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SUMMARY

In the open ocean acoustic scattering by SONAR sources can be dominated by

large fish schools. Multiple scattering effects are strong and the individual fish air-

filled swimbladders scatter in the 1-10 kHz frequency range for most fish sizes. Fur-

thermore, these schools are typically large in comparison to the acoustic wavelength

and the individual fish typically swim in nearly periodic arrangements with a separa-

tion distance of approximately one body length. Hence, this work takes the perspec-

tive that fish schools can be studied simply and effectively by invoking the formalism

of Bloch waves in periodic media. Analysis of the periodic school is aided through

the Bloch theorem which reduces the study of the entire school to the study of a unit

cell containing a single fish swimbladder. Application of the Bloch formalism to the

school requires study of acoustic reflection from a semi-infinite half-space composed

of an infinite tessellation of air-filled swimbladders in water. This media is denoted

a fluid phononic crystal (PC). The reflection is considered, using a finite element

discretization of the unit cell and an expansion of Bloch waves for the transmitted

wave field. Next, scattering from a large finite school is studied through the context

of the Helmholtz-Kirchhoff integral theorem where the semi-infinite PC pressure, de-

termined by the Bloch wave expansion, is used as the surface pressure. Validation of

results is accomplished via comparison with a finite element model (two dimensions)

and a low frequency analytical multiple scattering model (three dimensions). Anal-

ysis of the dispersion relationship of the infinite PC yields useful information for a

large school, namely, the frequency corresponding to target strength peaks, even as

xviii



wave incidence angles and internal fish spacing are varied. The scattering effects at-

tributed to the shape and weak internal disorder of the finite school were investigated

with the surface integral method and a perturbation scheme. A general model using

Bloch formalism, that encompasses the internal fish structure, fish biologic properties,

and realistic school effects such as varying school geometry and disorder, was formu-

lated. Transient analysis of the frequency dependent scattering, using the proposed

approach developed in this thesis, may assist SONAR operators better classify large

fish schools based on the observed characteristics of the scattered field.
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CHAPTER I

INTRODUCTION

1.1 Overview

In an ocean environment the propagation of acoustic waves is strongly dominated by

the waves interaction with groups of marine animals. In particular, it is well known

that at frequencies less than 30 kHz [17] scattering from a school of fish contributes

to a large source of volume reverberation in the open ocean [17, 22]. Additionally,

multiple scattering effects from the incident acoustic wave and the collective arrange-

ment of fish lead to a complicated frequency response. The received scattered waves

from schools of fish can cause false alarms in tactical mid-frequency SONAR (SOund

Navigation And Ranging) (1-10 kHz) systems [35]. Hence, understanding the spatial

and temporal scales of the acoustic scattering from large fish schools is important to

improving these SONAR systems.

1.2 Schools of fish

In the 1-10 kHz frequency range, the acoustic scattering is largely dominated by the

fish’s air filled swimbladder [22, 56]. As such, the scattering from swimbladder bearing

fish is approximated as scattering from a spherical air bubble given the large wave-

length of the incident wave ( 1m) compared to the typical dimension of most swim-

bladders ( cm). Researchers have developed scattering models of fish which encompass

the acoustically viscous fish flesh, given by Love’s model [56], or viscous-elastic swim-

bladder muscle wall [21] which accurately describe resonance effects of individual fish

[21]. These prior works that capture the acoustic nature of the fish body were mostly
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motivated by the resonant scattering behavior of a single fish. The acoustic scatter-

ing of entire fish schools have been considered by way of statistical modeling by Refs.

[3, 58], low frequency homogenization by Hahn [28], or self-consistent scattering (SCS)

methods [22, 1]. Feuillade et al. [22] explored the target strength variations, under a

low frequency assumption, from schools with varying internal structure. Alvarez and

Ye [1] similarly considered target strength dependency on the ensonificaiton direction,

with a scattering model, albeit more numerically cumbersome than the SCS method,

suitable for arbitrary point scatterers.

Schooling fish typically swim, not in random, but in regular spatial arrangements

such that the nearest neighbor distance is essentially fixed [69, 65]; often the fish swim

with a separation distance equal to approximately a body length [69]; see Fig. 1.

This observation has prompted many to model the internal school structure as a

periodic crystal lattice, with individual fish centered on the lattice points; see Ref.

[65] for a review. Cullen et al. considered a simple cubic (SC) structure in pilchard

(Harengula spp.); further evidence [69, 68] refuted this internal structure. Pitcher

[68] and Pitcher et al. [69] documented evidence supporting an icosahedral packing

structure to minimize packing volume in a school of minnows (Phoxinus phoxinus) and

saithe (Pollachius virens). Feuillade et al. [22] and later Alvarez and Ye [1] modeled

the fish school as having an internal body centered cubic (BCC) structure. Nero et al.

[63] empirically considered an artificial fish school, with swimbladders on the lattice

points of a SC structure, for frequency dependent target strength calculations.

The above observations assist in modeling the position of the fish. Ultimately,

the target strength (backscattered intensity), and other relevant acoustic quantities

of a model can be derived from the backscattered pressure field. That is, the pres-

sure scattered to a receiver at an arbitrary location in the far field. Modeling the

acoustic scattering from entire fish schools is a formidable task. Assuming the fish’s

movement is zero, relative to the sound speed, the multiple scattering problem among
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(a) (b)

(c)

Figure 1: Example (a) and (b) of fish photograph in their natural habitat. A degree
of regularity can be observed. (a) fusiliers photographed by Randy Harwood in Papua
New Guinea and (b) aerial photograph of adult tuna [83] (Fig. 1 in their work). (c) An
experiment dealing with scattering from air-filled bubbles (proxy for a swimbladder)
in a simple cubic array [63].

fish presents challenges. For a small number of fish, simple analytical, numerical, or

experimental models may be adequate [22, 83, 14, 3]. For a large number of fish, with

a potentially complicated school geometry, these prior methods can be impractical.

1.3 Phononic crystals

1.3.1 Previous work on PCs

Periodic arrays of scattering objects, embedded in a homogenous host medium, con-

stitute a phononic crystal (PC). Multiple scattering effects combined with the res-

onances of the scattering objects lead to a complex dispersion relationship and the
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possibility of frequency band gaps and negative refraction [26, 78]. A band gap is

a frequency range where there is no propagation allowed in the PC; the band gap

is a consequence of the multiple scattering present inside the PC. A variety of PCs

have been studied such as periodic arrays of fluid cylinders [8, 45] or spheres [12, 44]

in a water background. Waveguides with periodic profiles [5], locally resonant peri-

odic structures [55], and PCs designed to filter acoustic signals [77] are examples of

structures engineered to exploit the frequency band gap behavior; see the example

PCs in Fig. 2. Regardless of the system, knowledge of the dispersion relationship and

associated acoustic wave fields are crucial for characterizing material and/or device

response.

(a) (b)

Figure 2: Examples of phononic crystals studied in the literature. (a) A PC designed
to exploit the resonance nature of the inclusions [55] (Fig. 1b in their work). (b) A
micro-scale PC device developed to control wave behavior via exploitation of the band
gaps [64] (Fig. 3 in their work).

A multitude of methods have been developed for dispersion computations, often

focusing on wave dynamics within a single unit cell. Plane wave expansion methods,

such as those detailed in Ref. [45], use Fourier expansions for the wave field and

periodic material properties to compute the dispersion behavior, yet can experience

convergence issues for highly contrasting material properties [77]. Chen and Ye [8]

and Krynkin et al. [38] considered spherical harmonics via separation of variables to
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compute the dispersion relationship for given fluid, and respectively, fluid-solid crys-

tals. Alternatively, transfer matrices [5] are well-suited for one-dimensional systems

whereas finite difference techniques can also be used to numerically compute the dis-

persion of complex or finite periodic structures [77, 79]. Homogenization techniques

[25, 37] are limited to low frequency systems and thus will not be considered here.

Finite element (FE) based techniques [31, 18, 16, 46] allow calculation of the dis-

persion and acoustic wave field for arbitrary material and geometric configurations.

The Bloch theorem [18, 34] allows one to consider a single unit cell of the periodic

medium thereby enabling direct calculation of the dispersion behavior and a set of

Bloch waves which describe the wave field within the entire medium.

In the context of periodic media, the Bloch theorem [18, 34] allows one to avoid

studying the entire system and to instead consider a single unit cell for computation

of the band structure. This theorem enables direct calculation of the dispersion

behavior and a set of Bloch waves which describe the wave field within the PC. The

FEM [16, 46], which allows for arbitrary inclusion geometry and materials (in the

reference unit cell), is often employed to calculate the dispersion relationship and

Bloch waves.

1.3.2 Scattering from PCs

In the past, authors have discussed the interaction of an external incident wave with

a phononic crystal, to understand the effects of multiple scattering and PC dispersion

on the wave field. The layer Korringa-Kohn-Rostoker (KKR) method [26, 74] is a

common approximation method in the photonics literature where slabs of scattering

objects, of infinite height, are correlated using specialized scattering matrix meth-

ods. Similar layer scattering methods have also been considered in elastic phononic

crystals [70, 29]. Leroy et al. [52, 6] considered a layer method for modeling the re-

flection coefficients from successive thin layers of bubbles under low frequency limits.
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Moiseyenko et al. [59, 60] conducted numerical FE studies that focused on diffrac-

tion of the incident wave but without a quantitative independent verification study

of the pressure field results. Sanchis et al. [75] compared pressure fields using doubly

multiple scattering theory versus experiment for an array of 35 aluminum cylinders

periodically spaced in air. The work in Ref. [75], which did not exploit the peri-

odicity of the structure, is the only work comparing analytical pressure fields to an

independent verification study known to the authors of this work.

Researchers have applied a multitude of numerical techniques to study the interac-

tion of a wave with finite phononic crystals. The finite difference time domain (FDTD)

techniques offers a simple approach to a transient solution [77, 79] via discretization

of the wave equation using divided differences. The finite element method (FEM)

applied to PC geometries offers the flexibility of considering arbitrary material prop-

erties and geometries. Despite the straightforwardness of the prior two approaches,

both can require high computational effort to analyze large PCs. Additionally, to pre-

vent radiation from truncated computational boundaries from corrupting the results,

either a very large homogenous domain must be employed, or specialized radiation

boundary conditions must be developed [60].

Study of the external scattering from phononic crystals amounts to studying mul-

tiple scattering events between an incident acoustic wave and the PC constituents.

The external scattering problem has received little attention in comparison to inter-

nal scattering and related band structure calculations. One possibility to obtain an

accurate solution for a finite PC is to consider a multiple scattering approach using

spherical harmonics [8]. This approach, however, does not exploit the inclusion peri-

odicity, which can lead to an inefficient solution process for large PCs and also may

require an expansion of a large number of Bessel functions. Work by Li et al. [53]

considers the boundary element method, along with the Bloch theorem, to calculate

dispersion and scattering from a PC. In this light, the Helmholtz-Kirchhoff integral
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(HKI) [85, 86], which is the theoretical basis of the boundary element method, is at-

tractive as the approach is general and encompasses the requisite spherical spreading

necessary for wave scattering from finite objects. This analytical integral technique

requires evaluation of a surface integral of the pressure and normal velocity along a

vibrating surface.

Another approach to determine the scattering from a three-dimensional (3D) ar-

ray of inclusions is Foldy’s multiple scattering method [23]. This popular approach,

applicable to only low frequency scattering, employs a self-consistent technique to

determine the unknown amplitude of the scattered waves. Despite the simplicity of

the approach, the solution for the scattered wave relies on a matrix with size equal to

the square of the number of scattering objects, thus the technique scales poorly with

large systems. Hence, exploitation of the inclusion periodicity using an analytical

treatment can be used to enhance accuracy and algorithm efficiency of the scattering

solution.

Recent work by Laude et al. [49] has examined the reflection of an incident plane

wave from a two-dimensional (2D) semi-infinite phononic crystal by considering an

expansion in terms of the Bloch waves (termed Bloch wave expansion, BWE) and

an expansion of reflected plane waves. Laude et al. [49] did not, however, validate

their expansion approach of the wave fields with an independent verification study

nor explicitly include a crucial group velocity selection criterion. Kulpe et al. [42]

added a group velocity criterion to the selection of possible Bloch waves for the

expansion set and provided several numerical examples and verification. Later, in two

dimensions, Kulpe et al. [40] combined the HKI with the BWE to accurately predict

the external acoustic scattering from 2D finite phononic crystals. The scattering from

three-dimensional (3D) phononic crystals was considered via Bloch wave expansion

in Ref. [43] and more complicated PCs with disorder and geometric complexity in

Ref. [41].

7



In closing, in the last few decades, there have been many analytical, numerical,

and experimental advancements in the study of phononic crystals. One area open

to further investigation is the scattering from finite phononic crystals with arbitrary

inclusion geometry, crystal geometry, frequency, etc. Several of these topics are ad-

dressed within this Thesis in Chapters 2-5.

1.4 Scattering via Bloch wave formalism

In this work, large fish schools will be considered; the size of which will be much

larger than the acoustic wavelength whereby an infinitely large medium approxima-

tion can be employed. As discussed previously, swimbladder bearing fish swim in a

periodic arrangement, with the swimbladders dominating the acoustic response. In

this perspective, the Bloch wave formalism will be applied to predicting the acoustic

backscattering from a large fish school. For simplicity, and without loss of generality,

fish will be considered to have an equilibrium position on a regular simple cubic lat-

tice. Applying the phononic crystal theory to a large fish school enables an accurate

and efficient prediction of the scattering from large fish schools.

Note, throughout the Thesis, depending on the context the words ’PC’ or ’fish

school’ will be used to denote the scattering volume. The fish schools necessarily will

consider fish arranged in a simple cubic lattice with weak disorder. However, since

the theory introduced herein can be applied to general 2D and 3D PCs, or through

the formalism discussed herein, fish schools, the use of the words should not illicit

confusion. It is emphasized that the fish school is not considered to be a perfectly

periodic phononic crystal, rather, Bloch formalism is applied to an appropriate unit

cell of a fish.

1.5 Contributions to the literature

Overall, this Thesis introduces several topics to the emerging discipline of phononic

crystals. In particular the BWE and its use with studying the scattering from finite
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PCs. The following list outlines the scientific topics introduced into the literature

through the published papers and conference presentations leading to the construction

of the Thesis. This list is not complete, but rather, an overview only.

1. 2D half-space BWE selection criterion leading to a correct expansion; verifica-

tion vs. FEM

2. 3D half-space BWE and verification vs. SCS

3. 2D and 3D layer BWE for PCs with a finite thickness

4. Scattering, and verification, from 2D and 3D PCs using the BWE integrated

with the HKI

5. Bloch formalism applied, in 2D and 3D, to phononic crystals with weak internal

disorder

6. The 3D BWE applied to PCs with arbitrary shape via a facet formalism

7. Bloch formalism applied to efficiently studying the scattering from large fish

schools

All of the above items will be discussed throughout this work. As indicated, there is

need to study the scattering from phononic crystals. Thus, the content presented in

this Thesis provides a dual purpose: the study from fish schools using the Bloch wave

formalism, and more generally, the study of scattering from finite phononic crystals

of arbitrary shape.

1.6 Outline of the thesis

In the following Thesis, Bloch wave formalism will be introduced in order to accu-

rately predict the scattering from a model fish school. Since the fish school considered

herein contains fish arranged in a simple cubic arrangement, a simple cubic model
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of a two-dimensional and three-dimensional bubble will be considered. In Ch. 2 the

Bloch wave expansion formalism will be introduced for the 2D system. Verification

and parametric studies will be presented. In Ch. 3 the 3D BWE will be extended

from its 2D counterpart. Verification studies and an overview of the SCS technique

will also be presented. Next, in Ch. 4 the BWE will be used along with the HKI

to study scattering (both monochromatic and transient scattering) from 2D and 3D

finite phononic crystals. Verification is presented using the requisite FEM and SCS

techniques. A formalism is also presented for PCs of arbitrary (i.e. non-cubic) ge-

ometries. Since, obviously, fish schools exhibit disorder, Ch. 5 discusses the role of

the BWE and HKI when applied to predicting scattering from disordered systems.

Lastly, in Ch. 6 the full Bloch wave formalism is put together to study scattering from

fish schools. In closing, the Thesis concludes with a summary and recommendations

for future work in Ch. 7.
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CHAPTER II

BLOCH WAVE EXPANSION IN TWO DIMENSIONS

2.1 Overview

In this chapter the two-dimensional BWE will be discussed. As mentioned in Ch. 1,

Laude et al. [49] introduced the concept of the BWE to study the reflection and

transmission from a semi-infinite PC half-space. Herein, a new dispersion technique

will be introduced and verified. Next, the half-space BWE will be improved upon; a

layer BWE will be introduced. The chapter is closed with several verification studies

demonstrating the accuracy of the technique.

2.2 Two-dimensional phononic crystal

The prototypical two-dimensional PC under study is displayed in Fig. 3a. This PC

is composed of an arbitrary number of inclusions periodically spaced with period

a1, a2. A representative unit cell is depicted in Fig. 3b: a cell centered inclusion

within the PC background. The unit cell has lengths aj (j = 1, 2) and R is the

radius of the cell-centered inclusion, ρ is the density, and c is the sound speed of

the background (subscript 1) and inclusion material (subscript 2). For the sake of

simplicity, a two-dimensional square unit cells (a1 = a2 = a) with circular cell-centered

inclusions is considered in this chapter. The theory in this chapter can be extended in

a straight forward manner to non-square unit cells through a lattice transformation

[25]. Additionally, the circular inclusion is chosen for simplicity; the theory is general

and, via the finite element method, arbitrary shaped inclusions can be considered.
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(a) (b)

Figure 3: (a) A typical two-dimensional phononic crystal. A typical unit cell is
outlined in the box. (b) A single unit cell is highlighted with periodicity a1 and a2 in
the êx, êy, directions, respectively, and a cell-centered circular inclusion.

2.3 The Bloch theorem

In a 2D periodic PC the Bloch theorem [34] states that everywhere in the medium

the pressure field p(x, t) takes the form of a function p̃(x), hereby termed a wave

mode, that is periodic on the unit cell and modulated by a harmonic plane wave of

frequency ω

p(x, t) = p̃(x)ei(k·x−ωt). (1)

In fact, every field quantity in the PC obeys a similar relationship. From this point

onward, the time t will be suppressed as it is understood that all wave fields are

monochromatic. The Bloch wavevector k is related to ω by a dispersion relationship.

Periodicity of the PC imposes periodicity of the real wavenumber space (reciprocal

k-space), shown in Fig. 4a, where bj = 2π/aj is the length of the cell in k-space.

For notational clarity let subscript j = 1,2 (or x, y) correspond to a length or vector

component. Unique Bloch waves are found with real part components in the range

−π/aj ≤ kj ≤ π/aj, an extent termed the first Brillouin zone, where kj is the jth

component of the wavevector. However, the imaginary components of the wavevector
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are unbounded [48, 30]. For clarity propagating Bloch waves are defined as hav-

ing a purely real wavevector, evanescent Bloch waves as having a purely imaginary

wavevector, and decaying Bloch waves as having complex wavevectors. Implicit in

this field representation is that there is an infinite number of Bloch waves p(x, t) each

with corresponding wavevector k that satisfy the Bloch theorem of Eq. (1) and the

acoustic wave equation. Hence, at a fixed frequency and direction in k-space there are

a finite number of propagating waves, due to the limitations imposed by the Brillouin

zone, yet an infinite set of decaying and evanescent waves.

(a) (b)

Figure 4: (a) The first Brillouin zone, in wavenumber k-space, for a 2D unit cell. (b)
A representative finite element mesh of a single unit cell with reduced nodal degrees
of freedom depicted as dots. The nodal degrees of freedom represented by squares
are related by periodic boundary conditions via matrix T. pi is one node contained
within the set pi.

The complex waves of a PC constitute a complete basis and justify a wave ex-

pansion; see Appendix A for more details. Decaying and evanescent Bloch waves are

necessary near the boundary of the incident medium and account for the near field

wave refraction behavior [48]. Traditional methods for solving the dispersion relation

for a particular phononic crystal involve specifying real k and finding ω as an eigen-

value. See the Appendix B and the papers [46, 66, 19] for a review of this method.

The dispersion relationship of the PC considered here is shown in Fig. 8. The ex-
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Figure 5: Dispersion relationship for the PC considered in this chapter. The y
wavenumber is fixed to zero. The band gap ranges are indicated.

ponentially decaying and evanescent Bloch waves and the associated band structure

are not revealed by these ω(k) methods [47], as k is restricted to be real. A different

k(ω) method will be introduced, for complex k, with specific application to wave

transmission into the PC half-space.

2.4 Dispersion relationship

2.4.1 Derivation of a new technique

Next, a method is presented which uses the FEM to form equations leaving a single pa-

rameter k as a complex eigenvalue and the discretized mode vector p as an eigenvector

for a particular frequency ω. The method presented here is formulated specifically to

easily obtain assembled FEM matrices from commercial software, such as COMSOL

Multiphysics. Through the finite element method, this dispersion technique remains

quite general and can adequately accommodate an arbitrary fluid inclusion.
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Starting with the Helmholtz wave equation, with periodically varying density ρ(x)

and sound speed c(x)

−ω2

ρ(x)c(x)2
p(x)−∇ ·

(
1

ρ(x)
∇p(x)

)
= 0. (2)

In this Thesis, the functions ρ(x) and c(x) are equal to constant values ρ1 and c1 for

the water host (ρ1 = 1000 kg/m3 and c1 = 1500 m/s) and ρ2, c2 and for the circular

inclusion with radius R, as indicated in Fig. 3b. Insertion of the Bloch theorem Eq.

(1) and simplification results in

−∇ ·
[

1

ρ
(∇p̃+ ikp̃)

]
− 1

ρ
[ik · ∇p̃− (k · k)p̃]− ω2

ρc2
p̃ = 0. (3)

Using triangular quadratic Lagrange elements, a finite element model of Eq. (3) is

sought after. Multiplication by a test function ψ(x) and integration over the unit cell

results in∫
cell

{
∇ψ ·

[
1

ρ
(∇p̃+ ikp̃)

]
− ψ

ρ
[ik · ∇p̃− (k · k)p̃]− ω2

ρc2
ψp̃

}
dV = 0. (4)

In anticipation of the follow-on development, and without loss of generality, the right

hand side boundary integral terms in Eq. (4) resulting from application of the diver-

gence theorem (see discussion following Eq. (8)) are zeroed. Tessellating the domain

with triangular elements and invoking a Galerkin discretization of the pressure field

p̃ and test function ψ(x) → ψm(x) using quadratic Lagrange interpolation functions

results in five elemental matrices with components

M element
mn =

∫
V

1

ρc2
ψmψndV (5a)

Kelement
mn =

∫
V

1

ρ
∇ψm · ∇ψndV (5b)

Belement
mn =

∫
V

1

ρ
ψmψndV (5c)

Aelementmn,x =

∫
V

1

ρ

(
ψn
∂ψm
∂x
− ψm

∂ψn
∂x

)
dV (5d)

Aelementmn,y =

∫
V

1

ρ

(
ψn
∂ψm
∂y
− ψm

∂ψn
∂y

)
dV. (5e)
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Here m,n = 1 to 6 for quadratic triangular elements, corresponding to the indi-

vidually numbered nodes of an element, and V is the volume of an element. The

six interpolation functions ψm can be found in a typical finite element textbook [72].

