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NOMENCLATURE

~nf Flame normal vector.

Aannulus Cross-sectional area of annulus.

Acomb Cross-sectional area of combustor.

DT Thermal diffusivity.

dcb Centerbody diameter.

dcomb Combustor diameter.

dexhaust Exhaust exit diameter.

douter Outer diameter of premixer annulus.

Da Damkoehler number.

Ka Karlovitz number.

l Integral length scale.

lD Diffusive length scale.

lcomb Combustor length.

Le Lewis number.

prms Root-mean square of acoustic pressure.

Qbl Boundary layer heat addition.

Qcb Recirculation zone heat loss to combustor.

redge Radial location of flame leading edge.

rf Radial flame location.

Rmin Minimum absolute curvature measured along CH-layer centerline.

Re Reynolds number.

Ret Turbulent Reynolds number.

Sc,CH4 Methane consumption based flame speed.

Sd,CH Laminar, displacement flame speed relative to the location of maximum
χCH .
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Sd,ph Laminar, displacement flame speed relative to the initiation of the preheat
zone.

Sd Laminar, displacement flame speed.

Sod Unstretched laminar, displacement flame speed.

Si,j Symmetric strain rate tensor.

Sm Swirl number.

TRZ Recirculation zone temperature.

Tbhd Combustor bulkhead temperature.

T adext Adiabatic, stretched flame, extinction temperature calculated using the
symmetric opposed jet configuration.

Tph Preheat temperature.

Tref Reference temperature correction for κext blowoff scaling.

Tr Ratio of product side temperature, Tprod to adiabatic, stretched flame,
extinction temperature, T adext.

u
′

Integral velocity scale.

uN Flow velocity normal to flame.

uT Flow velocity tangent to flame.

ui Velocity component in direction i.

uo Characteristic bulk flow velocity.

upm Premixer velocity.

urms Room mean square of velocity.

vf Edge flame speed.

YEGR Mass fraction of reactant stream dilution by recirculated products.

Yi Mass fraction of species i.

χi Mole fraction of species i.

∆CH CH-PLIF image pixel spacing.

∆IW Size of PIV interrogation window sizes.

∆PIV PIV vector spacing.
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δR Reaction zone thickness.

δCH,FWHM
R CH based, FWHM reaction zone thickness.

δf Flame thickness.

δTf Temperature based flame thickness.

δimage Experimentally determined CH-layer thickness.

∆offset Offset distance between CH-layer centerline and edge of Mie-scattering
image.

η Kolmogorov length scale.

κ Total flame stretch.

κcurv Curvature induced flame stretch.

κext Extinction stretch rate.

κs,norm Hydrodynamic normal strain induced flame stretch.

κs,shear Hydrodynamic shear strain induced flame stretch.

κs Hydrodynamic strain induced flame stretch.

κCHs Hydrodynamic strain induced flame stretch at the location of maximum
χCH .

κphs Hydrodynamic strain induced flame stretch at the initiation of the flame
preheat zone.

ν Kinematic viscosity.

φ Equivalence ratio.

ρ Density.

σi Standard deviation or uncertainty of parameter i.

τchem Characteristic chemical time.

τflow Characteristic flow time.

τpf Premixed flame characteristic chemical time.

τres Characteristic residence time.

τwsr Critical chemical time of a well-stirred reactor.

θ~u Flow angle.
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θf Flame angle.

θrel Relative angle between flame, θf , and flow, θ~u.

θvane Swirler vane angle.

EGR Exhaust gas recirculation.

IRZ Inner recirculation zone.

ISL Inner Shear Layer.

ORZ Outer Recirculation Zone.

OSL Outer Shear Layer.

PIV Particle image velocimetry.

PLIF Planar laser induced fluorescence.

VBB Vortex Breakdown Bubble.

WSR Well-stirred reactor.
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SUMMARY

Many practical combustor technologies, such as natural gas turbines, operate

under lean premixed conditions. Premixed systems are attractive from an emis-

sions standpoint with the ability to directly control combustor temperature through

changes in the fuel to air mixture ratio. In addition, when operated under lean con-

ditions, they are highly efficient in their consumption of fuel as well. However, lean

premixed systems are highly susceptible and responsive to fluctuations in flow and

mixture properties. This coupled with operator requirements for gas turbines to oper-

ate over a range of power outputs, provides challenges for the gas turbine designer and

operator. For instance, the question of what flow rate and equivalence ratio should

one operate at in order to double the thermal power output, while meeting emissions,

can be non-trivial. In this simple example, assuming emission requirements drive the

range of equivalence ratios allowable, and therefore combustor temperatures, total

flow rate would control the thermal output of the combustor. With an increase in

flow rate at a fixed equivalence ratio, the flame may extinguish or blowoff. However,

an increase in equivalence ratio may prevent flame out. The question for designers and

operators is how much should equivalence ratio change to maintain flame stability?

In order to answer this question, an understanding of the mechanisms and physics

of flame stabilization of premixed flames is required. Due to the high bulk flow

velocities typical of practical combustors, the flame anchors in the shear layers where

the local flow velocities are much lower. Thus, our discussion is focused on shear

layer stabilized flames. Within the shear layer, the flame is subject to strain induced

flame stretch which can alter the burning of the flame. At a fixed equivalence ratio,

operation of these combustors is limited by an upper limit in bulk flow velocity for
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which stable combustion is attainable. This bulk flow velocity limit is presumably

the result of flame stretch induced extinction caused by increasing fluid strain rates

with increases in bulk flow velocity.

Through experimental studies of a shear layer stabilized flame, a deeper under-

standing of the mechanisms of flame stabilization and extinction for shear layer sta-

bilized, premixed flames was obtained. Measurements were performed in the most

upstream region where the flame was observed in the inner shear layer of an an-

nular swirling combustor. Through high resolution, planar, and simultaneous PIV

and CH-PLIF measurements, the instantaneous flow field and flame position was

captured enabling calculations of 2D flame stretch in the flame attachment region.

These flame stretch rates, calculated relative to the CH reaction layer location, were

compared with steady extinction stretch rates calculated using the opposed jet model,

OPPDIF, of CHEMKIN, a model widely used to study the effect of fluid strain rates

on flames. In addition, comparisons between model and experiment were made to in-

terpret the experimental observations of the flame response to changes in combustor

operational parameters such as equivalence ratio and premixer velocity. The CH-

PLIF data obtained also directly elucidated the unsteady behavior of the flame in the

near field, as observed through the location and orientation of the CH reaction layer

within the shear layer.

Most notably, these studies show that as lean blowoff conditions are approached

by decreasing equivalence ratio, φ, the mean stretch rates near the attachment point

decrease but remain positive throughout the measurement domain, from the dump

plane to ≈ 10mm downstream. In fact, compared to extinction stretch rates cal-

culated using a reduced–order opposed–jet model, the flame apparently becomes less

critically stretched as φ is decreased. Also, investigation of the flame structure at

the leading edge of the flame showed strong evidence that the flame is edge flame

stabilized. This was supported by inspection of the CH-PLIF images, which showed
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the CH-layer oriented tangent to the flow field and terminating abruptly at the lead-

ing edge, and not curved and oriented perpendicular to the flow at the leading edge.

Lastly, the flame anchoring was observed to be highly robust as the flame edge flow

conditions and location of leading edge of the flame were insensitive to φ remaining

nearly constant for 0.9 ≤ φ ≤ 1.1. However, at the leanest test condition, φ = 0.8,

the flame leading edge was located farther downstream and subjected to much higher

flow velocities. These results thus suggest that blowoff is the result of a kinematic

balance and not directly from stretch induced flame extinction.
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CHAPTER I

MOTIVATION AND BACKGROUND

Practical combustors are driven to operate at high velocity conditions in order to

produce the largest amount of power for a fixed combustor size. In addition, dry

low NOx technology operates on the lean operability limit where flames have low

temperatures and are highly sensitive to fluctuations. In order to maintain flame

stability at these high flow rates and lean mixtures, these combustors often rely on

low velocity regions and recirculation zones in order to anchor the flame. These

flow features can easily be created through the use of bluff bodies which obstruct

the flow and produce recirculation zones in their wakes, and low velocity regions in

the free shear layers, which form as the flow separates from the surface of the bluff

body. The addition of a swirling component to the incoming flow is commonly used in

practical combustors because of the higher achievable thermal power output compared

to other combustor technologies of comparable size. High power density combustion is

directly linked to swirling flow fluid mechanics and the resulting structure of the flow

field. Very simply, increases in thermal power density are essentially driven by rapid

increases in flame area progressing downstream, making swirl flames more compact

than a bluff body stabilized flame of equal size, and thus, a more attractive combustor

technology from an energy density standpoint.

The structure of the swirling flow field which leads to these high power density

flames is shown in Figure 1.1 for a swirling flow field with and without a centerbody

at the dump plane. The two configurations shown in 1.1 share many of the same

fluid mechanic features including an annular jet, an outer recirculation zone (ORZ),

an inner recirculation zone (IRZ), and inner and outer shear layers (ISL & OSL)
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separating the jet from the IRZ and ORZ respectively. When a bluff centerbody is

present, the IRZ can consist of a wake feature associated with the centerbody and

the vortex breakdown bubble (VBB). These two features can exist independently or

as a single merged recirculation zone structure. When there is no centerbody, or a

recessed centerbody, the inner recirculation is comprised of only the VBB. Note the

rapid spreading of the jet radially outward downstream of the dump plane. Flames

that are able to stabilize along the jet, either in the ISL or OSL, will have rapidly

increasing areas progressing downstream (Af ∝ r2
f ) thus resulting in compact, efficient

flames.

In addition, flame stability is enhanced by the inner recirculation zone associated

with the VBB. The VBB is larger and extends further into the downstream flowfield

after expansion than any wake recirculation zone caused by inner flow obstruction.

This enhancement in the inner recirculation zone increases flame stability, enabling

the combustion of leaner mixtures. This is of particular importance in the design of

dry low NOx combustors which rely on being able to operate at very lean mixtures

to reduce flame temperature and achieve low NOx emissions. The challenge for these

devices is to operate at conditions which produce ultra-low NOx emissions while

maintaining a highly efficient, stable, and clean burning flame. It is also important

to note that the VBB provides a product recirculation pathway even in the absence

of any bluff body. In the presence of an outer wall, as shown in this schematic,

the resulting ORZ will enhance OSL flame stability. Practical flames of interest in

these combustors tend to stabilize in at least one of the shear layers present where the

flame is subject to high rates of fluid strain. It is presumed that the operation of these

combustors is limited by the limit in fluid strain rate which the flame can withstand

before extinguishing or locally blowing off. The interaction between flame and strain

is a complex phenomenon but fundamental topic that to our benefit has been studied

extensively by the combustion community. There are several fundamental combustor
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(a) With centerbody (b) Without centerbody

Figure 1.1: Fluid mechanic structures for typical representative annular swirl com-

bustor geometries with a bluff center body (left) and a recessed or absent centerbody

(right).

configurations that have been developed to study the flame’s response to flame strain.

These combustors provide well defined strain and flow fields lending themselves to

numerical, analytical, and experimental approaches. Most notably, the opposed jet

model has been widely used to study the stability of stretched flames under laminar,

steady conditions by many investigators over the years [66, 67, 45, 44]. In fact, the

use of the opposed jet model to characterize the steady extinction stretch limits is

common and widespread amongst researchers and combustor designers. The tubular

and opposed tubular flame configurations have also been used to study flame stretch

response experimentally and numerically in steady, laminar stretch rate calculations

[50]. The distinguishing features between these configurations are discussed in detail

within this chapter.

In reality, flames are subject to additional physics which will alter their response

to stretch. Additional considerations relevant to practical combustors include heat

loss, unsteadiness, and turbulence. For example, the opposed jet model has been used

by investigators to study a non-adiabatic flame’s response to stretch [121, 27, 28, 25].
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These studies are of particular interest in understanding the effect of heat loss on the

operational limit of shear layer stabilized combustors. Flow and mixture unsteadiness

are additional factors relevant to practical combustors which operate under turbu-

lent flow conditions and with finite time for mixing. Unsteady laminar studies of the

opposed jet model addressing these concerns have been carried out through harmon-

ically time dependent jet velocities as well as through harmonically time dependent

equivalence ratios [37, 110, 111, 53, 117]. The results of these unsteady studies provide

insight on the unique way in which harmonic fluctuating stretch conditions influence

the burning properties of the flame as a precursor to discussing turbulent opposed

jet configurations. Finally, turbulent studies of the opposed jet configuration are

discussed [64, 19, 49, 18, 17, 8, 26].

In addition to understanding flame interaction with stretch, studies of edge flame

behavior are discussed. While there have been extensive fundamental studies of edge

flames, [11, 13, 119, 74, 29, 32], edge flames have not been discussed as the relevant

set of physics in the context of practical combustor flame stability. Based on the

observations from the current studies, the physics of flame stability may in fact be

edge flame controlled for the studies in question.

Finally, studies of practical burners relevant to the test geometry of this work

which investigate stabilization mechanisms and or flame stretch are discussed. The

focus is on bluff body and swirl stabilized combustors and include studies which report

observations on the flame as blowoff is approached as well as studies which provide

detailed measurements on the kinematic and stretch conditions experienced.

1.1 Fundamental Stretch Burners

As a central part of this work is the measurement of flame stretch in a practical

combustor, it is pertinent to discuss the wide range of work that has been completed

studying premixed flame response to flame stretch, and the experimental and model
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geometry used to do so. There are several fundamental burner configurations which

provide well defined strain and flow fields making them ideal burners to study the

effects of flame stretch. These various burner geometries are introduced, with spe-

cific focus directed towards discussing the opposed jet configuration, which was the

configuration used for the numerical modeling studies of this work. Our discussion of

the opposed jet model in detail is first restricted to steady state results; in particular,

studies which have characterized the extinction stretch limits for adiabatic, premixed

flames.

Unsteadiness is another key parameter of interest which has been investigated

through single frequency harmonically unsteady variations in a single input param-

eter of the opposed jet stream, namely jet exit velocity or equivalence ratio. In

addition turbulent, opposed jet studies have been performed to characterize turbu-

lence effects on flame structure. Other models, which are inherently unsteady, such

as the spherically expanding flame are introduced as well.

1.1.1 Opposed Jet Combustor

The opposed jet combustor is perhaps the most common configuration used in the

study of flame stretch. In its most basic form, it consists of a premixed jet directed

normal to a wall. This wall jet configuration produces a flat flame, parallel to the wall.

The thermal boundary conditions at the wall can strongly influence the stretched

flame response, especially for conditions which result in a flame stabilized in close

proximity to the wall. A stagnation plane configuration can also be produced by

directly opposing two jets with a stagnation plane forming between the two jets.

The opposed jet configuration has several variations with the added jet. When

both jets are premixed mixtures which have the same thermodynamic state, compo-

sition, and velocity at the exit, it is considered symmetric. A symmetric opposed jet

configuration results in the twin flame configuration with flames stabilizing on both
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sides of the stagnation plane. When the streams are not of the same thermodynamic

state, composition, or have unequal exit velocities, the configuration is considered

asymmetric.

Typical asymmetric configurations that have been studied include a premixed

reactant stream opposed by: hot products, hot inert gases, or premixed mixtures of a

different fuel and or equivalence ratio [33, 27, 78]. In a fundamental sense, asymmetric

configurations allow for flame stretch to be studied in the presence of diffusional

transport of heat and or species across the stagnation plane which, depending on

the composition and state of the non-reactant, can enhance or degrade the stretch

limits of the flame, which is discussed in Chapter 5. The opposed jet model can also

be used to study the effect of stretch on non-premixed flames by opposing a fuel jet

with an oxidizer jet. These stagnation plane configurations are shown in Figure 1.2.

The flames for all three opposed jet configurations are flat and stationary resulting

in flames which are stretched only by hydrodynamic strain sources:

κ = κs =
∂uy
∂y

= −∂uz
∂z

(1.1)

where the equation above is for a 2D, planar, opposed jet configuration and incom-

pressible flow was assumed.

Figure 1.3 shows a representative non-reacting velocity and strain field for the

opposed jet configuration. Note, due to the similarity conditions within the jet,

axial velocity is only dependent upon axial location. Thus, the profiles along the jet

centerline are valid throughout the jet domain. Likewise, the transverse velocity is

only dependent upon the transverse location.

In the absence of a flame, the axial velocity decreases monotonically towards the

stagnation plane resulting in negative axial strain field. From equation 1.1, negative

axial strain results in a positive stretch field throughout the non-reacting domain,

which increases monotonically towards the stagnation surface and results in a maxi-

mum stretch rate at the stagnation plane. While it is the local stretch in reference to
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(a) Wall stagnation jet (b) Symmetric opposed jet

(c) Asymmetric opposed jet

Figure 1.2: Various configurations for the stagnation flame model: a)single jet,

b)symmetric opposed jets, and c)asymmetric opposed jets
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Figure 1.3: Normalized axial velocity, ũz, and normalized normal strain field, ũz,z,

for a non-reacting, opposed jet configuration shown from jet exit, z = 0, to stagnation

plane, z = ∆zjet/2

.

the onset of the preheat zone of the flame which is physically relevant, the following

is a commonly used approximations of the flame stretch based on bulk scaling when

local stretch measurements are not available:

κbulk =
U o
jet

∆zjet/2
(1.2)

where U o
jet is the flow velocity at the exit of the jet and ∆zjet/2 is the distance from the

exit of the jet to the location of the stagnation plane. The opposed jet configuration

is available in commercial codes such as CHEMKIN [1] and open source codes such

as Cantera [47].

There has been extensive work done using the symmetric opposed jet configuration

under steady operating conditions to study the response of flames to stretch. Law et

al. [110, 66] provides a review of the experimental, analytical, and numerical work

which has been carried out studying opposed jet flames.
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(a) Tubular burner
(b) Opposed Tubular burner

Figure 1.4: Tubular(left) and opposed tubular (right) burner schematics

1.1.2 Tubular and Opposed Tubular Flame

The tubular flame and opposed tubular flame combustors are similar configurations to

the planar opposed jet burner in many respects. Both of these configurations provide

well defined fluid strain fields which allow for flame-stretch interaction to be stud-

ied. Kinematic and strain conditions are changed through bulk velocity variations.

However, because of the axisymmetric nature of the flow field, the flames supported

by the tubular and opposed tubular burner configurations are cylindrical sheets and

therefore are curved flames subject to strain–induced stretch. Hu et al. [50] and

Wang et al. [120] have studied these configurations analytically, numerically, and ex-

perimentally. Investigations of this configuration have shown an additional sensitivity

of the flame to curvature induced stretch when subject to equivalent strain induced

flame stretch [125]. A brief summary of these models and their respective flow and

strain field characteristics based on the above reference work is presented.

First, the tubular burner shown on the left hand side of Figure 1.4 is described.

This configuration consists of axisymmetric, inwardly directed, radial jets. Along the
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(a) Tubular burner

(b) Opposed tubular burner

Figure 1.5: Non-reacting tubular (1.5a) and opposed tubular (1.5b) representative

flow, ũr = ur/U
o
jet, and stretch fields, κ̃s = κs/max (κs) based on analytical solutions

provided by Wang et. al [120].

axis of symmetry of the jets, radial velocity stagnation conditions exist and a single,

connected, cylindrical flame is supported by this combustor with a radius less than

the location of the exit of the radial jets. Due to the axisymmetric conditions of this

geometry, and the similarity conditions, the radial velocity depends only on the radial

location, while the z-component of the velocity field only depends on the z coordinate.

The opposed tubular flame configuration (right image of Figure 1.4) has outwardly

directed radial jets which oppose the inwardly directed radial jets. This results in a

cylindrical stagnation surface of radial velocity which separates the jets. If both jets

are comprised of combustible reactant streams, two cylindrical flame sheets can be

supported by this configuration with opposite signs of flame surface curvature for the

inner and outer flame. Representative velocity fields and stretch fields for these two

configurations are shown in Figure 1.5 where quantities have been normalized by the

maximum value observed in the field: For both cases, we show local stretch rates
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rather than local strain rates where the incompressible equation for stretch is:

κtubulars =
∂uz
∂z

= −∂ur
∂r

(1.3)

For the tubular burner, radial velocity monotonically decreases along the jet axis

as the hydrodynamic stretch rate becomes increasingly positive (1.5a), similar to the

behavior noted for the planar opposed jet configuration under non-reacting conditions.

Maximum stretch rates occur at the axis of symmetry, where the radial flow stagnates.

Analytical solutions of the non-reacting flow field for the tubular burner done by Wang

et al. [120], provide the following expression for local surface stretch throughout the

burner domain:

κtubulars = +
πU o

jet

rjet
cos(0.5πr̃2) (1.4)

where r̃ = r/Rjet.

For the opposed tubular burner, the non-reacting, hydrodynamic stretch field,

κtubulars , is positive throughout the domain and maximum at the stagnation plane

(1.5b). Away from the stagnation plane, κtubulars decreases monotonically in either

direction towards the inner or outer jet. Wang et al.[120] also provide non-reacting,

analytical solutions for the hydrodynamic stretch field of the opposed tubular burner

[120]. The solution below is for a simplified set of conditions where the velocity and

density of both the inward and outward jets are equal [120] (U o
jet = U i

jet, and ρo = ρi):

r̃s<r̃<1 :

κtubular,opposeds = −
U o
jet

Ro
jet

Q0.5cos
(
0.5Q0.5r̃2 + π/2 − 0.5Q0.5

)
(1.5)

Ri
jet/R

o
jet<r̃<r̃s :

κtubular,opposeds = −
U o
jet

Ro
jet

Q0.5cos

(
0.5

Ro
jet

Ri
jet

Q0.5r̃2 + π/2 − 0.5
Ri
jet

Ro
jet

Q0.5

)
(1.6)

where the radial location, r, has been normalized as r̃ = r/Ro
jet and the location of

the stagnation plane, Rs, has been normalized as r̃s = Rs/R
o
jet. Expressions for the
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location of the stagnation plane, and Q are as follows [120]:

Rs =
(
Ro
jetR

i
jet

)0.5
(1.7)

Q =
π2(

1−Ri
jet/R

o
jet

)2 (1.8)

While the strain and flow field of the tubular, or cylindrical, flame configuration

are seemingly very similar to the opposed jet configuration, as pointed out earlier,

studies have shown the response of flames to this configuration to be sensitive to the

radius of curvature of the flame[125, 5]. In fact, Yokomori et al. have recommended

the use of this configuration in assessing the sensitivity of flames to curvature [125].

1.1.3 Unsteady Stretch Configurations

There are multiple pathways through which unsteady effects on a stretched flame can

be studied, which are discussed in this section. For instance, unsteadiness can be in-

troduced simply by varying the input parameters of the model with time. This can be

achieved for the opposed jet model through a time varying outlet velocity introducing

flow and strain unsteadiness to the flame. Likewise, varying the equivalence ratio of

the jet with time introduces mixtures with time varying stretch sensitivities into the

flow field. Both of these forms of harmonic unsteadiness in the velocity and mixture

composition at the jet exit for the opposed jet model are discussed [95, 53, 117, 111]

.

There are also models for which the flame and stretch conditions are inherently

unsteady, such as the expanding spherical or cylindrical flames. As the flame pro-

gresses in these configurations, the radius of the flame front changes with time causing

a change in the curvature induced stretch. Lastly, studies of the opposed jet config-

uration subject to turbulent flow conditions are introduced [36, 64].
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1.1.3.1 Harmonically Forced Opposed Jet

In this section, we are interested in discussing the response of the flame stabilized in

an opposed jet combustor when subject to unsteadiness in the local flow field condi-

tions and in the local mixture composition. First, studies are highlighted which have

investigated harmonically unsteady flow effects on flame response in a strained flow

field. Then, studies which have investigated the effect of equivalence ratio oscillations

are discussed.

For instance, Sung et al. [111] performed symmetric opposed jet calculations for a

premixed flame subject to mono-frequency harmonic oscillations in the jet exit veloc-

ity. The results of these studies are reproduced in Figure 1.6. They found for Le ≤ 1

mixtures that low frequency velocity oscillations, f < 100Hz, the dynamic flame re-

sponse was pseudo-steady state and that extinction boundaries were not affected by

the unsteadiness. The pseudo-steady state flame behavior in this case is due to the

time scale of the velocity fluctuations being larger than the chemical time scale.

As the frequency of the velocity oscillations was increased above 100 Hz, Sung et

al. noted that the flame response deviated from a pseudo-steady state response for

Le ≤ 1 and Le > 1 mixtures. In fact, for inlet velocity oscillations having a frequency

on the order of 10kHz, the flame response loop is bi-modal, having a lower and upper

value that is stretch invariant with small deviation from the steady state response at

the mean stretch value. This behavior is result of the period of oscillations becoming

on the order of and then smaller than the chemical time scale at which point the

flame is insensitive to these oscillations. In other words, the lifetime of the unsteady

strain caused by the velocity oscillations is too small to allow for non-equidiffusion to

manifest and cause burning rate fluctuations.

In addition to numerical studies of the opposed jet configuration to harmonic inlet

velocity, there have been experimental studies as well [98, 97, 62, 77]. For example,

Sardi and Whitelaw [97] characterized the extinction limits of premixed flames subject

13



Figure 1.6: Flame stretch response of flame consumption speed to harmonic fluc-

tuations in inlet velocity for an opposed jet configuration, reproduced from studies

performed by Sung et al. [111] with author permission.

to periodic velocity oscillations. Their experiments also demonstrated the dependence

of the flame response on disturbance frequency as well as disturbance amplitude and

duration as they noted the ability of the flame to withstand instantaneous strain rates

higher than the extinction strain rates of unforced cases.

Lastly, similar studies have been performed on the opposed jet model subject

to harmonic variations in the equivalence ratio of the mixture at the jet exit [93,

95]. Richardson et al. [93] explored the effect of mixture stratification resulting

from harmonically varying mixture composition at the jet exit with specific focus on

the effect on flame structure. Sankaran et al. [95] performed studies on a similar

configuration but focused on the effect on flammability limits, establishing a dynamic

flammability limit. Similar to the unsteady strain field studies, the response of the

flame was observed to decrease with increasing frequency of mixture composition

variations.
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1.1.3.2 Turbulent Opposed Jet

The opposed jet configuration lends itself to the study of turbulence-flame interac-

tion within a strained flow field. It has been used to study the effect of turbulence

on flame structure and the phenomenon of stretch induced extinction. There have

been various experimental studies investigating turbulent flame structure using this

configuration [126, 63, 20]. Within these studies, observations of turbulence induced

flame structure changes has important implications on modeling flame extinction us-

ing flamelet concepts. Extinction studies have captured the progression of the flame

as it progresses towards blowoff [64] and have also studied the sensitivity of bulk

extinction stretch rates to geometric parameters, such as nozzle separation, chemi-

cal kinetic parameters, such as equivalence ratio, and flow parameters, such as bulk

nozzle velocity [77, 62].

1.1.3.3 Spherically/Cylindrically Expanding Flame Configurations

Non-stationary flames, or expanding flames, occur when there is a kinematic imbal-

ance along the flame front where the flame speed does not equal the flame normal flow

velocity. The most basic non-stationary flames involve the flame propagating freely

into a field with no bulk flow velocity. Two such geometric configurations are the

spherically and cylindrically expanding flames which originate from point source or

line source ignition events respectively (Figure 1.7). As a result of the non-stationary

nature of these configurations, there is a time dependence on the speed of the advanc-

ing flame front. This unsteadiness is the result of expansion effects on the product

side of the flame displacing the flame front to which corrections can be applied in

order to extract meaningful flame speeds. Another source of unsteadiness is caused

by the changing flame radius as the flame expands outward, rflame (t) thereby causing

a change in the curvature induced stretch, κcurv (t). Depending on the mixture’s Le

number, this will either result in a flame that is more or less critically stretched as
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(a) Spherically Expanding
(b) Cylindrically Expanding

Figure 1.7: a) Spherically and b) cylindrically expanding flame geometric configu-

rations.

time passes.

1.2 Angled Opposed Jet Burners

These burners are similar in appearance to the opposed jet burners but differ with

respect to the relative orientation of the opposing jets. As its name would suggest,

the centerlines of the opposed jets are angled relative to each other by angle α,

as shown in Figure 1.8. This produces a flow field distinguished from that of the

opposed jet configuration. Most importantly, it results in a strain and velocity field

that is no longer collapsed by a single similarity variable but highly dependent upon

y and z. Non-reacting studies by Besbes et al. [7] demonstrate the unique flow field

characteristics of the angled opposed jet configuration. For reference, results of their

work are reproduced in Figure 1.9 which shows the transverse velocity profile along

the stagnation plane between the two jets. For the angled case, α = 45◦, the velocity

profile is no longer symmetric about the jet centerline, producing higher velocities on

one side and lower velocities on the other side of the jet centerline compared to the

directly opposed jet case, α = 0◦. In addition, note that due to the distance between
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Figure 1.8: Angled opposed jet burner configuration.

the burners being dependent upon y, evident in Figure 1.8, it is expected for the local

strain to be dependent upon y as well.

Liu and Ronney [74] have experimentally characterized flames in the angled slot

burner, showing that flames stabilized in this configuration are horizontal relative to

the burner exit, but curve towards and terminate at the stagnation plane marking the

edge of the flame. It is the point where the two flames meet which is the ”edge” of the

flame and for this reason that flames supported by the angled burner configuration

are referred to as ”edge flames.” Figure 1.10 shows select images from Liu et al. and

their experimental studies of the angled burner for several configurations. Note that

when both jets are premixed streams, as is the case for the middle and bottom image

of the figure, the two flames on either side of the stagnation plane do in fact connect

at a single location on the stagnation plane. We presume that away from the flame

edge, based on Besbes et al. [7], that there are normal and tangential flow velocity

components relative to the flame surface. Thus, it is the edge of the flame, located

on the stagnation surface, which likely anchors the flame as it lacks a tangential flow

velocity component along its surface and is oriented such that the direction of flame

propagation aligns with the flow direction. Numerical studies have been performed
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Figure 1.9: Reproduced figure of non-reacting angled opposed jet transverse velocity

profile along center stagnation plane from Besbes et al. [7]

.

on the angled opposed jet configuration calculating the burning rates of edge flames

[30].

