pp. 85-99. 
[55] Smith, C. M., 1990, "How to find a saddle point," International 
Journal of Quantum Chemistry, 37(6), pp. 773-783. 
[56] Sun, J. Q., and Ruedenberg, K., 1994, "Locating transition states by 
quadratic image gradient descent on potential energy surfaces," J. Chem. 
Phys., 101, p. 2157. 
[57] Quapp, W., 1996, "A gradient-only algorithm for tracing a reaction 
path uphill to the saddle of a potential energy surface," Chemical physics 
letters, 253(3), pp. 286-292. 
[58] Mousseau, N., and Barkema, G., 1998, "Traveling through potential 
energy landscapes of disordered materials: The activation-relaxation 
technique," Physical Review E, 57(2), p. 2419. 
[59] Quapp, W., Hirsch, M., Imig, O., and Heidrich, D., 1998, "Searching 
for saddle points of potential energy surfaces by following a reduced 
gradient," Journal of computational chemistry, 19(9), pp. 1087-1100. 
[60] Hirsch, M., and Quapp, W., 2002, "Improved RGF method to find 
saddle points," Journal of computational chemistry, 23(9), pp. 887-894. 
[61] Anglada, J. M., Besalú, E., Bofill, J. M., and Crehuet, R., 2001, "On the 
quadratic reaction path evaluated in a reduced potential energy surface 
model and the problem to locate transition states*," Journal of 
Computational Chemistry, 22(4), pp. 387-406. 
[62] Lin, Y., and Stadtherr, M. A., 2004, "Locating stationary points of 
sorbate-zeolite potential energy surfaces using interval analysis," J. 
Chem. Phys., 121, p. 10159. 
[63] Pratt, L. R., 1986, "A statistical method for identifying transition 
states in high dimensional problems," J. Chem. Phys., 85, p. 5045. 
[64] Elber, R., and Karplus, M., 1987, "A method for determining 
reaction paths in large molecules: application to myoglobin," Chemical 
Physics Letters, 139(5), pp. 375-380. 



163 

 

[65] Beck, T. L., Doll, J., and Freeman, D. L., 1989, "Locating stationary 
paths in functional integrals: An optimization method utilizing the 
stationary phase Monte Carlo sampling function." 
[66] Czerminski, R., and Elber, R., 1990, "Self‐avoiding walk between 
two fixed points as a tool to calculate reaction paths in large molecular 
systems," International Journal of Quantum Chemistry, 38(S24), pp. 
167-185. 
[67] Ulitsky, A., and Elber, R., 1990, "A new technique to calculate 
steepest descent paths in flexible polyatomic systems," The Journal of 
chemical physics, 92(2), pp. 1510-1511. 
[68] Choi, C., and Elber, R., 1991, "Reaction path study of helix formation 
in tetrapeptides: Effect of side chains," J. Chem. Phys., 94, p. 751. 
[69] Gillilan, R. E., and Wilson, K. R., 1992, "Shadowing, rare events, and 
rubber bands. A variational Verlet algorithm for molecular dynamics," J. 
Chem. Phys., 97, p. 1757. 
[70] Sevick, E., Bell, A., and Theodorou, D., 1993, "A chain of states 
method for investigating infrequent event processes occurring in 
multistate, multidimensional systems," The Journal of chemical physics, 
98, p. 3196. 
[71] Smart, O. S., 1994, "A new method to calculate reaction paths for 
conformation transitions of large molecules," Chemical physics letters, 
222(5), pp. 503-512. 
[72] Ayala, P. Y., and Schlegel, H. B., 1997, "A combined method for 
determining reaction paths, minima, and transition state geometries," J. 
Chem. Phys., 107, p. 375. 
[73] Jonsson, H., Mills, G., and Jacobsen, K., 1998, "Classical and Quantum 
Dynamics in Condensed Phase Simulations," World Scientific, 
Hackensack, NJ, pp. 385-404. 
[74] Henkelman, G., and Jónsson, H., 2000, "Improved tangent estimate 
in the nudged elastic band method for finding minimum energy paths 
and saddle points," The Journal of chemical physics, 113(22), pp. 9978-
9985. 
[75] Henkelman, G., Uberuaga, B. P., and Jónsson, H., 2000, "A climbing 
image nudged elastic band method for finding saddle points and 
minimum energy paths," The Journal of chemical physics, 113(22), pp. 
9901-9904. 
[76] Maragakis, P., Andreev, S. A., Brumer, Y., Reichman, D. R., and 
Kaxiras, E., 2002, "Adaptive nudged elastic band approach for transition 
state calculation," J. Chem. Phys., 117, p. 4651. 