Assembly of the elemental matrices Eq. (5) over all elements in the domain results

in five assembled global matrices M,K,B,Ax,Ay and the equations of motion read

(
−ω2M + K + ikxAx + ikyAy + (k · k)B

)
p = 0. (6)

Dispersion techniques leaving the periodic mode vector p as an eigenvector require

periodic boundary conditions [49]. Unit cell periodicity implies that the nodal degrees

of freedom on the bottom “B” are equal to the nodal degrees of freedom on the top

“T” (pB = pT ), the left “L” to the right “R”, etc (see Fig. 4b). Implementation

of periodic boundary conditions is easily achieved using a transformation matrix T

[46, 66, 19] by preferential ordering of the nodal degrees of freedom in the global

nodal vector p, with pI referring to all nodes on the mesh interior. The reduced set

of unique nodal values is contained in the vector p̃ (note: the choice of the left and

bottom degrees of freedom in the reduced set is arbitrary) which is related to the
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vector p by

p = Tp̃ (7a)

p̃ =



pL

pB

pLB

pI


(7b)

T =



I 0 0 0

I 0 0 0

0 I 0 0

0 I 0 0

0 0 I 0

0 0 I 0

0 0 I 0

0 0 I 0

0 0 0 I



(7c)

where I and 0 are identity and zero block matrices. The periodic boundary conditions

are imposed on the equations of motion in Eq. (6) by premultiplication of TT and

substitution of Eq. (7) yielding

(
−ω2M̃ + K̃ + ikxÃx + ikyÃy + (k · k)B̃

)
p̃ = 0 (8)

where M̃ = TTMT, K̃ = TTKT, etc. and the superscript T denotes a matrix

transpose. Note, to avoid confusion, other authors [46, 66, 19] use T(k) as the trans-

formation matrix; the use herein corresponds to their T(0). The FEM right hand

side boundary terms for the cell, omitted in Eq. (4), equate to zero after premulti-

plication by the matrix TT [19]. Lastly, note, that all five of the preceding matrices

depend only on geometry and acoustic properties. Thus, for a particular geometry,
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for implementation efficiency, the matrices can be loaded from a pre-computed set.

This property can be exploited, for instance, in parametric studies involving ω.

2.4.2 Implementation in COMSOL

The five preceding FEM matrices can be created automatically via finite element

method commercial software. In particular, throughout this work, COMSOL Multi-

physics is used extensively as this software enables scripting via MATLAB and easy

extraction of the matrices from Eq. (8). As such, this section pertains explicitly to

COMSOL; other commercial software or in-house codes can alternatively be used to

create and assemble the five matrices necessary for the dispersion calculations.

In the partial differential equation (PDE) interface in COMSOL [11], a general

PDE is defined as

−ω2ecau
c −∇ · (dc∇uc)−∇ · (α̂cuc) + β̂

c
· ∇uc + acuc = 0 (9)

where the ’c’ superscript is given to the COMSOL variables (which are space and

frequency dependent in general) and to avoid confusion with other quantities. Com-

parison of the preceding equation and Eq. (3) reveals that:

eca =
1

ρc2
(10a)

dc =
−1

ρ
(10b)

α̂c =
−ik
ρ

(10c)

β̂
c

=
ik

ρ
(10d)

ac =
−k2

ρ
(10e)

uc = p̃ (10f)

Within the COMSOL software, Eq. 9 can be solved using a Galerkin discretization

and the following equation is formed[
−ω2Mc + Kc

]
uc = 0. (11)
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where Mc,Kc are the mass and stiffness matrices generated within COMSOL from

the Galerkin discretization of Eq. (9) and uc is the vector of unknown nodal values

of uc. After the user inputs the numerical values of Eq. (10) using the geometry and

mesh, respectively, described by Fig. 3b and Fig. 4b the mass and stiffness matrices

can be exported to MATLAB. Of note also, since the model must be periodic, the

mesh’s nodes must be enforced to be periodic on the edges of the model; COMSOL

possess this enforcement feature.

Given the two COMSOL matrices of Eq. (11), the next step is to determine the

five matrices appearing in Eq. (8). Firstly, by direct comparison, it is found that

Mc = M. Secondly, because of the similarity of M and B from Eq. (5), B be found

by imposing an artificial density ρc = ρc2 and extracting the new COMSOL mass

matrix Mc → B.The matrices K,AxAy can be identified by specifying the values of

kx, ky to be zero or one in the COMSOL variables of Eq. (10). This is a three step

procedure: specify the value of kj, assemble and extract the matrix Kc then follow

kx = 0, ky = 0,K = −Kc (12a)

kx = 1, ky = 0,Ax = i (Kc + K + B) (12b)

kx = 0, ky = 1,Ax = i (Kc + K + B) (12c)

It is noted, this is purely a ’trick’ to efficiently extract the matrices of interest from

COMSOL into the desired form of Eq. (8).

2.4.3 Solution of the eigenvalue problem

Transformation of Eq. (8) to a scalar eigenvalue problem requires a wavevector

parametrization leaving a single parameter k as an eigenvalue. To this end, k is

written as

k = k0 + kα̂ (13)

and leave the vectors k0 and α̂ as problem specific parameters; see Fig. 4a and

Ref. [47]. This general scheme allows the complex dispersion relationship to be
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calculated along any direction α̂ in k-space. Inserting Eq. (13) and manipulation

of the equations of motion Eq. (8) results in a quadratic eigenvalue problem for the

dispersion relationship with eigenvalue k and eigenvector (corresponding to the Bloch

mode) p̃. (
D′(ω) + kA′ + k2B′

)
p̃ = 0 (14)

where

D̃(ω) = −ω2M̃ + K̃ (15a)

D′(ω) = D̃(ω) + i
(
k0xÃx + k0yÃy

)
+ k2

0B̃ (15b)

A′ = i
(
αxÃx + αyÃy

)
(15c)

B′ = α2B̃. (15d)

Note that the matrices M̃, K̃, B̃ are symmetric and Ãj is not, therefore the eigen-

values of Eq. (14) are not guaranteed to be real and positive. Numerical solution

efficiency is obtained by converting the quadratic eigenvalue problem, of size NR x

NR (NR being the size of the square matrices appearing in Eq. (14)) to a generalized

eigenvalue problem of size 2NR x 2NR by introducing ũ = kp̃ and writing

(S− kG)

p̃

ũ

 = 0 (16)

S =

 0 I

−D′(ω) −A′

 (17a)

G =

I 0

0 B′

 . (17b)

The finite element matrices are typically sparse and efficiency is obtained by using any

one of the sparse eigenvalue solution routines. Solution of the discretized generalized

eigenvalue problem Eq. (16) leads to a finite set of periodic Bloch modes and, possibly,
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complex wavenumbers k. The Bloch wavevector k is reconstituted from the eigenvalue

k by Eq. (13). An iterative solution for many values of ω will lead to a k(ω) dispersion

relation for the arbitrary 2D PC, in any direction α̂.

The eigenvalue problem previously outlined is perfectly general, given the vec-

tors k0 and α̂, and can be tailored to identify Bloch waves for a transmitted field

expansion. The geometry of the reflection-transmission problem is shown in Fig. 6

where a semi-infinite 2D PC half-space is adjacent to a homogenous water medium

with density ρi and sound speed ci. For reflection-transmission problems the parallel

wavevector component must be conserved along the PC interface [34, 49]. A set of

Bloch waves is required in the expansion that have the parallel component equal to a

specified constant. Wavenumber conservation along the interface, given by unit vec-

tor êy, will be mantained by searching for Bloch waves along a direction α̂ = êx [47].

Note, regardless of the interface’s orientation with respect to the coordinate axes, the

vector α̂ is always parallel to the PC interface normal. The vector k0 is composed of

PC

...

...

...
homogenous
incident
medium

Figure 6: A half-space consisting of a homogenous water medium and a PC. Three
reflected wave orders and the incident plane wave are included for an example.

the parallel component of the incident wavevector, e.g. k0 = [0 ω/ci sin(θ)]T where θ
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is the incidence angle with respect to the interface normal êx. Note k · êy = const ∀ k

and therefore the relationship allows for wavenumber conservation along the PC in-

terface. Geometrically this constraint implies searching for Bloch waves along a line,

given by Eq. (13) and at fixed ω, through the three-dimensional complex disper-

sion surface. See Ref. [34] for a further geometrical discussion of the wavevector

relationship.

Calculation of the group velocity for a particular Bloch wave can be directly

obtained from the eigenvalue problem of Eq. (16). First Eq. (16) is written as

W(ω)q = kq where W(ω) = G−1S(ω) and q = [p̃ ũ]T is a right eigenvector of W.

The derivative of the n-th eigenvalue kn with respect to ω can be obtained [82] as

∂kn
∂ω

= hHn
∂W(ω)

∂ω
qn (18)

where now the vector hHn is the n-th left eigenvector of W and is scaled such that

hHn qn = 1. Here the superscript H denotes the matrix Hermitian operation. Finally,

the group velocity for the n-th Bloch wave into the PC medium cgn · êx is obtained

by

cgn · êx = Re

[(
∂kn
∂ω

)−1
]

= Re


hHn

 0 0

−B′−1 ∂
∂ω

D′(ω) 0

qn


−1 . (19a)

∂

∂ω
D′(ω) = −2ωM̃ + i

sin θ

ci
Ãy +

2ω sin2 θ

c2
i

B̃′ (19b)

With the two preceding equations the group velocity can be efficiently determined

after solution of the eigenvalue problem in Eq. (16).

This section is closed with a fact regarding PCs with viscous fluids. Alternatively,

a different ω(k) technique can be considered for PCs with viscous fluids [18, 32, 61].

The dispersion technique introduced herein is suitable for use with viscous fluids;

see Appendix D. With the introduction of the frequency dependent matrices, the

group velocity calculations must be modified. Since the dispersion relationship is not
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appreciably changed much by the introduction of viscous PCs (the viscosity properties

are representative of those measured in fish), only ideal PCs will be considered in the

rest of this research effort.

2.4.4 Verification

Up to this point, a technique has been formulated for easy implementation in com-

mercial finite element programs. To verify the preceding dispersion technique the

system parameters are set to {a1 = a2 = 1 m, R = 0.4 m, ρ2 = 7,800 kg/m3, c2 =

4,591 m/s, α̂ = 1/
√

2[1 1]T , k0 = 0}. This parameter choice allows direct comparison

for the complex dispersion relationship from Laude et al. (see Fig. 6 in their work)

[49]. Inspection of the results in Fig. 7 show that the dispersion curves calculated

from the present technique agree very well with that reported in the literature.

0 2 4
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

real k [rad/m]

ω
 [r

ad
/s

]

0 5 10 15
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

imag k [rad/m]

ω
 [r

ad
/s

]

real 
wavenumbers

complex
wavenumbers

complex
wavenumbers

imaginary 
wavenumbers

Figure 7: Verification of the complex dispersion relation for a circular steel rod
in water. The large dots represent the dispersion relationship from Ref. [49] (see
Fig. 6 in their work). The real wavenumbers, imaginary wavenumbers, and complex
wavenumbers (small dots) were found by the dispersion technique demonstrated in
this Thesis.

In the dispersion diagram of Fig. 7 the wavenumbers are displayed (as small dots)

according to the real and imaginary parts. The results here indicate most decaying
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wavenumbers have a real component equal to
√

2π/a (denoted as the M point in the

first Brillouin zone [34]). At frequencies over 16,000 rad/s there is a branch with

wavenumbers of complex values; these are wavenumbers not easily identified by a

conventional ω(k) search method.

2.5 Half-space BWE

In this section the use of a Bloch wave expansion to model the transmitted wave

field in a PC half-space is detailed. The dispersion technique discussed in Sec. 2.4.1

will be used to identify the Bloch waves needed to compose the expansion for a

particular choice of frequency and incidence wave angle. The expansion equations

and solution procedure are taken from the work of [49] and are repeated here for

completeness. However, an additional constraint pertaining to wave group velocity

for mode selection, is added. Additionally, a discussion of the mode selection and

associated energy calculations quantifying the amount of acoustic energy reflected

from the PC half-space is added. The PC considered consists of air inclusions with

R = 2 cm, ρ2 = 1.22 kg/m3, and c2 = 343 m/s in a water host medium with a1 = a2

= 40 cm. The physical parameters chosen correspond to the parameters discussed in

Ref. [39].

Consider an incident harmonic plane wave pi(x, t) propagating at frequency ω in

a homogenous incident medium with density and speed (ρi = 1500 m/s and ci =

1000 kg/m3) and with wavevector ki and angle θ relative to the PC normal, with θ

= 0 corresponding to normal incidence. Standard boundary conditions for reflection

problems apply: conservation of frequency and parallel wavevector, and the matching

of pressure and normal particle velocity at the interface [67]. Recall the discussion in

Sec. 2.4.1 pertaining to discussion of the choice of the parallel wavevector.

To begin identifying the Bloch waves that compose the transmitted wave field the

dispersion relationship, outlined previously, is solved for a particular unit cell giving
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a set of Bloch wavevectors and modes. Solving Eq. (16) produces many eigenvalues

and eigenvectors to choose from. A few notes are in order regarding the numerical

solution of Eq. (16). First, a k(ω) method does not automatically obey periodicity

of the reciprocal k-space [47]. Unique Bloch waves can be identified by selecting

waves with the real part within the first Brillouin zone: −π/a ≤ Re k ≤ π/a [47];

no constraint is placed on the magnitude of the imaginary part of the wavevector.

Secondly, eigenvalues k which would produce an exponentially growing Bloch wave

are discarded. Thirdly, all propagating waves are chosen such that the wave’s group

velocity vector cg satisfies

cg · êx > 0. (20)

The group velocity vector always lies in the same direction as the acoustic intensity

vector averaged over the unit cell [87]. Therefore, the constraint in Eq. (20) im-

plies that at steady state acoustic power flows into the PC medium [34]. Identified

propagating Bloch waves that do not satisfy this third criteria are discarded. This

group velocity condition places a wavenumber selection criterion on ±k for some real

wavenumber k. Symmetry of the dispersion relation about the vertical frequency

axis implies a choice, based on group velocity, of real wavenumbers from a pair of

wavenumbers.

Through the discretized eigenvalue problem, after considering the three solution

criteria, there are N Bloch waves and wavevectors; often in practice N � NR where

NR is the number of degrees of freedom from the FEM discretization in Eq. (8). The

following outline is helpful in summarizing the method of Bloch wave selection

1. Compute the dispersion relation, as defined in Sec. 2.4.1, for a chosen ω and θ

2. Numerically evaluate Eq. (16) for Bloch wavevectors and waves and and Eq.

(19) for determining group velocity into the PC half-space

3. Remove very small erroneous real and imaginary wavenumber parts, left as

25



numerical artifacts

4. Select any and all propagating Bloch waves with cg · êx > 0 and −π/a ≤ Re k ≤

π/a

5. Select any and all, subject to a predefined maximum decay rate, decaying and

evanescent Bloch waves such that the wave exponentially decays in a direction

away from the interface

This set of waves constitute the Bloch expansion set.

As an example of the Bloch wave selection, consider identifying suitable Bloch

waves for the expansion at normal incidence at three frequencies. As described in

Sec. 2.4.1 Bloch waves with a conserved wavenumber can be found along a horizontal

line at frequency ω, parametrized by k. Figure 8 depicts the complex dispersion dia-

gram at normal incidence with lines drawn at ω = 5000, 10000, and 18000 rad/s and

the selected Bloch waves indicated by squares. At 5000 rad/s there are no propagating

Bloch waves and only decaying and evanescent Bloch waves constitute the expansion

basis. At 10000 rad/s there are two propagating Bloch waves (with wavenumbers

at ±k), one being selected (square) and the other being discarded (x) as this Bloch

wave’s group velocity is directed out of the PC half-space and violates the group

velocity selection criterion. Similarly, at 18000 rad/s the propagating Bloch wave on

the Re k < 0 side of the diagram is chosen as this wave satisfies the group velocity

criterion. In practice, additional decaying and evanescent waves would be desired

for an accurate expansion; the imaginary wavenumber diagram here is truncated to

20 rad/m for clarity. The above solution procedure applies equally to a variety of

incidence angles, each with a corresponding complex dispersion diagram, as further

described in Sec. 2.7.

Next, the pressure field in the PC half-space, pt(x), is written as a summation of
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Figure 8: The dispersion diagram for the PC at normal incidence. Horizontal lines
at 5,000, 10,000 and 18,000 rad/s. Squares indicate selected Bloch waves. Here a “x”
indicates propagating Bloch waves discarded as they radiate energy out of the PC
half-space (cg · êx < 0). The first two band gaps are denoted by the frequency ranges
outlined in shaded boxes.

N Bloch waves

pt(x) =
N∑
n=1

tnpn (x) (21)

where the modal transmission coefficients tn are obtained based on the interface

boundary conditions. Similarly, the reflected pressure field, pr(x, t), is written as

an expansion of N plane waves with unknown modal reflection coefficients rm as

pr(x) =

N/2∑
m=−N/2

rmpmr (x) (22)

where pmr(x) = exp (ikm · x) represents a reflected plane wave of order m. Periodicity

of the unit cell creates a diffraction grating on the interface [49] and therefore the

two components of the reflected wavevector km satisfy kmy = kiy + b2m and kmx =

−
√

(ω/ci)2 − k2
my with b2 = 2π/a2 and integer m. The sign of the square root in kmx

is chosen to have reflected propagating or evanescent waves travel away from the PC

medium. In Ref. [49] the summation limit N is not explicitly indicated; N reflected
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waves are chosen such that the analysis yields square matrices for wave amplitudes.

This choice of a square matrix system yields a unique solution in the entire field of

interest. To determine the modal amplitudes of the N Bloch waves and N reflected

wave orders the pressure continuity equations, valid at all times on the interface, are

written as

pi (0, y) +

N/2∑
m=−N/2

rmpmr (0, y) =
N∑
n=1

tnpn (0, y) . (23)

An equation enforcing continuity of normal particle velocity in the êx direction is

written as

vix (0, y) +

N/2∑
m=−N/2

rmvmrx (0, y) =
N∑
n=1

tnvnx (0, y) (24)

where from the linearized Euler’s relationship the velocities of the incident and re-

flected plane waves are

vix =
1

Z0

pi (25)

vmrx =
−1

Zm
pmr. (26)

The impedance of the m-th plane wave order is given by Zm = −ρiω/kmx. The

particle velocity of the n-th Bloch wave is

vnx = ṽnxexp (ikn · x) (27)

ṽnx =
1

iωρ1

(
∂p̃n
∂x

+ iknxp̃n

)
(28)

Note that the Bloch wave velocity in Eq. (28) also satisfies the Bloch theorem.

Solution of the expansion equations for the amplitude coefficients results from

multiplication of both equations Eqs. (23) and (24)by exp(−ikmyy) and integration

along the boundary of the unit cell to exploit orthogonality of complex exponentials.

Following the integration, Eq. (23) reads (in matrix form)

i + r = Mpt (29)
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and velocity continuity from Eq. (24)

Z−1 (i− r) = Mvt (30)

where i is a vector of the incident plane wave order amplitudes (im = δm0) and δmn

is the Kronecker Delta. For compactness, two vectors are defined where

t = [t1 t2 . . . tN ]T (31a)

r = [r−N/2 . . . r0 . . . rN/2]T (31b)

Also, three matrices [49] with components defined are defined by

Mp
mn =

1

a2

∫ a2

0

p̃n (0, y) e−imb2ydy (32)

M v
mn =

1

a2

∫ a2

0

ṽnx (0, y) e−imb2ydy (33)

Zmn = Zmδmn. (34)

From a mathematical perspective, the m,n element in Mp (or Mv) represents the

Fourier coefficient of the m-th harmonic of the n-th Bloch pressure (velocity) wave.

Equations (29) and (30) can then be solved for the wave amplitude vectors as I −Mp

−I −ZiM
v


r

t

 =

−i

−i

 (35)

In summary, the solution of Eqs. (35) yields vectors t and r which, respectively,

contain the Bloch wave and reflected order amplitudes and thereby allow the pressure

and velocity fields to be obtained by the modal expansion (e.g. see Eqs. (21) and

(22)).

Using the solution for the wave amplitudes a generalized power reflection RW

and transmission TW coefficients are considered. These quantities describe the power

reflected by or transmitted into the PC half-space. Note that these coefficients also

depend on the frequency ω and θ. Following the solution for the expansion amplitudes,
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the time averaged intensity vector fields are defined (∗ denotes complex conjugation)

as

It(x) =
1

2
Re [pt(x)v∗t (x)] (36a)

Ir(x) =
1

2
Re [pr(x)v∗r(x)] . (36b)

The reflected and transmitted velocity fields follow from Euler’s equation: v =

(1/iωρ)∇p. The RW and TW coefficients are computed by

RW =
Sr

Sr + St
(37a)

TW =
St

Sr + St
(37b)

with

Sr =

∫ a2

0

−n̂ · Ir(0, y) dy (38a)

St =

∫ a2

0

n̂ · It(0, y) dy. (38b)

Note that by construction, RW +TW = 1, which is mandated by energy conservation

in a lossless medium. If, for a particular frequency and incidence angle θ, there are no

propagating Bloch waves then energy must be perfectly reflected back to the incident

medium and RW = 1 and TW = 0. This section is closed with mention that, in the

simpler problem of reflection/transmission between two homogenous fluids, Eq (37)

reduces exactly to the reflection and transmission intensity coefficients given within

Ref. [36] (see page 150).

2.6 Layer BWE

In this section the Bloch expansion for a layered phononic medium is introduced.

The technique is motivated for study of finite length PCs, for any frequency. This

BWE technique, which, to the best of the author’s knowledge has not been presented

elsewhere, shares many similarities with the half-space BWE. The phononic crystal
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medium considered is infinite in extent in the êy direction, but finite in the êx direc-

tion. The layer is composed of an integer number, H, of unit cells; the layer thickness

is Ha1. Since the extent of the PC is included within the model, the layer BWE can

be more accurate than the half-space version, especially for non-band gap frequen-

cies, since the PC’s finite size effects can be captured. As before, the incident medium

(x ≤ 0) has constant acoustic properties ρi, ci, the PC medium (0 ≤ x ≤ Ha1) pos-

sesses periodic material properties ρ(x), c(x), and the transmitted medium (x ≥ Ha1)

has constant acoustic properties ρt, ct. A pictorial diagram is shown in Fig. 9 in which

a shifted position vector is introduced for convenience,

xB = Ha1êx − x. (39)

In the traditional analysis of reflection and transmission from a layered medium

[36], one expects harmonic waves propagating within a homogenous layer will have

the functional form p(x) = exp(ikx) + exp(−ikx). In analogy to the homogenous

medium, in the phononic crystal layer one can look for two sets of Bloch waves:

’A’ waves taking the form pA(x) = p̃A(x) exp(ikA · x) and ’B’ waves taking the

form pB(xB) = p̃B(xB) exp(ikB · xB); see Fig. 9. The total pressure field within the

PC is posed as a summation of these A and B waves. These A and B waves are,

respectively, denoted as forward and backward propagating Bloch waves. The notion

of propagation direction is attributed to the direction of the group velocity vector,

and not the phase velocity. Identification of the quantities kA and p̃A proceeds exactly

as discussed in Sec. 2.5.

To find the B wave set, first, examine the unit cell in the inset of Fig. 9. Imagine

the inset unit cell rotated 180 degrees - it would identically resemble the unit cell in

Fig. 3b. Also by the wavenumber conservation principle, the y, z components of the

B waves must be conserved throughout the entire PC medium. Hence, to find the

quantities kB, p̃B one would evaluate Eq. (17) for the rotated version of the ’forward’

unit cell, but with the input wavenumber parameters kBiy = −kiy. This prescription
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PCincident
medium

transmitted
medium

Figure 9: Diagram of the incident medium, phononic crystal layered medium, and
transmitted medium. The direction of the incident, reflected, A, B, and transmitted
waves is indicated by the arrows. For sake of presentation, only one wavevector
is drawn for each respective wave. Note also that all waves possess the same y
wavenumber component, equal to kiy. The lower inset depicts the unit cell in the êxB
coordinate system.

of the wavenumber in the B coordinate system is a direct result of the choice of

coordinate system from Eq. (39). As before for the A wave set, the waves of the B

wave set must decay exponentially (kBx > 0) and possess group velocity such that

cBg · êxB = cg · êx > 0. If the inclusion within the cell is rotationally symmetric,

implementation efficiency is achieved since kBx = kAx , k
B
y = −kAy and p̃A(x) = p̃B(xB);

thus, only the values for the A waves need be stored in memory following solution of

the eigenvalue problem.