In summary, the characteristics of the angled burner are compared to opposed jet

burner. Contrary to the opposed jet burner, in addition to spatially varying strain

rates along its surface, the angled burner flame likely has non-constant flame speeds

along the flame surface as well. In addition, similar to the opposed jet configura-

tion, there is a tangential velocity component along the flame surface throughout

the domain except where the flame is anchored by the edge of the flame residing on

the stagnation plane. Studies of angled opposed jet flames or, more generally, edge

flames, are of relevance as practical flames are stabilized in developing shear layers

with highly spatially dependent strain and velocity fields, and the flame structure

at the anchoring location has been observed to resemble that of an edge flame, as is

discussed further in Chapter 6. This has important implications on modeling of flame

stabilization as the physics of edge flames are different from idealized, 1D flames.
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Figure 1.10: Figure reproduced from Liu et al. [74] with author permission, showing

chemiluminescence flame images of angled opposed jet flames produced from CH4/Air

(top), CH4/O2/CO2 (middle), and C3H8/O2/He (bottom) mixtures. Note: Top

condition is for a reacting top jet opposed by a non-reacting bottom stream.

19



1.3 Experimental Studies of Practical Combustors

In this section we discuss and highlight notable and relevant studies of bluff body and

swirl stabilized flames. Bluff body stabilized flames are included in this discussion

because the geometry of interest in this work, although a swirling flowfield, includes

a centerbody. As a result of this common geometric feature, these two combustor

configurations share similar flow features of a separating shear layer and wake in the

near field of the combustor in and by which flames are stabilized for both config-

urations. A selection of the many studies exploring the sensitivity to geometrical

and operational parameters, as well as reduced–order scaling of blowoff events using

Da number, is discussed. The inability for a single reduced–order scaling parameter

to capture blowoff events is a strong indicator of the complex physics which control

flame stabilization. This has motivated studies focused on observing the flame as it

progresses towards blowoff [84, 16]. These studies aid greatly in elucidating the phe-

nomenon of blowoff and controlling physics from a macro field perspective. Finally,

studies measuring local conditions and properties related to blowoff, such as flame

stretch, are discussed for swirl stabilized combustors.

1.3.1 Bluff body stabilized flames

1.3.1.1 Blowoff sensitivities of bluff body flames

There have been many studies of bluff body combustors investigating operational lim-

its, namely blowoff, and the sensitivity of blowoff events to operational and geometric

parameters [104, 22]. These studies have demonstrated the complexity in developing

scaling parameters which collapse the observed operational and geometric parameter

dependencies. For example, Shanbhogue et al. [104] applied a Da number approach

to scaling blowoff using bulk flow parameters for bluff body stabilized flames. Da

number scaling approaches reduce the physics of blowoff to a competition between

20



fluid mechanic and chemical time scales:

Da =
τflow
τchem

(1.9)

A classic example of Da scaling is the well-stirred reactor (WSR) for which τflow is

the combustor residence time, τres = V/ (uo × Ao), and τchem is the critical chemical

time, defined by the minimum residence time for which a reaction occurs. Flame

extinction occurs when Da ≤ 1, or when the residence time is less than the critical

chemical time. In this very simple example, the key characteristic times are easily

identified and quantified, which results in the success of Da as a scaling parameter.

Thus, once τchem is determined, the extinction velocity can be determined for a given

WSR volume, V , and inlet cross sectional area,Ao , by setting Da = 1. However, for

practical combustors, the relevant time scales are not as easily defined.

Classical Da approaches to capture blowoff of bluff body stabilized flames have

based τflow on observable mean features of the flowfield such as the bluff body wake.

For instance, Zukoski [128] hypothesized the critical physics of flame stability to be the

ignition of the incoming flow by the products in the bluff body wake. In this model,

blowoff occurs when the ignition time is larger than the time which the incoming

reactant stream is in contact with the wake, which is defined as:

τflow = Lwake/uo (1.10)

While seemingly simple, the length of the wake, Lwake, is a function of uo as well

as the equivalence ratio. In addition to the size of the wake, the entire structure of

the wake can change as well. In fact, as discussed by Nair [83], the structure of the

wake has been observed to be a strong function of Reynolds number [70], as well as

the temperature jump across the flame. Thus as operational and geometrical space

is explored, the relevant chemical and fluid mechanical parameters governing flame

stability can change as well.
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More recent studies have benefited from the ability to calculate fundamental chem-

ical times using chemical kinetic codes such as CHEMKIN [1]. For instance, critical

chemical times from the WSR can be calculated a priori, allowing for the form of τflow

to be directly evaluated from experimental blowoff data. Shanbhogue et al. [104]

assembled blowoff data from multiple experimental investigations reporting blowoff

conditions, and evaluated several formulations for τflow = Dref/Uref , using different

reference lengths, Dref , and reference velocities, Uref . In addition, Shanbhogue et al.

evaluated three different chemical times: the extinction time of a WSR, τWSR, the

inverse of the extinction stretch rate, τext, and the unstretched, laminar flame time,

τpf , defined as δf/S
o
d. They observed an additional Re dependence on Da for all vari-

ations of τflow and τchem combinations. Irrespective of the definition of Da chosen,

when the data was grouped by axisymmetric and two-dimensional bluff bodies, the

two groupings had different power dependencies on Re when fit to:

Da = b ReaD (1.11)

Note however, that within each grouping of data, there were systematic differences

between the subset of axisymmetric and two-dimensional bluff bodies as observed by

differences in the values of b. Although Shanbhogue et al. [104] demonstrated the

ability of Da scaling to reduce blowoff data, it falls short in capturing the physics

which distinguishes axi-symmetric and two-dimensional bluff bodies, explaining the

additional velocity dependence, and accounting for the systematic differences amongst

data sets. If anything, this work reaffirms the difficulties in Da scaling approaches

due to the complexities of the physics which cause blowoff.

1.3.1.2 Observations of near extinction bluff body flames

In this section, we describe the blowoff process for a bluff body stabilized flame, as

commonly observed by experimental studies.
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As near extinction conditions are approached by decreasing equivalence ratio to-

wards the lean limit, for instance, there is a noticeable change in the spatial and

temporal characteristics of the flame. Experimental studies of a bluff body stabilized

flame performed by Nair et al. [84] observed extinction events occurring downstream

of the bluff body, resulting in the formation of flame pockets at near blowoff condi-

tions. As equivalence ratio was further decreased towards the lean limit, the extinction

events occurred more frequently and initiated at distances closer to the bluff body.

A representative sketch of blowoff progression from Nair et al. [84] is reproduced in

Figure 1.11. Experimental work by Chaudhuri et al. [16] confirmed the observations

above, capturing near blowoff conditions of a bluff body stabilized flame through OH-

PLIF flame imaging. Their results show a planar sequence of blowoff very similar to

that observed by Nair et al. [84], as shown in Figure 1.12, where extinction events

initially occur downstream of the wake, increase in frequency, and eventually lead

to extinction of the flame in the wake region at blowoff conditions. Similar studies

performed by Kariuki et al. [58] focus on the progression towards blowoff in the wake

region of the flow field. As a precursor to blowoff, regions void of OH-PLIF signal

in the center regions of the recirculation zone are observed, also leading to increased

OH-PLIF intensity on the interior boundary of OH-PLIF within the wake region. All

in all, these studies suggest that absolute extinction is preceded by changes in flame

stability downstream of the anchoring or attachment region of the flowfield.

1.3.2 Swirl stabilized flames

1.3.2.1 Swirling flame behavior

There have been many studies examining the behavior of swirl stabilized combustors,

both experimental and computational [112, 73]. In fact, due to the complexity of the

swirling flow field, there have been numerous studies of non-reacting, swirling flows

[76]. These studies identified the main structures of a swirling flowfield and sought to

map out the various flowfield topologies which exist across a range of reduced–order
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Figure 1.11: Blowoff progression for a bluff body stabilized flame reproduced from

Nair et al. [84] with author permission.

Figure 1.12: OH-PLIF images of flame sequence at near blowout conditions repro-

duced from Chaudhuri et al. [15] with author permission.
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parameters. For example, Emara et al. [38] studied the effect of contraction ratio on

the vortex breakdown structure. Others have systematically explored the sensitivity

of the flow field structure of annular swirling flows in Reynolds and swirl number

space [105, 51]. Understanding swirling flowfields is important since, to a large extent,

the stabilization locations are directly related to the structure of the flow field. In

addition, the presence of heat release can alter the flowfield on a local and macro

scale as demonstrated by Chterev et al. [22].

Within a particular swirling combustor, reacting studies have addressed questions

relating to the flame shapes which can be supported by swirling flowfields. These ques-

tions ultimately are where does the flame stabilize and how do the flame stabilization

locations change as operational limits are approached. For example, Chterev’s study

of an annular swirl stabilized combustor demonstrated the ability of the combustor

to support four unique flame shapes [22]. Additionally, studies by Fritsche et al. [43]

have mapped the flame shapes as a function of preheat temperature and equivalence

ratio at thermally steady state conditions, also showing the existence of multiple flame

shapes. For all the various flame shapes observed, the stability of each flame is either

governed by the dynamics of a shear layer or the vortex breakdown bubble of the flow

field. In some cases, flame shapes have been observed which are stabilized in multi-

ple shear layers or some combination of shear layer and VBB stabilization. Also, as

was noted by Chterev et al. [22] the transition from one stabilization region or from

one flame shape to another occurs abruptly resulting in drastic changes in combustor

performance. In addition, these studies by Chterev et al. [22] of an annular swirl

combustor observed the lean operational limit for some cases to be governed by ISL

flame extinction.
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1.3.2.2 Flame stretch measurements

While there have been many macro scale studies on swirling flames, there are fewer

investigations into the flow conditions in the regions where the flame stabilizes. Thus,

the physics limiting the operation of these combustors is not yet fully understood.

That being said, studies have been performed characterizing the strain conditions ex-

perienced by flames in swirling combustors. For example, Zhang et al. [127] obtained

such measurements for the inner shear layer of a swirl stabilized facility reporting the

conditions of stretch in the attachment point region using the mean flow field and as-

suming a mean flame position and orientation. Zhang’s measurements demonstrated

the high fluid strain rates present in the near field and the potential for high flame

stretch conditions to be present. Other studies measuring the stretch along a flame

were completed by Filatyev et al. [41] and Sinibaldi et al. [106] for a premixed flames,

and Donbar et al. [34] for a non-premixed flame. Their results also demonstrated

the high mean stretch conditions present in the shear layer as well as wide range of

stretch, made possible by the time-resolved flow and flame field measurements that

were made using PIV and PLIF respectively.
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CHAPTER II

PREMIXED FLAME STABILIZATION

This chapter discusses the concepts of premixed flame stabilization relevant to these

studies. A pivotal precursor to this discussion is the establishment of an understand-

ing of turbulent combustion regimes. The various combustion regimes are unique

in the degree to which the flow field can interact with the flame, which depends on

the flow field turbulence, and the structure and propagation speed of laminar flames.

The various regimes of turbulent combustion defined by a comparison of velocity and

length scales of the flow and flame are briefly discussed based on work done by Pe-

ters [88, 89]. In addition to the traditional turbulent combustion regimes established

by Peters, a spectral turbulent combustion regime diagram incorporating the range

of turbulent scales developed by Poinsot et al. [90] is introduced and discussed as

well. As demonstrated by a more detailed discussion of turbulent combustion regimes,

the regime of combustion strongly influences the physics included in modeling and

interpretation of experiments related to flame stabilization.

In addition, because the flame is anchored in the shear layers of the flow field, as

observed experimentally and expected with bulk flow velocities being much greater

than the laminar flame speed of the incoming reactant mixture, the physics of shear

layer flame stabilization is also discussed. First and foremost, shear layer stabilized

flames are subject to a high degree of fluid strain, especially at the attachment point.

The behavior of premixed flames subject to fluid strain is well documented from

opposed jet experiments and models as discussed in Chapter 1. As such, this section

focuses on a discussion of the strain contributions to stretch for a swirling flowfield

with a brief discussion on the manner through which flame stretch effects manifest
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themselves. Second, recirculation zone physics and the various pathways through

which the flame burning rate is affected by heat transfer or mixing are discussed.

Lastly, the concept of flame anchoring, a requirement for flame stability, is discussed

and distinguished between normal propagation and edge flame anchoring.

2.1 Turbulent Combustion Regimes

This section discusses approaches to characterize the manner in which turbulence

interacts with the flame. First we consider approaches which compare length and

velocity scales of the flame and velocity field in order to establish the regimes of tur-

bulent combustion. Within this framework, we discuss the various regimes established

and the distinguishing characteristics of each of the regimes. Second, we introduce

a modified turbulent combustion regime approach which incorporates the range of

length and time scales present in a turbulent flow field.

2.1.1 Time and length scale parametrization

There have been several proposed combustion regime diagrams based on length and

velocity based scalings of flame and turbulence parameters [9, 87, 2, 90, 89]. These

approaches aim to describe how turbulent eddies can interact with a propagating

flame. The spectrum of interaction ranges from the laminar regime, where there is

an absence of turbulence such that a laminar flame structure and burning properties

are observed, to highly turbulent flow fields that are able to break up any flame

structure resulting in distributed or broken reaction zones. In between these two

extremes, there is a progression towards increased interaction between flame and

flow as turbulence is increased. We next present a summary of Peters’ description

of turbulent combustion regimes [89], describing the criteria establishing the various

regimes and characteristics of each.

Central to Peters’ approach are two questions: are velocity fluctuations large

enough to locally displace the flame front and are the turbulent scales small enough
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to disrupt the flame structure. As such, two parameters are defined, a velocity ratio

comparing the turbulence intensity and laminar flame speed, u′/Sd, and a length

scale ratio comparing the integral length scale and flame thickness, l/δf . Peters uses

these two parameters to define various combustion regimes as shown in Figure 2.1.

We briefly describe the nature of burning in each of the combustion regimes and the

physical meaning behind the boundaries, and reference Peters [89] for a complete

derivation of the turbulent regime boundaries.

We begin in the laminar flames regime characterized as the region where the

turbulent Reynolds’ number is less than one, Ret < 1. The Ret = 1 line in the plot

marks the boundary between laminar and turbulent flames and thus, the turbulent

combustion regimes are all characterized by Ret > 1. However, the degree to which

turbulence interacts with the flame is quite different between each turbulent flame

regime. In the weakest turbulent flame regime, the wrinkled flamelets regime, the

turbulence intensity is not strong enough to cause significant unsteadiness in the

flame front location (u′ < Sd). It is only when u′ > Sd that the turbulence is able to

effectively displace the flame front. The Sd = u′ line represents that boundary between

weakly wrinkled flamelets and corrugated flamelets where strongly wrinkled flames

are expected. Note however, that for the wrinkled flamelets and corrugated flamelets

regimes that the smallest scale of turbulence, the Kolmogorov scale of turbulence,

η, is larger than the laminar flame thickness and thus laminar flame structure is

preserved. Also, since the laminar flame structure is preserved within these regions,

flame propagation can be modeled using laminar flame concepts.

The remaining two combustion regimes are distinguished by the degree to which

the flame structure is affected by the Kolmogorov length scale, η. Above the η =

δF line, the Kolmogorov turbulent length scale is smaller than the laminar flame

thickness and able to alter the preheat zone of the flame. If however, η > δR, a

structured reaction layer is preserved within the thin reactions regime. Once η is able
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Figure 2.1: Turbulent combustion diagram reproduced from Peters [89].

to penetrate the reaction layer, burning is no longer structured as a thin reaction

region dividing products from reactants, but occurs as broken reactions.

2.1.2 Spectral diagrams

There are several shortcomings in the derived turbulent combustion regime diagram

presented in Figure 2.1. Besides the order of magnitude assumptions and the dif-

ficulty in obtaining turbulence properties such as the integral length scale velocity

fluctuations, u′, there are additional physics which must be included in establishing

turbulent combustion regimes. For example, in turbulent combustion, there is not a

single length scale but a range of length scales, from the integral to the Kolmogorov

length scale, interacting with the flame. Large and small length scales interact with

the flame in very different manners, and evaluated separately, could lie in different

regimes of the combustion diagram shown in Figure 2.1. The destruction of turbu-

lence by viscous dissipation is another important set of physics which alters the lower

limit of length scales potentially interacting with the flame. In fact, with increases in

viscous dissipation within the flame due to temperature driven increases in viscosity,

the Kolmogorov length scale is expected to increase within the flame. Finally, in
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addition to length and velocity scales of the turbulence, the lifetime of a vortex will

influence its ability to interact significantly with the flame.

This motivated the development of a modified turbulent combustion regime dia-

gram by Poinsot et al. [90] shown in Figure 2.2. Note the inclusion of the Turbulence

Line representing the range of velocity and length scales from integral to Kolmogorov,

with the Kolmogorov end of the line terminating on the Reη = 1 line. The Reη = 1

line is also the demarcation between turbulent and laminar flame regimes. In addi-

tion, the critical time-scale based Karlovitz number criteria for flame quenching, was

generalized for all turbulence scales in the following expression:

Ka(r) =

(
u′(r)

Sd

)(
r

δf

)−1

(2.1)

For turbulent scales with Ka(r) < 1, flame quenching is not predicted. Only scales

with Ka(r) > 1 are predicted to induce flame quenching. Thus for the Turbulence

Line shown in Figure 2.2, one would conclude that the flame would be quenched by the

turbulence scales in the range η < r <≈ 101 δf . Normalized turbulent length scales

greater than ≈ 101 fall below the Ka(r) = 1 line and therefore would not quench the

flame. It should be pointed out that if any scale quenches the flame, then distributed

reactions would be expected. In their work, Poinsot et al. [90], evaluated the inter-

action of a vortex pair with a flame through numerical computations. By varying the

size and characteristic velocity of the vortex pair, the turbulent regime diagram was

evaluated point by point. These simulations resulted in two modifications to regime

diagram: a lower cut-off limit and a modified quenching limit. The lower cut-off limit

is the result of small scales of turbulence being destroyed by viscous dissipation in the

flame such that the flame position and structure is unaffected. This lower cut-off limit

establishes a lower range of scales along the Turbulence Line, η < r < rcutoff , which

have no effect on the flame. Above rcutoff , there is a small range of scales which lie

slightly above the Ka(r) = 1 line, however simulations showed that flame quenching
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Figure 2.2: Modified turbulent combustion diagram reproduced from Poinsot et al.

[91].

did not always occur when Ka(r) > 1. The line which defines the distributed reac-

tions regime, was defined by simulation cases which caused flame quenching. Note

that for large enough length scales, r/δf > ≈ 101.6, that Ka(r) = 1 does capture

the boundary between distributed reactions and flamelets. With decreasing length

scales, the deviation between the distributed reactions boundary and the Ka(r) = 1

line becomes increasingly large. In other words, smaller length scales require larger

levels of turbulence, u′(r), in order to effectively quench the flame. These findings by

Poinsot et al. [90] were corroborated by experimental vortex-flame studies performed

by Roberts et al. [94]. All in all, there is still much to be understood in defin-

ing combustion regimes for turbulent flames and the appropriate physics required to

appropriately model turbulent flames.

2.2 Shear Layer Flamelet Stabilization Physics

There are several sets of physics of interest that could act to alter the local burn-

ing characteristics of the flame at the attachment point, as shown in Figure 2.9. As

discussed, the local strain conditions at the attachment point can alter the flame
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through flame stretch, κs, causing flame extinction as κs approaches the extinction

stretch rate, κext. The stability of shear layer stabilized flames is also sensitive to the

composition and temperature of the recirculation zone. Experimental and numeri-

cal studies of counterflow flames have demonstrated the enhanced stability achieved

through higher backside, product stream temperatures [21, 78]. Mixing between the

recirculation zone and the incoming reactants is another pathway through which the

local burning characteristics at the attachment point can altered. Although this path-

way will result in dilution of reactants, the heat added to the mixture can overcome

any decrease in reactant concentrations and enhance local flame stability. Finally,

in order for the flame to maintain attachment in the shear layer, it must match the

local flow velocity magnitude and direction at an anchoring location. For this dis-

cussion we assume that this experiment is within the corrugated flamelets regime.

This assumption is supported by estimates of u′/Sd and l/δf on the order of ≈ 5 and

≈ 101 respectively as well as by the behavior noted in CH-PLIF images of the flame

where the high intensity regions of CH-PLIF in the shear layer occur as a continuous

feature.

2.2.1 Stretched, Premixed Flames

Flames which are stabilized in shear layers are subject to high degrees of flame stretch

that alters burning rates, flame speeds, edge velocities, and can ultimately lead to

flame extinction [66, 68]. The underlying physics of flame stretch which engender these

changes in flame speed and flame temperature are discussed in detail by Law [68] and

later in this section. First, the stretch equations are presented for hydrodynamic strain

sources for a swirling flowfield. These equations describe the manner in which fluid

strain contributes to flame stretch. A separating shear layer is examined and used

to demonstrate how normal and shear strain contribute to flame stretch. Lastly, the

effect of flame stretch on important flame parameters influencing flame stability, such
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Figure 2.3: Flow and flame coordinate system for a centerbody stabilized, axisym-

metric flame in cylindrical polar coordinates.

as displacement flame speed, Sd, and the extinction stretch limit, κext, is discussed

using results from opposed jet flame calculations.

2.2.1.1 Fluid Strain Rate Contributions to Flame Stretch

As discussed in the previous sections, flames are limited by a maximum stretch which

they can withstand. Therefore, in order to stabilize in shear layers, the local flame

stretch must be less than this limit. Although, the fluid mechanic strain rates in shear

layers can be much larger than the extinction stretch rate, flames are still capable of

existing. This is explained by analyzing how fluid mechanic strain rates contribute to

flame stretch. As is be demonstrated below, the magnitude of the shear and normal

strain rate components of the symmetric strain rate tensor, Si,j, are quite different

from the flame stretch rate, κ. Roll up of the shear layer, caused by the Kelvin-

Helmholtz instability, can result in curvature induced flame stretch, κcurv, and flame

stretch caused by unsteady effects. The coordinate system used for this discussion

is shown in Figure 2.3, which illustrates a flame anchored upon a bluff body. This

discussion closely follows a related analysis of flame stretch rates in Zhang et al. [127].

In order to understand the relationship between the components of flow strain rate,
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Si,j, and flame stretch rate, κ, it is useful to first write the equation for flame stretch

in its most general form:

κ =
1

Af

dAf
dt

(2.2)

Fundamentally defined, flame stretch is the area normalized, time rate of change of

the flame material surface. Very simply, as is evident in eq. 2.2, positive stretch rates

results from an increase in the area of the flame material surface and negative stretch

rates from a decrease. Concealed in this simple representation of flame stretch are the

fluid mechanical strain and flame curvature sources of flame stretch. This expression

can be related to these quantities as follows [91]:

κ = −ninj
∂ui
∂xj

+
∂ui
∂xi︸ ︷︷ ︸

κs

+SL

(
∂ni
∂xi

)
︸ ︷︷ ︸

κcurv

(2.3)

κ = −~nf~nf : ∇~u+∇ · ~u︸ ︷︷ ︸
κs

+Sd (∇ · ~nf )︸ ︷︷ ︸
κcurv

(2.4)

Note that equations 2.3 and 2.4 are identical in form but shown in index and Gibb’s

notation respectively. For both equations, the dependence of flame stretch on the

orientation of the flame, fluid strain rates, the local flame speed, and the curvature

of the flame is clearly evident. The terms have been grouped by contributions arising

from hydrodynamic strain rate sources, κs, and from flame curvature, κcurv. κs is

non-zero only if the flow has spatial gradients, where as κcurv contributes to flame

stretch only if ∇ · ~nf is non-zero. For this analysis, we focus on flame stretch due to

hydrodynamic strain for a two dimensional, steady flame in cylindrical polar coordi-

nates and compressible flow upstream of the flame sheet as observed in the r−z plane,

κs,r−z. Although far upstream of the flame front, we expect the flow to be incom-

pressible in the absence of temperature induced density gradients, the compressible

flow equations derived are valid throughout the measurement domain. Under these

assumptions, the κs,r−z term may be written as:
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κs,r−z =
ur
r

+
∂ur
∂r

(
1− n2

r

)
+
∂uz
∂z

(
1− n2

z

)
− nrnz

(
∂uz
∂r

+
∂ur
∂z

)
(2.5)

From eq.(2.5), we can explicitly identify the flame stretch due to normal (sym-

metric) and shear (anti-symmetric) flow strain as:

κnormals,r−z =
ur
r

+
∂ur
∂r

(
1− n2

r

)
+
∂uz
∂z

(
1− n2

z

)
(2.6)

κshears,r−z = −nrnz
(
∂uz
∂r

+
∂ur
∂z

)
(2.7)

The κnormals,r−z term describes the impact of flow acceleration and deceleration, while

κshears,r−z quantifies the manner in which shearing flow strain translates into flame stretch.

Both terms are clearly nonzero in regions of high shear in flame stabilization regions,

as the approach flow boundary layer separates into a significant change in cross sec-

tional flow area. Equations (2.6) and (2.7) represent the two-dimensional fluid strain

contributions to flame stretch that are resolved from the combined PIV and CH-PLIF

planar measurements. Although these measurements will not resolve the out of plane

contributions, it is argued that they are small in comparison to the measured quanti-

ties due to the flame being axisymmetric in the nearfield [127]. The contributions of

strain terms not observable in the r − z plane to stretch are presented and discussed

later in this section.

The manner in which these flow strain terms lead to flame stretch is illustrated

in Figure 2.4. A flame is shown in flowfields representative of positively sheared

and decelerating flows with the flow velocity at the flame front projected into the

flame tangential and normal directions. In both cases, flame stretch occurs due to

variations in tangential flow velocity along the flame sheet. The contributions of shear

and normal strain to flame stretch are discussed in detail next.

Figure 2.4b depicts the manner in which shear strain, manifested through positive,

transverse gradients in axial velocity, ∂uz
∂r
>0, causes positive stretching of the flame,

κs>0. This is evident by the positive gradient of flow velocity tangential to the flame
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(a) Normal Strain, ∂uz
∂z < 0 (b) Shear Strain, ∂uz

∂r > 0

Figure 2.4: Illustration of the manner in which flow normal strain (2.4a)and flow

shear strain (2.4b) cause flame stretch through variation in tangential flow velocity

along the flame sheet.

front, which effectively acts to increase the flame front area. Figure 2.4a demonstrates

the isolated effect of normal strain contributions to flame stretch. For this example

we have illustrated this effect assuming that the axial flow is decelerating, ∂uz
∂z

< 0,

demonstrating the negative stretching or compression of the flame, κs<0. Again, this

effect is manifested through a variation of tangential velocity along the flame front,

which in the illustration shows a negative gradient of tangential velocity.

Note that the effect of normal strain on flame stretch in this example is the

opposite for flow fields which exhibit flow acceleration, however for our flow field of

interest, we assume that the flow is locally decelerating. This can be justified by

bulk flow arguments of flow deceleration caused by the abrupt increase in flow cross-

sectional area at the point of flame attachment. However, as is demonstrated in the

results section, a bulk flow argument overlooks the details of the strain field within

the structure of the shear layer.

The equations for hydrodynamic stretch observed in the r − θ plane, κr−θ, repre-

senting the potential out of plane strain contributions to flame stretch not captured
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in this study are presented next:

κs,r−θ =
1

r

∂uθ
∂θ

(
1− n2

θ

)
− nθnr

(
∂uθ
∂r

+
1

r

∂ur
∂θ
− uθ

r

)
−nznθ

(
∂uθ
∂z

+
1

r

∂uz
∂θ

)
− n2

θ

ur
r

(2.8)

The strain terms in eq. 2.8 could be measured by performing planar, stereo-PIV

measurements in the r − θ plane. However, the 3D orientation of the flame must be

captured completely in order to resolve all strain contributions to stretch. Using a two

planar approach, one r−z and one r−θ, to capture the flame orientation, this would

limit the resolution of the complete hydrodynamic stretch conditions to a point. We

next consider the impact of the potential out of plane contributions in the r−θ plane

on our interpretation of stretch conditions measured in the r−z plane. We argue that

these terms are small relative to resolved terms because of the axisymmetric nature

of the flame in the nearfield close to the centerbody [127]. For reference, Figure 2.5

shows example OH-PLIF images taken in the r − θ plane, showing that while there

is some fine scale wrinkling, the flame is nearly axisymmetric.

Revisiting eq. 2.8 note that the products of the time averages of each individual

term is zero, as for instance, ∂uθ/∂θ or n̄θ. As such, these terms only can lead to time

averaged contributions to flame stretch if the fluctuations are correlated. In contrast,

the time average of resolved quantities such as ∂uz/∂z and ∂uz/∂r are strongly non-

zero.

While extensive measurements and analysis exist for the maximum stretch rates

that flames can withstand [3, 67], less is known about the extinction conditions for the

edge flames that occur near the point of initiation of reaction. In addition, very little

data or analysis is available on the actual stretch rates that flames see. Moreover,

scalings for these stretch rates is not straightforward. For example, a hydrodynamic

strain rate of the flow in a shear layer of thickness, δ, and velocity, u, can be estimated

to scale as u/δ. However, fluid mechanic strain and flame stretch values can be quite
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Figure 2.5: Typical OH-PLIF images in the r − θ plane 4 mm downstream of

the dump plane for an inner shear layer (ISL) stabilized flame (upm = 35 m/s at

Tph = 366 K, φ = 0.65, 1.42” centerbody, 4.2” combustor, Sm = 0.8). Red line

indicates location of centerbody relative to flame.
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different [127], and their relationship is a very sensitive function of the flame angle

with respect to the flow, among other parameters. In addition, it has been shown

that the sensitivity of flame stretch to the velocity is not straightforward, which may

explain the complex velocity scalings often observed for blowoff [104].

2.2.1.2 Premixed Flame Response to Stretch

The fundamental pathway through which stretch influences the flame is through an

imbalance of heat and species diffusion, or non-equidiffusion effects. Diffusional im-

balances of heat and species occurs as a result of the size of the material surface

parallel to the flame front changing within the flame. These material surface area

changes can result from the strain induced or curvature induced sources introduced

in the previous section. The contributions from a single source of flame stretch can

be visualized through representative control masses as shown in Figure 2.6 for normal

strain and shear strain induced flame stretch. Shown is the deformation of a fluid

element from the onset of the preheat zone to the product side of the flame along with

the representative pathways for species diffusion and heat diffusion. For simplicity,

we show the competing fluxes of heat and species diffusion within the context of a

non-unity Lewis number mixture.

