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SUMMARY

Wafer handling robotics are critical in semiconductor manufacturing to enable
tight control of temperature, humidity, and particle contamination during processing.
Closed-loop dynamic modeling during the robot design process ensures designs meet
throughput and stability specifications prior to prototype hardware purchase. Dynamic
models are also used in model-based control to improve performance. Thisthesis
describes the generation and mathematical verification of a dynamic model for athree
degrees-of-freedom wafer handling mechanism with one linear and two rotary axes.
The dynamic plant model isintegrated with motion and motor controller models, and
the closed-loop performance is compared with experimental data. Models with rigid
and flexible connections are compared, and the flexible connection models are shown
to overall agree better with a measured step response. The simulation time increase
from the addition of flexible connections can be minimized by modeling only the
component stiffnesses that impact the closed-loop mechanism response. A method for
selecting which elements to include based on controller bandwidth is presented and
shown to significantly improve simulation times with minimal impact on model

predictive performance.

XXi



CHAPTER 1

INTRODUCTION

This chapter provides an overview of semiconductor devices and the
semiconductor manufacturing process, substrate handling, and a variety of substrate
handling mechanisms. Robot dynamic modeling in the literature is reviewed, and the

three degrees-of-freedom test mechanism modeled in this study is introduced.

Background

Semiconductor Devices

Semiconductor devices are the basis of modern el ectronics and rangein
complexity from discrete diodes and transistors to complex arrays making up integrated
circuits (ICs). Microprocessor complexity istypicaly characterized by the number of
transistors as thisis strongly linked to processing speed and memory capacity. Following
Moore's Law the number of transistors approximately doubles every 24 months.
Decreases in component size are characterized by the minimum line width, typically
defined as the smallest lateral feature size printed on the wafer during fabrication 2,
Currently, leading microprocessors have line widths down to 20nm and contain over one
billion transistors. An overview of two common transistor typesis provided in Appendix

A.

Semiconductor Manufacturing Process
The semiconductor manufacturing process is comprised of three stages. The

silicon substrate is created during wafer fabrication. Then the IC circuitry isfabricated in



the front-end manufacturing phase. Finally, the circuits are tested and separated as

individual chips during back-end manufacturing.

Wafer Fabrication

The silicon substrate is the foundation of most semiconductor devices and must be
free of impurities or flaws that are detrimental to device performance. Wafer production
starts with a purified silicon ‘seed’ crystal that is dipped into a pool of molten silicon and
slowly pulled upwards. The surface tension draws a small amount of molten silicon up
with the seed, and upon cooling forms asingle-crystal silicon ingot whichis
approximately 300mm in diameter, the wafer size for current state-of-the-art processes

(Figure 1.1).

Seed

Single Silican Crystal
[uartz Crucible
‘Water Cooled Chamber
Heat Shield

Carbon Heater
Graphite Crucible
Crucible Support
Spill Tray

Electrode

Figure 1.1: Czochralski (CZ) crystal growing apparatus. Silicon is heated in the quartz crucible and
then a seed is dowly pulled upward creating a single-crystal silicon ingot. I mage from “ Two growth
techniques for mono-crystalline silicon: Czochralski vs. Float Zone” 2



The cylindrical ingot isthen sliced into wafers which are ground smooth and chemically

polished to amirror-like finish.

Front-End Manufacturing

The front-end manufacturing stage is the most complex of the three phases. It
includes all the wafer processing steps required to fabricate the IC circuitry. The total
number and order of process steps in device fabrication is dependent on the particular
technology and device manufacturer; however, the basic process steps are the same.

Figure 1.2 shows a flowchart of the typical process steps #.

Wafer
epitaxial
iy;)rocessing
v Oxidation
A | layering
Photoresist| |Pattern |
3 coating | ‘preparationl
N— CHE |
Stepper |
me LR S exposure |
[
‘ Ashing ‘
|
4
| Develop
g+ Metal etch \ and bake
Metal
'y deposition
A
Copper 1 Acid etch
deposition
Chemical :
vapor
| deposition |
A

lon implant Eg; dry

Figure 1.2: Typical front-end wafer processing flowchart. Specific number and order of process steps
vary depending on device. Process steps ar e repeated to generate multiplelayersin thelC. Image

from “Roboticsfor Electronics Manufacturing Principlesand Applicationsin Cleanr oom
Automation” 1?4,




Thefirst step istypically Epitaxy (EPI), in which alayer of single crystal silicon
is grown on the surface of the wafer. Then an insulating silicon dioxide layer is grown or

deposited through thermal oxidation or chemical vapor deposition (CVD).

Next alight-sensitive photoresist is applied across the surface of the wafer. A
pattern mask is then used to cover specified areas. Photolithography is used to transfer
the pattern to the wafer by exposing the uncovered areas to ultraviolet light. For a
negative photoresist, the light hardens the exposed areas. The material below the
unexposed photoresist is etched away. The wafer is then repeatedly cleaned to remove
any surface contaminants. lon implantation or diffusion may then be used to modify the
electrical conductivity of the exposed silicon substrate through the controlled addition of
impurities. Chemical vapor deposition (CV D) can also be used to create device layers on
the wafer surface. A metal layer can be deposited through physical vapor deposition
(PVD) and selectively etched away using a patterned photoresist to create conductive
circuit paths within the IC. Alternatively, damascene patterning may be used to create
Copper connections. If necessary, the wafer is planarized using chemical mechanical
polishing (CMP). The remaining photoresist is then removed using a plasma ashing

process. The above steps are repeated until the device is complete 2,

Back-End Operation

Testing is performed to ensure that the |Cs function as expected. Then the wafers
are cut into individual ICsin astep known as die preparation. The die is then bonded to a
lead die frame. Wire bonding is performed to connect electrical leads on the die frame to
the input/output terminals of the chip. The entire package is encapsulated in plastic to

provide physical and chemical protection 2.



Automation in Semiconductor Manufacturing

A clean environment is required for the manufacturing of semiconductor devices.
Temperature, humidity and particle contamination must be tightly controlled. As device
Size decreases, these requirements become more stringent because smaller defects can
degrade device performance. Humans naturally generate heat, moisture and particles, so
maintaining an ultra-clean environment with human operatorsis difficult. Automated
materials handling has been a key improvement in environmental control since the
transition to the 300mm wafer size in the mid-1990's. The increase in wafer size also
drove an increase in carrier mass, so ergonomics became a concern for operators

transporting wafers manually between process steps 2.

Automation in semiconductor fabrication facilities can be characterized into three
levels: interbay automation (between bays of process tools), intrabay automation (within
asingle process bay) and tool-level automation (within asingle process tool) 4. Wafers
are transported within and between process bays in specialized plastic enclosures called
Front Opening Universal Pods (FOUPs) (Figure 1.3). The FOUP provides a controlled
environment during wafer transport. A FOUP can hold up to 25 wafers which rest on
plastic fins spaced to accommodate a robot end effector during loading and unloading at
each process step. FOUPs are moved both between and within process bays using

overhead transport vehicles which move rapidly aong an overhead track.



Figure 1.3: FOUP used for wafer transport. Front of FOUP is open to show 25 wafers on plastic fins
inside. Photo Courtesy of Entegris, Inc.

The overhead hoist transfer (OHT) rides below the track and uses a belt-driven hoist

mechanism to raise and lower the FOUP (Figure 1.4).

Figure 1.4: OHT moves FOUPS between process steps. Left: Multiple OHT vehicles move along an
overhead track between process steps. Center: A FOUP is loaded onto an OHT vehicle. Right: A
FOUP is lowered from an OHT vehicle using a belt hoist system. Photos Courtesy of Daifuku Co,
Ltd.

The OHT is the most common method of wafer transport in modern 300mm fabrication
facilities. Within a process bay and to and from storage facilities such as stockers, the
FOUP may aso be moved using conveyor systems or an overhead shuttle system (OHS).

In an OHS the FOUP rides on a carriage above the track.



At the tool-level, robots are used to transport wafers from the FOUP into the
process environment and back. Atmospheric robots remove the wafers from the FOUP
and move them into the tool. In tools that operate at atmospheric pressure, such as CMP,
inspection and metrology tools, the atmospheric robot can pass the wafer directly into the
process environment. However, deposition (ALD, PVD, CVD, EPI), etch, and ion
implant tools require a high vacuum processing environment. In these cases, the
atmospheric robot places the wafersin aload-lock where it is transferred through gate
valves from the atmosphere into the vacuum environment. Once in the vacuum

environment wafers are handled by the vacuum robot.

Two examples of atmospheric robot architecture are shown in Figure 1.5.

Figure 1.5: Two examples of atmospheric robot architecture. Left: Single end-effector atmospheric
robot comprised of 2 rotary axes (a rotation at the base and a belt-driven extension) and a vertical
linear axis requires a horizontal track to feed multiple load ports. Right: Dual end-effector
atmospheric robot with 8 motion axes can feed four load ports without a track. Robot has a vertical
linear axis at the base, a rotary axis at the base, a belt-driven extend axis, a rotary axis to allow
rotation of the third link, and rotary and linear axes on each end effector. Images Courtesy of
Genmark Automation, Inc.

Atmospheric robots range in complexity, but typically have five degrees-of-freedom. A
vertical linear axis enables the robot to lift wafers from the FOUP. Three vertical rotary

axes allow the robot end effector to transport wafersin a horizontal plane from asingle



FOUP. Most robots have an additional fourth rotary axis or ride on a horizontal track to
allow them to access two to four FOUPs. The end effector of an atmospheric robot is
designed to fit into the 10mm vertical pitch between wafers in the FOUP. Atmospheric
end effectors may include specially designed wafer edge-gripping pads or vacuum
suction mechanisms to prevent wafer slip during transport.

An atmospheric robot may be part of an equipment front end module (EFEM), a
standardized interface used by some tools to minimize contamination when moving the
wafer from the FOUP into the process environment. Many EFEMs have two |oad ports,
but additional load ports may be used on certain processing tools where higher
throughputs are required. Figure 1.6 shows an EFEM with 4 |oad ports used to feed

wafers to avacuum cluster system.

Figure 1.6;: EFEM standardized tool interface. Left: 4 load port EFEM used to minimize
contamination when moving the wafersinto the process environment. Right: Top view of 4 load port
EFEM showing atmospheric robot on horizontal track, load lock, and vacuum robot used to feed 5
process stations. Images Courtesy of Genmark Automation, Inc.

\Vacuum robots are designed to withstand high-vacuum pressures (between 10°°
and 10°®Torr) and harsh environments, including aggressive chemicals and plasmas.
Figure 1.7 shows two vacuum robot architecture configurations. Vacuum robots vary in

complexity, but the most common architecture differs slightly from the standard SCARA



(“ selective compliance arm for robot assembly”) robot arm because the vertical linear
axisis at the base of the arm rather than the tip [*Y. Having the vertical axis at the base
allows the end effector to fit through small openings (such as through gate valvesinto a
load-1ock), and it also improves cleanliness since the particles generated by the motion of
the linear axis are farther from the wafer. VVacuum robots transport the wafer from the

load-1ock into the process environment.

Figure 1.7: Two examples of vacuum robot architecture. Left: Vacuum robot with base rotate axis
and belt-driven extend axis. Right: Dual end-effector robot with both arms retracted. Robot consists
of 6 motion axes. rotary and linear axes at the base, a belt-driven rotary extension axis for each arm
set, and alinear axisfor each end effector. Photos courtesy of Genmark Automation, Inc.

Depending on the number of wafers processed during aload-lock cycle, the load-lock
may include an elevator mechanism to drive wafers vertically, reducing the required
stroke or entirely eliminating the requirement for alinear axis on the vacuum robot
(Figure 1.8). Oncein the process environment the wafer is handed off to a processing

station or a process-specific mechanism.
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Figure 1.8: Elevator mechanism. Elevator mechanism used in load-lock to drive wafers vertically,

reducing or eliminating the requirement for vertical motion in the vacuum robot. Photo courtesy of
Genmark Automation, Inc.

Three Degrees-of-Freedom Test M echanism

Aggressive design schedules make hardware iteration in the design of
semiconductor robotics impractical. Dynamic modeling in the design process enables the
prediction of robot performance and minimizes hardware iteration. The diverse
architectures and complexities of wafer handling mechanisms necessitate a flexible
modeling platform where validated components and subsystems can be re-used to
minimize modeling time. This thesis presents a methodol ogy for modeling semiconductor
mechanisms and develops a model of an existing process mechanism to demonstrate
model performance.

For ion implant, machine throughput is critical. Depending on the specific recipe,

implanters can process up to 500 wafers per hour. This requires aggressive motion
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profiles and minimal settling time between moves. The mechanism studied receives
wafers from the vacuum robots and passes them through the process environment (in
vacuum). The goals of modeling are to predict positional accuracy (following error),

closed-loop system stability and settling time.

Mechanical System

The test mechanism described in this study is depicted in Figure 1.9. The test
mechanism moves wafers verticaly, relative to gravity, in the wafer process
environment. To facilitate the exchange of wafers from the vacuum robot, the mechanism
end effector is oriented horizontally. Once the exchange is complete, the end effector
with the wafer is rotated 90 degrees about the x-axis into the vertical orientation, and the

wafer is passed through the process environment.

The three degrees-of -freedom test mechanism consists of one linear and two
rotary axes. The vertically-oriented linear axis (Linear Y) isdriven by alinear motor
mounted directly to the payload carriage. In Figure 1.10, the payload is counterbalanced
with two cables over apair of pulleys which prevents payload damage in the case of a
single cable failure. Both the payload and counterbalance ride on a pair of linear bearing
rails, each with two bearing blocks per rail which provides increased moment stiffness.
Feedback is provided by a high-resolution linear encoder mounted to the payl oad

carriage.
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Figure 1.9: Architecture of Three Degrees-of-Freedom Test M echanism. Thetest mechanism is
comprised of avertical linear axis (Y-Linear), arotary axis about x (X-Rotate), and arotary axis

about y (Y-Rotate).
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Figure 1.10: Structure of the Y-Linear Axis. The payload is mounted to a pair of linear bearing rails
with two trucks per rail. It is counterbalanced using a pair of cables over two pulleys. The
counterweight also rides on a pair of bearing rails.

Thefirst rotary axis (X Rotate) in Figure 1.11 uses a direct-drive rotary motor
about the x-axis through aferrofluidic seal which alows the motor to remain at
atmospheric pressure while the test mechanism functions in a vacuum environment. The
payload of this axisis supported with asingle cross-roller bearing. Feedback is provided

by a high-resolution rotary encoder mounted to the motor rotor.
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Fixed Portion of Ferrofluid Seal

Ferrofluid Seal Drive Shaft

Figure 1.11: Structure of the X-Rotate Axis. A rotary motor issupported by a cross-roller bearing
and drivesthe payload through a ferrofluidic seal.

In the second rotary axis (Y -Rotate), arotary motor with an integrated two-stage
planetary gearbox drives the mechanism payload through atiming belt. This mechanism
provides rotation about the y-axis. Encoders on both the payload and the motor provide

dual feedback (Figure 1.12).
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Figure 1.12: Structure of the Y-Rotate Axis. A rotary motor with an integrated two-stage planetary
gearbox drives a pulley which is connected to the payload through a belt. The drive shafts passto the
vacuum environment through lip seals, allowing the motor to remain at atmospheric pressure.

Motion Control Architecture

Motion control for all three axes of the test mechanism is performed using the

Delta Tau Turbo PMAC2 Ultralite programmable multi-axis controller B (Figure 1.13).

Motion profiles are generated by the PMAC based on user inputs, and position and

velocity feedback from each mechanism is used to close the PID-based control |oop.

Each motion axis has a Copley Xenus MACRO amplifier to provide PI control of the
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motor current . The Copley amplifiers receive acommand current signal from the
PMAC and perform space-vector pulse width modulation (SVPWM) to generate the

desired motor currents.

Measured Position (encoder counts)

Measured Position (encoder counts)

DAC Command (A)

Y-Linear Copley > ; Motor Force (N) |
Amplifier »  Y-Linear Motor >

Actual Current (A)

DAC Command (A)
>
»

X-Rotate Copley Motor Torgque (Nm) =
>

PMAC

X-Rotate Motor

Amplifier
Actual Current (A)

DAC Command (A)

A4
A4

A4

Y-Rotate Copley Motor Torque (Nm) _
>

Y-Rotate Motor

Amplifier
Actual Current (A)

A4

Measured Position (encoder counts)

Figure 1.13: Overview of M echanism Control Architecture. The PM AC motion controller gener ates
motion profilesfor all three axesand outputs commands based on the positional error. Each axishas
a separate Copley amplifier which closesthe motor current control loop.