The expansion of the pressure field for the layered system proceeds as before. The

reflected field is expanded in plane waves with unknown coefficients rm as in Eq. (22),

except there are, in general, M r plane waves. The pressure field within the PC is
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expanded in the A and B waves, with unknown modal coefficients An, Bn as

player(x) =
NA∑
n=1

Anp̃
A
n (x) eik

A
n ·x +

NB∑
n=1

Bnp̃
B
n

(
xB
)
eik

B
n ·xB

(40)

where NA and NB are the respective number of A and B Bloch waves used for the

expansion. The field within the transmitted medium is also expanded as a set of

plane waves, with coefficients tlm, as

pt(x) =

Mt/2∑
m=−Mt/2

tm exp (iktm · (x−Ha1êx)) (41)

where the wavenumbers in the transmitted medium satisfy

ktm = ktmxêx + kmyêy

ktmx =
√
k2
t − k2

my

(42)

and M t is the number of transmitted plane waves used in the expansion. When

the incident and transmitted fluids are equal (as is the case in this Thesis), one can

set NA = NB = M r = M t. It is important to note: to maintain wavenumber

conservation in the transmitted medium, the incident’s wavenumbers kiy appear in

Eq. (42) via kmy.

The boundary conditions that must be satisfied for the layer, at all y, are: conti-

nuity of pressure and normal particle velocity at x = 0 and Ha1. In the manner done

in Sec. 2.5, each of the four continuity conditions can be written, and then exp−ikmyy

is multiplied by each term and integrated over the unit cell. The pressure and velocity

continuity equations at x = 0 are written, succinctly in matrix form, as

i + r = MpA0An + MpB0Bn (43)

Z−1
i (i− r) = MvA0An + MvB0Bn (44)

The continuity relations at x = Ha1 are written as

t = MpAHAn + MpBHBn (45)
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Z−1
t t = MvAHAn + MvBHBn. (46)

In the preceding four equations, r, t,A,B are the respective unknown amplitude

coefficients of the reflected, transmitted, A waves, B waves; the incident plane wave

is i = δm0; the impedance matrix for the transmitted medium Zt is defined similar to

Eq. (34) as

Ztm = ρtω/ktmx. (47)

To incorporate the Bloch wave information within the prior continuity equations, eight

new matrix quantities are introduced that contain the Fourier series components of

the respective Bloch modes. At x = 0 the matrices in component form are

MpA0
mn =

1

a2

∫ a2

0

p̃An (0, y)e−imb2ydy (48a)

MpB0
mn =

1

a2

∫ a2

0

p̃Bn (Ha1,−y)e−i(k
B
nxHa1+mb2y)dy (48b)

M vA0
mn =

1

a2

∫ a2

0

1

iωρ1

∂

∂x

(
p̃An (x)eik

A
n ·x
)
e−ikmyydy (48c)

M vB0
mn = − 1

a2

∫ a2

0

1

iωρ1

∂

∂xB

(
p̃Bn (xB)eik

B
n ·xB

)
e−ikmyydy. (48d)

where here x = yêy. Similarly, at x = Ha1 the matrices are

MpAH
mn =

1

a2

∫ a2

0

p̃An (Ha1, y)ei(k
A
nxHa1−mb2y)dy (49a)

MpBH
mn =

1

a2

∫ a2

0

p̃Bn (0,−y)e−imb2ydy (49b)

M vAH
mn =

1

a2

∫ a2

0

1

iωρ1

∂

∂x

(
p̃An (x)eik

A
n ·x
)
e−ikmyydy (49c)

M vBH
mn = − 1

a2

∫ a2

0

1

iωρ1

∂

∂xB

(
p̃Bn (xB)eik

B
n ·xB

)
e−ikmyydy (49d)

where here x = Ha1êx+yêy. One will also note that because of the coordinate system

choice for the B waves a negative sign appears in front of M vB0
mn and M vBH

mn . Note also

that MpA0
mn and M vA0

mn are identical to the quantities defined in Eqs. (32) and (33).

Finally after computing the above quantities for different values of m,n the four

interface continuity conditions can be assembled into a large set of linear matrix
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equations 

I −MpA0 0 −MpB0

−I −ZiM
vA0 0 −ZiM

vB0

0 −MpAH I −MpBH

0 −ZtM
pvH I −ZtM

vBH





r

A

t

B


=



−i

−i

0

0


. (50)

In Eq. (50), all vectors and matrices are partitioned according to the scheme in

Eq. (31b) and 0 is a vector or matrix of zeroes of necessary size. Depending on the

respective number of waves for the expansions, Eq. (50) can be solved via a least

squares solution. Because the Bloch waves used in the expansion are complete, all

matrices in Eq. (50) are of full rank; therefore, the least squares solution can be

uniquely obtained [24] thus determining the wave amplitudes for the layer problem.

2.7 Verification

In this section the Bloch wave expansion is verified in several test cases using an inde-

pendent finite element model implemented in COMSOL. To the author’s knowledge

there is no previous literature presenting a verification of reflected and transmitted

pressure fields of a PC by an independent numerical model. Three verification studies

will be performed with three different forcing frequencies and incidence angles.

2.7.1 Verification model

Modeling a PC half-space in a finite element model requires a 2D geometry with

a large array of air-filled circular inclusions. The half-space model requires non-

reflecting boundary conditions on the edges of the workable simulation domain, akin

to perfectly matched layers for wave propagation modeling (but which were developed

for homogenous media only) [88]. It is essential, to the numerical verification accuracy,

to have the damping occur in a PC, and not a homogenous medium as in the case for

perfectly matched layers, so additional PC domains and incorporating damping ξ(x, y)

that monotonically increases with distance from the workable domain are employed
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here. The following damping expression was found suitable for the simulated cases

to approximate non-reflecting boundary conditions

ξ(x, y) = ξ0 (±x−H1a1)s1
(
±y ∓ H2a2

2

)s2
. (51)

Here Hj is the discrete number of unit cells in the jth direction encompassing the

workable PC domain, sj is an integer value herein set to 3, and ξ0 is a constant

value between 1,000 and 10,000 depending on the selected frequency. The damping

parameters are arbitrarily tuned for each frequency to minimize reflection. Depending

on the location of the individual damping domains, the first or second polynomial

terms in Eq. (51) will be removed and the appropriate +/− sign will be selected to

ensure the damping function increases away from the domain. This damping function

is of arbitrary nature and other functions, such as an exponential, could be considered

as well; the important damping function feature is a slow increase away from the real

PC domain (see Fig. 10).

PC

damping
PC

homogenous
incident
medium

Figure 10: The geometry of a FEM model designed for normal and oblique incidence
with a PC domain, a homogenous incident domain, and five damping PC domains to
replicate an semi-infinite half-space. For each damping domain the arrows indicate
the direction of damping, given by Eq. (51).

The FEM verification model, depicted in Fig. 10, can be used for either normal

or oblique incidence. All numerical simulations are executed using COMSOL with

a monochromatic plane wave, of unit amplitude, incident from the far left, specified

using built-in radiation conditions. The number of unit cells to include in all numerical
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comparison models is tuned to minimize computational effort yet yield a sufficiently

“infinite” domain; typically the number of cells ranges from 100 for normal incidence

(H1 � H2) and up to 4,000 for oblique incidence (H1 ∼ H2).

2.7.2 Verification of the half-space BWE

The three verification models will be executed at selected angular frequencies: ω =

10,000, 5,000, and 39,000 rad/s; the first two models at normal incidence (i.e. θ =

0), and the last at θ = 30 degrees. In all three cases the geometric and material

parameters are carried over from Sec. 2.5.

2.7.2.1 Verification study 1

The dispersion and expansion details discussed previously are used to compute the

reflected and transmitted pressure fields Eqs. (21) and (22) and power coefficients

Eq. (37) in each of the three cases; only pressure fields will be compared against

the numerical model. At the frequency ω = 10, 000 rad/s and θ = 0 the numerical

procedure described in Sec. 2.5, led to the selection of one propagating Bloch (k

= 5.037 rad/m) wave and 8 evanescent waves. Both real and imaginary parts of

the pressure field are seen in Fig. 11a and here RW = 0.168 and TW = 0.832.

Excellent agreement can be seen between the numerical model using an array of 180

unit cells. In this study, and in the next two studies, agreement with modal deafness

as discussed in Ref. [49] is observed. The modal deafness implies that Bloch modes

which are antisymmetric with respect to the incident plane wave are not excited and

thus ti = 0 for these waves.

It was previously asserted that a necessary Bloch wave criterion for an accurate

result is cg · êx > 0. As an example, the propagating Bloch wave with k = 5.037

rad/m is intentionally swapped with its counterpart (k = −5.037, a wave with group

velocity of opposite sign); the same evanescent waves are used. Here the computed

coefficients are RW = 5.934 and TW = −4.934 which is physically incorrect as RW , TW
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Figure 11: A comparison of the (a) real and imaginary components of the pressure
field from the Bloch expansion (line) and the numerical model (dots) field, along a
horizontal line centered at y = 0.2 m. Here ω = 10, 000 rad/s and θ = 0 degrees
(normal incidence) and the interface is demarcated by a vertical dashed line. Plot (b)
compares the real pressure field from (a) with the result of an incorrect Bloch wave
expansion intentionally disregarding the group velocity selection criterion (dashed
curve).

must be ≤ 1. The incorrect Bloch wave selection is further examined, by comparing

the real part of the pressure field versus the correct real part of the expansion and

numerical model, in Fig. 11b. The observed mismatch reinforces the assertion that

the expansion must contain propagating Bloch waves with group velocity pointing

into the medium.
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2.7.2.2 Verification study 2

A plane wave encounters the PC half-space at normal incidence at ω = 5, 000 rad/s,

which is a frequency within the first band gap (see Fig. 8). There are no propagating

waves at this frequency and the expansion only consists of 2 decaying waves and 8

evanescent waves (see Fig. 8). Figure 12 displays a comparison between the real and

imaginary parts of the pressure field versus FEM simulations. The numerical verifica-

tion model presented in Fig. 10 consists of 15 unit cells within the workable domain.

Again, excellent agreement is seen between the results from the Bloch expansion and
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Figure 12: A comparison of the real (top) and imaginary (bottom) components of
the pressure field from the Bloch expansion (line) and the numerical model (dots)
field, along a horizontal line centered at y = 0.2 m. Here ω = 5, 000 rad/s and θ = 0
degrees (normal incidence) and the interface is demarcated by a vertical dashed line.

the numerical model results. Here, as expected, a power reflection coefficient equal

to unity is observed.

39



2.7.2.3 Verification study 3

This study for oblique incidence raises the frequency to ω = 39, 000 rad/s and θ = 30

degrees. Calculations proceed as before and the real and imaginary parts of the

pressure field are compared between the expansion and numerical FEM results in

Fig. 13a.

Again excellent agreement is seen in the results utilizing 2 decaying Bloch waves

and 7 evanescent waves. At this frequency 3,760 unit cells for the “infinite” PC and

over 4.5 million nodal degrees of freedom were employed in the comparison. The

comparison simulation time exceeded two hours versus approximately ten minutes

elapsed for the Bloch wave expansion. The numerical results indicate perfect acoustic

energy reflection for this study. To further explain the acoustic reflection, the plot in

Fig. 13b shows the intensity field Ix(x, 8.2). Clearly, after 10 unit cells (x = 4 m) the

decaying intensity decreases to a very small value. The decaying intensity field, along

with Eq. (35), result in perfect acoustic reflection (RW = 1) despite the frequency

not residing in a complete band gap, a feature discussed in Sec. 2.8.1.

2.7.3 Verification of the layer BWE

Here the two-dimensional layer BWE is verified against the FEM model. The FEM

model discussed in Fig. 10 is used. However, to accommodate a layer model, the

right most artificial damping PC layers are replaced with the necessary homogenous

media, described by ρt, ct.

For the layer BWE verification study, the incident wave is set to ω = 10,000 rad/s

and θ = 0 degrees and ρi = ρt, ci = ct. There are H = 20 unit cells used in the

model; the PC thickness is 8 m. Using the provided numerical parameters, the layer

BWE is computed. There are 5 reflected and transmitted waves, with NA = NB =

5; subsequent analysis shows that RW = 0.21 and TW = 0.78. Figure 14 displays

the pressure field using the layer BWE versus the FEM model. Clearly, excellent
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Figure 13: A comparison of the (a) real and imaginary components of the pressure
field from the Bloch expansion (line) and the numerical model (dots) field, along a
horizontal line centered at y = 8.2 m. Here ω = 39, 000 rad/s and θ = 30 degrees and
the interface is demarcated by a vertical dashed line. Plot (b) is the time averaged
intensity (note the difference in x-axis limits) in the êx direction in the PC, plotted
along a horizontal line through the PC.

agreement is seen in the numerical results. This plot establishes the accuracy of the

layer BWE.
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Figure 14: A comparison of the real (top) and imaginary (bottom) components of the
pressure field from the layer Bloch expansion (line) and the numerical model (dots)
field, along a horizontal line centered at y = 0.2 m. Here ω = 10, 000 rad/s and θ = 0
degrees (normal incidence) and the interface is demarcated by a vertical dashed line.

2.8 Parametric studies

2.8.1 Angular band gap

In the last verification study of Sec. 2.7.2.3 it was shown that perfect reflection was

recorded for a frequency not in a band gap. Analogous to the zero acoustic wave

energy transmission into a homogenous fluid this incidence angle is referred to as a

critical angle. At a critical angle θc and a fixed frequency, there will be no propagating

Bloch waves. The Bloch expansion consists solely of decaying and evanescent Bloch

waves and the pressure field in the PC will always be attenuated. Accordingly, all

acoustic energy will be perfectly reflected from the PC. Romero-Garcia et al. [73]

provided theoretical and experimental evidence of an attenuated field within the PC.

They refer to this dispersion behavior as an angular band gap. This reflection effect is

an intrinsic property of the PC, and can be studied by simple geometrical analysis of
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the dispersion behavior in k-space. To illustrate the result, an isofrequency contour at

ω(kx, ky) = 39,000 rad/s is displayed in Fig. 15a. This dispersion data is calculated

by varying θ over the interval ± arcsin(ciπ/ωa2).
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Figure 15: (a) An isofrequency contour in k-space at 39,000 rad/s with real
wavenumbers as dots and shaded regions, where no real wavenumbers exist, indi-
cating wavenumbers corresponding to critical angles. (b) A graphical display of the
critical angles where shaded regions indicate ranges of critical angles. (c) Validation
of the critical angle observation versus direct numerical calculation (dots). Solid lines
are from wedge regions from (b).

Horizontal regions in k-space, illustrated in Fig. 15a, correspond to incidence

angles that yield complex wavenumbers. Let the set of critical wavenumbers, kc,

contain the wavenumbers ky in the first Brillouin zone that correspond to critical

angles (shaded regions in Fig. 15a). Periodicity of the dispersion relationship in k-

space amounts to several critical wavenumber regions, all shifted by integer multiples
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of b2. Critical angles can be calculated in the range (−90◦, 90◦] degrees from

θc = arcsin
[ci
ω

(kc +mb2)
]

(52)

for any integer m such that the arcsin argument is ≤ 1. The critical angle data is

displayed graphically in Fig. 15b such that any acoustic plane wave with incident

wavevector ki within a shaded region will be perfectly reflected by the PC half-space.

The assertion that there exists multiple incidence angles where perfect acoustic

reflection occurs, as defined by Eq. (37), can be verified by direct numerical evalua-

tion. In Fig. 15c a sweep of angles from 0 to 60 degrees is performed and the power

reflection coefficient is computed from the Bloch wave expansion. Symmetry of the

PC implies angular symmetry of this data about θ = 0◦. At critical angles, derived

solely from the geometrical analysis of Fig. 15a, the power reflection agrees favor-

ably from the separate direct calculations. Note, the presented geometrical analysis

only indicates angles of perfect reflection. The reflection at intermediate angles can

only be determined by direct expansion computations and is not applicable to the

analysis in this section. Subsequently, the reflection values in excess of 55◦ are not of

present interest. The results in this figure corroborates the assertion of identification

of PC critical angles via inspection of the isofrequency contour. It is noted that the

identified critical angles differ from the angles defined by Bragg’s diffraction law of

a2 cos θc = mπci/ω for some integer m.

2.8.2 Power reflection

Now the relation between the power reflection and parameters such as frequency and

incidence angle is studied. This parametric study will employ the presented, general,

expansion technique and serve to detail the acoustic reflection for a variety of incident

angles and frequencies.

The harmonic frequency is varied from 500 to 20,000 rad/s and the incidence angle

is swept from 0 to 75 degrees. The computed reflection, seen in Fig. 16, displays large
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regions, particularly at low frequencies, of perfect reflection. The regions of perfect

Figure 16: The power reflection coefficient computed versus frequency and incidence
wave angle. Specific regions of high reflection are annotated on the plot, as band gaps
or critical angle effects. Recall 0◦ is normal incidence.

reflection, attributed to the first or second band gap or critical angles, are annotated

on the plot in Fig. 16. As the frequency increases, the number of wavenumber

dispersion surfaces in k-space increases, providing diminishing band gaps and leading

to the low reflection at frequencies exceeding 16,000 rad/s. At these higher frequencies

the regions of high reflection are attributed to the critical angle effect, discussed

earlier, and not complete band gaps as in the low frequencies below 7000 rad/s.

2.9 Conclusion

In this chapter, two-dimensional phononic crystals were considered. In particular a

new dispersion technique was introduced and verified; a half-space BWE and layer

BWE were introduced and verified; and angular band gaps were discussed. The re-

search contributions of this chapter are as follows: (i) formulation of a dispersion

technique, implemented using commercial finite element software; (ii) a Bloch wave
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selection criterion based on group velocity considerations designed for direct applica-

bility to a Bloch wave expansion; (iii) derivation and verification of a half-space and

layer BWE. The next chapter builds upon the current chapter and applies the theory

to three dimensions.
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CHAPTER III

BLOCH WAVE EXPANSION IN THREE DIMENSIONS

3.1 Overview

In this chapter the three-dimensional half-space and layer BWE will be introduced.

The 3D BWE shares many similarities to the 2D version, largely, the use of the FEM

for the dispersion relationship and the selection rules leading to a correct expansion.

Verification will be performed using Feuillade’s SCS code.

3.2 Three-dimensional phononic crystal

Consider a semi-infinite PC half-space (x ≥ 0) composed of an infinite tessellation

of cells; see Fig. 17a. Adjacent (x < 0) to the half-space is an incident homogenous

medium (here water is used) with density ρi = 1000 kg/m3 and speed ci = 1500

m/s. An incident plane wave at frequency ω and wavevector ki, with angles θ, φ

(see Fig. 17a), strikes the half-space at x = 0. Note normal incidence corresponds to

θ = 90◦, φ = 0◦.

The three-dimensional ω(k) dispersion relationship for the PC studied in this

chapter is presented in Fig. 18. The technique discussed in Appendix B can be

extended in a straight forward manner to three dimensions. The first frequency band

gap is complete (exists for all directions of k) and is a local resonance band gap since

this frequency is close to the resonance of an individual scattering inclusion. Band

gaps of this type are associated with a very fast exponential decay [15] of the internal

wave field since only imaginary wavenumbers exist. The second band gap is a Bragg

scattering band gap. This frequency coincides with Bragg’s law of scattering, namely,

that λi ≈ 2a1 where λi is the acoustic wavelength in water. A slow decay of the total
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(a) (b)

Figure 17: (a) The coordinate system used in the BWE. A PC half-space resides for
x ≥ 0 and an homogenous medium for x < 0. An incident plane wave with wavevector
ki is incident on the PC (blue spheres represent the bubbles). (b) Mesh of the UC
using tetrahedral elements where blue dots and squares denote a few representative
degrees of freedom that are related by the periodicity requirement of the unit cell.

Figure 18: Dispersion diagram (ky, kz = 0) for the PC. Band gap frequency ranges
are highlighted.

pressure field is observed as the subsequent dispersion analysis predicts a complex

Bloch wavenumber with Re(k) = π/a1. This specific wavenumber value indicates a

phase change of π radians between adjacent bubbles, which is in accordance with

one-half wavelength existing between inclusions.

48



3.3 Dispersion relationship

The dispersion relationship for the three-dimensional unit cell is governed by the

same wave equation as discussed in Sec. 2.4.1. Employing a Galerkin discretization

of Eq. (4) and using tetrahedral mesh elements results in a discretized equation of

motion similar to the 2D case, namely,

(
−ω2M + K + ikxAx + ikyAy + ikzAz + (k · k)B

)
p = 0 (53)

where the individual matrix terms are given by (in component form)

M element
mn =

∫
V

1

ρc2
ψmψndV (54a)

Kelement
mn =

∫
V

1

ρ
∇ψm · ∇ψndV (54b)

Aelementmn,x =

∫
V

1

ρ

(
ψn
∂ψm
∂x
− ψm

∂ψn
∂x

)
dV (54c)

Aelementmn,y =

∫
V

1

ρ

(
ψn
∂ψm
∂y
− ψm

∂ψn
∂y

)
dV (54d)

Aelementmn,z =

∫
V

1

ρ

(
ψn
∂ψm
∂z
− ψm

∂ψn
∂z

)
dV (54e)

Belement
mn =

∫
V

1

ρ
ψmψndV. (54f)

Here m,n = 1 to 10 for quadratic tetrahedral elements, corresponding to the indi-

vidually numbered nodes of an element, and V is the volume of an element. The six

matrices appearing in Eq. 53 are assembled over the domain, using the components

given in Eq. (54). Further, inspection of the matrices in Eq. (14) reveals these ma-

trices are dependent on geometry and material properties yet independent of ω, θ, φ;

this property will be exploited for efficiency in frequency parametric studies.

As before, application of periodicity requires multiplication by the matrix T(
−ω2M̃ + K̃ + ikxÃx + ikyÃy + ikzÃz + (k · k)B̃

)
p̃ = 0 (55)

where M̃ = TTMT, K̃ = TTKT, etc. This matrix enforces periodicity on the

governing finite element equations and is used throughout this Thesis. For example,

49



Figure 17b shows a typical tetrahedral element mesh of the unit cell. The elements of

the matrix T enforce periodicity for the degrees of freedom indicated by the squares

and dots. Again, the FEM right hand side boundary terms for the cell, omitted in

Eq. (4), equate to zero after premultiplication by the matrix TT [19].

Standard boundary conditions for reflection problems apply: conservation of fre-

quency and parallel wavevector, and the matching of pressure and normal parti-

cle velocity at the interface [67]. All Bloch waves used in the BWE must have

wavevectors where the y, z components (ky, kz) match that of the incident wave

kiy = ω/ci sin θ sinφ, kiz = ω/ci cos θ. Imposing these wavenumber constraints on

the dispersion relationship produces a set of Bloch waves required for an expansion.

To impose the parallel wavenumber constraints on the Bloch waves, k is written as

k = k0 + kêx (56)

where k0 = [0 kiy kiz]
T ; here the superscript T denotes the matrix transpose. This

scheme allows the complex dispersion relationship to be calculated along the êx di-

rection in k-space and automatically enforces parallel wavevector conservation.

Inserting Eq. (1) and Eq. (56) into the acoustic wave equation results in a quadratic

eigenvalue problem for the dispersion relationship with eigenvalue k (equal to kx) and

eigenvector (corresponding to the mode) p̃, namely,

[
D′(ω) + kA′ + k2B̃

]
p̃ = 0 (57)

where

D̃(ω) = −ω2M̃ + K̃

D′ = D̃ + i
(
kiyÃy + kizÃz

)
+
(
k2
iy + k2

iz

)
B̃.