These examples clearly show in both cases how the presence of stretch can al-

ter the pathways of heat and species diffusion, potentially altering the local burning

properties. This can be observed by examining the diffusional pathways, identifying

where heat produced by the control mass, and reactants initially within the control

mass diffuse to. For example, let us examine the case of positive flame stretch induced

by an axially decelerating, or negative normal strain, flow field (Figure 2.6a). Shown

in this schematic is a control mass of reactants just upstream of the flame front, the

location of the flame, and the control mass post flame. The dashed lines connecting

the two control masses represent streamlines and thus no mass is convected across
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(a) Normal strain induced positive stretch

(b) Normal strain induced negative stretch

Figure 2.6: Schematic representation of the manifestation of non-unity Lewis num-

ber stretch effects for examples of positive (2.6a) and negative flame stretch (2.6b).

these lines. However, mass and heat can diffuse normal to the flame and across these

streamlines. For the control mass in this example, species diffusion from neighboring

control mass alters the reactant concentration locally while heat produced by the

control mass diffuses to preheat the control mass as well as to neighboring control

mass. For the former case, flame reactivity could potentially increase through in-

creases in deficient reactant concentration while for the latter case, flame reactivity

could potentially decrease as a result of heat losses. The net effect that stretch has

on this flame is dependent upon the relative strength of these two opposing pathways

as evaluated through a Lewis number defined as follows:

Le =
α

Ddeficient

(2.9)

where α is the thermal diffusivity of the products and Ddeficient is the mass diffusivity

of the deficient reactant species. For mixtures with Le > 1, and with positive stretch

(κ > 0), heat losses are dominant causing flame reactivity to decrease which results

in lower flame temperatures and decreased flame speeds. Note the opposite is true

for Le < 1 mixtures because mass diffusivity of the deficient species is dominant.
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As can be deduced from the representative schematic for negative stretch (κ < 0),

non-equidiffusion pathways have the opposite effect on a given non-unity Le number

mixture when the stretch rate changes sign.

Because of the aforementioned non-equidiffusion effects, the burning characteris-

tics of stretched flames are vastly different than their 1D counterparts. As an example,

the response of a premixed methane-air flame to stretch is shown in terms of its flame

speed defined by the local displacement speed just upstream of the flame preheat

zone, Sd,ph, in Figure 2.7. These results were captured using the OPPDIF module

of CHEMKIN using GRI Mech 3.0 [107]. Compared to unstretched laminar flame

speeds, S◦d,ph, the flame speed of stretched flames for the test cases shown are 2 − 4

times faster. In this case, flame speed is enhanced by flame stretch until an upper

limit, marked by the turning point in the flame speed curve. The maximum stretch

rate which the flame can withstand, the extinction stretch rate, κext, is defined as the

maximum flame stretch at the turning point. Note that the response of the flame to

stretch is different for each of the methane-air mixtures and that κext is also dependent

upon the φ of the mixture as well.

For example, Figure 2.8 plots calculated extinction stretch rates of methane-air

mixtures as a function of reactant temperature for several lean equivalence ratios. κext

increases with φ for these lean mixtures and has an exponential dependence on Treac.

Thus one might reason that lean blowoff of a shear stabilized flame to be the result

of the mixture’s κext dropping below some critical limit. The evaluation of κext as a

fundamental parameter requires an understanding of the stretch rates that practical

flames experience, as well as the extinction stretch rates numerically modeled or

experimentally measured using fundamental combustors. This comparison is critical

is critical to understanding and modeling shear layer flame stabilization.

Lastly, radiative heat losses can potentially alter the burning properties and limits

of stretched flames. We briefly mention numerical studies which have investigated the

42



0 1000 2000 3000 4000 5000
40

60

80

100

120

140

160

180

κs [1/s]

S
d

[c
m
/
s]

 

 

0.7

0.8

0.9

1.0

1.1

φ

Figure 2.7: Laminar flame speed sensitivity, Sd, to hydrodynamic flame stretch, κs,

for methane-air mixtures of varying φ at a preheat temperature of 533K.

Figure 2.8: κext dependence upon reactant temperature, Treac, for lean mixtures of

methane-air.
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Figure 2.9: Schematic of recirculation zone physics affecting flame stabilization

through compositional and thermal changes in reactant composition and heat loss

across the flame.

effect of radiative heat transfer on the extinction limits and flame speeds of premixed

stretched flames [85, 55, 56, 57, 54]. For example, studies performed by Ju et al. on

lean, premixed, methane-air mixtures, using the opposed jet configuration, showed

decreasing radiative heat loss with stretch. In fact, at the extinction limit, radiative

heat losses were insignificant compared to the heat produced by the flame.

2.2.2 Recirculation zone physics

The enhancement of flame stability brought about by the presence of a recircula-

tion zone has been implemented in practical combustor geometries. Enhanced flame

stability is the result of both favorable kinematic conditions in the region of the re-

circulation zone and enhanced mixture reactivity caused by the recirculation of hot

products to the incoming reactant stream. It is the pathway of the recirculated

products which we are most interested in discussing related to this work. There are

several processes which are represented in Figure 2.9 which can potentially alter the

effectiveness of the recirculation zone feedback loop.
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First, downstream of the flame attachment point, in regions where the flame

separates the reactants from the products, the temperature and composition of the

recirculation zone, TRZ and χRZ , affects the flame through diffusional transport of

heat and radicals to or from the product side. Depending on the composition and

temperature of the recirculation zone, it can result in either enhancement or degra-

dation of the flame with increasing or decreasing reactivity of the mixture upstream

of the flame front. As a simple example, if the recirculation zone temperature is less

than the flame temperature, the flame will incur diffusional losses of heat to the recir-

culation zone side of the flame resulting in decreased flame temperatures and flame

speeds.

Next, focusing our attention on the region upstream of the flame attachment point

in Figure 2.9, there is another pathway which could alter the burning properties of

the reactant mixture. With the flame stood off from the edge of the centerbody, there

is a region in which the recirculation zone can mix with the reactant stream. This

dilutes the reactant mixture locally, decreasing the local equivalence ratio for lean

mixtures, but ultimately increases mixture reactivity through an increase in reactant

temperature. This set of physics is similar to exhaust gas recirculation (EGR) tech-

niques and are referred to as such. We expect as well that increasing mixing between

reactants and recirculated products through EGR, will result in higher extinction

stretch rates. The sensitivity of flames to recirculation zone temperature, TRZ , and

EGR are considered to be the dominant physical pathways and are assessed in the

numerical modeling section. While heat losses from the recirculation zone to com-

bustor hardware, Qcb, could potentially alter TRZ , and boundary layer heating, Qbl,

could alter Tph, these secondary pathways are not considered in this study.
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2.2.3 Anchoring Mechanisms

Flamelet flame stabilization requires that flame displacement speed, Sd, must match

flow velocity magnitude and direction at at least one point in the flow, which will act

to anchor the flame throughout the combustor. This classical explanation of flame

stabilization, where the flame is propagating normal to its surface, would envision

a flame orienting itself perpendicular to the flow at the attachment point to meet

the requirement for flame anchoring. We will refer to flames stabilized in this way

as normal propagation stabilized. However, real flames may terminate at a point

resulting in a flame edge at the anchoring location. Flame anchoring would require

the propagation of flame at the edge, or the edge flame speed, vf , and not Sd, to

match local flow velocity. Although edge flame stabilization in practical combustors

has not been extensively discussed in the literature, it is also a possible means for

flame anchoring [12, 74, 31]. We will refer to flames stabilized in this manner as edge

flame stabilized.

These topology of flame and flow field in the attachment point region is shown in

Figure 2.10 for normal propagation and edge flame stabilized conditions. We note that

the flame orientation at the most upstream location is perpendicular to the flow when

normal propagation stabilized and tangential to the flow when edge flame stabilized.

Thus we expect to be able to infer the physics controlling flame anchoring based on

the orientation of the flame relative to the flow. Distinguishing between these two

modes of stabilization is important because edge velocities can be significantly higher

than displacement speeds of 1D flames [31, 29, 4]. It is therefore possible that the

edge flame stabilization process may be preferred in high velocity flows, as opposed

to normal flame propagation.
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Figure 2.10: Illustration of a normal propagation stabilized flame (left) and an edge

flame stabilized flame (right) in the flame anchoring region.
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CHAPTER III

TEST FACILITY AND DIAGNOSTIC TECHNIQUES

This chapter provides the relevant details of the experimental facility and diagnostic

techniques used in these studies. First the details of the annular swirl combustor

experimental facility is described, followed by the details of the diagnostic techniques

utilized to study the flow field and the flame.

3.1 Test Facility

The nominal experimental facility is sketched in Figure 3.1 and can be divided into the

following sections: a reactant supply system, flow conditioning and fuel/air mixing

(A), premixer (B), combustor (C), and exhaust (D). First the supply of air and fuel

upstream of their entry into the schematic shown is described. We begin with a

discussion of the air and natural gas supply to the test facility. The air and natural

gas lines supplied are regulated to upstream supply pressures of ≈ 60 psi and ≈ 25 psi

respectively. The composition of the natural gas supplied to the lab does vary slightly

but not considerably as shown in Table 3.1. Shown in the table is the composition of

the natural gas supplied to the lab over the period of a month in terms of mean and

standard deviation of the molar percentages of the major constituents of the mixture.

The natural gas supplied to the lab is ≈ 97.5% methane on average but also includes

small quantities of nitrogen, carbon dioxide, and higher order hydro-carbons.

The fuel and air mass flow rates are separately measured using sub-critical, cali-

brated orifice plates, installed in a flange union. The pressure sensors were installed

in the pressure taps located in the flanges of the union. For reference, Table 3.2 shows

the model of the pressure sensors used in the measurements of static and differential

pressure for the calculation of flow rates fuel and air mass flow rates.
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(a) Test facility schematic
(b) Picture of combustor section

Figure 3.1: Left: Schematic of the test facility showing flow conditioning and fuel/air

mixing (A), premixer (B), combustor (C), and exhaust (D) sections. Right: Picture

of combustor section of test facility.

Table 3.1: Natural gas supply composition as determined from reported composition

from 4/1/2007-4/29/2007

CH4 N2 CO2 C2H6 C3H8

Mean % 97.5494 1.0875 0.4273 0.6875 0.1309

Standard Deviation % 0.7026 0.0987 0.2046 0.4036 0.0875

n-C4H10 C5H12 Iso-C5H12 Neo-C5H12 C6H14

Mean % 0.0377 0.0004 0.0156 0.0105 0.0218

Standard Deviation % 0.0238 0.0006 0.0103 0.0071 0.0142

Table 3.2: Pressure sensors for orifice plate measured mass flow rates

Static Pressure Sensor Differential Pressure Sensor

Fuel Orifice Plate Omegadyne PX409-100GI Omega PX771-300WCDI

Air Orifice Plate Omegadyne PX409-050GI Rosemount 3051CD1A22A1AB4
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Figure 3.2: Uncertainty in upm, σupm , as a function of upm for a Tph of 533K.

The error in the flow velocity in the premixer section, σupm , resulting from un-

certainties in the measured static and differential pressure across the orifice plate,

is calculated to be 0.50 m/s and 0.25 m/s for nominal premixer velocities, upm, of

35 m/s and 70 m/s at reactant temperatures of 533 K and for the smaller center-

body test configuration. For these uncertainties, no uncertainty in cross-section area

or mixture density was assumed. Uncertainty in the reported velocity over a range of

premixer flow velocities is shown in Figure 3.2. For the test space shown, the absolute

and relative uncertainty in flow velocity decreases with increasing premixer velocities.

Next, the uncertainty in the reported equivalence ratio is shown as a function of

φ for both velocities in Figure 3.3. Uncertainty in φ, σφ, is dominated by uncertainty

in the mass flow rate of fuel, ṁf , with a local minimum in uncertainty, occurring near

φ = 0.9, of σφ = 0.018 for upm = 35 m/s and σφ = 0.005 for upm = 70 m/s test cases.

Note that uncertainties in φ are considerably less for the higher premixer velocity test

case.

After flow rate measurement, the air supply then enters a 50 kW WATLOW heater

raising the air to a preheat temperature of 533K. The air enters the test section as
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Figure 3.3: Uncertainty in φ, σφ, as a function of φ for premixer velocities, upm, of

35m/s and 70m/s.

shown in Figure 3.1a from two sides of a pipe T-junction. It then passes through a

perforated plate with a blockage ratio ≈ 53% (Item 1 of Figure 3.1a), and into the

preconditioning section (A). This blockage plate was created using a 4” schedule 40

blind pipe flange by drilling the hole pattern as shown in Figure 3.4.

Approximately 3.3” downstream of the blockage plate, natural gas is injected into

the flow through eight equally spaced radial fuel injectors (Item 2 of Figure 3.1a) as

shown schematically in Figure 3.5. These fuel injectors were built using 1/4” stainless

tubing. The end of the tube was welded shut and holes along the tube were drilled

through the tube. Table 3.3 provides the radial location of the holes relative to the

flow center, rc, and relative to the end of the fuel injector, lc, and the diameter of the

drill bit used to machine the through holes at each location, dhole. The fuel injectors

are oriented such that the through holes are perpendicular to the bulk flow.

After fuel injection, there is a settling length of ≈ 39” to allow for the fuel and

air to mix before passing through a honeycomb flow straightener and a wire mesh

(Items 3 and 4 of Figure 3.1a) to straighten the flow and reduce turbulence [100]. The

model of the honeycomb flow straightener is shown in Figure 3.6. The honeycomb
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Figure 3.4: Drawing of blockage plate hole pattern, Item 1 in Figure 3.1, manu-

factured from a 4”� schedule 40 blind pipe flange. Hole pattern results in an area

blockage of ≈ 53%.

Table 3.3: Fuel injector hole locations and sizes. Hole locations are indicated relative

to flow center, rc, and the end of the fuel injector, lc.

rc [inches] lc [inches] dhole [inches]

0.63 .25 0.0550

0.98 .60 0.0550

1.23 0.85 0.0595

1.44 1.06 0.0595

1.62 1.25 0.0635
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Figure 3.5: Schematic of fuel injector arrangement shown from a plane transverse to

the flow direction. Shown are the outer wall of the premixer section, 8 fuel injectors,

the fuel injection path for a single injector, and the center obstruction from the

centerbody feature.
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Figure 3.6: Cross-section of honeycomb flow straightener showing axisymmetric cell

pattern of honeycomb as well as the outer wall and centerbody of the annular flow

section. The honeycomb is 2” in length, has cell wall thicknesses of 0.020” throughout

with a typical cell widths of 0.14” to 0.173” and a radial cell height of ≈ 0.30”.

is 2 inches long, with a constant wall thickness of 0.020” throughout. The cell size

of the honeycomb varies, increasing in cell width radially outward. Cell width values

range from 0.14” to 0.173” with radial cell heights of ≈ 0.30”. Overall, this results

in an area blockage of ≈ 14%. The wire mesh is installed ≈ 1.75” downstream of the

end of the honeycomb, made of 1/16” diameter wire in 0.3”× 0.3” mesh sizes.

Upon entering the premixer section (Section B of Figure 3.1a) the outer and inner

diameter of the test section are smoothly transitioned to match the dimensions of the

annular cross-section at the dump plane (douter = 2.44”, dinner = dcb”). This transition

occurs over a length of 6.75”, the profile of which is determined by the hyperbolic

tangent function. For reference, Figure 3.7 shows the key geometric dimensions and

details of the premixer section. Note the location of the ”Swirler Mid-Plane” at which

the swirler inlet conditions were characterized, as well as the ”Dump Plane” marking

the beginning of the combustor and plane at which the premixedness of the flow was

characterized as described in more detail in the following text.

In order to provide boundary conditions for computational efforts and to verify
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Figure 3.7: Cross-section of premixer section of test facility showing key dimensions

of the contraction section, swirler, and dump plane.

the effectiveness of the flow conditioning measures, the axial flow conditions at the

mid-plane of the swirler, were characterized using laser Doppler velocimetry (LDV)

measurements which are presented in Table 3.4 and Figure 3.8 for upm = 35 m/s,

and Table 3.5 and Figure 3.9 for bulk flow for upm = 70 m/s. Figure 3.10 defines the

relative locations at which the velocity measurements were taken. Two points follow

regarding the velocity conditions at the this location, which are representative of the

swirler inflow conditions, for both premixer velocities. The velocity profile is a top

hat profile, with velocities uniform in the bulk of the cross-section, and there are low

levels of turbulence away from the shear layers.

The flow then passes through a 16 blade, aerodynamically designed swirler (Item

5 of Figure 3.1a) with the trailing edge of the vanes at fixed angles of either 45◦

or 37◦ relative to the oncoming flow. Due to the proprietary design of the swirler,

there are limited details that can be provided on the exact airfoil profile of the swirler
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Figure 3.8: Swirler inlet axial velocity profile measured at swirler inlet plane where

router = 1.22” and rinner = rcb = 0.71”, for a bulk premixer velocity of upm = 35 m/s.
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Figure 3.9: Swirler inlet axial velocity profile measured at swirler inlet plane where

router = 1.22” and rinner = rcb = 0.71”, for a bulk premixer velocity of upm = 70 m/s.
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Table 3.4: Mean and RMS Axial Velocity Profiles at Swirler Inlet for upm = 35 m/s.

ūz [m/s] uz,rms [m/s]

r [inches] AA
′
BB

′
CC

′
AA

′
BB

′
CC

′

0.75 5.4 32.3 28.1 12.0 3.0 4.3

0.79 35.8 35.5 35.4 1.9 1.9 2.2

0.83 36.7 36.7 36.7 0.8 1.0 1.0

0.87 36.9 36.9 36.8 0.6 0.7 0.7

0.91 36.9 36.9 36.9 0.7 0.7 0.7

0.94 36.9 36.8 36.8 0.7 0.7 0.7

0.98 36.9 36.8 36.7 0.7 0.7 0.7

1.02 36.9 36.7 36.7 0.7 0.7 0.7

1.06 36.8 36.4 36.5 0.8 1.0 0.8

1.10 36.6 35.3 36.1 1.1 1.9 1.1

1.14 35.7 32.9 34.9 2.1 2.8 2.1

1.18 32.0 27.1 31.7 4.6 4.1 3.5

1.22 24.7 10.9 21.5 7.6 5.8 5.7

1.26 13.3 -0.5 2.4 8.8 2.2 3.8

blades. Approximately 4.5 inches downstream of the trailing edge of the swirler

blades, the annular cross-section abruptly transitions to a circular cross-section at

the dump plane.

For reference, the fuel concentration at the dump plane was measured using a gas

analyzer that collected local samples from a tube directed upstream while positioned

at discreet locations at the dump plane. From these measurements, the uniformity of

the fuel-mixedness was characterized at the dump plane. The gas probe was moved

from location to location with local concentrations of natural gas recorded after al-

lowing enough time for the measurement value to stabilize. These measurements
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Table 3.5: Mean and RMS Axial Velocity Profiles at Swirler Inlet for upm = 70 m/s.

ūz [m/s] uz,rms [m/s]

r [inches] AA
′
BB

′
CC

′
AA

′
BB

′
CC

′

0.71 62.4 51.5 60.3 6.1 8.1 6.1

0.75 70.6 65.9 70.7 3.4 5.3 4.0

0.79 73.4 72.4 74.3 1.7 3.2 1.9

0.83 73.8 74.8 74.8 1.4 1.7 1.3

0.87 73.8 75.2 74.7 1.3 1.3 1.2

0.91 74.0 75.2 74.7 1.3 1.3 1.3

0.95 74.0 75.2 74.6 1.3 1.3 1.2

0.98 74.0 75.2 74.6 1.3 1.3 1.3

1.02 74.0 75.1 74.3 1.3 1.4 1.3

1.06 73.6 74.8 73.5 1.8 1.7 1.8

1.10 71.9 73.0 71.1 3.3 3.0 3.4

1.14 66.1 68.0 64.4 6.3 4.9 5.4

1.18 50.5 57.8 46.1 12.3 6.5 9.8

1.22 21.0 22.9 5.4 17.1 10.4 6.4
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Figure 3.10: Schematic of an annular cross-section of the premixer region showing

the locations where flow and mixture characterization measurements were performed

along radial profiles.

were performed along four radial arms, 90◦ apart as shown in Figure 3.10. The radial

dependence of equivalence ratio at these four locations is shown in Figure 3.11 for

premixer velocities of upm = 35 m/s and upm = 70 m/s and summarized in Table 3.6.

Note that for the most part the spatial variance of φ is within ±5% of the radially

averaged equivalence ratio, φ̄.

In addition to equivalence ratio measurements performed along radial arms at fixed

θ, measurements were also performed circumferentially at a fixed radius of r = 0.88”

and for both premixer velocities. These results are summarized in Table 3.7 and

Figure 3.12. Similar to the radial distribution of φ, the circumferential variation in

local equivalence ratio is less than ±5% of the azimuthally averaged φ at that fixed

radius.

The combustor section, Section C of Figure 3.1a, is a cylindrical quartz tube.

The face plate of the combustor is replaceable, allowing for different diameter quartz
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Figure 3.11: Measurements of normalized equivalence ratio taken at the combustor

dump plane for premixer velocities of upm = 35 m/s and upm = 70 m/s at a nominal

equivalence ratio of φ = 0.50. Local values of φ were normalized by the mean value

of all measured φ.

tubes to be used, which changes the combustor diameter as well as the dump ratio,

Aannulus/Acomb. In addition, the test facility could accommodate variations in quartz

tube length. For reference, the baseline combustor geometry for this facility was

dcomb = 135 mm and lcomb = 202.5 mm.

Normally, there would be a contracting exhaust section at the end of the combus-

tor, providing a nominal area contraction of 30%, as was the case for general studies

of flame stabilization in this facility. However, in order to obtain PIV and CH-PLIF

measurements over a long enough time, the quartz tube and corresponding exhaust

contraction were removed for this testing effort, thereby eliminating the issue of seed-

ing particles collecting on the quartz tube. While this limited our detailed studies

to the inner shear, as the flame does not stabilize in the outer shear layer for this

unconfined case, this resulted in much longer run times. In addition to changing the

nature of the ORZ, the removal of the contraction certainly changes the structure of
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Table 3.6: Normalized equivalence ratio, φ/φ̄, measured along radial arms at the

dump plane as shown in Figure 3.10.

upm = 35m/s upm = 70m/s

r A-A B-B C-C D-D A-A B-B C-C D-D

0.64” 1.044 1.004 1.034 1.009 1.009 1.015 1.042 0.976

0.79” 0.997 0.980 1.065 1.006 1.050 1.009 1.041 0.976

0.93” 0.977 0.967 1.056 1.000 1.010 0.981 1.037 0.986

1.08” 0.966 0.938 1.048 1.007 0.974 0.960 1.038 1.000

1.22” 0.969 0.949 0.992 0.991 0.965 0.949 0.984 0.998

the vortex breakdown region of the flow field as well [38, 39]. In order to monitor the

thermal state of the combustor during operation, the bulkhead and the centerbody

are instrumented with thermocouples. Typical flow rates that the test facility was

operated at have Reynolds numbers on the order of ≈ 104−105 where Re = douter upm
ν

.

3.2 Diagnostic Techniques

For these studies, Planar Laser Induced Fluorescence of CH radicals (CH-PLIF) and

Particle Image Velocimetry (PIV) were used to characterize the 2D, planar behavior

of the flame and flow field. These measurements were performed simultaneously

enabling the study of flame-flow interaction. The details of the CH-PLIF and PIV

laser systems and optical setup are described in the following sections.

3.2.1 CH-PLIF flame measurements

CH-PLIF measurements were obtained using a Light Age PAL 101 frequency-doubled

alexandrite laser system tuned with an intercavity birefringent filter. The broadband,

long pulse laser was tuned to the R-bandhead of the B-X(0,0) transition at a wave-

length of 387.2 nm, with a linewidth of ≈ 0.01 nm (0.7 cm−1) and pulsewidth of
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Figure 3.12: Measurements of normalized equivalence ratio taken at the combustor

dump plane for premixer velocities of upm = 35 m/s and upm = 70 m/s at a nominal

equivalence ratio of φ = 0.50. Circumferential measurements of φ were normalized

by the mean value of all measured φ at r = 0.89”.

≈ 70 ns. By exciting multiple CH transitions with a long pulse length, strong fluo-

rescence signals are obtained within the linear excitation limit [86]. While capable of

double-pulse operation, the laser was operated in single pulse mode with energies of

approximately 15 mJ , with the pulse timed to occur between the two pulses of the

PIV laser system. A laser sheet approximately 100 µm thick and 9−10 mm wide was

created using uncoated fused silica lenses. Images of the resulting fluorescence from

A-X transitions near 430 nm were captured with an intensified (Gen III HB filmless)

CCD camera (PI-Acton 512× 512) with a quantum efficiency of 45% in the spectral

region of interest. The intensifier was gated to 300 ns to minimize chemiluminescence

pollution and to avoid irising. A series of O.D. 6 band pass filters were used in order

to reject elastic scattering.
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3.2.2 PIV velocity measurements

A dual head, frequency doubled, flash-lamp pumped Nd:YAG laser, with measured

pulse energy of approximately 200 mJ was used for 10 Hz PIV measurements. The

PIV beam was optically conditioned to produce a collimated laser sheet of approxi-

mately 9 mm in width and 1 mm in thickness sharing sheet optics with the CH-PLIF

laser. Figure 6.12a shows a representative image of the location of the interrogation

region where these measurements were performed. The laser thickness was chosen

based on loss-of-pairs considerations due to the high out of plane motion expected for

this swirling flowfield. Given the swirler vane angle, θvane, out of plane velocities were

assumed to be on the order of the mean bulk flow velocity, upm = 35 m/s. The laser

sheet thickness was set at 1 mm, requiring a shot separation time of 5µs to mitigate

the effect of loss of pairs, expected to be less than 20% for these conditions. For the

higher velocity test case, upm = 70 m/s, the shot separation time was set to 2µs

for similar concerns of loss of pairs. A 532 nm interference bandpass filter was used

to reject other sources of light. Imaging was performed with a PCO CCD camera,

equipped with a Nikon Nikor f = 55 mm Macro lens with a combination of extension

rings. The flow was seeded with 1 − 2 µm alumina particles. The seeding system

consisted of a passive agitation, swirling seeder, which operated with about 5% of

total air flow after preheating. The seeding particles were injected 10 cm upstream

of the fuel injection, to ensure uniform seeding density. Particle flow following error

and frequency response is discussed in a previous paper [22] and in more detail in the

Appendix section.

3.2.3 Measurement resolution of flame and flow

This section discusses the ability of the raw data obtained to resolve relevant features

of the flow field, as well as relevant characteristics of the flame. Most importantly, the

ability to resolve the location and orientation of the CH-layer is critical to providing
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meaningful flow and stretch characteristics of the flame. In addition, special attention

is paid to the ability of these measurements to resolve the orientation of the CH-layer

at the leading edge. This is particularly important in this study’s evaluation of the

stabilization mechanism at the leading edge as the flame orientation is expected to

be different for normal propagation stabilized and edge flame stabilized flames, as

discussed in Section 2.2.3.

PIV interrogation windows of 32× 32 pixels2 with 50% overlap resulted in a ve-

locity field vector spacing of ∆PIV = 0.11 mm where the equivalent camera pixel

spacing of the CH-PLIF images with magnification was ∆CH ≈ 0.16 mm. For refer-

ence, a stoichiometric methane-air mixture at a reactant temperature of 533K has an

unstretched flame thickness of ≈ 0.35 mm and minimum stretched flame thickness of

≈ 0.26 mm where flame thickness is defined as:

δTf =
Tb − Tu

max(∂T/∂x)
(3.1)

with Tb as the ”burned” or flame temperature, and Tu as the ”unburned” or reactant

temperature. In addition, a minimum full width at half maximum (FWHM) CH-

layer flame thickness, δCH,FWHM
R , was determined to be ≈ 0.1mm from OPPDIF

calculations.

The ability to resolve flow conditions in the shear layer and CH-layer are discussed

next. The boundary layer thickness, defined by the location where the axial velocity

is 90% of the bulk flow velocity, is approximately 1.5 mm at the dump plane. This

shows that the PIV measurements are able to resolve the boundary layer with ≈

6 uncorrelated velocity measurements within the the boundary layer. Each data

set consisted of approximately 500 simultaneous CH-PLIF and PIV measurements.

Example images of instantaneous PIV fields with CH-PLIF are shown in Figure 3.13

for the φ = 1.0, upm = 35m/s test case. Note that the PIV vector field has been

drastically down-sampled in the figure for visualization purposes. Given that average

values of the CH-layer thickness observed, δimage, were ≈ 0.6mm, there are ≈ 4 − 5
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Figure 3.13: Sample instantaneous images of CH-PLIF and velocity vectors for

φ = 1.0, upm = 35m/s.

PIV velocity vectors within the observed CH-layer.

Next, the ability of these measurements to resolve the orientation of the flame at

its leading edge is discussed. Calculations of both flame thicknesses are shown for high

stretch rates in Figure 3.14 for φ = 1.0 methane-air mixtures at Tph = 533K. Other

relevant parameters, such as the CH-PLIF image pixel spacing, ∆CH , the average

thickness of the CH-layer, δimage, and minimum radius of curvature along the CH-

layer, Rmin, are shown as well. Note that the experimentally observed thickness of the

CH-layer, δimage, is roughly twice the value determined from OPDIFF calculations,

δCH,FWHM
R . This ”thickening” of the CH-layer is the likely the result of un-focused

or blurred CH-PLIF images as the pixel to pixel spacing, ∆CH , is small enough such

that the experimentally observed CH-layer thickness is ≈ 3 − 4 pixels thick. Based

on the observed flame thickness, the minimum wrinkle scale along the CH-layer was

defined as Rmin = 2× δimage. Rmin represents a physical limit of the smallest wrinkle

scale that is possible. These parameters will have a direct influence on the ability to

resolve the orientation and curvature of the flame at the leading edge.

Figure 3.15 shows a representative to scale schematic of the CH-layer extracted

from CH-PLIF images at the leading edge. This image assumes that the flame ”hooks”
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Figure 3.14: Comparison of temperature based flame thickness, δTf , and CH based

reaction layer thickness, δCH,FWHM
R , as a function of stretch, computed for a stoichio-

metric methane-air mixture at a Tph = 533K. For reference, the CH-PLIF image pixel

spacing, ∆CH , the observed CH-layer thickness, δimage, and minimum flame curvature,

Rmin, are shown as well.
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Figure 3.15: Schematic of representative flame hook feature with characteristic

length scales of interest as follows: δimage, observed thickness of CH-layer, δTf , tem-

perature based flame thickness, CL, centerline of CH-layer, Rmin, minimum flame

curvature based on observed flame thickness, and δhook, minimum standoff distance

required for complete flame hook.

at the leading edge, the curvature of the hook is the minimum possible, Rmin, the flame

thickness remains relatively uniform along the flame, and that the experimentally

observed flame thickness is physical. Under these assumptions, in order for a complete

”hook” feature to exist, it would require for the edge of the flame to extend a minimum

distance below the flat section of the flame, δhook = 1.5×δimage. Provided the observed

CH-layer thicknesses, this would result in δhook ≈ 0.9mm. Such a feature was not

observed in the experimental images of CH-PLIF, and from this analysis one would

conclude that a complete ”hook” feature at the leading edge of the flame does not

exist.