164 

 

[77] Weinan, E., Ren, W., and Vanden-Eijnden, E., 2002, "String method 
for the study of rare events," Physical Review B, 66(5), p. 052301. 
[78] Ren, W., 2003, "Higher order string method for finding minimum 
energy paths," Communications in Mathematical Sciences, 1(2), pp. 377-
384. 
[79] Peters, B., Heyden, A., Bell, A. T., and Chakraborty, A., 2004, "A 
growing string method for determining transition states: Comparison to 
the nudged elastic band and string methods," J. Chem. Phys., 120, p. 
7877. 
[80] Trygubenko, S. A., and Wales, D. J., 2004, "A doubly nudged elastic 
band method for finding transition states," The Journal of chemical 
physics, 120(5), pp. 2082-2094. 
[81] Burger, S. K., and Yang, W., 2006, "Quadratic string method for 
determining the minimum-energy path based on multiobjective 
optimization," J. Chem. Phys., 124, p. 054109. 
[82] Weinan, E., Ren, W., and Vanden-Eijnden, E., 2007, "Simplified and 
improved string method for computing the minimum energy paths in 
barrier-crossing events," J. Chem. Phys., 126, p. 164103. 
[83] Zhu, T., Li, J., Samanta, A., Kim, H. G., and Suresh, S., 2007, 
"Interfacial plasticity governs strain rate sensitivity and ductility in 
nanostructured metals," Proceedings of the National Academy of 
Sciences, 104(9), pp. 3031-3036. 
[84] Galván, I. F., and Field, M. J., 2008, "Improving the efficiency of the 
NEB reaction path finding algorithm," Journal of Computational 
Chemistry, 29(1), pp. 139-143. 
[85] Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D. D., and 
Henkelman, G., 2012, "A generalized solid-state nudged elastic band 
method," J. Chem. Phys., 136, p. 074103. 
[86] Sheppard, D., Terrell, R., and Henkelman, G., 2008, "Optimization 
methods for finding minimum energy paths," J. Chem. Phys., 128, p. 
134106. 
[87] Ionova, I. V., and Carter, E. A., 1993, "Ridge method for finding 
saddle points on potential energy surfaces," The Journal of chemical 
physics, 98, p. 6377. 
[88] Henkelman, G., and Jónsson, H., 1999, "A dimer method for finding 
saddle points on high dimensional potential surfaces using only first 
derivatives," The Journal of chemical physics, 111(15), pp. 7010-7022. 
[89] Heyden, A., Bell, A. T., and Keil, F. J., 2005, "Efficient methods for 
finding transition states in chemical reactions: Comparison of improved 



165 

 

dimer method and partitioned rational function optimization method," 
The Journal of chemical physics, 123, pp. 224101-224114. 
[90] Dewar, M. J., Healy, E. F., and Stewart, J. J., 1984, "Location of 
transition states in reaction mechanisms," Journal of the Chemical 
Society, Faraday Transactions 2: Molecular and Chemical Physics, 80(3), 
pp. 227-233. 
[91] Miron, R. A., and Fichthorn, K. A., 2001, "The Step and Slide method 
for finding saddle points on multidimensional potential surfaces," J. 
Chem. Phys., 115, p. 8742. 
[92] Passerone, D., Ceccarelli, M., and Parrinello, M., 2003, "A concerted 
variational strategy for investigating rare events," J. Chem. Phys., 118, p. 
2025. 
[93] Saad, Y., 2003, Iterative methods for sparse linear systems, Siam. 
[94] Sinclair, J., and Fletcher, R., 1974, "A new method of saddle-point 
location for the calculation of defect migration energies," Journal of 
Physics C: Solid State Physics, 7(5), p. 864. 
[95] Bell, S., Crighton, J. S., and Fletcher, R., 1981, "A new efficient 
method for locating saddle points," Chemical Physics Letters, 82(1), pp. 
122-126. 
[96] Schlegel, H. B., 1982, "Optimization of equilibrium geometries and 
transition structures," Journal of Computational Chemistry, 3(2), pp. 
214-218. 
[97] Fischer, S., and Karplus, M., 1992, "Conjugate peak refinement: an 
algorithm for finding reaction paths and accurate transition states in 
systems with many degrees of freedom," Chemical physics letters, 
194(3), pp. 252-261. 
[98] Chen, L., Ying, S., and Ala-Nissila, T., 2002, "Finding transition paths 
and rate coefficients through accelerated Langevin dynamics," Phys. Rev. 
E, 65(4), p. 042101. 
[99] Dey†, B. K., and Ayers, P. W., 2006, "A Hamilton–Jacobi type 
equation for computing minimum potential energy paths," Mol. Phys., 
104(4), pp. 541-558. 
[100] Carr, J. M., Trygubenko, S. A., and Wales, D. J., 2005, "Finding 
pathways between distant local minima," J. Chem. Phys., 122(23), pp. 
234903-234903-234907. 
[101] Govind, N., Petersen, M., Fitzgerald, G., King-Smith, D., and 
Andzelm, J., 2003, "A generalized synchronous transit method for 
transition state location," Computational materials science, 28(2), pp. 
250-258. 