A′ = iÃx

(58)

The solution process of the quadratic eigenvalue problem proceeds as before from
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Sec. 2.4.1. Conversion to a standard eigenvalue problem is accomplished by introduc-

ing ũ = kp̃ and writing

(S− kG)

p̃

ũ

 = 0 (59)

S =

 0 I

−D′(ω) −A′

 (60a)

G =

I 0

0 B′

 . (60b)

As before, calculation of the group velocity for a particular Bloch wave can be directly

obtained from the eigenvalue problem:

∂kn
∂ω

= hHn
∂W(ω)

∂ω
qn (61)

where now the vector hHn is the nth left eigenvector of W and is scaled such that

hHn qn = 1. Finally, the group velocity for the nth Bloch wave into the PC medium

cgn · êx is obtained by

cgn · êx = Re

[(
∂kn
∂ω

)−1
]

= Re


hHn

 0 0

−B′−1 ∂
∂ω

D′(ω) 0

qn


−1 . (62a)

∂

∂ω
D′(ω) = −2ωM̃ +

i

ci

(
sin θ sinφÃy cos θÃz

)
+ 2

ω

c2
i

(
sin2 θ sin2 φ+ cos2 θ

)
B̃

(62b)

3.4 Half-space BWE

In this section a Bloch wave expansion in three dimensions is introduced. As discussed

earlier, the expansion is quite similar to the two-dimensional Bloch wave expansion

introduced by Laude et al. [49] and described and verified in detail in Kulpe et al.

[42]. Thus, a deeper discussion of the method can be found in the cited works.
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3.4.1 Derivation

The Bloch expansion utilizes a set of Bloch modes and wavenumbers identified from

the prior dispersion analysis. These are the same rules introduced in Sec. 2.5. It is

important to note the following with regard to the solutions obtained from Eq. (57).

First, one can identify unique Bloch waves by selecting waves whose wavevectors’ real

part falls within the first Brillouin zone: −π/a1 ≤ Re k ≤ π/a1 [47]. By virtue of k-

space periodicity, wavenumbers with a real part outside of this range yield repetitive

Bloch waves. Secondly, eigenvalues k which would produce an exponentially growing

Bloch wave are discarded. Thirdly, all propagating waves are chosen such that the

wave’s group velocity vector cg adheres to cg · êx > 0. This stipulation implies that

steady state acoustic power flows into the PC medium [34]. Lastly, for a necessary

truncation of the expansion, complex eigenvalues with imaginary part in excess of

a predetermined acceptable maximum can be discarded. After the solution of the

eigenvalue problem of Eq. (57), and abiding by the above criteria, there are N Bloch

wavevectors kn = knêx + kiyêy + kizêz and Bloch mode functions p̃n.

The transmitted wave field (defined for x ≥ 0) pt(x) is expanded as a summation

of the Bloch mode functions with unknown modal amplitude coefficients tn

pt(x) =
N∑
n=1

tnp̃n (x) eikn·x. (63)

Similarly, the reflected pressure field (defined for x ≤ 0) pr(x) is written as an expan-

sion of L x M plane waves with unknown modal reflection coefficients rlm as

pr(x) =

L/2∑
l=−L/2

M/2∑
m=−M/2

rlmprlm(x) (64)

where prlm(x) = exp(ikrlm · x) represents a reflected plane wave of order lm. In

the double summation of Eq. (64), L and M correspond to the total number of plane

waves in the êy and êz directions, respectively. The actual values of L,M,N are based

on boundary condition convergence while minimizing computational resources. Just
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as in two dimensions, periodicity of the unit cell creates a two-dimensional diffraction

grating on the interface [49] and therefore the three components of the reflected

wavevector krlm satisfy

krlm = klmxêx + klyêy + kmzêz

kly = kiy + lb2

kmz = kiz +mb3

klmx = −
√
k2
i − k2

ly − k2
mz

(65)

where bj = 2π/aj, ki = ω/ci, and l,m are integers.

To determine the modal amplitudes of the N Bloch waves and LM reflected plane

waves, as is typical for half-space reflection problems [67], continuity of pressure and

normal particle velocity are imposed on the interface x = 0:

pi(0, y, z) + pr(0, y, z) = pt(0, y, z) (66)

for the pressure field and,

vix(0, y, z) + vrx(0, y, z) = vtx(0, y, z) (67)

for the normal particle velocity field. In the preceding equations, pi = exp(iki · x)

is the assumed form of the incident plane wave, with unit amplitude P0 = 1; the

incident vix, reflected vrx, and transmitted velocity fields vtx can be obtained from

Euler’s equation of linear acoustics, i.e. v = ∇p/iωρ.

Each of the two continuity equations is next multiplied by qlm = exp (−i(klyy + kmzz))

and integrated over the x = 0 surface of the unit cell, denoted by S. Exploitation

of the orthogonality of complex exponentials results in the equations for the modal

coefficients

ilm + rlm =
N∑
n=1

tnM
p
lmn (68)

1

Zilm
(ilm − rlm) =

N∑
n=1

tnM
v
lmn. (69)
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Here, ilm represents the amplitude of the incident plane wave orders, ilm = δl0δm0 =

δ00 (δij is the Kronecker delta), and Zilm is the specific acoustic impedance of the

lm-th reflected wave order in the incident medium

Zilm = −ρiω/klmx. (70)

The quantities Mp
lmn and M v

lmn represent, respectively, the two-dimensional Fourier

series components of the lm-th harmonic and the n-th Bloch pressure or velocity

mode

Mp
lmn =

1

S

∫
S

p̃n(0, y, z)e−i(lb2y+mb3z)dydz (71)

M v
lmn =

1

S

∫
S

ṽnx(0, y, z)e−i(lb2y+mb3z)dydz. (72)

Here ṽnx represents the x-component of the n-th periodic Bloch mode particle velocity

(ṽn = (∇p̃n + iknp̃n) /iωρ(x)) and S = a2a3 is the interface surface area of the unit

cell. Equations (68) and (69) represent a set of linear equations which can be solved

by rearrangement of rlm and tn into vectors r and t resulting in

r =
[
r−L

2
−M

2
. . . rL

2
,−M

2
r−L

2
,−M

2
+1 . . . rL

2
,M
2

]T
t = [t1 t2 . . . tN ]T .

(73)

The linear set of equations are posed in matrix form, I −Mp

−I −ZiM
v


r

t

 =

−i

−i

 . (74)

In the above equation, I denotes the identity matrix while the matrices Zi,M
p,Mv

contain the entries of Eqs. (70), (71), and (72) after being partitioned following the

scheme of Eq. (73). Note that the top and bottom rows, respectively, enforce pressure

and particle velocity continuity. The impedance matrix for the incident medium Zi

is diagonal and of size LM x LM while the matrices Mp and Mv are of size LM x

N .
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In practice, it is often difficult to obtain a high number of numerically satisfactory

Bloch modes from the eigenvalue problem of Eq. (57). Usually N < 10 for the

physical parameter set used in this Thesis and depending on the frequency, typical

values of L,M will be taken to be between 15 and 21. Often the Bloch mode functions

p̃n(0, y, z) exhibit rapid spatial variation on the unit cell surface. Therefore, in order

to satisfy the boundary condition with high accuracy, a high number of reflected plane

waves are required to match the spatial variations. Thus it is required that LM � N

and Eq. (74) must be solved in a least squares sense. Otherwise, an unsatisfactory

low number of reflected plane wave orders is used to match the pressure and velocity

conditions at the 2D interface of the PC. Also, since the Bloch modes are linearly

independent, the individual M matrices are of full rank and therefore a unique solution

can be obtained to Eq. (74).

Lastly, an average power reflection and transmission coefficient can be defined as

RW = −
∫

Ir(0, y, z) · êxdydz∫
Ii(0, y, z) · êxdydz

. (75)

TW = 1−RW (76)

where Ir and Ii represent the time averaged intensity vector fields of the reflected

and incident waves, respectively. The minus sign is required since the reflected waves

carry energy away from the PC interface. Note that, acoustic waves incident on the

half-space in a complete frequency band gap, or appropriate incidence angles in an

angular band gap, result in perfect acoustic reflection, i.e. RW = 1 [42, 34]. For the

parameters discussed in this dissertation, the three-dimensional angular band gaps

exist at frequencies beyond that which can be capture by the verification techniques

and thus are not studied.

3.4.2 Least squares solution for Bloch wave amplitudes

As a numerical illustration of the accuracy of the least squares solution, consider

a wave at ω = 8,000 rad/s normally incident on the PC. The expansion procedure
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results in N = 8 Bloch waves; 8 Bloch waves are chosen for the boundary condition

convergence. The least squares solution uses 225 (L = M = 15) reflected plane waves

versus 8 (L = 4,M = 2) hence, LM = N plane waves for the square system. The

real part of the BWE surface pressure is plotted in Fig. 19a for the least squares

system and in Fig. 19b for the square system; the imaginary part of the pressure field
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Figure 19: The real part of the transmitted Bloch wave expansion solution (surface)
versus the incident plus reflected wave solution (dots). The two pressure fields are
plotted for (a) the least squares solution and (b) the square system. The real part of
the pressure field along a line x, z = 0, a3/2 for the (c) least squares (d) and square
system.

follows a similar trend. Additionally the incident plus reflected pressure field, on the

interface, is plotted. These results allow one to compare the accuracy of the pressure

continuity boundary condition of Eq. (66). One can clearly see the BWE pressure,

determined by the least squares approach, matches very well to the incident plus

scattered field with a root mean square relative error of 0.001. In comparison, the

two pressure fields in Fig. 19b obtained for the square system, show poor agreement
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to the field in Fig. 19a, and to each other. A root mean square relative error of 0.047

is observed. In fact the square system leads to an incorrect expansion altogether.

Furthermore, the pressure fields plotted along a line in Fig. 19c and Fig. 19d exhibit

similar differences between the results of the least squares and square system.

3.5 Layer BWE

In this section the Bloch expansion for a layered phononic medium is introduced. The

3D version is very similar to the 2D version outlined in Sec. 2.6. The technique is

motivated for study of finite length PCs, for any frequency. This BWE technique,

which, to the best of the author’s knowledge has not been presented elsewhere, shares

many similarities with the half-space BWE. The phononic crystal medium considered

is infinite in extent in the êy, êz directions, but finite in the êx direction.

Similar to the 2D layer BWE, to find the B wave set, first, examine the unit

cell in the inset of Fig. 9. Imagine the inset unit cell rotated 180 degrees - it would

identically resemble the unit cell (assuming two dimensions for the sake of discussion)

in Fig. 17b. Also by the wavenumber conservation principle, the y, z components of

the B waves must be conserved throughout the entire PC medium. Hence, to find the

quantities kB, p̃B one would evaluate Eq. (57) for the rotated version of the ’forward’

unit cell, but with the input wavenumber parameters kBiy = −kiy, kBiz = −kiz. This

prescription of the wavenumber in the B coordinate system is a direct result of the

choice of coordinate system from Eq. (39). As before for the A wave set, the waves

of the B wave set must decay exponentially (kBx > 0) and possess group velocity

such that cBg · êxB = cg · êx > 0. If the inclusion within the cell is rotationally

symmetric, implementation efficiency is achieved since kBx = kAx , k
B
y,z = −kAy,z and

p̃A(x) = p̃B(xB); thus, only the values for the A waves need be stored in memory

following solution of the eigenvalue problem.

The expansion of the pressure field for the layered system proceeds as before. The
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reflected field is expanded in plane waves with unknown coefficients rlm as in Eq. (64).

The pressure field within the PC is expanded in the A and B waves, with unknown

modal coefficients An, Bn as

player(x) =
NA∑
n=1

Anp̃
A
n (x) eik

A
n ·x +

NB∑
n=1

Bnp̃
B
n

(
xB
)
eik

B
n ·xB

. (77)

The field within the transmitted medium is also expanded as a set of plane waves,

with coefficients tlm, as

pt(x) =

L/2∑
l=−L/2

M/2∑
m=−M/2

tlm exp (iktlm · (x−Ha1êx)) (78)

where the wavenumbers in the transmitted medium satisfy

ktlm = ktlmxêx + klyêy + kmzêz

ktlmx =
√
k2
t − k2

ly − k2
mz.

(79)

Due to the diffraction grating effect and wavenumber conservation in the transmitted

medium, the y, z components are specified to be, respectively, kly and kmz. Similar

to the half-space BWE, continuity of pressure and normal particle velocity must be

enforced at both interfaces.

After multiplication by qlm and integrating the pressure and velocity continuity

equations at x = 0 are written as

ilm + rlm =

NA∑
n=1

AnM
pA0
lmn +

NB∑
n=1

BnM
pB0
lmn (80)

1

Zilm
(ilm − rlm) =

NA∑
n=1

AnM
vA0
lmn +

NB∑
n=1

BnM
vB0
lmn . (81)

The continuity relations at x = Ha1 are written as

tlm =

NA∑
n=1

AnM
pAH
lmn +

NB∑
n=1

BnM
pBH
lmn (82)

tlm
Ztlm

=

NA∑
n=1

AnM
vAH
lmn +

NB∑
n=1

BnM
vBH
lmn . (83)
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In the preceding four equations, NA and NB are the respective number of A and

B Bloch waves used for the expansion and the impedance quantity Ztlm is defined

similar to Eq. (70) as

Ztlm = ρtω/ktlmx. (84)

To incorporate the Bloch wave information within the prior continuity equations,

eight new quantities are introduced that contain the two-dimensional Fourier series

components of the respective Bloch modes. For example, at x = 0, two new quantities

are

MpA0
lmn =

1

S

∫
S

p̃An (0, y, z)e−i(lb2y+mb3z)dydz (85)

and

MpB0
lmn =

1

S

∫
S

p̃Bn (Ha1,−y,−z)eik
B
nxHa1e−i(lb2y+mb3z)dydz. (86)

For brevity, the other six terms Mlmn terms are not presented, but follow similarly to

Eq. (85) and Eq. (86). The superscripts offer terms with p (v) for pressure (velocity),

A(B) for the A waves (B waves), and 0 (H) for x = 0 (Ha1). One will also note that

because of the coordinate system choice for the B waves, a negative sign appears in

front of M vB0
lmn and M vBH

lmn , i.e.

M vB0
lmn = − 1

S

∫
S

1

iωρ1

∂

∂xB

(
p̃Bn (xB)eik

B
n ·xB

)
e−i(klyy+kmzz)dydz (87)

Note also that MpA0
lmn and M vA0

lmn are identical to the quantities defined in Eqs. (71)

and (72).

Finally, after computing the above quantities for different values of l,m and n, the

four interface continuity conditions can be assembled into a large set of linear matrix

equations 

I −MpA0 0 −MpB0

−I −ZiM
vA0 0 −ZiM

vB0

0 −MpAH I −MpBH

0 −ZtM
pvH I −ZtM

vBH





r

A

t

B


=



−i

−i

0

0


. (88)
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In Eq. (88), all vectors and matrices are partitioned according to the scheme in

Eq. (73) and 0 is a vector or matrix of zeroes of requisite size.

This section is closed with a discussion of the layer BWE’s limitations. Since the

layer BWE only considers reflection from the boundary at x = Ha1 and does not

model the y, z limits, the technique can be inaccurate for an incident oblique plane

wave on a finite PC. For band gap frequencies, however, this limitation is a non-issue

due to the decay of the Bloch waves. Future work could consider modification of the

layer BWE technique for oblique incidence in non-band gap frequencies.

3.6 Self-consistent scattering

In the remainder of the Thesis the self-consistent scattering technique [20, 22] (SCS)

is used extensively to verify the presented Bloch wave formalism. The technique,

first developed to compute scattering from arrays of bubbles, is very similar to the

well known equations of multiple scattering presented by Foldy [23] and only a terse

summary is given hereafter. These classical techniques are restricted to low frequency,

kiR� 1.

Consider now an array of NB arbitrarily spaced bubbles. Each individual bubble

property is sub-scripted by u. The self-consistent multiple scattering technique [20]

enforces that the internal pressure of the u-th bubble is equal to the incident pressure

at location u plus the scattered pressure from all other bubbles. Given the position

of each bubble, xu, one can form a set of linear equations that describe the coupling

of the internal and external pressure. In matrix form, the equations read Qw =

pinc where w is a vector containing the unknown complex differential (instantaneous

minus equilibrium) volumes of the individual bubbles. The diagonal elements of the

matrix Q describe the resonance behavior of the bubble itself while the off-diagonal

terms correspond to the radiation coupling between the other bubbles [20, 22]. The
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components of Q are

Quv = su − ω2mu − iωbu, u = v

Quv = −ω2ρi
eikiruv

4πruv
, u 6= v

(89)

where ruv is the distance between bubble u and v. The diagonal terms in Q are com-

posed of the effective bubble mass mu = ρi/4πRu, the radiation damping coefficient

bu = muωkiRu, the adiabatic bubble stiffness su = ω2
Mumu = 3γPA/4πR

3
u, the radius

of the bubble Ru, the ratio of specific heats in air γ = 1.4, and the ambient pressure

PA = 100 kPa. The monopole resonance of a single bubble is known as the Minnaert

resonance ωM =
√

3γPAρi/R = 1,024 rad/s here [13, 58]. The vector pinc represents

the incident pressure on each bubble with pinc,u = −eiψu where the minus sign in pinc,u

is because an increase in pressure causes a decrease in differential volume. Again, an

incident wave of unit amplitude is assumed. The phase, ψu, on each bubble is equal

to ψu = ki · xu.

The steady state differential volume amplitude vector can be solved simply by

w = Q−1pinc. If the number of bubbles is not excessive (NB < 10, 000), the matrix

solution can be found as formulated. The fast multipole method (FMM) [27] is an

efficient algorithm for solving the scattering problem for larger bubble PCs, even for

NB > 50, 000; see Appendix C for more details. This algorithm can quickly compute

the matrix-vector product Qw. An iterative technique is used to uniquely find w

such that Qw = pinc. The scattered field is found by summing the contribution of

all NB bubbles

ps(x) = −ω2ρi

NB∑
u=1

wuG (x,xu) (90)

The scattered velocity vector is immediately found from Euler’s equation of linear

acoustics.

Acoustic scattering from objects can be quantified into a single metric, the differ-

ential scattering cross section ∆σ (which has units of area). In a scattering problem

∆σ(ω) quantifies the intensity Is(r) backscattered by an object normalized by unit
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of incident intensity Ii [67, 58] and 1/r2. Unless noted, it is assumed that scattering

measurements are made in a monostatic configuration, where the source and receiver

are collocated, hence the use of the term backscattering. The well known target

strength is defined as TS = 10 log(∆σ/1 [m2]). The target strength can be calculated

from the backscattered intensity, or using a simplification of the SCS formula, the

following

TS = 10 log ∆σ = 10 log

(
|ps(x)|2r2

P 2
0

)
= 10 log

(
ω4ρ2

i |
∑NB

u=1wue
iψu|2

4πP 2
0

)
(91)

In the above, P0 is the amplitude of the incident wave; it is assumed unity through-

out this work. Note that since ∆σ = Is(r)r
2/Ii, where r is the distance from the

object to the receiver, the target strength has the same frequency dependence as the

backscattered far field intensity Is. A object’s target strength is important because,

in experiments, TS, can be used to infer acoustical properties of the scattering object

using appropriate acoustical models [58].

3.7 Verification

3.7.1 Verification of SCS vs. FEM

In this section the SCS technique is verified against a finite element model, specifically

COMSOL Multiphysics. In this section, and after, the verification frequency ω is

arbitrary. However, to illustrate different principles, a distinction is made between

band gap and non-band gap frequencies. One consideration in the applicability of

the SCS model is the assumption of non-decaying incident amplitude pinc,u. Feuillade

et al. [22] recognize, but do not address, that for large bubble PCs (fish schools in

their work) the incident pressure amplitude may not be the same on all bubbles; the

phase may vary as well. Geometric and material attenuation can cause the incident

wave’s amplitude to decay as the wave passes through the PC. Their work circumvents

this problem by considering small PCs (of, say, 150 fish) [22] and sets pinc,u to have

a constant amplitude and phase ψu. It is further noted that in Foldy’s multiple
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scattering theory [23] (which is very similar to Ref. [22]), there is no specific mention

regarding difficulty in determining the extent to which the incident wave reaches all

scatterers. In the following sections, the incident wave is considered in band gap

and non-band gap frequencies. Additionally, PCs with up to 95,000 bubbles are

considered. Thus, the main purpose of this section is to show that the SCS technique

accurately predicts the pressure field within a band gap, and even a decaying total

wave field, despite its assumption that all scatterers see the incident pressure without

any loss of amplitude or phase.

The total (incident plus scattered) field is compared at three different frequencies

ω = {3, 000, 8, 000, 12, 000} rad/s for field points both outside and inside a cubic PC

of 1,000 individual bubbles arranged in a simple cubic structure. 1,000 bubbles is

selected as high enough to illustrate the band gap effect yet be numerically feasible

with reasonable effort. As a rule of thumb, about 10 unit cells are necessary for the

finite PC to show a similar dispersion trend dictated by the dispersion diagram of the

infinite PC; this unit cell requirement is satisfied for this cubic PC arrangement. The

real part of the total pressure field is computed and compared in Fig. 20 (the imag-

inary part shows a similar trend) for three different frequencies. Frequency domain

FEM models for larger PCs (> 1,000) become computationally intensive and are not

pursued.

Further comments are in order regarding the results of Fig. 20. First, in Figs. 20a

and 20c, the incident wave’s frequency resides in a band gap of the infinite PC and

thus a spatially decaying total wave field must be observed; the FEM and SCS re-

sults corroborate this statement. The first frequency (ω = 3,000 rad/s) resides in a

local resonance band gap (this frequency is close to the individual ωM) and thus a

very fast exponential decay is observed as there exists only purely imaginary Bloch

wavenumbers. For the second frequency (ω = 8,000 rad/s), see Fig. 20b, a relatively

high pressure value is predicted for x > 4 and perfect transmission (TW = 1) into the
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Figure 20: Real part of the total (incident plus scattered) pressure field versus x
with y, z = 0 for the SCS technique (blue line) and FEM simulations (black dots).
The calculations are performed at three frequencies: (a) 3,000 rad/s, which is in a
band gap, (b) 8,000 rad/s, and (c) 12,000 rad/s, which is also in a band gap. The
PC extent is from x = 0 to 4 m and demarcated by red vertical lines.

PC is observed. The third frequency (ω = 12,000 rad/s) resides in a Bragg scatter-

ing band gap. This frequency coincides with Bragg’s law of scattering, namely, that

λi ≈ 2a1 where λi is the acoustic wavelength in water. A slow decay of the total pres-

sure field is observed as the dispersion analysis predicts a complex Bloch wavenumber

with Re(k) = π/a1. The incident plus scattered field from all bubbles combine in such

a way as to produce a total field that decays in space. For all three frequencies, the

SCS technique also correctly predicts the pressure field at the back side of the cubic

PC for x > 4. It is found that the SCS model is adequate for predicting the external
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pressure field scattered by large PCs, even though the incident pressure amplitude

is assumed constant among all bubbles. The results further demonstrate modeling

accuracy of the low frequency SCS technique despite the higher frequency of ω =

12,000 rad/s. At this frequency, the product kiR = 0.16 which isn’t necessarily very

small.

3.7.2 Verification of the BWE vs. SCS

Having established the validity of the SCS technique, the half-space and layer BWE

are compared directly against the SCS technique. The finite PC considered has

dimensions (x, y, z) of 6.4 x 15.2 x 15.2 m (H = 16) and consists of 23,104 bubbles. The

PC dimensions are chosen to comply with the assumptions for the layered medium:

long in two directions and of finite width in the êx direction.

First the total pressure field results are shown at y, z = 0 as x is varied. Two

frequencies considered are ω = 3,000 and 10,000 rad/s, respectively, for verification

of the half-space BWE and layer BWE. For band gap frequencies, if the value of H is

large enough such that the Bloch waves significantly decay before reaching the back

interface at x = Ha1, the half-space BWE is appropriate for modeling the internal

pressure field of the finite PC. Since the layer BWE considers reflection from the

back interface, it is appropriate for any frequency. However, the half-space BWE is

more attractive (in band gap frequencies) than the layer BWE in terms of execution

speed and numerical storage requirements. At ω = 3,000, the real components of the

pressure field using the half-space BWE and SCS are compared in Fig. 21a. The total

pressure field is in excellent agreement. In the band gap, the preceding dispersion

equations predict an evanescent Bloch wave with k = −1.18i rad/m and RW = 1.