Dynamic M odeling of Robotic M echanisms
The mathematical derivations for the kinematic and dynamic analyses of arigid-
body, serial mechanism with six or fewer degrees-of-freedom are well-known
[61.[161121137 ' Recent robotics literature tends to focus on mechanisms with more complex
dynamics such as parallel mechanisms, walking and hopping, compliance in the linkages
or joints, and mechanisms that exhibit nonlinear behavior. Some models include details

of the control or actuation scheme. Applications for these models include prediction of
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dynamic behavior during the design process and model-based control. The model
development is primarily mathematical; however, some other methods such as finite-
element analysis software and graphical lumped-parameter modeling tools are also used.

Li et al. ™ describe the development of amodel for a4-DOF parallel SCARA
robot. The kinematics and rigid-body dynamics of the mechanism are derived
mathematically, and an elastic dynamic model is created by integrating a parameterized
CAD model of the robot geometry with elastic joints (using a spring and damper in
paralel). Kinematic constraints are determined from the kinematic analysis, and dynamic
performance indices are generated from the rigid-body dynamic equations. These are
combined to formulate an optimization problem which is solved using a goa -attainment
algorithm in Matlab. The optimized finite-element model is then used to create a virtual
prototype of the mechanism, and its dynamic performance and first four natural
frequencies are plotted across the workspace.

Das and Duilger (¥ generate a closed-loop dynamics model of a SCARA robot and
validate their ssmulated results with experimental data. Kinematics and rigid-body
dynamics are mathematically derived. Transmission losses and friction are not
considered. PD control is used for permanent magnet DC motors. Responses for
simulated and measured pick-and-place performance are compared, and the simulated
response is determined to be satisfactory based on the tolerances required for operation.

Ferretti et al. ' compare a number of alternatives including SimMechanics,
ADAMS, and Dymola. They define the requirements of modeling software to be “multi-
domain scope, software reuse, reliability and efficiency of numerical simulation, [and)]

integration with mechanical CADs’ 2. Dymolais selected to predict resonant behavior
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of manufacturing equipment in a machining center. The models are sufficiently accurate
to improve the performance of existing equipment and to predict the performance of new
machines with similar structures.

For thisthesis three graphical, lumped-parameter modeling software platforms
were compared by generating amodel of a gearmotor-driven rotary axis. Dymolawas
eventually selected because of its ease of use, the large number of existing libraries, ease
of library component modification, and ease of library generation. This study will only

discuss plant models generated mathematically in Simulink and graphically in Dymola.

Conclusions

Moore's Law drives aggressive schedules for the design of new semiconductor
manufacturing equipment. Hardware iteration as part of the mechanism design process
increases development cost and tool time to market. Closed-loop mechanism dynamics
modeling in the design process can significantly reduce hardware iteration by enabling
the prediction of mechanism performance prior to prototype parts procurement. Plant
dynamics models can be lumped or distributed-parameter, but it is desirable to minimize
the complexity of the plant to decrease simulation time and in some applications to
enable real-time or hardware-in-loop simulation. For many robotics applications, lumped-
parameter models are sufficient for the degree of accuracy required.

In the literature, lumped-parameter plant dynamics models are often derived
mathematically, but in an industria setting a graphical, modular modeling approach is
more desirable because it enables rapid model creation and updating. Modular modeling
lendsitself to the development of libraries of components and subsystems which can be

assembled quickly by users who do not have the time to develop a model mathematically.
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Multiple lumped-parameter software platforms support a graphical approach.

Thisthesis devel ops a flexible modeling approach for semiconductor robotics and
demonstrates model performance using athree degrees-of-freedom test mechanism. Plant
models will be developed in Dymola, verified mathematically in Simulink, and combined
with motor and motion controller modelsin Simulink to predict the closed-loop

performance of the test mechanism.
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CHAPTER 2
CLOSED-LOOP MODEL GENERATION WITH A RIGID-BODY

PLANT

In this chapter, the kinematics of the three degrees-of-freedom test mechanism are
described using a Denavit-Hartenberg convention. The governing equations for the rigid-

body dynamics are derived using the Euler-Lagrange equation.

Rigid-Body Plant M odel Generation

Mathematical Derivation

Denavit-Hartenberg Coordinate System Definition

For the mathematical model coordinate systems are positioned according to a
Denavit-Hartenberg convention (. The only exception to this convention is the base,
frame O, is not coincident with frame 1 when the origins are aligned but instead aligns
with the system hardware. Frame O isfixed in space, but all subsequent frames are body-
fixed. Figure 2.1 shows a generic link with attached coordinate frames and the standard
parameter definitions used to characterize the link geometry. For the n link the z, axisis
aligned with the n™ joint axis, the x, axis points along the mutual perpendicular between
Z, and z,:1, and the orientation of the y, axisis determined by the right-hand rule. A set of
four parameters defines the coordinate transformation from one coordinate system to the

next.
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Axis i-1 /

Figure 2.1: Denavit-Hartenberg Parametersfor a Generic Two-Link Configuration. |mage adapted
from “Introduction to Robotics M echanics and Control” [©,

The parameter a; measures the distance along x; from z; to z;,.,. Similarly, the
parameter d; measures the distance from x;_; to x; along z;. There are aso two relative
angles between the coordinate frames: a; is the angle from z; to z;., about x; , and 6;is
the angle from x;_, to x; about z;.

Figure 2.2 shows the test mechanism divided into three body links. Figure 2.3
shows the locations and coordinate directions of each joint in the test mechanism. A
payload frame is also included so that wafer position, velocity and acceleration may be
calculated. However, due to the proprietary nature of this mechanism no wafer frame

response data is presented or discussed in this study.
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Figure2.2. Link Structure of Test M echanism.

Table 2.1 identifies which link parameters operate under closed-loop control and will

therefore be variables in the rigid-body dynamics equations. The remaining parameters

are defined or identified as geometry-specific constants. Because of the proprietary nature

of this mechanism, specific parameter values are not provided.
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Figure 2.3: Denavit-Hartenberg Coordinate Definitionsfor Test M echanism.
Table 2.1: Denavit-Hartenberg Parametersfor Test M echanism.
! CIR] R d; 0,
1 0 -90° variable -90°
2 0 -90° constant variable
3 0 90° 0 variable
4 0 0° constant 0
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Configuration Constraints

The Denavit-Hartenberg kinematic model includes the three body links, but two
critical components of dynamic response are missing. The counterbalance on the Y -
Linear axis and the belt drive on the Y -Rotate axis each initially add an additional
degree-of-freedom to the system, but these degrees-of-freedom are eliminated in the

dynamic response through a pair of geometric configuration constraints.

Y-Linear Axis Counterweight

The position of the counterweight center of gravity, CGgy, iS measured relative to

the base frame (Figure 2.4).
rp
\_/
J_ ——
C, |
T & |
_I Zl
CGew I e CG,
X $
e d
Yewt f
| Yo
0

Figure 2.4: Simplified Y-Linear Drive Diagram.
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For inextensible cables the counterweight position d., is calculated from the payload
position d; by

dew = 2¢3 — ¢ — €3 — Legpre + 1 — dy (2.1)
where c; isthe vertical distance between the pulleys and the base frame, c; is the vertical
distance between frame 1 and the cable mount on the payload carriage, c;isthe vertica
distance between the counterweight center of gravity and the cable mount on the
counterweight carriage, Lcaye is the total cable length, and rp isthe pulley radius. Asd;
increases, dq, decreases with an initial offset that is determined by the length of the

cables and the system geometry. Differentiating (2.1) yields the counterweight velocity.

Ve = —d1 (2.2
Y-Rotate Axis Belt Drive

Figure 2.5 illustrates the Y -Rotate drive with the variables used for drive
dynamics calculations. The Y-Rotate belt driveis described by a pair of configuration
constraints relating the motor output shaft position 8y, the gearbox output shaft position
8¢, and the payload position 6s.

Assuming the gearbox isinfinitely stiff and there is no angular offset, the motor
angle, 6,,, and the gearbox output angle, 8, are proportional,

1 2.3)
HG = E 9M

where Rg is the gearbox gear ratio.
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Figure 2.5: Simplified Y-Rotate Drive Diagram.

Differentiating (2.3) yields the equations for gearbox angular velocity and acceleration.

. 1. (2.4)
O = R_GHM
N 1 . (2.5)
=—40
HG RG M
Treating the belt as inextensible yields
6, =g, (26)
2

wherer; isthe drive pulley radius and r isthe driven pulley radius. This assumesthereis
no timing offset between the drive and driven pulleys. Differentiating (2.6) yields the
equations for link 3 angular velocity and acceleration.

. T .
0, = _196 (2.7)
r
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_ .. (2.8)

Kinematics
Using Denavit-Hartenberg notation the homogeneous transformation matrix from

coordinate system i to coordinate systemi-1is

cos0; —sinb; 0 a_q
i—1 _ |Sin®; - cosa;_,; cos6;-cosa;_; —sina;_; —sina;_q-d;
7 sing; - sina;_; cos6; - sina;_,  cosa;_;  cosa;_,-d; (2.9
0 0 0 1

Since the first coordinate frame has a constant orientation its angular velocity is
W, =0 (2.10)

For the remaining frames the angular velocities with respect to the base are,

&, = 6,7, (2.11)
53 = 52 + 9323 (212)
. = @, (2.13)

The linear velocities, v;, of each of the four coordinate frame origins are,

5, = d,7, (2.14)

b, =, (2.15)

By = b, (2.16)

By = Dy + @y X da¥s (2.17)

For kinetic energy calculations, the velocity at the center of gravity of each link, vg;with
i=1, 2, 3 are needed. The mass and inertia of the end effector are included in the third
link.

(2.18)

Il
<L
N

Vg1
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EGZ = 132 + (T)Z X Fcz/z (219)
563 = 133 + (T)3 X FG3/3 (220)
In the above equations 7;5; /; denotes a vector from coordinate frame i to the center of

gravity of link i.

Dynamics

The rigid-body mechanism dynamics are calculated using energy methods. First,
the kinetic energy of each of the three links, the counterweight, and the Y -Rotate
gearmotor are calculated. Thetotal kinetic energy T iSthe sum of the kinetic energies of
the links T;, the counterweight T, and the Y -Rotateintegrated gearmotor Tay,

Toor =Ty + Ty + T3 + T,y + T (2.21)
For thei™ link kinetic energy is

R 1.7 . (2.22)
T; = SMiV6 Vi 50 Li/ciw;

where m isthe mass and [; ; isthe inertiatensor.

Next, the potential energy for each link is calculated as the sum of the link
potential energies. It should be noted that the potential energy of the Y -Rotate gearmotor
isincluded in the V3 term,

Vit = Vi + Vo + Vs + Vo (2.23)
The potential energy of thei™ link, V4, is defined as
Vi = —m;g " Tgiso (2.24)
where 7; s0 Isavector from the base frame to the center of gravity of the i"™link and g=
[0 -9.81m/s® 0]. Thusgravitational potentia energy is defined from the base frame as a

datum.
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The total kinetic and potentia energies are used to form the Lagrangian,
L =Tiot = Viot (2.25)
The dynamic mode follows by applying the Eul er-Lagrange equations,

d(ac\ oL (2.26)

where the ¢’ s are the generalized system coordinates

q1=d; (2.27)
q2 = 0, (2.28)

and the Q;’ s are the generalized forces applied to the system. The generalized forces are
determined from the principle of virtual work.

m k 4
oW =" 0;60;= ) Fr + ) L6, (2.30)
= =1

= =
Virtual work §W isthe sum of the products of each generalized force Q;with its virtual
displacement §q;, and mis the total number of degrees-of-freedom. The equation then
expands the generalized forces into translational and rotational terms. Index kisthe
number of translational degrees-of-freedom, and F; is the applied force. Index p isthe

number of rotational degrees-of-freedom, and [; isthe applied moment. The total number

of generalized coordinates used to describe the system is k+ p=m. The generalized forces

are,
Q1 = Fiy (2.31)
Q2 = Tom (2.32)
Qs = Tap (2.33)
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where F;,, isthe force applied by the linear motor to link 1, t,,, isthe torque applied by
the direct-drive rotary motor to link 2, and 75 isthe torque applied by the motor to link 3
through the belt drive determined using the gear and pulley ratios,

"2 (2.34)

T3p = Rg—1T3um
4]

The dynamic equations are generated symbolically in Matlab (Appendix B). First
the Denavit-Hartenberg parameters are defined as a structure. Transformation matrices
between coordinate frames are generated, and position vectors between frames are
defined and transformed into frame O coordinates. The inertiatensors are defined and
transformed into frame O coordinates. Angular and linear velocity vectors are defined for
each frame and used to calculate the kinetic energy of each link. Link kinetic energies are
summed to determine the total kinetic energy. Potential energies of each link are
determined and summed. The Lagrangian is calculated and input into a Lagrange

function which symbolically differentiates to determine the equations of motion.

Conclusions

The kinematic and dynamic equations for arigid model of the test mechanism are
relatively ssmple to implement using a symbolic solver. However, the resulting equations
are quite long due to the required coordinate transformations. For a design application,
these equations do not provide much insight into the system response without the
development of a complete numerical solution. For model-based control applications,
each mathematical operation requires processor time, so significant simplification is
required to enable the models to run real-time. These equations will be solved

numerically and used to verify arigid Dymola model in the following chapter.
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CHAPTER 3

SOFTWARE MODELING

Motion controller and amplifier models are generated in Simulink, and motor and
rigid mechanism dynamic models are created in Dymola. While Dymola has the
capability for control modeling, Matlab/Simulink is a standard software for control
design and simulation, so implementing the control modelsin Simulink enables more
effective model sharing. A rigid-body mechanism dynamic model is also created in
Simulink for mathematical verification of the Dymola plant and verification of the

Dymola/Simulink integration process.

M echanism Dynamic Model Generation
Dynamic models of the test mechanism are developed in Simulink and Dymola.

The Simulink model is used to verify the performance of the Dymola model.

Matlab I mplementation

The symbolically generated dynamic equations are implemented in Simulink
through the Matlab function block (Figure 3.1). The inputs to the model are the actuator
currents for each the three motion axes. They are converted to forces/torques through the
force/torque constant and applied to the mechanical plant model. The model outputs

acceleration which isintegrated to determine the position and velocity of each axis.

Dymola I mplementation
The same plant dynamics are also modeled in Dymola. Dymolais a GUI-based
front end for the Modelica physical-system modeling language. Modelicais an open-

source language for multi-domain modeling. Most of the modelsin this study are built
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Figure 3.1: Open-Loop Plant Dynamic Model.
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from or adapted from component models in the Modelica Standard Library which is a set
of verified open-source component models spanning awide range of domainsincluding
mechanical, electrical and thermal. Figure 3.2 shows the components used in this study

and their location in the Modelica Standard library.
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Figure 3.2: Modelica Standard Library Structure and Utilized Components

Modelsin Modelica are energy-based. Energy is exchanged between components
through the ports, which is al'so how components are connected graphically. There are
two types of variables, across and through. Across variables such as velocity and voltage
are measured across two ports and their values are passed between components. For

example, if two rotational components are graphically connected the angular position of
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the terminal flange (flange b) on the first component is identical to the position of the
base (flange a) of the second. Through variables, such as forces and currents, are
measured through the port, and their values sum to zero at a connection between
components. Figure 3.3 shows a Dymola model of atorque applied to a simple lumped
inertia mounted on atorsion spring. The ports on the inertia and spring are identified and

the relationships defined by the graphical connection are listed.

Component
Through Vanable: Torque
Across Vanable: Angular Position Port (Flange b)
Torque: ™
ramp Angular Position: 6
torque inertia

J=J fixed

duration=duration

Port (Flange a)
Graphical Connection Torque:Ta
Torque Relationship: Ta+ T =0 Angular Position: 6a

Angular Position Relationship: 6a=6p

Figure 3.3. Across and through variables defined for a simplerotational Dymola model.

It should be noted that through variables are identified in Modelicawith the
keyword “flow”, which may cause confusion in the mechanical domain where bond
graph flow variables actually correspond to across variables. Each connector typeis
defined to pass specific variables, so connections between differing connector types are
not possible. The connectors differ in shape and color to enable the user to quickly
identify where connections are possible. Table 3.1 shows the types of connectors used in

this study and identifies the signals passed through each connector type.
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Table 3.1: Relevant M odelica Connectors.