Next, we examine the orientation of the leading edge of the flame taking into

account that partial hooking of the flame is potentially unresolvable due to blurring
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Figure 3.16: Schematic of representative flame hook feature within a horizontal and

rectangular region of CH-PLIF with characteristic length scales of interest as follows:

δimage, observed thickness of CH-layer, δTf , temperature based flame thickness, CL,

centerline of CH-layer, Rmin, minimum flame curvature based on δTf , ∆zhook, axial

length of hook feature, n̂f , flame normal at leading edge of flame, and θf , flame angle

at leading edge.

of the CH-PLIF images. This is shown schematically in Figure 3.16 assuming that

artificial thickening of the CH-layer in the images occurs. The gray region represents

the ”real” thickness of the CH-layer, δTf , as determined from OPPDIF calculations,

with the observed boundary of the CH-layer thickness, δimage, represented by the solid

black lines. Within the boundaries of the CH-layer, a partial hooking of the flame

is possible as shown for Rmin = 2× δTf . At this minimum flame curvature, the hook

feature would extend an axial distance of δzhook ≈ 0.57mm. In other words, these

hook features, even at the minimum flame curvature, would occur over ≈ 3.5pixels

in the CH-PLIF images. In addition, the orientation of the flame at the leading edge,

n̂f , would result in a flame angle of θf ≈ 66.4◦. Thus, if a flame were to orient itself

normal to the flow field, it would be reflected both in the observable orientation at

the leading edge and in the form of a hook feature. As is discussed in more detail in

Section 6.2.1, the experimentally observed flame angles at the leading edge are near
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horizontal, θf ≈ 0◦, and lack any hook feature. Thus, the leading edge of the flame

is concluded to be edge flame stabilized.
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Table 3.7: Circumferential equivalence ratio measurements for a fixed radius, r =

0.88”, normalized by the circumferentially averaged equivalence ratio, φ̄.

r = 0.88” r = 0.88” inches

θ upm = 35m/s upm = 70m/s θ upm = 35m/s upm = 70m/s

11.9◦ 1.050 1.045 191.9◦ 0.957 0.971

23.9◦ 1.043 1.043 203.9◦ 0.953 0.965

35.8◦ 1.038 1.038 216.0◦ 0.953 0.955

47.8◦ 1.026 1.033 228.0◦ 0.960 0.958

59.8◦ 1.012 1.017 240.0◦ 0.965 0.959

71.8◦ 0.994 1.007 252.0◦ 0.969 0.959

84.0◦ 0.987 0.995 264.0◦ 0.975 0.964

96.0◦ 0.981 0.987 276.2◦ 1.040 1.010

108.0◦ 0.974 0.981 288.2◦ 1.051 1.005

120.0◦ 0.971 0.980 300.2◦ 1.030 1.018

132.0◦ 0.972 0.978 312.2◦ 1.043 1.033

144.0◦ 0.970 0.980 324.2◦ 1.050 1.042

156.0◦ 0.967 0.979 335.9◦ 1.048 1.047

168.0◦ 0.962 0.978 347.9◦ 1.048 1.046

180.0◦ 0.961 0.975 359.9◦ 1.050 1.049
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CHAPTER IV

SWIRLING FLAME SHAPES AND REDUCED–ORDER

MODELING

This section presents the flame shapes observed in the experimental facility, the fluid

mechanic features of the flow field responsible for the flame shapes, and the sensitiv-

ities of these flames to combustor operational, geometrical, and thermal parameters.

In addition, a stretch based reduced–order modeling technique for flame attachment

and blowoff from shear layer stabilized flames is presented. As is demonstrated later

in detail, this stretch based approach captures combustor temperature, and preheat

temperature sensitivity for outer shear layer flames but fails to collapse the transition

sensitivity to premixer velocity.

4.1 Observed flame shapes

The test configuration shown in Figure 3.1, is a common geometry for both commer-

cial low NOx combustor hardware [69, 118] and in fundamental studies of swirling

flows [52, 99]. The time averaged flow field of this geometry, consists of four main

regions [48, 75, 122], which are highlighted in Figure 4.1: the outer recirculation zone

(ORZ), the inner recirculation zone (IRZ), the annular swirling jet, and the inner

and outer shear layers (ISL & OSL). These features are discussed again briefly in this

chapter as a more detailed discussion can be found in Chapter 1. The ORZ is gener-

ated by the sudden area expansion resulting in a toroidal recirculation zone. The IRZ

is comprised of the wake behind the centerbody and the vortex breakdown bubble

(VBB), the latter a result of swirling incoming flow experiencing vortex breakdown.

Depending on the swirl number, size of the centerbody and Reynolds number, the
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Figure 4.1: Illustration of the key fluid mechanical features of an annular, swirling,

dump combustor.

center body wake and VBB can exist individually or as a single, merged IRZ structure

[105]. The two shear layers which separate the high velocity annular jet from their

associated recirculation zones, are referred to as the outer shear layer (OSL) and the

inner shear layer (ISL) based on their relative location to the axis of symmetry.

Consider Figure 4.2, which illustrates several flame configurations which have been

observed for this geometry [22]. Note that within this complex flow field, there are

three basic flame holding locations: the outer shear layer, OSL, the inner shear layer,

ISL, and the vortex breakdown bubble, VBB. The various combinations of potential

flame stabilization location results in four unique flame shapes observed, shown in

Figure 4.2.

Note, that although four flame shapes are shown, not all are observed for a given

set of geometric and operational parameters within φ space, and due to hysteresis,

flames observed at lean ignition may not be observed at lean blowout. These four

flame shapes are anchored by the VBB (I), the VBB and ISL (II), the ISL (III),

72



Figure 4.2: Time averaged chemiluminescence of basic flame configurations possible

for geometry of interest, reproduced from Chterev et al. [22].

and the ISL and OSL (IV ). The change in flame location between these flame shapes

is a fundamental problem that has important ramifications on combustor operability,

durability, and emissions. It can be seen that flame stabilization location has very

strong influences upon flame shape that, in turn influences heat loadings to combustor

hardware (e.g., centerbody, walls, dome plate). For example, the heat transfer to the

centerbody is fundamentally different in configurations III and IV than in I. This,

in turn, has direct implications on centerbody design and life. Similarly, the degree

of flame spreading to combustor walls will vary between, for example, configurations

III and II.

Flame location also has an important influence on combustion instability bound-

aries [71]. In short, combustor stability limits are controlled by the time delay between

when a fuel/air ratio disturbance or vortex is created and when it reaches the flame.

This time delay will certainly vary between, for example, configurations I and III.

This also illustrates that discontinuous changes in combustor stability behavior may

occur when the flame abruptly bifurcates from one stabilization location to another.

Additionally, stabilization locations influence the blowoff limits of the system. In

reality, shifts in flame location can be thought of as a sequence of local blowoff events
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(e.g., a flame nominally looking like configuration III will bifurcate to configuration

I due to local blowoff of the flame from the ISL). In previous work, the flame shapes

which are supported by this combustor geometry were explored [42].

How the flame is stabilized plays a crucial role in which physical processes control

its dynamics. For example, configuration IV shown in Figure 4.2 is clearly affected by

the dynamics of both shear layers, while that of configuration I may be lesser affected

by the centerbody shear layer. Similarly, the dynamics of the central portion of the

flame in configurations I and II are strongly influenced by vortex breakdown bubble

dynamics, while configurations IV and III are presumably less affected. Further-

more, the time averaged stabilization location can vary with perturbation amplitude

during combustion dynamics, implying that one set of fluid mechanic processes is

important at low amplitudes, and another at higher amplitudes.

We focus our attention on the flame stabilization behavior at the attachment point

of a flame stabilized in the inner shear layer. Whether the flame stabilizes in the low

velocity regions of the shear layers, or near the stagnation region ahead of the vortex

breakdown bubble, the transition from one flame shape to another can be described

as a local extinction event leading to a large scale change in flame shape. It is

hypothesized that the cause of local extinction is caused by aerodynamic straining on

the flame [66], which alters the local temperature and burning rate [68]. If the shear

rate and consequent flame strain rate is too large, the flame will locally extinguish

and either blow out of the combustor completely, or stabilize at another location,

such as transitioning from configuration IV to III or from configuration II to I.

The significance of aerodynamic straining of the flame sheet in the shear layer

near the attachment point is discussed by Karlovitz et al. [59]. They noted that

holes appeared in the side of the flame as flow velocity increased, apparently due to

local extinction. Similar observations of such holes in flames near blowoff are detailed

in a review by Shanbhogue et al. [104] and by Khosla et al. [61]. A discussion of the
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Table 4.1: Swirling Flame Independent Test Parameters

Geometric Fluid Mechanic Thermo-kinetic

θvane upm Tph

dcb φ

dcomb

dexhaust

lcomb

behavior of flames subjected to aerodynamic straining can be found in the textbook

by Law [68]. In addition to strain effects, heat loss is also important to consider as it

has a significant effect on the laminar consumption speed and therefore on the ability

of the flame to stabilize in a shear layer [21].

4.2 Parameter Space

The test facility used in this study of swirling flames allowed for geometric, fluid

mechanic, and thermo-kinetic parameters to easily be changed. This allowed for a

diverse parameter space to be tested as shown in Table 4.1, which lists the various

parameters changed in these swirling flame shape studies. Note that the geometric

parameters listed, such as swirler vane angle, θvane, will have direct impacts on the

fluid mechanic structure of the flow field.

These parameters represent the design space which can be directly changed from

case to case. However, as fundamental groupings of these parameters are defined, like

dump ratio, Aannulus/Acomb, a change in either centerbody diameter, or combustor

diameter will change this ratio. Also, a change in a single parameter in Table 4.1 may

cause a change in more than one fundamental parameter. For instance, holding all

other parameters constant, a change in centerbody diameter will change the dump

ratio as well as the swirl number, as defined in Equation 4.1. These considerations
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are not unique to this test facility and are common to any experimental investigation

of complex systems.

Sm =

∫ ro
ri
uzuθr

2dr

ro
∫ ro
ri
u2
zrdr

(4.1)

There are various parameter groupings which lend themselves to describing a

swirling, annular, dump combustor. For swirling flows it is common to define it by

the swirl number, S. There are many definitions for swirl number but the one used

in these studies, Sm, is defined by the ratio of the angular momentum flux to the

axial momentum flux. The sensitivity of the structure of a swirling flow field to

swirl number is complex as for certain ranges of Sm, there are bifurcations in the

structure with small changes in Sm. In addition to Sm, the structure of the non-

reacting, swirling flowfield is sensitive to the ratio of the exhaust to the combustor

cross-sectional area, Aexhaust/Acomb. This has been reported by other investigations

as well [39, 38]. Our studies were conducted with a small enough exhaust section such

that the flow at the exhaust exit was positive for non-reacting conditions. Finally, the

ratio of the length of the combustor to its diameter, (l/d)comb, captured the change in

combustor length relative to its diameter, a parameter which alters the fundamental

natural longitudinal acoustics of the combustor.

Table 4.2 displays the various combinations of geometric and operational test

parameters explored in our work. Note, that the test space was created by varying

each of the parameters listed in Table 4.1 between a high and low value. Geometric

parameters are shown in column space, with the exception of θvane, which is shown

in row space along with the operational parameters. Data has been obtained over a

wide range of this test space, as shown in Table 4.2, but in some cases the presence

of thermo-acoustic instabilities prevented flame stabilization studies to be performed.

Enough space was explored allowing for the sensitivity to single parameters, shown

in Table 4.3 and 4.4, and independent parameter groupings, such as (l/d)comb, to be
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Table 4.2: Geometric and operational test space

assessed. Key sensitivities are further discussed in the analysis section of this chapter.

4.3 Experimental Procedure: Flame Configuration Map-
ping

We next describe how the flame transition data were taken. The mixture stoichiom-

etry, φ, was swept up or down to cause a flame transition at a fixed set of operating

conditions. While the bulkhead temperature could not be directly controlled, the time

required for the system to reach thermal equilibrium was long enough (≈ 1 hour) to

allow us to also measure the influence of Tbhd on the transition φ value by varying

the dwell time between transitions. For example, the steady state value of Tbhd differs

by about 200K when a flame in the OSL is present (III) and not present (IV ). By

varying φ up and down between configurations III and IV while the system is ap-

proaching thermal equilibrium, the sensitivity to Tbhd was systematically explored. In

this manner, flame configuration maps were created which marked the transition lines

for OSL attachment and OSL blowoff in equivalence ratio and bulkhead temperature

space.

Figure 4.3 plots a typical flame configuration map obtained for a single test case at

conditions with low thermoacoustic levels. For this analysis, only the OSL attachment
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Table 4.3: List of case studies investigating flame stabilization sensitivity to varia-

tions in geometric parameters.
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Table 4.4: List of case studies investigating flame stabilization sensitivity to varia-

tions in operational parameters (Cases 18-31) and combustion dynamics (Cases 32 &

33).
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and OSL blowoff transitions are studied in detail. The upper line represents flame

attachment in the OSL (III − IV transition), above which the flame is stabilized in

the OSL (OSL Stabilized Zone). Note the decrease in required equivalence ratio for

OSL flame attachment with bulkhead temperature as φ goes from 0.65 to 0.58 with

Tbhd correspondingly increasing from 350K to 575K. In other words, as combustor

temperature increased, OSL flame attachment became easier, occurring at lower φ.

The lower line represents the lean OSL flame blowoff limit (IV −III transition) which

also shows a dependence on bulkhead temperature. Note that with OSL attachment

occurring at higher φ than OSL blowoff, there is region where the flame can exist in

either configuration III or IV , depending on the path taken. Thus there is a zone

of hysteresis in the OSL stability map where the flame shape is not uniquely defined

by φ and Tbhd alone. For example, suppose a flame transitions from configuration

III to IV at φ = φ1. Once a flame is stabilized in the OSL, φ must be decreased

to a value of φ < φ1, in order to cause extinction in the OSL. Data obtained from

multiple test runs at the same set of operating and geometric conditions were used to

determine the transition lines, for which there is relatively good agreement between

the lines and the raw data points for both OSL attachment and blowoff as shown in

the example figure.

Flame configuration maps were obtained for the highlighted test space shown in

Table 4.2, or organized by geometric parameter and operational parameter sensitivi-

ties in Table 4.3 and Table 4.4, and are discussed in detail in the following section.

4.4 Reduced–Order Modeling

4.4.1 Stretch Based Scaling

Flames stabilized in the shear layers are likely to experience changes in burning prop-

erties, such as flame temperature and burning velocity [68], as a result of hydrody-

namic flame stretch [66]. Since there is a limit to the degree of stretch which a flame
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Figure 4.3: Typical flame configuration mapping results for test case 9A.

can withstand before extinguishing, it is likely that global changes in flame configura-

tion are brought about by local extinction events within the shear layers. We define

the following Karlovitz number as the ratio of the stretch rate imposed on the flame,

κ, to the extinction stretch rate, κext:

Ka =
κ

κext
(4.2)

As these extinction events are local, and with multiple stabilization locations

present, global extinction does not necessarily happen with a single extinction event.

For example, the flame shape can transition from being stabilized in both shear

layers to solely the inner shear layer, or from ISL to VBB stabilized as a result of

local extinction events. In fact, recall that for this combustor, four unique flame

shapes were observed, each with a unique combination of stabilization locations. The

primary directive of the reduced–order model was to develop a stretch based scaling

to characterize and capture the sensitivity of flame extinction and attachment events

in the OSL to key design parameters.
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Figure 4.4: Physical processes for shear layer flame stabilization in a swirl stabilized

combustor. Image courtesy of I. Chterev [23].

Figure 4.4 illustrates three key physical processes influencing flame stabilization

in the outer shear layer: flame stretch, product recirculation, and combustor heat

transfer. These are discussed next, beginning with flame stretch. Previous studies of

shear layer stabilized flames noted that holes appeared in the flame as flow velocity

increased due to local extinction [83]. Similar observations of such holes in flames

near blowoff are described by Chaudhuri et al. [16] and in a review by Shanbhogue

et al. [104]. Given the high strain rates present it is presumed that flame stretch

induced extinction could be the cause of flame holes. In order to analyze the factors

influencing the stretch rate imposed on the flame, consider the following equation for

flame stretch:
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Figure 4.5: Flow and flame coordinate system for a centerbody stabilized, 2-D

flame.

κ = −ninj
∂ui
∂xj

+
∂ui
∂xi︸ ︷︷ ︸

κS

+Sd

(
∂ni
∂xi

)
︸ ︷︷ ︸

κcurv

(4.3)

where we have written the stretch as the sum of three terms. The sum of the first

two terms, κs, is a result of hydrodynamic strain and is non-zero only if the flow has

spatial gradients. The third term, κcurv, describes the contribution of flame curvature

to flame stretch.

For this analysis, we focus on flame stretch due to hydrodynamic strain for a two

dimensional, steady flame and an incompressible flow upstream of the flame sheet.

The coordinate system and reference geometry for this analysis are shown in Figure

4.5. Following references [72, 127], the κs term may be written as:

κs = κs,shear + κs,normal (4.4)

where assuming an incompressible approach flow, that the largest velocity gradients
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are due to transverse shearing of the axial flow(ie., ∂ur/∂z << ∂uz/∂r), and that the

flow speed is much greater than the flame speed (i.e., θf << 1), then:

κs,normal ≈
∂uz
∂z

(4.5)

κs,shear ≈ θf
∂uz
∂r

(4.6)

The κs,shear term quantifies the manner in which shearing flow strain translates into

flame stretch, showing that they are related by the flame angle, θf . Similarly, the

κs,normal term describes the impact of flow acceleration and deceleration. Both terms

are clearly nonzero in regions of high shear in flame stabilization regions, as the

approach flow boundary layer separates into a change in cross sectional flow area.

As is demonstrated later, the experimental results in Chapter 6 support this reduced

form of strain induced flame stretch in the near field. Shanbhogue et al. [104] scaled

flame stretch introduced by flow shear as:

κs,shear ∼ Sd

(
uo

Lshear ν

)1/2

(4.7)

and axial acceleration/deceleration induced stretch term in Equation 4.5 as:

κs,normal ∼
uo

Lnorm
(4.8)

where Lnorm and Lshear denote characteristic length scales associated with normal

and shear strain, respectively. Combining the scalings for κs,shear and κs,normal with

Eq. 4.4 shows that there are two relevant Karlovitz numbers:

Kas,shear =
κs,shear
κext

∼ Sd
κext

(
uo

Lshear ν

)1/2

(4.9)

Kas,normal =
κs,normal
κext

∼ uo
Lnormκext

(4.10)

Since eq. 4.9 has both Sd and κext, it is worthwhile to relate these two quantities.

As shown by Chung [24], κext is related to the flame thickness and burning velocity
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at extinction conditions by κext = Sd,ext/δf,ext, leading to:

κext ∼ S2
d,ext/α (4.11)

Solving for SL,ext in Equation 4.11, substituting into Equation 4.9, and assum-

ing Pr ≡ ν/α = 1, results in the following Ka number scaling for shear induced

extinction:

Kas,shear ∼
(

uo
Lshearκext

)1/2

(4.12)

Comparing equations 4.10 & 4.12, if one assumes that the relevant length scales

are the same (Lshear = Lnorm), then the appropriate scaling parameter is the same

for normal and shear strain contributions to flame stretch with power dependencies

of 1 and 1/2, respectively. Furthermore, this would suggest that two fundamentally

different flame stabilization scalings may exist, depending upon which term domi-

nates. However, stretch is the sum of contributions from normal and shear strain

contributions such that power dependence of total stretch on velocity is not constant.

An appropriate scaling must be derived based on the sum of these contributions to

total stretch as shown below:

Kas =
κs,normal + κs,shear

κext
(4.13)

Thus, although the power dependence of Kas on velocity varies in stretch space, the

conditions at which blowoff occur are at uo/(Lκext) = const.

Second, as we have implicitly done in the derivation of equations 4.9 and 4.10, the

sign of the strain terms must be known or assumed a priori. Also, as noted above,

there are two length scales as well that are unknown. Granted, based on our assumed

laminar boundary scaling of boundary layer thickness, one would assume Lshear to be

the boundary layer development length. Appropriate length and velocity selection,

multiple strain sources of flame stretch, and the high spatial dependence on the local

velocity and strain conditions within the shear layer complicate the derivation of a

reduced–order scaling approach to capture flame blowoff.
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(a) Flame map with κext (φ, Tbhd).
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(b) Flame map with κext (φ, Tph)

Figure 4.6: Example flame configuration mapping of OSL attachment and blowoff

with κext (φ, Tbhd) isolines overlaid (left) and κext (φ, Tph) isolines overlaid (right) for

test case 24A.

4.4.2 Chemical Kinetic Sensitivities

This section considers fuel/air ratio and temperature effects on flame transitions.

Returning to Figure 4.4, these data clearly show that the transition φ is a function

of Tbhd. This indicates that understanding the heat transfer between the edge flame

stabilized in the shear layer and the combustor walls is needed in order to predict flame

stabilization. As was outlined above, κext is used as a more fundamental indicator of

reactant kinetics, and so operating conditions at the measured transitions are used to

calculate its value. κext values are also directly related to the critical chemical time of

stretched flames as τext = 1/κext. However, note that there are at least two reference

temperatures that can be used as in input to such a calculation: the free-stream

reactant preheat temperature, Tph, and the bulkhead or combustor wall temperature,

Tbhd. Figure 4.6 shows the OSL attachment and blowoff lines for a single test case

with isolines of κext (φ, Tbhd) on the left, and isolines of κext (φ, Tph) on the right.

Neither of the above approaches collapses a transition line onto an isoline of κext.
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Using the bulkhead temperature as the input to the calculated κext shows a stronger

sensitivity to Tbhd than experimentally observed, while using a fixed value of Tph shows

a weaker sensitivity (indeed, no sensitivity) than measured. These results make sense,

as it seems likely that the reactants in the separating boundary layer are preheated

to some intermediate temperature value, Tph < Treac < Tbhd. These results suggest

defining an intermediate reference temperature, which we do through the relation:

Tref = Tph + a (Tbhd − Tph) (4.14)

The coefficient a is empirically determined so that flame transitions occur at fixed

κext values. To illustrate, Figure 4.7 replots the iso-κext lines using this reference

temperature; note that the best fit value of a differs for OSL attachment and OSL

blowoff, and so two plots are needed. Repeating a point made above – the clear

implication of these results is the importance of heat transfer between the flame and

the combustor hardware on flame shapes and therefore computations of blowoff or

flame shape transitions must capture this heat transfer; adiabatic boundary conditions

will not work. The values of a are tabulated in Table 4.3 and Table 4.4 for OSL blowoff,

ablowoff , and attachment, aattach. This scaling restricts the a coefficient to lie between

0 ≤ a ≤ 1 and values lie anywhere within this range as shown in the tables. There

is no apparent correlation with the a coefficient values with any of the parameters

explored.

We next consider results from different preheat temperatures. Figure 4.8 compares

the OSL transition points for test cases at Tph of 366K and 533K. Note that from

this point forward we only show the linear least squares fit line of the transition data.

The OSL transition lines at the lower preheat temperature (solid lines of Figure

4.8), occur at higher φ than the higher preheat temperature test case (dashed line of

Figure 4.8). In fact, all preheat temperature sensitivity test cases completed indicated

a decrease in φ at the transition point with increasing Tph. This result was expected

as increasing the preheat temperature increases the resistance of the flame to stretch.

87



(a) OSL Attachment (b) OSL Blowoff

Figure 4.7: Flame transition maps for attachment (left) and blowoff (right) with

isolines of extinction stretch rate calculated using reference temperature correction

from Equation 4.14 for test case 24A.

Note also that while significant hysteresis is observed for Tph = 366K, very little

occurs at 533K. While increasing Tph did generally decrease the region of hysteresis

in φ − Tbhd space, it did not always result in the complete elimination of hysteresis.

As is discussed further in later sections, the presence and degree to which hysteresis

exists is sensitive to both operational and geometrical parameters.

These general preheat sensitivities can be approximately captured with detailed

kinetics calculations of the extinction stretch rates of the different mixtures. To

illustrate, Figure 4.9 plots the relationship between the computed extinction stretch

rates of OSL attachment and blowoff for Tph cases of 366K and 533K. The extinction

stretch rates are calculated using the measured φ value for a given transition, and

the preheat temperature, Tph, as κext (φ, Tph). Extinction stretch rates for the two

Tph test cases are compared at the same Tbhd as φ (Tbhd). For example, for the OSL

attachment data in Figure 4.9 at a Tbhd = 500K, extinction stretch rates would be

compared at φ = 0.61 and φ = 0.50 for the Tph = 366K and Tph = 533K test cases,

respectively.
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Figure 4.8: Preheat temperature sensitivity of OSL stabilization/blowoff for l/d = 1,

dcomb = 5.26”, dcb = 1.42”, 45◦ vane swirler, upm = 35 m/s.
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Figure 4.9: Comparisons of extinction stretch rate at two different Tph for OSL

attachment and blowoff transitions (Test cases 19-25, A & B).
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Figure 4.9 plots the calculated extinction stretch rate values at the measured

transition points for a range of Tbhd, for both the IV − III (OSL blowoff) and III −

IV (OSL attachment) transitions. The figure shows that OSL attachment for both

preheat temperatures occur at nearly the same extinction stretch rate throughout the

bulkhead temperature space explored. In other words, from a measurement of the

transition value at one preheat temperature, one could use kinetics calculations to

predict the OSL attachment point at another preheat temperature. However, this is

not the case for the OSL blowoff transition. Rather, the higher preheat temperature

case transition occurs at a systematically higher extinction stretch rates. Thus, bulk

mixture values of Tph and φ can be used to capture transition associated with OSL

attachment, but not OSL blowoff.

We can make a similar comparison of sensitivity of OSL blowoff and attachment to

Tph using the new reference temperature, Tref , defined in Eq. 4.14. Because the κext

value line is by definition parallel to the measured Tbhd sensitivities, the blowoff line

shown in Figure 4.6b is replaced by a single point, which corresponds to the iso-κext

value, represented as κext,a. The same OSL blowoff data shown in Figure 4.9, are

plotted in Figure 4.10, where we used the calculated κext,a (φ, Tref ) value obtained.

The figure clearly shows that the sensitivity of OSL blowoff to preheat temperature

is captured using this approach.

A key conclusion from these results is the significance of two reference temper-

atures for capturing shear layer flame transitions, Tph for attachment and Tref for

blowoff. This result is physically intuitive. For a flame that is stabilized in the shear

layer, the extinction conditions which will cause OSL blowoff are a strong function of

the local reference temperature, Tref . For the flame to reattach, these results show

that the bulk approach flow temperature is the more significant. For the rest of this

paper, we use Tph and Tref for calculations of κext for interpreting the sensitivity of

OSL attachment and blowoff, respectively.
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Figure 4.10: Comparisons of extinction stretch rate at two different Tph for OSL

attachment and blowoff transitions using κext (φ, Tph) and κext,a (φ, Tref ), respectively

(Test cases 19-25, A & B).

Finally, the hysteresis between OSL attachment and blowoff shown in terms of

equivalence ratio, ∆φ, is shown in Figure 4.11. Note that the largest hysteresis is for

Tph = 366K test cases, however, there are test cases where the level of hysteresis are

comparable between the two preheat temperatures.

4.4.3 Fluid Mechanic Sensitivities

The parameters of upm and Sm have strong impacts on the fluid mechanic features

of the combustor, as well as the stretch rate, κs, that the flame is subject to. For

example, we expect higher upm to be destabilizing to flame holding as flame stretch

increases, as shown by equations 4.7 and 4.8. The flow swirl number influences the

pressure gradients that the separating boundary layers are subjected to, and therefore

the separating shear layer thickness. It certainly also influences the character of the

flow recirculation regions, particularly in the IRZ.
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Figure 4.11: Hysteresis between OSL attachment and blowoff identified by Tph (Test

cases 19-25, A & B).

Figure 4.12 demonstrates the effect of upm on the flame transitions by showing the

stability maps of the OSL for a low velocity and high velocity test case. As is clear

from the figure, doubling the bulk flow velocity increases the equivalence ratio for

attachment and blowoff transitions, thus making flame stabilization in the OSL more

difficult with the increase in velocity. In this particular case, significant hysteresis is

observed for both the low and high velocity test cases, although the hysteresis zone

is wider for the higher velocity case. For the most part (but not always), hysteresis

is greater for the higher velocity condition.

Using the Karlovitz number approach described above, we revisit the velocity

dependence of blowoff. Assuming that transition events occur at a constant Ka, then

the extinction stretch rate at blowoff should increases linearly with velocity. If the

appropriate physical scaling is used in the definition of Ka, this also implies that the

ratio of Karlovitz numbers at the two velocities should be constant. We define the

following two ratios of Karlovitz numbers at the transition point:

R ≡ Ka35m/s

Ka70m/s
=
κ

70m/s
ext (φ, Tph)

κ
35m/s
ext (φ, Tph)

35m/s /Lo
70m/s /Lo

(4.15)
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Figure 4.12: Nozzle exit velocity sensitivity for test case 28.

Ra ≡
Ka

35m/s
a

Ka
70m/s
a

=
κ

70m/s
ext,a (φ, Tph)

κ
35m/s
ext,a (φ, Tph)

35m/s /Lo
70m/s /Lo

(4.16)

using Ka for scaling OSL attachment events and Kaa for scaling OSL blowoff events,

consistent with our discussion at the end of Subsection 4.4.2.

Figure 4.13 plots these ratios, R and Ra, at the two velocities as a function of

Tbhd. If Eqns. 4.15 and 4.16 correctly capture the velocity sensitivity, then R and Ra

should equal unity. The figure shows that these ratios always exceed 1/2, implying

that increasing premixer velocity decreases flame stability for all of the test cases,

as expected. However, the majority of the OSL attachment and blowoff data fall

below one, suggesting that the sensitivity of flame stabilization to velocity is less

than would be expected. For example, a value of 0.8 implies that the extinction

stretch rate increases by 60% when the velocity is doubled. The reasons for this

deviation from unity are unknown although these results are consistent with blowoff

analysis of other data sets [104], and show the shortcomings in current abilities to

scale velocity sensitivities for flame anchoring. The discussion of the flame stretch

scaling in the context of Eq. 4.3 provides some hints of the complexity of this matter.
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Figure 4.13: Dependence of extinction stretch rate ratios, R and Ra, at two premixer

velocities, 35m/s and 70m/s, on Tbhd (Test cases 26, 28-31).

Put differently, the prior section showed that changes in flame transitions driven by

kinetic parameters could be well captured by constant Ka scalings, while this section

shows that flame transitions driven by fluid mechanic parameter variations are much

more complex. For the most part, R and Ra also increase as a function of bulkhead

temperature itself for attachment events. Finally, there is one outlier, test case 26,

for which OSL blowoff shows a much greater velocity sensitivity (i.e., values greater

than unity) for unknown reasons.