166 

 

[102] Ruedenberg, K., and Sun, J. Q., 1994, "A simple prediction of 
approximate transition states on potential energy surfaces," J. Chem. 
Phys., 101, p. 2168. 
[103] Ulitsky, A., and Shalloway, D., 1997, "Finding transition states 
using contangency curves," The Journal of chemical physics, 106(24), pp. 
10099-10104. 
[104] Hestenes, M. R., and Stiefel, E., 1952, "Methods of conjugate 
gradients for solving linear systems," NBS. 
[105] Shewchuk, J. R., 1994, "An introduction to the conjugate gradient 
method without the agonizing pain," Carnegie Mellon University, 
Pittsburgh, PA. 
[106] Golub, G. H., and O'Leary, D. P., 1989, "Some history of the 
conjugate gradient and Lanczos algorithms: 1948-1976," SIAM review, 
31(1), pp. 50-102. 
[107] Fletcher, R., and Reeves, C., 1964, "Function minimization by 
conjugate gradients," The computer journal, 7(2), pp. 149-154. 
[108] POLA, E., and Ribiere, G., 1969, "Note sur la convergence de 
methodes de directions conjugées," Rev Française Informat Recherche 
Operationelle, 3e Année, 16, pp. 35-43. 
[109] Zoutendijk, G., 1970, "Nonlinear programming, computational 
methods," Integer and nonlinear programming, 143(1), pp. 37-86. 
[110] Al-Baali, M., 1985, "Descent property and global convergence of 
the Fletcher—Reeves method with inexact line search," IMA Journal of 
Numerical Analysis, 5(1), pp. 121-124. 
[111] Powell, M., 1984, "Nonconvex minimization calculations and the 
conjugate gradient method," Numerical Analysis, pp. 122-141. 
[112] Hu, Y., and Storey, C., 1991, "Global convergence result for 
conjugate gradient methods," Journal of Optimization Theory and 
Applications, 71(2), pp. 399-405. 
[113] Gilbert, J. C., and Nocedal, J., 1992, "Global convergence properties 
of conjugate gradient methods for optimization," SIAM Journal on 
Optimization, 2(1), pp. 21-42. 
[114] Guanghui, L., Jiye, H., and Hongxia, Y., 1995, "Global convergence 
of the Fletcher-Reeves algorithm with inexact linesearch," Applied 
Mathematics-A Journal of Chinese Universities, 10(1), pp. 75-82. 
[115] Dai, Y., Han, J., Liu, G., Sun, D., Yin, H., and Yuan, Y. X., 2000, 
"Convergence properties of nonlinear conjugate gradient methods," 
SIAM Journal on Optimization, 10(2), pp. 345-358. 