Connector Type Signals Connector Style

Real Value Real-valued Signal kil realOutput

Electrical Pin Voltage iR i
Current . D

Rotational Flange Torque flange_a flange_b
@ O

Translational Flange | Force flange_a flange_b
Position

B (]

Multibody Frame

Position Vector
Orientation Matrix
Force Vector
Torque Vector

Il

frame_a frame_b

The 3 DOF mechanism model in Dymolais shown in Figure 3.4. Actuator
currents for the Y-Linear, X-Rotate, and Y -Rotate axes are input on the left side. They
are multiplied by the force/torque constants for each motor and converted to
forces/torques. For the Y -Linear axis, the force is used to drive the payload prismatic
joint through the tranglational axis flange. The flange also connects to the pulley which is
modeled with a pair of ideal GearR2T components which convert linear to rotary motion
through a user-specified gear ratio. On the output of the pulley is the counterwei ght
prismatic joint which drives the motion of the counterweight modeled asa singlerigid
link.

The multi-body output flange of the prismatic joint is connected to the payl oad
subsystem model, shown graphically as an image of the Y-Linear carriage payload in

Figure 3.5. The X-Rotate and Y -Rotate applied torques are input into the payl oad
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subsystem. The X-Rotate input drives arevolute joint about the X-axis through alumped

inertia representing the motor rotor and ferrofluid seal inertias. The Y-Rotate input drives

idealGearR2T1 idealGearR2T
e
world . -
4 fixedTranslation measuredPosition yLinPosition
l i l 4 :1 o} payloadP...
> l. 8 3 .J_-.
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Figure 3.4: Rigid-Body Model of Test M echanism in Dymola.

arevolute joint about the y-axis through a drive train consisting of the motor inertia, the
gear ratio, and the ratio of the driven pulley radius to the drive pulley radiusin the belt

drive. All drive components are assumed to be frictionless and rigid.

36



Open-Loop Simulation
Modelsin Dymola can be utilized in Simulink in one of two ways. The functional

mock-up interface (FMI) standard enables model exchange across a number of software

ax
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Figure 3.5: Rigid-body Payload Sub-M odel in Dymola.
platforms. Models are exported from Dymola as a functional mock-up unit (FMU) and
can then be imported into Simulink in the same format. A second older method for model
transfer uses the Dymola-Simulink interface where the Dymola model is converted to C-
code and is run in Simulink as an S-function 1'%, The second method is sufficient for the
purposes of this study since only model transfer from Dymolato Simulink is of interest.
Figure 3.6 shows the Dymola rigid-body plant model implemented as an S-function block
in Simulink.

Both the Simulink plant and the Dymola plant were run open loop with a 1A

current applied to each axis. The acceleration for each of the three motion axes was
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measured in both models, and as expected, they were nearly identical. The Simulink and
Dymola models differed by 1.4e-5%, 4.3e-4%, and 2.7e-3% for the Y-Linear, X-Rotate
and Y -Rotate axes, respectively. This verifies that the model in Dymolais performing as

expected.

YLin Accel
yLinPosition p :I

»
>

0 P yLinCurrent XRotPos p YLin Accel
Display
YLinCurrent > (-

ayLin

XRot Accel

0 P{ xRotCurrent i
XRotCurrent aYp I:l Display
aym >—‘ |_:Rot Accel

1 P| yRotCurrent yRotMotorPos

YRotCurrent YRot Accel
yRotPos P Display

DymolaBlock

Figure 3.6: Dymola Open-L oop Plant Dynamic M odel.

Controller Mode Generation

Motion and motor controller models are generated in Simulink.

PMAC Motion Controller

The multi-axis motion controller used is the Delta Tau Turbo PMAC2 Ultralite
that can control up to 24 motion axes simultaneously %, The PMAC provides
proportional-integral-derivative (PID) control for position, along with feedforward terms
for friction, velocity, and acceleration. Servo updates are at 2.25kHz, and encoder
feedback is communicated at 9kHz. This means that the encoder data used in the motion
calculations is more recent than the previous servo cycle. User-specified motion control
programs in the PMAC generate the commanded motion profile for each axis. At ahigh
level, every servo cycle the PMAC increments the commanded position, compares the

commanded value to the measured position (read from sensor feedback), and outputs a
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command to the current controller based on the difference. A simplified diagram of the
control loop is shown in Figure 3.7. In thisfigure, some scale factors and limits are not
shown for clarity.

The controller inputs are the commanded position from the motion profile
generator, position feedback from the load-side encoder and position feedback from the
motor-side encoder (in the case of a mechanism with a single encoder, the two positional
feedbacks will be identical). The direction of the friction feedforward is determined by
the sign of the commanded velocity. The velocity and accel eration feedforward terms are
proportional to the first and second derivatives of the commanded position, respectively.
The error between the commanded position and the measured |oad-side position is
integrated when the integrator is on. The state of the integrator is determined by a user
input variable. For this study, the integrator is active only when the commanded velocity
iszero. This prevents the integrator from affecting the system stability during motion.
The integral feedback is added to the positional error. This sum is then added to the
acceleration and velocity feedforward terms. Then the derivative of the measured motor
position for a dual-encoder system, or measured load position if only asingle encoder is
being used, is subtracted. Thistotal is multiplied by the proportional gain and filtered
before being added to the friction feedforward term. This sum is the commanded current
in the units used by the digital to analog converter (DAC units). The commanded current
in DAC unitsis converted to a commanded current in Amps via the transconductance
value, theratio of peak amplifier current to peak DAC voltage output. The controller
gains are defined by user-input I-variables. Table 3.2 provides an overview of the key
motion control parameters required to set up the controller for asingle motor 2.

Figure 3.8 shows the Simulink model of the PMAC controller. The foundation of
the model is provided by Delta Tau with afew key additions. The model combines the
simplified loop structure shown in Figure 3.6 with additional scale factors and limits. The

provided model does not include the integration mode selector or the option to read
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Figure 3.7: Simplified Structure of PMAC Control L oop. Some scale factors and limitsare not shown for clarity
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Table 3.2: Relevant PM AC Motor Parameters.

Parameter | Definition

Ixx03 Motor xx Position Loop Feedback Address
Ixx04 Motor xx Velocity Loop Feedback Address
Ixx07 Motor xx Master Scale Factor

Ixx08 Motor xx Position Scale Factor

1xx09 Motor xx Velocity Loop Scale Factor

Ixx16 Motor xx Maximum Program Velocity
Ixx17 Motor xx Maximum Program Acceleration
Ixx30 Motor xx PID Proportional Gain

Ixx31 Motor xx PID Derivative Gain

1xx32 Motor xx PID Velocity Feedforward Gain
Ixx33 Motor xx Integral Gain

Ixx34 Motor xx Integration Mode

Ixx35 Motor xx PID Acceleration Feedforward Gain
Ixx36 Motor xx PID Notch Filter Coefficient N1
Ixx37 Motor xx PID Notch Filter Coefficient N2
Ixx38 Motor xx PID Notch Filter Coefficient D1
Ixx39 Motor xx PID Notch Filter Coefficient D2
IXx63 Motor xx Integration Limit

Ixx65 Motor xx Deadband Size

Ixx68 Motor xx Friction Feedforward

Ixx69 Motor xx Output Command Limit

velocity feedback from a second encoder in the case of a dual-encoder system. The block
diagram of the integration mode selector is shown in Figure 3.9. The selector first looks
at Ixx34, the user-input integration mode. If 1xx34=0, then the integrator is always on. If
Ixx34=1, then the integrator is turned on when the velocity is zero, and the integrator is
turned off otherwise.

The feedback portion of the model has been modified to read feedback from two
encoders. The positional error is always cal culated from the primary encoder, whose
address is defined by Ixx03. If Ixx03=1xx04, then the velocity loop also uses the primary

encoder to calculate the velocity feedback. However, 1xx04 may also address a secondary
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encoder. If thisis the case, the secondary encoder is used to calculate the velocity
feedback. Dual-encoder systems are typically used for compliant mechanisms whereit is
possible for the motor to “wind up” relative to the payload. In a wind-up situation, the
motor position changes, but because of mechanism compliance the payload isinitially
stationary. For the dual-encoder configuration, alarge motor velocity will reduce the
controller command, in turn reducing the system wind up. No wind-up is possible in the
model developed in this chapter because the belt is modeled asinextensible, but in later

chapters the Y -Rotate gearbox and belt stiffnesses are considered.

Copley Motor Controller

The command current from the PMAC (in Amps) is then input to a Copley Xenus
MACRO amplifier. In this application the Copley is used in current mode to provide
closed-loop control of the motor current at arate of 18kHz. For athree-phase motor, the
Copley controls two of the three motor phases. Figure 3.10 shows the Copley Amplifier

Simulink block diagram.
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For phases 1 and 2 the command current is multiplied by the phasing. The
phasing generates an anal og approximation of the motor commutation by changing the
commanded current in each phase based on the motor position,

. . 2 (3.2)
phasing = sin (n@ — ?({ — 1)>

where ( is the phase number, n is the number of poles for arotary motor, and ¢ isthe

motor angle. In the case of alinear motor, n6 is replaced by 2%, where x isthe linear

motor position and p isthe motor electrical cycle length, the distance traveled in one
complete electrical cycle (provided by the motor supplier). Thus the commands to each
motor phase are equal in peak amplitude but 120 degrees out of phase. A zero-order hold
is used on the current feedback to the controller to limit the rate to 18kHz and to establish
priority, ensuring the feedback portion of the model is solved after the control portion.
The phase 3 command current is calcul ated from the negative of the sum of the phase 1
and 2 command currents.

A block diagram of the Copley control loop is shownin Figure 3.11. The DC
current offset is added to the commanded phase current . The command is then filtered.
The current loop has two built-in configurable Butterworth/Biquadratic filters with user-
defined filter parameters. For the purposes of this study, the DC current offset and the
command current filters are not utilized, so the blocks in these locations serve only as
placeholders for future model devel opment. The commanded phase current is then

limited to the user-specified peak and continuous current values. The actual phase
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current is subtracted from the limited command current, and the error is then input into a
Pl control loop. The output of the control loop is then multiplied by again of 32 divided
by the bus voltage. Thisvaueisthen multiplied by the ratio of total bus voltage to peak
current (Figure 3.10), generating a command voltage which is sent to the pulse-width
modulation (PWM) stage to generate sinusoidal commutation in each of the three motor
phases. It is assumed that the frequency of the switching in the PWM stageis high
enough that it has no significant effect on the response of the mechanism. Additionally,
modeling the PWM stage forces the simulation to take extremely small solver time steps,
increasing overall simulation time and complexity. For these reasons the PWM stageis
not included in the mechanism model. The controller isinstead treated as analog, and the
commanded phase voltage is applied directly to the motor phase.

The Simulink diagram of the current limiter block in the Copley control loop
model is shown in Figure 3.12. The current limiter has two primary functions: ensure the
amplitude of the current never exceeds the user-specified peak current limit and ensure
the integrated current never exceeds a cal culated set point value'™. The magnitude of the
command current isfirst compared to the peak current limit. If the magnitude exceeds the

peak current limit the command current is limited to the peak current.

46



& = = R
Command Current I_’ _J > L’ J L >

al <= Switch sl 7= Switch3 - Limited Current
Switch1
Relational Relational
Operator Operator2 »
Y |-
— i <
O =C= Switch2 -

Relational

Peak Current Neagative Peak 0 Operator1

Current
Zero
KTs
w? el
Actual Output Lzt
Current Math Discrete-Time - -
Function Integrator
12T Setpoint Continuous Current
Limit1
-C- » LI2
Continuous Current Math
Limit Function1

Figure 3.12: Simulink M odel of Copley Current Limiter.

The continuous current set point is calculated as
12T Setpoint = (igear — tont) * tior (3.2)

where icon is the continuous current limit and t,r is the I°T time limit (the allowable time
for which the continuous current may be applied). An accumulator variable is used to
track the integrated current and must be non-negative. The accumulator valueis
calculated incrementally using

accumulatory,, = accumulator, + (iZsua — P2ont) * At (3.3
Every time step the accumulator value, accumulator, is incremented by adding the
difference between the square of the actual current i s and the continuous current limit
scaled by the time step At. The accumulator value is compared to the set point, and if the
accumulator is larger than the set point the current is limited to the continuous current
value. Otherwise the commanded current is passed through the current limiter

unmodified.
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Motor Model Generation
Models are devel oped for athree-phase Delta wound linear motor and athree-

phase Wye wound rotary motor.

Three-Phase Delta Wound Linear Motor
The linear motor used to drive the Y-Linear axis is a three-phase delta wound

brushless DC (BLDC) motor. Figure 3.13 shows a schematic of the motor circuit 2.

\Z

Figure 3.13: Circuit Diagram of Three-Phase Delta Wound BrushlessDC Motor.

Each phase of the motor has an associated resistance R, inductance L, and back EMF
Keme, Where {is the phase number, (=1, 2, 3. For the purposes of this analysis, the
resistances and inductances of the three phases are assumed equal, R-= Rand L= L
respectively. It isimportant to note that motor manufacturers typically specify the lead-
to-lead resistance and inductance values rather than phase resistance and inductance 2.

From the circuit diagram, the phase resistance and inductance values are calcul ated as
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3 (3.9
R = ERlead—to—lead

3 (3.5
L= ELlead—to—lead

The magnitude of the back-emf constant for each of the three phasesis assumed to be
equal, but the back-emf voltage loss in each phase is scaled by the phasing. Aswith the
resistance and inductance values, motor vendors may also provide the back-emf constant
as measured between two leads. For the Delta winding, the voltage measured between
two leads is equiva ent to the phase voltage, so no additiona scaling of the back-emf
constant is required.

Using Kirchhoff’s laws the relationship between current and voltage in each of

the three motor phasesis,

di 3.6
Vl—V2=R-i1+L-d—tl+kemf-v-phasing1 (36)
di 3.7
Vz—Vg=R-i2+L-d—t2+kemf-v-phasing2 S
di 3.8
V3—V1=R-i3+L-d—t3+kemf-v-phasing3 (38)

Figure 3.14 shows the graphical implementation of the three-phase Delta motor in
Dymola. The inputs are the commanded currents in each of the three phases. The outputs

are motor current and a force/position combination through the translational flange.

Three-Phase Wye Wound Rotary Motor
The rotary motors driving the X-Rotate and Y -Rotate axes are three-phase Wye
wound BLDC motors. A circuit schematic of a Wye wound motor is shown in Figure

3.15. Aswith the Delta wound motor, each phase of the motor has an associated
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Figure 3.14: Three-Phase Delta Wound Brushless Linear Motor Model in Dymola.

resistance R;, inductance L, and back EMF k..., where {'isthe phase number with (=1,
2, 3. Thereis an additional voltage variable V,, describing the voltage at the central node
of the Wye. Asin the case of the Delta winding, the resistances and inductances of the
three phases are assumed to be equal, R-= Rand L= L, respectively.

From the circuit diagram, the phase resistance and inductance values are

caculated from the lead-to-lead resistance and inductance,

1 (3.9
R = ERlead—to—lead
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Vs

1 (3.10)
L= ELlead—to—lead

In the Wye wound motor the phase voltage is not equal to the voltage between two leads.
From the back-emf constant between two | eads the phase back-emf constant is cal culated
as

kemf,lead—to—lead (3.11)
kemf = \/§

Kirchhoff’slaws yield the relationship between current and voltage in each of the three

motor phases and the voltage at the central node ¥,

di . 3.12
Vl—Vani1+Ld—t1+kemf9 (312)
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di . 3.13

Vy = Vi = Riy + L——=+ kom0 (313)
dt

di . 3.14

Vs — Vi = Riz + L—+ kom0 (314
dt

Figure 3.16 shows the graphical implementation of the three-phase Wye wound rotary
motor in Dymola. The inputs are the commanded currents in each of the three phases, and

the outputs are motor current and a torque/angle combination through the rotational

flange.
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Figure 3.16: Three-Phase Wye Wound Brushless Rotary Motor Maodel in Dymola.
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Conclusions
Components from the Modelica Standard Library are used to create arigid model
of test mechanism in Dymola. The open-loop performance of the Dymola model iswithin
2.7e-3% of the mathematical model in Simulink for all motion axes. This verifies not
only the construction of the model but also the use of the Dymola-Simulink interface.
Motor models are similarly developed in Dymola from standard library parts. Motion and
motor controller models are generated in Simulink. These models will be combined in the

following chapter to predict the closed-loop performance of the test mechanism.
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CHAPTER 4
SIMULATED RIGID CONNECTION MODEL AND

EXPERIMENTAL RESULTS

The closed-loop response of the Dymola plant is verified with the mathematical
model implemented in Simulink. The simulated step response is then compared to

measured data.

Closed-L oop Dynamic Simulation

Closed-L oop M odel Development

The PMAC, Copley, motor and plant models are combined in Simulink to create a
model of the closed-loop dynamics of the 3 DOF test mechanism. Figure 4.1 shows the
closed-loop model in Simulink with the Dymola plant (combining the motor and
mechanism models). The model with the Simulink plant is not shown as the only
difference is the replacement of the Dymola plant block with the Matlab function
mathematical plant block.