Along the interface at x = 0, the total pressure field predicted by the half-space is

shown in Fig. 21c. In both plots, agreement is seen between the BWE and SCS

techniques. The imaginary part of the wave field shows similar trends.
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Figure 21: (a) Real part of the total (incident plus scattered) pressure field predicted
by the half-space BWE versus the SCS technique. (b) Real part of the total pressure
field predicted by the layer BWE versus the SCS technique. (c) Real total field by the
half-space and (d) layer BWE versus the SCS technique. In all plots: blue lines/dots
represent the half-space BWE, green lines/dots for the layer BWE, and the black
lines/dots for the SCS values.

At ω = 10,000, the real components of the pressure field (using the layer BWE)

are compared in Fig. 21b. Again, excellent agreement is seen in the pressure field.

At this frequency the primary (only one propagating in the expansion) Bloch wave

propagates at k = 6.42 rad/m and then reflects at the edge of the PC at x = Ha1.

This reflection process continues to occur ad infinitum - the resulting field is that

described by the layer BWE. Along the interface at x = 0, the total pressure field

predicted by the layer BWE is shown in Fig. 21d. In both plots, agreement is seen

between the BWE and SCS techniques. The imaginary part of the wave field shows

similar trends. Subsequent results, not shown in Fig. 21, indicate the error on the

interface pressure calculations decreases with increasing PC size. This observation
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supports the change from 8,000 to 23,104 bubbles. The preceding results establish

the validity of approximating the internal and interface pressure fields using the half-

space BWE (for a band gap) and layer BWE (for non-band gap) for a finite PC.

3.8 Conclusion

In this chapter, three-dimensional phononic crystals were considered. The dispersion

technique introduced in Ch. 2 was again utilized in 3D. The half-space and layer

BWE were subsequently introduced and verified. The research contributions of this

chapter are as follows: (i) a half-space and layer BWE introduced for reflection and

transmission of acoustic waves and (ii) Verification of both approaches versus the SCS

technique. The next chapter uses the 2D and 3D BWE to determine scattering from

finite PCs.
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CHAPTER IV

SCATTERING FROM FINITE PHONONIC CRYSTALS

4.1 Overview

The previous two chapters discussed the 2D and 3D BWEs and their role in determi-

nation the reflection and transmission from a semi-infinite PC half-space or layer. In

this chapter, the Helmholtz-Kirchhoff integral will be introduced and integrated with

the BWE to discuss scattering from 2D and 3D phononic crystals. The theory will

be introduced and then verified versus FEM (in 2D) and SCS (in 3D). The BWE and

HKI presents an efficient and accurate approach to study the scattering from PCs.

Note, as discussed in Sec. 1.3, internal scattering within a PC has been discussed

and, ultimately, gives rise to the PC’s dispersion relationship. This chapter differs

from most of the literature by focusing on external scattering; that is, the scattered

field observed at a point outside of the PC.

4.2 Helmholtz-Kirchhoff integral

Upon ensonificaiton of the PC by a harmonic plane wave, the BWE yields the pressure

and velocity of the PC’s surface. These quantities can be used with the HKI to predict

the external scattered field.

The exterior form of the Helmholtz-Kirchhoff integral [85, 86] can be used to pre-

dict external scattering from finite objects. This analytical integral method, which

is valid for two or three dimensions, requires evaluation of a surface integral of the

pressure and normal velocity along an oscillating surface. Invoking a small wave-

length approximation (wavelength much smaller than the PC’s y, z dimensions), it

is assumed that the pressure field, as determined by the BWE, accurately describes
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the actual pressure field for a finite PC. Under this assumption, the HKI utilizes the

pressure and normal velocity as inputs to the surface integral. For example, in two

dimensions, the finite PC studied is envisioned as being ’cut-out’ from an semi-infinite

half-space. Thus, as discussed above, the 2D BWE solution (valid for a semi-infinite

half-space) can be used to describe the pressure field on the surface S. Kulpe et

semi-infinite PC

finite PC

Figure 22: A semi-infinite PC with a shaded region indicating the finite PC of
interest.

al. [40] introduced the HKI to studying the scattering from 2D PCs and excellent

agreement was demonstrated against finite element simulations. Paralleling the de-

velopment from Ref. [40], the application of the HKI to two or three-dimensional

finite PCs is discussed next.

The Helmholtz-Kirchhoff integral computes the scattered pressure field at any

field point xf from knowledge of the pressure and normal velocity on a simple, closed

surface S with inward unit normal n̂ as

ps (xf ) =

∫
S

[G∇p− p∇G] · n̂ dS. (92)

where the distance from the surface point xs and field point is r = |xs − xf |, and

ki = |ki| is the wavenumber in the incident domain, and G is the applicable 2D or
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3D free space Green’s function

G (xs|xf ) =
i

4
H

(1)
0 (kir)

∇G (xs|xf ) =
−iki

4

(xs − xf )

r
H

(1)
1 (kir)

 for 2D (93)

and

G (xs,xf ) =
1

4π

exp(ikir)

r

∇G (xs,xf ) =
1

4π

ikir − 1

r2
(xs − xf )

exp(ikir)

r

 for 3D (94)

In the two-dimensional Green’s function, H
(1)
0 and H

(1)
1 are the Hankel functions of

the first kind and, respectively, order 0 and 1. Recall, the pressure and velocity

vector solution to the BWE (pBWE,vBWE) of the half-space or layer technique are

used for the pressure and it’s gradient on S, i.e. p(xs) = pBWE(xs) and ∇p(xs) =

iωρ1vBWE(xs). The total pressure field p (incident plus scattered) is found by adding

the incident plane wave pi = exp(iki ·xf ) to Eq. (92) [85]. In the case where xf is on

the surface S, a factor of 1
2

must be multiplied onto the right hand side in Eq. (92)

[85].

4.3 Verification in two dimensions

To verify the presented formalism of scattering from a finite PC, two computational

results [40] are presented in this section. The phononic crystals used for both results,

Fig. 23, contain M1 = 30 x M2 = 30 unit cells perfectly placed in an array; the overall

PC dimensions are 18 x 18 m. As before, the inclusion is a cylinder of radius R = 2

cm; the lattice constant is changed to a = 60 cm. A finite element model, employed for

comparison, is created with the same array of 900 unit cells and represents the finite

PC studied herein. The verification model contains an incident harmonic plane wave

and simultaneously allows scattered acoustic radiation to leave the computational

domain via built-in specialized radiation boundary conditions. Increased accuracy in

the radiation boundary conditions for the FEM model is obtained by having a large

homogenous domain surrounding the PC, yielding some 3 million degrees of freedom.
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(A) (B)

Figure 23: Two large finite PCs used for (a) result 1 and (b) result 2. The frequency
of the incident wave is the same. The direction of the incident wave, indicated by the
arrow, is varied for result 1 and result 2.

For comparison of the pressure field, the FEM software performs a post-processed

numerical evaluation of the HKI, using Eq. (92) and the obtained FEM solution.

Hence, the scattered pressure field can be compared, at any field point, between the

BWE informed HKI and the finite sized PC.

4.3.1 Study 1

The Bloch wave expansion is computed for ω = 9000 rad/s and θ = 0 degrees (normal

incidence). This frequency resides in a band gap, thus there are no propagating

Bloch waves used in the expansion and all N = 6 of the waves decay into the PC.

Alternatively, all incident acoustic energy is perfectly reflected [42] and the scattered

wave is of high amplitude. At this frequency, the parallel wavelength λi/ cos θ =

2π/(ki cos θ) = 1.04 m and the length of the finite PC (M2a2) is 17.3 times larger,

which conforms with the short wavelength assumption.

Numerical results comparing the real and imaginary parts of the pressure field

along the line (x, 0) for x ∈ [-10,0] are displayed in Fig. 24. The pressure results of

the BWE and application of the HKI from Eq. (92) (2 minute solution time, on an
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Intel quad-core i5 PC, 2.66 GHz, 16 GB RAM) compares excellently with the pressure

results of the FEM model (30 minute solution time). Note the results in Fig. 24 are

in the acoustic near field. The far field is not reached until about xf = -12.7 m with

a peak amplitude of 1.29 Pa following a sharp decline in pressure amplitude due to

cylindrical spreading. For completeness, the comparison of the acoustic pressure field

is compared over a rectangular region and shown in Fig. 25. Good agreement is noted

between the spatial characteristics and amplitude of the BWE and FEM solutions.

The maximum relative error between the comparison plots is about 20%.
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Figure 24: Result 1: Comparison of the real (top) and imaginary (bottom) parts of
the scattered acoustic near field pressure for the BWE+HKI versus the FEM model.

4.3.2 Study 2

The Bloch wave expansion is computed for ω = 9000 rad/s and θ = 20 degrees. At this

frequency, the parallel wavelength λi/ cos θ = 2π/(ki cos θ) = 1.11 m and the length

of the finite PC (M2a2) is 16.1 times larger which, again, conforms with the short

wavelength assumption. Similar to the prior case, numerical results comparing the
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Figure 25: Result 1: (Top) The real and imaginary parts of the scattered acoustic
pressure field (in Pascals) for the BWE using the HKI. (Bottom) The difference
between the Bloch and FEM results

.

real and imaginary parts of the pressure field along the line (x, 0) for x ∈ [-10,0] are

displayed in Fig. 26 for the near field. Excellent agreement is seen, between the BWE

and FEM models, of Fig. 26. As done previously, the comparison of the acoustic

pressure field is compared over a rectangular region and shown in Fig. 27. Again,

good agreement between is noted between the spatial characteristics and amplitude

of the BWE and FEM solutions. The maximum relative error between the comparison

plots is about 25%. In this particular study, the frequency is low enough such that

there exists only one reflected propagating plane wave order (see Eq. (65)), therefore

the reflection is specular. The reader can see that in Fig. 27 that the wave field,

implemented using the HKI, conforms with the specular reflection as predicted by

the BWE.
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Figure 26: Result 2: Comparison of the real (top) and imaginary (bottom) parts of
the scattered acoustic near field pressure for the BWE+HKI versus the FEM model.

4.4 Verification in three dimensions

In this section, the external scattered pressure field is computed for a set of cubic

PCs and different frequencies by integrating the BWE and HKI techniques.

4.4.1 Scattered pressure

Again, consider a PC of 8,000 bubbles with size 8 x 8 x 8 m. In the rest of this

chapter, a = 40 cm. This PC size is chosen as a compromise between adequate error

in scattering results and computation time. A plane wave at ω = 12,000 rad/s is

normally incident (θ, φ = 90◦,0◦) on the PC. The frequency is specifically chosen

to coincide within the Bragg band gap. The presented theory, even with the layer

BWE, is expected to offer best performance, versus the SCS technique, in band gap

frequencies since the Bloch waves decay and any wave interaction with the edge

(x = Ha1) of the PC is minimal.

The real and imaginary parts of the scattered field are compared in, respectively,
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Figure 27: Result 2: (Top) The real and imaginary parts of the scattered acoustic
pressure field (in Pascals) for the BWE+HKI. (Bottom) The difference between the
Bloch and FEM results

.

Figure 28a and Figure 28b. Firstly, one can observe good agreement in the com-

parison between the HKI technique (using the half-space BWE pressure) versus the

SCS technique. In the far field, the relative error between the BWE+HKI and SCS

amplitudes converges to approximately 10%. These numerical results indicate good

agreement between the scattered pressure field arrived at from the BWE versus the

SCS technique.

Further comparison in the plane z = 0 for amplitude are respectively shown in

Fig. 29a and Fig. 29b. Most notably, the spatial variation of the pressure amplitude

qualitatively agrees very well between the two techniques. In fact, the BWE+HKI

technique fully captures the near field amplitude, the forward scatter (x > Ha1)

behavior, and the y 6= 0 axis behavior. Quantitatively, the BWE+HKI compared
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against the SCS technique demonstrates good agreement in the far field, with a rela-

tive error in amplitude less than 20%. Furthermore, the results on Fig. 29a indicate

one can expect good agreement in the scattered pressure over a wide range of field

points, anywhere around the PC.
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Figure 28: A comparison of the real part (a) and imaginary part (b) of the scattered
pressure field by the BWE+HKI (blue line) and the SCS technique (dashed green
line). The range is normalized by the incident wavelength λi and y, z = 0.

Based on the good agreement between the BWE+HKI and SCS, especially in the

acoustic far field, the acoustic far field radiation pattern for the PC for plane wave

incidence is computed next. For the HKI and SCS techniques, the target strength

TS is computed from

TS(x) = 10 log

(
|ps(x)|2r2

P 2
0

)
. (95)

or alternatively for Eq. (91) for the SCS technique. The frequency is set to ω =

3,000 rad/s. The target strength is plotted over a sphere with arbitrarily large radius

r = 106 m for the BWE+HKI technique in Fig. 30a and the SCS technique in Fig 30b.

Since the beam pattern is defined in the acoustic far field, any arbitrary range value

can be used as long as the acoustic far field is achieved. First, one will note excellent

qualitative agreement between the beam patterns computed from the BWE+HKI

and SCS. One can distinguish a very strong backscattered component (TS > 30 dB).
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(a)

(b)

Figure 29: Amplitude of the scattered pressure field for (c) BWE+HKI and (d)
SCS. The bubble array is colored in blue for clarity. The incident plane wave at ω
= 12,000 rad/s strikes the PC in the direction shown and the range is normalized by
the incident wavelength λi.

Several nulls (local minima in the beam pattern) can be identified, more pronounced

in Fig. 30a, by the black lines. The results presented in this section demonstrate

the very good agreement in overall scattering computations between the Bloch wave

expansion and HKI when compared against the SCS technique.
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Figure 30: Beam pattern for the finite PC using (a) BWE+HKI and (b) SCS tech-
niques. The incident wave travels along the êx direction as indicated.

4.4.2 PC length convergence study

The variation of accuracy in the scattered solution versus the PC size is explored

next. Here, at two distinct band gap frequencies ω = {3, 000, 12, 000} rad/s, the

scattered pressure is measured, using the layer BWE and compared directly from the

SCS technique. It is anticipated that greater accuracy in the scattered pressure will

occur for field points within the main backscattered acoustic beam, thus, NP = 250

field points are chosen (in the far field) in the xy plane. These points (denoted by

line 1) are along the -êx direction. For comparison, NP points are chosen in (denoted

by line 2) within the xy plane at θ = 90◦, φ = 150◦. Namely, the first set of points

resides within the main backscattered acoustic beam. The second set of points are

not typically in the main beam since the size of the main beam varies with frequency

and PC size. The PC length, with fixed aspect ratio and lattice constant a, is varied

at each simulation step within the range of 0.8 m to 18.8 m; the number of bubbles

vary from 8 to 97,336. To quantify results, at each of the NP sample points, the

amplitude and phase of the pressure field is computed. Two relative error metrics,
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for either set of field points, for amplitude and phase are introduced as

Eamp =

(∑NP
u=1 (|pu,BWE| − |pu,SCS|)2

NP ·max |pSCS|2

)1/2

(96a)

Ephase =

(∑NP
u=1 (arg(pu,BWE)− arg(pu,SCS))2

NP · π2

)1/2

. (96b)
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Figure 31: Relative error in (a) amplitude and (b) phase as defined by Eq. (96) for
the points on line 1: within the main scattered beam. Relative error in (c) amplitude
and (d) phase for the points on line 2: outside the main backscattered beam. In
each of the four plots, the incident wave frequency is at ω = 3000 rad/s (blue dots)
and 12,000 rad/s (green stars). The diagram on the top left hand side of (a) and (c)
indicates the direction of, respectively, line 1 and line 2 (but not the direction of the
incident wave).

The relative error in amplitude and phase, as defined above, are respectively

displayed in Fig. 31a and Fig. 31b for line 1 and Fig. 31c and Fig. 31d for line

2. First, in Fig. 31a and Fig. 31c, one can clearly see excellent agreement in the

BWE and SCS approaches in amplitude for the band gap frequencies of 3,000 rad/s
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and 12,000 rad/s. Similarly, Fig. 31b indicates low phase error for the two band

gap frequencies. Although prediction of the field within band gap frequencies is of

primary interest, studies outside of the band gaps still indicate, generally, reasonable

accuracy. Secondly, the scattered field outside of the main beam, line 2, shows some

higher error in amplitude and phase. Furthermore, a comparison of line 1 versus

line 2 amplitude and phase results indicate a trend: for both frequencies, low error in

amplitude and phase is observed when the field point is within the main backscattered

beam (field points close to the PC normal, ≈ 15-30 degrees); larger discrepancy is

observed for points far outside of this region. The higher error exhibited out of the

PC’s main beam can be explained by the BWE predicting lower TS values than the

SCS technique in the beam pattern nulls, which are sensitive to interference effects.

The error outlier of Fig 31c with length 7.2 m is explained by this interference effect.

More remarkably, the amplitude and phase error for small PCs (PC length / λi ≈

1) is very low. For a PC of this size, say less than 216 bubbles, the BWE pressure

field, a priori, is not accurate as the PC is not large enough to be considered ’infinite’.

Despite the error in the BWE field for the small PCs, the scattered field using the

HKI agrees very well. Hence, this result indicates that, even though the PC may be

’small’ (compared to the wavelength), the scattered field amplitude computed, using

the above approach, can be quite accurate over a wide range of field points within the

backscatter direction of the PC. Lastly, with regard to oblique incidence, as expected

from the discussion at the end of Sec. 3.5, there is good agreement in the scattered

field when the selected frequency is in a band gap, and higher error when it is not.

4.5 Scattering of a broadband pulse

Consider a source located at x = (-1000, 0, 0) m that emits a sinusoidally modulated

Gaussian pulse pinc(t) described by

pinc(t) = Ae−
1
2
η2t2 sinω0t (97)
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with amplitude A = 1 Pa, modulation parameter η = 500 1/s and carrier frequency

ω0. The fractional bandwidth of the input signal is 0.54. An example input signal

(ω0 = 3,000 rad/s) and it’s spectrum are, respectively, shown in Fig. 32a and Fig. 32b

Examination of the spectrum indicates that a large portion of the input signal exists
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Figure 32: (a) The input pulse from Eq. (97) with ω0 = 3,000 rad/s. (b) The
magnitude of the fast Fourier transform of (a). The band gap ranges are highlighted.

within the first band gap.

The incident wave travels and interacts with the cubic PC of 8,000 bubbles. The

amplitude of the complex frequency response (from the layer and SCS techniques)

is displayed in Fig. 33. Notably, over the frequency range of the study, the scat-

tered amplitude agrees well between the BWE and SCS techniques. As concluded

in Sec. 4.4.2, even though the wavelength is small compared to the PC size, positive

agreement between the scattered pressure field is still observed. Also, due to Bragg
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scattering, the frequency response amplitude is very high within the second band bap.

For several frequencies between the two band gaps, TW ≈ 1 which corresponding to

minima of the scattered pressure amplitude. Here the wavenumber of the propagating

Bloch wave satisfies k(ω)Ha1/π = n for integer n. This quantity appears in classical

acoustics regarding perfect transmission for a homogenous layered medium [36] and is

an example of the phase-closure principle discussed within structural vibrations [57].

Similarly, the local scattered pressure amplitude maxima occur at frequencies with

the wavenumber satisfying k(ω)Ha1/π = 2(n− 1)/2.

Figure 33: Amplitude of the complex scattered pressure field experienced at the
receiver location for the layer BWE (blue line) and SCS (dashed green line). The two
frequency band gaps are indicated by yellow boxes.

Consider a receiver co-located at the source. The discrete fast Fourier transform of

Eq. (97) (∆ω = 25 rad/s) and the PC’s frequency response (at the receiver location)

are multiplied together; the transient response is obtained through an inverse fast

Fourier transform of this product. Of note, there is zero padding or filtering done
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in the signal processing of the transient results and the length of the time window

([0 0.06] seconds) is driven by the chosen frequency discretization. Also, because an

exp−iωt time convention is used, to have increasing t yield a propagating wave, the

frequency response is conjugated before the inverse Fourier transform is applied. This

conjugation converges the time convention from exp−iωt to exp iωt; this step is only

done for the sake of presentation for the transient results. The transient results are

calculated for pulses of three different carrier frequencies ω0 = {3,000, 6,000, 12,000}

rad/s and Figure 34 shows the scattered pressure signal at the receiver. Notably, there

is a clear overall agreement between the BWE and SCS pressure signals for each of

the three chosen carrier frequencies. At ω0 = 6,000 rad/s there are two arrivals: the

primary scattered pulse and a secondary scattered pulse. The secondary pulse is a

result of the Bloch waves reflecting from the homogenous boundary at x = Ha1, see

Fig. 9, and then scattering sound back to the receiver. Phase errors in the layer BWE

contribute to the misalignment of the secondary pulse versus the SCS technique.

Dispersion effects within the PC result in an altered shape between the primary

and secondary scattered pulses (see Fig. 34). The travel distance of the propagating

Bloch wave in the PC is twice the PC length = 16 m. Division of this distance

by the calculated group velocity for the primary Bloch wave at ω0 (see Eq. (61))

yields a delay time of 12.5 ms. This time, calculated using the dispersion relationship

inherent to the PC, agrees fairly well with the measured primary-secondary pulse

separation time of 12.9 ms. At ω0 = 12,000 there is general overall agreement, but

some discrepancy of the BWE and SCS pressure signals is observed; note also the

high pressure amplitude here as well.
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Figure 34: Time history of the pulse scattered by the finite PC using the layer BWE
(blue line) and SCS (dashed green line) techniques. The results are calculated for
three carrier frequencies: ω0 = (a) 3,000, (b) 6,000, and (c) 12,000 rad/s. Note the
horizontal time axes includes the travel time between the source and receiver; note
also the difference in range of the vertical axes.

4.6 Facet scattering formalism

The scattering from rectangular phononic crystals has been discussed in the prior

sections and at length in the prior work of Ref. [43]. Now a more ambitious scatter-

ing computation is performed - the scattering from more generally shaped phononic

crystals.
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4.6.1 Derivation

To approximate the scattering from an object with a complicated geometry, the ob-

ject’s surface can be partitioned into a set of planar facets - each facet contributes

to the scattered field. The Kirchhoff approximation [58] assumes the plane wave re-

flection and transmission coefficients (for a traditional homogenous fluid half-space

problem) can be used to calculate the pressure field on the facets. This technique

does not, however, encompass the diffraction effects of the incident wave around each

facet, but rather only the backscattering from each facet. Since, under the Kirchhoff

approximation, the surface pressure and velocity are known, the backscattering from

each facet can be computed (using the HKI) in a straight forward manner and the

scattered field is a summation over the facets [58].

In this work, the scattering from a phononic crystal with geometric complexity, in

analogy with the prior discussion, is formulated as a summation of the scattering from

many facets. For a large phononic crystal, each facet will locally appear to contain a

tessellation of unit cells. In accordance with the PC scattering discussed in Sec. 4.2,

it is assumed that for large facets (facet dimension > λi) the Bloch wave expansion

technique can be employed to calculate the pressure and velocity terms necessary for

the HKI. Finally the total scattered field is found via summation over the facets.

Two requisite assumptions must be satisfied for this facet scattering approach to be

valid: (1) each facet is larger than the wavelength and (2) there are more than 10

unit cells along the direction of the facet’s normal. The first criteria can be achieved

by adjusting the frequency; the second criteria is typically trivially satisfied for large

phononic crystals. Satisfaction of these assumptions ensure that the Bloch wave

expansion can be used as, locally, the facet resembles a semi-infinite phononic crystal

half-space.