167 

 

[116] Mortenson, M. E., 1985, Geometrie modeling, John Wiley, New 
York. 
[117] Watkins, M. A., and Worsey, A. J., 1988, "Degree reduction of 
Bézier curves," Comput. Aided. Des., 20(7), pp. 398-405. 
[118] Eck, M., 1993, "Degree reduction of Bézier curves," Computer 
Aided Geometric Design, 10(3), pp. 237-251. 
[119] Forrest, A. R., 1972, "Interactive interpolation and approximation 
by Bézier polynomials," Comput. J, 15(1), pp. 71-79. 
[120] Eck, M., 1995, "Least squares degree reduction of Bézier curves," 
Comput. Aided. Des., 27(11), pp. 845-851. 
[121] Bogacki, P., Weinstein, S. E., and Xu, Y., 1995, "Degree reduction of 
Bézier curves by uniform approximation with endpoint interpolation," 
Comput. Aided. Des., 27(9), pp. 651-661. 
[122] Brunnett, G., Schreiber, T., and Braun, J., 1996, "The geometry of 
optimal degree reduction of Bézier curves," Computer Aided Geometric 
Design, 13(8), pp. 773-788. 
[123] Kim, H., and Moon, S., 1997, "Degree reduction of Bézier curves 
by< i> L</i>< sup> 1</sup>-Approximation with endpoint 
interpolation," Computers & Mathematics with Applications, 33(5), pp. 
67-77. 
[124] Kim, H., and Ahn, Y., 2000, "Good degree reduction of Bézier 
curves using Jacobi polynomials," Computers & Mathematics with 
Applications, 40(10), pp. 1205-1215. 
[125] Ahn, Y. J., 2003, "Using Jacobi polynomials for degree reduction of 
Bézier curves with< i> C</i>< sup> k</sup>-constraints," Computer 
Aided Geometric Design, 20(7), pp. 423-434. 
[126] Chen, G. D., and Wang, G. J., 2002, "Optimal multi-degree reduction 
of Bézier curves with constraints of endpoints continuity," Computer 
Aided Geometric Design, 19(6), pp. 365-377. 
[127] Sunwoo, H., 2005, "Matrix representation for multi-degree 
reduction of Bézier curves," Computer Aided Geometric Design, 22(3), 
pp. 261-273. 
[128] Lu, L., and Wang, G., 2008, "Application of Chebyshev II–Bernstein 
basis transformations to degree reduction of Bézier curves," Journal of 
Computational and Applied Mathematics, 221(1), pp. 52-65. 
[129] Lu, L., and Wang, G., 2006, "Optimal multi-degree reduction of 
Bézier curves with G2-continuity," Computer Aided Geometric Design, 
23(9), pp. 673-683. 



168 

 

[130] Rababah, A., Lee, B. G., and Yoo, J., 2006, "A simple matrix form for 
degree reduction of Bézier curves using Chebyshev–Bernstein basis 
transformations," Applied mathematics and computation, 181(1), pp. 
310-318. 
[131] Woźny, P., and Lewanowicz, S., 2009, "Multi-degree reduction of 
Bézier curves with constraints, using dual Bernstein basis polynomials," 
Computer Aided Geometric Design, 26(5), pp. 566-579. 
[132] Chen, X. D., Ma, W., and Paul, J. C., 2011, "Multi-degree reduction of 
Bézier curves using reparameterization," Comput. Aided. Des., 43(2), pp. 
161-169. 
[133] Truhlar, D. G., Steckler, R., and Gordon, M. S., 1987, "Potential 
energy surfaces for polyatomic reaction dynamics," Chemical Reviews, 
87(1), pp. 217-236. 
[134] Varandas, A., 1988, "Intermolecular and intramolecular 
potentials," Adv. Chem. Phys, 74, pp. 255-338. 
[135] Schatz, G. C., 1989, "The analytical representation of electronic 
potential-energy surfaces," Reviews of Modern Physics, 61(3), p. 669. 
[136] Maisuradze, G. G., Thompson, D. L., Wagner, A. F., and Minkoff, M., 
2003, "Interpolating moving least-squares methods for fitting potential 
energy surfaces: Detailed analysis of one-dimensional applications," J. 
Chem. Phys., 119, p. 10002. 
[137] Raff, L., Malshe, M., Hagan, M., Doughan, D., Rockley, M., and 
Komanduri, R., 2005, "Ab initio potential-energy surfaces for complex, 
multichannel systems using modified novelty sampling and feedforward 
neural networks," J. Chem. Phys., 122, p. 084104. 
[138] Schatz, G. C., 2000, "Fitting potential energy surfaces," Reaction 
and Molecular Dynamics, Springer, pp. 15-32. 
[139] McLaughlin, D. R., and Thompson, D. L., 1973, "Ab initio dynamics: 
HeH+ H→ He+ H (C) classical trajectories using a quantum mechanical 