A positional command for each axisis generated by the input block shown in
Figure 4.2. This block is designed to output a constant value, bi-directional step, random
or swept sine input based on the value of a user-specified parameter. All commands are
generated in encoder counts. The position command and |oad encoder feedback(and
motor encoder for the Y -Rotate axis with dua -feedback) are input into the PMAC block

which outputs acommand current (Figure 4.1).



YLinear Command
osition

Scan Input

Z\

Ounl

o\

Xtiit Command
Position

Xtilt Input

outt

YLinear PMAC PID
Filter r1

E(7AN

Yiit Command
Position

Viilt Input

&

] DAC Command Current
Phase 1 Command

YLinear PMAC Output

Phase 2 Command C:

Phase 1 Actual Current

Phase 2 Actual Current PhEse.S; Commead O

Load Encoder
Conversion Factor

Y-Linear Copley Amplifier

Xtilt PMAC Output

Zero-Order
Holds J-L\_
Zero-Order
Hold1

DAC Command Current
Phase 1 Command C:

Lyl yLinP1in

yLinP2in

inP3in

| Hiotor Position

Phase 2 Command Current

Xtiit PMAC PID
Filter r1

Phase 1 Actual t

Phase 3 Command Current
Phase 2 Actual Current

XRotP2in

XRotP3in

X-Rotate Copley Amplifier

Rounding
Function3

YLinear Encoder

z
Unit Delay1

Xttt
Encoder

L
y Gain  Rounding Unit Delay4
—— Function
Yt Encoder
nPhase1Ct
nPh; Ci
»Phase2C Gain2  Rounding unit Delay2
Function
tPh; Ci
Rotate Actual
xRotMotorCy Current
YRotiotorC:
yLinlotorC: YRotate Actual
Current

DymolaBlock

I

Zero-Order
Hold8

(7]

Zero-Order
Hold10

Ylinear Actual

uti
L

\/—l—
Ytitl PMAC PID
Filter r6

Yiilt PMAC
Output

Command Current

Phase 1 Command Current f——

Posiion

Phase 2 Command

1 Actual Current

Phase 3 Command C:

Phase 2 Actual Current

Y-Rotate Copley Amplifier

(7]

Zero-Order
Hold3

7]

Zero-Order
Hold

Unit Delays

Ytilt Motor
Encoder

Rounding
Functiond  Gain1

Figure4.1: Closed-L oop Dynamic Simulink M odel with Dymola Plant.

55




C-

Constant3

0

Constant

—|
—a
|| ¢ (D
YLinear Step Up ’I a Out1
Multiport

_I_ Switch
YLinear Step Down W

Uniform Random
Number

>

Chirp Signal ~ Gain1

Postion Profile p—

YLinear Motion
Profile Generator

Figure 4.2: Input Block Generates Position Command in Simulink.

This command is held for one servo cycle using the zero-order hold block, ensuring that
the motion command updates at the servo rate. The command is then passed to the
Copley Amplifier along with motor velocity and phase current feedback. The Copley
outputs current commands for each of the three motor phases at the current loop rate (the
zero-order hold isincluded in the Copley subsystem). The motor phase current
commands for each of the three motion axes are input into the Dymola plant, which
contains both the motor and mechanical system dynamics. The Dymola plant outputs
position and phase currents for each of the three axes. The position outputs are multiplied
by their respective encoder conversion factors, rounded down to the nearest integer (since
the encoder will only output position to the nearest count), and passed through a unit
delay. The unit delay at the phase rate ensures that the encoder feedback is always from

the previous communication cycle.
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M athematical Verification

The response to a commanded positional step is simulated using both the Dymola

and Simulink plant models. The step size is chosen to be as large as possible without

saturating the control output. Figure 4.3 shows that the responses are approximately

identical as expected.
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Figure 4.3: Closed-L oop Verification of Rigid

Connection Plant. Top Left: Y-Linear Axis Top Right:

X-Rotate Axis Bottom Center: Y-Rotate Axis. For all three axes, the simulated step responses of the
M athematical and Dymola Plants are approximately identical.
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Experimental Validation

The same step inputs are commanded to the physical system and the responses

measured for each motion axis. Figures 4.4 through 4.10 compare the simulated and

measured responses.
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Figure4.4: Simulated and Measured Y-Linear Step Response.

Figure 4.4 shows the simulated and measured position response and following

error for apositional step commanded to the Y -Linear axis. As expected, the rigid body

plant captures the gross dynamics of the system; however, the oscillatory behavior at

75Hz observed in the measured response is not present in the simulation. This frequency

does not align with the 37Hz frequency from the stiffness of cables connecting the

payload to the counterweight, and is instead believed to be from the z-direction moment

stiffness of the X-Rotate bearing which has a calculated first frequency of 76Hz. A more

quantitative comparison of the ssmulated and measured responsesis provided in Table

4.1. The percent differenceis calculated by

|simulated — measured| (4.2

Percent Dif ference = 100 |measured|
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Table 4.1: Comparison of Rigid Connection Simulation and Measured Y-Linear Step Response.

Parameter Simulated | Measured Percent Difference
Delay Time (s) 6.263e-3 3.559¢e-3 76.97
Rise Time (s) 0.01080 0.01861 41.97
Peak Response (m) 3.439e-04 3.3667e-04 6.205
Peak Overshoot (%) 37.56 46.66 19.50
Peak Time (s) 0.02204 0.03455 36.22
Settling Time (s) 0.08479 0.09919 14.51

The delay time is the time for the response to reach 50% of the final commanded
value. Therisetimeisthetime for the response to rise from 0% to 100% of the final
commanded value. The peak time is the time for the response to reach the peak of its
overshoot. The maximum overshoot is the difference between the peak value and the
commanded value as a percentage of the commanded value. The settling timeisthe time
required for the response to reach and remain within 5% of the commanded value. The
difference in peak response, peak overshoot and settling time between the simulated and
measured responses are all under 20%. The delay time and rise time differ significantly
between the ssimulation and the measurement. The simulated delay time is slower than the
measured, while the ssmulated rise timeisfaster. Thisis because the simulated response
does not capture the initial peak observed in the measured data (Figure 4.5). Thisinitial
peak is believed to be from the stiffness of the cables which are modeled asrigid in this

simulation.
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The peak time of the simulated response aligns reasonable well graphically with
thefirst of the three largest amplitude measured peaks. However, because the second of
these measured peaks has the largest amplitude, thisis the peak that is used to calculate
the peak time for the measured response, leading to a 36% difference between simulation
and measurement. The overall root mean square (RMS) error between the simulated and
measured responses is calculated by
(4.2)

RMS Error = |=£=1—
where g is the difference between the simulated and measured responses at timet and n
isthe total number of samples. For the rigid connection model the RMS error is 2.5594e-

05m. Thisis 17.06% of the commanded step amplitude.
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Figure 4.6 shows the simulated and measured current response to a position step
on the Y-Linear axis. Aswith the positional response, there are oscillationsin the
measured current that are not present in the simulated current. These oscillations occur at

afrequency of 75Hz.

Y-Linear Step Response Simulated and Measured Actual Current
15 T T T T T T T T T

Simulated Actual Current
Measured Actual Current
10+ -

Current (A)

15 1 ! I I I I 1 !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

Figure 4.6: Simulated and M easur ed Step Response Current on Y-Linear Axis.

A positional step input is applied to the X-Rotate axis, and the smulated and
measured position and following error are shown in Figure 4.7. Graphically thereisan
offset in the phasing of the oscillations in the simulated and measured responses.
However, the amplitude of the overshoot and the settling time agree well between the
simulated and measured response. A quantitative comparison of the response

characteristics confirms this observation (Table 4.2).
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Table 4.2: Comparison of Rigid Connection Simulation and M easured X-Rotate Step Response.

0.2

05 06 07 08
Time (s)

03 04

0.9

Parameter Simulated | Measured Percent Difference
Delay Time (s) 7.425e-3 0.01107 34.95

Rise Time (s) 0.01196 0.01727 30.74

Peak Response (rad) 6.927e-3 6.879e-3 0.6969

Peak Overshoot (%) 44.50 43.50 2.299

Peak Time (s) 0.02037 0.02967 31.32

Settling Time (s) 0.07162 0.09121 21.47

The percent difference between the simulated and measured peak overshoot and peak

response are both under 3%. The delay, rise, and peak times all show asimilar offset
between the ssmulated and measured responses of 31-35%. This s reasonable given the
visible timing difference, which may be due to the lack of any friction or damping in the
simulated model. The ssmulated and measured settling times differ by 21%, with the

simulation setting faster. Thisis likely because the simulated model is assumed to be

inextensible and it includes no noise. The RMS error between the simulated and

measured response is 2.904e-4rad. Thisis 16.15% of the commanded step amplitude.
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Figure 4.8 shows the simulated and measured current response to the same
positional step. Asin the positional response, the simulated system responds and settles
faster than the measured.

X-Rotate Step Response Simulated and Measured Actual Cument
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Figure 4.8: Simulated and M easured Current for X-Rotate Step Response.

A positional step input is applied to the Y -Rotate motion axis with the simulated

and measured position response and following error shown in Figure 4.9.
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Figure 4.9: Simulated and M easured Y-Rotate Step Response.
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The significant difference in response shape between simulation and measurement
suggests that the dynamics of the gearbox and belt drive (not modeled in the rigid-body
plant) are key contributors to the response of the Y -Rotate mechanism. The simulated
response shows symmetric overshoot with minimal oscillatory behavior while the
measured response shows significant oscillation. On the upward step the measured
response has alower peak value than the simulation and does not settle to the
commanded position before the downward step begins. On the downward step the
measured response has a larger peak amplitude than the simulation and settles to the
commanded position. The directionality in the measured response may be related to the
small step amplitude. With asmaller step size nonlinear effects and backlash may be
more visible in the measured response. A quantitative comparison of the simulated and

measured responses is provided in Table 4.3.

Table 4.3: Comparison of Rigid Connection Simulation and M easured X-Rotate Step Response.

Parameter Simulated | Measured Percent Difference
Delay Time (s) 0.01467 0.02745 46.55
Rise Time (s) 0.02762 0.04029 31.44
Peak Response (rad) 8.677e-3 7.838e-3 10.70
Peak Overshoot (%) 44.80 30.80 45.45
Peak Time (s) 0.05220 0.05623 7.175
Settling Time (s) 0.1918 0.5038 61.93

The table shows good agreement between the simulated and measured response peak
time and peak response with differences under 11%. Slightly more variation is observed
between the smulated and measured delay time, rise time and peak overshoot, but the

most significant difference is the settling time, with a difference of more than 60%. The
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RMS error for the y-rotate axis is 0.001163rad. This corresponds to 27.72% of the
commanded step amplitude.

Figure 4.9 compares the simulated and measured Y -Rotate current response for
the same positional step. A clear difference between the simulated and measured current
is observed. The simulated current spikes to a significantly higher amplitude than the
measured current at the onset of each positional step. In both cases the amplitudeis high
only for a short duration before returning to nearly zero.

Y-Rotate Step Response Simulated and Measured Actual Current
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Figure 4.10: Simulated and M easured Current for Y-Rotate Step Response.

Conclusions

For the Y -Linear and X-Rotate axes the rigid connection model captures the gross
dynamic response, with less than 20% error between the simulated and measured peak
overshoot and settling time. In both cases, the errors are larger for rise time and delay

time. The rise and delay time errors may be reduced in the case of the Y-Linear axis by
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incorporating the stiffness of the cables. The RMS errors for both the Y -Linear and X-
Rotate axes are under 18% of the commanded step amplitude.

The simulated Y -Rotate performanceis visibly different from the measured
response. Though the peak response and peak time agree within 11%, al other aspects of
the response differ by at least 31% between simulation and measurement. The RMS error
IS 27.72% of the commanded step amplitude. This suggests the flexibility of the
connections plays akey role in the response.

In the following chapter, flexible connections are added to the Dymola
mechanism model. The simulated Y -Linear and Y -Rotate responses are expected to better

reflect the oscillatory behavior observed in the measured response.
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CHAPTER S

PLANT MODEL GENERATION WITH FLEXIBLE CONNECTIONS

Models for flexible connections and damping are added to each axis. For the Y -
Linear moddl stiffness and damping of the cables and bearing supports are included. For
the X-Rotate model the stiffness and damping of the drive shaft and bearing support and
the damping of the ferrofluid in the seal are added. For the Y -Rotate model gearbox
torsiona stiffness and damping are modeled, and the axia stiffness and damping of the

drive belt, and the damping of the lip seals are added.

Modeling of Flexible Connections

Y-Linear Axis
In the Y-Linear axis, stiffness and damping are modeled for the counterwei ght

cables and the linear bearing supports on both the payload and counterweight sides.

Cables

Cables can be modeled as a continuous structure or as a series of lumped stiffness,
damping and mass elements. Y amamoto et al. '*® treat a cable moving around a pair of
pulleys as a continuous string and model the free and forced vibratory response as the
length between boundaries varies. The predicted response to forced vibration is compared
to measured results for both the lengthening and shortening sides of the string with
reasonable agreement . Chi and Shu  create a lumped stiffness and mass model of an
elevator hoist rope to investigate vertical (axial) vibration in response to harmonic
forcing. The lumped-parameter model is compared to a continuous rope model, and good

agreement between the fundamental frequencies of both models is demonstrated /. As
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expected, for higher modes there is a significant difference between the lumped and
continuous models. For this study alumped stiffness and damping approach is used since
the mass of the cable is assumed to be small. It is also assumed the cable bends fully
around the pulley since the pulley diameter and cable tension are sufficiently large, and
thereis no dlip between the cable and the pulley since the friction in the pulley bearing is
sufficiently small. The cableisinitialy treated as two separate lengths each with a
lumped stiffness and damping. The axial stiffness of each length is calculated by

EA (5.1
k=1

where E is the elastic modulus of the cable material, A isthe cross-sectional area, and L is
the length of the cable, which is dependent on the position of the payload. This positional
dependence is not desirable, so the stiffnesses of the separate cable lengths are combined
into an effective stiffness as springsin series

1 _ L L (5.2)
ke;f EA " EA

where K is the effective cable stiffness, L isthe length of cable on the payload side, and
L, isthe length of cable on the counterweight side. If the cable is assumed to bein
contact over the top half of the pulley

L1 + LZ = Lcable — Ttr, (53)

14
where Lcaple IS the total cable length between the payload and the counterweight and ry, is
the pulley radius.

Thisisimplemented in Dymola using a modified version of the Elastogap e ement

from the Modelica Standard Library which only transmits force when the spring-damper

is being compressed. Thisis useful for modeling contact surfaces where the two faces are
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not rigidly connected 1*%. The modification simply reverses the condition so forceis
transmitted only when the spring-damper isin tension (Appendix C). This models a cable
with no compressive stiffness.

The Y-Linear axis uses cables with a 7x19 stranded construction which consist of

133 wires grouped into 7 strands of 19 wires laid concentrically about the center and

2
helically wound. For stranded cables, calculating theareaby A =« (d"%) with nominal

diameter, dnom, Overestimates the cross-sectional area of the cable. The differencein area

isillustrated in Figure 5.1 for a stranded cable with a 7x19 construction.

dnom

Figureb5.1. Cross-Section of a 7x19 Stranded Cable.

An effective cross-sectional area (metallic area) or an effective modulus can be
used to account for stranded cable construction . In this application an effective areais
used with the elastic modulus for the specific cable stainless stedl aloy. The stiffness and
damping input to the Dymola model are twice the calculated values to account for the

combined effect of both cables.
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Damping
The three damping models used in this study to characterize losses and their
Dymolaimplementations are discussed. A structural damping model is applied to the

cables.