Lastly, the hysteresis between OSL attachment and blowoff is characterized in

terms of difference in equivalence ratio for the velocity sensitivity test cases as shown

in Figure 4.14. The largest hysteresis was observed for upm = 70m/s test cases, while

negligible hysteresis was observed for several upm = 35m/s test cases.

We next consider swirl number effects through changes in the swirler vane angle,

θvane. The effect of θvane on flame stability were minimal and did not significantly

influence OSL flames as only slight changes in transition equivalence ratio were ob-

served, on the order of 0.01 − 0.02. Generally it was found that increases in swirl

number degraded stability by inhibiting flame attachment in the OSL. For example,

94



350 400 450 500 550 600 650 700
−0.05

0

0.05

0.1

0.15

0.2

Tbhd [K]

∆
φ

 

 

upm = 35 m/s
upm = 70 m/s

Figure 4.14: Hysteresis between OSL attachment and blowoff identified by premixer

velocity, upm (Test cases 26 and 28-31, A & B).

Figure 4.15 presents a flame configuration map for a representative θvane sensitivity

test case where no hysteresis was observed for either swirler. In this example, flame

stability is degraded only slightly with an increase in swirl as the OSL stability line

for the 45◦ swirler is slightly higher than the 37◦ swirler for all bulkhead tempera-

tures. Figure 4.16 summarizes these findings for all θvane sensitivity cases performed,

comparing conditions of OSL attachment using κext (φ, Tph) and OSL blowoff using

κext,a (φ, Tref ), for the two swirl vane angles. With the exception of one test case, OSL

flame attachment lines are above the 1−1 line shown (black line) thus indicating that

flame attachment is degraded for the higher swirl condition. However, there is not a

clear systematic effect of swirl vane angle on OSL blowoff as data points are scattered

about the 1− 1 line.

The effect of swirler vane angle on the observed hysteresis between OSL attach-

ment and blowoff is shown in Figure 4.17. While there is a grouping of data sets in

the region ∆φ ≤ 0.02, where hysteresis is similar in magnitude and dependence on

bulkhead temperature, outside of that region, there is less agreement in the hysteresis

for the two swirler vane angles.
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Figure 4.15: Swirler vane angle sensitivity for test case 14, A & B.

Note that it is important to differentiate the effects on global stability of the flame

and its anchoring in the OSL. Increasing swirl clearly has a positive influence on ISL

flame stability as shown in previous work [23] as well as on flames stabilized by the

vortex breakdown bubble, but has a degrading influence on flame stability in the

OSL, as shown here. It is likely that this is a manifestation of its influence on shear

characteristics in the separating boundary layer.

Similarly, very modest changes in blowoff conditions were observed at the two

combustor lengths, l/d = 1.0 and l/d = 1.5, as indicated in Figure 4.18. This result

would be expected, as the combustor length should not have a strong impact on the

OSL.

4.4.4 Hysteresis and Thermoacoustics

Thermoacoustic oscillations was observed to have significant impact on hysteresis

levels. Acoustic measurements confirmed that when significant levels of acoustics were

present, the region of hysteresis decreased. Similarly, high levels of acoustics were

associated with independence of the OSL transition to bulkhead temperature. An
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Figure 4.16: Comparison of extinction stretch rate for two θvane, 45◦ (y-axis) and

37◦ (x-axis), at Tbhd = const (Test cases 10-17, A & B).

example result is shown in Figure 4.19, which compares the flame configuration maps

for a test case which exhibits a thermoacoustic instability during OSL attachment

and one which does not.

These test cases are identical in operational and geometric parameter space with

the exception of combustion length, lcomb, which is 50% longer for the test case which

is thermoacoustically unstable during OSL attachment (prior planar flow field mea-

surements have shown that such a change in lcomb has negligible influence on the time

averaged flowfield and flame attachment behavior near the dump plane). Thus, this

result isolates the effect of thermoacoustics.

The solid lines in Figure 4.19 represent the low acoustics or (l/d)comb = 1.0 test

case with the OSL attachment line above the blowoff line. Also shown as the black

dots corresponding to the right axis, are the acoustic measurements. There is a notice-

able change in the OSL attachment line for the thermoacoustically unstable test case,

shown as the dashed lines in Figure 4.19. Note the nearly horizontal OSL attachment

line; i.e. flame attachment is a weak function of bulkhead temperature; in fact, the
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Figure 4.17: Hysteresis between OSL attachment and blowoff identified by swirler

vane angle, θvane (Test cases 10-17, A & B).

slight bulkhead temperature sensitivity is inverted! The acoustic measurements for

the unstable case are shown as the open circles on the plot and interestingly enough,

decrease in value with bulkhead temperature as hysteresis increases.

Another important result is the fact that acoustics levels affect OSL attachment,

but hardly affect OSL blowoff. Hysteresis fundamentally occurs because the flame

in configuration III cannot propagate upstream in the high velocity flow in order to

attach in the low velocity shear layer. This is believed to be caused by the oscillatory

flow field leading to time instants where the low flow velocity allows for upstream flame

propagation, whereupon it can lock onto the shear layer for the high velocity instants

of the cycle. As such, acoustic levels have significant influences on OSL attachment.

Acoustic levels have little effect on OSL blowoff as once the flame attaches to the OSL

the ORZ is close enough to adiabatic temperature so ISL flame gases have negligible

influence.

It is expected for the effect of acoustics on hysteresis to be correlated to the ratio

of acoustic velocity to nozzle exit velocity, given by urms/uo. A reference acoustic

velocity is given by urms = prms/ (ρc)avg. Figure 4.20 shows this trend by plotting
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Figure 4.18: Sensitivity of outer shear layer flame stabilization to combustor length

for test cases 6-9, A & B.

hysteresis against urms/uo for a particular set of conditions.

Hysteresis levels also exhibit additional sensitivities to flow velocity and preheat

temperature that are not fully capture simply by this urms/uo parameter. As noted

above, we find that increasing flow velocity or decreasing preheat temperature will in-

crease hysteresis. We have observed, however, that for any given operating conditions,

hysteresis decreases monotonically with increases in thermoacoustic amplitudes.

Finally, although for test case 32, lcomb did separate the stable case from the

unstable case in Figure 4.19, this was not always the case.

4.4.5 Inner shear layer blowoff

In order to further analyze flame stabilization sensitivities to Sm, measurements of

the ISL blowoff transition were also obtained over a broader range of upm from 35−

115 m/s for both swirlers. Note that thermoacoustic levels here were very low and are

not shown. These results are indicated in Figure 4.21, showing that the Sm = 0.8 case

generally blows off at φ values of about 0.02 lower than the Sm = 0.6 case. However, it

is also clear that the sensitivity of the different Sm cases to upm is different. It is much
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Figure 4.19: Thermoacoustic fluctuation amplitude sensitivity for test case 32, A

& B.

Figure 4.20: Hysteresis sensitivity to normalized acoustic velocity at attachment

point condition for test case 32B.
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Figure 4.21: Measurements of ISL blowoff transition point, corresponding to flame

lean blowoff limit. ( dcomb = 5.26”, dcb = 1.42”, and Tph = 533K).

stronger for the weaker swirl case, and that the sensitivity to velocity is different at

low and high velocities for the stronger swirl case. The curves seem to either converge

or cross at a premixer velocity near 35 m/s. In reference to the previous premixer

velocities of 35 and 70 m/s, looking at the open circle symbol, we note that near

70 m/s the Sm = 0.8 data blows off at lower φ than the Sm = 0.6 data.
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CHAPTER V

NUMERICAL MODELING OF RECIRCULATION ZONE

PHYSICS

As a companion to the experimental studies performed in this work, numerical model

studies were carried out as well. Numerical models are powerful tools which allow for

the sensitivities of flames to parameters of interest to be explored without the costly

and time intensive setup changes associated with experiments. Numerical models can

range from highly detailed and computational intensive approaches such as direct

numerical simulations (DNS) to simplified physics models or reduced–order models

which calculate fundamental parameters. Reduced–order models are attractive be-

cause of their numerical simplicity lending themselves to design of experiments (DOE)

where the sensitivity to a wide range of parameters can be determined. For example,

chemical kinetic software such as CHEMKIN offers models for fundamental param-

eters such as the unstretched, laminar flame speed, Sod, the stretched flame speed,

Sd (κs), and the extinction stretch rate, κext. One can then chose a reduced–order

model based on the physics which one expects to be most relevant. For the experi-

mental studies in question, where the flame is stabilized within the inner shear layer,

it is assumed that flame stability is strongly related to the response of the flame to

stretch. As such, CHEMKIN’s opposed jet model, OPPDIF, was used to determine

stretched flame properties of interest such as Sd (κs) and κext. These parameters are

of particular interest for interpreting the experimentally measured flame stretch, κs,

and velocity conditions along the flame as compared to numerically calculated values.

These parameters are calculated using the symmetric opposed jet model. The details

of the symmetric opposed jet model are described in detail, including the importance
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of the reference location within the flame structure to which they are reported.

In addition to providing reference values of stretched flame parameters of interest

using the symmetric model, the opposed jet model is modified to include and assess the

sensitivity of stretched flames to additional physics. For instance, heat loss with the

combustor boundaries, such as the centerbody, will result in a non-adiabatic, stretched

flame. With heat losses to the centerbody, the recirculation zone temperature, which

supports the flame at the attachment point, will drop. A decrease in recirculation zone

temperature, in turn, will result in heat losses from the flame to the recirculation zone.

A modified opposed jet model is presented which simulates the effects of recirculation

zone temperature changes. Finally, an asymmetric variation of the opposed jet model

is proposed which simulates product/reactant mixing as well as non-adiabaticity.

Mixing could potentially alter the burning composition of the flame at times when

the flame is stood off from the edge of the centerbody.

5.1 Symmetric Opposed Jet Calculations

This section first describes the model details and parameters of CHEMKIN’s opposed

jet solver, OPPDIF. This will include a detailed list of parameter values chosen in the

OPPDIF used to calculate stretched flame parameters of interest for these studies.

Then, each of the flame parameters of interest are defined in reference to an OPPDIF

calculation and the sensitivities of these parameters to reference location, equivalence

ratio, and flame stretch, is discussed. For reference, a schematic of the opposed jet

configuration is shown in Figure 5.1.

5.1.1 CHEMKIN OPPDIF Model Details

The OPPDIF model of CHEMKIN, is a reduced–order approach to simulating the

behavior of flames resulting from the opposed jet configuration consisting of two

concentric jets directed towards each other at some fixed distance apart as shown
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Figure 5.1: Schematic of symmetric opposed-jet extinction model using undiluted

reactant properties for both streams and equal jet exit velocities.

schematically in Figure 5.1. The OPPDIF model was developed based on work com-

pleted by Kee et al. [60]. Through a similarity solution approach based on the work

of von Karman [65], which is also documented by Schlichting [101], the governing

equations derived by Kee et al. [60] are reduced from a multi-dimensional system to

a one-dimensional system. The major assumption facilitating this simplification to a

one-dimensional system is the linear dependence of velocity in the direction transverse

to the jet centerline, ŷ. In effect, this model determines the jet properties in the core

flow region as a function of axial distance, ẑ. Note as well, that these solutions are

restricted to the core regions of the jets as edge or boundary effects are neglected.

5.1.2 CHEMKIN OPPDIF Model Parameters

The stretch sensitivities of the mixtures used in these measurements were calculated

from using the opposed jet model of CHEMKIN, OPPDIF. Many of the parameter

values described here were used for both the symmetric and asymmetric modeling

approaches. Those OPPDIF model parameters which are different for the asymmetric

model are described in a later section.
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For all OPPDIF calculations, the radial, axisymmetric model (AXIS) with a do-

main size (XEND) of 1.4 cm was used. The spreading rate of the radial velocity

(AINL) at both jet exits was set to zero with equal jet exit velocities at both jets.

Natural gas mixtures were assumed to be pure methane and air was assumed to be

comprised of oxygen and nitrogen in relative molar proportions of 21% and 79% re-

spectively. Multicomponent thermal and species diffusion coefficients and thermally

induced species diffusion, or the Soret effect (TDIF), were included in these calcula-

tions. A typical maximum number of grid points of 2000 was used for an individual

OPPDIF run, with adaptive grid control based on profile curvature and gradient set

to equal values of 0.1 (CURV & GRAD). When using CHEMKIN’s Flame Extinction

Simulator to capture the turning point in the flame response curve, two-point control

was selected. Finally, GRI Mech 3.0 [107] was the chemical kinetics mechanism used.

5.1.3 Flame Parameter Definitions

Figure 5.2 displays the 1D structure of a stretched flame obtained from an opposed jet

calculation. Shown are the profiles of normalized axial velocity, ũz, and normalized

temperature, T̃ , from the jet exit at z̃ = 0 to the stagnation plane at z̃ = 1. In this

case, the flow rates are high enough such that the flame is forced to stabilize very close

to the stagnation plane, as noted by the location of steep temperature rise beginning

near z̃ ≈ 0.9. Note as well the non-monotonic behavior in the axial velocity profile,

with an increase in axial velocity occurring near the location of steep temperature

rise, demonstrating the influence of the flame on the flow field in this region, as a non-

reacting flow field lacks this feature. From these calculations, the local flame speed

and local stretch rate are determined. To aid in this discussion, Figure 5.3 provides

a zoomed in view of Figure 5.2 with the addition of the profile of normalized CH

mole fraction, χ̃CH . First, the displacement flame speed is defined for the opposed

jet configuration in relation to the preheat zone, Sd,ph. It should be noted that this
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Figure 5.2: Normalized axial velocity, ũz = uz/max(uz), and temperature, T̃ =

T/max(T ), profiles of an opposed jet flame obtained from OPPDIF module in

CHEMKIN for a CH4−air mixture (φ=1.0, Treac=533 K). Profiles are shown from

the jet exit, z = 0, to the stagnation plane, z = zSP .

definition of flame speed is the one typically reported for these calculations and is

defined by the local minimum in axial velocity between the jet exit and stagnation

plane, 0 ≤ z̃ < 1, when the axial velocity profile is non-monotonic. Thus for highly

stretched, weakly burning flames, a displacement based flame speed may not exist

based on this definition and a consumption based flame speed or some other flame

metric must be used to track flame response. In this example case, Sd,ph is marked

in Figure 5.3 accordingly. Also shown in this example case is Sd,ch, which represents

a displacement flame speed in reference to the location of peak CH mole fraction,

χ̃CH = 1. This definition of flame speed was created in order to compare calculated

displacement flame speeds with experimental flow velocities obtained in reference to

the flame location defined by CH-PLIF flame imaging. Although in the example case

shown, Sd,ph and Sd,CH are fairly similar, this is not always the case as is demonstrated

later.
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Figure 5.3: Zoomed in region of Figure 5.2 with normalized CH mole fraction added,

χ̃CH = χCH/max(χCH), as well as local flame speeds defined relative to the preheat

and CH-layer of the flame, S̃d,ph and S̃d,CH .

Next, flame stretch is defined for the opposed jet configuration. Previously, the

following expression for calculating flame stretch for the opposed jet configuration

was introduced:

κs,incomp = −∂uz
∂z

(5.1)

Note, that κ̃s,incomp assumes the flow to be incompressible and although shown through-

out the computational domain, the value of interest is the local maximum on the re-

actant side of the flame, as shown in Figure 5.4 as κ̃phs . Again, since the experimental

calculations of flame stretch are conditioned on the CH-reaction layer, incompressible

flow cannot be assumed. Using continuity, the following correction to flame stretch

calculated numerically is obtained which is valid through the entire domain:

κs = −∂uz
∂z
− uz

ρ

∂ρ

∂z
(5.2)

This allows for flame stretch rates calculated using the opposed jet model and

conditioned on the location of χ̃CH = 1, κ̃CHs , to be compared with experimentally

calculated flame stretch rates conditioned on the CH-reaction layer. Note in Figure
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Figure 5.4: Zoomed in region of Figure 5.2 (ũz removed) with normalized profiles

of compressible and incompressible surface stretch rates shown, κ̃s = κs/κ
max
s and

κ̃s,incomp = κs,incomp/κ
max
s , as well as local flame stretch defined relative to the preheat

and CH-layer of the flame, κ̃phs and κ̃CHs .

5.4, that flame stretch varies greatly within the flame. Also take note that the differ-

ences between κ̃s and κ̃s,incomp could potentially result in reported flame stretches of

opposite signs within the flame thus demonstrating the importance of using the ap-

propriate equation for flame stretch, and the sensitivity to the flame reference location

to which the calculations are made.

With the stretched flame parameters of interest defined, the response of each of

these flame parameters to stretch is discussed beginning with flame speed. Figure 5.5

plots the dependence of the displacement speed defined relative to the onset of the

preheat zone, Sd,ph, and relative to the CH-reaction layer, Sd,CH as a function of flame

stretch at the preheat zone, κphs , for methane-air mixtures at a preheat temperature of

533K and equivalence ratios of φ = 0.8 and φ = 1.0. For these particular conditions,

Sd,ph, increases with positive stretch, however the opposite behavior is observed for

Sd,CH which decreases with stretch such that the two flame speeds are roughly the
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Figure 5.5: Laminar flame speed sensitivity to flame stretch for CH4−air mixtures

defined at preheat zone (bottom) and location of Y max
CH (top) for Tph = 533K and

φ=0.8 and φ=1.0.

same at high stretch rates, near flame extinction. At low stretch rates, these two

flame speeds are much different as a result of gas expansion within the flame causing

Sd,CH > Sd,ph. Clearly, the difference between Sd,ph and Sd,CH is highly dependent

upon stretch and whether the flame burning is enhanced or degraded by stretch.

Lastly, the terminating point in flame response marks the extinction of the flame at

the extinction stretch rate, κext.

While it is clear from Figure 5.4 that the value of flame stretch is dependent upon

the reference location chosen, and surely this difference changes throughout the range

of stretched flames, it is the value of κext that is relevant to these studies. Figure

5.6 plots calculated extinction stretch rates of methane-air blends as a function of

equivalence ratio for a given pressure and preheat temperature showing κext values

of 103 − 104 s−1, depending on the reference location chosen. κext at the preheat

zone, κphext, is consistently lower than the value at max(χCH), κCHext . This is due to the

induced strain caused by gas expansion within the flame, or the −uz/ρ× ∂ρ/∂z term

in equation 5.2. Again, because the experimental measurements were conditioned
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Figure 5.6: Calculated dependence of κphext (solid line) and κCHext (dashed line) upon

φ for CH4 − air mixtures with a preheat temperature of 533K.

upon the CH-reaction layer of the flame, flame stretch measurements are compared

to κCHext and not κphext.

5.2 Modeling Recirculation Zone Physics

Recalling from the earlier discussion on recirculation zone physics presented in Figure

2.9, there are multiple pathways through which the flame burning properties can be

modified. Two pathways which are investigated are non-adiabatic effects and reactant

dilution. Extinction limits and extinction behavior are evaluated for varying degrees

of heat losses and reactant dilution using the opposed jet model. The opposed jet,

counterflow model can be adapted to study the additional physics identified in Sec-

tion 2.2.2. Modifications to the counterflow model are proposed below, that enable

the study of the effect of non-adiabatic conditions, causing lower recirculation zone

temperatures, on flame stability. A second model is proposed to study the effect of

reactant dilution, occurring as a result of mixing with the recirculation zone upstream

of the flame attachment point. The goal of these approaches is to be able to under-

stand the sensitivity of flame stability to these physical pathways, by quantifying the
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extinction limit of these flames subject to varying degrees of heat loss and reactant

dilution.

5.2.1 Modifications to CHEMKIN Parameters

There were slight modifications to the CHEMKIN OPPDIF model parameters from

those outlined in Section 5.1.2. These modifications are required in order to perform

the proposed Non-Adiabatic and Attachment Point Mixing studies described in the

following sub-sections. For these calculations, the density of the two opposing jets

are no longer equal. This is due to differences in the temperature and composition at

the exit of the two opposing jets. In order to perform opposed jet calculations which

maintain the stagnation plane near the center of the domain, such that the flame is

likely to remain near the center of the flame, the mass flux of each jet was set to have

equal momentum fluxes:

ρreac u
2
jet,reac = ρRZ u

2
jet,RZ (5.3)

5.2.2 Non-Adiabatic Effects

In addition to the role that strain plays in affecting the burning characteristics of

the flame by contributing to flame stretch, shear layer flames which are supported

by recirculation zones are subject to additional factors. It is widely accepted that

the regions of recirculation aid in flame stabilization by transporting hot products

back to the location of flame attachment. Previous computational and experimental

studies have emulated the back-heating effect of recirculation zones through the study

of asymmetric opposed jet flames [78, 33]. This opposed jet configuration directs a

jet of premixed methane-air against a jet of hot products as shown in Figure 5.7.

In this configuration, the hot products jet is representative of the recirculation zone

composition and temperature as determined from adiabatic equilibrium calculations.

By varying the temperature of the product side jet, the effect of combustor heat loss

can be simulated. Lower product jet temperatures represent conditions of greater heat
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Table 5.1: Non-adiabatic opposed jet test cases

Treac φ TRZ/T
ad
ext

533K 0.7 to 1.1 0.8, 1.0, & 1.05

(a) Opposed jet, non-adiabatic configuration

(b) Non-adiabatic, recirculation zone physics

Figure 5.7: Non-adiabatic asymmetric opposed-jet extinction model (left), and cor-

responding physical pathways in experimental combustor(right).

loss, which will potentially decrease the reactivity of the flame. These calculations

are be performed holding TRZ at fixed value for a given test run. Values of TRZ are

defined at varying degrees of heat loss specified relative to the extinction temperature

for an adiabatic, symmetric flame stretch calculation (TRZ/T
ad
ext). Table 5.1 outlines

the test cases for this study of non-adiabatic effects using the asymmetric opposed

jet configuration.
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(a) Non-Adiabatic and EGR mixing, opposed

jet model

(b) Non-adiabatic, and EGR recirculation

zone physics

Figure 5.8: Non-adiabatic, and EGR mixing, asymmetric opposed-jet extinction

model (left), and corresponding physical pathways in experimental combustor(right).

5.2.3 Attachment Point Mixing

Another factor of interest near the attachment point is mixing between the reactant

stream and the product stream. During points of flame detachment from the bulk-

head, there is the opportunity for the reactant stream to mix with the recirculating

products thereby changing the characteristics of the reactant stream upstream of the

flame front. The reactant stream is altered by products mixing with it, raising its

temperature and introducing product species into it. Thus the reactant stream is

altered from its freestream properties, Treac and φreac. A schematic of opposed jet

model and the corresponding physics modeled by this approach is shown in Figure

5.8a. In addition to mixing of the reactant stream, non-adiabatic effects are included

in this study for a fixed value of TRZ/T
ad
ext = 0.8. In this manner, flame stability

is a competition between the increase in the reactant stream temperature and the

dilution of the reactant concentrations as a result of product/reactant mixing subject

to non-adiabatic conditions. These studies are performed for various degrees of EGR
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Table 5.2: Non-adiabatic, EGR, opposed jet test cases

Treac TRZ/T
ad
ext φ YEGR

533K 0.8 0.7 to 1.1 0 to 0.3

as defined by the mass fraction of products mixed with the reactants, YEGR:

YEGR =
mRZ

mreac +mRZ

(5.4)

The complete test space that was explored for these studies is shown in Table 5.2.
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CHAPTER VI

RESULTS: EXPERIMENTS

The purpose of the experimental studies was to characterize the flow field and flame

behavior near the attachment point for a swirl–stabilized combustor elucidating the

physics governing flame stabilization. This chapter outlines the approach taken to

characterize the flame and flow field experimentally. It provides details on the exper-

imental techniques chosen. Then, the details of the quantities and parameters to be

calculated relative to the flame location and specifically to the edge of the flame are

provided. In addition, the approach to characterize the mixing between the incoming

reactant stream and recirculation zone is described. These experiments and calcula-

tions were carried out at several sets of conditions outlined in Table 6.1. The space

outlined explores the sensitivity of the mean flame stretch characteristics to flow field

changes by altering flow velocity, and to reactivity changes, through equivalence ratio

variations.

The goal of this work was to better understand the stabilization of flames in

swirl stabilized shear layers. To achieve this, experimental studies were performed

on a swirl stabilized combustor to both quantitatively and qualitatively describe the

attachment point behavior of shear layer stabilized flames. The analysis of these

experimental data sets comprise the main effort of this work. Extinction stretch rates

Table 6.1: Operational space of experiments

Equivalence Ratios Premixer Velocity [m/s]

{0.7,0.8,0.9,1.0,1.1} {35, 70}
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calculated using the symmetric opposed jet model are compared to the experimentally

determined flame stretch rates. The details of the experimental tasks are outlined

below in the following sections.

6.1 Shear Layer Characteristics

In this section, we present the measurements of the flow and strain fields obtained from

2D-PIV measurements. We also examine the behavior of the dominant strain terms

expected in the shear layer. Lastly, the turbulence of the flow field is characterized

and the unsteadiness of the strain field is discussed.

6.1.1 Flow and Strain Field

We begin by discussing the mean flow conditions as captured by the PIV measure-

ments obtained as shown in Figure 6.1. The mean axial velocity field, ūz, is shown

on the left and the mean transverse velocity field, ūr, is shown on the right. Bulk

flow is from left to right in both images and roughly centered about the separating

shear layer, most notable from the structure of the ūz field, with the jet region above

and wake region located below. There is a distinct structure of the ūr field within

the shear layer, located roughly between −0.5mm < r < 2mm over the range of axial

distances in the field of view. Note the demarcation in the direction of ūr occurring

in the upper half of the shear layer with negative values in the lower section of the

shear layer.

Strong strain rates are expected within the shear layer and upon inspection of

the ūz field, the strain field is expected to be dominated by shear strain from ∂uz
∂r

.

Noting the spreading of the axial velocity contours with axial distance, and the large

expansion in cross-sectional area at the dump plane exit, significant normal strain is

expected as well, ∂uz
∂z

, but at a much smaller magnitude. Figure 6.2 plots the time

averaged strain fields of ∂uz
∂r

on the left, and ∂uz
∂z

on the right. The peak values of

mean shear strain are much larger than the peak normal strain values within the
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Figure 6.1: Mean axial velocity field, ūz (left), and mean transverse velocity field,

ūr (right), for φ = 1.0, upm = 35 m/s test case.

shear layer and on average are positive throughout the shear layer. Like the mean

transverse velocity field, ūr, there is a demarcation in the sign of normal strain from

∂uz
∂z

within the shear layer with positive values in the lower half and negative in the

upper half of the shear layer.

6.1.2 Turbulence

Turbulence within the shear layer will result in time fluctuations in the local velocity

conditions along the flame front, and if the fluctuations are large enough, u′ > Sd,

they will also displace the flame front causing flame wrinkling. Velocity fluctuations

will also introduce strain field fluctuations as well. Figure 6.3 shows that the fluctu-

ations in velocity are largest within the region of the flow field where the shear layer

exists. Peak RMS velocities compared to the laminar flame speed of a stoichiometric

methane-air flame at a Tph = 533K are uz,rms

Sd
≈ 5 and ur,rms

Sd
≈ 2. Thus, given the

flame orientation within this flowfield, displacement of the leading edge of the flame

and flame wrinkling within the shear layer is expected, and observed, for these test

cases.
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(right), for φ = 1.0, upm = 35 m/s test case.
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Figure 6.3: RMS axial velocity field, uz,rms (left), and RMS transverse velocity field,

ur,rms (right), for φ = 1.0, upm = 35 m/s test case.
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(a) σuz,r [1/s] (b) σuz,z [1/s]

Figure 6.4: Standard deviation of fluid strain components ∂uz/∂r, σuz,r (left), and

∂uz/∂z, σuz,z (right), for φ = 1.0, upm = 35 m/s test case.

Although for average quantities within the shear layer region of the flow field, ∂uz
∂z

is much less than ∂uz
∂r

, the maximum magnitude of the standard deviation of these

strain terms are the same order of magnitude, ≈ 104, as shown in Figure 6.4. Thus,

although ∂uz
∂r

>> ∂uz
∂z

, the variations in both strain terms are large enough that either

term could be locally dominant.

6.2 Flame Measurements

In this section, we present a summary of the CH-PLIF data obtained and discuss

notable characteristics of the CH-reaction layer. We present the metrics that we

can track from the CH-PLIF images including location of the CH-reaction layer,

orientation of the reaction layer, and from these metrics we can track the location of

the leading edge of the reaction layer. These metrics of the flame location are defined

relative to the centerpoints of the CH-layer as determined by a local minimum search

algorithm of the magnitude of the gradient of the intensity field. This is done only

after first performing a background subtraction and then median filtering the raw CH-

PLIF intensity images. In addition, the stretch and velocity conditions in reference

119



(a) φ=0.8
(b) φ=1.0

Figure 6.5: Sample instantaneous images of CH-PLIF and velocity vectors for φ=

1.0, 6.5b, and φ=0.8, 6.5a (upm=35m/s)

(a) φ=0.8 (b) φ=1.0

Figure 6.6: Sample instantaneous images of CH-PLIF and velocity vectors for φ=

0.8, 6.6a, and φ=1.0, 6.6b (upm=70m/s)

to the CH-reaction layer are discussed. As a demonstration of the simultaneous

PIV and CH-PLIF data obtained in order to extract these quantities, a series of

example CH-PLIF intensity images are shown in Figure 6.5 with down-sampled field

of instantaneous PIV vectors overlaid.

6.2.1 CH-Layer Characteristics

First, the nature of the CH-Layer as observed from CH-PLIF images is discussed.

Typical signal to noise levels of the CH-PLIF images are 7 to 1 and 3 to 1 for the

φ=1.0 (Figure 6.5b) and φ=0.8 (Figure 6.5a) mixtures, respectively, with minimum
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signal to noise ratios on the order of 4 to 1 and 2 to 1 respectively. An additional

data set was taken at φ= 0.7 but the low signal to noise made it difficult to track

the CH-layer. These trends were expected based on the results discussed later in

Figure 6.13, showing decreasing peak mass fractions of CH away from stoichiometric

conditions.

Several observations follow from these images. First, the leading edge of the CH-

layer lies within 1−3 mm of the corner of the centerbody and its transverse coordinate

does not vary significantly for either velocity condition. For reference, a characteristic

axial diffusive length scale is lD=DT/uref , where DT denotes the thermal diffusivity

and uref denotes a reference axial velocity. Assuming a DT of 2.76×10−4 m2/s based

on the average of reactant temperature and flame temperature of 2340 K, and uref

ranging from 5 − 10 m/s, based on typical tangential flame edge velocities for test

cases with bulk flow velocity of upm = 35 m/s (measured edge velocities discussed

in Section 6.2.3.2), results in values of lD ranging from 0.02-0.05 mm. With standoff

distances ranging from 1-3 mm, this suggests that the leading edge of the flame is

not quenched by heat losses to flow boundaries. Note that the reference velocity

values chosen from the upm = 35 m/s case are conservative in their estimate of lD

as reference edge velocities for the upm = 70 m/s are much higher ranging from

20− 45 m/s.