potential‐energy surface," J. Chem. Phys., 59, p. 4393. 
[140] Sathyamurthy, N., and Raff, L., 1975, "Quasiclassical trajectory 
studies using 3D spline interpolation of ab initio surfaces," J. Chem. 
Phys., 63, p. 464. 
[141] Sathyamurthy, N., Rangarajan, R., and Raff, L., 1976, "Reactive 
scattering calculations on a splinefitted ab initio surface: The He+ H (v= 
0, 1, 2)→ HeH+ H reaction," J. Chem. Phys., 64, p. 4606. 
[142] Chapman, S., Dupuis, M., and Green, S., 1983, "Theoretical three-
dimensional potential-energy surface for the reaction of Be with HF," 
Chem. Phys., 78(1), pp. 93-105. 



169 

 

[143] Bowman, J. M., Bittman, J. S., and Harding, L. B., 1986, "Ab initio 
calculations of electronic and vibrational energies of HCO and HOC," J. 
Chem. Phys., 85, p. 911. 
[144] Koizumi, H., Schatz, G. C., and Walch, S. P., 1991, "A coupled 
channel study of HN unimolecular decay based on a global ab initio 
potential surface," J. Chem. Phys., 95, p. 4130. 
[145] Wall, F. T., and Porter, R. N., 1962, "General Potential‐Energy 
Function for Exchange Reactions," J. Chem. Phys., 36, p. 3256. 
[146] Bowman, J. M., and Kuppermann, A., 1975, "A semi-numerical 
approach to the construction and fitting of triatomic potential energy 
surfaces," Chem. Phys. Lett., 34(3), pp. 523-527. 
[147] Gray, S. K., and Wright, J. S., 1977, "Classical trajectories for the H+ 
H reaction on a spline‐generated potential energy surface," J. Chem. 
Phys., 66, p. 2867. 
[148] Murrell, J. N., and Murrell, J. N., 1984, Molecular potential energy 
functions, J. Wiley Chichester, UK. 
[149] Ho, T. S., and Rabitz, H., 1996, "A general method for constructing 
multidimensional molecular potential energy surfaces from ab initio 
calculations," J. Chem. Phys., 104, p. 2584. 
[150] Hollebeek, T., Ho, T.-S., and Rabitz, H., 1999, "Constructing 
multidimensional molecular potential energy surfaces from ab initio 
data," Annual review of physical chemistry, 50(1), pp. 537-570. 
[151] Ho, T.-S., and Rabitz, H., 2003, "Reproducing kernel Hilbert space 
interpolation methods as a paradigm of high dimensional model 
representations: Application to multidimensional potential energy 
surface construction," J. Chem. Phys., 119, p. 6433. 
[152] Blank, T. B., Brown, S. D., Calhoun, A. W., and Doren, D. J., 1995, 
"Neural network models of potential energy surfaces," J. Chem. Phys., 
103, p. 4129. 
[153] Gassner, H., Probst, M., Lauenstein, A., and Hermansson, K., 1998, 
"Representation of intermolecular potential functions by neural 
networks," The Journal of Physical Chemistry A, 102(24), pp. 4596-4605. 
[154] Lorenz, S., Groß, A., and Scheffler, M., 2004, "Representing high-
dimensional potential-energy surfaces for reactions at surfaces by 
neural networks," Chem. Phys. Lett., 395(4), pp. 210-215. 
[155] Ischtwan, J., and Collins, M. A., 1994, "Molecular potential energy 
surfaces by interpolation," J. Chem. Phys., 100, p. 8080. 