Damping Models

Viscous damping is used when energy losses are proportional to velocity. One
application of viscous damping is the movement of objects through afluid. The viscous
damping force, Fy, is characterized by

F, = bx (5.4)

where b is the viscous damping coefficient and x is the displacement. Structural or
hysteretic damping is applied when energy losses are proportional to displacement.
Structural damping istypically used to characterize energy lost in the deformation of
components [**. In this study, structural damping isimplemented using an equivalent
viscous damping coefficient. For single degree-of-freedom systems, the equivalent
viscous damping coefficient, bs, can be approximated for a single frequency by

ok (5.5)
T w

bs
where 7 isthe loss factor, k is the stiffness of the single degree-of-freedom, and w isthe
frequency of approximation [**. In this study the first natural frequency is used for all
structural damping approximations. The third loss model is Coulomb damping which is
proportional to normal force. Coulomb damping is often used to describe frictional
interactions between surfaces. The Coulomb damping force F. is calculated by

F; = uNsgn(x) (5.6)

where u isthe friction coefficient and N is the normal force.
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Dymola Implementation

In Dymola, viscous and structural damping (as an equivalent viscous coefficient)
are implemented using the damper model from the Modelica Standard Library which
generates aforce proportional to the relative velocity between the input and output ports.
Coulomb damping is implemented using the bearing friction model. This model assumes
that the normal force is constant. The user inputs pairs of velocity and force valuesinto a
linear interpolation table for velocity values greater than or equal to 0. The negative
velocity values are generated automatically by inverting the signs on both the velocity
and the force. A multiplier can be used to increase the force at zero, simulating the
maximum static friction force. This model includes stick-slip phenomena, so when the
velocity is zero the model enters a stuck state and only produces the force that is required
to prevent motion (up to the peak static friction). If the peak static friction is exceeded,

the model then beginsto move.

Sructural Damping in Cables

For the cable a structural damping model is used. The stiffness is the combined
axial stiffness of both cables 2k, and the loss factor is determined based on the cable
material to be 0.001 . This assumes there is no friction between the strands of the
cable, and is expected to underestimate the measured damping value. The natural
frequency wy, is calculated for the lumped payload and counterwei ght masses connected

by aspring (Figure 5.2).
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Figure5.2. Diagram of Simple System for Calculation of Cable Natural Frequency.

The kinetic energy is the sum of the trandational kinetic energies of the payload and

counterwei ght masses

1,1 (5.7)
T = Empxp2 + Emcwxcw2

The potential energy isthe energy stored in the spring

1

V= Skerr(=xp = Xew)

(5.8)

The Lagrangian determined asin (2.25) and used with the Euler-Lagrange equation

(2.26) to calculate the equations of motion. The generalized system coordinates are,

41 = Xp (5.9
Q2 = Xcw (5.10)
and the generalized forces are
Q1 =Fy—mpg —Fry (5.12)
Q2 = —Mmewg — Frew (5.12)
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The resulting dynamic equations are
myx, — keff(—xp - xcw) =Fy —myg — Fryp (5.13)
My Xow — keff(—xp — xcw) = —Mcwg — Frew (5.19)
For modal analysis the applied forces are set to zero, and the natural frequencies are
determined by finding the eigenval ues of
[mp 0 ] [ff'p ] 3 [keff keff] Xp ] _ [0] (5.15)
0 malliew]  lkepr kepplXewl 10
Thefirst eigenvaueis zero,
w; =0 (5.16)
corresponding to arigid body mode where the masses move equal amounts in opposite

directions.

o =[] 17

Thisfrequency is not used since this mode does not change the relative length of the

cables (spring). Assuming my= mg,= M, the second eigenvalueis

! 5.18
Wy, = T

This corresponds to a mode where the masses move in the same direction, thus changing

the length of the cables.

[p.] = [ﬂ (5.19)

The second frequency is used in the calculation of structural damping.
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Linear Bearings

Petersen et al.1* create a 2-dimensional model of adouble row rotary ball bearing
that includes the stiffness and damping of the support structure in two dimensions, the
Hertzian contact stiffness and damping of each rolling element, and the measured high
frequency resonant response as a pair of spring-mass-dampers in two orthogonal
directions. The variations in stiffness and contact force as afunction of position are
investigated for different defect profiles in ssmulation, and the ssmulated vibratory
response is compared to the measured response with good agreement.

A simplified approach is applied in this study. The high-frequency bearing
resonant stiffness is assumed to be significantly higher than the stiffness of the bearing
support (2 orders of magnitude in %), so this term is neglected. The Hertzian contact
stiffness of the rolling elements and the support stiffness are lumped into asingle
stiffness parameter which is determined from the nominal load conditions and a supplier-
provided bearing force-deflection diagram. A sample diagram for rotary bearing axial

stiffness is included for reference (Figure 5.3).

Axial displacement [um]

70
7010 CD/DBA (extra light preload)
60 7010 CD/DBB (light preload)

50 1
401

301
20 - \ 7010 CD/DBC (moderate preload)

7010 CD/DBD (heavy preload)

o

L}
0 2 4 6 8 10
Axial load [kN]

Figure5.3. Sample Axial Force-Deflection Diagram for a Rotary Bearing. | mage courtesy of SKF.
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The line colors distinguish different bearing preloads. A complete specification for a
rotary bearing would also include similar diagrams for radial and moment loads. For
linear bearings radial, reverse, transverse and moment stiffnesses in three directions are
typically provided.

The nominal load in each direction is determined from static loading conditions
(Figure 5.4). Assuming the payload and counterweight carriages are rigid, the reaction
forces to the gravitational moment loads from the mass of the payload and counterwei ght
can be distributed equally among the bearing blocks based on the horizontal and vertical
bearing spacing 1*3. This results in equal magnitude loadsin the radial/reverse and

transverse directions on each bearing block.

F = M9Px (5.20)
" 2b,

F = 9Pz (5.21)
©7 2b,

where F; isthe load in the radial/reverse direction, mis the mass of the carriage payload,
px and p; are the distance between the payload center of gravity and the bearing center in
the x and z-directions respectively, by is the vertical bearing spacing, and F; is the
transverse bearing load.

A range around the nominal load F in each direction is used for a secant
approximation of the nonlinear stiffness. The range is determined by

range = [(1 — y)F,(1 + y)F] (5.22)

where y isavalue between 0 and 1 selected to characterize the variability in loading
conditions. For this mechanism the primary source of load variation is from vertical

motion, so y isthe peak vertical acceleration in g units.
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Figure5.4. Static Bearing Loading on Y-Linear Axis.

be applied to individual blocks, so no moment stiffnesses are included. The stiffness
behavior of the bearingsis overal nonlinear as a function of applied load, but this model
uses a linear approximation over aload region of interest selected based on expected peak
acceleration and deceleration. For large accelerations (on the order of 1g) the accuracy of
the stiffness model is diminished since large changes in bearing loads occur.

For simplicity, in Dymolathe linear stiffnesses at the individual bearing blocks
are combined as moment stiffnessesin x, y and z directions (Figure 5.5). This eliminates
the change in stiffness when the bearing transitions from radial to reverse loading since
for moment loading two blocks are always being loaded in the radial direction and two in

the reverse. Rotary jointsin the x, y and z-directions are added at the bearing center.
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Figure5.5. Simplified Bearing Y-Linear Stiffness M odel. 8 trandational stiffnesses are converted to
equivalent moment stiffnesses about the x, y and z axes. Thetrandational stiffnessesin they and z
directionsareignored asthey do not directly couple into the motion directions.
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mg

Each joint has a spring-damper connecting the input to the output. The rotational

stiffnesses are calculated by

Kux = keby? (5.23)
_ (krad + krev) 2 (5-24)
Kpmy = f bz
(krad + krev) (5-25)
Kpyz = fbyz

where kv iS the rotational stiffness about the x-axis, k; is the transverse bearing stiffness,
by is the vertical bearing spacing, xwy is the rotational stiffness about the y-axis, kiaq iSthe
radia bearing stiffness, ko, is the reverse bearing stiffness, b, is the horizontal bearing
spacing, and kv is the rotational stiffness about the z-axis. The combined trandlational

stiffnesses in the x and z-directions are not included in this model. Since they do not
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directly couple into any of the motion axesit is reasonable to assume they will have little
effect on the closed-loop mechanism response.

Bearing losses are separated into contact losses from deformation of the rolling
elements and frictional losses from the bearing lubricant and seals. The contact losses are
modeled as a structural damping using arotational damper in parallel with the torsional
spring in the x, y and z-directions. The loss factor is determined by the material of the
rolling element to be 0.008 . Because the three springs are orthogonal, the natural
frequency, w, is calculated in each direction by

K (5.26)

where k isthe rotationa stiffnessand | isthe moment of inertia of the payload about the
same axis.

Frictional losses are modeled in the direction of travel using alinear bearing
friction element. A constant normal force is assumed, which is a reasonable when
expected mechanism accelerations are small. The coefficient of friction, 0.003, and sed
friction force are provided by the supplier, and the normal force used is the cumulative
static normal force applied to the four bearing blocks. Two equal force values at different
velocities are input into the interpolation table to define a constant magnitude force.

A diagram of the flexible connections added to the Y -Linear model is shown in
Figure 5.6. Cable axia stiffness and damping are implemented as modified Elastogap
element which transmits force only when in tension. The bearing X, y and z-direction
moment stiffness and equivalent damping on the payload and carriage side are

implemented as 3 rotary spring-damper elementsin parallel with 3 rotary joints.
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Bearing friction in the direction of travel for the payload and the counterweight are

implemented with linear support friction elements.
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Figure 5.6. Dymola M oddl of Y-Linear Axiswith Flexible Connections and Damping.
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X-Rotate Axis
The compliance in the X-Rotate axis comes from the ferrofluid seal. The
compliant elements modeled are the drive shaft and the bearing support, and both are also

sources of damping. The ferrofluid provides additional viscous damping.

Ferrofluid Sed

A ferrofluid seal usesferrofluid, a colloidal mixture of magnetic nanoparticlesin
acarrier liquid, held in place by a stationary magnetic field to create a seal between two
environments, in this case vacuum and atmosphere. A typical ferrofluid seal designis

shown in Figure 5.7.

Housing

Pole Piece

Magnet
Ferrofluid
Shaft

Figure5.7. Typical Ferrofluid Seal Design. Ferrofluid seal comprised of a drift shaft, bearing
supportsand rings of ferrofluid held in place by per manent magnets. | mage courtesy of Sealing
Technologies.

For modeling purposes, the seal is divided into three key elements: the drive shaft, the

bearing support, and the viscous effect of the ferrofluid.

Drive Shaft

Thetorsiona rigidity of the drive shaft is given by
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GJ 5.27
- (5.27)
where G isthe modulus of rigidity of the shaft, L isthe length, and J is the second
moment of area calculated as

_ m(dé —df) (5.28)

J 32

where d, isthe outer diameter and d; is the inner diameter of the hollow round shaft. The

hysteretic losses are modeled with an equivalent viscous damping (5.5) with aloss factor

selected based on the shaft material to be 0.003 [*, The natural frequency is calculated

by

. (5.29)
Wtorsion = E

where ks iSthe torsional stiffness of the drive shaft and I is the moment of inertia of the

payload of the X-Rotate drive about the x-axis. The torsional rigidity and damping are

implemented in Dymola using arotary joint with arotational spring-damper element

connecting the input and output.

The bending stiffness of the shaft is calculated by

_3E] (5.30)
Koo =
where E is the elastic modulus of the shaft and L is the length of the shaft. Again a

hysteretic damping model isimplemented by (5.5) with the natural frequency calcul ated

from

(5.31)

=~
3¢

Wpending =
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where Ky, is the bending stiffness and mis the mass of the X-Rotate axis payload. The
bending stiffness and damping are implemented in Dymola with a prismatic joint that has

alinear spring-damper element connection the input to the output.

Cross-Roller Bearing

The static bearing reaction loads are calculated from the free body diagram in
Figure 5.8. Aswith the linear bearings discussed above, lumped moment stiffnesses
about the x and z axes and linear stiffnessin they (radial) direction are determined from a
range around the static loading conditions from a supplier-provided chart of applied load

and corresponding displacement in each direction.

y
Fr z X
Mx
Mz Mz
Xcm
( h
Zcm
Mx Jx, Jy, Jz
Fr
X-Rotate Cross- Ferrofluid Seal mg
Roller Bearing Drive Shaft

X-Rotate Payload
Center of Mass

Figure5.8. Static Loading on X-Rotate Cross-Roller Bearing. (Left) An equal and opposite reaction
forcein they-direction and reaction momentsin the x and z directions are applied to the bearing
(Right) Gravitational force on the X-Rotate payload generatesreaction loads at the bearing support
location on the ferrofluid seal drive shaft.
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The trandational stiffness along the x-axis (axia stiffness) is not directly coupled to
controlled motion directions, so it is not included in this model.

Damping is again separated into contact damping and frictional damping
components. Contact damping is modeled as a structural damper applied in parallel with
each stiffness. The loss factor is selected based on the roller material to be 0.001 ! and
the natural frequencies are calculated as a simple lumped mass/inertia on orthogonal
springs. Frictional damping isincluded through the bearing friction element with a
coefficient of friction of 0.01 based on the bearing type. Cross-roller bearing friction is

lumped with the ferrofluid drag torque and is discussed in the following section.

Viscous Damping of Ferrofluid

When ferrofluid is subject to a magnetic field the nanoparticles align in the
direction of the field . Thisincreases the viscosity of the mixture since the fluid carrier
isforced to flow around the nanoparticle chains. The viscous damping of the ferrofluid is
afunction of the viscosity of the carrier and the applied magnetic field. Pinho et Al. [
generated a single degree-of-freedom viscous damping model for aferrofluid seal used in
a speaker as afunction of shear rate, frequency, and anon-spatially uniform magnetic
field. Thismodel agrees well with experimental results for systems with approximately
equal axial and radial thickness [®!. However, the generation of such models requires
detailed knowledge of both the seal geometry and of the properties of the specific
ferrofluid used in the seal. Since these details are proprietary, the supplier instead
provided the viscous drag torque at a specified operating speed. The measured drag
torque includes both frictional lossesin the cross-roller bearing and viscous damping of

the ferrofluid. This value was combined with the static friction from the cross-roller
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bearing and input into a bearing friction element in Dymola. It should be noted that using
the static friction of the bearing is a significant underestimate for cold-start conditions.
When the sedl is cold-started, the viscosity of the ferrofluid isinitially very high, but it
subsequently decreases during continuous operation due to viscous heating. The flexible

connection elements for the X-Rotate axis are shown in Figure 5.9.
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Figure5.9. Dymola M odel of X-Rotate Axiswith Flexible Connections and Damping.

The stiffness and damping of the cross-roller bearing are implemented with
spring-damper elementsin parallel with rotary joints for the x and z-direction moment

stiffnesses and a prismatic joint for the radial stiffnessin the y-direction. The bending

84



stiffness and damping of the drive shaft are adding in series with the radial bearing
stiffness. The torsional stiffness of the drive shaft isincluded with arotary spring-damper
in parallel with arevolute joint. Bearing and ferrofluid losses in the travel direction are

modeled with a bearing support.

Y-Rotate Axis
The Y-Rotate axis is dynamically the most complex with a planetary gearbox and
belt in series. Thetorsiona rigidity and frictional losses in the gearbox, the belt axial

stiffness and structural damping, and the seal friction are model ed.

Two-Stage Planetary Gearbox

A cutaway view of atwo stage planetary gearbox is shown in Figure 5.10. The
motor applies torque to the sun drive shaft which rotates the sun gear. The sun drives the
rotation of the planets which in turn rotate the planet carrier as they traverse the outer ring
gear. For atwo-stage planetary gearbox, the carrier output shaft of thefirst stageis
directly connected to the sun drive shaft of the second. Planetary gearboxes enable high-

precision motion while generating alarge output torques from high gear ratios.

Ring

Planets
=

Figure5.10. Two-Stage Planetary Gearbox. Left: Cutaway view of two stage planetary gear box.
Right: Exploded view of sun, ring and planetsfor a single stage. | mages adapted from Machine
Design.
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In the literature, lumped-parameter gearbox models typically include torsional mesh
stiffness and damping and the torsional and bending stiffness and damping of the bearing
supports M 1791117351 'Eor 3 planetary gearbox, bearing supports are included for the
ring, carrier, sun, and each of the three planet gears. Meshing is considered between each
of the three planets and the ring gear and between each of the three planets and the sun
gear.

The torsional mesh stiffnessis a combination of the gear body stiffness of each
gear, the stiffness of the meshing teeth, and the contact stiffness at the meshing
locations 1. All three stiffness values can be determined from a finite-element model of
the gear set (if loading is known). The gear body and tooth stiffness depend only on gear
geometry; however, the contact stiffnessis also afunction of the torque applied to the
system. Some formulations do not include the contact stiffness asit istypicaly
significantly larger than the body and tooth stiffness values, and it is more difficult to
determine due to its torque dependence [*7.

The phasing of the mesh stiffness must also be considered. Asa pair of gears
rotates, the meshing teeth alternate between a single contact point and apair of contact
points (double contact) [*7. A double contact will have twice the contact area, resulting in
double the stiffness. For a planetary gearbox, the phasing of the mesh stiffness at each
meshing location should be considered.