The degree of flame wrinkling and transverse flapping grows monotonically with

downstream distance, as would be expected, but the flame is still quite laminar in

appearance. In the φ = 0.8 case, the flame is clearly being rolled up over length

scales of 1-2 mm, presumably due to the shear layer structures. The ≈ 30% higher

flame speed in the φ = 1.0 case is presumably the reason that less significant roll-

up of the flame occurs for the higher fuel-air ratio. These observations are further

confirmed from overlays of the instantaneous center points of the CH-layer as shown

in Figure 6.7a for the 35 m/s test case. The CH-brush thickness clearly grows as a
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(a) upm=35m/s (b) upm=70m/s

Figure 6.7: CH-layer centerline flame brush images as a function of φ=0.8− 1.1 for

upm=35m/s (left) and upm=70m/s (right). Centerbody location shown as gray box

with bulk flow going from left to right.
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function of downstream distance and extends into the jet side of the shear layer with

many instances downstream where the radial flame location, rf , is greater than zero.

While these characteristics in flame brush are similar for all 35 m/s test cases with

varying equivalence ratio, there is a distinct change in the flame brush behavior for

the 70 m/s case, shown in Figure 6.7b. First of all, there are fewer instances where

rf > 0 resulting in a downward shift in the flame brush. Second, this shift seems to

result in flames that are horizontal or more aligned with the bulk flow direction.

The observations on the effect of flow velocity on flame position and orientation

are confirmed by analysis of the mean flame location and orientation. Figure 6.8

shows the mean radial flame location as a function of downstream distance for the

35 m/s and 70 m/s test cases. The tendency of the flame to extend into the reactant

jet is clearly observed for the low velocity test case (Figure 6.8a) whereas for the high

velocity case, the mean radial flame location turns down towards the recirculation

zone (Figure 6.8b). Thus, as one would expect, premixer velocity has a major effect

on the ability of the flame to propagate into the reactant stream. Assuming a fixed

flame location, fixed flame speed, and a kinematic balance argument, higher flow

velocities would result in shallower flame angles. While the orientation of the mean

flame position would suggest a difference in flame angles between the two cases, a more

thorough analysis based on the instantaneous orientation of the flame is presented.

The orientation of the flame is characterized, where a positive flame angle , θf , is

defined as into the reactant side of the shear layer and negative into the product side,

as illustrated in Figure 6.12b. The mean flame angle was determined by calculating

instantaneous realizations of the flame angle along the entire length of the flame,

binning the data by axial location, and time averaging the data for 1mm axial bins.

The axial profiles of mean flame angle are quite similar for the 35m/s test cases as

shown in Figure 6.9a. θ̄f (Z) is not a strong function of equivalence ratio and is

always positive; i.e., into the reactant stream. Again, the adverse effect of increasing
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Figure 6.8: Mean flame radial location, R̄f , as a function of axial location, Z, using

1mm axial bins shown for φ=0.8−1.1 at upm=35m/s (left) and upm=70m/s (right).

premixer velocity on flame stability is observed in Figure 6.9b. This effect is so drastic

for the upm = 70m/s test case that the mean flame angle is non-positive for all axial

locations.

6.2.2 Flame Stretch and Velocity Along CH-Layer

In this section we present the measured stretch rates as well as the velocity conditions

along the CH-reaction layer centerline. Both of these parameters are interpreted in

terms of their implications on flame stability. The former being related to stretch

induced flame blowoff and the latter related to the kinematic stability of the flame.

In addition, the sensitivity of these parameters to operational conditions are discussed.

6.2.2.1 Flame Stretch

From the PIV and CH-PLIF measurements, characteristics of the flow field relative

to the flame location were feasible (Figures 6.5 and 6.6). In order to resolve the

shear layer, a fine spatial resolution was required, which was achieved by zooming

into a small region of interest in the combustor where the attachment point is likely
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Figure 6.10: Mean flame position (dashed red line) and flame normal (red arrows)

overlaid on top of ūz contours (solid lines) and ūr contours (dashed lines) with regions

of ūr>0 and ūr≤0 shown in white and gray respectively (φ=1.0, upm= 35 m/s).
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Figure 6.11: Mean flame position (dashed red line) and flame normal (red arrows)

overlaid on top of ūz contours (solid lines) and ūr contours (dashed lines) with regions

of ūr>0 and ūr≤0 shown in white and gray respectively (φ=1.0, upm= 70 m/s).

to be (Figure 6.12a). From the CH-PLIF images, the flame position was defined by

the isoline of local peaks of CH-PLIF image intensity in the region of signal (See

Figure 6.28). This provides both a well defined location within the flame to perform

calculations in reference to as well as a means of determining the local orientation

of the flame, ~nf . Given the velocity field, flame position, and flame orientation,

the flame stretch along the flame can be quantified using Eq.2.5 in reference to the

flame reaction layer. This is carried out at every instant in time, enabling for the

reaction layer conditioned stretch characteristics of the flame in the near field region

to be captured. From this data, various flame stretch rate statistics are determined.

Namely, mean stretch rates are reported with estimates in the error in the reported

mean.

Periagaram [86] demonstrated the feasibility of performing CH-PLIF on stretched

flames using broad frequency excitation. A pivotal requirement for CH-PLIF to be a

relevant diagnostic technique of stretched methane-air flames, is the presence of CH

radicals within the flame throughout stretch space. The opposed jet model was used
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(a) Measurements’ Field of View (b) Flame Coordinate System

Figure 6.12: Time averaged chemiluminescence image of inner shear layer stabilized

flame with interrogation region for stretch measurements shown in red (left) and

corresponding coordinate system, flame angle, and flame normal definitions (right).

in calculations of the peak CH value, Y max
CH , as a function of flame stretch, the results

of which are shown in Figure 6.13. Two points immediately follow. First, Y max
CH ,

varies only slightly with stretch rate until extinction suggesting that the edge of the

measured CH layer coincides with the edge of the flame itself (i.e., an exothermic

flame is not existing upstream of the CH layer). For this reason, we will refer to the

upstream edge of the measured CH profiles as the flame edge. Second, CH levels are

an exponential function of fuel/air ratio. This is the reason why these measurements

were performed at relatively high fuel/air ratios, 0.8 < φ < 1.1. For reference, the

approximate blowoff condition of the inner shear layer stabilized flame is somewhere

below φ < 0.7 (its confined value is equal to ≈ 0.50, but this was not measured for

the unconfined case).

At each instance in time, the instantaneous stretch rate is calculated along the CH-

layer centerline as shown in Figure 6.14 for the φ = 0.9, upm = 35 m/s test case. The

net flame stretch is shown as well as the sources of flame stretch by each strain term.

As is evident in the plot of instantaneous flame stretch, there are large variations in

both the total flame stretch along the reaction layer as well as the dominant sources
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Figure 6.13: Maximum CH mass fraction, with all cases normalized by maximum

of Y max
CH

(
κphs
)

for φ= 1.1, as a function of stretch at atmospheric conditions and a

preheat temperature of 533K.

of flame stretch. Large temporal and spatial fluctuations in the fluid strain rate are

not unexpected for a turbulent shear layer like the one in this study and have been

observed in other studies measuring the stretch rate along the CH-layer in a turbulent

flow field [41]. We have chosen to characterize the response of the flame to changes

in equivalence ratio by the mean stretch rate observed at the CH-layer (i..e, not at a

fixed spatial location, but conditioned on the flame) as a function of axial location.

A change in the mean value would signify a shift in the distribution of the stretch

rates. We utilize a spatial moving average to compute time averaged stretch rates

over axial lengths of 1 mm, equivalent to six interrogation volumes.

First, the time averaged distribution of stretch is plotted in Figure 6.15a for the

upm = 35 m/s and φ = 0.9 test case. It shows, as expected, that the mean stretch

is dominated by contributions from a normal and a shear strain term: ∂uz/∂z and

∂uz/∂r respectively. Note that these terms are indicated as uz,z and uz,r in Figure
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Figure 6.14: Instantaneous flame stretch profile along CH-layer centerline as a

function of flame arc length by source (φ=0.9, upm=35m/s).

6.15a, respectively. In addition, contributions from both terms are positive through-

out the entire domain. These observations are typical for all of the upm = 35 m/s test

cases. However, while the dominant strain sources are the same for the higher veloc-

ity test cases, upm = 70 m/s, mean contributions from uz,r are negative as shown in

Figure 6.15b. This point is discussed later as we further analyze and compare results

between the two velocity conditions.

From these observations, we can simplify the expression for stretch, leaving these

two dominant sources:

κs≈
∂uz
∂z

+θf
∂uz
∂r

(6.1)

These terms are uncorrelated as evident in the joint PDF of the contributions of uz,r

and uz,z to flame stretch, Figure 6.16, where κs (uz,r) ≈ θf∂uz/∂r and κs (uz,z) ≈

∂uz/∂z.

Given this simplified expression for flame stretch in equation 6.1, and the structure

of the strain fields, the trends in flame stretch can be explained. The mean spatial

distribution of the shearing and normal strain terms, ∂uz/∂r and ∂uz/∂z, are plotted
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Figure 6.15: Mean flame stretch axial dependence by source, normalized by the

extinction stretch rate, for a φ=0.9 and upm of 35m/s (top) and 70m/s (bottom).
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Figure 6.16: Joint PDF of flame stretch by dominant shear and normal strain

sources of uz,r and uz,z, respectively, shown for upm = 35 m/s (left) and upm = 70 m/s

(right), at an axial location 3 mm downstream of the dump plane and φ = 1.0.

in Figure 6.17 and Figure 6.18, respectively, for both velocity conditions at a fixed

equivalence ratio. These show how the flame lies in regions where the shear strain

values range from about 20,000-30,000 1/s and normal strain values of 1000 1/s at

φ = 1.0 and upm = 35m/s. Several observations from the upm = 35 m/s test case

follow. First, even though the two flow strain values differ by a factor of 20, Figures

6.17a and 6.18a, their relative contributions to flame stretch are nearly equal, as

shown in Figure 6.15a. This follows from the fact that the flame angle determines

the relative contributions from shear and normal strain terms flame to stretch (Eqn.

6.1). Second, although the mean shear strain field, ∂uz/∂r, is clearly positive as

shown in Figure 6.17a, the resulting shear strain contributions to flame stretch can

be either positive or negative depending on the flame angle sign. Recalling from

Figures 6.9a and 6.9b, the mean flame angle changes from positive to negative for

the higher premixer velocity test cases, and thus explains the change in sign of shear

strain contributions (Figure 6.15b). Third, normal strain also leads to positive flame

stretch, since ∂uz/∂z>0 as indicated in Figure 6.18.
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(b) ūz,r [1/s]

(upm = 70 m/s)

Figure 6.17: ūz,r strain field [1/s] with mean CH-layer center line position (dashed

red line) and flame normal (red arrows) overlaid for φ= 1.0 at upm = 35 m/s (left)

and upm = 70 m/s(right).

(a) ūz,z [1/s]

(upm = 35 m/s)

(b) ūz,z [1/s]

(upm = 70 m/s)

Figure 6.18: Mean uz,z strain field [1/s] with mean CH-layer center line position

(dashed red line) and flame normal (red arrows) overlaid (φ=1.0). Accelerating flow,

∂uz/∂z>0, indicated by light region, decelerating region, ∂uz/∂z<0, is shaded gray.
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Figure 6.19: Transverse profiles of mean, axial velocity at various axial locations

schematically demonstrating the strain field structure of the near field shear layer and

jet.

While the first two observations are easily supported from bulk, steady state

boundary layer scaling arguments, the latter trend was not expected. In fact, previ-

ous scaling work had shown mean contributions of normal strain induced stretch to be

negative in flows of this nature where the flow decelerates in bulk from the high veloc-

ity annular jet into the open surroundings [127]. Indeed, experimental measurements

by Zhang et al. [127] showed normal strain resulting in negative contributions to

flame stretch. This can be primarily attributed to our previous measurements being

reactant conditioned compared to the CH-layer conditioned measurements performed

in this study. Indeed, the measurements in Figure 6.18a show that although the jet

core is decelerating, as it must by volume flow rate considerations, the flow is actu-

ally accelerating in the region of the shear layer where the flame is stabilizing. These

distinct features of the strain field within in the shear layer are shown schematically

in Figure 6.19. This shows how regions in the shear layer can accelerate, even as the

core flow is decelerating.

Next the time averages of the flame stretch rates at the other equivalence ratio
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Figure 6.20: Cumulative distribution function of flame stretch measurements, κCHs ,

for φ = 0.8 and upm = 35 m/s at an 1mm axial bin centered at Z = 6 mm, with

the mean value shown as the black line. Gaussian probability function with same

standard deviation as sample standard deviation is indicated for reference by the

dashed red line.

test conditions are considered for each velocity condition. First though, the manner in

which this data is presented is described. The axial profiles of time averaged quantities

are produced using a spatial moving average over axial lengths of 1 mm and spaced

1 mm apart. The error bars denote the uncertainty in the mean, estimated for a

Gaussian distribution from the expression:

σκ̄s =σκs/
√
n (6.2)

where n denotes the number of realizations, varying between 900-2900, depending

upon axial location and φ. We compare the cumulative distribution function of the

measured stretch rates and a Gaussian fit in Figure 6.20. As shown in Figure 6.20,

85% of the measured stretch rates are captured by a Gaussian fit of the data ranging

between probabilities of 0.05 and 0.90. In addition, the mean value, shown as a black
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line, is a good metric of the center, or the median, of the measured stretch rates as

it intersects the Gaussian fit line at a probability of 0.50. Similar agreement of the

data to a Gaussian distribution was observed for all of the test conditions reported.

Considering Figure 6.21a and Figure 6.21b in detail now, the un-normalized results

show stretch rates peaking around 4000 1/s and dropping to values of 2000 1/s

at the end of the viewing window. The flame stretch values experienced by the

flame are actually lowest with the lowest fuel/air ratio condition. This is due to the

flame shifting its location slightly, apparently because of its lower flame speed, to a

region with lower stretch. This response of the flame does not necessarily result in

a flame that is more critically stretched, although it could. Note also how the mean

stretch rates are positive throughout the measurement domain. This is contrary

to results from Zhang et al. [127], which showed negative stretch rates close to

the centerbody, transitioning to positive values downstream for an annular swirling

combustor. Finally, the mean stretch rates are much less than the extinction stretch

rates predicted by OPPDIF for the opposed jet configuration, as the ratio κ̄CHs /κCHext

has a peak value of less than 0.45. Related to the point above about absolute values of

the stretch rate varying with fuel/air ratio: note that the normalized flame stretch also

drops with lower fuel/air ratios. In other words, Figure 6.21b suggests that the flame

is farther from extinction conditions as equivalence ratio is decreased. Although, the

opposed jet configuration does not reflect the conditions at the leading edge of the

flame. Two possibilities emerge then for why the flame blows off as the equivalence

ratio is further decreased. First, this trend could reverse itself and values of the

κ̄CHs /κCHext ratio could rise as fuel/air ratio is further decreased. Alternatively, it is

possible that the blowoff mechanism is not linked to local extinction, but rather that

the edge flame speed or flame displacement speed cannot match the flow velocity. This

point is further discussed in context of the kinematic conditions along and specifically

at the leading edge of the the CH-layer. Similar behavior of mean stretch is observed
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Figure 6.21: Axial dependence of mean flame stretch rates, κ̄CHs (left), and normal-

ized mean stretch rates, ˜̄κCHs , at four equivalence ratios and upm = 35m/s. Values

were normalized by κCHext at their respective equivalence ratio.

for the upm = 70 m/s data case as shown in Figure 6.22 in that non-critical mean

stretch rates are observed throughout the domain as well as a decrease in normalized

mean stretch with equivalence ratio.

Finally, PDFs are presented of total stretch rate as a function of axial distance for

representative 35 m/s (Figure 6.23) and 70 m/s (Figure 6.24) test cases are shown.

The distributions of mean stretch rates are similar in shape for all test conditions

shown appearing to be symmetric and Gaussian in nature.

6.2.2.2 Flame Kinematic Conditions

In addition to tracking the stretch conditions along the CH-layer, the velocity con-

ditions were determined as well. Like the reported stretch values, the reported flow

velocity conditions were conditioned on the centerline of the CH-layer. At each lo-

cation along the CH-layer, the local velocity components in absolute coordinates of

r̂ and ẑ, were projected into local tangential, uT , and local normal, uN , components

defined by the local and instantaneous orientation of the flame. This definition of
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Figure 6.22: Axial dependence of mean flame stretch rates, κ̄CHs (left), and normal-

ized mean stretch rates, ˜̄κCHs , at four equivalence ratios and upm = 70m/s. Values

were normalized by κCHext at their respective equivalence ratio.
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Figure 6.23: PDF of total flame stretch, κs, by axial location, shown for φ = 0.8

(left) and φ = 1.0 (right), for upm =35m/s.

137



−5 0 5

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

−5

κs [1/s]

f
(
κ
s
)

[1
/
s]

−
1

 

 

Z = 2

Z = 3

Z = 4

Z = 5

Z = 6

Z = 7

(a) φ = 0.8

−5 0 5

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

−5

κs [1/s]

f
(
κ
s
)

[1
/
s]

−
1

 

 

Z = 2

Z = 3

Z = 4

Z = 5

Z = 6

Z = 7

(b) φ = 1.0

Figure 6.24: PDF of total flame stretch, κs, by axial location, shown for φ = 0.8

(left) and φ = 1.0 (right), for upm = 70 m/s.

the velocity conditions along the CH-layer is schematically shown in Figure 6.25.

The analysis of uT and uN velocities provides insight into the speed at which dis-

turbances are convected along the flame front and the flow velocities opposing the

normal propagation of the flame, respectively.

Figure 6.26 plots the axial dependence of the mean axial and transverse velocity at

the center of the CH-layer for the upm = 35m/s and φ = 0.9 test case. Also shown are

averages of the instantaneous local velocity projected into local flame tangential and

normal directions based on instantaneous flame orientations. The radial and normal

velocities are normalized by the calculated stretched displacement speed relative to

the CH-layer, Sd,CH , obtained from CHEMKIN. The axial and tangential velocities

are normalized by the unstretched displacement speed relative to the preheat layer,

Sod,ph, also calculated using CHEMKIN. This different normalization is used because

the tangential velocity is not directly influenced by gas expansion, as opposed to

the normal velocities. In addition, measured/computed edge flame velocities in the

literature are usually normalized by displacement speeds referenced to the reactants
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Figure 6.25: Schematic showing the decomposition of local velocity conditions along

the CH-layer into tangential, uT , and normal, uN , components.

[29].

The magnitude of the mean axial velocity, ũz, grows with downstream distance,

becoming increasingly positive with downstream distance. Due to the orientation of

the flame, trends and the magnitude of mean tangential velocity, ũT , are similar to

ũz. The tangential velocity along the flame starts from values of about 5×Sod,ph, and

quickly rises to a value of nearly 20×Sod,ph, where Sod,ph is the unstretched laminar

flame speed relative to the initiation of the preheat layer. Prior direct measurements

of non-premixed edge flame velocities show values of vf =1− 2.5×Sod,ph [4, 96]. Next,

we examine trends in transverse and normal velocity profiles. The mean transverse

velocity, ũr, becomes increasingly negative with downstream distance. However, given

the orientation of the flame, this results in positive flow velocities normal to the flame

(reactants are being convected into the flame sheet) on the order of un-stretched

flame speeds, relative to the CH-layer, expected of the incoming bulk mixture. These

measurements of ũz and ũr for this test case suggest a flame with favorable kinematic

conditions along the flame front. Similar trends were observed for the upm = 70 m/s

test case at the same equivalence ratio as shown in Figure 6.27. However, with the
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Figure 6.26: Mean velocity conditions along the CH-layer for φ=0.9, upm=35m/s

case as a function of downstream distance.

Figure 6.27: Mean velocity conditions along the CH-layer for φ=0.9, upm=70m/s

case as a function of downstream distance.
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increase of premixer velocity, the velocity tangent to the flame edge is much higher,

and there is flat region in the normal velocity profile, likely the result of the flatter

flame orientation. In addition, the velocities normal to the flame are negative, and

suggest unfavorable conditions along the flame.

6.2.3 Flame Edge Conditions

The nature of the leading edge of the CH-layer is of particular interest in this study of

premixed flame stabilization and for assessing the physics anchoring the flame. Most

importantly, it is the hypothesis that the leading edge of the flame acts to anchor the

flame throughout the combustor which is being investigated. As was pointed out in

Section 2.2.3, there are two potential kinematic anchoring mechanisms which could

potentially stabilize the flame: normal propagation and edge flame stabilized (Figure

2.10). Considering the observed shape of the flame from CH-PLIF images (Figure

3.13), the metrics used to characterize the flame edge conditions are formulated as-

suming that the flame is edge flame stabilized as shown in Figure 6.28. The flame

edge at each instance in time is defined as the point farthest upstream where there is

a significant intensity in the CH-PLIF images. At this point, the orientation of the

flame edge with respect to the flowfield as well as the velocity conditions tangent to

the flame edge is examined.

6.2.3.1 Edge Orientation

The hypothesis that the flame is edge flame stabilized is first tested by characterizing

the orientation of the edge with respect to the oncoming flow. If the flame is edge

flame stabilized, we would expect the flame to be oriented tangential to the oncoming

flow on average. In other words, if it is the propagation of the edge of the flame which

is anchoring the flame, it must as a necessary condition, be oriented appropriately

with respect to the flow in order for the flame to not convect downstream. Of course,

this is provided that the edge flame speed is able to oppose the local flow velocity.
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Figure 6.28: Schematic of flame structure and reference locations of interest.

Figure 6.29: Definition of relative angle between flow and flame at the flame edge.

This is our first method of testing this hypothesis. The orientation of the flame with

respect to the flow is calculated as the relative angle between the flame edge tangent

and the flow direction as shown in Figure 6.29.

When the flame edge is perfectly aligned with the flow field, the relative angle

between the direction of flame propagation and flow is zero. Any deviation from

zero would suggest that the direction of flame edge propagation is not tangent to the

flame surface in the near field. This hypothesis is confirmed by the distribution of

relative angles between the flame and the flow evaluated at the upstream edge of the
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CH-layer, shown in Figure 6.30, and defined as follows in eq. 6.3:

θrel = θf − θ~u (6.3)

First considering the results for φ = 1.0 and upm = 35m/s, θrel is bounded between

+/ − 45◦ with an average value of 7◦. In fact, considering all test cases, the

distributions of θrel and mean values are similar with θ̄rel values between −10 and

+1 degrees and standard deviations of θrel ranging between 20◦ − 43◦. These results

thus suggest that flame anchoring is dependent upon flame propagation tangent to

the flame surface at the leading edge.

Note however, as was pointed out in Section 3.2.3, it is challenging to resolve the

CH-layer. This includes resolving the orientation of the CH-layer at the leading edge.

Although there may be ambiguity in the orientation of the flame at the flame leading

edge, the direction which the flame must propagate in order to anchor the flame is

certain based on the analysis of θrel. The question remains then what the orientation

of the flame is at this leading edge. Recall from Section 3.2.3, that if the flame were

to hook as a normal propagation stabilized flame would, it would result in a change

in CH-layer centerline orientation from θf = 0◦ to θf = 90◦ and a displacement of the

CH-layer centerline location in the transverse direction. The analysis showed that if

these features existed, they would be observable from the raw data acquired, however

they in fact are not observed. This provides further support to the hypothesis that

this flame is edge flame propagation stabilized.

6.2.3.2 Edge Velocity

Continuing with the assumption that the leading edge of the flame in the near field is

edge flame stabilized, and that the direction of edge flame propagation is tangent to

the flame surface in the near field, the flow conditions at the flame edge are examined.

Note, that this approach neglects azimuthal variation in the flame standoff distance,
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Figure 6.30: Probability density function of flame leading edge angle with respect

to the flow, θrel for upm=35m/s and upm=70m/s test cases of varying φ.

and assumes that at each instant in time that the edge of the flame observed in-

plane, is the absolute leading edge of the flame. In other words, it assumes there is no

azimuthal component to the flame normal vector, nθ = 0, and therefore the flame is

not propagating in the azimuthal direction at the leading edge. Note as well, that the

temporal resolution is not enough to determine the propagation speed of the flame.

However, given that the axial location of the leading edge of the flame predominantly

resides within a ≈ 2mm range of values, as shown in Figure 6.31, two things are

assumed: the orientation of the flame edge is captured in the r − z plane, and that

the leading edge of the flame is robust such that the mean velocity conditions at the

edge reflect a the flow velocity conditions which the flame must match in order to

anchor the flame.

As was done in the analysis of the velocity conditions along the CH-layer, the

flow velocity at the flame edge are decomposed into components normal, uNedge,CH ,

and tangent, uTedge,CH , to the flame edge as shown in Figure 6.28. In this fashion, if

the flame is truly edge flame stabilized, we would expect to find near zero velocities
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Figure 6.31: Probability density function of flame leading edge axial standoff dis-

tance, Z, for upm=35m/s test cases of varying φ.

normal to the edge (uNedge,CH ≈ 0) and positive velocities tangent to the edge on the

order of flame speeds conditioned on the CH-layer (uTedge,CH ≈ Sd,CH).

Figure 6.32a shows how the edge velocity conditions change as a function of equiv-

alence ratio for the upm = 35 m/s test cases, where velocities at the edge have been

normalized by Sod,ph. These velocities were calculated at the instantaneous flame edge

and then time averaged. The error bars indicate the range of velocities obtained, if

the calculated edge location were to be translated one PIV interrogation window in all

four directions.

The velocity tangent to the flame edge for the low velocity test cases are relatively

constant until φ= 0.8 where there is a sharp increase in the mean tangent velocity.

The reasons for this sharp increase are not fully understood, and possibly a reflection

of the back-pressuring that the overall flame shape exerts on the approach flow field.

In other words, this rise is not simply a local adjustment of the flame position –for

example, detailed analysis shows that there is not a transverse shift in location of the

flame edge into a higher average velocity, at least not one large enough to explain
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(a) upm = 35 m/s (b) upm = 70 m/s

Figure 6.32: Normalized tangential and normal flow velocities at flame edge as a

function of φ for upm=35m/s (left) and upm=70m/s (right).
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Figure 6.33: Mean flame position (dashed red line) and flame normal (red arrows)

overlaid on top of ūz contours (solid lines) and ūr contours (dashed) with regions of

ūr> 0 and ūr≤ 0 shown in white and gray respectively for upm = 35 m/s (left) and

upm = 70 m/s (right) and φ=0.8.

146



the change in velocity. Also, the mean axial location of the leading edge shifts only

slightly downstream, from 1.5 to 2.0 mm, at fuel/air ratios of 1.0 and 0.8, respectively

(Figure 6.31). Since higher tangential velocities occur farther downstream, e.g., Fig-

ure 6.33a shows that the flow at r = 0 accelerates approximately (1 m/s) / (1 mm),

this would contribute to a 0.5 m/s rise in average velocity, a value significantly lower

than required to explain the rise in tangential velocities shown in Figure 6.32a. In

fact, large changes are observed in the mean flow field for the φ = 0.8 test case. Over-

all, the flow velocity tangent to the flame is uniformly higher at comparable axial

locations in the φ= 0.8 case. Thus, the sharp rise in tangential velocity seen at the

flame edge seems to be due to a global change in the flowfield, rather than a local

adjustment of the flame as shown in Figure 6.33a.

Next, we examine the velocity conditions at the edge for the higher premixer

velocity test cases, upm = 70 m/s (Figure 6.32b), focusing our discussion on the

velocity component tangent to the flame edge, uTedge,CH . Like the low velocity test

case, there is a spike in uTedge,CH at φ = 0.8. This again is believed to be the result of

a change in the mean flow field occurring at the leanest test case (Figure 6.33b).

In fact, although stretch measurements were not obtained at the leanest equiv-

alence of φ = 0.7, similar shifts in the mean velocity field are observed for those

test cases as shown in Figure 6.34 for upm = 70m/s test cases. Note the relatively

good agreement in the locations of mean velocity iso-contours throughout the flow

field. This further supports the idea that above a critical φ, the temperature rise and

induced adverse pressure gradient caused by the presence of the flame results in a

global change in the flow field.

6.2.4 Reactant/Product Mixing Upstream of Flame Edge

6.2.4.1 Approach

During times when the flame is locally detached from the bulkhead, mixing between

the incoming reactant stream and the products in the inner recirculation zone can

147



0

0

0

0

10

10

10

20

20

20

30

30

30

40
40

40

50
50

50

60 60
60

70 70

70

−4−4

−3

−3

−3

−
3

−3

−3

−2

−2

−2

−2

−2

−1

−1

−1

−1

0

0
0

0

0

1

1

1 1

1

1

2

2

2

2

3

Z [mm]

R
[m

m
]

1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) φ = 0.7

0

0

0

0

10

10

10

20

20

20

30
30

30

40
40

40

50 50
50

60 60
60

70
70

70

−2

−2

−2 −2

−2

−1

−1
−1

−1

−1
−1 −1

0

0
0

0

0

1

1

1
1

1

1

2

2

2

Z [mm]

R
[m

m
]

1 2 3 4 5 6 7 8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) φ = 0.8

Figure 6.34: Mean flame position (dashed red line) and flame normal (red arrows)

overlaid on top of ūz contours (solid lines) and ūr contours (dashed) with regions of

ūr>0 and ūr≤0 shown in white and gray respectively for φ = 0.7 (left) and φ = 0.8

(right) and upm = 70m/s.

occur. Reactants diluted with products will increase the temperature of the reactant

mixture, while decreasing the concentrations of fuel and oxidizer. Increases in reactant

temperature will increase the reactivity of the mixture while dilution of the reactant

concentrations will act to do the opposite. However, due to the high temperature

sensitivity of reactions, it is presumed that the overall effect of mixing is to enhance

the reactivity of the mixture. Numerical studies of opposed jet flames subject to

reaction dilution are discussed in Section 7.2 and demonstrate its effect on key flame

stabilization parameters such as κext and Sd. That being said, the goal of this section

is assess the likelihood that mixing, or reactant stream dilution, occurs upstream of

the flame attachment point.