170 

 

[156] Jordan, M. J., Thompson, K. C., and Collins, M. A., 1995, "The utility 
of higher order derivatives in constructing molecular potential energy 
surfaces by interpolation," J. Chem. Phys., 103, p. 9669. 
[157] Jordan, M. J., Thompson, K. C., and Collins, M. A., 1995, 
"Convergence of molecular potential energy surfaces by interpolation: 
Application to the OH+ H→ HO+ H reaction," J. Chem. Phys., 102, p. 5647. 
[158] Jordan, M. J., and Collins, M. A., 1996, "An interpolated 
unrestricted Hartree–Fock potential energy surface for the OH+ H→ 
HO+ H reaction," J. Chem. Phys., 104, p. 4600. 
[159] Thompson, K., and Collins, M., 1997, "Molecular potential-energy 
surfaces by interpolation: Further refinements," J. Chem. Soc., Faraday 
Trans., 93(5), pp. 871-878. 
[160] Bettens, R. P., and Collins, M. A., 1998, "Potential energy surfaces 
and dynamics for the reactions between C (P) and H (A)," J. Chem. Phys., 
108, p. 2424. 
[161] Bettens, R. P., and Collins, M. A., 1998, "Interpolated potential 
energy surface and dynamics for the reactions between N (S) and H 
(A)," J. Chem. Phys., 109, p. 9728. 
[162] Thompson, K. C., Jordan, M. J., and Collins, M. A., 1998, "Polyatomic 
molecular potential energy surfaces by interpolation in local internal 
coordinates," J. Chem. Phys., 108, p. 8302. 
[163] Thompson, K. C., Jordan, M. J., and Collins, M. A., 1998, "Molecular 
potential energy surfaces by interpolation in Cartesian coordinates," J. 
Chem. Phys., 108, p. 564. 
[164] Bettens, R. P., and Collins, M. A., 1999, "Learning to interpolate 
molecular potential energy surfaces with confidence: A Bayesian 
approach," J. Chem. Phys., 111, p. 816. 
[165] Ishida, T., and Schatz, G. C., 1999, "A local interpolation scheme 
using no derivatives in quantum-chemical calculations," Chem. Phys. 
Lett., 314(3), pp. 369-375. 
[166] Dawes, R., Thompson, D. L., Guo, Y., Wagner, A. F., and Minkoff, M., 
2007, "Interpolating moving least-squares methods for fitting potential 
energy surfaces: Computing high-density potential energy surface data 
from low-density ab initio data points," J. Chem. Phys., 126, p. 184108. 
[167] Guo, Y., Tokmakov, I., Thompson, D. L., Wagner, A. F., and Minkoff, 
M., 2007, "Interpolating moving least-squares methods for fitting 
potential energy surfaces: Improving efficiency via local approximants," 
J. Chem. Phys., 127, p. 214106. 



171 

 

[168] Lancaster, P., and Salkauskas, K., 1986, "Curve and surface fitting. 
An introduction," London: Academic Press, 1986, 1. 
[169] Kbiob, D., 1951, "A statistical approach to some basic mine 
valuation problems on the Witwatersrand," Journal of Chemical, 
Metallurgical, and Mining Society of South Africa. 
[170] Matheron, G., 1963, "Principles of geostatistics," Economic 
geology, 58(8), pp. 1246-1266. 
[171] Cressie, N., 1993, "Statistics for Spatial Data: Wiley Series in 
Probability and Statistics." 
[172] Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., 1989, "Design 
and analysis of computer experiments," Statistical science, pp. 409-423. 
[173] Currin, C., Mitchell, T., Morris, M., and Ylvisaker, D., 1991, 
"Bayesian prediction of deterministic functions, with applications to the 
design and analysis of computer experiments," Journal of the American 
Statistical Association, 86(416), pp. 953-963. 
[174] Welch, W. J., Buck, R. J., Sacks, J., Wynn, H. P., Mitchell, T. J., and 
Morris, M. D., 1992, "Screening, predicting, and computer experiments," 
Technometrics, 34(1), pp. 15-25. 
[175] Morris, M. D., Mitchell, T. J., and Ylvisaker, D., 1993, "Bayesian 
design and analysis of computer experiments: use of derivatives in 
surface prediction," Technometrics, 35(3), pp. 243-255. 
[176] Jones, D. R., Schonlau, M., and Welch, W. J., 1998, "Efficient global 
optimization of expensive black-box functions," Journal of Global 
optimization, 13(4), pp. 455-492. 
[177] Rijpkema, J., Etman, L., and Schoofs, A., 2001, "Use of design 
sensitivity information in response surface and Kriging metamodels," 
Optimization and Engineering, 2(4), pp. 469-484. 
[178] Jakumeit, J., Herdy, M., and Nitsche, M., 2005, "Parameter 
optimization of the sheet metal forming process using an iterative 
parallel Kriging algorithm," Structural and Multidisciplinary 
Optimization, 29(6), pp. 498-507. 
[179] Choi, H., McDowell, D. L., Allen, J. K., Rosen, D., and Mistree, F., 
2008, "An inductive design exploration method for robust multiscale 
materials design," Journal of Mechanical Design, 130(3), p. 031402. 
[180] Lee, T. H., and Jung, J. J., 2008, "A sampling technique enhancing 
accuracy and efficiency of metamodel-based RBDO: Constraint 
boundary sampling," Computers & Structures, 86(13), pp. 1463-1476. 