Gearbox losses come from mesh friction, viscous losses from the gearbox
lubrication, bearing friction (including losses from rolling and sliding, lubrication and
seals), and shaft seal friction Y. The mesh frictional losses are torque dependent.Viscous

losses from the lubrication are dependent on angular velocity. Bearing friction can be
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modeled as previously discussed. Shaft seal friction is afunction of shaft diameter and
seal temperature (additional detail in following section).

For the system of interest, modeling of the gearbox is particularly challenging
because the dimensions of the internal gearbox components, including gear and tooth
dimensions, are proprietary. The supplier instead provided alumped torsional stiffness
from the gearbox input to output and two values of frictional torque datawith
corresponding angular velocity under no load conditions. Thetorsional rigidity is
implemented in Dymola using arotational spring, and the frictional torque as a function

of velocity is entered into a bearing friction element.

Belt Drive

The polyurethane timing belt has steel tension members. In operation, thereisa
difference in tension between the two sides of the belt. The side entering the driven
pulley has increased tension, and the side exiting the driven pulley has reduced tension. It
isthisreduction in tension that necessitates sufficient belt pretension to keep theteethin
good contact with the pulley and prevent dlip. For the determination of belt stiffness, the
total length of the belt L is divided into the lengths of the tight (increased tension) side Lo,
and the length of the slack (reduced tension) side L. For rotary positioning applications
L,=L,=L/2. The effective stiffness of the belt includes the axia stiffness of the belt and
the meshing stiffness [*¥. Because the two sides act in parallel the axial belt stiffness, ka,
isthe sum of thetight side and slack side stiffness and can be cal culated from the specific
stiffness ¢y,

L CpW  CpW  Acgpw (5.32)

“~ L, L, L
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where w is the belt width. The mesh stiffness, ky, is determined by

K = ZmpKeooth (5.33)
where z,, is the virtual number of teeth in the mesh and kit is the tooth stiffness 14,
The virtual number of teeth is determined by a correction table based on the number of

teeth in the mesh, z,,. The number of teethinthe mesh is

z ((zz - zl)t> (5.34)

Zm = ﬁarccos oma

where z; isthe number of teeth on the driven pulley, z isthe number of teeth on the drive
pulley, t isthe tooth pitch, and a is the distance from drive pulley center to driven pulley
center. The tooth stiffness can be estimated based on the tooth geometry using finite
element analysis. Generally tooth stiffnessis significantly larger than the axial belt
stiffness, so the tooth stiffness can be neglected since the axia stiffness will dominate the
response. The belt stiffness is modeled in Dymola as alinear spring between the two
pulleys.

Belt losses are primarily from the structural deformation of the belt in the axial
direction. The loss factor is determined from the belt material. A loss factor for the
urethane belt material was not found, so arange of loss factors from 0.001 (belt stranding
material) to 0.05 (rubber) were investigated and determined to have minimal effect on the

model performance. The natural frequency was calculated from Figure 5.11.
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Figure5.11. Simplified Belt Drive Modéd for Natural Frequency Calculation.

The dynamic equations are derived from the Euler-Lagrange equation, set equal to zero,
and the resulting eigenvalue problem is solved to determine the natural frequenciesasin
(5.7) through (5.15). Thefirst frequency is

w; =0 (5.35)
This frequency corresponds to the rigid body motion of the two inertias in the same

direction, the belt is not stretched. The second frequency is

(5.36)

= ko2 + kyJory 2
o JiJz

where J; isthe inertia of the Y-Rotate motor and gearbox, J, isthe inertia of the Y -Rotate
payload, r1 isthe drive pulley radius and r, is the driven pulley radius. This frequency
corresponds to the two inertias moving out of phase, deforming the belt. The second
frequency is used for the calculation of structural damping which is modeled in Dymola

as adamper in paralle with the belt axial stiffness.
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Lip Seal
Lip seals are commonly made from elastomers and plastics and use their

geometry along with aradial spring to create an interference with the rotating shaft (23],
Figure 5.12 shows atypical lip seal cross section. The interference between the seal and
the shaft creates africtional drag torque. Thefrictiona force, F, at the shaft surfaceis

Fr = uFy (5.37)
where u is the coefficient of friction between the seal and the shaft and Fy is the normal
force on the seal provided by the spring and the flexura stiffness of the seal material. The
frictional drag torque 7 isthen calculated by

T = 15Ff (5.38)
wherersistheradius of the shaft. The frictional drag torque is combined with the bearing

friction discussed in the following section and implemented in Dymola using a bearing

friction element.

__ __— Elastomer
L L8
7 = Metal Case
Air Sid ny! \\*‘\
Iraide el () | \ Lubricant Side
o= )'_h \\
!'_ i i .

L Radial

Interference

Figure5.12. Typical Lip Seal Cross-Section. |mage courtesy of Sealsand Sealing Technology *.
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Bearing Friction

The friction of the Y-Rotate bearing supports is modeled as a Coulomb damping.
The normal force at each bearing location is the resultant of the radial forces determined

by the static bearing loading (Figure 5.13).

Rsz

Rax

Figureb5.13. Y-Rotate Bearing Static L oading. Left: Reaction for ces on needle bearing (top) and
angular contact duplex pair (bottom). Right: Static load on drive shaft from Y-Rotate belt pretension
and the mass of the bearing payload.

Theradial forces on the angular contact duplex pair in the x and z-directions respectively

ae

Xcgmyg + LrTpeysinp (5.39)
L+ Lg

RA,X =
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Rpz = zcgmg — LrTperccosp (5.40)
where Xcc is the offset of the CG from the bearing axis in the x-direction, mis the mass of
the bearing payload, g is the gravitational acceleration, Lt is the distance from the center
of the needle bearing to the center of the belt, Tpa:iS the belt tension force, f is the angle
of the belt tension force relative to the pulley tangent vector, La isthe distance from the
center of gravity to the center of the duplex pair, and Lg is the distance from the center of
gravity to the center of the needle bearing. The radial forces on the needle bearing in the
x and z-directions are

Rp x = —Tpe1t€0SP — Ry z (5.42)

Rpz = TpereSinf — Ry x (5.42)
The bearing coefficients of friction are 0.0022 for the needle bearing and 0.0015 for the
angular contact duplex pair.
The Y-Rotate Dymola model with flexible connectionsis shown in Figure 5.14.

The gearbox is modeled as a gear ratio with the lumped torsional stiffness modeled as a
rotary spring and the lumped gearbox friction modeled as a bearing friction. The belt
drive convertsrotary to linear motion and accounts for pulley radii using two
|deal GearR2T elements, and the belt axial stiffness and damping are included as a linear
spring-damper. The lip seal and bearing friction are combined in a bearing friction

el ement.

Conclusions
Flexible connections are included for each of the three motion axes. The Y -Linear
axis incorporates cable and bearing stiffness and damping terms. Bearing friction is also

considered in the travel direction. For the X-Rotate axis the bearing stiffness and
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damping, the drive shaft stiffness and damping, and the combined frictional 1osses of the

bearing and the ferrofluid are modeled. Motor viscous damping isincluded for both the

X-Rotate and Y -Rotate axes. Updates to the Y -Rotate axis a so include the gearbox

torsiona stiffness and lumped friction, the bel

t axial stiffness and damping, and the

friction from the Y -Rotate bearings and the lip seals.
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Figure5.14. Dymola M odel of Y-Rotate Axiswith Flexible Connections and Damping.

93



CHAPTER G
SIMULATED FLEXIBLE CONNECTION MODEL AND

EXPERIMENTAL RESULTS

The simulated step response of each axis with flexible connections and damping
is compared to the measured response. Calculated and updated damping values are used.
The response with updated damping parameters is compared to the rigid connection

response from Chapter 4.

Experimental Validation
The same positional step as in Chapter 4 isinput into each of the three motion

axes. When the calculated damping parameters are used, the responses for all three axes
are unstabl e using the motion and motor controller tuning parameters from the physical
system. The bearing damping is expected to be an underestimate since it includes only
the contact losses. Additionally, the friction in the Y-Rotate axis gearbox is not well
understood since values of loss torque are only provided for two steady-state vel ocities
under no load conditions. These parameters are increased to stabilize the simulation and
improve the correlation between the simulated and measured responses. The final model

is compared to the rigid connection model to demonstrate improved performance.

Y-Linear Axis
A positional step is applied to the Y-Linear axis. The ssmulated and measured

position and following error are shown in Figure 6.1.
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Figure6.1. Simulated and Measured Y-Linear Step Response with Calculated Damping Parameters.

Oscillations in the simulated response begin in the step up and increase in amplitude

through the remainder of the move. Similar oscillations are observed in the simulated

current (Figure 6.2).
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Figure6.2. Simulated and Measured Y-Linear Step Current Response with Calculated Damping

Parameters.
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The addition of the bearings directly couples the responses of the three motion axes.
Without damping similar to the physical system, this coupling leads to instability when
using the experimentally determined controller gains. The calculated damping used in the
counterweight, payload, and X-Rotate bearings is known to be an underestimate since it
only accounts for contact damping not the effects of the lubricant or seals. The bearing
damping isincreased by 2.5x in the Y-Linear payload and counterweight bearings and
20x in the X-Rotate bearing, in both cases using an estimated lumped loss factor of
n=0.01. Limited data on bearing loss factors is available, but this value seems reasonable
based on the estimated bearing loss factor of 1% from %3

Thefriction at the Y -Rotate output (seal friction) isincreased by 11.6x. This
increase in friction accounts for additional gearbox friction (since the supplier datais
provided for ano load condition) and additional belt drive losses. In redlity these friction
terms would be split between the gearbox and seal bearing friction e ements, but because
the relative friction distribution is not known they are applied as alumped increasein
frictional torque to the output. Frictional torque was measured at this location on the
physical system to confirm that the modeled frictional torque is redlistic, and the modeled
value was found to be within 10% of the measurement. The step response of the model
with improved damping is shown in Figure 6.3. The response of the rigid connection
model is aso included for comparison. With improved damping, the ssmulated step
response is stable and tracks the measured response well through both the upward and
downward steps. A quantitative comparison of the simulated and measured responsesis

shown in Table 6.1.
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Figure 6.3. Simulated and Measured Y-Linear Step Response with Improved Damping Parameters.

The simulated rise time, peak response, peak time and settling time are all less than 16%
different from the measured values. The delay time is less than 25% larger than the
measured, and the simulated peak overshoot isjust under 35% larger. The RMS error
between the flexible connection simulation and the measured response is 1.789e-5m,

which is 11.93% of the amplitude of the commanded step.

Table 6.1. Comparison of Flexible Connection Simulation and Measured Y-Linear Step Response.

Parameter Simulated | Measured Percent Difference
Delay Time (s) 0.0044 0.0036 23.10

Rise Time (s) 0.0209 0.0186 12.44

Peak Response (m) 4.0715e-4 | 3.6665e-4 11.05

Peak Overshoot (%) 62.8600 46.6600 34.72

Peak Time (s) 0.0291 0.0346 15.72

Settling Time (s) 0.0904 0.0992 8.88

It should be noted that the ssmulated rise timeis calculated from the third crossing

(second peak) of the command position rather than the first. Both the ssmulated and
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measured response have an initial peak, but the measured response amplitude is dlightly
smaller and does not reach the commanded value (Figure 6.4), so the second peak is used
in both cases to calculate the rise time to ensure a more representative characterization of

the simulated response.
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Figure 6.4. Initial Peak in the Simulated Y-Linear Step Response Exceedsthe Commanded Position.

The performance improvement between the flexible connection and rigid connection

modelsis characterized by

100(A, — A (6.1)
Performance Improvement = %
T
where A,. isthe percent difference between the simulation and measurement for therigid
connection simulation and A isthe percent difference between simulation and

measurement for the flexible connection simulations. The rigid and flexible connection

models are compared for the Y-Linear axisin Table 6.2. Prediction of delay time, rise
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time, peak time and settling time are improved in the model with flexible connections.

However, the peak response magnitude and peak overshoot are both less accurate in the

flexible connection model. The RMS error is reduced by 30.07% with the addition of the

flexible connections.

Table 6.2. Performance | mprovement from Flexible Connectionsin Y-Linear Step Response.

Rigid Connection | Flexible Connection Performance
Parameter (% Difference (% Difference from Improvement
from Measured) | Measured) (% Difference)
Delay Time 75.97 23.10 69.60
Rise Time 41.97 12.44 70.34
Peak Response 6.20 11.05 -78.02
Peak Overshoot | 19.50 34.72 -78.02
Peak Time 36.38 15.72 56.79
Settling Time 14.51 8.88 38.82

The simulation error, calculated as the difference between the simulated and measured

valuesis shown for the rigid and flexible connection casesin Figure 6.5.
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Figure 6.5. Error Between Rigid and Flexible Connection Y-Linear M odels and the M easured

Response.

99




The flexible connection response shows smaller error in the first positive and negative
peaks for each step direction. The simulated current response tracks the measured
response well (Figure 6.6). Again the rigid connection simulation is overlaid for
comparison. The current amplitudes are similar, but no oscillation is observed in the

rigid-connection response.
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Figure 6.6. Simulated and Measured Y-Linear Step Response Current with Improved Damping
Parameters.

X-Rotate Axis
A positional step is applied to the X-Rotate axis. The simulated response and
following error with the calculated damping parameters are shown with the measured

responsein Figure 6.7.
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Figure6.7. Simulated and M easured X-Rotate Step Response with Calculated Damping Parameters.

The simulated response is stable through the upward step, but after the downward step
oscillations increase in amplitude. Thisis believed to be from instability in the Y -Rotate
axis coupling through the bearings because when the flexible connection Y-Linear and X-
Rotate axes are simulated with arigid connection Y -Rotate axis these oscillations are not
observed. Oscillations are also visible in the simulated current response (Figure 6.8).
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Figure 6.8. Simulated and M easured X-Rotate Step Response Current with Calculated Damping
Parameters.
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The ssimulated positional step response and following error with increased bearing
damping and Y -Rotate friction (as discussed previously) are shown in Figure 6.9. The

rigid connection model is overlaid for comparison.
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Figure 6.9. Simulated and M easured X-Rotate Step Response with Improved Damping Parameters
No instability is observed in the simulated response, and it tracks the measured response
well, athough as in the case of the rigid connection model the simulated responseis
faster than the measured. A quantitative comparison of the simulated and measured

responses is shown in Table 6.3.

Table 6.3. Comparison of Flexible Connection Simulation and M easured X-Rotate Step Response.

Parameter Simulated | Measured Percent Difference
Delay Time (s) 0.0074 0.0111 32.95

Rise Time (s) 0.0120 0.0173 30.41

Peak Response (rad) 0.0069 0.0069 0.87

Peak Overshoot (%) 44.7500 43.5000 2.87

Peak Time (s) 0.0208 0.0297 30.02

Settling Time (s) 0.0714 0.0912 21.72
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The ssimulated peak response amplitude and peak overshoot are within 3% of the
measured values. The delay time, rise time and peak time lead the measured response by
between 30% and 33%. The simulated settling time is nearly 22% faster than the
measured. The RMS error is 2.8e-4rad, which corresponds to 15.85% of the commanded
step amplitude. The simulated and measured current responses are shown in Figure 6.10.
The current response from the rigid connection model is overlaid and is nearly identical.
Asin the positional response, the simulated current |eads the measured current, but the

amplitude and shape of the simulated current response tracks well with measurements.
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Figure 6.10. Simulated and M easured X-Rotate Step Response Current with Improved Damping
Parameters.

Therigid and flexible connection models are compared for the X-Rotate axisin
Table 6.4. The delay time, peak response magnitude and peak overshoot do not change
from the rigid connection model, and only small increasesin rise time and peak time
prediction performance are observed . The settling timeis slightly more accurate in the

rigid connection model. Because the input torque and payload are direction coupled
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through the stiff ferrofluid seal drive shaft, it is expected that the addition of the shaft

torsiona stiffness has little effect on the positional response. The bearing stiffnesses

Table 6.4. Performance | mprovement from Flexible Connectionsin X-Rotate Step Response.

Rigid Connection | Flexible Connection | Performance
Parameter (% Difference from | (% Difference from Improvement
Measured) Measured) (% Difference)
Delay Time 32.95 32.95 0
Rise Time 30.74 30.41 1.04
Peak Response | 0.87 0.87 0
Peak Overshoot | 2.87 2.87 0
Peak Time 30.20 30.02 0.62
Settling Time 21.11 21.72 -2.87

and shaft bending stiffness are not in the direction of motion, so they serve only to couple
the X-Rotate axisto the Y-Linear and Y -Rotate axes. This coupling slightly increases the
settling time. The RM S error is reduced 1.87% by the addition of flexible components.