As an example, a spherical PC geometry is shown in Fig. 35a. The corresponding

periodic array of NB = 104,312 bubbles is displayed in Fig. 35b. Using a commercial
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package, a triangular surface mesh of the PC in Fig. 35a is generated and shown in

Fig. 35c. Following meshing, the geometrical properties of each facet (denoted by

superscript j) can be determined: the rotation matrix Rj, centroid coordinate qj,

and inward normal n̂j. This rotation matrix transforms the local basis vectors, e.g.

êjx = Rj êx. Points on the j-th facet, denoted by yj, are related by x = qj+RTyj. By

convention, and in accordance with the half-space geometry in Fig. 17a, let êjx = n̂j;

see Fig. 35d. Following Ref. [58], only facets ensonified by the incident plane wave,

i.e. n̂j · ki > 0, are used in the summation. This set of ’ensonified facets’ is denoted

Γ and contains NF facets.
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Figure 35: (a) General phononic crystal shape. The radius of the sphere is 12 m. (b)
The spherical phononic crystal containing 104,312 bubbles evenly spaced with period
a = 0.4 m. (c) The surface mesh of the PC decomposed into facets. The ensonified
facets are shaded green. (d) Definition of the global and local coordinate system for
facet j.

To begin with the scattering solution, the incident wavevector is transformed into
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the facet’s local coordinate system

kji = Rjki. (98)

Similarly let P j
0 = exp iki·qj be the complex amplitude of the incident wave (assuming

unit amplitude) on the j-th facet. For each facet in Γ, the Bloch wave expansion can

be calculated in the local coordinate system of Fig. 35d using the frequency ω and

wavenumber parameters {kjiy, k
j
iz} = {kji · êjy,k

j
i · êjz} as inputs. In practice, the fields

from the BWE process can be stored a priori and then later accessed as a look-up

table operation. Furthermore, for computational time savings, symmetry of the facets

can be exploited where applicable.

Following the solution of the BWE for all NF facets, the pressure and particle

velocity fields are calculated on each facet at global facet surface points xjS. One must

remember, due to the coordinate transform, that the scalar pressure transforms as

p(xjS) = p(yj) and the gradient transforms as ∇p(xjS) = RT∇p(yj). The scattered

pressure from the set of facets is an extension from Eq. (92)

ps (xf ) =
NF∑
j=1

P j
0

∫
Γj

[
G
(
xf |xjS

)
∇p
(
xjS
)
− p

(
xjS
)
∇G

(
xf |xjS

)]
· n̂j dΓj. (99)

The equations in Sec. 3.4 assume an incident wave of unit amplitude; the value P j
0 in

Eq. (99) scales the fields on each facet correctly. The theory in this section is closed

by noting that the FMM software package in Ref. [27] can also be used to evaluate

Eq. (99) (and equivalently Eq. (92)); see Appendix C. An experimental speedup

of 20 to 50 times has been observed using the FMM as opposed to performing the

numerical integration directly.

4.6.2 Verification

To verify the facet formalism, the geometry considered is trivial (in terms of com-

plexity): a cube. The cubic PC of 8,000 bubbles will be used for verification. See for
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verification of the regular BWE and HKI versus SCS for the same geometry. Con-

struction of a surface mesh yields 72 facets with 12 active; the surface mesh element

size was arbitrarily set. Setting ω = 3,000 rad/s the scattered pressure is computed

using the 12 facets. All 12 facets posses êjx = êx and the BWE discussed in Ch. 3

with θ = 90◦, φ = 0◦ can be used. Further, since all 12 facets posses êjx = êx, only

one BWE calculation needs to be performed; thus, exploitation of the geometry sym-

metry allows a computational time savings. The facet formalism is compared directly

against the SCS technique; the amplitude is shown for the facet and SCS results,

respectively, in Fig. 36a and Fig. 36b.

Clearly, the facet technique shows a very similar scattered field amplitude versus

SCS; even the near field behavior is accurately predicted. The facet size (square root

of area) is less than a wavelength, which is contrast with an assumption discussed

in Sec. 4.6.1. Nevertheless, the facet results indicate positive agreement. Therefore,

depending on the geometry, the facet size may be on the order of a wavelength and

still yield an accurate scattered field. This property, for example, may be exploited

to achieve accuracy with complex geometry requiring small surface mesh elements.

4.6.3 Limitations

It serves the reader to discuss a limitation of the presented facet theory. A model-

ing feature not captured by the above formulation is that the actual PC possesses

bubbles arranged on the global axes {êx, êy, êz} while each facet treats the bubbles

arranged on the local axes {êjx, êjy, êjz}. Figure 37 illustrates this idea: for facet j, the

modeled geometry possess an inward normal equal to êjx yet the actual PC model

contains bubbles oriented as shown in Fig. 17a. In a cubic PC, the global and local

axes coincide perfectly and the results in Sec. 4.6.2 confirmed the facet technique

agrees very well with the direct HKI implementation and SCS technique. In the facet

approach, applied to the example geometry in Fig. 35a and many other PC geometry
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(a)

(b)

Figure 36: Amplitude of the scattered pressure field for (a) facet and (b) SCS. The
bubble array is colored in blue for clarity and only backscattering is considered, thus
x < 0. The incident plane wave at ω = 3,000 rad/s strikes the PC in the direction
shown and the range is normalized by the incident wavelength λi

possibilities, the two sets of axes do not align for most facet orientations.

For the present formulation to work, the frequency ω must be within the first

band gap of the PC. Since this band gap is complete (band gap exists for all incident

wave directions), the field will be decay in space regardless of the orientation of the

local facet axes. This decaying field feature aids in the determination of the scattered

pressure, via the facet approach, despite this axis orientation issue. Despite this

facet orientation limitation, the facet scattering approach and results (see Sec. 6.3)
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Figure 37: The modeled PC for facet j contains bubbles arranged as shown with the
coordinate system êjx and êjy. This coordinate system does not agree, in general, with
the actual alignment of the PC axes êx and êy.

demonstrate a promising direction for scattering computations from arbitrary PCs.

Future work would address modification of the presented theory to be applicable to

a set of ensonified facets while the orientation of the bubble inclusions is correctly

represented along the PC’s axes.

4.7 Conclusion

In this chapter, the scattering from finite PCs was discussed at length. The Helmholtz-

Kirchhoff integral combined with the 2D or 3D Bloch wave expansion allows the

scattering to be determined. Several verification studies were presented in both 2D

(versus FEM) and 3D (versus SCS). Further, the BWE+HKI was found to be most

accurate for field points within the main backscattered beam and when ω resides in a

frequency band gap. The transient scattering of the PC from an incident broad band

pulse was also discussed. Extending to non-cubic geometries, the facet formalism

was introduced and verification examples were presented. The contributions of this

chapter to the literature are (i) introduction of the BWE+HKI to study scattering

from 2D and 3D finite PCs; (ii) the layer BWE being applied, with the HKI, to

study transient scattering from Fourier superposition; and (iii) the capability to study

scattering from PCs with complicated geometry via the facet formalism applied when
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ω is within the local resonance band gap. Different from the current and previous two

chapters, the next chapter discusses the BWE and scattering when the underlying

PC contains weak disorder.
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CHAPTER V

WEAK INTERNAL DISORDER

5.1 Overview

In this work the application to the previously discussed theory will be for the appli-

cation to disordered PCs. Along with the BWE+HKI, the content from this chapter

pushes the theory forward to be able to study scattering from realistic fish schools.

First, in 2D and 3D, the BWE+HKI (strictly valid for a perfectly ordered system) will

be applied directly to describe the scattered pressure field from a real PC with weak

internal disorder; several verification studies are presented. Next, a newly developed

perturbation formalism, which may offer the ability to correct the BWE fields for

disordered systems, will be introduced.

5.2 Description of disorder

In this work, weak disorder is considered and characterized by the quantity τ . In the

respective FEM and SCS models, explicitly, contain weak disorder in the position and

radius of the scattering inclusions. In each disordered PC the position and size (radii)

of each cylindrical (or spherical) inclusion is chosen to follow a Gaussian distribution

with, respectively, mean of a,R and a standard deviation of τa, τR. For convenience,

and without loss of generality, the material properties are not altered in this work.

For example, Fig. 38 shows two disordered PCs. Of note, the ’strength’ of disorder

is indeed relative to the wavelength. Physically, the wave field inside the PC may be

strongly affected by disorder when ω is high versus a case when ω is low. Lastly, in

all studies in this work dealing with the scattering from disordered phononic crystals,

only one realization of the disordered PC is considered. Thus, there is no averaging

92



0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

x [m]

y 
[m

]

τ = 0.05

(a)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

x [m]

y 
[m

]

τ = 0.2

(b)

Figure 38: A representative two-dimensional disordered PC with (a) τ = 0.05 and
(b) τ = 0.2. The intersection of the dashed blue lines indicate the ideal cylinder
positions.

of any of the results for different configurations.

5.3 Scattering from disordered PCs

In this section the scattered field is computed using the previously discussed 2D

and 3D tools for varying frequencies and disorder levels. Recall, the Bloch theorem,

and associated BWE strictly apply to perfectly disordered PCs. However, for weakly

disordered PCs, the scattered field, predicted using the appropriate BWE and HKI

technique, is compared directly to the disordered PC. That is, to approximate the

scattered field from a weakly disordered PC the Bloch wave expansion may be used.

The following 2D and 3D verification sections qualitatively explore the error exhibited

using this approximation. If the disorder is strong enough, the Bloch theorem and

HKI technique may yield erroneous results; thus, higher disorder is not studied in

this work.

5.3.1 Verification in two dimensions

In this effort the acoustic scattering is determined form a finite phononic crystal with

weak internal disorder. The disordered PC consists of cylindrical air-filled inclusions
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placed in a water background; positional and size disorder of the cylinders is con-

sidered. The approach presented herein serves as a formalism for calculating the

scattered acoustic pressure from a large finite PC with weak internal disorder.

To establish the validity of the formalism the scattered field from a finite PC, with

varying degrees of weak internal disorder, is compared against the scattered field of an

ideal PC. An incident plane wave, of unit amplitude, is normally incident on the PC

and the frequency ω = 13,000 rad/s is within a band gap of the 2D infinite PC. Finite

element models are constructed to model the scattering from the disordered PCs and

a numerical implementation of the Helmholtz-Kirchhoff integral produces the desired

scattered field of the finite disordered PC. A two-dimensional PC is considered that

contains 400 air-filled cylinders in water where, in the ideal case, each cylinder is

arranged on a square lattice with periodicity a = 40 cm and radius R = 2 cm.

The scattered acoustic field is illustrated in Figure 39 for field points xf ∈ [−5, 0]

and yf = 0. Similarly, the scattered field is compared for field points within a rectan-

gular region in Figure 40. The scattered acoustic field of the ideal PC, determined by

the BWE and Eq. (92), is compared to the scattered pressure from three PCs with

varying degrees of disorder characterized by τ and favorable agreement is demon-

strated in all results. Additionally, the results for τ = 0.1 in Figure 40, indicate some

divergence in spatial scattering character versus the ideal BWE approach. For both

results in Fig. 39 and Fig. 40 , the imaginary component of the scattered pressure

field follows a similar trend. For the values of τ considered the max deviation from

the mean for position, normalized by the wavelength in water λi = 0.72 m, is {0.0471,

0.08, 0.16} for position and {0.0026 0.0047 0.005} for inclusion radii. In particular, at

τ = 0.1 the normalized positional deviation of 0.16 certainly challenges the notion of

’weak’ disorder. Further investigation of the scattered field results indicate that the

ratio of scattered power to incident power is {95%, 94%, 88%}. Nearly all acoustic

power will be reflected by the PC because the frequency ω is in a band gap [42];
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the BWE yields a power ratio of 99.9%. The very high ratios presented for all three

disordered PCs corroborate with the predicted qualitative behavior. It is also noted,
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Figure 39: Comparison of the real component of the scattered pressure field over a
line with yf = 0 for three PCs with varying internal disorder.

Figure 40: Comparison of the real component of the scattered pressure field over a
rectangular region in the xy plane for the BWE solution applied to a ideal PC and
three PCs with varying internal disorder.
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in the acoustic far field on the line yf = 0 for xf < -100 m, the real scattered pressure

between the ideal PC and PCs with τ = 0.025 and 5% agree excellently in amplitude

and phase. The τ = 0.1 PC exhibited an amplitude error of about 17% with a very

good agreement in phase.

The results presented herein indicate very good agreement between the scattered

pressure from an ideal PC, using the BWE solution, and three PCs with varying levels

of weak internal position and size disorder. The results indicate, at this frequency,

the degree of internal disorder is small enough such that the BWE combined with

the Helmholtz-Kirchhoff integral can adequately predict the scattered pressure from

a finite PC with weak disorder. The approach is considered promising for future

research and applications into determination of acoustic scattering from finite PCs

with varying shape effects and internal disorder.

Next, the two-dimensional half-space BWE is used to compute the scattered pres-

sure field over a large frequency range and the results are compared against the FEM

model. The relative error in scattered amplitude at a single point 10 m from the PC

is shown in Fig. 41. Notably, for all three disordered PCs the error is lowest in the

first band gap. The increased error as τ increases, in the second band gap is a result

of the higher frequency. Clearly, outside of the band gap range, the half-space BWE

predicts very high error. Application of the layer BWE does not significantly alter the

results. A conclusion is seen: the best agreement in the scattered field is found when

ω is in a frequency band gap. Here the decaying nature of the internal wave field aids

in the BWE+HKI approximating the pressure scattered by the disordered PC. Thus,

the BWE+HKI approach is most robust in a frequency band gap for determination

of the scattered pressure field from a disordered PC.
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Figure 41: Comparison of the relative error versus frequency in the scattered pres-
sure at a single point using the BWE+HKI versus the FEM applied directly to four
disordered PCs with varying τ . The band gap ranges are highlighted.

5.3.2 Verification in three dimensions

Of first interest is exploring how the SCS predicted TS values are altered by the

presence of disorder. To explore the robustness of the target strength values within

the first and second band gaps, a parametric study is performed using a PC with weak

disorder. Consider the cubic PC of 8,000 bubbles, but with varying τ varying from 0 to

0.2. For three values of τ = {0, 0.1, 0.2} the target strength is shown for the first and

second band gaps in, respectively, Fig. 42a and Fig. 42b. At each disorder level, only

a single realization of the PC is considered. Negligible differences between the ideal τ

= 0 and disordered TS curves are observed in Fig. 42a. The local resonance band gap

is more robust to phase differences caused by disorder than the Bragg scattering band

gap. A separate numerical experiment has confirmed, for a positional disorder level

of τ = 0.5, the internal scattered field and the target strength are changed little from

disorder. The Bragg band gap depends on the phase interference of the incident and

97



1000 1500 2000 2500 3000 3500
10

15

20

25

30

ω [rad/s]

T
S

 [d
B

]

 

 

τ = 0

τ = 0.1

τ = 0.2

τ = 0 and τ = 0.1
 curves nearly equal

(a)

1.1 1.15 1.2 1.25 1.3

x 10
4

10

15

20

25

30

35

40

ω [rad/s]

T
S

 [d
B

]

 

 

τ = 0

τ = 0.1

τ = 0.2

(b)

0 0.05 0.1 0.15 0.2
−1

0

1

2

3

4

5

Disorder level τ

T
S

 d
ro

p 
fr

om
 m

ax
im

um
 [d

B
]

 

 

1st band gap
2nd band gap

(c)

Figure 42: The target strength for PC A with varying levels of weak position and size
disorder; τ characterizes the standard deviation from the ideal PC. The (a) first and
(b) second band gap frequency range is studied. (c) As τ is increased, the difference
between the ideal and disordered PC in the first (blue) and second (green) band gap
frequency range.

scattered wave; disorder can break this wave interference. In Fig. 42b, in the second

band gap, the τ = 0.2 curve is lower than the ideal case by approximately 5 dB. Over

five τ values, the decrease in the TS maximum from the ideal case is illustrated in

Fig. 42c. Again, negligible change in the TS is observed in the first band gap range.

The introduction of weak disorder clearly alters the maxima for the target strength

within the second (Bragg) band gap. Extrapolation from Fig. 42c suggests that a

large decrease in target strength in the second band gap, for instance over 30 dB,

can be observed for PCs with τ increasing beyond 0.5; this circumstance is no longer

considered ’weak’ disorder.

Next, at two band gap frequencies, the scattered pressure field is computed at NP
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= 1,000 field points using the BWE+HKI technique and compared directly against the

SCS technique applied to the disordered PCs. It was concluded in Ch. 4 and Ref [43]

that the best BWE+HKI performance, for accuracy in the amplitude and phase of

the scattered field, occurs when the field points are within the main backscattered

beam. Thus, the points reside within the xy plane, in the acoustic far field, along the

êx direction. At each frequency (ω = 3,000 and 12,000) an error in amplitude (Eamp)

and phase (Ephase) can be computed from Eq. (96)

The error is computed for the ideal PC (using the BWE) and the four disordered

PCs (using SCS) and shown for amplitude and phase in, respectively, Fig. 43a and

Fig. 43b. In the first band gap, the amplitude error is constant at 0.08 and the phase

increases to an error of 0.7. In the second band gap, the amplitude error increases

to a maximum of 0.28 whereas the phase error increases to 1 (phase difference of π).

This error study informs one of a key fact: the pressure field amplitude predicted via

the BWE+HKI, compared to the actual field scattered by a disordered PC, exhibits

lowest error in the first band gap. This statement is in accordance with the conclusion

in the prior section.
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Figure 43: Error in (a) amplitude and (b) phase for the scattered field computed
with the BWE+HKI techniques versus the SCS technique applied to disordered PCs.
The computations are performed at two band gap frequencies.
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5.4 Perturbation formalism

In the growing field of phononic crystals (and the electromagnetic equivalent, photonic

crystals) there is a great wealth of literature regarding different dispersion techniques

and the experiments for certain applications. However, presently, to a smaller de-

gree, exists literature describing the wave propagation within the weakly disordered

structures. At this point a brief review of some other techniques is useful. Caleap

et al. [7], via a complex theoretical technique, investigated the low frequency effec-

tive properties of acoustic metamaterials with random disorder. Both Collins and

Thompson [10] and Shinozuka and Astill [76] considered the effect of random disor-

der on the eigenvalues of ordinarily ordered structural systems. In photonic crystals,

Li et al. [54] considered the effect of disorder on the ω(k) dispersion relationship

via averaging over a set of cells. Bendiksen [4] studied localization phenomena in

structural dynamics. His work contains theoretical treatment into the differential

equations governing systems with ’almost’ periodic coefficients and provides a review

of perturbation methods applied to said systems.

In this section a perturbation formalism for weakly disordered phononic systems

is introduced. Strictly, the Bloch theorem does not apply to disordered systems.

However, as pointed out in Bendiksen [4] and originally by Anderson (known for his

work on Anderson localization) [2], a perturbation formalism can be applied to the

nominal, perfect, system. A multiple-scales analysis has been applied to nonlinear

periodic systems [62]. In the spirit of that work, a multiple-scales analysis is applied

to a linear system with weak disorder. In this light, the perturbation is introduced

into the mass and stiffness matrices that govern the system. Depending on the fre-

quency, a correction to the ω(k) dispersion relationship is sought after. Thus, it

is anticipated a perturbation technique can be used to accurately study the steady

state wave propagation within the weakly disordered material. The theoretical de-

velopment for one-dimensional (1D) and multi-dimensional (2D and 3D) systems will
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be presented next.

5.4.1 One-dimensional Periodic System

5.4.1.1 Equations of motion

First, consider a one-dimensional, infinitely long, and periodic chain with ND degrees

of freedom per unit cell. The development herein is intended to be for arbitrary ND

one-dimensional systems. For the sake of presentation, and without loss of generality,

the development is presented with ND = 2; thus the system is a diatomic chain. See

Fig. 44 for an example.

The time harmonic differential equations governing the system dynamics are

−ω2m1uj + (k1 + k2)uj − k2vj−1 − k1vj = 0

−ω2m2vj + (k1 + k2)vj − k1uj − k2uj+1 = 0

(100)

where the j-th unit cell contains masses m1,m2, springs k1, k2 and displacement uj, vj;

see Fig. 44. The interaction of the neighbors at the j − 1 and j + 1 cell is contained

within the equations. In matrix form, the system reads:

cell cell cell

... ...

Figure 44: Diagram of the diatomic chain model. Each unit cell contains two masses
m1,m2 and springs k1, k2. The displacement of the two masses in the j-th unit cell
are respectively described by uj and vj. The reference cell j is drawn with it’s left
j − 1 and right j + 1 neighboring cells.
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−ω2

m1 0

0 m2


uj
vj

+

0 −k2

0 0


uj−1

vj−1

+

k1 + k2 −k1

−k1 k1 + k2


uj
vj

+

 0 0

−k2 0


uj+1

vj+1

 =

0

0

 .
(101)

The equations are further manipulated into matrix form

1∑
j=−1

(
−ω2Mj + Kj

)
vj = 0. (102)

where Mj,Kj are the mass and stiffness for cell j and vj = [uj vj]
T . Based on the

matrix equation in Eq. (101), the terms in Eq. (102) can be readily identified. Note,

since the identity of the j-th cell is arbitrary, it is sufficient to define the summation

for j = −1, 0,+1. The benefit to the specific form of the prior matrix equation will

be seen shortly.

For an ideal periodic system, the Bloch theorem from Eq. (1) can be written in

matrix form as

vj = q exp iµj (103)

where µ is a (possibly) complex propagation constant and can also be written as

µ = ka where a is the width of the unit cell and q is the Bloch eigenvector. It

is of note, this matrix form of the Bloch theorem is similar to the ω(k) dispersion

technique presented in Appendix B. Insertion of the Bloch theorem in Eq. (102) yields

the following equation that governs the wave dynamics in the perfectly periodic chain

1∑
j=−1

(
−ω2Mj + Kj

)
q exp iµj = 0. (104)

With µ = ka, the ND eigenvalues ω and eigenvectors q describe the ω(k) dispersion

relationship of the diatomic chain.

5.4.1.2 Capturing dispersion change via perturbation

With constant masses and springs, the dispersion relationship of the one-dimensional

system is given by Eq. (104). However, now disorder will be introduced into the mass
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and springs. In particular, let,

mj = m0
j + εm1

j

kj = k0
j + εk1

j

(105)

In the preceding equation, the uniform mass and stiffness are respectively given by

m0
j , k

0
j . In the following development in this Chapter, the superscript ’0’ denotes

the uniform quantities and the superscript ’1’ denotes an additional perturbation of

the mass/stiffness. The quantity ε is a small non-dimensional constant. Note also

that the disorder is allowed to vary for different cells, indicated by the subscript on

m1
j , k

1
j . Since a cell’s neighbors will be used in the calculation and the reference cell

location is arbitrary, it is implied that a disorder-induced phase difference will be

valued for the j-th cell. Further, the local wave propagation can be described the the

phase difference associated with the j-th cell. The computations can be repeated for

various cells, with different mass and springs disorder values, to give an overall phase

picture of the chain.