172 

 

[181] Li, M., Li, G., and Azarm, S., 2008, "A kriging metamodel assisted 
multi-objective genetic algorithm for design optimization," Journal of 
Mechanical Design, 130(3), p. 031401. 
[182] Zhao, L., Choi, K. K., Lee, I., and Du, L., "Response surface method 
using sequential sampling for reliability-based design optimization," 
Proc. ASME 2009 International Design Engineering Technical 
Conferences and Computers and Information in Engineering Conference, 
American Society of Mechanical Engineers, pp. 1171-1181. 
[183] Lee, I., Choi, K., and Zhao, L., 2011, "Sampling-based RBDO using 
the stochastic sensitivity analysis and Dynamic Kriging method," 
Structural and Multidisciplinary Optimization, 44(3), pp. 299-317. 
[184] Zhao, L., Choi, K., Lee, I., and Gorsich, D., 2013, "Conservative 
Surrogate Model Using Weighted Kriging Variance for Sampling-Based 
RBDO," Journal of Mechanical Design, 135(9), p. 091003. 
[185] Joseph, V. R., Hung, Y., and Sudjianto, A., 2008, "Blind kriging: A 
new method for developing metamodels," Journal of mechanical design, 
130(3), p. 031102. 
[186] Zhao, L., Choi, K., and Lee, I., 2011, "Metamodeling method using 
dynamic kriging for design optimization," AIAA journal, 49(9), pp. 2034-
2046. 
[187] Van Beers, W. C., and Kleijnen, J. P., 2003, "Kriging for 
interpolation in random simulation," Journal of the Operational 
Research Society, 54(3), pp. 255-262. 
[188] Ankenman, B., Nelson, B. L., and Staum, J., 2010, "Stochastic 
kriging for simulation metamodeling," Operations research, 58(2), pp. 
371-382. 
[189] Ba, S., and Joseph, V. R., 2012, "Composite Gaussian process 
models for emulating expensive functions," The Annals of Applied 
Statistics, 6(4), pp. 1838-1860. 
[190] Koehler, J., and Owen, A., 1996, "Computer experiments," 
Handbook of statistics, 13(13), pp. 261-308. 
[191] Martin, J. D., and Simpson, T. W., 2004, "On using Kriging models 
as probabilistic models in design," SAE Technical Paper. 
[192] Chen, V. C., Tsui, K.-L., Barton, R. R., and Meckesheimer, M., 2006, 
"A review on design, modeling and applications of computer 
experiments," IIE transactions, 38(4), pp. 273-291. 
[193] Wang, G. G., and Shan, S., 2007, "Review of metamodeling 
techniques in support of engineering design optimization," Journal of 
Mechanical Design, 129(4), pp. 370-380. 



173 

 