The simulation errors for the flexible and rigid connection models are overlaid in
Figure 6.11. As expected, they are nearly identical.

x 107 X-Rotate Axis Step Response Simulation Error
T T T T T T T

p—

2F Rigid Connection Model
Flexible Connection Model

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Time (s)

Figure6.11. Error Between Rigid and Flexible Connection X-Rotate M odels and the M easur ed
Response.
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Y-Rotate Axis
A positional step is applied to the Y -Rotate axis. The simulated response with

calculated damping parameters is plotted with the measured response in Figure 6.12.
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Figure 6.12. Simulated and M easured Y -Rotate Step Response with Calculated Damping
Parameters.

The simulated response quickly becomes unstable. Oscillations increase in magnitude
until reaching a constant amplitude after approximately 0.5s. The ssimulated and
measured current responses are shown in Figure 6.13. Asin the positiona response,
oscillations grow until reaching a large constant amplitude. However, in the current
response the constant amplitude is reached at approximately 0.15s, much earlier than the
positional response.

The ssimulated step response and following error with increased bearing damping
and Y -Rotate friction are shown with the measured response in Figure 6.14. Therigid

connection simulated response is aso included for comparison.
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Figure 6.13. Simulated and M easured Y-Rotate Step Response Current with Calculated Damping
Parameters.
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Figure 6.14. Simulated and M easured Y-Rotate Step Response with |mproved Damping Parameters.

The simulated response has an initial peak that is not present in the measured data.

Additionally, the oscillatory behavior in the simulated response damps out much more

quickly in the simulated response than in measurement. A quantitative comparison of the

simulated and measured responses is shown in Table 6.5.
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Table 6.5. Comparison of Flexible Connection Simulation and Measured Y-Rotate Step Response.

Parameter Simulated | Measured Percent Difference
Delay Time (s) 0.0178 0.0275 35.26

Rise Time (s) 0.0460 0.0403 14.16

Peak Response (rad) 0.0083 0.0078 6.42

Peak Overshoot (%) 39.2000 30.8000 27.27

Peak Time (s) 0.0566 0.0562 0.70

Settling Time (s) 0.5060 0.5038 0.42

The ssimulated peak and settling times are less than 1% larger than measured. The
simulated peak response is less than 7% greater than the measured response, and the
simulated risetime s just over 14% slower. The simulated peak overshoot is nearly 28%
larger, and the delay time is slightly more than 35% faster than the measured response.
The faster delay time and slower rise time make sense given the additional first peak in
the simulated response. The RMS error between the ssmulated and measured responsesis
5.6e-4rad, which is 13.31% of the commanded step amplitude. The simulated and
measured current responses are shown in Figure 6.15.

Y-Rotate Step Response Simulated and Measured Actual Current
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Figure 6.15. Simulated and M easured Y-Rotate Step Response Current with |mproved Damping
Parameters.
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Overadll the simulated response tracks the measured response well with sharp
current increases at the step commands with quick returns to nearly zero current. The
large magnitude of the simulated current response indicates that additional limits should
be added to the model as such large current amplitudes are not possible in the physical
system. The ssimulated current oscillates after the high-amplitude spikes. This oscillation
IS not seen in the measured response. The Y -Rotate axis rigid and flexible connection
models are compared in Table 6.6.

Table 6.6. Performance | mprovement from Flexible Connectionsin Y-Rotate Step Response.

Rigid Connection | Flexible Connection | Performance
Parameter (% Difference (% Difference from | Improvement
from Measured) | Measured) (% Difference)
Delay Time 46.55 35.26 24.25
Rise Time 31.44 14.02 55.40
Peak Response 10.70 6.73 37.14
Peak Overshoot | 45.45 28.57 37.14
Peak Time 7.18 0.80 88.89
Settling Time 61.89 0.42 99.32

All response parameters are predicted more accurately by the model with flexible
connections. The RMS error decreases 51.98% with the addition of the flexible
connections. This makes sense as the Y -Rotate axis has the most flexible elements (as
compared to the Y-Linear and X-Rotate axes), so the response is not adequately predicted
by arigid model.

The ssimulation error for the rigid and flexible connection models are plotted in
Figure 6.16. The offset in the constant portion of the upward step observed in therigid

connection simulation error is not present in the flexible connection simulation error, but
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in both cases the oscillatory behavior observed in the measured response is not present in
the simulation. Therigid connection model has alarge error peak after the first overshoot

of the downward step that is not observed in the flexible connection model.

M 10-3 Y-Rotate Axis Step Response Simulation Error

Error (m)

Bl Rigid Connection Model
Flexible Connection Model
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

Figure 6.16. Error Between Rigid and Flexible Connection Y-Rotate M odels and the M easur ed

Response.

Simplified Flexible Connection Model

A simplified version of the flexible connection model is developed to decrease
simulation run time. The first frequency of each flexible element is determined (Table
6.7). Elements with first frequencies above 10x the controller bandwidth are assumed to
have minimal impact on the closed-loop response, so they are treated asrigid. This
simplifies the model by removing the Y -Linear payl oad bearing x-moment stiffness, the
radia stiffness of the X-Rotate bearing, and the torsional and bending stiffnesses of the
X-Rotate drive shaft.

The step responses are simulated for each of the three motion axes. The closed-

loop model simulation time in Simulink in measured for the rigid connection, flexible
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connection, and simplified flexible connection models. The simulation times are then

normalized by dividing by the rigid connection simulation time. A comparison of the

normalized simulation timesis provided in Table 6.8.

Table6.7. First Non-Rigid Freguency of Each Flexible Element. Elementswith frequencies above

300Hz are assumed to berigid in the ssimplified model.

Flexible Component First Frequency (Hz)
Y-Linear Cable 37.44
Y-Linear Counterweight Bearing X-Moment Stiffness 265.29
Y-Linear Counterweight Bearing Y-Moment Stiffness 197.25
Y-Linear Counterweight Bearing Z-Moment Stiffness 140.58
Y-Linear Payload Bearing X-Moment Stiffness 1179.05
Y-Linear Payload Bearing Y-Moment Stiffness 254.36
Y-Linear Payload Bearing Z-Moment Stiffness 235.70
X-Rotate Bearing Y-Radial Stiffness 433.18
X-Rotate Bearing Y-Moment Stiffness 17135
X-Rotate Bearing Z-Moment Stiffness 76.28
X-Rotate Shaft Torsional Stiffness 1629.27
X-Rotate Shaft Bending Stiffness 349.86
Combined Y-Rotate Gearbox Torsional Rigidity and Axial | 19.74
Belt Stiffness

The ssimplified flexible connection model provides arun time performance
improvement of 4.76x, 4.98x, and 6.89x for the Y -Linear, X-Rotate and Y -Rotate axes,
respectively, as compared to the original flexible connection model. Figures 6.17 through
6.19 show the simulation error for each of the three simulation configurations for each of
the three motion axes. The flexible connection and simplified model errors are nearly
identical. Thisindicates that there is no significant lossin model predictive performance
from the removal of the high-frequency stiffness elements. The differencesin RMS error
between the flexible and simplified models are 1.01%, 3.79e-3%, and 0.836% for the Y -

Linear, X-Rotate and Y -Rotate axes, respectively.
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Table6.8.

Normalized Simulation Timefor Rigid, Flexible and Simplified Flexible Connection

Models.
Y-Linear Step Normalized Simulation Time
Rigid Connection Model 1
Flexible Connection Model 68.16
Simplified Flexible Connection Model 14.30
X-Rotate Step
Rigid Connection Model 1
Flexible Connection Model 14.03
Simplified Flexible Connection Model 2.82
Y-Rotate Step
Rigid Connection Model 1
Flexible Connection Model 23.37
Simplified Flexible Connection Model 3.39
x 10 Y-Linear Axis Step Response Simulation Emor
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Figure 6.17. Simulation Error Between the Rigid, Flexible and Simplified Flexible Connection
Modelsand the Measured Y-Linear Step Response.
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Figure 6.18. Simulation Error Between the Rigid, Flexible and Simplified Flexible Connection
Models and the M easured X-Rotate Step Response.
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Figure 6.19. Simulation Error Between the Rigid, Flexible and Simplified Flexible Connection
Models and the M easured Y -Rotate Step Response.
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Conclusions

Correctly defining damping in predictive modeling applicationsis challenging
since a prototype system is not available for measurement. In this model, the original
simulation parameters significantly underestimated damping in some of the flexible
elements which lead to closed-loop model instability. This model was stabilized by
increasing bearing damping and the Y -Rotate output friction.

Overdl the addition of flexible connections improved the model predictive
performance as compared to the rigid connection simulation. The RMS error is decreased
by 30.07%, 1.87%, and 51.98% for the Y -Linear, X-Rotate and Y -Rotate axes,
respectively. The X-Rotate axis shows the least improvement, which is expected since the
input and output are directly connected by a stiff shaft.

The addition of flexible components significantly increases closed-loop
simulation time. This simulation time increase can be reduced by including only flexible
components that are expected to have an impact on the closed-loop response. These
elements are identified by comparing their first non-rigid natural frequency to 10x the
controller bandwidth. Elements with higher frequencies are expected to have little effect

on the closed-loop response and can be assumed to berigid.
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CHAPTER 7

CONCLUSIONS

A summary of the closed-loop mechanism modeling processis presented in a
mechanism design framework. Modeling recommendations and rules of thumb are
provided. Model limitations and areas for future work are discussed. Improving estimated
model damping values, post-processing simulated and measured response datain the
frequency domain, and the development of test procedures for model correlation are
identified to be the most critical development areas for improvement of model

performance.

Mechanism Modeling in a Design Framework

The goal of this study isto provide a mechanism modeling methodol ogy that can
be used during the design process to predict mechanism performance prior to the
procurement of prototype parts. A methodol ogy has been presented for generating
reusable models of semiconductor mechanisms. Predictive performance was
demonstrated for athree degrees-of-freedom wafer handling mechanism, with the
simplified flexible connection simulation predicting the performance of al three axes
with an RMS error less than 16%. The existing models can be used to guide the design
process by identifying components and subsystems which dominate the mechanism
response. Future applications of this modeling effort include design optimization and
model-based control. The following sections describe the incremental construction of

the closed-loop model.
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Rigid Connection M echanism Dynamics

The first step in the mechanism modeling processis the generation of arigidly
connected mechanical plant model in Dymola This model should include all masses and
inertiasin their proper orientations with a degree of freedom for each motion axis. All
elements and connections are assumed to berigid, and friction and damping are not
initially considered. Motors are simplified to force or torque constants. Open loop
simulation of aunit current applied to each axis should be performed, and the resulting
acceleration should be compared to a mathematical model. If losses are expected to be a
significant part of the mechanism response, they should be estimated and added to the
model. The rigid connection model can then be used to size drive components such as
motors and drive shafts. The rigid connection model is then brought into Simulink and
integrated with a PMAC motion controller. The controller gains are tuned and should be

used as a starting point for the controller tuning of more complex models.

Motor Electrical Dynamics

Motor models should be generated in Dymola and verified by confirming the
phase currents and force/torque output match a mathematical model for a common input.
The motor model is then integrated with the rigid mechanism model in Dymola. This
model may be used to predict motor temperature during operation using the heat portsin
the phase resistances. The integrated rigid connection plant is then brought into Simulink
and combined with a Copley motor controller for each motion axis. The motor controller
gain parameters are tuned. Then the PMAC motion controller model (with initial

parameters) is added, and the motion controller parameters are adjusted if necessary.
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Flexible Connection M echanism Dynamics

Stiffness and damping are included for components with first frequencies lower
than 10x the target controller bandwidth (a conservative estimate based on similar
designs). The performance of the flexible connection model should approach therigid
connection model performance as the stiffnesses of the flexible elements become large.
The flexible connection model is then combined with the motor models and integrated
with the tuned motor and motion controllersin Simulink. Motion controller gains may be
adjusted as necessary. This closed-loop model is then used to predict the performance of

the mechanism. The design may be adjusted as necessary to achieve performance targets.

Model Limitations and Future Work

Model limitations and areas for future work are identified. Development areas are
categorized as system-level or component-specific depending on their scope. System-
level development areas are the improved estimation of damping, frequency-domain
response analysis, and the development of test procedures for parameter identification
and black box modeling. These areas are expected to both improve model performance
and help build both a better understanding of the system and better modeling intuition for
systems with similar architectures. A list of component-specific development areasis also
provided. These development areas are also expected to improve model performance, but
they are more focused in scope and are expected to be smaller contributors to the closed-

loop simulation error.

Estimation of Damping
The flexible connection model generally predicts the performance of the test

mechanism better than the rigid connection model. The RM S errors are decreased by
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30.07%, 1.87%, and 51.98% for the Y -Linear, X-Rotate and Y -Rotate axes, respectively.
However, reasonabl e estimates of friction and damping are required to achieve stable
performance. Thisis challenging in predictive applications such as mechanism design
where measured datais not yet available and supplier data may not be representative of
the operating conditions of the mechanism under consideration. One approach to
addressing thisissue is to develop typical parameter ranges based on the measured
response of similar components and drive mechanisms (e.g. determine a range of bearing
loss factors based on bearing type). Additionally, identified parameters from validated

models should be stored in alibrary for re-use. Thisis discussed further below.

Frequency-Domain Response Analysis

A positional step move was selected because it is commonly used in the
mechanism tuning process to characterize the system response. However, the step moves
with small amplitudes used in this thesis may exhibit highly nonlinear behavior. Ideally
the desired mechanism motion profile would be used to evaluate the model performance.
A random or swept sine input can also be used, and these inputs would allow the
generation of a mechanism frequency response function. Frequency peaks could be
compared between the simulated and measured responses. Missing or additional peaks

would help to provide insight into potential model improvement aress.

Parameter Identification and Black Box Modeling

The third key development areais model correlation. In thisthesis, the measured
response was used to estimate bearing damping and Y -Rotate friction parameters since
the predicted parameters were not sufficient to stabilize the model. However, thiswas

only possible because hardware was available for characterization. Thiswill not be the
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case in apredictive application. In the future, models will be created from predicted
parameters. Then, when prototype hardware is available all model parameters will be
separately measured and identified based on measured response data to optimize the
model performance. The model with identified parameters will be stored in a mechanism
library for future reuse, and ranges of typical parameter values will be developed over
time.

Similarly, black-box modelsfit to experimental data are an effective way to
incorporate the dynamic behavior of proprietary components and subsystems. For the Y -
Rotate axis, a black-box gearbox model determined experimentally may be a better
alternative to the lumped-parameter gearbox model presented in this thesis since so little
is known about the specific internal configuration of the gearbox due to its proprietary
nature. The development of such amodel is challenging because the losses are expected
to be nonlinear and depend on both torque and speed. However, once atesting procedure
is established it can be provided to suppliers allowing for al gearboxes to be

characterized in a consistent way.

Component-Specific Development Areas

Component-specific development areas are identified for each of the three motion
axes. Component-specific development areas should be addressed in parallel with system
development areas, but they are expected to have a smaller impact on the RMS
simulation error. Of the component-specific development areas motor cogging and
bearing stiffness are the highest priority because they are expected to have the largest

relative effect on simulation accuracy.
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Y-Linear Axis

The model presented does not include cogging in any of the motors, including the
linear motor in the Y-Linear axis. For the small amplitude step response investigated in
this study cogging is not expected to have a significant impact. However, for larger
amplitude responses cogging will create an additional position-dependent oscillatory
response, which may impact servo performance and settling time. The addition of

cogging to the motor model would ensure this oscillatory behavior is captured.

A second development areafor the Y-Linear axisis the cable model, which
currently considers only a single response mode of the cable. This mode corresponds to
the fundamental frequency of the cable-mass system, so it is expected to be a dominant
mode in the response. However, depending on the excitation applied to the system higher
order modes may also contribute to the response. The cable model also assumes sufficient
cable tension. With insufficient tension the cables may not bend completely around the
pulleys adding a second compliance in series with the modeled axial compliance. A cable
model that includes a cable tension check would ensure that minimum tension conditions
are not violated, but determining an appropriate minimum tension value may be difficult.
A more detailed cable model that includes higher order cable vibration modes and
bending effects could be used in applications where low cable tension is suspected or

where cable dynamics are of particular interest.

Finally, the effective moment stiffnesses and combined friction of the linear
bearings are assumed to be constant. For small accelerations thisis reasonable since the

load only varies within a small range around the static loading conditions. However, to
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model larger accelerations alookup table may be used to determine the bearing stiffness
based on the loading conditions since generally the bearing stiffnessis not alinear
function of load, and the normal force should be variable in the bearing friction

cdculation.

X-Rotate Axis

AsintheY-Linear axis the bearing stiffness is assumed to be independent of
loading. An areafor future development is the inclusion of the supplier provided force-
displacement datain the model to enable the calculation of 1oad-dependent bearing

stiffness.