The approach to quantify mixing upstream of the attachment point is shown in

Figure 6.35. At each instance in time, a control line is defined from the corner of the

center body to the leading edge of the flame located at (zedge, redge), shown as the
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Figure 6.35: Control surface definition for attachment point mixing calculations

dashed line. Along the mixing line, the net volumetric flow rate per unit length, V̇
′
,

is determined for all time instances:

V̇
′
(tj) =

nj∑
i=1

uN (si) dsi (6.4)

where si is the location along the mixing surface, dsi is the incremental length

at si, u
N (si) is the velocity normal to the mixing surface at location si, and nj is

the number of points along the mixing surface. Note that uN (si) is positive in the

direction from the jet to the recirculation zone as shown in Figure 6.35. This metric

will serve as an indicator of the degree to which the composition of the reactant

mixture at the attachment point is being altered by mixing with the recirculation

zone.

6.2.4.2 Results

The volumetric flux per unit length, or V̇
′
, was determined at each time instant when a

flame was observed. Note that positive values of V̇
′

as defined in Figure 6.35 indicate

transport across the mixing surface from the reactant stream to the recirculation

zone, whereas negative values indicate transport from the the recirculation zone to
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Figure 6.36: Normalized PDF of volumetric flow rate per unit length, V̇
′
, positive

for transport from reactants to products, for upm = 35 m/s (left) and upm = 70 m/s

test cases.

the reactant stream, indicative of reactant stream dilution. The PDFs for the upm =

35 m/s test cases, shown in Figure 6.36a, are relatively symmetric with the exception

of the φ = 0.8 test case. In addition, there was not a strong trend in φ for the time

averaged value of V̇
′

or the net value, summed over all time instances,
∑ttot

j=1 V̇
′
(tj).

Although again, note the appearance of a slight asymmetry in the PDF for φ = 0.8

near V̇
′
= 0.01 and the overall widening of the PDF. These asymmetries in the PDF

become even more noticeable and apparent in the high velocity test cases, upm =

70 m/s (Figure 6.36b).

Clearer insight into the mixing behavior upstream of the attachment point was

obtained by investigating the correlation between V̇
′

and the transverse coordinate

of the flame edge, redge. In fact, V̇
′

was observed to correlate well with the transverse

location of the leading point of the flame as shown for 35 m/s test cases (Figure

6.37) and 70 m/s test cases (Figure 6.38). The correlation of V̇
′

with redge is more

clearly shown in Figure 6.39 and Figure 6.40 which show PDFs of V̇
′

at fixed values

of redge. Returning to Figure 6.37 and Figure 6.38, note as well, the preference of
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Figure 6.37: Scatter plot of V̇
′

as a function of radial edge location, redge, for

upm = 35 m/s test cases and various φ ranging from 0.8 to 1.1.

the leading edge of the flame to anchor in regions where reactant dilution is more

likely to occur for both velocity conditions (V̇
′
< 0). However, for the leanest test

condition, φ = 0.8, the likelihood of reactant dilution decreases, another indication of

degraded flame stability as blowoff conditions are approached. Thus it seems likely

that reactant dilution is occurring and potentially influencing the burning properties

of the flame at the flame anchor.

Lastly, the transverse location of the flame edge, redge, was uncorrelated with

the axial location of the flame edge, zedge as shown in Figure 6.41 and Figure 6.42.
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Figure 6.38: Scatter plot of V̇
′

as a function of radial edge location, redge, for

upm = 70 m/s test cases and various φ ranging from 0.8 to 1.1.
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Figure 6.39: PDFs of V̇
′

grouped by radial edge location, redge, for upm = 35 m/s

test cases and various φ ranging from 0.8 to 1.1.
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Figure 6.40: PDFs of V̇
′

grouped by radial edge location, redge, for upm = 70 m/s

test cases and various φ ranging from 0.8 to 1.1.
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Figure 6.41: Scatter plot of flame edge locations for upm = 35 m/s test cases and φ

ranging from 0.8 to 1.1.

Thus, the transverse edge location is the key parameter determining the likelihood of

reactant dilution upstream of the flame leading edge.
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Figure 6.42: Scatter plot of flame edge locations for upm = 70 m/s test cases and φ

ranging from 0.8 to 1.1.
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CHAPTER VII

RESULTS: NUMERICAL MODELING OF

RECIRCULATION ZONE PHYSICS

In the experimental results chapter, Chapter 6, the measured stretch along the CH-

layer was compared to extinction stretch rates calculated using CHEMKIN’s symmet-

ric opposed-jet model. As was presented in Section 5.2 of the ”Numerical Modeling

Approaches” chapter, there are additional physics which are not included which could

substantially alter the stretched flame behavior. As such, models which account for

non-adiabatic effects and reactant dilution were proposed. The proposed model for

the current studies of non-adiabatic effects has been used in previous experimental

and numerical studies [33, 121, 28, 78]. In addition to the effect of heat loss for the

product opposed jet configuration , Coriton et al. [27] explored the sensitivity of

flame stability to the product stream composition. The model proposed for the study

of reactant dilution studies the effect of reactant/product mixing. The details of the

models used in the study of recirculation zone physics and the corresponding results

are presented in this chapter in which non-adiabatic and attachment point mixing ef-

fects on flame response to stretch is quantified, and the implications on flame stability

are discussed.

7.1 Flame Sensitivity to Heat Losses

As one might suspect, the direct effect of heat loss is to decrease the flame temper-

ature, decreasing the reactivity of the flame and resulting in decreases flame speed

and the extinction stretch limit. The asymmetric opposed-jet model of Figure 5.7, a

reactant stream opposed by a product stream, was used to study the effect of heat
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loss on stretched flames. These calculations were performed for varying levels of

heat loss from the flame to the product side by varying the fixed product side tem-

perature for each test case. Each product temperature was defined relative to the

extinction temperature for the symmetric test configuration through a temperature

ratio, Tr = TRZ/T
ad
ext, where TRZ is the temperature of the product or recirculation

zone stream and T adext is the extinction temperature from the adiabatic or symmetric

opposed-jet model, for which both jets are identical, pre-mixed reactant mixtures

(Figure 5.1). Calculations were performed for Treac = 533K and values of φ and Tr

outlined in Table 5.1.

The effect of heat loss on stretched flames is clearly observed in Figure 7.1 which

shows flame temperature response to stretch for test cases subject to varying degrees

of heat loss. Note, for the range of positive stretch, κphs > 0, where all three flames

exist, the maximum flame temperature, Tmax, decreases with increasing heat loss for

both equivalence ratios shown. In addition, note how the response of Tmax
(
κphs
)

for

the Tr = 1.0 and Tr = 1.05 flames do not abruptly extinguish; flame temperature

gradually and monotonically decreases with flame stretch, asymptotically approaching

the product jet temperature. It is also interesting to note, that the temperature at

which abrupt extinction happens for the Tr = 0.8 test case, nearly matches that of the

extinction temperature for the symmetric, or adiabatic flame calculations as shown

in Table 7.1. This is in fact why product side temperatures for the non-adiabatic

studies were chosen relative to T adext as the demarcation between abrupt and gradual

extinction occurs for TRZ ≈ T adext.

Flame speed is also drastically altered by the presence of heat loss at high stretch

rates as evident in Figure 7.2. The displacement flame speed, Sd,ph, is defined by

the local minimum in velocity normal to the flame in the preheat layer of the flame

(Figure 5.3). The deviation in Sd,ph between the test cases of varying Tr, becomes

more apparent at higher stretch rates, where higher degrees of heat loss, result in
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Figure 7.1: Flame temperature response of a non-adiabatic, asymmetric, opposed

jet methane-air flame at a Tph = 533K, with varying normalized product side tem-

peratures, Tr, for φ = 0.8, left, and φ = 1.0, right.

Table 7.1: Comparison of flame temperature at extinction between symmetric, adi-

abatic and asymmetric, non-adiabatic opposed jet flames. Non-adiabatic results are

for a Tr = 0.8.

Text [K]

φ Symmetric Tr = 0.8

0.7 1698.7 1689.9

0.8 1775.2 1776.3

0.9 1844.7 1830.5

1.0 1906.7 1898.1

1.1 1957.8 1936.1
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lower flame speeds. Similar to the response of flame temperature to heat loss, Sd,ph

asymptotically approaches a limit value at high stretch for the Tr = 1.0 and Tr =

1.05 test cases, although the physicality of a displacement based flame speed in this

region is questioned. In the high stretch limit where the flame temperature and flame

speed approach their asymptotes, the flame is no longer self supporting, as suggested

by the lack of temperature rise above the product side temperature, but relies on

any partial consumption of the reactant stream from diffusion of heat across the

stagnation plane. Thus, although abrupt extinction is not observed in the stretched

flame temperature for cases with Tr > 1.0, a consumption based flame speed provides

a clear indication when a flame is no longer self-supporting, as defined by Equation

7.1 for the consumption of methane.

SHDc,CH4
= − 1

ρreacYCH4

∫ zSP

zreac

ω̇CH4dz (7.1)

The bounds of the integral were chosen to be the reactant jet exit, zreac, and the

stagnation surface, zSP , such that SHDc,CH4
> 0 only when methane is consumed on

the reactant side of the stagnation surface. Figure 7.3 shows the same test cases as

Figure 7.2 but for SHDc,CH4
. Note the steep drop off in SHDc,CH4

at high stretch indicating

incomplete consumption of methane and the point at which the flame is no longer self-

sustaining. Any consumption of methane beyond that point is the result of methane

diffusion across the stagnation plane.

There are two conclusions from these studies. Namely, that recirculation zones

of high enough temperature, Tr > 1.0, will prevent abrupt, extinction based events,

and therefore decrease the possibility of flame holes, although variations in burning

intensity and reaction rate would certainly be expected. Second, that the extinction

stretch rate drastically decreases in the presence of heat loss from the flame to the

recirculation zone (Tr < 1.0).

Given the ambiguity in the extinction limit for asymmetric stagnation flames with

Tr ≥ 1.0, we compare the stretched flame response for the symmetric configuration
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Figure 7.2: Stretched displacement flame speeds of a non-adiabatic, asymmetric,

opposed jet methane-air flame at a Tph = 533K, with varying normalized product

side temperatures, Tr, for φ = 0.8, left, and φ = 1.0, right.

with the Tr = 0.8 test case, which also abruptly extinguishes, allowing for a κphext to

be quantified. Figure 7.4 shows the laminar flame speed stretch response, Sd,ph
(
κphs
)
,

for these two test cases at φ = 0.8, Figure 7.4a, and φ = 1.0, Figure 7.4b. It is clear

for both equivalence ratios, that κphext, is much lower with heat loss. In fact, κphext is

consistently lower both in reference to the preheat zone, left, and CH-layer, right,

as shown in Figure 7.5. In addition, Sd,ph is also consistently lower for the Tr = 0.8

test case. Thus in the limit where Tr < 1.0, we expect the stability of the flame to

be drastically influenced by heat loss as both Sd,ph and κphext strongly deviate from

symmetric/adiabatic conditions.

7.2 Flame Sensitivity to Reactant Dilution

As abrupt extinction for the asymmetric opposed-jet configuration only occurred

when the flame was subject to heat loss, Tr < 1, the effect of reactant dilution

was studied for a single Tr of 0.8 for the test conditions shown in Table 5.2. The

asymmetric model used to study the effect of heat losses was modified as shown in
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Figure 7.3: Stretched methane consumption flame speeds, SHDc,CH4
, of a non-adiabatic,

asymmetric, opposed jet methane-air flame at a Tph = 533K, with varying normalized

product side temperatures, Tr, for φ = 0.8, left, and φ = 1.0, right.

Figure 5.8 to account for reactant dilution by mixing with the product or recirculation

zone jet which has been cooled (Tr < 1). The mass fraction of products in the reactant

stream, YEGR, was varied from no dilution to 30%. There were four quantities of

interest that were used to quantify the effect of reactant dilution on the flame: Tmax,

Sd,ph, Sc,CH4 and κext. The first three parameters are indicators of changes in the

flame’s response to stretch and the last an indicator of a change in the stretch space

in which a flame can exist.

Figure 7.6 plots the maximum temperature response of the flame to stretch,

Tmax (κs), shown for mixtures of varying reactant dilution. Note, these results are

shown for varying ranges of stretch, terminating at the upper limit of flame stretch,

κext, for each respective test case. Clearly, increasing reactant dilution leads to in-

creasingly lower flame temperatures at a fixed κphs , presumably the result of decreasing

heat of combustion counteracting increases of reactant sensible enthalpy.

Next, the sensitivity of the stretched flame speed, Sd,ph (κs), to reactant dilution,

shown in Figure 7.7 is discussed. Contrary to flame temperature, flame speed increases
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Figure 7.4: Effect of heat loss on the response of flame speed to stretch rate demon-

strated from a comparison of symmetric opposed-jet calculations for the adiabatic

case and asymmetric opposed-jet calculations with a Tr = 0.8 for the non-adiabatic

test case. Flame speed and stretch is reported relative to the preheat zone, Sd,ph (κs),

for φ = 0.8, left, and φ = 1.0, right, for methane-air mixtures at a Tph = 533K.

with YEGR and thus the flame benefits slightly from reactant dilution. For instance,

at a φ = 0.8 and YEGR = 0.3, Figure 7.7a, and at low stretch rates, Sd,ph increases by

≈ 15% while the κext,ph decreases by ≈ 26%. So long as the flame is far from being

critically stretched, these results suggest a mechanism by which the attachment point

location is resistant to downstream advection resulting from a kinematic imbalance

between flow and flame speed. Assuming YEGR increases with standoff distance, local

flame speed would increase as well and counteract the further displacement of the

flame downstream. Note however, that the physics of edge flames are not captured

by the opposed jet model.

The effect of EGR on methane based consumption speed, SFDc,CH4
, is similar to those

observed for Sd,ph as shown in Figure 7.8. Note that SFDc,CH4
was evaluated over the

entire opposed-jet domain as defined by Equation 7.2, where zEGR is the location of

the reactant jet exit and zRZ the location of the product or recirculation zone jet exit.
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Figure 7.5: Effect of heat loss on the extinction stretch rate demonstrated from a

comparison of symmetric opposed-jet calculations for the adiabatic case and asymmet-

ric opposed-jet calculations with a Tr = 0.8 for the non-adiabatic test case. Extinction

stretch rates are reported for κphext, left, and κCHext , right, for methane-air mixtures at

a Tph = 533K.

Values of Sc,CH4 calculated over only the EGR side of the domain, zEGR < z < zSP ,

were equal to values calculated for the full domain, SFDc,CH4
, thus confirming that even

with EGR, the consumption of methane remains confined to the EGR side of the

domain and the abrupt nature of extinction for these mixtures.

SFDc,CH4
= − 1

ρEGRYCH4

∫ zRZ

zEGR

ω̇CH4dz (7.2)

Lastly, Figure 7.9 summarizes the effect of YEGR on κphext, Figure 7.9a, and κCHext ,

Figure 7.9b, for all test cases. Note, that while there is expected to be a upper limit

in YEGR which would support a flame, that limit was not observed for the range of

YEGR explored in these studies. Note as well, that reactant dilution is expected to

occur only in the near field and at locations downstream where a flame hole might

be present. Clearly though, the limit in flame stretch is influenced by the reactant
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Figure 7.6: Flame temperature response, Tmax (κs), of a non-adiabatic, asymmetric,

opposed jet methane-air flame at a Tph = 533K, subject to varying degrees of reactant

dilution, YEGR, with a fixed normalized product side temperatures, Tr = 0.8, for

φ = 0.8, left, and φ = 1.0, right.

dilution.
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Figure 7.7: Stretched displacement flame speeds of a non-adiabatic, asymmetric,

opposed jet methane-air flame at a Tph = 533K, subject to varying degrees of reactant

dilution, YEGR, with a fixed normalized product side temperatures, Tr = 0.8, for

φ = 0.8, left, and φ = 1.0, right.
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Figure 7.8: Stretched, methane consumption flame speeds, SFDc,CH4
(κs), of a non-

adiabatic, asymmetric, opposed jet methane-air flame at a Tph = 533K, subject to

varying degrees of reactant dilution, YEGR, with a fixed normalized product side

temperatures, Tr = 0.8, for φ = 0.8, left, and φ = 1.0, right.
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Figure 7.9: Effect of reactant dilution, YEGR , on extinction stretch rate, κext, using

an asymmetric opposed-jet configuration with a Tr = 0.8. Extinction stretch rates

are reported for κphext, left, and κCHext , right, for methane-air mixtures at a Tph = 533K.
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CHAPTER VIII

CONCLUSION

The major results and conclusions of this thesis are summarized in this chapter. Then

recommendations for future studies related to this thesis are presented.

8.1 Reduced–Order Modeling of Flame Stabilization

A successful stretch based scaling of OSL flame stabilization in a swirl stabilized

combustor was developed. This scaling was formulated on the hypothesis that shear

layer stabilized flame transitions, either blowoff or attachment, are the result of a

critical flame stretch limit. Assuming the extinction stretch rate, κext, as the funda-

mental chemical kinetic parameter of interest, separate parameters were defined for

scaling attachment and blowoff, κext (φ, Tph) and κext,a (φ, Tref ) respectively. These

parameters successfully collapsed OSL attachment/blowoff sensitivity to bulkhead

temperature, equivalence ratio, and preheat temperature. Thus, this work demon-

strated the applicability and relevance of κext as a fundamental chemical parameter

of interest to a practical combustor, which can be calculated from the reduced–order

model of the opposed–jet configuration in CHEMKIN.

8.2 Experimental Measurements of Stretched Flames

The experimental studies and analysis performed provide invaluable data in the at-

tachment point region of a shear layer stabilized flame. The experimental studies

produced high spatial resolution measurements of CH-PLIF and PIV, which enabled

the flame and flow field to be characterized. From this data set, stretch rate in the

attachment point region was calculated, the physics of the flame at the attachment

point were evaluated, and mixing upstream of the attachment point was estimated.
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The major takeaways from each of these studies are presented next.

8.2.1 Flame Stretch Measurements

Flame stretch measurements performed at upm = 35m/s, showed that on average,

these flames experienced stretch conditions that were favorable for these mixtures

(positive flame stretch) and that were far from the stretch extinction limit predicted

from OPPDIF calculations in CHEMKIN. However, the maximum mean stretch rate

was observed for the stoichiometric test case and any deviation from stoichiometric

conditions resulted in a decrease in the mean measured stretch rate resulting in flames

that were less critically stretched. In fact, at the leanest equivalence ratio of φ = 0.8,

the condition closest to lean blowoff, the mean flame stretch rate was the smallest

compared to the other test cases with 0.8 < φ ≤ 1.1 (Figure 6.21). This would suggest,

that OSL blowoff is not the result of local stretch induced extinction downstream

of the leading edge in the nearfield. However, it should be pointed out that the

opposed–model used to calculate κext (OPPDIF in CHEMKIN) is a one-dimensional

reduced–order model, which does not reflect the highly non-1D flame physics at the

leading edge. As a result, there is uncertainty in concluding whether the stretch

conditions at the leading edge become more or less critical without knowing the

appropriate value of κext at the leading edge.

Similar results were observed in the stretch measurements for the higher velocity

test case, upm = 70m/s with one exception (Figure 6.22). While the mean stretch rate

was observed to be positive for 0.8 < φ ≤ 1.1, at φ = 0.8 the mean stretch rate was

negative at several axial locations. This was a result of the mean flame angle becoming

negative at those locations, presumably the result of a local imbalance between flame

speed and flow speed advecting the flame front away from the incoming reactant jet.

This in turn causes negative flame stretch contributions from the shear strain term,

∂uz/∂r, and a potential change in flame stability, as the flame has to recover from an
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orientation and location where the flame stretch is now negative.

8.2.2 Attachment Point Orientation and Kinematics

The centerline of the CH-layer was observed to be near horizontal throughout the

measurement domain and up to the leading edge of the flame, suggesting that the

flame is edge flame stabilized. Analysis of the relative angle between the direction

of flame propagation and flow, θrel, demonstrated the tangential alignment of flame

with respect to the flow, supporting the edge flame hypothesis. Finally, analysis of

the raw data also demonstrated the ability of this technique to observe the orientation

and position at the leading edge of the flame which provided greater confidence in

our conclusion that since normal propagation features were not observed, the flame

is edge flame stabilized.

The CH-PLIF images obtained of the flame in the attachment point region pro-

vided a unique insight into the flame anchoring physics, challenging the classical con-

cept of normal propagation stabilization at the attachment point. With respect to the

CH-layer, the flow velocities tangent to the flame edge were calculated. Although the

tangential velocity conditions at the edge of the CH-layer are higher than expected

stretched flame speeds, the mean tangential velocity at the flame edge was relatively

constant with respect to each mixture’s unstretched flame speed for φ = 0.9 − 1.1.

However, there was a sharp increase in the mean tangential velocity at the flame edge

for φ = 0.8. This behavior, along with the noted alignment of the flame edge with

the flow, further indicates that the flame is anchored by flame propagation tangent

to the flame surface downstream of the leading edge. The measured trend of higher

edge velocities and lower stretch rates at decreasing φ suggest that blowoff poten-

tially occurs as a result of a local kinematic imbalance between flow velocity and edge

flame speed, rather than local extinction. These studies motivate the further study

and inclusion of edge flame physics in the evaluation of flame stabilization in shear
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layers.

8.2.3 Attachment Point Reactant Composition

The burning properties of mixtures are highly sensitive to reactant composition and

temperature. Therefore, even slight mixing between the incoming reactant stream

and the recirculation zone upstream of the flame attachment point, could potentially

alter the burning properties at the leading edge, and therefore, flame stability. For

this study, the volumetric flow rate per unit length, V̇
′
, was calculated along a line

from the corner of the centerbody to the edge of the flame. These calculations showed

a preference of the flame edge, redge, to reside in regions where reactant dilution was

more likely to occur, redge < 0 (Figure 6.37). In fact, V̇
′

and redge positively correlate

with each other. These results suggest that reactant dilution is occurring with a

positive net effect on flame stability such that the attachment point preferentially

sits in locations where the reactant stream is diluted with products.

8.3 Numerical Modeling of Recirculation Zone Physics

The calculations performed using the non-adiabatic opposed-jet model (Figure 5.7)

and non-adiabatic opposed jet model with EGR (Figure 5.8) provided insight into the

effect of heat losses from the flame to the recirculation zone and reactant dilution on

flame stability. The results can be summarized as follows as two main conclusions.

Abrupt flame extinction is only possible when there are heat losses from the flame.

Second, product dilution up to YEGR = 30% increases the flame speed with a slight

decrease in the extinction stretch rate. The first point explains the ability of the

flame to withstand high stretch rates in regions supported by the recirculation of

hot products downstream of the attachment point. The second point provides initial

insight on potentially how the flame is able to withstand velocity fluctuations at

the attachment point. Note, that in order to further validate the effect of reactant

dilution, the experimental results strongly suggest the use an edge flame modeling
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approach to calculate stretch limits and burning velocities.

8.4 Future Work Recommendations

There are two aspects related to this thesis that are addressed in this section: PIV

measurements, and edge flame behavior.

8.4.1 PIV measurements

The PIV measurements could benefit from improvements in the accuracy of the veloc-

ity measurements and the temporal resolution. As was demonstrated in the analysis

of error presented in the Appendix, Chapter A, the accuracy in instantaneous stretch

rates suffered greatly from inaccuracies in velocity as estimated using PIV uncertainty

analysis. Given the challenges of a swirling flow field, performing stereo-PIV would

improve the optimization of the laser sheet thickness. With the measurement of the

out-of-plane velocity component, the sheet thickness could be set at minimal thickness

with acceptable loss of pairs. A thinner sheet would improve velocity measurements

by minimizing variation of particle displacement within the thickness of the sheet.

Time resolved PIV measurements would also improve the velocity measurements as

spectral filtering of the velocity field measurements could be applied.

The cross-correlation used to calculate the PIV vectors was limited in its ability

to only determine the displacement and resulting velocities in two orthogonal direc-

tions. Generalized digital particle image velocimetry (DPIV) algorithms have been

developed which provide direct calculation of velocity, vorticity, and in-plane shear

rates [79, 35, 40]. For example, Duncan et al. [35] demonstrated the superior ability

of DPIV to characterize the velocity field of an Oseen vortex.
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8.4.2 Edge flame behavior

The study of premixed edge flames, especially in the context of flame stabilization in

practical combustors, is relatively immature. While configurations have been devel-

oped for the experimental study of edge flames, such as the angled-opposed jet burner

[114, 113, 74], these experimental studies lack detailed flame and flow measurements

in order to understand the flame stretch and velocity conditions with respect to the

edge of the flame. Given the observed characteristics of the flame structure in the

attachment point consistent with an edge propagation stabilization, additional fun-

damental studies of premixed edge flames and characterization of flame edge speeds

would be beneficial. While numerical studies have been performed by Daou and Linan

[29], these studies lack detailed chemical kinetics.
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APPENDIX A

ERROR ANALYSIS

The section below will discuss various sources of error which influence the accuracy

and precision of velocity and stretch measurements performed in this work using

Particle Image Velocimetry (PIV). This analysis will address particle physics related

to the ability of the particle to track the flow field when subject to thermophoretic

forces, flow unsteadiness, and swirl induced centrifugal forces. In addition, the lim-

itations of the PIV algorithm to precisely and accurately characterize the velocity

field are addressed by a discussion of PIV velocity resolution and uncertainty analysis

using cross-correlation statistics [124]. Velocity gradients are approximated using a

finite differencing scheme, and as such, introduce sources of error which are discussed

especially related to fields subject to vortex induced strain. Finally, a propagation

of error analysis will then performed relating the various quantifiable sources of er-

ror in velocity measurements to parameters and metrics of interest for these studies.

Namely flow velocities along and at the leading edge of the CH-layer, and the stretch

conditions along the CH-layer. In conclusion, suggestions for improvements on the

discussed measurement techniques are made.

A.1 Velocity Measurements

First and foremost, there are sources of error directly related to the physics gov-

erning particles suspended in a fluid medium. Ideally, the particle motion will very

closely follow the flowfield. However, the particle size, and density affect its abil-

ity to follow the flowfield in reacting flowfields due to temperature gradient induced
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thermophoretic forces. These same particle properties will affect its response to fluc-

tuating flow conditions, and fluid rotation in the form of vortices or on a bulk scale

through swirl. As is demonstrated, there is a compromise between particle respon-

siveness and resistance to thermophoretic forces when selecting particles for velocity

field diagnostics. Second, errors related to the technique PIV are discussed. Errors in

this sense are essentially related to ability of the PIV algorithm to report physically

relevant velocities. This can be reduced to an analysis of particle retention within

the laser plane, at a minimum, or within the PIV interrogation window size. Regions

of large velocity gradients within an interrogation window can also introduce errors

in the reported velocities in the form of bias error. Lastly, error estimates of the

reported velocities are reported based on PIV resolution, as well using DaVis’s un-

certainty analysis toolbox based on cross-correlation statistics developed by Wieneke

et al. [124].

A.1.1 Particle Error Sources

A.1.1.1 Particle Lag

Particle lag is a concern for LDV of PIV techniques in any flow where the material

derivative of velocity is non-zero:

D~u

Dt
6= 0 (A.1)

In other words, once the drag forces equilibrate the flow and particle velocity, fluid

flow acceleration at any point in the flow field will potential reintroduce an imbalance

between particle and flow velocity. How quickly the flow particle accelerates to the

flow velocity depends on the particle lag time, or particle Stokes time, τs [6]:

τs ≡
ρpd

2
p

18µ
(A.2)

Bergthorson et al. [6] analyzed the effect of particle lag on particle velocity, up,

providing this relationship for a particle in a uniformly accelerating flow field with a
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constant velocity gradient, duf/dx = σ:

up
uf
∼=

1

1 + CKW τsσ
(A.3)

In this very simple example, we can understand the major factors influencing

discrepancies between up and uf , namely particle diameter, dp, and velocity gradient

magnitude, σ. Inspecting eqn. A.2, and eqn. A.3, it becomes clear that increasing

dp or σ results in larger relative differences between up and uf , both very physically

intuitive results.

In order to extend beyond this rather simple example, and into a more general

framework of understanding particle lag, studies have been carried out to understand

particle lag of particles subject to harmonic fluctuations [80, 81]. Melling’s analysis

of tracer particle dynamics in a harmonically oscillating flow environment produced

the following expression for the ratio of the time averaged particle and fluid energy

(ū2
p/ū

2
f ):

ū2
p

ū2
f

=
(

1 +
ωc
C

)−1

(A.4)

where Melling defines the characteristic frequency of the particle motion, C, as:

C =
18µ

ρpd2
p

(A.5)

Equations A.4 and A.5 can be then used to establish cut-off frequencies, 1/ωc,

above which the mean energy of the particle is less than a defined threshold. Likewise,

these equations can be used in order to determine the required particle size, dp in

order to achieve a specified fc. For instance, alumina oxide particles, Al2O3, in a

flame environment with a temperature of 1800K, must be smaller than 2.46µm and

0.78µm to achieve fc of 1 kHz and 10 kHz respectively.

A.1.1.2 Thermophoretic Forces

Thermophoretic forces could potentially influence the motion of seeding particles

within the flow field, and thereby alter the calculated velocity field from PIV. These
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forces are proportional to ∇T/T and act in the opposite direction of the temperature

gradient. In the presence of a flame, thermophoretic forces will act to slow particles

down as they pass through the flame. Brock’s analysis of thermophoretic forces [10]

provides the following relationship for modeling this force as cited by Bergthorson et

al. [6]:

FT = −
6πµνdpCs

(
kf
kp

+ CtKn
)

(1 + 3CmKn) (1 + 2kf/kp + 2CtKn)

∇T
T

(A.6)

Note the direct dependence on particle material properties such as particle diam-

eter, dp, and particle thermal conductivity, kp, as well as through the Kn number.

So long as Kn << 1, decreasing dp will decrease the thermophoretic force, FT , acting

on the particle. In addition, the higher the particle thermal conductivity, the smaller

the FT . However, although FT may decrease, this may lead to larger discrepancies

between particle and flow velocity as the mass of the particle is proportional to d3
p.

In addition, Stokes drag must also be taken into account in order to understand the

net effect on the particle velocity.

Several investigations have been performed to quantify the effect of thermophoretic

forces on measured particle velocities [115, 46, 109]. For instance, Sung et al. [109]

performed experimental velocity measurements on a counterflow test geometry com-

paring them to calculations of the particle velocity subject to Stokes and thermophoretic

forces. They observed particle velocity lag resulting in velocity bias as high as 15 cm/s

within the flame zone. However, interesting enough, the particle velocity profiles for

particle diameters of 5µm and 0.3µm are indistinguishable from one another within

the flame. As such, we assume velocity errors due to thermophoretic forces, σTPu , to

be ≈ 15cm/s.