Building from the previous disordered mass and stiffness, let the matrices of the

system follow a similar trend with

Mj = M0
j + εM1

j

Kj = K0
j + εK1

j

(106)

Next, insert the perturbed matrices into the governing matrix equation (Eq. (102))

for the j-th cell and it’s neighbors. The result is

1∑
j=−1

[
−ω2

(
M0

j + M1
j

)
+
(
K0
j + K1

j

)]
vj = 0. (107)

In an ideal linear system, the phase change stipulated by the Bloch theorem (in
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matrix form) can be written as

vj = qeiµj =



eiµj 0 0 0

0 eiµj 0 0

0 0 ... 0

0 0 0 eiµj


q (108)

As stated earlier, it is assumed that the presence of weak disorder alters the Bloch

phase, which leads to a change in dispersion; the eigenvector q is unaltered. The

change in dispersion - the dispersion correction - is the sought after quantity. Since

the system is linear, the frequency ω does not change; however, the phase that exists

between neighboring cells will change. When ND = 1, this phase can be considered

to have a perturbed component as µj = µ0 + εµ1
j . However, for ND > 1, there

must be a phase change for each degree of freedom. For example, for ND = 2, the

perturbed phase is µ1 = µ0 + εµ1
1 and µ2 = µ0 + εµ1

2. In this light, the Bloch theorem

for the weakly disordered mechanical system is taken as

vj =



exp i(µ0 + εµ1
1)j 0 0 0

0 exp i(µ0 + εµ1
2)j 0 0

0 0 ... 0

0 0 0 exp i(µ0 + εµ1
ND)j


q (109)

where it is clear that the phase of the ideal model µ0 does not vary by node; µ1
j does

vary by node. If the disorder is weak, the exponential term an be linearized and the

j-th phase term can be written as

exp i(µ0 + εµ1
j)j ≈

(
1 + iεµ1

jj
)

exp iµ0j (110)

Insertion of this form into the prior matrix equation gives the result

vj = (I + εijΛ) exp iµ0j (111)

In the above equation, the matrix Λ is diagonal with components Λmn = µ1
mδmn.

Insertion of Eq. (111) into the general expression of Eq. (102) results in an ordered
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equation in powers of ε. At zeroth order, the dispersion relationship from Eq. (104) is

obtained and can be solved for ω(µ0) and q(µ0). At first order, the matrix equation

reads

O(ε1) :
1∑

j=−1

(
−ω2M1

j + K1
j

)
exp iµ0j︸ ︷︷ ︸

D1

q +
1∑

j=−1

i
(
−ω2M0

j + K0
j

)
j exp iµ0j︸ ︷︷ ︸

D0

q′ = 0.

(112)

which can be further simplified to

D1(µ0)q + D0(µ0)q′ = 0 (113)

where the vector q′ = Λq. This matrix equation can then be solved, e.g. q′ =

−(D0)−1D1q. Finally, since the matrix Λ is diagonal, the phase perturbation for

each degree of freedom can be obtained simply by µ1
j = q′j/qj. In equation form this

process reads

µ1
j =

(−(D0)−1D1q)j
qj

(114)

where the subscript j in the numerator indicates the j-th component of the vec-

tor. The disorder-induced change, for node j, to the dispersion relationship can be

reconstructed from the prior perturbation analysis

µj = µ0 + εµ1
j (115)

5.4.1.3 Results

At present, only results for a monatomic chain exist. Thus, the result presented here

is merely a snapshot of the above theory applied to a simple monatomic (ND =

1). The dispersion perturbation analysis from Eq.(113) simplifies and the first order

phase perturbation reads

µ1
j =

m1
jω

2 − 2k1
j (1− cosµ0)

2k0
j sinµ0

(116)
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The verification study considers a monatomic chain with the forcing frequency

ω = 1 rad/s, a mass equal to 2 kg, stiffness equal to 1 N/m, and, without loss of

generality, variations in the stiffness along the chain. Over the length of 600 cells,

the stiffness values are fixed at a range of 20 cells; there are 30 groups of cells with

varying stiffness. Verification [51] was accomplished by considering a spectrogram

of a direct numerical implementation of the differential equation; see Fig. 45. The

predicted wavenumber (k = k0(ω) + εk1) is overlaid on top.

Figure 45: Spectrogram for the monatomic random chain. The perturbation result
is shown as a solid line with and the dotted lines are used to bound the wavenumber
peak predicted from the perturbation analysis. The site index corresponds to the j-th
cell along the chain. Image courtesy of M. Leamy and M. Ruzzene [50]

Clearly, the wavenumber perturbation results match with what is predicted by the

numerical values. Although the results are for a monatomic case, it is expected the

outlined procedure may be verified via a similar path with ND > 1. This verification

is left to future work.
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5.4.1.4 Overview

At present, there is no full verification available for the chain when ND > 1. However,

when ND = 1, analysis of the chain’s spectrogram has demonstrated an accurate

result. For the diatomic case, and other systems, it is anticipated that the spectrogram

or comparison of the spatial amplitude of the wave may provide a means of verification

versus direct numerical evaluation of the system’s differential equations. This is

intended for future work.

Having discussed the intended verification studies, a few questions still remain

about the theory’s applicability. These will be mentioned here but not explored.

First, what is the amount of disorder to consider before the theory breaks? Secondly,

numerical experiments (with unsatisfactory results) have revealed the possibility of

complex first order phase perturbation results. Since the variation is considered lo-

cally, it is expected that unbounded exponential decay will be a non-issue. Thirdly,

if the case arises where qj = 0, or the matrix D0 is singular, then how can the phase

correction (see Eq. (114)) be solved for? Lastly, will the presented phase correction

work in a frequency band gap? These issues and their resolution must be addressed

in order for a disorder-induced phase variation to be accurately captured by this

perturbation formalism.

5.4.2 Two-dimensional Periodic System

The extension of the above dispersion correction formalism can be easily extended to

2D or 3D; the 2D case will be presented herein. As in the 1D case, a local dispersion

correction (via the phase) for each node is desired.

In analogy with the 1D equation of motion presented in Eq. (102), the equations of

motion for a 2D dynamical system consisting of a reference unit cell and 8 neighbors

can be represented as
1∑

m=−1

1∑
n=−1

(
−ω2Mmn + Kmn

)
vmn = 0. (117)
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Here the different combinations of indices refer to the reference cell (m,n = 0) and the

neighbors, see Fig. 46; this form is an extension from the 1D form presented earlier.

In this form, the Bloch theorem takes the form of

vmn = q exp i (mµx + nµy) (118)

with the phase components of the Bloch wave, µx, µy, in the respective x and y

directions.

As before, under weak disorder, the Bloch phase components will be perturbed

and the first order correction is arrived at after solution of the ordered equation set.

However, since there is one matrix equation of motion, it is not possible to arrive at

a solution for µ1
x,j and µ1

y,j together. Instead, the x and y disorder perturbations are

considered separately. That is, the x phase correction will rely on positional disorder

only in the x direction. It is supposed that a weighted sum of the independently

calculated x and y corrections can be used in the case of general positional and size

disorder of the inclusion. The following derivation considers only x disorder with the

y disorder being identical in formulation.

5.4.2.1 Implementation

Consider a finite element mesh of the ideal model in Fig. 46. The mass and stiffness

matrices M0
mn and K0

mn can be formulated. Also in Fig. 46, an example disordered

model contains a unit cell with the circular inclusion shifted to the right (x disorder).

One must remember that there are nine matrix terms (27 in 3D) and each one can

have a different realization of the inclusion geometry. From this disordered model

one can formulate the matrices Mx,mn and Kx,mn. Note the subscript indicates the

change is related only to the x direction. Since the quantities of interest are the first

order matrix corrections (equivalent of m1
j in the prior 1D section), one can subtract:

M1
x,mn =

1

ε

(
Mx,mn −M0

mn

)
K1
x,mn =

1

ε

(
Kx,mn −K0

mn

) (119)
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Mesh of disordered model

Mesh of ideal model

Unit cell and neighbors

Figure 46: In the 2D model, there is a reference unit cell (shaded gray) and 8
neighboring cells. The indices m,n are listed for reference. A mesh of the ideal and
disordered model using square finite elements. The element’s nodes are black for
material 1 (water host) and red for material 2 (air inclusion). The ideal model yields
mass and stiffness matrices M0

mn,K
0
mn. The disordered model features the circular

inclusion moved to the right; Mx,mn,Kx,mn can then be formulated.

Note this requires a specific value of ε.

A key difference between this 2D disorder formulation and the finite element anal-

ysis in the remainder of the Thesis is the mesh of the unit cell. Since a subtraction

operation must occur for identification of the first order matrices, the finite element

nodal degrees of freedom must overlap between the meshes of the ideal and disordered

geometry. This stipulation requires a finite element model that contains rectangular

elements. Thus, for node j, corresponding mass and stiffness terms for the disor-

dered and ideal models can be obtained. To incorporate a circular inclusion will

require a fine spatial resolution of the mesh. In Fig. 46, the two meshes shown are

of square elements; clearly the ideal and disordered meshes overlap perfectly. This

mesh requirement will extend to three dimensions as well.
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5.4.2.2 Capturing dispersion change via perturbation

Expanding on the independence of x and y disorder, and in accordance with the

linearization principle discussed in Sec. 5.4.1.2, the first order disorder-induced phase

change of the system can be represented in matrix form

vmn = (I + εimΛx) exp i(µ0
xm+ µ0

yn) (120)

where, again, the diagonal matrix Λx contains the ND first order phase variations

µ1
x,j valid at each node of the discretized model. The prior equation is for the x

disorder; y disorder is allowed by replacing εim with εin and Λx with Λy. Insertion

of this form into the governing matrix equation of Eq. (117) and equating the separate

zeroth and first order terms to zero gives a matrix equation

D1
xq + D0

xq
′
x = 0

D1
yq + D0

yq
′
y = 0.

(121)

For completeness, the matrix equation leading to the y dispersion change is listed as

well. The other matrix terms are

D0
x(µ

0
x, µ

0
y) =

1∑
m=−1

1∑
n=−1

(
−ω2M0

x,mn + K0
x,mn

)
im exp i(µ0

xm+ µ0
yn) (122a)

D1
x(µ

0
x, µ

0
y) =

1∑
m=−1

1∑
n=−1

(
−ω2M1

x,mn + K1
x,mn

)
exp i(µ0

xm+ µ0
yn) (122b)

D0
y(µ

0
x, µ

0
y) =

1∑
m=−1

1∑
n=−1

(
−ω2M0

y,mn + K0
y,mn

)
in exp i(µ0

xm+ µ0
yn) (122c)

D1
y(µ

0
x, µ

0
y) =

1∑
m=−1

1∑
n=−1

(
−ω2M1

y,mn + K1
y,mn

)
exp i(µ0

xm+ µ0
yn). (122d)

And as before, q′x = Λxq and then µ1
j,x = q′j,x/qj; the same equation holds for µ1

j,y.

Finally, the disorder-induced change, for node j, to the dispersion relationship can

be reconstructed from the prior perturbation analysis

µx,j = µ0
x + εµ1

x,j

µy,j = µ0
y + εµ1

y,j

(123)
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Although the perturbation analysis has been presented in two dimensions, the theory

should extend well to three dimensions, with the introduction of another summation

for the 26 neighbors of a unit cell and the introduction of the phase µz,j = µ0
z + εµ1

z,j.

5.4.2.3 Overview

As in the 1D case of Sec. 5.4.1, at present, there is no independent verification study

for the 2D perturbation correction approach. As indicated earlier, it is anticipated

that analysis of the system’s spectrogram, or direct comparison of the displacement

variation with the disordered system, may provide an avenue for verification. Within

this multi-dimensional disorder framework, the same questions raised in Sec. 5.4.1.4

are at play here. It was speculated but not verified: can inclusion size (and not

position) be captured via a sum of the x and y phase corrections. These issues are

documented for reference and should be explored in future work.

5.5 Conclusion

In this chapter, the application of the presented theory to weakly disordered PCs was

discussed. In two and three dimensions, the applicable BWE and HKI theory for

the ideal PC was compared directly against scattering computations for a model with

disorder. Several verification studies were presented in both 2D (versus FEM) and 3D

(versus SCS). This approach yielded an accurate scattered field predictions; the best

agreement was found in the band gap range. Also, the foundation of a perturbation

formalism for a correction of the dispersion relationship was presented for 1D and 2D

systems. Although verification was not presented, this formalism is anticipated to

be useful for future scattering computations. Within this chapter, the (1) scattering

from 2D and 3D disordered PCs through using the Bloch wave formalism and (2) a

perturbation formalism included with the Bloch theorem for weakly disordered PCs

was contributed to the literature.

Pending verification, it is expected that the 2D and 3D perturbation formalism will
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be combined into the BWE. Thus, the pressure along the surface will be described

by the Bloch wave expansion, and feature local adjustments corresponding to the

disorder effects. Then the corrected BWE fields may be re-inserted into the HKI and,

hopefully, enable improved accuracy for the scattering from disordered PCs. Since

the next chapter, with application to fish, uses the BWE directly, this combination of

the BWE and perturbation framework is not discussed further but, rather, deferred

to future work.
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CHAPTER VI

APPLICATION TO FISH SCHOOLS

6.1 Overview

Finally, in this chapter, the scattering from large fish schools will be discussed with

regard to the Bloch wave formalism. As emphasized in Ch. 1, the PC is not con-

sidered to be a fish school. Rather, the previously mentioned tools will aid in the

determination of the acoustic scattering. Specifically, the facet formalism of Sec. 4.6

and the concepts discussed in Sec. 5.3 will be combined to yield a complete theory

whereby the scattering can be calculated, at an arbitrary point, for a school with

fish approximately arranged in a simple cubic packing. First, the frequency depen-

dent target strength will be covered with application to ideal and disordered PCs of

shapes; shapes which may represent a fish school. Next, the scattering from a spher-

ical shaped school and a, more complicated, bean-shaped school will be considered.

Both studies consider the harmonic and transient scattering using the facet formalism

applied to the realistic, weakly disordered school.

Within this chapter there are several tacit assumptions made regarding the fish

schools considered. First, all fish are assumed to have identical material properties.

Since the scattering is dominated solely by the air-filled swimbladder, more com-

plicated fish bio-acoustic properties are not used (see Refs [56, 21]) as these effects

are negligible at within the frequency range considered and omitted for the sake of

numerical efficiency. Of typical swimbladder bearing fish, the ratio of the fish’s swim-

bladder to the body is approximately 0.05 [56, 58]. Additionally, the fish body itself

is typically modeled as a fluid that is very similar to water [56]. Secondly, weak

disorder is considered for the swimbladder’s radius and position within the school.
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The Bloch formalism may not work with high amounts of disorder. Thirdly, all fish

are assumed to have the same heading and orientation and not be swimming. Since

the fish body itself is not explicitly modeled; the heading is not important. Also, the

fish’s movement is very small compared to the speed of sound ci, thus any Doppler

effects attributed to this motion will be negligible. Lastly, depth dependent effects of

the air-filled swimbladder are not included in the model. This addition is deferred to

future work.

6.2 Target strength studies

The results in this section concern the target strength of a PC (or fish school) when

the frequency is within a band gap. These results are pertinent for gaining qualitative

understand of the target strength for a fish school with varying size and shape. To

connect the target strength with physical quantities relevant to the phononics crystals

community, it is useful to first explore the pressure and intensity near the PC surface.

6.2.1 Connection between power reflection and target strength

First, a parametric study with respect to ω is done with NB = 8,000 bubbles in a

cube of side length 8 m. At each frequency, the layer BWE [43] is computed and the

predicted scattered pressure is compared directly against the SCS technique. The

pressure reflection coefficient (RP = |ps/pi|) is shown in Fig. 47a where pi is the com-

plex value of the incident pressure at the interface. The power reflection coefficient,

Eq. 75, is shown in Fig. 47b. The plot indicates similar frequency dependent behavior

with RP . Since there is no energy transfer into the PC in the band gap frequencies,

the pressure and power reflection coefficients are predicted to be unity in the two band

gaps; the numerical data confirms this. When the frequency is lower than 1,200 rad/s,

the wavelength in water λi is greater than the PC length and the pressure/power re-

flection coefficient, computed with the SCS technique, is greater than one. Figure 47c

illustrates the frequency dependent target strength. Notably, the target strength in
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the first band gap is greater than that of the second band gap. The higher TS in

the second versus first band gap does not conflict with the notion that RW = 1 in

both band gaps. Rather, the pressure/power reflection coefficients are related to a

semi-infinite half-space phononic crystal, while the target strength is related to the a

finite sized PC. As discussed in Ch. 4, the alternating maxima/minima between the

band gaps are related to the PC length; this observation is an example of the phase

closure principle [57]. Further exploration and observation of the target strength is

explored next.

(a) (b)

(c)

Figure 47: The frequency dependent (a) pressure reflection coefficient, (b) power
reflection coefficient, and (c) target strength for a PC containing 8,000 bubbles. The
data is computed with the layer BWE (blue) and SCS (dashed green line). The two
frequency band gaps are highlighted in yellow.

6.2.2 Parametric studies

The target strength will be evaluated for five different PCs with varying size and

shape. The size and number of bubbles is, rather, arbitrary; the shape is a main
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factor varied. The properties of each PC is listed in Table 1 and a few example PCs

are illustrated in Fig. 48. Each PC contains NB air-filled bubbles with fixed a but

varying topology and orientation. The PCs considered herein are cubic, spherical,

and ellipsoidal in shape; the lengths are Lx, Ly, Lz in the respective x, y, z directions

(dimensions are of the PC’s bounding box). The incident plane wave’s wavevector ki

is oriented along the êx direction with θ = 90◦, φ = 0◦.

Table 1: The geometrical properties of the five phononic crystals considered herein.
PC A B C D E

body cubic cubic spherical ellipsoidal ellipsoidal
NB 8,000 46,656 13,992 16,168 16,168

Lx, Ly, Lz [m] 8, 8, 8 14.4, 14.4, 14.4 12, 12, 12 20, 10, 10 10, 20, 10
volume [m3] 512 2,986 905 1,047 1,047
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Figure 48: Five PCs examined in this section: (a) PC A, (b) PC B, (c) PC C, (d)
PC D, (e) PC E. Each PC has properties listed in Table 1. In each plot, the black
arrow represents the direction of the incident plane wave.

The frequency dependent target strength for the five PCs is displayed in Fig. 49.

A few remarks can be made regarding the target strength plots: (i) Due to Bragg
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scattering, the maximum TS occurs at a frequency such that πci/ω sin θ cosφ ≈ a.

This frequency coincides within the second band gap. Additional band gaps are not

present of the PC studied herein, even at additional frequencies that satisfy Bragg’s

law. This observation has been reported elsewhere, e.g. Ref. [66]. (ii) Below the first

band gap, peaks in the TS occur at the collective resonance frequency of the PC. As

cited in the literature, multiple scattering effects diminish the scattered field of the

single bubble [81, 84], and instead the PC can exhibit a resonance frequency specific to

the inherent structure, i.e. collective resonance [28]. (iii) The target strength within

the first band gap does not exhibit a global maxima. Furthermore, since the Bloch

waves do not propagate into the medium in this band gap frequency range there is

minimal wave interaction at the back of the PC and the TS is approximately linear

within the first band gap range. (iv) Depending on the PC’s orientation and shape,

the TS values within the first band gap can be less or greater than the target strength

values for the frequency range exclusively between the first and second band gaps.

Comparison of PC A and B indicates an increasing TS value within the first band gap,

a result of an increase in the number of bubbles. The spherical PC, C, shows a mild

target strength in the first band gap range, compared to the second band gap range.

Due to the orientation change, the target strength in the first band gap of PC E is

higher than that of PC D. It is predicted that, within the first band gap, the TS of PC

D is higher than that of E since PC D exhibits a larger area parallel to the incoming

plane wave direction. (v) The alternating local maxima/minima occur at frequencies

that depend on the x length of the PC. These target strength results conclude: the

Bragg band gap contains the maximum TS; the target strength within the first band

gaps is approximately linear in frequency and can be of high magnitude, relative to

other frequencies, as the PC size increases. Lastly, it is noted that the target strength

computed with the BWE and HKI agrees very well for the cubic PCs A and B. It

is important to note, the following observations can also be applied to a fish school
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of similar size and shape. Whether the size/shape observations translate to weakly

disordered schools with complicated shape remains an open question.

6.3 Scattering from a spherical school

In this section the acoustic backscattering is considered, in both the frequency and

time domain, for a spherical fish school. The purpose of this section is two-fold. First,

the facet formalism introduced in Sec. 4.6 may be verified (for the ideal PC case)

versus SCS. Secondly, by adding disorder, the spherical PC becomes a fish school,

and the transient scattered response can be determined by using Fourier superposition

with the facet formalism.

The PC geometry introduced for the facet formalism will be reused. For conve-

nience, the school is reproduced in Fig. 50. The spherical PC is ideal; disorder is

added explicitly later for the SCS. The school contains NB = 104,312 fish and the

radius of the school is 12 m. Hahn [28] also examined the scattering from spherical

shaped fish schools, albeit at a much lower frequency than the present study as his

work was focused on the school’s collective resonance.

6.3.1 Harmonic scattering

Here an explicit example is considered where a wave at ω = 3,000 rad/s strikes the

spherical phononic crystal (radius is 12 m) seen in Fig. 35a. Following the surface

mesh, there are 148 total facets and of this set NF = 76 are ensonified. The mesh

density was chosen to best approximate the actual spherical shape yet not yield very

small facets. Each facet is (based on the square root of the triangle’s area) slightly

larger than the wavelength. There are approximately 60 unit cells in the direction

of each facet’s normal. The half-space BWE is calculated and the scattered pressure

field is calculated directly from Eq. (99); one could also use the layer BWE. However,

the band gap frequency of 3,000 implies, for large enough PCs, the half-space and

layer BWE fields are identical.
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(a) (b)

(c) (d)

(e)

Figure 49: The frequency dependent target strength (note in dB) for (a) PC A,
(b) PC B, (c) PC C, (d) PC D, and (e) PC E. In each plot, the two band gaps are
highlighted in yellow.
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Figure 50: A spherical fish school of NB = 104,312 fish positioned in a simple cubic
array with spacing a = 0.4 m; the outer radius of the school is 12 m. The incident
wave is pointed in the direction shown by the arrow.

The real and imaginary components of the scattered pressure are compared against

the facet approach versus the direct SCS calculation and shown in Fig. 51a and

Fig. 51b. In the far field, toward the right hand side of the plots, there is excellent

agreement in the real and imaginary parts of the scattered pressure. In both real and

imaginary comparison plots there is a small, constant, phase error; the facet results

leads the SCS results by approximately 0.4 rad. After adjusting for this phase offset,

the magnitude of the complex relative error converges to 2% in the far field.

As before, the scattered pressure amplitude is compared using the facet technique

versus the SCS technique, and respectively shown in Fig. 52a and Fig. 52b. Again,

very good agreement is seen in the qualitative spatial behavior of the scattered pres-

sure field between the two techniques. The near field peaks, close to the PC, are

captured by the facet technique. Note the results presented in these two figures are

backscattered pressure fields (x < 0). The forward scattered pressure fields do not

agree as only facets with n̂j · ki > 0 are used. Also, as discussed, the facet formalism
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does not incorporate acoustic diffraction around each facet; the results, nevertheless,

indicate positive agreement. Lastly, for ease on the computational resource require-

ments for the SCS technique, the PC’s facets are about the size of a wavelength. A

larger PC and larger facets is predicted to yield a more accurate scattering result;

however, the presented facets and the approach still indicate positive results.
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Figure 51: (a) A comparison of the real part of the scattered pressure field by the
facet (blue line) and the SCS technique (green line) versus normalized range. (b) A
comparison of the imaginary part of the scattered pressure field by the facet (blue
line) and the SCS technique (green line) versus normalized range.

6.3.2 Broadband pulse

Again, consider a source (and co-located receiver) at x = (-1000, 0, 0) m. The

source emits the pulse (Eq. (97)) with modulation parameter η = 250 1/s and carrier

frequency ω0 = 2460 rad/s; see Fig. 53. The fractional bandwidth of the input signal

is 0.17. Since the facet technique is valid in the first band gap range, the pulse’s shape

parameters are specifically chosen such that essentially all of the pulse’s energy lies

within this frequency range.

The incident wave travels and interacts with the spherical PC of 104,312 bubbles

previously considered. Figure 54 shows the scattered pressure signal at the receiver.

For comparison, both an ideal spherical PC and a disordered PC with τ = 0.1 is

used. Notably, there is a clear overall agreement between the facet and SCS pressure

signals. The deviation in the frequency response between the facet and SCS technique
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(a)

(b)

Figure 52: Amplitude of the scattered pressure field for (a) facet and (b) SCS. The
bubble array is colored in blue for clarity. The incident plane wave at ω = 3,000 rad/s
strikes the PC in the direction shown. Note, the axis labels are normalized by λi.

leads to the disagreement for t > 1.37 s. Furthermore, the scattered pressure from

the facet formalism shows good agreement when compared against the disordered PC.