Y-Rotate Axis

The belt drive model assumes sufficient pretension. A pretension check would
ensure this condition is met. Additional detail could also be added to the belt model to
determine when slip would occur. Thisis especialy important for mechanisms with flat

or v-shaped belts.
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APPENDIX A

TRANSISTORS

Transistors are used for switching or amplifying electrical signals. They typically
have three terminals so the control terminal can be electrically isolated from the output
2] Early 1Cs used bipolar junction transistors (BJTs). The BJT is a current-controlled
device composed of three regions: the emitter (input), the collector (output), and the base
(control). Structurally, the BJT is constructed from two pn junctions connected in series.

Figure A.1 shows the physical structure of an npn device 1?7,

Control Input ‘ Oul[?ux
(Bas) (Emitter) (Collector)
+Vp T | +Ve
\ P . N* / ) \ N+ / N+ P N*
} € +Ve
L —
c
N - -t h*

+Vg l

Figure A.1: Simplified cross-section of BJT. (Left) Simplified cross section of BJT showing the
emitter, collector and base terminals. Arrows show current flow from emitter to collector. (Right) 1D
representation of BJT with arrows to indicate the flow of charge carriers. Image from Silicon VLS|
Technology Fundamentals, Practice and M odeling 7.

When avoltageis applied to the base it alows current to flow from the emitter to the
collector. In analog applications, the proportionality between the applied base voltage and
the collector current is utilized to create an amplifier. The BJT can aso be used in digital
applications. Typical switching times range from afew hundred nanoseconds to afew

microseconds [,
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Thefield effect transistor (FET) also consists of three terminals: the source
(input), the gate (control) and the drain (output). Some FETs have an additional fourth
terminal known as the body. A voltage applied to the gate controls the conductivity

between the source and the drain. The most common FET is the metal-oxide-

semiconductor FET (MOSFET), named based on the material structure under the gate
electrode—metal on top of an insulating oxide layer grown or deposited on the substrate

(typically silicon). Figure A.2 shows the application of avoltage to the gate *”.
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Figure A.2: Simplified cross-section of MOSFET. Left: Simplified cross section of MOSFET showing
the source, gate and drain regions. No voltage or a negative applied to the gate, so no electrons are
able to move between the source and the drain. Center: A small positive voltage is applied to the gate
which attracts electrons to the surface of the substrate under the gate. Right: A larger positive
voltageis applied to the gate enabling electronsto flow between the sour ce and the drain. Image from
Silicon VLSl Technology Fundamentals, Practice and M odeling 7.

MOSFETs have much faster switching times than BJTs, typically ranging from tens to
hundreds of nanoseconds. Currently, more than 90% of |Cs manufactured rely on

MOSFETSs as the primary switching element 127,
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APPENDIX B

SYMBOLIC GENERATION OF DYNAMIC EQUATIONSIN

MATLAB

Dynamic Equation Generation Script

%Ri gi d body Mathematical Mdel Equation Derivation for 3 DOF Vacuum

%af er Handl i ng Mechani sm
g=[0 -9.81 0]; % avity v

syms a2 dl d2 d4 t2 t3 t2dot t3dot di

ector in robot base frame

dot rgl 1 rg2 2 rg2_2x rg2_2y

rg2_ 2z rg3_3 rg3 3x rg3_3y rg3_. 3z rgl brg2 brg3 bnl n2 312 g2 12
121112 12 121312 22 1223 123313 13.9g3 131113 .12 131313 22
1323 1333 rgl 1 rgl 1x rgl_1ly rgl 1z T1 T2 T3 T_tot V1 V2 V3 V_tot wl
w2 W3 w4 L rg4 4 rg4 4x rg4_4y rgd 4z t4 tddot
14 13 14 22 14 23 14 33 Mt rl br2 b r3 br4 b dlddot t2ddot t3ddot
t4ddot f1 tau2 tau3 dcw ncw J3m w3m T3m

14 14 g4 1411 14_12

%efine Denavit-Hartenberg Structure----------------omommo

dh.a= [0 0 0 O];
dh.f=[-pi/2 -pi/2 pi/2 0];
dh.d= [d1l d2 O d4];
dh.t=[-pi/2 t2 t3 t4];

%Cal cul ate coordi nate transformations

Yvect or
Qvect or
Qvect or
Qvect or

of
of
of
of

a val ues
al pha val ues
d val ues
t heta val ues

T1 b= forwardKin(dh.a(1),dh.f(1),dh.d(1),dh.t(1));
%Coordi nate transfornmation fromframe 1 to base frane
T2 1= forwardKi n(dh. a(2),dh.f(2),dh.d(2),dh.t(2));
%Coordi nate transformation fromframe 2 to frame 1
T3_2= forwardKi n(dh. a(3),dh.f(3),dh.d(3),dh.t(3));
%Coordi nate transformation fromfranme 3 to frane 2
T4_3= forwardKin(dh.a(4),dh.f(4),dh.d(4),dh.t(4));
%Coordi nate transformation fromfranme 4 to frane 3

T2 b= T1_b*T2_1;
T3 b= T2 _b*T3_2;
T4_b= T3 _b*T4_3;

Rl_b= T1_b(1:3,1:3); %Rot ati on
R2_b= T2_b(1:3,1:3); %Rot ati on
R3_b= T3 _b(1:3,1:3); %Rot at i on
R4 _b= T4 _b(1:3,1:3); %Rot at i on

matrix fromframe 1 to base
matrix fromframe 2 to base
matrix fromframe 3 to base
matrix fromframe 4 to base

%lransformation fromfranme 2 to base frane
%lransformation fromfranme 3 to base frane
%lransformation fromfranme 4 to base frane

frame
frame
frame
frame

Yefine poSition VECEOrS------- - oo oo

rgl 1= [rgl 1x; rgl 1y; rgl _1z7];
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%ector fromcoord. sys 1 to CG1 in franme 1
rg2_2= [rg2_2x; rg2_2y; rg2_2z];
%vector fromcoord. sys 2 to CG2 in frame 2
rg3 3= [rg3_3x; rg3_3y; rg3_3z];
%ector fromcoord. sys 3 to CG3 in frame 3
rgd4 4= [rgd4_4x; rg4_4y; rgd_4z];
%vector fromcoord. sys 4 to CG4 in frane 4

ri b= T1 b(1:3,4);
%vector fromcoord sys 1 to base frane in base frane
r2_b= T2_b(1:3,4);
%vector fromcoord sys 2 to base frane in base frame
r3_b= T3 b(1:3,4);
%vector fromcoord sys 3 to base frane in base frane
rd b= T4 b(1:3,4);
%vector fromcoord sys 4 to base frane in base frame

rgl_1b= R1_b*rgl_1; %ector fromcoord. sys 1 to CG 1 in base frane
rg2_2b= R2_b*rg2_2; %vector fromcoord. sys 2 to CG 2 in base frane
rg3_3b= R3_b*rg3_3; %vector fromcoord. sys 3 to CG 3 in base frane
rg4_4b= R4_b*rg4d_4; %vector fromcoord. sys 4 to CG 4 in base frane
rgl b=rl1 b + rgl_1b; %vector frombase frame to CG 1 in base frane
rg2_b=r2 b + rg2_2b; %ector frombase franme to CG 2 in base frane
rg3_ b=r3_b + rg3_3b; %vector frombase franme to CG 3 in base frane
rgd_b=r4 b + rg4_4b; %vector frombase frame to CG 4 in base frane
rcw_b= [0; dcw, O]; %vector frombase frame to CWCG in base frame

efine inertia tensSOrS------- - oo oo

12 g2=[12_11 12 12 12_13; %ink 2 inertia tensor in frame 2 coords.
1212 12 22 12_23;
1213 12_23 12_33];

13 9g3=[13_11 13_12 13_13; %ink 3 inertia tensor in frame 3 coords.
13_12 13_22 13_23;
1313 13_23 13_33];

4 g4=[14_11 14 12 14_13; %ink 4 inertia tensor in frame 4 coords.
1412 14_22 14_23;
1413 14_23 14_33];

2= R2 b*12 g2*R2_b’;
% nertia tensor for link 2 rotation about CG 2 in base frane coords.

3= R3_b*13 g3*R3_b’;
% nertia tensor for link 3 rotation about CG 3 in base frane coords.

4= R4_b*14 g4*R4_Db’;
% nertia tensor for link 4 rotation about CG 4 in base frane coords.

Yefine angular velocity veCctoOrS-------------mmmmmm o

wl= [0 0 0]."; %Angul ar velocity of frame 1
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w2= [t2dot O 0].';
w3= W2+R3 _b*[0 0 t3dot].";
wA= W3+R4_b*[0 0 t4dot].";
wW3me r*r2/r1*t 3dot;

%Angul ar velocity of frame 2
%Angul ar velocity of frame 3
%Angul ar velocity of frame 4
%Angul ar velocity of y-rotate notor

%efine linear veloCity VeCtOrS---------mommmm oo

vl= [0 dldot 0].';

v2= vli;

v3= v2;

v4d= v3 + cross(w3, R3_b*[0 d4 0]."');

%Welocity of frame 1
%Welocity of frame 2
%Welocity of frame 3
%elocity of franme 4

vg2= v2 + cross(wz, rg2_2b);
vg3= v3 + cross(w3,rg3 _3b);
vg4= v4 + cross(w4,rg4_4b);
Vew= -v1l;

%Welocity of CG 2
%/elocity of CG 3
%/elocity of CG 4
%el ocity of CWCG

%efine kinetic energy of each link----------mommmmmmmm

Tew= 1/ 2*ncws (vew. ' *vew) ;

Ti= 1/ 2*ml*(vl.' *vl);

T2= 1/ 2*nR*(vg2. "' *vg2) +1/ 2*w2. ' *| 2*w2;
T3= 1/ 2*nB*(vg3. "' *vg3) +1/ 2*w3. ' *| 3*w3;
T4= 1/ 2*mA*(vg4. ' *vg4d) +1/ 2*w4. ' *| 4* w4,
T3me 1/ 2*J3m w3t 2;

%Ki netic energy of CW

%i netic energy of link 1
%inetic energy of link 2
%inetic energy of link 3

%i netic energy of link 4
%r-rotate drive kinetic energy

T tot= TcwHT1+T2+T3+T4+T3m %otal kinetic energy

Yefine potential energy of each link----------------------------------
Vew= ncweg*(rcw b-rl1 b); % avitational potential energy of CW

V1= nil*g*rgl_b; %> avitational potential energy of link 1
V2= nR*g*rg2_b; %> avi tational potential energy of link 2
V3= nB*g*rg3_b; %> avitational potential energy of link 3
V4= md*g*r g4_b; %> avi tational potential energy of link 4
V_tot= Vew+V1+V2+V3+V4, %otal potential energy

%Cal culate the Lagrangi an------------- -

L= T tot-V_tot,; %.agr angi an

%Cal | Lagrange Function to determ ne dynam cs equations----------------

g= [dl dldot dlddot t2 t2dot t2ddot t3 t3dot t3ddot t4 t4dot t4ddot];

%/ector of g variables for Lagrange Egns
[M = Lagrange(L,q); %Wector of dynami cs equations

%Cenerate Motion Equati ONS-----------m oo

eql= M1, 1)==f1,

eq2= M1, 2) ==t au2;

eq3= M1, 3)==tau3*r*r2/r1i;
eqd4= M 1, 4) ==0;

%Cener ate dynam cs equation for link 1
%Cener ate dynam cs equation for link 2
%Cener ate dynam cs equation for link 3
%ener at e dynam cs equation for payl oad

v_dlddot = sol ve(eql, dlddot); %sol ve al gebraically for dlddot
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v_t 2ddot = sol ve(eq2, t 2ddot) ; %ol ve al gebraically for t2ddot
v_t 3ddot = sol ve(eq3, t 3ddot) ; %ol ve al gebraically for t3ddot
v_t 4ddot = sol ve(eq4, t 4ddot ) ; ¥sol ve al gebraically for t4ddot

Transformation Matrix Calculation Function

function T = forwardKin(a,f,d,t)

st= s(t); %Si ne t
sf= s(f); %Si ne f
ct= c(t); %Cosi ne t

cf= c(f); %Cosi ne f

T= [ ct - st 0 a; %Coordi nate transformati on matri x
st*cf ct*cf -sf -sf*d;
st*sf ct*sf cf cf *d;
0 0 0 1];

end

function out= c(in)
%Takes cosine of symbolic inputs and sets any val ues snaller than 17-10
to zero
this= cos(in);
i f (abs(this)<i”-10)==1
t hi s=0;
end
out =t hi s;
end

function out= s(in)
%Takes sine of synbolic inputs and sets any values smaller than 17-10
to zero
this= sin(in);
if (abs(this)<1n-10)==
t hi s=0;
end
out =t hi s;
end

L agrange Equation Calculation Function
function [M = Lagrange(L, Q)
%et er mi nes equations of notion using the Lagrange Equation
% nputs are the Lagrangian, L, and a vector of degrees-of-freedom
%Adapt ed from “Lagrange’s Equations” function on Matlab Central

Ot tp:// www mat hwor ks. com mat | abcentral /fil eexchange/ 23037-1 agr ange- s-
%equations posted Feb 19, 2009

syms t

Var= length(q)/3;
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V= q;

% reate a vector with f1(t), diff(fi(t), t), diff(f1(t), t, t) for
each degree-of -freedom
for cont0=1: Var
Vt (cont0*3-2)= strcat (' f', num2str(contQ)," ' (t)"');
Vt (cont0*3-1)= diff(Vt((cont0*3)-2),t);
Vt(cont0*3)= diff(Vt((cont0*3)-2),t, 2);
end

for cont0=1: Var
L1= sinmple(diff(L,g(cont0*3-1))); %lL/ dqdot
L2= sinple(diff(L,g(cont0*3-2))); %lL/ dq
Dposx= L1

%Repl ace g(cont) with Vt(cont) in Dposx eqn
for cont=1:Var*3

Dposx= subs(Dposx, q(cont), Vt(cont));
end

L1= diff(Dposx,t); %/ dt (dL/ dqgdot)
%Repl ace Vt(cont) with g(cont) in L1 egn

for cont= Var*3:-1:1
L1= subs(L1, Vt(cont),qg(cont));

end
L1F= L1-L2;
L1F= sinpl e(expand(L1F)); %Expand ternms then sinplify

expression
L1F= col l ect (L1F, Vt (cont0*3)); %Collect |ike terns
M cont 0) = L1F;

end

end
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APPENDIX C

MODELICA CODE FOR CABLE IN TENSION MODEL

The Modelica code for the CablelnTension model isincluded in Figure C.1. This
model is heavily based on the existing Elastogap component from the Modelica Standard

Library. Modified sections are highlighted.

model CableInTension
"1D translatiocnal spring damper combination that reacts only in tension"”
extends
Modelica.Mechanics.Translational.Interfaces.PartialCompliantWithRelativeStates;
parameter Real c(final unit="N/m", final min=0, start=l) "Spring constant"”;
parameter Real d(final unit="N/ (m/s)", £final min=0, start=l)
"Damping constant";
parameter Modelica.SIunits.Position s_rel0=0 "Unstretched spring length";

parameter Real n(final min=1l) =1
"Exponent of spring force ( £ ¢ = -c*|s_rel-s_rxelO|"n )";
extends

Modelica.Thermal .HeatTransfer.Interfaces.PartialElementaryConditionalHeatPortWithoutT;

/6

Please note that initialization might fail due to the nonlinear spring characteristic
(spring force is zero for s_rel > s_rel0)

if a positive force is acting on the element and no other force balances this force

(e.g., when setting both initial velocity and acceleration to 0)
\ ¥ 4

w
0

tension(start=true)

protected

Modelica.SIunits.Force £_c "Spring force";

Modelica.SIunits.Force £_d2 "Linear damping force";

Modelica.SIunits.Force £ d

"Linear damping force which is limited by spring force (I£f_d| <= |£f_cl)";

equaticn

// Modify contact force, so that it is only "pushing” and not

// "pulling/sticking” and that it is continous

tension = s_rel > s_relO;
£ ¢ = smooth(l, noEvent( if tension then c*abs(s_rxel - s_rxel0)~n else 0));
£ d2 = if tension then d*v_rel else 0;
£ d = smooth(0, noEvent( if tension then (if £ d2 < -f _c then -f_c else
if £ d2 > £ c then £ c else £ _d2) else 0));

£f=f£fc+ £ d;
lossPower = £
a;

end CableInTension;

d*v_rel;

Figure C.1. Modelica Code for CablelnTension Component. M odifications from Elastogap are
highlighted.
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