A.1.1.3 Centrifugal Effects

Given the swirling nature of this flow field, centrifugal effects could influence the

path of the particles considerably. In fact, a significant change in the radial seeding
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density at the dump plane was observed when 1−2 µm diameter seeding particles were

used rather than 5 µm diameter seeding particles. The 1 − 2 µm diameter particles

produced a uniform density of seeding in the annular jet entering the combustor while

the 5 µm were located mainly in the outer shear layer with considerably less particles

entering the combustor in the jet. Particle lag, or the ability of the particle to follow

the flow changes, is responsible for this observed difference in seeding density, the

smaller particles following the flow better than the larger ones. Given enough time,

all particles are removed from the center of the swirling flow field, with particles

distributed radially by increasing particle diameter.

A.1.2 PIV Error Sources

A.1.2.1 Loss of Pairs

The laser sheet optics and data acquisition settings require special attention in order

to ensure that loss of pairs via out of plane motion does not invalidate the velocity

fields acquired. To reduce the probability of loss of pairs, the laser sheet thickness

( 1mm) and shot separation times (5µs & 2µs) were chosen such that the maximum

in plane movement would be 20% of the sheet thickness assuming maximum out

of plane velocities, , on the order of the bulk flow velocities (35 & 70 m/s). The

interrogation window size used to determine the PIV vector field were 32 x 32 sq.

pixels in size with 50% overlap. An overlap of 50% was chosen in order to provide

the highest spatial resolution of the flow field while limiting the possibility of a noisy

local region in the Mie-scattering images leading to two invalid, neighboring vectors.

After the PIV vector fields are calculated, they are then smoothed by a local 3x3

median filter before the strain fields are calculated.

A.1.2.2 High Flow Gradients

High flow gradients pose challenges for PIV in determining accurate and unbiased ve-

locity vectors. Velocity bias is likely to occur with more lower velocity particles than
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higher velocity particles staying in the interrogation window between shots for fixed

interrogation window calculations. However, with the implementation of multiple

passes, initial calculations of particle movement can be used to displace the relative

location of interrogation windows between image pairs resulting in lower loss-of-pairs

and decreased measurement bias. The accuracy of PIV velocities is also sensitive to

velocity gradients. As discussed by Raffel et al. [92], rms uncertainties in velocities

increase with velocity gradient. They also point out that smaller interrogation win-

dows are less sensitive to velocity gradients and have lower uncertainties. In addition,

the use of interrogation windows which deform based on the surrounding strain field

will also improve the accuracy of the PIV vectors.

A.1.2.3 Seeding Density Gradients

Variations in seeding density can result from poor introduction of seed into the flow

field, from the inability of seed to track fluid mechanic features of the flow field,

such as vortices, or from temperature induced variations of the fluid density. Spatial

variations in seeding density can adversely affect the accuracy of PIV through a bias

error, as the velocity calculated is preferentially biased towards regions within an

interrogation window with higher seeding densities [108, 82]. The seeding density

is clearly higher in the non-reacted or reactant region, and although the location of

the CH-layer centerline did exist at times in regions of uniform seeding, there were

certainly times where it was close enough to the Mie-edge to be affected by seeding

density gradients.

Next, estimates of particle density induced bias errors are provided. Note, that

this error source only is present in regions where there is both a gradient in particle

seeding density and velocity. Figure A.1 shows the representative velocity field and

density field used in this analysis. The seeding density, ρseed, was assumed to vary
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linearly over the temperature based flame thickness, δTf :

ρseed (r) = ρprodseed +
∂ρseed
∂r

r ≈ ρprodseed +
ρreacseed − ρ

prod
seed

δTf
r (A.7)

which is valid for 0 < r < δTf and where ρprodseed is the seeding density in the product

region, ρreacseed is the seeding density in the reactant region, and δTf is the temperature

based flame thickness. A linear gradient in axial velocity was assumed as well:

uz (r) =
∂uz
∂r

r ≈ 0.9ubulk
δbl

r (A.8)

where the transverse gradient in axial velocity was approximated by the bulk velocity,

ubulk, and boundary layer thickness, δbl. Since velocities are biased towards higher

seed density regions, the center of particle mass within an PIV interrogation window,

r̄, is determined using Equation A.7. The difference in velocity at the center of the

interrogation window, rc, and at r̄ is determined:

∆uz = uz (r̄)− uz (rc) ≈ (r̄ −∆PIV )
0.9ubulk
δbl

(A.9)

where ∆uz is the bias error in velocity caused by variations in particle seeding density

and ∆PIV is the PIV vector spacing. ∆uz increases with velocity gradients in the

seeding gradient direction and with seeding density gradients. It is also sensitive to

the ratio of seeding density in the reactants to that in the products. In the estimates

of seeding density bias errors in these studies, the ratio of average intensity in the

reactant and product regions was used as an indicator of seeding particle density with

values ranging from 2.5 to 2.8. Note that ∆uz is not a function of the absolute velocity

within an interrogation window and it is assumed that in-plane and out-of-plane loss

of pairs are not present.

For the ubulk = 35m/s test case, ∆uz ranged from 1.8m/s to 1.4m/s with larger

bias errors present towards the product side of the flow field. These values are upwards

of ≈ 40% of the mean velocity conditions at the leading edge of the flame for the

0.8 < φ < 1.1 test cases but decrease relative to the mean velocity conditions for the
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Figure A.1: Schematic representing seed density variation within shear layer.

φ = 0.8 test cases to ≈ 10%. These values are high compared to other velocity error

sources, however, the transition from high to low density seeding in the measurements

was observed to occur over distances of ≈ 1mm rather than δTf ≈ 0.26mm. This larger

transition from low to high seeding density results in considerably lower velocity bias

errors of ≈ 0.7m/s, which are on the order of the other sources of error expected.

A.1.3 PIV Velocity Error Estimation

The error in measured velocities using PIV is discussed in this section. There are

two approaches of error estimation that are discussed, one related to the limitations

of the cross-correlation PIV algorithm to determine the actual displacement of the

particles and the second related to direct error estimation of velocity uncertainties.

The first approach which is discussed quantifies a velocity uncertainty based on PIV’s

limitation of particle displacement resolution on the sub-pixel scale. This approach to

velocity uncertainty quantification is referred to as sub-pixel resolution error. There

have been many methods developed for the second approach to directly quantify

velocity uncertainty. These methods have the potential to directly quantify velocity

uncertainty resulting from physical sources as well as from PIV limitations. Four such

direct estimation methods are introduced followed by a more in depth discussion of

the correlation statistics method.
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A.1.3.1 Sub-Pixel Resolution Error

Random uncertainty in the velocity vectors caused by particle displacement resolution

limitations of the PIV algorithm was determined by estimating the precision of the

sub-pixel interpolation algorithm in locating the peak of the particle displacement,

cross correlation map. This was carried out using the guidelines and equation provided

by Raffel et al. [92]:

σPIVu = u
δd
d

=
δd

∆t · pres
(A.10)

where u, d, δd, ∆t, and pres are the local velocity, corresponding movement in pixel

space, sub-pixel interpolation precision, shot separation time, and pixels per unit

length. Using the second expression for σu, velocity uncertainties are estimated for

the two bulk velocity test conditions:

σPIVu=35m/s =
0.04 pixels

(5e− 6s) · (1/0.007pixels
mm

)
(A.11)

σPIVu=35m/s =0.6m/s (A.12)

σPIVu=70m/s =0.1m/s (A.13)

Note, that the decrease in velocity error for the higher velocity case is driven by

the shorter shot separation times used (∆t70 m/s < ∆t35 m/s).

Improvement upon PIV resolution error is a balance between other limitations of

the technique. For instance, increasing particle size is one method to decreasing δd,

however as discussed, larger particles have higher particle flow lags and will not follow

the flow as precisely. Furthermore, increasing the field resolution by zooming in, will

increase pres and decrease δd, but will result in lower ∆t in order to prevent in-plane

loss-of-pairs, assuming that the same interrogation window size is used.
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A.1.3.2 Methods of Error Quantification

A relatively new advancement in the field of PIV is the development of methods to

directly calculate local estimates of the error in an instantaneous velocity vector. Four

methods are presented which have been proposed to quantify velocity uncertainty

by the PIV community as summarized by Sciacchitano et al. [102]. They are the

uncertainty surface method [116], particle disparity method [103], peak ratio method

[14], and the correlation statistics method [123]. These development of these methods

are a critical first step towards quantitative error estimation of PIV data.

While the objective of these error quantification methods are the same, they differ

in their approach and ability to do so. The most straightforward is the peak ratio

method which empirically determines the uncertainty in the velocity magnitude as

a function of the ratio of the magnitudes of the peak and second peak of the cross-

correlation map, or peak to peak ratio, PPR [14]:

σ|u| = 0.402PPR−0.84 (A.14)

While the PPR is easily obtainable, the coefficients of Equation A.14 are empirical

and must be determined from analysis of synthetic or artificially produced velocity

fields.

The uncertainty surface method offers an approach which allows for the sensitivity

to various sources of error to be accounted for in a lookup table [116]. This lookup

table or uncertainty surface is generated by using synthetic images which vary param-

eters of interest and determine the error in reported velocity components. In their

work, Timmins et al. applied this technique to error from particle image diameter,

particle seeding density, particle displacement, and velocity gradient. This method is

limited by its ability to only assess errors caused by the PIV algorithm and has only

been utilized in the study of a laminar flow field.

The last two methods provide the most direct and robust approach to determining
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the error in PIV measurements. Both the particle disparity method and the correla-

tion statistics method determine error by comparing the actual particle displacement

field with the particle displacement field predicted from the PIV algorithm. With

the particle disparity method, the predicted particle displacement field is determined

by shifting the first particle image field by the local displacement field calculated.

Ideally, the predicted particle displacement field and the second particle image field

would be identical with the absence of noise. Using the PIV algorithm, the differ-

ence between between predicted and actual particle image fields is determined as an

estimate of local error for each particle. Instead of analyzing the individual contribu-

tions of particles to the error in each velocity vector reported, the correlation statistics

method relies on analysis of the shape of the correlation map of the predicted and ac-

tual particle fields, with the assumption that the correlation map is symmetric when

there is no error. Through analysis of the sources of asymmetries in the correlation

map, the overall error, resulting from the PIV algorithm as well as physical sources

is determined. Wieneke and Prevost [123] and Wieneke [124] explore the sensitivity

of PIV error to various flow field, particle, and image quality characteristics.

The generality of the correlation statistics technique make it an attractive choice

for evaluating PIV errors which has been implemented into commercial PIV soft-

ware, such as DaVis. The details of this method as well as estimates of error in

the measurements used in these studies is discussed in greater detail in the following

section.

A.1.3.3 Uncertainty Analysis: Cross-Correlation Statistics

The correlationstatistics method of PIV error quantification developed by Wieneke

and Prevost [123, 124] and implemented in DaVis 8.2, was used to provide estimates

of the error in the PIV measurements used in these studies. This technique allows

for random and bias errors to be determined for each component of velocity. Figure
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(a) urmsz (b) urmsr

(c) ubiasz (d) ubiasr

Figure A.2: Instantaneous PIV vector error fields for φ = 0.9 and upm = 35m/s

test case obtained from DaVis.

A.2 shows representative instantaneous error fields for the φ = 0.9, upm = 35m/s test

case.

Certainly these fields suggest that the total error, from random and bias sources,

is highly dependent on the spatial location within the flow field and specifically the

fluid features present in the flow field. Based on the fields shown, we expect that the

distribution of velocity error to be different in the jet, shear layer, and recirculation

zone regions of the flow field. For instance, it appears as if the highest random errors

occur within the jet and shear layer while the highest bias errors are present in the

shear layer. In other words, the local physics of the flow field appear to be causing

a variation in the local velocity uncertainties such that the error is not spatially

uniform. This is evident from the mean velocity uncertainty fields in Figure A.3 and

further supported by a comparison of the PDFs of the random and bias error for the

three regions identified in this flowfield (Figure A.4). Certainly the shear layer is a

challenging region of the flow field to perform PIV velocity measurements in with its
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(a) ūrmsz (b) ūrmsr

(c) ūbiasz (d) ūbiasr

Figure A.3: Time averaged PIV vector error fields for φ = 0.9 and upm = 35m/s

test case obtained from DaVis.

large spatial gradients in flow velocity; the challenges of which have been discussed

in a previous section. Inspecting the PDFs of Figure A.4, it becomes clear that the

region of greatest interest in these studies, the shear layer, has the highest mean rms

velocity uncertainties, and the largest range of bias errors amongst the three regions.

Given this information, we are interested in how these uncertainties in velocity impact

our ability to calculate accurate strain rates from PIV velocity vectors.

We next examine the uncertainty in the calculated strain for a representative

location within the shear layer. This location is held fixed for the span of equivalence

ratios for the upm = 35 m/s test cases. In our calculation of the uncertainty in an

instantaneous strain measurement, we have chosen a central difference estimate of the

strain. As such, error in an instantaneous strain rate from random and bias sources

is estimated as:

σrmsui,x
(x0, t) =

√
σurms

i
(x1, t)

2 + σurms
i

(x−1, t)
2

2∆x2
(A.15)
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Figure A.4: PDFs of velocity rms and bias uncertainties in velocity by flow field

region for the φ = 0.9 and upm = 35m/s test case.
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σbiasui,x
(x0, t) =

σubiasi
(x1, t)− σubiasi

(x−1, t)

2∆x
(A.16)

where σui,x is the spatial derivative of the velocity component in direction i with re-

spect to the spatial direction x, σui is the instantaneous uncertainty of the velocity

component in direction i, and ∆x is the separation distance between point measure-

ments (e.g., ∆x = x1 − x0). Figure A.5 shows the PDFs of the computed strain

uncertainties resulting from random and bias sources of velocity uncertainties for the

strain terms largely responsible for flame stretch for these particular studies of a shear

layer stabilized flame, uz,r and uz,z. Note that the average bias induced strain un-

certainty is much less than the average rms induced strain uncertainty. In fact, bias

induced strain uncertainty is on the order of strain uncertainties resulting from PIV

resolution uncertainties. Strain uncertainty from rms sources is much higher on the

order of 103 s−1. Note as well that while the distribution of σrmsuz,z seems symmetric,

the distribution of σrmsuz,r is clearly not although the ranges of these parameters are

comparable. With calculated mean stretch rates on the same order of these strain

uncertainties, instantaneous measurements would have relative uncertainties on the

order of the reported value, and would be very inaccurate.

A.2 Propagation of Error

A.2.1 Edge Velocity Measurements

The error in edge velocities from uncertainties in the velocity measurement as well as

uncertainties in flame angle are addressed. We will take into consideration error in

velocity measurements caused by thermophoretic forces, PIV resolution limitations,

and the error estimated from cross-correlation statistics. Below are expressions for

the measurement uncertainty of uT and uN :

σuT =
[
σ2
u + (urcosθf − uzsinθf )2 σ2

θf

]1/2

(A.17)
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Figure A.5: PDFs of strain errors with the shear layer resulting from rms and bias

uncertainties in velocity for the dominant strain sources of flame stretch, uz,r and

uz,z, for the upm = 35m/s test cases.
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σuN =
[
σ2
u + (uzcosθf − ursinθf )2 σ2

θf

]1/2

(A.18)

Uncertainty in an instantaneous measurement of both velocities is dependent on

the velocity components and the flame angle at that point in time. As a worst

case bound, we calculate the edge velocity uncertainty for uz = 10 × ur = 10m/s

and θf = 45◦. In addition, we combine the error contributions from thermophoretic

effects, PIV resolution, and cross-correlation estimates as follows:

σu =
√
σPIV 2

u + σTP 2

u + σUA2

u (A.19)

where σPIVu , σTPu , and σUAu are velocity uncertainties from PIV resolution limits,

thermophoretic effects, and cross-correlation estimates. Note, although we include

thermophoretic induced velocities as a general contribution to uncertainty in velocity,

it physically only impedes particle motion normal to the flame front or parallel to

the direction of the temperature gradient. Also, compared to other sources of error,

thermophoresis is negligible within the shear layer with total error dominated by σUAu ,

presumably the result of physical sources of error such as particle tracking, loss of

pairs, the presence of high strain rates, and in-plane variation of the flow field. Note,

within the shear layer, the uncertainty in velocity magnitude is estimated as a worst

case to be ≈ 1.7m/s for the upm = 35m/s test case with dominant contributions from

uz,rms and ur,rms, and negligible contributions from uz,bias and ur,bias, on average.

This results in velocity uncertainties of ≈ 1.7m/s for both σuT and σuN with dom-

inant contributions coming from the uncertainty of and sensitivity to the velocity

measurement. These uncertainties are insignificant relative to the tangential veloci-

ties measured but certainly significant compared to the mean normal velocities and

expected flame speeds for these mixtures.
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A.2.2 Flame Stretch Measurements

Derivatives of the velocity field were approximated using a centered difference scheme.

Truncation error for this scheme is O(∆x2 and therefore minimized as grid spacing

is decreased. However, as grid spacing is decreased, error from measurement noise

becomes increasingly large and, at a small enough grid spacing, can dominate leading

to increasing error with decreasing grid size. The strain field was also smoothed

by locally averaging the nearest three strain measurements to the point of interest.

This treatment of the strain field is consistent with that taken by Filatyev et al. [41].

Finally, a linear propagation of error analysis was carried out in order to calculate the

uncertainty in an instantaneous measurement of flame stretch,σκs , as shown below:

σκs =

(
∂κs
∂ur

σur

)2

+

(
∂κs
∂ur,r

2

+
∂κs
∂uz,z

2

+
∂κs
∂uz,r

2

+
∂κs
∂uz,r

2

+
∂κs
∂ur,z

2)
σ2

S

+

(
∂κs
∂r

σr

)2

+

(
∂κs
∂θf

σθf

)2
(A.20)

Note the second grouping of the sensitivities of flame stretch to each of the sources

of 2D flame strain as a result of the uncertainty being the same for all strain terms.

This expression can be further simplified by first examining the sensitivity of flame

stretch to the independent variables:

∂κs
∂ur

=
1

r
,
∂κs
∂r

= −ur
r2

∂κs
∂ur,r

= sin2θf ,
∂κs
∂uz,z

= cos2θf

∂κs
∂uz,r

=
∂κs
∂ur,z

= −cosθfsinθf

∂κs
∂θf

= +2ur,rsinθf − 2uz,zcosθf − (uz,r + ur,z)
(
2cos2θf − 1

)
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Expanding the each term, the following simplification to the flame strain sensitiv-

ity terms can be carried out:(
∂κs
∂ur,r

2

+
∂κs
∂uz,z

2

+
∂κs
∂uz,r

2

+
∂κs
∂ur,z

2)
= sin4θf + cos4θf + 2cos2θfsin

2θf

= sin4θf + cos2θfsin
2θf + cos4θf + cos2θfsin

2θf

= sin2θf
(
sin2θf + cos2θf

)
+ cos2θf

(
cos2θf + sin2θf

)
= sin2θf + cos2θf

= 1

σκs is simplified to the following expression:

σκs =

[
1

r2
σ2
ur+

u2
r

r4
σ2
r + σ2

S

+(2ur,rsinθf − 2uz,zcosθf− (uz,r + ur,z)
2 (2cos2θf − 1

)
)2σ2

θf

]1/2 (A.21)

Taking into account the orientation of the flame in this particular flow field, (θf ≈

0◦), removing terms with small error sources, (σur & σr), and based on inspection

of the strain field leaving only the dominant strain terms, uz,z & uz,r, and further

confirmed by inspection of the contributions to flame stretch, eqn. (A.21) can be

further reduced to:

σκs ≈
[
σ2

S
+ (−2uz,z − uz,r)2 σ2

θf

]1/2

(A.22)

The uncertainty in the flame angle was assumed to be 5◦ based on the observed flame

angles distributed in groupings 2.5◦ apart, presumably the resolution of flame angle

measurements. The sensitivity of flame stretch to flame angle is a function of the

instantaneous strain conditions. Therefore we present a worst case result based on

the maximum observed sensitivity to flame angle:

max

(∣∣∣∣∂κs∂θf

∣∣∣∣)σθf ≈ 900 s−1 (A.23)
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where:

∂κs
∂θf

≈ −2uz,z − uz,r (A.24)

Given the uncertainty in the velocity measurements, from each of the sources of

error, the overall uncertainty in the stretch measurements can be calculated. For

instance, upon inspection of the PDFs of strain errors, Figure A.5, the uncertainty

in strain rate, S, is assumed to be ≈ 4500 1/s. Comparing these two sources of flame

stretch uncertainty, it is clear that the maximum uncertainty in stretch measurements

is dominated by sensitivity to and uncertainty in velocity conditions.

Note, that the uncertainty in an instantaneous stretch measurement is on the

order of the reported mean values. These values are typical of PIV measurement

techniques which are very noisy. However, given the number of samples, and as

reported in Chapter 6, the uncertainty in the reported mean values of stretch are

a fraction of the mean values. Thus, although there is low relative confidence in

reported instantaneous stretch measurements, the uncertainty in the reported mean

stretch values is low for all test cases.
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APPENDIX B

SUPPLEMENTAL MATERIAL: SWIRL FLAME

SENSITIVITY TEST CASES

Table B.1: Line fits of φ (Tbhd) for OSL attachment and blowoff transitions for

centerbody diameter, dcb, sensitivity test cases. Fits are valid for range of bulkhead

temperatures, Tbhd, indicated in table.

Table B.2: Line fits of φ (Tbhd) for OSL attachment and blowoff transitions for

combustor diameter, dcomb, sensitivity test cases. Fits are valid for range of bulkhead

temperatures, Tbhd, indicated in table.
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Table B.3: Line fits of φ (Tbhd) for OSL attachment and blowoff transitions for

combustor length, lcomb, sensitivity test cases. Fits are valid for range of bulkhead

temperatures, Tbhd, indicated in table.

Table B.4: Line fits of φ (Tbhd) for OSL attachment and blowoff transitions for

swirler vane angle, θvane, sensitivity test cases. Fits are valid for range of bulkhead

temperatures, Tbhd, indicated in table.
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Table B.5: Line fits of φ (Tbhd) for OSL attachment and blowoff transitions for

preheat temperature, Tph, sensitivity test cases. Fits are valid for range of bulkhead

temperatures, Tbhd, indicated in table.

Table B.6: Line fits of φ (Tbhd) for OSL attachment and blowoff transitions for

premixer velocity, upm, sensitivity test cases. Fits are valid for range of bulkhead

temperatures, Tbhd, indicated in table.
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Table B.7: Line fits of φ (Tbhd) for OSL attachment and blowoff transitions for ther-

moacoustic sensitivity test cases. Fits are valid for range of bulkhead temperatures,

Tbhd, indicated in table.
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Figure B.1: Flame configuration map for test cases 9A, 12B, 24A, and 33A, per-

formed without acoustic measurements.
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Figure B.2: Flame configuration map for test cases 8A, 11B, 24B, and 30A, per-

formed without acoustic measurements.
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Figure B.3: Flame configuration map for test cases 10B and 30B, performed without

acoustic measurements.
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Figure B.4: Flame configuration map for test cases 9B, 14B, 22A, and 33B, per-

formed without acoustic measurements.
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Figure B.5: Flame configuration map for test cases 8B, 13B, and 22B, performed

without acoustic measurements.
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Figure B.6: Flame configuration map for test cases 7A, 12A, 23A, and 32A, per-

formed without acoustic measurements.
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Figure B.7: Flame configuration map for test cases 6A, 11A, 23B, and 29A, per-

formed without acoustic measurements.
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Figure B.8: Flame configuration map for test cases 10A and 29B, performed without

acoustic measurements.
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Figure B.9: Flame configuration map for test cases 5B, 7B, 14A, 21A, and 32B,

performed without acoustic measurements.
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Figure B.10: Flame configuration map for test cases 4B, 6B, 13A, and 21B, per-

formed without acoustic measurements.
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Figure B.11: Flame configuration map for test cases 3A, 5A, and 25A performed

without acoustic measurements.
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Figure B.12: Flame configuration map for test cases 1A and 31B, performed without

acoustic measurements.
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Figure B.13: Flame configuration map for test cases 2A, 4A, 25B, and 31A, per-

formed without acoustic measurements.
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Figure B.14: Flame configuration map for test cases 1B, 19B, and 26B, performed

without acoustic measurements.
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Figure B.15: Flame configuration map for test cases 2B, 16A, 19B, and 26A, per-

formed without acoustic measurements.
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Figure B.16: Flame configuration map for test cases 3B, 17A, 19A, and 27A, per-

formed without acoustic measurements.
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Figure B.17: Flame configuration map for test cases 15A, 18A, and 27B, performed

without acoustic measurements.
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Figure B.18: Flame configuration map for test cases 15B and 28B, performed with-

out acoustic measurements.
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Figure B.19: Flame configuration map for test cases 16B and 20B, performed with-

out acoustic measurements.
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Figure B.20: 20) Flame configuration map for test cases 17B, 20A, and 28A, per-

formed without acoustic measurements.
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Figure B.21: Flame configuration map for test cases 9A, 12B, 24A, and 33A, per-

formed with acoustic measurements.
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Figure B.22: Flame configuration map for test cases 8A, 11B, 24B, and 30A, per-

formed with acoustic measurements.
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Figure B.23: Flame configuration map for test cases 10B and 30B, performed with

acoustic measurements.
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Figure B.24: Flame configuration map for test cases 9B, 14B, 22A, and 33B, per-

formed with acoustic measurements.
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Figure B.25: Flame configuration map for test cases 8B, 13B, and 22B, performed

with acoustic measurements.
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Figure B.26: Flame configuration map for test cases 7A, 12A, 23A, and 32A, per-

formed with acoustic measurements.
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Figure B.27: Flame configuration map for test cases 6A, 11A, 23B, and 29A, per-

formed with acoustic measurements.
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Figure B.28: 10P) Flame configuration map for test cases 10A and 29B, performed

with acoustic measurements.
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Figure B.29: 11P) Flame configuration map for test cases 5B, 7B, 14A, 21A, and

32B, performed with acoustic measurements.

450 500 550 600 650
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

m=−0.00026623

b=0.62961
OSL Blowoff

m=−0.0003067

b=0.65883
OSL Attachment

Tbhd [K]

φ

Figure B.30: 12P) Flame configuration map for test cases 4B, 6B, 13A, and 21B,

performed without acoustic measurements.
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APPENDIX C

SUPPLEMENTAL MATERIAL: EXPERIMENTAL

RESULTS

C.1 Shear Layer Characteristics

C.1.1 Flow Field Characteristics
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Figure C.1: Mean and rms velocity fields for φ=0.8 and upm=35m/s.
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Figure C.2: Mean and rms velocity fields for φ=0.9 and upm=35m/s.
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Figure C.3: Mean and rms velocity fields for φ=1.0 and upm=35m/s.
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Figure C.4: Mean and rms velocity fields for φ=1.1 and upm=35m/s.

216



0
0

0
0

10
10

10

20
20

20

30 30 30

40 40 40

50 50 50

60 60 60

70 70 70

Z [mm]

R
[m

m
]

1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4
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Figure C.5: Mean and rms velocity fields for φ=0.8 and upm=70m/s.
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Figure C.6: Mean and rms velocity fields for φ=0.9 and upm=70m/s.
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Figure C.7: Mean and rms velocity fields for φ=1.0 and upm=70m/s.
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Figure C.8: Mean and rms velocity fields for φ=1.1 and upm=70m/s.
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C.1.2 Strain Field Characteristics
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Figure C.9: Mean and standard deviation of strain fields for φ = 0.8 and upm =

35m/s.
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Figure C.10: Mean and standard deviation of strain fields for φ= 0.9 and upm =

35m/s.
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Figure C.11: Mean and standard deviation of strain fields for φ= 1.0 and upm =

35m/s.
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Figure C.12: Mean and standard deviation of strain fields for φ= 1.1 and upm =

35m/s.
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Figure C.13: Mean and standard deviation of strain fields for φ= 0.8 and upm =

70m/s.
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Figure C.14: Mean and standard deviation of strain fields for φ= 0.9 and upm =

70m/s.
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Figure C.15: Mean and standard deviation of strain fields for φ= 1.0 and upm =

70m/s.
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Figure C.16: Mean and standard deviation of strain fields for φ= 1.1 and upm =

70m/s.
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C.2 Flame Measurements

C.2.1 PIV and CH-PLIF
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Figure C.17: Sample instantaneous images of CH-PLIF and velocity vectors for

φ=0.8 and upm=35m/s.
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Figure C.18: Sample instantaneous images of CH-PLIF and velocity vectors for

φ=0.9 and upm=35m/s.
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Figure C.19: Sample instantaneous images of CH-PLIF and velocity vectors for

φ=1.0 and upm=35m/s.
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Figure C.20: Sample instantaneous images of CH-PLIF and velocity vectors for

φ=1.1 and upm=35m/s.
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Figure C.21: Sample instantaneous images of CH-PLIF and velocity vectors for

φ=0.8 and upm=70m/s.
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Figure C.22: Sample instantaneous images of CH-PLIF and velocity vectors for

φ=0.9 and upm=70m/s.
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Figure C.23: Sample instantaneous images of CH-PLIF and velocity vectors for

φ=1.0 and upm=70m/s.

235



10 m/s 

10 m/s 

10 m/s 

10 m/s 

10 m/s 

10 m/s 

10 m/s 

10 m/s 

10 m/s 

10 m/s 

Figure C.24: Sample instantaneous images of CH-PLIF and velocity vectors for

φ=1.1 and upm=70m/s.
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C.2.2 Flame Stretch Measurements
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Figure C.25: Mean flame stretch as a function of Z by source for φ = 0.8 and

upm=35m/s (left) and upm=70m/s (right).
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Figure C.26: Mean flame stretch as a function of Z by source for φ = 0.9 and

upm=35m/s (left) and upm=70m/s (right).
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Figure C.27: Mean flame stretch as a function of Z by source for φ = 1.0 and

upm=35m/s (left) and upm=70m/s (right).
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Figure C.28: Mean flame stretch as a function of Z by source for φ = 1.1 and

upm=35m/s (left) and upm=70m/s (right).
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Figure C.29: PDF of mean flame stretch as a function of Z for φ= 0.8 and upm =

35m/s (left) and upm=70m/s (right).
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Figure C.30: PDF of mean flame stretch as a function of Z for φ= 0.9 and upm =

35m/s (left) and upm=70m/s (right).
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Figure C.31: PDF of mean flame stretch as a function of Z for φ= 1.0 and upm =

35m/s (left) and upm=70m/s (right).
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Figure C.32: PDF of mean flame stretch as a function of Z for φ= 1.1 and upm =

35m/s (left) and upm=70m/s (right).
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