This observation coincides with the fact discussed in Sec. 6.2: the scattered pressure

field, within the first band gap, is very robust to weak internal disorder. Overall,

these transient results, for an input pulse spectrum contained within the first band

gap, good agreement when using the facet technique to model the transient scattered
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Figure 53: (a) The input pulse from Eq. (97) with ω0 = 2,460 rad/s. (b) The
magnitude of the fast Fourier transform of (a). The band gap ranges are highlighted.
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Figure 54: Time history of the pulse scattered by the spherical fish school of Fig. 50
using the facet (blue line), ideal school using SCS (green dots), and disordered school
(τ = 0.1) using SCS (red squares). The ideal and disordered results SCS are nearly
identical. Note the horizontal time axes includes the travel time between the source
and receiver.

behavior.
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6.4 Scattering from a bean-shaped school

Based on the accurate harmonic and transient scattering results from the spherical

school, an ambitious calculation is next performed. The school’s shape, shown in

Fig. 55, is a construction of the imagination and meant to push the boundaries of the

facet formalism. The bean-shaped school contains NB = 382,269 fish with τ = 0.2.;

the school volume is 25,550 m3. There is even a small ellipsoidal void of volume 50.2

m3. The school is so large that populating the matrix Q directly would take over

Figure 55: Bean-shaped school with NB = 382,269 fish, τ = 0.2. The incident wave
is pointed in the direction shown by the arrow.

two terabytes of information, for a single frequency. Recall, use of the FMM avoids

this matrix assembly and the single frequency solution took just a few hours; over all

frequencies the solution lasted 13 days.

Using a geometrical model, as discussed earlier, for the school, and creating a

surface mesh, there are 488 facets; see Fig. 56. There are 266 ensonified facets.
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Running the facet formalism on all 266 facets over the frequency range of interest
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Figure 56: A faceted representation of the bean-shaped school from Fig. 55. There
are 488 facets and the 266 ensonified facets are shaded green.

yields the scattered response. Computationally, the facet formalism can be calculated

easily in a parallel manner; the resulting frequency simulation lasted only 3.5 days.

6.4.1 Harmonic scattering

Using the facet formalism, the scattered pressure is determined in the xy plane at

ω = 3,000 rad/s. The scattered pressure field is shown for the facet and SCS case,

respectively, in Fig. 57a and Fig. 57b. Clearly, the scattered pressure amplitude agrees

well between the facet and SCS results, even with the fish school being disordered with

τ = 0.2. Notably, even close to the fish school, the pressure amplitude is accurate.

Even though the facet formalism is intended to be used for backscatter, for forward

scatter (right side of the above plots), the pressure amplitude is in agreement. This

plot indicates the accuracy of the facet formalism, in the harmonic case, for predicting
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(a)

(b)

Figure 57: Amplitude of the scattered pressure field for (a) facet and (b) SCS. The
fish school is colored in blue for clarity. The incident plane wave at ω = 3,000 rad/s
strikes the PC in the direction shown. Note, the axis labels are normalized by λi.

the scattered pressure amplitude from a fish school with complex shape and internal

disorder.

6.4.2 Broadband pulse

Following the agreement in the harmonic scattered field, the transient scattering

result from a broadband pulse is considered. The same input pulse (and frequency

spectrum) from Sec. 6.3.2 is used.

The transient scattered pressure field from the facets and SCS techniques is shown
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in Fig. 58. Notably (even in the band gap frequency range), there is a primary and

secondary scattered pulses; the facet formalism and SCS agree well within these

pulses. The primary pulse is a result of the scattering from the top left portion of the

school; the secondary pulse is a result of scattering from the bottom right. Outside

of these primary pulses there is disagreement. The differences in the facet and SCS
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Figure 58: Time history of the pulse scattered by the bean-shaped fish school of
Fig. 55 using the facet (blue line) and disordered school (τ = 0.2) using SCS (green
dots). The ideal and disordered results are nearly identical. Note the horizontal time
axes includes the travel time between the source and receiver.

frequency response contribute to the errors in the transient analysis.

There are two key points to be concluded from this final transient result. First,

the facet formalism can be applied to fish schools with complex (and even concave)

geometry and yield accurate results. Secondly, as stated earlier, the introduction of

weak internal disorder does not significantly change the backscattered pressure results
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when comparing the ideal facet model and SCS technique. Overall, this transient

results indicates a promising trend: the facet formalism can be used to accurately

predict the transient backscattering from a fish school with complicated geometry

and disorder.

6.5 Conclusion

In this section the Bloch wave formalism was applied to study the scattering from

fish schools. First, target strength studies explored the utility of the PC’s band gaps

to qualitative target strength predictions. Next, for a spherical and bean-shaped

fish school the facet formalism was compared directly to the SCS technique. The

harmonic and transient results, overall, indicated positive agreement, even versus the

fish school with weak disorder.

The contributions from this chapter to the literature are: (i) Exploration of the

connection between the school’s target strength and the band gaps of the infinite PC;

specifically, the role of the first band gap. (ii) Study of the harmonic and transient

scattered field for a disordered fish school with complicated geometry using Bloch

wave formalism. In future work, this last point may be extended upon for verification

studies from the available experimental data.
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CHAPTER VII

CONCLUSION OF THE RESEARCH

7.1 Summary

Overall in this work, respectively, Ch. 2 and Ch. 3 discussed the 2D and 3D Bloch

wave expansion techniques. The scattering from finite PCs using the appropriate

BWE was presented in Ch. 4. Chapter 5 considered the BWE and scattering applied

to weakly disordered PCs. Finally, in Ch. 6, the above theory was demonstrated to

be effective to determine the scattering from large fish schools. Specifically, when the

incident acoustic pulse’s energy is contained within the local resonance band gap of

a unit cell (which describes the fish school), the scattered pressure can be accurately

predicted using the BWE and facet formalism. In all chapters multiple verification

studies were presented using the FEM and SCS techniques.

7.2 Compare and contrast

In this Thesis the pressure scattered by a fish school is computed using Bloch wave

formalism and the SCS technique. To understand the applicability of each model, the

advantages and disadvantages of each model are discussed.

Bloch wave formalism possesses several advantages when applied to scattering

from large fish schools. First, using the finite element method for the fish body, a wider

range of material and geometrical properties can be realized than is possible with the

SCS or other analytical scattering techniques. An elaborate model, for example,

can be seen in Feuillade and Nero [21] where the model contains an ellipsoidal fish

129



body with viscous fluid properties, an elastic muscle wall, and an ellipsoidal air-

filled swimbladder. Depending on the fish species, even non-convex or multiply-re-

entrant fish swimbladders can be modeled; see [58] pp. 364; these bodies are certainly

different from the bubbles considered herein. Secondly, the dispersion relationship

demonstrated in Ch. 2 is valid for any frequency. However, there is a frequency

limitation of the facet formalism. Thirdly, a significant result of the Bloch formalism:

the formulation presented herein does not have any limitations from increasing school

size or number of fish. Since the Bloch theorem reduces the domain of study to a single

unit cell, the acoustic interaction of a high number of fish can be considered. Through

the facet formalism it is possible to apply the theory to determine scattering from

extremely large schools, for instance, in excess of ten million fish. As stated earlier,

modeling the scattering from schools this large could be completely impossible using

other methods, such as FEM and SCS. Even the facet formalism can be faster and

more amenable to parallel computational processing schemes than the SCS technique.

In an exact sense, the Bloch formalism applies to ideal crystals. First, a realistic

school inherently has variation of the fish size, variation of fish spacing and orientation,

school geometry, and the possible presence of internal void regions. Clearly, the Bloch

wave formalism and associated facets can not be applied to a fish school with very high

levels of disorder as no periodic unit can be identified. Secondly, because the extent

of the school is not modeled in the facet approach, the local resonance (which may

be used to characterize’s the school’s shape [28]) may not be able to be ascertained

from the scattering results. Further, due to the facet frequency limitations, scattering

results for frequencies outside of the first band gap will be inaccurate.

On the other hand, the self-consistent scattering technique’s chief advantage is

flexibility. Any configuration of fish can be considered. Each fish can also vary in

size and biological properties. The ability for one to consider scattering from arbi-

trary configurations of fish certainly is a valuable asset for modeling scattering from
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fish schools. Also the technique is very straight forward to implement, and of mild

complexity with the fast multipole method. Additionally, time domain (as opposed

to Fourier superposition) can be considered by direct integration of the differential

equations governing the scattering processes [71]. This transient ability can be useful

in attempts to model scattering from a school containing moving fish.

A disadvantage to the SCS technique is the low frequency limit; the precise numer-

ical value of ’low’ being rather arbitrary in general. Higher frequency studies, where

multiple scattering can become dominant, can be impossible. Also, as the school

gets larger and larger, the requirement on the computational resources grow. The

FMM ameliorates this requirement; however, modeling each fish directly can demand

enormous computational resources and thus hinder any effort for studying scattering

from large fish schools.

7.3 Contributions

For completeness, the following contributions are repeated. These are the major

contributions of this work to the scientific literature. Again, this list is meant to be

brief; precise contributions can be found in the cited papers. The major contributions

are:

1. A 2D and 3D half-space and layer BWE discussed and verified

2. The scattering from 2D and 3D, finite, PCs using the Helmholtz-Kirchhoff in-

tegral with the Bloch wave expansion

3. Using the BWE and HKI for 2D and 3D disordered PCs was found to be accu-

rate, specifically, in the band gaps

4. Scattering from PCs with complex geometries using the facet formalism

5. Scattering from large fish schools using the combined theory
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This Thesis culminated in the above contributions and several journal papers and

conference presentations. The work may be extended to future endeavors, outlined

in the next section.

7.4 Future work

At the end of any research project, there are ample opportunities for future work.

The following list is meant to be a brief overview; it is not, by no means, complete.

The items apply to the study of PCs or the use of the Bloch formalism for studying

fish schools. Specifically for the BWE and PC scattering:

1. Modification of the layer BWE to be used for oblique (e.g. non-normal) wave

incidence. Here, the finite size y, z dimensions of the PC may need to be con-

sidered.

2. In an actual finite system, because of edge effects, the pressure field at the

edges of the PC may differ from that of the BWE. Possibly, a different (multiple

scattering or finite element technique) may be combined with the BWE to more

accurately describe the pressure field within the PC and on it’s outside surface.

This modification should improve the accuracy of the scattering computations

via the HKI.

3. The perturbation formalism in Sec. 5.4 is within its infancy. Completion and

verification of the technique, and its combination within the BWE, may prove

an interesting avenue of future research.

4. Should one wish to apply the BWE formalism to PCs with solid constituents,

appropriate extensions may be made. Possibly even shell elements [72] may be

incorporated for efficiency with modeling inclusions with thin membranes.

5. A limitation of the facet formalism was discussed in Sec. 4.6.3. Future work

may consider modification of the facet theory to circumvent this limitation and
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thus enable the facet formalism to accurately predict the scattered field for any

frequency.

6. Regarding implementation, it is anticipated that the numerical calculations can

be expedited by employing the boundary element method (the basis of this

method is the HKI) for the dispersion calculations versus the finite element

method. Li et al. [53] employed the boundary element method for dispersion

calculations. Furthermore, based on the fast multipole method (Appendix C),

the numerical integration for the HKI can be expedited.

Specifically for the application of the theory to study scattering from fish schools:

1. A chief limitation to very large fish schools is the fact that the depth effects

of the bubbles is neglected. To include this effect is more than changing the

radius (according to Boyle’s law), but rather, a right hand side term to the

original finite element terms discussed in Sec. 2.4.1 may be necessary. Further,

since there would be variation in the z = depth direction, an improved facet

formalism would be required.

2. Perform several studies to further validate the Bloch formalism for fish schools

using published acoustical data. Although experimental data from known fish

schools is limited, the reader is referred to Diachok [14] for a review of several

fish acoustics topics

3. The facet formalism (and the associated Green’s function) apply to a fish school

in an unbounded medium. Using the theory outlined in Ingenito [33], knowing

the unbounded response, the response for the fish school in a bounded (i.e.

ocean surface and bottom) can be determined.

4. Modification of the facet formalism to the case where the fish school may contain

different groups with possibly different fish, different packing densities, etc. One
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Figure 59: An example of a fish within a unit cell. The ratio of the volume of the
swimbladder to the fish body is chosen to be 0.05.

possibility: each facet can be linked to a particular unit cell with the requisite

properties pertaining to the specific areas in the fish school.

5. Exploration of the facet formalism and HKI for prediction of the pressure inside

the fish school. Newly obtained numerical results have indicated this as a pos-

sibility but more thorough investigation, versus SCS, is needed. Unlike the SCS

and other techniques, the Bloch formalism can avoid a singularity at the center

of the fish’s swimbladder and thus is able to predict the pressure accurately. In

the investigation of a SONAR pulse’s effect on individual fish, this ability of

the Bloch formalism may be advantageous to the biology community.

6. Lastly, since the unit cell model can contain an arbitrary fish inclusion, it is

possible to include a fish with a physiologically accurate swimbladder and other

features. For example, consider Fig. 59.

Some of the above tasks may be difficult to accomplish with the Bloch wave

formalism. Nevertheless, the above points offer interesting opportunities for future

work.
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Lastly, there are a few open questions that may be explored with the theory.

Namely,

1. Comparing adequate experimental data to the numerical predictions, can in-

verse problems be attempted. For instance, can the fish species, abundant, or

geometry properties be ascertained from in-situ acoustic measurements?

2. Can the fish school’s internal dynamic effects, and the fish’s motion swimming

within the water itself, be incorporated in a dynamical model using the above

theory?

3. Can the facet theory be modified, possibly with the layer BWE, for fish schools

with internal voids?

4. Can the facet theory be applied, with equal accuracy, to geometries with many

convex or concave features?

Future research endeavors may explore the previous topics and questions. However,

with the presented techniques, it is clear that the acoustic scattering response from

large fish schools can be calculated using Bloch wave formalism.
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APPENDIX A

BLOCH WAVE COMPLETENESS

It was stated in Refs. [30] and [47] that the Bloch waves, at a particular frequency

and plane wave incidence angle, form a complete function basis. The work later

[49] implements a wave expansion, as is done in this Thesis, without thoroughly

examining the completeness. A simple numerical experiment is proposed to illustrate

that the set of Bloch waves is a suitable complete basis for an expansion. To establish

completeness an arbitrary function g(y) is formulated, which is valued on the FEM

nodes on the PC interface at x = 0 and take an expansion of Bloch waves to replicate

this function g. The incident wave parameters are taken as ω = 10, 000 and θ = 0

and after processing propagating waves for group velocity there are 16 Bloch waves

(following the five step procedure outlined in Sec 2.5). Note several more evanescent

waves are included, versus the expansion for the same parameters in Sec. 2.7.2.1, as

the rate of decay for evanescent waves is not of concern for the sake of this section.

The expansion is similar to Eq. (21)

16∑
n=1

anpn (0, y) = g(y) (124)

where now the unknown coefficients an are to be determined. Taking an inner product

of both sides of Eq. (124) with the m-th Bloch wave gives a set of matrix equations

for the wave amplitude with components given by

Fmnan = Cm (125a)

Fmn =

∫ a2

0

pn(0, y)p∗m(0, y)dy (125b)

Cm =

∫ a2

0

g(y)p∗m(0, y)dy. (125c)
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Figure 60: A test for Bloch wave completeness by considering an expansion of Bloch
waves to replicate an arbitrary function. The difference between the expansion and
g(y) is plotted versus y. The inset shows the arbitrary function g with the FEM
nodes shown as dots.

The results of the expansion are shown in Fig. 60. One will note the arbitrary

function is exactly represented, between the nodes, by the Bloch wave expansion.

This demonstration is not meant to be a rigorous completeness proof for all model

parameters and frequencies, but rather a numerical experiment illustrating, in fact,

that the set of Bloch waves used for the expansion described in this Thesis is complete.
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APPENDIX B

THE 2D DISPERSION TECHNIQUE

This dispersion technique is suitable for finding the eigenvalues ω(k). In the ω(k)

framework, the Bloch theorem of Eq. (1) can be taken as a different perspective.

Consider a point x and a point translated m,n unit cells in the êx,êy directions (m,n

are integers). The theorem of Eq. (1) implies that p(x + mêx + nêy) = p̂(x) exp ik ·

(ma1êx + na2êy). The quantity p̂ is only the pressure inside the unit cell, e.g. p(x).

This particular form is advantageous for the ω(k) method.

Suppose the unit cell of the system at hand is described by

[
−ω2M + K

]
p = 0 (126)

where M,K are the assembled versions of the terms given in Eq. (5). Upon viewing

the Bloch theorem in the manner described above, one can consider a phase change

of the degrees of freedom of the unit cell. For example, p(a, 0) = p̂(0, 0) exp(ikxa), etc

for all nodes in the mesh model. To this end, let us write the nodal pressure vector

p as

p = T̂(k)p̂ (127)

where the matrix T̂ is different from the T given in Sec. 2.4.1. Specifically, using

the notation T̂(k), this matrix enforces the Bloch theorem in the manner previously

described.

For convenience, the two-dimensional unit cell is repeated for the discussion here.

To encompass the phase change outlined above, let us organize the nodal degree of
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Figure 61: A representative finite element mesh of a single unit cell with reduced
nodal degrees of freedom depicted as dots. The nodal degrees of freedom represented
by squares are related by periodic boundary conditions via matrix T. pi is one node
contained within the set pi.

freedom vector p̂ as

p̂ =



pL

pB

pLB

pI


(128)

, where, again ’L’ denotes the left degrees of freedom, ’B’ for bottom, etc. This specific

ordering is arbitrary. Next, using this ordering, the explicit elements of T̂(k) =
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T̂(kx, ky) can be written as

T̂(k) =



I 0 0 0

I exp ikxa1 0 0 0

0 I 0 0

0 I exp ikya2 0 0

0 0 I 0

0 0 I exp ikxa1 0

0 0 I exp ikya2 0

0 0 I exp i(kxa1 + kya2) 0

0 0 0 I



(129)

As done above, using p = T̂(k)p̂ and pre-multiplying Eq. (126) by T̂T (−k) yields a

new form for the equation of motion for the unit cell, namely,

[
−ω2M̂(k) + K̂(k)

]
p̂ = 0 (130)

where M̂(k) = T̂T (−k)MT̂(k), etc. Note, if k is real, then T̂T (−k) = T̂H(k) where

the superscript H denotes the matrix Hermitian operation. Lastly, the eigenvalues

ω describe the dispersion relationship for the ω(k) method. It is of note, the three-

dimensional ω(k) method takes on a similar derivation.
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APPENDIX C

FAST MULTIPOLE METHOD

The practical use of the fast multipole method for the techniques discussed in this

Thesis is given here. A deeper theoretical discussion can be found in Ref. [9] and the

references cited therein.

Recall the matrix equation to solve for the scattered bubble amplitude is Qw =

pinc. This equation can be expanded, for an index u, as

(su − ω2mu − iωbu)wu
ζ

+
NB∑

v=1,v 6=u

wv
eiki|xu−xv |

|xu − xv|
=
−eki·xu

ζ
(131)

where the scaling variable is ζ = −ω2ρi/4π. The summation on the left side of the

preceding equation can be a very expensive computation directly. Hence, the FMM

is designed to quickly evaluate sums of this form, e.g., the second term on the left

side
NB∑

v=1,v 6=u

wv
eiki|xu−xv |

|xu − xv|
. (132)

For clarification, recall the Green’s function used in this Thesis contains a 4π nor-

malization and is different from Eq. (132). Furthermore, the scaling parameter ζ is

introduced explicitly because the numerical routines in Ref. [27] require input terms

appearing exactly as shown in Eq. (132). Since the differential bubble volume wu

is unknown, Eq. (131) can be solved in an iterative manner such as the generalized

minimal residual method (GMRES) where the FMM can be used to quickly evaluate

the summation.

The FMM can also be used to accelerate calculations of the HKI from Eq. (92).

The integral is discretized into a summation of monopole and dipole terms as

ps (xf ) =

∫
S

[G∇p− p∇G]·n̂ dS ≈
∑
u

[
qu
eiki|xu−xf |

|xu − xf |
+ dun̂ · ∇xu

eiki|xu−xf |

|xu − xf |

]
. (133)
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where the monopole strength qu = (∆2/4π)∇p (xu) · n̂ and the dipole strength is

du = −(∆2/4π)p(xu). The quantity ∆ is the size of a discrete element involved in

the approximation of the surface integral. Using the built-in routines in Ref. [27],

summations of monopoles and dipoles can be added quickly.
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APPENDIX D

PHONONIC CRYSTALS WITH VISCOUS DAMPING

In this Appendix, phononic crystals with viscous damping will be overviewed. Specif-

ically, the dispersion technique introduced in Eq. (8) can be modified to model unit

cell with damping.

For a 2D or 3D fluid PC, the density and sound speed for material i is ρi, ci. With

the introduction of viscous damping for fluid i, one can introduce a complex density

and sound speed

ρi (ω) =
ρ0
i

Y (ω)
(134a)

ci (ω) = c0
iY (ω)1/2 (134b)

where the quantity Y (ω) is a function of the frequency ω, the ideal density and

speeds ρ0
j , c

0
j

Y (ω) = 1− iω ξj
ρ0
jc

0
j

. (135)

with

ξj =
4

3
µD,j + µB,j (136)

and

αviscousj =
2ξjω

2

3ρ0
j(c

0
j)

2
(137)

In the above equations, µD,j, µB,j represent, respectively, the dynamic viscosity and

the bulk (volumetric) viscosity coefficients for viscous fluid j and αviscous is the fre-

quency dependent plane wave attenuation coefficient (also called the Stokes coefficient

[80]) for the fluid j . Clearly, µD,j, µB,j = 0 correspond to ideal, inviscid, fluids. This

complex fluid model encapsulates the bulk attenuation experienced by acoustic waves

traveling in the fluid [11].
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To synthesize a viscous fluid into the above FEM equations, recall the matrix

terms from Eq. (5) contain terms such as 1/ρ and 1/ρc2. For a viscous fluid, these

quantities become (dropping j for brevity)

1

ρ
=
Y

ρ0
=

1

ρ0
− iωξ

(c0)2
(138a)

1

ρc2
=

1

ρ0(c0)2
(138b)

Comparison of the denominator coefficients in the matrix terms in Eq. (5) indicates,

after assembly, that the mass matrix M is not altered by the introduction of viscous

damping, but the stiffness and other matrices are altered by the presence of viscous

damping. Specifically, for the stiffness matrix,

Kviscous (ω) = K + iωKimag (139)

where

Kimag,element
mn =

∫
V

−ξ
(c0)2

∇ψm · ∇ψndV . (140)

The matrices Aj and B follow in a similar form. Further note that, Re(Kviscous) = K

is the same matrix discussed in Ch.2. Regarding implementation, the Kimag can be

obtained by assembling the FEM matrices with an artificial density ρ∗ = −(c0)2/ξ.

Posing the artificial density (only for K,Aj,B) in this way allows the matrices to be

extracted as discussed in Sec. 2.4.2. Then, the frequency dependence can be added

via Eq. (139).

After assembly, the eigenvalue problem follows the same form as Eq. (16). The

group velocity calculations are changed accordingly since, now, more matrices are

frequency dependent. As in [61], there is no effort to give a physical description for

the imaginary part of the group velocity for a particular Bloch wave. Necessarily,

the addition of viscous damping means all Bloch wavenumbers are complex. The

BWE selection rules of Sec. 2.5 must still be applied: Bloch waves that exponentially

grow or deliver power out of the PC medium are discarded. Lastly, for the viscous
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parameters experimentally measured for fish [56], the inclusion of a viscous fluid does

not significantly alter the dispersion or the scattering; thus, the inviscid model used

herein provides an adequate fish model.
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