[194] Li, J., and Australia, G., 2008, A review of spatial interpolation 
methods for environmental scientists, Geoscience Australia Canberra. 
[195] Kleijnen, J. P., 2009, "Kriging metamodeling in simulation: A 
review," European Journal of Operational Research, 192(3), pp. 707-716. 
[196] Beale, E. M. L., 1972, Numerical methods for non-linear 
optimization Academic Press, London. 
[197] Weinan, E., Ren, W., and Vanden-Eijnden, E., 2007, "Simplified and 
improved string method for computing the minimum energy paths in 
barrier-crossing events," Journal of Chemical Physics, 126(16), pp. 
164103(164101) -164103(164108). 
[198] Farin, G. E., 1993, Curves and Surfaces for Computer-Aided 
Geometric Design, Academic Press, Boston. 
[199] Polanyi, J., and Wong, W., 1969, "Location of energy barriers. I. 
Effect on the dynamics of reactions A+ BC," J. Chem. Phys., 51, p. 1439. 
[200] Busch, G., Schlapbach, L., Stucki, F., Fischer, P., and Andresen, A., 
1979, "Hydrogen storage in FeTi: surface segregation and its catalytic 
effect on hydrogenation and structural studies by means of neutron 
diffraction," International Journal of Hydrogen Energy, 4(1), pp. 29-39. 
[201] Jang, T., Han, J., and Jai-Young, L., 1986, "Effect of substitution of 
titanium by zirconium in TiFe on hydrogenation properties," Journal of 
the Less Common Metals, 119(2), pp. 237-246. 
[202] Bratanich, T., Solonin, S., and Skorokhod, V., 1996, "Hydrogen 
sorption peculiarities of mechanically activated intermetallic TiFe and 
TiFe-MmNi 5 (LaNi 5) mixtures," International journal of hydrogen 
energy, 21(11), pp. 1049-1051. 
[203] Kresse, G., and Furthmüller, J., 1996, "Efficiency of ab-initio total 
energy calculations for metals and semiconductors using a plane-wave 
basis set," Computational Materials Science, 6(1), pp. 15-50. 
[204] Kresse, G., and Furthmüller, J., 1996, "Efficient iterative schemes 
for ab initio total-energy calculations using a plane-wave basis set," 
Physical Review B, 54(16), p. 11169. 
[205] Blöchl, P. E., 1994, "Projector augmented-wave method," Physical 
Review B, 50(24), p. 17953. 
[206] Kresse, G., and Joubert, D., 1999, "From ultrasoft pseudopotentials 
to the projector augmented-wave method," Physical Review B, 59(3), p. 
1758. 
[207] Perdew, J. P., and Zunger, A., 1981, "Self-interaction correction to 
density-functional approximations for many-electron systems," Physical 
Review B, 23(10), p. 5048. 



174 

 

[208] Lebsanft, E., Richter, D., and Topler, J., 1979, "Investigation of the 
hydrogen diffusion in FeTiHx by means of quasielastic neutron 
scattering," Journal of Physics F: Metal Physics, 9(6), p. 1057. 
[209] Izanlou, A., and Aydinol, M., 2010, "An ab initio study of 
dissociative adsorption of H 2 on FeTi surfaces," international journal of 
hydrogen energy, 35(4), pp. 1681-1692. 
[210] Nørskov, J., 1982, "Covalent effects in the effective-medium theory 
of chemical binding: Hydrogen heats of solution in the 3 d metals," 
Physical Review B, 26(6), p. 2875. 
[211] Juan, A., and Hoffmann, R., 1999, "Hydrogen on the Fe (110) 
surface and near bulk bcc Fe vacancies: a comparative bonding study," 
Surface science, 421(1), pp. 1-16. 
[212] Jiang, D., and Carter, E. A., 2004, "Diffusion of interstitial hydrogen 
into and through bcc Fe from first principles," Physical Review B, 70(6), 
p. 064102. 
[213] Gong, X.-g., Zeng, Z., and Zheng, Q.-Q., 1989, "Electronic structure 
of light impurities in alpha-Fe and V," Journal of Physics: Condensed 
Matter, 1(41), p. 7577. 
[214] Puska, M., and Nieminen, R., 1984, "Theory of hydrogen and 
helium impurities in metals," Physical Review B, 29(10), p. 5382. 
[215] Hayashi, Y., and Shu, W., 2000, "Iron (ruthenium and osmium)-
hydrogen systems," Solid State Phenomena, 73-75, pp. 65-114. 
[216] Lophaven, S. N., Nielsen, H. B., and Søndergaard, J., 2002, "DACE-A 
Matlab Kriging toolbox, version 2.0." 
[217] Cressie, N., and Johannesson, G., 2008, "Fixed rank kriging for very 
large spatial data sets," Journal of the Royal Statistical Society: Series B 
(Statistical Methodology), 70(1), pp. 209-226. 
[218] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, 
C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., and Dabo, I., 2009, 
"QUANTUM ESPRESSO: a modular and open-source software project for 
quantum simulations of materials," Journal of Physics: Condensed 
Matter, 21(39), p. 395502. 
 


